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Abstract 
Title Page 

Integrated Computational Materials Design for Alloy Additive Manufacturing: 

Introducing Data-Driven Approach to Physical Metallurgy 

 

Xin Wang, Ph.D. 

 

University of Pittsburgh, 2023 

 

 

Additive manufacturing (AM) attracts broad interest due to its ability to produce complex 

geometries, fast prototyping, and in-situ repair. However, AM involves many parameters and 

uncertainties, which lead to products property variation. For instance, the influence of composition 

variation on AM component is an important issue that has not been thoroughly studied. Moreover, 

micro-segregation in AM caused by the high-cooling rate makes the as-built structure and 

properties vary locally within the prints. The alloy bulk properties may change with different AM 

processing parameters. Such variations must be studied while the experimental study is time- and 

cost-consuming.  

This thesis introduced the data-driven approach, such as statistical analysis, machine 

learning, and Bayesian inference combined with integrated computational materials engineering 

(ICME), to address the AM property variation challenges. Firstly, the process-structure-property-

performance (PSPP) relationships for AM high-strength low-alloy (HSLA) 115 steel with post-

treatment were established to study feedstock composition impact on the print performance. High-

throughput calculations of the ICME framework quantified uncertainties in critical properties, such 

as yield strength, printability, and low-temperature ductility, with the feedstock composition 

variation. Moreover, the machine learning approach was implemented to surrogate the ICME 

model framework for an accelerated simulation for a more comprehensive study and robust 

feedstock composition optimization. Finally, the printed optimized HSLA 115 steel showed 

excellent properties even though the printed composition differs from the designed composition, 



 v 

which proves the successfulness of the design with uncertainty in composition. This thesis studied 

the impact of AM 316L stainless steel segregation on the deformation mechanism and mechanical 

properties. A machine learning-based stacking fault energy (SFE) predictor, which surpassed the 

conventional thermodynamic and empirical models, was developed to predict the SFE change with 

segregation in AM. This data-driven model successfully explained the twinning behavior in as-

built AM 316L. Finally, a Bayesian-based model calibration was applied to understand the 

considerable variation in the mechanical properties of CoCrFeMnNi HEAs with different AM 

techniques and processing parameters. It revealed the importance of dislocation density and grain 

size in strengthening the AM products, and correlation analysis was conducted to find the 

relationship between the strengthening mechanism and processing parameters. 
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1.0 Introduction 

1.1 Additive Manufacturing 

Additive manufacturing (AM), a technique that fabricates components by printing layer by 

layer with a computer-aided design (CAD) file, is capable of producing complex geometries, rapid-

prototyping with low cost, and performing in-situ repair tasks [1,2]. Due to those advantages, AM 

has gained various interests from the academic community and industrial fields, making a market 

worth billions of dollars [3]. The current AM approach can work with different materials, such as 

polymers, ceramics, metals, etc., and the AM techniques have been successfully commercialized 

with polymers [4]. On the contrary, metal AM greatly impacts many industrial fields, and various 

technical barriers remain to be solved [5]. 

As defined by the American Society for Testing and Materials (ASTM) Internal Committee 

F42, the AM processes fall into seven categories: 1. Vat photopolymerization, 2. Material jetting, 

3. Binder jetting, 4. Material extrusion, 5. Powder bed fusion, 6. Sheet lamination, and 7. Directed 

energy deposition [6]. For metal AM, the most common techniques are powder bed fusion (PBF) 

and directed energy deposition (DED), which make up 70% of the metal additive manufacturing 

market [1]. Their difference is that a PBF will have the powder evenly distributed. Only the energy 

source, such as the electron/laser beam [7], will move as the designed pattern to selectively fuse 

metallic powder particles layer over layer, where the process is illustrated in Fig.1-1. On the 

contrary, the material feeder and the energy source will move in the DED technique. Compared to 
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the PBF, the DED is cheaper and good at shaping complex geometries, while the accuracy is not 

comparable with PBF [8].  

The manufacturing process of PBF and DED approaches seems to be simple, while there 

are complex physical phenomena in the whole process, such as rapid melting and solidification, 

evaporation, and complex thermal history when the heat source moves within the same layer and 

moves between successive layers. All of those are controlled by the feedstock properties and 

composition, printing parameters like the scan pattern and speed, heat source power, layer height, 

beam diameter, and hatch space. Moreover, the combination of the numerous parameters and 

complex physics will lead to different grain sizes, precipitates, porosities, etc., making the final 

product performance vary and hard to be qualified for certain engineering applications [9].  

 

Figure 1-1 Schematics of the powder bed fusion process.  The common processing parameters are 1. Power: 

Energy delivered by the heat source. 2. Beam diameter: Diameter of the heat source on the powder bed. 3. 

Scan speed: Travel speed of heat source. 4. Layer height: Thickness of each layer. 5. Hatch space: Distance 

between two consecutive scans. Figures adopted and modified from [9] under the terms of the Creative 

Commons CC-BY license. 
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1.2 Integrated Computational Materials Engineering (ICME) 

1.2.1 ICME in AM 

To better control the AM components’ performance and make it satisfy the stringent 

requirements for industrial application, we need to gain an in-depth understanding of the process-

structure-property-performance (PSPP) relationship throughout the manufacturing process. 

However, the traditional experiment-based Edisonian approach is insufficient and impractical to 

explore the multicomponent alloys and understand the large design space in AM. Meanwhile, the 

rapidly growing computing power and well-developed simulation tools provide a new approach, 

i.e., integrated computational materials engineering (ICME) [10–12], for predicting properties, 

designing alloys, and optimizing printing parameters and post-heat treatment conditions. It 

integrates various computation tools and databases to simulate the product from the atomistic level 

to the bulk components and shortens the time needed for alloy development from 10-20 years to 

around two years [13]. Many countries have acknowledged and embraced the concept of ICME 

due to its potential to utilize computational materials engineering in the future industry [14]. 

The keys in ICME include process, structure, property, performance, and the linkage 

between the four aspects. Moreover, the PSPP relationships for AM differ from the conventionally 

manufactured materials, which brings new challenges in applying ICME for metal AM. 

• For process, AM alloys undergo a very complex thermal, mechanical, and 

composition change, which are determined by the feedstock properties, the AM 

processing parameters, and the post-treatment. From feedstock to post-treatment, 
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the large design space provides much freedom in tuning the material's structure and 

properties. At the same time, the numerous choices of parameters may impede a 

successful design with a trial-and-error approach. Understanding the influence of 

the feedstock and parameters on product performance is vital for the AM [15], 

while such a thorough understanding is not sufficiently studied [16,17]. 

• For structure, the microstructure of metals is usually described by the grain size,  

dislocation densities, precipitation fractions, and porosities in materials science. 

However, AM products show more unique structures than conventionally 

manufactured metals, such as elongated columnar grains, higher dislocation 

density, and different types of pores [18]. Moreover, the AM local composition and 

microstructure may change at the voxel level, whether controlled or stochastic [19], 

bringing challenges in understanding the properties. 

• For property, it varies based on the application of the material, such as thermal 

conductivity, corrosion, and oxidation resistance. This thesis will mainly focus on 

mechanical properties, such as yield strength, low-temperature ductility, and 

deformation mechanisms.  

• For performance, it means the product meets all requirements for its application. It 

is a comprehensive evaluation of multiple property requirements. 

The foundations of a successful ICME framework include a comprehensive understanding 

of the PSPP relationship, accurate and feasible modeling tools, reliable databases, and a seamless 

linkage between each model. Currently, most of the ICME modeling work for AM focuses on the 

AM process, where the details have been summarized by Hu et al. [20]. The heat source model, 
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powder bed model, melting pool model, etc., can be applied to predict the properties and 

performance of AM products. For example, with the input parameters, such as the scan speed, laser 

power, and particle size distribution, the melting pool model enables the prediction of melt pool 

geometry, thermal boundary conditions, and surface roughness [21–26]. Then, the predicted 

thermal boundary conditions can serve as inputs for the finite element analysis (FEA)-based or 

phase-field method (PF)-based residual stress model to predict the residual stress, shrinkage, and 

deformation of the final products [25,27,28]. In terms of the alloy design, the CALPHAD 

(CALculation of PHase Diagrams) [14,29–31] has been well developed for modeling the phase 

transformation in various alloys. Moreover, the ab initio method based on the density functional 

theory predicts structure and property on a small scale [32]. 

However, the computational resources for the abovementioned approaches will be 

extensive when integrated for massive calculations required for AM with ample design space and 

complex physics [33]. In the meantime, the wealthy data generated during production, academic 

research, and the data-driven approach provide an alternative way to the existing ICME model 

framework and can be applied for more detailed study [34]. 

1.2.2 Data-Driven Approaches and Applications for AM 

Incorporating data-driven approaches, such as machine learning and deep learning, is 

recognized as the ‘fourth paradigm of science’ [35] and the ‘fourth industrial revolution’ [36]. It 

shows great potential in enhancing the role of computational materials in materials science, such 

as property prediction, materials discovery, and process optimization [37–41], due to the unique 
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advantages of the machine learning method compared with the traditional modeling approaches 

[37,41–45]. First, it is easy to use. Building a machine learning model requires constructing a 

database, selecting the algorithm and training the model, and evaluating the performance [41].  It 

does not require skillful and knowledgeable researchers to master the relationship between each 

input and the property of interest to ensure the correct prediction. The machine learning algorithms 

will automatically model the hidden links in each attribute. Second, suppose the machine learning 

model has been established. Once the new experiments have been performed, the latest data could 

be easily incorporated into the model and enhance the model's performance. This feature offers an 

advantage for automated model improvement as the new data are generated during industrial 

production and academic research. Finally, the machine learning model is fast and accurate if 

enough data and the appropriate algorithm have been used to build the model. 

In addition to machine learning, the Bayesian statistical method can bridge the model and 

the experimental data and improve the ICME model accuracy. By providing a few experimental 

data, it can calibrate either a machine learning surrogate model or physics-based material property 

models for more accurate prediction and quantify the uncertainty of the model parameters that 

offers an in-depth understanding of physics [46,47]. 
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Figure 1-2 Application of machine learning in additive manufacturing. 

 

Currently, many works utilize the data-driven approach for AM [48].  As shown in Fig. 1-

2, the current applications include the design before the product, such as topology and feedstock 

design, and the design for AM processes, which includes optimizing the processing parameters 

and printing the microstructure. Finally, it is also capable of manufacturing planning. For example, 

Cang et al. [49] used the neural network for topology design with minimized compliance. Martin 

et al. [50] applied an algorithm to search through 4500 different possible nucleates and find the 

one that makes the laser powder bed fusion (LPBF) Al alloy with desired microstructure. Tapia et 

al. [51] also demonstrated that machine learning could surrogate the physics model and predict the 

melt pool depth with printing parameters accurately and quickly. Mech et al. [52] demonstrated 

using the machine learning approach for estimating build time for better planning the AM 
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production. As materials research, this thesis will not cover all applications of ML in AM but 

mainly focus on using data-driven ICME for material design, property prediction, and the PSPP 

relationship for AM. 

1.3 Challenges in AM – Variation in Composition, Structure, and Property 

Figure 1-3 shows the three types of variation in the additive manufacturing process that 

will be addressed in this work. The feedstock quality may vary in different batches. The deviation 

from the desired composition could lead to detrimental phase formation during solidification [53] 

and post-heat treatment [54] and lead to undesired properties. The second problem is that AM 

prints usually have micro-segregation and ununified properties due to rapid cooling [55]. Last, the 

yield strength of the AM alloy with the same composition is found to have a significant difference. 

A detailed discussion of the three variations is given in the following context. 
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Figure 1-3 Common properties variation in AM. (a) The feedstock composition varies in different batches. (b) 

During the printing, the as-built prints may have different compositions at different locations due to micro-

segregation and other reasons. (c) the yield strength varies for the same alloy with different processing 

parameters and different manufacturing approaches. 
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1.3.1 Variation of Feedstock Composition 

1.3.1.1 Problem Statement 

Uncertainty quantification is essential for quality control in AM. Based on the given 

uncertainty of processing parameters, uncertainty quantification can determine the microstructure 

variation and mechanical properties for AM builds. Currently, most uncertainty quantification 

studies focus on manufacturing processes [20,21,56]. However, the influence of uncertainty in the 

feedstock is often overlooked. The cost of metal materials is the second-highest in AM part [57], 

and the feedstock quality plays a vital role in the AM build performance. Moreover, the choice of 

commercialized AM powder is much less than the alloys manufactured by the conventional 

manufacturing approach, and not all existing alloys are suitable for metal AM [58], such as, using 

the alloys designed for casting may result in poor processibility in AM process. As a result, 

composition adaptation is required to enhance processability and functionality for 3D printing of 

conventional alloys [59]. 

Many works have studied the feedstock density impact on the final product porosity [60] 

and the influence of powder size distribution and morphology on the process quality [61,62]. In 

contrast, the impact of the composition variation is not well studied for the post-heat-treated AM 

products. Deviation from the desired composition could lead to detrimental phase formation during 

solidification [53] and post-heat treatment [54]. It may also introduce cracks and pores and alter 

physical properties such as specific heat and melting point, further influencing the choice of 

processing parameters [63]. Moreover, the composition variation in AM products is unavoidable, 

which comes from various sources. First, the powder composition varies in different batches [64]. 
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Additionally, a large amount of unprinted powder needs to be recycled after the AM process to 

improve sustainability, which causes degradation with contamination. The above composition-

related issues propagate uncertainty throughout the AM process and should be addressed during 

the composition design of the feedstock material. This implies that the nominal composition of an 

alloy needs to be well-designed to avoid the negative impact of the uncertainty on the final build. 

However, the study of the relationship between alloy composition and the performance of AM 

builds after post-treatment is limited. Only a few studies have reported the impact of composition 

variation on the AM builds with experiments [65,66]. Moreover, the comprehensive modeling tool 

to facilitate decision making on the composition range in feedstock manufacturing is yet 

unavailable. 

1.3.1.2 Study Case 

Unlike commercialized alloy powder such as Inconel 718, Ti-64, and Stainless Steel 316, 

many alloys have not been massively produced for AM, and the production of customized powder 

is usually in a small batch and expensive. For example, high-strength low-alloy steels are widely 

used in many structural applications, such as bridges, ship hulls, and mining equipment [67–70]. 

Due to the excellent mechanical properties and good weldability, HSLA-115 steel is an 

outstanding candidate for AM, but no commercial powder is available. Moreover, the powder 

vendor Praxair, Inc. provides a composition range for the powder that is based on the wrought 

HSLA composition. For example, the carbon content ranges from 0.027 to 0.078 wt.%. However, 

we do not know if the composition in the specified range will meet all property requirements. The 

printed component should have a yield strength higher than 115 ksi, a low ductile-to-brittle 
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transition temperature (DBTT), and good printability that has high density and can avoid cold 

cracking [71] and hot cracking [72] in the products.  

As a result, there is a need to develop a method to quantify the impact of the feedstock 

composition variation in the final product and optimize the nominal composition that can still 

perform well with the composition variation.  

1.3.1.3 Proposed Solution 

The first step is to build a CALPHAD-based ICME model framework to optimize the 

composition and predict the key properties based on the alloy composition. The CALPHAD 

method in combination with phenomenological models was applied for predicting the dislocation 

density [73], grain size [74,75], impact transition temperature (ITT) [76], and carbon equivalent 

[77]; 2) Data-mining decision tree model for martensite start (MS) temperature [78]; and 3) 

Physics-based strengthening model [79] consisting of the simulation of hardening effect caused by 

dislocations [80], grain boundaries [81,82], precipitates [83,84] and solid solution atoms [85,86] 

to predict the key properties like yield strength, low-temperature ductility, and weldability for a 

given composition and heat treatment process. However, this approach is computationally 

intensive and only suitable for the reliability design, and there is a need for a faster prediction with 

more comprehensive research. 

The second step is using machine learning to surrogate the ICME model framework to 

accelerate the calculation and perform the robust design to discover more compositions and predict 

the mean and standard deviations (SD) of critical properties for a given nominal composition with 
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uncertainty. This helps us conduct more simulations and gain an in-depth understanding of the 

uncertainty propagation from the feedstock composition to the final product properties. 

Finally, the powder with optimized composition was printed, and its properties were 

verified through a systematic microstructure characterization. Based on the results, this study has 

been proven effective and can be applied to other alloy composition optimization to expand the 

choices of alloys for additive manufacturing. The details of the design process and verification are 

available in Chapter 3. 

1.3.2 Variation of Local Composition and Properties 

1.3.2.1 Problem Statement 

Due to the high-speed cooling rate [87–89] of additive manufacturing, the solutes will 

partition from the dendrites into the surrounding liquid, which will not have enough time to reach 

the equilibrium states. This will result in the composition gradient in additively manufactured 

products and leaves the chemical heterogeneity and various properties [90]. The hierarchical 

structure and composition gradient enables some unique properties in AM, while the varying local 

composition also requires more experiments or simulation to understand the structure and 

properties variation in the AM prints. Thus, fast and accurate models for property prediction are 

necessary for AM. 
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1.3.2.2 Study Case 

The AM 316L stainless steel shows higher yield strength, elongation, and tensile strength 

than the cast form [18,91,92]. Furthermore, the excellent mechanical properties were attributed to 

high dislocation density, twinning-induced plasticity (TWIP), and fine subgrain structure [18]. 

TWIP can improve the strength and ductility simultaneously during deformation by forming twin 

boundaries to hinder dislocation movement [93,94]. Moreover, the TWIP phenomenon is 

achievable when Stacking fault energy (SFE), which is related to the energy required for 

dissociating a perfect dislocation into two partial dislocations along with the formation of a 

stacking fault [95], lies between 20-40 mJ/m2(Fig. 1-4) [96]. However, the SFE of TWIP AM 316L 

stainless steel is measured to be 46 mJ/m2 [97], while Pham et al. claimed that their TWIP AM 

316L stainless steel has low SFE due to the nitrogen gas used in printing without measuring or 

calculating the SFE. Thus, it is necessary to consider the segregation and understand the impact 

on SFE to reveal why TWIP is a common and pronounced strengthening mechanism in AM 316L 

stainless steel. 

The SFE can be measured by experimental methods, including transmission electron 

microscopy [98–100] and X-Ray/Neutron diffraction [101,102], which are time-consuming and 

complex. Computational methods such as empirical equations, ab initio calculations, and 

thermodynamic models may serve as alternative solutions for SFE prediction. But none of those 

modeling tools are accurate and quick at the same time. (Detailed discussion in Chapter 3).  
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Figure 1-4 The schematic of stacking fault energy and the deformation mechanisms.  

1.3.2.3 Proposed Solution 

In this thesis, hundreds of compositions and experiments measured stacking fault energies 

were collected. This database will be used as an input for the machine learning model to learn the 

relationship between composition and SFE. The relationship found by the model will be revealed 

by the explainable ML tools such as SHAP. Finally, the model will be used for predicting the SFE 

change with the segregation profile simulated by Scheil prediction for 316L. Finally, the critical 

stress for twinning with nominal composition and segregation profile will be compared to elucidate 

why TWIP is operatable in AM 316L stainless steel. 
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1.3.3 Variation of Bulk Properties for Same Alloy 

1.3.3.1 Problem Statement 

 

 

Figure 1-5 Literature review of the tensile test yield strength difference between fcc HEAs made by DED, 

LPBF, and cast. (a) Summary of the FCC HEA yield strength at as-built, heat treated, and work hardened 

with heat treatment status and (b) Summary of the as-prepared FCC HEA for different alloy compositions. 

 

The yield strength of FCC high-entropy alloys, a new type of alloy that explores the vast 

composition with multi-principle elements, was summarized in Fig. 1-5(a). As for the as-prepared 

condition, the AM manufactured alloys tend to have higher yield strength than the cast alloys, and 

LPBF prepared HEAs will have higher yield strength than the DED manufactured samples, and 
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this phenomenon is kept even after the heat treatment. However, the cast alloy yield strength can 

be further tuned using work hardening and heat treatment to refine the grain size, increase 

dislocation density and introduce some precipitates. On the contrary, no AM HEA has been work 

hardened and heat-treated due to the neat-net shape nature of AM.  

1.3.3.2 Study Case 

Fig. 1-5(b) was plotted based on the alloy composition for the as-prepared FCC HEAs. The 

Cantor alloy CoCrFeMnNi [103] is the most studied FCC-type EA, and the cast alloys have a yield 

strength ranging from 200-300 MPa. The DED alloys show a more significant yield strength 

variation ranging from 200 to 500 MPa. The LPBF shows a yield strength of 400-700 MPa, much 

higher than cast and DED. Two following questions need to be addressed. 1. Why does the yield 

strength of AM alloy show a larger variation than the cast one? 2. What differences in the 

microstructure and process lead to a higher yield strength in LPBF and DED, and if we could 

control yield strength by tuning the process? 

1.3.3.3 Proposed Solution 

Setting up experiments and preparing the raw materials for the comprehensive study will 

rapidly increase costs. Thus, utilizing the existing data and exploring the relationship by reusing 

the experiment data is a good solution to reduce the overall time and resources. The Bayesian 

calibration approach [104–106] can utilize the experimental observations to adjust the model based 

on the conventionally manufactured alloy and correct the model inadequacy between the best-

fitted model and observation to get the model that is suitable for AM alloy. With the iteration of 
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the model-guided designing and the model calibration process, we can develop an accurate model 

for AM alloys and understand the model parameters difference in the AM and conventionally 

manufactured alloys that can help us explain the structural difference in AM. 

1.4 Objectives and Hypothesis 

This research aims to develop an ICME modeling framework integrated with a data-driven 

approach to assist in designing advanced materials for additive manufacturing and gain an in-depth 

understanding of the impact of chemical composition, AM process, and post-treatment impact on 

the AM products' quality. It is hypothesized that by seamlessly integrating the CALPHAD method, 

physical-based models, and data-driven machine learning approach, we can understand and control 

the variation in AM feedstock, local properties, and bulk properties. While the process-structure-

properties-performance relationships encompass numerous facets and details, the initial work here 

to build a modeling framework should start relatively simplified due to the computational costs 

and the complexity of the AM properties [107]. 

Three case studies, objectives, and proposed approaches are described in detail in chapter 

1.3 and will be summarized below:  

Feedstock composition variation: 

• Background: HSLA 115 powder is not commercialized for AM, and the powder 

vendor composition variation in batches may lead to inferior AM builds. Thus, we 

must adapt the wrought HSLA composition and ensure it is robust to composition 
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variation. However, there are millions of composition combinations that need to be 

studied. 

• Solution: Build an ICME modeling framework to predict alloy key properties, such 

as yield strength, DBTT, and printability. Build an ML surrogate model for 

accelerated high-throughput simulation to guide composition design. 

• Validation: Print optimized alloy and perform experiments to verify the 

performance of printed alloys. 

Local composition and properties variation: 

• Background: AM 316L stainless steel shows better mechanical properties than its 

cast or wrought counterparts. It is hypothesized that TWIP in AM 316L stainless 

steel is one reason for the excellent mechanical properties, and the segregation in 

AM prints can lower the SFE and promote the TWIP. Thus, an accurate and fast 

model is needed to understand the SFE change with segregation. 

• Solution: It is hypothesized that an ML approach can model the relationship 

between composition and SFE efficiently and accurately. Thus, SFE data of 

stainless steel will be collected and a machine learning model will be developed to 

predict SFE.  

• Validation: Apply Scheil prediction to simulate the segregation profile for 

literature-reported AM 316L steel and use the SFE model to calculate the critical 

twinning stress for the nominal composition and segregation profile to validate if 

the segregation in AM prints makes the twinning more operatable. 
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Bulk property variation for the same alloy: 

• Background: The as-built AM CoCrFeMnNi HEAs show significant variation in 

yield strength. We need to understand the structural differences resulting from AM 

and the impact of processing parameters on properties. However, the processing 

parameters are complex, and the data are very limited for the conventional ML 

approach. 

• Solution: It is hypothesized that we can find the critical structure difference 

between AM and conventional approaches by combining the existing yield strength 

model for the conventional manufacturing approach and AM experiments data 

using the Bayesian method. As a result, the Bayesian calibration can be applied to 

the yield strength model and the differences in dislocation density, grain boundary 

strengthening, etc., can be determined for different manufacturing approaches. 

Finally, the correlation analysis will be conducted for studying the impact of 

processing parameters on the strengthening effects. 

• Validation: Compare the model-calibrated parameters like dislocation densities 

with the experimentally measured value reported in the literature. Print FCC alloy, 

i.e., 316L, with different processing parameters to validate the findings discovered 

with the Bayesian approach. 

In summary, this work is not intended to be a comprehensive and exhaustive framework 

addressing every challenge in modeling for AM. Instead, it aims to highlight pathways of 
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combining ICME and data-driven approaches to apply to material feedstock and process design 

and understand the relationship between process, structure, and property for AM. 
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2.0 Methods 

2.1 Simulation and Modeling 

2.1.1 CALPHAD 

CALPHAD was first proposed by Kaufman [108]. It can reveal the equilibrium phase 

information as a temperature, pressure, and composition function. The physical theory behind it is 

to encode the Gibbs free energy of each phase and find the equilibrium states where the Gibbs free 

energy of a system reaches the minimum for a given condition. The mathematical equation is 

min{∑ 𝑓𝜙𝐺𝑚
𝜙

𝜙 } and with the constrain that ∑ 𝑓𝜙𝜙 = 1 and ∑ 𝑓𝑖𝑥𝑖
𝜙

𝑖 = 1 , where  𝑓𝜙 is the molar 

fraction of phase 𝜙, 𝐺𝑚
𝜙

 is the molar Gibbs free energy of phase 𝜙, 𝑥𝑖
𝜙

 is the atomic fraction of 

element i in phase 𝜙. In terms of the nonequilibrium cases, it is possible to suspend the stable 

phases and get the metastable phase diagrams.  

In this work, the software Thermo-Calc and its high-throughput software development kit 

(SDK) TC-Python [109,110] will be employed for CALPHAD simulations. Various 

thermodynamic and kinetic databases available in Thermo-Calc were used based on the alloy 

composition and availability of the databases when the work was performed. 
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2.1.2 Physics-based and Phenomenological Models 

The physics-based model equation is obtained from the literature, and Python [111] was 

used to code those equations for simulation. In this work, the physics-based and phenomenological 

models include yield strength prediction for HSLA and HEA, printability prediction, DBTT 

prediction, and SFE calculation, where the details are provided in each chapter since the parameter 

values are different for different alloys.  

2.1.3 Data-driven Approach 

Hundreds of papers and reports were reviewed to collect the data and build databases for 

SFE, microstructure, yield strength, manufacturing approaches, and other information on the alloys 

studied in this work. The statistics of the collected data will be analyzed using Python to explore 

the relationships between each attribute to gain knowledge of how the composition and treatment 

process influence the property of interest. The selection of machine learning algorithms and hyper-

parameters optimization will be performed based on the performance in cross-validation [112] 

using Scikit-learn [113] to ensure accuracy and generalizability. 

In order to understand how the model works, the SHAP (SHapley Additive exPlanations), 

which was introduced by Lundberg and Lee [114] based on the cooperative game theory, was 

applied to calculate the contribution of each input feature to the prediction. This helps us extract 

helpful information from the model to guide the alloy design. We could also compare the model 
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with domain knowledge to ensure the model follows the rules that are well-accepted by the 

material scientist. 

The Bayesian and Gaussian model calibration process was performed with OpenTURNS 

[115] in Python. During the Bayesian calibration, the mean and SD of a parameter are determined 

based on the literature, and it will be updated with the experiments' measured observations. The 

Metropolis-Hastings algorithm was used for obtaining the samples during the Bayesian calibration 

process with a thinning parameter 3, burn-in period of 1000. Finally, the Gaussian approach was 

used to find the model parameters within the range of Bayesian calibrated parameter ranges where 

the model outputs will match the experiments' measured yield strength. 

 

2.2 Experiments  

2.2.1 Sample Preparation 

The optimized HSLA powder for Chapter 3 and the 316L powder for Chapter 5 were 

printed using laser powder bed fusion with the printer EOS M290 laser sintering machine that is 

available in Pitt ANSYS Additive Manufacturing Research Laboratory. The processing parameters 

and the powder composition are listed in each chapter. The necessary heat treatment process will 

be performed in the box/tube furnace for samples that are encapsulated in vacuumed quartz tubes 

with back-filled argon gas where the detailed treatment temperature and time can be found in each 

chapter. 
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2.2.2 Microstructure Characterization 

The printed samples were ground using SiC emery paper with grit ranges from 400 to 1200, 

followed by polishing with diamond and Al2O3 suspensions containing particles. The cracks and 

porosity were checked by using a Zeiss Sigma 500 VP scanning electron microscope (SEM) and 

Zeiss Axio A1 optical microscope. 

For the 316L, the X-ray diffractograms (XRD) were obtained using a Bruker D8 Discover 

X-ray Diffractometer (Bruker Corporation, USA) using a Cu-K radiation. The measurements 

were taken in the 2 range of 20–95° with 0.02° as the step size, and with 0.05 seconds as time per 

step.  

2.2.3 Property Test 

For the measurement of AM HSLA steel yield strength, the uniaxial tensile test was 

performed on the dog-bone plate type sample using the MTS880 universal testing machine 

together with a 25 mm gauge length extensometer. The sample dimension follows ASTM-E8/E8M  

[116] standard.  

For the measurement of the ductile to brittle transition temperature of HSLA steel, the 

Charpy V-notch test was conducted using the Tinius Olsen high energy impact tester. To perform 

the low temperature measurement at -20 and -40°C, the testing bars were immersed in liquid 

nitrogen and cooled until the temperature reached the target temperature, which was monitored 

using an infrared thermometer. 
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For the measurement of the hardness of 316L stainless steel, the Leco LM-800 tester with 

300g load and 10d dwell time was used. The test repeats 16 times, and the average and SD will be 

calculated. In order to eliminate the obvious interference of the pores, the indents that hit a pore 

will be removed. 
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3.0 HSLA-115 Steel Composition Uncertainty Quantification and Optimization Using 

ICME and Surrogate ML Model 

This chapter is modified from the publication: Wang, Xin, and Wei Xiong. "Uncertainty 

quantification and composition optimization for alloy additive manufacturing through a 

CALPHAD-based ICME framework." npj Computational Materials 6.1 (2020): 1-11. 

https://doi.org/10.1038/s41524-020-00454-9, Under the CC BY 4.0 license.  

3.1 System Design Chart of HSLA-115 Steel 

In order to establish the model framework for HSLA-115 Steel, we have to understand the 

process-structure-property relationships, summarized in the systems design chart, as shown in Fig. 

3-1. The systems design chart exhibits how hierarchical structural features contribute to the 

mechanical properties and how the structure evolves during different processes and compositions 

[79,117]. Each line connecting the process, structure, and property indicates a relationship/model 

between these attributes. HSLA steel has a combination of high strength and good low-temperature 

impact toughness. This is achieved through hot isostatic pressing (HIP)/austenitization, quenching, 

and tempering that leads to a dense part with a fine martensite/bainite matrix and dispersed nano-

sized Cu and M2C precipitates. HIP aims to reduce the porosity of as-built components for 

improved mechanical properties and corrosion resistance [118]. In dense builds, austenitization 

helps achieve a homogenized austenitic structure by dissolving undesirable phases and eliminating 

https://doi.org/10.1038/s41524-020-00454-9
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segregation due to rapid solidification. During post-heat treatment, it is expected that enough 

undissolved MX particles (mainly the NbC) exist to pin the grain boundaries and prevent excessive 

grain growth. Water quenching is applied to form a fine lath bainitic/martensitic structure that 

improves the strength. Lastly, the tempered martensite formed after tempering enhances the impact 

toughness by reducing dislocation density. More importantly, the coherent Cu (3-5 nm in radius) 

and M2C (1.5-3 nm in radius) will precipitate during tempering, causing a significant hardening 

effect [119,120]. The precipitation of M2C will dissolve the cementite and avoid the decrease in 

impact toughness due to the formation of coarse cementite. Other precipitates, such as M23C6, may 

also form while they usually have large sizes and contribute negligible strengthening effects [121]. 

Finally, the excellent weldability of this steel originates from the low carbon content and other 

alloying elements. 

 

Figure 3-1 Systems design chart for AM HSLA-115. 
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3.2 ICME Framework 

Based on the systems design chart, this work established an ICME modeling framework to 

evaluate the yield strength, weldability/printability, and impact transition temperature of HSLA 

steels. As illustrated in Fig. 3-2, the composition and processing parameters were taken as inputs 

for the decision tree model, CALPHAD-based thermodynamic model, and Graville diagram [77].  

The outputs from these models, such as the dislocation density, matrix composition, and so on, 

were coupled with the physics-based strengthening, ITT, and weldability evaluation models to 

calculate the yield strength, ITT, and weldability that includes the freezing range and Graville 

diagram index for each composition. Finally, the calculated properties for each composition were 

used to find the optimized composition for AM that will give the highest chance of a successful 

build that meets all property requirements. The explicit description of models, the screening, and 

the analysis process will be given in the following context. 
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Figure 3-2 ICME modeling workflow for HSLA-115 steel composition design.  The pink box denotes 

structure models predicting features such as phase fraction of different phases and dislocation density based 

on composition and heat treatment process; the blue box denotes the property models which can simulate the 

strength, freezing range, etc., based on structure and compositions; the green box denotes the calculated 

property or structural information from the models; the yellow box denotes the target properties. 

 

As illustrated in Fig. 3-2, the alloy yield strength, σY [79], arises from the combined 

strengthening effects of Peierls-Nabarro (P-N) stress σ0, dislocation strengthening σd, solid solution 

strengthening σss, precipitation strengthening σppt, and grain boundary strengthening σH-P: 

 𝜎Y =  𝜎0 + 𝜎d + 𝜎H−P + 𝜎ppt + 𝜎ss  (3-1) 

Where σ0 = 50 MPa is the P-N stress of α-Fe [75], the details of calculation for other strengthening 

effects are given below.  
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The martensitic/bainitic structure in the HSLA-115 steel, with high dislocation density, 

forms due to rapid cooling. Takahashi and Bhadeshia [73] proposed a phenomenological equation 

to describe the relationship between the MS temperature, dislocation density, and the strengthening 

effect from dislocations in the as-quenched steel 𝜎DS
0 ) [73,80]: 

 𝜎DS
0 = 𝑀𝜏DS

0 = 0.38𝑀𝐺𝑏√𝜌 (3-2) 

 log(𝜌) = 9.2848 + 6880.73 𝑇⁄ − 1780360 𝑇2⁄  (3-3) 

Where temperature T is max(570 K, MS), and M is the Taylor orientation factor to convert the 

shear stress to normal stress, which ranges from 2.6 to 3.06 in bcc materials, and M is 2.75 in this 

study [122], G = 80 GPa is the shear modulus [123], b = 0.25 nm is the Burgers vector in α-Fe 

[124], ρ is the dislocation density. The MS temperature can be either predicted using theoretical 

modeling or determined using experiments such as dilatometry. This work uses a data-mining 

generated decision tree model [78] to predict MS temperature. The dislocation density will decrease 

during the tempering heat treatment, and it is related to the ratio of the precipitate fraction formed 

during the heat treatment process to the equilibrium value fppt [125]: 

 𝜎DS = 𝑀𝜏DS = 𝑀(𝜏DS
0 − √0.8𝜏DS

0 𝑓ppt) (3-4) 

Since the precipitate fraction does not increase significantly after enough aging time 

[119,126], it is assumed that the ratio fppt is 1 after tempering.   

The contribution from solid solution strengthening arises from the size and elastic modulus 

misfit between the solvent and the solute atoms. Fleischer’s equation [85] is adopted to evaluate 

the strengthening effects in multicomponent solid solutions [127]: 
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 𝜎ss = [∑ 𝛽ss,𝑖
2

𝑖

𝑐𝑖]

0.5

, 𝑖 = Ni, Mn, Cr, Al, Mo, Cu (3-5) 

where kss,Ni=708 MPa atomic fraction-1 (MPa at-1), kss,Mn=540 MPa at-1, kss,Cr=622 MPa at-1, 

kss,Al=196 MPa at-1, kss,Mo=2362 MPa at-1, kss,Cu=320 MPa at-1are the strengthening coefficients 

[86], and ci is the atomic fraction of the strengthening element in the matrix at the tempering 

temperature obtained using the CALPHAD method. 

The most critical strengthening mechanism in HSLA-115 steel is the precipitation 

hardening due to Cu and M2C precipitates at the tempering temperature (550°C). For predicting 

the strengthening effect of Cu precipitates, the Russel-Brown model is valid [83,128]. This model 

is based on the interaction between the dislocations and Cu precipitates, which originates from the 

difference in elastic modulus between the matrix and precipitates [83], and it can be calculated 

using the equations 3-6 and 3-7: 

 𝜎Cu = 0.8𝑀
𝐺𝑏

𝐿Cu
[1 − (

𝐸p

𝐸m
)2]

1
2;   sin−1 (

𝐸p

𝐸m
) ≤ 50° (3-6) 

 
𝜎Cu = 𝑀

𝐺𝑏

𝐿Cu
[1 − (

𝐸p

𝐸m
)2]

3
4;   sin−1 (

𝐸p

𝐸m
) ≥ 50° 

(3-7) 

Where Ep and Em are the dislocation line energy in the Cu precipitates and the matrix, respectively. 

LCu is the mean planar spacing of Cu precipitates, and 𝐿Cu
−1 = 𝑓

Cu

1

2 /1.77𝑟Cu , fCu is the volume 

fraction of Cu precipitates, and rCu is the mean radius of the Cu precipitates. The fCu is calculated 

using the Thermo-Calc software with the TCFE9 database. In order to simplify the model, we 

assume that the rCu is 4 nm since the radius of the Cu-rich precipitate in aged HSLA alloy is usually 

3-5 nm [121,126,129]. The Ep/Em ratio can be calculated with the following equations: 
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𝐸p

𝐸m
=

𝐸P
∞ log

𝑟
𝑟o

𝐸m
∞ log

𝑅
𝑟o

+
log

𝑅
𝑟

log
𝑅
𝑟o

 (3-8) 

Where Ep
∞ and Em

∞
 denote the energy per unit length of dislocation in an infinite medium, and 

their ratio is 0.62, R = 1000r0 is the outer cut-off radius, r0 = 2.5b is the inner cut-off radius or 

dislocation core radius [128]. 

The strengthening mechanism of M2C precipitates in HSLA steels or similar alloys should 

follow the Orowan-Ashby dislocation strengthening effect, provided the precipitate size is larger 

than 1.1 nm [84]. For HSLA steel aged at 550°C, the mean radius of M2C precipitate rM2C is usually 

less than 2.5 nm [119,126], and it is assumed that rM2C = 2 nm in this work. The Orowan equation 

can be written in the following format [130]: 

 

𝜎M2C

= 𝑀𝑌
𝐺

4π(1 − 𝑣)0.5

2𝑏

𝜔L𝑟M2C
ln (

2𝜔D𝑟M2C

𝑏
)√

ln(
2𝜔D𝑟M2C

𝑏
)

ln(
𝜔L𝑟M2C

𝑏
)

 

(3-9) 

 𝜔L = (
π𝜔q

𝑓M2C
)0.5 − 2𝜔r (3-10) 

 
1

𝜔D
=

1

𝜔L
+

1

2𝜔r
 (3-11) 

Where ν = 0.3 is the Poisson’s ratio, Y = 0.85 is the M2C spatial-distribution parameter for Orowan 

dislocation looping, fM2C is the volume fraction of M2C, ωr is the constant to convert the mean 

particle radius of M2C to the effective radius that intersects with the glide plane, and ωq establishes 

the relationship between the mean area of precipitate intersecting with the glide plane. A detailed 

discussion about ωr, ωq, and Y can be found in Ref. [119]. 
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The following equation is used to evaluate the overall strengthening due to precipitation 

with two different sets of precipitates: 

 𝜎ppt = (𝜎Cu
𝑘 + 𝜎M2C

𝑘 )
1
𝑘 (3-12) 

Where k = 1.71 is the superposition exponent to superpose the strengthening effects of two 

different strengthening particles [84]. 

The strengthening effect due to the grain size refinement can be estimated using the Hall-

Petch equation [81,82]: 

 𝜎H−P =
𝑘y

√𝑑packet

 (3-13) 

Where ky = 600 MPa μm-0.5 is the Hall-Petch coefficient [131], dpacket is the size of the martensite 

packet or bainite, which is closely related to the size of prior austenite Dg [75]. In lower 

bainite/martensite matrix materials, the martensite block size will be even smaller [132,133]. As a 

result, we assume the grain size relationship is similar in martensitic steel, which can be written in 

the form of the following equation [75]: 

 𝑑packet = 0.40𝐷g (3-14) 

The NbC phase in HSLA steels remains undissolved at the austenitization temperature 

(950°C), which can pin the austenite grain boundary to prevent excessive grain growth. The 

maximum austenite grain size after austenitization is a function of the size and volume fraction of 

pinning particles [74]: 

 𝐷g = { 
8𝑟MX (9𝑓MX

0.93)⁄ , 𝑓MX < 0.1

3.6𝑟MX (𝑓MX
0.33)⁄ , 𝑓MX > 0.1

 (3-15) 
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Where rMX is the average radius of the MX (M = Nb, X = C, N) in HSLA steels, and it is reported 

to be around 13 nm in different HSLA steels with various compositions and heat treatment 

parameters [134,135], fMX is the volume fraction of MX at austenitization temperature (e.g., 

950°C) which can be obtained using the Thermo-Calc software with TCFE9 database.  

As shown in Fig. 3-2, the ITT is used as an evaluation criterion for the low-temperature 

ductility. The ITT corresponds to the ductile-brittle transition temperature (DBTT) or fracture 

appearance transition temperature (FATT), which are close to each other. The material is ductile 

at a temperature above the ITT; otherwise, it is brittle.  The phenomenological equation to calculate 

50% ITT [76] (˚C) for the ferritic-pearlitic steels after the calibration with reported HSLA ITT 

[136] is given below: 

 50% FATT = 112𝑡0.5 − 13.7𝑑−0.5 + 0.43∆𝑦 − 54 (3-16) 

Where t is the cementite thickness in μm, d is the grain size in mm, Δy is the strength contributed 

from the precipitation hardening in MPa that can be obtained through the precipitation 

strengthening model and Zener pinning effect as shown in Fig. 3-2. However,  this model should 

be used with low confidence because it was initially designed for ferritic-pearlitic steels, and it is 

reported that the error from this model can be up to 34 K [137]. Thus, the ITT criterion for this 

design to select a composition with good ductility at low temperature is set to 0 °C to avoid over-

filtering. 

The chemical composition determines the weldability by influencing the hardenability and 

phase transformations during welding. Carbon plays a crucial role in weldability and has two major 

effects. Firstly, high carbon content leads to carbide precipitation during the AM process and 

increases the freezing range (the difference between the liquidus and solidus temperatures), which 
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may initiate cracking through hot tearing effects [138]. Secondly, it causes an increase in 

hardenability and thus lowers ductility [139]. The low carbon content of HSLA steel makes it a 

suitable candidate material for additive manufacturing. This study evaluates the ability to avoid 

hot and cold cracking for different compositions by calculating the freezing range and location in 

the Graville diagram [77], as shown in Fig. 3-2.  

Hot cracking occurs near the solidus temperature where the liquid exists. A reduced 

freezing range is desirable to avoid hot cracking during additive manufacturing [140,141]. In this 

study, the freezing range is T80%liquid – T20%liquid (the difference between temperatures with 80% and 

20% liquid), and the equilibrium freezing range is calculated based on the TCFE9 database of the 

Thermo-Calc software. The allowable maximum freezing range for compositions with good 

weldability is set to be 13 K.  

Cold cracking occurs when the weld has cooled down to room temperature, which is also 

called hydrogen-induced cracking (HIC). As a phenomenological method, the Graville diagram is 

very useful in determining the ability to avoid HIC [77]. If the alloy composition locates in Zone 

Ⅰ of the Graville diagram, cold cracking only occurs when the hydrogen content is very high and 

weldability is good. In contrast, compositions in Zone Ⅱ or Zone Ⅲ have a medium or high 

susceptibility to HIC, respectively [142], and the details of the Zone in the Graville diagram and 

the location of different steels are illustrated by Caron, J [142]. An alloy with good weldability 

should satisfy the following equation to avoid cold cracking: 

 0 ≤ −0.0515 ∙ CE + 0.127 − C (3-17) 

Where C is the carbon content of steel in weight percent, CE = C + (Mn+Si)/6 + (Ni+Cu)/15 + 

(Cr+Mo+V)/5 is the carbon equivalent (CE) of the steel in wt.%.  
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3.3 Screening Strategy for Reliability Design 

For the reliability design, the goal is to avoid failure build. As a result, finding the best 

composition range for each element will be needed to lead to a successful build. The initial 

composition and screening ranges listed in Table 3-1 are employed for high-throughput 

calculations. The screening range spans a broader composition space in comparison with the initial 

composition range provided by the vendor. The screening composition range was determined to 

ensure that in the screening range, the percent of compositions meeting all property requirements 

exhibit a peak or plateau for each composition screening range so that we do not miss the possible 

optimized composition space. Since there are nine elements whose composition needs to be 

optimized, it implies that nine variables with a certain range need to be considered in the 

mathematical space for sampling. The sampling space will have an exponential increase associated 

with a broad composition range for each element and thus require a huge sampling size to ensure 

that the analysis is based on enough calculations. For example, suppose we discover the optimized 

composition for all components in the screening range that we defined at one time, it is found that 

such a multi-dimensional composition space is 1.7x106 times larger than the initial composition 

space, and 1.7x106 is the product of the ratios listed in Table 3-1. As a result, it is challenging to 

screen enough compositions to represent the whole screening space. As a mitigation method to 

reduce the computational load, we optimized the composition for each element one by one. Take 

carbon as an example, and we sampled 50,000 compositions from the screening range of carbon 

and the initial composition range for the rest of the elements using the Latin hypercube sampling 

approach [143] with a random uniform distribution. The same procedure was repeated for all 
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elements; finally, 450, 000 compositions were sampled. This method requires much fewer 

calculations during the screening process while still effectively cover the required composition 

space for discovering the optimized composition. The yield strength, ITT, and weldability of these 

samples were calculated with the ICME framework to identify the influence of each element on 

the microstructure-property relationship. During the optimization process, we utilized nine cores 

and finished the simulation in less than two days, which proves that the efficiency of this 

computational framework is high. Further, the composition was optimized such that it maximized 

the possibility of a successful build, which could satisfy all the requirements for yield strength, 

weldability, and low-temperature ductility after post-heat treatment.  

Table 3-1 The initial composition range (wt.%), screening range (wt.%), and their ratio for different elements 

in the manufactured AM powder for HSLA-115 steel 

 Fe C Cr Cu Mn Nb Mo Ni Si Al 

Initial composition range Bal. 

0.053 

± 

0.025 

0.66 

± 

0.10 

1.27 

± 

0.15 

0.98 

± 

0.20 

0.03 

± 

0.01 

0.57 

± 

0.10 

3.43 

± 

0.20 

0.225 

± 

0.125 

0.03 

± 

0.01 

Screening composition 

range 
Bal. 

0.06 

± 

0.04 

0.6 

± 

0.5 

1.25 

± 

0.45 

1.15 

± 

0.95 

0.055 

± 

0.045 

0.7 

± 

0.5 

3.5 

± 

1.5 

0.25 

± 

0.25 

0.055 

± 

0.045 

Ratio  

(Screening range/ 

Initial composition range) 

 1.6 5 3 4.75 4.5 5 7.5 2 4.5 

 

Once the optimized composition was determined, 50,000 compositions within the 

uncertainty range of the initial nominal composition and the optimized nominal composition were 

sampled using the Latin hypercube sampling approach following a random uniform distribution, 

respectively. Later, the probability analysis on successful additive manufacturing was performed, 

and the improvement in the optimized composition compared with the initial composition was 

evaluated.  
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3.4 Results of Reliability Design 

Figure 3-3 shows the model predicted yield strength against the experimental 

measurements for several HSLA steels [119,129,144] with different compositions and tempering 

temperature ranges from 450 to 650 °C (For alloys heat treated with the same temperature and 

different times, the closest value to prediction was chosen in Fig. 3-3). The ICME model prediction 

and experimental results show a good agreement. These results indicate that the strengthening 

model within the ICME framework can predict the yield strength of HSLA steels. 

 

Figure 3-3 Comparison of the yield strength by model prediction and the experiments.  The model-predicted 

value is equal to the experimental value if the symbol is located on the dashed diagonal line. 
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Figure 3-4 shows the variation of all properties as a function of carbon content. The same 

procedure is also applied to other elements. It allows us to assess the influence of each element on 

the strength, low-temperature ductility, and weldability. Each column represents the model 

prediction for one set of compositions with the same range of carbon content, i.e., 0.0025 wt.% 

carbon. The number under each bin corresponds to the smallest carbon content in the bin. For 

example, bin 0.05 contains all compositions that have a carbon content between 0.05 and 0.0525, 

i.e., [0.050, 0.0525) and other elements in their initial composition range, which is listed in Table 

3-1. Evidently, with the increase in carbon content, the yield strength, as shown in Fig. 3-4(a), 

initially increases and then decreases,  which is different from Saha’s [145]  work on the high-

strength steels that the strength will continuously increase with the addition of carbon content. The 

contradiction is from the incorrect assumption in Saha’s work that carbon only forms the M2C. 

However, carbon will also dissolve in the martensite matrix and form other carbides. Furthermore, 

the fraction of M2C will change with different compositions. Based on our calculation (Fig. 3-5), 

when the carbon increases, the fraction of M2C will increase first and then decrease. Moreover, 

even if the carbon content is similar, the fraction of M2C will also change with different alloying 

elements. For low-temperature ductility, as the carbon content increases, the ITT increases and 

then decreases (see Fig. 3-4(b)), indicating a worsening of low-temperature ductility at the first 

stage and improvement in the later stage. Further, as more carbon is added to an alloy, the freezing 

range increases, as shown in Fig. 3-4(c), which indicates a higher probability of hot cracking. 

Similarly, the location of the composition in the Graville diagram will move out of Zone I when 

the carbon content is around 0.085 wt.% and the susceptibility to cold cracks increases (Fig. 3-
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4(d)). These results are consistent with the expected influence of carbon content on the weldability 

of HSLA steels.  

 

Figure 3-4 Variation in properties due to the change in carbon content.  Trend analysis on (a) yield strength, 

(b) ITT, (c) freezing range, and (d) Graville diagram location. The compositions that meet the requirements 

are in blue. The compositions that failed the property requirements are in red. 
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Figure 3-5 Change of M2C fraction with different carbon content.  The carbon content is within the screening 

range, and different other elements are within their initial composition range 

 

The influence of carbon content on the yield strength and different hardening effects are 

shown in Fig. 3-6(a). The increase in carbon content leads to increased strengthening effects from 

grain boundaries and dislocations since carbon introduces the formation of Zener pinning particle 

NbC and promotes higher dislocation density after quenching. However, the strength achieved 

from the precipitation hardening increases initially and then decreases, which results in a peak 

hardening with the carbon content between 0.06-0.065 wt.%. Precipitation hardening is critical 

and depends on the formation of nano-size M2C and Cu particles in the HSLA-115 steel. According 

to Fig. 3-6(b), the addition of carbon has no apparent influence on Cu precipitation, while it has a 

significant impact on the precipitation of M2C.  



 

 

43 

 

 

Figure 3-6 Predicted yield strength and the contribution from different strengthening mechanisms versus 

carbon content.  (a) Average strength from different strengthening effects versus carbon content, 

precipitation strengthening effect from (b) Cu precipitation, (c) M2C precipitation, and (d) sum of Cu and 

M2C precipitates. 

 

Figure 3-7 provides an overview of the qualified composition range with all the considered 

properties as the selection criterion. In such a histogram, the composition sets of every single bin 

are categorized into different groups based on the number and type of criterion the composition 

meets. The percentage of compositions in the group with no pattern and in pink (compositions 

meeting all property requirements) continues to increase with the increase in carbon content, 

displaying a maximum at 0.06 wt.% carbon, which is higher than the initial nominal composition 

0.053 wt.% carbon that is determined based on the cast HSLA steel. However, when the carbon 
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content is higher than 0.085 wt.%, only a few compositions can satisfy the weldability requirement. 

Since the uncertainty in carbon content is ± 0.025 wt.%, it is better to avoid the targeted average 

carbon content higher than 0.0575 wt.%. The insufficient strength in this composition range can 

be made up by tuning the composition of other elements to increase the hardening effects. 

 

Figure 3-7 Optimization of carbon content by visualizing the percentages of compositions meeting different 

criteria.  Pink color without pattern filling: The percentage of compositions with yield strength higher than 

115 ksi, good weldability, and ITT lower than 0 K. The meaning of other color and pattern-filled bars can be 

understood in a similar way based on the table in the figure, and groups smaller than 0.1 % are not listed for 

better illustration. 
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Other elements were screened and analyzed using the same method implemented for 

carbon. In total, 450,000 compositions sampled using the strategy mentioned in the method section 

were calculated and analyzed. Table 3-2 summarizes the elemental influence on the structure and 

strengthening effects within the composition range listed in Table 3-1. For each screening range, 

the arrow ↑ means the increase in the component is beneficial to the property; the arrow ↓ means 

the increase in the component is detrimental to the property; the symbol O means the increase in 

the component has no obvious effect on the property; ↑↓means the increase in the component is 

beneficial to the property first, and then detrimental to the property; ↓↑means the increase in the 

component is detrimental to the property first, and then beneficial to the property. For instance, 

the weldability decreases when molybdenum increases from 0.2 to 1.2 wt.%.  While the yield 

strength increases at first due to the improvement in precipitation hardening from M2C particles, 

solid solution strengthening, and dislocation hardening effects, and then decreases due to the 

reduction in the phase fraction of M2C when Mo reaches a threshold value. The low-temperature 

ductility will first decrease and then increase. The influences of other elements can be explained 

based on Table 3-2 and following the same method. 

Table 3-2 Summary of the influence of elements in HSLA-115 on the key properties 

 C Cr Cu Mn Nb Mo Ni Si Al 

Resistance to cold cracking ↓ ↓ O ↓ O ↓ ↓ O O 

Resistance to hot cracking ↓ O O ↓ ↓ ↓ ↑ ↓ ↓ 

Ductility at low temperature ↓↑ ↓↑ ↓ ↑ ↑ ↓↑ O ↑ O 

Yield strength ↑↓ ↑↓ ↑ ↓ ↑ ↑↓ O ↓ O 

Cu hardening O O ↑ ↓ O O ↓ ↑ O 

M2C hardening ↑↓ ↑↓ O O ↓ ↑↓ O ↓ O 

Solid solution hardening ↓ ↑ O ↓ ↑ ↑ ↑ O O 

Dislocation hardening ↑ ↑ O ↑ O ↑ ↑ O O 

Grain boundary hardening ↑ O O O ↑ O O O O 
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Table 3-3 lists the initial and optimized composition in wt.%. Compared with the initial 

composition, the contents of C, Cu, and Mo have increased to ensure that the yield strength is 

higher than 115 ksi (793 MPa). In contrast, the contents of Cr, Mn, and Si have decreased to 

balance the deterioration of weldability. The Nb content is increased to introduce a higher phase 

fraction of MX during the austenitization process to effectively avoid excessive grain growth, 

improve the low-temperature ductility, and increase the strength. Elements such as Mo, Ni, and Al 

do not change since their initial content is sufficient for the required properties, or they do not have 

a pronounced influence on critical properties. 

Table 3-3 Comparison of initial composition and optimized composition (wt.%) 

Element Fe C Cr Cu Mn Nb Mo Ni Si Al 

Initial 

composition 
Bal. 

0.053 

± 

0.025 

0.66 

± 

0.1 

1.27 

± 

0.15 

0.98 

± 

0.2 

0.03 

±  

0.01 

0.57 

± 

0.1 

3.43 

± 

0.2 

0.225 

± 

0.125 

0.03 

± 

0.01 

Optimized 

composition 
Bal. 

0.057 

± 

0.025 

0.525 

± 

0.1 

1.55 

± 

0.15 

0.5 

± 

0.2 

0.08 

±  

0.01 

0.57 

± 

0.1 

3.43 

± 

0.2 

0.125 

± 

0.125 

0.03 

± 

0.01 

 

In comparison with the calculated properties of the initial and optimized nominal 

composition (Table 3-4), it is evident that the optimized one has much higher yield strength and 

lower ITT from model prediction. This indicates that by slightly tuning the initial composition, 

HSLA steel could achieve a higher strength while remaining ductile at low temperatures. For 

example, less M23C6 and more M2C precipitates form at the tempering temperature with the 

optimized composition, as shown in Fig. 3-8. Also, a higher fraction of NbC remains stable at high 

temperature and hence, retard the grain growth and coarsening. Importantly, the optimized alloy 

has achieved a small freezing range, and it is in Zone I of the Graville diagram. This indicates that 
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the printability for AM of alloy with initial composition is similar to the one after composition 

optimization. 

 

Table 3-4 Comparison of model-predicted key properties of the initial and optimized nominal compositions 

Calculated properties Yield strength ITT Freezing range Graville diagram 

Initial composition 873 MPa -15°C 10.10 K Zone I 

Optimized composition 1076 MPa -100°C 10.24 K Zone I 

 

 

Figure 3-8 Equilibrium phase fraction plots as a function of temperature.  Diagrams of (a) initial and (b) 

optimized compositions calculated using the TCFE9 database. 

 

To further verify the improvement after optimization in terms of the composition 

uncertainty, 50,000 compositions were randomly sampled from the initial and optimized 

composition spaces listed in Table 3-3, respectively. The yield strength, ITT, freezing range, and 
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Graville diagram location were calculated for each data point. The same criteria listed in the 

previous sections were used to evaluate whether the composition meets the property requirements.  

 

Figure 3-9 Distribution of calculated key properties of initial and optimized composition within their 

uncertainty range.  (a) yield strength, (b) ITT, (c) freezing range, and (d) location at the Graville diagram. (e) 

Percentage of alloys meeting the criteria of initial composition and optimized composition. The ones that meet 

all requirements are in blue without a stripe pattern. The ones that failed to match the requirement are in red 

with a stripe pattern. 
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Figure 3-10 Conceptual graphic illustrating the improvement of composition with uncertainty after ICME 

optimization.  The color bar indicates the satisfaction of the powder composition, i.e., powder quality, with 

the potential to match the requirements of the design target. 

 

According to Fig. 3-9, the optimized composition exhibits higher strength and lower ITT 

without sacrificing weldability. Most importantly, the lowest strength and highest ITT among the 

50,000 samples taken from the optimized composition with uncertainty are still higher than 115 

ksi (793 MPa) and lower than 0°C, respectively. As a result, the optimized composition shows a 

higher chance of achieving successful builds (99.996%) compared with the initial composition 

(55.266%). Figure 3-10 illustrates how the composition was shifted to gain the highest success rate 

with a fixed composition uncertainty. In the composition space, there is a subspace that can meet 

all the required properties. However, all the initial compositions with variation may not be present 
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in that subspace, i.e., with the deviation from nominal composition, the AM build may not have 

the required properties. After the optimization, the nominal composition is shifted, and as a result, 

all the possible compositions meet the requirements considered with composition uncertainty. 

3.5 Machine Learning Accelerated Robust and Optimal Design 

The above optimization is used for reliability design which can only reduce the likelihood 

of failure and ensure that the product can meet the property requirements with uncertainty in 

composition. Sometimes, the robust design to achieve consistent performance with composition 

uncertainty or the optimal design to have the best average performance is required for specific 

applications. A comprehensive screening with much more calculations is required for a robust or 

optimal design, which brings a computational challenge.  

To quickly perform the robust and optimal design, this work adopted the machine learning 

approach to build surrogate models to optimize the alloy composition [146–149]. All models were 

evaluated using 10-fold cross-validation [112]. Statistical analyses, such as Spearman’s rank 

correlation and Sobol’s indices, were performed to understand the influence of elements on the 

properties [150–154]. An optimal composition set with 69 compositions was found, and some 

compositions are close to the composition determined in this work. The details are given in the 

following context. Table 3-5 shows how we build the machine learning surrogate model and how 

we find the optimal and robust compositions.  
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The first step of building machine learning is constructing the training database. As a result, 

we firstly generated 500,000 samples from the screening composition range listed in Table 3-6 

using the LHS method to cover the design screening space. The properties of interest of all 

compositions have been calculated using the CALPHAD-based modeling framework discussed in 

Chapter 3.1.3 

Table 3-5 Steps of determining the optimal composition using surrogate models 

Step Description 

1 Sample 500, 000 samples using the LHS method, and calculate the properties 

of interest using CALPHAD-based ICME modeling framework 

2 Build surrogate models using gradient boosting algorithms and 500, 000 

compositions calculated in step 1, evaluate models using 10-fold cross-

validation 

3 Perform Spearman’s rank correlation analysis and calculate Sobol’s indices to 

reveal the elements' influence and the importance of elements in the 

uncertainty of critical properties and determine the screening compositions 

4 Prepare 100 000 compositions using the LHS method within the uncertainty 

range of each screened composition and calculate the property of interest & 

find the optimal compositions that all 10, 000 compositions within its 

uncertainty range meet all property requirements. 
 

Table 3-6 Summary composition range in wt.% used for building the surrogate model 

Fe C Cr Cu Mn Nb Mo Ni Si Al 

Bal. 

0.02 

- 

0.1 

0.1 

- 

1.1 

0.8 

- 

1.7 

0.2 

- 

2.1 

0.01 

- 

0.1 

0.2 

- 

1.2 

2 

- 

5 

0 

- 

0.5 

0.01 

- 

0.1 

 

The criterion for the Graville diagram is a linear regression and can be calculated quickly, 

so there is no need to build a surrogate model for it. Four surrogate models predicting the yield 

strength, freezing range, impact transition temperature (ITT), and the phase fraction of cementite 

were built by using the 500,000 calculated results and gradient boosting (GB) algorithm [148,149]. 

The cementite fraction is calculated since it is detrimental to the ITT temperature. Moreover, 
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cementite does not show in the composition space for the reliability design, but it shows in some 

of the compositions defined by Table 3-6. All models were evaluated using 10-fold cross-

validation [112] to ensure the model has not only high accuracy but also good generalizability. 

During the cross-validation, the 500,000 samples were randomly split into ten subsets, and the 

model was fitted with nine subgroups (training dataset) and tested with the remaining subgroup 

(testing dataset). After training and testing ten times, the average performance metrics such as the 

mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) 

were calculated using the following equations, respectively: 

 
MAE =  

∑ |𝑦𝑖
P − 𝑦𝑖

S|𝑛
𝑖=1

𝑛
 

(3-19) 

 RMSE =  √
∑ (𝑦𝑖

P − 𝑦𝑖
S)2𝑛

𝑖=1

𝑛
  (3-20) 

 𝑅2 = 1 −  
∑ (𝑦𝑖

P − 𝑦𝑖
S)2𝑛

𝑖=1

∑ (𝑦𝑖
P − 𝑦p̅̅̅̅ )2𝑛

𝑖=1

 (3-21) 

where n is the number of data points in the testing dataset, 𝑦𝑖
P and 𝑦𝑖

S are CALPHAD-based model 

framework predicted property and surrogate model predicted results of the datapoint i, 

respectively.  𝑦p̅̅ ̅ =
∑ 𝑦𝑖

P𝑛
𝑖=1

𝑛
 is the mean value of 𝑦𝑖

P in the testing dataset.  

Table 3-7 lists the performance of the surrogate models. The MAE represents the average 

of absolute error of the model prediction, while the RMSE is the standard deviation of the error 

introduced by the surrogate model that penalizes the samples with large errors. R2 measures to 

what extent the variance of a dependent variable can be explained by the variables in a regression 

model. For yield strength, ITT, and freezing range, more than 90 % variance of results can be 

explained by the model, and their MAE and RMSE are acceptable. But the model prediction of the 



 

 

53 

 

cementite phase fraction only has low MAE and RMSE, which means a small error made by the 

model. However, the R2 is close to 0, indicating the variance cannot be well-explained.  

Table 3-7 Average of the MAE, RMSE, and R2 of the 10-fold cross-validation 

Properties of interest MAE RMSE R2 

Yield strength (MPa) 33.80 44.52 0.93 

ITT (°C) 16.00 20.76 0.94 

Freezing range (K) 0.37 0.49 0.97 

Cementite fraction 0.0000 0.0002 0.00 

 

In order to reveal the element influence on the properties of interest, we first performed the 

Spearman’s rank correlation [150] of the properties predicted by the CALPHAD-based modeling 

framework and the composition based on 500,000 calculated results. The Spearman’s correlation 

coefficient ρ and its p are listed in Table 3-8. The coefficient ρ measures the strength of the 

monotonic relationship, and its value ranges from -1 to 1. A positive/negative value represents a 

positive/negative monotonic relationship, while 0 indicates no monotonic relationship between 

two variables. If the absolute value of ρ is smaller than 0.4, the monotonic relationship is weak; if 

ρ is higher than 0.6, the relationship is strong, and there is a moderate monotonic relationship if ρ 

is located between 0.4 to 0.6 [151]. The associated p indicates the chance that the null hypothesis 

is true, and the null hypothesis in calculating ρ is that we can get the same ρ when the two variables 

are not correlated. If the p is smaller than 0.05, one can conclude that calculated Spearman’s 

coefficient is statistically significant [152]. 
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Table 3-8 Spearman’s correlation coefficient ρ and its p-value of the composition and properties of interest 

 
Graville diagram Freezing range Yield strength ITT Cementite 

fraction  
ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value 

C -0.71 0.00 0.58 0.00 0.31 0.00 0.09 0.00 0.06 0.00 

Cr -0.08 0.00 -0.04 0.00 -0.31 0.00 -0.32 0.00 -0.08 0.00 

Cu -0.03 0.00 0.01 0.00 0.21 0.00 0.15 0.00 0.00 0.74 

Mn -0.13 0.00 0.18 0.00 -0.06 0.00 -0.07 0.00 0.03 0.00 

Nb 0.00 0.63 0.16 0.00 0.48 0.00 -0.69 0.00 -0.01 0.00 

Mo -0.08 0.00 0.35 0.00 0.30 0.00 0.22 0.00 -0.07 0.00 

Ni -0.08 0.00 -0.50 0.00 -0.05 0.00 -0.09 0.00 -0.03 0.00 

Si -0.04 0.00 0.24 0.00 -0.01 0.00 -0.02 0.00 -0.01 0.00 

Al 0.00 0.39 0.06 0.00 0.00 0.76 0.00 0.03 0.00 0.25 

 

Take carbon as an example. The carbon content is correlated to all properties since they all 

have a non-zero ρ, and p-values are all 0. If the carbon increases, there is a strong monotonic trend 

to shift the Graville diagram from Zone Ⅰ (1) to Zone Ⅱ/Ⅲ (0). The freezing range and yield 

strength have a moderate monotonic trend towards increasing when carbon is added to the alloy. 

Moreover, ITT and cementite fractions only show a weak positive monotonic relationship with 

carbon content. The influence of other elements can also be analyzed similarly. It is noted that Al 

has no monotonic relationship with the Graville diagram, yield strength, ITT, and Cementite and 

only has a weak positive relationship with a freezing range.  

In order to reduce the dimension of screening composition space, the global sensitivity 

analysis was performed to reveal the contribution of each element on the variance of the property 

of interest by calculating Sobol’s indices [153,154]. The first-order indices (S1) and total indices 

(ST) measure the contribution to output variance by a single input alone and the total contributions 

of an input that include interactions with other variables. The S1 and ST of each input in the 

surrogate model have been calculated and plotted in Fig. 3-11. Sobol’s indices of Al are close to 0 
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in all surrogate models. Moreover, Al is not included in the equation for determining the location 

in the Graville diagram. As a result, during the composition screening process, Al is fixed as the 

original composition to reduce the number of compositions during the optimization. Similarly, if 

an element is highly correlated to the key properties and has a large contribution to the model 

prediction, i.e., large S1 and S2 values, there will be more screening grids for the composition for 

more accurate screening of the composition space. However, if the element has minor impacts on 

key properties, there will be less screening grid to reduce the number of calculations. Table 3-9 

shows the screening grids based on Sobol’s indices and correlation analysis. Finally, 5,334,336 

nominal compositions will be screened. 

 
Figure 3-11 Sensitivity analysis of inputs in surrogate model 
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Table 3-9 Screening compositions and the uncertainty range 

 Fe C Cr Cu Mn Nb Mo Ni Si Al 

Screening 

composition 
Bal. 

0.045, 

0.050, 

…, 

0.075 

0.2, 

0.3, 

…, 

1.0 

1.0, 

1.15, 

…, 

1.45 

0.4, 

0.6, 

…, 

1.8 

0.02, 

0.03, 

…, 

0.08 

0.3, 

0.4, 

…, 

1.1 

2.2, 

2.4, 

…, 

4.8 

0.125, 

0.250, 

0.375 

0.03 

Uncertainty 

range 
Bal. ± 0.025 ± 0.1 ± 0.15 ± 0.2 ± 0.01 ± 0.1 ± 0.2 ± 0.125 ± 0.01 

 

For each grid defined by Table 3-9, 5,000 compositions have been generated using the LHS 

approach within the composition uncertainty range and calculated using the surrogate models. For 

example, for one composition defined by the smallest value in all elements, 5000 compositions 

were obtained from C:0.045 ± 0.025, Cr:0.2 ± 0.1, Cu: 1.0± 0.15, Mn:0.4± 0.2, Nb: 0.02± 0.01, 

Mo:0.3± 0.1, Ni:2.2± 0.2, Si:0.125± 0.125, Al:0.03± 0.01, and their properties were calculated. 

The mean and SD of the freezing range, yield strength an ITT, and the percent of samples meeting 

all property criteria (criteria are listed in the manuscript) of 5,000 compositions were also 

calculated. This procedure has been performed for all combinations listed in Table 3-9. The 

compositions that have a 100 % chance of meeting all property requirements have been stored and 

used for another screening. In the second screening, we generated 100,000 rather than 5,000 

compositions to get more samples and modified the property criteria with the surrogate model 

RMSE to increase the reliability. The criteria are the Graville diagram located in zone Ⅰ, freezing 

range < 13 – 0.5 K, yield strength > 793 + 45 MPa, ITT < 0 – 21 K, and cementite fraction < 

0.0001 (Cementite is bad for low-temperature ductility). Finally, 69 compositions that enable all 

100,000 compositions with their uncertainty range to meet all property requirements have been 

found in Table 3-10. Many of the compositions listed in Table 3-10 are close to what we designed 

using the ICME modeling framework results. However, the machine learning surrogate model 
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provides more feasible nominal compositions and helps us get the mean and SD for different 

properties. As a result, we could select the alloys with the best mean property for optimal design 

or the smallest SD for robust design. 

Table 3-10 Optimal compositions determined using surrogate models * 

C Cr Cu Mn Nb Mo Ni Si Al 

Yield strength 

(MPa) 

Freezing range 

(K) 
ITT (°C) 

Mean SD Mean SD Mean SD 

0.055 0.5 1.45 0.4 0.08 0.5 4 0.125 0.03 984 45 9.1 1.1 -137 20 

0.055 0.5 1.45 0.4 0.08 0.5 4.6 0.125 0.03 982 46 9.1 1.2 -141 20 

0.055 0.3 1.45 0.4 0.08 0.6 4.2 0.125 0.03 1035 51 9.4 1.1 -113 22 

0.055 0.3 1.45 0.4 0.08 0.6 4.4 0.125 0.03 1035 52 9.4 1.2 -115 22 

0.055 0.4 1.45 0.4 0.07 0.6 3.8 0.125 0.03 1029 53 9.6 1.0 -94 20 

0.055 0.4 1.45 0.4 0.07 0.6 4 0.125 0.03 1030 53 9.3 1.1 -95 20 

0.055 0.4 1.45 0.4 0.07 0.6 4.2 0.125 0.03 1030 53 9.2 1.1 -96 21 

0.055 0.4 1.3 0.4 0.07 0.6 4 0.125 0.03 1016 54 9.4 1.1 -100 21 

0.055 0.4 1.45 0.6 0.07 0.6 4 0.125 0.03 1027 54 9.5 1.1 -97 21 

0.055 0.4 1.45 0.4 0.07 0.6 4.4 0.125 0.03 1030 54 9.1 1.2 -97 21 

0.055 0.4 1.45 0.6 0.07 0.6 4.2 0.125 0.03 1027 54 9.4 1.1 -98 21 

0.055 0.4 1.3 0.4 0.07 0.6 4.2 0.125 0.03 1016 54 9.2 1.1 -101 21 

0.055 0.4 1.45 0.4 0.08 0.6 4 0.125 0.03 1046 54 9.5 1.1 -109 21 

0.055 0.4 1.45 0.4 0.08 0.6 4.2 0.125 0.03 1046 54 9.4 1.1 -110 21 

0.055 0.4 1.45 0.4 0.07 0.6 4.6 0.125 0.03 1029 54 9.2 1.2 -98 21 

0.055 0.4 1.45 0.6 0.07 0.6 4.4 0.125 0.03 1027 54 9.4 1.2 -99 21 

0.055 0.4 1.3 0.4 0.07 0.6 4.4 0.125 0.03 1016 54 9.1 1.2 -102 21 

0.055 0.4 1.45 0.6 0.08 0.6 4 0.125 0.03 1043 54 9.7 1.1 -111 21 

0.055 0.4 1.45 0.4 0.08 0.6 4.4 0.125 0.03 1045 54 9.3 1.2 -112 21 

0.055 0.4 1.3 0.4 0.08 0.6 4 0.125 0.03 1033 55 9.5 1.1 -113 21 

0.055 0.4 1.3 0.6 0.07 0.6 4.4 0.125 0.03 1012 55 9.4 1.2 -104 22 

0.055 0.4 1.3 0.4 0.07 0.6 4.6 0.125 0.03 1015 55 9.1 1.2 -103 22 

0.055 0.4 1.3 0.4 0.08 0.6 4.2 0.125 0.03 1033 55 9.4 1.1 -115 22 

0.055 0.4 1.3 0.4 0.07 0.6 4.8 0.125 0.03 1015 55 9.2 1.2 -104 22 

0.055 0.4 1.3 0.4 0.08 0.6 4.4 0.125 0.03 1033 55 9.3 1.2 -116 22 

0.055 0.4 1.3 0.6 0.08 0.6 4.2 0.125 0.03 1030 56 9.6 1.1 -117 22 

0.055 0.4 1.3 0.4 0.08 0.6 4.6 0.125 0.03 1032 56 9.3 1.2 -117 22 

0.055 0.4 1.3 0.6 0.08 0.6 4.4 0.125 0.03 1029 56 9.6 1.2 -118 22 

0.055 0.4 1.15 0.4 0.08 0.6 4.2 0.125 0.03 1022 57 9.4 1.1 -120 22 

0.055 0.4 1.15 0.4 0.08 0.6 4.4 0.125 0.03 1021 57 9.3 1.2 -122 23 

0.055 0.4 1.15 0.6 0.08 0.6 4.2 0.125 0.03 1019 57 9.6 1.1 -122 23 
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0.055 0.4 1.15 0.6 0.08 0.6 4.4 0.125 0.03 1017 58 9.5 1.2 -124 23 

0.055 0.5 1.45 0.4 0.08 0.6 4 0.125 0.03 1026 64 9.5 1.1 -119 24 

0.055 0.5 1.45 0.4 0.08 0.6 4.2 0.125 0.03 1027 65 9.3 1.1 -120 24 

0.055 0.5 1.45 0.4 0.08 0.6 4.4 0.125 0.03 1026 65 9.3 1.2 -122 24 

0.055 0.5 1.45 0.4 0.08 0.6 4.6 0.125 0.03 1025 65 9.3 1.2 -122 24 

0.055 0.3 1.45 0.4 0.08 0.7 4.4 0.125 0.03 1076 67 9.6 1.1 -100 27 

0.055 0.4 1.45 0.4 0.08 0.7 4.2 0.125 0.03 1084 77 9.7 1.1 -97 28 

0.055 0.4 1.3 0.4 0.08 0.7 4.2 0.125 0.03 1072 78 9.7 1.1 -101 29 

0.055 0.4 1.3 0.4 0.08 0.7 4.4 0.125 0.03 1071 78 9.5 1.1 -102 30 

0.05 0.4 1.45 0.4 0.08 0.5 4 0.25 0.03 999 39 9.4 1.1 -128 17 

0.05 0.4 1.45 0.4 0.08 0.5 4.2 0.25 0.03 999 39 9.3 1.1 -130 18 

0.05 0.4 1.45 0.4 0.08 0.5 3.6 0.125 0.03 998 40 9.6 0.9 -125 17 

0.05 0.4 1.45 0.4 0.08 0.5 4 0.125 0.03 998 40 8.8 1.1 -128 17 

0.05 0.4 1.45 0.6 0.08 0.5 4 0.25 0.03 997 40 9.6 1.1 -131 17 

0.05 0.4 1.45 0.4 0.08 0.5 4.4 0.25 0.03 998 40 9.3 1.2 -131 18 

0.05 0.4 1.45 0.4 0.08 0.5 4.2 0.125 0.03 998 40 8.7 1.1 -129 18 

0.05 0.4 1.45 0.6 0.08 0.5 3.8 0.125 0.03 995 40 9.2 1.0 -129 18 

0.05 0.4 1.45 0.4 0.08 0.5 4.4 0.125 0.03 997 40 8.7 1.2 -131 18 

0.05 0.4 1.45 0.6 0.08 0.5 4 0.125 0.03 995 40 9.0 1.0 -130 18 

0.05 0.4 1.3 0.4 0.08 0.5 3.6 0.125 0.03 985 40 9.7 0.9 -131 18 

0.05 0.4 1.45 0.6 0.08 0.5 4.2 0.125 0.03 995 41 9.0 1.1 -132 18 

0.05 0.4 1.45 0.6 0.08 0.5 4.4 0.125 0.03 994 41 9.0 1.2 -133 18 

0.05 0.4 1.45 0.8 0.08 0.5 4 0.125 0.03 991 41 9.2 1.0 -132 18 

0.05 0.2 1.45 0.4 0.08 0.6 4 0.125 0.03 1018 54 9.2 1.1 -116 22 

0.05 0.2 1.3 0.4 0.08 0.6 4.2 0.125 0.03 1004 54 9.1 1.1 -122 22 

0.05 0.2 1.45 0.8 0.08 0.6 4.2 0.125 0.03 1011 55 9.5 1.1 -121 22 

0.05 0.2 1.45 0.4 0.08 0.6 4.8 0.125 0.03 1016 55 9.1 1.2 -121 23 

0.05 0.3 1.45 0.4 0.08 0.6 3.8 0.125 0.03 1029 57 9.5 1.0 -111 21 

0.05 0.3 1.45 0.4 0.08 0.6 4 0.125 0.03 1029 57 9.2 1.1 -112 21 

0.05 0.3 1.45 0.4 0.08 0.6 4.2 0.125 0.03 1029 57 9.0 1.1 -114 22 

0.05 0.3 1.45 0.6 0.08 0.6 4 0.125 0.03 1027 57 9.4 1.0 -114 22 

0.05 0.3 1.45 0.4 0.08 0.6 4.4 0.125 0.03 1028 57 9.0 1.2 -115 22 

0.05 0.3 1.45 0.4 0.08 0.6 4.6 0.125 0.03 1027 58 9.0 1.2 -116 22 

0.05 0.3 1.45 0.6 0.08 0.6 4.4 0.125 0.03 1026 58 9.3 1.2 -117 22 

0.05 0.3 1.45 0.4 0.08 0.6 4.8 0.125 0.03 1027 58 9.1 1.2 -117 23 

0.05 0.4 1.45 0.4 0.08 0.6 3.8 0.125 0.03 1033 64 9.5 1.0 -111 22 

0.05 0.4 1.45 0.4 0.08 0.6 4.2 0.25 0.03 1033 64 9.5 1.1 -115 23 

0.05 0.4 1.45 0.4 0.08 0.6 4 0.125 0.03 1034 64 9.2 1.1 -112 22 

 



 

 

59 

 

3.6 Additive Manufacturing and Experiments Verification 

Due to the urgent time for the powder production, the full ICME model was not fully 

available when we designed the sample. As a result, I used the Ms temperature, precipitates 

fraction, freezing range, etc., to optimize the composition, and the composition is slightly different 

compared with the final optimized composition listed in Table 3-11. But the change of the 

composition trend is similar. The initial optimized composition (for powder production) and the 

final optimized composition both show higher C, Cu, and lower Cr. Some elements have different 

trends because the models implemented are different. The detail of the experimental study is 

available in the unpublished paper in our lab.  

The sample was built using EOS M290 laser sintering machine, and print parameters are 

listed in the following: laser power 215 W, hatch spacing is 0.09 mm, layer height is 0.02 mm, and 

the laser travel is 741 mm/s. The as-built sample shows no cracks and a density higher than 99.5%, 

which is measured using the Archimedes method, indicating good printability. Then, the sample 

was homogenized at 950°C for 80 minutes followed by water quench, and then tempered at 550°C 

for 5 hours followed by water quench. Based on the Charpy V-notch test, the sample shows a 

ductile to brittle transition temperature lower than -20°C, which means the sample has good low 

temperature ductility. Finally, the room temperature performance was measured, and it shows the 

yield strength of 875 ± 22 MPa is above the requirement 115 ksi (793 MPa) and similar to the 

model prediction, which is 945 MPa in Table 3-12, first column. Moreover, the elongation is 23 

%.  
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However, if the same composition shift happens in the original wrought HSLA composition, then, 

according to the model prediction, the yield strength will only be 677 MPa Table 3-12 second 

column and will fail the requirement. Moreover, assuming the exact composition change happens 

for the second optimized composition that is optimized using the full ICME model framework for 

reliability design, the sample will also meet the property requirements, indicating the strategy of 

adapting HSLA wrought composition for AM is effective. 

Table 3-11 The optimized composition and the produced powder and printed sample composition. 

 C Cr Cu Mn Nb Mo Ni Si Al Fe 

Sample 

Composition 
0.042 0.41 1.32 0.77 0.03 0.84 3.45 0.19 0.006 Bal. 

Powder 

Composition 
0.046 0.4 1.44 0.9 0.03 0.8 3.47 0.19 0.006 Bal. 

Initial 

Optimized 
0.06 0.4 1.45 0.95 0.03 0.8 3.4 0.23 0.03 Bal. 

Final 

Optimized 
0.057 0.525 1.55 0.5 0.08 0.57 3.43 0.125 0.03 Bal. 

 

Table 3-12 The composition and predicted key properties. Those properties are predicted for the ICP 

measured AM prints composition (composition variation for the firstly optimized composition), and what if 

the same error happens in the original wrought composition and the error happens in the second optimized 

composition. Fe is the balancing element. All compositions have similar freezing range and locate at Graville 

diagram Zone 1. 

 C Cr Cu Mn Nb Mo Ni Si Al 
YS pred. 

(MPa) 

YS test 

(MPa) 

ICP measured 0.042 0.41 1.32 0.77 0.03 0.84 3.45 0.19 0.006 945 875 ± 22 

Same error in 

original 

composition 

0.035 0.67 1.14 0.8 0.03 0.61 3.48 0.19 0.006 677 … 

Same error in 

2nd optimization  
0.039 0.535 1.42 0.32 0.08 0.61 3.48 0.085 0.006 1001 … 
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3.7 Limitation of Current Study and Discussion on Uncertainties Sources 

The uncertainty involved in this work includes aleatory and epistemic uncertainty [56]. The 

aleatory uncertainty refers to natural variation and is hard to avoid. In contrast, the epistemic 

uncertainty originates from the lack of knowledge and model approximations [155]. In this work, 

our primary goal is to study the influence of the aleatory uncertainty of composition in the 

performance of post-heat-treated AM builds and optimize the composition to gain higher chances 

of a successful build. We believe that based on the widely accepted physical models and the 

reliable databases developed over several decades, such as the TCFE steel database released by 

the Thermo-Calc software company [156,157], the ICME model prediction is adequate to guide 

composition optimization. However, it is noteworthy that the accuracy of the ICME model 

prediction relies on the quality of the CALPHAD database. Therefore, instead of performing a 

composition design based on the model prediction with absolute values, this work would rather 

aim at composition optimization by predicting the alloying effects with the trend analysis. 

Due to the lack of experimental studies on the influence of composition change on AM 

build property, the uncertainty quantification for other uncertainty sources is challenging and is 

not performed in this work [47]. Other aleatory uncertainties from the processing parameters play 

an important role in the performance of AM. It should be further studied by coupling the 

CALPHAD-based ICME framework with the existing AM simulation models to address the 

process uncertainties in the future [20,158,159].   

Epistemic uncertainty includes data uncertainty and model uncertainty [160]. Data 

uncertainty is originated from the limited information of data and is reduceable by collecting more 
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data. In this study, only the composition uncertainty range is available, while the composition 

distribution is yet unknown. As a result, we have assumed that the distribution of composition is 

uniform. Since provided composition within the uncertainty range meets the property requirement, 

the manufactured component should meet the property requirement regardless of the distribution. 

However, the calculated success rate may vary with different distributions. In the future, if massive 

production and chemical analysis are performed to gain the composition distribution, a more 

representative result can be obtained.  

The other epistemic uncertainties that represent the difference between model prediction 

and experimental observation are called model uncertainty, which includes the model form 

uncertainty, solution approximation, and model parameter uncertainty [20]. Model form 

uncertainty stems from the assumption/simplification in the model. For example, it is assumed that 

the precipitate size is a fixed value in this work, while the real precipitate size is within a range 

and follows a specific distribution. It is possible to further increase the model accuracy by 

simulating precipitate size distribution [161] and incorporating the size distribution into the 

strengthening model [162]. Moreover, the porosity also determines the strength and ductility, while 

the influence of porosity is not considered in the current model framework. The model bias can be 

further reduced by integrating the porosity prediction into the ICME model framework [163].  

The model parameter uncertainty originates from the fact that some parameters used in the 

model are not accurate enough. For example, the Hall-Petch coefficient used in this work is 

determined from references [131], while it may not be precisely the same for the alloy composition 

studied in this work, and it may lead to a discrepancy between the model output and experiments. 

Such uncertainties can be minimized by performing experiments to measure the parameter. As 
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shown in Table 3-7, there are discrepancies between the surrogate models and the original models. 

Such uncertainties can be reduced by generating more and unbiased training data, optimizing the 

hyper-parameters, etc. Finally, it is possible to calibrate models by experiment design and use the 

framework proposed by Kennedy and O’Hagan [104–106]. During the calibration process, the 

difference between model prediction and experiments can be modeled as a Gaussian process 

model, and the unknown model parameters shall be studied using the Bayesian calibration method 

[106]. 

 

 

3.8 Conclusions and Future Works 

 

Figure 3-12 Summary of data-driven approach solving feedstock composition variation. 
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As shown in Fig. 3-12, the goal of this section is to optimize the feedstock composition 

that is robust to composition change, and the prints built from different batches of feedstock should 

have good performance for the application. In the conventional ICME approach, various models 

are integrated to simulate the process, structure, and property relationships. This method 

successfully increased the rate of a successful build by more than 40%. However, it is 

computationally intensive and can only be used for reliability design. As a result, the ML surrogate 

model was applied to accelerate the computation. Thus, it is possible to perform a robust design 

with small variations in the final product and the optimal design that has the best mean properties.  

This work proves the effectiveness of the data-driven ICME approach in addressing the 

AM feedstock composition variation challenges. However, it still has several limitations that need 

to be addressed in the future. 

1. The model framework is designed for a fully heat-treated sample. However, the 

printing parameters' impact on the residual stress, porosity, etc., should be considered 

for developing an as-built sample by applying other models, such as the FEA approach. 

2. The model has only been verified with limited data due to the high cost of making 

customized powder. However, the model calibration should be conducted when more 

data are available. This requirement also necessitates sharing data in a platform 

worldwide for accelerating the data-driven approach model development. 
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4.0 Stacking Fault Energy Prediction via ML for AM Steel with Segregation 

This chapter is modified from the publication:  

• Mainly from: Wang, Xin, and Wei Xiong. "Stacking fault energy prediction for 

austenitic steels: thermodynamic modeling vs. machine learning." Science and 

Technology of Advanced Materials 21.1 (2020): 626-634. Figures and contents are 

reused under the CC-BY license. 

• Some discussions from: Wang, Xin, et al. "Design metastability in high-entropy 

alloys by tailoring unstable fault energies." Science Advances 8.36 (2022): 

eabo7333. No figures and tables are copied from this paper in the thesis. 

4.1 Evaluation of Different Models for Predicting SFE 

4.1.1 Empirical Model 

Although various empirical equations have been proposed for calculating the stacking fault 

energy [164–169], the equations for calculating SFE are inconsistent in different studies, as listed 

in Table 4-1. For example, the equations proposed by Schramm [164], Rhodes [165], and 

Yonezawa [168] show that adding Cr will increase SFE. On the contrary, Brofman [166],  Ojima 

[167], and Bellefon [169] proposed that high Cr content leads to a lower SFE. This phenomenon 

indicates that the empirical equations are not very accurate, and most are localized for a limited 
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composition. Among all of the equations collected in this work, Bellefon et al. [169] equation was 

based on most of the data points, and it contains 144 different compositions. However, the 

prediction model was established for stainless steel. There is a need to build a model suitable for 

other austenitic steel, such as high Mn steels, with higher accuracy by utilizing a more 

comprehensive database and applying different algorithms.  

Table 4-1 Summary of empirical equations for the SFE calculation 

Authors Empirical equations 

Schramm [164] SFE = -53+6.2Ni+0.7Cr+3.2Mn+9.3Mo 

Rhodes [165] SFE = 1.2+1.4Ni+0.6Cr+17.7Mn-44.7Si 

Brofman [166] SFE = 16.7+2.1Ni- 0.9Cr+26C 

Ojima [167] SFE = 5.53+1.4Ni-0.16Cr+17.1N 

Yonezawa [168] SFE = -7.1+2.8Ni+0.49Cr+2Mo-2Si+0.75Mn-5.7C-24N 

Bellefon [169] SFE = 2.2+1.9Ni-2.9Si+0.7Mo+0.5Mn+40C-0.016Cr-3.6 

 

4.1.2 Thermodynamic Model 

A thermodynamic model was proposed by Olson and Cohen [170] and has been adapted 

in many modeling of SFE in the austenitic steels [171–174]. Within this approach, an intrinsic 

stacking fault is defined as an hcp phase with two boundaries shared with the fcc matrix. The 

thermodynamic expression of the SFE is shown in Eq. (4-1) [170,174]: 

 𝛾 = 2𝜌𝛥𝐺𝑓𝑐𝑐→ℎ𝑐𝑝 + 2𝜎𝑓𝑐𝑐/ℎ𝑐𝑝,    𝜌 =
4

√3𝑎𝑓𝑐𝑐
2

1

𝑁𝐴
  (4-1) 

Where γ is the SFE (mJ/m2), ΔGfcc→hcp is the Gibbs energies difference between the fcc and hcp 

phases [175] that can be modeled using the CALPHAD approach and commercial thermodynamic 

databases. Thermo-Calc [110] software with TCFE9 and TCHEA3 databases was used to calculate 

the Gibbs energy. The TCFE9 is mainly designed for steels, and TCHEA3 is constructed for multi-
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principal element alloys. These commercial databases developed by experts are expected to 

achieve reasonable thermodynamic prediction over a wide composition range for multicomponent 

alloys by comparing with the ones reported in the literature, which are usually designated to 

specific steels with limited composition and temperature ranges. ρ is the molar surface density 

(mol/m2) of {111} plane, NA is the Avogadro’s number, afcc = 0.36 nm is the lattice parameter of 

fcc, σfcc/hcp = 8 mJ/m2 is interfacial energy [175]. 

However, in most of the past research, the SFE model and Gibbs free energy functions for 

phases are designed for steels with 2-3 alloying elements [171–174], while modeling the 

multicomponent systems is challenging since it involves many parameters. Moreover, they have 

not been verified for alloys with a wide composition range [171,174,176]. Thus, this work 

evaluated the accuracy of the thermodynamic SFE model for more than 300 compositions collected 

(Fig. 4-1).  

Although a few data points lie in the black dashed line in Figs. 4-1(a) and 4-1(b), indicating 

the equivalency between the thermodynamic model prediction (SFEcalc) and experiments (SFEexp), 

but many other data points show a large deviation. Moreover, SFEexp varies from 3 to 80 mJ/m2, 

while SFEcalc with TCFE9 varies between -100 to 150 mJ/m2, and the TCHEA3 predicted values 

were as high as 800 mJ/m2. The large discrepancy between SFEcalc and SFEexp may originate from 

the following reasons. First, the interfacial energy used in this work and other reports is constant, 

while it is a composition-dependent variable. Also, the difference in interfacial energy among 

previous studies differs by more than 20 mJ/m2, which could introduce considerable uncertainty 

[93,173,176–179]. Secondly, most SFE measurements are performed at room temperature, while 
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the low-temperature CALPHAD databases for multi-component systems lack precision, and the 

current works mainly focus on the pure element and binary reassessment [180,181]. 

 

Figure 4-1 Comparison of SFE for different alloy systems between experimental value (SFEexp) and model-

prediction based on CALPHAD databases (SFEcalc). (a) TCFE9 and (b) TCHEA3. The black dashed line 

indicates the equivalent relationship between SFEcalc and SFEexp, i.e., SFEcalc = SFEexp; (c) Mean value 

and SD for the difference between SFEcalc and SFEexp of different alloy systems; (d) The Spearman’s 

correlation coefficient, r, between the SFEcalc and SFEexp for each alloy system. 
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According to Fig. 4-1(c), the two databases predict several alloy systems well. For TCFE9, 

the error in Fe-Mn-Si-Al, Fe-Mn-Si, Fe-Mn, and Fe-Mn-Al systems are relatively small. For 

TCHEA3, the error in Fe-Cr-Ni, Fe-Cr-Mo-Ni, Fe-Mn-Al, and Fe-Mn systems is acceptable. 

Moreover, Spearman’s rank correlation coefficient r, a statistic measure of the strength of the 

monotonic relationship between two data that lies between -1 to 1, has been calculated and 

presented in Fig. 4-1(d).  A positive value corresponds to a positive monotonic relation, i.e., as one 

variable increases, another also increases. A negative value indicates a negative monotonic 

relationship that when one variable increases, another variable will decrease. Moreover, 0 denotes 

that the two variables are not monotonically related. Suppose the absolute value of r is <0.4, 0.4-

0.6, >0.6, and the correlation between the two variables can be interpreted as weak, moderate, and 

strong, respectively [151]. For Fe-Mn-Si-Al, Fe-Mn-Al, and Fe-Cr-Mn-Ni systems, the r values 

between SFEexp and SFEcalc using TCFE9 are higher than 0.5, which indicates TCFE9 can predict 

the trend of SFE change with different elements in steels containing Mn. However, for the Fe-Cr-

Ni system, TCHEA3 performs better with an r value of around 0.75, indicating that it is suitable 

for steels with high Cr and Ni. In summary, the performance of the thermodynamic model heavily 

depends on the quality of CALPHAD databases, which should be carefully chosen depending on 

the alloy composition. 

To show the effect of temperature on the thermodynamic model accuracy, the whole 

dataset was split into three different groups: elevated temperature (300 < T < 600K, 12 samples), 

room temperature (300 K, 290 samples), and low temperature (94 < T < 300 K, 47 samples). The 

MAE of the CALPHAD prediction with different databases was calculated and listed in Table 4-

2. The prediction error is relatively small at the elevated temperature compared to room and low 
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temperatures. Moreover, Spearman’s correlation analysis of the temperature and the absolute error 

of CALPHAD-based calculation was performed. For TCHEA3 and TCFE9 databases, Spearman’s 

correlation coefficient is -0.24 and -0.19, respectively. According to the negative correlation 

coefficient r, when the temperature is increasing, the error of CALPHAD simulation has a weak 

monotonic trend to decrease. Additionally, the magnetic contribution to SFE is significant at low 

temperatures, and there is a need to establish a robust and sophisticated magnetic model to improve 

the accuracy of the thermodynamic model [182,183]. Though the thermodynamic model is not 

accurate for all steels tested in this work, it is useful for certain alloy systems. 

Table 4-2 MAE of TCFE9 and TCHEA3 prediction in the different temperature ranges 

Temperature range MAE of TCFE9 prediction (mJ/m2) MAE of TCHEA3 prediction (mJ/m2) 

300 K < T < 600 K 65.5 18.4 

T = 300 K 62.8 72.0 

94 K < T < 300 K 77.3 55.4 

 

4.1.3 ab initio Approach 

It is challenging and time-consuming for ab initio methods [184,185] to deal with chemical 

and magnetic energy contributions in complex multicomponent alloys [186]. Certain works 

underestimate the SFE and even report negative values [187,188]. Thus, some models are often 

only capable of predicting trends due to simple alloying effects with a limited composition range. 

As summarized by Sun et al. [189], TRIP happens when experiments measured SFE is below 20 

mJ/m2 and TWIP shows when SFE is in the range of 20-40 mJ/m2, and the ab initio calculated and 

experiments measured SFE shows a good correlation. However, the absolute value of the 
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calculation and experiments are different, indicating it is hard to use the ab initio calculated SFE 

for the TRIP/TWIP alloy design. 

4.1.4 Machine Learning Approach 

Besides the aforementioned approach, a promising way to leverage the wealth of data and 

circumvent the difficulty of SFE prediction is by applying data-driven methods [190,191]. In 

recent years, only a few studies have applied ML for SFE prediction [192,193]. Das [192] predicted 

SFE using an artificial neural network (ANN) with 100 compositions as an input. But, that work 

did not incorporate temperature into the model, while the temperature is an important factor that 

controls SFE [194], and ANN requires an extensive database for generating a reliable model, 

which may limit the accuracy of this work. Chaudhary et al. [193] built a classifier that categorizes 

compositions into high, medium, and low SFE. However, the prediction of the actual SFE value is 

crucial since the SFE value is a key parameter in modeling the critical stress for twinning and the 

mechanical properties [195,196]. Thus, a systematic study for understanding the relationship 

between composition and SFE, together with building an accurate SFE predictor, is imperative. 

Overall, this work (i) assessed the quality of the CALPHAD-based thermodynamic model-

prediction and revealed the importance of robust CALPHAD databases on accurate SFE 

prediction; (ii) discussed the influence of alloying elements on SFE through a statistical approach 

and found Ni and Fe have a moderate monotonic influence on SFE while other elements might 

have a complex effect; and (iii) predicted SFE using ML, and proved the performance of the ML 

model developed in this work was superior to the thermodynamic and empirical models.  
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4.2 Modeling SFE with Machine Learning 

Figure 4-2 depicts the framework used in this work. A comprehensive literature survey was 

performed to construct an experimental database containing 349 entries with temperature, 

composition, and experiments measured SFE [98–102,165,167,168,170,174,197–237]. But 

compositions containing uncommon elements such as W and V were not collected since the 

number of data is limited. Further, we randomly split them into train and test datasets. Our dataset 

covered a broad range of compositions, and its descriptive statistics are listed in Table 4-3. 

Furthermore, we performed Spearman’s correlation analysis using Python [111] and SciPy [238] 

to find the influence of alloying elements on SFE. Three different sets of features named Standard, 

WithTCFE9, and WithTCHEA3 were built to find out whether the thermodynamic model can 

enhance the model predictability. An appropriate selection of features, which distinguish the 

material and describe the property of interest, can lead to better performance of the ML model. 

Further, we evaluated the performance of 19 algorithms available in Scikit-learn [113] with 

different hyper-parameters for the three different feature sets using the 10-fold cross-validation 

[112] to discover the model with the highest accuracy and generalizability. The 75% train data is 

randomly split into ten subsets, and the model is fitted with nine subgroups and tested with the 

remaining subgroup [78]. After training and testing ten times, the average metrics values, such as 

the root mean square error (RMSE) and mean absolute error (MAE). Finally, the model with the 

lowest RMSE was selected and compared with the empirical and thermodynamic models.  
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Figure 4-2 Schematic flow chart of this work.Including (1) data collection and curation (2) thermodynamic 

modeling of SFE (3) database construction and feature selection for machine learning (4) machine learning 

using 19 algorithms (5) finding best features (inputs) and models (6) model evaluation based on the test 

dataset. 

 

Table 4-3 Descriptive statistics of the database used in this work.Temperature unit is Kelvin, composition is 

given as wt.%, SFE is in mJ/m2 

 Temperature C Cr Mn Mo N Ni Si Al P S Fe SFE 

Mean 289.94 0.09 15.36 5.09 0.41 0.07 11.23 0.34 0.10 0.00 0.00 67.31 30.60 

SD 46.87 0.26 6.39 8.18 0.89 0.15 6.87 0.99 0.52 0.01 0.00 7.19 13.55 

Min 94.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 47.04 3.26 

Max 598.15 3.21 30.00 32.69 2.70 1.00 31.16 6.22 4.80 0.07 0.04 86.46 72.97 

 



 

 

74 

 

4.2.1 Model Performance 

Table 4-4 summarizes the mean RMSE and MAE of the 10-fold cross-validation for each 

model with optimized hyperparameters. We found that the ensembled tree algorithms, including 

random forest [239], GB, and XGBoost [240] algorithms, generate a more accurate model than 

other algorithms tested in this work. The GB model has an MAE of around 5.5 mJ/m2 for all input 

sets. The RMSE is sensitive to large prediction errors and is reported to be near 8 mJ/m2. This 

implies that a few large deviations happen during the prediction. Moreover, the overall 

performance of the ML models is reasonable for such an error. In our study, the ensembled 

methods always perform better than the multilayer perceptron (MLP, an ANN model) based on 

different metrics, suggesting that there are better algorithms for predicting SFE than ANN, as 

stated in the introduction. We also found that the overall performance is similar among the three 

input sets. Although the performance of adding TCFE9 calculated SFE is slightly better than the 

standard inputs, the improvement is minor. As a result, adding thermodynamic calculations does 

not significantly benefit the ML model.  
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Table 4-4 Performance of different algorithms for different input sets using 10-fold cross-validation (CV) 

Machine learning 

algorithm 

Mean RMSE (mJ/m2) of 10-fold CV Mean MAE (mJ/m2) of 10-fold CV 

Standard 
With 

TCFE9 

With 

TCHEA3 
Standard 

With 

TCFE9 

With 

TCHEA3 

Gradient boosting 7.8 7.8 7.9 5.5 5.5 5.5 

Random forest 7.8 7.9 8.1 5.7 5.7 5.8 

XGBoost 8.1 8.0 8.2 5.6 5.7 5.9 

Huber 9.3 9.2 9.4 6.9 6.9 7.1 

Adaptive boosting 9.3 9.3 9.5 7.6 7.6 7.7 

K-nearest neighbors 9.4 8.9 9.3 6.8 6.6 7.0 

Elastic net 9.5 9.2 9.5 7.1 7.0 7.1 

Ridge 9.5 9.3 9.5 7.1 7.0 7.1 

Kernel ridge 9.5 9.3 9.5 7.1 7.0 7.1 

Lasso 9.5 9.2 9.5 7.2 7.0 7.1 

Automatic relevance 

determination 
9.5 9.3 9.5 7.2 7.1 7.2 

LassoLars 9.5 9.3 9.5 7.2 7.1 7.2 

Extra-trees 9.5 10.5 10.2 6.9 8.0 7.2 

Monotonic regression 9.6 9.4 9.6 7.3 7.1 7.4 

Bayesian ridge 9.6 9.3 9.5 7.2 7.0 7.1 

Multilayer perception 9.7 9.5 10.1 7.4 7.2 7.3 

Supporting vector 

machine 
9.8 9.3 9.7 7.0 6.8 7.0 

Decision tree 9.5 10.5 9.6 7.2 6.9 7.5 

Stochastic gradient 

descent 
11.4 11.3 11.3 9.3 8.9 9.1 

 

Finally, the GB algorithm with optimized hyper-parameters was re-trained with 75% data 

and tested with untouched 25% data. According to Fig. 4-3(a), almost all the data in the training 

dataset align with the black dash line, which represents the prediction is the same as experiments. 

This implies that the ML model successfully correlates the composition and temperature to SFE 

for the training dataset. This model also performs well on the untouched test dataset, except for 
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one outlier. Based on the inset plot, it is clear that more than 70% of the prediction error is less 

than 10 mJ/m2, which is close to the experimental error [169,211]. The error in SFE inferred from 

experiments may come from the equipment used for characterization, the inherent variation of SFE 

within a sample [199,241], and inaccurate elastic constants used when deducing SFE from 

experimental observation [99,174]. The performance of ML, thermodynamic, and empirical [169] 

models on the test dataset of SFE are compared, and the results are shown in Fig. 4-3(b). The MAE 

and RMSE of the ML model are the smallest among the empirical and thermodynamic models, 

confirming that ML is the most capable model for SFE prediction. 

 

Figure 4-3 (a) Comparison of the experimental and ML predicted SFE. The black dash line represents the 

ideal case where prediction is same with measured SFE; (b) Comparison of the model accuracy between 

machine learning, empirical model, and thermodynamic modeling based on TCHEA3 and TCFE9 databases 

in terms of MAE and RMSE. 

 

The advantage of the ML model is not only higher accuracy but also its ability to evolve 

continuously with more data [242,243]. Once the SFE measurements are reported, the new data 
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can be incorporated into the current dataset for improved prediction. Another pathway is to refine 

the thermodynamic models by improving the low-temperature database using the new lattice 

stability [181,244,245] coupled with an accurate prediction of interfacial energy to generate more 

reliable physical model-predicted data for ML model training.  

4.3 Alloying Effects on SFE 

4.3.1 Understanding the Influence with Statistical Analysis 

Understanding the influence of alloying elements on SFE is crucial for alloy design and 

has attracted various studies [98,188,246]. However, due to the limited time and resources, 

previous work only focused on limited alloys to draw a conclusion.  Vitos et al. [184] pointed out 

that the alloying effect on SFE is a function of alloying element content and the host composition. 

Thus, the general influence of elements on SFE remains unclear. Here, we calculated Spearman’s 

r and the p-value for interpreting the relationship between each element and the SFE without 

considering the host composition. A p-value serves as evidence against a null hypothesis, and a 

smaller p-value indicates a low possibility that the null hypothesis is true. In this work, the null 

hypothesis is that the two variables are uncorrelated but still generate the exact Spearman’s rank 

correlation. If a p-value is 0.05 (criteria used in Fig. 4-4), there is only a 5% chance of getting the 

same correlation coefficient r for two unrelated variables [152].  According to Fig. 4-4, Ni has the 

most pronounced effect in increasing the SFE regardless of the host composition, which agrees 

with the analysis by Das [192]. It was reported that from a total of 20 reports, 17 indicated an 
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increasing effect. Based on our study, C and Mn do not show a strong effect of increasing or 

decreasing the SFE. Because the r value is close to 0 and the p-value is larger than 0.05, which 

confirms that C and Mn do not have a statistically significant monotonic relationship with SFE. 

The importance of features in the GB has also been calculated and shown in Fig. 4-4(b). A high 

value denotes more times that this feature has been used as a critical decision in the model, and 

the feature is important in promoting the model's performance [247]. Based on Fig. 4-4(b), C and 

Mn are necessary for the SFE predictor generated through the gradient boosting (GB) algorithm 

[148]. This is because the effect of these elements on SFE is more complicated than that of Ni and 

varies with the host alloy, which has also been verified by the literature review [192]. For example, 

an ab initio study found that adding Mn into Fe-Cr-Ni stainless steel will always decrease the SFE 

at 0 K, and only increase the SFE at room temperature and when Ni content is higher than 16 % 

[248]. Meanwhile, Pierce et al. [174] showed that when Mn content was increased from 22 wt.% 

to 28 wt.% in Fe-xMn-3Al-3Si steel, the SFE increased monotonously. However,  the Si [100,208] 

is generally considered to decrease the SFE. But this work gets a contradictory conclusion, which 

may be attributed to the collective effect from the data pertaining to different alloy systems, or 

because the traditional correlation analysis has limitations in studying the relationship between the 

composition and SFE since the relationship is complex and depends both on the alloying elements 

but also the matrix composition. As a result, a more advanced analysis should be performed to 

gain insights into the collected data. 
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Figure 4-4 Analysis of the feature impacts on SFE.(a) Spearman’s correlation coefficient and p-value for the 

SFE and all features used in this work; (b) Importance of each feature in gradient boosting (GB) model. 

 

4.3.2 Understanding the Influence with Interpretable ML - SHAP 

Usually, the machine learning model is considered as the black box, and thus, we lack 

confidence in using them as they may not interpret the data that aligns with our domain knowledge. 

Moreover, it is also essential to understand how the model works to have more confidence in the 

model and extract valuable knowledge. Recent efforts are working on model interpretability, such 

as SHAP [114] (SHapley Additive exPlanations), which is based on the game theoretic approach 

to explaining the output of any machine learning model. It connects optimal credit allocation with 

local explanations using the Shapley values from game theory and their related extensions. Fig. 4-

5 summarizes the effects of machine learning model inputs on the SFE. From top to bottom, the 

impact of the input is decreasing, and from left to right, the feature has an effect on decreasing 
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SFE changes to increasing SFE. The color of each dot represents the value of the inputs for each 

data, and a blue color means the value of this data point has a low feature value in the dataset, and 

the red color means the value of this data point has a higher value.  Take the Ni as an example, it 

is found that when the feature value is low (blue dots), the impact of Ni always decreases the SFE, 

and with more and more Ni added, the position of data moves from left to right which indicates 

adding more Ni will increase the SFE in most of the cases. This finding aligns with the literature 

view finding by Das et al. [249] that 17 works prove adding Ni will increase SFE in total 20 studies. 

And it also aligns with Fig. 4-4 with the conventional statistical analysis. 

Similarly, we also know that adding Mo, N, Al, and S or increasing the temperature will 

lead to higher SFE while adding Si and P will decrease the SFE. The impact of adding Si is 

different from the correlation study in Fig. 4-4 but agrees with the literature study [100,208], 

proving the SHAP analysis for an accurate model helps discover the alloying effects on SFE and 

is better than the traditional correlation study. Elements like Mn and C also have a big influence 

on the SFE. However, both the red and blue dots span from left to right, indicating that the effect 

of those elements is not simple and may depend on the matrix composition. Those findings provide 

a guideline for composition optimization for TRIP/TWIP alloy design. 
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Figure 4-5 SHAP summary plot for SFE model with the 75% training dataset.  From top to bottom, the 

feature importance is decreasing. From left to right, the impact of alloying elements changes from lower SFE 

to higher SFE. Each dot represents a data point. 
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Figure 4-6 SHAP dependence plot for all features used in the machine learning model for training dataset. 

The dependence plot of (a) Ni content, (b) Fe content, (c) Mo content, (d) temperature, (e) Mn content, (f) Si 

content, (g) N content, (h) Cr content, (i) C content, (j) Al content, (k) P content, (l) S content. Each dot is a 

single prediction made in the model, the x-axis is the value of feature we have an interest, the y-axis is the 

SHAP value, i.e., how the feature value changes the output of the model, which is the SFE. The color 

represents the second feature value which interacts with the x-axis feature.  
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Moreover, we could also further study the effect of alloying elements by plotting the 

independence SHAP plot (Fig. 4-6). As shown in Fig. 4-6(a), adding more Ni will lead to higher 

SFE. But once the Ni content is above 15 wt.%, the SFE will not change too much. Furthermore, 

we also plot the interaction of Ni and N impacts on the SFE. The red symbol means the N content 

is high while blue symbol represents the alloy with low N content. When no Ni is added to the 

alloy, higher N content (red points) will lead to a lower SFE. On the contrary, when Ni content is 

higher than 15 wt.%, adding N will lead to higher SFE. In summary, the independence SHAP plots 

with machine learning can provide key knowledge of each alloying elements impact on the SFE. 

In summary, the data-driven approach provides an efficient and direct way to analyze the impact 

of alloying elements in the SFE. 

4.4 Experiments: Applying SFE Model for AM Alloys. 

The solute trapping model with the TCFE12 database was used to simulate the micro-

segregation profile for AM 316L. The model inputs such as the nominal composition and scanning 

speed, is available in Woo et al. [97] and Pham et al. [18], respectively. The simulated composition 

from the start to the end of the solidification is presented in Fig. 4-7. For Fig. 4-7(a), all alloying 

elements will enrich at the end of solidification. However, for the composition simulated for Pham 

et al. work (Fig. 4-7(b)), the Co and Ni content will be depleted at the end of solidification. Based 

on section 4.3, the change of Ni, Mo, Mn, etc. elements content will change the SFE, which may 

in turn change the deformation mechanism for different locations in the AM build. As a result, the 
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data-driven based model was used to predict the SFE of the hundreds of data in the simulated 

profile. 

 

Figure 4-7 The simulated segregation profile.For Woo et al. [97], (b) Pham et al. [18] 

 

Based on the SFE, the theoretical critical stress for twinning σtwin can be calculated based 

on Byun’s equation [95]: 

 𝜎𝑡𝑤𝑖𝑛 =
2𝛾

𝑚 × 𝑏𝑝
 (4-2) 

where γ is the SFE (mJ/m2), m is the Schmid factor, and bp = a/√6 is the Burgers vector of partial 

dislocation, and a = 0.359 nm is the lattice parameter for 316L stainless steel. Here we took the 

average Schmid factor of 0.326 in this simulation [250]. Figure 4-8 shows the calculated critical 

stress based on the nominal alloy composition and the simulated segregation profile. The critical 

twinning stress for the nominal composition is much higher than the highest true stress during the 

tensile test, indicating twinning is unlikely to show during deformation. However, due to the 
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segregation, some parts of the print will show a reduced critical twinning stress, which is lower 

than the maximum true stress in Woo et al. work [97] or very close to the highest true stress in 

Pham et al.’s [18] work. Moreover, it is also found that the stacking fault energy may decrease 

during deformation [97], making the twinning easier to operate. In summary, the SFE offers a 

reasonable explanation of the TWIP phenomenon in AM 316L stainless steel. 

 

Figure 4-8 Critical twinning stress for AM 316L stainless steel.The calculation is performed for Woo et al. 

[97] and Pham et al. [18], respectively. 
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4.5 Conclusion and Future Work 

In summary, compared with the thermodynamic model, empirical model, and ab initio 

approach, the machine learning model can predict the SFE in a timely and accurate manner. After 

applying the explainable ML tool - SHAP, the alloying effects on SFE have been revealed and 

provided for future alloy design. Finally, this model was used to explain the twinning phenomenon 

in AM 316L stainless steel.  

However, several future works could be done to improve this work further: 

1. The SFE model is purely based on composition and temperature. However, discovering 

more physics and structural based descriptors as the input may further improve the 

model performance. 

2. The twining behavior may also be associated with other factors, such as residual stress 

caused during the deformation. Moreover, one of our recent studies shows that a low 

stacking fault energy is favorable for TWIP and TRIP. However, the competition 

between the unstable twin fault energy (UTFE) and unstable martensite fault energy 

(UMFE) is the actual factor controlling the TWIP and TRIP [251]. Currently, there are 

not enough USFE and UMFE data for the data-driven model. 
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5.0 Bayesian Model Calibration for Bulk Property Variation in AM 

5.1 Yield Strength Model 

Figure 5-1 illustrates the microstructure features that impact the yield strength. In this work, 

we will consider the solid solution strengthening, the second phase that is either precipitated or 

formed during the printing process, the grain boundary/cell boundary strengthening, the 

dislocation density strengthening, and the porosity difference. Moreover, Equation 5-1 is the 

mathematical equation used to calculate the strengthening contribution from microstructures 

illustrated in Fig. 5-1.   

 

Figure 5-1 Schematic of the key structures impacting the strength of AM alloys 
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 𝜎𝑦 = 𝜎𝑓 +
𝑘

√𝑑
+ 𝛼𝑀𝐺𝑏√𝜌 + 𝜀 (5-1) 

 

where 𝜎𝑓 is the sum of friction strength and solid solution strengthening effects. In CoCrFeMnNi 

alloys reported in the literature, most of them have a similar composition. The minor difference is 

caused by the feedstock composition variation and elements evaporation during AM, which 

usually has a negligible impact on the strengthening effect. The sum of solid solution strengthening 

and lattice friction stress in CoCrFeMnNi has been reported in many works, such as 125 MPa 

[252],  147 MPa [253], 160 MPa [254], 194 MPa [255]. In this work, the 𝜎𝑓 is taken as 160 MPa, 

which is close to the average of reported data. 

The grain boundary or cell boundary strengthening is represented by 
𝑘

√𝑑
, where k is the 

Hall-Petch coefficient, and d is the grain or cell size. In the study of AM CoCrFeMnNi HEA, most 

of the literature uses the grain size, and the coefficient value is 494 MPa/μm0.5 [252,256], while 

some studies utilized the cell size for the grain boundary strengthening calculation [257]. As a 

result, there is a need to understand which structure should be used for the strengthening effect 

calculation. As plotted in Fig. 5-2, the LPBF as-built alloy shows a much smaller grain size than 

the cast one and is similar to the work-hardened and heat-treated casted alloys, while the DED as-

built shows a larger variation in grain size. This work will use the grain size reported in the 

literature to study if the Hall-Petch coefficient for grain size is appropriate or if we should consider 

using the cell size.  
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Figure 5-2  Literature review of the grain size difference in FCC HEAs. 

 

The dislocation strengthening is calculated via the equation 𝛼𝑀𝐺𝑏√𝜌, where α = 0.2 is a 

constant for FCC alloys, and M is the Taylor factor that depends on the grain texture and the tensile 

test loading direction. For most of the literature, without considering the grain texture, the M is 
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3.06. However, Taylor factors of additively manufactured CoCrFeMnNi HEA measured by Kim 

et al. range from 3.05 to 3.34 [258]. G is the shear modulus that is not sensitive to the 

microstructure and is measured to be 80 GPa at room temperature [259]. b = 0.254 nm is the 

magnitude of the Burgers vector of the full dislocation [258]. And ρ is the dislocation density that 

is usually measured by experiments, such as TEM and XRD. This work aims to reveal if the grain 

texture (represented by M) and dislocation density will significantly differ in AM compared with 

the casted Alloy. 

The last item 𝜀  represents all other effects, such as the porosity difference or the 

Nitrogen/Oxygen introduced in the additive manufacturing process. Moreover, the cast 

CoCrFeMnNi HEA is a single fcc phase, while the additive manufactured HEA may also have the 

BCC, HCP, σ, Oxides, etc., as summarized by Zhang et al. [260]. Moreover, the literature seldom 

reports the N or O content, which may cause additional strengthening effects.  Due to the 

complexity of those additional factors, I used only one simplified constant to represent all 

additional impacts. Moreover, only the single fcc CoCrFeMnNi HEA data will be included in the 

database for Bayesian model calibration. 

5.2 Bayesian Model Calibration 

The Bayesian and Gaussian model calibration were performed using OpenTURNS [115]. 

During the Bayesian calibration, the parameters are determined based on the literature. The 

Burgers vector b is set as 0.254 nm, shear modulus µ is set as 80 GPa, friction stress is set as 160 
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MPa, and the SD of experiments measured yield strength is set as 20 MPa. The parameters that 

need to be calibrated are set as follows: additional effect 𝜀 is 0 with an SD of 20 MPa, Taylor 

factor M is 3.06 with an SD of 0.2, Hall-Petch coefficient k as 490 MPa with an SD of 10 MPa, 

and the magnitude of dislocation density is 13 with an SD of 1. The Metropolis-Hastings algorithm 

was used for obtaining the samples during the Bayesian calibration process with a thinning 

parameter 3, a burn-in period of 1000. We used the Gaussian approach to find the model 

parameters within the range of Bayesian calibrated parameter ranges where the model outputs will 

match the experiments' measured yield strength. 

After a comprehensive literature review and data curation, the final data are summarized 

in Table 5-1. Those works were selected because they did a comprehensive characterization to get 

the grain size, and room temperature static uniaxial tensile test. Moreover, the printed samples 

show a single fcc phase confirmed by XRD and SEM, and all samples have very low porosity to 

reduce the impact of pores and secondary phases that is not well described in Eq. 5-1. However, 

directly fitting the equation with those data may lead to various combinations of parameters that 

can fit well. Therefore, we adopted the Bayesian approach to combine the data of AM HEAs and 

the parameters adopted in previous literature for casted HEAs as the prior knowledge for better 

model calibration. 

Figure 5-3 presents the probability density function (PDF) plot and the mean ± SD of the 

prior distribution in blue, which is based on the literature used parameter, and the posterior 

distribution in red, which is calibrated with experimental data. 

The first column is the distribution of the Hall-Petch coefficient k, and it is clear the 

calibrated values for cast, DED, and LPBF are very similar to the prior mean value 490 MPa/µm0.5, 
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and the SD is all close to 10 MPa/µm0.5, which proves that using the grain size can accurately for 

model prediction, and it also agrees with a previous study [261]. Moreover, in the AM literature, 

I adopted the grain width of the columnar grains as grain size, indicating that grain width should 

be used rather than the grain length for the Hall-Petch coefficient. 

Table 5-1 Summary of Collected Data of CoCrFeMnNi HEAs. WH represents work hardened and heat 

treated, H represents heat treated, AB represents as-built. 

Manufacturing 

Approach 

Beam 

diameter 

(μm) 

Layer 

Thickness 

(μm) 

Power 

(W) 

Travel 

Speed 

(mm/min) 

Hatch 

space 

Grain 

size 

(µm) 

Yield 

Strength 

(Mpa) 

Reference 

Cast - WH      9.8 484 [262] 

Cast - WH      25 226 [263] 

Cast - WH      17 229.6 [264] 

Cast - H      25 537 [265] 

Cast - WH      7.6 254 [266] 

Cast - WH      2.2 649 [266] 

Cast - WH      2.5 630 [267] 

Cast - WH      2.8 406 [267] 

Cast - WH      22.8 228 [267] 

Cast - H      17 267 [268] 

DED - AB 1800 450 1400 400  500 175 [269] 

DED - AB  300 400 300 460 19 387 [270] 

DED - AB  300 450 300 460 28 351 [270] 

DED - AB 260 25 300 500  50 499 [271] 

DED - AB 2500 600 880 600 1200 3.5 518 [272] 

DED - AB 600 154 400 300 460 13 517 [254] 

DED - AB  275 375 500 800 42 424 [273] 

LPBF - AB 70 30 200 42000 120 24 565 [274] 

LPBF - AB 60 30 160 72000 50 16.4 558 [275] 

LPBF - AB 60 30 160 72000 50 15 564 [275] 

LPBF - AB 60 30 160 72000 50 15.3 515 [275] 

LPBF - AB 75 40 240 120000 50 12.9 510 [276] 

LPBF - AB 65 50 200 45000 85 30 520 [277] 

 

The second parameter is the Taylor factor M, while the mean and SD do not change very 

much. This result indicates that the grain texture in the AM build sample does not have a larger 
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difference than the work-hardened and annealed cast alloy. The average Taylor factor is close to 

3.1 and ranges from 2.9 to 3.3. 

The dislocation density shows a significant difference after the model calibration. In the 

prior distribution, the magnitude of dislocation density has a mean of 13, with the SD as 1. After 

the calibration, the cast alloy shows a dislocation density of 1012.88±0.54 /m2, smaller than DED 

(1014.05±0.16 /m2) and LPBF (1014.64±0.10 /m2). Moreover, the dislocation density of LPBF is higher 

than DED, and the variation in LPBF is smaller than DED, and this is because the LPBF shows a 

higher cooling rate and less variation in processing parameters than DED. So, we could claim that 

besides the small grain size by AM, the high dislocation density is another root cause for higher 

yield strength in AM products. Fig. 5-4 shows the dislocation density deduced from model 

calibration, and it was compared with the XRD-measured dislocation density by the Williamson-

Hall method [278]. The model-calibrated dislocation density is very close to the experimentally 

measured results, indicating that the calibration is reliable.  

The last parameter is the additional constant used to summarize the impact of pores, 

secondary phase, and interstitial elements. As the results showed that there is no big difference 

between the three manufacturing processes, this might be because builds with secondary phases 

are excluded from the database, and those works only report the data with good print quality that 

has high density. 
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Figure 5-3 Summary of the prior and posterior distributions for each key model parameter. (a) Cast/work 

headend alloys with heat treatment. (b) as-prepared additive manufactured alloys. (1) Hall-Petch coefficient, 

(2) Taylor factor, (3) Magnitude of dislocation density, and (4) other effects including the impact of nano-size 

particles that cannot be detected by SEM and XRD, pores/cracks, etc. 
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Figure 5-4 Comparison of experiments measured and the calibration deduced dislocation density. The 

references are coming from Zhao et al. [274], Guan et al. [254], and Wang et al. [270]. 

 

As discussed in Fig. 5-3, the difference in dislocation density and the grain size leads to 

the significant difference in yield strength of CoCrFeMnNi HEA manufactured by different 

approaches. Thus, the dislocation strengthening contribution based on the Bayesian calibrated 

dislocation density and grain boundary strengthening effects based on the literature-reported grain 

size has been plotted in Fig. 5-5. For the dislocation strengthening, the annealed cast CoCrFeMnNi 

will have a dislocation strengthening smaller than 100 MPa, with most of the work showing only 

the 50 MPa hardening effect. Dislocation strengthening in as-built DED alloy ranges from 100 to 

200 MPa, while the as-built LPBF sample has an average strengthening effect of 250 MPa. The 
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grain boundary hardening effect shows more variations in post-processed cast alloy and as-built 

DED alloy, while the grain size of LPBF CoCrFeMnNi HEA is relatively stable. The grain size 

may change significantly in the LPBF sample because of the large variation in processing 

parameters, while the LPBF processing parameters are usually similar.  

 

Figure 5-5 Comparison of the strengthening contribution difference in the cast, DED, and LPBF 

CoCrFeMnNi alloy. (a) The dislocation strengthening effects are based on the Bayesian calibrated data. (b) 

The grain boundary strengthening effects are based on the experimental data. 

5.3 Correlation Study of Printing Parameters and Yield Strength 

The correlation analysis was conducted to study the impact of different processing 

parameters on the yield strength and the strengthening effects contributed by grain boundary and 

dislocations. In addition to the beam diameter and other parameters directly set up in the machine, 
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the volumetric energy density (VED) and linear energy density (LED) were also included in the 

correlation study. The 𝐿𝐸𝐷 =  
𝑃

𝑣
  and 𝑉𝐸𝐷 =  

𝑃

𝑣ℎ𝑡
, where P is the power, v is the scanning speed, 

h is the hatch spacing, and t is the layer height.  Pearson’s correlations are summarized in Table 5-

2 for DED and Table 5-3 for LPBF, respectively. Due to the limited data, the threshold for 

statistical significance - α value is 0.25, which means there is a less than 25% chance that the tested 

data could have no linear correlation. All statistically significant results are bolded in the table. 

Table 5-2 Correlation study for DED. The bolded correlation is statistically significant 

DED parameters 
Dislocation 

strengthening 

Grain boundary 

strengthening 

Yield 

strengthening 

Beam diameter -0.88 0.50 -0.29 

Layer height -0.85 0.48 -0.31 

Power -0.72 -0.06 -0.66 

Scanning speed 0.14 0.39 0.33 

Hatch space -0.27 0.75 0.53 

Linear energy density -0.75 -0.28 -0.83 

Volumetric energy density 0.51 -0.32 0.05 

 

Table 5-3 Correlation study for LPBF. The bolded correlation is statistically significant 

LPBF parameters 
Dislocation 

strengthening 

Grain boundary 

strengthening 

Yield 

strengthening 

Beam diameter -0.21 0.00 -0.31 

Layer height -0.23 -0.45 -0.60 

Power -0.31 -0.05 -0.46 

Scanning speed -0.80 0.87 -0.45 

Hatch space 0.68 -0.80 0.31 

Linear energy density 0.65 -0.94 0.19 

Volumetric energy density 0.33 0.24 0.60 

 

As Table 5-2 shows, smaller beam diameter, layer height, lower power, and LED in the 

DED process will increase the contribution from the dislocation strengthening. Increasing the 
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hatch space will refine the grain size and contribute to the grain boundary strengthening effects. 

While for the LPBF process (Table 5-3), a larger hatch space and LED will increase the dislocation 

density but lower the grain boundary strengthening effects. Moreover, this differs from the impact 

of hatch space in the DED process. Due to the complex effect in both the dislocation and grain 

boundary strengthening, the yield strength does not show a significant correlation with the hatch 

space and LED. The LPBF builds yield strength will have a negative correlation with layer height 

and a positive correlation with volumetric energy density (VED).  

5.4 Experimental Validation with LPBF 316L 

Since the correlation is based on a few literature results, further experimental validation 

would be helpful to verify this finding. Due to the limitation in the HEA feedstock, I used the 316L 

stainless steel to validate the findings since 316L also has a single fcc structure, and the powder is 

available in the lab. Table 5-4 lists all the powder composition in wt.%, and Table 5-5 lists the 

printing parameters for printing the 1 x 1 x 1 cm 316L stainless steel. The design of experiments 

is based on the following levels of processing parameters: Power: 97.5, 295, and 292.5 W; scan 

speed: 541.5, 1083, and 1624.5 mm/s; hatch space: 0.05, 0.09, and 0.14 mm; layer height: 20 and 

40 µm.  

Table 5-4 Composition of 316L powder (wt.%) 

Cr Ni Mo Mn Si P C S O N Fe 

16.64 11.30 2.27 0.10 0.77 0.007 0.01 0.006 0.09 0.02 Bal. 
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Table 5-5 Design of experiments of printing parameter for 316L stainless steel.The beam size is fixed at 80 

μm, rotation angle is 67°, while other tunable parameters are listed below. 

ID 
Power 

(W) 

Scan  

speed  

(mm/s) 

Hatch  

space  

(mm) 

Layer  

height  

(μm) 

LED  

(J/mm) 

VED 

(J/mm3) 

Density 

Archimedes 

(%) 

Density 

Optical 

(%) 

1 292.5 1083 0.135 20 0.27 100.03 99.8±0.3 99.7±0.1 

2 292.5 1624.5 0.09 20 0.18 100.03 100.0±0.3 99.5±0.1 

3 195 1083 0.09 20 0.18 100.03 100.9±0.3 100.0±0.0 

4 97.5 541.5 0.09 20 0.18 100.03 101.3±0.3 99.9±0.0 

5 97.5 1083 0.045 20 0.09 100.03 99.5±0.3 99.2±0.1 

6 195 1624.5 0.135 20 0.12 44.46 95.9±0.3 92.0±1.0 

7 97.5 1083 0.09 20 0.09 50.02 95.8±0.3 94.8±0.5 

8 195 1624.5 0.09 20 0.12 66.69 100.2±0.3 98.6±0.4 

9 195 1083 0.135 20 0.18 66.69 101.0±0.3 99.5±0.1 

10 97.5 541.5 0.135 20 0.18 66.69 100.4±0.3 97.8±0.3 

11 97.5 1624.5 0.045 20 0.06 66.69 97.6±0.3 90.2±1.5 

12 292.5 1624.5 0.135 20 0.18 66.69 100.2±0.3 98.4±0.3 

13 195 541.5 0.135 20 0.36 133.37 101.2±0.3 100.0±0.0 

14 195 1624.5 0.045 20 0.12 133.37 100.9±0.3 100.0±0.0 

15 292.5 1083 0.09 20 0.27 150.05 101.1±0.3 100.0±0.0 

16 292.5 541.5 0.135 20 0.54 200.06 100.9±0.3 99.9±0.1 

17 195 1083 0.045 20 0.18 200.06 101.2±0.3 100.0±0.0 

18 97.5 541.5 0.045 20 0.18 200.06 101.9±0.3 100.0±0.0 

19 292.5 1624.5 0.045 20 0.18 200.06 101.7±0.3 99.8±0.1 

20 195 541.5 0.09 20 0.36 200.06 99.9±0.3 99.9±0.1 

21 292.5 1083 0.135 40 0.27 50.02 100.6±0.3 98.4±0.3 

22 292.5 1624.5 0.09 40 0.18 50.02 100.9±0.3 99.3±0.2 

23 195 1083 0.09 40 0.18 50.02 99.7±0.3 99.9±0.0 

24 97.5 541.5 0.09 40 0.18 50.02 97.7±0.3 97.2±0.4 

25 97.5 1083 0.045 40 0.09 50.02 93.7±0.3 90.9±0.8 

26 195 541.5 0.135 40 0.36 66.69 100.9±0.3 100.0±0.0 

27 195 1624.5 0.045 40 0.12 66.69 101.6±0.3 99.8±0.1 

28 292.5 1083 0.09 40 0.27 75.02 100.8±0.3 100.0±0.0 

29 292.5 541.5 0.135 40 0.54 100.03 99.0±0.3 100.0±0.0 

30 195 1083 0.045 40 0.18 100.03 101.5±0.3 100.0±0.0 

31 97.5 541.5 0.045 40 0.18 100.03 97.1±0.3 93.0±2.0 

32 292.5 1624.5 0.045 40 0.18 100.03 100.0±0.3 99.7±0.1 

33 195 541.5 0.09 40 0.36 100.03 NA NA 

34 292.5 1083 0.045 40 0.27 150.05 101.2±0.3 99.9±0.1 

35 292.5 541.5 0.09 40 0.54 150.05 101.4±0.3 100.0±0.0 

36 195 541.5 0.045 40 0.36 200.06 99.90.3 99.9±0.1 

 

High densification is necessary for additive manufacturing, and many works utilize the 

volumetric energy density to optimize the processing parameters. A low VED will result in the 

formation of voids, while vaporization may happen when VED is too high. The 316L stainless 
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steel will show good printability when VED is in the range of 44.5-200 J/mm3 [279,280]. With the 

appropriate volumetric energy density range for high densification, various combinations of 

power, scanning speed, hatch spacing, and layer height can be adopted. The builds porosity was 

measured three times using the Archimedes method, with the room temperature water density 

taken as 0.997 g/cm3 and the theoretical density of the 316L (7.78423 g/cm3) calculated using 

TCFE12 database. The dislocation density was also checked by using the optical images five times, 

and their average and SD are documented. Moreover, sample 16 was not printed at the desired 

height, and sample 35 was lost after the printing. 

The sample Vickers hardness was measured to represent the yield strength as the hardness 

is easier to measure, and it has a positive correlation to yield strength. Figure 5-7 summarizes the 

impact of layer height on hardness for all prints with a density higher than 99%. It shows that 

increasing layer height will decrease the hardness, except for one condition at 195 W power, 1083 

mm/s travel speed, and the 0.045 mm hatch space. Thus, we can claim that increasing the layer 

height will lower the yield strength, and this finding aligns with the findings in Table 5-3 that are 

based on the findings of CoCrFeMnNi HEA.  
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Figure 5-6 Impact of layer height on LPBF 316L hardness. Each column represents the experiments with the 

same power (W), scan speed (mm/s), and hatch space (mm), while the layer height varies from 20 to 40 µm. 

The black dot is the mean hardness, while the blue band is the SD of the measurement. 

 

Moreover, the impact of other processing parameters with controlled experiments setting 

is summarized in Table 5-6. The number of conditions represents the total group of conditions 

with fixed all other processing parameters with at least two different values of the parameter of 

interest with a density higher than 99%. A positive correlation means increasing the parameter will 

lead to higher yield hardness, negative means increasing the parameter will lead to lower hardness, 



 

 

102 

 

and a complex correlation means the hardness will increase then decrease or decrease then increase. 

Clearly, the study agrees with Table 5-3 for the layer height, power, and scan speed. However, the 

316L experimental study shows that increasing hatch space will decrease the hardness, while Table 

5-3 shows a non-significant positive effect. This might be due to the limitation of experimental 

data and linear correlation study. 

Table 5-6 Impact of processing parameter on hardness by experiments.   

Parameter 
Number of 

conditions 

Positive 

correlation 

Negative 

correlation 

Complex 

correlation 

Power (W) 11 3 8 0 

Scan speed  10 4 3 3 

Hatch space  9 2 7 0 

Layer height  9 1 8 0 

 

Moreover, the dislocation density ρ of several prints has been estimated by using the 

Williamson-Hall method [278], as shown in Eqs. 5-2 and 5-3.  

 𝜌 =
2√3𝜀

𝑑𝑏
 (5-2) 

 

 𝐹𝑊𝐻𝑀 ∗ cos 𝜃 =
0.94𝜆

𝑑
+ 4𝜀sin𝜃 (5-3) 

 

where ε is the average lattice strain, and d is the average grain size that both can be derived based 

on XRD profile, b = 𝑎/√2 is the burgers vector, and the lattice parameter a is 0.359 nm based on 

XRD measurement for all tested prints, FWHM is the full width at the half maximum intensity in 

the XRD profile for the selected peak, and θ is the degree of the Bragg’s angle of the selected peak, 

the full width at half maximum intensity obtained from the XRD spectrum at the corresponding 

Bragg's angle of diffraction (θ), λ = 0.15406 nm is the wavelength of the X-ray of Cu source. The 



 

 

103 

 

dislocation density of 5 different samples was measured. Table 5-7 shows that the power of sample 

#5 is smaller than #17 and sample #26 is smaller than #29, while the dislocation density is #5 and 

#26 larger than #17 and #29, respectively. Moreover, #16 has a lower layer height than #19, while 

the dislocation density of #16 is higher than #19. Finally, the sample with lower hatch space (#5 

and #17) also tends to show less dislocation density. All of those findings are similar to Table 5-

3, which shows that using Bayesian to derive the properties that are hard to measure is an effective 

way to dig out more information from the literature and provide more data for analysis.  

Table 5-7 Dislocation densities of 316L LPBF prints. 

ID 
Power 

(W) 

Scan speed 

(mm/s) 

Hatch space 

(mm) 

Layer height 

(μm) 

Dislocation density  

(/m2) 

5 97.5 1083 0.045 20 9.57E+14 

16 292.5 541.5 0.135 20 1.15E+15 

17 195 1083 0.045 20 6.50E+14 

26 195 541.5 0.135 40 1.23E+15 

29 292.5 541.5 0.135 40 5.91E+14 

 

5.5 Conclusion and Future Work 

In summary, this work applied the Bayesian model calibration methods to combine the 

physics-based yield strength model and a few experimental data to study the structural difference 

in conventional manufactured and AM alloys. The high strength and its variation in LPBF and 

DED as-built HEAs are found to be related to the dislocation density and grain size variation with 

different processing parameters. Moreover, it is also found that the Hall-Petch equation should be 

used with the grain size, and the columnar width should be used as grain size. Finally, the Bayesian 



 

 

104 

 

calibration can also be used to derive the dislocation density, which is rarely reported in the 

literature. The deduced value has been compared with XRD-measured dislocation density. The 

impact of processing parameters on the yield strength and the contribution from grain boundary 

and dislocation densities have been analyzed using correlation study and verified with experiments 

in LPBF 316L. Finally, the printing parameters’ impact on the strength/hardness and the 

dislocation density has been investigated. However, this work also has some limitations, and some 

future work is desired: 

• Notably, some important features, such as the shielding gas type, oxygen content 

in feedstock, and the differences in laser wavelength, were not included in this work 

since they are rarely reported in the literature. Moreover, the data is biased as the 

literature tends to report good print with high density and exclude the bad printing 

parameters that lead to builds with defects. As a result, the Bayesian approach in 

this work may be able to describe the PSPP relationship for conditions that result 

in successful build, not the conditions that will fail. It is desired that the researchers 

also report the failed prints and their properties to establish a comprehensive 

database for the data-driven study. 

• Moreover, the segregation, residual stress, and many other parameters may also 

significantly impact the yield strength. For example, the tensile residual stress is 

detrimental to mechanical properties [281]. However, only a few literatures 

performed comprehensive characterization to study those properties.  

• The challenges and limitations mentioned in the previous discussion highlight the 

need for more information reported in the literature and for establishing an open 
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database for storing and exchanging information to accelerate the data-driven 

approach for AM. 
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6.0 Summary and Future Work 

In this dissertation, the variations in AM feedstock, microstructure, and as-built prints have 

been assessed by bringing the data-driven approach into the ICME model framework. The 

following conclusions can be drawn: 

1. Data-driven model can surrogate the ICME model framework to describe the 

composition-process-structure-property relationship for the AM heat-treated components. 

Applying the machine learning approach, alloy compositions are optimized to be robust to 

variations and will always meet the properties requirements. The designed composition has been 

printed using the LPBF approach, and all the key properties have passed the requirements. 

2. The local composition variation in AM prints challenges modeling for AM properties. 

In this thesis, a machine learning model has been established that provide an accurate and quick 

method for predicting SFE change along with the segregation in AM. This model outperforms the 

thermodynamic model and other empirical models. Moreover, it explains why the AM 316L 

stainless steel shows better mechanical properties and TWIP compared with the one manufactured 

using the conventional approach. 

3. Lastly, this thesis discussed the structural origins of the yield strength difference in AM 

and conventionally manufactured HEAs. By using Bayesian calibration with limited experimental 

data, this work updated the structural parameters of the yield strength model for AM alloys based 

on prior knowledge about the parameters for conventional alloys. It reveals that the grain size and 

dislocation density are the key factors in controlling the mechanical properties of AM alloys. 
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Moreover, it studies the relationship between the printing parameters on the yield strength and 

dislocation density using correlation analysis. The findings were also confirmed by experiments 

for fcc single-phase 316L stainless steel. 

Though this work explored combining materials science with data-driven approaches to 

solve some challenges in AM, more work is suggested in the future for more comprehensive 

research and full utilization of the data-driven approach in AM alloy and process design. 

1. Automated data extraction from literature and a platform to report data are 

necessary. In the study of the SFE machine learning model and the Bayesian model calibration, 

one of the biggest challenges is the limited size of dataset. In the study of the SFE machine learning 

model and the Bayesian model calibration, one of the biggest challenges is the limited size of the 

dataset. In this thesis, all data were extracted from research papers manually and carefully to ensure 

the dataset is reliable. However, it is time-consuming for large dataset preparation. Recently, 

automated data extraction has been applied for materials database development with the 

development of natural language processing (NLP) and large language models (LLMs) [282–284]. 

For example, Maciej and Dane [285] presented a novel automated bulk modulus extraction method 

based on ChatGPT, which has achieved 100% precision and 90% recall rates. This means that 90% 

of the data has been accurately extracted by the machine learning model and all extracted data 

were correct. However, it is hard to fully rely on the NLP technique for database construction due 

to several factors. For example, low-quality results may be generated if the provided prompts are 

improper  [286], and some data are presented in figures and tables rather than textual descriptions. 

Therefore, it is important to develop artificial intelligence tools for mining data accurately and 

comprehensively.  



 

 

108 

 

Moreover, many research works cannot be incorporated into the dataset due to the 

incomplete characterization or list of processing parameters. As a result, it is advised for the 

community to establish a standard way to report and share their data in a unified way to accelerate 

the data-driven model development.  

3. A comprehensive understanding of the AM processing-structural property 

relationship is desired. This thesis work studies simplified problems in AM design. In the work 

of feedstock composition, this thesis focuses on the properties after heat treatment. Thus, the as-

print structure and properties, such as segregation, residual stress, etc., are removed after heat 

treatment and are not considered in the modeling framework. In the work of local variation, the 

SFE is not sensitive to the microstructure and is determined by the composition. However, many 

other properties of interest are associated with the as-built structure, which is related to the printing 

parameters. Incorporating models addressing the printing parameters with the residual stress, grain 

size, textures, etc., is necessary for achieving the full capability of the ICME model framework for 

AM design.  
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