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An Xu, PhD

University of Pittsburgh, 2023

The distributed training of deep learning models faces two issues: efficiency and privacy.
First of all, training models can be slow and inefficient, especially when it is large with
data distributed across multiple devices. For model parallelism, the inefficiency is caused
by the backpropagation algorithm’s forward locking, backward locking, and update locking
problems. Existing solutions for acceleration either can only handle one locking problem
or lead to severe accuracy loss or memory inefficiency. Moreover, none of them consider
the straggler problem among devices. We propose Layer-wise Staleness and a novel efficient
training algorithm, Diversely Stale Parameters (DSP), to address these challenges.

For data parallelism, the communication bottleneck has been a critical problem in
large-scale distributed deep learning. We study distributed SGD with random block-wise
sparsification as the gradient compressor, which is ring-allreduce compatible and highly
computation-efficient but leads to inferior performance. To tackle this important issue, we
propose a new detached error feedback (DEF) algorithm, which shows better convergence
bound than error feedback for non-convex problems.

Secondly, distributed training raises concerns of data privacy when user’s data is gathered
to a central server. To keep data privacy, cross-silo federated learning (FL) has attracted
much attention. However, there can be a generalization gap between the model trained from
FL and the one from centralized training. We propose a novel training framework FedSM to
avoid the client drift issue and successfully close the generalization gap compared with the
centralized training for medical image segmentation tasks for the first time.

Communication efficiency is also crucial for federated learning (FL). Conducting local
training steps in clients to reduce the communication frequency is a common method to
address this issue. However, this strategy leads to the client drift problem due to non-i.i.d.
data distributions. We propose a new method to improve the training performance via

maintaining double momentum buffers.
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1.0 Improve the Efficiency of Model Parallelism

1.1 Introduction

The deep convolutional neural network is an important method for solving computer
vision problems such as classification, object detection, etc. However, as the neural networks
get deeper and larger [47, 62, 52, 128, 144, 95|, the required expensive training time has
become the bottleneck. Data parallelism [134, 83, 19] and model parallelism [79, 75] are two
standard parallelism techniques to utilize multiple devices for efficient training.

The data parallelism for efficient distributed training has been well studied and im-
plemented in existing libraries [5, 22, 56, 148, 58, 60], but the model parallelism is still
underexplored. In this paper, we focus on the model parallelism, where the deep neural
network (DNN) benefits from being split onto multiple devices. But the resource utilization
of standard model parallelism can be very low. The backpropagation algorithm [114, 7§]
typically requires two phases to update the model in each training step: the forward pass
and backward pass. But the sequential propagation of activation and error gradient leads to
backward locking and forward locking [64] respectively because of the computation depen-
dencies between layers. The update locking [64] exists as the backward pass will not start
until the forward pass has completed. This sequential execution keeps a device inefficiently
waiting for the activation input and error gradient.

Several works have been proposed to address these locking issues (Figure 1). [64] uses
Decoupled Neural Interfaces (DNI) to predict the error gradient via auxiliary networks, so
that a layer uses the synthetic gradient and needs not to wait for the error gradient. [104]
lets hidden layers receive error information directly from the output layer. However, these
methods can not converge when dealing with very deep neural networks. [15] proposes
layer-wise decoupled greedy learning (DGL), which introduces an auxiliary classifier for each
block of layers so that a block updates its parameters according to its own classifier. But
the objective function of DGL based on greedy local predictions can be very different from

the original model. GPipe [54] proposes pipeline parallelism and divides each mini-batch
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Figure 1: Sketches of different methods with three blocks. The forward and recomputation

are overlapped in DSP.

into micro-batches, which can be regarded as a combination of model parallelism and data
parallelism. However, the forward and backward lockings of the micro-batch still exist, and
the update locking is not addressed because GPipe waits for the whole forward and backward
pass to finish before updating the parameters. [59] proposes Decoupled Parallel Backprop-
agation (DDG), which divides the DNN into blocks and removes the backward locking by
storing delayed error gradient and intermediate activations at each block. But DDG suffers
from large memory consumption due to storing all the intermediate results. PipeDream [101]
has to store multiple versions of weights in addition to intermediate activations as in DDG.
Features Replay (FR) [57, 152] improves DDG via storing the history inputs and recom-
puting the intermediate results. Nevertheless, blocks in DDG and FR still need to wait for
the backward error gradient. Besides, neither DDG nor FR addresses the forward locking
problem.

To overcome the aforementioned drawbacks, we first propose Layer-wise Staleness, a
fine-grained staleness within the model to allow different parts to be trained independently.
Incorporating staleness is useful for efficient asynchronous execution without synchronization
barrier [49], which can be interpreted as another form of locking/dependency. The intro-

duction of preset Layer-wise Staleness enables each part of the convolutional neural network



(CNN) to run in a very flexible way with a certain degree of asynchrony. Based on the
concept of Layer-wise Staleness, we propose a novel parallel CNN training algorithm named
as Diversely Stale Parameters (DSP), where lower layers use more stale information to up-
date parameters. DSP also utilizes the recomputation technique [23, 40] to reduce memory
consumption, which is overlapped with the forward pass. Our contributions are summarized

as follows:

e We propose Layer-wise Staleness and Diversely Stale Parameters which breaks the for-
ward, backward and update lockings without memory issues.

e To ensure the theoretical guarantee, we provide convergence analysis for the proposed
method. Even faced with parameters of different Layer-wise Staleness, we prove that
DSP converges to critical points for non-convex problems with SGD and momentum
SGD.

e We evaluate our method via training deep convolutional neural networks. Extensive em-
pirical results show that DSP achieves significant training speedup and strong robustness

against random stragglers.

1.2 Background

We divide a CNN into K consecutive blocks so that the whole parameters
r = (zg,71,...,05_1) € R, (1-1)

where x;, € R% denotes the partial parameters at block k € {0,1,..., K—1} and d = ZkK:_Ol dp..
Each block k computes activation hyy1 = fr(hg; zx), where hy denotes the input of block
k. In particular, hy is the input data. For simplicity, we define F(ho;xo;x1;...;T5) =
TG fifolho; xo); 1).; k) = hgyr. The loss is L(hg, 1), where [ is the label. Minimizing
the loss of a K-block neural network can be represented by the following problem:

min  f(z) = L(F(ho; Zo; 215 ...; Tx-1), 1) (1-2)

z€R4
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Figure 2: DSP(1,1,0;4,2,0) with Layer-wise Staleness of {4,2,0} (the index difference between
the forward and backward batch). Worker k € {0, 1,2} holds block k.

Backpropagation algorithm computes the gradient for block k following chain rule via
Eq. (1-3). The forward locking exists because the input of each block is dependent on
the output from the lower block. The backward locking exists because each block cannot
compute gradients until having received the error gradient G, from the upper block. Besides,
the backward process can not start until the whole forward process is completed, which is

known as the update locking.

_ Ofk(hiizi) _ OL(hk)l)
ghk = k@h}; k ghk+1’ ghK - ahg (173>
Ofr(hy;
gwk _ fk(am;;xk)ghkﬂ‘

After computing the gradients, stochastic gradient descent (SGD) [111] and its variants
such as stochastic unified momentum (SUM) [153], RMSPROP [133] and ADAM [72] are
widely used for updating the model. SGD updates via 2" = 2" — aG(z"; £), where z" is
the parameters when feeding the n'" data (batch), « is the learning rate, and G(2™; €) is the
stochastic gradient. SUM updates the parameters via Eq. (1-4), where § is the momentum
constant and y is the momentum term. When s = 1, SUM reduces to stochastic Nesterov’s

accelerated gradient (SNAG) [102].

yn—i-l L ag(xn’§)7 ys,n—i-l = " — Sag(xn’g)

l.nJrl — yn+1 + /B(ys,nJrl _ ys,n)‘



1.3 Diversely Stale Parameters

In this section, we propose a novel training method named Diversely Stale Parameters
(Figure 2). We first define layer-wise staleness and related notations in Section 1.3.1, then
the motivation and formulation of DSP gradient in Section 1.3.2, finally the practical imple-

mentation using queues for pipelined batch input in Section 1.3.3.

1.3.1 Layer-Wise Staleness

Let the data be forwarded with parameters xy at timestamp ty, z; at timestamp tq,

.., and g 1 at timestamp tx_;. For simplicity we denote the Forward Parameters as

{xfj}kzo 77777 k—1. Similarly we denote the Backward Parameters as {x?K‘l"“}k:Oym,K_l.

Then we define Layer-wise Staleness as At = tox_r_1 — tp > 0. We preset each block’s

Layer-wise Staleness to a different value to break the synchronization barrier of backpropa-
gation.

We also denote the maximum Layer-wise Staleness as At = maxy—g 1, x—1 Atg. It is

worth noting that a) in standard backpropagation algorithm (Eq. (1-3)), Layer-wise Stale-

ness Aty = 0; and b) Feeding data index is not identical to timestamp/training step.

1.3.2 DSP Gradient

We first set the constraints of DSP as tg < t; < ... <tg 1 <tg <tgiy1 <...<tog 1
such that both the dependencies in the forward and backward pass no longer exist, because
we do not need them to finish in the same timestamp anymore. The non-decreasing property
corresponds to the fact that the data needs to go through the bottom layers before the top
layers, and the error gradient needs to go through the top layers before the bottom layers.

Based on backpropagation algorithm and Eq. (1-3), we should compute the gradients

according to the following formulas as we are updating the Backward Parameters, which is



tor_1_
defined as {z,* """ }r—0,. k-1,

Cotak—1, . _tak—1-k
OF (ho; x O % )

gﬂﬁk = > tork—1— ghk
8ka k .
6F h, ;.fEt2K71; o thK—l—k
ghk = - ?21(71 f2K72—k)ghk+1 (175)
OF (ho; g™ ™5 ™ 27")
G OL(F (ho; wg™ ™ . 2,), 1)
= .

F(hy; :CBZK”; o :L"}?fl)

However, during the forward pass the input of block k is F(hg; zg; ...; :1:2’“:11) Therefore
we incorporate the recomputation technique and utilize both the Forward Parameters and

Backward Parameters to compute DSP gradient as follows,

6. _ OF (ho; x; = T @ ) G
ameK—l—k
g, _ OFlsat: ---;xi’“_f;f?’{‘l"“>ghk 1 (1-6)
OF (hoy ;s 1) :
OL(F (ho; alf; ... 231,10

F(ho;xf)o;...;x?_’ll)

Ohy =

The intuition behind the DSP gradient of Eq. (1-6) is that it is equivalent to Eq. (1-5)
when the model converges to a local optimum where the gradient is zero (zf* = :EZQK ok

afterwards).

1.3.3 Batch Pipeline Input

The computation of the DSP gradient breaks the forward and backward dependen-
cies/lockings of the same data as it will not appear in different blocks at the same timestamp.
The update locking is naturally broken.

For the parallel implementation of DSP as shown in Figure 2, we incorporate the data
batch pipeline to keep all the blocks being fed with different data batches and running.
The data source consecutively feeds data input. Different blocks transport and process
different data via FIFO queues. As a result, the data travels each block at different times-

tamps. Specifically, each block k maintains an input queue My, output queue P, and



Table 1: Best Top-1 Test Accuracy

ResNet164 ResNet98

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

BP 94.41% 75.66% 93.38% 72.66%

FR 94.55% 76.25% 93.60% 73.27%

K3 DSP(1,1,0;4,2,0) 94.68% 76.05% 93.36% 72.99%
-7 DSP(2,2,0;6,3,0) 93.98% 76.00% 93.68% 73.70%
DSP(3,3,0;10,5,0) 93.37% 76.29% 93.27% 73.38%

FR 94.44% 75.84% 93.26% 72.41%
Ked DSP(1,1,1,0;6,4,2,0) 94.32% 76.22% 93.41% 73.14%

DSP(2,2,2,0:9,6,3,0) 94.87% 75.59% 93.06% 72.89%
DSP(3,3,3,0:15,10,5,0)  93.34% 75.15% 93.45% 72.96%

gradient queue Qp of length 1 + my, 1 4+ pr and 1 + ¢ respectively. We denote it as
DSP(po, ... Dic—1; M0, -y Mi—1). {qx} is determined by {px} and {my} because the input
should match the corresponding error gradient. We manually split the model to different
workers to balance the workload at the steady stage.

Apart from adopting recomputation to reduce memory consumption, DSP overlaps re-
computation with the forward pass to save time. Using queues also make DSP overlap the
communication between blocks with computation. The FIFO queues allow for some asyn-
chrony which is effective for dealing with random stragglers. The ideal time complexity of
DSP is O(Zr£2) and the space complexity is O(L+ Y p—, (mx +pr +q1)), where T and T
are serial forward and backward time, and L is the number of layers. m; also represents the
Layer-wise Staleness At;. of block k. K and the FIFO queues length my+1,p+1, g +1 < L

for deep models, so the extra space cost is trivial.

1.4 Convergence Analysis

The convergence of DSP with SGD is first analyzed, then DSP with Momentum SGD.

For simplicity, we denote the Forward and Backward Parameters of data n as " and 2"



Table 2: Robustness (ResNet164, CIFAR-10, K=3). Each GPU is randomly slowed down.

Slow down percentage

GPU 20% 50% 100% 150%

FR 8.977% 28.52% 97.06% 359.2%
DSP(1,1,0:4,2,0) 6.017% 16.14% 37.44% 70.99%
DSP(2,2,0:6,3,0) 7.465% 16.01% 36.57% 54.57%

DSP(3,3,0;10,5,0) 7.391% 18.15% 32.10% 53.42%

respectively.

Assumption 1.4.1. (Bounded variance) Assume that the DSP stochastic gradient G(z; &)
satisfies Var|G(z; )] < 0. Note E[G(x;€)] = G(x) # V f(x).
Assumption 1.4.2. (Lipschitz continuous gradient) Assume that the loss and the out-

put of the blocks have Lipschitz continuous gradient, that is, Vk € {0,1,.., K — 1}, and

v(xo,la ---7%,1)7 (5’50,27 ---,l'k,z) € Rd°+d1+'"+dk, we have
IVE (ho; zo15 s 21) — VE(ho; To2; -5 Tr2)|| < Li[[(zo1, s Tr1) — (To2, s 2|, (1-7)

and V., o € RY,
IV f(@1) = V()] < Li [lwr — 22| (1-8)

We define L = maxyeqo1,. xy L. Note VF (ho;xo1;...;2k,1) and VF(ho; 2o2; ...; Tk,2)
regarding parameters are Jacobian matrices. In fact, this is assuming that the partial model

consisted of the blocks that the data has traveled, has Lipschitz continuous gradient.

Assumption 1.4.3. (Bounded error gradient) Assume that the norm of the error gra-

dient that a block receives is bounded, that is, for any v € R, Vk € {0,1, ..., K — 2}, we have

Ofkt1(hpgrsrrg1)  Ofx—1(hx—_1;2K_1) OL(hK,1) OL(hk 1)
|2 Ohn s G| < and || 2508 | <

This is assuming that the error gradient at each block does not explode. It is natural
to make the above two block-wise assumptions as we are breaking the neural networks into

blocks.



Table 3: Speedup Comparison Results.

CIFAR-10 CIFAR-100 ImageNet

ResNet164 ResNext-29 VGG-19 ResNet1001 ResNetb0 ResNetl01
K, batch size (4, 128) (4, 128) (3, 128) (4, 128) (3, 256) (4, 128)

BP / BP-K x1 /- x1 /- x1 /- -/ x1 -/ x1 x1 /-
FR x1.7 x1.3 x1.1 x1.9 x1.6 x1.7
GPipe - - - - - x2.2
DSP x2.7 x2.4 x1.5 x4.8 x3.0 x2.7

Lemma 1.4.1. If Assumptions 1.4.2 and 1.4.3 hold, the difference between DSP gradient

and BP gradient regarding the parameters of block k € {0,1, ..., K — 1} satisfies

tok—1-i 1,7251

K-1
90 £OF (o 5 2883, 0) = G (05wl ) < LMY [ (1-9)
i=k

1.4.1 DSP with SGD

Theorem 1.4.1. Assume Assumptions 1.4.1, 1.4.2 and 1.4.8 hold. Let co = M*K (K +1)?,

and ¢ = — (AL + 2) + /(A% + 2)2 + 2¢oAt2. If the learning rate o, < oA

then

Sonso B ||V f(z" \<QU@%<m+Lﬁ@+KmMﬁszﬁjﬁ
27127:01 Qn B Zf:_ol n Zg:_ol n .

Corollary 1.4.1. (Sublinear convergence rate) According to Theorem 1.4.1, by setting the

(1-10)

; —mind L —&a i - L
learning rate o, = min { TN Teoh® }, when N is large enough we have oy, = i and

< 2(f(2%) — f*) N Lo*(2+ KAt* + 1K)
< N N :

Corollary 1.4.2. According to Theorem 1.4.] if the learning rate o, diminishes and satisfies

min  [E HVf(x )

2
n=0,...,N—1 ‘

(1-11)

the requirements in [111]: hrnNﬁooZ o Lo, = 0o and limy_.o Z 0 a < o0, choose x™

randomly from {x"}X=j' with probabilities proportional to {a, }Y=y. Then we can prove that

it converges to critical points for the non-convex problem due to lim,_, E ||V f(z")]|* = 0.



Table 4: Best Top-1 Test Accuracy on ImageNet (K=3).

Method ResNet18 ResNetb0
BP 69.89% 75.35%
FR 68.94% 74.47%
DSP(1,1,0;4,2,0) 68.95% 74.91%

1.4.2 DSP with Momentum SGD

Theorem 1.4.2. Assume Assumption 1.4.1, 1.4.2 and 1.4.3 hold. Let

_ (@ =pB)s —1)? -
e (1-12)
= M?K(K +1)*At*(cy + 57), (1-13)
cy =3+ By +2(1 — B)2AF (cy + 57), (1-14)
and
2+ B2cy 5 9 —cy + \/c?1 +4(1 — 5)2c3
R +2(1 — B)At*(ca + s%) + 2179 : (1-15)
. . —cq+ cZ+4(1—6)203
If the fixed learning rate v satisfies « < ST F)sk , then
1= NP2 20=B)UE) - )
N nzzo E HVf(x ) Na + c50° La. (1-16)

Corollary 1.4.3. (Sublinear convergence rate) According to Theorem 1.4.2, by setting the
—catr/c2+4(1-B)%c3
2(1-B)csL

min,—o . n_ 1E||Vf ” 2(1-5) f(rr) )+C5\¢/7%L'

}, when N is large enough we have o = \/—% and

learning rate o = min{%,

Remark 1.4.1. The convergence performance of DSP is affected by Layer-wise Staleness

rather than the staleness between different blocks.
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1.5 Experiments

We implement DSP in TensorFlow [5] and run the experiments on Nvidia Tesla P40
GPUs. The model is divided into K blocks and distributed onto X' GPUs. Data augmen-
tation procedures include random cropping, random flipping, and standardization. We use
SGD with the momentum constant of 0.9. In CIFAR experiments, the batch size is 128. We
train ResNet98 and ResNet164 for 300 epochs. The weight decay is 5 x 10~% and the initial
learning rate is 0.01 (test performance could be a little lower than 0.1 [96]) with a decay of
0.1 at epoch 150, 225; ResNet1001 is trained for 250 epochs. The weight decay is 2 x 1074
and the initial learning rate is 0.1 with a decay of 0.1 at epoch 100, 150, 200; VGG-19 and
ResNext-29 are trained for 200 epochs. The weight decay is 5 x 10~* and the initial learning
rate is 0.01 with a decay of 0.1 at epoch 100, 150. We also train ResNet on ImageNet for 90
epochs. The batch size is 256, the weight decay is 1 x 107 and the initial learning rate is
0.1 with a decay of 0.1 at epoch 30, 60, 80. There are four compared methods:

e BP: The standard implementation in TensorFlow. BP (or BP-K) runs on one (or K)
GPUs.

e DNI: The Decoupled Neural Interface algorithm in [64]. The auxiliary network consists
of two hidden and one output convolution layers with 5 x 5 filters and padding size of 2.
The hidden layers also use batch-normalization and ReL.U.

e FR: The Features Replay algorithm proposed by [57].

e DSP: Our Diversely Stale Parameters.

1.5.1 Faster Training

The DSP convergence curves regarding training epochs are nearly the same as FR and
BP, while DNI does not converge as shown in Figure 3. But the epoch time of DSP is
much less. Due to the overlap of communication and computation, the overheads of DSP
are much less than model parallel BP and the speedup can even exceed K. However, it
is important that the model should be properly distributed onto different blocks such that

the workload of each computing device is balanced. If not, the overall speed will be mostly
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determined by the slowest device. To further demonstrate the scalability of DSP, we also
run experiments on VGG-19 [120], ResNeXt-29 [144], ResNet1001 on the CIFAR dataset,
and ResNet18 and ResNet50 on the ImageNet [28] dataset as shown in Figure 4 and Figure
5 respectively. The speedup is summarized in Table 3 (GPipe paper only reports speedup of
ResNet101 and AmoebaNet-D (4,512)). Our proposed DSP improves the speedup compared
with its counterparts from x0.5 to x3.1 based on different datasets, model and the value of
K. Note that the implementation of DSP involves some inefficient copy operations due to
limited supported features of the deep learning framework, which means that DSP could

achieve a potentially even faster speedup.

1.5.2 Robustness

To show that DSP is more resilient to the straggle problem due to the FIFO queues
introduced, we randomly slow down each GPU by a certain percentage with a probability of
1/3 and run the experiments on ResNet164 (Table 2). The performance of FR degrades a lot
because it does not break the forward locking nor completely decouple the backward pass.
In comparison, DSP is very robust with the best slow down percentage always less than 1/3
of the corresponding GPU slow down percentage. When the upper or lower block suddenly
slows down, the current block’s feeding data and gradient queues are less likely to be empty
if the length of the queue is long. When the straggler effect is not serious, increasing the
Layer-wise Staleness will not bring performance gain; when it is serious instead, DSP benefits
a lot from increasing the Layer-wise Staleness. Generally speaking, longer queues improve

DSP’s resilience to random stragglers, which is shown in Table 2.

1.5.3 Generalization

Table 1 and Tabel 4 show the best top-1 test accuracy on the CIFAR and ImageNet
dataset respectively. The test performance of DSP is better than BP and FR on the CIFAR
dataset. From Lemma 1.4.1 we know that the DSP gradient deviates from the BP gradient
due to the Layer-wise Staleness. This difference becomes small as the training proceeds but

could impose small noise and help find a better local minimum on the comparatively less
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complex CIFAR classification problem.

In comparison, on the ImageNet dataset, the Layer-wise Staleness can lead to perfor-
mance degradation. By intuition, it is similar to asynchronous distributed training where
the whole gradient is of the same staleness. But in DSP, the more fine-grained Layer-wise
Staleness will impose different blocks with different staleness effects. Potential solutions
could be using staleness-aware methods as proposed in asynchronous distributed training
area, e.g. gradient compensation and staleness-aware learning rate, to alleviate the staleness
effect. Another possible direction is to balance the staleness effect between all the blocks.
Moreover, when compared with FR, DSP’s test accuracy is slightly better. On ResNet18,
the test accuracy of FR and DSP is very similar, but on ResNet50 there is a 0.44% gain using
DSP. Besides, on the more complicated ResNet50 architecture, the performance degradation

resulting from the staleness effect is smaller than that on ResNet18.

1.5.4 Gradient Difference

Here we attest our theoretical analysis of Lemma 1.4.1 via checking the difference between
the DSP and the BP gradient on the CIFAR dataset with the ResNet164 model. From the
top-left figure of Figure 4, we can see that the difference between the DSP and BP gradient
drops very fast to the converged value as the training proceeds. This difference drops even
faster for upper blocks where the Layer-wise Staleness effect is milder. It confirms the
motivation behind the DSP algorithm that the DSP gradient will finally be similar to the
BP gradient. Moreover, the lower blocks suffer from a larger difference. When the Layer-wise
Staleness keeps increasing, the difference will also increase, which matches Lemma 1.4.1 well.
Moreover, as the learning rate drops, the difference between the DSP gradient and the BP
gradient will drop a lot. This implies that a smaller learning rate should be used when we
need to deal with a larger number of blocks where the Layer-wise Staleness effect becomes
non-trivial. This is also shown in Theorem 1.4.1 and 1.4.2 that the learning rate should be

decreased to make sure it converges at the stated speed.
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1.6 Conclusion

In this paper, we have proposed Layer-wise Staleness and DSP, a novel way to fast
train neural networks. DSP is proved to converge to critical points for non-convex problems
with SGD and Momentum SGD optimizer. We apply DSP to train CNNs in parallel and
the experiment results confirm our theoretical analysis. Our proposed method achieves
significant training speedup, strong resilience to random stragglers, better generalization on
the CIFAR dataset and reasonable performance on the ImageNet dataset. The speedup
can exceed K compared with the model parallel BP. Potential future works include how
to alleviate the staleness effect when we need to utilize a further larger number of blocks;
how to automatically determine the proper model splitting strategy for load balance among
devices; efficiently incorporating DSP with data parallelism to achieve even faster training

speed.
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Figure 3: Training loss (solid line) and testing loss (dash line) for ResNet98, ResNet164 on

CIFAR-10. The first row and second row plots the loss regarding the training epochs and

time respectively.
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Figure 4: Top left: Average difference of DSP and BP gradient regarding the number of
parameters. The rest: Training loss (solid line), testing loss (dash line) and test top-1

accuracy(dot line).
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Figure 5: Test accuracy@1 on the ImageNet dataset.
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2.0 Improve the Efficiency of Data Parallelism

2.1 Introduction

Deep learning models are hard to train due to the heavy computation complexity and
long training iterations. Therefore, distributed deep learning with multiple workers (GPUs)
has become a prevalent practice to parallelize and accelerate the training for large-scale tasks,
where the model and dataset sizes continue to grow nowadays [120, 48, 28].

Nevertheless, synchronous distributed training have difficulty in scaling up the number of
workers for large deep learning models, as the gradient in each worker to be communicated per
iteration is of the same dimension as the model size. It is also known as the communication
bottleneck. Besides, it incurs imbalanced communication traffic in the parameter-server
[82, 84, 85| architecture, where the server suffers from much larger communication burden
than workers. To address the communication bottleneck issue, there have been numerous
lines of works including asynchronous execution [25], gradient compression [16, 17, 141, 8,
7,9, 126, 93, 36], communication scheduling [38], infrequent communication [124], delayed
gradient [89, 163|, decentralized training [91, 73, 131, 12, 73], model parallelism [55, 147],
etc.

In this work, we focus on synchronous distributed SGD with gradient compression, or
more specifically, random block-wise gradient sparsification (RBGS) [135, 143]. The most
popular gradient sparsifier is probably the Top-& gradient sparsification [9, 93], where each
worker selects the largest K gradient components according to the absolute value as the
sparsified gradient. However, Top-K has several drawbacks: 1) it requires extra communi-
cation overheads to communicate the gradient indices, 2) it is applied in parameter-server
architecture but not ring-allreduce compatible, and most of all, 3) its computation overheads
O(K log, d) for model § € R? may even outweigh its communication benefits [122, 143, 116]
as it is efficient only for a small K for optimized implementations on GPU [119]. While in
RBGS, we randomly sample a block of gradient as the sparsified gradient for communica-

tion among workers. To ensure the consistency of the sampling process, each worker will be
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pre-assigned the same random seed. In comparison to Top-/C, RBGS is highly computation-
efficient (O(1)) as we only need to uniformly and randomly sample one starting index of the
gradient block. RBGS is also ring-allreduce compatible. However, RBGS results in inferior
model performance in that its sparsified gradient usually does not include as many significant
gradient components as Top-/C, leading to large compression error.

To address this important problem, we propose a novel detached error feedback method
(DEF), while the vanilla error feedback (EF) method [71, 161] fails to address it. We sum-

marize our major contributions as follows.

e QOur proposed DEF method is motivated by a novel insight that a trade-off between the
gradient variance and second moment can improve the convergence bound related to
compression error.

e We propose DEF-A to accelerate the generalization during the training with support
from corresponding generalization analysis. It potentially demystifies why compression
helps to improve the performance in some prior works [13, 160, 16, 17].

e We find that SGD with iterate averaging (SGD-IA) [107, 115, 103, 142] can be viewed as a
special case of communication-efficient distributed SGD for the first time. Consequently,
our generalization analysis of DEF-A extends to SGD-IA, providing potential theoretical
explanations for some other applications incorporating SGD-IA [46, 63, 53].

e [Extensive deep image classification experiments on CIFAR-10/100 and ImageNet show

significant improvements of DEF (-A) over existing works with RBGS.

2.2 Related Works

To begin with, suppose the training dataset S = {&,})_, and we have the training

objective function
N
Fs(6) = 1 3 F(6:6) = Bees f(6:6) (2 1)
n=1

to minimize, where § € R? denotes the model and f is the loss function. From now on,

we will omit the subscript in E if the context is clear. For distributed SGD at iteration
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t, each worker k randomly selects one data sample &, € & and computes the stochastic
gradient gx; = V f(6;;&+). Then all the workers communication to get the average gradient

g = % Zle 9k.t, where K is the total number of workers, and update the model via
Orv1 = 0r — Mg, (2-2)

where 7 is the learning rate.

Compression. Gradient compression includes quantization [16, 17, 141, 8], which re-
duces the 32-bit gradient component to as low as 1 bit (compression ratio < 32), and
sparsification [7, 9, 126], which reduces the number of gradient components for communica-
tion. Let the compression function be C, then the workers will communicate C(gy) instead
of g+ In general, sparsification achieves flexible and higher compression ratio than quan-
tization. Besides Top-/C, random-K [32, 125] randomly selects K gradient components as
the sparsified gradient. [31] selects gradient components larger than a threshold and is a
variable-dimension compressor. [140, 122] propose to select each gradient component with
a probability to keep the sparsified gradient unbiased. In this work, we consider RBGS
[135, 143], which is most easy to implement, highly computation-efficient, but challenging
to retain the model performance. Moreover, it is ring-allreduce compatible for SOTA GPU

communication backend library (e.g., NCCL), i.e.,
C(A1) +C(A2) = C(A1 + Ag). (2-3)

Error Feedback. Error feedback (EF) [71, 132] method maintains local compression
error ey, at worker k, adds it to the current gradient before compression, and communicates

to average C(ngk: + ex:). The error is updated via

ki1 = NGkt + €kt — C(Gre + €xt) - (2-4)

[161] extends EF to momentum SGD [106]. EF works well for Top-/C sparsifier but poorly
for RBGS. [143] proposes PSync to immediately apply local error to each worker’s model
for RBGS. However, we will show that PSync works better for Wide ResNet [156] but has
scalability issue for other common model architectures. SAEF [149] proposes to apply the

local error before computing gradient in the next iteration to accelerate the generalization
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during training. Other EF variants includes EF21 [110, 34] which compresses the gradient
difference [99] but is evaluated only on logistic regression problems, acceleration for EF
[108, 90], EF for variance reduction [130], etc.

Generalization Analysis. The generalization analysis of this work incorporates the
uniform stability [20, 44] approach, focusing on the inherent stability property of the learning
algorithm. [20] analyzes bagging methods. It is later used to analyze the generalization
property of SGD [44] and its momentum variants [150]. [77] establishes a data-dependent
notion of the stability to stress the distribution-dependent risk of the initialization point and
make the generalization bounds more optimistic. [162] analyzes the generalization of the
Lookahead optimizer [158] with uniform stability.

As there are numerous works combining various techniques [14], in this work, we focus

on random block-wise gradient sparsification (RBGS).

2.3 Detached Error Feedback

In this section, we described our proposed DEF method (Algorithm 1) in detail. As
RBGS is a very aggressive compressor, the algorithm is crucial for better performance.
2.3.1 Motivation

In EF variants [71, 161, 143] for practical large-scale distributed training of deep learning

models, Assumptions 2.3.1 and 2.3.2 are needed to bound the norm of the stochastic gradient
IV(0: s < G = Vo2 + M. (2-5)

Then G bounds the compression error

K

1

72 2 llewdlls = O(o® + M%) (2-6)
k=1

at iteration ¢. Though Assumption 2.3.2 often appears in related literature, it is usually

regarded as a strong assumption [110] because M? could be much larger than o2. Hereby,
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Algorithm 1 Detached Error Feedback (DEF(-A)).
1: Input: training dataset S, number of iterations 7', number of workers K, learning rate

n, ring-allreduce compressor C, coefficient A € [0, 1].
2: Initialize: model o = vy, local compression error e o = 0, worker k € [K].
3 fort=0,1,--- ;T —1do

4:  for worker k € [k] in parallel do

5: Randomly sample data &, from S.

6: Compute gr: = V(2 — Xeg; Epr)- // detach
7: Dkt = NGkt + €l // error feedback
8: ri+1 = Pt — C(Pry)-

9: Ring-allreduce: C(p;) = C(+% Z,If:l Prt) = = Zszl C(pry)-

10: Update z411 = 2y — C(py)-

11: end for
12: end for

13: Output: yr =27 —er = 27 — % Zszl ex,r for DEF and zp for DEF-A.

we propose a novel insight that if some trade-off coefficient o can be introduced to transform

the compression error bound to a similar interpolation form as

M2
A M s,

then the bound O(o? + M?) can be reduced to O(c?) when M — oo, i.e., Assumption 2.3.2
does not hold.

Assumption 2.3.1. (Bounded Variance) V0 € R, the variance of the stochastic gradient
satisfies Eees||V f(6;€) — VEs(9)|3 < o2

Assumption 2.3.2. (Bounded Second Moment) V0 € R, the second moment of the full
gradient satisfies ||V Fs(0)]]3 < M2
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2.3.2 Algorithm

Assumption 2.3.3. (Ring-allreduce Compressor) VA1, Ay € RY, the compressor C satisfies

Firstly, the ring-allreduce communication requires that the compressor should satisfy
Assumption 2.3.3 such that Algorithm 1 line 9 holds. RBGS satisfies such a assumption.

Secondly, DEF returns yr = xr — er by default because we have

K
n
Yt = Y=g = Y 3 > ke (2-8)
k=1

In particular, when K =1 (single worker) and A = 1, {y;} is identical to the SGD solution
path. We note that averaging er = % 25:1 e, only incurs a one-time communication cost
after the training concludes.

Then, a major difference of DEF and EF is that we evaluate gradient at x; — ey,
a point detached from the point z; to evaluate gradient as in EF. This step does not
incur any communication cost. From Eq. (2-8), our goal is to make sure that the point
to evaluate gradient g, is as close to ¥, = xz; — e; as possible. For EF, the distance is

lze — yell2 = lledd? < & Sae, llews]l3, while for DEF, the average distance to minimize

regarding A\ becomes

1 & 1 &«
EZHrvt—Aek,t—ytH% = EZHet—Aek,tH%. (2-9)
k=1 k=1

(1) When A = A(k,t), it is obvious that \*(k,t) = ﬂf;f@, which is determined by the
projection of e; onto ey ;. However, it is impractical to decide A*(k, t) for worker k at iteration
t as e; is unknown (e; = % Zszl ex needs extra communication cost).

(2) When A = A(t), we can derive \*(t) = %Zg{%”ﬁ%t”%, which is still impractical due to
unkown e;.

(3) Therefore, we will regard A as a tuned hyper-parameter, invariant regarding k and
t. Then it becomes minimizing the sum of the errors 23;01 Zszl ler — Aeg||3 which
will appear in the convergence bound of DEF, similar to the suggestion in [116]. Previously

when A is a function of ¢, it reduces to minimizing Eq. (2-9). In our CIFAR-10 VGG-16
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experiments with A = 0.3, we find that the new distance is x1.7 smaller than the distance
in EF.

Relation to Motivation. Minimizing Eq. (2-9) is closely related to the motivation
since

lle: — Aek,tlli = ||(Z79t—1 - )\ngk,t—ll“‘f‘et—l — Negt—1)

-~

- C(?gtfl - )\ngk,th‘i‘etfl —Xei—1) |3 (2-10)

-~

where ¢g;—1 — Agr4—1 is affected by the gradient variance and second moment trade-off via
the choice of A\. For example, in extreme circumstances where ¢ = 0, in expectation, local
errors on different workers are the same and g;_1 — Agy—1 is zero with A = 1.
Momentum Variant. It is easy to extend DEF to momentum SGD variant. Let the
momentum buffer on worker k be my o = 0 and the momentum constant be ;1. We only need

to substitute Algorithm 1 line 7 with

Mg tr1 = WMEt + Gty Dkt = NMit+1 + €kt - (2*11)

DEF-A. Simply returning z7 can accelerate the generalization performance of DEF
during training in that when K = 1, A = 1 and C(A) = §A (0 < 6 < 1), {y:} reduces to
SGD and {x;} reduces to a special case of SGD-IA (Iterate Averaging, a combination of

models in each iteration) [142]:

t
2= (1=08)yo+ Y 6(1—=06)"yy, (2-12)
H/—/ P %/_/
Po t=1 Py
where Py + P + - - -+ P, = 1. Note that for Polyak-Ruppert IA [107], Bp=P, =---= P, =

. . ¢ .
Hil. While for geomeric Polyak-Ruppert TA [103], Py = m where 0 < 8 < 1 is some
constant and 0 < ¢’ < t. However, this part is based on generalization analysis instead of
convergence analysis as for DEF. Hence we leave the details of the general case in the next

section.
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2.4 Theoretical Analysis

In this section, we consider non-convex objective functions as our target is the deep
learning model. All detailed proof can be found in the Appendix. Suppose that each &,
in the training dataset S is i.i.d drawn from an unknown data distribution D and Fp(#) =
Eeep f(6;€). For generalization, we are interested in how the model 64, which is trained
on § with a randomized algorithm A, generalizes on D by measuring the well-known excess

risk error e.

€ =Exs[Fp(0as)) — Eas[Fs(0%)]

= EuslFs(0as) — Fs(05)] + Eas[Fp(0as) — Fs(0as)] (2-13)
optimizatigg €ITOT €opt generalizat?c;l €ITOT €gen
Assumption 2.4.1. (L-Lipschitz Smooth) ¥8,,0, € R?, the loss function satisfies
IV f(01:6) = V(02;)ll2 < L[[61 — 0|2 (2-14)
It also implies that
IVF(61) — VF(02)]l2 < L[|61 — 022 (2-15)

Assumption 2.4.2. (§-approzimate Compressor) VA € R?, the compressor C satisfies
IC(A) = A7 < (1=d0)1A]3, (2-16)

where 0 < 6 < 1 is related to the compression ratio.

This assumption is widely used in communication-efficient distributed SGD [71, 161, 143].
For RBGS, we can take an expectation over the random compression and § will be identical

to the compression ratio.
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2.4.1 Convergence Rate

In this section, we bound the gradient norm ||[VF (6 4.5)||3 for convergence rate analysis

of the proposed DEF method.

Theorem 2.4.1. (Convergence Rate of DEF, Appendiz B.1) Let Assumptions 2.3.1, 2.5.2,
2.8.8, 2.4.1 and 2.4.2 hold. If n < -, we have

4L’
T-1

1 4E[Fs(yo) — Fs(y*)] 2nLo?

=Y E||VF 2 <

T £ IVEs(oll2 < nT T
AP LB 0? + (5 — A)?0? +2(1 — A2 M7

(2-17)

(V(1—=4/2)/(1-0) —1)?
Remark 2.4.1. Suppose 0.4 s is randomly chosen from the sequence {y;}_', n = O(y/%) <
L. and K = O(T'?) (i.e., T is large enough), we have E|[VFs(04s)]3 = O(

1 K\ _
7w T T) =
(9(\/%) It matches the rate of SGD with linear speedup regarding the number of workers

K.

Remark 2.4.2. The last term in Eq. (2-17) is determined by the compression error. When
8§, o, M are of interest, we have E||VFs(045)]|3 =
(§3ﬁ+w%—AVﬁ+au—AyMﬂ
(v(1=6/2)/(1—4) —1)?
(1) When K =1 (single worker) and A = 1, it vanishes, which is better than EF [71, 161].

). (2-18)

(2) When o and M are of interest, following the motivation in the previous section and
ignoring other constant factors, Eq. (2—-18) becomes
K—1, 2(1-+)%*M?

K2 7 o2 + 2M?

O( ). (2-19)

o %0'2—{-2M2 K—1 9 . .
when \ = I y—vm—. It further reduces to O(“=0%) when M — oo (i.e. Assumption 2.5.2

does not hold). Therefore, DEF is the first EF variant compressing gradient without relying
on the bound of the gradient second moment.
(3) When K is large and o and M are of interest, our bound improves O(o? + M?)

[71, 161, 143] to
( 202 M?
o2+ 2M?2

Our empirical deep learning experiments suggest that o ~ 0.3M?, which means that our

). (2-20)

bound is about x5 smaller ignoring other constant factors.
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2.4.2 (Generalization Rate

In this section, we consider non-convex objective functions under PL condition, which
establishes the relation between the gradient norm and the optimization error €., [162]. We
bound the excess risk error € = €t + €4en for the generalization analysis of the proposed
DEF(-A) method.

Polyak-Lojasiewicz (PL) Condition [68]. Let 0" € mingcra Fs(f). The objective
function Fs(f) satisfies u-PL condition if V0 € R?, we have

2ulFs(0) — Fs(07)] < [VEs(9)]z- (2-21)

Theorem 2.4.2. (Excess Risk Error of DEF(-A), Appendiz B.2) Let Assumptions 2.3.1,

2.3.2, 2.3.3, 2.4.1 and 2.4.2 hold. Suppose n = 75, where ¢ > 0 is some constant.

(1) The generalization error of DEF
€gen = O(T(l—%)LC/((l—%)LC—H)) ‘ (2722)
(2) Suppose n < {-. The optimization error of DEF
€opt = O(T™'5 +T71). (2-23)

(8) For RBGS, the generalization error of DEF-A

_ O(T(l—%)ééLc/((l—%)&%Lc—&-l))‘ (2-24)

€gen
(4) Suppose n < SLL. The optimization error of DEF-A
€opt = O(T™" 5 + T+ (1/V/T=6—1)72). (2-25)

Remark 2.4.3. When K =1, Eq. (2-22) matches the result of SGD in [44].

Remark 2.4.4. DEF-A has a better €y, but a worse €., than DEF. Since € = €gep, + €opt,
DEF-A can achieve better generalization rate than DEF via a trade-off between €ye, and €qp,

with a proper §.
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Table 5: The CIFAR-10 test accuracy (%) of DEF/DEF-A for various A with VGG-16. The

compression ratio is 64.

A 0.1 0.2 0.3
DEF | 9283 +£0.19 93.45+0.06 93.75 % 0.12
DEF-A | 92.78 £ 0.13 93.20 + 0.14  93.61 + 0.07

A 0.4 0.6 0.8
DEF | 93.41+0.12 93.26 +0.10 92.60 + 0.19
DEF-A | 93.41 +£0.20 93.11 £0.20 92.59 & 0.15

Remark 2.4.5. Theorem 2.4.2 provides a potential new theoretical insight for applications
incorporating compression, though some of them were not related to communication-efficient
distributed training. E.g., escaping saddle point with compressed gradient [13], feature quanti-
zation to improve GAN training [160], SignSGD that empirically accelerates training [16, 17],

etc.

2.4.3 Extension to Iterate Averaging (IA)

As SGD and SGD-IA is a special case of DEF and DEF-A respectively when K = 1,
A =1, and C(A) = dA, we immediately have the following Theorem 2.4.3.

Theorem 2.4.3. (Ezcess Risk Error of SGD(-IA), Appendiz B.3) Let Assumptions 2.5.1,
2.8.2, 2.3.8, 2.4.1 and 2.4.2 hold. Suppose n =
(1) The generalization error of SGD

1, Where ¢ > 0 is some constant.

€gen = @(T(l—%)Lc/((l—%)LcH)) . (2-26)
(2) Suppose n < ﬁ. The optimization error of SGD
€opt = O(T'% +T71). (2-27)
(8) The generalization error of SGD-IA
€gen = O(T(l—%)éLc/((l—%)éLc—i—l)) ‘ (2-28)
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(4) Suppose n < g7 The optimization error of SGD-IA

€opt = O(T™" 5 + T+ (1/VT=6—1)72). (2-29)

Remark 2.4.6. We have 02 in Eq. (2-24) but § in Eq. (2-28) because Be[C(A)] = 6A for
RBGS but C(A) = 0A for SGD-IA.

Remark 2.4.7. SGD-IA can achieve better generalization rate than SGD with a proper
d. [108, 142] theoretically only show that SGD-IA achieves adjustable regularization for
strongly-convex objective functions, while SGD-IA applications such as averaging weights
[63] and ensemble of models during training with cyclic learning rate [53] only empirically

show better generalization than SGD.

Remark 2.4.8. Compare with Theorem 2.4.2, we can see that DEF-A generalizes better
than SGD with a proper .

Remark 2.4.9. Theorem 2.4.3 provides a new theoretical explanation for an important line
of works in unsupervised learning - momentum contrast [46]. In [46], two sets of weights are
maintained with a contrastive loss. One is the “query” y; which is updated via SGD, and the

other is the ‘key” x; (vo = yo) which is updated via
Tiy1 = (1 — 5)$t + 5?/7& . (2—30)

The success of momentum contrast is explained as a “slowly progressing” key x, [46] without
theoretical quarantee. Interestingly, the above equation is identical to Eq. (2-12), i.e. SGD-
IA. Therefore, our results suggests that the slowly progressing key x; may actually have stabler

and better generalization than the query y; depending on 0.
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2.5 Experiments

In this section, we conduct empirical experiments on benchmark deep learning tasks
following settings in [71, 161, 143] to validate the performance of the proposed detached error
feedback (DEF) method. We compare the following methods with RBGS as the gradient
compressor: (1) SGD, which is the upper bound without gradient compression, (2) EF
[71, 161], (3) SAEF [149], (4) PSync [143], and (5) the proposed DEF(-A), where A = 0.3
by default. We have also tested EF21 [110, 34] on our deep learning tasks with RBGS, but
it does not converge.

Settings. All experiments are implemented using PyTorch and conducted on a cluster
of machines connected by. Each machine is equipped with 4 NVIDIA P40 GPUs and there
are 16 workers (GPUs) in total. We use NCCL as the backend of the PyTorch distributed
package. The task-specific settings are as follows.

CIFAR. We train VGG-16 [120], ResNet-110 [48] and Wide ResNet (WRN-28-10) [156]
models CIFAR-10/100 [76] image classification task. We report the mean and standard
deviation metrics over 3 runs. The base learning rate is tuned from {---,0.1,0.05,0.01,--- }
and the batch size is 128. The momentum constant is 0.9 and the weight decay is 5 x 1074
The model is trained for 200 epochs with a learning rate decay of 0.1 at epoch 100 and 150.
Random cropping, random flipping, and standardization are applied as data augmentation
techniques.

ImageNet. We train the ResNet-50 model on ImageNet [28] image classification tasks.
The model is trained for 100 epochs with a learning rate decay of 0.1 at epoch 30, 60, and
90. The base learning rate is tuned from {---,0.1,0.05,0.01, - - } and the batch size is 256.
The momentum constant is 0.9 and the weight decay is 1 x 1074, Similar data augmentation

techniques as in CIFAR experiments are applied.

2.5.1 General Results

We plot the CIFAR-10 training curves of VGG-16 in Figure 6 and summarize the test

numbers under various compression ratio settings in Table 6. From the curves, DEF achieves
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the best test acc and training loss among all the communication-efficient methods. Compared
with SGD, DEF achieves x3.6 and x4.0 speedup when the compression ratio is 64 and 256
respectively. For the test numbers in the table, DEF and DEF-A achieve the best results,
which can be comparable to SGD for compression up to 256. When the compression ratio is
high, DEF(-A) can significantly improve over the best counterpart by 8%. Overall, DEF and
DEF-A have similar final test performances. A significant improvement of the training loss
over the existing EF variants can be observed, validating our lower bound in the convergence
analysis of DEF.

The ImageNet training curves of ResNet-50 is shown in Figure 7 and the test numbers
under various compression ratio settings are summarized in Table 7. We can reach similar
conclusions as in CIFAR-10 experiments. Specifically, DEF achieves x2.5 and x2.9 speedup
compared with SGD when the compression ratio is 64 and 256 respectively. For the test
numbers in the table, DEF and DEF-A can be comparable to SGD for the compression
ratio of 1024. For some smaller compression ratios, we may even see a slight improvement
over SGD. When the compression ratio is high, DEF(-A) can significantly improve the best
counterpart by 4%.

For the concern of scalability, we also summarize the test numbers of VGG-16, ResNet-
110, and WRN-28-10 on CIFAR-10/100 in Table 8 with 64 as the compression ratio. DEF-A
achieves lossless performance compared with SGD and largely improves all the counterparts.
We find that for VGG-16 on CIFAR-100 and ResNet-110 on CIFAR-10/100, DEF-A has a
noticeable improvement over DEF. In particular, we find that PSync achieves closer perfor-
mance to SGD on WRN as reported in [143], but is much worse on VGG-16 and ResNet-110.
Therefore, both the superior performance and scalability of DEF(-A) are validated.

2.5.2 Accelerate Generalization

Here we empirically validate the theoretical generalization analysis that DEF-A has a
better generalization rate than DEF. We plot the training curves for VGG-16 on CIFAR-
10 and ResNet-50 on ImageNet with compression ratio as 64 in Figure 8. We can see that

DEF-A does have a much faster generalization rate than DEF. Specifically, the test accuracy
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improvement is about 15% on CIFAR-10 and 25% on ImageNet before the first learning
rate decay, which validates the theoretical benefits in our generalization analysis. DEF-A
can be even faster than full-precision SGD.

A significant improvement can still be observed before the second learning rate decay,
but it becomes smaller when the learning rate is smaller. This matches our generalization
analysis well. Let ¢ be smaller such that the learning rate = ;7 is smaller, then Eq. (2-22)
is closer to Eq. (2-24), that is, the DEF-A’s generalization error improvement over DEF

becomes smaller. Then it is obvious that the excess risk error improvement will also become

smaller.

2.5.3 Hyperparameter )\

Here we explore DEF(-A) with various choices of the hyper-parameter A with results
summarized in Table 5. We can just set A = 0.3 by default for the best performance. In
comparison, an inappropriate choice of A\ (e.g., 0.1 and 0.8) can lead to the performance
degradation of about 1%. We also observe that a wide range of A\ such as 0.2 ~ 0.6 can
result in fairly good performance compared with A = 0.3, which means that the proposed

DEF(-A) is not too sensitive to the hyper-parameter \.

2.6 Conclusion

In this work, to address the performance loss issue for communication-efficient distributed
SGD with the gradient sparsifier RBGS, we proposed a new DEF(-A) algorithm motivated
by the trade-off between gradient variance and second moment. Our convergence analysis
shows better bounds without relying on the bound of gradient second moment. We conduct
the first generalization analysis for communication-efficient distributed training to show that
DEF-A can generalize faster than DEF and SGD, which sheds light on other applications
incorporating compression such as escaping saddle point, GAN training, and SignSGD train-

ing. We establish the connection to SGD-IA for the first time, thus our analysis provides
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potential theoretical explanations for SGD-IA applications such as averaging weights, en-
semble, and momentum contrast in unsupervised learning. Last but not least, deep learning

experiments validate the significant improvement of DEF(-A) over existing EF variants.
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Figure 6: CIFAR-10 training curves of VGG-16. The compression ratio is 64 for the top row

and 256 for the bottom row. EF is not plotted when the compression ratio is 256 due to

divergence. From the left to right column, we plot the test accuracy (%) v.s. the wall-clock

time, the test accuracy (%) v.s. training epochs, and the training loss v.s. training epochs

respectively.

Table 6: The CIFAR-10 test accuracy (%) comparison of under various compression ratio

settings with VGG-16.

Ratio |  SGD | EF SAEF PSync |  DEF DEF-A
1 ]93.76 + 0.14 | — — — — —
16 | — | 93.04 £0.13 93.15 £ 0.04 93.31 £0.21 | 93.61 + 0.04 93.66 £ 0.10
64 | — | 92.16 + 0.06 91.88 + 0.14 91.79 + 0.17 | 93.75 £ 0.12  93.61 + 0.07
256 | — | diverge  89.59 £ 0.04 88.70 = 0.61 | 93.45 + 0.11  93.33 + 0.26
512 | — | diverge  87.83 £0.36 86.47 &= 0.14 | 93.24 + 0.08 93.25 £ 0.18
1024 | — | diverge 85.46 & 0.80 84.27 £ 0.33 | 93.03 + 0.15 93.06 =+ 0.09
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Figure 7: ImageNet training curves of ResNet-50. The compression ratio is 64 for the top

row and 256 for the bottom row. From the left to right column, we plot the test accuracy

(%) v.s. the wall-clock time, the test accuracy (%) v.s. training epochs, and the training

loss v.s. training epochs respectively.

Table 7: The ImageNet test accuracy (%) comparison under various compression ratio set-

tings with ResNet-50.

Ratio | SGD | EF SAEF PSync | DEF DEF-A
1] 76.04 | — — — | — —
16 | | 75.29 (1 0.75) 75.83 (1 0.21) 75.63 (1 0.41) | 75.98 (| 0.06) 76.10 (1 0.06)
64 | | 73.05 (1 2.99) 74.65 (| 1.39) 74.84 (| 1.20) | 76.16 (1 0.12) 76.37 (1 0.33)
128 | | 63.80 (} 12.2) 74.26 (} 1.78) 74.12 (1 1.92) | 76.17 ($ 0.13) 76.14 (1 0.10)
256 | — | diverge 73.83 (1 2.21) 73.02 ( 3.02) | 75.71 (1 0.33) 76.00 (| 0.04)
512 | — | diverge 73.00 (1 3.04) 72.60 (| 3.44) | 75.52 (1 0.52) 75.77 (| 0.27)
1024 | — | diverge 71.89 (1 4.15) 71.82 (| 4.22) | 75.64 (| 0.40) 75.57 (] 0.47)

34
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