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Real-Time Reduced Order Modeling Using Time Dependent Bases:

Applications and Advances

Michael Donello, PhD

University of Pittsburgh,

In the first part, we present a reduced order modeling (ROM) strategy for computing

finite time sensitivities in evolutionary systems, called the forced optimally time dependent

(f-OTD) decomposition. The approach is used for low-rank approximation of sensitivities

governed by forced linear differential equations. The sensitivity fields are approximated

using time dependent bases (TDB), that are evolved via closed form evolution equations.

We demonstrate the accuracy of f-OTD for computing sensitivities in a variety evolutionary

systems.

In the second part, we extend f-OTD to approximate nonlinear sensitivities, which we call

NL-fOTD. Unlike solving a linearized system that assumes infinitesimal perturbations around

a base trajectory, this framework allows for finite perturbations as nonlinear interactions are

considered. Similar to f-OTD, we solve low-rank evolution equations that leverage TDB by

extracting correlations between sensitivities on-the-fly. The resulting equations are Jacobian-

free and leverage the same nonlinear solver that is used to compute the evolution of the base

state. For nonlinear sensitivities with arbitrarily time dependent base state, we demonstrate

that low-rank structure often exists, and can be accurately extracted in real time directly

from the governing equations.

In the third part, we address some of the outstanding challenges of TDB based ROMs,

like f-OTD and NL-fOTD. In particular, TDB ROMs are (1) inefficient for solving general

nonlinear equations, (2) intrusive to implement, and (3) ill-conditioned in the presence of

small singular values. Since these challenges can arise regardless of the governing equations,

we develop a new TDB ROM method for solving general nonlinear matrix differential equa-

tions (MDEs) that is computationally efficient, minimally intrusive, robust in the presence

of small singular values, and rank-adaptive. The new method is based on a sparse sampling

strategy for the low-rank approximation of a time discrete MDE. Guided by the discrete
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empirical interpolation method (DEIM), a low-rank approximation is computed at each iter-

ation of the time stepping scheme. The new method is coined TDB-CUR, since the resulting

low-rank approximation is equivalent to a CUR matrix factorization.
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1.0 Introduction

1.1 Motivation

Quantifying input-output relationships for systems governed by high dimensional partial

differential equations (PDEs) is a central goal amongst a diverse set of fields and applications.

For many practical problems of interest, PDEs can depend on a large number of parameters

including initial and boundary conditions, geometry, and material properties [18]. While the

primary means of investigating these input-output relationships is via numerical simulations,

solving these high dimensional PDEs for a large range of parameter values is often cost

prohibitive.

One such example is the uncertainty propagation of random parameters into PDEs, which

requires solving the PDEs for a large number of random realizations [81, 49]. Discretization

of this problem can be formulated as a matrix differential equation (MDE) in the form of

dV/dt = F(V), where V ∈ Rn×s is the solution matrix and F(V) ∈ Rn×s is obtained

by discretizing the PDE in all dimensions except time. Here, the rows of the matrix are

obtained by discretizing the PDE in the physical domain and the columns of the matrix

are samples of the discretized equation for a particular choice of random parameters. For

high-dimensional PDEs subject to high-dimensional random parameters, the resulting MDEs

can be massive. For example, uncertainty quantification (UQ) of a 3D time-dependent fluid

flow typically requires solving an MDE with n ∼ O(106) − O(109) grid points (rows) and

s ∼ O(104) − O(107) random samples (columns). Therefore, the solution to these massive

MDEs is cost prohibitive due to the floating point operations (flops), memory, and storage

requirements.

Other problems can also be cast as MDEs. For example, sensitivity analysis (SA),

which plays an integral role in gradient-based optimization [39, 42], optimal control [20],

grid adaptivity [30], parameter identification [33], skeletal model reduction [70, 59], and

stability analysis [61]. For these types of problems, the system output is the solution to an

ODE/PDE, which implicitly depends on a set of input parameters. The goal of an SA is to
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quantify the change in output relative to a change in the input, and is commonly computed

via finite difference (FD) or by directly solving a forward sensitivity equation (SE). The

computational cost of using FD or an SE scales linearly with the number of parameters –

making them impracticable when sensitivities with respect to a large number of parameters

are needed. To alleviate this computational cost, an adjoint equation (AE) can be solved

for computing the gradient of an objective function that depends on the sensitivity. While

the computational cost of solving an AE is independent of the number of parameters, the

forward-backward workflow of the adjoint solver is problematic for two main reasons: (1) it is

not adequate for problems where real-time sensitivities are required, e.g. grid adaptivity for

time-dependent problems [30] and (2) for high dimensional dynamical systems, the imposed

I/O operations in the AE workflow lead to insurmountable limitations, especially in high

performance computing architectures [1]. Motivated by these challenges, there is a critical

need for robust and efficient algorithms that can incorporate UQ and SA into computer

based models at reasonable computational cost [84].

1.2 Reduced Order Modeling

For many UQ and SA applications, the resulting solution matrix, V(t), is instanta-

neously low-rank. As a result, there has been a growing interest to reduce the dimension

of these systems by building reduced order models (ROMs) that describe the evolution of

the dynamics in a reduced state space of rank r ≪ min{n, s}. The importance of ROMs is

evident – they can be used instead of the full-order model (FOM) for in-loop applications,

where many forward model evaluations are required, thereby reducing the computational

cost for tasks like UQ and SA. However, the most well-known techniques for building ROMs,

e.g. the proper orthogonal decomposition (POD) [19, 29] and dynamic mode decomposition

(DMD) [53], are based on extracting a static, i.e. time-independent, low-rank basis from ob-

servations of the full-dimensional dynamical system. Therefore, the DMD and POD extract

correlated structures in a time averaged sense, and are limited in application to systems that

are stationary or exhibit periodic or quasi-periodic behavior in time. For the highly transient
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systems targeted in this work, the DMD and POD would require a large number of modes

to resolve the system with an acceptable degree of accuracy, defeating the purpose of the

reduced order modeling task. Another challenge for static basis ROM strategies is that they

incur the cost of generating high-fidelity simulation data in order to extract a suitable basis

in the first place. In theory, this upfront cost is paid once to generate a basis that is valid

over a large range of operating conditions. However, in practice, this basis is limited in scope

and not well suited for highly transient problems, especially if extrapolation is required. See

[18] for a recent survey of projection based parametric model reduction.

1.3 Time Dependent Bases

In more recent years, time dependent basis (TDB) ROMs have emerged as a potential

solution to alleviate the computational burden of solving the massive MDEs required for UQ

and SA [49, 68, 81, 26, 66, 9, 7, 72, 31, 69, 52]. Unlike the static bases used in DMD and POD,

TDBs are evolved with the dynamics of the system, making them amenable to the low-rank

approximation of highly transient systems. For these systems, a low-rank approximation via

TDBs extracts instantaneous correlated structures from the column and row spaces of the

solution matrix. A ROM is then constructed by projecting the FOM equations onto the

low-rank column and row TDBs. As such, TDB-ROMs can be described as an on the fly

model compression that extracts instantaneous correlated structures via low-rank evolution

equations. An important implication of TDB ROMs is that high-fidelity data generation is

not required to extract the basis in an offline training stage. Rather, the basis is updated in

real-time, eliminating the offline stage from the TDB ROM workflow.

Low-rank approximation based on TDBs was first introduced in the quantum chemistry

field to solve the Schrödinger equation [16], where it is commonly known as the multiconfig-

uration time-dependent Hartree (MCTDH) method. The MCTDH methodology was later

presented for generic matrix differential equations in [49] and is referred to as dynamical

low-rank approximation (DLRA). Various TDB ROM schemes have also been developed

to solve stochastic partial differential equations (SPDEs). Dynamically orthogonal (DO)

3



decomposition [81], bi-orthogonal (BO) decomposition [26], dual dynamically orthogonal

(DDO) decomposition [65], and dynamically bi-orthogonal decomposition (DBO) [72], are

all TDB-based low-rank approximation techniques for solving SPDEs. Although these de-

compositions have different forms and constraints, they are all equivalent, i.e., they produce

identical low-rank matrices [27, 72], and their differences lie only in their numerical perfor-

mance.

1.4 Challenges of Time Dependent Bases

Despite the potential of TDB ROMs to significantly reduce the computational cost of

solving massive MDEs, there are still a number of outstanding challenges for most practical

problems of interest. We summarize three key challenges below:

(C1) Computational efficiency: For specific classes of equations (e.g. homogeneous linear

and quadratic nonlinear), rank-r TDB ROMs can be solved efficiently using explicit time

integration with operations that scale with O(nr) and O(sr) for linear MDEs or scale

with O(nr2) and O(sr2) for quadratic MDEs. However, this computational efficiency is

lost for general nonlinearities, requiring operations that scale with the size of the FOM,

i.e., O(ns). While this challenge has been addressed in the context of static basis ROMs

like POD, see e.g. missing point estimation (MPE) [5], empirical interpolation method

(EIM) [13], discrete empirical interpolation method (DEIM) [25], Gappy POD [34], and

Gauss Newton with approximated tensors (GNAT) [23], these techniques are still in their

infancy for TDB ROMs.

(C2) Intrusiveness: Even in the special cases of homogeneous linear and quadratic nonlinear

equations, efficient implementation of TDB ROM evolution equations is an intrusive

process [67, Appendix B]. This involves replacing the low-rank approximation in the

FOM, projecting the resulting equation onto the tangent manifold, and obtaining low-

rank matrices for each term on the right-hand side. The process requires significant

effort to derive, implement, and debug the code. This poses a major obstacle for most

practitioners, creating a significant barrier to adopting the methodology.
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(C3) Ill-conditioning: The TDB ROM evolution equations become numerically unstable

when the singular values of the low-rank approximation become very small. This is

particularly problematic because it is often necessary to retain very small singular values

in order to have an accurate approximation. Small singular values lead to ill-conditioned

matrices that require inversion in all variations of TDB ROM evolution equations [49,

81, 26, 65, 72], resulting in restrictive time step limitations for numerical integration and

error amplification.

Although some of these challenges have been tackled, there is currently no methodology

that can address all three. To address the issue of ill-conditioning, a projector-splitting time

integration was proposed [60], in which arbitrarily small singular values can be retained.

However, this scheme includes a backward time integration substep, which is an unstable

substep for dissipative problems. To address this issue, an unconventional robust integrator

was recently proposed [24] which retains the robustness with respect to small singular values

while avoiding the unstable backward step. The authors also presented an elegant rank

adaptive strategy, where the rank of the approximation changes over time to maintain a

desired level of accuracy. Despite these advantages, this scheme is first-order in time [24,

Theorem 4]. In [9], a pseudo-inverse methodology was presented as a remedy to maintain a

well-conditioned system. However, in this approach, it is difficult to determine what singular

value threshold must be used. Another projection method was presented in [47] that retains

robustness with respect to small singular values and can be extended to high-order explicit

time discretizations.

Although the three time-integration schemes presented in [60, 24, 47] and the pseudo-

inverse methodology presented in [9] can retain O(n+s) cost for linear and quadratic MDEs,

this speedup comes at the expense of a highly intrusive implementation. However, for generic

nonlinear MDEs, an intrusive implementation is not possible, and the computational cost of

solving the TDB ROMs using methods presented in [60, 24, 47, 9] scales with O(ns), which
is the same as the cost of solving the FOM. In more recent work, a sparse interpolation

algorithm was presented for solving the TDB ROM evolution equations with a computa-

tional complexity that scales with O(n+ s) for generic nonlinear SPDEs [67]. However, this

methodology still lacks robustness when the singular values become small, as it requires the
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inversion of the matrix of singular values.

1.5 Objectives and Contributions

This dissertation is comprised of three self contained works, each contributing to the

application and improvement of reduced order modeling using time dependent bases. The

objectives and contributions of each chapter are summarized as follows:

• In Chapter 2, the objective is to investigate the application of TDB ROMs for computing

sensitivities in evolutionary systems. To this end, we present a variational principle and

derive low-rank evolution equations for solving forced linear sensitivity equations under

the assumption of infinitesimal perturbations. The method is called f-OTD, and the

resulting equations are solved forward in time. For a number of systems, we show that

low-rank structure exists, and can be accurately extracted on-the-fly by solving low-rank

evolution equations forward in time: (1) sensitivity with respect to model parameters

in the Rössler system (2) sensitivity with respect to an infinite dimensional forcing pa-

rameter in the chaotic Kuramoto-Sivashinsky equation and (3) sensitivity with respect

to reaction parameters for species transport in a turbulent reacting flow. In these ex-

amples, we perform error and convergence analyses with satisfactory results. We also

demonstrate how the f-OTD components directly represent sensitivity information in a

simplified and interpretable manner. Specifically, we demonstrate the utility of f-OTD for

parameter identification in a turbulent reacting flow. The f-OTD method has also been

applied in independent works for skeletal model reduction of chemical kinetics [70, 59].

• In Chapter 4, we present a new methodology based on a CUR factorization of low-rank

matrices that addresses the above challenges of TDB ROMs, i.e., (1) the computational

cost of the methodology scales withO(n+s) for generic nonlinear SPDEs both in terms of

flops and memory costs, (2) it lends itself to simple implementation in existing codes, and

(3) the time-integration is robust in the presence of small singular values, and high-order

explicit time integration can be used. The main elements of the presented methodology

are a time-discrete variational principle for minimization of the residual due to low-

6



rank approximation error, and a CUR factorization based on strategic row and column

sampling of the time discrete MDE. We also provide a priori error analysis and show

how the error can be controlled via a rank-adaptive strategy. The method is applied to

solve the stochastic Burgers equation to demonstrate the accuracy and efficiency of the

method. Furthermore, we provide a MATLAB script to illustrate the implementation of

the method.
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2.0 Low-Rank Approximation of Linear Sensitivity

In this chapter, we present a reduced order modeling strategy for computing finite time

sensitivities in evolutionary systems, called the forced optimally time dependent (f-OTD)

decomposition. The approach is used for low-rank approximation of sensitivities governed

by forced linear differential equations. The sensitivity fields are approximated using time

dependent bases, that are evolved via closed form evolution equations. We demonstrate the

accuracy of f-OTD for computing sensitivities in a variety evolutionary systems. The follow-

ing contains material from the article, “Computing Sensitivities in Evolutionary Systems: A

Real-Time Reduced Order Modeling Strategy”, published in the SIAM Journal on Scientific

Computing [31].

2.1 Notation and Definitions

We denote u(x, t) to be a time dependent field variable. We denote the spatial domain

as D ⊂ Rm, where m = 1, 2, or 3. The spatial coordinate is denoted by x ∈ D and the

function is evaluated at time t. We introduce a quasimatrix notation to represent a set of

functions in matrix form, and denote the quasimatrix U(x, t) ∈ R∞×r as [15]:

U(x, t) =

[
u1(x, t)

∣∣∣ u2(x, t)
∣∣∣ . . . ∣∣∣ ud(x, t)

]
∞×r

,

where the first dimension is infinite and represents the continuous state space contained by D

and the second dimension is discrete. Similarly, we use the term quasitensor for tensors whose

first dimension is infinity. For example, T ∈ R∞×r1×r2 is a third-order quasitensor. We define

the column-wise inner product of two quasimatrices U(x, t) ∈ R∞×r and V(x, t) ∈ R∞×d as

S(t) = ⟨U(x, t),V(x, t)⟩,

where S(t) ∈ Rr×d is a matrix with components

Sij(t) =

∫
D

ui(x, t)vj(x, t) dx,
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where ui(x, t) and vj(x, t) are the ith and jth columns of U(x, t) and V(x, t), respectively.

The discrete analogue of this operation is the matrix multiplication, U(t)TWV(t), where

U(t) ∈ Rn×r and V(t) ∈ Rn×d are space discrete with n grid points and W ∈ Rn×n is a

diagonal weight matrix. For the case of single-column quasimatrices u(x, t) ∈ R∞×1 and

v(x, t) ∈ R∞×1, i.e., functions, the above definition reduces to an inner product between two

functions, which induces an L2 norm:

⟨u(x, t),v(x, t)⟩ =
∫
D

u(x, t)v(x, t) dx, ∥u(x, t)∥2 = ⟨u(x, t),u(x, t)⟩
1
2 .

The Frobenius norm of a quasimatrix is defined as:∥∥∥U(x, t)
∥∥∥
F
=

√
trace⟨U(x, t),U(x, t)⟩.

Finally, we define multiplication between a quasimatrix and a vector

c(x, t) = U(x, t)b(t),

where b(t) = (b1(t), b2(t), . . . , br(t))
T ∈ Rr×1 is an arbitrary vector and c(x, t) ∈ R∞×1 is

a function given by c(x, t) = bi(t)ui(x, t). We use index notation and the repeated index

implies summation.

2.2 Mathematical Formulation

We consider the nonlinear PDE for the evolution of v(x, t;α):

∂v(x, t;α)

∂t
=M ((v(x, t;α);α) , t ∈ [0, Tf ] (2.1)

where M is in general a nonlinear differential operator. Our goal is to compute the sen-

sitivity of v(x, t;α) with respect to the design parameters α, which can either be infinite-

dimensional, i.e., a functionα = α(x, t), or finite-dimensional, i.e., a vectorα = (α1, α2, . . . , αd).

For the sake of simplicity in the exposition we consider the finite-dimensional parametric

space.
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A common approach to computing sensitivities in evolutionary systems is by instan-

taneous linearization of the dynamical system around a base state. The linear sensitivity

equation is obtained by differentiating Equation 2.1 with respect to design parameter αi,

which leads to an evolution equation for the sensitivity of the dynamical system:

∂v′
i(x, t)

∂t
= L (v′

i(x, t)) + f ′i(x, t;α), (2.2)

where v′
i = ∂v/∂αi is the sensitivity of v(x, t;α) with respect to αi, L(∼) = ∂M/∂v(∼)

is the linearized operator evaluated at the base state v(x, t, ;α) (i.e. the Jacobian once

discretized), and f ′i = ∂M/∂αi is the forcing term. From observation of Equation 2.2, solving

for the full system of sensitivities scales with the number of parameters, where a linear PDE

must be solved for each parameter of interest. While this might be manageable for a small

number of parameters, solving Equation 2.2 will be cost prohibitive as the dimension of

the parametric space, d, increases. However, based on our observations, the sensitivities

governed by Equation 2.2 tend to be highly correlated at any given time, and thus, have the

potential to effectively be approximated by a low rank time-dependent subspace.

2.3 The OTD Decomposition

The idea of approximating linear systems via low-rank time-dependent subspaces is not

new. In fact, a new low-dimensional model was recently presented in [11] that can describe

transient instabilities in high-dimensional nonlinear dynamical systems via an instantaneous

linearization of the governing equations. This approach is based on a TDB known as the

optimally time-dependent (OTD) modes. The evolution equations for the OTD modes is

obtained by minimizing the functional

F(u̇1, u̇2, . . . , u̇r) =
r∑

i=1

∥∥u̇i − L(v(t), t)ui(t)
∥∥2
, (2.3)

subject to the orthonormality of the OTD modes, i.e. uT
i uj = δij, where ui(t) ∈ Rn, i =

1, . . . , r are the OTD modes. In the above functional, ∥u∥2 = uTu and L(v(t), t) ∈ Rn×n

is the instantaneous linearized operator and ˙(∼) = d(∼)/dt. The optimality condition

10



of the above variational principle leads to a closed form evolution equation for the OTD

subspace: U̇ = (I − UUT )LU, where U = [u1|u2| . . . |ur] ∈ Rn×r and I ∈ Rn×n is the

identity matrix. It was shown later that the OTD subspace converges exponentially fast to

the eigendirections of the Cauchy–Green tensor associated with the most intense finite-time

instabilities [10]. In this sense, the OTD reduction can be interpreted as a low-rank subspace

that approximates the evolution of perturbed initial condition in all directions of the phase

space. One of the computational advantages of OTD is that it only requires solving forward

equations. Moreover, the computational complexity of solving OTD reduction scales linearly

with respect to the number of modes. The OTD reduction has also been used for flow control

[21], building precursors for bursting phenomena [35] as well as detection of edge manifolds in

infinite-dimensional dynamical systems [17]. Despite its recent success, OTD is not adequate

when applied to systems subject to perturbations in a parametric space. These perturbations

are governed by Equation 2.2, and in general, the OTD subspace is not an optimal basis for

the evolution of v′
i. To this end, we present a new approach based on a time-dependent basis

for solving ROMs of time-varying linear systems forced by a high-dimensional function.

2.4 The Forced OTD Decomposition

In this section, we present a real-time reduced order modeling strategy that aims to

extract a time-dependent subspace for building sensitivity ROMs. In particular, we present

a variational principle, whose first-order optimality conditions lead to evolution equations

for a time-dependent subspace and its coefficients, which we call forced OTD (f-OTD). To

this end, we estimate the sensitivities using the low-rank decomposition:

V′(x, t) = U(x, t)Y(t)T + E(x, t), (2.4)

where V′(x, t) =
[
v′
1(x, t)

∣∣ v′
2(x, t)

∣∣ . . . ∣∣ v′
d(x, t)

]
∞×d

is a quasimatrix with its ith column

corresponding to the sensitivity of αi, U(x, t) =
[
u1(x, t)

∣∣ u2(x, t)
∣∣ . . . ∣∣ ur(x, t)

]
∞×r

is a

quasimatrix representing a rank-r time-dependent orthonormal basis, in which ⟨ui(x, t),uj(x, t)⟩ =

11



δij, Y(t) =
[
y1(t)

∣∣ y2(t)
∣∣ . . . ∣∣ yr(t)

]
d×r

is the coefficient matrix, and E(x, t) ∈ R∞×d is

the approximation error. The f-OTD decomposition is shown schematically in Figure 1.

We formulate a variational principle with control parameters U̇(x, t) and Ẏ(t), that seeks

to optimally update the subspace U(x, t) and its coefficients Y(t) by minimizing the residual

of the low-rank approximation of Equation 2.2:

F(U̇(x, t), Ẏ(t)) =

∥∥∥∥∂(U(x, t)Y(t)T )

∂t
− L (U(x, t))Y(t)T − F′(x, t;α)

∥∥∥∥2

F

, (2.5)

where F′(x, t) =
[
f ′1(x, t)

∣∣ f ′2(x, t) ∣∣ . . . ∣∣ f ′d(x, t)]∞×d
. Taking the time derivative of the

orthonormality condition leads to the following constraint for the minimization problem:

⟨u̇i(x, t),uj(x, t)⟩+ ⟨ui(x, t), u̇j(x, t)⟩ = 0. (2.6)

We denote ϕij(t) = ⟨ui(x, t), u̇j(x, t)⟩, in which Φ(t) = [ϕij(t)] ∈ Rr×r. It is easy to see

that Φ(t) must be a skew-symmetric matrix in order to satisfy Equation 2.6, i.e., ϕji(t) =

−ϕij(t). Incorporating this constraint leads to the following unconstrained optimization

problem functional:

G(U̇(x, t), Ẏ(t), λ(t)) =

∥∥∥∥∂(U(x, t)Y(t)T )

∂t
− L (U(x, t))Y(t)T − F′(x, t;α)

∥∥∥∥2

F

(2.7)

+
r∑

i,j=1

λij(t)
(
⟨ui(x, t), u̇j(x, t)⟩ − ϕij(t)

)
,

where λ(t) = [λij(t)] ∈ Rr×r are Lagrange multipliers. In the following section, we show

that minimizing the above functional leads to close form evolution equations for U(x, t) and

Y(t).
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2.4.1 Optimality Conditions of the Variational Principle

For the sake of brevity, we forgo the explicit written dependencies on x, t, and α in the

following derivation. Using index notation, we start by expanding Equation 2.7

G(U̇, Ẏ, λ) = ⟨u̇i, u̇j⟩
(
yT
i yj

)
+ ⟨ui,uj⟩

(
ẏT
i ẏj

)
+ 2⟨u̇i,uj⟩

(
yT
i ẏj

)
− 2⟨u̇i,L(uj)⟩

(
yT
i yj

)
− 2⟨ui,L(uj)⟩

(
ẏT
i yj

)
+ ⟨L(ui),L(uj)⟩

(
yT
i yj

)
− 2⟨u̇i,F

′yi⟩ − 2⟨ui,F
′ẏi⟩

+ 2⟨L(ui),F
′yi⟩+

∥∥F′∥∥2

F
+ λij (⟨ui, u̇j⟩ − ϕij) .

The first order optimality condition requires the derivative of G with respect to U̇, Ẏ and λ

vanish. The derivative of G with respect to λ produces the time derivative of the orthonor-

mality constraint given by Equation 2.6. Provided that the f-OTD modes are orthonormal

at t = 0, the time integration of Equation 2.6 reproduces the orthonormality condition of

the f-OTD modes for t > 0: ⟨ui,uj⟩ = δij. To take the derivative of G with respect to ˜̇uk we

use the Fréchet differential as follows:

G ′|U̇ := lim
ϵ→0

G(U̇+ ϵU̇′, Ẏ, λ)− G(U̇, Ẏ, λ)
ϵ

.

Using the above definition we have:

G ′|u̇k
= 2⟨u̇′, u̇j⟩

(
yT
k yj

)
+ 2⟨u̇′,uj⟩

(
yT
k ẏj

)
− 2⟨u̇′,L(uj)⟩

(
yT
k yj

)
− 2⟨u̇′,F′yk⟩+ λjk⟨u̇′,uj⟩ = 0.

The above equation can be written as ⟨u̇′,∇u̇k
G⟩ and we observe that for any arbitrary

direction u̇′, we must satisfy ∇u̇k
G = 0. This leads to the following condition:

∇u̇k
G = 2u̇j

(
yT
k yj

)
+ 2uj

(
yT
k ẏj

)
− 2L(uj)

(
yT
k yj

)
− 2F′yk + λjkuj = 0. (2.8)

To eliminate λjk, we take the inner product of ul with Equation 2.8 to obtain

⟨ul,∇u̇k
G⟩ = 2ϕlj(y

T
k yj) + 2δlj

(
yT
k ẏj

)
− 2⟨ul,L(uj)⟩

(
yT
k yj

)
− 2⟨ul,F

′yk⟩+ λjkδlj = 0,
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where we have used ⟨ul, u̇j⟩ = ϕlj and ⟨ul,uj⟩ = δlj. Rearranging for λlk gives

λlk = 2
[
−ϕlj(y

T
k yj)−

(
yT
k ẏl

)
+ ⟨ul,L(uj)⟩

(
yT
k yj

)
+ ⟨ul,F

′yk⟩
]
.

Dividing 2.8 by 2 and substituting λlk gives

[u̇j − L(uj) + ⟨ul,L(uj⟩)ul − ϕljul]
(
yT
k yj

)
− F′yk + ⟨ul,F

′yk⟩ul = 0.

Rearranging the above Equation for u̇j we get

u̇j = L(uj)− ⟨ul,L(uj)⟩ul + [F′yk − ⟨ul,F
′yk⟩ul]C

−1
kj + ϕljul, (2.9)

whereC(t) = [Ckj(t)] ∈ Rr×r is the low-rank correlation matrix, in which Cik(t) = yk(t)
Tyj(t).

Similarly, the first order optimality condition of G with respect to ẏk requires that

∂G
∂ẏk

= ⟨uk,uj⟩ẏj + ⟨u̇j,uk⟩yj − ⟨uk,L(uj)⟩yj − ⟨F′,uk⟩ = 0.

Again, we use ⟨uk,uj⟩ = δkj and ⟨u̇j,uk⟩ = −ϕjk. Rearranging for ẏk gives

ẏk = ⟨uk,L(uj)⟩yj + ⟨F′,uk⟩+ ϕjkyj. (2.10)

Here we have shown that minimizing the above functional with respect to U̇(x, t) and

Ẏ(t) leads to closed form evolution equations for the modes and corresponding sensitivity

coefficients (ROM). Equations 2.9 and 2.10 are initialized by solving Equation 2.2 for a

single time step and computing the singular value decomposition (SVD) of V′(x, t = ∆t),

such that U(x, t = ∆t) contains the first r left singular vectors and Y(t = ∆t) is the matrix

multiplication of the first r right singular vectors and singular values; see Section 2.4.4. In

Section 2.4.2, we show that the skew symmetric matrix ϕij can be taken to be zero, i.e.,

ϕij = 0.

In the following, we make several observations about Equations 2.9 and 2.10: (i) Equation

2.9 determines the evolution of the f-OTD subspace. For ϕij = 0, the right hand side of

Equation 2.9 is equal to the projection of L (U)+FYC−1 onto the complement of the space

spanned by U. Therefore, if L (U) + FYC−1 is in the span of U, the f-OTD subspace

does not evolve, i.e., U̇ = 0. However, when L (U) + FYC−1 is not in the span of U, the

f-OTD subspace evolves optimally to follow the right hand side. Equation 2.10 is the f-OTD
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reduced order model (ROM) that determines the evolution of the sensitivities within the f-

OTD subspace. (ii) We observe that if we set F′(x, t) = 0 in the above equations, we recover

the OTD evolution equations presented in [11]. However, unlike the OTD equations, where

the evolution of the OTDmodes are independent of the evolution of the coefficients (Y), there

is a two-way nonlinear coupling between the f-OTD evolution equations for U and Y. (iii)

From the above equations, it is clear to see that f-OTD extracts the low-rank approximation

directly from the sensitivity evolution equation. In that sense, it is different from data-

driven low-rank approximations such as proper orthogonal decomposition [6, 2, 4] or dynamic

mode decomposition [83, 55], in which the low-rank subspace is extracted from preexisting

data. The need to generate data simply does not exist in the f-OTD workflow. (iv) The

computational cost of solving the f-OTD Equations 2.9 and 2.10 is roughly equivalent to

that of solving r forward sensitivity equations. This is because the evolution of the f-OTD

modes described by Equation 2.9 inherits the same differential operators from the sensitivity

equation. In fact, Equation 2.9 can be formulated as a forced linear system ∂ui/∂t =

L(ui)+gi. Assuming the discrete f-OTD modes have the size of U ∈ Rn×r and also assuming

that L represents differential operators that can be represented discretely with a matrix of

size n×n, for implicit time integration, the cost of solving a linear system often exceeds that of

computing gi. Evaluating gi involves computing: (i) the low-rank matrix Lrij = ⟨uj,L(ui)⟩,
which has the computational complexity of O(r2n), when L is sparse and O(r2n2) when L is

a full matrix; (ii) ⟨uj,F
′yk⟩ = ⟨uj,F

′⟩yk which has computational complexity O(nrd+dr2),
and (iii) the correlation matrix inversion C−1 which has computational complexity O(r3).
Since r is often much smaller than n, the cost of inverting C is negligible. Equation 2.10 is an

ODE and therefore its computational cost is negligible compared to the f-OTD modes, which

are governed by a PDE. The cost of computing the terms that appear on the right hand side

of Equation 2.10 is already accounted for in Equation 2.9. Also, the computational storage

requirement of solving r f-OTD modes is equivalent to that of solving r forward sensitivity

equations as the storage cost of each f-OTD mode is equivalent to a single sensitivity field

and the storage cost of Y is negligible.
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Dimension Reduction: 
Extract correlations on the fly
from model 

v′ 1(x
,t)

v′ 2(x
,t)

v′ d(x
,t)

r ≪ d
reduced parametric space 
full parametric space

r →
d →

Figure 1: Overview of the reduced order modeling strategy. Shown on left in blue is the

full dimensional system of sensitivities that we seek to model using the f-OTD low-rank

approximation. Shown on right is the low-rank approximation which consists of a set of

temporally evolving orthonormal modes (red) and hidden design variables (gray). The hidden

design variables are coefficients that map the orthonormal basis to each sensitivity in the

full-dimensional system. That is, each of the d sensitivities are approximated as a linear

combination of the r orthonormal modes, where r ≪ d. It is important to note that the

orthonormal basis and hidden design variables are model-driven and evolve based on the

linear sensitivity dynamics. Thus, the proposed method only requires solving a system of r

PDEs and r ODEs for the modes and coefficients, respectively.
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2.4.2 Equivalence

It is important to note that the choice of ϕij in Equations 2.9 and 2.10 is not unique, and

any skew-symmetric matrix yields an equivalent reduction. Similar to the OTD equations

[11], we choose ϕij = 0, which corresponds to the dynamically orthogonal (DO) condition.

This property is summarized in the theorem below.

Theorem 2.4.1. Let {U(x, t),Y(t)} and {Ũ(x, t), Ỹ(t)} represent two reductions that sat-

isfy equations 2.9 and 2.10 with corresponding skew-symmetric matrices Φ(t) and Φ̃(t),

respectively. If the reductions are equivalent at t = 0, i.e. they are initially related by an

orthogonal rotation matrix R0 ∈ Rr×r as U(x, 0) = Ũ(x, 0)R0 and Y(0) = Ỹ(0)R0, then

the two reductions will remain equivalent for t > 0 with rotation matrix R(t) governed by

Ṙ = RΦ− Φ̃R.

Proof. We prove the equivalence by using the evolution equation for the U,Y and using the

matrix differential equation for the rotation matrix R and recovering the evolution equations

for Ũ, Ỹ. To this end, we substitute U = ŨR and Y = ỸR into the quasimatrix form of

equations 2.9 and 2.10. The evolution equation for the orthonormal modes becomes:

U̇ = ˙̃UR+ ŨṘ

= L(Ũ)R− ŨR⟨ŨR,L(Ũ)R⟩+ [F′ỸR− ŨR⟨ŨR,F′ỸR⟩] + ŨRΦ.

Substituting Ṙ = RΦ− Φ̃R and solving for ˙̃U yields

˙̃U =
[
L(Ũ)R− ŨR⟨ŨR,L(Ũ)R⟩+ [F′ỸR− ŨR⟨ŨR,F′ỸR⟩]

+ ŨRΦ− Ũ[RΦ− Φ̃R
]
RT .

Simplifying the above equation and using ⟨ŨR, ·⟩ = RT ⟨Ũ, ·⟩ and R−1 = RT , since R is an

orthonormal matrix results in:

˙̃U = L(Ũ)− Ũ⟨Ũ,L(Ũ)⟩+ [F′Ỹ − Ũ⟨Ũ,F′Ỹ⟩]C̃−1 + ŨΦ̃,
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where C̃ = RCRT and C̃−1 = RC−1RT , where C and C̃ are similar matrices and thus

have the same eigenvalues. Following a similar procedure, the evolution equation for the

coefficients becomes:

Ẏ = ˙̃YR+ ỸṘ

= ỸR⟨L(Ũ)R, Ũ⟩R+ ⟨F′, Ũ⟩R+ ỸRΦ.

Substituting Ṙ = RΦ− Φ̃R and solving for ˙̃Y yields

˙̃Y =
[
ỸRRT ⟨L(Ũ), Ũ⟩R+ ⟨F′, Ũ⟩R+ ỸRΦ− Ỹ[RΦ− Φ̃R]

]
RT

= Ỹ⟨L(Ũ), Ũ⟩+ ⟨F′, Ũ⟩+ ỸΦ̃.

Thus, we have shown that the evolution of {U(x, t),Y(t)} and {Ũ(x, t), Ỹ(t)} according to

Equations 2.9 and 2.10 are equivalent.

2.4.3 Exactness of f-OTD

For the case where the full sensitivity quasimatrix is of rank d, the rank d f-OTD equa-

tions are exact. To show this, we start by considering an arbitrary perturbation subspace,

V′(x, t) ∈ R∞×d, governed by the quasimatrix form of Equation 2.2:

∂V′

∂t
= L(V′) + F′(x, t), V′(x, 0) = V′

0(x),

where columns of V′(x, t) are independent, i.e. ⟨v′
i,v

′
j⟩ = 0 if i ̸= j, and the evolution of an

orthonormal subspace, U(x, t) ∈ R∞×d, governed by the quasimatrix form of Equation 2.9:

∂U

∂t
= L(U)−ULr(t) + (F′Y −U⟨U,F′Y⟩)C−1, U(x, 0) = U0(x).

The corresponding matrix of sensitivity coefficients are governed by the matrix form of

Equation 2.10 as:

dY

dt
= YLT

r + ⟨F′,U⟩, Y(0) = Y0,

where Lr(t) = ⟨U(x, t),L(U(x, t))⟩ is the r × r low-rank linear operator. We can show that

if the two subspaces are initially equivalent, i.e., U0(x) can be mapped to V′
0(x) via the

linear transformation YT
0 , then V′(x, t) and U(x, t) remain equivalent for all time t and are

related by the linear transformation Y(t)T . This leads to the following theorem:
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Theorem 2.4.2. Let V′(x, t) ∈ R∞×d be an arbitrary subspace evolved by the linear dynamics

of Equation 2.2, and U(x, t) ∈ R∞×d be an orthonormal subspace evolved by Equation 2.9.

If initially V′
0(x) and U0(x) are equivalent, i.e. V′

0(X) = U0(x)Y
T
0 , then the perturbation

subspace can be exactly determined via the linear transformation V′(x, t) = U(x, t)Y(t)T for

all time t, where Y(t) is governed by Equation 2.10.

Proof. Start by substituting V′(x, t) = U(x, t)Y(t)T into the quasimatrix form of Equation

2.2:

U̇YT +UẎT = L(U)YT + F′.

Next we substitute ẎT from Equation 2.10

U̇YT +U
(
LrY

T + ⟨U,F′⟩
)
= L(U)YT + F′,

where we have used Lr(t) = ⟨U(x, t),L(U(x, t))⟩. We multiply byY from right and rearrange

to get

U̇C = L(U)C−ULrC+ (F′Y −U⟨U,F′Y⟩) ,

where we have used C = YTY. Finally, we multiply by C−1 from right to get

U̇ = L(U)−ULr + (F′Y −U⟨U,F′Y⟩)C−1,

which is the same as the evolution Equation 2.9 for the orthonormal basis. Here we have

shown that the evolution of V′(x, t) under Equation 2.2 is equivalent to the evolution of

U(x, t) under Equation 2.9. That is, when r = d, Y(t)T is a linear transformation that

exactly maps the orthonormal subspace U(x, t) to V′(x, t).
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2.4.4 Approximation error

The approximation error of estimating sensitivities using f-OTD can be expressed as

e(t) = ∥V′(x, t) − U(x, t)Y(t)T∥F . This error can be properly analyzed and better un-

derstood by considering two types of error: (i) the resolved error, denoted by er(t) and

(ii) the unresolved error, denoted by eu(t). The resolved error is the discrepancy between

approximating the sensitivities with rank-r f-OTD and the optimal rank-r approximation:

er(t) = ∥U(x, t)Y(t)T − Ũ(x, t)Ỹ(t)T∥F , where Ũ(x, t) ∈ R∞×r and Ỹ(t) ∈ Rd×r are the

optimal rank-r orthonormal modes and their coefficients, respectively. The unresolved error

is the error of the optimal rank-r approximation: eu(t) = ∥Ũ(x, t)Ỹ(t)T −V′(x, t)∥F , that
is a direct result of truncating the d − r least energetic modes. Thus, the optimal rank-r

approximation is obtained by minimizing:

Eu(Ũ(x, t), Ỹ(t)) =
∥∥∥Ũ(x, t)Ỹ(t)T −V′(x, t)

∥∥∥
F
, (2.11)

subject to the orthonormality condition of Ũ(x, t) modes. The optimal decomposition can

be obtained by performing instantaneous SVD of the sensitivity matrix, where Ũ(x, t) is

the matrix of r most dominant left singular vectors of V′(x, t) and Ỹ(t) = Z̃(t)Σ̃(t), where

Z̃(t) ∈ Rd×r and Σ̃(t) = diag(σ̃1(t), σ̃2(t), . . . , σ̃r(t)) are the matrix of the r most dominant

right singular vectors and the matrix of singular values, respectively. It is straightforward

to show that: eu(t) = (
∑d

i=r+1 σ̃
2
i (t))

1/2. The error eu(t) represents the minimum error

that any rank-r approximation can achieve, and therefore, it amounts to a lower bound for

the f-OTD error: e(t) ≥ eu(t). On the other hand, as with any reduced order model of

a time-dependent system, the unresolved subspace induces a memory error in the f-OTD

approximation. This means that the unresolved error drives the resolved error er(t), and

under appropriate conditions, it has been shown that for similar time-dependent basis low-

rank approximations, er(t) can be bounded by: er(t) ≤ c1e
c2t

∫ t

t0
eu(s)ds [49] for c1, c2 > 0.

The interplay between eu(t) and er(t) can be more rigorously studied within the Mori-

Zwanzig formalism [28]. These error estimates can guide an adaptive f-OTD, in which

modes are added or removed to maintain the error below some threshold value [9], however

these aspects are not in the scope of this paper and are not explored any further here. Since
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sensitivities can either be very small or very large with errors following the same trend, we

compute the relative error percentages as shown here:

% Error =
e(t)

∥V′(x, t)∥F
× 100. (2.12)

Similar quantities are computed for eu(t) and er(t).

2.4.5 Mode Ranking

In this section we present a procedure to rank the f-OTD modes and their coefficients

according to their significance. To this end, we start by considering the reduced correlation

matrix C(t), which is in general a full matrix. This implies that the sensitivity coefficients

are correlated and there exists a linear mapping from the correlated coefficients, Y(t), to

the uncorrelated coefficients, Ŷ(t)Σ(t), where Ŷ(t) are the orthonormal coefficients and

Σ(t) = diag(σ1(t), σ2(t), . . . , σr(t)) is a diagonal matrix of singular values. To find such a

mapping, we consider the eigen-decomposition of C(t) as follows:

C(t)R(t) = R(t)Λ(t), (2.13)

where R(t) ∈ Rr×r is a matrix whose columns contain the eigenvectors of C(t) and Λ(t) is

a diagonal matrix containing the eigenvalues of C(t), {λi(t)}ri=1. Since C(t) is a symmetric

positive matrix, the matrix R(t) is an orthonormal matrix, i.e. R(t)TR(t) = I, and the

eigenvalues are all non-negative and can be sorted as: λ1(t) > λ2(t) > · · · > λr(t) ≥ 0. It is

also straightforward to show that the singular values of the f-OTD low-rank approximation

are σi(t) = λi(t)
1/2, for i = 1, 2, . . . , r.

The ranked f-OTD components can be defined as:

Ŷ(t) = Y(t)R(t)Σ−1(t), Û(x, t) = U(x, t)R(t),

where the columns of Ŷ(t) and Û(x, t) are ranked by energy (σ2
i ) in descending order. We

shall refer to {Ŷ(t),Σ(t), Û(x, t)} as the bi-orthonormal form of the reduction. Since the

above equations are simply an in-subspace rotation, {Ŷ(t)Σ(t), Û(x, t)} and {Y(t),U(x, t)}
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yield equivalent low-rank approximations of the full-dimensional dynamics. This is easily ver-

ified by considering the bi-orthonormal form of the low-rank approximation as Û(x, t)Σ(t)Ŷ(t)T

= U(x, t)Y(t)T , where we have made use of the identity R(t)TR(t) = I. We refer to Ŷ as

the hidden parametric space as each column of matrix Ŷ can be taken as a new ranked

parameter that represents the contribution of all parameters (α).

2.5 Demonstration Cases

2.5.1 Rössler System

We first consider a simple demonstration of f-OTD by computing sensitivities of the

Rössler system. The Rössler system is governed by:

dv1
dt

= −v2 − v3,
dv2
dt

= v1 + α1v2,
dv3
dt

= α2 + v3(v1 − α3). (2.14)

In the above equations, we set α1 = α2 = 0.1 and α3 = 14, which are common values used

to study the chaotic behavior of the attractor. The goal is to calculate the sensitivity of v

with respect to the model parameters α = (α1, α2, α3) as ∂v/∂α. To this end, we take the

derivative of the above system of equations with respect to model parameter αi to obtain

the linear sensitivity equation
dV′

dt
= LV′ + F′, (2.15)

where

L =


0 −1 −1
1 α1 0

v3 0 v1 − α3

 , V′ =

v′
1 v′

2 v′
3

 , F′ =


0 0 0

v2 0 0

0 1 −v3

 ,
and v′

i is the sensitivity of the position with respect to αi and L ∈ Rn×n and F′ ∈ Rn×d.

We choose a subspace with dimension r = 2 for the low-rank approximation of the three-

dimensional (d = 3) sensitivities (V′). Although it is obvious that OTD modes are not based

on parametric sensitivities and they are based on perturbations in the initial condition (IC)

in all directions of the phase space, we believe it is instructive to contrast the OTD versus
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(a) (b)

Figure 2: (a) Chaotic Rössler attractor with optimal f-OTD subspace shown in green and

OTD subspace shown in black for r = 2. Red arrows depict the orthonormal sensitivity

vectors that define each subspace. (b) Percent error for e(t) plotted versus time for the

f-OTD and OTD subspaces.

f-OTD to better understand f-OTD. To this end, we build two real-time ROMs using OTD

modes and f-OTD modes. In the case of OTD, we solve the OTD evolution equation and

we project the forced sensitivity Equation 2.15 onto the OTD modes, resulting in:

dUotd

dt
= (I−UotdU

T
otd)LUotd and

dYotd

dt
= YotdU

T
otdL

TUotd + F′TUotd.

We also solved the f-OTD evolution Equations 2.9 and 2.10 for the finite-dimensional system.

Both OTD and f-OTD modes are initialized with the same subspace and the evolution

equations are solved for Tf = 10 units of time. These subspaces are initialized by first

solving the full-dimensional sensitivity, Equation 2.15, for one ∆t = 10−2 and then computing

the OTD and f-OTD subspaces as the first two left singular vectors of V′(x, t = ∆t). In

Figure 2(a), both OTD and f-OTD subspaces are visualized along with the attractor of the

Rössler system. The OTD subspace is shown at only one instant for clarity and that point

corresponds to the case where the nonlinear dynamics is in the v1 − v2 plane. At this point,

the OTD subspace is oriented such that it nearly coincides with the v1 − v2 plane. This
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result is to be expected since the OTD subspace follows the sensitivities associated with

the perturbations in the IC and we know that the IC-perturbed solutions will lie on the

same attractor. On the other hand, the f-OTD subspace is correctly oriented along the most

sensitive subspace for perturbations in the model parameters, i.e. δα = (δα1, δα2, δα3),

which lead to perturbations in the attractor itself. That is, the perturbed solutions lie on

different attractors which can readily be seen as δα results in nonzero δv3, despite v3 ≃ 0.

This results in the f-OTD subspace having a large out-of-plane component in the v3 direction,

which the OTD subspace fails to capture in Figure 2(a). In Figure 2(b), the percent errors

of e(t) are shown for OTD and f-OTD, which confirms that f-OTD performs significantly

better than OTD. This simple example demonstrates that the OTD basis is not optimal and

may be inaccurate for reduced order modeling of the forced sensitivity equation.

2.5.2 Chaotic Kuramoto Sivashinsky Equation

In this example, we evaluate the performance of f-OTD in computing linear sensitivities of

a chaotic system with many positive Lyapunov exponents and a high-dimensional parametric

space. The intent of this example is not to compute the gradient of a time-averaged quantity

for a chaotic system, but rather computing the solution of the sensitivity equation for a

chaotic system with much larger unstable directions than the rank of the f-OTD subspace.

For computing sensitivities of time-averaged quantities, one can use f-OTD in conjunction

with Ruelle’s linear response formula [79, 54] to compute ensemble sensitivities. We also

refer the reader to references for methods related to long-term sensitivities in chaotic systems

[88, 37]. To this end, we consider the sensitivity of the Kuramoto Sivashinsky (KS) equation

with respect to a time dependent forcing parameter α(t). The KS equation is a fourth order

PDE given by:

∂v

∂t
+

1

2

∂v2

∂x
+
∂2v

∂x2
+ ν

∂4v

∂x4
= α(t) sin (2πx/L), x ∈ [0, L], (2.16)

where v = v(x, t). Approximately 110 positive Lyapunov exponents exist for the parameters

used in this study: ν = 1 and L = 1000. Here α(t) represents an infinite-dimensional

parametric space.
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To compute the sensitivities numerically, we consider a discrete representation of α(t) in

the interval ti ∈ [0, Ts], where Ts ≤ Tf is a subset of the full integration time Tf , and ti is

a discrete instance in time. To this end, we consider the value of α(t) at discrete time ti =

(i− 1)×∆t, where ∆t is the time step. This results in a vector, α = (α1, α2, . . . , αd), where

αi = α(ti) and d = Ts/∆t is the number of instances in time (i.e. number of parameters).

In general, ∆t can be chosen independently of the numerical time integration step size,

however, for simplicity, we use the same value of ∆t for both the parametric discretization

and numerical integration of the nonlinear solver and f-OTD equations. In this example, we

consider ∆t = 10−2 and Ts = 10, which results in d = 1000 parameters. Further decrease

in ∆t did not change our results. This leads to the sensitivity of v with respect to the

value of α(t) at 1000 evenly spaced instances in time. We evolve these sensitivities over the

interval t ∈ [0, Tf ] with Tf = 100. We also choose α(t) = 0 for ti ∈ [0, Tf ], and therefore, the

nonlinear solver v(t) is the solution of the unforced KS equation.

We consider the time-discrete form of Equation 2.16 and differentiate with respect to

design parameter αi. This leads to an evolution equation for the sensitivity of v with respect

to αi, in which the linear operator and forcing terms are:

L(v′
i) = −

[
∂(vv′

i)

∂x
+
∂2v′

i

∂x2
+ ν

∂4v′
i

∂x4

]
and f ′i = δ(t− ti) sin (2πx/L) , i = 1, 2, . . . , d (2.17)

where δ(t− ti) = 0 for t ̸= ti and δ(t− ti) = 1 for t = ti. Our goal is to solve Equation 2.17

using f-OTD. We discretize the KS equation and the f-OTD equations using n = 213 = 8192

Fourier modes and use exponential time-differencing Runge-Kutta fourth-order (ETDRK4)

time stepping scheme [45]. We verify our solution by directly solving Equation 2.17 for all

1000 sensitivities. Further decreasing ∆t and increasing the number of Fourier modes did

not change our results. We also compare the f-OTD error with that of optimal instantaneous

same-rank approximation of the full sensitivities, which is obtained by computing the SVD

of V′(x, t) at each time. In Figure 3(a), we compare the reconstruction error of f-OTD (e(t))

with the reconstruction error of same-rank SVD (eu(t)). We also show the resolved error

er(t), which measures the discrepancy between the f-OTD approximation and the optimal

same-rank approximation. We compute these errors for r = 1, 3 and 5. While the optimal

low-rank approximation with a single mode captures approximately 99% of the system energy
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of the full sensitivity (see Figure 3(b)), the f-OTD approximation performs poorly with only

a single mode, i.e., a dramatic reduction for 1000 sensitivities. This is a direct result of the

memory effect from the lost interactions with the unresolved modes (er(t)) that ultimately

dominate the error for long term integration. By increasing the number of f-OTD modes,

both e(t) and er(t) decrease. It is possible to control the error in real-time through an

adaptive strategy that adds/removes modes with an appropriate criterion. For example, a

candidate criterion could be p = σ2
r(t)/

∑r
i=1 σ

2
i (t), where for p < pth the last mode can be

removed and for p > pth a new mode can be added. See [9] for similar strategies for adaptive

mode addition and removal.

In Figure 3(b), we compare the 15 largest instantaneous singular values of quasimatrix

V′(x, t) with those obtained from f-OTD with rank r = 5, which shows that f-OTD closely

captures the most dominant subspace. In Figures 4(a) and 4(b) the orthonormalized coef-

ficients of the first two dominant f-OTD modes for the case of r = 5 are compared to the

right singular vectors from the instantaneous SVD of V′(x, t). These coefficients represent

the hidden parametric space: for example, ŷ1 is a series of weights that represent the con-

tribution of each of the d = 1000 sensitivities to the most dominant direction of the full

sensitivity matrix, û1. Due to the chaotic nature of this problem, we observe that these

coefficients can be highly time-dependent, especially for the lower energy modes; see ŷ2.

Nevertheless, we have demonstrated that f-OTD extracts the most dominant subspace and

associated coefficients of the sensitivity matrix for a chaotic system with large number of

unstable directions and parameters.

2.5.3 Species Transport Equation: Turbulent Reactive Flow

In this example, we show how a single set of f-OTD modes can lead to significant com-

putational gains for computing linear sensitivities in problems with multiple coupled field

variables, where each field variable has a different linear operator. We consider a species

transport problem, where parameter identification via sensitivity analysis plays an impor-

tant role in allocating computational and experimental resources to reduce parameter uncer-

tainty. Moreover, the sensitivity analysis is used to create reduced reaction mechanisms for
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(a) (b)

Figure 3: (a) Comparison of the reconstruction error between f-OTD approximation (e(t))

and optimal rank-r approximation (eu(t)) for different reduction sizes. Resolved error, er(t),

dominates the f-OTD error for long term integration. Error decreases as the number of

modes increases. (b) Comparison of singular values between f-OTD and optimal low-rank

decomposition for r = 5.

(a) (b)

Figure 4: Kuramoto-Sivashinsky: The first two columns of the orthonormalized design vari-

ables matrix shown at different instances in time: (a) ŷ1(t) (b) ŷ2(t). The horizontal axis

corresponds to the ith design parameter αi.
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x1

x2

outflow

L

H

vi at inlet vi = 0

Figure 5: Schematic of the flow visualized with a passive scalar.

complex chemical systems involving a large number of species and reactions. See references

[22, 57, 56].

2.5.3.1 Problem Setup

To this end, we consider a 2D incompressible turbulent reactive flow:

∂vi

∂t
+ (w · ∇)vi = κ̃ik∇2vk + si, (2.18)

where w = (wx1(x1, x2, t),wx2(x1, x2, t)) is the velocity field from the 2D incompressible

Navier-Stokes equations, vi = vi(x1, x2, t) is the concentration of species i, κ̃ik ∈ Rns×ns

is the diffusion coefficient matrix, and si = si(v1,v2, . . . ,vns ;α) is the non-linear reactive

source term. We choose a diagonal diffusion coefficient matrix, where the ith diagonal entry

is the diffusion coefficient of the ith species, and ns is the number of species. For the

reactive source term si, we consider the biological reactions used in [58]. These terms are

listed in Table 1 in Appendix A for reference. A schematic of the flow is shown in Figure

5, where L and H are the channel length and height, respectively. The no-slip boundary

condition is enforced at the top and bottom walls while the outflow boundary condition is

enforced downstream. At the inlet a parabolic velocity with the average inlet velocity of

w is prescribed. The Reynolds number based on reference length of half the height (H/2)

and the kinematic viscosity ν is Re = wH/2ν = 1000. The inlet boundary condition is

vi(0, x2, t) = 1/2
(
tanh (x2 +H/2)/δ − tanh (x2 −H/2)/δ

)
for all species, where δ = 0.1.
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The velocity field is governed by two-dimensional incompressible Navier-Stokes equation.

We solved the velocity field once as it is independent from the species using spectral/hp

elements method with 4008 quadrilateral elements and polynomial order 5. For more details

on the spectral element method see for example [44, 8, 12] . We then solve the species

transport equations and f-OTD equations in the rectangular domain shown by dashed lines

in Figure 5. In the rectangular domain, we used structured spectral elements with 50 elements

in x1 direction and 15 elements in x2 direction. We used spectral polynomial of order 5 in

each direction. The velocity field was interpolated onto this grid. The species transport

equation and f-OTD equations, which are presented in the next sections, are integrated

forward in time using RK4 with ∆t = 5× 10−4.

2.5.3.2 f-OTD Formulation for Tensor

Our goal is to calculate sensitivity of the species concentration with respect to the reaction

parameters α = (α1, α2, . . . , αnr), where nr is the number of reaction parameters. To this

end, we take the derivative of the above equation with respect to reaction parameter αj to

obtain an evolution equation for the sensitivity:

∂ṽ′
ij

∂t
+ (w · ∇) ṽ′

ij = κ̃ik∇2ṽ′
kj + L̃sik ṽ

′
kj + s̃′ij, (2.19)

where ṽ′
ij = ∂vi/∂αj ∈ R∞×1 is the sensitivity of the concentration of species vi with respect

to reaction rate αj, L̃sik = ∂si/∂vk is the linearized reactive source term, and s̃′ij = ∂si/∂αj.

In the above equation, L̃sik ṽ
′
kj should be interpreted as a matrix-matrix multiplication for

any (x1, x2) point in the physical space. In this notation, sensitivities are represented by a

quasitensor i.e. Ṽ′ = [v′
ij] with i = 1, 2, . . . , ns and j = 1, 2, . . . , nr, where Ṽ′ ∈ R∞×ns×nr is

the third order quasitensor depicted in the left-hand side of Figure 2.5.3.2. Here ·̃ denotes
terms associated with the tensor equation. In the discrete representation of Ṽ′, the dimension

∞ is replaced with the number of grid points.

Solving for sensitivities involving ṽ′
ij using adjoint would require solving ns AEs: one

adjoint field for each species. See for example [22, 57, 56]. However, it is important to note

that these AEs are tied to a specific objective function and do not directly compute ṽ′
ij.

29



Figure 6: Schematic of the tensor flattening from a 3D quasitensor to a 2D quasimatrix.

Consequently, each subsequent objective function would require solving another ns AEs. To

directly solve for ṽ′
ij using f-OTD, one could also solve for ns sets of f-OTD modes, i.e. one

set of f-OTD modes for each species. This straightforward approach would only exploit the

correlation between sensitivities of each species separately, i.e. correlations between v′
ij for

a fixed i, while leaving the correlations between sensitivities of different species unexploited.

In this example, we demonstrate how a single set of f-OTD modes can be used to accurately

model the entire sensitivity tensor. Therefore, the compression ratio both in terms of memory

and computational cost in comparison to the full sensitivity equation is r/d. In comparison

to AE, the compression ratio is r/ns. Also, the f-OTD is a forward system and does not

impose any I/O operation. To this end, we flatten the sensitivity tensor, as shown in Figure

2.5.3.2, which results in a quasimatrix of size ∞× d. Here, d = ns × nr, where ns = 23 and

nr = 34. This leads to a total of d = 782 sensitivity equations that we seek to compute. In

Appendix B, we show that the flattened sensitivity evolution Equation is:

∂v′
m

∂t
+ (w · ∇)v′

m = κmn∇2v′
n + Lsmnv

′
n + s′m, (2.20)

where m(i, j) = j + (i − 1)nr and n(i′, j′) = j′ + (i′ − 1)nr, resulting in m,n = 1, 2, . . . , d.

Equation 2.19 is a tensor evolution equation, whereas Equation 2.20 is the equivalent matrix

evolution equation. The tensor flattening carried out here is similar to the unfolding carried

out in the Tucker tensor decomposition [50]. However, unlike Tucker tensor decomposition,

we do not consider flattening the tensor in the other two dimensions of species and param-

eters. Each yk(t) is a vector of size (nsnr) × 1 and contains coefficients for species and
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(a) (b)

Figure 7: (a) Percent error plotted as a function of time. Error decreases as the number of

modes r increases. (b) Singular values plotted as a function of time for r = 8.

parameters. Once the sensitivity tensor is flattened to a quasimatrix, we use f-OTD to ex-

tract low-rank structure from the quasimatrix. In Equation 2.20, the linear operator changes

from one species to the other due to the different diffusion coefficients κmn. In Appendix

B we show how f-OTD evolution equations can be derived for this case, which are different

from the previous demonstration cases.

We solve Equations B.2 and B.3 for different f-OTD ranks along with the species

transport (Equation 3.29). In Figure 7(a) the f-OTD error (e(t)) and optimal low-rank

approximation error (eu(t)) are shown using three different ranks of r = 2, 5 and 8. Again,

we observe that the growth of e(t) surpasses eu(t) for long term integration as a direct

result of the lost interactions with the unresolved modes. However, with only 5-8 modes, we

have shown that f-OTD can approximate 782 sensitivities with error on the order of 0.1%.

These results can be explained by studying Figure 7(b), where we observe that more than

99% of the system energy is captured by the reduction. The % energy is calculated from

the singular values as % En. =
∑r

i=1 σ
2
i /

∑d
i=1 σ

2
i × 100, and can be used to get a sense

of the dimensionality of the system, when expressed in the time-dependent basis. Since

the system is truly low-dimensional in the time-dependent basis, the f-OTD algorithm is
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û2(x, t)
<latexit sha1_base64="Digx1vzY0K6HLUzyIv55brZcYXs=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFqCAl8YEui25cVrAPaEKZTCft0MkkzNyIJWTjr7hxoYhbP8Odf+OkzUKrBy4czrmXe+/xY84U2PaXUVpYXFpeKa9W1tY3NrfM7Z22ihJJaItEPJJdHyvKmaAtYMBpN5YUhz6nHX98nfudeyoVi8QdTGLqhXgoWMAIBi31zT13hCF1QwwjP0iTLOuf1h6O4ahvVu26PYX1lzgFqaICzb756Q4ikoRUAOFYqZ5jx+ClWAIjnGYVN1E0xmSMh7SnqcAhVV46fSCzDrUysIJI6hJgTdWfEykOlZqEvu7ML1XzXi7+5/USCC69lIk4ASrIbFGQcAsiK0/DGjBJCfCJJphIpm+1yAhLTEBnVtEhOPMv/yXtk7pzXrdvz6qNqyKOMtpHB6iGHHSBGugGNVELEZShJ/SCXo1H49l4M95nrSWjmNlFv2B8fAONH5Zc</latexit>
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Figure 8: First three orthonormal f-OTD modes shown for r = 8. Each row shows the modes

at a different instance in time.

able to extract the latent features associated with the most dominant singular values and

successfully approximate the full sensitivity tensor with a high degree of accuracy.

In Figure 8, the time-dependent evolution of the three most dominant f-OTD modes

are shown. These modes are energetically ranked where low mode numbers correspond to

larger (higher energy) structures and high mode numbers correspond to finer (lower energy)

structures in the flow. As opposed to static basis, such as POD or DMD, the f-OTD modes

evolve with the flow and exploit the instantaneous correlations between sensitivities. While

this system is low-dimensional in the time-dependent basis, when expressed in POD or DMD

basis, the system is high-dimensional and many modes are needed to capture the complex

spatio-temporal evolution of V′. See reference [7] for comparison between time-dependent

basis versus POD and DMD and see reference [18] for a recent review of ROM techniques.

To demonstrate the interpretability of the f-OTD decomposition, we show how the hidden

parameter space represented by Ŷ(t) can be used to identify the most important reaction

parameters. In this context, importance refers to a parameter for which a small change

in its value elicits a large change in the response of the system (i.e. highly sensitive). To
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Figure 9: Orthonormalized f-OTD coefficients ŷ1(t) and ŷ2(t) visualized as a matrix with

rows corresponding to species concentration and columns corresponding to reaction param-

eters. Color map shows most dominant sensitivities at different time instances.
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demonstrate this capability of f-OTD, the first two sensitivity coefficients are visualized as

matrices in Figure 9, where each ŷi is a d× 1 vector that has been reshaped into an ns× nr

matrix. In this form, each v′
ij is visualized using a heat map of the sensitivity coefficients,

with rows corresponding to species i and columns corresponding to reaction parameter j.

Using this heat map, Figure 9 shows that only a handful of sensitivities are non-zero, while

the majority have zero contribution for the entire duration of the simulation.
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3.0 Low-Rank Approximation of Nonlinear Sensitivity

As demonstrated in the previous chapter, sensitivities are typically computed with the

assumption of infinitesimal perturbations to the base state, and are evolved either directly

under the action of the linearized system, via the Jacobian, or indirectly by solving an adjoint

equation. However, for many practical problems of interest, these perturbations can undergo

transient amplification and require the full nonlinear dynamics to accurately describe their

evolution, and characterize the short-term behavior of the system.

For example, transition in wall bounded shear flows is a notorious problem that exhibits

transient behavior via non-normal growth of infinitesimal perturbations to the base state. A

common approach for characterizing these perturbations is known as linear stability analy-

sis, also referred to as modal analysis. This approach involves computing the eigenvalues of

the linearized operator to determine if perturbations to a given base flow will grow or decay

in time. While linear stability analysis has successfully been used to predict asymptotic

stability for canonical flows, e.g., plane Poiseuille flow [41], Poiseuille flow in a circular pipe

[80], and plane Couette flow [36], it does not account for short-term energy amplifications

that give rise to transient instability. On the other hand, linear nonmodal analysis (LNMA)

has effectively been used to characterize short-term energy amplifications of optimal per-

turbations that can transition the flow to a turbulent state [82]. However, this approach

is limited to capturing the initial (linear) growth mechanism, and is not sufficient to de-

scribe the nonlinear mechanisms responsible for triggering turbulent flow patterns. More

recently, an approach known as nonlinear nonmodal analysis (NLNMA) was developed that

considers the full nonlinear system for finite perturbations to the base state. Similar to

LNMA, NLNMA seeks to find the optimal perturbation to the base state that maximizes

energy amplification after a specified period of time. Both LNMA and NLNMA amount to

a non-convex optimization problem that requires solving the Navier-Stokes adjoint equation

backward in time at each iteration. While this is certainly the preferred approach for steady

base flows, the high input output (I/O) overhead required for time dependent base flows

could be prohibitively expensive [1]. For additional details on NLNMA, see [46] for a recent
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review.

In this chapter, we consider the evolution of finite parametric perturbations for an ar-

bitrarily time dependent base state. Similar to existing Jacobian-free methods [62, 40, 77],

perturbations are evolved via nonlinear equations, however, we do not limit our analysis

to the initial value problem. To this end, we compute the nonlinear sensitivity of a pa-

rameterized dynamical system as the perturbation to the base state (output) relative to a

perturbation in the input parameter. While perturbing each parameter and solving forward

evolution equations for the resulting perturbation fields might be manageable for relatively

small systems, this approach quickly becomes impractical, or even impossible, as the number

of parameters and fields increases.

Motivated in part by the success of f-OTD for effectively computing linear sensitivities,

the objective of this chapter is to extend f-OTD to low-rank approximation of finite-time

nonlinear sensitivities in cases where the linear system cannot capture important phenomena

in the presence of strong nonlinear interactions. While the f-OTD decomposition can effec-

tively be used to approximate nonlinear sensitivities, we adopt a new approach similar to the

dynamically/bi-orthonormal(DBO) decomposition that was recently presented in [74]. This

new approach for the low-rank approximation of nonlinear sensitivities via TDB is given

the name nonlinear f-OTD, which will simply be reffered to as NL-fOTD. While f-OTD and

DBO offer mathematically equivalent reductions, the DBO formulation boasts a significant

increase in numerical performance, making it the preferred approach for a wide range of

systems. For nonlinear sensitivities in a variety of systems with arbitrarily time dependent

base state, we demonstrate that (i) low-rank structure exists and (ii) the low-rank structure

can be extracted in real-time via closed-form low-rank evolution equations, Jacobian-free.

3.1 Notation and Definitions

Let u(x, t) be a time dependent function defined on the spatial domain D ⊂ Rm, where

m = 1, 2, or 3. The spatial coordinate is denoted by x ∈ D and t is time. We intro-

duce a quasimatrix notation to represent a set of functions in matrix form, and denote the
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σ1(t)u1(t)
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Nonlinear sensitivities
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Figure 10: Evolution of finite perturbations. Perturbed states are initially close to the base

state and are well approximated by the linear dynamics. In time, perturbations undergo

significant growth, causing large deviations from the base state. Therefore, nonlinear inter-

actions must be considered in order to accurately describe the evolution of the perturbations.
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quasimatrix U(x, t) ∈ R∞×r as [15]:

U(x, t) =

[
u1(x, t)

∣∣∣ u2(x, t) ∣∣∣ . . . ∣∣∣ ud(x, t)]
∞×r

,

where the first dimension is infinite and represents the continuous state space contained by

D and the second dimension is discrete. The column-wise inner product of two quasimatrices

U(x, t) ∈ R∞×r and V (x, t) ∈ R∞×d is defined as

S(t) = ⟨U(x, t), V (x, t)⟩,

where S(t) ∈ Rr×d is a matrix with components

Sij(t) =

∫
D

ui(x, t)vj(x, t)dx,

where ui(x, t) and vj(x, t) are the ith and jth columns of U(x, t) and V (x, t), respectively.

The discrete analogue of this operation is the matrix multiplication, U(t)TWV (t), where

U(t) ∈ Rn×r and V (t) ∈ Rn×d are space discrete with n grid points and W ∈ Rn×n is a

diagonal weight matrix. For the case of single-column quasimatrices, i.e., functions, the

above definition reduces to an inner product between two functions, which induces an L2

norm:

⟨u(x, t), v(x, t)⟩ =
∫
D

u(x, t)v(x, t)dx, ∥u(x, t)∥2 = ⟨u(x, t), u(x, t)⟩
1
2 .

The Frobenius norm of a quasimatrix is defined as:∥∥∥V (x, t)
∥∥∥
F
= (trace⟨V (x, t), V (x, t)⟩) 1

2 .
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3.2 Mathematical Formulation

A general nonlinear system with parametric dependence can be represented as

∂v(x, t;α)

∂t
=M(v(x, t;α);α), (3.1)

whereM is the nonlinear operator and α = (α1, α2, . . . , αd)
T are the parameters. In general,

α can be both space and time dependent, i.e. α(x, t), however, for sake of simplicity in the

exposition, we take α to be constant. While perturbations can be introduced via a multitude

of pathways, we consider independent finite perturbations to parameterized initial conditions

and/or governing equations, α+∆αiei, where ∆αi is the perturbation magnitude, ei ∈ Rd is

the standard unit vector in the direction of increasing αi, and the repeated index i does not

imply summation. These parametric perturbations result in corresponding perturbations to

the base state, v(x, t;α) + ∆vi(x, t), where v(x, t;α) is an arbitrarily time dependent base

state and ∆vi(x, t) = v(x, t, ;α + ∆αiei) − v(x, t;α) is the perturbation to the base state

resulting from ∆αi. The parametric and base state perturbations are used to define the

nonlinear sensitivity as

v′i(x, t) =
∆vi(x, t)

∆αi

. (3.2)

In general, these perturbations are finite and v′i is governed by the nonlinear sensitivity

equation (NLSE). Dropping the explicit dependence on x and t, the NLSE is obtained by

first considering the Taylor series expansion of Equation 3.1 around the base state v(α):

∂v(α +∆αiei)

∂t
=M(v(α);α) +

∂M(v(α);α)

∂v
∆vi +

∂M(v(α);α)

∂αi

∆αi + h.o.t.

Next, subtract Equation 3.1 from the above equation and divide by ∆αi to obtain the NLSE

with respect to αi

∂v′i
∂t

= Lv′i + fi + h.o.t., (3.3)

where L :=
∂M(v(α);α)

∂v
is the linear operator (i.e. the Jacobian once discretized), fi :=

∂M(v(α);α)

∂αi

is the forcing, and h.o.t is an aggregate of nonlinear and higher order terms. In

the case of sensitivity with respect to initial condition, fi = 0. From observation of Equation

3.3, the linear sensitivity can be recovered by taking ∆αi, v
′
i → 0, such that h.o.t.→ 0.
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While one can directly solve Equation 3.3, deriving and implementing this equation is a very

intrusive process. In particular, computing the Jacobian, L, can be very time consuming and

prone to error, especially for systems with intricate source and boundary terms. Therefore,

we seek solutions to Equation 3.3 by leveraging the nonlinear system in Equation 3.1, which

allows existing numerical solver(s) for Equation 3.1 to be repurposed to obtain solutions to

Equation 3.3. To this end, Equation 3.3 can be written equivalently as

∂v′i
∂t

=
M(v(α +∆αiei);α +∆αiei)−M(v(α);α)

∆αi

. (3.4)

For the sake of brevity, we will simply denote the right hand side of Equation 3.4 as

M′
i(v

′
i; v(α);∆αi), which can be solved non-intrusively by using the pre-existing nonlinear

base solver as a black box. This type of approach is not new, and similar procedures have

been used for approximating Jacobian-vector products via the nonlinear equations [48, 77].

3.3 Low-Rank NL-fOTD Decomposition

To obtain solutions to Equation 3.4, we utilize a low-rank decomposition similar in form

to the DBO decomposition, a method that was developed to solve stochastic PDE’s [72].

We present a variational principle, whose first-order optimality conditions lead to evolution

equations for (1) U(x, t): low-rank orthonormal spatial basis, (2) Σ(t): low-rank correla-

tion matrix, and (3) Y (t): low-rank orthonormal parametric basis. We call this approach

NL-fOTD. In this formulation, all three components are time-dependent, which allows for

instantaneous correlations between nonlinear sensitivities to be extracted in real-time. So-

lutions to Equation 3.4 are approximated as

V ′(x, t) ≈
r∑

j=1

r∑
i=1

ui(x, t)Σij(t)y
T
j (t), (3.5)

where V ′(x, t) = [v′1(x, t)|v′2(x, t)| . . . |v′d(x, t)] ∈ R∞×d, Σ(t) ∈ Rr×r is in general a full matrix,

U(x, t) = [u1(x, t)|u2(x, t)| . . . |ur(x, t)] ∈ R∞×r, Y (t) = [y1(t)|y2(t)| . . . |yr(t)] ∈ Rd×r, and
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r is the rank of the approximation. This low-rank approximation is augmented with the

following orthonormality constraints on the spatial and parametric modes:

⟨ui(x, t), uj(x, t)⟩ = δij (3.6a)

yi(t)
Tyj(t) = δij. (3.6b)

Together, Equations 3.4, 3.5, and 3.6a–3.6b are used to derive closed-form evolution equa-

tions for the NL-fOTD components.

3.3.1 Variational Principle

The NL-fOTD evolution equations are derived from a variational principle that seeks to

minimize the residual of the low-rank approximation of Equation 3.4:

F(U̇(x, t), ˙Σ(t), Ẏ (t)) =

∥∥∥∥∂(U(x, t)Σ(t)Y (t)T )

∂t
−M′ (U(x, t)Σ(t)Y (t)T ; v(α);∆α

)∥∥∥∥2

F

,

(3.7)

where the control parameters are evolution equations for the low-rank components: {U̇(x, t), Σ̇(t), Ẏ (t)},
where ˙(∼) := d(∼)/dt. The minimization is augmented with equality constraints by taking

the time derivative of Equations 3.6a–3.6b:

⟨u̇i(x, t), uj(x, t)⟩+ ⟨ui(x, t), u̇j(x, t)⟩ = 0, (3.8a)

ẏi(t)
Tyj(t) + yi(t)

T ẏj(t) = 0, (3.8b)

and we define ϕij(t) := ⟨ui(x, t), u̇j(x, t)⟩ and θij(t) := yi(t)
T ẏj(t). From the above equations,

we see that ϕij and θij must be skew-symmetric, i.e. ϕij = −ϕji and θij = −θji. It follows

that the unconstrained optimization problem is given by

G(U̇(x, t), ˙Σ(t), Ẏ (t)) =

∥∥∥∥∂(U(x, t)Σ(t)Y (t)T )

∂t
−M′ (U(x, t)Σ(t)Y (t)T ; v(α);∆α

)∥∥∥∥2

F

(3.9)

+
r∑

i,j=1

λij(t)
(
⟨ui(x, t), u̇j(x, t)⟩ − ϕij(t)

)
+

r∑
i,j=1

γij(t)
(
yi(t)

T ẏj(t)− θij(t)
)
,
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Figure 11: Schematic of the NL-fOTD decomposition. From left to right: full dimensional

nonlinear sensitivities, time dependent orthonormal spatial basis, low-rank correlation ma-

trix, and parametric basis. The NL-fOTD decomposition extracts correlations directly from

a system’s governing equations, on-the-fly, effectively bypassing the need to generate or col-

lect massive amounts of data, which may not even be possible in the first place. The size of

the reduction, r ≪ d, exploits the low-rank structure of the nonlinear sensitivities of interest.
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where λij(t) and γij(t) are Lagrange multipliers. Following a procedure similar to those

presented in [72, 76], the first order optimality conditions of the variational principle leads

to closed form evolution equations for the NL-fOTD components:

∂U

∂t
= [M′Y − U⟨U,M′⟩Y ] Σ−1, (3.10a)

dΣ

dt
= ⟨U,M′⟩Y, (3.10b)

dY

dt
=

[
⟨M′, U⟩ − Y Y T ⟨M′, U⟩

]
Σ−T , (3.10c)

where we have taken ϕij(t) = θij(t) = 0, a common choice known as the dynamically

orthogonal condition [81], which has now been used for computing sensitivities [11, 31] and

stochastic reduced order modeling [7, 72].

3.3.2 Mode Ranking

In their current form, the spatial and parametric NL-fOTD modes are not energetically

ranked. To accomplish this, one can compute the singular value decomposition (SVD) of the

Σ(t) matrix so that

Σ(t) = RU(t)Σ̃(t)R
T
Y (t), (3.11)

where Σ(t) is a diagonal matrix containing the ranked singular values: σ1(t) > σ2(t) > · · · >
σr(t), and RU(t) and RY (t) are the left and right singular vectors, respectively. It follows

that the ranked spatial and parametric NL-fOTD modes can be obtained as:

Ũ(x, t) = U(x, t)RU(t), (3.12a)

Ỹ (t) = Y (t)RY (t), (3.12b)

where RU(t) and RV (t) are orthogonal rotation matrices that orient the NL-fOTD modes

along the most energetic directions of the system. Together, the ranked NL-fOTD com-

ponents, {Ũ(x, t), Σ̃(t), Ỹ (t)}, approximate the SVD of the full dimensional system, in its

canonical form. In the following sections, we compare our results with the instantaneous

SVD of V ′(x, t), and refer to this as the “optimal” reduction, since it represents the best

rank-r linear approximation in the l2 sense.
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3.3.3 Equivalence of f-OTD and NL-fOTD

It is easy to show that the f-OTD and NL-fOTD decompositions yield a mathematically

equivalent reduction in the sense that they span the same r-dimensional subspace. However,

the main advantage of NL-fOTD is improved numerical performance in the presence of small

singular values. Since an accurate approximation must resolve the system up to a small

singular value threshold, the system can become ill-conditioned depending on the choice of

decomposition. Evolving the f-OTD decomposition requires inversion of the reduced corre-

lation matrix, C = Y TY , with condition number λmax/λmin, where λmax and λmin are the

maximum and minimum eigenvalues of C, respectively. On the other hand, evolving the NL-

fOTD decomposition requires inversion of Σ, which has a condition number of
√
λmax/λmin.

As a result, NL-fOTD exhibits better numerical performance when there is a large disparity

between the leading and trailing eigenvalue, as is the case for many practical problems of

interest.

Lemma 3.3.1. Let {UNL(x, t),ΣNL(t), YNL(t)} and {Uf-OTD(x, t), Yf-OTD(t)} be equivalent

NL-fOTD and f-OTD decompositions with components equated via the linear transforma-

tions: Uf-OTD(t) = UNL(t)RU and Yf-OTD(t) = YNL(t)QY (t). Then the following is true: (i)

RU is an orthogonal matrix, (ii) QY (t) = ΣT
NL(t)RU , and (iii) dRU

dt
= 0.

Proof. (i) Starting from the equivalence relation of the spatial modes, project both sides of

the equation onto UNL to obtain an expression for RU :

Uf-OTD = UNLRU ,

RU = ⟨UNL, Uf-OTD⟩. (3.13)

Conversely, we can project both sides of the equation onto Uf-OTD to get

I = ⟨Uf-OTD, UNL⟩RU ,

where I is the r×r identity matrix. Multiplying the above equation by R−1
U from right yields

R−1
U = ⟨Uf-OTD, UNL⟩.
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From the definition of the inner product of quasi-matrices, it is easy to see that the right

hand side of the above equation is the transpose of 3.13. It follows that R−1
U = RT

U , thus RU

is an orthogonal matrix.

(ii) The notion of equivalent decompositions requires that UNLΣNLY
T
NL = Uf-OTDY

T
f-OTD.

Using the equivalence relations Uf-OTD = UNLRU and Yf-OTD = YNLQY , we obtain the

following expression:

UNLΣNLY
T
NL = UNLRUQ

T
Y Y

T
NL.

Projecting both sides of the above equation onto UNL and multiplying by YNL from right,

we get

RUQ
T
Y = ΣNL.

Finally, multiply the above equation by RT
U from left and transpose the resulting equation

to obtain

QY = ΣT
NLRU , (3.14)

where QY is the linear transformation that maps YNL to Yf-OTD.

(iii) Starting from 3.4 for the evolution of the nonlinear sensitivities,

∂V ′

∂t
=M′(V ′), (3.15)

we substitute the approximation Uf-OTDY
T
f-OTD for V ′ into the above equation and get

∂Uf-OTD

∂t
Y T
f-OTD + Uf-OTD

dY T
f-OTD

dt
=M′. (3.16)

Projecting the above equation onto Uf-OTD yields an evolution equation for Y T
f-OTD

dY T
f-OTD

dt
= ⟨Uf-OTD,M′⟩, (3.17)

where the dynamically orthogonal condition causes the first term above to vanish. Next, we

multiply 3.16 by Yf-OTD from right and substitute 3.17 to get:

∂Uf-OTD

∂t
Cf-OTD + Uf-OTD⟨Uf-OTD,M′⟩Yf-OTD =M′Yf-OTD, (3.18)
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where Cf-OTD = Y T
f-OTDYf-OTD is the reduced correlation matrix. Multiplying the above

equation by C−1
f-OTD from right and rearranging yields an evolution equation for Uf-OTD

∂Uf-OTD

∂t
= [M′Yf-OTD − Uf-OTD⟨Uf-OTD,M′⟩Yf-OTD]C

−1
f-OTD. (3.19)

Substituting the equivalence relations Uf-OTD = UNLRU and Yf-OTD = YNLQY into the

above equation gives

∂UNL

∂t
RU + UNL

dRU

dt
= [M′YNLQY − UNL⟨UNL,M′⟩YNLQY ]C

−1
f-OTD. (3.20)

Projecting both sides of the above equation onto UNL causes the term in square brackets to

vanish, resulting in
dRU

dt
= 0. (3.21)

Theorem 3.3.2. Let the NL-fOTD and f-OTD decompositions be equivalent at t = 0 with

components equated via the linear transformations: Uf-OTD = UNLRU and Yf-OTD = YNLQY .

Then for all time t > 0, the DBO and f-OTD decompositions remain equivalent.

Proof. Start by substituting the equivalence relation Yf-OTD = YNLQY to obtain C−1
f-OTD =

RT
UΣ

−T
NLΣ

−1
NLRU . Substituting this expression for C−1

f-OTD into 3.20 along with 3.21, results in

∂UNL

∂t
RU = [M′YNLQY − UNL⟨UNL,M′⟩YNLQY ]R

T
UΣ

−T
NLΣ

−1
NLRU . (3.22)

Finally, substitute 3.14 into the above equation and multiply RT
U from right to get

∂UNL

∂t
= [M′YNL − UNL⟨UNL,M′⟩YNL] Σ

−1
NL, (3.23)

where we have made use of RUR
T
U = I. From observation of the above equation, we see this

is the same as the evolution equation for the NL-fOTD spatial modes in 3.10a. Following

a similar procedure for the parametric modes, substitute the equivalence relations into the

transpose of 3.17 to get

dYNL

dt
ΣT

NL + YNL
dΣT

NL

dt
= ⟨M′, UNL⟩. (3.24)
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Multiply the above equation by Y T
NL from left to get

dΣT
NL

dt
= Y T

NL⟨M′, UNL⟩ (3.25)

where we have made use of the dynamically orthogonal condition. Finally, substitute the

above equation into 3.24 and multiply by Σ−T
NL from right to obtain

dYNL

dt
=

[
⟨M′, UNL⟩ − YNLY

T
NL⟨M′, UNL⟩

]
Σ−T

NL. (3.26)

Again, we observe this is the same equation as 3.10c that governs the evolution of the NL-

fOTD parametric modes. Therefore, we have shown that the evolution of the NL-fOTD and

f-OTD decompositions are equivalent, and thus, if initially equivalent, will remain equivalent

for t > 0.

As we will show in Section 4, this approach, coupled with a sparse sampling algorithm,

will enable computationally efficient solutions to Equation 3.4, without the intrusiveness of

deriving and implementing Equation 3.3. Furthermore, in Section ??, we discuss how this

approach can easily be extended to approximate linear sensitivities, eliminating the need to

derive and implement the linearized equations for complex systems.

3.4 Demonstration Cases

Here we present some preliminary results for computing nonlinear sensitivities using NL-

fOTD. Our main objective is to show that if low-rank structure exists, it can be accurately

extracted via low-rank evolution equations in real time. Therefore, at this stage, we do not

employ any sparse sampling strategies to enable efficient computation of Equations 3.10a–

3.10c, and the cost of solving the NL-fOTD equations is roughly equivalent to solving the

full order model. In the next chapter, we present the sparse sampling strategy that can be

used to reduce the computational cost.
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3.4.1 Toy Problem

We start with a simple example to demonstrate the method. We consider the three-

dimensional system of parameterized ordinary differential equations that was presented in

[71]:

v̇1 =α4v1 − α3v2 − α1v1v3 − α2v1v2, (3.27a)

v̇2 =α3v1 + α4v2 − α1v2v3 + α2v
2
1, (3.27b)

v̇3 =− α1v3 + α1(v
2
1 + v22), (3.27c)

where α = (α1, α2, α3, α4) > 0. It was shown that if α2
2 < α1/α4, there is a limit cycle at v3 =

α4/α1 with period T = 2π/
√
1− α2

2α4/α1 and fundamental frequency ω =
√

1− α2
2α4/α1.

In our demonstration, we consider the model parameters α1 = α4 = 0.2, α3 = 1, and α2 = 0

which results in a limit cycle at v3 = 1 with T = 2π and ω = 1. Our goal in this example is to

independently perturb each αi by ∆αi and compute nonlinear sensitivities using NL-fOTD.

This results in a 3 × 4 matrix of sensitivities, V ′, with components v′ij that correspond to

the sensitivity of vi with respect to αj.

From above, it is easy to see that perturbing the model parameters results in pertur-

bations to the location of the limit cycle, period, and fundamental frequency. We initialize

the base state on the limit cycle at (1, 0, 1)T and independently perturb each parameter by

constant ∆αi = 0.01. For comparison, we also compute the linear sensitivities by taking

h.o.t. = 0. In Figure 12(a), the optimal nonlinear, NL-fOTD rank r = 2, and optimal linear

singular values are plotted versus time. We observe the two leading singular values of the

linear and nonlinear system are matching while the perturbations are initially small and un-

dergo linear growth. However, as the system is integrated for longer, there is separation as

the perturbations grow and nonlinear effects become important. In Figure 12(b), reconstruc-

tion errors are reported for the NL-fOTD reduction of the nonlinear system for r = 2 along

with the error of the optimal nonlinear reconstruction computed via the SVD with r = 2.

Here, we observe the NL-fOTD reduction performs quite well with maximum error on the

order of 1%. However, as with any TDB approach, the error of the NL-fOTD reconstruction

is always greater than or equal to the error of the same-rank optimal reconstruction, due
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to the effect of unresolved modes in the evolution of Equation 3.10. Finally, we consider

the effect of varying the magnitude of ∆αi on the computed nonlinear sensitivities. We

take α + ∆α1e1 for different values of ∆α1 and observe both the long-term statistics and

instantaneous effects. In Figure 12(c), the instantaneous sensitivities are shown over one

period (T ) for different values of ∆α1. We observe that even for small ∆α1, the instanta-

neous sensitivities can behave nonlinearly (i.e. deviate from the linear sensitivity), even in

this simple non-chaotic system. However, in Figure 12(d), we observe that the long-term

statistics, i.e. time averaged sensitivities, behave smoothly (linearly) with ∆α1, despite the

nonlinear behavior of the instantaneous sensitivities.

3.4.2 Compressible Flow: Temporally Evolving Jet

In this example, we demonstrate the utility of the nonlinear low-rank approximation for

stability analysis of a 2D compressible flow. Specifically, we consider the temporally evolving

jet shown in Figure 14, governed by the non-dimensionalized 2D compressible Navier-Stokes

equations:

∂ρ

∂t
+
∂ρvi
∂xi

= 0, (3.28a)

∂ρvi
∂t

+
∂ρvivj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (3.28b)

∂E

∂t
+
∂Evi
∂xi

= −∂pvi
∂xi

+
∂τijvi
∂xj

− ∂qi
∂xi

, (3.28c)

where the viscous and heat fluxes are given by

τij =
1

Re

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δij

)
, qi = −

1

EcPe

∂T

∂xi
.

In the above equations, E = ρ(e + 1
2
vivi) is the total energy and e is the internal energy.

These equations are augmented with periodic boundary conditions and the following initial
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(a) (b)

(c) (d)

Figure 12: (a) Optimal nonlinear, NL-fOTD rank r = 2 approximation, and optimal linear

singular values plotted versus time. (b) Error for rank r = 2 approximation plotted versus

time for optimal nonlinear and NL-fOTD reconstructions. (c) Instantaneous nonlinear sen-

sitivity plotted versus time for different values of ∆α1. Markers distinguish sensitivities in

each direction of the phase space: i = 1 (⃝), i = 2 (×), i = 3 (△). (d) Time-averaged

sensitivities, v′i1, in the ith direction of the phase space, versus perturbation magnitude of

∆α1.
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conditions:

v1(x, 0) =
Umax

2
(tanh ((x2 − x2min

)/δ)− tanh ((x2 − x2max)/δ)− 1) + g(x2)
d∑

n=1

αn

An

sin(2πnx1/Lx1),

v2(x, 0) = h(x2)
d∑

n=1

n
αn

An

cos(2πnx1/Lx1),

T (x, 0) =
1

2
+

1

4
(tanh ((x2 − x2min

)/δ)− tanh ((x2 − x2max)/δ)− 1),

P (x, 0) = 1,

ρ(x, 0) = γMa2P (x, 0)/T (x, 0),

e(x, 0) =
P (x, 0)

(γ − 1)ρ(x, 0)
,

E(x, 0) = ρ(x, 0)(e(x, 0) +
1

2
vi(x, 0)vi(x, 0))

where,

g(x2) =
2Lx1

δ2
[
(x2 − b) exp(−(x2 − b)2/δ2) + (x2 − a) exp(−(x2 − a)2/δ2)

]
,

h(x2) = 2π
[
exp(−(x2 − b)2/δ2) + exp(−(x2 − a)2/δ2)

]
,

initially localize the perturbations in the shear layers of the jet. The scalar value An is

given by An = 40 ∗ max
x∈D

[
(g(x2)αn sin(2πnx1/Lx1))

2 + (h(x2)nαn cos(2πnx1/Lx1))
2]1/2, and

the repeated index does not imply summation. We consider the case where Re = 8, 000 and

Ma = 0.5. We take αn = 0, with the exception α5 = 1, and these initial conditions give

rise to a time-dependent base flow resulting in a train of vortices. Our goal in this example

is to compute nonlinear sensitivities using NL-fOTD for independent perturbations to the

initial condition via the parameters αn. We take ∆αn = 1 and compute the corresponding

sensitivities of the conservative states: ρ′n, (ρv1)
′
n, (ρv2)

′
n, and (E)′n. The resulting velocity

field sensitivities are initialized as

(v1)
′
n(x, 0) =

g(x2)

An((n− n0)2 + 1)
sin(2πnx1/Lx1),

(v2)
′
n(x, 0) =

nh(x2)

An((n− n0)2 + 1)
cos(2πnx1/Lx1),
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where n ∈ {1, 2, . . . , d}\5, d = 50, n0 = 7, and the repeated index does not imply sum-

mation. We consider separate NL-fOTD approximations for the nonlinear sensitivities of

each state, e.g., {U(x, t),Σ(t), Y (t)}ρ′ , {U(x, t),Σ(t), Y (t)}(ρv1)′ , etc. Figure 13 shows the

singular values versus time for the sensitivities of each conservative state. Initially the per-

turbations are small, and we observe a good match between the nonlinear and linear systems

that are predominantly driven by the linear dynamics. However, for t > 1, there is signif-

icant deviation between the leading singular values as the perturbation growth has caused

the nonlinear effects to dominate. Although we observe deviation in the leading singular

values, it is important to note that the lower energy singular values of the nonlinear system

still closely follow those of the linear system for t > 1. This indicates that a subset of the

NL-fOTD components have sufficiently small energy, and are primarily driven by the linear

dynamics. To further elucidate the departure between the nonlinear and linear systems,

we turn to the spatial and parametric modes. In Figure 14, we observe that the spatial

modes of the nonlinear and linear systems are indistinguishable at t = 1, i.e., they span the

same subspace. However, as the systems evolve, we observe their departure, and it is clear

to see that two different subspaces emerge by t = 5. At this time, the linear modes are

more localized in space with sharp defined structures, while the nonlinear modes are more

widespread with soft blurred structures. These differences in structure can be explained by

the nonlinear advection terms that drive the sensitivities at different velocities. As a result,

the sensitivities collectively occupy a larger portion of the state space, and this is reflected in

the shape of the nonlinear spatial modes. It is important to note that these modes are ranked

based on energy and so the first mode represents the most energetic response of the system

as a result of the IC perturbations. These modes are also time dependent and represent the

instantaneously most unstable directions at any time t.

On the other hand, the Y (t) modes are independent directions in the parametric space

and represent the optimal linear combination of IC perturbations (from the given set) that

elicit the largest growth at some time t = T . While the linear system only identifies a

single frequency in the IC, the nonlinear system is more broad spectrum, finding a linear

combination of IC’s that leads to the largest growth. These findings are shown in Figure 15,

and they highlight yet another facet in which NL-fOTD can be used to analyze the stability
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of a seemingly complex system in an interpretable manner.

Finally, we evaluate the performance of the NL-fOTD approximation by computing the

reconstruction error for different values of the rank, r. The NL-fOTD reconstruction error is

shown in Figure 16 along with the optimal reconstruction error computed via the truncated

SVD. As the stable perturbations decay, the intrinsic dimension of the system decreases,

which is reflected in the reconstruction error that decreases with time. We observe that

increasing the NL-fOTD rank to r = 10 is able to capture 50 nonlinear sensitivities with

error saturating to ∼ 1%.

3.4.3 Turbulent reacting flow

We revisit the species sensitivity problem from Section 2.5.3. We consider a 2D incom-

pressible turbulent reacting flow with species vi(x, t) governed by:

∂vi
∂t

+ wk
∂vi
∂xk

= κ̃ik∇2vk + si, (3.29)

where wi(x, t) is a turbulent flow field governed by the 2D incompressible Navier-Stokes

equations and si(v1, v2, . . . , vns ;α) is the reactive source term that nonlinearly couples the

species transport equations. The goal in this example is to compute the nonlinear sensitivity,

v′ij of species vi with respect to reaction parameter αj. We proceed by perturbing each

reaction parameter by ∆αi = 5αi and computing the resulting nonlinear sensitivities using

the NL-fOTD approximation. In Figure 17(a), singular values are plotted for the optimal

nonlinear, NL-fOTD with rank r = 8 and optimal linear systems. As with each subsequent

demonstration, we observe an initial match between the nonlinear and linear singular values

that quickly wanes in the presence of increasing nonlinear effects. However, unlike the

previous example, Figure 18 shows that the nonlinear and linear spatial modes are strikingly

similar to the naked eye, with minor discrepancies becoming detectable at higher mode

numbers. This indicates that the linear and nonlinear sensitivities evolve in the same (very

similar) subspace, but their evolution within that subspace deviates in time. This result is

further elucidated by the parametric modes that describe the evolution of the sensitivities

within the low-rank subspace. In Figure 19, the first two columns of Ỹ (t) have been reshaped
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(a) (b)

(c) (d)

Figure 13: Compressible flow: singular values of the optimal nonlinear, NL-fOTD r = 10,

and optimal linear sensitivities plotted versus time for (a) ρ (b) ρv1 (c) ρv2 (d) E.
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Base Flow

Figure 14: Compressible flow: first and second nonlinear and linear density modes shown at

three different instances in time. Perturbation growth causes the nonlinear and linear system

to depart in time. Base flow visualized with density in first column, showing development

of vortex train.

from (nsnp)× 1 column vectors to ns×np matrices, with rows corresponding to species, and

columns corresponding to parameters. Viewing the modes in this configuration provides a

systematic and interpretable approach to identifying the most important parameters and

species. As it turns out, there are only a handful of parameters that elicit a large change

in the response of the system. While the nonlinear and linear system are almost initially

identical, there are some minor differences that begin to emerge later in time. Finally, Figure

17(b) shows the reconstruction error of the NL-fOTD approximation for ranks r = 2, 5, and

8. With only r = 5, NL-fOTD is able to capture 782 nonlinear sensitivities with maximum

error of ∼ 1%.
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Figure 15: Compressible flow: first two parametric modes shown for optimal nonlinear, NL-

fOTD r = 10, and optimal linear systems. Horizontal axis centered on n ∈ [1, 25], with

|ỹ1(t)| and |ỹ2(t)| ≈ 0 for n > 25.
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(a) (b)

(c) (d)

Figure 16: Compressible flow: reconstruction error plotted versus time for optimal recon-

struction and NL-fOTD reconstruction for r = 6, 8, and 10.
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(a) (b)

Figure 17: (a) Reacting flow: singular values versus time for optimal nonlinear, NL-fOTD

r = 8, and optimal linear sensitivities. (b) Reconstruction error versus time for optimal

nonlinear and NL-fOTD for r = 2, 5, and 8.
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Figure 18: First three spatial modes of the nonlinear and linear sensitivities shown at t = 1, 3,

and 5.
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Figure 19: First two parametric modes of the nonlinear and linear sensitivities reshaped

as matrices at t = 1, 3, and 5. Rows of each matrix correspond to species and columns

correspond to parameters. Heat map identifies most dominant sensitivities.
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4.0 Sparse Sampling for Nonlinear Model Reduction

In this chapter, we present a TDB ROM methodology based on a CUR factorization

of low-rank matrices that addresses challenges C1-C3 from Chapter 1. That is, (1) the

computational cost of the methodology scales with O(n + s) for generic nonlinear SPDEs

both in terms of flops and memory costs, (2) it lends itself to simple implementation in

existing codes, and (3) the time-integration is robust in the presence of small singular values,

and high-order explicit time integration can be used. The main elements of the presented

methodology are a time-discrete variational principle for minimization of the residual due to

low-rank approximation error, and a CUR factorization based on strategic row and column

sampling of the time discrete MDE. While the following work is presented in the context

of UQ for stochastic PDEs, the new methodology can be applied to other applications that

require solving MDEs.

4.1 Methodology

4.1.1 Setup

Consider the nonlinear stochastic PDE given by:

∂v

∂t
= f(v;x, t, ξ), (4.1)

augmented with appropriate initial and boundary conditions. In the above equation, v =

v(x, t; ξ), x is the spatial coordinate, ξ ∈ Rd are the set of random parameters, t is time, and

f(v;x, t, ξ) includes the nonlinear spatial differential operators. We assume generic nonlin-

ear PDEs, where the nonlinearity of f versus v may be non-polynomial, e.g., exponential,

fractional, etc. For the sake of simplicity in the exposition, we consider a collocation/strong-

form discretization of Eq. 4.1 in x and ξ. Because of the simplicity of the resulting discrete

system, this choice facilitates an uncluttered illustration of the main contribution of this
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paper, which is focused on the efficient low-rank approximation of nonlinear matrix differ-

ential equations. However, the presented methodology can also be applied to other types

of discretizations, for example, weak form discretizations (finite element, etc). Examples of

collocation/strong-form discretizations in the spatial domain are Fourier/polynomial spec-

tral collocation schemes or finite-difference discretizations. Example collocation schemes in

the random domain include the probabilistic collocation method (PCM) [89] or any Monte-

Carlo-type sampling methods [38, 14, 51]. Applying any of the above schemes to Eq. 4.1

leads to the following nonlinear matrix differential equation:

dV

dt
= F(t,V), t ∈ I = [0, Tf ], (4.2)

where I = [0, Tf ] denotes the time interval, V(t) : I → Rn×s is a matrix with n rows

corresponding to collocation points in the spatial domain and s columns corresponding to

collocation/sampling points of the parameters ξ, and F(t,V) : I×Rn×s → Rn×s is obtained

by discretizing f(v;x, t, ξ) in x and ξ. Eq. 4.2 is augmented with appropriate initial condi-

tions, i.e., V(t0) = V0. We also assume that boundary conditions are already incorporated

into Eq. 4.2, which can be accomplished in a number of ways, for example by using weak

treatment of the boundary conditions [73].

For the remainder of this paper, we will refer to Eq. 4.2 as the FOM, which will be used

as the ground truth for evaluating the performance of the proposed methodology. For the

problems targeted in this work, we assume n > s without loss of generality.

Remark. The columns of MDE given by Eq. 4.2 are independent of each other. However,

the rows of Eq. 4.2 are in general nonlinearly dependent, which depends on the spatial

discretization used to discretize Eq. 4.1. The presented algorithm in this paper requires

sparse spatial discretization, which means that each row is dependent on pa rows, where

pa << n. The majority of discretization schemes, e.g., finite difference, finite volume, finite

element, spectral element, result in sparse row dependence.

We present our methodology for explicit time-discretization of MDE 4.2. The explicit

time integration as well as the sparse row dependence condition means that the computa-

tional complexity of solving MDE 4.2 for each column is of O(n), and therefore, the cost of

solving MDE 4.2 for all columns scales with O(ns).
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4.1.2 Time-Continuous Variational Principle

The central idea behind TDB-based low-rank approximation is that the bases evolve

optimally to minimize the residual due to low-rank approximation error. The residual is

obtained by substituting an SVD-like low-rank approximation into the FOM so that V(t) is

closely approximated by the rank-r matrix

V̂(t) = U(t)Σ(t)Y(t)T , (4.3)

where U(t) ∈ Rn×r is a time-dependent orthonormal spatial basis for the column space,

Y(t) ∈ Rs×r is a time-dependent orthonormal parametric basis for the row space, Σ(t) ∈
Rr×r is, in general, a full matrix, and r ≪ min(n, s) is the rank of the approximation.

Because this is a low-rank approximation, it cannot satisfy the FOM exactly and there

will be a residual equal to:

R(t) =
d
(
UΣYT

)
dt

−F(t,UΣYT ). (4.4)

This residual is minimized via the first-order optimality conditions of the variational principle

given by

J (U̇, Σ̇, Ẏ) =

∥∥∥∥∥d
(
UΣYT

)
dt

−F(t,UΣYT )

∥∥∥∥∥
2

F

, (4.5)

subject to orthonormality constraints on U and Y. Since the above variational principle

involves the time-continuous equation (i.e. no temporal discretization is applied), the idea

is to minimize the instantaneous residual by optimally updating U, Σ, and Y in time.

Therefore, we refer to this as the time-continuous variational principle. As indicated in

[49, 76], the optimality conditions of Eq. 4.5 lead to closed-form evolution equations for U,

Σ, and Y:

Σ̇ = UTFY, (4.6a)

U̇ =
(
I−UUT

)
FYΣ−1, (4.6b)

Ẏ =
(
I−YYT

)
FTUΣ−T , (4.6c)

where F ∈ Rn×s is a matrix defined as F = F(t,UΣYT ), and I is the identity matrix of

appropriate dimensions. The above variational principle is the same as the Dirac–Frenkel
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time-dependent variational principle in the quantum chemistry literature [16] or the dynam-

ical low-rank approximation (DLRA) [49]. As it was shown in [7], it is possible to derive a

similar variational principle for the DO decomposition, V̂(t) = UDO(t)Y
T
DO(t), whose opti-

mality conditions are constrained to the orthonormality of the spatial modes, UT
DOUDO = I,

via the dynamically orthogonal condition, U̇T
DOUDO = 0. However, for the sake of simplicity

and unlike the original DO formulation presented in [81], an evolution equation for the mean

field is not derived. Without loss of generality, the low-rank DO evolution equations become

U̇DO =
(
I−UDOU

T
DO

)
FYDOC

−1, (4.7a)

ẎDO = FTUDO, (4.7b)

where C = YT
DOYDO is the low-rank correlation matrix. Note that the low-rank ap-

proximation based on DO is equivalent to Eq. 4.3, i.e., UDOY
T
DO = UΣYT . Simi-

larly, the BO decomposition, V̂(t) = UBO(t)Y
T
BO(t), which is subject to BO conditions,

UT
BOUBO = diag(λ1, . . . , λr) and YT

BOYBO = I, is also identical to DO and Eq. 4.3. As

it was shown in [72], one can derive matrix differential equations that transform the fac-

torization {U,Σ,Y} to {UDO,YDO} or {UBO,YBO}. The equivalence of DO and BO

formulations was shown in [27]. Using the DO/BO terminology, Eqs. 4.6a-4.6c have both

DO and BO conditions, i.e., the dynamically orthogonal conditions for U and Y: U̇TU = 0

and ẎTY = 0 as well as bi-orthonormality conditions: UTU = I and YTY = I. Despite

their equivalence, these three factorizations have different numerical performances in the

presence of small singular values. As it was shown in [72], Eqs. 4.6a-4.6c outperform both

DO and BO.

Despite the potential of Eqs. 4.6a-4.6c to significantly reduce the computational cost

of solving massive matrix differential equations like Eq. 4.2, there are still a number of

outstanding challenges for most practical problems of interest. As highlighted in the Intro-

duction, computing F = F(t,UΣYT ) requires O(ns) operations that scale with the size

of the FOM. This involves applying the nonlinear map (F) on every column of the matrix

V̂ = UΣYT . While it is possible to achieve O(n + s) for the special cases of homogeneous

linear and quadratic nonlinear F , this comes at the expense of a highly intrusive process, that
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requires a careful term-by-term treatment of the right side of Eqs. 4.6a-4.6c [67, Appendix

B]. Furthermore, solving Equations 4.6b and 4.6c become unstable when Σ is singular or

near singular. This is particularly problematic because it is often necessary to retain very

small singular values in order to have an accurate approximation.

While the low-rank approximation based on TDBs can be cast in different, yet equiv-

alent formulations, we have chosen Eqs. 4.6a-4.6c over DO/BO/DDO decompositions to

highlight the underlying challenges. Since, DO/BO/DDO decompositions exhibit all of the

above challenges, addressing these challenges in the context of Eqs. 4.6a-4.6c automatically

addresses the DO/BO/DDO challenges as well.

4.1.3 Time-Discrete Variational Principle

To address the challenges of low-rank approximations based on TDB using the time-

continuous variational principle, we consider a time-discrete variational principle for rank-

adaptive matrix approximations, which has been recently applied in the context of tensor

manifolds in [47, 78]. To this end, consider a generic temporal discretization of Eq. 4.2:

Vk = G(Vk,Vk−1, . . . ,Vk−q), (4.8)

where the superscript k denotes the current time step, q is the number of previous time steps,

and G : Rn×s×(q+1) → Rn×s is the increment function. In this work, we consider explicit time

discretization schemes that are not a function of Vk. For the sake of brevity in notation,

we do not show the explicit dependence on time and we denote the increment map with

G(Vk−1) for explicit time integration schemes. For example, the first-order explicit map is

given by the Euler method: G(Vk−1) = Vk−1 +∆tF(Vk−1), where ∆t is the step size. Let

us consider the rank-r approximation, V̂k, such that

Vk = V̂k + Ek, (4.9)

where Ek is the low-rank approximation error. Because V̂k is a low-rank approximation, it

cannot satisfy Eq. (4.8), and there will be a residual equal to

Rk = V̂k − G(V̂k−1). (4.10)
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The time-discrete variational principle can be stated as finding the best V̂k ∈Mr, whereMr

is the manifold of rank-r matrices, such that the Frobenius norm of the following residual is

minimized:

Z(V̂k) =

∥∥∥∥V̂k −G

∥∥∥∥2

F

, (4.11)

where G ∈ Rn×s := G(V̂k−1). The solution of the above residual minimization scheme is the

rank-r matrix,

V̂k
opt = SVD(G), (4.12)

where SVD(G) is the rank-r truncated SVD of matrix G. An important advantage of Eq.

4.12 over Eqs. 4.6a-4.6c is that the time advancement according to Eq. 4.12 does not become

singular in the presence of small singular values. While this solves the issue of ill-conditioning,

computing Eq. 4.12 at each iteration of the time stepping scheme is cost prohibitive. This

computational cost is due to two sources: (i) computing the nonlinear map G and (ii) com-

puting the SVD(G). The cost of (i) alone makes the solution of the time-discrete variational

principle as expensive as the FOM, i.e., O(ns). Besides the flops cost associated with com-

puting G, the memory cost of storing G is prohibitive for most realistic applications. On

the other hand, computing the exact SVD of G scales with min{O(n3),O(s3)}. While this

cost is potentially alleviated by fast algorithms for approximating the SVD, e.g. randomized

SVD [43] or incremental QR [85], for general nonlinearities in G, (i) is unavoidable. This

ultimately leads to a computational cost that exceeds that of the FOM.

4.1.4 Low-Rank Approximation via Sparse Adaptive Sampling

To overcome these challenges, we present a sparse collocation scheme that enables the

computation of V̂k, via a cost-effective approximation to the rank-r truncated SVD of G.

To this end, we consider V̂k = UkΣkYkT , where Uk ∈ Rn×r and Yk ∈ Rs×r are an approxi-

mation to the left and right singular vectors of G, and Σk ∈ Rr×r is a diagonal matrix that

contains an approximation to the singular values of G. Our approach is to set the residual

to zero at r strategically selected rows and columns of the residual matrix Rk. To this end,

we present an algorithm to set Rk(p, :) = 0 and Rk(:, s) = 0, where p = [p1, p2, . . . , pr] ∈ Nr

and s = [s1, s2, . . . , sr] ∈ Nr are vectors containing the row and column indices at which the
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residual is set to zero. This simply requires V̂k(p, :) = G(p, :) and V̂k(:, s) = G(:, s). Here,

we have used MATLAB indexing where A(p, :) selects all columns at the p rows, and A(:, s)

selects all rows at the s columns of the matrix A. While there are many possible choices

for the indices p and s, selecting these points should be done in a principled manner, to

ensure the residual at all points remains small. To compute these points, we use the discrete

empirical interpolation method (DEIM) [25] which has been shown to provide near optimal

sampling points for computing CUR matrix decompositions [85]. A similar approach was

recently applied in [67] to accelerate the computation of Eqs. 4.6a-4.6c, by only sampling F

at a small number of rows and columns. However, the approach presented in [67] still suffers

from the issue of ill-conditioning.

In this work, we present a procedure to compute a cost-effective approximation of the

rank-r SVD of G, by interpolating G at the DEIM-selected rows and columns. To compute

the DEIM points, the rank-r SVD (or an approximation) is required [85]. Since we do not

have access to the rank-r SVD at the current time step, k, we use the approximation of the

SVD from the previous time step, V̂k−1 = Uk−1Σk−1Yk−1T , to compute the DEIM points.

The algorithm for computing V̂k is as follows:

1. Compute the sampling indices, p← DEIM(Uk−1), and s← DEIM(Yk−1), in parallel.

2. Compute the nonlinear map at the selected rows and columns, G(p, :) and G(:, s), in

parallel.

3. Compute Q ∈ Rn×r as the orthonormal basis for the range of G(:, s) by QR decomposi-

tion such that G(:, s) = QR, where R ∈ Rr×r.

4. Interpolate every column of G onto the orthonormal basis Q at sparse indices p:

Z = Q(p, :)−1G(p, :), (4.13)

where Z ∈ Rr×s is the matrix of interpolation coefficients such that QZ interploates G

onto the basis Q at the interploation points indexed by p.

5. Compute the SVD of Z so that

Z = UZΣ
kYkT , (4.14)

where UZ ∈ Rr×r, Σk ∈ Rr×r, and Yk ∈ Rs×r.

67



6. Compute Uk ∈ Rn×r as the in-subspace rotation:

Uk = QUZ. (4.15)

In Step 1 above, the details of the DEIM algorithm can be found in [25, Algorithm 1]. A

DEIM algorithm based on the QR factorization, a.k.a QDEIM, may also be used [32, 64].

Both DEIM and QDEIM are sparse selection algorithms and they perform comparably in the

cases considered in this paper. We explain here how the above algorithm addresses the three

challenges mentioned in Chapter 1.

1. Computational efficiency: The above procedure returns the updated low-rank approx-

imation V̂k = QZ = UkΣkYkT , and only requires sampling G at r rows and columns.

This alone significantly reduces both the required number of flops and memory, compared

to computing the entire G. Furthermore, instead of directly computing the SVD of the

n× s matrix G, we only require computing the QR of the n× r matrix G(:, s), and the

SVD of the r × s matrix Z. This reduces the computational cost to O(s+ n) for r ≪ s

and r ≪ n. Moreover, in most practical applications, computing G(:, s) is the costli-

est part of the algorithm, which requires solving s samples of the FOM. However, since

these samples are independent of each other, the columns of G(:, s) can be computed in

parallel. Similarly, each row of G(p, :) can be computed in parallel.

2. Intrusiveness: While this significantly reduces the computational burden, perhaps an

equally important outcome is the minimally intrusive nature of the above approach.

For example, when the columns of G are independent, e.g. random samples, G(:

, s) can be computed by directly applying Eq. 4.8 to the low-rank approximation,

G(Uk−1Σk−1Y(s, :)k−1T ). This effectively allows for existing numerical implementations

of Eq. 4.8 to be used as a black box for computing G(:, s). On the other hand, the rows

of G are in general dependent, based on a known map for the chosen spatial discretization

scheme, e.g. sparse discretizations like finite difference, spectral element, etc. Therefore,

computing G(p, :) does require specific knowledge of the governing equations, namely

the discretized differential operators. Based on the discretization scheme, one can deter-

mine a set of adjacent points, pa, that are required for computing the derivatives at the

points specified by p. While this introduces an added layer of complexity, this is much

68



less intrusive than deriving and implementing reduced order operators for each term in

the governing equations; which we emphasize again, is only feasible for homogeneous

linear or quadratic nonlinear equations. In the present work, that bottleneck is removed,

regardless of the type of nonlinearity.

3. Ill-conditioning: The presented algorithm is robust in the presence of small or zero

singular values. First note that the inversion of the matrix of singular values is not

required in the presented algorithm. In fact, the conditioning of the algorithm depends

on Q(p, :) and Y(s, :), and the DEIM algorithm ensures that these two matrices are

well-conditioned. To illustrate this point, let us consider the case of overapproximation

where the rank of G(:, s) is r1 < r. In this case, Eqs. 4.6a-4.6c and Eqs. 4.7a-4.7b cannot

be advanced because Σ ∈ Rr×r and C ∈ Rr×r will be singular, i.e., rank(Σ) =rank(C) =

r1 < r. On the other hand, despite G(:, s) being rank deficient, Q will still be a full rank

matrix in the presented algorithm. While there is no guarantee that a subset of rows ofQ,

i.e., Q(p, :) is well conditioned, the DEIM is a greedy algorithm that is designed to keep

∥Q(p, :)−1∥ as small as possible in a near-optimal fashion. In Section 4.1.6, we show that

oversampling further improves the condition number of the presented algorithm, and in

Theorem 4.1.3, we show that ∥Y(s, :)−1∥ plays an equally important role in maintaining

a well-conditioned algorithm.

As we will show in the following section, the low-rank approximation computed above

is equivalent to a CUR matrix factorization that interpolates G at the selected rows and

columns. Therefore, we refer to the above procedure as the TDB-CUR algorithm. The key

components of the algorithm are highlighted in Figure 20.

4.1.5 Equivalence to a CUR Decomposition/Oblique Projection

In this section, we show that the low-rank matrix approximation we compute is equiv-

alent to a CUR matrix decomposition. In short, CUR low-rank decompositions explicitly

reconstruct a matrix using a small number of actual rows and columns of the original matrix.

The key idea is that if a matrix is of low rank, then it is not necessary to use all columns

and rows of the matrix to construct a good low-rank approximation. Therefore, the result-
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Figure 20: Schematic of the TDB-CUR methodology. (i) FOM is discretized using an explicit

temporal integration scheme, where G is a nonlinear map of the solution from the previous

time step, Vk−1, to the current time step, Vk. Columns correspond to independent random

samples, e.g. Navier-Stokes or Burgers equation. (ii) The rank-r approximation, V̂k, is

computed such that the residual at the selected rows (red) and columns (blue) is equal to

zero. This is accomplished via sparse interpolation of the selected rows and columns. (iii)

The resulting V̂k is an approximation to the rank-r truncated svd(G), and is equivalent to

the low-rank CUR factorization that interpolates the selected rows and columns. Although

it is equivalent to this CUR factorization, the numerical computation of V̂k is different, as

it does not require inverting G(p, s).

ing decomposition is highly interpretable, making it an attractive option for improved data

analysis. To this end, a matrix A ∈ Rn×s that is low-rank, can be approximated accurately

by taking a small number of actual rows, R, and columns, C, from the original matrix A.
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A small matrix of appropriate dimension, U, is then computed to make A ≈ CUR a good

approximation. Here, the matrices, C, U, and R are different from the matrices defined in

previous sections. For more details on CUR decompositions, we refer the reader to [63].

Different CUR decompositions can be obtained for the same matrix depending on two

factors: (i) the selection of columns and rows, and (ii) the method used to compute the

matrix U. In a closely related work [85], a DEIM-CUR procedure was introduced in which

the columns and rows are selected based on DEIM, and U is obtained via the orthogonal

projection of the original matrix onto the selected columns and rows. However, orthogonal

projection onto selected columns and rows requires access to all entries of G. This would

render the DEIM-CUR procedure in [85] ineffective for the present application, since we

cannot afford to compute or store the entire matrix G. In the following, we show that (i)

the presented algorithm is equivalent to a CUR decomposition (Theorem 4.1.1), and (ii) the

matrix U is obtained via an oblique projection, which requires access to only the selected

rows and columns of G (Theorem 4.1.2). In the following, we use the indexing matrices,

P = In(:,p) ∈ Rn×r and S = Is(:, s) ∈ Rs×r, where In and Is are identity matrices of size

n × n and s × s, respectively. It is easy to verify that PTU ≡ U(p, :) and STY ≡ Y(s, :).

For the sake of brevity, we drop the superscript k in the following.

Theorem 4.1.1. Let V̂ = QZ be the low-rank approximation of G computed according to

the TDB-CUR algorithm. Then: (i) V̂ = QZ is equivalent to the CUR factorization given

by (GS)(PTGS)−1(PTG). (ii) The low-rank approximation is exact at the selected rows and

columns, i.e. PT V̂ = PTG and V̂S = GS.

Proof.

(i) According to the TDB-CUR algorithm, Q is a basis for the Ran(G(:, s)). Therefore,

G(:, s) = GS = QQTGS, and it follows that PTGS = PTQQTGS. Substituting this

result into the CUR factorization gives

(GS)(PTGS)−1(PTG) = QQTGS(PTQQTGS)−1PTG.

Rearranging the above expression gives the desired result

(GS)(PTGS)−1(PTG) = QQTGS(QTGS)−1(PTQ)−1PTG = QZ = V̂,
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where we have used Z = (PTQ)−1PTG = Q(p, :)−1G(p, :), from Eq. 4.13.

(ii) Using the above result, V̂ = (GS)(PTGS)−1(PTG), we show the selected rows of V̂ are

exact, i.e., V̂(p, :) = G(p, :):

PT V̂ = (PTGS)(PTGS)−1(PTG) = PTG.

Similarly for the columns,

V̂S = (GS)(PTGS)−1(PTGS) = GS.

This completes the proof.

Now we show that V̂ is an oblique projection of G onto the selected columns and rows of

G. In particular, the oblique projector involved is an interpolatory projector. In the following,

we define interpolatory projectors. For the sake of brevity, we drop the superscript k in the

following.

Definition 4.1.1. Let U ∈ Rn×r and Y ∈ Rs×r be full rank matrices and let p and s be

sets of distinct row and column indices, respectively. The interpolatory projectors for p onto

Ran(U) and for s onto Ran(Y) are defined as

P ≡ U(PTU)−1PT and S ≡ S(YTS)−1YT , (4.16)

provided (PTU) and (YTS) are invertible. We refer to U and Y as interpolation bases for

P and S, respectively.

For a given matrix A ∈ Rn×s, P operates on the left side of the matrix and S operates

on the right side of the matrix. In general, both P and S are oblique projectors, and it is

easy to verify that P2 = P and S2 = S. Unlike orthogonal projection, the interpolatory

projection is guaranteed to match the original matrix at selected rows and columns, i.e.,

PTPA = A(p, :) and ASS = A(:, s).

72



Theorem 4.1.2. Let V̂ = QZ be the low-rank approximation of G computed according

to the TDB-CUR algorithm. Then V̂ = PGS where P and S are oblique projectors onto

Ran(U) and Ran(Y), respectively, according to Eq. 4.16.

Proof. We first show that P can be represented versus Q as the interpolation basis. To this

end, replacing U = QUZ in the definition of P results in:

P = U(PTU)−1PT = QUZ(P
TQUZ)

−1PT = QUZU
−1
Z (PTQ)−1PT = Q(PTQ)−1PT .

where we have used the fact thatUZ is a square orthonormal matrix and therefore, UZU
−1
Z =

I. Similarly, S can be represented versus ZT as the interpolation basis by replacing YT =

Σ−1U−1
Z Z in S:

S = S(YTS)−1YT = S(Σ−1U−1
Z ZS)−1Σ−1U−1

Z Z = S(ZS)−1Z.

Using these projection operators we have

PGS = Q(PTQ)−1PTGS(ZS)−1Z. (4.17)

Using the results of Theorem 4.1.1, Part (ii), we have: G(p, s) = V̂(p, s). Therefore:

PTGS = G(p, s) = V̂(p, s) = Q(p, :)Z(:, s) = PTQZS.

Using this result in Eq. 4.17, yields:

PGS = Q(PTQ)−1PTQZS(ZS)−1Z = QZ = V̂.

This result completes the proof.

In the following theorem, we show that the oblique projection error is bounded by an

error factor multiplied by the maximum of orthogonal projection errors onto U or Y. We

follow a similar procedure that was used in [85], however, as mentioned above, in [85] the

CUR is computed based on orthogonal projections onto the selected columns and rows,

whereas in the presented TDB-CUR algorithm, interpolatory projectors are used. In the

following, we use the second norm (∥ ∼ ∥ ≡ ∥ ∼ ∥2).
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Theorem 4.1.3. Let P and S be oblique projectors according to Definition 4.1.1 and let

U ∈ Rn×r and Y ∈ Rs×r be a set of orthonormal matrices, i.e., UTU = I and YTY = I.

Let ϵf be the error factor given by: ϵf = min{ηp(1 + ηs), ηs(1 + ηp)}, where ηp = ∥(PTU)−1∥
and ηs = ∥(STY)−1∥ and σ̂r+1 = max{∥G −UUTG∥, ∥G −GYYT∥}. Then the error of

the oblique projection is bounded by

∥G− PGS∥ ≤ ϵf σ̂r+1. (4.18)

Proof.

The error matrix can be written as:

G− PGS = (I− P)G+ PG− PGS = (I− P)G+ PG(I− S)

where I is the identity matrix of appropriate size. Also, PU = U(PTU)−1PTU = U.

Therefore, (I− P)U = 0. Similarly, YT (I− S) = 0. Therefore,

∥G− PGS∥ ≤ ∥(I− P)G∥+ ∥PG(I− S)∥

= ∥(I− P)(G−UUTG)∥+ ∥P(G−GYYT )(I− S)∥

≤
(
∥(I− P)∥+ ∥P∥∥(I− S)∥

)
σ̂r+1

= ηp(1 + ηs)σ̂r+1.

In the above inequality, we have made use of the fact that ∥I − P∥ = ∥P∥ = ηp and

∥I − S∥ = ∥S∥ = ηs as long as the projectors are neither null nor the identity [86]. In the

second line of the above inequality, we have made use of (I−P)U = 0 and YT (I− S) = 0.

Similarly, it is possible to express the error matrix as:

G− PGS = G(I− S) +GS − PGS = G(I− S) + (I− P)GS.

Therefore, another error bound can be obtained as

∥G− PGS∥ ≤ ∥G(I− S)∥+ ∥(I− P)GS∥

= ∥(G−GYYT )(I− S)∥+ ∥(I− P)(G−UUTG)S∥

≤
(
∥(I− S)∥+ ∥I− P∥∥S∥

)
σ̂r+1

= ηs(1 + ηp)σ̂r+1.

where ∥I−S∥ = ηs is used. Combining the above two inequalities yields inequality 4.18.
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In the above error bound, when U and Y are the r most dominant exact left and right

singular vectors of G, then σ̂r+1 = σr+1, where σr+1 is the r+1-th singular value of G, since

∥G−UUTG∥ = ∥G−GYYT∥ = σr+1. (4.19)

In that case, ϵf is the error factor of the CUR decomposition when compared against the

optimal rank-r reduction error obtained by SVD. As demonstrated in our numerical exper-

iments, the TDB-CUR algorithm closely approximates the rank-r SVD approximation of

V.

4.1.6 Oversampling for Improved Condition Number

The above error analysis shows that the CUR rank-r approximation can be bounded

by an error factor ϵf times the maximum error obtained from the orthogonal projection

of G onto U or Y. This analysis reveals that better conditioned PTU and STY matrices

result in smaller ηp and ηs, which then results in smaller error factor ϵf . In the context

of DEIM interpolation, it was shown that oversampling can improve the condition number

of oblique projections [75]. The authors demonstrated that augmenting the original DEIM

algorithm with an additional m = O(r) sampling points can reduce the value of ηp, leading

to smaller approximation errors. This procedure of sampling more rows than the number of

basis vectors leads to an overdetermined system where an approximate solution can be found

via a least-square regression rather than interpolation. Additionally, it was shown in [3] that

for matrices with rapidly decaying singular values (as targeted in this work), oversampling

improves the accuracy of CUR decompositions.

In the following, we extend the TDB-CUR algorithm for row oversampling. As a direct

result of the oversampling procedure, the oblique projection of G onto the range of the

orthonormal basis Q becomes:

Z = Q(p, :)†G(p, :), where Q(p, :)† = (Q(p, :)TQ(p, :))−1Q(p, :)T , (4.20)

and p ∈ Nr+m contains the r + m ≪ n row indices. Note that the Q(p, :)† is not the

pseudo-inverse of Q(p, :). Therefore, the oblique projection becomes a least squares best-fit
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solution. Also, increasing the number of oversampling points decreases ηp = ∥Q(p, :)†∥ and
it follows that for the maximum number of oversampling points, i.e., when all the rows are

sampled, the orthogonal projection of every column of G onto Ran(G(:, s)) is recovered,

where ηp attains its smallest value, which is ηp = 1. Similar to the interpolatory projector,

the row oversampling can also be formulated as an oblique projector:

P = U(PTU)†PT , (4.21)

where P ∈ Rn×(r+m). However, unlike the interpolatory projector, PTPA ̸= A(p, :).

We refer to the above sampling procedure as OS-DEIM, where OS refers to the oversam-

pling algorithm. Since the DEIM only provides sampling points equal to the number of basis

vectors, we use the GappyPOD+E algorithm from [75, Algorithm 1] to sample a total of

r+m rows. While any sparse selection procedure can be used, the GappyPOD+E was shown

to outperform other common choices like random sampling or leverage scores [63]. Finally,

it is possible to oversample the columns in an analogous manner to decrease ηs. In all of the

examples considered in this paper, we apply row oversampling, but ultimately the decision

for row oversampling, column oversampling, or both may be made by requiring that ηp and

ηs be smaller than some threshold values.

4.1.7 Rank Adaptivity

In order to control the error while avoiding unnecessary computations, the rank of the

TDB must be able to adapt on the fly. We show that it is easy to incorporate mode adaptivity

into the TDB-CUR algorithm.

In the case of rank reduction, once the new rank is chosen, such that rk < rk−1, the low-

rank matrices are simply truncated to retain only the first rk components, i.e. U(:, 1 : rk),

Σ(1 : rk, 1 : rk), and Y(:, 1 : rk). On the other hand, the rank can be increased, such

that rk > rk−1, by sampling more columns (rk) than the number of basis vectors (rk−1), i.e.

oversampling. Similar to the procedure used for oversampling the rows, the column indices

are determined via the GappyPOD+E algorithm. While this provides a straightforward

approach for how to adapt the rank, it does not address when the rank should be adapted,

or what that new rank should be.
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Informed by the error analysis from the preceding section, we devise a suitable criterion

for controlling the error via rank addition and removal. Since it is not possible to know the

true error without solving the expensive FOM, we devise a proxy for estimating the low-rank

approximation error:

ϵ(t) =
σ̂r(t)

(
∑r

i=1 σ̂i(t)
2)

1/2
, (4.22)

where σ̂i are the singular values of the low-rank approximation from the previous time step.

Assuming the low-rank approximation is near-optimal in its initial condition, we can use the

trailing singular value as a proxy for the low-rank approximation error.

To make the error proxy more robust for problems of varying scale and magnitude, we

divide by the Frobenius norm of V̂, where it is well-known that ∥V̂∥F = (
∑r

i=1 σ̂
2
i )

1/2.

Rather than set a hard threshold, we add/remove modes to maintain ϵ within a desired

range, ϵl ≤ ϵ ≤ ϵu, where ϵl and ϵu are user-specified lower and upper bounds, respectively.

If ϵ > ϵu we increase the rank to r+1, and if ϵ < ϵl we decrease the rank to r−1. As a result,

this approach avoids the undesirable behavior of repeated mode addition and removal, which

is observed by setting a hard threshold. The rank-adaptive TDB-CUR algorithm is detailed

in Algorithm 1.

It is important to note that this isn’t the only criterion for mode addition and removal,

and one can devise a number of strategies based on the problem at hand. However, from

our numerical experiments, this approach has proved to be simple and effective, and it does

a good job at capturing the trend of the true error. For more details on estimating rank and

selection criteria, we refer the reader to [87, Section 2.3].
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Algorithm 1 Rank-Adaptive TDB-CUR Algorithm

Input: Ũ ∈ Rn×r̃, Σ̃ ∈ Rr̃×r̃, Ỹ ∈ Rs×r̃, r̃, m (∼ indicates previous time step)

Output: U ∈ Rn×r, Σ ∈ Rr×r, Y ∈ Rs×r, r

1: ϵ = Σ̃(r̃, r̃)/∥diag(Σ̃)∥2 ▷ Compute error proxy for adaptive rank criteria.

2: if ϵ > ϵu then ▷ Increase rank if ϵ exceeds the upper threshold, ϵu.

3: r = r̃ + 1

4: else if ϵ < ϵl then ▷ Decrease rank if ϵ falls below the lower threshold, ϵl.

5: r = r̃ − 1

6: Ũ = Ũ(:, 1 : r); Σ̃ = Σ̃(1 : r, 1 : r); Ỹ = Ỹ(:, 1 : r) ▷ Truncate TDB matrices.

7: else ▷ Keep rank the same.

8: r = r̃

9: end if

10: s← sparse selection(Ỹ, r) a ▷ Compute r column indices.

11: p← sparse selection(Ũ, r +m) ▷ Compute r +m row indices.

12: pa ← find adjacent(p) ▷ Find adjacent points required to compute G(p, :).

13: V̂(:, s) = ŨΣ̃Ỹ(s, :)T ▷ Construct low-rank approximation of columns in s.

14: G(:, s) = G(V̂(:, s)) ▷ Compute nonlinear map at the selected columns.

15: V̂([p,pa], :) = Ũ([p,pa], :)Σ̃ỸT ▷ Construct low-rank approximation of rows in

[p,pa].

16: G(p, :) = G(V̂([p,pa], :)) ▷ Compute nonlinear map at the selected rows.

17: QR = qr(G(:, s), ‘econ’) ▷ Compute the economy QR of G(:, s).

18: Z = Q(p, :)†G(p, :) ▷ Compute Z as an oblique projection of G onto Q.

19: UZΣYT = svd(Z, ‘econ’) ▷ Compute the economy SVD of Z.

20: U = QUZ ▷ In-subspace rotation of the orthonormal basis, Q.

aWhile the present work uses the GappyPOD+E for sparse selection, the user is free to choose
their favorite sparse selection algorithm.

4.1.8 Computing G(p, :)

Up until this point, we have considered G = G(V̂k−1) to be an n × s matrix resulting

from an order-p explicit temporal discretization of Eq. 4.8. In Algorithm 1, we showed
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that sparse row and column measurements, G(p, :) and G(:, s), could be used to efficiently

compute an approximation to the rank-r SVD of G. While G(:, s) is straightforward to

compute for independent random samples, as discussed in Section 4.1.4, computing G(p, :)

depends on a set of adjacent points, pa, according to the spatial discretization scheme. See

Remark 4.1.1. As a result, for higher-order integration schemes, special care must be taken

in the computation of G(p, :). To demonstrate this, we consider the second-order explicit

Runge-Kutta scheme where

G = V̂k−1 +∆tF
(
tk−1 +

1

2
∆t, V̂k−1 +

1

2
∆tF

(
tk−1, V̂k−1

))
.

After determining the row indices, p and pa, G(p, :) can be computed as follows:

1. Compute V̂k−1([p,pa], :) = Uk−1([p,pa], :)Σ
k−1Yk−1T .

2. Compute the first stage F1 = F
(
tk−1, V̂k−1

)
at the p rows as

F1(p, :) = F
(
tk−1, V̂k−1([p,pa], :)

)
.

Note, if explicit Euler method is used, no additional steps are required to compute

G(p, :). If a higher order scheme is used, proceed with the following steps.

3. The final stage of the second order integration scheme requires taking a half step to

evaluate F at the midpoint:

F2 = F
(
tk−1 +

1

2
∆t, V̂k−1 +

1

2
∆tF1

)
.

Here, we require F2(p, :), given by

F2(p, :) = F
(
tk−1 +

1

2
∆t, V̂k−1([p,pa], :) +

1

2
∆tF1([p,pa], :)

)
.

Notice that we now require F1(pa, :) to evaluate the above expression. While this can be

computed according to Step 2, where pa will have its own set of adjacent points paa, this

process quickly gets out of hand, especially as more stages are added to the integration

scheme. As a result, for higher-order schemes, the efficiency afforded by Algorithm 1

will deteriorate, and the resulting implementation will become increasingly complex. To

overcome these challenges, we instead compute the low-rank approximation F̂i ≈ Fi,

using the sparse row and column measurements, Fi(p, :) and Fi(:, s), which are already
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required for computing G(p, :) and G(:, s). Here, the subscript denotes the ith stage of

the integration scheme. The first step is to compute UFi
as an orthonormal basis for the

Ran(Fi(:, s)), using QR. Next, compute the oblique projection of Fi onto UFi
, such that

F̂i = UFi
UFi

(p, :)†Fi(p, :),

where UFi
(p, :)† = (UFi

(p, :)TUFi
(p, :))−1UFi

(p, :)T . Using this low-rank approxima-

tion, Fi(pa, :) is readily approximated by F̂i(pa, :) = UFi
(pa, :)UFi

(p, :)†Fi(p, :). Al-

though we have considered the second-order Runge-Kutta method in the example above,

this approach is easily extended to higher-order Runge-Kutta methods as well as linear

multistep methods.

4.1.9 A Working Example: Stochastic Burger’s Equation

Here we provide a working example to demonstrate the TDB-CUR methodology. We

consider the one-dimensional Burgers equation subject to random initial and boundary con-

ditions as follows:

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
, x ∈ [0, 1], t ∈ [0, 5],

v(x, 0; ξ) = sin(2πx)

[
0.5

(
ecos(2πx) − 1.5

)
+ σ

d∑
i=1

√
λxi

ψi(x)ξi

]
, x ∈ [0, 1], ξi ∼ N (µ, σ2),

v(0, t; ξ) = − sin(2πt) + σ
d∑

i=1

λtiφi(t)ξi, x = 0, ξi ∼ N (µ, σ2),

where ν = 2.5×10−3. The stochastic boundary at x = 0 is specified above and the boundary

at x = 1 is v(x = 1, t; ξ) = 0. We use weak treatment of the boundary conditions for both

the FOM and TDB [73]. The random space is taken to be d = 17 dimensional and ξi’s are

sampled from a normal distribution with mean µ = 0, standard deviation σ = 0.001, and

s = 256. In the stochastic boundary specification, we take φi(t) = sin(iπt) and λti = i−2.

In the stochastic initial condition, λxi
and ψi(x) are the eigenvalues and eigenvectors of

the spatial squared-exponential kernel, respectively. The fourth-order explicit Runge-Kutta

method is used for time integration with ∆t = 2.5 × 10−4. For discretization of the spatial
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domain, we use a second-order finite difference scheme on a uniform grid with n = 401. We

use relative Frobenius error Ek = ∥V̂k −Vk∥F/∥Vk∥F in our analysis.

We first solve the system using TDB-CUR with fixed rank and compare the results

against the DLRA by solving Eqs. 4.6a-4.6c. For TDB-CUR, the rows are oversampled with

m = 5. No sparse sampling strategy is used for DLRA, and Eqs. 4.6a-4.6c are solved as

is. In Figure 21(a), we compare the error of TDB-CUR and DLRA for different values of

r. For r = 6, TDB-CUR has larger error compared to DLRA. This result is expected since

TDB-CUR has an additional source of error from the sparse sampling procedure. However,

as the rank is increased to r = 9, the conditioning of the DLRA starts to deteriorate and the

error of TDB-CUR is actually lower than DLRA. In fact, for r > 9, the DLRA is unstable

and cannot be integrated beyond the first time step. On the other hand, TDB-CUR remains

stable, and the error decays as the rank is increased to a maximum value of r = 18. While

it is reasonable to expect that the error can be reduced further by increasing the rank to

values of r > 18, it is important to note that the rank of the initial condition is exactly

r = 18. Therefore, in order to increase the rank of the system beyond r = 18 in a principled

manner, we employ the rank adaptive strategy from Section 4.1.7. To this end, we initialize

the system with rank r0 = 18, and use an upper threshold of ϵu = 10−8 for mode addition.

As observed in Figure 21(b), the rank is increased in time to a maximum of 23, leading to a

further reduction in the error.

The mean solution is shown in Figure 22 along with the first 10 QDEIM sampling points.

We observe that the sampling points are concentrated near the stochastic boundary at x = 0

and also at points in the domain where shocks develop. Figure 23 shows the evolution of

the first two spatial modes, u1 (top) and u2 (bottom), where we observe excellent agreement

between the FOM and TDB-CUR. It is important to note that these modes are energetically

ranked according to the first and second singular values shown in Figure 24(a). Therefore,

we observe that u1 captures the large scale energy containing structure, while u2 captures

the small scale structure that is highly localized in space.

In Figure 24(a), we show that TDB-CUR accurately captures the leading singular values

of the FOM solution, despite the large gap between the first and last resolved singular

values. Finally, Figure 24(b) compares the CPU time of the FOM, DLRA, and TDB-CUR
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Figure 21: Stochastic Burgers equation: (a) Relative error evolution for fixed and adaptive

rank. (b) Rank evolution using upper threshold ϵu = 10−8 for mode addition.

Figure 22: Stochastic Burgers equation: mean solution with the first 10 QDEIM points

(black dots).

as the number of rows and columns of the matrix are increased simultaneously. We take

n = s and observe that the FOM and DLRA scales quadratically (O(ns)) while TDB-

CUR scales linearly (O(n + s)). As the matrix size is increased, the disparity in CPU time
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Figure 23: Stochastic Burgers equation: Evolution of first two spatial modes, u1 and u2, and

QDEIM points. Excellent agreement between the FOM and TDB-CUR is observed.
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becomes even more apparent, making the case for solving massive MDEs using TDB-CUR.

To further illustrate the reduction in computational cost, we compare the TDB-CUR against

the unconventional integrator from [24]. Figure 25 shows the error versus the total time to

solution (cost) for r = 6, 9, 12, 15, 18. For the TDB-CUR, we observe a rapid decrease in

the error as the cost is increased. On the other hand, for the unconventional integrator, not

only is the error orders of magnitude larger than TDB-CUR, the time to solution is also

significantly higher.

While Figures 21-25 demonstrate the accuracy, efficiency, rank-adaptivity, and favorable

numerical performance of the TDB-CUR method, they do not convey the minimally intrusive

nature of its implementation. To give a better perspective on the implementation efforts,

the MATLAB code for solving the stochastic Burgers equation using the TDB-CUR method

is provided in Appendix C (Listings C.1 and C.2). While the code contains lines specific

to the TDB-CUR method, after reviewing the entire code, it will become apparent that

many of the included lines are already required for solving the FOM Burgers equation.

Furthermore, there is no term-by-term implementation required to preserve efficiency and

the FOM implementation of the Burgers equation (function f) is used to compute the

sparse row and column samples. Therefore, given an existing FOM implementation, the

code required to implement the TDB-CUR method is minimal. The code blocks required

for implementing the method are labeled with %% TDB-CUR in the attached code.
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Figure 24: Stochastic Burgers equation: (a) First 18 singular values of FOM vs TDB-CUR.

(b) CPU time for scaling n = s for FOM and TDB-CUR with fixed r = 6.
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Figure 25: Stochastic Burgers equation: Error at t = 5 versus total cost in seconds.
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5.0 Conclusions and Outlook

In Chapter 2, we presented the f-OTD method for the computation of sensitivities in

evolutionary systems governed by time dependent ordinary/partial differential equations.

We demonstrated that the rank of f-OTD for two diverse applications is much smaller than

the number of sensitivity fields. In contrast to adjoint based methods, f-OTD is not tied

to an objective function and requires solving a system of forward equations that does not

require any I/O operation. We showed that a single set of f-OTD modes can be formulated

to compress the sensitivities of multi-variable PDEs. We demonstrated this capability by

computing sensitivities of multiple species with respect to reaction parameters in a turbu-

lent reactive flow. In addition, we contrasted the f-OTD with OTD and demonstrated why

OTD is not appropriate for parametric/forced sensitivity analysis. In contrast to traditional

ROM approaches, f-OTD extracts the low-rank approximation directly from the sensitivity

equations as opposed to a data-driven approach, such as POD or DMD, which requires the

full-dimensional sensitivity data. The data-driven techniques have the computational advan-

tage that the modes are computed once and the cost of solving ROM is usually insignificant.

However, the low-rank subspace in the data-driven approach is fine tuned to particular op-

erating conditions, whereas the f-OTD subspace is evolved with the dynamics of the system

and does not require such fine-tuning. As such, f-OTD is an on-the-fly model compression

that is achieved by extracting instantaneous correlated structures in the solution.

In Chapter 3, we extended the f-OTD method to compute finite-time nonlinear sensitiv-

ities, which we called NL-fOTD. Sensitivities were computed by perturbing parameterized

nonlinear systems around a base state, and retaining the higher order, nonlinear terms. We

demonstrated the method for computing low-rank approximations of nonlinear sensitivities

for (i) 3D ODE (ii) 2D compressible flow and (iii) 2D turbulent reacting flow. In all cases,

it was shown that low-rank structure exists, and could be extracted using the NL-fOTD

approximation. Solving these systems via the low-rank NL-fOTD components offered an

intuitive and interpretable representation of seemingly complex systems, while maintaining

good accuracy and numerical performance.
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In Chapter 4, we developed a rank-adaptive method to solve nonlinear matrix differen-

tial equations (MDEs) that addresses many of the challenges associated with TDB ROMs.

To this end, we presented the TDB-CUR algorithm for solving MDEs via low-rank ap-

proximation. The algorithm is based on a time-discrete variational principle that leverages

sparse sampling to efficiently compute a low-rank matrix approximation at each iteration

of the time-stepping scheme. This approach was shown to be accurate, well-conditioned,

computationally efficient, and minimally intrusive. Numerical experiments illustrated that

the TDB-CUR algorithm provides a near-optimal low-rank approximation to the solution

of MDEs, while significantly reducing the computational cost. Moreover, we showed the

method is robust in the presence of small singular values, and significantly outperforms

DLRA based on the time continuous variational principle. Although not investigated in the

present work, the TDB-CUR algorithm is also highly parallelizable, making it an attractive

option for high-performance computing tasks.

Despite the meaningful contributions of the present work, further developments are re-

quired to enable the routine use of time dependent basis reduced order models for solving a

wide variety of science and engineering problems. To this end, future efforts should focus on

the following areas:

• Implicit integration: While the present work demonstrates the utility of the TDB-

CUR method for explicit schemes, many practical problems of interest are stiff, requiring

implicit integration to avoid restrictive time step limitations. However, application of

off-the-shelf implicit schemes is nontrivial, and new developments will be required to

preserve the efficiency of the TDB-CUR method.

• Nonlinear approximation: Future work should also investigate the feasibility of using

time dependent bases for locally linear and higher-order nonlinear approximation. It is

important to remember that even though the basis is evolved with the dynamics of the

system, the underlying approximation is still linear. Although we have demonstrated that

many systems are low-rank when expressed as a linear expansion in a time dependent

basis, this approach is ineffective for high dimensional systems that exhibit a slowly

decaying singular value spectrum, e.g. perturbations in advection dominated problems.

In order to accurately resolve these systems, a large number of modes are required,
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defeating the purpose of the reduced order modeling task. Therefore, to overcome these

challenges, nonlinear and locally linear approximations should be investigated as a means

to reduce the number of modes required in the time dependent basis.

• Intrusiveness: While the presented approach is minimally intrusive and can be applied

to systems containing general nonlinearities, future work should aim to make this method

fully non-intrusive, allowing the full order model to be leveraged as a black box. This

will allow the method to be applied to proprietary solvers while reducing the overall

implementation efforts, making this powerful methodology more accessible to researchers

and practitioners, alike.
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Appendix A Reactive Source Term Specification

Table 1: Reactive source terms with species concentration denoted by [·]. Each si is scaled

by 102 for time scale adjustment with the flow and the parameter values are assigned as

follows: α1 = 2.54 × 10−2, α2 = 160, α3 = 3.74 × 10−5, α4 = 0.449, α5 = 1.12 × 105, α6 =

5.13× 10−4, α7 = 2.36× 10−2, α8 = 14.6, α9 = 6.24× 10−2, α10 = 140.5, α11 = 3.93× 10−4,

α12 = 2.36× 10−2, α13 = 14.6, α14 = 5.523, α15 = 160, α16 = 8.01× 10−4, α17 = 1.11× 10−3,

α18 = 3.105, α19 = 1060, α20 = 1.65 × 10−3, α21 = 8.177, α22 = 3160, α23 = 3.456,

α24 = 2.50 × 105, α25 = 1.80 × 10−5, α26 = 50, α27 = 3.70 × 10−6, α28 = 3.00 × 10−8,

α29 = 9.01 × 10−2, α30 = 3190, α31 = 1.52 × 10−9, α32 = 2.77 × 10−2, α33 = 18, and

α34 = 2.22× 10−4.

s1 = (α1[13][2])/(α2 + [2])− α3[1][15]

s2 = −(α1[13][2]/(α2 + [2])

s3 = (α4[9][4]/(α5 + [4])− α6[3]− (α7[17][3])/(α8 + [3])

s4 = (α4[9][4])/(α5 + [4])

s5 = (α9[9][6])/(α10 + [6])− α11[5]− (α12[17][5])/(α13 + [5])

s6 = −(α9[9][6]/(α10 + [6])

s7 = (α14[24][8])/(α15 + [8])− α16[7][15]− α17[16][7]

s8 = −(α14[24][8])/(α15 + [8])

s9 = (α18[25][10])/(α19 + [10])− α20[9][15]

s10 = −(α18[25][10])/(α19 + [10])

s11 = (α21[9][12])/(α22 + [12])− (α23[21][11])/(α24 + [11])

s12 = −(α21[9][12])/(α22 + [12])

s13 = (α25[9][14])/(α26 + [14])− α27[13][15]− α28[13][19]

s14 = −(α25[9][14])/(α26 + [14])

s15 = −(α3[1] + α16[7] + α20[9] + α27[13])[15]

s16 = −α17[16][7]

s17 = (α29[9][18])/(α30 + [18])− α31[17][19]

s18 = −(α29[9][18])/(α30 + [18])

s19 = −α31[17][19]− α28[13][19]

s20 = 0

s21 = (α32[20][22])/(α33 + [22])− α34[21][23]

s22 = −(α32[20][22])/(α33 + [22])

s23 = −α34[21][23]
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Appendix B f-OTD Derivation for Tensor Sensitivities

We start by considering the third order quasitensor Ṽ′ = [ṽ′
ij] ∈ R∞×ns×nr that we seek

to flatten into a quasimatrix V′ = [v′
m] ∈ R∞×d. For ease of reference, we rewrite the tensor

evolution Equation 2.19 below:

∂ṽ′
ij

∂t
+ (u · ∇) ṽ′

ij = κ̃ik∇2ṽ′
kj + L̃sik ṽ

′
kj + s̃′ij,

where i, k = 1, 2, . . . , ns and j = 1, 2, . . . , nr. We define the indices m(i, j) = j+(i−1)nr and

n(i′, j′) = j′ + (i′ − 1)nr, where i
′ = 1, 2, . . . , ns and j

′ = 1, 2, . . . , nr. In the above equation,

the terms ṽ′
ij and s̃′ij are flattened by replacing the index pair ij with the single index m:

v′
m(i,j) = ṽ′

ij and s′m(i,j) = s̃′ij. Next, we define a new diffusion coefficient matrix κmn ∈ Rd×d

such that the mth diagonal entry is equal the diffusion coefficient of the ith species. That

is, κmn is independent of parameter index j and remains constant across all sensitivities of

a given species i. Finally, the linearized reactive source term is defined as Lsm(i,j)n(i′,j′)
=

L̃sii′
δjj′ , where δjj′ is the Kronecker delta and n is a dummy index corresponding to v′

n.

From this definition, δjj′ results in non-zero contribution to the summation over n only for

sensitivities with respect to parameter j′ = j. Putting this all together, the above equation

can be written as:
∂v′

m

∂t
+ (w · ∇)v′

m = κmn∇2v′
n + Lsmnv

′
n + s′m, (B.1)

where Lsmnv
′
n should be interpreted as a matrix-vector multiplication for any (x1, x2) point

in the physical space. As a result of the parametric dependence of the linear operator,

Equations 2.9 and 2.10 do not hold for the tensor flattened equation. Therefore, we must

derive new evolution equations for the f-OTD modes and coefficients for tensor flattened

quantities. Substituting the approximation v′
m =

∑r
i=1 uiYmi into the above equation, it is

straightforward to show that the evolution equations for the f-OTD modes and coefficients

are:

u̇i =− [(w · ∇)ui − uj⟨uj, (w · ∇)ui⟩] +
[
∇2uk − uj⟨uj,∇2uk⟩

]
YnkκmnYmlC

−1
il

+ [Lsmnuk − uj⟨uj,Lsmnuk⟩]YnkYmlC
−1
il + [s′m − uj⟨uj, s

′
m⟩]YmlC

−1
il , (B.2)
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and

Ẏmj =− ⟨uj, (w · ∇)ui⟩Ymi + ⟨uj,∇2ui⟩Yniκmn

+ ⟨uj,Lsmnui⟩Yni + ⟨uj, s
′
m⟩, (B.3)

where Y = [Ymi] and the indices m,n = 1, 2, . . . , d and i, j, k, l = 1, 2, . . . , r.
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Appendix C Example MATLAB Code

Listing C.1: Matlab code to solve the stochastic Burgers equation using TDB-CUR with

oversampling.

close all; clear all; clc

global nu xi d N

rng default

d = 17; sigma = 0.001; % random dimension; standard deviation

Ns = 256; xi = sigma*randn(Ns, d); % # of samples; random parameter samples

dt = 2.5e-4; t0 = 0.0; tf = 5.0; iter_max = round ((tf-t0)/dt); save_iter = 50;

nu = 2.5e-3;

N = 401; xmin = 0; xmax = 1; % # of grid points

x = linspace(xmin , xmax , N)'; dx = x(2) - x(1);

e = ones(N,1);

D1 = spdiags([-e, e]/(2*dx), [-1, 1], N, N); D1(1, 1:3) = [-3, 4, -1]/(2*dx); D1(N, N-2:N) = [1, -4, 3]/(2* dx); % d/dx

D2 = spdiags ([e, -2*e, e]/dx^2, -1:1, N, N); D2(1, 1:4) = [2, -5, 4, -1]/dx^2; D2(N, N-3:N) = [-1, 4, -5, 2]/dx^2; % d^2/

dx^2

lc = 0.6; K = exp(-(x-x') .^2/(2* lc^2)); % squared exponential kernel

[Ux ,Lx ,~] = svd(K); Ux=Ux(:,1:d); Lx=sqrt(diag(Lx(1:d,1:d)))';
% [Ux,Lx ,~] = svds(K,d); Lx=sqrt(diag(Lx))';
ub = sin(2*pi*x) .* (0.5*( exp(cos(2*pi*x)) -1.5)); % base flow IC

Ux = sin(2*pi*x) .* (Lx.*Ux); % IC perturbations

%% TDB -CUR: initial condition

r = 18; % TDB rank; max=18

m = 5; % # of rows to oversample

U = [ub, Ux];

Y = [ones(Ns ,1), xi];

[U ,R1] = qr(U, 0);

[Y, R2] = qr(Y, 0);

[RU ,S,RY] = svd(R1*R2 ');
U = U*RU; Y = Y*RY;

U=U(:,1:r); S=S(1:r,1:r); Y=Y(:,1:r);

t = t0;

umean = U*S*sum(Y)'/Ns; tt = 0.0; Sig_TDB = diag(S) ';
for iter =1: iter_max % time integration loop

if mod(iter ,100) ==0; disp(iter); end

%% TDB -CUR: compute row and column indices

s = gpode(Y, r); % column indices

p = gpode(U, r+m); % rows indices

[~,pa] = find(D2(p,:)); pa = unique(pa); % adjacent points

%% TDB -CUR: compute rank -r approximation of G

u_s = U*S*Y(s,:) '; u_p = U(p,:)*S*Y'; u_pa = U(pa ,:)*S*Y';
[F1_s , F1_p , F1_pa] = f_ss(t, u_s , u_pa , s, p, pa, D1, D2);

[F2_s , F2_p , F2_pa] = f_ss(t+0.5*dt , u_s +0.5* dt*F1_s , u_pa +0.5*dt*F1_pa , s, p, pa, D1, D2);

[F3_s , F3_p , F3_pa] = f_ss(t+0.5*dt , u_s +0.5* dt*F2_s , u_pa +0.5*dt*F2_pa , s, p, pa, D1, D2);

[F4_s , F4_p , ~ ] = f_ss(t+dt, u_s+dt*F3_s , u_pa+dt*F3_pa , s, p, pa, D1, D2);

G_s = u_s + dt*(F1_s +2.0* F2_s +2.0* F3_s+F4_s)/6;

G_p = u_p + dt*(F1_p +2.0* F2_p +2.0* F3_p+F4_p)/6;

[U,~] = qr(G_s ,0);

Y = (inv(U(p,:) '*U(p,:))*U(p,:) '*G_p)';
[Y,S,RU] = svd(Y,0);

U = U*RU;

t = iter*dt;

if mod(iter , save_iter)==0

tt = [tt t]; umean = [umean , U*S*sum(Y) '/Ns]; Sig_TDB = [Sig_TDB; diag(S) '];
end

end

subplot (1,2,1), surf(x,tt ,umean '), shading interp , view ([0 0 1]), hold on; % mean solution (x,t)

subplot (1,2,2), semilogy(tt,Sig_TDB ,'LineWidth ',2,'Color ','k') % singular values vs time
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function dudt = f(t, u, D1 , D2)

global nu

dudt = -0.5*D1*u.^2 + nu*D2*u; % Burgers equation

end

function out = gdot(t, xi)

global d

out = -2*pi*cos(2*pi*t) + (pi*cos(pi*(1:d).*t)./(1:d))*xi ';
end

%% TDB -CUR: compute Burgers rhs (f) at specified rows and columns

function [F_s , F_p , F_pa]=f_ss(t, u_s , u_pa , s, p, pa, D1, D2)

global xi N

F_s = f(t, u_s , D1 , D2);

F_s(1,:) = gdot(t,xi(s,:)); F_s(end ,:) = 0; % apply boudnary conditions

F_p = f(t, u_pa , D1(p,pa), D2(p,pa));

if ismember(1, p); F_p(1,:) = gdot(t,xi); end % check left boundary (x=0)

if ismember(N, p); F_p(end ,:) = 0; end % check right boundary (x=1)

[U_F ,~] = qr(F_s ,0);

Z_F = inv(U_F(p,:) '*U_F(p,:))*U_F(p,:) '*F_p;
F_pa = U_F(pa ,:)*Z_F;

end

Listing C.2: GappyPOD+E algorithm adapted from [75]

%% TDB -CUR: GappyPOD+E Algorithm

function [ p ] = gpode( U, np )

[~,~,p] = qr(U', 'vector '); % QDEIM (or DEIM)

p = p(1: size(U,2)); % take points equal to number of basis

for i=length(p)+1:np

[~, S, W] = svd(U(p, :), 0);

g = S(end -1, end -1)^2 - S(end , end)^2;

Ub = W'*U';
r = g + sum(Ub.^2, 1);

r = r-sqrt((g+sum(Ub.^2,1)).^2 -4*g*Ub(end , :).^2);

[~, I] = sort(r, 'descend ');
e = 1;

while any(I(e) == p)

e = e + 1;

end

p(end + 1) = I(e);

end

p = sort(p);

end
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