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A STUDY ON FUNCTION SPACES
Lifeng Wang, PhD

University of Pittsburgh, 2023

In this thesis, we investigate the properties of homogeneous function spaces. We study
related basic definitions and prerequisite lemmas. We state and prove a complex interpolation
theorem for the homogeneous Triebel-Lizorkin space F;q(R") when 1 < p,q < oo and s € R.
We prove a Fourier multiplier theorem for sequences of functions and deduce another for
homogeneous Triebel-Lizorkin spaces. This thesis provides improved results of function
spaces found in the famous literature [93] and [94] by H. Triebel. The first pair of results
improves the restrictions of characterizations by maximal functions of the iterated differences

Abfto0<p<oo,0<qg< oo < s < L for the homogeneous spaces Fps,q(R”)

. n
> min{p,q}
n

and to 0 < p,q < o0, , <8< L for the homogeneous spaces B;yq(R”). The following

inequalities are also proven. Denote o, = max{0, n(m — 1)}, 6py = max{0, n(% - %)},

Gy = maX{O,% — %}, o, = maX{O,n(% — D} Let LeN,0<p<oo,0<q<o0,s,teR,
fe F;,Q(R“) and h,e; € R, ¢; is the elementary unit vector for 1 < j < n. And AL f is the

iterated difference, Af;f = AtLejf. If 0 < p,q <00, 0py < s <L, then

s dh 1
I / B AR A gy < 11
- i

Fs (R (1)

FO<p<oo,0<g<landopy+0dy, <s<oo,orif) <p<oo,1<gqg< oo and

—n < s < 00, then

/]

s dh 1
b S I I IAEDOI G s, 2)
If0<p<oo,q:ooand%<s<L,then

AL S]
|fo]*

lze@ny S I f]

I eshsethrllp s (Rn)" (3)

If0<p<oo, ¢g=o00and —n < s < oo, then

(A5

|
F$ oo (R™) S eShS;erle T”LP(R")- (4)

/]

v



If 0 <p,qg<oo, 511,q<8<L, then for each j € {1,--- ,n}

< dt. 1
I AL A s S 1 oy (5)

If 1 < min{p,q}, ¢ < oo and s € R, or if min{p, ¢} <1, ¢ < 0o and qu+6;q < s < 00, then

= © dt . 1
000 S O] 1AL FOR D s, (6)
=1
If0<p<oo,q:ooand%<s<L, then for each j € {1,--- ,n}
!AL /]
|| ess sup lzrrry S (Rn)- (7)
£>0

Ifl<p<oo,q:ooands€R,orifO<p§1,q:ooando*p+;}<s<oo,then

f()|

11l ey S Z | esssup 2o (). (8)

This thesis also provides the counterparts of the above inequalities for the homogeneous

B; (R™) spaces.
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1.0 Introduction

1.1 General Introduction

Historically the theory of function spaces constituted an indispensable and significant
part in the development of classical and modern mathematics. Function spaces, consisting
of continuous or differentiable or p-integrable elements, were of interest not just on their
own but also in conjunction with the theoretical development of ordinary and partial dif-
ferential equations. These spaces were called the classical basic spaces with examples like
LP(R™) spaces and C™ spaces of m € N times continuously differentiable functions. In the
meanwhile the Holder spaces C* with 0 < s ¢ N and the Hardy spaces H? with 0 < p < oo
were also carefully and thoroughly studied. Subsequently, along with the introduction of
Sobolev spaces W"P(R") with m € N and 1 < p < oo, the theory of distributions was
successfully established and new techniques and results such as embedding theorems were
widely utilized for the continued investigation into partial differential equations. During
this period, many new spaces were constructed with explicit norms or quasinorms, which
were usually considered direct descendants of the aforementioned classical spaces. To extend
the Holder spaces C* with 0 < s ¢ N to values s = 1,2,3,---, the Zygmund spaces C*
were defined, revealing the advantages of the second-order difference of functions over the
first-order difference. As an attempt to fill the gaps between Sobolev spaces W™P?(R™) with
m € N, the Slobodeckij spaces W*P(R") with 0 < s ¢ N were introduced. Merging the
above two ideas, the use of the second-order difference of functions instead of the first-order
difference and the replacement of the supremum norm in the Hélder spaces by the LP(R™)
norm in the Slobodeckij spaces, yielded the Besov spaces A7 (R"). Another attempt to
fill the gaps between Sobolev spaces W™P(R"™) was the defining of Bessel-potential spaces
LP(R™) for s € R, also known as fractional Sobolev spaces nowadays, via Fourier transforms.
Of course, this was due to the important role Fourier transform plays in the theory of dis-
tributions. As the theory of function spaces continued to flourish and the investigation into

differential equations continued to deepen, many other spaces were treated extensively, such



as the space of bounded mean oscillation, Lorentz spaces, Campanato-Morrey spaces, Orlicz
spaces, and Orlicz-Sobolev spaces. The number of function spaces grew plethoric and this
gave rise to the need for deep and profound theories that can characterize diversified spaces
from a few unified perspectives. To name a few, the abstract interpolation theory, Fourier
analysis, and the theory of maximal inequalities emerged as far-reaching and powerful tools
to achieve this goal. Many of the aforementioned classical and constructive spaces fell into
the two categories of inhomogeneous function spaces B; , and F; , with their homogeneous

p,q’

counterparts B;ﬁq and Flf’q, all of which can be defined in the framework of Fourier analysis.
Encouraged by this spirit, it is the goal of the present thesis to study and investigate the
classical properties of function spaces of the above types, practicing knowledge and modern
techniques from interpolation theory, Fourier analysis, and maximal inequalities.

The arrangement of this thesis is described below. In the present chapter 1, we give a
general introduction to the historical background of function spaces along with the notations
and basic definitions widely adopted throughout the thesis. In chapter 2, powerful and
technical lemmas and remarks are introduced and they are the devices that will be extensively
used in the proofs of ensuing results. In chapter 3, we look into the interpolation property
of homogeneous spaces F;q(R”) while providing the reader with modern and detailed proof.
In chapter 4, the Fourier multiplier property is studied and the argument given there is of
Hormander type. Chapter 5 is dedicated to the characterization of homogeneous function
spaces F;q(R”) and B;q(R”) by maximal functions of iterated differences. In chapter 6, we
present inequalities in function spaces F}f’q (R™) and B;’q(R") in terms of iterated differences.

And chapter 7 furnishes the reader with inequalities in function spaces sz ,(R™) and B; ,(R™)

in terms of iterated differences along coordinate axes.

1.2 Notations And Definitions

Here in this section, we introduce notations and definitions widely used throughout the
thesis. Let N denote the set of positive integers. Let C'2°(R") be the set of smooth functions

on R™ with compact supports and if a function f is in C°(R™), we use spt.f to denote



the support set of this function. Also, let S(R™) denote the space of Schwartz functions on
R"™ and S’(R™) be the space of tempered distributions, and the notation “X < Y” means
X is dominated by a constant multiple of Y and the constant is determined by some fixed
parameters, and when we want to emphasize the constant is 1 we still use the usual notation
“X <Y” If X SY and Y < X, then we consider X and Y are equivalent and write
X ~ Y. For a sufficiently smooth function f and a multi-index a = (v, - - , @), we denote

the derivative by
ol f (x)

T 027102 - Oxon

For a function f € L'(R"), we denote its n-dimensional Fourier transform by

0 f ()

Ff(©) = [ fa)e .

and the n-dimensional inverse Fourier transform is denoted by

FH© = | faemas,

where for x € R" and £ € R", x - £ is the inner product. If f is a tempered distribution in
S'(R™), we use the same notation to denote n-dimensional distributional Fourier transform

and its inverse. We also give the definition of iterated differences. Let L € N, for a function

f defined on R™ and x, h € R™ we define

Mpf(@) = fla+h) = f),  (A5f)(@) = A4 f)(2). (9)

It is not hard to prove by induction on L that

L
(=DM ARN (@) =D dif(w+ jh) — f(@), (10)
j=1
where ;
» dj=landd; €Zfor1<j<L. (11)
j=1

Assuming the existence of Fourier transform, we have

(ALFuf) (@) = Fal(e7™€ = 1) f(€))(2), (12)



and by iteration, we can obtain

(AR Fuf) (@) = Fal(e?™€ = 1P f(§) (). (13)

In a similar way, we also have

(AR F () = F (e = 1) f(©)) (), (14)

and therefore the following is true

(Ap (@) = F (e = DFFf(6)(2)- (15)

Let H"~! denote the (n — 1)-dimensional Hausdorff measure on the unit sphere S"~! in
R™ and A denote the annulus A := {z € R" : 1 < |z| < 2}. For k € Z, we also use the
notation

Ap={r cR": 27F < |2 < 27}

And the n-dimensional ball is denoted by B"(x,t) :={y € R" : |y — x| < t}.

In this paper we denote the Lebesgue measure and integrals with respect to the Lebesgue
measure in the usual way, then |[S"7!| = H"7!(S""1) and |A| represent the corresponding
surface measure and volume respectively. Also “f” is the mean value integral. Given a
sequence { fi(x)}rez of functions defined on R™ and 0 < p,q < oo, we use the following

notations

{ frtrezllLrqey == /n Z|f,C dx »

kEZ

and

H{fk}keZHM(Lp) = (Z ||fk||%p(Rn))%

kEZ

with modifications if p = oo and/or ¢ = oo, and on the left side, we omit the domain of
LP(R™)-quasinorms since for most cases in this paper the domain is R” by default. Sometimes

the range of k£ may not be all of Z then we make some modifications such as

{ frtezollzraey = /n Zlfk d;p »



and

;
H{fk}kZOHl‘I(L” Z ka’”Lp ]Rn) 1.

Furthermore, esssup ,cpn | fx(2)| denotes the essentlal supremum of the function |fi(x)| over
R™, that is, the least upper bound of |fx(x)| over R™ except on a subset of R™ of Lebesgue
measure zero. Moreover, esssup ,cy | fx(2)| denotes the essential supremum of the sequence
{|fx(z)|}rez at x € R™, that is, the least upper bound of {|f(z)|}rez except on a subset of
Z of counting measure zero, and in this sense esssup ¢y | fr(2)| = supgey | fe(2)]-

For the purpose of the complex interpolation theorem, we cite the definition of S’(R")-
analytic functions from section 2.4.4 of [93]. Let S = {# € C: 0 < Rez < 1} denote the

open strip on the complex plane and S = {z € C : 0 < Rez < 1} be its closure.

Definition 1.2.1. We say that f, is a §’(R")-analytic function in S if the following properties

are satisfied:

(1) for every z € S, f. is a tempered distribution in S'(R");

(2) for every p € S(R") whose Fourier transform is compactly supported in R™, the convo-
lution ¢ * f.(z) is a uniformly continuous and bounded function in R™ x S;

(3) for every x € R™ and every ¢ € S(R"™) whose Fourier transform is compactly supported

in R", the convolution ¢ * f,(x) is also analytic in S.

Now we introduce the definitions of related function spaces and maximal functions. We

fix throughout this paper ¢, 1 € S(R™) such that

0<F(€) <1 and spt.Fnp1p C {% < €| < 2} (16)
and also
Y FENRTY =1 if  £#0, (17)
JEZ

then the function ¢ is defined in a way so that

>0 Fat(2776) i E £,
1 if ¢ =0,

then
spt. Fnp(§) C{E € R™ 1 [§] <2} and F(&) = 1if [§] < 1. (19)



Furthermore, we have the equality
Fud(§) + > Fath(277€) =1 for all { € R™ (20)
j=1

Define for f € S'(R"), j € Z and z,y € R", the function f;(z) := 19-; * f(x) where
a5 (y) = 27™p(2'y) and thus we have the following decompositions:
F=> (21)
jez
where the sum in (21) converges in §'(R")/Z(R™) and S§'(R™)/Z(R") is the space of tem-

pered distributions modulo polynomials (cf. section 1.1.1 of [42]), and
f=rxo+> 1 (22)
j=1

where the sum in (22) converges in S'(R"™). Also due to the support condition of F,1, we
have the following

j+1
fi(x) = Z (fi)i(x) for almost every z € R", (23)

1=j—1
where (f;)1 = -1 % fj = o1 ¥ g—j * f.
Definition 1.2.2. For 0 < p < 00, 0 < ¢ < 0o and s € R, the homogeneous function space

Fs (R") as a subspace of the space S'(R")/Z(R") is

F3 (R") = {f € S'(R")/2(R") : ||f]

Ok {2 fi}hezll oaay < 00} (24)

For 0 < p < o0, 0 < ¢ < o0 and s € R, the homogeneous function space B;,Q(R”) as a
subspace of the space §'(R™)/Z(R") is

By (R") = {f € S'(R")/PR") : |fll gy ) = {2* fidnezllinwn < 00} (25)



It is a well-known fact that the space Sp(R™) of Schwartz functions that satisfy the

condition

/ x%p(x)dx = 0 for all multi-indices «

is dense in F;CI(R”) and B;q(R”) when 0 < p,q < oo and s € R. The above equation is also
equivalent to the condition that all the derivatives of the Fourier transform F, ¢ equal 0 at

the origin.

Definition 1.2.3. For 0 < p < 00, 0 < ¢ < o0 and s € R, the inhomogeneous function

space I (R") as a subspace of the space §'(R") is

Fyy R") ={f € S'R") - |||

s @) = 6% fllr@ny + 2" fibrsollraey < 00} (26)

For 0 < p < o0, 0 < g < oo and s € R, the inhomogeneous function space B;q(]R") as a

subspace of the space §'(R"™) is

By (R") = {f € S'R"): |||

Bs @) = ¢ % flloe@ny + I{2" fibrsolliwey < 00}, (27)

Given L € N, h € R", f € S'(R"), ¢ € S(R"), observe the facts that < ALf o >=<
f, AF, o > and both spaces S(R") and Sy(R") are closed under the operation A, | then (21)

and (22) also suggest that

ALf = Z Affi in the sense of §'(R")/Z(R"), (28)
jE
and
Abf = AL(fx¢) + Z Arf; in the sense of S'(R"). (29)
j=1

Furthermore if 0 < p,q < 00, s € R and f is a function, we define the generalized Gagliardo

seminorm of f (see section 2 on page 524 of [31] for the usual Gagliardo seminorm) is

Flws, @y = (/ (/ %%) : d:v) g (30)

And for 1 <p < oo, s € Rand f € §'(R") we define the inhomogeneous Sobolev norm of f

Q

(see section 1.3.1 of [42] for details) is

ez ny = IF (L + [E17) 2 Faf)llony, (31)




where || - ||prny is considered via duality. In particular when p = 2 we use Plancherel’s
identity and get

1 llz2gny = (14 [€1%)2 Ffll 2 ny. (32)

We recall the definition of the famous Hardy-Littlewood maximal function.

Definition 1.2.4. If a function f is locally integrable on R", then

Muf)w) = esswp | 11wy

>0

is the n-dimensional Hardy-Littlewood maximal function of f at x.

We also define the Peetre-Fefferman-Stein maximal function for functions whose Fourier

transforms have compact supports in R".

Definition 1.2.5. If f is a function defined on R™ whose distributional Fourier transform
is compactly supported in the ball B™"(0,¢) C R™ centered at origin with radius ¢ > 0, then

the associated n-dimensional Peetre-Fefferman-Stein maximal function of f at x is given by

_ f(z = 2)]
Puf(x) = ess Sup TR

where in most cases of this paper we pick r to be a positive number satisfying either 0 <

r <min{p,q} or 0 <r <p.

In general, the n-dimensional Peetre-Fefferman-Stein maximal function can be defined

as

_ |f(z —2)|
Pnf(x) = eszseigp —(1 1)

for any positive real number a but for the convenience of notations in this paper, we choose

a = = for the specified r.

Remark 1.2.1. For the Fourier transform, Hardy-Littlewood maximal function and Peetre-
Fefferman-Stein maximal function, when we want to apply these operations only to some
specific coordinates, we use a subscript number different from the dimension of the ambient

space R”. For example if f(z) € S(R") for n > 1, let © = (z1, 29, -+ ,2,) € R" and we



denote x| = (xg, -+ ,x,) then z = (x1,2)) and f(z) = f(x1,x]). If the 1-dimensional Fourier

transform is done with respect to x; then we use the notation

F1f(,x/1)(y1) = / f(xhxfl)e—%rixlyldxh
R

and if the (n — 1)-dimensional Fourier transform is done with respect to 2/ then we use the

notation

Fn—1f<x17 )(yi) = f(xhx,l)e_%rm/l'yﬁdx/lv
Rn—l

where y; € R"! and 2/ -3/ is the inner product in R"~! dx}| = dzy - - - dz,,. Similar notations
are used for the inverse Fourier transforms. If we fix 2/ € R"~! then the 1-dimensional Hardy-
Littlewood maximal function of f, with respect to the first coordinate, centered at u € R is
given by
M) ) messsup{ [fut b
—6<t<d

5>0
and if furthermore the 1-dimensional Fourier transform Fjf(-,2))(u) is supported in the
interval {u € R : |u| < t}, t € R, then we can also define the associated 1-dimensional
Peetre-Fefferman-Stein maximal function of f at u, with respect to the first coordinate, as
follows
Pif(-, 7)) (u) = esssup M
R (14t|z])r

We continue introducing more maximal functions below.

Definition 1.2.6. For a function f defined on R", let t > 0, r > 0, x € R", 0 # h € R",

L € N, and A is the annulus {z € R" : 1 < |z] < 2}, then the following maximal functions

are defined
(Sff)(x)zeSySe%gp | Sn_l(Athf)(%’ —y)dH" ()] (L) (33)
(WLf)(x)ZeSyseﬁ%gp | A(Afzf)(fv —y)da| - L+t )T (34)
(Dﬁf)(ff)=68ys€%1}bp (A )@=yl (1+ %)7‘". (35)

It should be noted that the number r here could be a general positive number, but for most
cases in this thesis, we just consider this number 7 coincides with the number r given in

Definition 1.2.5.



2.0 Lemmas And Remarks

In this chapter, we collect some useful results and lemmas. In order to write this thesis
in a more self-included fashion, we cite these useful results directly from the literature and
the proofs of cited results can be found in their respective source. We also provide succinct
proofs for those interesting ones. And then we deduce frequently used remarks right after
the closely related citations.

The following lemma is cited from section 1.3.3 of [41] and serves as the main tool we

will use to prove the interpolation theorem in chapter 3.

Lemma 2.0.1 (cf. Lemma 1.3.8 of [41]). Let F' be analytic on the open strip S = {z € C:
0 < Rez < 1} and continuous on its closure such that for some A < co and 0 < 79 < 7 we

have

log |F(z)| < Ae™!m=l (36)

for all z € S. Then

|F(x + iy)| < exp{ ey (37)

sin(mx) /°° [ log |F'(it + 1y) log |F(1 + it + iy)|
2 o Fcosh(mt) — cos(mx)  cosh(wt) 4 cos(wx)

o0

whenever 0 < z < 1, and y is real.

Remark 2.0.1. When z = = + iy € S and F(z) satisfies the conditions of Lemma 2.0.1,

then by writing cosh(rt) = 1 (¢™ + ™) and using the change of variable £ = ™, we have

sin(mx) /°° 1 d=1_2z. (38)
(

2 _ oo Cosh(mt) — cos(mx)

sin(mzx) [ 1
dt = x.
2 /Oo cosh(mt) + cos(mx) a: (39)

Hence using concavity of logarithmic function with respect to measures

sin(mx) 1 " and sin(mx) 1

. . dt
2 cosh(mt) — cos(mx) 2 cosh(mt) + cos(mx)

10



we deduce from (37) that

) o i .
log|F(x+iy)|§(1—x)-logM/ (it + iy)|

2(1 —z) J_ cosh(nt) — cos(mz)
sin(rz) [ |F(14 it +iy)|
1 40
ooy 2x /OO cosh(7t) + cos(mz) (40)
Therefore if we denote for 0 < z < 1
sin(mx) 1
Go(z,t) = : 41
o2, 1) 2(1 —xz) cosh(mt) — cos(mx) (41)
and
i 1
G, 1) = 27 (42)

2¢  cosh(mt) + cos(mz)’

then we obtain

T Goadt= [ Gylet)dt =1 (43)
/ /

o0 —00

and

oo o0

F(z +iy)| S ( / |F (it +iy)|Go(a, t)dt) ™ - ( / [F(1+ it +iy)|Ga(z,0)dt) " (44)

—0o0 —00

whenever F'(z) satisfies the conditions of Lemma 2.0.1.

To prove the Fourier multiplier theorem in chapter 4, we would like to cite the following
fundamental theorem for Banach-valued integral operators found in H. Triebel’s book [90].
Let A be a Banach space and Ly(A) denote the set of all A-measurable and A-bounded func-
tions with compact support defined on R”. Furthermore L(Ag, A;) is the space of bounded

linear operators from Aj into A; equipped with the usual operator norm || - || £(4,4,)-

Lemma 2.0.2 (cf. Theorem in section 2.2.2 of [90]). Let Ay and A; be two reflexive Banach
spaces. Let K(z) be a function with values in L(Ay, A;) defined for almost all x € R™.
Let K(x) be locally L(Ap, A;)-integrable. Further, it is assumed that there exist numbers
00 >q>1,B>0,and C > 0 such that for all ¢ > 0 and for all y with |y| < B™!

1/q
(/|>B K (t(z —y)) — K(tx)||%(AO7A1)dx> <.t (45)

Let
FD) = [ <K@-9).f0)>dy. f € Lo(Ao) (40)

11



Further, it is assumed that there exist numbers p and r with

1 1 1
co>p>1, oco>r>1, —-——-=1——, (47)
p T 4q
such that
1 fllzoany) < CllfllLya0), f € Lo(Ao), (48)
where C'is the same number as in (45). If
1 1 1
l<s<o<oo, ———=1-—- (49)
s o q

then the mapping # (after a uniquely determined extension by continuity) belongs to
L(Ls(Ap), Ls(A1)), and the operator norm

| L(La(a0). Lo (A1) < aC, (50)

where C' has the same meaning as in (45) and (48), and « depends only on n, B, q,r,p, s,

and o.

Remark 2.0.2. A careful inspection of the proof of the above Theorem in section 2.2.2 of
[90] reveals that condition (45) can be replaced by the following Hérmander type assumption:

there exists 1 < ¢ < oo and C' > 0 such that

Q=

([, I =)= K@l 000)} 5, wifornly oy € R (o1

And the constant C' in (51) has the same meaning as in (45), (48) and (50). Since (51) is
trivially true when y = 0, without loss of generality we can assume that K given in (51) is

defined on R™ \ {0}.
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Remark 2.0.3. Directly from Definition 1.2.5 and the use of some basic inequalities we can

obtain useful inequalities for the Peetre-Fefferman-Stein maximal function. If x,y € R” then

Fa—y—2) (Q+tly+ )
P.f(x —y)=esssu .
o = y)=esssu o g A+ )
ooy @1 =2 () (1 4tz
SO At i+ ) TG

=Puf(z) - (1+tly))""".

And also, using the above inequality gives that

Puf(x) =Puf(x —y+y) S Pufl@—y)- (1+ty)""

Therefore we reach the conclusion that for z,y € R"
Paf (@) - (L+tly) ™" S Puf(e —y) S Puf(x) - (1+tly)"", (52)

where the constants involved are independent of ¢ and y. We also infer from (52) that if
P,.f(x) vanishes at some point x € R"™ then the Peetre-Fefferman-Stein maximal function
P,.f vanishes on all of R™ and hence f vanishes on all of R”. So for a nonzero function f,
the associated Peetre-Fefferman-Stein maximal function P, f is positive everywhere. And it

would be obvious that if P, f(x) = oo for some 2 € R" then P, f = oo on all of R™.

Remark 2.0.4. If f is a function defined on R™ and its distributional Fourier transform
satisfies spt.F,,f C B™(0,t) for t > 0 and ¢ is a Schwartz function whose Fourier transform
is compactly supported in B™(0,1) € R"™ and ¢q,(x) = t"p(tx) then the distributional
Fourier transform of the convolution ¢q,, * f is also compactly supported in B"(0,t) C R",

and we have for

10 * f(x — 2)]|
Pn x )(x)=esssu
((;Dl/t f)( ) zeRnp (1 +t’2|)n/r

<esssup/ 1) (@ — 2 —y)[ - (L+ t]z +y ™"
™ ern Jpo (L + ez (1 +tlz +y )/
<esssup/ ) f(z ==z =yl - (L+tly)""
~ . (1 +t]z + y)/r

SPut@)- [ Teuo)l- 1+ tal)

dy

z€R™

13



that is,
Pulp1ye* [)(x) S Puf(x) (53)
for t > 0,z € R™ and the constant is independent of ¢.

For the reader’s convenience, we also would like to cite some useful results from the

well-known literature [41] and [42] below.

Lemma 2.0.3 (cf. Lemma 2.2.3 of [42]). Let 0 < r < oo. Then there exist constants C}
and C, such that for all ¢ > 0 and for all €' functions u on R whose distributional Fourier

transform is supported in the ball || < ¢ we have

1 [Vu(z = 2)| _ Julz = 2)|
eszseigp ZW <C eszse%gp R (54)
esssup 1<, (ul) ) (5%

sern (14t|2])7 —
where M,, denotes the Hardy-Littlewood maximal operator. The constants C; and C,

depend only on the dimension n and r; in particular, they are independent of ¢.

Remark 2.0.5. The above Lemma 2.0.3 is significant in the sense that it provides a point-
wise estimate by the famous Hardy-Littlewood maximal function to a function u whose
distributional Fourier transform has compact support in the ball B"(0,t) of center 0 and
radius ¢ and we have the following

lu(r — 2)|
w(z)| < esssup ———5-
ulo)] S esssup S0

1
= Pau(z) S Mu(|u]")(x)"
where r can be a positive finite number chosen to satisfy particular needs.

Remark 2.0.6. Assuming sufficient smoothness of the function u as a tempered distribution
in §'(R") and iterating (54) of Lemma 2.0.3 repeatedly, since for any multi-index a =
(v, -+, ), the distributional Fourier transform of 0%u is also supported in B"(0,¢) C R",
we obtain ;

1 |0%u(z — 2 u(z — 2

and the constant is independent of .

(56)
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Lemma 2.0.4 (cf. Corollary 2.2.4 of [42]). Let 0 < p < co and « a multi-index. Then there
are constants C' = C(«,n,p) and C' = C(a,n,p) such that for all Schwartz functions u on

R™ whose Fourier transform is supported in the ball B"(0,t), for some ¢t > 0, we have
10%u]| pocgny < O ]| o ny (57)

and

||8au||Loo(Rn) S C,t‘a|+%||u||Lp(Rn). (58)

Remark 2.0.7. Let p,u,t,a be given as in Lemma 2.0.4 and ¢ € R satisfies 0 < p < ¢ < 0

then a simple interpolation with (57) and (58) reveals that

al+n(:-1
[0l zogary S EHG 8 ey, (59)
where u is a Schwartz function on R™ and F,u is supported in the ball B"(0,¢). This
inequality is also known as the Plancherel-Polya-Nikol’skij inequality and the constant on
the right side of (59) only depends on «,n,p,q. For a more general introduction to the
Plancherel-Polya-Nikol’skij inequality, we would like to refer the interested reader to section

1.3 of [93].

The Plancherel-Polya-Nikol’skij inequality can be generalized to the class of sufficiently

smooth functions that are also tempered distributions.

Lemma 2.0.5. Suppose u(x) defined on R" is a sufficiently smooth function as a tempered
distribution in §'(R™), and its n-dimensional distributional Fourier transform is supported
in the ball {{ € R™: [¢| <t} for some ¢t > 0. Assume a = (aq, -+ ,a,) is a multi-index and
0<p<qg< oo, then

10°ul| oany S HFGD [ oy, (60)

and the constant on the right side of (60) only depends on «,n,p, q.
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Proof. Let v € S(R") satisfy the following conditions
0< Fop <1, spt.Fpnp C{E€R":|£] <2} and Frp=11f |¢] < 1.

Then .ano%(f) = }"ngo(%) is supported in {¢ € R™ : |{] < 2t} and equals 1 if |¢| < ¢. Let g

be an arbitrary element in S(R™), then
<u,g >=< Fu,F,'g>=< Fntl, Frip1 CFotg >+ < Fau, (1 — fnw%) cFolg >

The Schwartz function (1 — ]—'ngo%) - F1g is supported in {£ € R™ : |¢] > t} and the

distributional Fourier transform F,u is supported in {{ € R" : || < t}, then
< Fau, (1= Fupr) - Frlg >=0.
Hence we obtain the following

<u, g >=< Fpu, F, (P1 x g9) >=<p1*u,g>, (61)

t

where ¢(z) = ¢(—x). Equation (61) shows that u(z) = p1 * u(z) for almost every = € R™.
If 1 <p < o0, using Holder’s inequality, we have
lull ey < esssup | fuy)] - t"p(te —ty)ldy < 2 [@ll @ - llulle@e,  (62)
TxER™ Rn
where p’ is the Holder’s conjugate of p. If 0 < p < 1, then we have

lulle e <t [ [u(y)” - [u(y)|" "y

<t |l zoeqn) - el Lgny - 16l (63)
If 0 < p < ¢ < oo, we then use (62) and (63) to get

u(@)|"de= [ |u(x)|*" - Ju(z)["dz

Rn Rn
St ul| ey - el

=50 ] - (64)
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Thus we can obtain (60) if || = 0. When u is sufficiently smooth and |a| > 0, we use

Remark 2.0.6 and Lemma 2.0.3 to obtain
1

[0%u(@)] S Pu(0%u)(2) S HP(u)(2) S My (|ul") ()7, (65)

where the constants depend on n and r. By picking r» < ¢ and invoking the mapping property

of the Hardy-Littlewood maximal function, we have

o lal . < lel < glal+n(G—1)

10%ul|Lary S U IMan(lu]") (@) lLa@n) S 09 ullLo@ny S T2 Jullp@ny,  (66)
where constants depend only on n,r, p, ¢ and are independent of . O

An example that shows the advantage of Lemma 2.0.5 over Remark 2.0.7 can be given
below. Consider the function f; = f*y-; where f € S'(R"), j € Z, and ¢ € S(R") satisfies
(16), (17). Then for each j € Z, the distributional Fourier transform of f; is supported in
{€¢ e R": 2771 < [¢] < 2771} and by Theorem 2.3.20 of [41], f; is a smooth function which
has at most polynomial growth at infinity. Then f; is a smooth tempered distribution and

applying Lemma 2.0.5, we have
fi(@) S I fillzm@ny S 22l fillony  for all 0 < p < oo

Lemma 2.0.6 (cf. Theorem 5.6.6 of [41]). For 1 < p,r < oo the Hardy-Littlewood maximal

function M satisfies the vector-valued inequalities

[ MU = <CrL+ (= 1) DIG_15D) "l (67)
[ IMUI) i <Coclp, I LI i (68)

where ¢(p,7) = (1+(r—=1)")p+(@E-17").
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Remark 2.0.8. Recall that for each | € Z the distributional Fourier transform of f; :=

1y % f is supported in the compact annulus 2= < [£] < 2!*1 and

B g1 % f(x — 2)|
Pufi(z) = €ss Sup LT 2H e

Applying Lemma 2.0.3 first and then Lemma 2.0.6 and assuming that s € R0 < p,q <
00,0 < r < min{p, g} we obtain

(] « S 2P )| )’

l=—0

St /RA S 12 M) ) [0 )

l=—00

(LY Rt (69)

l=—00
And by definition of the Peetre-Fefferman-Stein maximal function, fi(y) < P, fi(y) for every
y € R" and [ € Z thus

(f (S 2Ry < (| (S 2P fil) ) ody)

l=—0 l=—0c0

B =

(70)

Therefore we have reached the conclusion that for s € R,0 < p, ¢ < oo, the following is true

s = Z 2t ~ (] Z 2P Ay (7))

Next, we provide useful lemmas in the proofs of our main theorems.

/]

Lemma 2.0.7. Let x,y € R", L € N, r > 0 and for each k € Z and j € Z, if h € R" and

|h| ~ 27% and f; = 1y—; * f, then we have the following two estimates

(BEE) @ =l (1 1) S20 08+ 274 PP ), (72)
(BEE) @ = DI (L4 )T S0+ 2P o), (73)

and constants are independent of y and h.
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Proof. To prove (72), we use the mean value theorem and the iteration formula (9) consec-
utively and obtain

(AR =y S Y 10 —y+2tazh |- [)", (74)
|a|=L

where « represents a multi-index and each ¢, is in the interval (0,1). For each multi-index

a with || = L and since F,,0% f;(£) is supported in {£ € R™ : 2771 < |¢] < 2771} we use the

basic inequality

L L
(L2 y =D tagh)7 S Q2775 25y [+ 2] Y tagh])* S (L428)y))7 - (1+2779)% (75)
=1 =1

and obtain that

L
0°Fi(x =y + > tash)]
=1

L L
o £ — ta h j i
_1o f](; y+zﬁzl ! >l S+ Py = tahl)r
(L 4+ 2%y = 3202 taahl)

=1
S+ 2My)™ - (L +275) 7 Pu(0° i) ().

(76)
We also use Remark 2.0.6 to get P, (0°f;)(x) < 29EP, f;(x). Since |h| ~ 27%, we also have

n [yl |
L+ 2% < O+

We insert these estimates and (76) into (74) and obtain (72). To prove (73), we use (10)
(11) and Remark 2.0.3 to get

(AR = € S 15—y + 0] € S0+ 2l — P, ()
=0 =0
Since |h| ~ 27% then
U+ 2ly = F S L+ 27 (2 9F S+ DT e s
Inserting (78) into (77) yields (73). O
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Lemma 2.0.8. Let f € C°(R"), 7 € [1,2] and § € S"! satisfy the condition that for all
& € spt.f, there are positive real numbers a and b, which can be sufficiently small and are
independent of 7 and 6, such that a < |0 -£| < b. Assume L is a positive integer. Then for

any positive integer NN, there exists a positive constant C' such that

f©) C .
1)L)($)| < (— for all x € R". (79)

F(iisl
| ((627r7,7'9-§ _ 1+ |ZE|)N

Most importantly, the constant C' may depend on f, L, N, a, b but is independent of 7 € [1, 2]
and 0 € S"1.

Proof. 1f |z] < 1, we use Taylor expansion and obtain
(X0 _ D = (21irh - €)F - (14 O(2miTh - £)). (80)
Since 7 € [1,2] and if £ € spt.f, a and b are sufficiently small, then we have
(270 — 1)E| > Cral(1 — Cyb) > 0, (81)

where C7 and C5 are constants independent of 7 and 6. Hence we have

£() £ c -

A — < < rry) S —
|‘7:”((€2mra.g _ 1>L>(x)| = /Rn |(e2miT0-€ — 1)1:‘d5 S Iz R™) ~ (1+ |2V

if x| < 1 and the constant C' is independent of T € [1,2] and 6 € S"*.

If |z| > 1, without loss of generality we can assume that © = (z1,---,x,) € R" and
|z1| = max{|z1],|z2], - ,|zn|} > 0. Using integration by parts with respect to &, the
condition that f € C°(R™) and the basic formula

6 6727!‘2'5!31{1

3_51( —27iT, )

6727ri:p1§1 —

we can obtain

1) I N O I (S E

fn(m)(x - 27_”.1:1 o 8_51 (627”'79.5 . 1)L

We can iterate the integration by parts with respect to & for N times and obtain

Fil et )0) = s [ Sl e (s

2mir0-€ _ 1\L ; N N 2mir0-£ _ 1\L
R
(e £—1) (2mixy) n 08 (e £—1)
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By direct calculation, we have

ak k .
|a£k( 27rz7'0£ L| < |0 | Z| 27rz7'9§ —L— ]l 5 Z| 27rz7-0§ L—]| (84)
7=0

for every nonnegative integer k and the constants are independent of 7 € [1,2] and § € S*~1.
Furthermore, using (80) and (81), if £ € spt.f we can choose sufficiently small positive

numbers a and b so that a < |0 - £| < b implies
(2706 — )T >3 >0 forall0 < j <N, (85)

and the constant Cjs is independent of 7 € [1,2] and 6 € S"~'. Therefore Leibniz rule, (83),
(84) and (85) tell us that
N

f(€) ; ¢
ez ) @1 S g 2 e S [ 0

if |z] > 1 and the constants are independent of 7 € [1,2] and § € S"~!. The proof of Lemma

2.0.8 is now complete. O

Lemma 2.0.9. Suppose f is a tempered distribution in §'(R™). Recall that f;(x) = 191
f(x) for every | € Z, v = (x1,2}) € R™. Then for every fixed 7} = (z3, - ,7,) € R"! the
smooth function z; € R — fi(x1,2]) is an element in §’'(R) and its distributional Fourier
transform JF (-, «}) is supported in the set {u € R : |u| < 27!} and hence the associated
1-dimensional Peetre-Fefferman-Stein maximal function can be defined as

Pufil-, ) () = esssup L= 27

/
N (87)
cer (14 2041)))r
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Proof. Since f € S'(R™) and 1y € S(R"™), by Theorem 2.3.20 of [41], f; is a smooth

function and there exist positive constants a and b such that
|filar, )] < a(1+ || + J21])" < a(1+ |23])°(1 + [aa])°.

This inequality shows for fixed 2f € R""!  the smooth function z; € R — fi(z1,2]) is
in §'(R). To prove the distributional Fourier transform Fj f;(-, ) is supported in the set
{ueR: |ul <21} we find a sequence {© }ren € C°(R™) so that {¢p bren converges to f
in the sense of S'(R™). Next, we establish the equality

< Flfl('?mll)vg >= klggo < ]:1(%4 * Sok('axll))ag > (88)

for every g € S(R). With an argument like above, the smooth function z; € R — by *

ok (z1,x]) is an element of S'(R), thus we have the following

< fl(wZ—l * @k(?xll))ag >
:/]R Yot x pp(u, ) - Frg(u)du

= / or(Y1, Y1) / Yo-1(u — y1, 2y — yy)Frg(u)dudy, dy; . (89)
n R

It is not hard to check by direct calculations that for fixed 2} € R"™!, the function (y;,v]) €
R"™ = [o tho-i(u — y1, 2y — y1) Fig(u)du is an element of S(R™). Therefore we have

Iim < .Fl(?/)g—l * ka('axll)%g >

k—o00

:]}LIEO < @k,/Rl/zgz(u — 2y — ) Fig(u)du >
=<f, / Yoi(u— -, 2y — ) Fig(u)du > . (90)
R

We now justify the equation

< f,/ngz(u — 2y — ) Fig(u)du >= /R < figi(u— - 2y — ) > Fig(u)du. (91)

Since f is a tempered distribution in S'(R™), (91) requires the Riemann sums of the integral
Jg Yot (u—y1, 21—y} ) Frg(u)du converges to that integral in Schwartz seminorms with respect

to y = (y1,y;) € R". For a sufficiently large N € N, we consider the interval [-N, N| and

2N?2

decompose it into 2N? disjoint subintervals {I,,}2Y,

of equal length % and pick u,, € I,,,
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then [-N, N] = Ufn]\fl I,,. The difference between the integral and its N-th Riemann sum is

given by
2N?
/R@Dz—z(u —y 2y — y)Frg(u)du = Y Ll - o-r(um — y1, ) — ) Fig(um) — (92)
m=1

and can be written as a sum of the following two terms,

/| el ) Figlad (93)

and
2N2

Z =y, 21 — Y1) F19(w) — o1 (um — y1, 21 — ¥1) F19(um)du. (94)

It is sufﬁc1ent to show both (93) and (94) converge to zero in Schwartz seminorms with
respect to y as N — oo. Let a = (g, 0, -+ ,ap) = (g, )) and 5 = (By, B2, -+ , Bn) denote

multi-indices. To estimate the Schwartz seminorms of (93), we compute as follows

ly* - ayﬁ</|| Vo-t(u — y1, 27 — yy) Frg(u)du)|
u|>N

Slyllal-lyil'“”-/ (0%0) (2" — 2y, 2') — 2'y;) Fag(w)ldu
|u|>N

1 1
< ar | |a1|./ . du
S o T AT =i+ 4 — PP 5 )

1

<yl - w./ du, 95
ST o T T PP 1o~ PP )

for some arbitrarily large positive integer M. We apply the following estimates

(I+9)% <25 (1+[u—p)? - (1+u?)7, (96)
1 lad| 112 712y 21
(1+|u y|)M_ 1, and |y [ < (Jy) — 217 + [2]]7) 2 (97)
—
then we can estimate (95) from above by
] o / ! (98)
M
L+y)7 L+ |2y — i)™ Sy (L+u2)s

where the constant may depend on «, 31,1, g, M, z}. And (98) tends to zero as N — oo
uniformly in y € R™ if we pick M € N to be sufficiently large. This shows the Schwartz

seminorms of (93) with respect to y converge to zero as N — oo. To estimate the Schwartz
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seminorms of each term in the summation of (94), we use Mean Value Theorem with respect

to v and obtain

|y - 85(/ VYo-i(u — 1, 35/1 - Z/’l)}—lg(u) — Yot (U — Y1, 553 - yll)flg(um)du)’
Im

d / /
So] [ 1@ )2~ 2, 2 ) Figl)]] |- fu =

u=tm
<yl -yl / 1 1
~ N 1 (L4t — g + 42 — gy )2 (L4 23)M

mwwww/’ |
< du, 99
SN 0T = P AT o = P BT (99)

du

for some t,, € I,, between u and u,,, and the constants do not rely on m. When N is large,

we have |u — t,,| < & < % and v < 2t 4+ 1. We also use the inequality (1 + Y2 <

2% (14 [tm —n|?)= - (1+ tfn)% and then we can estimate (99) from above by

at | |, || 1
|y11\|4 [yi | _ / _du. (100)
N1 +y1)> (1 + |2 =DM S, (1+u?)>

2

Summing over m = 1,--- 2N~ and taking supremum over y € R" yield that the Schwartz

seminorms of (94) with respect to y can be estimated from above by

1 1

- - _du 101
N Ji-nm (1 +u2)% (101)

where M is a sufficiently large positive integer and the constant may depend on «, (3, [,
v, g, M, 2. And (101) tends to zero as N — oo. Therefore the validity of equation
(91) has been proved. Furthermore from equation (2.3.21) on page 127 of [41], we know
< fybg-i(u — -,2] — -) > can be identified with the function f;(u,}). By inserting this

identification into (91) and combining the result with (90), we have obtained

<Fifi7h), 9 >=< fil-21), Fag >= lim < Fy (gt % i 7)), 9 > (102)

Since ¢ € S(R™) and ¢, € C2(R™), we have

Vo1 x pi(w) = Fi [Fo Ly [Fav (276 Fapr(€)) ()] (1), (103)

24



where & = (&,&]) € R" and the (n — 1)-dimensional inverse Fourier transform is done with
respect to & € R™! and the 1-dimensional inverse Fourier transform is done with respect

to & € R. Hence for every k € N, we have
< Filtnt+ oul 7)), g >
= [ A st a)w) - gl
= [ FASC 02 ) (s D]w)) - a(uda
=FL Fab 2 ) P, alw)dul(ah), (104)

and from (104) we also see that if spt.g is contained in the complement of the set {u € R :

lu| < 271} then < Fy (ot % oi(+, 1)), g >= 0 for every k € N. Therefore the distributional
Fourier transform JF f;(-, «}) is supported in the set {u € R : Ju| < 2*'} and the proof of

Lemma 2.0.9 is now concluded. O
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3.0 A Complex Interpolation Theorem For Homogeneous Triebel-Lizorkin

Spaces

3.1 Chapter Introduction

In section 2.4.7 of [93], H. Triebel proved an interpolation space theorem for inhomoge-
neous Triebel-Lizorkin spaces where the parameters are in their full ranges. In this section,
we state an interpolation theorem for homogeneous Triebel-Lizorkin spaces F;q(R”) where
s € R, 1 < p,qg < oo and we provide a direct proof of this interpolation theorem using the
complex method and duality. It has been shown that when restricted to the boundary of
the open strip {z € C: 0 < Rez < 1}, the growth of bound of the analytic family {7.}.cc
of linear operators can be exponential in terms of Im z. We limit ourselves to the case when
1 < p,q < oo because the duality of the homogeneous space F;,q(]R") becomes complicated
when one of p, g is less than or equal to 1 or becomes co. The main result is the Theorem 3.1.1
below and Theorem 3.1.1 is new in the sense that it provides modern and clearer conditions
on the family of linear operators {7 },cc while considering the homogeneous Triebel-Lizorkin

spaces.

Theorem 3.1.1. Assume that {7} }.cc is a family of linear operators defined on the space
S'(R™) of tempered distributions on R" and taking values in the set of S’(R")-analytic
functions in the open strip S = {z € C : 0 < Rez < 1} and we also assume the family
{T.,}.ec satisfy the condition: for every ¢ € S(R"™) whose Fourier transform has a compact
support in R" and for all u and v in §’'(R™), the map
Z > Z Vot * To(w) () - Yor % v(2)da
R" kez

is analytic in the open strip S and continuous on its closure S. Let so,51 € R, 1 <
Do, P1,G0,q1 < oo and suppose that M, and M; are positive functions defined on R such
that for some 0 < A < 0o and 0 < B < 7w we have

esssup e B (1) < A < 00 for =01 (105)
teR
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Let 0 < # < 1 and define s, p, ¢ by the equations

1 1-46 0 1 1-6 0
S = (1—0)80+081, - = y - = + —. (106)
b Po P1 q qo q1

Suppose f € S(R") is an arbitrary Schwartz function and we have

1Tl g o SMES i oy (107)
Il @ SOl o (108)
then we have
1o (Pl g, my S MOl 75, ey (109)
where
B sin(m@) [ log My(t) log M (t)
M(0) = exp { 2 / [Cosh(mf) — cos(m0) * cosh(mt) + Cos(m?)]dt}' (110)

Thus by density Ty has a unique bounded extension from F;q(R”) to F;q(R”) when s, p, q
are as in (106).

Remark 3.1.1. If 0 < 0 < 1, we can be certain that M (#) given in (110) is a positive finite

number. Using (38), (39) and assumption (105), the exponent in (110) is dominated by

e dt 111
Og + Sll’l('ﬂ' ) /[; 67'rt + 6fﬂ't _ 2 COS(']TH) + eﬂ't + eiﬂ-t + 2 COS(’]TQ) ’ ( )

since the integrand in (110) can be dominated by an even function in ¢. Let

2Bt 2Bt

t) =
m(t) em™ + e~ — 2 cos(mh) * em 4+ e~ 4 2 cos(nf)

then m(t) is positive for all ¢ > 0 and we choose ty > 0 so that ¢ > ¢, implies e™™ < 1. We
split the integral in (111) into two parts [, m(t)d¢ and Jo m(t)dt. Since 0 < 6 < 1 and
m(t) is continuous and bounded on [0, ], the first part is convergent. As for the second
part we have

o0 00 2Bte~ T 2Bte™™ -
Nt < dt < 8Bt - e ™dt < o0,
/to R /to 1 — 2cos(mf)e~t * 1+ 2cos(mf)e=m ™ /to ) h

due to the choice of ty, and the assumption that 0 < B < 7. And the requirement B < 7
can be seen from (190) and (193) below.
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We also introduce other mathematicians’ results related to the interpolation of function
spaces. In [58], P.C. Kunstmann introduced the /%-interpolation method which came from
the modification of the real interpolation method for Banach spaces and the interpolation
theory presented in that paper was related to the more abstract homogeneous generalized
Triebel-Lizorkin spaces Xg, 4 where 0 < 0 < 1. In [107], W. Yuan introduced the inho-
mogeneous Hausdorff type Besov space BH7(R") with 1 < ¢ < oo and Hausdorff type
Triebel-Lizorkin space FH>7(R™) with 1 < ¢ < oo, which are the predual spaces of Besov-
Morrey space BM,7(R") and Triebel-Lizorkin-Morrey space F M, 7(R"), and the complex
interpolation of these spaces were also obtained. In [71], T. Noi and Y. Sawano introduced the
variable exponent Lebesgue space Lp(')(R”), the variable exponent inhomogeneous Triebel-

Lizorkin space F;((_

B;E; q(_)(R"), furthermore they also give the generalized Holder’s inequality and Minkowski’s

'))q(,)(R”) and the variable exponent inhomogeneous Besov-Lipschitz space

inequality for variable exponent Lebesgue spaces, moreover complex interpolation spaces
for F;((.’))yq(.)(R") and B;é:;vq(,)(R") are also considered as the main results of [71]. In [46],

D. I. Hakim, T. Nogayama, and Y. Sawano gave the definition of the Lizorkin-Triebel-
Morrey space £ (R™) and they also proved the interpolation space theorem that says

u?p?q
(€30 o), Ext L (RM)]g = & (R") in the sense of equivalent norms under the given

conditions in [46]. In [110], C. Zhuo, M. Hovemann, and W. Sickel defined the Lizorkin-

Triebel-Morrey space &, , (€2) on a bounded Lipschitz domain 2 C R" for 1 < p < u < o0,

1 < ¢ < oo and s € R, and the authors also proved there exists a linear and bounded ex-

tension operator from & , (€2) into the space &5, (R?) under the given conditions, finally a

complex interpolation space theorem, which states that [E20 . (Q),ES! ()] = &5, (),

U0,P0,90 7 T u1,p1,q1 u,p,q

was formulated and proven with the Lemarié-Rieusset condition pou; = piug and é’inq(Q)

denotes the closure with respect to &£  (€2) of the set of all smooth functions f such that
o°f e &, () for all multi-indices a. In [87], W. Sickel, L. Skrzypczak, and J. Vybiral
studied the complex interpolation of weighted Besov and Lizorkin-Triebel spaces equipped
with local Muckenhoupt weights wy and w;, and the authors also obtained results on com-
plex interpolation of radial subspaces of Besov and Lizorkin-Triebel spaces on R%. In [11],

M. Bownik introduced the definition of the anisotropic Triebel-Lizorkin space Fﬁq(R”, A, ),

where A is an n X n real matrix all of whose eigenvalues A satisfy |[A\| > 1 and is often
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called an expansive dilation, and p is a doubling measure respecting the action of A, fur-
thermore the author also identified the dual space of the anisotropic space Fp‘fq(R", A) and
proved real interpolation and complex interpolation results of anisotropic Triebel-Lizorkin
spaces with the help of Calderén products. In [56], V. L. Krepkogorskii showed the spaces
BLI“’;?’; can be obtained from the Besov spaces B,(R") and from the Lizorkin-Triebel spaces
F; (R™) upon interpolation along a straight line with slope k, and the author also gave a
counterexample showing that the interpolation spaces (B, |, B! 1)oq and (Bs0 ., Bol )y
are different in general. In a recent paper [15], J. Byeon, H. Kim, and J. Oh established
several results on sufficient and necessary conditions for the interpolation inequality of the
type ||fllx < Hf”%(:GHng(g (0 < 0 < 1) where X, X;, and X, can be inhomogeneous
and homogeneous Triebel-Lizorkin-Lorentz spaces, and inhomogeneous and homogeneous
Besov-Lorentz spaces. The Triebel-Lizorkin-Lorentz quasinorm is the generalization of the
Triebel-Lizorkin quasinorm obtained by replacing the underlining Lebesgue quasinorm by
the Lorentz quasinorm, and the Besov-Lorentz quasinorm can be obtained from the Besov
quasinorm in the same way. The authors of [15] also extended the Gagliardo-Nirenberg
inequalities to the setting of Lorentz spaces, including the limiting case when some expo-
nent equals 1 or oo, and afterward various interpolation inequalities were derived, such as
the famous Ladyzhenskaya inequality and Nash’s inequality. In [108], W. Yuan, W. Sickel,
and D. Yang systematically studied numerous interpolation space theorems of Besov-type
spaces, Triebel-Lizorkin-type spaces, Besov-Morrey spaces, Triebel-Lizorkin-Morrey spaces,
and Morrey-Campanato spaces via different interpolation methods such as the +-method of
Gustavsson and Peetre, the Peetre-Gagliardo interpolation method, the complex interpola-
tion method, the second complex interpolation method of Calderén, and the real interpo-
lation method. The authors of [108] also studied the interpolation of Morrey spaces on a
bounded domain and the interpolation of Besov-Morrey spaces on a Lipschitz domain (ei-
ther a special or a bounded Lipschitz domain) by the Peetre-Gagliardo interpolation method.
Moreover, the interpolation properties of linear operators on some of the smoothness func-
tion spaces built on Morrey spaces were obtained in their article. In [51], X. Jiang, D. Yang,

and W. Yuan introduced the grand Besov spaces &/ B;’q(ﬁ?f ) and the grand Triebel-Lizorkin
spaces &/ F;q(% ) on an RD-space 2~ via the grand Littlewood-Paley g-function, where
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an RD-space 42 is a metric space having both doubling and reverse doubling properties.
The paper also established some real interpolation conclusions of the spaces 7 B;q(% ) and
of F;yq(% ), which generalized the real interpolation theorems of Besov and Triebel-Lizorkin
spaces on Ahlfors n-regular metric spaces and RD-spaces. In [104], D. Yang, W. Yuan, and
C. Zhuo established the complex interpolation theorems on Triebel-Lizorkin-type spaces,
Besov-type spaces, and Besov-Morrey spaces. Furthermore, as a corollary, the authors ob-
tained the complex interpolation for Morrey spaces. In [33], D. Drihem presented the Fourier
analytical definition of Herz-type Triebel-Lizorkin spaces Kg"qF 5 and studied the complex
interpolation of Herz-type Triebel-Lizorkin spaces using Calderén products. As some ap-
plications of the main theorems, D. Drihem also obtained results concerning the complex
interpolation between bmo (or h,) spaces and Herz spaces, and the complex interpolation of
Triebel-Lizorkin spaces equipped with Muckenhoupt weights. In [34], the same author also
studied the complex interpolation of variable Triebel-Lizorkin spaces and considered some

limiting cases.

3.2 Proof of Theorem 3.1.1

Proof. Let 1 <p,p',q,q < oo where p/, ¢" are Holder’s conjugates of p, ¢ respectively. Since
Ty(f) is in F"If,q(]R”) if and only if the sequence {289y * Tp(f)}rez is in LP(R™, 1), and
g is in FJ’Z’ (R™) if and only if the sequence {27%5ty—i * g}rez is in LP (R™,17), and since
LP(R™,19) is the dual space of L¥ (R™,1%) when 1 < p,q < 0o, therefore F;’q(R") is the dual
space of Fp_,;, (R™). And in order to prove (109), it suffices to show

[ e e To)@) - T g@del S MO gy ool o ey (112

R™ kez P

for all f,g € S(R™), where 9 is the chosen Schwartz function in the definition of Triebel-
Lizorkin spaces which also satisfies (16), (17), (21), (23) and 1y« (y) = 2" (2%y). We will
use Lemma 2.0.1 to prove (112) so first, we will construct an analytic extension of the left
side of (112). Recall Definition 1.2.5 and we let f; = 19—; * f and g; = 19— * g for j € Z

then the n-dimensional Fourier transforms 7, f; and F,,g; are both supported in the annulus
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2071 < |¢] < 277! and thus the Peetre-Fefferman-Stein maximal functions of f; and g; are

well-defined and

_ /(2 = 2)| _ |9;(z = 2)]
i e E D e s B

Since f € F;VQ(R") and g € Fp_,f], (R™), we infer from Remark 2.0.8 that for almost every
yeR" o2 |2l577nfl(y)]q)% and (>0 |2_l577ngl(y)|q/)$ are finite real numbers. And
if there exists yo such that (3°__ 24P, fl(yo)|q)% = 0 then from the discussion in Re-
mark 2.0.3, fi(x) = 0 for all [ € Z and x € R", thus by (21) the Schwartz function f is
identically zero and we have a trivial discussion. The same conclusion can be drawn for

O |2_l577ngl(y)|q')%. Now assuming both

o0

(" 125Pufily)|)s

l=—00

and

(3" 275 Pag(y)l)¥

l=—00

are positive, we denote for k € Z and y € R"

) = O3 12°Pufi)l) D) = (Y 125Pufiy)l9)s,  (113)

d d
I(9)(y) = <l§ 275Pag)) 7 Tri(o)(y) = <li 275 Pagi(y)|7) 7. (114)
and let n(y) = 27" (%) + ¥ (y) + 2" (2y) so that
Fan(27%€) = Fup(2751€) + Fup(275) + Fup (27 1¢) (115)
and
Fan(27%¢) =1 on the support of F,1(27%¢) (116)
due to the support condition of F,1 and (17). For z € C we denote
(=) = sa(2=Z 4 Z)— (1= 2)s — 281, (117)
2 L
p2(z) = p( p°1 p—l)—Q( m +Z)’ 1 (118)
pole) =1=p(— =4 5) i) =al— =+ ), (119)



and in accordance with relation (106) we also have

1 1—-6 6 1 1—6 0
—S = —(1—0)50—981, - = 7 +—/, - = WE (120)
p Po Y4 q qo 1
and we denote
1=z 2z
ps(2) = =8¢ (—— + =) + (1 — 2)s0 + 251, (121)
'l q1
1—=2 z 1—=z2 z
/ !
pe(z) =p +—)—q + ), 122
1—=2 z 1—=2 z
2)=1—-9p + —), 2)=¢ + —=). 123
Then we also define for z € C with 0 < Rez <1,k € Z and y € R",
Usily) =278 (1) )O3 (D Je ()™, (124)
and
Vaaly) = 22855 (0) () Ol I (17 ). (125)
Finally for Schwartz functions f, g € S(R™) we define their analytic extensions by
f.= Z??Q—k * U, i and g, = an—k * V., k- (126)

kez keZ
The convergence in (126) is in the sense of §'(R")/Z(R™). We claim that f, and g, are
tempered distributions when 0 < Rez < 1. Let ¢ € S(R") denote an arbitrary Schwartz
function, then we can use (117), (118), (119) and deduce the following

N N

|<fz,s0>lleig{l)o!kZN<nz—k*Uz,k,w>\Sjggr;okZNl < U, flgr %0 > |

N—oo

N
St 3" [ Vsl o x p(@lde < Cllgllimn,
k=—N“R"

where 7j(z) = n(—x) and the positive finite constant C' in the last inequality above may
depend on 7 and certain homogeneous Triebel-Lizorkin and/or Besov-Lipschitz quasinorms
of the Schwartz function f, and the indices of these quasinorms depend on Re z. This shows

f- is a tempered distribution. In a similar way, we can also show g, is a tempered distribution.
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Next, we show that

f@zfa 9o = g, fOI"ZZQE(O,l), (127)

[ fitll g0 oo ey S 1l iy ey [ frvitll g, @y S W Nps ey (128)
1 — S ) < —35 nys 7 —S n < ~—S nY 129
ol o S ol Novsallicn o S Mlle oy (129

and the constants in (128) and (129) are independent of ¢. Using relations (106), (120) and
(116), it becomes clear that when z = 6 € (0,1)

fa:ZUQ—k*fk:Z%—k*%—k*f:fa

kEZ keZ
96 = 27724c * gk = ank *thy-rk kg =g,
keZ keZ

and so (127) is proved. To prove (128), we first notice that for z € S={2€ C: 0 < Rez <
1}, Reps(z) = pa(Rez) = q(% + %) > 0, and applying inequality (52) of Remark 2.0.3

to fr where JF,fi(€) is supported in the annulus 2! < |¢] < 21 we get

fa (2 — 9) @< fa(z — y) R < |Pofulz — y)[Rem®

SIPafi(@) [P (1 4 25 [y[) o), (130)

Also we notice that when Re py(z) > 0, using the right side of inequality (52) of Remark

2.0.3 we can obtain

k

Re pa(2)
115 — y)» P <( Z 289D, fi(x — y)1)
l=—o00
i I I+1 ng . Repa(z)
SO 259, fi) (1 + 2 ) H)
l=—0c0
i . Re po (2) 1 n R
SO 2P, fi(w)) 0 (L4 25 y|) 7 Rer ),
l=—0c0
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and when Re ps(2) < 0, using the left side of inequality (52) of Remark 2.0.3 we can obtain

k

S 2(Z S RQPZ(Z)
L3 =) PNS) S 2Pufile —y)?)
l=—00
b 1 1+1 ng . Repa(z)
SOY S 2%P, fil) (142 y[) =)
l=—00

k
Re pg(2)
SOYS 2 Pufula)?) o (L4 2 )5 R,

l=—00

therefore combining the two cases together gives
| For(N) (@ =)@ S o () (@) (1 4 284y | Her=, (131)
Using (130) and (131) we estimate

s % Un(2)|< / i ()] - [Us (2 — )|y
Rn

5/ ny-r(y)] - 2R @RS (F) (2 — y)Rer )

s Re z e p4(z
N e fi(w — ) [RersGy

ep1(z S e 2 S Re e z
SRem L (F)(@) RO La (P s on [P fi(a) R

LP(R™)

-+ ()| (1 + 2F gy |) 7 (Repe@lers@ gy,
R’I’L

and since the last integral above is independent of k € Z and

2 2 -
|Re pa(2)] + Re pa(2) S <P P2 fnzes,
Po P11 G Q1

we obtain

ep1(z s ep2(z s Rep3(z epoulz
i Us ()| S 28 ORT () ()5 2O L3 ()l [P fis () B4, (132)

and the constant is independent of k¥ € Z and z € S. When z = it for t € R, since F,1)(277¢)
is supported in 2771 < |¢| < 27t and by (115) F,n(27%¢) is supported in 272 < |¢| < 2+F2,

we use (126) with z = it and obtain

Hfzt

2 a0 (B) / Z’szo%ﬂ*%w*[fwm( ) o ypolang) e (133)

JEL 1==-2
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When 1 < po,q0 < 00, || - [[io and || - || zro(rn) are norms of Banach spaces, then we can

dominate (133) by

2
Z(/ (D 1275 5 Myt 5 Us ()| 2P/ © ) o

[=—2 ' jez

2
:Z / Z ‘2 (F+0)s —lSOwQ—j—l+l * Mo—j—1 * Uit,j+l($)’qo)po/qodaj)l/po

=2 JEZ
_Z 9~ 150 / Z ‘2] 04Dyt * Ng—i * Uzt]( )’qo)po/lIodx>1/Po_ (134)
[=—2 JEZ

The Fourier transform of 7,-; * Uy j() is supported in the ball B(0,277?) C R", so using an
argument like that of Remark 2.0.4, we obtain for [ € {—2,—1,0,1,2}

W)Q*j“ * To—i * Uit,j(lE - Z)|

|Pg—i+1 % Mo—i % Uy ()| Sess sup

JCR™ (1 + 29+2|z|)n/r
, —i ok Uy j(x — 2 —y)
< . 1 2j+2 n/r ‘UQ i * 'lt,J d
Neszseigip . |tho—iri(y)| (1 + lyl) (1 + 22z 1 y|)/r Y

n

SPaltes < Uus)a) - [ 2@ )]0+ 242y dy,
where the last integral only depends on [, n,r, 1 and is independent of j € Z, thus we have
W%Hz*ng—j*in( )]<7D ( Mo J*Ultj)( ) (135)

for every x € R™ and the constant is independent of j € Z. Put (135) into (134) and recall

that in Definition 1.2.5 we can chose r > 0 so that

0<r< min{p7p07p17Q7 q07q1ap/ap6ap/1aq/aQ(l)aqi} (136)

and by an application of Lemma 2.0.3 and Lemma 2.0.6, we have

(134)5( / () 2750 Py, (-5 5 Ui ) () |20 )P0/ 0 ) /P
R

" jew
. 1/r
S M2 s = U o)
R™ ez
g(/ (Z 21'80(10|7]27j * Uim,(x)’%)po/qodx)l/z)o. (137)
R™ ez
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Inserting estimate (132) with z = it into (137) yields

qop

(137) S T3 ot / (3 12P. fi (o Z 255D, () 1) ) )

JEZ l=—0

We discuss two cases: 2 — 1 >0 or L2 — 1 < 0. If L2 — 1 > 0, we use
qpo qpo qpo

D 12°Pufie Z 125, i) 7)o (ST 2P fi()[1) - (Y 125 P il

JEZ I=—00 JEZ leZ
=2 \zf'smfxx)\q)%
JEZ
and thus

(138) S T2t / (3 PP, £ ()1 s ) 7o

JEL

— ([ (P I

JEZ

Es  (R7)
where the last inequality is due to Remark 2.0.8. If Z;TI; —1 <0, since

0<X:=IP(f)@) =) 12°Puf(x)]* < oo

JEZL

P _
QI’O

(138)

(139)

(140)

for almost every € R and Y27___[25P, fi(x)|9 increases as j increases, so if we assume

Jo = 0o and pick J; as the least integer so that

J1 Ji—1
1 ls ls
PSS R w3 R <

and for a natural number K € N we pick Jg as the least integer so that

JK Jr—1
KNS Y 2P fi(e)| < 27K and > 29 Pufi(@)]? < 275N
l=—00 l=—o00
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then {Jk } k>0 is a decreasing sequence of integers and we get

> 2P, f(x Z 125, fi()|¢) a0

JEZ l=—00

oo Jr-1—1

= > 12PPufile Z 2P, fi() ) ov0

K=1 j=Jk I=—o0
= K 0P
SY D 12PPufi @)Y [25Pafila)|t)aro ™

K=1 j=Jk oo

oo Jr-1—-1

SO 2P Z 125, fi()|4) a0 !

K=1 j=— l=—00
<23 2 M monme < (3 [P, f ()| . (143)
K=1 JEZ

Inserting (143) into (138) and invoking (71) of Remark 2.0.8 yield (139). Finally we combine
(133), (134), (137), (138) and (139) together and obtain

Hfzt

GOSN

by By (144)

PO QO

where the constant above is determined by fixed parameters and is independent of ¢ € R.

Now we prove || fiyillg1, @ny S I

definition (126) and the support conditions of F,1(277¢) and F,n(27%¢) we have

Fs (R which is the second part of (128). By

||f1+zt|

1511 a ( / Z | Z 2J81¢2 i ¥ Tjo—j—1 % U1+zt]+l( )|Q1)p1/q1d$)1/p1‘ (145)

JEZ 1=-2
When 1 < pi,q1 < 00, || - [[ix and || - || zr1(mn) are norms of Banach spaces, then we can

dominate (145) by

2

Z (/ (Z 12950 4py ¢ it ¥ Uy yigj ()| )pl/(h dx)l/pl

=2 R™ ]GZ
2
:Z / Z |2 (G+D)s ,lslwzfjfwz * TJo—j—1 * Ul—i—it,j—i—l(«r)‘ql)pl/qldaj‘)l/pl
l*—? " ]GZ
_Z 2™ l81 / Z |2J Yhg—j+i % Mo—j * U1+ztj( )|q1)p1/q1dx)1/p1' (146)
l==2 JEZ
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The Fourier transform of 7y—; * Uy ;(2) is supported in the ball B(0,2/%%) C R", so using
an argument like that of Remark 2.0.4, we obtain for [ € {—2,—1,0,1,2}

|Vg—j+1 % Ng—5 * Urpir ()]
|thg—j+1 % My—j * Uttt (x — 2)|

<

i 772—1*U1+z't‘(1‘—2—y)|
<ess su _j 1+ 272y | - d
Sesssup [ )1+ 242yl Py

SPu(n2-i % Uryir ) () / 2| (27 y )| (1 + 272y ) dy,
RTL
where the last integral only depends on [, n,r, 1 and is independent of j € Z, thus we have
|tha-a+t % Na-s % Uryirj ()| S Prlmia-s * Ui g) () (147)

for every x € R™ and the constant is independent of j € Z. Put (147) back into (146) and

recall the condition (136) and by an application of Lemma 2.0.3 and Lemma 2.0.6, we have

(146)< / Z 21514 | P, (g * UlﬂtJ)(x)‘m)m/qldx)ypl
Rn

JEZ
. p1/T 1/r
5(/ (Z Mo (27517 |1y # Ulﬂ.t’j’r)(x”ql/r)ql/rdx)pl/r
R™ ez
S| (T2 s U )/ ) (145)
Rn %
JEZ

Inserting estimate (132) with z = 1 + ¢t into (148) yields

(148) S T30 i - / (3 12P, fi (o Z 2P, f(@) 1) ) (149)

JEZ l=—0

We discuss two cases like before: % —1>0or % —1<0.If % —1>0, we use

S 1295 f (@)1 Z 2P, fu@)|) o SO 2P fi(@)9) - (O 125 P fulw)| ) irr !
JEL l=—o0 JEL leZ
=(3" (2P fy(@)|) o,
JEZ
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and thus
(149) S 112 i - / ZWD £ 5 de)s
/212”7’ @5yt < |1f)

where the last inequality is due to (71) of Remark 2.0.8. If % —1 < 0, we use the same

s (wy (150)

notations \, Jo, Ji, Ji for K € N as given in (140), (141), (142) and estimate

S 2P Y P A

JEZ l=—00

oo Jr-1-1
=2 2 [PPufile Z 24P, fula)| )~
K=1 j=Jk l=—0

oo Jr-1-1

S (D 12Pufy(a Z [265P, fi()|7) o1 -

K=1 j=Jg I=—c0
o0 JKflf1 JK N
SSTCST 2P @)Y 125 P fulw)|)
K=1 j=— l=—00
<23 27T < (3 2Py ()1 (151)
K=1 JEZ

Inserting (151) into (149) and invoking (71) of Remark 2.0.8 yield (150). Finally we combine
(145), (146), (148), (149) and (150) together and obtain

[ friell

7ol (R~ ||f‘ Fs  (Rm) (152)

pl q1

where the constant above is determined by fixed parameters and is independent of ¢ € R.
With (144) and (152), we prove (128).

Next, we move on to the proof of (129). The proof of (129) is very much alike to the
proof of (128) so we will only sketch the main steps and leave the details to the reader. Still
notice that for 2 € S = {z € C: 0 < Rez < 1}, Reps(z) = ps(Rez) = ¢ (1 Rez 4 Riz) >0
and applying inequality (52) of Remark 2.0.3 to gx = 1)y-» * g whose Fourler transform is
supported in B(0,28+1) C R®, we get

g (x — )P < [ Pugi(z — y)|RerE) < |Pog(a)[Fors@ (14 28y ) rBees) - (153)
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By using the right side of (52) when Repg(z) > 0 and using the left side of (52) when
Re pg(2) < 0, we obtain

Tl0) (@ = ) I SIT3 o) (@ — )

Therefore using (153), (154), an argument like the one to deduce (132) and the fact that
PPy 2y 2 S '
| Re ps(2)] + Re ps(2) < A e for z € S, we obtain

eps(z -3 epe(z —s Rep7(z e os(z
[mas # Vor(@)| S 2% RT3 (g) (2) " O T (9) 1) | Pagi ()7, (155)

and the constant is independent of k¥ € Z and z € S. When z = it for ¢t € R, using support
conditions of F,%(277¢) and F,n(27%¢) and an argument like that to deduce (134) we have

ol -2 e 22’80 / (3 2350yt 413 % Vi ()| )90/ dr) %6 (156)
1=—2 R ez

With a similar argument for (135) we also have

(205 12 % Vit 5 ()| S P + Vi) () (157)

for 1 € {—2,—1,0,1,2} and every z € R"™ with a constant independent of j € Z and t € R.
Insert (157) into (156), recall the condition (136) and apply Lemma 2.0.3 and Lemma 2.0.6

and use (155) with z =it in the final step, we get
5 : : I R
(156) S 1170 oy (| (P S Pl ey (138)

l=—

When 4 qo —1>0,weuse Yr___[278P,q(x)|Y <300 [27BPugi(x)|¢ and (71) of Remark
2.0.8 to deduce that

ol ey S (f (SR IPags @I a0 S gl e (159

70:70 JEZ

When pqO — 1 < 0, we use an argument like the one in (140), (141), (142) and (143). Since

0<w:i=T(g)(x)" =) 27"Pug(z)|” < o0 (160)

lEZ
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for almost every x € R", we let [y = oo and pick I; as the least integer so that
y p

I n-1
1 /
3w < ZE_ 127" Pgi(2)|” <w  and lE_ 2751, gi(2) |7 < w (161)

and for a natural number K € N, we pick I as the least integer so that

I Ix—1
27K < Z 1275 Pgi(z)|? < 27K 1w and Z 27 PLgi ()7 < 275w,  (162)
l=—00 l=—o00

then {Ix} k>0 is a decreasing sequence of integers and we have

> 279 Pog;(x)]7( Z 275 Prgi(a )”Oq B

jez l=—c0

oo Ixk-1—1

:Z Z ‘2—8]'7)”9 |q Z |2 lsPng )poq -1

K=1 j=Ig =0
oo Igx-1-1 Iy %_1
SO |27”7’n9j(ﬂ?)!q)(2 275 Pagi()[ ) o7
K=1 j:—oo l=—00
o0 pqo , %
@32 Wt < (P o)l (163)
K=1 JEZ

Inserting (163) into (158) yields (159). When z = 1+ it for ¢ € R, the counterparts of (156)

and (157) are given respectively by

HgmHFﬂI ') S 22“1 / (D 12790y w1 % Vigag ()| 6)7 /) P, (164)
R”

1=—2 jez

and
(Vo1 * No—i * Vigir;(2)] S Pu(na-5 * Vigir;) (@) (165)

for I € {—2,—1,0,1,2} and every x € R"™ with a constant independent of j € Z and t € R.
Insert (165) into (164), recall the condition (136) and apply Lemma 2.0.3 and Lemma 2.0.6
by

and use (155) with z = 1 4 4t in the final step, we can dominate ||gl+z,5||F751 (
1 1

R7)
/
P1

=S S s pq 1(7 z%’
||rq,<>|Lp(Rn-/ (R Pl S Pt (e

l=—00
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If 28 — 1 >0, weuse S [275P,g(x)|? < 32 |275Pagi(2)]9 and (71) of Remark
2.0.8 to deduce that

ol oy S (| (C P @I o) S gl (167)

JEZL

If P/fﬁ

iq’

(160), (161), (162) and argue as in (163) to get

S 27 TP ()| Z 27 )|7)
jez I=—o0
o IK—l*1 // 1
=Y D 2Pl §:|2“Rﬂ )7
K=1 j=Ig =0
oo Ikx-1-1 Iy o
S 0> 1279Pagi (@)D 127 Pagi(a)| ) A7
K=1 j=— l=—oc0
qu pq1 , #q’ll
phd ,P1d < Z|2 S],Pngg( )|f1)p1q_ (168)

K=1 JEZL

Inserting (168) into (166) yields (167). And hence we complete the proof of (129).

Upon the proof of both (128) and (129), we want to use Lemma 2.0.1 to prove Theorem
3.1.1. First, we define the complex extension of the left side of (112). Let f, and g, be as
given in (126) and

D= [ Sbs i ) Ty e @) (169

kEZ
then by our assumption on the family {7,}.cc of linear operators and the constructions of
f- and g., F(z) is analytic on the open strip S and continuous on the closure S. We assume

for now that F'(z) satisfies the condition (36) of Lemma 2.0.1. Then by Holder’s inequalities

|F(it) ’</R D 12500k Ty fie) ()] - 275045 % gia()|dee

" keZ
1
< / (37 12500y 5 T fir) (@)|) 30 - (3 1275051 5 gy (2)|9) %
R™ kez kez
1 ks / L/
S 12500k % Toa(fie) )7 zmoany - 1D 12750 % Gl )% | g g
keZ keZ
SMo(0)| fiell o, my HgnI\F " ) (170)
MO N ol (71)
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where (170) is due to assumption (107) and (171) is because of (128) and (129). Likewise,

we also have

|F(1 +it) |</ Z 125 g Tiie(froae) ()| - 1275 by 5 gryar ()| de

R™ kez

1
5/ (Z |28y i Ty (frvan) (2 |q1 Z 2751y gy (2)]1) % dae
R™ ez kEZ
1 ks ’ i,
SHO 125 4y 5 Togir (Fraan)| ) o o ey - O 1275 g 5 g1 |8) I 2% geny
keZ kEZ
SMi() | friell Byl (R) Hgl+thF*1511(Rn) (172)
< : -
SMi(8)]| f] Fg’q(R”)HgHFp,’q,(Rn)’ (173)

where (172) is due to assumption (108) and (173) is because of (128) and (129). We also
note that constants in (171) and (173) are independent of ¢ € R. Therefore applying Lemma
2.0.1 to F(z) along with (171), (173) and (38), (39) from Remark 2.0.1 yields for 0 < 0 < 1

sin(mf) [ log | F'(it)| log |F(1 4+ it)|
[F(O)]Sexp { / [cosh(mt) — cos(mf)  cosh(mt) + cos(w@)} f

sin(mw@) [ log My (t) log M (t)
Sexp { / [cosh(wt) — cos(mh) * cosh(mt) + COS(W@)}dt

10811l g o 122 )}

MO g a9l oy (174)

Recall (127), then by (174) we have proven (112). Then by the fact that the dual space of
Fo(RY) is Fy(R™), (109) is true for all Schwartz functions f € S(R"). Since F; (R") is
a Banach space when 1 < p,q < 00,s € R and S(R"™) is dense in F;’q(R"), we can pick a

sequence of Schwartz functions {h;},en that converges to h € Flf’q(R") in |||

F;,q (R") y then

the linearity of T} says that

1o () = Tolhn)l gy sy S MO — il oy

thus {Ty(h;) hien is Cauchy in || - |

Fs (B and converges to a unique element in F N (R”) By
defining Ty(h) = lim;_, Ty(hy), we can obtain a unique bounded extension of Ty to all of
F"If’q(R”) that also satisfies (109) and hence prove the theorem.

Last but not least, we prove that F(z) defined in (169) does satisfy the condition (36) of

Lemma 2.0.1. Let z = ac+ if3 represent an arbitrary element in C. Since {7 },cc is a family
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of linear operators taking values in the set of S’(R")-analytic functions in the open strip S,
then by Definition 1.2.1, ¥y, * T,.(f.)(z) is uniformly continuous and bounded in R x S for
every j € Z and the mapping z € C — 1y—; *x T,(f,)(z) is analytic in S for every j € Z and
x € R™, thus this mapping also satisfies the conditions of Lemma 2.0.1. We invoke (44) of
Remark 2.0.1 and obtain

|95 * Tz(fz)($)‘§(/_ |95 * Et+iﬁ(fit+i5)(x)|G0<aat)dt)lia
Y / s % Trsserss(frransss) @G (@, 8)d)°, (175)

for every j € Z and every x € R" and Gy, G are given by (41), (42) and satisfy

/ Go(a,t)dt:/ Gi(a,t)dt =1
for a € (0,1). We also want to prove the analytic function z € C +— 1y-; * g.(x) satisfies
the condition (36) of Lemma 2.0.1. Recalling the definition of g, given in (126), the support
conditions of F,(279¢) and F,n(27%¢) as well as (155), we have

|ty % g.(x |<Z N W] it * Vea(2 = y)ldy

Z |@/12 ; st(a)(j+l)pq73+l(g)($ — y)Pe@
IIF ( TS a Pagsa( = y) Iy, (176)

where in (176) the parameters s, p,p’, q, ¢ are determined by 6 € (0,1), s, p, ¢ satisfy (106)
and p’, ¢ satisfy (120), ps, ps, p7, ps are given by (121), (122), (123). Invoking (153), (154)
and the fact that 0 < Rez = a <1 yields

2
[thgy—5 * gz(x)|§z ZPS(Q)(J'H)F(]_,;-JFI(Q)(;p)ﬂﬁ(a)||Fq_,5(g)||gl(,(zén)|Pngj+l (x)|ps(oc)
1=—2

/ ltho—s () |(1 + 27+ |y |) 7 Ure@l+ps(@)) gy,
Rn

2 ) slq’ sla’ 7, 7, 7, 7,
l=-2
—s 1+117L I%I q*/,-ﬁ-qf/,
IO oy [Prgia(@)] o1 (177)
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We notice that 17,5, ,(9)(®), [[ 1, °(9)|| 1o gny and [Prgj1i(2)| ave finite for almost every z € R”
when g € S(R") is in Fp_,;, (R™), thus (177) tells us that the mapping z € C — 1hy—; * g.(x)
is uniformly bounded on the set S = {z € C: 0 < Rez < 1} for every j € Z and almost
every x € R", and satisfies the condition (36) of Lemma 2.0.1. Using (44) of Remark 2.0.1,

we obtain
o5 * gz(iv)!S(/ [$a-s * Girrip(2)|Gola, t)dt)
] / s * g1 s ()]G (a, £)dE)”, (178)

for almost every x € R", every j € Z and z = a+iff € S. Now we denote by S, Pas Phs Qas @4

interpolation indices determined by « € (0, 1), that is, they satisfy the following relations

Sa = (1 —a)sg + asy, (179)
1 1- 1 1-
STy L _lte o (180)
Pa Po P1 o do q1
1 11—« «Q 1 l—-a «
1 I L2 181
Po  Po D @b o ¢ (181)
For z =a+1i8 € S, since 1 < p,, go < 00 we estimate
(Z \stww * TZ(fZ)(x)’qa>l/qa
JEZ
St / (a3 * Tosip(firsin) ()| Golar, £)dt) 1 -
JEZ -
2ot ([ s il rrisin) (0] Galan 1)) (152)
S 2 s Tusil i) )] Goler ity ®) T
JEZ
(D2 / o5 % Thtirvip(frvieris) ()| Gr(a, t)dE)™ ) (183)
JEZ -

where (182) is due to (175) and (179) while (183) is because of Holder’s inequality and
relation (180). We apply || - ||zra(®n) norm to (183) and use Hélder’s inequality again with
relation (180) then we can dominate ||7.(f.)|

o (R7) by the product of

ZQJSOCIO / (a3 % Tirrig(fir+ip) ()| Go(a, t)dt)qo)qo ||LP0(]Rn (184)

JEZ
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and

1
12 / o # Thgiesin(Freievio) (@) Gr (o, DA )3 G oy (185)

JEZ

We use Minkowski’s integral inequalities, assumption (107), assumption (105) and (128) in

a sequence to obtain that

(184)S / 10" 2750 4y % Tip(fivsio)|™) || ooy G, £) )

JEZ

(] I Tiris Giio) g o Gl 1)~
58,05 Gl D))

S| Mot + B)l vl
s / ) PGy (a, t)dt) e, (186)

<e

where B € [0,7) is given by assumption (105). Likewise, we use Minkowski’s integral

inequalities, assumption (108), assumption (105), and (128) in a sequence to obtain that

00 ' 1
(185)§(/ ||<Z 27518 )y Ty fipgrig(fi4iegig) | ™) 7 || o ey G (o, £) dt)

*©  jez

(| sssinroasss) gy, an G "

/ Mt + B) | frsaesssll o

P1.91

ol [ G0, (187)

(Rn)Gl (067 t)dt)a

r563\6|~

where B € [0, ) is given by assumption (105). Now we show that the integrals
/ PG (o, t)dt for j=0,1

can be dominated by a positive finite constant A" and A’ is independent of Re z = o € (0, 1).

First we pick ¢y > 0 so that t > ¢, implies e™™ < %. Also, we notice the basic facts

sin 7t
t

that sinTa = sinw(1 — «), limy_o = 7 and lim,_,; Sir;’rt = 0, and thus both % and
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sin T
«

are uniformly bounded for o € [0, 1] and the upper bound is a positive finite constant

independent of . Then recalling the defining expression (41) of Gg, we have

/ PGy (a,t)dt

(e e}
to . [e%e] Bt
SeB T dt / ‘ dt 188
~¢ /0 (1 — a)(cosh 7t — cos ma) * 4 coshmt — cosma (188)
2eBloginra [ 1 e 2¢eB1
<— dt dt 189
~ o l-a /oo e + e ™ — 2cos T —'—/lt0 e 4+ e~ — 2cosTar (189)

where in the second integral of (188) we used the uniform boundedness of % Using the

change of variable y = €™, we get

e™ 4 =™ — 2cos T msin To sin Ta

1 1 Tt
/ dt = - arctan( S tan(g — Q).

We also use the estimate

Bt (B—m)t (B—m)t
2e _ 2e < 2e < go(B-m)t
e + e~m — 2cosTa 14 e 21t — 2~ cosmay ™~ 1 — e~ 7 ™

when ¢ > t,. Therefore putting back the above estimates into (189) yields

/ PGy (a, t)dt < 2eP7 + / 4Bt = A < o0 (190)
— o0 to

where B € [0,7) is given by assumption (105) and A’ is a positive finite constant that is

independent of o € (0,1). Likewise by (42) we have

/ PG (a,t)dt

e to ; 00 Bt
<eBto / M Ta dt + / ‘ dt (191)
o «a(coshmt + cosma) +, coshmt + cosma
2 Bto o o] 1 o] 2 Bt
<= T / dt + / ‘ dt,  (192)
« oo €Tt e+ 2 cos T o €™ +e ™+ 2cos T

where in the second integral of (191) we used the uniform boundedness of % Using the

change of variable y = €™, we get

/ ! dt = — tan(=—— + tan(T - ma))
= - arctan an(— — ma)).
e™ 4+ e~ 4 2 cos T TsinTa sin To 2
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We also use the estimate

2¢Bt

2€(B—7r)t
et 4+ e~ + 2cosTar

(B—m)t
< 2e
14 e 27t + et cosmar ™

< 4e
1 —2e "™
when t > t5. Thus putting back these estimates into (192) yields

(B—m)t

/ PG (a,t)dt < 2B +/ 4Bt = A’ < 00

to

(193)
Now we infer from (184), (185), (186), (187), (190) and (193) that

1T (f)ll

oy S APl e

(194)
where Im z = § € R and the constants on the right side of (194) are independent of Re z =

a € (0,1). Next we show that |g. || p-sa gn) S [|9]lz-2 ®n)- Using (178) and (179), we have
Pt p'.d

ng”F o, (R1)~ / 22 sl a)qo‘/ Wy * Girrip(x)|Gola, t)dt) ~)e

\\Q 8

27| s s ()] Galan )
Using Holder’s inequalities with (181) yields

os( [ (2 [

Py l-a
a5 * Girrip(2)|Gola, t)dt)T0) % da)
jez

Po

di) 7 (195)

»—‘\‘Q

([ ([ s s Gaa, i) i (190)

Since 1 < py, ¢5, P, q1 < 0o, by using Minkowski’s integral inequalities, we can dominate
(196) by

([ Ngsial o o Goler )ity - ([
—0 Pg»1(

|’91+it+¢5HF—IS1/ (Rn)Gl(a, t)dt)®.
] P1,91

(197)
Applying (129) and (43) of Remark 2.0.1 to (197) yields
lg:ll o, @y S Mgl @ny, (198)
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where s, ., ¢, satisfy (179) and (181) while s,p’, ¢’ are determined by (120), and the con-
stant is independent of Rez = o € (0,1) and Im z = 8 € R. Therefore by (194) and (198)

we have obtained that

Pasda

SBIB|+ log(AIHfHFgA(R")HgHFI;fq,(Rn)) S APl (199)

log | F(2)|Slog I T=(£2) |z ., ey + 108 19250, ey

for z = a+ i in the open strip S = {# € C : 0 < Rez < 1}, and the constant A" relies
on f, ¢ and is independent of Re z = «, also the constant B € [0, ) is given by assumption
(105). Recall (171) and (173) then we know F'(z) defined in (169) satisfies the condition (36)
of Lemma 2.0.1 for all of z € S. Hereby we conclude the proof of Theorem 3.1.1. m

Remark 3.2.1. A careful inspection into (186) and (187) tells us that we can extend the
exponential growth condition (105) of M;,j7 = 0,1 to an exponential growth condition of
log M;,j = 0,1 by assuming

esi sﬂgp e P logM;(t) < A<oco  for  j=0,1. (200)

€

for some 0 < A < o0 and 0 < B < , if we add in the statement of Theorem 3.1.1 the
assumption that the family {7.}.cc of linear operators is of admissible growth (cf. section
1.3.3 of [41]). That is, by assuming that F'(z) defined in (169) satisfies the condition (36)
of Lemma 2.0.1 for all of z € S, we can omit the last part of the above proof and replace
condition (105) by the assumption (200). With the new assumption (200) on M;,j = 0,1,
the function M () given in (110) is still finite for every 6 € (0, 1).

Remark 3.2.2. In sections 2.1.3 and 2.1.5 of [80], it has been revealed that when 1 < p, g <
oo and —oo < s < 0o, the inhomogeneous space F; (R") is the dual space of f* (R")
where f,%/(R") is the closure of S(R™) with respect to the norm || - || Pyt @) We believe
the counterpart for the homogeneous space Fy (R") also exists and F}; (R") can be seen as
the dual space of fp_,fz, (R™) where fp_,j], (R™) is the closure of S(R") with respect to the norm
|- ll 7=+ gy in the space of tempered distributions modulo polynomials. But whether we can
gene;eﬁize Theorem 3.1.1 to the case where 1 < pg, p1,¢o,q1 < 00 and —o0 < Sg, 81 < 00 is

still unknown.
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4.0 A Fourier Multiplier Theorem For Sequences Of Functions

4.1 Chapter Introduction

In this chapter, we prove a Fourier multiplier theorem for sequences of functions defined
on R™ when 1 < p,q < co. Results in this chapter are known in the esteemed literature such
as [74], [21], [103], but the author would like to derive these results independently as part of
his study for the Ph.D. degree. Recall (31) and (32), then the statement of the theorem is

below.

Theorem 4.1.1. If 1 < p,q < oo, 7 > %, then for all sequences { fi}rez and {my}rez of

functions defined on R™ that satisfy the following conditions:

( /R (O u@)Iida)? < oo, (201)

and the n-dimensional distributional Fourier transform F, fi is supported in the annulus
{€ e R™: 2k < €| < 21 for every k € Z, and each my, is a function in the inhomogeneous
Sobolev space L2(R") and
ess s;p 1m;(274)|| r2rny < 00, (202)
je

we have

([ I Pl ide)? S esssup gz - ([ (3 1t Fde)’

kcZ J R™ ez
(203)

The statement of the theorem originates from Theorem 2 in section 2.4.9 of [93] but
the original literature did not provide proof of the result nor explained why the factor
esssup ez [|m;(27+)|| 12 (rn) would appear on the right side of the inequality. Since this factor
esssup jez [|m;(27-)||12mn) plays a crucial role in the theorem’s other applications, it is in-
teresting to give an independent proof of the Fourier multiplier theorem here in this paper
after studying related materials in [41], [90] and [93]. We use an argument of Hérmander

type to show that the Fourier multiplier theorem is valid when the constant on the right has
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a factor esssup ey [|m;(27-)||2rn) and when 1 < p,q < oo. The proof of Theorem 4.1.1 is
given in section 4.2.

Since we consider the homogeneous Triebel-Lizorkin norm || f|| frs (e 15 the |- [ e (rny-
norm of the || - ||;--norm of the sequence {27%¢y—; * f},cz, we state in the following corollary
that the classical Hérmander’s condition is sufficient for a function to be not only a LP(R")-

multiplier (see Theorem 6.2.7 of [41]) but also a F;,Q(R”)—multiplier.

Corollary 4.1.1. Let 1 < p,q < 00, s € R. And let m(§) be a function that is continuously

differentiable up to order [§] + 1 and satisfy the classical Hormander’s condition:

esssup B2l / |(0%m) (€))?dé < A* < o (204)
R>0 Bol¢|<ar

for all multi-indices o with |a| < [§] + 1, and A is a positive finite constant. Then m is a

F; (R™)-multiplier, that is, for all f € F; (R") we have

|7 (mFa f)]

Es  (R™) SA-f] Es (R (205)

The proof of the above corollary can be found in section 4.3. We also note that in most

applications, the condition on the decay of derivatives of the multiplier
0°m(€)] < g7 (206)

implies the condition (204) and is easier to verify.

We also introduce mathematicians’ results related to Fourier multiplier theorems. In [16],
A. Bényi, L. Grafakos, K. Grochenig, and K. Okoudjou used Gabor frames and methods from
time-frequency analysis to study the boundedness of a general class of Fourier multipliers,
in particular of the Hilbert transform, on modulation spaces MP9 for 1 < p < oo and
1 < q < 00. In general, the Fourier multipliers in this class fail to be bounded on L” spaces.
In [24], Y.-K. Cho and D. Kim studied Fourier multiplier operators whose symbols satisfy a
generalization of Hormander’s condition on the homogeneous Besov-Lipschitz spaces and by
applying their result to the symbol [£|~%, they also obtained a Sobolev imbedding result. In
[53], A. Karlovich and E. Shargorodsky considered the abstract Lorentz spaces A,(X) where
0 < ¢ < oo and X is a Banach function space satisfying the weak doubling property, and

proved that the space of Fourier multipliers acting from A,(X) to A (X) is continuously
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embedded into L for every ¢ in the full range above. In [4], N. Asmar, F. Newberger, and S.
Watson defined a new type of multiplier operator on LP(T") for 1 < p < oo where TV is the
N-dimensional torus, and their main theorem is known to be the first application of the tan-
gent sequences from probability theory to harmonic analysis and it proves that the operator
norms of these multipliers are independent of the dimension N. In [39], A. Figa-Talamanca
and J. F. Price applied the theory of random Fourier series to construct a type of Rudin-
Shapiro sequence and then used this sequence to obtain slightly more restricted versions of
several known families of strict inclusions for Fourier multipliers over infinite compact groups
and over infinite compact Lie groups. In [14], T. A. Bui and X. T. Duong developed a theory
of homogeneous and inhomogeneous Besov and Triebel-Lizorkin spaces associated with the
Hermite operator H = —A + |z|? on the Euclidean space R™ and proved the boundedness of
negative powers and spectral multipliers of the Hermite operators on some appropriate Besov
and Triebel-Lizorkin spaces. In [22], L. Chen, G. Lu, and X. Luo proved that under the
limited smoothness conditions, multi-parameter Fourier multiplier operators are bounded
on multi-parameter Triebel-Lizorkin and Besov—Lipschitz spaces, and they also proved the
boundedness of multi-parameter Fourier multiplier operators on weighted multi-parameter
Triebel-Lizorkin and Besov—Lipschitz spaces when the Fourier multiplier is only assumed
with limited smoothness. In [28], M. Congo and M. F. Ouedraogo studied the boundedness
of nonregular pseudo-differential operators on variable exponent Besov-Morrey spaces, the
x-regularity of whose symbols is measured in Holder-Zygmund spaces. In [6], S. Baron, E.
Liflyand, and U. Stadtmiiller investigated a notion of complementary space for double Fourier
series of functions of bounded variation and gave sufficient conditions for when a double se-
quence is a multiplier of a class. In [23], Y.-K. Cho gave a set of continuous characterizations
for the homogeneous Triebel-Lizorkin spaces and used them to deduce mapping properties
of Fourier multiplier operators on Triebel-Lizorkin and Besov-Lipschitz spaces, and the sym-
bols of these Fourier multiplier operators satisfy a generalization of Hormander’s condition.
In [18], A. Carbery proved an extension of the Marcinkiewicz multiplier theorem for LP(R™)
(1 < p) with the help of the so-called “differentiation in lacunary directions” operator and
the usual argument with Rademacher functions. In [60], H.-G. Leopold stated and proved a

vector-valued multiplier theorem for pseudo-differential operators, which generalized the cor-
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responding results in section 1.6.3 of [93]. In [88], T. Steenstrup provided a closed expression
for the completely bounded Fourier multiplier norm of the spherical functions on the gener-
alized Lorentz groups and proved that there is no uniform bound on the completely bounded
Fourier multiplier norm of the spherical functions on the generalized Lorentz groups. In
[74], B. J. Park studied sharp generalizations of FIS{ ,(R™) multiplier theorems of Mikhlin-

Hormander type, whose sufficient conditions involve the Herz spaces K¢ ,, and these results

wts
definitely improved and generalized Triebel’s results in [91] and [93]. In [21], D. Cardona
and M. Ruzhansky proved the boundedness of Fourier multipliers on a compact Lie group
when acting on Triebel-Lizorkin spaces with Hormander-Mihlin-Marcinkiewicz type condi-
tions, and their results covered the sharp Hormander-Mihlin theorem on Lebesgue spaces
and also other historical results on this subject. In [38], H. G. Feichtinger and G. Narimani
applied techniques concerning pointwise multipliers for generalized Wiener amalgam spaces
and provided a complete characterization of the Fourier multipliers of modulation spaces, and
they also showed that any function with ([d/2] + 1)-times bounded derivatives is a Fourier
multiplier for all modulation spaces MP4(R?) for 1 < p < oo and 1 < g < co. In [25],
G. Cleanthous, A. G. Georgiadis, and M. Nielsen derived a boundedness result for Fourier
multipliers on anisotropic decomposition spaces of modulation and Triebel-Lizorkin type. In
[103], D. Yang, W. Yuan, and C. Zhuo obtained the boundedness of Fourier multipliers on
Triebel-Lizorkin-type spaces Flfg (R™), Besov-type spaces B;:g(R”), Besov-Hausdorff spaces
BH;;; (R™), and Triebel-Lizorkin-Hausdorff spaces F' H;;g (R™), with symbols satisfying some
generalized Hormander’s condition, and their results covered the corresponding existing re-
sults for the classical Besov spaces B;ﬁq(R”) and Triebel-Lizorkin spaces F}f’q(R”) when 7 = 0.
In [3], W. Arendt and S. Bu considered the Fourier series of functions in LP(0, 27; X') where X
is a Banach space and presented the Marcinkiewicz theorem for operator-valued multipliers
and gave applications to differential equations. In [81], M. Ruzhansky and J. Wirth proved L?
Fourier multiplier theorems for invariant and noninvariant operators on compact Lie groups
and gave applications to a-priori estimates for non-hypoelliptic operators. In [57], V. Kumar
and M. Ruzhansky proved the P — L7 boundedness of (k, a)-generalised Fourier multipliers
by establishing Paley inequality and Hausdorff-Young-Paley inequality for (k, a)-generalised

Fourier transform. In [8], E. Berkson proved that for continuous bounded functions having
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uniformly bounded r-variations on T, the associated Fourier series of the operator ergodic
Stieltjes convolution converges at each point in T with respect to the strong operator topol-
ogy, and the results also encompassed the Fourier multiplier actions of these functions in the
setting of A,-weighted sequence spaces. In [5], R. Bafiuelos and A. Osekowski identified the
LP-norms of certain Fourier multipliers such as the second order Riesz transforms and some
Lévy multipliers, and they used the argument of Geiss, Montgomery-Smith, and Saksman,
and a new martingale inequality in the proofs of their main results. In [50], Petr Honzik stud-
ied the associated maximal function of a type of bilinear operator whose Fourier multiplier
is defined on R?? and satisfies a certain decay condition and proved that such a maximal
function maps LP'(R?) x LP2(RY) to LP(RY) with the norm at most a constant multiple
\/m, where pi, po, p satisfy 1 < py,pa < 00, % < p < oo, and p% + p% = }—17, further-
more the author also provided an example to indicate the sharpness of this result. In [26], G.
Cleanthous, A. G. Georgiadis, and M. Nielsen constructed smooth molecular decompositions
for holomorphic Besov and Triebel-Lizorkin spaces on the unit disk of the complex plane,
obtained a boundedness result for Fourier multipliers, and furthermore provided equivalent
norms for the spaces under consideration. The implications of the results of [26] on Hardy
and Hardy-Sobolev spaces and the boundedness of coefficient multipliers were also studied
by the authors. In [75], L-E. Persson, L. Sarybekova, and N. Tleukhanova proved a gener-
alization and sharpening of the Lizorkin theorem concerning Fourier multipliers between LP
and L7, the proof of which used some multidimensional Lorentz spaces and an interpolation
technique of Sparr type as crucial tools. In [20], D. Cardona and M. Ruzhansky proved
spectral and Fourier multiplier theorems in the setting of graded Lie groups and presented a
Nikolskii-type inequality and the Littlewood—Paley theorem. In [99], C. Watari investigated
a class of multiplier transformations of Walsh Fourier series, which shares most of the prop-
erties with fractional integration. In [105], D. Yang, W. Yuan, and C. Zhuo introduced the
Musielak—Orlicz Besov-type spaces and the Musielak-Orlicz Triebel-Lizorkin-type spaces and
obtained the boundedness on these spaces of Fourier multipliers with symbols satisfying some
generalized Hérmander condition. The spaces considered in [105] included Musielak—Orlicz
Hardy spaces, unweighted and weighted Besov(-type) and Triebel-Lizorkin(-type) spaces as
special cases. In [63], T. R. McConnell obtained analogues of the Mihlin multiplier theorem

o4



and Littlewood-Paley inequalities for functions with values in a Banach space having the
unconditionality property for martingale difference sequences. In [36], D. E. Edmunds, V.
Kokilashvili, and M. Alexander studied two-weighted estimates for multipliers of Fourier
transforms and derived conditions for the pairs of weights ensuring two-weight estimates for
several classes of multipliers in Triebel-Lizorkin spaces. Furthermore, the authors of [36] pre-
sented examples of pairs of weights governing two-weighted estimates for Fourier multipliers.
In [73], B. P. Osilenker studied multipliers for Fourier series in polynomials orthogonal in
continuous-discrete Sobolev spaces and obtained existence results and norm estimates for
the multiplier operator. In [49], Y. Heo, F. Nazarov, and A. Seeger investigated connections
between radial Fourier multipliers on R? and certain conical Fourier multipliers on R%*+!
and obtained a new weak type endpoint bound for the Bochner-Riesz multipliers associated
with the light cone in R4*! where d > 4. In [29], E. Curcd proved that if d > 2, every
Fourier multiplier on W1 (R%) or on W *(RR%) is a bounded continuous function on R? for
every integer [ > 1 and this result is a generalization of the corresponding result proven by
Kazaniecki and Wojciechowski in 2013. In [54], K. Kazaniecki and M. Wojciechowski proved
that every Fourier multiplier on the homogeneous Sobolev space is a continuous function. In
[111], F. Zimmermann generalized the classical Fourier multiplier theorems of Littlewood-
Paley, Marcinkiewicz, and Mikhlin to the vector-valued setting in d dimension using a tensor
product approach. In [1], H. Amann extended and complemented the theory of vector-valued
Besov spaces by proving that translation-invariant operators with operator-valued symbols
act continuously on Besov spaces of Banach-space-valued distributions and gave applica-
tions to a variety of problems from elliptic and parabolic differential and integrodifferential
equations. In [86], V. B. Shakhmurov studied the operator-valued Fourier multiplier the-
orems in E-valued weighted Lebesgue and Besov spaces, proved the embedding theorems
in weighted Besov-Lions type spaces, and established the Ehrling-Nirenberg-Gagliardo type
sharp estimates. In [2], W. Arendt and S. Bu proved that the analogue of Marcinkiewicz’s
Fourier multiplier theorem on LP(T) is true for the Besov space B, (T; X) if and only if
l<p<oo1<qg< oo s€eR, and X is a UM D-space, furthermore the authors also
obtained a periodic Fourier multiplier theorem by imposing stronger conditions and then

used their results to characterize maximal regularity of periodic Cauchy problems. In [7],
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B. Barraza Martinez, 1. Gonzalez Martinez, and J. Hernandez Monzon proved that a se-
quence M : Z" — L(F) of bounded variation is a Fourier multiplier of the Besov space
By (T" E) for 1 <p<oo,1<g<o0,s€R, and E is a Banach space if and only if £ is
a UM D-space, and then studied the solvability of two abstract Cauchy problems with peri-
odic boundary conditions. In [100], R. Xia and X. Xiong developed some Fourier multiplier
theorems for square functions and then studied the operator-valued Triebel-Lizorkin spaces
on R% In [19], A. Carbery, G. Gasper, and W. Trebels gave the best possible sufficient
conditions, in terms of differentiability and growth properties, for a radial function to be
an LP(R?) Fourier multiplier and established a multiplier theorem for a class of functions of
which the Bochner-Riesz multipliers are prototypical members. In [109], G. Zhao, J. Chen,

(D) on

and W. Guo studied the boundedness properties of the Fourier multiplier operator e
a-modulation spaces and Besov spaces and improved the conditions for the boundedness of
Fourier multipliers with compact supports and for the boundedness of e(P) on a-modulation
spaces. In [79], J. Rozendaal and M. Veraar developed the theory of Fourier multiplier op-
erators T, : LP(R% X) — L9(R%Y) for Banach spaces X and Y, 1 < p < ¢ < oo and
m: R4 — L£(X,Y) is an operator-valued symbol, furthermore the authors also showed that
when p < ¢, other geometric conditions on X and Y, such as the notions of type and cotype,
can be used to study Fourier multipliers, moreover they also obtained boundedness results
for T, without any smoothness properties of m. In [64], C. Muscalu, T. Tao, and C. Thiele
unified previous results by C. Calderon, by Coifman and Meyer, and by Lacey and Thiele
and proved the boundedness of the multi-linear operator T" where the associated multiplier
belongs to a class of functions that are singular on a subspace of the (n — 1)-dimensional
vector space ' := {€ € R" : {; 4+ - - +&, = 0}. Their result can be viewed as a generalization
of Holder’s inequality and also includes the bilinear Hilbert transform as a special case. In
[44], L. Grafakos and B. J. Park proved an improvement of Calderén and Torchinsky’s ver-
sion of the Hormander multiplier theorem on Hardy spaces H? (0 < p < o0), substituting
the Sobolev space by the Lorentz-Sobolev space, and their result is sharp in the sense that
the preceding Lorentz-Sobolev space cannot be replaced by a larger Lorentz-Sobolev space.
In [72], A. Osekowski established a related estimate for a large class of Fourier multipliers in

the more general setting of continuous-time martingales. In [52], M. Junge, T. Mei, and J.
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Parcet investigated Fourier multipliers on the compact dual of arbitrary discrete groups and
proved an Hormander-Mihlin multiplier theorem for finite-dimensional cocycles with opti-
mal smoothness conditions, furthermore the authors also found the Littlewood-Paley type
inequalities in group von Neumann algebras and characterize L* — BMO boundedness
for radial Fourier multipliers. In [43], L. Grafakos, D. He, P. Honzik, and H. V. Nguyen
discussed LP(R™) boundedness for Fourier multiplier operators that satisfy the hypotheses of
the Hormander multiplier theorem in terms of an optimal condition that relates the distance
1

5= %| to the smoothness s of the associated multiplier measured in some Sobolev norm and

provided new counterexamples to justify the optimality of the condition ]% — %\ < 2, further-

more the authors also discussed the endpoint case |% — % = 2. In [37], C. Fefferman proved
that the Fourier multiplier operator whose multiplier is the characteristic function of the unit
ball is bounded only on L? and disproved the LP-boundedness of such an operator for p # 2.
In [106], A. Ydyrys, L. Sarybekova, and N. Tleukhanova studied the multipliers of multiple
Fourier series for a regular system on anisotropic Lorentz spaces and gave the sufficient condi-
tions for a sequence of complex numbers to be a multiplier of multiple trigonometric Fourier
series from LP[0;1]" to L9[0;1]", p < ¢. In [65], S. Neuwirth and E. Ricard inspected the
relationship between relative Fourier multipliers on noncommutative Lebesgue-Orlicz spaces
of a discrete group and relative Toeplitz-Schur multipliers on Schatten-von-Neumann-Orlicz
classes. In [17], A. Bényi, K. Grochenig, K. A. Okoudjou, and L. G. Rogers investigated
the boundedness of unimodular Fourier multipliers on modulation spaces and proved that
the multipliers with general symbol e’¢/* (0 < o < 2) are bounded on all modulation spaces
and deduced that the phase-space concentration of the solutions to the free Schrodinger and
wave equations are preserved, furthermore the authors also obtained boundedness results
on modulation spaces for singular multipliers || sin(|¢|%) for 0 < § < «. In [61], Y. Liu
proved the boundedness of bilinear Fourier multiplier operators on the variable exponent
Besov spaces using Fourier transform, inverse Fourier transform, and the Littlewood-Paley
decomposition technique. In [35], D. Drihem and W. Hebbache studied the boundedness of
nonregular pseudodifferential operators, with symbols belonging to some vector-valued Besov

spaces, on Besov spaces with variable smoothness and integrability, and these symbols in-

clude the classical Hormander type. In [82], L. O. Sarybekova, T. V. Tararykova, and N. T.
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Tleukhanova proved a generalization of the Lizorkin theorem on Fourier multipliers using
the so-called net spaces and interpolation theorems, and the authors also gave an example of
a Fourier multiplier which satisfies the assumptions of the generalized theorem but does not
satisfy the assumptions of the Lizorkin theorem. In [92], H. Triebel stated the natural Fourier
multipliers for the spaces B, (R") and F (R"). In [76], L.-E. Persson, L. Sarybekova, and
N. Tleukhanova proved a new Fourier series multiplier theorem of Lizorkin type for the case
1 < g < p < oo in the setting of a general strong regular system, and if it is a trigonomet-
ric system, their result implies an analogy of the original Lizorkin theorem. In [96], R. M.
Trigub proved new statements regarding multipliers of trigonometric Fourier series in the
space C' of continuous periodic functions. In [40], M. Girardi and L. Weis proved a general
Fourier multiplier theorem for operator-valued multiplier functions on vector-valued Besov
spaces where the required smoothness of the multiplier functions depends on the geome-
try of the underlying Banach space, and their main result covers many classical multiplier
conditions, such as Mihlin and Hérmander conditions. In [32], P. Dintelmann presented a
discrete characterization of Besov and Triebel spaces which is used to determine various
classes of Fourier multipliers for these spaces and recovered results of R. Johnson. In [70], T.
Noi proved Fourier multiplier theorems on Besov and Triebel-Lizorkin spaces with variable
exponents, and as the consequences of the main results, the author also obtained Fourier
multiplier theorems on variable Bessel potential spaces, variable Sobolev spaces, and vari-
able Lebesgue spaces. In [27], G. Cleanthous, A. G. Georgiadis, and M. Nielsen introduced
a new general Hormander type condition involving anisotropies and mixed norms, and the
authors also obtained boundedness results for Fourier multipliers on anisotropic Besov and
Triebel-Lizorkin spaces of distributions with mixed Lebesgue norms. In [78], T. S. Quek
obtained a sufficient condition for a bounded measurable function on R™ to be a Fourier
multiplier on H2(R") for 0 < p < 1 and —n < a < 0 using Herz spaces and generalized a
recent result obtained by Baernstein and Sawyer. In [13], H.-Q. Bui, T. A. Bui, and X. T.
Duong developed the theory of weighted Besov spaces and weighted Triebel-Lizorkin spaces
built upon a homogeneous space X associated with a nonnegative self-adjoint operator L
on L*(X). The operator L satisfies the Gaussian upper bounds on its heat kernels, the pa-

rameters take value in the full range, and the weight function is in the Muckenhoupt weight
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class Ao,. The authors of [13] also proved that their new spaces satisfy important features
such as continuous characterizations in terms of square functions, atomic decompositions,
and identifications with some well-known function spaces such as Hardy-type spaces and
Sobolev-type spaces, furthermore they applied their results to prove the boundedness of the
fractional power of the operator L, the spectral multiplier of L in these new function spaces.
In [62], Y. Liu and J. Zhao proved the boundedness of bilinear Fourier multiplier operators

on variable exponent Triebel-Lizorkin spaces.

4.2 Proof of Theorem 4.1.1

Proof. We want to use Lemma 2.0.2 to prove the theorem. We let A4p = A; = 17 be
the reflexive Banach spaces as in Lemma 2.0.2. We fix a nonnegative Schwartz function
¢ € S(R™) such that spt.p C {1 < [£] <4}, ¢ =1 on {3 < [¢| < 2} and thus p(277) =1

on spt.F, fr. For a sequence f(x) = {fx(z)}rez satisfying (201), we consider the operator

H @)= [ (K= y). @)y (207)

where for every x € R", K(x) is an infinite diagonal matrix that maps from 19 to (¢ with
diagonal elements { K (%) }rez = {F 1 (mr(£)p(27%))(2) }rez. By using Cauchy-Schwartz
inequality, Plancherel’s identity and condition (202), one can verify that my(&)@(27%) is
an integrable function on R™ and hence each K} in the sequence is well-defined. Therefore

componentwisely % f(x) can be written as

H [ () = {K * fi(2) }rez.

And due to the support condition of ¢, it suffices to prove that the operator J# satisfies all

the conditions of Lemma 2.0.2 and the conclusion of Lemma 2.0.2 will tell us that

( / CQ_NF i Fu i) ()| s der)

RS

keZ
([ (3 1K fla))fta)?
keZ
Sesssup (2 g - ([ () (208)
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Notice that
1Kz = y) = K(@)llpgoim S esssup [Ki(w —y) = Ki(2)| S DK —y) = Ki(x)| (209)
< kEZ
where Kj(z) = F,{(mip(€)p(275))(x) for each k € Z. We want to use the condition

(51) given in Remark 2.0.2 instead of condition (45). First, we give two estimates of

f‘x|>2|y‘ | Ki(z —y) — Ky(x)|dx. Since 7 > %, we pick ¢ and ¢’ so that

0<t<min{l,7— g} and T+ g <t (210)
Then
|Ki(z —y) — Ki(2)|de $ | |Ki(z —y)|lde+ [ [Ki(z)|dz S / | Kk(2)|dz.  (211)
21221y R 21221y 12l

And by Holder’s inequality, we have

/|> | | K (z)|de S (1 + |2’€y|2)—% ./|>| |(1 + |2kx|2)t% (1 + 252 ) 5| Ku()|de
S+ 25y 72 - (/Rn(l + |26 ?) T d)
([ Ry @2 ) i) 212)

We apply the change of variable z = 2%z and the property of Fourier transform that
F A mp(&)e(275))(27%2) = F 1 (28 my (28€)(€))(2) then (212) is dominated by

1259 ([ @ Bt (BRI a2 () i)
S+ ) ([ 0 PR @) @)l 17 (e — w)ld)?ds) (213

S+ ([ (] QG uPEE meto)w)
(L |z = wl)3|F oz = w)ldw)*dz)?, (214)
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where (213) is because by the choice of ¢ the integral [;, (1 + |2|?)""dz converges. We use

Young’s inequality for convolutions and then Hélder’s inequality to obtain

(214)S(1 + 12%%) 2 a2 ) 2 /IR (1+12) 2|7 o(2)]dz
=(L+[2%) 2 i (25 2 e - /R (L+ =)= - (L4 [21) 2| F, (=) ld=

_t r—t! 3 1
S+ 25)%) 2Hmk(2k')”L3(R")||90||Lf/(1R")'(/R (L+[2[*) " dz)>

S(L+ [2P2) 4 - esssup [my (27) e (215)
JE

where due to the choice of ¢ in (210), [q. (1 + [2[*)7" "dz is convergent and the constant
in (215) is independent of k € Z. Combining (211), (212), (214) and (215) yields the first

estimate

/ |Ky(z —y) — Ki(z)|dz < (2k|y|)_t - ess sup ”mj(Qj‘)HLZ(]Rn), (216)
|| >2]y] '

JEZ

where 7 > %, ¢ satisfies (210) and the constant in (216) is independent of k € Z and

0 # y € R". For the second estimate, we notice that

Kz —y) — Ku(@)| < / VE( — ty)] - [yt

and |z — ty| > |y| if |z| > 2|y| and ¢ € (0, 1) hence

[ e ) - Kl
|z[>2[y|
1
s[ [ IV - )] Iy
|z|>2y[ /O

1
5/ / V(@) - lyldedt
0 Jlz|>|y|

|- /| VK@) (217)
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Let @ = (g, 0, ,ap,) € Z™, oy > 0 for 1 < i < n, denote a multi-index and |a| =

a1 + - -+ + ay, then by the basic property of Fourier transform we have

[, V@ s bl [ F e )@l

laj=1 x>yl
|y k. 12\5T
< . 14 [2%2z|7) 2
||Zl 1+ [2Fy|?)2 /Ir>|y|< * )
(14 [2%2%) 2| F (€0 mi(€) 0 (2756) ) ()| dax, (218)

We apply in a sequence Holder’s inequality, the change of variable z = 2¥z and the property
of Fourier transform that F;1(£%my,(€)p(27%€))(27F2) = FH(2kMHD g, (25¢)p(€))(2) for

|a| = 1, then we can estimate (218) from above by

Yl . ke 2V g ) 3
> gy (L0 R

laf=1

( / (14 [28]2) | P (€ mi () (2+6) ) () )
k
=y ([ ey

(1 2yP)

([ @+ P o))z (219

m\u

Recall (210) and the integral [p, (1 + [2|*)'""dz converges, thus we can obtain the following
inequality
<Z ﬂ ( / ( / (14 [2f*) 7|7, (i (24€)) (w))
L4 [28y2)2 e Jee
. < £70(6))(z — w)|dw)?dz)’
<y 2l 2yl </n</n(1 + w[?)E | F (e (28€)) (w)]

= (L )
(L |2 = w3 |7 (60 () (= — w)|dw)*dz)>. (220)
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Using Young’s inequality for convolutions, we have

20083 @l [ 0+ EPEE R O) s

|\11+|2k )?

-3 e @ e | (4 P LA A

|\11+|2k ’

2ky @ T—t' 1
SY 2 2 g 1€z - ([ (1412 )3

la]=1 (14 [2*y[?)2
- ess s;p Hmj(2j-)HLg(Rn), (221)

where the last inequality is because of (210) and the integral [, (1 + |2|*)7""dz converges.
Combining (217), (218), (219), (220) and (221) together yields the second estimate

/ |Ki(z —y) = Ki(2)|dz S (2°[y])' ™" - esssup [[my(27) ]| p2zm. (222)
jal>21y] jez

where 7 > 7, t satisfies (210) and the constant in (222) is independent of k € Z and y € R".
Recall (209). We use (216) when k € Z satisfies 2¥|y| > 1 and use (222) when k € Z satisfies

2%y < 1, then we get

/|>2 | | K(z —y) — K(2)|| Lga,0)d
52/ |Kie(z —y) — Ki(z)|dx

kez ¥ lz1>20yl
,S( Z (25 y)) =" + Z (2 |ly) t) esssup |m;(27- M 2@
kez kez JEL
2k |y|>1 2k |y|<1
Sesssup ||m;(27-)]| 22 mny, (223)
jez

and the constant in (223) is independent of k € Z, y € R™ and y # 0. It is trivial to see
that (223) still holds true for y = 0. This shows the infinite diagonal matrix K(-) satisfies
condition (51) of Remark 2.0.2 and the constant C' on the right side of (51) contains the

factor esssup ;7 [|m;(27-)[| L2 @n)-
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Next we prove that the operator % satisfies assumptions (47) and (48) of Lemma 2.0.2.
For every k € Z we recall Ki(x) = F, Y (mi(£)(27%¢))(x) and deduce the following

/Rn ]Kk(x)\dx:/n(l + 128227 - (1 + 252 %) 2 | Ky ()| da
S| @2y o) ([ (@ 25y (o))} (224)
([ @) ([ 1 BT IE (e (P 225)
SO PR ) )] 1 ol — w)ldu)d), (226)

where (224) is due to Holder’s inequality, (225) is by the change of variable z = 2*z and the
property of Fourier transform that F,!(my()@(275€))(27%2) = F 1 (28 my(28¢)p(€))(2),
and (226) is because 7 > % and thus the integral in the first factor of (225) converges.
Using Young’s inequality for convolutions, Holder’s inequality and the definition of ¢ in

(210) sequentially, we can estimate (226) from above by

([ ([ a+ P I M- 1+ 12w ol w)ldw)dz)?
Sl @z [ (1 P () E 7 o)
a2z e Il - € / 1+ [Py az) (227)

From (226) and (227), we deduce that

1Kl 2@y S a2 ] 22 gy (228)

and the constant is independent of k € Z. Therefore using Young’s inequality for convolutions
again, we obtain that

" kez

_Z K fi(w)|"de

keZ
<Z ||Kk||L1 (R™) ”.fk”Lq (R")
kEZ
<(eSS Sup [l (27 )] L2 ) > )| da, (229)

R™ ez
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and this inequality implies that the operator %" satisfies assumptions (47) and (48) of Lemma
2.0.2 and the constant C' on the right side of (48) contains the factor
ess s [[m;(29)]| 2 s
jez

Finally, we check that the infinite diagonal matrix K (z) with values in the space of
linear operators from 19 to {7 is defined for almost every x € R™ and || K (2)| (a9 is locally
integrable in the domain of K(z). Let § > 0 be a positive number. In (212), (213), (214)
and (215), we replace |y| by d then for each k € Z we have

[ IEu@)de S 1+ 24 - esssup () 1z (230)
|z| >4 jez
and hence
/|>5 E | Ky (z)|dz < < 22 kt . —t.esses,;p Hmj(Qj')HLg(Rn) < 00, (231)
v J
& Kz

Since § can be any positive number, then > rez | Ky ()] is finite for almost every x € R™ and
k>0

locally integrable away from zero. Also for each k € 7Z, we have

K@) =17, (€ (27 (27 - 2)
2|7 (i (24)) + Fp(24a)
<2 [ IF @) )1 F o2 )y

<O (25 e - / Fuply — 240)2dy)
R’ﬂ

<2 esssup ||m;(27) || z2@ny - 1@l z2(n), (232)
jez

and hence

Z |Ki(z)] < ZQ’m esssup Im;(27) || 2y S esssup |mj(27)|| 2 mny < 00 (233)

keZ keZ Jj€
k<0 k<0

for every x € R™ and is locally integrable away from zero. Recall the following inequality

1K (@)l Lga ey S 55 Sup ()] S ) K@) + ) | Ki(x)

k>0 k<0

and then the proof of Theorem 4.1.1 is complete. O
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4.3 Proof of Corollary 4.1.1

Proof. Let ¢ be as given in (16) and (17) and recall f; = 1y * f for j € Z. We also fix
a nonnegative Schwartz function ¢ such that spt.p C {£ € R" : 1 < [¢] < 4}, ¢ =1 on
{€eR™: 1 < [¢] <2} and thus ¢(277¢) =1 on { € R™: 277 < |¢] < 277}, By definition

of || - ”F;,q(R")’ we have

175 (mF )]

e = (0P (8 ) 5 f(@) 1)

R™ ez
([ (S 2IE @ b ) @l )
R™ jez
:(/ O 2% F,  (ml€) (2776 Fu f5(€)) ()| )P adz) 7. (234)
R™ jez
Since f € F;’q(R”), the sequence {27 f;},cz satisfies condition (201) of Theorem 4.1.1 and
205 F, f;(€) is supported in {€ € R™ : 2771 < |¢| < 2771} To prove (205), it suffices to
show that the Hérmander’s condition (204) implies the sequence {g;(§)};ez, where g;(&) :=
m(€) - (277€), satisfies

esssup [|g; (27 )|z, @y S A < oo, (235)
jEL [%]+1
First, by a change of variable y = /R, we see condition (204) is equivalent to

ess sup / 09 (m(Ry))|*dy < A* < o0 (236)
i<|y|<4

R>0

for all multi-indices o with |a] < [§] + 1 and 95 (m(Ry)) means the partial derivative of the

function y — m(Ry) with respect to y. Since [§] 4 1 is an integer, then we have for j € Z

||9j(2j')||Lf%H1(Rn>:||gj(2j')||w[%]+1,z(w)5 > 1992 )@ (237)

la|<[5]+1
Using the Leibniz rule, we have

«

5) 08 (m(279))0" P o(y)

50 (05(2y) = O (m(Zy)e(w) = (

BLa
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where multi-indices & = (o, -+ - , ) and B = (B, - - -, B,) satisfy 8 < a, thatis, 0 < 5; < o

foralli=1,---,n, and a — f is the multi-index (ag — f1,- -+, — Bn), and

(5)= () () (5)

Notice that || < |a] < [2] + 1 and 9% Py is supported in {y € R : 1 <|y| < 4}, then we
2 1

obtain

5@z, w0S 3 ([ 105 ety Py
’ jl<[g]+1 7R
BLa

S S 0 el ([ 18] m(y) Py

ol <[5]+1 a<li<4
BLa

S Z 0% P || poo rn) - A, (238)
lal<[3]+1
BLa

where (238) is due to condition (236), and constants involved are independent of j € Z.
Taking essential supremum over j € Z in (238) gives us (235) and henth (205) is proved by
invoking Theorem 4.1.1. [
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5.0 Characterization Of Function Spaces By Maximal Functions Of Iterated

Differences

5.1 Chapter Introduction

In section 2.5.9 of [93], H. Triebel proposed an equivalence characterization theorem of
the inhomogeneous function spaces F; (R") and B, (R") by maximal functions given in

Definition 1.2.6 and we cite this theorem below with notations adjusted to the notations

used in this paper. Let G, =n + 3 + 3—” and Gpg =n+ 3+ mm{p -

Theorem 5.1.1. (i) Let 0 < p < 00, 0 < ¢ < o0 and s > G,. If M is an integer with
M > 2G, + s and if r < p in (33)-(35), then the following five quasinorms are equivalent

. s (on
quasinorms in B, (R"),

11| oqny + 11125535 FYrolliacer), (239)
11| oqny + [1{2% ess Sup SY-x Y rzolliaqr), (240)
1l oy + ||{2kSV kf}k>0||l‘1 Lr) (241)
| fll e mny + |{2" ess sup V e f Yol (242)
1 llzoam + 1425 ess sup DI, fhisolliz. (243)

1<|h|<2
i) Let 0 < p<o0,0<qg<o0ands > G, If Misan integer with M > 2G,, + s and if
prq prq

r < min{p, ¢} in (33)-(35), then the following five quasinorms are equivalent quasinorms in

Fy (R,

[ fll e ey + |’{2k85¥kf}k20”m(m), (244)
£ 1| oqny + {27 ess sup SYg-r fYezollLrqa, (245)
£l o cny + [{25V5Y kf}k>0||LP 1) (246)
£l 2oy + ({2 ess Sup Vi ksl oqay, (247)
£l o crny + {25 ess sup Dylu, f hisolloqay. (248)

1<|h|<2
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It seems that the restrictions s > G,, M > 2G,+s, s > Gpq, M > 2G4+ s are unnatural
and the ranges of 7 and |h| under the supremums in Theorem 5.1.1 can be extended. Below we
would like to propose the improved versions of the above theorem for homogeneous function

spaces F;Q(R”) and B;q(R”). The results below are published in the author’s paper [98].

Theorem 5.1.2. Let n > 2,0 <p < o0, 0<¢g< oo, f€F (R")is a function and assume

L e N, s € R satisfy < s < L, then for every r as in Definition 1.2.5 and Definition

mln{p q}

1.2.6 satisfying * < r < min{p, ¢}, the following five quasinorms are equivalent quasinorms

in F;q(R”),

{2 S5 s f ezl Loy, (249)

{2 esssup Sy hucll oo, (250)
0<r<2

||{2k8‘/§€kf}kez||Lp(lq), (251)

|{2" egs sup V2 v f Yoez |l e oy (252)

{2 esssup Dy Fhrcz s, (253)

0<|h|<2

Theorem 5.1.3. Let n > 2, 0<p<o0,0<g<o0, f € B;q(Rn) is a function and assume
L € N, s € R satisfy % < s < L, then for every r as in Definition 1.2.5 and Definition 1.2.6

satisfying = < r < p, the following five quasinorms are equivalent quasinorms in B;q(R”),

1{2" S5 i f Y nezllia ey, (254)

1{2" esssup S5 f ez i), (255)
0<r<2

{25 Va2 f I rezlliaer)s (256)

1{2* eSS Sup Vi wezllio (e (257)

1{2** ess sup Dy, frezliae)- (258)

0<|h|<2
The proof of Theorem 5.1.2 can be found in section 5.2 and the proof of Theorem 5.1.3

Is given in section 5.3.
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5.2 Proof Of Theorem 5.1.2

Proof. We first prove that

|{2" esssup St f (@) ezl zoga) SIS

1<1<

P (259)

when 0 < p<o0,0<qg< o0 < s < L and for every r € R with 2 < r < min{p, ¢}.

’ mm{p a}

Recall f; = f * 1)9-;. We denote

Zesssup/ ALy fi(a =)l - (L4 24y FdH (). (260)
- 1<7I—R<2 Ssn—1
yeR™

Since |[727%2| ~27%if 1 <7 < 2 and z € S"!, then we have
1Akt =l (2 )

< L o f . . |y| = n—1
S Iah el (1 S P o).

We use (72) for j < k and (73) for j > k, and obtain

2)SY 20U+ PR EP fi(a) + Y (14 27F) TP, fi(x)

i<k i>k
> 2UTPED, fi(2) + Y 207PEP, f(x). (261)
i<k i>k

For 0 < ¢ < oo, we pick 0 < ¢ <min{L — 5,5 — 2} and deduce from (261) the following

> 2SS ()

keZ

S 2y 27 27 URED, £ ()

kezZ i<k

£ 22 2R f ()"

keZ >k

<Z 2ksq 2215 q cesssup 27 lge+(1— quP fl( )

keZ i<k i<k

—1—22’“‘1 22 7€)4 . esssup 2R D f (1)

ke >k >k

SZ 2kq(s+s) Z 2flqs+(lfk)quPnfl($)q

kEZ 1<k

+ Z 2kq(57€) Z 2lq€+(lfk)q% Pnfl ($)q

keZ >k

<> 2P, fi(x), (262)

leZ
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where in the last inequality we switched the order of summation. Then we raise the power
to %, apply || - || L»(rn)-quasinorm to both sides of (262), use Remark 2.0.8 and we can obtain

the estimate

IS f@healioe S ([ (32 Puf(at o) < 11

b (263)
If ¢ = oo, we use (261) and the same € as above to obtain

esssup 275 f(x)

kez

<esssup 2~ Z 2 esssup 27T ERLD, £ (1) + esssup 28 Z 27 esssup 25PN P, £ (2)
keZ = 1<k kez P I>k

Sesssup 286+ esssup 27EHRED £ (1) + esssup 2867 esssup 25HIRE D f (1)
keZ 1<k kez I>k

=esssup esssup 2FETEL) L QUE=OD £ (1) 4 esssup esssup 2867 L 21D £ (1)
€L k>1 leZ k<l

<esssup 2P, fi(x). (264)
lez

We apply || - || z»@®n)-quasinorm to both sides of (264), use Remark 2.0.5 and the mapping

property of Hardy-Littlewood maximal function to get
{2 S5 f (@) Yezll Loa=)
1
Sllesssup 25 M, (| ") (@) || Loy
lEZ
Sl M (esssup 27| fi] ") )H
lez

Sl esssup 2°| filllony = 1]
lez

™ (Rn)

The above proof also shows for every k € Z,

) < 00, (266)

lesssup f 57 AL fiw — p)ldHE) - (14 2T
P =

and thus Y7, |AL_ fi(z —y)| < oo for almost every 1 < 7 < 2, 2 € S"', 2,y € R"™.

Therefore we can infer from (28) that

ALy fz =) ZATzkax_ y) (267)

JEZL
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in the sense of §'(R")/Z(R") for every k € Z, and almost every 1 < 7 < 2, z € S"° 1

x,y € R". The above justification of decomposition also tells us that

esssup Sy, f(x) = esssup | Ay fa = y)dH" 7 (2)] - (L+ 77128 )y)) ™ < Spf(),
1<7<2 1<7<2 sn—1
yeR™

and this estimate, combined with (263) and (265), finishes the proof of (259). We also

observe that for 0 < g < oo

Z 274 (esssup Sh_i f(z))’

ke 0<7<2
S sy S5 10"
kEZ j>0 272t
:Z 27754 Z 2% (esssup S5, f(x))!
>0 keZ lsr<2
52 28 (esssup Sk« f(2)), (268)
pyt 1<r<2

and for ¢ = oo

esssup 2" esssup S5, i f ()
keZ 0<r<2

<esssup Z 9775 . 9k +1)s ggg sup ng_k_jf(:c)
keZ >0 1<7t<2

<( Z 277%) esssup 2" esssup S5, f (), (269)

>0 kezZ 1<r<2

therefore (250) can be estimated from above by || f|

£ (&) Using the same method, we can
also estimate (252) from above by || f|] iz (rny under the conditions of Theorem 5.1.2. As for
(253), by using the same method as (259) we can show that

1{2 esssup Dy, f () rezll ooy S 111
1<|h|<2

Fs (Rn) (270)

when p, q, s, r, L satisfy conditions of Theorem 5.1.2. And then we use the arguments in

(268) and (269) to prove that

{2 esssup Dy-i f () Yrezll ooy S 1{2% esssup Dy, f () yrezll ooy (271)
0<|h|<2 1<|h|<2
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for all 0 < p < 00, 0 < ¢ < o0, since we have the decomposition

=0
To prove the reverse directions, we first show that for any 0 < 7 < 2, 0 < p < o0,

0 <q<ooand s €R, we have the estimate

/]

iy S {285 (@) ez oo, (272)

Let 7 € (0,2) be fixed for now, and let a denote the tempered distribution in &'(R™) whose

distributional Fourier transform is the function below
Foa(€) = ]/ (275 _ 1) Lqpn1(2), (273)
Sn—l

For example, we can choose a = SF (L) (=) ™ f s Omrzd M1 (2), where 0y, is the

m=0 \m

Dirac mass at —m7z. Then from (15) and Definition 1.2.6 we deduce the following equality

P (Fra(2758) - Fuf () (x — y)]

SE . f(x) = esssu % . 274
L f(x) s S = (274)
Using the formula given in Appendix D.3 of [41], we have
1
Fra(§) = C, - / (27l — 1)L (1 — 2)"7 dt, (275)
-1

where (), is a positive constant depending on n. By using Taylor expansion, we can write
(€™ — 1)F =" Ap(trfe)) P, (276)
k=0

and each Ay is a complex number whose value is independent of ¢, 7, £ and satisfies |Ap x| >

0. Hence we have the expression

Fra(§) =C,y, - Z Ap i Broi|E|FTF for every € € R™ when [¢] is small, (277)
k=0

where

1
Bri, = / thtk(1 — t2)"T4’dt for £ > 0, (278)

1
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and Bryr = 0 if L + k is an odd integer, By > 0 if L + k is an even integer. If L is a

positive even integer, then
Fua(€) = CuALBr|rE[* (1 + O(|7¢]*))
and |Fra(€)| ~ [£]F > 0 if |¢] > 0 is sufficiently small. If L is a positive odd integer, then
Fna(§) = CoArp1 Bra|TE[" (1 + O(|¢?))

and | Fra(§)] ~ [£]¥T > 0if || > 0 is sufficiently small. Therefore we can pick a sufficiently

large positive integer m; so that |F,a(§)| > 0if 0 < [§] < 27™ and hence % is
a well-defined function in C°(R") and F,; 1(%285))() € S(R™). Furthermore by using
(274) we have for each k € Z
P (Fat (2™ ) Faf (€)) ()]
Ly Tt (277 - -
< Y G S T . 1 2~k _
S| Foa(2) )W) - [F  (Faa2) Fu f(6)) (2 — y)ldy
1, Fath(2ME) B N
< OFEA ) @Ry 2 (2R |y rdy - SE L f (o
[ @l 2 ) Py S )
SSp-nf (@), (279)

and the constants are independent of k € Z. By using (279) above, we reach the conclusion

that for 0 < p<oo,0<g<oocand s €R

/1

£y =2 2B F (Fab (27 TR Fuf(€)) (2) brezl o o)
SI{2" 871 f(2) brezlloqay. (280)

We let 7 = 1 in (280) and get that ||fHF57q(Rn) can be estimated from above by (249).
Therefore we have shown that (249) and (250) are equivalent quasinorms in F;,q(R") when
parameters p, q, s, r, L satisfy the conditions of Theorem 5.1.2.

To show that when 0 < p < 00, 0 < ¢ < 0o and s € R, the quasinorm ”fHF;’q(R") can
be estimated from above by (251), we consider the tempered distribution b € S'(R™) whose

distributional Fourier transform is the function below

‘ 1 [? ‘
Fab(€) :]/ (™% — 1)Edz = m/ T”_l/ (™78 — 1)EdH" " (2)dr, (281)
A 1 sn—1
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where A is the annulus {z € R" : 1 < |z| < 2}. For example, we can choose b =
S (Ti)(—l)L_mfA d_mzdz, where §_,,, is the Dirac mass at —mz. Using (273), (275),

m=0

(276) and (277), we obtain that
o 2
fnb(f):C;Z/ TR A Bl €[F
k=0 "1

:Crlz Z A,L-HcBL-i-k |§|L+k (282)

k=0

for every ¢ € R™ when [¢| is small, where C, is a positive constant depending on n, each A} |,
is a complex number satisfying |A7,,| > 0, and each By is defined by (278). Therefore
using a similar analysis like the one for F,a(£), we can find a sufficiently large positive integer
my so that [F,b(¢)| > 0if 0 < |¢] < 217™2. Hence Z222726) is 4 well-defined function in

Fnb(€)

C>*(R™) and F,; (%{’S’S))() € S(R"). Using a similar argument like the one to deduce

(279) and the estimate

n
T

Fo (Fab(276) Fuf (€)= — y)| = IfA A f (@ —y)dz| < (1+25y)™ - Vit f (), (283)

which can be obtained by invoking (15), (34), and (281), we can obtain

F (Fap (2R Fuf (€))(@)] S Vala f(2) Sesssup Vi f(x)  for every k € Z, (284)

0<r<?2

and the constant is independent of k. By using (284) above, we reach the conclusion that

for0<p<oo,0<qg<ooandseR

/]

e =2 2T (Fath (274 Fu ()@ heezllvan

SI{2" Vit f (@)Y rezll ooy S 12" ess sup Vi f (@) beezlloan-  (285)
By using their defining expressions in Definition 1.2.6, it is easy to see that V2, f(z) <
esS SUP oypj<2 Dy iy, f(2) for every x € R™ and k € Z, thus HfHF;q(Rn) can be estimated from

above by (253) for all 0 < p < 00, 0 < ¢ < oo and s € R. Hereby we conclude the proof of
Theorem 5.1.2. O
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5.3 Proof Of Theorem 5.1.3

Proof. The proof of Theorem 5.1.3 is alike to the proof of Theorem 5.1.2 and thus we will
just sketch it. We first prove the counterpart of (259), that is,

{2 €88 Sup Sto-rfrezlliney S £ s (286)
<r< ’

When0<p§oo,O<q§oo,%<s<LandforeveryrE]Rwith%<T<p. By
using Lemma 2.0.7, we still have (261) with S} f(z) given in (260). If 1 < p < oo, we
use Minkowski’s inequality for LP(R™)-norms, Remark 2.0.5 and the mapping property of
Hardy-Littlewood maximal function in a sequence and obtain the following

1St Fllzr@n S D207 fillo@ny + > 29785 1 £l o - (287)

j<k >k

With (287), we use the calculation method of (262) when 0 < ¢ < oo and the calculation
method of (264) when ¢ = oo and justify the decomposition in a similar way like (267), then
we can obtain (286) for the case 1 < p < oo. If 0 < p < 1, we raise the power of both sides
of (261) to p and integrate over R" with respect to z, use Remark 2.0.5 and the mapping

property of Hardy-Littlewood maximal function in a sequence and obtain the following

ISEF I ngny S D 2915l amy + Y 295 f 1 - (288)

1<k i>k

With (288), we use the calculation method of (262) when 0 < 1 < oo and the calculation
method of (264) when 1 = oo and justify the decomposition then we can obtain (286) for

the case 0 < p < 1. Next we show that
[{2"s €88 SUp SE v fhrezlloary S {27 es3 Sup Shy i frezllarr) (289)
<r<
for 0 < p <o0,0<q<o0andseR. We have the following pointwise estimate

esssup S5, f Z esssup S5, f(z) for every x € R". (290)

0<T<2 ‘o 1sT<2
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If 1 < p < o0, then we use Minkowski’s inequality for LP(R")-norms and get

[o.¢]
2% esssup S%y i« fheezlliore) S 12 ) llesssup S o flloo@n brezllio-
0<r<2 =0 1<7<2

When 0 < g < 1, we can switch the order of summation and obtain

(291)< ZstqZ Hesssup St - nyLp Rr) )%

keZ
ZQ JSqZQ(k“ Squsssup Sk | R"))%
j=0 keZ

§||{2ks eSS SUP Sk o= kf}keZHlQ(LP)

When 1 < ¢ < 00, we use Minkowski’s inequality for [?-norms and obtain

(291) <ZQ ysH{Q(kﬂ ||esssup S k—jf”LP(R")}kEZqu
7=0

Nl {ka €ss sup Sﬂfkf}keZHM(LP)-
1<r<2

(291)

(292)

(293)

If 0 < p < 1, then we raise the power of both sides of (290) to p and integrate over R" with

respect to x to obtain

T <r<2

H €sssup ng—kazjép(]Rn Z || ess Sup 2 k— Jf”LP(]Rn)
0<7<2 =
When 0 < 1 <1, we use (294) to obtain

|{2" egs sup S5 fYrezllia(zr)

Q|

=P szspuesssup Sty ks ) )

kEZ]O

1
ZZkaqusssup Srpki Lo geny)?

keZJ 0

22 quz2k+1)8q||esssup Sk ro-—k— JfHLP R")

J=0 keZ
,SH{QkS €SS sup STkaf}keZHZQ(LP)-
1<r<2

Q=

7

(294)

(295)



When 1 < 1 < oo, we use (294) and Minkowski’s inequality for / »-norms and obtain
1{2" ess sup STy fhnezliacwr)
o<r<2

© 1
SIEY_ 257l esssup Sfy s fll7p ey ez s
ey 1<7<2 v

S =

SO 27| 2% ) 55 SUp STt Fll o @n) brezllfa)
=0 <r<

SI{2™ esssup SL i fhrezlliore- (296)
1<r<2

From (291), (292), (293), (295) and (296), we see that (289) has been proved. Combining
(286) and (289) gives that (255) can be estimated from above by HfHB;, ,(en) When conditions
of Theorem 5.1.3 are satisfied. Using the same method, we also prove that (257) and (258)

can be estimated from above by || f|

B (R") under the conditions of Theorem 5.1.3.
To prove the reverse directions, we just notice that (279) and (284) are pointwise es-
timates for every € R™ and then we use the same method given in (280) and (285) to

prove that || f|

B, (rny Can be estimated from above by (254) and (256) for all 0 < p < o0,
0 < ¢ < oo and s € R. Furthermore (256) can be estimated from above by (258) by using
Definition 1.2.6. The proof of Theorem 5.1.3 is complete. O]
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6.0 Inequalities In Function Spaces In Terms Of Iterated Differences

6.1 Chapter Introduction

In section 2.5.10 of [93], H. Triebel gave an equivalence characterization theorem of the
inhomogeneous function space F;; (R™) by iterated differences and we would cite this theorem

below with adjusted notations.

Theorem 6.1.1. Let 0 < p < 00,0 < g < o0 and s > If M is an integer such that

mm(p 9’

M > s, then

LF1E2 (RIS, = 1 F1Lo(Ra) |

dh
H B~ esssup [(AY O Ly R, (207)
R IpI<|h] ||
pER,
and
1F1E2 (RIS = | f1Lo(Ra) |
. dh
([ e po gy, (208)
. Tl

are equivalent quasi-norms in F; (R,) (modification if ¢ = o).

In Theorem 1 on page 102 of [89], E. M. Stein gave the equivalence characterization

[lwg, @y + [ llzo@ny ~ [1f 1|2z @)

where the restrictions 0 < a < 1, 1 < p < oo and < p < oo were considered essentially

+2a

sharp. Since the inhomogeneous spaces satisfy L?(R") ~ F¢%,(R™) if 1 < p < oo and since

gy = 1| 1AL G e,

we would consider the above result in [89] is a better result in the special case. Furthermore in
Theorem 1 on page 393 of [85], A. Seeger provided another improvement and generalization

for the homogeneous space

HfHFﬁq(R” H qrmeLp(R")
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where 0 < p < 00, 0 < ¢ < 00, m > a/ag, r > 1 with

1 1 1
a > max{0,v(- — -),v(-

p T q
and

Stand )= ([ lapn@ran e

If we consider the isotropic spaces in which g(h) above can be deemed as |h| and ay can be

deemed as 1, by letting » = ¢ and changing the order of integration, then we can obtain

> 1
||f||Fpaq<Rn)~|l(/ / timnmae (AP ) () |7dhdt) || o ey
' 0 |n|<t

L A DO ) e

for 0 < p <o0,1<¢q <00 and maX{O,l/(% - %)} < a < m, and this is the homogeneous

counterpart of (298). Recently in Theorem 1.2 on page 693 of [77] M. Prats also proves an

equivalence characterization theorem of the inhomogeneous norm || f| x5 () in terms of the

sum of || f[|wxnro) and

/ / |Daf af(y)|qdy)§d$)% (299)

o Ix - yl"q“i

when parameters satisfy 1 < p < 00,1 < g < 00,5 =k + 0, max{O,d(% - %)} <o <1and
) is a uniform domain in R?. Furthermore, M. Prats also shows under the same conditions
on parameters, the equivalence relation stands if (299) is replaced by

D2 f(x) = D)l e
> [ = Tty ) (300)

o=k h(z)

where Sh(z) = {y € Q : |y — 2| < ¢cqd(z)} is the Carleson box centered at x, é(x) =
dist (z, 002) and cq > 1 is a constant. Moreover when 1 < ¢ < p < 0o, the set Sh(x) in (300)
can be improved and replaced by the Whitney ball B(x, pd(x)) for 0 < p < 1.

In this paper, we would like to furnish the reader with a further improvement of Theorem
6.1.1 for the homogeneous space F;’q(R") which includes the case 0 < ¢ < 1. We use Fourier
analytic techniques to prove the improved inequality for 0 < ¢ < 1 and also provide an
independent proof for 1 < ¢ < co. We now state this further improvement below. Let

1

Opqg = maX{O, n(m

S, b= maX{O,n(%—%)}, o, — maX{O,n(%—l)}. (301)
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Theorem 6.1.2. Let Le N, 0<p<o00,0<g<o0o,sc€Rand feF oa(R™).

()If 0 < p,q < 00, Gpy < s < L, then

dh
||

H( R A ol S 1]

Py (302)

(ii)Suppose f is a function. If 0 < p < 00,0 < ¢ < land op;+6,, < s < 00, 0orif 0 < p < o0,

1<g<ooand —n < s < oo, then

/]

. dh
by SN IAEIAEDOI G s, (303)
(iii)IfO<p<oo,q:ooand%<S<L,then

|Aﬁf’ ||LP(
|hl*

&Y (304)

|| ess sup
heRn
(iv)Suppose f is a function. If 0 < p < 00, ¢ = 00 and —n < s < oo, then

(A0
|f*

&y S eshs sup ———=— | || Lo (n)- (305)

The proof of Theorem 6.1.2 can be found in section 6.2. Theorem 6.1.2 (i) shows the

term

IC) Ih=| AR f|q|h|n) (P7ED (306)

R"

may not be independently defined for tempered distributions, since the iterated difference
AL f may not have a function representative if f is a member of S'(R™). Another example
is that if P(x) = 2z is a polynomial function and we put it into (306) then the resulting
term may not have finite value. However if we consider P as a tempered distribution in
F >o(R") and the conditions of Theorem 6.1.2 (i) are met, then (400) designates the function

representative of AXP is given by > AL(y—; % P)(x) = 0 for all z € R™. This is because

JEL
(19—5 * P)(x) can be expressed as a linear combination, with coefficients depending on z, of
derivatives of the Fourier transform F,1 evaluated at 0 and these evaluations are identically
zero due to the support condition of F,,1). We believe Theorem 6.1.2 (i) extends the definition

of the term (306). The same discussion is also true for Theorem 6.1.2 (iii).
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Comparing Theorem 6.1.2 with Theorem 6.1.1, we find that if 0 < ¢ < 1 and ;<p<
0o, then the restriction 0,,4 0, < s < L is better than the restriction of s in Theorem 6.1.1.
However if 0 < p <1 <a< 1 then we have
———— < Opg+ 0
min{p,q} " M
and the restrictions of Theorem 6.1.1 remain better. If in addition the number s also satisfies

the condition

n
s<n+—, (307)
4q
then o, + 0y < s implies —L- < p and hence the restrictions in Theorem 6.1.2 are better

than the restrictions in Theorem 6.1.1. This happens for sure when we pick L =1 or L = 2

since n + % > 2 for 0 < ¢ < 1. Therefore we formulate these two cases as corollaries below.

Corollary 6.1.1. Let 0 <p < 00,0 <g<o0,s€Rand f € F; (R") is a function.

()If 0 <p,q < 00, Gpy < s <1, then
|f(@) = fW)l? e, 1
(f ( —— W) adr)r S fl gy @y (308)
n n ’SL’ y’ q p,q

({)If0<p<oo, 0<g<land op+ 6y < s <o00,0rif 0 <p<oo,1<¢qg<ooand

—n < s < 00, then

/]

EWCORS (/n(/n %dw?dw)i. (309)

(ii)If 0 < p <00, ¢ =00 and < s <1, then

£@) = SO,
([ esssup LTI a0t <11y o, 310)
(ivV)If 0 < p < 00, g =00 and —n < s < oo, then
@) = S,
. esssup ——————(dx)»r. 311
1 < (] esssp LD 1)
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Proof of Corollary 6.1.1. Apply inequalities (302), (303), (304) and (305) with L = 1 and

use appropriate change of variable. We also note that the quantity

[flws @) = </n </n %@) dx)é

is usually called the generalized Gagliardo seminorm. In the case 1 < ¢ < oo, inequalities

SIS

(309) and (311) are still true for s = 0 or s = 1. In particular, if welet 0 <p < 1,4 =2,s=0

and apply the equivalence relation || - ||Fo2(Rn) ~ || [[#p ey in (309), then we have
P,
fl@)—fWP o 1
e S [ ([ LDZLOE 405, (312)
noJrn T =)
where || - || g»(rn) represents the Hardy quasinorm. O

Corollary 6.1.2. Let 0 <p < o0, 0<¢g< o0, seRand f € F;’q(Rn) is a function.

()0 <p,qg <00, Gpy < s < 2, then

( /n( / |f () + fy) — 2f (52

o — gl

P 1
dy)idn)s < | fllgs, (313)

({)If0<p<oo,0<g<landoy+0dy, <s<oo,orif)0 <p<oo, 1<¢g<ooand

—n < s < 00, then

[f(2) + fly) =2f (5|, o 1
: < 2 q P
ooy 5 ([ SR . (31
(ii)If 0 < p < 00, g =00 and 2 < s < 2, then

p

[f(2) + fly) = 2f (5P s

([ esssu DR 00y < 0o (315)
n yeR" |z —y| P

(iv)If 0 < p < 00, g =00 and —n < s < oo, then

— 9 f(EEY|P
HfHF;m(Rn) 5 (/ ess sup |f(x)+f<y) f( 2 )|

R yeR™ |l‘ - y|sp

D=

dz)s. (316)
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Proof of Corollary 6.1.2. Apply inequalities (302), (303), (304) and (305) with L = 2 and
use appropriate change of variable. In the case 1 < ¢ < oo, inequalities (314) and (316)

are still true for s = 0,1,2. In particular, if we let 0 < p < 1,9 = 2,s = 0 and apply the

equivalence relation || - |[po_gn) ~ || - || rr(rn) in (314), then we have
P,
[f(@) + fy) =2/(5HF v 1
ey 5 ([ ([ Ty anys, 317)
Rm JRn |z —y|
where || - || gr(rn) represents the Hardy quasinorm. O

The following Theorem 6.1.3 is the counterpart of Theorem 6.1.2 for B;’q(R”) spaces.

Theorem 6.1.3. Let Le N, 0 <p,g<oo,s€Rand f € B;q(R”).

HIf0<p<oo,0<g<ooand0<s< L, then

1

(AL ey ) 5 11 @18)

(ii)Suppose f is a function. If 1 <p<oo,0<g<ocands € R, orif 0 <p<1,0<qg< 0

and 0, < s < 0o, then

/]

1
patrer S ([ RS I ) (319)
(ii)If 0 < p < 00, ¢ =00 and 0 < s < L, then

esssup ||~ || A5 fllzo( o (R7): (320)
heR"™

(iv)Suppose f is a function. If 1 < p < oo, g =00 and s € R, orif 0 < p < 1, ¢ = oo and

op < 5 < 00, then

/]

By S 535D (B AL e (321)

(v)Suppose f is a function. If p=1,1<g<oocand —n<s<oo,orifp=1,0<¢g<1

and 0 < s < oo, then

s dh 1
s S I AE I oy ) (322)
Ifp=1g=o00and —n < s < 0o, then
11155 sy S esssup il - 1A s, (32
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In [47], D. D. Haroske and H. Triebel provided a characterization of the inhomogeneous

space B;q(R") in the sense of equivalent quasinorms via the following expression

v dt,1
£l oeny + ( / t %k(f,t)g?)q, (324)
0

where wi(f, 1), = supgjp<; 1A% fllLo(rn) is the k-th modulus of smoothness of the function

f, and also via the following expression

HA fHLp(R” L
fllemny + / S 325
R e #29)

under the conditions that 0 < p,q < o0, 0, < s < k. However Theorem 6.1.3 (ii), (iv), and

(v) above achieve better conditions on parameters whenp = 1,1 < ¢ < 0o, and —n < s < 00,
and when 1 < p < 00, 0 < ¢ < 00, and s € R. The authors of [47] also proved that the

inhomogeneous space B, (R™) can be continuously embedded into L"(R") if and only if

Q=

Am T n HAMfH P " dh
Wl + sup AR r@n o0 / L dhyg g0

0<|h|<1 |h|™ o<pi<1 Rl An

and the parameters satisfy 0 < p < 00, 0 < ¢ <00, 1 <r < oo, m € Nop, M € N,
and 0 < s < M —m with s — % = —2. Another embedding result in terms of moduli of
smoothness was derived in [47] as a corollary. In [90, Theorem 2.5.1], H. Triebel gave the

following characterization in the sense of equivalent quasinorms,

/]

n s h l
By &) ~ | flr@m + (/ || =P Aia ' ||Lp(Rn - =), (327)
j=1 Qs | |

where Qs = {yly = (y1,--- ,yn);0 < y; < 0} (notation cf. [90, Section 1.13.4]), under the
conditions that 1 < p < 00, 1 < ¢ < 00, k and [ are integers such that 0 < k < s < [+k, and
0 < § < oo. But Theorem 6.1.3 (ii) and (iv) still achieve better conditions on parameters
in case k = 0. Inequalities (319), (321), (322), and (323) were also given in [10, Proposition
10 (i)] by the authors G. Bourdaud, M. Moussai, and W. Sickel under the rough conditions
that 1 < p < 00, 0 < ¢ < 00, 0 < s < m, and m is the iteration number (see also [10,
Section 4.4] for the definition of My f). The reverse inequality was also given under the
same conditions in [10, Proposition 10 (ii)]. The proof of Theorem 6.1.3 can be found in

section 6.3. The corollaries of Theorem 6.1.3 are formulated below.
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Corollary 6.1.3. Let 0 <p,q < oo, s € Rand f € B, (R") is a function.
MHIf0<p<o0,0<g<ooand0<s <1, then

(L 150 = fapan? Gt <

g (328)

({)fl<p<oo,0<g<ocandseR orif0<p<1,0<g<ooando,<s< oo, then

¢ dh
By () S (/Rn( - (@ + 1) = f(2)[Pdz) |h|n+sq) '

Q|

/]

(329)

i)f p=1,1<g<ocand —n<s<oo,orifp=1,0<g<1and0< s < oo, then

dh
o0 S U () 100 = syt

Proof of Corollary 6.1.3. Apply inequalities (318), (319) and (322) with L = 1. Inequalities
(329) and (330) also indicate

Q|

/1

(330)

¢ dh
b SO ([ It = popant )k @)

Q=

2% || gk % fllro@ny S ||

for every k € Z, and hence limy_,  ||1)9-+ * f||Lr@r) = 0 when s > 0 and the right sides of
(329) and (330) are finite. O

We can also pick some special values for p, ¢, s in the above inequalities and then deduce

some other interesting inequalities. For example, let 1 < ¢ < p < 2, then 0 < s < 1 and

< okn(3—3

s < 2. By Lemma 2.0.5, we have || fi[[rorn) S 27" > kaHLq(Rn and hence

niﬂ 1
||f| Bqu(R") 5 Z qu s+ ||fk||Lq R™) + Z qu(8+ ||fk||Lq Rn)) /
k<0 k>0
1 1
S O Il amn) ™+ (D 2" 1l ny)?
k<0 k>0

S I llsy, @y + £l (332)

B ¢1 (R"
By the inequalities given in Corollary 6.1.3 and Fubini’s theorem, we can further deduce the
following inequality

a dh 1
([ ([ Vs = fapan? quw 11 e

/n/nlfw—mn dedy) /n/nvm_ |zn|dd>3 (333)

when the corresponding conditions on the parameters are satisfied.
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Corollary 6.1.4. Let 0 < p,q < o0, s € R and at least one of p and ¢ is infinity. Assume
fe B;q(R") is a function.
()If p=o00,0<g<ooand0<s<1,then

</n s SUp |f(x +h) — f2)] dn)h < o (334)

J— | h | n+sq

(i)If p=o00,0 < ¢ < oo and s € R, then

[flx+h)— fl@)]? 1
s (Rm) ess su dh)a. 335
1l ey S ([ esssup LT TOE g 339
(ii)If 0 < p < 00, ¢ =00 and 0 < s < 1, then
esssup |h|™*- ([ [f(z+h)— f(z)[dzx)r S (R (336)
heRn R™

(iVIifl<p<oo,g=ocandse€R,orifp=1,g=o00and —n < s < oo, orif 0 < p < 1,

g =00 and 0, < 5 < 00, then
1
11 5s @y S ss Sup o7 () [f(@+h) = f(x)[dz)r. (337)
: €Rn R™

(VIf p=g=o00and 0 < s < 1, then

) —
esssup LI gy (338)
syern |z =yl
(vi)If p = g = o0 and s € R, then
Rn) < ess Sup |f(l') - fgy)l (339)
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Proof of Corollary 6.1.4. Apply Theorem 6.1.3 with L = 1. From (334) we can see that

(/n |f($+h)_f($)| )% (&) (340)

|h‘n+sq

for almost every x € R™ when conditions of Corollary 6.1.4 (i) are satisfied. From (336) and

(338), we also deduce the following inequality

LA+ R) = FOllo@ny S TR 1 fll; ey (341)

for almost every h € R" when 0 < p < 00, ¢ =00 and 0 < s < 1. From (337) with a proper

change of variable, we can obtain

(R™) (/n ess sup Mdl‘)%, (342)

yeR” |$ - y|sp

when conditions of Corollary 6.1.4 (iv) are satisfied. Furthermore from (335) we have

h) — a
2ks’w2_k % f(ZE)| 5 (/ ess sup |f<33'+ ) f(l'>| dh)a (343)
n zeRn | h|tsa
for every k € Z and almost every x € R", and from (339) we have
25| 4hy—r # f(z)] < esssup 1f(@) = fy)l (344)
,y€eR" |z —yl*

for every k € Z and almost every x € R", therefore limg_, o [t9-+ * f(x)] = 0 when s > 0
and the right sides of (335) and (339) are finite. Moreover from (337) we have
F N Pl S esssmp [0 ([ 1S+ ) = f@Pans (349
eRrn R
for every k € Z, hence limy_, ;o |[1)o- * f||Lrrn) = 0 when s > 0 and the right side of (337)
is finite. []
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fo0<a<p<oo,0<s<landO<f < oo, then by Lemma 2.0.5, fr = ¥g-r x f

satisfies || fi | rrn) < Qk”(i’%)ﬂfkﬂm(w), and we have

£l . ny S esssup 2 T fell o eny

Q=

< (/Rn(esssup P )|fk:( e x)

keZ
/ (o E D@ ) = W pig g, (340)

n p Rn)

keZ
By combining (336), (346), and (309) altogether, we can obtain

1 +h) = FOllrr@n / / )|6 1
ess sup dx)e, 347
heR™ |h|s ” n ‘.1' y‘nJrﬁ + ) ) ( )

where the parameters satisfy

3

max{0, n( D) + max{0,n(+ - %)} <s+o—o

min{a, 3} « a p
if 0 < B < 1, and there are no extra conditions for parameters if 1 < f < oo since
—n<s+ - % < 00 is always true for 0 < o < p < oo and 0 < s < 1. In particular, letting
a = pin (347) yields
+h n N
ess sup I7¢ )| it Merr < | / / | | m ﬁ| dy)’ dz)
n n r — nTs

heRn™

3=

= [f]WpS,E(R")v (348>

when the above conditions are met. If 0 < a <p=00,0< s < 1, and 0 < § < 0o, then by

Lemma 2.0.5 we have || fi| o mn) S 2%”||fk||LQ(Rn) and

ooy S esssup 2D oy 1l o (3149
keZ
By (338), (349), and (311), we have
ess sup @) = Fy)l < (/ ess sup ) = fJ(ry>| dz)s (350)
syeRr T — Y[ nogern |z —y|rtee
for all 0 < @ < oo and 0 < s < 1. Because ||f| fd < If] £ @) for all 0 < 8 < o0,
then (338), (349) and (309) combined together glve us the followmg 1nequality
|f(z) = fy)] / / f)l° 1
esssup ——————— dy 5dx o 351
o ycR" |$—y| " n |x_y|n+ s+ )B ) ) ( )
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where the parameters satisfy

masx{0, n( - D} +max{O, (= )b <s+ 5

1
min{a, 5}
if 0 < 8 < 1, and there are no extra conditions for parameters if 1 < 5 < oco. In particular,

when « and 3 are related by the equation 5 = « - v for some > 0, then (351) becomes

|f(x) = Fy)l P L
esssup ——————— / / | | + v+ 7dy)Wd:c)ﬁ, (352)
n n |l — n-rmn s

z,yeR™ |.I - y|s
when the corresponding conditions are satisfied.

Corollary 6.1.5. Let 0 < p,q < oo, s € Rand f € B (R") is a function.

MHIf0<p<o0,0<g<ooand0< s <2, then

¢ dh 1
T — x x)|Pdx)» 7 <
(L) 1 +2m =26+ 1)+ f@Pan )t < I

({)fl<p<oo,0<g<ocandseR orif0<p<1,0<qg<ooando,<s< oo, then

a dh
batenr S (1t 2m) =26 ) + o)) e,

Q=

/1

(354)

iiD)lf p=1,1<g<ocand —n< s<oo,orifp=1,0<¢g<1and 0 < s < oo, then

dh
o S (1@ 20) =20+ 1)+ f@ldeyTE),

Q=

/]

(355)

Proof of Corollary 6.1.5. Apply inequalities (318), (319) and (322) with L = 2. Inequalities
(354) and (355) also indicate

¢« dh
s+ Sl < ([ ([ 1420 =20 1)+ @Pd) Tyt 650

Q|

for every k € Z, and hence limy_; ||[¥99—r * f| r(rny = 0 when s > 0 and the right sides of

(354) and (355) are finite. O
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Corollary 6.1.6. Let 0 < p,q < oo, s € R and at least one of p and ¢ is infinity. Assume
fe B;q(R") is a function.

()f p=o00,0<g<ooand0<s <2, then

dh 1
(/ esssup | F(z + 2h) — 2 (x + h) + F(2)][1— 2 )} (357)
n zER™ |h|n+sq
(i)If p=o00,0 < ¢ < 0o and s € R, then
g dh 1
1l Bs, @) S ( ess sup |f(z+2h) = 2f(z+ h) + f(2)] |h|n—+sq)‘% (358)
n  reR"
(ii)If 0 < p < 00, ¢ = 00 and 0 < s < 2, then
esssup [h]7 - ([ [f(x +2h) = 2f(x + h) + f(x)]Pdz)r < (®P)- (359)
R?’L

heRn
(iVIifl<p<oo,g=ocandse€R,orifp=1,g=o00and —n < s < oo, orif 0 < p < 1,

g =00 and 0, < 5 < 00, then
1
1155 @y S ess sup h72- O |f(@+2h) =2f(z + h) + fz)[Pdz)r.  (360)
: €Rn R™

(V)If p=¢g=o00 and 0 < s < 2, then

oy ) T ) ~ 2 (3]

z,ycR” ]x - y’S

S s, ny- (361)

(vi)If p = g = o0 and s € R, then

< exsoup M@+ 1) = 275

z,yeR™ |x_y|S

(362)
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Proof of Corollary 6.1.6. Apply Theorem 6.1.3 with L = 2. From (357) we can see that

dh
e

Q=

O |flx+2h) =2f(z+ h) + f(2)]

R"

S /]

Bgqu(Rn)7 (363)

for almost every x € R™ when conditions of Corollary 6.1.6 (i) are satisfied. From (359) and

(361), we also deduce the following inequality

1FC+2h) = 2f( + ) + FO)lle@ny SR 15y ) (364)

for almost every h € R" when 0 < p < 00, ¢ =00 and 0 < s < 2. From (360) with a proper

change of variable, we can obtain

By (B) S (/n |f(@) + fly) =2/ ()

ess sup
yeR” |$ - y|sp

RS

/]

dz)?, (365)

when conditions of Corollary 6.1.6 (iv) are satisfied. Furthermore from (358) we have

dh 1
Py ex f@)] S ([ esssup @+ 20) =20+ )+ S@PTE)E (366)
n  gcR"
for every k € Z and almost every x € R", and from (362) we have
+ —2f(2Y
2" |1y * f(2)] < esssup =)+ /y) ~ 2757 (367)

z,yeR™ ‘LZ' - y‘s
for every k € Z and almost every x € R", therefore limg_, o [to-+ * f(x)] = 0 when s > 0

and the right sides of (358) and (362) are finite. Moreover from (360) we have
2 fllgeey S essop (0 ([ 120 =25 +0) + )Pt (368)
€R" R®

for every k € Z, hence limy_, o0 |12+ * f||zrrn) = 0 when s > 0 and the right side of (360)
is finite. ]
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Theorem 6.1.2, Theorem 6.1.3, and their corresponding corollaries are newly published
results in the author’s paper [98]. And we also introduced other mathematicians’ results
related to iterated differences below. In [97], F. Wang, Z. He, D. Yang, and W. Yuan intro-
duced the spaces of Lipschitz type on spaces of homogeneous type in the sense of Coifman and
Weiss, and discussed their relations with Besov and Triebel-Lizorkin spaces, furthermore the
authors also established the difference characterization of Besov and Triebel-Lizorkin spaces
on spaces of homogeneous type without the dependence on the reverse doubling assumption
of the considered measure of the underlying space. This major novelty is achieved by using
the geometrical property of the underlying space in terms of its dyadic reference points,
dyadic cubes, and the (local) lower bound. In [102], D. Yang, W. Yuan, and Y. Zhou pro-
vided the characterization of homogeneous Triebel-Lizorkin space ng(R”), in the sense of
equivalent quasinorms, via a new square function, and they proved the equivalence relation

1AW g ey ~ ||{2ka/B(' 27k)[f(-) — fWldy} ezl o), (369)
under the condition that f € L, (R")S'(R"),0 < a<2,1<p<oo,and1 < q < co. The
authors of [102] also considered the case when p = oo and extended this result to higher order
Sobolev space for av € (2N,2N + 2) and N is a positive integer. The corresponding results
for inhomogeneous spaces are also included in this paper. In [12], H.-Q. Bui, M. Paluszyriski,
and M. Taibleson gave continuous characterizations of the weighted homogeneous Triebel-
Lizorkin F;’j;lw and Besov-Lipschitz ng” spaces by using Schwartz functions satisfying the

moment condition and the Tauberian condition, and their result reads as follows,

(o] d 1 o0 d 1
I i@ o S Wiz I € @I G e (370

t

where « € R, 0 < p < 00, 0 < ¢ < 0o, w is a function in the Muckenhoupt weight class A,
ro = inf{r : w € A,}, and A > max{nry/p,n/q}. Here in the characterization (370), p and
v are Schwartz functions, p satisfies the moment condition (that is, [g, z"u(x)dz = 0 for all
|k| < [a]), and v satisfies the Tauberian condition (that is, for all £ # 0 there exists ¢t > 0
such that F,v(t§) # 0), and pf f(-) and v/ f(-) are the associated Peetre-Fefferman-Stein

maximal function, the name of which was (firstly) introduced at the beginning of section 3
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of [12]. Under the same conditions except that A > nry/p, the authors of [12] also proved

the following characterization

Q=

dt. 1
t

0 u 1 o0 a . dt
([ s ™8 S Wl < ([ Mt T

) (371)

for the weighted homogeneous Besov-Lipschitz spaces B;”;" . In [59], L. Liu proved the
LP(R™) — F(foo(R”) boundedness, the LP(R™) — LI(R") boundedness, and the L'(R") —
L#=5=5(R") weak type boundedness of the multilinear Littlewood-Paley operator defined
by

//Rnﬂ t+,x_y,)"ulF“( )(z, )Ifofff]%a (372)

where

Rm-‘rl(A; xZ, Z)

R = [ SR ey - ), (373)
Ryi(Asw, 2) = Az) — Z Da;jl!(Z) (z —2)7, (374)
|or|<m

and ¥y (z) =t (x/t) for t > 0, and A is a function such that D*A is in the Lips-
chitz space Ag(R") for |a| = m. In [69], V. K. Nguyen, M. Ullrich, and T. Ullrich defined
the Besov space of dominating mixed smoothness, the Triebel-Lizorkin space of dominating
mixed smoothness, and the mixed iterated differences of a multivariate function, further-
more the authors provided equivalence characterizations of the above spaces via rectangular
means of mixed iterated differences. Their results are considered as the counterpart of the
characterization by the ball means of iterated differences for isotropic Triebel-Lizorkin spaces
(see [93, Theorem 2.5.11]). In [30], F. Dai, A. Gogatishvili, D. Yang, and W. Yuan char-
acterized homogeneous Besov and Triebel-Lizorkin spaces via sequences consisting of the
differences between f and the ball average B, -« f. Namely, they characterized ng(R”) by

the following expression

(D 2" f = Bio-e fll4,mm) (375)

kEZ
when p € (1,00], ¢ € (0,00], 1 € N, and « € (0,2l), and

Byt f(a 2)2 7(,2 ) Bt (376)

Jj=1
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where Bjy-i f(z) denotes the integral average of f on the ball B(z,j27%). The authors of

[30] also characterized Fﬁq(R") by the following expression

(D221 = Bua-s 1) * o, (377)

keEZ
when p € (1,00), g € (1,00], [ € N, and « € (0,2[), and by the expression

— (]fB S 240 £(y) — Byyei f(y)|dy) (378)

TrER™ meZ (@,27m) 0

when p = 00, ¢ € (1,00|, 1 € N, and « € (0,2]). (With obvious modifications if ¢ = 00.)
The corresponding results for inhomogeneous Besov and Triebel-Lizorkin spaces are also

obtained in [30]. In [83], C. Schneider and J. Vybiral proved the homogeneity property
||f(A)HB;Sy,q(Rn) ~ )\s_n/prHBZS),q(R") for 0 < A S 1, f € B;)’q(Rn) and Sptf C B)\, (379)

where || f|lBs  (&n) is defined to be the following expression

Jdt

1 1
ey + ([ € (r.03 )", (380)

(with the usual modification if ¢ = o00) and 0 < p,g < 00, 0 < s < r € N, and
wr(f,1)p = supp < 1AL fllzeeny is the r-th modulus of smoothness. The authors of [83]
also defined the space F; (R") in terms of the ball means of the iterated difference A f (see
[83, Definition 2.1 (ii)]) and derived its corresponding homogeneity property. The spaces
in [83, Definition 2.1] are independent of r, meaning that different values of r > s re-
sult in norms that are equivalent. In [101], D. Yang and W. Yuan introduced the a-order
Hajtasz type gradient sequence of a locally integrable function on R™ and gave the definitions
of homogeneous Hajtasz Besov spaces B;‘ q(R”) and homogeneous Hajtasz Triebel-Lizorkin
spaces fgfq(R”), furthermore their main result showed that homogeneous Hajlasz Besov
spaces Bg ,(R™) coincide with the classical homogeneous Besov spaces B;‘ ,(R") in the sense
of equivalent quasinorms when 0 < a < 2, 1 < p < o0, and 0 < ¢ < oo, and that homo-
geneous Hajlasz Triebel-Lizorkin spaces fgq(R”) coincide with the classical homogeneous

Triebel-Lizorkin spaces Fﬁq(R") in the sense of equivalent quasinorms when 0 < a < 2,
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1 <p<oo and 1 < g < oo. The authors of [101] also derived the higher order vari-
ant of their main result, and these results provided a possible way to introduce Besov and
Triebel-Lizorkin spaces with arbitrary positive smoothness order on metric measure spaces.
In [66, Section 3.4], V. K. Nguyen and W. Sickel defined the spaces Z2. ((0,1)?) of Holder-

Zygmund type via mixed iterated differences and identified Z2 . ((0,1)?) with the d-fold

tensor product S5, B((0,1)?) of the univariate Besov space Bj, (0,1). The authors of
[66] also investigated the asymptotic behavior of the n-th Weyl number of the identity map
id : St B((0,1)%) — Z3

p1,p1 miz

((0,1)%) under the conditions that s > 0, t > s + pil, n > 2, and
S} B((0, 1)4) denotes the d-fold tensor product of the univariate Besov space B ,.(0,1).
The asymptotic behavior of the n-th approximation number of the same identity map was
studied in [66, Theorem 3.13]. In [45], P. Hajtasz proved that in the case €2 is a bounded
domain with the extension property or in the case {2 = R", the sufficient and necessary
condition for the gradient V f of a measurable function f to belong to LP(Q2) (1 < p < o0) is
that the inequality |f(z) — f(y)| < |z —y|(g(z)+g(y)) holds true almost everywhere for some
nonnegative function g € LP(£2), and the author also showed that this condition can be gen-
eralized to define Sobolev spaces on metric measure spaces with a finite diameter and a finite
positive Borel measure. The above condition has been generalized to the case of higher-order
iterated differences in [95] by H. Triebel. The main result of [95] shows that when 1 < p < oo
and k € N, the classical Sobolev space W} (R") can be identified with the space of LP(R")-
functions f, for every f there exists a function 0 < g € LP(R") such that for all h € R™ with
0 < |h| < 1, we have |h|7*|Ak f(2)| < Y21 g(x + Ih) for almost every h,z € R". In [9], B.
Bojarski proved that such an identification still holds if one replaces the above inequality by
AR f(x)| < |z —y|*(g(z) + g(y)) for almost every x,h € R", and y = x + kh. In [48], D. D.
Haroske and H. Triebel surveyed some recent developments of distributional Sobolev-Besov
spaces and Sobolev-Besov spaces of measurable functions of positive smoothness which can
be characterized in terms of differences. In [112], 0. Dominguez, A. Seeger, B. Street, J.

Van Schaftingen, and P.-L. Yung proved that when 0 < s < M, 1 <p < oo, 1 <r < oo,

AM £ (z)
h*t s

with respect to the measure v, (E) := [/, ﬁi@ for E C R? x (R?\ {0}) can be controlled
by || f]

and v € R, the Lorentz norm ||Qas s+ fo||rr v,y of the function Qs gia fo(x, h) :=

By () where f, is the unique function representative of f € S’ (R?) and the term
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If1

lence between Fourier analytic definitions and definitions via difference operators acting on

g (v 18 defined in (1.4) and (1.5) of [112], and the authors also established the equiva-

measurable functions. In [68] and [67], V. K. Nguyen and W. Sickel provided the definition of
Sobolev and Besov spaces of dominating mixed smoothness in terms of the mixed difference
operator and its associated modulus of smoothness and then gave necessary and sufficient
conditions for these spaces to form algebras with respect to pointwise multiplication and the
description of the space of all pointwise multipliers for S B (RY) in case p < ¢. In [84], C.
Schneider and J. Vybiral defined the Besov space B;  (R") and the Besov space B; (€2) on
a bounded domain 2 C R™ with a Lipschitz boundary I' via iterated differences and moduli
of smoothness, and they also studied the (o, p)-atomic decomposition, the Lipschitz atomic
decomposition of B (R"), and the atomic decomposition for the space B; (I') introduced
via the resolution of unity and the local Lipschitz diffeomorphisms. The authors of [84] also
proved the boundedness of the linear trace operator 7'r : B;Z%(Q) — B; (') when n > 2,
0 <pg<oo,and 0 < s < 1, as well as the existence of a bounded nonlinear extension
operator Ext : By (T') — B;,J;% (2) when the parameters satisfy the same conditions. In [55],
H. Kempka and J. Vybiral proved that the spaces B;E:g’q(_)(R”) and F;((f))’q(.) (R™) of Besov and
Triebel-Lizorkin types of variable exponents allow a characterization in the time-domain with

the help of classical ball means of differences.

6.2 Proof Of Theorem 6.1.2

Proof. 'We first prove Theorem 6.1.2 (i). Let f € Fz‘f’q(R”) be an element of S'(R™). We note

that 7, < s implies ;2= < p. And we recall the notation A, = {h € R": 27F < |h| < 217k}

for k € Z. For |h| < 27% and f; = ¢y * f, we deduce two estimates for |(AL f;)(z)|. Using

mean value theorem and the iteration formula (9) consecutively, we get

L

(ARf@S D 10 fila + Y taah)| - A", (381)

|a|=L =1
where « represents a multi-index and each ¢, is in (0,1). Since the n-dimensional distribu-

tional Fourier transform F, f; is supported in { € R" : 2771 < [¢] < 277!} we use Remark
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2.0.6 to get

L L L
0°Fi (2 + ) tash)| SPu(0°fi) (@ + D tash) S PFPufilx+ > tash). (382)
=1 =1

Since | Zle tash| < L27% by (52) of Remark 2.0.3 we have
L
Pofi(@+ > tash) S Pufi(x) - (14 L2757, (383)
I=1

where 7 is the chosen positive number in Definition 1.2.5 and satisfies 0 < r < min{p, ¢}.

We infer from (381), (382) and (383) the first estimate
(A £i) ()] S 2978 + L2775 P, fi(w) for [A] S 27, (384)

and the constant is independent of h € R™, j, k € Z. Also by using (10), we get

L
(A% f)(@)] S Z |fi(z + 1h)] (385)
1=0

If0<I1<L|h £2%and j > k, we recall that 0 < r < min{p,q} and the value of
r will be determined later, then using Remark 2.0.3, Lemma 2.0.3 and the definition of

Peetre-Fefferman-Stein maximal function, we obtain
Pufi(z+1h) S (1+ 2[R Py fi(x) < 299 M (| f517) ()7, (386)

and the constant in (386) is independent of h € R", 0 <! < L and j, k € Z. Using a proper

change of variable, we also have

|fi(x + th)["dh 5]/ fi(x +y)l"dy S Ma(]f5]") () (387)

Ay, 12-k<|y|<i2—k+1
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for 0 <! < L, and |f;(z)]" < M,(|f;]")(x) by Lebesgue’s differentiation theorem. Applying

(386) and (387), we can obtain the second estimate

A

(A5 £3)()|*dh

L
S22 [ Ut mpran

<Z 2kn

<20 E)n(2

”M (1517 ()

\f] (x +h)|["dh - Ppfi(x 4+ 1h)T"

q
r

(388)

And estimate (388) is true for 0 < ¢ < oo and j > k. Now we consider the following estimate

keZ

s e [ (i@l + (I akL @)

A i<k i>k

O~ WAL F) (@)))idh)s

keZ

S(Z 2k(sq+n /

(3 2ot / (3 1AL £) () rd)

A JEL

keZ Ak <k

H e |

keZ

O (AR £)(@))dh)s.

ko >k

(389)

(390)

(391)

For 0 < ¢ < oo, we pick 0 < ¢ < min{s, L — s} and the value of ¢ will be determined later.

Then we have

(D (AR f)(

i<k

and

O AL ) @)=

Jj>k

)'=(D 2 27F|(Af f) ()]

i<k
ZQJE ) esssup 271 |(AF fi) ()]
]<k

S ALl

i<k

(D279 2°|(AL ) (@)])°

7>k

<SS 279)1 - esssup 29| (AL f) ()¢
>k 1>k

<2k S 9 (AL f) ()

j>k
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Using (392) and (384), we can estimate (390) from above by

(2w [ aggepan):

keZ j<k

< Z Z ok qs+q€)2qu€2(J*k)Lq(1 + LZJfk)TIPnfj (z)7)a.

keZ j<k

2 =

(394)

We notice that (14 L277%)"/" < C'if j < k and C is a constant determined by n, ¢, r, L and

we switch the order of summation to obtain

(BO)S(Y_ D aalere i ssalp, ()

JEZL k>3

=3 2P fy(a))s

JEZ.

<O 29 M (1517 () )7, (395)

JEL
where we also used Remark 2.0.5 and the condition that ¢ < L — s. Using (393) and (388)

and switching the order of summation, we can estimate (391) from above by

Zzzkz n+qs—qe 2qu/ ‘ALf] ’qdh)

=

keZ j>k
q.1
SO ghatmatins QUGN M, (1 f]7) ()7 )
kEZ j>k
s—e—n(i-1 ; n(i_1 - g, 1
SO bl Gl gD Ag (1 £ () )5, (396)
JET k<j

If ¢ < p < oo, we have
1 1

lim s—e—n(-—-)=s>0.
e—0,r—q r q
ng
If e <P <q,we have
1 1 1 1
lim s—e—n(-—=-)=s—n(-—-)>0.
e—0,r—p r q p q

Therefore if we pick e sufficiently small and r sufficiently close to min{p, ¢}, then we can

make s —e —n(: — %) a positive finite number and hence

Z2kq[s e—n(3—1)] < oidls—e—n(z =) (397)

k<j
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Inserting (397) into (396) yields
(2 [ (At @lan: s (S 2eMEN@H.  (98)
kezZ A >k JEZ

Combining (390), (394), (395), (391) and (398) and also invoking Lemma 2.0.6, we can

obtain

H(Z 2k(sq+n)/ Z| Aﬁf] )dh) e || Lony S || f]

keZ Ak JEZ

when 0 < p,q < oo and G,y < s < L. From the assumption f € F; (R"), we know inequality
(399) also shows » ., |(AEf;)(x)| < oo for every k € Z and for almost every x € R™, h € Aj.
Together with (28), we have reached the conclusion that

Apf =" Aff;(z) in the sense of §'(R")/ P (R") (400)

JET

for every k € Z and almost every h € A,z € R", and the tempered distribution AF f has a
function representative which is the pointwise limit of the series 3, AL f.(x). Furthermore,

integration of AL f with respect to the Lebesgue measure is justified, and the inequality

I AL e SIS 2™ [ (AR @) ey (40D

R™ kEZ Ak ez
is also validated. Therefore the proof of Theorem 6.1.2 (i) is now complete.
Now we prove Theorem 6.1.2 (ii) when f is a function, 0 < p < 00, 0 < ¢ < 1 and
Opg + 0pg < s < 00. Without loss of generality, we also assume the right side of (303) is
finite, otherwise, inequality (303) is trivial. To do this, recall that spt.F,ip C A" = {£ € R™:

2mit

2 < |¢] < 2} and by Taylor expansion of ¢*™, we have

(e*™ — 1)E = (2mit) (1 + O(2mit)) (402)
and there exists a sufficiently large positive integer mg such that
0 < [t| < 2% implies |(e*™ — 1)*| > 0. (403)

For a unit vector § € S, we can find § > 0 so small that if § € A/ C R" and § < |0-¢] < 2,
then for all other & in the spherical cap Cy := {#' € S"! : |§/ — 0] < &}, we also have

;11 < 10" - €| < 2. We choose properly distributed unit vectors 61,6, -+ 0y, where M € N
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is sufficiently large so that the spherical caps C1, Cs, - - -, Cyy, respectively associated with

01,05, -+ , 0y in the above way, cover the unit sphere S"~!. For each cap C;, 1 <1 < M, we
consider the set
1
B::{§€R”:§§|§|<2,|%€C’l}, (404)

then from the construction of {C;},, we have that

<10-¢ <2 for all £ € P, and 0 € C (405)

o |

and

M
Ur=24. (406)
=1

We use a partition of unity associated with { P}, by smooth functions {p;}, with compact

supports and {p; }}2, also satisfy
M
Zpl(f) =1lif¢e A and  spt.p ﬂA’ C P, for each . (407)
I=1

Recall the definition of F,¢ given in (18), we pick a large positive integer J > mg and the

value of J will be determined later, then we have for each k € Z
Fap@m77h) =1 b jgl <2 (408)

and by (20),
Fa(@mI k) = 1= 3 Fap(@mo gy = 1= Y Fap(@mhg). (409)
j=1 j=J+1
Furthermore if 7 € [1,2], § € C;, 2™0~*¢ € spt. Fop (\spt.or € P, 1 <1 < M then (403) and
(405) tell us that

0<2 M2 <27 kr|E. 9| < 220, (410)
and
(2727 06 _ 1)L > 0. (411)
Hence if we let
Airo(§) = f”zi(jn:i)fl <12;0§>, (412)
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then \;¢(277¢) is a well-defined function in C°(R") for every k € Z. Using formula (15),

we have

o Nro (2758)) (A (Dmo-r-s + f)] ()]
S - Fo Mo (277N (Y) - Ag-irg(dgmo-r-a % f)(x — y)ldy. (413)

The Fourier transform of the Schwartz function

Y= «Fn_lo\l,re( f))( ) 2- k79(¢2mo—k—J * f)(x - y)

is supported in {£ € R" : |¢| < 2F/=m0} Since 0 < r < min{p, ¢} < 1 as mentioned in
Definition 1.2.5, we use (408), observe the simple fact that both f; ’ 4 and H"(C)) are fixed

positive finite constants, and then apply Lemma 2.0.5 to (413) and obtain

F (Fab @™ 2™ O Fuf) (@)
d
:]/u oJo 7 H(Fa (2707 (270 R Fa (27T TR Fuf) () A (0)
][ o (DM ),
[1,2]/ G

(62m2—k79{ — 1)L

2T )92 TR ) Fof ) (0 )!’"d’H“(@df

:/uz] C’ﬁ?l(Al,Te( €))% (A1 g (Bma-ics * D))" dH(0)

2
<gUHk=mo)n(1-1) / / | Fr (Ao (275€)) ()]
1 C; JR®

d
A s p(Bamos 5 f) (@ = y)| dydH" (6) = (414)

dr

T

We let £ = 0 in (410) and pick my so large that conditions of Lemma 2.0.8 are satisfied.
Applying Lemma 2.0.8 to the smooth function F,1(2™°&)p;(2°¢) whose support set is
compactly contained in P, yields that for a sufficiently large positive integer N, whose value

will be determined later, we can find a constant C' such that

’./—"n_l)\lﬂ—g(l’ﬂ S ﬁ for all x S Rn7 (4].5)
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and the constant C' may depend on v, p;, mg, L, N but it is independent of 7 € [1,2] and
0 € C;. Recall that A;_,, denotes the annulus {y € R™ : 2™ < 2k|y| < 2m*1} for integers

k,m. With (415), we can estimate the most inside integral of (414) as follows,

!J'" Mo 2RI [ Ay kg (Dgmo—sa # f)( — y)["dy

_Z /A 2 Ao () - | Agirg(dgmo-ia % f)(x = y)|"dy

meZ k—m

<3 g / AL, (G rs ) — )|y

m<0 Ak—m

+ Z 2knrmer / |A2 k79(¢2m0—k_J * f)(.flf - y)|rd?/

m>0 Ak—m

s / AL o o(Gomoss # )@ — y)["dy

m<0 Ak—m
£ 3 k-t bmn-n ][ ALy (bymois % [) (@ — y)["dy. (416)
m>0 Ak—m

We insert (416) into (414), apply Fubini’s Theorem to switch the order of integration, use

the following simple estimate

dr
/ / AL o (byma-rs % ) (@ — )P a1 (0) Ly
Ak: m Cl T

1
dr

of e s e a0y
ly|<2m+i-k sn—1 T

SRy B R O T (417)

and also pick N so that n — Nr < 0, then we obtain the estimate

Fo  (Fa (27 ) (270 7R) Fuf) ()|

SQ(J_mO)n(l_T)(Z gmn 4 Z 2m(n—Nr))

m<0 m>0

d
Mol [ [ 1absomaies w1 90
d
2 ([t s PR @T)@,

T
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where M, is the Hardy-Littlewood maximal function, and we can obtain all these inequalities

above because the constant C' in (415) does not rely on 7 € [1,2] and § € C; C S"~!. Recall

(407) and the fact that 0 < r < min{p, ¢} < 1, then we have

[——
= F (Fap @m0 pu(2m0 7R Fuf) ()]

=1

SO F @™ p (20RO Fuf) (@)]7)

1
T

) 2 dr
S, (| / A k(G D AHH0) ) ()

T

3=

(419)

We insert (419) into ||f||zs g« below, incorporate those coefficients that contain mg into
p.q

constants since mg will be fixed, apply Lemma 2.0.6 and then we can obtain

-

_27377”@”{2’“3‘7#27710 k ok f’}kEZ”U’ (19)
dr 1

<2J"(l_1 ||{2ks / / |A2 kro(Pamo—r—u * f)(.)|7‘d7-[”_1(0) T

We use Holder’s inequality to obtain

d
[ 18 el < DT 0) %
Snl

d
/ / (AL (Ggmo—n—s % £) ()] 1M (0)
Sn 1 T

Sl=

)
).

Inserting (421) into (420) yields || f|

F5 (mm) CAD be estimated from above by

;7 s n— dr 1
PN [ 1A Bamenics ORI 0D sl

Recall (409) and the notation f; = ty-; * f then we have

Dgmo-k— % [ = f — Z Frti—mo in the sense of S'(R").

j=J+1

We can use an argument like the one for deducing (29) to obtain

AL o (Pomotg x ) = ALy ,f — Z AL o Frtiomo in the sense of S'(R").

j=J+1
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Inferring from (423) and assuming the validity of decomposition, then (422) can be estimated

from above by the sum of the following two terms,

d
[ [ a0 O el (425)

and

e s n— dr 1
P 1D ) ORI OD il (420

T
j=J+1

For the first term, we use the change of variable formulas ¢t = 27%7 for 7 € [1,2] and h = t0

for € S""! in a sequence and we can get

-1y 47 A f ()]
//SM'A ol @ (6) T = /Akf]thh, (427)

where Ay, is the annulus {h € R" : 27% < |h| < 2!7%} and hence

ARF()| 1
(425) < 27G=D | 14O hﬁs)l dh) 4| e ey < 00, (428)
rn R[S

and the value of the large positive integer J will be determined later. For the second term

(426), we begin with the same change of variable as in (427) and obtain

/ /Sn . Z |AL o Frrjomo (7)) 2dH 1<0)d7'

=J+1
=2 Z AL s o (@) )7
A j=J+1
<Y o |18 fetom(@)"dh (429)
Jj= J+1
S 30 BN (o) (430)
j=J+1
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where in (429) we used the condition 0 < ¢ < 1, and in (430) we used estimate (388) since

k+j3—mg>k+J—mg> k. Therefore we have the estimate

1 o [? = e, AT 1
2N 1A ki m OV O el (43

j=J+1

n 1_ = S jqn 11 r NG
2GS YT 2k 2 G DM (| fa e ) () ) 7 o

kEZ j=J+1
n(l_ = (L 1y_g s BN
A [0t P eV M (P O T i e
j=J+1 keZ

(I Dan(l_1y_g
SJQJ[ (z=D4n(z—7) ]||f|

F;’q(Rn)’ (432)

where in the above calculation we incorporate coefficients containing mg into constants since
my is fixed. Recall the conditions 0 < ¢ < 1, g, + Gy < s and 0 < r < min{p,q}. If
min{p, ¢} = ¢, then the condition o,, + 7,, < s means s > n(% — 1) and we can pick r

sufficiently close to ¢ so that

—-)>n(=—-). (433)

S | =
S|

s>n(%—1)+n(

< |
< |

1

If min{p, ¢} = p, then the condition o,, + 6, < s means s > n(% — 1) +n(; — ;) and we

% —_
can pick r sufficiently close to p so that (433) still holds true. Hence by invoking Lemma
2.0.6, the last inequality (432) is justified. We also infer from the assumption f € Flf’q(R”)
and inequality (432) that Z;’;JH |AL . frsjomo(2)] < oo for every k € Z, almost every
7€ [1,2],0 € S x € R". Therefore (424), (428), the above inference and the supposition

of f being a function validate the decomposition

A srg(Gymois % [)(2) = A f(@) = D Afirgfirjomo (@) (434)

j=J+1
in the sense of S'(R") for every k € Z, almost every 7 € [1,2],60 € S""',z € R™ when
0<p<oo, 0<qg<1landoy+ dy <s < oo, furthermore estimating (422) from above
by the sum of (425) and (426) is justified, moreover (426) can be estimated from above by
(431) and hence by (432). We have reached the conclusion

. AEFO s
e ey 020 2O e
19J[n(E—1)+n(t—1)—s] .
C72 D7 Ly oy (435)
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where the constant C” is independent of J. From (433) we see that if we pick J sufficiently
large so that the coefficient C’ 9/l =047 =)=5] g Jess than 1 and then shift the second
term on the right side of (435) to the left side of (435), then we can finish the proof of the
first part of Theorem 6.1.2 (ii).

Next we prove the second part of Theorem 6.1.2 (ii) when f is a function, 0 < p < oo,
1 <g<ooand —n < s < co. It seems that the same method as in the proof of the first part
of Theorem 6.1.2 (ii) produces a worse result in the case 0 < p < 1 < ¢ < 00, therefore we
use a different method to prove the second part. Still, we assume the right side of (303) is
finite. We use equalities (10) and (11) and integrate [(—1)*** AL, f(x)] against a Schwartz

function g(z) of chosen properties. We let ¢ be a radial Schwartz function whose radial

Fourier transform F, g satisfies

0< F,g <1, F,gissupportedin {£ € R": - < |{| <4L} (436)

1 =

and

Fog(€) = 1on {£c R : % < |e| < 2L}. (437)

Since F,g(0) = 0, then [, g(z)dz = 0 and we obtain the equality

L L
/9(2)[(—1)L+1(A§—sz)(rr)]dz :/RQ(Z)[Z dif(w+27"2)dz =) djge-r; * f(x), (438)
" "= j=1
where the kernel G (z) := Z§:1 d;jgo—r;(2) satisfies

spt. FnGr C{€ € R": 2M2 /L < |€] < 2F2L}, FoGr(€) = 1if 2871 < ¢ < 2811 (439)

We first estimate the term |[{2¥Gy * f}rez||1r(e). Since g(z) is a bounded Schwartz function,

then |g(2)| < |2|™Y for 0 # z € R® and N’ can be a sufficiently large positive integer
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whose value will be determined later. Recall that A; = {z € R : 27! < |2] < 217!} and

Ap={h e R":1 < |h| <2} and by (438), we have for every z € R"

25|(G * f)(w)| 52" o)l (AL f)(2)|dz (440)
=23 [ 1] (@l
=222 | 1ol (A e f) @)l
SN / (A o)) (aa1)

+ 37 gk / (AL, £)(x)|dh. (442)

<0

Applying Minkowski’s inequality for || - ||;s-norm for 1 < ¢ < oo to the above inequality yields

Q=

2% (G @) hrezllieS ) 27109 (Y 20+ sq/ [(Ayesmp ) (@)]dR)?)

1>0 keZ
JrX:Ql(N' n—s) Z2k+l)sq/ | 2 . lhf )|dh) )%
1<0 keZ
S 2 ALy (443
keZ
if N’ is chosen so that N’ > n + s > 0. Using Holder’s inequality for 1 < ¢ < oo, we have
( : (A5 f)(@)]dR)T S : (A, f)(@)|dh. (444)
0 0

Inserting (444) into (443) and applying the appropriate change of variable z = 27%h and

then inserting the resulting inequality into || - ||L»(rr) quasinorm yield

I{2% G * frezllrao
<” 22]6 sq+mn) / ’ ALf qu) ||Lp R")

kEZ

<UL 127 1AR A O g, (445)

R7 |z|"
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From inequalities (440) and (445), we also deduce for every k € Z and almost every z € R,
the integral on the left end of (438) is absolutely convergent and hence well-defined. Thus

for each k € Z and almost every z € R"
fi(@) = FoHFA QT Fuf) (@) = i + Gio % f(2) (446)
and we argue as in Remark 2.0.4 to obtain

[ty * G, x f(x — 2)|
Wy % G * f(x)|§eszs€%gp (1 + 28+2L | 2| )/

Sesssup [ [1hy-r(y)| (1 + 22 Ly )"/ -
ZGR’IL Rn

Ge % f(w = 2 =)
T+ 2L+ )"

SPu(Grx f)(x) - - [ () (1 + 2" 2Ly|)"" dy
SPa(Gr* (), (447)

and we recall that ¥, «(y) = 28"¢)(2%y) thus the constant in (447) is independent of k € Z.
From (446), (447) and (71) of Remark 2.0.8, we deduce that

/]

g = / Q2 )| d)

keZ

< / (329D, (G # ) () |1 ) 7

" kez

~ / (37 250)(Gy + f) () |1/ 9d) . (448)

" kez
Combining (448) and (445), we conclude the proof of the second part of Theorem 6.1.2 (ii).
For the case ¢ = oo, we first prove Theorem 6.1.2 (iii). We begin with estimating the

term ess sup ez €ss sup e 4, 2% > ez (A% fi)(z)] from above by the following

ess sup Z 2k esssup |(AF f;) ()| + esssup Z 2Fs esssup |(Ar ;) ()] (449)

kEZ <k heAy kEZ >k heAy
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We pick 0 < ¢ < min{s, L — s} and estimate the first term of (449) as follows

ess sup Z 2k esssup |(Ar f;) ()]

ez oy heAs

—esssup 32729 esssup |(ALS,)(@)
keZ <k heAy

<esssup Z 27% esssup 27 F esssup |(ALX i) ()]
keZ R I<k h€Ak

<esssup esssup 27T asssup [(ALf)(2)].
keZ 1<k heAy

We use estimate (384) and Remark 2.0.5 to get

(450) <ess sup esssup 2F(EFe=LL=D £ (1)

lez k>l
<esssup 2P, fi(x)
lez

<ess sup QZSMn(|fl|T)(93)%
=

1
T

<M, (esssup 27| f;|")(z)r.
lez
We estimate the second term of (449) from above by

ess sup E 2" esssup |(Af f;)(z)]
kEZ j>k hGAk
=ess su Z QJe . gieths vt
= p esssup [(4y f;)(2)]
keZ >k heAy

<esssup Z 279¢ esssup 2 esssup |(AFf) ()]
ke S 1>k heAy,

<esssup esssup 2°¢ 792 esssup [(ALf)(x)].
€2 k<l heAy,

(450)

(451)

(452)

From Lebesgue’s differentiation theorem, we have |f;(z)| < My (|fi|")(z)+ for almost every

x € R™. Putting (386) back into (385) yields the estimate

(AR fi) ()] S 2P M (I fil) ()7 for [h] S 275,10 > &,

(453)

where the constant in (453) is independent of h € R", [,k € Z. The value of r € (0,p) will

be determined later. Inserting (453) into (452) yields

(452) < esssup esssup 2k(s’€’%)21(5+%)/\/ln(|fl\’")(x)%.
lez k<l
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Since 7 <pand s—e—2 — s —% >0 as e — 0 and r — p, we can pick ¢ sufficiently small

and r sufficiently close to p so that s —e — * is a positive number and hence

1
T

(454) < esssup 25 M, (| fi]") ()7 < M (esssup 27| fil ) (z) 7. (455)
leZ lEZ

From the above discussion and the L+ (R")-boundedness of the Hardy-Littlewood maximal

function, we have proven that

1
lesssup esssup 2% (A} £;)()llr@n) S 1M (ess sup 2 A O ey S 1]

keZ heAy jez

Fj o (R)

(456)
for all 0 < p < oo and % < s < L. The above inequality and the assumption f € F;OO(R")
have shown } ., (AL f)(z)| < oo for every k € Z, almost every h € A,z € R". In

conjunction with (28), we have justified the claim that

Apf =" Affi(z) in the sense of §'(R")/ P (R") (457)
jez
for every k € 7Z, almost every h € A,z € R", and hence also the inequality
L

A
[Ty < s ssup essonp 2 Y (AL Ol (459

|| esssup —+—
heR™ ‘ ‘ €Z heA k ]GZ

Now (458) and (456) conclude the proof of Theorem 6.1.2 (iii).
To prove Theorem 6.1.2 (iv), we assume the right side of (305) is finite and use (441)

and (442) with N’ > n+ s > 0, and then we can deduce that

I esisup 2|Gr % f ()| Lo rn

ZQ n+8)+ZQI(N —n—s) )|| ess sup 2ks/ |(A§—khf)(')|dh||LP(R”)

1>0 1<0 hez Ao
<|| esssup esssup kaf(Aﬁf)(')‘HL”(R")

keZ he Ay
L
S| esssup (&) ”Hm (R)- (459)
heRn |h|®
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And the above estimate, in conjunction with (440), shows the absolute convergence of the
integral on the left end of (438) for every k € Z and almost every z € R". Using equal-
ity (446), estimate (447), Remark 2.0.5 and the L (R")-boundedness of Hardy-Littlewood

maximal function in a sequence, we can also obtain

s @m=| 55 Sup 12%° fie ()] 2o gy

<|| esssup 25 M, (|G, * f|" )(‘)%HLP(R")

keZ
S\\Mn(esisgp 2k |Gy % f| )(.)%”LI,(W)
S
<|| esssup 2%¢|Gy, * FON eerny.- (460)
kEZ

Inequalities (459) and (460) finish the proof of Theorem 6.1.2 (iv). The proof of Theorem

6.1.2 is now complete. O

6.3 Proof Of Theorem 6.1.3

Proof. We first prove Theorem 6.1.3 (i). We continue using the notation Ay = {h € R™ :
27F < |n| < 2'7F} for k € Z and thus R™ \ {0} = U,z Ak. We also pick the number 7 in

the definition of the Peetre-Fefferman-Stein maximal function so that 0 < r < p. We begin

with estimating ([g. [2]7* 3,z \ALf]\HLp Rn) |h|n) from above by the following
1 sqtn 1
Q25 Y A filllonydh)e + (Y 2" [ ALY AR Fil ooy dh) e (461)
)
kEZ Ag i<k kEZ Ag >k

We can pick 0 < € < min{s, L — s} and use the same calculation method as in (617), (618),
(619), (620) to obtain

1D 1A% il ey 2547 Y 2 AR i (462)
i<k i<k

I Z |ALfJ’H P(R™)~S Samhee Z 2 ‘ALf] HLP(R" (463)
J>k i>k
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And (462), (463) are true for 0 < p < 00, 0 < ¢ < co. To estimate the first term in (461), we
use (384), Remark 2.0.5 and the mapping property of Hardy-Littlewood maximal function
for || - HLg(Rn)—norm to obtain

1A% fill ey S 297P5 (1 + 275 || Pufjll oy S 2971 fill o emy, (464)
for j <k, |h| < 27% and constants are independent of h € R" and j,k € Z. We put (462)
and (464) into the first term of (461) then we have

(3 ko) / 1S AL f 1L gy @)

kEZ Ak <k
1
SO 2t 2 ] )
keZ j<k
1
SO Yo e I 0, ) S gy e 0%
JEZ k>j

To estimate the second term of (461), we can use (10) and proper change of variable to

obtain

||A Fille@ny SN fjlloeny for all j € 7Z, (466)

and the constant is independent of j € Z and h € R". We put (463) and (466) into the

second term of (461) then we have

(02 [ IS IALL I ey

Q|

keZ Ak sk
SQ Y 2N 2 £ 11, )
kEZ j>k
1
<SS 2 g S s (467)
JEZ k<j
Combining (461), (465) and (467), we have proven
—sq L dh 1 <
1S 1ALy oy ) 5 1 (168)

Rn ]EZ

The assumption f € By (R") implies Y, |A} f;(x)| < oo for almost every h € R™ and

x € R™. In conjunction with (28), we have shown

A=Y Apfi(x) (469)

JEZ
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in the sense of §'(R")/Z2(R"™) for almost every h € R" and x € R" when 0 < p < o0,

0<qg<ooand0 < s < L. Therefore we obtain

. dh
LS AL )

JEL

Q=
Q=

dh
(AL e )’ < (470)

Inequalities (468) and (470) conclude the proof of Theorem 6.1.3 (i).

To prove Theorem 6.1.3 (ii), we assume the right side of inequality (319) is finite otherwise
the inequality is trivial. We recall that spt.F,pp C A" = {£ € R" : 1 < |¢] < 2} and use
the positive integer my satisfying (403). We also continue using the spherical caps {C;},
constructed right after (403), the corresponding sets {P;}M, given in (404), (405), (406),
and the associated smooth partition of unity {p;}14, satisfying (407). We have the apparent

estimate

—-m s 1
HfHBg,q(R") = ”{Qk Ofkfmo}kEZHZQ(LP ~ (Z 2 q”%mo k¥ fHLp R™) )q~ (471)

kEZ

When 1 < p < 00, we can obtain from (407) the following

Yomo-i % f(2) =Y F [Fab (2 pi (270 FE) Fo (). (472)

For each [ € {1,--- ,M}, 0 € C; and 1 < 7 < 2, we can infer from (410), (411) and (412)
the following

Fo Fap(2m07rE) po(207 ) Fo f] ()

Futh(2m07KE) p (20K 9-Frp.
ol Y&Wfﬁﬁ’f e & (et _)EE, fa)
=Fu Nur0 (275 () # (A5 g f) (). (473)
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Due to Lemma 2.0.8 and hence (415), we have

F s (275) () % (AL ) ()]
< / 2% Fr N 1g(259)] - [(AL o) (& — )]y
2’“|y\<1

3 [ P (e

Ap_i

< AL,;C . d - l(n—N) AL,;C . d
N]/zkymu bl =l + 3220 f (Ao vy

k—1

SO+ 2 INM( AT f1) (@) S Mal(l 47101 (2), (474)

if in the last step above we pick N > n. Since 1 < p < oo, we invoke the mapping property

of Hardy-Littlewood maximal function and obtain for 0 < ¢ < oo,

dr
[Wamat Pl <Z]/12] |5 Fp (2707 ) (27 Fo ) o A" (0)—
- - e dr
Slz:/l ; 175 N0 (277€) () % (A g 1L ey H 1(9)7
=1 l
i e dr
S’/‘ /n1 HAgf’“TGfH%p(Rn dH 1((9) -
dh
[Pav gy VTR (475)

A
for every k € Z. Inserting (475) into (471) proves (319) when 1 < p < 00, 0 < ¢ < 0o and
s€R When 0 <p<1 0<gqg<ooando, <s < oo, we use the function ¢ satisfying
conditions (19), (408), (409), and J > my is a large positive integer whose value will be

determined later. Then we have

—— Zf (Fath (270 75E) pr(2707RE) Fra (270~ TRE) F, £ (). (476)

Furthermore for each [ € {1,--- ,M}, § € C; and 1 < 7 < 2, we can infer from (410), (411)
and (412) the following

Fo b (2m07 ) (27078 Frp (2777 7R) Fo f ()

mo—k mo—k ok
— l[fanifm.ﬂfﬁfl(zly (@0t 1) F g2 F ()

=T Ao (275€) () % (Agirg(damo—s—k * f))(2). (477)
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The Fourier transform of the Schwartz function
Y= 2kn}_n_1)\l,79(2k?/) : A;kﬁ((ﬁzmo#—k * f) (x - y)

is compactly supported in a ball centered at the origin of radius about 28+/—™0 in R”,
therefore by invoking Remark 2.0.7 or the more general Lemma 2.0.5 of Plancherel-Polya-

Nikol’skij inequality, we can estimate (477) from above by
125 F A0 (25) - Ags g (dgmo-ar % (@ = )l 11 ey

Sol I mmon G| 2En F N 6(25) - Afsrg(Gmo-a % f) (@ = | orn), (478)

for 0 < r < p < 1. We insert (416) with n — Nr < 0 into (478) and use the following

inequality
][A Ayt rg(Samo-r-s % f) (@ = y)"dy S Mu(| A5k p(Pomo—r-s * f)|") (@), (479)
k—m
and then combine the result with (477) to obtain

o [Fatb (27078 pu(27070) Fugp (270~ 74E) Fou f1 ()]

<27 G M, (| AL o (Pgmor-a % F)]7) ()7, (480)

for every [ € {1,--- M}, 6 € C; and 7 € [1,2]. Then we use (476), (480), the calculation
method displayed in (475) and the mapping property of Hardy-Littlewood maximal function

for || - ||Lg(Rn)—n0rm to obtain
ng(+— n— dr
[ *fHLp(Rn <27maG= Z/ M (]A5- k79<¢2m0 sk )] ) HLP(R” dH"(0)— -
< an n—1 dr
52 o |A 7-9 Pgmo—k—1 * f)HLp Rn)dH (9)7
1 dh
§2an(r “AL((ﬁQmO k—J % f)HLP Rn) T7n (481)
Ay ||

and (481) is true for 0 < ¢ < co. We insert (481) into (471), recall (409), (423), and (424),

and we also assume the validity of decomposition, then || f||z; (gn) can be estimated from
p,q

above by the sum of the following two terms,

dh

n(i- S
9Jn(2 1)(221”1 HALfHLp Rn) \h\n

keZ Ak

N2Jn /|h| SqHALfHLP - |h\”> < oo (482)
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and
JIn( ——1 ksq L dh |1
2 22 | A ( Z Trti— mo)”m Rn) ‘h‘n)q (483)
keZ A Jj=J+1

To estimate (483), we begin with

e ) dh 1
2J (T. 1)(2 2k Q/ || Z |ALfk+] m0|||Lp(Rn |h|n)q
ke, A j= J+1
§2Jn(%—1)(z 2k(sq+n)/ Z ||A fk+j mo”LP R”) dh)% (484)
kez A j=Jt1

since 0 < p < 1. When 0 < ¢ < p, we use (466) and the following inequality

q
(3 18 o) S S 1A sy S 3 s [y (455)
Jj=J+1 j=J+1 j=J+1
where the constants are independent of 5,k € Z and h € R”. When p < ¢ < oo, we pick

0 < e < s, use (466) and the following inequality

o0

(> 279 2 AL fijamo )

j= J+1

Z 2 1Pe) Pesssup 2quHALf’f+J mOHL” k")
I=J+1

27 Z 2%\ fietjmmo | 1o ey (486)
j=J+1

where the constants are independent of j, k € Z and h € R". Insert (485) and (486) into

(484) and exchange the order of summation, and then we can estimate (484) from above by

1_
2=l ]

B m) The assumption f € B;q(R") implies Y2 ;1 |AF frrjomo ()] < 00
for every k € Z and almost every h € A,z € R". In conjunction with (29), (423) and (482),

we have shown

Ay (Ggmo-r-1 % [) () = A5 f( Z A s j-mo (%) (487)
j=J+1

is true not only in the sense of §’'(R™) but also for every k& € Z and almost every h € Ay, x €

R" when 0 < p < 1,0 < ¢ < o0 and 0, < s < co. Furthermore estimating || f|| z; (gny from
p,q
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above by the sum of (482) and (483) is justified, moreover (483) can be estimated from above
by (484) and hence by 2/[G-1-4]|| f|

B3 (Rn)" We have obtained the inequality

dh

nl— -5 n(=—
1155 oy < €250 104 o )+ O

Bs Rn (488)

The condition o, < s < oo implies n(l — 1) — s < 0 when r is sufficiently close to p. Hence

when the positive integer J is sufficiently large, the coefficient C”271"( D= ig less than %
and then we can shift the second term on the right side of (488) to its left side and prove
the inequality (319) when 0 < p < 1,0 < ¢ < o0 and 0, < s < oco. The proof for Theorem
6.1.3 (ii) is now concluded.

Next, we prove Theorem 6.1.3 (iii). We pick 0 < ¢ < min{s, L — s} and begin with
estimating esssup egn |27l 3 ez 1A% fill| Lo ey from above by

esssup esssup 2% Z | AL filll e ey + eSS Sup esssup 25| Z | AL filll e ®n)- (489)
KEZ  heAy = heAy, o

If 1 < p < oo, by using Minkowski’s inequality, (384) and the calculation method displayed
n (660), we can estimate the first term in (489)

_(RnY)- And by using
Minkowski’s inequality, (466) and the calculation method displayed in (661), we can estimate
the second term in (489) from above by HfHB;m(Rn)' If 0 < p < 1, by applying (384) and the
calculation method given in (662) to the first term of (489), and by applying (466) and the

calculation method given in (663) to the second term of (489), we can still estimate (489)

(Rn)- Thus we can obtain the inequality

esssup 517 3 [AF lle S 110 (490)

JEZ

The assumption f € B;’VOO(R") shows ., |AL fi(x)] < oo for almost every h € R™, x € R™.
In conjunction with (28), we have shown (469) is true not only in the sense of S'(R")/Z(R")
but also for almost every h € R™, x € R” when 0 < p < 00, ¢ =00 and 0 < s < L. Therefore

we have

ess sup AN AF fll o @y S ess sup |h] ™| Z | AL Filll o) (491)

JEZ

Inequalities (490) and (491) conclude the proof of Theorem 6.1.3 (iii).
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Now we prove Theorem 6.1.3 (iv). We assume the right side of (321) is finite, otherwise,
the inequality is trivial. We still use the positive integer mq satisfying (403), the spherical
caps {Ci 1Y, constructed right after (403), the corresponding sets {F}, given in (404),
(405), (406), and the associated smooth partition of unity {p;}}, satisfying (407). When
1 < p < oo, we use (472), (473) and (474) to obtain

|9gmo—k * f|| Lo R")Nz esssup esssup || F, [Fnp (2707 ) pi (270K E) Fou 1| £omny

— rell2  0eC
M
52 esssup esssup || F,  A-0(277E) () * (Ag_kTef)HLp(Rn)
—1 TEL2] 0eCy
M
S esssup esssup [Ma(|AL 4o f1)locer

~Y

—1 TEL2] 0eCy

Sesssup esssup || Ay i o fllzo@n) = esssup [|AF flLon)- (492)
re[12] fesnt heAy,

Therefore we have the inequality

w3 < esssup 25 || ¢hgmo—s * fllLo@ny S S esssup 2|1 A% fll 2o em, (493)

and inequality (493) is true for 1 < p < 00, ¢ =00 and s € R. When 0 < p < 1, we also use
the function ¢ satisfying conditions (19), (408), (409), and J > m, is a large positive integer
whose value will be determined later. Then we can use (476) and (480) with 0 <r <p <1

to obtain

||¢2mo*k * fHLP(]R”)
M

SZ esssup esssup || F, [Fnp (2707 %) pr (270 ) Fud (20T TR Fo £l o ey

=1 r€[1,2] 0eC;
M
L 1
<27n=h ZGSS sup esssup [| Mo, (|45 5 (dgmo—r-s % f)|)7 || Lorny
—1 TElL2]  0eC

§2J"(%_1) esssup ess sup ||A§—kre(¢2mo*k*" * f)llze @)
re[l,2]  gesn—1

=271 ess sup | AF (Gamo—r-s % f)|| 1o (@n)- (494)

heAg

Insert (494) into

(rmy» Tecall (423) and assume the validity of decomposition, then we

can estimate || f|| B (B™) from above by the sum of the following two terms,

27n(;=1) ess sup BN AF fll oy < 00 (495)
e n
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and

1_ s
270D esssup esssup 2% AL Siegmo)llisce (496)
k€Z  heA i

To estimate (496), we use (466) and begin with the following

1_ s
277 esssup esssup 27| Z | AL, frotj—mol | e ®n) (497)
kEZ  heA, Pl

o0
52‘]”(%_1) esssup esssup 27( Z ||Aﬁfk+j—m0||zz/p(ﬂ{n))%
keZ heAy

Jj=J+1
1_ - mo—j)s j—mo)s »
§2Jn(T 1) ess Sup( Z 2( 0—J)sp . 2(k+] 0) p||fk+j—m0‘|ip(R"))p
REZ j—gn
1_1)—s
<oJIn(z-1) ”’f‘Bg,m(R")‘ (498)

The assumption f € B;OO(R") implies > 7 ;.| | AL frtjmmo(z)| < oo for every k € Z and
almost every h € A,z € R". In conjunction with (29), (423) and (495), we have shown
(487) is true not only in the sense of S'(R™) but also for every k € Z and almost every
h € Ag,z € R" when 0 < p < 1, ¢ = o0 and 0, < s < oo. Furthermore estimating

If]
estimated from above by (497) and hence by (498). We have obtained the inequality

B; (&) from above by the sum of (495) and (496) is justified, moreover (496) can be

/]

1 —s n(t-1)—s
Bty S C'270 esssup (BT AL fllzogeey + C" 20T gy ey (499)

The condition 0, < s < oo indicates n(% — 1) — s < 0 when 7 is sufficiently close to p. Thus
the coefficient C”2/"(:=1=5] is less than % when the positive integer J is sufficiently large,
and then we can shift the second term on the right side of (499) to its left side and prove
the desired inequality (321). The proof of Theorem 6.1.3 (iv) is now complete.

Finally, we come to the proof of Theorem 6.1.3 (v). By using a different method, some
better conditions can be obtained in the case p = 1. We assume the right sides of (322) and
(323) are finite. If 1 < ¢ < oo and —n < s < oo, we use the radial Schwartz function g
satisfying (436), (437), (438), and the kernel G (-) = 3¢ d;jgo-r;(-) satisfying (439), (446),

Jj=1

(447) with 0 < r < p = 1. Then from (440), (441) and (442), we deduce

2kSHGk *k f||Ll(Rn)§Z 2*1(”4’8) . 2(k+l)s/ HAé_k_zthLI(Rn)dh
Ao

>0

4 Z N— 2(k+l)s/ HAéthHLl(Rn)dh. (500)
Ao

<0
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When 1 < ¢ < oo, we use Minkowski’s inequality for || - ||;s-norm, Holder’s inequality and

compute as in (443) and (444) with N’ > n + s > 0 then we can obtain

H{QkSGk * f}keZ”l‘l(Ll

<(3 2t / AL w0 f 1 oy )

Q=

keZ
s dh |1
NULE qHALfHLl(R" |h|”>q’ (501)
]Rn
When ¢ = oo, we use Minkowski’s inequality for || - ||;<-norm and the inequality (500) with
N">n+ s> 0 to obtain
{25 Gy, * fYreezllio(r)
<esssup 2% HAg,kthLl(Rn)dh
keZ Ao
<esssup 2" esssup ||A§_khf||L1(Rn)
keZ heAp
Sesssup [h| 7| A5 £l - (502)
heRn

Indicated by (440), (500), (501) and (502), we know that the integral on the left end of (438)
is absolutely convergent and hence well-defined for every k € Z and almost every x € R".

By (446), (447), Remark 2.0.5 and the mapping property of Hardy-Littlewood maximal

function, we have || f| B () S IH2%Gy * frezlliarry for 1 < ¢ < oo and any s € R. In
conjunction with (501) and (502), we have proven the inequality (323), and the inequality
(322) when p=1,1< ¢ < oo and —n < s < 0o. To prove (322) istrueforp=1,0< ¢ < 1
and 0 < s < 0o, we notice that by picking 0 < r < p =1, the method given for the proof of
the second part of Theorem 6.1.3 (ii) still applies and oy = 0. The proof of Theorem 6.1.3 is

now complete. O
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7.0 Inequalities In Function Spaces In Terms Of Iterated Differences Along

Coordinate Axes

7.1 Chapter Introduction

In Theorem 6.1.2, it was shown that the quasinorm || f||z (gn) is equivalent to
p,q

I At o = 1 [ A G e 0) s,

and the expression inside the parenthesis on the right side is an integral of the term

> dt
| A
0 t

over the set of all the unit directions # € S* !. Therefore it is natural to ask: is there
a similar equivalence relation if we replace the integral over S"~! by a finite sum of unit
vectors? It seems this question can be answered when 6 takes value in the set of elementary

unit vectors {e;}”

7_1, where each e; € R" has its j-th coordinate equal to 1 and all the other

(n — 1) coordinates equal to 0. We use the notation Af;f = Af ., for j € {1,---,n},
then for example, when f is a function defined on R™, A}, f(x) = f(z1 +t, 22, - ,:L“n) —

f(x1, 29, ,x,). Denote

On(——— 1} & O 0,02 —1)}. (503)
0pg = max{0,n(————1)}, o, =max{0,— — -}, o, =max{0,n(——1)}.
Pe min{p, ¢} P P q 8 p

Theorem 7.1.1. Let LEN, 0 <p<00,0<¢<o00,scRand f € F o (R™).
(HIf 0 < p,q < 00, G, < s < L, then for each j € {1,---,n}

I S 1D ey S 10 oy (504)
0

(ii)Suppose f is a function. If 1 < min{p, ¢}, ¢ < co and s € R, or if min{p,q} <1, ¢ < ¢

~1
and oy, + 7, < s < 00, then

/]

nooope dt 1
ey S SN[ AL SO e (505)
j=1
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(iii)IfO<p<oo,q:ooand%<s<L,thenf0reachj€{1,---,n}

!f\

|| ess sup ler@n) S 1N s emy- (506)
t>0

(iv)Suppose f is a function. If 1 <p < oo, g=oc and s € R,orif 0 <p <1, ¢ = oo and

1
0p+5<s<oo,then

< )
@ S Z J ess sup oo (507)

It is worth noting that the condition in Theorem 7.1.1 (i) and the condition in Theorem
7.1.1 (ii) when 1 < min{p, ¢} are completely independent of the dimension of the ambient
space R™ while the restriction of s in Theorem 7.1.1 (ii) when min{p, ¢} < 1 is only partially
dependent on the dimension n. H. Triebel formulated the counterpart of Theorem 7.1.1 for
the inhomogeneous F; (R") space in [94, section 2.6.2] with rough conditions 0 < p < oo,

0<q<ooand < s < M. Theorem 7.1.1 is a newly published result in the author’s

mln{p a}
paper [98]. The proof of Theorem 7.1.1 can be found in section 7.2. The corollaries of

Theorem 7.1.1 are given below.

Corollary 7.1.1. Let 0 < p< 00,0 < g< o0, s € Rand f € F, »q(R™) is a function.
(1)If 0 < p,q < 00, G,, < s < 1, then for each j € {1,--- ,n}

o0 dt .» 1
([ 1 te) = R ) )t S 1l ey (508)

(i))If 1 < min{p,q}, ¢ < oo and s € R, or if min{p, ¢} < 1, ¢ < oo and g,y + 7, < 5 < 00,

then
- oo dt 4 1
00 S 300 ([ 1o+ ) = @l i)t (509)
j=1
(iii)IfO<p<oo,q:ooand%<5<1,thenforeachj€{1,--~ ,n}
te:) — 1
(/ ess sup ’f(ﬂ?—i— e]) f($)| ); (510)
no >0 P
(iV)Ifl<p<oo,q:ooands€R,orif0<p§1,q:ooand0p+%<s<oo,then
|f(x+te;) — f(x)]P, (1
s ®RY) S ess su dx)r. 511
11 o Z [ esssup S ) (511)
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Proof of Corollary 7.1.1.  Apply inequalities (504), (505), (506) and (507) with L =1. [

Corollary 7.1.2. Let 0 < p<o00,0<¢<o0,s€Rand f € F > ,(R™) is a function.
()If 0 < p,q < o0, apq<s<2, then for each j € {1,--- ,n}

o dt », .1
([ (] Vet 21e) =200 + ) + 1@ )b < 1

b (512)

(ii))If 1 < min{p, ¢}, ¢ < 0o and s € R, or if min{p, ¢} <1, ¢ < oo and o, + &Il)q < s < 00,

then

n

& dt . »p 1
e S (] 128 =2+ 1)+ f@P ) Fanb. (613

(iii)IfO<p<oo,q:ooand}—17<5<2,thenforeachj€{1,--~,n}

(/ ess sup |f(x 4+ 2te;) — Z{S(p:c + te;) + f(x”pda:)p

(514)

t>0

(iV)Ifl<p<oo,q:ooands€R,orif0<p§1,q:ooand0p+%<s<oo,then

1l RMZ / esssup 2D ZH @RI HT@E )5 (515

£>0 tep
Proof of Corollary 7.1.2. Apply inequalities (504), (505), (506) and (507) with L =2. [

Finally, as part of a systematic study, we also state and prove the counterpart of Theorem

7.1.1 and the corresponding corollaries for B;,q(R”) spaces.
Theorem 7.1.2. Let Le N, 0 < p,q<o0,s€Rand f € B;q(R”).
MHIf0<p<o0,0<qg<ooand0<s< L, then for each j € {1,--- ,n}

1

& dt. 1
([ AL £ e ) S 11
0

B3 (Rn)" (516)

(ii)Suppose f is a function. If 1 <p < oo, 1 <g<ocandse€ R orifl <p<oo,0<¢g<1

and0<s<L,orif0<p<1,0<g<ooando, <s <L, then

/]

- —s d 1
Bg,q(R") 5 Z(A q||A f”Lp Rn ?)q (517)
j=1
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(ii)If 0 < p < o0, g =00 and 0 < s < L, then for each j € {1,--- ,n}

ess Sup A flleeny S 1 Fllsy o ny- (518)

(iv)Suppose f is a function. If 1 <p < oo, g=o0cand s € R, orif 0 < p <1, ¢ = oo and

op < 5 < 00, then

By o (®7) S Zesjfgp || AL £l oo ey (519)

,00

/1

j=1

Theorem 7.1.2 is a newly published result in the author’s paper [98]. The proof of
Theorem 7.1.2 is given in section 7.3. The counterpart of Theorem 7.1.2 for the inhomoge-
neous By (R™) space was obtained by H. Triebel in [94, section 2.6.1] with rough conditions

0 <p,qg<ooand o, <s <M. The corollaries of Theorem 7.1.2 are formulated below.
Corollary 7.1.3. Let 0 < p,g < oo, s€ Rand f € B’;’q(R”) is a function.
HIf0<p<o0,0<g<ooand0< s <1, then for each j € {1,--- ,n}

* a dt 1
([ (I te) = flapan)t 5507 S 1

B;’q(Rn)‘ (520)
ifl<p<oo,l1<g<cand seR,orif l <p<oo,0<g<land0<s<1,orif
0<p<1,0<g<ooando, <s<1,then

- &0 ¢ dt .1
sy 0 S 30 ([ 1+ te) = pla)Paa) )t (521)

Proof of Corollary 7.1.3. Apply Theorem 7.1.2 (i) and (ii) with L = 1. And (521) also

indicates the following inequality

- o ¢ dt
P ey £ D2 ot te) = sl an?

R"

Q=

(522)

for every k € Z, and hence limy_, o |[th2-+ * f||Lr@r) = 0 when s > 0 and the right side of
(521) is finite. O
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Corollary 7.1.4. Let 0 < p,q < o0, s € R and at least one of p and ¢ is infinity. Assume
fe B;q(R") is a function.

()f p=o00,0<g<ooand0< s <1, then for each j € {1,--- ,n}

Q=

(/Ooo esssup | f(x +tej) — f(x)]qtitsq) J(E) (523)

reR™

(ifp=o0,1<g<ocand se R, orif p=00,0<¢g<1and0 < s <1, then

dt 1
(@ S Z | esssup £+ te) = Flal ) (524)
(iii))If 0 < p < 00, ¢ =00 and 0 < s < 1, then for each j € {1,--- ,n}
esssup t ([ |f(x+te;) — f(x )|pdx) (525)
>0 Rr
(ivfl<p<oo,g=occandseR,orif 0 <p<1, g=o00and g, <s < oo, then
1
1115 o @m) S Zesssupt | Mf@ttey) = f@)ldo)>. (526)
(V)If p=g=o00and 0 < s < 1, then for each j € {1,--- ,n}
te:) —
ess sup ess sup o +te;) = ()] (527)
t>0  zeR" t?
(vi)If p = g = o0 and s € R, then
te:) —
1By c@my S Zesssup ess sup o £ te)) f(x)| (528)

=1 t>0 zER™ ts
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Proof of Corollary 7.1.4. Apply Theorem 7.1.2 with L = 1. We also deduce from (523) that

for almost every x € R",

([ 1t te) — fl@l )

Q=

S 1]

e, (529)

when conditions of Corollary 7.1.4 (i) are satisfied. Furthermore if 0 < p < 00, ¢ = o0 and

0 < s < 1, then we can infer from (525) and (527) the following inequality

(- +tej) = FO)llr@n

@y fort>0. (530)

Moreover when conditions of Corollary 7.1.4 (iv) are satisfied, the inequality (526) indicates

B3 oo (R™) NZ/ ess su f(x+t€j)_f($)|pdx)%. (531)
Jj=1 "

/]

t>0 tsp

From (524) and (528) we see that for every k € Z and almost every x € R", 28|thy « x f(z)]
can be estimated from above by the right sides of (524) and (528) respectively, and hence
we deduce limg_, ;o0 P+ % f(z) = 0 when s > 0 and the right sides of (524) and (528) are
finite. From (526) we see that for every k € Z

- 1
2" [k * fllion S ) _esssup t7°( [ |f(x +te;) = f(x)Pdz)

j=1 t>0 R™
3 [ (@ +tey) = f@)PP s
D e S o

and hence we deduce limy_, ;o [|1)9-# * f||zr@rr) = 0 when s > 0 and the right side of (532) is
finite. [

Corollary 7.1.5. Let 0 < p,q < oo, s € Rand f € B; (R") is a function.

(i)IfO<p<oo,0<q<ooand0<s<2,thenforeachjE{l,---,n}

o a d
(/O ( . | f(z + 2te;) —2f(:x—|—tej)+f($)|pd93)z’t1fsq)

Q=

S /]

iIfl<p<oo,l1<g<ocand seR orifl <p<oo,0<g<land0<s <2 orif

0<p<1,0<qg<ooando,<s <2 then

¢ d
" Rn)NZ ([ 1t 2865) =250 +16) + @) o)} 20

Rn

Q=

/]

(534)
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Proof of Corollary 7.1.5. Apply Theorem 7.1.2 (i) and (ii) with L = 2. And (534) also

indicates the following inequality

a d
251+ £l R%Z | 1t 2te) = 2560 1)+ )P )

Q=

(535)

for every k € Z, and hence limy_, o ||9-& * f||Lr(rn) = 0 when s > 0 and the right side of
(534) is finite. O

Corollary 7.1.6. Let 0 < p,q < 0o, s € R and at least one of p and ¢ is infinity. Assume
fe B;’q(]R") is a function.

()If p=o00,0<g<oo0and0< s <2, then for each j € {1,--- ,n}

([ esssup 1@+ 2165) =20+ t0) + F0) 1)t S Wl e (530

r€ER™

(ilfp=o0,1<g<ocand se R, orif p=00,0<¢g<1and 0 < s < 2, then

JEY) S Z / esssup |f(x + 2te;) — 2f(z + te;) —i—f(x)\qtf_lfsq)é. (537)

reR™

(ii)If 0 < p < 00, g =00 and 0 < s < 2, then for each j € {1,--- ,n}

es§>s(1)1p t=%( - |f(x + 2te;) — 2f(x + tej) + f(x)|pdx)% S (538)
(ivfl<p<oo,g=occand seR,orif 0 <p <1, ¢g=o00and g, <s < oo, then
@ S Zesss(l)lpt 5 5 \f(x + 2te;) — 2f(x + te;) + f(z)[Pda)>. (539)
(V)If p=g=o00and 0 < s < 2, then for each j € {1,--- ,n}
€58 SUP €55 Sup t0| (e + 2te;) — 2f (z +te;) + f(2)| S 1 fl sy, - (540)
(vi)If p =g = o0 and s € R, then
1l @y S Zesssup esssup t~°| f(x + 2te;) — 2f (x + te;) + f(x)]. (541)

t>0 reR™
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Proof of Corollary 7.1.6. Apply Theorem 7.1.2 with L = 2. We also deduce from (536) that

for almost every x € R",

(/OOO |f(x + 2tej) — 2f(x + te;) + f(a:)|qtlc_lfsq)

Q=

Sl e (542)

when conditions of Corollary 7.1.6 (i) are satisfied. Furthermore if 0 < p < 00, ¢ = oo and

0 < s < 2, then we can infer from (538) and (540) the following inequality

17 (- 2tes) = 2F (- +teg) + FO)lr@ny S CU Nl @y for £>0. (543)

Moreover when conditions of Corollary 7.1.6 (iv) are satisfied, the inequality (539) indicates

By S Z / ess SUp |f(x + 2te;) — 2f(x + tej) + f(x)|pdx)%. (544)
Jj=1 "

>0 tsp

/]

From (537) and (541) we see that for every k € Z and almost every x € R", 28%|thy « x f(z)]
can be estimated from above by the right sides of (537) and (541) respectively, and hence
we deduce limg_y 1 to-+ * f(x) = 0 when s > 0 and the right sides of (537) and (541) are
finite. From (539) we see that for every k € Z

- 1
2k3||z/127k * fllre@n) S E ess s(lle t=%( |f(z + 2te;) — 2f(x + tej) + f(z)|Pdx)?

: t>

J=1

RTL

5i</n esssup L0+ 20e) = 2w tte) + f@F ) 2
j=1

t>0 tep

and hence we deduce limy,_, ;o ||19— * f||Lrrn) = 0 when s > 0 and the right side of (545) is
finite. [l
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7.2 Proof Of Theorem 7.1.1

Proof. We first prove inequality (504) when 0 < p,q < oo, a < s < L and f is a tempered
distribution in S'(R™). Without loss of generality, we only need to prove the inequality for
j = 1, the cases for j = 2,--- ,n can be proved in the same way. Recall that for x € R",
x = (r1,2)) and 2} = (xQ, <o, x,) € R We still denote f; = ¢, x f and begin with
estimating 3, , 2~(etD) f ZZGZ | ALy fi()])4dt from above by the following

Z 2k sq+1) / Z |A 1fl th + Z Qk(SQ+1) / Z |At lfl th (546)

keZ 1<k keZ 1>k
Using the same calculation technique exhibited in (392) and (393), if 0 < £ < min{s, L — s},

we can obtain

O 1R f(@))1<2Me > 2= AL fi()]7, (547)
1<k <k

O 1AL file))iS27he Y "2 AF fi(a))e. (548)
1>k 1>k

Inserting these estimates into (546), we can estimate (546) from above by

—k 21—k

21
ZQk(sq+aq+1)ZQ—qu/ kmim |th+22k sq—eq+1) 22“1&/ |A£1fl(x)|th. (549)
.

kEZ <k kEZ >k

Now we give an important estimate for A£1 fi(z). By using Mean Value Theorem consecu-

tively with respect to the first coordinate, we obtain
A£1f1($) = 8afl(x1 + )\t, .1'/1) . tL

for some X\ between 0 and L and o = (L,0,---,0) is a multi-index. From Lemma 2.0.9,
we know for fixed j € R"™!, the 1-dimensional Peetre-Fefferman-Stein maximal function of

fi(+, ) is well-defined. Using the 1-dimensional version of Remark 2.0.6, we have
[0° fu(wy + At 2))| S PrO” fil, ) (w1 + M) S 25PLfil-, 7)) (21 + ).
Using 1-dimensional version of Remark 2.0.3 and assuming ¢t < 27%, we can further obtain
Pufic,a) (s +28) S (L+ 274 P, 2f) (),
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where 0 < r < min{p, ¢}. Therefore the estimate is given as follows
AL fi(x)] S 20 PEA 4 278 PG ) () for [ S 27K, (550)

For the first term in (549), we use the above estimate (550) and 1-dimensional version of

Lemma 2.0.3 to obtain

21—k

Z2k(sq+8q+1) Zglq‘f/ |A£1fl($)‘th
keZ I<k o
<3S ey QP (. gt ()t
leZ k=1
SO 2IPUC ) (@)
leZ
S 2EMUAC 2D ) ()7, o
leZ

since (1 +2-%)7 is bounded from above by a constant when [ < k, and My (|fi(-, z4)[")(z1)

r

is the 1-dimensional Hardy-Littlewood maximal function of |f;(-,z})|" centered at z;. For

the second term in (549), we use (10) to get

L
AL A S Y Liley + mi, ). (552)

When 0 <m < L, [t| £27% and [ > k, we also have

e

[filar+mt, 2] S (L4278 Pl 2) (@) S 27 Mallfi( 20N ()7, (553)

by using 1-dimensional versions of Remark 2.0.5, Remark 2.0.3 and Lemma 2.0.3, and con-

stants are independent of [, k, m,t. And the following inequality is true for 0 < m < L

f fwemtald s e mtg) P S MiAC ). (550
[271@721—16] |t‘§217k
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Applying estimates (552), (553) and (554) yields the following
21—k
2 [ |ak )
2+ -

<22k/ | fi(@y +mt, )] [ filzy +mt, )| dt

<Z]/ | fi(wy +mit, 2)"dt - 2 PED My (| fi, 27 ()

2k21k

S2ETIM (il )7 () (555)

And estimate (555) is true for 0 < ¢ < oo and [ > k. Therefore we can estimate the second

term in (549) as follows

21k

Z 2k sq—eq+1) Z zlqs / tljlfl<x)’th

keZ >k

£ 24079 Y2 M (L ) ) ()

kEZ >k

SO D2 A (i ) )

leZ k<l

<SS 2 M (i 7)) (), (556)

lez
where the last step is because the assumption &;q < s indicates that s — e — % + é > 0
if we pick e sufficiently close to 0 and r sufficiently close to min{p, ¢}. Combining (546),
(549), (551) and (556) altogether, raising the power to % and inserting the result into the

| - || (rry-quasinorm yield

Z ok(sq+1) / Z |A th) ||Lp(Rn)

kEZ ez
/ / > UM AG ) (@) #) 57 daryday )

Rt JR ey,

/ / Zqusm w1, 2h)[7)a dmld%)% = [ Ey  (R7) (557)
R~ JR ez,

where we also used the 1-dimensional version of Lemma 2.().6, and inequality (557) is true

for 0 < p,q < o0, 6,, < s < L. The assumption f € F; (R") and inequality (557) also
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tell the absolute convergence of the series >, , A£1 fi(z) for every k € Z and almost every
t € [27%, 2%, 2 € R™. In conjunction with (28), we have proven the following claim that

Al f = Z Al fi(z) in the sense of S'(R")/Z(R") (558)

leZ

for every k € Z and almost every ¢ € [27%,217%] 2 € R™ when 0 < p,q < oo, a < s <
L. Therefore the tempered distribution Am f has a function representative which is the
pointwise limit of the series ), Atf1 fi(z) and integration of A,f1 f with respect to Lebesgue

measure is justified. Furthermore, we have obtained the following inequality

o0 9l—k
||(/0 1| AL 1f|q ||LP(]Rn ZQk(sq—H / (Z AL, fi(@)) dt) 7 || oy, (559)

kEZ I€Z
and then (557) and (559) conclude the proof of Theorem 7.1.1 (i).
Next, we show that inequality (505) is true under the conditions of Theorem 7.1.1 (ii).
We assume the right side of (505) is finite, otherwise, the inequality is trivial. We still use
the sufficiently large positive integer mg given in (403). Observe that if £ € spt.F,ip C A’ =

{€¢ eR": § < €] <2}, then
G+E+ - +6

n _4n

This means given a sufficiently small positive number §, there exists at least one &; such
that § < || < 2. Therefore we obtain the decomposition A" = U;‘ A%, where A} = {£ €
R": 3 < €] < 2,8 < [§] <2} Let {p;}}—; be the partition of unity associated with this
decomposition, that is, each p; is a smooth function with a compact support in R”, and

spt.p; is contained in a small neighborhood of A’, furthermore

D pi§) =1ifce A (560)
j=1
Without loss of generality, we can assume that
1
5 <|{| <2and 6 < [¢]| <2 for € € spt.p;. (561)

Then we have

/]

Fg ,(R") NZQ {28 F T (2707 ) py (270 7E) Fuf1(@) brezll o o)- (562)

7=1
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Thus to prove (505), it is sufficient to prove

125 F, (Ftb (27746 95 (279 ™) Fo () bzl oo

< dt. 1
Sl | AL SO s + Cool 5 o (563)

for every j € {1,2,--- ;n} and Cyp is a positive constant that can be arbitrarily small. We
only need to prove (563) for j = 1, and the cases for j = 2,--- ,n can be proved in the same
way. Notice that both F,1(2m07%¢) and p;(2m0~*¢) are supported in a ball centered at 0 of

radius 2F+1=™0 in R", thus using the argument of Remark 2.0.4, we have

F [Fao (270 ) pr (2707 E) Fuf ) ()]
SPAF [Fa (27075 E) pr (2774 Fu f1} ()
SPu{F o1 (27074) Fuf1} (2). (564)

By Lemma 2.0.3, Remark 2.0.5 and Lemma 2.0.6, we have

2" F [Fa (2707 €) pa (27077 Fru f (@) Y wez o)
SR F (2707 ) Fufl(2) ezl oqo)- (565)

If 1 < min{p,q} and s € R, then we have

Fo o (207 Fu f](2)

L pr(2moRE) omi-2 ke L dt
= B . 1 1 : at
[1’2} Fn [<62ﬂ2~2*kt§1 - 1)L (6 ) f f] (x.) t
= L (27 L dt
e 7 [(62”2*’% — 1)L] * Ay f(2)— (566)

According to the support condition of p;, when p;(2™¢) # 0 and ¢t € [1,2], we have 0 <
2-mo§ < t|¢)] < 227™0 and thus |(e*™% — 1)L] > ¢ > 0 for some constant ¢ independent of
t and &;. Using the same method as in Lemma 2.0.8, in particular since a similar condition
like (81) is satisfied because of the assumption on p;, we can obtain

p1<2m0£) < 1

o e~ WIS Ty

(567)
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for arbitrarily large positive integer IV, and the constant is independent of ¢t. We still use

the notation Ay_; = {y € R": 2!7F < |y| < 2!*17*} and hence

2nm—k
(62/7:;5—’@1551 _5)1) ] * Ag*kt,lf(x)’

S5 [ ] A - )y

ez Y Akt 1*

5221“/ |A§kt,1f<x—y>|dy+22“"‘”f AL Fo—y)ldy. (568)

1<0 Ak >0 Ak

bl

n

Insert (568) into (566), exchange the order of integration, and use the inequality

dt
AL_k — — < n A ey,
][AM /M| 2 f (@ =)= dy S M (/[12| 1f()| @),

then we can obtain

Fo o (27078 Fof) ()]

SO 2+ S 2 /[ 1451, PO )

<0 >0

5Mn</[l 2 SO ), (569)

if we pick N > n. Inserting (569) into (565), applying Lemma 2.0.6 which requires the

condition 1 < min{p, ¢}, and also using Hélder’s inequality for 1 < ¢ yield the following

125 F Fb(2m k) <2m°—'f§>fnﬂ<x>}kezqu>
5|r{2kwn</u 18 12 PO @) il v

<Jl{2+ /[ UG % kealzva
M2 [ 1A @I e

kEZ

© d
< / AL @) ) e, (570)

and this inequality is true for any s € R. By now we have proven (563) for 1 < j < n and
Coo = 0, and inserting these inequalities back into (562) proves (505) under the conditions of
Theorem 7.1.1 (ii) when 1 < min{p, ¢}, ¢ < co and s € R. Now we show that (505) is still true

under the conditions of Theorem 7.1.1 (ii) when min{p, ¢} <1, ¢ < 00 and o, + 7,, < s <
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oo, we will have to use the n-dimensional Plancherel-Polya-Nikol’skij inequality and hence
introduce o0,,, a number depending on the dimension 7, into the restriction of s. We use the
function ¢ satisfying conditions (19), (408) and (409), and J is still a large positive integer
whose value will be determined later. Because spt.p;(2m07%¢) C {¢€ € R" : |¢] < 2kF1=mo}

the n-dimensional Fourier transform of the Schwartz function

p1(2m07kE)

Y= ‘Fn_l[(egﬂ-i.gfkt& - 1)L](y) ) Agfkt71(¢2m0_“’_k * f) ('ZE - y)

is supported in a ball of radius about 277*=™0  centered at the origin in R™. Therefore
by using Plancherel-Polya-Nikol’skij inequality or the more general Lemma 2.0.5 and the

condition 0 < r < min{p, ¢} < 1, we have

7 e+ ey s = NON

n

n 2m0—k
SV L ) Ay (Bamos o = )

2mo
SQ(J-&-k—mo)n(l—r)/ 2knr|Fn—1[( Qpl'(t51 5)1)L](2ky)|r
n esmrie —

S AL, (Gomo—a—r * f) (2 — y)|"dy. (571)

Recall that R" = J,.; Ak—1 where Aj_; is the annulus {y € R™ : 2% < |y| < 2'*17F} and
use (567) with a sufficiently large positive integer N' > * then we can estimate (571) from
above by

200 (S AL (s e Dy

1<0 Ap_y

#3020V AL (G x e = ) ) (572)

>0 A1
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Therefore from (403) we know that when p; (2707%¢) # 0 and t € [1,2], |(e272 "€ —1)L| > 0

and we can obtain

F o277 ) Fufl @)
mo—k R
:7[[12] 17 e '*fl—1>Lfn¢(2mo—J-k5>fnf1W%

627rz~2*kt§1 _ 1)

:J[m]'f"lkeﬁ?fz;_@ 5 [AL 4y (Bmorr  DON@)

0 7
<2Jn1 r) . Zzln/

dt
[ 1k s = )
1<0 Akt

. d
n Z oln—N'r ]/ / AL ko1 (Pamo—a—r * f)(z — Z/)\’"?tdy}. (573)

>0 Ag—1

Using the fact that f, fl |AS i, 1 (dgmo-sx % f)(x = y)|"%dy can be dominated by

dt
Mol [ 185 s Gra-ss # HOT D),

we obtain

F o1 (27 ) Fof) o)
= / 18 s (Gmamrms  HOF D))

S

(574)

Inserting (574) into (565) and using Lemma 2.0.6 and Holder’s inequality since 0 < r <

min{p, ¢} yield

{2 F [Faw (207 ) pr (2707 ) Fu f1(- )}kezHLP(lq)

1_ s
<2t [ lormnrs s HOF ) Yucallion
Jn(ffl ksq dt
S2 >2 lﬂz ki1 (Pamo-sk o [) ()] ) 2o (). (575)
keZ
Inferring from (423), (29) and assuming the validity of decomposition, then (575) can be

estimated from above by the sum of the two terms

1_ S
pIn(E-1) gkq/ AL FO))S —) oy

k’EZ

(1 < dt 1
7D / AR OIS wgany < o (576)
0
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and

dt 1
I3 2 / Z fiert=mo) ) ¢ | r(eny: (577)

keZ I=J+1

To estimate (577), we begin by applying the calculation method used for obtaining the second
term of (549) to the following term below and obtain

2 = dt 1
27 =D|| (Y gk / (S 1AL frrtmmo (DT 4 oen) (578)

1 t
keZ I=J+1
17
S (PI)DEA / A fistomo D) oy, (579)
kEZ 1>J "
where we only need € > 0. Considering oy = (22, ,x,) € R""! is fixed for now, we use

Lemma 2.0.9 and estimate (555) since k+1—mg > k+ J —mg > k and then we can obtain

the following

217k

Zk/ ‘ AL Fiertomo ()%t S 2'C DM frogtomo (- 21)[7) (1) 7 (580)
.

Inserting (580) into (579), because the assumption o, + &, < s < oo implies

1 1 1 1 1
- —-)<s and e4+--—=-<s (581)
roq roq

when 7 is sufficiently close to min{p, ¢} and ¢ is sufficiently close to 0, we can estimate (579)

from above by the following

2/t~ / (D27 Y TR (| il ) (@0) ) k), (582)

>J keZ

and this term can be further estimated from above by
2PV gy e, (583)

due to the 1-dimensional version of Lemma 2.0.6. Putting together (579), (582) and (583)

yields

L \ 2 =X dt 1
2O 2 (3 1Ak frtoma () e

kezZ L=yt
Jn(t- S—=
<2/GDHG—0- stHps (®R") (584)
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Inequality (584) and the assumption of f being a member of F}f’q(R”) also suggest that
e g |AY ., ferimmo(@)] < 0o for every k € Z and almost every ¢t € [1,2],z € R". From
(29), (576), the above inference and the supposition of f being a function, we can deduce

that
Ay kt1(¢2MO sk f)(x) = AL kt1f Z AQ ke 1 Sl mo () (585)

I=J+1
in the sense of §'(R™) for every k € Z and almost every t € [1,2],z € R" when min{p, ¢} < 1,

q < 00 and 0y +6,, < 5 < 00, furthermore estimating (575) from above by the sum of (576)
and (577) is justified, moreover (577) can be estimated from above by (578) and hence by
(584). We have reached the conclusion

12" F, [Pt (270 7%€) 1 (27 7*6) Fo £1() ezl o

(L < dt . 1 (L 1)4(l_1
SCﬂJ“”W/ AR O ) gy + G2 . (586)
0

In a similar way, we can also prove (586) if we replace py, A{jl, C1, C1 by pj, Af], Cj, C;

respectively for j = 2,--- n. From (562) we have obtained

loJn(:—1) - = —sq| AL dt . 1
70y SO0 3 AL O Sy

Lo N g e (587)

By (581) we can pick a sufficiently large positive integer J so that the coefficient

and shift the second term on the right side of (587) to its left side and hence complete the
proof of (505) when min{p, ¢} <1, ¢ < oo and o, + &;q < 5 < 00.

Now we prove Theorem 7.1.1 (iii). We only need to prove inequality (506) when j = 1
and the other cases when 7 = 2,--- 'n can be proved in the same way. We begin with
estimating || esssup o1~ ez |45, ()| s(en) from above by the sum

lesssup esssup 2% AL fi(-)| [l eny + [ esssup esssup 23 1AL O o ny-
KEZ  tefak2iok) Y k€Z te2=k21-k) g

(588)
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Pick 0 < € < min{s — %,L — s} and let 2} = (22, - ,x,) € R"! be fixed for now. When

| <k, we use Lemma 2.0.9 and (550) and calculate as follows

esssup 2~ Z esssup |Af fi(ar, 2))]

keZ 1<k tE[27F217F)
<esssup 2F(~F) Z 21 APy fy (-, ) (a1)
kez 1<k
Sesssup esssup 2FETe=L) =D, £ 4l ()
lez k=1
1
Sesssup 2° My (| ful, 27)[") (1), (589)
IeZ

where we also used the 1-dimensional version of Lemma 2.0.3 and 0 < r < p. Inserting
(589) into the || - || Lr(rn)-quasinorm and invoking the mapping property of the 1-dimensional
Hardy-Littlewood maximal function, we can estimate the first term in (588) from above by

the following

1
| esssup 2° MLl 2)") (@) leoger

S(/R 1/RJ\/ll(esssup 215r|fl(-,x’1)|’")($1)gdx1dx'1)%

lez
1

SO [ esssup 29 o) Pdadst ) = 1oy (590)

Rn-1 JR  I€Z pee
When [ > k and [t| < 27% we use (552) and (553) with temporarily fixed z}; € R"! to

obtain

I—k 1

esssup | A7 fi(wr, 21)| £ 277 Ma(fil, 2)[") ()7 (591)
te[2—k 21-k)

Since % < s < L by the assumption, we can pick € > 0 to be sufficiently close to 0 and r to

be sufficiently close to p so that s — % — ¢ is a positive finite number, and then we can obtain

esssup 2° Z esssup |AL fi(zr, 2]

kEZ I>k te[27k,21-F)
<esssup 2k(s=7) Z 27t 21(€+%)M1<|fl(’7 5C/1)|T)(5U1)%
kez 1>k
<esssup ess sup gk(s=r=e) . 21(€+%)M1(|fl('7 37/1)|T)($1)%
lez k<l
Sesssup 2°Mu(|fi(-, 21) ") () (592)
lez
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Inserting (592) into the || - || L»(rn)-quasinorm and proceeding as in (590), we can estimate the

second term in (588) gny- Lherefore we have obtained the inequality

|| esssup esssup 2k52 1AL ey S HfHFs (R)» (593)

keZ  te[2—k,21-k) ez

when 0 < p < o0, ¢ = oo and % < s < L. The assumption f € F;,OO(R”) and the
above inequality also show Y, , |Af fi(x)] < oo for every k € Z and almost every t €
[27%,217%) 2 € R™. In conjunction with (28), we have reached the conclusion that
Al f = Al fila) (594)
lez

in the sense of S'(R")/ Z(R") for every k € Z and almost every t € 27, 2!7%) x € R™ when

0<p<oo, g=o0and Ilj < s < L, furthermore we also obtain

1A f|
| esssup —= || p@n) < ||esssup  esssup 2’“Z|A SO er ey (595)
t>0 keZ  te[2—k 21-k) =

Inequalities (593) and (595) conclude the proof of Theorem 7.1.1 (iii).

Finally, we come to the proof of Theorem 7.1.1 (iv). We assume the right side of (507) is
finite, otherwise, the inequality is trivial. We also use the sufficiently large positive integer
mo given in (403) and let 0 < r < p. We continue using the partition of unity {p;}7_,
associated with the set A’ = {£ € R" : 1 < [¢] < 2} introduced at the beginning of the
proof of Theorem 7.1.1 (ii), and also continue assuming 3 < [£] < 2 and § < |§] < 2 for
§ € spt.p; and 9 being a sufficiently small positive number. Then by using Remark 2.0.4,

Lemma 2.0.3, and the mapping property of the Hardy-Littlewood maximal function, we can

obtain the estimate

/1

e <2 mOSZHeSiSup 2| (Futh (270 74) py (27 ) Fo f) ) e

7=1

<Z | esssup 28P, (F, [ (27 ) Fu f1) ()| 1o (R

kEZ

52 esssup 2 M, (17 0@ FufI)()? aocer

<Z||es§€sup 283 | F p (270 7€) Foy ()| o gaeny (596)

j=1
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We now estimate each term in the sum of (596). It suffices to provide estimate for the term
| esssup j.ez 2| Fo o1 (270 7FE) Foy f1()| | Loy when j = 1, and estimates for the terms when

J =2,---,n can be obtained in the same way. When 1 < p < co, we have

| F o1 (2707 ) Fo f] ()]
=esssup |F, o1 (2™ R Fufl(2)|

te(1,2]

_ p1(2m0kE) omi-2— k¢ L
=esssup |F, ! : (e2mi2 MG YL
te[lg]p ’ n [(627”'271%61 o 1)L (6 ) nf](l‘)|

2m0—k
(eziil.gktgl f)l)L] * Aékt,lf(x)‘- (597)

=esssup |F, '
te(1,2]

We use (568) and the following estimate

][ €SS Sup |A§*k‘t,1f(x —y)ldy < Mo (esssup |A§*kt,1f(')|)($)7 (598)
A

w_1 t€[1,2] te(1,2]

and then we can estimate | F, ![py(2™07*¢)F,, f](z)| from above by the following

(372 4+ 3 2N A, (esssup [ AL, f1)(2) S Ma(esssup [AL,, f) (&) (599)

1<0 >0 tell,2] te[1,2]

for every x € R™ if we pick N > n. Therefore when 1 < p < 00, ¢ = o0 and s € R, we invoke

the mapping property of Hardy-Littlewood maximal function and obtain

I esiszlp 2’“[.7:;1[,01(27”0%5)]:71]?”HLP(R")
S
AL FC)

<M (esssup esssup 2% AL, | f)r@e) S Iless sup —¢
>

kEZ te(1,2]

|| Lo (Y- (600)

Inequality (600) is still true if we replace p1, AL ., |, Afy by p;, AY A}, respectively for

2kt 50
j =2,---,n. Inserting these inequalities back into (596) proves the first part of Theorem
7.1.1 (iv). To prove the second part of Theorem 7.1.1 (iv), we use the function ¢ satisfying
conditions (19), (408), (409), and the same my as in (403), and the large positive integer
J > mg whose value will be determined later. From (571), (572) and the inequality

ess sup][ | A5k 1 (Bamo—a1 % f)(x = y)["dy S My(esssup [Ag i, (Ggmo-s-  f)[7)(2),
te(1,2] An_y te(1,2]
(601)
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we can obtain

[Fo o 27 ) Fu f ()"

_ -1 p1(2m07k§> r
=esssub 17 [ amarig — qyz) * A2 (Gramsox (@) (602)
<2/ (37 2 T 2N A (ess sup [ AL, 4 (Ggmo- sk * f)]7) ()
1<0 1>0 te[1,2]
S27MI M, (ess sup | AY i, 1 ($gmo-s—r % f)]7) (), (603)
te[1,2]

if we pick N’ > . From this inequality and the mapping property of the Hardy-Littlewood
maximal function, we deduce the estimate

Fess sup 27| F, o1 (270" ) Fo ()|l 2o eny

kG

<27G=D |l esssup esssup 2F *|AY kg 1 (Dgmo-1-1 % ) ()|l Loy (604)
kEZ te(1,2]

Assuming the validity of decomposition, then (604) can be estimated from above by the sum

of the following two terms,

Jn(L ks Jn(: |AtLlf()|
271G~ | ess sup esssup 27| AL e SOl zr@ny ~ 2 “U| ess sup ———||r@n) < 00,
keZ  te[1,2] >0 t*
(605)
and
2716 ess sup ess sup 25 A7, Z Fretzmo) | o @y (606)

keZ te(1,2] I—J11

To estimate (606), we use (552), (553), Lebesgue’s differentiation theorem and the fact that
k4+1—mo>k+J—mg>ktoobtain for k € Z, [ > J and t € [1,2],

L 1
AL o st o] S 25 My (it (2 ) ) (607)
where the constant is independent of [, k£, t. Therefore we have
97n(z ~U|| esssup esssup 2~ Z AL ko1 Siti—mo ()|l Lo ) (608)
kezZ te(1,2] I=J+1
=27 “U|| esssup esssup 2% Z 27l ole| AL g1 Srri—mo ()| o @)
keZ te(1,2] I=J+1
2“7”(1 D=J%|| ess sup esssup esssup 2| AL g1 Srerimmo (Ol 2o @)
>J keZ te(1,2]
52‘]"(%_1)_‘]6” esssup 21T esssup =M AL (| st —mo (- m’1)|r)(x1)% | e (®ny-(609)
I>J keZ
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The assumption o, + i < s < oo indicates

1 1 1
et+-<n(-—1)+-<s (610)
r r r

if we pick € > 0 to be sufficiently small and r to be sufficiently close to p when 0 < r < p < 1.
Thus by the mapping property of the 1-dimensional Hardy-Littlewood maximal function, we

can continue from (609) and obtain the following estimate

97l ~ Ul esssup esssup 2% Z | AL ke 1 Jrtrtomo ()| o n)
kEZ te(1,2] I=J+1
<2lnG G=D+7—] / //\/l esssup 2kt fr (-, )| )(;Ul)gda:ldas’l)%
Rn—1
n(1-1)+1—4
<2/l D+ &™) (611)

The assumption f € FE,OO(R”) implies Y% 1 [AL ., | frti—mo ()| < o0 for every k € Z and
almost every ¢ € [1,2],z € R™. From this implication, (29) and (605), we deduce

Ay kt1(¢2MO sk f)(z) = Ay koS (2 Z Ay k1 bti—mo (T) (612)

I=J+1

in the sense of S'(R™) for every k € Z and almost every ¢t € [1,2],2 € R" when 0 < p < 1,
qg = oo and o, + % < s < oo, furthermore estimating (604) from above by the sum of
(605) and (606) is justified, moreover (606) can be estimated from above by (608). We have

obtained

Jesssup 2%, (o1 (27 ) Fuf )l o

A f ()]

ts || Loy + Cy 271 SRRAE

<C127"GD|| ess sup _(RY)- (613)
>0

Inequality (613) is still true if we replace py, Atfjl, C1,Cy by pj, AE.

i1, Cj, Cf respectively for

j =2,--+,n. Inserting these inequalities back into (596) yields

f()l

Ry < c'2/nG -0 Z I ess sup | Lo (ny + C"27 1 SROAE o) (614)

Due to (610), we can pick J to be sufficiently large so that the coefficient 127G =Dt -5 < %
and shift the second term on the right side of (614) to its left side to complete the proof of
Theorem 7.1.1 (iv). Now we conclude the proof of Theorem 7.1.1. O
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7.3 Proof Of Theorem 7.1.2

Proof. To prove Theorem 7.1.2 (i), it suffices to prove inequality (516) for j = 1, and the

other cases for j =2,---

following two terms

and

,n can be proven in the same way. We begin with estimating the

21k

(ZQk(qu)/k HZ‘A 1fl|HLP(R" t)s

keZ 2= 1<k
1
Z2ksquSSUP HZ|AL ktlfl|||Lp R™) )4, (615)
kel te(1,2] 1<k
21

(sz(sq+1)/ ||Z|A 1fl|HLP(R" t)e

keZ >k
1
(Zkaqesssup HZ|AL ktlfl|||Lp R™) )a. (616)
kEZ el g

We pick 0 < e < min{s, L —s}. If 1 < p < oo, we use Minkowski’s inequality for || - || z»mn)-

norm and obtain

and

H Z |A —kt, 1fl|”Lp (R™)

1<k
Zzls 275 Ay fill Loy
1<k
SO 2 esssup 279 AL il
1<k i<k
<2kq522 lqE”A ktlleLP - (617)
1<k

H Z |A —kt, 1fl|”LP (R™)

1>k
SO 2729 AL fill o)
>k
ZQ ik esssup 2Jq€||A ktlfJ”Lp (R")
>k
<2 kqaZQZqEHA ktlleLp R") (618)
>k

146



If 0 < p <1, then we have

1> 1A v filll ey

1<k
q
SQ 2% 27N A e fill e gey)?
<k
Py 2 YA ey filll e (619)
1<k

and

|| Z |A2 kt, 1fl|||Lp R™)

1>k
q
22 v 2lp€HA ktlleLP Rn) E
>k
SRy 2 AL fillf ey (620)
>k

When t € [1,2] and [ < k, we use estimate (550) with 0 < r < p, the 1-dimensional version
of Lemma 2.0.3 and the mapping property of the 1-dimensional Hardy-Littlewood maximal

function to obtain
IAY &y 1 fill ony S 29725 fill Logny for 0 < p < o0, (621)

where the constant is independent of ¢, [, k. Inserting (617), (619) and (621) into (615) yields

-

(615) S (DD 2kt gl pe L ya S| f|

l€eZ k>l

We can also use estimate (552) and proper change of variable to obtain

L
1AY wpy fill oy S D0 NAC+ 27 mien) | o@ny S [fill Loy, (623)
m=0

where constants are independent of ¢, k, [, and (623) is true for all 0 < p < oco. Inserting

(618), (620) and (623) into (616) yields

(616) S (DY 2kt 21, o) S|

leZ k<l
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Combining (615), (616), (622) and (624), we have proven

s dt 1
/ NS A Al 5

I€Z
1
(Z 2ksqesssup H Z‘A kt1fl|HLp R™) )q
keZ €12 ez
S (625)
if 0 <p<o00,0<gqg<ooand0 < s < L The assumption f € Bj (R") implies

> ez | AL fi()] < oo for almost every ¢ € (0,00) and x € R™. In Conjunctlon with (28), we
have reached the conclusion that
Af =Y Al fie (626)
lez
in the sense of &'(R™)/Z(R") for almost every ¢t € (0,00) and x € R™ when 0 < p < o0,
0<qg<ooand0< s < L. Hence we also have the estimate

0 dt
( / WAL

D s ([N A Al P (020
0 Iz
Inequalities (625) and (627) conclude the proof of Theorem 7.1.2 (i).
Now we prove the first and the second parts of Theorem 7.1.2 (ii). We can assume the
right side of (517) is finite and the left side of (517) is positive, otherwise, inequality (517)
will be trivial. In the definition of the Peetre-Fefferman-Stein maximal function, we pick the

number 7 so that 0 <7 < p. We also use the positive integer mg given in (403) and {p;}7_,

is the partition of unity given in (560) and (561). Then we have

Q=

/]

3, =0 2 gk ¢ )

keZ

<3 O (270 )y (27 ) Fo )

j=1 keZ

Q=

(628)

By Remark 2.0.4 and Remark 2.0.5, we can obtain the following pointwise estimate

Fo Fa (2707 ) py (207 Frf) ()
SPAF [Fao(2775E) py (2777 Fuf1} ()
SP{F s (27 Fuf]} (@)
SM(IF pi (2™ ) FaflN) ()7,

1
T

(629)
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for j € {1,--- ,n} and x € R". Inserting (629) into (628) and invoking the mapping property

of Hardy-Littlewood maximal function yield

1l @y S D 125 F 052 ) Fu () dnezliocin)- (630)
j=1
We estimate the term with j = 1 and estimates for other terms with 7 = 2,--- ,n can be

obtained in the same way. If 1 < p < 00,1 < ¢ < oo and s € R, we use (566), (568),
(569), the mapping property of Hardy-Littlewood maximal function, Minkowski’s inequality

for || - || Lp(rmy-norm and Holder’s inequality for 1 < ¢ < oo in a sequence and then we have

125 F o (270 e) F, e
<[H2 Mo ( / A5 PO ke

[1,2]

s dt. .1
SQ_2 q(/ 1451 fll oy~ ek (631)
keZ [1,2]
s dt 1
Zqu/ ktlfHLpRn )q
kEZ
o s dt. 1
SO AL P (632)

Inequality (632) is also true if we replace p;, A% k1o At L by p;, AL

3 ke Af; respectively for

j =2,--+ ,n. Inserting these inequalities into (630) proves inequality (517) when 1 < p < oo,
I1<g<xandseR. Ifl<p<oo,0<qg<1land0<s< L, we can still obtain estimate

(631). We continue from there and estimate each term in the summation of (631) as below

5 dt
(| 18wl T
1,2
ksq kS 1— q dt
=( " 2 HA ktlfHLP(]Rn -2 HA ktlf“LP )
| S dt S
5(/ 2t Ag ktlfHLP(]Rn — )1 20Dl ess sup || A ’“tlfHLP(R" (633)
(1,2] te[1,2]

and then by using Holder’s inequality with conjugates % and 1—;}, we can estimate (631) from

above by the product of the following two terms,

. at [~ dt
3 / 2 e T / N ey (634)

kEZ
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and

ZQkSq €88 SUP ”A2 ki 1fHLP(]R" )771- (635)

keZ tell,2

Furthermore (635)

]R") if we apply (625) and the
argument for justifying the decomposition afterward. Comblnlng these estimates together,

we have shown

{2 F, o1 (270 Fo 1) ez lliary S /0 Y AL e e

) ; (636)

Inequality (636) is still true if we replace ,ol,AtL’1 by p;, AtLJ- respectively for j = 2,--- . n
Inserting these inequalities into (630) yields

B 4(R™) S Z/o Py fHLP(R” Hf|
j=1

when 1 < p <o00,0<¢<1and 0 < s < L. Then inequality (637) indicates the desired

/]

b ey (637)

inequality (517). Next, we come to the proof of the third part of Theorem 7.1.2 (ii). We prove
(517) when 0 < p < 1,0 < ¢ < o0 and 0, < s < L, we pick 0 < r < p and estimate the term
{25 F o1 (2m07RE) Fo £1(-) Yrezllia(rry. We still use the sufficiently large positive integer mq
given in (403), the function ¢ satisfying conditions (19), (408), (409), and J > my is a large
positive integer whose value will be determined later. From (574), the mapping property
of Hardy-Littlewood maximal function and Minkowski’s inequality for || - [| ,p/r@n)-norm, we

can deduce the following

{2 F o1 (277 ) Fu f1() bezlliacer)
<2Jn(——1 ZQkSQH/ |A2 ki1 ¢2m0—J—k *f)( )| _||i{07;7(Rn )

kEZ

Q=

" . , dt. .1
§2J G- 2k 9 / HAz kt1 (Pgmo—1-r * f)HLP(an ; )q/ )a. (638)
kGZ

If furthermore ¢ and r satisfy ¢ > r, then by using Holder’s inequality we have

dt dt
/ 185 4y (Baro-r-s * )i T / 145 s Gamamsor e gy T - (639

150



Hence we can estimate (638) from above by

_ s dt. 1
21 (3 ke / 145 4y Bt % Dy S5 (640)
keZ
From (423) and (29), we can infer
2 ku(%mo I k*f)( ) Ag kt1f Z A2 kt1fk+y mo( ) (641)

Jj=J+1
in the sense of S'(R™). Assuming the validity of decomposition, we can estimate (640) from

above by the sum of the following two terms,

n—— s 1 n(i— —s dt 1
2713 gt HAQ con ey T3~ 277G [ aF £, 0 T < o0, (642)
(R™) ¢ 0 (R™) ¢

kEZ

and
(L s - dt. 1
P2 [ 125103 Sorsm )l D (643
keZ j=J+1

To estimate (643), we use (623) and the condition 0 < p < 1 and begin with the following

(i s dt. 1
P2 [ S 1o mallfn (644)
keZ j=J+1
n 1_ S 4,1
27D 2k Z [ frti-mollzo@n))?) - (645)
kEZ j=J+1
In case ¢ < p, since 0 < 0, < s, we have
n 1_ S G 1
(645)27" (Y T 250N " | frngmo [ Fo )
keZ j=J+1
s 1
2NN oo a N R [ )
j=J+1 keZ
<oJn(t—1)—s] .
< 1135, e (646)
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In case p < ¢, we use 0 < ¢ < min{s, L — s} and estimate as follows

[e.e]

) 4 : 4.1
(645):2Jn(;71)<2 2ksq( Z 9—ipe 2Jp€”fk+jfmo”ip(Rn))g)q
keZ j= J+1
q c 1
<2/n(5 G-1 22’“‘1 Z 277P%) ess sup 21%|| frpi— mo | Tp Rn))q
kEZ j= J+1
27—y gk Z 2lq€||fk+l—mo||qu(Rn))%
kEZ I=J+1
<2J[n 7—1) s] ||f| BS J®): (647)

Combining (644), (645), (646), (647) and the assumption f € B;q(R”) altogether, we find
>t |A§_kt71fk+j_m0(x)| < oo for every k € Z and almost every t € [1,2],z € R". In
conjunction with (641) and (642), we have proven (641) is true not only in the sense of
S'(R™) but also for every k € Z and almost every ¢t € [1,2],2 € R® when 0 < r < p < 1,
r <q<ooand o, <s < L. Furthermore estimating (640) from above by the sum of (642)
and (643) is justified, moreover (643) can be estimated from above by (644) and hence by

the term 27("G—D=5|| f| By, (rn)- Recall (638) and (640), then we have obtained

{25 F, o (2707 7) Fo f1() Yrezllia ey
Sc«pjn(i—l)(/ quA 1fHLp - t) + C’{’ZJ[n(%_l)_S]Hf’
0

B3, (Rn)" (648)

Inequality (648) is also true if we replace py, Afy,C1, CY by p;, Al

t,39

C’, C7 respectively for
Jj =2,--- ,n. Inserting these inequalities into (630) yields

n(i— - oo_s dt n(i-1)—s
by < C2GED S [ AL e T+ OG-
—1 J0

/]

Bj ,(R™)* (649)

The condition o, < s < L implies n(% —1)—s < 0 if r is sufficiently close to p, and hence the
coefficient C”727G: D=3l i5 less than % when J is a sufficiently large positive integer. Shifting
the second term on the right side of (649) to its left side proves the desired inequality (517)
when 0 <r<p<l,r<g<ocando,<s<L IfO<g<r<p<lando,<s<L,
then we continue from (638). Applying (641) and assuming the validity of decomposition,
then (638) can be estimated from above by the sum of the following two terms,

nf— s dt,q
P 2 [y e D)

kEZ

Q=

(650)
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and
n(:- s - , dt q.1
277D Zqu/ [paca kt,1 Z fk+j—m0)||LP(R”)?)7')q- (651)
keZ j=J+1

To estimate (650), we first rewrite each term in the summation of (650) as follows

dt
)t

s a
29[ 18Tl B

s s(r— dt 4
— / 20 A sy 27 A g Py )’
1
2’%“1 AL diya ks AL (r-a)% 652
( . H ktlfHLp Rn) )T ( efsﬁg]p ” 2- ktlfHLp R”)) T, ( )
(S

and then we apply Holder’s inequality with conJugateS Zand Z to obtain

n(=— S d l S 11
(650)< <2J( 1) Z/ ok qHA ktlfHLp R") 7 . ZQk qesssup ||A ktlf”m Rn))” r

kez kezZ tefl,2

n(=— —s dtl
<ont: 1)(/0 NAR Wy ) - 151,

sy < O (653)

where in (653) we used estimate (625) and the argument afterward to justify the decompo-
sition. And (625) requires 0 < s < L. To estimate (651), we use (623) and the condition

0<g<r<p<l1toget
“ Z |A —kg, 1fk+y m0|HLP(R" Z ||fk+j—m0||2P(R")7 (654)
j=J+1 j=J+1
and then we can insert (654) into the following term and obtain

n(%-1) s dt q,1
P29 [ 1S 1k s mollinn I} (655)

keZ j=J+1

’I’Ll_ s I ok
2N Y Wil

keZ J=J+1
n(i— - mo—j)s j—mo)s .
§2J (L 1)( Z 9(mo—j) qzz(kzﬂ 0) q||fk+j_m0||%p(Rn))q
j=J+1 keZ

n(i-1)—s
S2PGD g

b (656)

The assumption [ € B;Q(R”) tells us 322 ;1 [AY 4, ferjomo(2)] < o0 for every k € Z
and almost every ¢ € [1,2],2 € R™. In conjunction with (653) and (641), we have proven

(641) is true not only in the sense of S'(R™) but also for every k € Z and almost every
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€[1,2l,r e R" when 0 < ¢ <r <p<1and o, <s < L. Furthermore estimating (638)
from above by the sum of (650) and (651) is justified, moreover (651) can be estimated from
above by (655) and hence by (656). Combining (638), (650), (651), (653), (655) and (656)

altogether, we have obtained

{2 o1 (270 7*€) Fuf1() Y rezliain)

n(l_ s dt. 1 1-4 n(l_1)—s
SC{QJ G 1)(/0 qHA 1fHLP(R" —)r HfHBs J(R™) + Ci,QJ[ (=) ]”fHB,%,q(R”)' (657)

Inequality (657) is also true if we replace p, A{jl, C1,C7 by p;, AL

1.5, Cj, Cf respectively for
Jj =2,--+ ,n. Inserting these inequalities into (630) yields

n

n(t— P
B;,q(Rn)SO’Q‘] (5 1)2(/025 qHA fHLp -

Jj=1

_'_C//QJ[n(%—l)—s] I1f|

ye I

Bj 4(R™)

1.f1

dt
)t

Bqu(Rn). (658)

The condition o, < s < L implies n(% —1)—s < 0 if r is sufficiently close to p, and hence the

coefficient C”27"G: D=5l i5 less than % when J is a sufficiently large positive integer. And

then we can shift the second term on the right side of (658) to its left side, divide both sides

&) and raise the power to 2, finally, we can reach the
desired inequality (517) when 0 < ¢ < r < p <1 and 0, < s < L. We have finished the
proof for the third part of Theorem 7.1.2 (ii).

Now we prove Theorem 7.1.2 (iii). We only need to prove inequality (518) for j = 1, and
the other cases for j = 2,---  n can be proved in the same way. We pick 0 < & < min{s, L—s}
and begin with estimating the following term

esssup  esssup 2% Z |A il e ey + ess Sup ess sup 27| Z |A illlreny. (659)

k k k k
keZ 2-k<t<2l— 1<k 2=k <t<21— I>k

If 1 <p < oo, by using Minkowski’s inequality and (621), we can estimate the first term of
(659) from above by

ess sup 2’“”2:21E 27 esssup HAtlleLﬁ R")

keZ 1<k 2-k<t<21-

Sesssup 256 H esssup 2/ || £l Loy
kez 1<k

Sesssup osssup 2 20 il < 1 fll ey (660)
€z k>l
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and by using Minkowski’s inequality and (623), we can estimate the second term of (659)
from above by

esssup 2% Z 27 . 25 esssup HAt Vil ze ey
k€EZ I~k 2—k<t<2l-k

<esssup 2°(7%) ess sup 2| fill 2o ey
I>

keZ
<es? sZup esisup Qk(s =2 fill oy Bs, . (R"): (661)
€

If 0 < p <1, by using (621) for | < k, we can estimate the first term of (659) from above by

1
ess sup oks agg sup ( E 9lpe 2*Z;DEHA 1leLP(R" )r < HfHBﬁoo(R”)’ (662)
keZ 2-k<t<21-k 1<k ’

and by using (623) for [ > k, we can estimate the second term of (659) from above by

1

esssup 2F esssup (22 e olpe )| AL Lillpr@ny)? S (R (663)
kez 2-k<g<2t=k T
From (659), (660), (661), (662) and (663), we have proven
esssup £7°1 Y A fll ey S 659) S 1y ooy (664

leZ

when 0 < p < o0, ¢ = oo and 0 < s < L. The assumption f € B;’OO(R”) implies
ez 1AL fi(x)] < oo for almost every ¢ > 0,2 € R". In conjunction with (28), we have

shown

Al =) A filx (665)

leZ

in the sense of §'(R™)/Z(R") for almost every ¢t > 0,2 € R” when 0 < p < 00, ¢ = 0o and

0 < s < L. Therefore we have obtained the inequality
esssup ¢ °|| AL fllowe) S ess sup 7 Z 1AL filll o ey (666)
>0 '
Inequalities (664) and (666) complete the proof of Theorem 7.1.2 (iii).
Finally, we come to the proof of Theorem 7.1.2 (iv). We assume the right side of (519) is
finite, otherwise, inequality (519) is trivial. In the definition of the Peetre-Fefferman-Stein

maximal function, we pick the number r so that 0 < r < p. We also use the positive integer
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mo given in (403) and {p;}}_, is the partition of unity given in (560) and (561). Then we

have

Bs mn)SZesssup 25| Fo [ Fnth (207K E) py (270K E) Foo £ 1o gy
i - keZ

<Zesssup 28| Fo s (270 7R E) Fou £l 1o e (667)

kEZ

where (667) is a consequence by Remark 2.0.4, Remark 2.0.5 and the mapping property of
the Hardy-Littlewood maximal function. It suffices to estimate the term for j = 1 in (667),
and estimates for the other terms in (667) when j = 2,--- ,n can be obtained in the same
way. If 1 < p < oo, q=o00and s € R, we can infer from the calculation method displayed

n (597) that

IF; o1 (270 ) Fou f1| oy
=esssup [|F, " [p1(270 ") Fo fl| Lo ()

te(1,2]
p1(27m07FE)
(627ri~2*kt§1 — 1)L

—esssup 77| | AL vy oo (665)
te(1,2]
We use (568), Minkowski’s inequality for || - ||zr@n)-norm, the mapping property of the

Hardy-Littlewood maximal function and the following estimate

II/ [Ayne 1 FC =yl ren) S IMa( Ay IO llpr@e) S 118501 f ooy, (669)

where A,_; denotes the annulus {y € R" : 2% < |y| < 217%} and then we can estimate
(668) from above by
ess sup (Z 2l 4 Z 2N ALy flle ey S ess SUp 1AY k1 fll Lo @ny, (670)
tell2l g 1>0 tef1,2]
if we pick N > n. Combining (668) and (670), we have proven
esssup 22| F o 2T ) Fufll ooy S ess sup N A f | ey (671)
€z >
for any s € R. And inequality (671) is true if we replace py, AtL’1 by p;, Afj respectively for
Jj = 2,---,n. Inserting these inequalities into (667) yields the desired inequality (519). If

0<p<1,g=o00and o, <s < oo, then we use the function ¢ satisfying conditions (19),
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(408), (409), and J > my is a large positive integer whose value will be determined later.

Since 0 < r < p < 1, we use the following inequality

/A | A5 si1 (Bamo—a—r ¢ f) (@ — y)["dy S Mu(| A5k 1 (Gamo-s-+ % f)]") (), (672)
k—1
and deduce from (571) and (572) the estimate below
B 2m0—k€
e e S ML ) )
2T M( Ay (Bma-a-+ % ) (@) (673)

where we let N’ > 2 in (572). From (403) we know that when p; (2™ 7%¢) # 0 and ¢ € [1, 2],

(€272 %1 _ 1)Z| > 0 and we can infer from the calculation method displayed in (602) that

ess sup 2k5|\f51[p1(2m0_k5)]:nf]||LP(R")

kEZ
pr(2mrE
<€27ri1~§’“t§1 _>1)L] [A2 kt, 1(¢2%—J—k * f)]HLp(Rn)

—esssup 2" esssup || F; Y

keZ te(1,2]

<esssup gks+n(y—1) esssup || M, (|AL ko1 (Pamo—a—r % f)I )H
keZ te(1,2] L¥ (®")

<esssup 27761 esssup | AS k1 (Dgmo-s-1 % [)|| Logn) (674)
kEZ te[1,2]

Recall (641) and assume the validity of decomposition, then we can estimate (674) from

above by the sum of the following two terms,

277G =1 esssup esssup 2°° | AL e fllio@ny ~ 27D ess sup t5| AL f Nl oey < 00, (675)
keZ te(1,2] t>0

and

2771 ess sup ess sup 2ks|| AL ki1 Z Jrtj—mo) || Lr@n)- (676)
keZ te(1,2] j=J+1

To estimate (676), we pick 0 < € < s and use (623) to obtain

oo
|| Z |A£—kt71fk+j—mo ‘ HL”(R")

j=J+1

00
1
<< Z ‘|A§—kt71fk+j*mo H}[O,p(Rn)> P
j=J+1
o0

<( Z 2 ”’5-QJPEkaH—moH]Zp(Rn))”
j=J+1

277 esssup 2| fisjomo | o) (677)
i>J
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where the constants are independent of . And then we can have the following estimate

277G =1 egs sup ess sup 2ks | Z |A§—kt’1fk+j—mo|||Lp(R”) (678)
k€EZ te(1,2] j=J+1
§2J["(%’1)’E] esssup 277408 egggup 2FITmo)s| L
i>J keZ
Jn(t—1)—s
oI (679)

The assumption f € B;OO(R") implies > 7% ;.| ]Ag_kt’lfkﬂ,mo(x)] < oo for every k € Z
and almost every ¢ € [1,2],2 € R". In conjunction with (29) and (675), we have shown
(641) is true not only in the sense of S'(R™) but also for every k € Z and almost every
te[l,2],r € R" when 0 < p <1, g =00 and 0, < s < co. Furthermore estimating (674)
from above by the sum of (675) and (676) is justified, moreover (676) can be estimated from
above by (678) and hence by (679). We have obtained the inequality

esssup 217, o1 (2" ) F ]l o
S

1 1
§012Jn(;71) ess S(l]lp tisHAfjlf”LP(]R”) + C{/2J[n(;fl)fs]”f’
t>

By ) (680)

Inequality (680) is also true if we replace pi, Ay, C1, Cf by p;, Af

1.7, C%, CF respectively for

j =2,---,n. Inserting these inequalities into (667) yields

/]

1— - —s n(t-1)—s
By &) S 270 ”Zesisgpt 1AL fllony + C"270CD) fll 5, gy (681)
j=1

The assumption o, < s < oo allows n(% — 1) — s < 0 when r is sufficiently close to p. Thus
when J is a sufficiently large positive integer, the coefficient C”27 (G =D=5 is less than %, and
we can shift the second term on the right side of (681) to its left side and then the desired

inequality (519) is proved. Now the proof of Theorem 7.1.2 is complete. O
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