TREATMENT WITH FK 506 OF STEROID RESISTENT FOCAL
SCLEEROUSING GLOMERULONEPHRITIS (FSGN) OF CHILDHOOD

Jerry McCauley, M.D.
Andreas G. Tzakis, M.D.
John J. Fung, M.D., Ph.D.
Satoru Todo, M.D.
Thomas E. Starzl, M.D., Ph.D.

From the Departments of Medicine and Surgery, University Health Center of Pittsburgh, University of Pittsburgh, and the Veterans Administration Medical Center, Pittsburgh.

Supported by Research Grants from the Veterans Administration and Project Grant No. DK 29961 from the National Institutes of Health, Bethesda, Maryland.

Reprint requests should be sent to Thomas E. Starzl, M.D., Ph.D., Department of Surgery, 3601 Fifth Avenue, Falk Clinic 5C, Pittsburgh, Pennsylvania 15213.
Focal sclerosing glomerulonephritis (FSGN) is the leading cause of steroid resistant nephrotic syndrome in childhood. Cytotoxic agents may induce remission but jeopardize future fertility. Cyclosporin (CyA) has reduced proteinuria at the cost of progressive renal failure, probably contributed to by drug nephrotoxicity (1-2). We have used FK 506 to treat FSGN. A previously healthy 19 month old boy developed periorbital and peripheral edema November 1988. Urinalysis revealed 4+ protein but was otherwise unremarkable. Other laboratory data included: creatinine 0.77 mg/dl, BUN 16 mg%, albumin 1.8 gm% and serum cholesterol 4111 mg%. Antinuclear antibodies, C3, C4, hepatitis B screen, and antistreptolysin-O (ASLO) titers were normal. Prednisone (17.75 mg/day) was started but the proteinuria was not reduced during 7 months of therapy and the steroids were tapered to 35 mg/day. Increasing peripheral edema and ascites necessitated two hospital admissions for intravenous diuretic therapy. A renal biopsy after 9 months showed focal and segmental glomerulosclerosis with moderate interstitial fibrosis. A course of cyclophosphamide did not alter the proteinuria.

At 30 months of age he was referred to us with grossly cushingoid features and anasarca. He was receiving high dose loop diuretics and metolazone. Oral FK 506 (0.15 mg/kg/bid) was started and prednisone was reduced to 5 mg/day, and after 4 weeks, stopped. There was dramatic and progressive improvement clinically, and in the laboratory findings (Table 1). Diuretics
were discontinued. He was experienced no side effects of FK 506
to date, now after 15 of weeks of therapy.

A complete remission of FSGN occurred in this patient
without a reduction in renal function, something not accomplished
in previous reports of CyA induced remission of FSGN and other
forms of steroid resistant nephrotic syndrome (1-4). We have
recently reported that FK 506 in liver transplant recipients is
more potent and less nephrotoxic than CyA (5). Our observations
in this child as well as our recent successful treatment of CyA
induced hemolytic uremic syndrome (6) suggests that FK 506 may be
effective in a wide variety of renal and extra-renal immune
mediated disorders. Cautious attempts will be in order to reduce
the FK 506. There is no reason to assume that the present dose
will be required for maintenance.

The immediate response of a 41 year old male has been
similar to that of the child, although it is too early to say
more. The second patient with mesangial proliferative
glomerulonephritis and steroid resistant nephrosis of 6 months
duration (6-10 grams/day urine protein) was treated with 0.15
mg/kg FK 506 starting on 13 February 1990 and with the
discontinuance of 100 mg/day prednisone. Within the next 10
days, urinary protein declined to 1485 mg, serum cholesterol fell
from 360 to 240 mg/dl, and creatinine clearance remained the
same.
<table>
<thead>
<tr>
<th>Date</th>
<th>CREATININE</th>
<th>BUN</th>
<th>CREAT.CL</th>
<th>URINE PROTEIN</th>
<th>CHOLESTEROL</th>
<th>SERUM ALBUMIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/88</td>
<td>0.7</td>
<td>16</td>
<td>77.5</td>
<td>4+</td>
<td>411</td>
<td>1.8</td>
</tr>
<tr>
<td>5/89</td>
<td>0.4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>9/89</td>
<td>0.3</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>11/19/89</td>
<td>0.3</td>
<td>6</td>
<td>82.0</td>
<td>1,406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/20/89</td>
<td></td>
<td></td>
<td></td>
<td>FK 506 STARTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/27/89</td>
<td>0.1</td>
<td>10</td>
<td></td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/15/89</td>
<td>0.4</td>
<td></td>
<td></td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/12/90</td>
<td>0.2</td>
<td>13</td>
<td>87.9</td>
<td>25</td>
<td>142</td>
<td>2.9</td>
</tr>
<tr>
<td>3/1/90</td>
<td>0.1</td>
<td>9</td>
<td>86</td>
<td>63</td>
<td>169</td>
<td>3.7</td>
</tr>
</tbody>
</table>

SI Conversion --- Creatinine - mmol/l = mg/dl x 88.4
BUN - mmol/l = mg/dl - 6
Cholesterol - mmol/l = mg/dl - 38.7
Albumin - gm/dl x 100
REFERENCES


