
New Efficient and Privacy-Preserving Methods for Distributed Training

by

An Xu

Bachelor of Engineering, Tsinghua University, 2017

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2023

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

An Xu

It was defended on

Jul 14, 2023

and approved by

Ahmed Dalla, PhD, Professor Department of Electrical and Computer Engineering

Masoud Barati, PhD, Professor, Department of Electrical and Computer Engineering

Zhi-Hong Mao, PhD, Professor, Department of Electrical and Computer Engineering

Mingui Sun, PhD, Professor, Department of Neurological Surgery, School of Medicine

Dissertation Director: Bo Zeng, PhD, Professor, Department of Electrical and Computer

Engineering

ii

Copyright © by An Xu

2023

iii

New Efficient and Privacy-Preserving Methods for Distributed Training

An Xu, PhD

University of Pittsburgh, 2023

The distributed training of deep learning models faces two issues: efficiency and privacy.

First of all, training models can be slow and inefficient, especially when it is large with

data distributed across multiple devices. For model parallelism, the inefficiency is caused

by the backpropagation algorithm’s forward locking, backward locking, and update locking

problems. Existing solutions for acceleration either can only handle one locking problem

or lead to severe accuracy loss or memory inefficiency. Moreover, none of them consider

the straggler problem among devices. We propose Layer-wise Staleness and a novel efficient

training algorithm, Diversely Stale Parameters (DSP), to address these challenges.

For data parallelism, the communication bottleneck has been a critical problem in

large-scale distributed deep learning. We study distributed SGD with random block-wise

sparsification as the gradient compressor, which is ring-allreduce compatible and highly

computation-efficient but leads to inferior performance. To tackle this important issue, we

propose a new detached error feedback (DEF) algorithm, which shows better convergence

bound than error feedback for non-convex problems.

Secondly, distributed training raises concerns of data privacy when user’s data is gathered

to a central server. To keep data privacy, cross-silo federated learning (FL) has attracted

much attention. However, there can be a generalization gap between the model trained from

FL and the one from centralized training. We propose a novel training framework FedSM to

avoid the client drift issue and successfully close the generalization gap compared with the

centralized training for medical image segmentation tasks for the first time.

Communication efficiency is also crucial for federated learning (FL). Conducting local

training steps in clients to reduce the communication frequency is a common method to

address this issue. However, this strategy leads to the client drift problem due to non-i.i.d.

data distributions. We propose a new method to improve the training performance via

maintaining double momentum buffers.

iv

Table of Contents

Preface . xiv

1.0 Improve the Efficiency of Model Parallelism 1

1.1 Introduction . 1

1.2 Background . 3

1.3 Diversely Stale Parameters . 5

1.3.1 Layer-Wise Staleness . 5

1.3.2 DSP Gradient . 5

1.3.3 Batch Pipeline Input . 6

1.4 Convergence Analysis . 7

1.4.1 DSP with SGD . 9

1.4.2 DSP with Momentum SGD . 10

1.5 Experiments . 11

1.5.1 Faster Training . 11

1.5.2 Robustness . 12

1.5.3 Generalization . 12

1.5.4 Gradient Difference . 13

1.6 Conclusion . 14

2.0 Improve the Efficiency of Data Parallelism 17

2.1 Introduction . 17

2.2 Related Works . 18

2.3 Detached Error Feedback . 20

2.3.1 Motivation . 20

2.3.2 Algorithm . 22

2.4 Theoretical Analysis . 24

2.4.1 Convergence Rate . 25

2.4.2 Generalization Rate . 26

v

2.4.3 Extension to Iterate Averaging (IA) 27

2.5 Experiments . 29

2.5.1 General Results . 29

2.5.2 Accelerate Generalization . 30

2.5.3 Hyperparameter λ . 31

2.6 Conclusion . 31

3.0 Improve the Performance with Data Privacy 36

3.1 Introduction . 36

3.2 Related Works . 38

3.3 Methodology . 39

3.3.1 New Framework: FedSM . 39

3.3.1.1 Ensemble . 41

3.3.1.2 FedSM-extra . 41

3.3.1.3 FedSM . 42

3.3.2 New Personalization: SoftPull . 42

3.3.3 All Together . 45

3.4 Experiments . 46

3.4.1 General Results . 47

3.4.2 Validate Motivation . 48

3.4.3 Ablation Study . 50

3.5 Conclusion . 51

4.0 A New Optimizer with Data Privacy . 55

4.1 Introduction . 55

4.2 Background and Related Work . 57

4.3 New Double Momentum SGD (DOMO) 59

4.4 Convergence Analysis . 61

4.5 Experimental Results . 67

4.5.1 Settings . 67

4.5.2 Performance . 68

4.6 Conclusion . 70

vi

Appendix A. “Improve the Efficiency of Model Parallelism” 71

A.1 Queue Size . 71

A.2 Assumptions . 71

A.3 Basic Lemmas . 72

A.4 DSP with SGD . 74

A.5 DSP with Momentum SGD . 77

Appendix B. “Improve the Efficiency of Data Parallelism” 83

B.1 Proof of Convergence of DEF (Theorem 2.4.1) 83

B.1.1 Lemmas . 83

B.1.2 Main Proof . 88

B.2 Proof of Generalization of DEF(-A) (Theorem 2.4.2) 90

B.2.1 Generalization Error of DEF . 91

B.2.2 Generalization Error of DEF-A . 93

B.2.3 Optimization Error of DEF . 96

B.2.4 Optimization Error of DEF-A . 97

B.3 Proof of Generalization of SGD-(IA) (Theorem 2.4.3) 100

B.3.1 Generalization Error of SGD . 101

B.3.2 Generalization Error of SGD-IA . 102

B.3.3 Optimization Error of SGD . 102

B.3.4 Optimization Error of SGD-IA . 102

Appendix C. “Improve the Performance with Data Privacy” 103

C.1 Additional Dataset Information . 103

C.2 FedSM-extra Algorithm . 104

C.3 Proof of SoftPull Convergence . 105

C.3.1 Difference . 106

C.3.2 Local Objective . 107

C.3.3 Proposed Objective . 108

C.4 Additional Experimental Results . 110

Appendix D. “A New Optimizer with Data Privacy” 114

D.1 Task Settings . 114

vii

D.2 Proof of Theorem 1 . 115

D.2.1 Inconsistency Bound of ∥zr,p − xr,p∥22 (Lemma 2) 117

D.2.2 Divergence Bound of ∥xr,p − x
(k)
r,p∥22 120

D.2.3 Main Proof . 122

D.3 Extension to Partial Participation . 124

Bibliography . 127

viii

List of Tables

Table 1: Best Top-1 Test Accuracy . 7

Table 2: Robustness (ResNet164, CIFAR-10, K=3). Each GPU is randomly slowed

down. 8

Table 3: Speedup Comparison Results. 9

Table 4: Best Top-1 Test Accuracy on ImageNet (K=3). 10

Table 5: The CIFAR-10 test accuracy (%) of DEF/DEF-A for various λ with

VGG-16. The compression ratio is 64. 27

Table 6: The CIFAR-10 test accuracy (%) comparison of under various compres-

sion ratio settings with VGG-16. 33

Table 7: The ImageNet test accuracy (%) comparison under various compression

ratio settings with ResNet-50. 34

Table 8: The CIFAR-10/100 test accuracy (%) comparison for various model ar-

chitectures. The compression ratio is 1 for SGD and 64 for the other

methods. 35

Table 9: Retinal Dataset: number of data (2D image) in each client. The data

sources from client 1 to 6 are Drishti-GS1 [121], RIGA [10] BinRushed,

RIGA Magrabia, RIGA MESSIDOR, RIM-ONE [35], and REFUGE [4]

respectively. Global refers to the data from all clients. 46

Table 10: Prostate Dataset: number of data (2D slices) in each client. The data

sources from client 1 to 6 are I2CVB [80], MSD [11], NCI ISBI 3T,

NCI ISBI DX [1], Promise12 [2], and ProstateX [3] respectively. Global

refers to the data from all clients. 47

ix

Table 11: (low data similarity) Test Dice coefficient comparison of retinal segmen-

tation. “Client k Local” refers to local training on client k. The first

row refers to the performance on client 1∼6’s test data, their average,

and the performance on all clients’ test data. We report the average of

disc and cup Dice coefficients here. We bold the best FL numbers. See

Appendix C.4 for their separate numbers and the visual comparison of

segmentation. 49

Table 12: (high data similarity) Test Dice coefficient comparison of prostate seg-

mentation. We bold the best FL numbers. See Appendix C.4 for the

visual comparison. 50

Table 13: (retinal segmentation, Dice = average of disc and cup Dice coefficients)

Model selection frequency from the model selector when FL train with

clients {1, 2, · · · , 6}/{k} and test on the unseen client k ∈ {1, 2, · · · , 6}.

From left to right, GM denotes the global model and PM denotes the per-

sonalized model {1, 2, · · · , 6}/{k}. The model selection frequency with

the best γ, and the more detailed Dice results can be found in Appendix

C.4. Note GM is never selected as the Threshold γ is intentionally set

to 0. 51

Table 14: FedSM with different personalization method in retinal segmentation.

Dice = average of disc and cup Dice coefficients. 53

Table 15: FedSM with different coefficient λ in retinal segmentation. Dice = aver-

age of disc and cup Dice coefficients. 54

Table 16: CIFAR-10 test accuracy (%) when training VGG-16 using DOMO with

various hyper-parameters α and β. Data similarity s = 10% and local

epoch E = 1. α is fixed at 1.0 with various β in the first column, while

β is fixed at 0.9 with various α in the second column. 65

Table 17: SVHN test accuracy (%) when training ResNet-20. 66

Table 18: CIFAR-100 test accuracy (%). Second row: VGG-16. Third row: ResNet-

56. 66

Table 19: Prostate dataset: number of data (3D image) in each client. 103

x

Table 20: Test Dice coefficient comparison of retinal disc segmentation. 111

Table 21: Test Dice coefficient comparison of retinal cup segmentation. 112

Table 22: (retinal segmentation, Dice = average of disc and cup Dice coefficients)

Model selection frequency from the model selector when FL train with

clients {1, 2, · · · , 6}/{k} and test on the unseen client k ∈ {1, 2, · · · , 6}.

From left to right, GM denotes the global model and PM denotes the

personalized model {1, 2, · · · , 6}/{k}. We choose the best γ. 112

Table 23: (retinal segmentation, Dice = average of disc and cup Dice coefficients)

Dice performance when FL train with clients {1, 2, · · · , 6}/{k} and test

on the unseen client k ∈ {1, 2, · · · , 6}. 113

xi

List of Figures

Figure 1: Sketches of different methods with three blocks. The forward and recom-

putation are overlapped in DSP. 2

Figure 2: DSP(1,1,0;4,2,0) with Layer-wise Staleness of {4,2,0} (the index differ-

ence between the forward and backward batch). Worker k ∈ {0, 1, 2}

holds block k. 4

Figure 3: Training loss (solid line) and testing loss (dash line) for ResNet98, ResNet164

on CIFAR-10. The first row and second row plots the loss regarding the

training epochs and time respectively. 15

Figure 4: Top left: Average difference of DSP and BP gradient regarding the num-

ber of parameters. The rest: Training loss (solid line), testing loss (dash

line) and test top-1 accuracy(dot line). 16

Figure 5: Test accuracy@1 on the ImageNet dataset. 16

Figure 6: CIFAR-10 training curves of VGG-16. The compression ratio is 64 for

the top row and 256 for the bottom row. EF is not plotted when the

compression ratio is 256 due to divergence. From the left to right column,

we plot the test accuracy (%) v.s. the wall-clock time, the test accuracy

(%) v.s. training epochs, and the training loss v.s. training epochs

respectively. 33

Figure 7: ImageNet training curves of ResNet-50. The compression ratio is 64 for

the top row and 256 for the bottom row. From the left to right column,

we plot the test accuracy (%) v.s. the wall-clock time, the test accuracy

(%) v.s. training epochs, and the training loss v.s. training epochs

respectively. 34

Figure 8: Accelerate the generalization with DEF-A. DEF-A significantly improves

the test accuracy before the second learning rate decay compared with

DEF. 35

xii

Figure 9: The proposed FedSM framework with “super model”. 40

Figure 10:Training curves comparison. The curves are non-decreasing because we

record the best result during training. 48

Figure 11:TSNE map of the features extracted form the model selector on retinal

segmentation task. 52

Figure 12:The 1D loss surface near the models trained by different methods on

Client 5’s data in retinal segmentation. 52

Figure 13:CIFAR-10 training curves using the VGG-16 model with various data

similarity s. 62

Figure 14:CIFAR-10 test accuracy (%) with various sever momentum constant µs

and local momentum constant µl. µs = 0 corresponds to FedAvgLM,

µl = 0 corresponds to FedAvgLM, µs = 0 &µl = 0 corresponds to Fe-

dAvg, and µs ̸= 0 &µl ̸= 0 corresponds to DOMO. 63

Figure 15:Left and Middle: CIFAR-10 training curves using the VGG-16 model

with various local epoch E. E = 1 has been shown in the middle plot of

Figure 13 and is not repeatedly shown here. Right: CIFAR-10 training

curves using the ResNet-56 model. 64

Figure 16:Representative original 2D image in retinal dataset (low data similarity).

First row: client 1 to 3. Second row: client 4 to 6. 103

Figure 17:Representative original 2D image slices in prostate dataset (high data

similarity). First row: client 1 to 3. Second row: client 4 to 6. E.g., the

first slice comes from a 3D image in client 1. 104

Figure 18:Visual comparison of retinal disc (green) and cup (blue) segmentation.

Dice denotes the retinal disc and cup Dice coefficient. 110

Figure 19:Visual comparison of prostate (green) segmentation. Dice denotes the

Dice coefficient. 111

xiii

Preface

I would like to express my sincere gratitude to Dr. Bo Zeng (supervisor), Dr. Zhi-Hong

Mao, Dr. Ahmed Dalla, Dr. Masoud Barati, and Dr. Minghui Sun for their invaluable

contributions as members of my committee and their guidance throughout my research

work. Additionally, I am deeply grateful to Dr. Heng Huang for providing unwavering

support during my first four years of PhD study. I would also like to extend my thanks to

my colleagues at school, as well as the collaborators from NVIDIA Research and Amazon

Web Services, with whom I had the privilege to work during my internships.

The path of pursuing a PhD is filled with intellectual and mental challenges, and I firmly

believe that I would not have been able to overcome them without the unwavering support

of my beloved parents Honghua Xu and Xiaoping Xu, and my girlfriend Yang Bai. Their

love and care provided me with the strength to navigate the stress of the pandemic and

persevere.

The completion of my PhD degree is undeniably a significant milestone in my personal

journey. In fact, it has already proven to be an immensely rewarding experience. I am

profoundly grateful for the incredible individuals I have had the privilege of crossing paths

with throughout my life.

xiv

1.0 Improve the Efficiency of Model Parallelism

1.1 Introduction

The deep convolutional neural network is an important method for solving computer

vision problems such as classification, object detection, etc. However, as the neural networks

get deeper and larger [47, 62, 52, 128, 144, 95], the required expensive training time has

become the bottleneck. Data parallelism [134, 83, 19] and model parallelism [79, 75] are two

standard parallelism techniques to utilize multiple devices for efficient training.

The data parallelism for efficient distributed training has been well studied and im-

plemented in existing libraries [5, 22, 56, 148, 58, 60], but the model parallelism is still

underexplored. In this paper, we focus on the model parallelism, where the deep neural

network (DNN) benefits from being split onto multiple devices. But the resource utilization

of standard model parallelism can be very low. The backpropagation algorithm [114, 78]

typically requires two phases to update the model in each training step: the forward pass

and backward pass. But the sequential propagation of activation and error gradient leads to

backward locking and forward locking [64] respectively because of the computation depen-

dencies between layers. The update locking [64] exists as the backward pass will not start

until the forward pass has completed. This sequential execution keeps a device inefficiently

waiting for the activation input and error gradient.

Several works have been proposed to address these locking issues (Figure 1). [64] uses

Decoupled Neural Interfaces (DNI) to predict the error gradient via auxiliary networks, so

that a layer uses the synthetic gradient and needs not to wait for the error gradient. [104]

lets hidden layers receive error information directly from the output layer. However, these

methods can not converge when dealing with very deep neural networks. [15] proposes

layer-wise decoupled greedy learning (DGL), which introduces an auxiliary classifier for each

block of layers so that a block updates its parameters according to its own classifier. But

the objective function of DGL based on greedy local predictions can be very different from

the original model. GPipe [54] proposes pipeline parallelism and divides each mini-batch

1

......

F B
F B

F B

F B
F B

F B

F R B
F R B

F B

F R B
F R B

F B

GPipe

Training Progress (K=3, two consecutive mini-batches displayed)
Backward

Locking
Forward
Locking

Method

BP

FR

DSP

Yes Yes

Yes No

No No

Yes
(micro-
batch)

Yes
(micro-
batch)

DDG Yes No

F

B

Micro-batch forward

Micro-batch backward

F

R

B

Mini-batch forward

Mini-batch recomputation

Mini-batch backward

Idle

time

F
R

B

F
R

B

F B

F
R

B

F
R

B

F B

F
F

F B
B

B F
F

F B
B

B

......

......

......

......

F
F F F B B B

B B B
B B

FF
FFF

F
F F F B B B

B B B
B B B

FF
FFFB

3 Blocks

Figure 1: Sketches of different methods with three blocks. The forward and recomputation

are overlapped in DSP.

into micro-batches, which can be regarded as a combination of model parallelism and data

parallelism. However, the forward and backward lockings of the micro-batch still exist, and

the update locking is not addressed because GPipe waits for the whole forward and backward

pass to finish before updating the parameters. [59] proposes Decoupled Parallel Backprop-

agation (DDG), which divides the DNN into blocks and removes the backward locking by

storing delayed error gradient and intermediate activations at each block. But DDG suffers

from large memory consumption due to storing all the intermediate results. PipeDream [101]

has to store multiple versions of weights in addition to intermediate activations as in DDG.

Features Replay (FR) [57, 152] improves DDG via storing the history inputs and recom-

puting the intermediate results. Nevertheless, blocks in DDG and FR still need to wait for

the backward error gradient. Besides, neither DDG nor FR addresses the forward locking

problem.

To overcome the aforementioned drawbacks, we first propose Layer-wise Staleness, a

fine-grained staleness within the model to allow different parts to be trained independently.

Incorporating staleness is useful for efficient asynchronous execution without synchronization

barrier [49], which can be interpreted as another form of locking/dependency. The intro-

duction of preset Layer-wise Staleness enables each part of the convolutional neural network

2

(CNN) to run in a very flexible way with a certain degree of asynchrony. Based on the

concept of Layer-wise Staleness, we propose a novel parallel CNN training algorithm named

as Diversely Stale Parameters (DSP), where lower layers use more stale information to up-

date parameters. DSP also utilizes the recomputation technique [23, 40] to reduce memory

consumption, which is overlapped with the forward pass. Our contributions are summarized

as follows:

• We propose Layer-wise Staleness and Diversely Stale Parameters which breaks the for-

ward, backward and update lockings without memory issues.

• To ensure the theoretical guarantee, we provide convergence analysis for the proposed

method. Even faced with parameters of different Layer-wise Staleness, we prove that

DSP converges to critical points for non-convex problems with SGD and momentum

SGD.

• We evaluate our method via training deep convolutional neural networks. Extensive em-

pirical results show that DSP achieves significant training speedup and strong robustness

against random stragglers.

1.2 Background

We divide a CNN into K consecutive blocks so that the whole parameters

x = (x0, x1, ..., xK−1) ∈ Rd, (1–1)

where xk ∈ Rdk denotes the partial parameters at block k ∈ {0, 1, ..., K−1} and d =
∑K−1

k=0 dk.

Each block k computes activation hk+1 = fk(hk;xk), where hk denotes the input of block

k. In particular, h0 is the input data. For simplicity, we define F (h0;x0;x1; ...;xk) :=

fk(...f1(f0(h0;x0);x1)...;xk) = hk+1. The loss is L(hK , l), where l is the label. Minimizing

the loss of a K-block neural network can be represented by the following problem:

min
x∈Rd

f(x) := L(F (h0;x0;x1; ...;xK−1), l). (1–2)

3

warm-up steady

0

0

0

0

1

1 2

1 1

2
0 0

2 2 3 3 4 4

3

3
1 1 4

2 2 5
3 3

4
0 0 5

1 1 6
2 2Worker 0

Worker 1

Worker 2

i Forward batch i i Backward batch i i Recompute batch i

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6

Figure 2: DSP(1,1,0;4,2,0) with Layer-wise Staleness of {4,2,0} (the index difference between

the forward and backward batch). Worker k ∈ {0, 1, 2} holds block k.

Backpropagation algorithm computes the gradient for block k following chain rule via

Eq. (1–3). The forward locking exists because the input of each block is dependent on

the output from the lower block. The backward locking exists because each block cannot

compute gradients until having received the error gradient Gh from the upper block. Besides,

the backward process can not start until the whole forward process is completed, which is

known as the update locking.Ghk
= ∂fk(hk;xk)

∂hk
Ghk+1

, GhK
= ∂L(hK ,l)

∂hK

Gxk
= ∂fk(hk;xk)

∂xk
Ghk+1

.

(1–3)

After computing the gradients, stochastic gradient descent (SGD) [111] and its variants

such as stochastic unified momentum (SUM) [153], RMSPROP [133] and ADAM [72] are

widely used for updating the model. SGD updates via xn+1 = xn − αG(xn; ξ), where xn is

the parameters when feeding the nth data (batch), α is the learning rate, and G(xn; ξ) is the

stochastic gradient. SUM updates the parameters via Eq. (1–4), where β is the momentum

constant and y is the momentum term. When s = 1, SUM reduces to stochastic Nesterov’s

accelerated gradient (SNAG) [102].yn+1 = xn − αG(xn; ξ), ys,n+1 = xn − sαG(xn; ξ)

xn+1 = yn+1 + β(ys,n+1 − ys,n).

(1–4)

4

1.3 Diversely Stale Parameters

In this section, we propose a novel training method named Diversely Stale Parameters

(Figure 2). We first define layer-wise staleness and related notations in Section 1.3.1, then

the motivation and formulation of DSP gradient in Section 1.3.2, finally the practical imple-

mentation using queues for pipelined batch input in Section 1.3.3.

1.3.1 Layer-Wise Staleness

Let the data be forwarded with parameters x0 at timestamp t0, x1 at timestamp t1,

. . ., and xK−1 at timestamp tK−1. For simplicity we denote the Forward Parameters as

{xtk
k }k=0,...,K−1. Similarly we denote the Backward Parameters as {xt2K−1−k

k }k=0,...,K−1.

Then we define Layer-wise Staleness as ∆tk = t2K−k−1 − tk ≥ 0. We preset each block’s

Layer-wise Staleness to a different value to break the synchronization barrier of backpropa-

gation.

We also denote the maximum Layer-wise Staleness as ∆t = maxk=0,1,...,K−1 ∆tk. It is

worth noting that a) in standard backpropagation algorithm (Eq. (1–3)), Layer-wise Stale-

ness ∆tk = 0; and b) Feeding data index is not identical to timestamp/training step.

1.3.2 DSP Gradient

We first set the constraints of DSP as t0 < t1 < . . . < tK−1 ≤ tK < tK+1 < . . . < t2K−1

such that both the dependencies in the forward and backward pass no longer exist, because

we do not need them to finish in the same timestamp anymore. The non-decreasing property

corresponds to the fact that the data needs to go through the bottom layers before the top

layers, and the error gradient needs to go through the top layers before the bottom layers.

Based on backpropagation algorithm and Eq. (1–3), we should compute the gradients

according to the following formulas as we are updating the Backward Parameters, which is

5

defined as {xt2K−1−k

k }k=0,...,K−1,

Gxk
=

∂F (h0;x
t2K−1

0 ; ...;x
t2K−1−k

k)

∂x
t2K−1−k

k

Ghk+1

Ghk
=

∂F (h0;x
t2K−1

0 ; ...;x
t2K−1−k

k)

∂F (h0;x
t2K−1

0 ; ...;x
t2K−2−k

k−1)
Ghk+1

GhK
=

∂L(F (h0;x
t2K−1

0 ; ...;xtK
K−1), l)

F (h0;x
t2K−1

0 ; ...;xtK
K−1)

.

(1–5)

However, during the forward pass the input of block k is F (h0;x
t0
0 ; ...;x

tk−1

k−1). Therefore

we incorporate the recomputation technique and utilize both the Forward Parameters and

Backward Parameters to compute DSP gradient as follows,

Gxk
=

∂F (h0;x
t0
0 ; ...;x

tk−1

k−1 ;x
t2K−1−k

k)

∂x
t2K−1−k

k

Ghk+1

Ghk
=

∂F (h0;x
t0
0 ; ...;x

tk−1

k−1 ;x
t2K−1−k

k)

∂F (h0;x
t0
0 ; ...;x

tk−1

k−1)
Ghk+1

GhK
=

∂L(F (h0;x
t0
0 ; ...;x

tK−1

K−1), l)

F (h0;x
t0
0 ; ...;x

tK−1

K−1)
.

(1–6)

The intuition behind the DSP gradient of Eq. (1–6) is that it is equivalent to Eq. (1–5)

when the model converges to a local optimum where the gradient is zero (xtk
k = x

t2K−1−k

k

afterwards).

1.3.3 Batch Pipeline Input

The computation of the DSP gradient breaks the forward and backward dependen-

cies/lockings of the same data as it will not appear in different blocks at the same timestamp.

The update locking is naturally broken.

For the parallel implementation of DSP as shown in Figure 2, we incorporate the data

batch pipeline to keep all the blocks being fed with different data batches and running.

The data source consecutively feeds data input. Different blocks transport and process

different data via FIFO queues. As a result, the data travels each block at different times-

tamps. Specifically, each block k maintains an input queue Mk, output queue Pk and

6

Table 1: Best Top-1 Test Accuracy

ResNet164 ResNet98

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

BP 94.41% 75.66% 93.38% 72.66%

K=3

FR 94.55% 76.25% 93.60% 73.27%
DSP(1,1,0;4,2,0) 94.68% 76.05% 93.36% 72.99%
DSP(2,2,0;6,3,0) 93.98% 76.00% 93.68% 73.70%
DSP(3,3,0;10,5,0) 93.37% 76.29% 93.27% 73.38%

K=4

FR 94.44% 75.84% 93.26% 72.41%
DSP(1,1,1,0;6,4,2,0) 94.32% 76.22% 93.41% 73.14%
DSP(2,2,2,0;9,6,3,0) 94.87% 75.59% 93.06% 72.89%
DSP(3,3,3,0;15,10,5,0) 93.34% 75.15% 93.45% 72.96%

gradient queue Qk of length 1 + mk, 1 + pk and 1 + qk respectively. We denote it as

DSP (p0, ..., pK−1;m0, ...,mK−1). {qk} is determined by {pk} and {mk} because the input

should match the corresponding error gradient. We manually split the model to different

workers to balance the workload at the steady stage.

Apart from adopting recomputation to reduce memory consumption, DSP overlaps re-

computation with the forward pass to save time. Using queues also make DSP overlap the

communication between blocks with computation. The FIFO queues allow for some asyn-

chrony which is effective for dealing with random stragglers. The ideal time complexity of

DSP is O(TF+TB

K
) and the space complexity is O(L+

∑K−1
k=0 (mk +pk +qk)), where TF and TB

are serial forward and backward time, and L is the number of layers. mk also represents the

Layer-wise Staleness ∆tk of block k. K and the FIFO queues length mk+1, pk+1, qk+1≪ L

for deep models, so the extra space cost is trivial.

1.4 Convergence Analysis

The convergence of DSP with SGD is first analyzed, then DSP with Momentum SGD.

For simplicity, we denote the Forward and Backward Parameters of data n as xn′
and xn

7

Table 2: Robustness (ResNet164, CIFAR-10, K=3). Each GPU is randomly slowed down.

Slow down percentage

GPU 20% 50% 100% 150%

FR 8.977% 28.52% 97.06% 359.2%
DSP(1,1,0;4,2,0) 6.017% 16.14% 37.44% 70.99%
DSP(2,2,0;6,3,0) 7.465% 16.01% 36.57% 54.57%
DSP(3,3,0;10,5,0) 7.391% 18.15% 32.10% 53.42%

respectively.

Assumption 1.4.1. (Bounded variance) Assume that the DSP stochastic gradient G(x; ξ)

satisfies Var [G(x; ξ)] ≤ σ2. Note E [G(x; ξ)] = G(x) ̸= ∇f(x).

Assumption 1.4.2. (Lipschitz continuous gradient) Assume that the loss and the out-

put of the blocks have Lipschitz continuous gradient, that is, ∀k ∈ {0, 1, .., K − 1}, and

∀(x0,1, ..., xk,1), (x0,2, ..., xk,2) ∈ Rd0+d1+...+dk , we have

∥∇F (h0;x0,1; ...;xk,1)−∇F (h0;x0,2; ...;xk,2)∥ ≤ Lk ∥(x0,1, ..., xk,1)− (x0,2, ..., xk,2)∥ , (1–7)

and ∀x1, x2 ∈ Rd,

∥∇f(x1)−∇f(x2)∥ ≤ LK ∥x1 − x2∥ . (1–8)

We define L := maxk∈{0,1,...,K} Lk. Note ∇F (h0;x0,1; ...;xk,1) and ∇F (h0;x0,2; ...;xk,2)

regarding parameters are Jacobian matrices. In fact, this is assuming that the partial model

consisted of the blocks that the data has traveled, has Lipschitz continuous gradient.

Assumption 1.4.3. (Bounded error gradient) Assume that the norm of the error gra-

dient that a block receives is bounded, that is, for any x ∈ Rd, ∀k ∈ {0, 1, ..., K−2}, we have∥∥∥∂fk+1(hk+1;xk+1)

∂hk+1
...∂fK−1(hK−1;xK−1)

∂hK−1

∂L(hK ,l)
∂hK

∥∥∥ ≤M and
∥∥∥∂L(hK ,l)

∂hK

∥∥∥ ≤M .

This is assuming that the error gradient at each block does not explode. It is natural

to make the above two block-wise assumptions as we are breaking the neural networks into

blocks.

8

Table 3: Speedup Comparison Results.

CIFAR-10 CIFAR-100 ImageNet

ResNet164 ResNext-29 VGG-19 ResNet1001 ResNet50 ResNet101
K, batch size (4, 128) (4, 128) (3, 128) (4, 128) (3, 256) (4, 128)

BP / BP-K x1 / - x1 / - x1 / - - / x1 - / x1 x1 / -
FR x1.7 x1.3 x1.1 x1.9 x1.6 x1.7
GPipe - - - - - x2.2
DSP x2.7 x2.4 x1.5 x4.8 x3.0 x2.7

Lemma 1.4.1. If Assumptions 1.4.2 and 1.4.3 hold, the difference between DSP gradient

and BP gradient regarding the parameters of block k ∈ {0, 1, ..., K − 1} satisfies

∥∇xk
L(F (h0;x

t0
0 ; ...;x

tK−1

K−1), y)− Gxk
(x

t2K−1

0 ; ...;xtK
K−1)∥ ≤ LM

K−1∑
i=k

∥∥∥xt2K−1−i

i − xti
i

∥∥∥ . (1–9)

1.4.1 DSP with SGD

Theorem 1.4.1. Assume Assumptions 1.4.1, 1.4.2 and 1.4.3 hold. Let c0 = M2K(K + 1)2,

and c1 = −(∆t2 + 2) +
√

(∆t2 + 2)2 + 2c0∆t2. If the learning rate αn ≤ c1
Lc0∆t2

, then∑N−1
n=0 αnE

∥∥∇f(xn′
)
∥∥2∑N−1

n=0 αn

≤ 2 [f(x0)− f ∗]∑N−1
n=0 αn

+
Lσ2(2 + K∆t2 + 1

4
Kc1)

∑N−1
n=0 α2

n∑N−1
n=0 αn

. (1–10)

Corollary 1.4.1. (Sublinear convergence rate) According to Theorem 1.4.1, by setting the

learning rate αn = min
{

1√
N
, c1
Lc0∆t2

}
, when N is large enough we have αn = 1√

N
and

min
n=0,...,N−1

E
∥∥∥∇f(xn′

)
∥∥∥2 ≤ 2(f(x0)− f ∗)√

N
+

Lσ2(2 + K∆t2 + 1
4
Kc1)√

N
. (1–11)

Corollary 1.4.2. According to Theorem 1.4.1, if the learning rate αn diminishes and satisfies

the requirements in [111]: limN→∞
∑N−1

n=0 αn = ∞ and limN→∞
∑N−1

n=0 α2
n < ∞, choose xn

randomly from {xn}N−1
n=0 with probabilities proportional to {αn}N−1

n=0 . Then we can prove that

it converges to critical points for the non-convex problem due to limn→∞ E ∥∇f(xn)∥2 = 0.

9

Table 4: Best Top-1 Test Accuracy on ImageNet (K=3).

Method ResNet18 ResNet50

BP 69.89% 75.35%

FR 68.94% 74.47%
DSP(1,1,0;4,2,0) 68.95% 74.91%

1.4.2 DSP with Momentum SGD

Theorem 1.4.2. Assume Assumption 1.4.1, 1.4.2 and 1.4.3 hold. Let

c2 =
((1− β)s− 1)2

(1− β)2
, (1–12)

c3 = M2K(K + 1)2∆t2(c2 + s2), (1–13)

c4 = 3 + β2c2 + 2(1− β)2∆t2(c2 + s2), (1–14)

and

c5 =
2 + β2c2

1− β
+ 2(1− β)∆t2(c2 + s2) +

−c4 +
√

c24 + 4(1− β)2c3
2(1− β)

. (1–15)

If the fixed learning rate α satisfies α ≤ −c4+
√

c24+4(1−β)2c3

2(1−β)c3L
, then

1

N

N−1∑
n=0

E
∥∥∥∇f(xn′

)
∥∥∥2 ≤ 2(1− β)(f(x0)− f ∗)

Nα
+ c5σ

2Lα. (1–16)

Corollary 1.4.3. (Sublinear convergence rate) According to Theorem 1.4.2, by setting the

learning rate α = min{ 1√
N
,
−c4+
√

c24+4(1−β)2c3

2(1−β)c3L
}, when N is large enough we have α = 1√

N
and

minn=0,...,N−1 E
∥∥∇f(xn′

)
∥∥2 ≤ 2(1−β)(f(x0)−f∗)√

N
+ c5σ2L√

N
.

Remark 1.4.1. The convergence performance of DSP is affected by Layer-wise Staleness

rather than the staleness between different blocks.

10

1.5 Experiments

We implement DSP in TensorFlow [5] and run the experiments on Nvidia Tesla P40

GPUs. The model is divided into K blocks and distributed onto K GPUs. Data augmen-

tation procedures include random cropping, random flipping, and standardization. We use

SGD with the momentum constant of 0.9. In CIFAR experiments, the batch size is 128. We

train ResNet98 and ResNet164 for 300 epochs. The weight decay is 5× 10−4 and the initial

learning rate is 0.01 (test performance could be a little lower than 0.1 [96]) with a decay of

0.1 at epoch 150, 225; ResNet1001 is trained for 250 epochs. The weight decay is 2 × 10−4

and the initial learning rate is 0.1 with a decay of 0.1 at epoch 100, 150, 200; VGG-19 and

ResNext-29 are trained for 200 epochs. The weight decay is 5× 10−4 and the initial learning

rate is 0.01 with a decay of 0.1 at epoch 100, 150. We also train ResNet on ImageNet for 90

epochs. The batch size is 256, the weight decay is 1 × 10−4 and the initial learning rate is

0.1 with a decay of 0.1 at epoch 30, 60, 80. There are four compared methods:

• BP: The standard implementation in TensorFlow. BP (or BP-K) runs on one (or K)

GPUs.

• DNI: The Decoupled Neural Interface algorithm in [64]. The auxiliary network consists

of two hidden and one output convolution layers with 5× 5 filters and padding size of 2.

The hidden layers also use batch-normalization and ReLU.

• FR: The Features Replay algorithm proposed by [57].

• DSP: Our Diversely Stale Parameters.

1.5.1 Faster Training

The DSP convergence curves regarding training epochs are nearly the same as FR and

BP, while DNI does not converge as shown in Figure 3. But the epoch time of DSP is

much less. Due to the overlap of communication and computation, the overheads of DSP

are much less than model parallel BP and the speedup can even exceed K. However, it

is important that the model should be properly distributed onto different blocks such that

the workload of each computing device is balanced. If not, the overall speed will be mostly

11

determined by the slowest device. To further demonstrate the scalability of DSP, we also

run experiments on VGG-19 [120], ResNeXt-29 [144], ResNet1001 on the CIFAR dataset,

and ResNet18 and ResNet50 on the ImageNet [28] dataset as shown in Figure 4 and Figure

5 respectively. The speedup is summarized in Table 3 (GPipe paper only reports speedup of

ResNet101 and AmoebaNet-D (4,512)). Our proposed DSP improves the speedup compared

with its counterparts from x0.5 to x3.1 based on different datasets, model and the value of

K. Note that the implementation of DSP involves some inefficient copy operations due to

limited supported features of the deep learning framework, which means that DSP could

achieve a potentially even faster speedup.

1.5.2 Robustness

To show that DSP is more resilient to the straggle problem due to the FIFO queues

introduced, we randomly slow down each GPU by a certain percentage with a probability of

1/3 and run the experiments on ResNet164 (Table 2). The performance of FR degrades a lot

because it does not break the forward locking nor completely decouple the backward pass.

In comparison, DSP is very robust with the best slow down percentage always less than 1/3

of the corresponding GPU slow down percentage. When the upper or lower block suddenly

slows down, the current block’s feeding data and gradient queues are less likely to be empty

if the length of the queue is long. When the straggler effect is not serious, increasing the

Layer-wise Staleness will not bring performance gain; when it is serious instead, DSP benefits

a lot from increasing the Layer-wise Staleness. Generally speaking, longer queues improve

DSP’s resilience to random stragglers, which is shown in Table 2.

1.5.3 Generalization

Table 1 and Tabel 4 show the best top-1 test accuracy on the CIFAR and ImageNet

dataset respectively. The test performance of DSP is better than BP and FR on the CIFAR

dataset. From Lemma 1.4.1 we know that the DSP gradient deviates from the BP gradient

due to the Layer-wise Staleness. This difference becomes small as the training proceeds but

could impose small noise and help find a better local minimum on the comparatively less

12

complex CIFAR classification problem.

In comparison, on the ImageNet dataset, the Layer-wise Staleness can lead to perfor-

mance degradation. By intuition, it is similar to asynchronous distributed training where

the whole gradient is of the same staleness. But in DSP, the more fine-grained Layer-wise

Staleness will impose different blocks with different staleness effects. Potential solutions

could be using staleness-aware methods as proposed in asynchronous distributed training

area, e.g. gradient compensation and staleness-aware learning rate, to alleviate the staleness

effect. Another possible direction is to balance the staleness effect between all the blocks.

Moreover, when compared with FR, DSP’s test accuracy is slightly better. On ResNet18,

the test accuracy of FR and DSP is very similar, but on ResNet50 there is a 0.44% gain using

DSP. Besides, on the more complicated ResNet50 architecture, the performance degradation

resulting from the staleness effect is smaller than that on ResNet18.

1.5.4 Gradient Difference

Here we attest our theoretical analysis of Lemma 1.4.1 via checking the difference between

the DSP and the BP gradient on the CIFAR dataset with the ResNet164 model. From the

top-left figure of Figure 4, we can see that the difference between the DSP and BP gradient

drops very fast to the converged value as the training proceeds. This difference drops even

faster for upper blocks where the Layer-wise Staleness effect is milder. It confirms the

motivation behind the DSP algorithm that the DSP gradient will finally be similar to the

BP gradient. Moreover, the lower blocks suffer from a larger difference. When the Layer-wise

Staleness keeps increasing, the difference will also increase, which matches Lemma 1.4.1 well.

Moreover, as the learning rate drops, the difference between the DSP gradient and the BP

gradient will drop a lot. This implies that a smaller learning rate should be used when we

need to deal with a larger number of blocks where the Layer-wise Staleness effect becomes

non-trivial. This is also shown in Theorem 1.4.1 and 1.4.2 that the learning rate should be

decreased to make sure it converges at the stated speed.

13

1.6 Conclusion

In this paper, we have proposed Layer-wise Staleness and DSP, a novel way to fast

train neural networks. DSP is proved to converge to critical points for non-convex problems

with SGD and Momentum SGD optimizer. We apply DSP to train CNNs in parallel and

the experiment results confirm our theoretical analysis. Our proposed method achieves

significant training speedup, strong resilience to random stragglers, better generalization on

the CIFAR dataset and reasonable performance on the ImageNet dataset. The speedup

can exceed K compared with the model parallel BP. Potential future works include how

to alleviate the staleness effect when we need to utilize a further larger number of blocks;

how to automatically determine the proper model splitting strategy for load balance among

devices; efficiently incorporating DSP with data parallelism to achieve even faster training

speed.

14

0 50 100 150 200 250 300
Epoch

10 3

10 2

10 1

100

101
Lo

ss
CIFAR-10, ResNet98, K=3

BP
FR
DSP(1,1,0,4,2,0)
DSP(2,2,0;6,3,0)
DSP(5,5,0;14,7,0)
DNI

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (s) ×104

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet98, K=3

0 50 100 150 200 250 300
Epoch

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=3

BP
FR
DSP(1,1,0;4,2,0)
DSP(2,2,0;6,3,0)
DSP(5,5,0;14,7,0)
DNI

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s) ×104

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=3

0 50 100 150 200 250 300
Epoch

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=4

BP
FR
DSP(1,1,1,0;6,4,2,0)
DSP(2,2,2,0;9,6,3,0)
DSP(3,3,3,0;15,10,5,0)
DNI

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s) ×104

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=4

Figure 3: Training loss (solid line) and testing loss (dash line) for ResNet98, ResNet164 on

CIFAR-10. The first row and second row plots the loss regarding the training epochs and

time respectively.

15

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e

G
ra

di
en

t
D

iff
er

en
ce

×10 4 CIFAR-10, ResNet164, K=4
DSP(1,1,1,0;6,4,2,0) block0
DSP(1,1,1,0;6,4,2,0) block1
DSP(1,1,1,0;6,4,2,0) block2
DSP(1,1,1,0;6,4,2,0) block3
DSP(3,3,3,0;15,10,5,0) block0
DSP(3,3,3,0;15,10,5,0) block1
DSP(3,3,3,0;15,10,5,0) block2
DSP(3,3,3,0;15,10,5,0) block3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) ×105

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

CIFAR-100, ResNet1001, K=4

BP-4
FR
DSP(1,1,1,0;6,4,2,0)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 T
op

-1
 A

cc
ur

ac
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s) ×103

10 2

10 1

100

Lo
ss

CIFAR-10, VGG-19, K=3

BP
FR
DSP(1,1,0;4,2,0)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 T
op

-1
 A

cc
ur

ac
y

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s) ×104

10 2

10 1

100

Lo
ss

CIFAR-10, ResNeXt-29, 8x64d, K=4

BP
FR
DSP(1,1,1,0;6,4,2,0)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 T
op

-1
 A

cc
ur

ac
y

Figure 4: Top left: Average difference of DSP and BP gradient regarding the number of

parameters. The rest: Training loss (solid line), testing loss (dash line) and test top-1

accuracy(dot line).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (s) ×105

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

 A
cc

ImageNet, ResNet18, K=3

BP
FR
DSP(1,1,0;4,2,0)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s) ×106

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 A
cc

ImageNet, ResNet50, K=3

BP-3
FR
DSP(1,1,0;4,2,0)

Figure 5: Test accuracy@1 on the ImageNet dataset.

16

2.0 Improve the Efficiency of Data Parallelism

2.1 Introduction

Deep learning models are hard to train due to the heavy computation complexity and

long training iterations. Therefore, distributed deep learning with multiple workers (GPUs)

has become a prevalent practice to parallelize and accelerate the training for large-scale tasks,

where the model and dataset sizes continue to grow nowadays [120, 48, 28].

Nevertheless, synchronous distributed training have difficulty in scaling up the number of

workers for large deep learning models, as the gradient in each worker to be communicated per

iteration is of the same dimension as the model size. It is also known as the communication

bottleneck. Besides, it incurs imbalanced communication traffic in the parameter-server

[82, 84, 85] architecture, where the server suffers from much larger communication burden

than workers. To address the communication bottleneck issue, there have been numerous

lines of works including asynchronous execution [25], gradient compression [16, 17, 141, 8,

7, 9, 126, 93, 36], communication scheduling [38], infrequent communication [124], delayed

gradient [89, 163], decentralized training [91, 73, 131, 12, 73], model parallelism [55, 147],

etc.

In this work, we focus on synchronous distributed SGD with gradient compression, or

more specifically, random block-wise gradient sparsification (RBGS) [135, 143]. The most

popular gradient sparsifier is probably the Top-K gradient sparsification [9, 93], where each

worker selects the largest K gradient components according to the absolute value as the

sparsified gradient. However, Top-K has several drawbacks: 1) it requires extra communi-

cation overheads to communicate the gradient indices, 2) it is applied in parameter-server

architecture but not ring-allreduce compatible, and most of all, 3) its computation overheads

O(K log2 d) for model θ ∈ Rd may even outweigh its communication benefits [122, 143, 116]

as it is efficient only for a small K for optimized implementations on GPU [119]. While in

RBGS, we randomly sample a block of gradient as the sparsified gradient for communica-

tion among workers. To ensure the consistency of the sampling process, each worker will be

17

pre-assigned the same random seed. In comparison to Top-K, RBGS is highly computation-

efficient (O(1)) as we only need to uniformly and randomly sample one starting index of the

gradient block. RBGS is also ring-allreduce compatible. However, RBGS results in inferior

model performance in that its sparsified gradient usually does not include as many significant

gradient components as Top-K, leading to large compression error.

To address this important problem, we propose a novel detached error feedback method

(DEF), while the vanilla error feedback (EF) method [71, 161] fails to address it. We sum-

marize our major contributions as follows.

• Our proposed DEF method is motivated by a novel insight that a trade-off between the

gradient variance and second moment can improve the convergence bound related to

compression error.

• We propose DEF-A to accelerate the generalization during the training with support

from corresponding generalization analysis. It potentially demystifies why compression

helps to improve the performance in some prior works [13, 160, 16, 17].

• We find that SGD with iterate averaging (SGD-IA) [107, 115, 103, 142] can be viewed as a

special case of communication-efficient distributed SGD for the first time. Consequently,

our generalization analysis of DEF-A extends to SGD-IA, providing potential theoretical

explanations for some other applications incorporating SGD-IA [46, 63, 53].

• Extensive deep image classification experiments on CIFAR-10/100 and ImageNet show

significant improvements of DEF(-A) over existing works with RBGS.

2.2 Related Works

To begin with, suppose the training dataset S = {ξn}Nn=1 and we have the training

objective function

FS(θ) =
1

N

N∑
n=1

f(θ; ξn) = Eξ∈Sf(θ; ξ) (2–1)

to minimize, where θ ∈ Rd denotes the model and f is the loss function. From now on,

we will omit the subscript in E if the context is clear. For distributed SGD at iteration

18

t, each worker k randomly selects one data sample ξk,t ∈ S and computes the stochastic

gradient gk,t = ∇f(θt; ξk,t). Then all the workers communication to get the average gradient

gt = 1
K

∑K
k=1 gk,t, where K is the total number of workers, and update the model via

θt+1 = θt − ηgt , (2–2)

where η is the learning rate.

Compression. Gradient compression includes quantization [16, 17, 141, 8], which re-

duces the 32-bit gradient component to as low as 1 bit (compression ratio ≤ 32), and

sparsification [7, 9, 126], which reduces the number of gradient components for communica-

tion. Let the compression function be C, then the workers will communicate C(gk,t) instead

of gk,t. In general, sparsification achieves flexible and higher compression ratio than quan-

tization. Besides Top-K, random-K [32, 125] randomly selects K gradient components as

the sparsified gradient. [31] selects gradient components larger than a threshold and is a

variable-dimension compressor. [140, 122] propose to select each gradient component with

a probability to keep the sparsified gradient unbiased. In this work, we consider RBGS

[135, 143], which is most easy to implement, highly computation-efficient, but challenging

to retain the model performance. Moreover, it is ring-allreduce compatible for SOTA GPU

communication backend library (e.g., NCCL), i.e.,

C(∆1) + C(∆2) = C(∆1 + ∆2) . (2–3)

Error Feedback. Error feedback (EF) [71, 132] method maintains local compression

error ek,t at worker k, adds it to the current gradient before compression, and communicates

to average C(ηgk,t + ek,t). The error is updated via

ek,t+1 = ηgk,t + ek,t − C(gk,t + ek,t) . (2–4)

[161] extends EF to momentum SGD [106]. EF works well for Top-K sparsifier but poorly

for RBGS. [143] proposes PSync to immediately apply local error to each worker’s model

for RBGS. However, we will show that PSync works better for Wide ResNet [156] but has

scalability issue for other common model architectures. SAEF [149] proposes to apply the

local error before computing gradient in the next iteration to accelerate the generalization

19

during training. Other EF variants includes EF21 [110, 34] which compresses the gradient

difference [99] but is evaluated only on logistic regression problems, acceleration for EF

[108, 90], EF for variance reduction [130], etc.

Generalization Analysis. The generalization analysis of this work incorporates the

uniform stability [20, 44] approach, focusing on the inherent stability property of the learning

algorithm. [20] analyzes bagging methods. It is later used to analyze the generalization

property of SGD [44] and its momentum variants [150]. [77] establishes a data-dependent

notion of the stability to stress the distribution-dependent risk of the initialization point and

make the generalization bounds more optimistic. [162] analyzes the generalization of the

Lookahead optimizer [158] with uniform stability.

As there are numerous works combining various techniques [14], in this work, we focus

on random block-wise gradient sparsification (RBGS).

2.3 Detached Error Feedback

In this section, we described our proposed DEF method (Algorithm 1) in detail. As

RBGS is a very aggressive compressor, the algorithm is crucial for better performance.

2.3.1 Motivation

In EF variants [71, 161, 143] for practical large-scale distributed training of deep learning

models, Assumptions 2.3.1 and 2.3.2 are needed to bound the norm of the stochastic gradient

∥∇f(θ; ξ)∥2 ≤ G =
√
σ2 + M2 . (2–5)

Then G bounds the compression error

1

K

K∑
k=1

∥ek,t∥22 = O(σ2 + M2) (2–6)

at iteration t. Though Assumption 2.3.2 often appears in related literature, it is usually

regarded as a strong assumption [110] because M2 could be much larger than σ2. Hereby,

20

Algorithm 1 Detached Error Feedback (DEF(-A)).

1: Input: training dataset S, number of iterations T , number of workers K, learning rate

η, ring-allreduce compressor C, coefficient λ ∈ [0, 1].

2: Initialize: model x0 = y0, local compression error ek,0 = 0, worker k ∈ [K].

3: for t = 0, 1, · · · , T − 1 do

4: for worker k ∈ [k] in parallel do

5: Randomly sample data ξk,t from S.

6: Compute gk,t = ∇f(xt − λek,t; ξk,t). // detach

7: pk,t = ηgk,t + ek,t. // error feedback

8: ek,t+1 = pk,t − C(pk,t).

9: Ring-allreduce: C(pt) = C(1
K

∑K
k=1 pk,t) = 1

K

∑K
k=1 C(pk,t).

10: Update xt+1 = xt − C(pt).

11: end for

12: end for

13: Output: yT = xT − eT = xT − 1
K

∑K
k=1 ek,T for DEF and xT for DEF-A.

we propose a novel insight that if some trade-off coefficient α can be introduced to transform

the compression error bound to a similar interpolation form as

(ασ)2 + ((1− α)M)2
α= M2

σ2+M2

≥ σ2M2

σ2 + M2

M≫σ
= σ2 , (2–7)

then the bound O(σ2 +M2) can be reduced to O(σ2) when M →∞, i.e., Assumption 2.3.2

does not hold.

Assumption 2.3.1. (Bounded Variance) ∀θ ∈ Rd, the variance of the stochastic gradient

satisfies Eξ∈S∥∇f(θ; ξ)−∇FS(θ)∥22 ≤ σ2.

Assumption 2.3.2. (Bounded Second Moment) ∀θ ∈ Rd, the second moment of the full

gradient satisfies ∥∇FS(θ)∥22 ≤M2.

21

2.3.2 Algorithm

Assumption 2.3.3. (Ring-allreduce Compressor) ∀∆1,∆2 ∈ Rd, the compressor C satisfies

C(∆1) + C(∆2) = C(∆1 + ∆2).

Firstly, the ring-allreduce communication requires that the compressor should satisfy

Assumption 2.3.3 such that Algorithm 1 line 9 holds. RBGS satisfies such a assumption.

Secondly, DEF returns yT = xT − eT by default because we have

yt+1 = yt − ηgt = yt −
η

K

K∑
k=1

gk,t . (2–8)

In particular, when K = 1 (single worker) and λ = 1, {yt} is identical to the SGD solution

path. We note that averaging eT = 1
K

∑K
k=1 ek,T only incurs a one-time communication cost

after the training concludes.

Then, a major difference of DEF and EF is that we evaluate gradient at xt − λek,t,

a point detached from the point xt to evaluate gradient as in EF. This step does not

incur any communication cost. From Eq. (2–8), our goal is to make sure that the point

to evaluate gradient gk,t is as close to yt = xt − et as possible. For EF, the distance is

∥xt − yt∥22 = ∥et∥22 ≤ 1
K

∑K
k=1 ∥ek,t∥22, while for DEF, the average distance to minimize

regarding λ becomes

1

K

K∑
k=1

∥xt − λek,t − yt∥22 =
1

K

K∑
k=1

∥et − λek,t∥22 . (2–9)

(1) When λ = λ(k, t), it is obvious that λ∗(k, t) =
⟨et,ek,t⟩
∥ek,t∥22

, which is determined by the

projection of et onto ek,t. However, it is impractical to decide λ∗(k, t) for worker k at iteration

t as et is unknown (et = 1
K

∑K
k=1 ek,t needs extra communication cost).

(2) When λ = λ(t), we can derive λ∗(t) =
∥et∥22

1
K

∑K
k=1 ∥ek,t∥22

, which is still impractical due to

unkown et.

(3) Therefore, we will regard λ as a tuned hyper-parameter, invariant regarding k and

t. Then it becomes minimizing the sum of the errors 1
KT

∑T−1
t=0

∑K
k=1 ∥et − λek,t∥22 which

will appear in the convergence bound of DEF, similar to the suggestion in [116]. Previously

when λ is a function of t, it reduces to minimizing Eq. (2–9). In our CIFAR-10 VGG-16

22

experiments with λ = 0.3, we find that the new distance is ×1.7 smaller than the distance

in EF.

Relation to Motivation. Minimizing Eq. (2–9) is closely related to the motivation

since

∥et − λek,t∥22 = ∥(ηgt−1 − ληgk,t−1︸ ︷︷ ︸+et−1 − λek,t−1)

− C(ηgt−1 − ληgk,t−1︸ ︷︷ ︸+et−1 − λek,t−1)∥22 , (2–10)

where gt−1 − λgk,t−1 is affected by the gradient variance and second moment trade-off via

the choice of λ. For example, in extreme circumstances where σ = 0, in expectation, local

errors on different workers are the same and gt−1 − λgk,t−1 is zero with λ = 1.

Momentum Variant. It is easy to extend DEF to momentum SGD variant. Let the

momentum buffer on worker k be mk,0 = 0 and the momentum constant be µ. We only need

to substitute Algorithm 1 line 7 with

mk,t+1 = µmk,t + gk,t, pk,t = ηmk,t+1 + ek,t . (2–11)

DEF-A. Simply returning xT can accelerate the generalization performance of DEF

during training in that when K = 1, λ = 1 and C(∆) = δ∆ (0 < δ < 1), {yt} reduces to

SGD and {xt} reduces to a special case of SGD-IA (Iterate Averaging, a combination of

models in each iteration) [142]:

xt = (1− δ)t︸ ︷︷ ︸
P0

y0 +
t∑

t′=1

δ(1− δ)t−t′︸ ︷︷ ︸
Pt′

yt′ , (2–12)

where P0 + P1 + · · ·+ Pt = 1. Note that for Polyak-Ruppert IA [107], P0 = P1 = · · · = Pt =

1
t+1

. While for geomeric Polyak-Ruppert IA [103], Pt′ = βt′

1+β+···+βt where 0 < β < 1 is some

constant and 0 ≤ t′ ≤ t. However, this part is based on generalization analysis instead of

convergence analysis as for DEF. Hence we leave the details of the general case in the next

section.

23

2.4 Theoretical Analysis

In this section, we consider non-convex objective functions as our target is the deep

learning model. All detailed proof can be found in the Appendix. Suppose that each ξn

in the training dataset S is i.i.d drawn from an unknown data distribution D and FD(θ) =

Eξ∈Df(θ; ξ). For generalization, we are interested in how the model θA,S , which is trained

on S with a randomized algorithm A, generalizes on D by measuring the well-known excess

risk error ϵ.

ϵ = EA,S [FD(θA,S)]− EA,S [FS(θ∗S)]

= EA,S [FS(θA,S)− FS(θ∗S)]︸ ︷︷ ︸
optimization error ϵopt

+EA,S [FD(θA,S)− FS(θA,S)]︸ ︷︷ ︸
generalization error ϵgen

(2–13)

Assumption 2.4.1. (L-Lipschitz Smooth) ∀θ1, θ2 ∈ Rd, the loss function satisfies

∥∇f(θ1; ξ)−∇f(θ2; ξ)∥2 ≤ L∥θ1 − θ2∥2 . (2–14)

It also implies that

∥∇F (θ1)−∇F (θ2)∥2 ≤ L∥θ1 − θ2∥2 . (2–15)

Assumption 2.4.2. (δ-approximate Compressor) ∀∆ ∈ Rd, the compressor C satisfies

∥C(∆)−∆∥22 ≤ (1− δ)∥∆∥22 , (2–16)

where 0 < δ < 1 is related to the compression ratio.

This assumption is widely used in communication-efficient distributed SGD [71, 161, 143].

For RBGS, we can take an expectation over the random compression and δ will be identical

to the compression ratio.

24

2.4.1 Convergence Rate

In this section, we bound the gradient norm ∥∇F (θA,S)∥22 for convergence rate analysis

of the proposed DEF method.

Theorem 2.4.1. (Convergence Rate of DEF, Appendix B.1) Let Assumptions 2.3.1, 2.3.2,

2.3.3, 2.4.1 and 2.4.2 hold. If η ≤ 1
4L
, we have

1

T

T−1∑
t=0

E∥∇FS(yt)∥22 ≤
4E[FS(y0)− FS(y∗)]

ηT
+

2ηLσ2

K

+
4η2L2[K−1

K2 σ2 + (1
K
− λ)2σ2 + 2(1− λ)2M2]

(
√

(1− δ/2)/(1− δ)− 1)2
. (2–17)

Remark 2.4.1. Suppose θA,S is randomly chosen from the sequence {yt}T−1
t=0 , η = O(

√
K
T

) ≤
1
4L
, and K = O(T 1/3) (i.e., T is large enough), we have E∥∇FS(θA,S)]∥22 = O(1√

KT
+ K

T
) =

O(1√
KT

). It matches the rate of SGD with linear speedup regarding the number of workers

K.

Remark 2.4.2. The last term in Eq. (2–17) is determined by the compression error. When

δ, σ, M are of interest, we have E∥∇FS(θA,S)]∥22 =

O(
K−1
K2 σ2 + (1

K
− λ)2σ2 + 2(1− λ)2M2

(
√

(1− δ/2)/(1− δ)− 1)2
) . (2–18)

(1) When K = 1 (single worker) and λ = 1, it vanishes, which is better than EF [71, 161].

(2) When σ and M are of interest, following the motivation in the previous section and

ignoring other constant factors, Eq. (2–18) becomes

O(
K − 1

K2
σ2 +

2(1− 1
K

)2σ2M2

σ2 + 2M2
) . (2–19)

when λ =
1
K
σ2+2M2

σ2+2M2 . It further reduces to O(K−1
K

σ2) when M → ∞ (i.e. Assumption 2.3.2

does not hold). Therefore, DEF is the first EF variant compressing gradient without relying

on the bound of the gradient second moment.

(3) When K is large and σ and M are of interest, our bound improves O(σ2 + M2)

[71, 161, 143] to

O(
2σ2M2

σ2 + 2M2
) . (2–20)

Our empirical deep learning experiments suggest that σ2 ≈ 0.3M2, which means that our

bound is about ×5 smaller ignoring other constant factors.

25

2.4.2 Generalization Rate

In this section, we consider non-convex objective functions under PL condition, which

establishes the relation between the gradient norm and the optimization error ϵopt [162]. We

bound the excess risk error ϵ = ϵopt + ϵgen for the generalization analysis of the proposed

DEF(-A) method.

Polyak- Lojasiewicz (PL) Condition [68]. Let θ∗ ∈ minθ∈Rd FS(θ). The objective

function FS(θ) satisfies µ-PL condition if ∀θ ∈ Rd, we have

2µ[FS(θ)− FS(θ∗)] ≤ ∥∇FS(θ)∥22 . (2–21)

Theorem 2.4.2. (Excess Risk Error of DEF(-A), Appendix B.2) Let Assumptions 2.3.1,

2.3.2, 2.3.3, 2.4.1 and 2.4.2 hold. Suppose η = c
t+1

, where c > 0 is some constant.

(1) The generalization error of DEF

ϵgen = O(T (1−K
N
)Lc/((1−K

N
)Lc+1)) . (2–22)

(2) Suppose η ≤ 1
4L
. The optimization error of DEF

ϵopt = Õ(T−µc
2 + T−1) . (2–23)

(3) For RBGS, the generalization error of DEF-A

ϵgen = O(T (1−K
N
)δ

1
2Lc/((1−K

N
)δ

1
2Lc+1)) . (2–24)

(4) Suppose η ≤ 1
8L
. The optimization error of DEF-A

ϵopt = Õ(T−µδc
2 + T−1 + (1/

√
1− δ − 1)−2) . (2–25)

Remark 2.4.3. When K = 1, Eq. (2–22) matches the result of SGD in [44].

Remark 2.4.4. DEF-A has a better ϵgen but a worse ϵopt than DEF. Since ϵ = ϵgen + ϵopt,

DEF-A can achieve better generalization rate than DEF via a trade-off between ϵgen and ϵopt

with a proper δ.

26

Table 5: The CIFAR-10 test accuracy (%) of DEF/DEF-A for various λ with VGG-16. The

compression ratio is 64.

λ 0.1 0.2 0.3

DEF 92.83 ± 0.19 93.45 ± 0.06 93.75 ± 0.12
DEF-A 92.78 ± 0.13 93.20 ± 0.14 93.61 ± 0.07

λ 0.4 0.6 0.8

DEF 93.41 ± 0.12 93.26 ± 0.10 92.60 ± 0.19
DEF-A 93.41 ± 0.20 93.11 ± 0.20 92.59 ± 0.15

Remark 2.4.5. Theorem 2.4.2 provides a potential new theoretical insight for applications

incorporating compression, though some of them were not related to communication-efficient

distributed training. E.g., escaping saddle point with compressed gradient [13], feature quanti-

zation to improve GAN training [160], SignSGD that empirically accelerates training [16, 17],

etc.

2.4.3 Extension to Iterate Averaging (IA)

As SGD and SGD-IA is a special case of DEF and DEF-A respectively when K = 1,

λ = 1, and C(∆) = δ∆, we immediately have the following Theorem 2.4.3.

Theorem 2.4.3. (Excess Risk Error of SGD(-IA), Appendix B.3) Let Assumptions 2.3.1,

2.3.2, 2.3.3, 2.4.1 and 2.4.2 hold. Suppose η = c
t+1

, where c > 0 is some constant.

(1) The generalization error of SGD

ϵgen = O(T (1− 1
N
)Lc/((1− 1

N
)Lc+1)) . (2–26)

(2) Suppose η ≤ 1
4L
. The optimization error of SGD

ϵopt = Õ(T−µc
2 + T−1) . (2–27)

(3) The generalization error of SGD-IA

ϵgen = O(T (1− 1
N
)δLc/((1− 1

N
)δLc+1)) . (2–28)

27

(4) Suppose η ≤ 1
8δL

. The optimization error of SGD-IA

ϵopt = Õ(T−µδc
2 + T−1 + (1/

√
1− δ − 1)−2) . (2–29)

Remark 2.4.6. We have δ
1
2 in Eq. (2–24) but δ in Eq. (2–28) because EC[C(∆)] = δ∆ for

RBGS but C(∆) = δ∆ for SGD-IA.

Remark 2.4.7. SGD-IA can achieve better generalization rate than SGD with a proper

δ. [103, 142] theoretically only show that SGD-IA achieves adjustable regularization for

strongly-convex objective functions, while SGD-IA applications such as averaging weights

[63] and ensemble of models during training with cyclic learning rate [53] only empirically

show better generalization than SGD.

Remark 2.4.8. Compare with Theorem 2.4.2, we can see that DEF-A generalizes better

than SGD with a proper δ.

Remark 2.4.9. Theorem 2.4.3 provides a new theoretical explanation for an important line

of works in unsupervised learning - momentum contrast [46]. In [46], two sets of weights are

maintained with a contrastive loss. One is the “query” yt which is updated via SGD, and the

other is the “key” xt (x0 = y0) which is updated via

xt+1 = (1− δ)xt + δyt . (2–30)

The success of momentum contrast is explained as a “slowly progressing” key xt [46] without

theoretical guarantee. Interestingly, the above equation is identical to Eq. (2–12), i.e. SGD-

IA. Therefore, our results suggests that the slowly progressing key xt may actually have stabler

and better generalization than the query yt depending on δ.

28

2.5 Experiments

In this section, we conduct empirical experiments on benchmark deep learning tasks

following settings in [71, 161, 143] to validate the performance of the proposed detached error

feedback (DEF) method. We compare the following methods with RBGS as the gradient

compressor: (1) SGD, which is the upper bound without gradient compression, (2) EF

[71, 161], (3) SAEF [149], (4) PSync [143], and (5) the proposed DEF(-A), where λ = 0.3

by default. We have also tested EF21 [110, 34] on our deep learning tasks with RBGS, but

it does not converge.

Settings. All experiments are implemented using PyTorch and conducted on a cluster

of machines connected by. Each machine is equipped with 4 NVIDIA P40 GPUs and there

are 16 workers (GPUs) in total. We use NCCL as the backend of the PyTorch distributed

package. The task-specific settings are as follows.

CIFAR. We train VGG-16 [120], ResNet-110 [48] and Wide ResNet (WRN-28-10) [156]

models CIFAR-10/100 [76] image classification task. We report the mean and standard

deviation metrics over 3 runs. The base learning rate is tuned from {· · · , 0.1, 0.05, 0.01, · · · }

and the batch size is 128. The momentum constant is 0.9 and the weight decay is 5× 10−4.

The model is trained for 200 epochs with a learning rate decay of 0.1 at epoch 100 and 150.

Random cropping, random flipping, and standardization are applied as data augmentation

techniques.

ImageNet. We train the ResNet-50 model on ImageNet [28] image classification tasks.

The model is trained for 100 epochs with a learning rate decay of 0.1 at epoch 30, 60, and

90. The base learning rate is tuned from {· · · , 0.1, 0.05, 0.01, · · · } and the batch size is 256.

The momentum constant is 0.9 and the weight decay is 1×10−4. Similar data augmentation

techniques as in CIFAR experiments are applied.

2.5.1 General Results

We plot the CIFAR-10 training curves of VGG-16 in Figure 6 and summarize the test

numbers under various compression ratio settings in Table 6. From the curves, DEF achieves

29

the best test acc and training loss among all the communication-efficient methods. Compared

with SGD, DEF achieves ×3.6 and ×4.0 speedup when the compression ratio is 64 and 256

respectively. For the test numbers in the table, DEF and DEF-A achieve the best results,

which can be comparable to SGD for compression up to 256. When the compression ratio is

high, DEF(-A) can significantly improve over the best counterpart by 8%. Overall, DEF and

DEF-A have similar final test performances. A significant improvement of the training loss

over the existing EF variants can be observed, validating our lower bound in the convergence

analysis of DEF.

The ImageNet training curves of ResNet-50 is shown in Figure 7 and the test numbers

under various compression ratio settings are summarized in Table 7. We can reach similar

conclusions as in CIFAR-10 experiments. Specifically, DEF achieves ×2.5 and ×2.9 speedup

compared with SGD when the compression ratio is 64 and 256 respectively. For the test

numbers in the table, DEF and DEF-A can be comparable to SGD for the compression

ratio of 1024. For some smaller compression ratios, we may even see a slight improvement

over SGD. When the compression ratio is high, DEF(-A) can significantly improve the best

counterpart by 4%.

For the concern of scalability, we also summarize the test numbers of VGG-16, ResNet-

110, and WRN-28-10 on CIFAR-10/100 in Table 8 with 64 as the compression ratio. DEF-A

achieves lossless performance compared with SGD and largely improves all the counterparts.

We find that for VGG-16 on CIFAR-100 and ResNet-110 on CIFAR-10/100, DEF-A has a

noticeable improvement over DEF. In particular, we find that PSync achieves closer perfor-

mance to SGD on WRN as reported in [143], but is much worse on VGG-16 and ResNet-110.

Therefore, both the superior performance and scalability of DEF(-A) are validated.

2.5.2 Accelerate Generalization

Here we empirically validate the theoretical generalization analysis that DEF-A has a

better generalization rate than DEF. We plot the training curves for VGG-16 on CIFAR-

10 and ResNet-50 on ImageNet with compression ratio as 64 in Figure 8. We can see that

DEF-A does have a much faster generalization rate than DEF. Specifically, the test accuracy

30

improvement is about 15% on CIFAR-10 and 25% on ImageNet before the first learning

rate decay, which validates the theoretical benefits in our generalization analysis. DEF-A

can be even faster than full-precision SGD.

A significant improvement can still be observed before the second learning rate decay,

but it becomes smaller when the learning rate is smaller. This matches our generalization

analysis well. Let c be smaller such that the learning rate η = c
t+1

is smaller, then Eq. (2–22)

is closer to Eq. (2–24), that is, the DEF-A’s generalization error improvement over DEF

becomes smaller. Then it is obvious that the excess risk error improvement will also become

smaller.

2.5.3 Hyperparameter λ

Here we explore DEF(-A) with various choices of the hyper-parameter λ with results

summarized in Table 5. We can just set λ = 0.3 by default for the best performance. In

comparison, an inappropriate choice of λ (e.g., 0.1 and 0.8) can lead to the performance

degradation of about 1%. We also observe that a wide range of λ such as 0.2 ∼ 0.6 can

result in fairly good performance compared with λ = 0.3, which means that the proposed

DEF(-A) is not too sensitive to the hyper-parameter λ.

2.6 Conclusion

In this work, to address the performance loss issue for communication-efficient distributed

SGD with the gradient sparsifier RBGS, we proposed a new DEF(-A) algorithm motivated

by the trade-off between gradient variance and second moment. Our convergence analysis

shows better bounds without relying on the bound of gradient second moment. We conduct

the first generalization analysis for communication-efficient distributed training to show that

DEF-A can generalize faster than DEF and SGD, which sheds light on other applications

incorporating compression such as escaping saddle point, GAN training, and SignSGD train-

ing. We establish the connection to SGD-IA for the first time, thus our analysis provides

31

potential theoretical explanations for SGD-IA applications such as averaging weights, en-

semble, and momentum contrast in unsupervised learning. Last but not least, deep learning

experiments validate the significant improvement of DEF(-A) over existing EF variants.

32

0.0 0.5 1.0 1.5 2.0
Time (s) ×104

30

50

70

90

Te
st

 A
cc

 (%
)

VGG-16, CIFAR-10, Ratio=64

SGD
EF
SAEF
PSync
DEF

0 50 100 150 200
Epoch

30

50

70

90

Te
st

 A
cc

 (%
)

VGG-16, CIFAR-10, Ratio=64

SGD
EF
SAEF
PSync
DEF

0 50 100 150 200
Epoch

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

VGG-16, CIFAR-10, Ratio=64

SGD
EF
SAEF
PSync
DEF

0.0 0.5 1.0 1.5 2.0
Time (s) ×104

30

50

70

90

Te
st

 A
cc

 (%
)

VGG-16, CIFAR-10, Ratio=256

SGD
SAEF
PSync
DEF

0 50 100 150 200
Epoch

30

50

70

90

Te
st

 A
cc

 (%
)

VGG-16, CIFAR-10, Ratio=256

SGD
SAEF
PSync
DEF

0 50 100 150 200
Epoch

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

VGG-16, CIFAR-10, Ratio=256

SGD
SAEF
PSync
DEF

Figure 6: CIFAR-10 training curves of VGG-16. The compression ratio is 64 for the top row

and 256 for the bottom row. EF is not plotted when the compression ratio is 256 due to

divergence. From the left to right column, we plot the test accuracy (%) v.s. the wall-clock

time, the test accuracy (%) v.s. training epochs, and the training loss v.s. training epochs

respectively.

Table 6: The CIFAR-10 test accuracy (%) comparison of under various compression ratio

settings with VGG-16.

Ratio SGD EF SAEF PSync DEF DEF-A

1 93.76 ± 0.14 — — — — —

16 — 93.04 ± 0.13 93.15 ± 0.04 93.31 ± 0.21 93.61 ± 0.04 93.66 ± 0.10

64 — 92.16 ± 0.06 91.88 ± 0.14 91.79 ± 0.17 93.75 ± 0.12 93.61 ± 0.07

256 — diverge 89.59 ± 0.04 88.70 ± 0.61 93.45 ± 0.11 93.33 ± 0.26

512 — diverge 87.83 ± 0.36 86.47 ± 0.14 93.24 ± 0.08 93.25 ± 0.18

1024 — diverge 85.46 ± 0.80 84.27 ± 0.33 93.03 ± 0.15 93.06 ± 0.09

33

0.0 0.3 0.6 0.9 1.2
Time (s) ×105

10

30

50

70

Te
st

 A
cc

 (%
)

ResNet-50, ImageNet, Ratio=64

SGD
EF
SAEF
PSync
DEF

0 25 50 75 100
Epoch

10

30

50

70

Te
st

 A
cc

 (%
)

ResNet-50, ImageNet, Ratio=64

SGD
EF
SAEF
PSync
DEF

0 25 50 75 100
Epoch

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

ResNet-50, ImageNet, Ratio=64
SGD
EF
SAEF
PSync
DEF

0.0 0.3 0.6 0.9 1.2
Time (s) ×105

10

30

50

70

Te
st

 A
cc

 (%
)

ResNet-50, ImageNet, Ratio=256

SGD
SAEF
PSync
DEF

0 25 50 75 100
Epoch

10

30

50

70
Te

st
 A

cc
 (%

)

ResNet-50, ImageNet, Ratio=256

SGD
SAEF
PSync
DEF

0 25 50 75 100
Epoch

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

ResNet-50, ImageNet, Ratio=256
SGD
SAEF
PSync
DEF

Figure 7: ImageNet training curves of ResNet-50. The compression ratio is 64 for the top

row and 256 for the bottom row. From the left to right column, we plot the test accuracy

(%) v.s. the wall-clock time, the test accuracy (%) v.s. training epochs, and the training

loss v.s. training epochs respectively.

Table 7: The ImageNet test accuracy (%) comparison under various compression ratio set-

tings with ResNet-50.

Ratio SGD EF SAEF PSync DEF DEF-A

1 76.04 — — — — —

16 — 75.29 (↓ 0.75) 75.83 (↓ 0.21) 75.63 (↓ 0.41) 75.98 (↓ 0.06) 76.10 (↑ 0.06)
64 — 73.05 (↓ 2.99) 74.65 (↓ 1.39) 74.84 (↓ 1.20) 76.16 (↑ 0.12) 76.37 (↑ 0.33)
128 — 63.80 (↓ 12.2) 74.26 (↓ 1.78) 74.12 (↓ 1.92) 76.17 (↑ 0.13) 76.14 (↑ 0.10)
256 — diverge 73.83 (↓ 2.21) 73.02 (↓ 3.02) 75.71 (↓ 0.33) 76.00 (↓ 0.04)
512 — diverge 73.00 (↓ 3.04) 72.60 (↓ 3.44) 75.52 (↓ 0.52) 75.77 (↓ 0.27)
1024 — diverge 71.89 (↓ 4.15) 71.82 (↓ 4.22) 75.64 (↓ 0.40) 75.57 (↓ 0.47)

34

0 50 100 150 200
Epoch

70

80

90

Te
st

 A
cc

 (%
)

VGG-16, CIFAR-10, Ratio=64

SGD
DEF
DEF-A

0 25 50 75 100
Epoch

20

30

40

50

60

70

Te
st

 A
cc

 (%
)

ResNet-50, ImageNet, Ratio=64

SGD
DEF
DEF-A

Figure 8: Accelerate the generalization with DEF-A. DEF-A significantly improves the test

accuracy before the second learning rate decay compared with DEF.

Table 8: The CIFAR-10/100 test accuracy (%) comparison for various model architectures.

The compression ratio is 1 for SGD and 64 for the other methods.

Method VGG-16 ResNet-110 WRN-28-10

SGD
93.76 ± 0.14
/ 72.50 ± 0.33

94.73 ± 0.06
/ 76.78 ± 0.29

96.21 ± 0.07
/ 80.81 ± 0.12

EF
92.16 ± 0.06
/ 68.87 ± 0.21

diverge diverge

SAEF
91.88 ± 0.14
/ 67.00 ± 0.07

92.95 ± 0.17
/ 71.19 ± 0.31

95.33 ± 0.01
/ 79.04 ± 0.01

PSync
91.79 ± 0.17
/ 65.68 ± 0.16

92.26 ± 0.04
/ 69.21 ± 0.04

95.44 ± 0.13
/ 79.60 ± 0.12

DEF
93.75 ± 0.12
/ 72.02 ± 0.10

94.34 ± 0.06
/ 76.43 ± 0.12

96.26 ± 0.05
/ 80.88 ± 0.16

DEF-A
93.61 ± 0.07

/ 72.38 ± 0.07
94.66 ± 0.07
/ 76.98 ± 0.21

96.24 ± 0.12
/ 80.95 ± 0.16

35

3.0 Improve the Performance with Data Privacy

3.1 Introduction

Deep learning models have shown success in computer vision tasks in recent years [48,

120, 112]. However, training deep models that generalize well on unseen test data may

require massive training data. Unfortunately, we are usually faced with insufficient data

in a single medical institution for the medical image segmentation task due to the expensive

procedure of collecting enough patients’ data with experts’ labeling.

A straightforward solution to address the insufficient data issue is gathering data from all

the available medical institutions, while the amount of data owned by any single institution

may be insufficient to train a well-performing deep model. However, this approach will

raise the concern for data privacy. On one hand, collecting medical data is expensive as

mentioned above, and those data have become a valuable asset at a medical institution.

Institutions with more data may be more reluctant to contribute their data. In addition,

medical institutions bear the obligation to keep the data collected from patients secure.

Gathering data may expose patients to the risk of data leakage.

Of course, we can leverage the existing vanilla distributed training method [82, 149, 147]

to keep the institution’s data local and share only the gradient with a central server. But

the training of deep model requires many iterations to converge, leading to unacceptable

communication complexity for vanilla distributed training. It is not secure neither as

recent works [164, 159, 37, 154] have shown that pixel-level images can be recovered from

the leaked gradient.

Recently, federated learning (FL) [74, 36, 145, 41, 43] have been proposed to tackle all

the above issues (insufficient data, data privacy, training efficiency). In medical applications,

we are most interested in the cross-silo federated learning where we have a limited number

of participating clients compared with cross-device federated learning (e.g., mobile devices)

[67, 94, 42]. Specifically, in each training round of FedAvg [98], the de facto algorithm for

FL, each client will perform local training with the global model received from a central

36

server for multiple iterations. Then the server gathers all the local models from each client

and averages them as the new global model. Nevertheless, for FedAvg and its variants, a

non-negligible issue called “client drift” arises due to non-iid data distribution on different

clients. The local models on different clients will gradually diverge from each other during

the local training. Client drift can drastically jeopardize the training performance of the

global model when the data similarity decreases (more non-iid) [50, 51]. Theoretically, it

leads to a convergence rate more sensitive to the number of local training steps [155].

Throughout this paper, we refer to centralized training as gathering data from clients

and then training the model. Note that centralized training is impractical as it violates data

privacy, but offers a performance upper bound for FL algorithms. Despite numerous efforts

and previous works, there is still a generalization gap between FL and the centralized

training. In this paper, unlike any previous works, we propose a novel training framework

called Federated Super Model (FedSM) to avoid confronting the difficult client drift issue at

all for FL medical image segmentation tasks. In FedSM, instead of finding one global model

that fits all clients’ data distribution, we propose to produce personalized models to fit

different data distributions well and a novel model selector to decide the closest model/data

distribution for any test data.

We summarize our contributions as follows.

• We propose a novel training framework FedSM to avoid the client drift issue and close

the generalization gap between FL and centralized training for medical segmentation

tasks for the first time to the best of our knowledge.

• We propose a novel formulation for personalized FL optimization, and a novel personal-

ized method called SoftPull to solve it in our framework FedSM. A rigorous convergence

analysis with common assumptions in FL is given for the proposed method.

• Experiments in real-world FL medical image segmentation tasks validate our motivation

and the superiority of our methods over existing FL baselines.

37

3.2 Related Works

Here we introduce existing different approaches to improve the model performance in

FL with representative methods. First, the FL optimization problem is usually defined as

minw
1
K

∑K
k=1 pkLDk

(w), where the coefficient pk = nk

n
, nk is the number of client k’s data,

and the total number of data n =
∑K

k=1 nk. LDk
is the objective at client k with its local

data Dk, and w is the model weights.

FedAvg. In FedAvg, clients will receive the starting model wr from the server at training

round r. Each client k performs E epochs of local training to update the local model to w
(k)
r+1

with the popular momentum SGD or Adam [72] optimizer depending on the application

needs. Then the server gathers and averages the local models to wr+1 = 1
K

∑K
k=1 pkw

(k)
r+1.

Restrict Local Training. To discourage the local models from diverging due to non-

iid data distribution, FedProx [87] proposes to add a proximal loss term ∥w(k)
r+1 − wr∥22 to

the objective function for client k. It implies that the local training will encourage w
(k)
r+1 to

stay close to the starting point wr, such that {w(k)
r+1}k∈{1,2,··· ,K} will be close to each other to

alleviate the client drift issue.

Correct Client Drift. Motivated by variance reduction techniques in optimization such

as SVRG [66], SAGA [26], inter-client variance reduction techniques [6, 70, 92] are proposed

for FL by correcting the local training with the predicted local and global updating direction.

These methods are usually tested with convex or simple non-convex models/objectives. For

the practical training of complicated deep models, [27] shows that variance reduction tech-

niques fail to perform well in that correcting the stochastic gradient with variance reduction

usually does not hold in deep learning due to common augmentation tricks such as batch

normalization [62] and dropout [123], etc.

Personalization. Personalized models are usually a fine-tuned version of the global

model to better fit the local data distribution of a specific client. We can fine-tune the

global model [139] on a client’s local data like the local training, or following MAML-based

personalized methods [129, 33, 65]. However, an intrinsic drawback of the personalized

models is that they generalize poorly on other sites’ data and unseen data. In this work, we

focus on finding a model that generalizes as well as centralized training for all clients.

38

Other Topics. There are also many other emerging and interesting topics in FL, such as

heterogeneous optimization [137, 87], fairness and robustness [100, 88, 86], clustered federated

learning [39], etc. These topics are not directly related to our work but can be valuable for

potential future extension. A recent work FedDG [94] requires sharing partial information

of the data, therefore it breaks the data privacy constraint to some extent. In this work, we

share only the model update information for maximal data privacy.

3.3 Methodology

In this section, we present our motivation and the proposed method that can close the

generalization gap for FL medical image segmentation tasks in detail.

Motivation. In traditional FL, the goal is to collaboratively train one global model that

generalizes well on all clients’ joint data distribution. The client drift issue comes from the

fact that we only have access to clients’ local data distribution during the local training. It

is hard to train a global model generalizing as well as centralized training due to this issue

despite numerous existing works. In this work, however, we show that it is possible to get

rid of the client drift issue. Specifically, we propose that

• for the test data, we search for the closest (i.e., the most similar) local data distribution

from all clients (Section 3.3.1).

• we find a model with the best generalization performance on this selected local data

distribution, and use it for the inference of the test data (Section 3.3.2).

3.3.1 New Framework: FedSM

The first motivation above motivates us to design a new and general FL framework

FedSM, where we train a Federated “Super Model” consisting of the global model, person-

alized models, and a model selector. These components are illustrated in Figure 9 and we

elaborate them as follows.

39

Model Selector, 𝑤!

Global Model 0, 𝑤"

Personalized Model 1, 𝑤#,%

Personalized Model K, 𝑤#,&

Input 𝑥

Super Model (𝑤", {𝑤#,'}'(%& , 𝑤!)

Output ℎ

Score 𝑦*!

ℎ)

ℎ%

ℎ&

Figure 9: The proposed FedSM framework with “super model”.

Global model wg: the global model trained by FedAvg. It generalizes better than person-

alized models on the joint data distribution of all clients, but there is still a gap compared

with centralized training. Suppose the model function is f and we denote its output as

h0 = f(wg, x) for data x.

Personalized models wp,k: the personalized models trained by any personalization FL

training method. A personalized model usually generalizes better on local data than the

global model. We denote its output as hk = f(wp,k, x), where k ∈ {1, 2, · · · , K}.

Model selector ws: its goal is to determine the match between the unseen data input x

and each of the global/personalized models for inference. Specifically, it outputs a normalized

prediction score vector ŷs. The final output h is determined by ŷs and [h0, h1, · · · , hK]. Sup-

pose the candidate model set Ω ⊆ {0, 1, 2, · · · , K}, then
∑

k∈Ω ŷs,k = 1 and h =
∑

k∈Ω ŷs,khk.

We discuss the potential training methods as follows.

40

3.3.1.1 Ensemble

Suppose we already have the trained global model and personalized models. Given the

FedSM framework as shown in Figure 9, a straightforward approach is to ensemble the

outputs [h0, h1, · · · , hK] from all models as the final output h =
∑K

k=0 ŷs,khk. Let the ground

truth of data x be y and the loss function be L. Then, we compute the loss L(h, y) and

update the model selector ws via FedAvg.

However, in practice we find it hard to train the model selector in this way in FL.

The final performance can be even inferior to the global model. Let the desired value

ys = minŷs L(
∑K

k=0 ŷs,khk, y). We found that it was caused by the difficulty to train ŷs to

the desired value ys by minws L(
∑K

k=0 ŷs,khk, y) as ws is the model weights to optimize. For

each data input x, we may need many training steps to minws L(
∑K

k=0 ŷs,khk, y) such that

ŷs will be close to ys. However, it is unacceptable due to the large amount of computation

cost.

Another issue of this approach is that we cannot start training the model selector un-

til the training of the global model and personalized models finishes, which incurs extra

communication rounds for FL.

3.3.1.2 FedSM-extra

To tackle the training difficulty in ensemble, here we propose to compute

ys = one hot(arg min
k
{L(h, hk)}Kk=0) , (3–1)

where “one hot” denotes one hot encoding. Then we compute the cross entropy loss Ls(ŷs, ys)

to update the model selector. In this way, the model selector is more clear about the desired

value ys. Thus it will be easier to train. We refer to this approach as FedSM-extra as it still

needs extra communication rounds like the ensemble approach.

41

3.3.1.3 FedSM

To address the issue of extra training rounds, the model selector needs to be trained

together with the global model and personalized models. Nevertheless, from Eq. (3–1) we can

see that the desired ys depends on the output of the trained global model and personalized

models. Therefore, we need to decouple their dependency. As a further simplification,

suppose the training data x comes from the client k ∈ {1, 2, · · · , K}, here we propose

ys = one hot(k) . (3–2)

Intuitively, the personalized model k tends to generalize better on client k’s own local data.

It is safe to set ys as the corresponding client index. Though theoretically, it may degrade

the performance of Eq. (3–1), it is more practical due to no extra training rounds. We refer

to this approach as FedSM which addresses all the issues raised by the ensemble.

3.3.2 New Personalization: SoftPull

In this section, we present a new personalized FL optimization formulation and a method,

SoftPull, to solve it and produce personalized models for FedSM. We first present existing

interpolation methods to tackle the insufficient local data issue.

Let the global dataset be D. To tackle the insufficient local data issue, [97] proposes

dataset interpolation for each client as minwp,k
λLDk

(wp,k)+(1−λ)LD(wp,k), where coefficient

λ ∈ [0, 1]. As client k ∈ {1, 2, · · · , K}, it leads to K optimization problems and is inefficient

to solve. Besides, it is hard to acquire the information of the global dataset D during the local

training. [97] also proposes model interpolation minwg ,wp,k,λ

∑K
k=1 LDk

(λwp,k + (1 − λ)wg).

To efficiently solve the model interpolation problem, APFL [29] proposes

w∗
g = arg min

wg

LD(wg) , (3–3)

w∗
p,k = arg minLDk

(λwp,k + (1− λ)w∗
g) , (3–4)

wp.k ← λw∗
p,k + (1− λ)w∗

g . (3–5)

Motivation. We observe that model interpolation tries to find an appropriate combina-

tion between the FL global and local models. When the local data distribution is not similar

42

to the global data distribution at all, we expect λ → 1. When they are similar, we expect

λ → 1
K

to leverage the global data information to improve the local generalization as the

local dataset is small. Nevertheless, the formulation of APFL has two potential drawbacks:

• The involved global model w∗
g may not generalize well on D and Dk, but will affect the

FL training.

• What objective function it is exactly optimizing is not clear.

In our problem formulation, we first suppose w∗
k is the local optimum of client k:

w∗
k = arg min

w
LDk

(w) . (3–6)

However, local optimum w∗
k may not generalizes well due to lack of local training data.

Instead of interpolating the global and local optimum, we propose that the desired personal-

ized optimum w∗
p,k is an interpolation between the local optimum of client k and other clients’

personalized optima:

w∗
p,k = λw∗

k + (1− λ)
1

K − 1

K∑
k′=1,k′ ̸=k

w∗
p,k′ . (3–7)

The new interpolation avoids the global model and guarantees that the interpolated model

is the optimum to some explicit objective function, as opposed to APFL. In fact, the per-

sonalized optimum w∗
p,k is also an interpolation between the local optimum of client k and

other clients’ local optimum because Eq. (3–7) is identical to

w∗
p,k = λw∗

k + (1− λ)
1

K − 1

K∑
k′=1,k′ ̸=k

w∗
k′ . (3–8)

However, Eq. (3–7) is better to help us to find what objective function we are optimizing as

we can turn it to

w∗
k =

1

λ
w∗

p,k −
1− λ

λ

1

K − 1

K∑
k′=1,k′ ̸=k

w∗
p,k′ . (3–9)

Compare it with Eq. (3–6) and we immediately have {w∗
p,k}Kk=1 as the solution to the opti-

mization problem

min
{wp,k}

K∑
k=1

LDk
(
1

λ
wp,k −

1− λ

λ

1

K − 1

K∑
k′=1,k′ ̸=k

wp,k′) . (3–10)

43

To solve the proposed new personalized FL optimization problem Eq. (3–10), we propose a

new method, SoftPull (λ ∈ [1
K
, 1]), with the simplification of substituting w∗

k with the locally

trained model in Eq. (3–7), that is, after each training round at the server,

wp,k ← λwp,k + (1− λ)
1

K − 1

K∑
k′=1,k′ ̸=k

wp,k′ . (3–11)

The corresponding algorithm is summarized in Algorithm 2, line 16. When λ = 1
K

, it

reduces to the “hard” averaging in FedAvg. To analyze the convergence, we start with

common assumptions as follows.

Assumption 3.3.1. (Lipschitz Smooth) The loss function LDk
is L-smooth, i.r., ∀w1, w2 ∈

Rd, we have

∥∇LDk
(w1)−∇LDk

(w2)∥22 ≤ L∥w1 − w2∥22 . (3–12)

Assumption 3.3.2. (Bounded Variance) The stochastic gradient ∇LDk
(w, x) has bounded

variance ∀w ∈ Rd:

E∥∇LDk
(w, x)−∇LDk

(w)∥22 ≤ σ2 . (3–13)

where E is an expectation over x ∈ Dk.

Assumption 3.3.3. [109] The gradient ∇LDk
(w) has bounded value ∀w ∈ Rd:

∥∇LDk
(w)∥22 ≤ G2. (3–14)

Theorem 3.3.1. Suppose Assumptions 3.3.1, 3.3.2, and 3.3.3 exist. Let the proposed ob-

jective in Eq. (3–10) be F , superscript (r,m) denote the global iteration, and w denote the

average, then

1

KRM

R−1∑
r=0

M−1∑
m=0

K∑
k=1

E∥∇wr,m
p,k

F∥22 (3–15)

= O(
1

ηRMλ2
+

(1− λ)2

KRMη2λ2

K∑
K=1

R−1∑
r=0

E∥wr,M
p,k − wr,M

p,k ∥
2
2

+
(1− λ)2

KRMλ4

K∑
k=1

R−1∑
r=0

M−1∑
m=0

E∥wr,m
p,k − wr,m

p,k ∥
2
2)

= O(
1

ηRMλ2
+

M
∑R−1

r=0 (1− λ)2

Rλ2
+

M2η2
∑R−1

r=0 (1− λ)2

Rλ4
) .

44

If η = O(1√
RM

) and M = O(R
1
3), its convergence rate is O(1√

RM
) with a convergence error

O(
M

∑R−1
r=0 (1−λ)2

Rλ2).

Remark 3.3.1. When the data similarity is low among clients, we should set a larger λ to

reduce the effect of ∥wr,m
p,k −wr,m

p,k ∥22 and ensure the convergence rate. It is intuitively valid as

the client has less to learn from other clients.

Remark 3.3.2. λ ↓ and the convergence error ↑, but it does not mean worse generalization

because we do not want to overfit local data. We will empirically tune and validate it.

The proof can be found in Appendix C.3.

3.3.3 All Together

We summarize the proposed SoftPull method to train personalized models and the FedSM

framework consisting of the model selector, global model, and personalized models in Algo-

rithm 2. Compared with FedAvg, the communication cost of each training round is 2wg +ws

for FedSM. We note that some methods such as Scaffold [70] have a cost of 2wg. After the

training, the server sends the super model (wg, {wp,k}Kk=1, ws) to each client for inference,

which incurs only a one-time communication cost.

For the FedSM inference in Algorithm 3, we propose a heuristic technique that the model

selector selects the global model when its confidence is low, because we do not have label 0

in Eq. (3–2) (the global model) during training. Intuitively, if the test data is not similar to

any local data distribution, the global model should be a better choice for its inference, in

that it covers the joint data distribution while the personalized model covers only one local

data distribution. It also guarantees that FedSM is at least not worse than the global model

from FedAvg with an appropriate threshold γ.

For FedSM-extra, both the training and inference algorithms are the same except for the

determination of ys, the extra training rounds, and no need for the threshold γ. More details

are available in Appendix C.2.

45

Table 9: Retinal Dataset: number of data (2D image) in each client. The data sources

from client 1 to 6 are Drishti-GS1 [121], RIGA [10] BinRushed, RIGA Magrabia, RIGA

MESSIDOR, RIM-ONE [35], and REFUGE [4] respectively. Global refers to the data from

all clients.

Client 1 2 3 4 5 6 Global

Train 50 98 47 230 80 400 905
Val 25 49 24 115 40 200 453
Test 26 48 23 115 39 200 451

3.4 Experiments

We validate our proposed method on three real-world FL medical image segmentation

tasks: retinal disc & cup from 2D fundus images, and prostate segmentation from 3D MR

images. The global and personalized model architecture is 2D U-Net [112], while the model

selector architecture is VGG-11 [120]. We randomly split the data to train/validation/test

with a ratio of 0.5/0.25/0.25. The image data are resized to 256 × 256. The local training

epoch is 1 and the total training rounds is 150. Most methods converge in 100 rounds.

But for FedSM-extra, we train the global and personalized models for 100 rounds and the

model selector for an extra 50 rounds. The loss function is Dice loss and the test metric

is Dice coefficient. The base optimizer is Adam with β = (0.9, 0.999). We tune the best

learning rate for all methods and the threshold γ for FedSM. For prostate segmentation, in

particular, the image data are 3D but we take the 2D slices and perform 2D segmentation.

Each experiment repeatedly runs 3 times and we report the mean value.

The dataset information is summarized in Table 9 and 10. Overall, the retinal dataset

features lower data similarity among clients (stronger non-iid). The images may differ in

position, color, brightness, background ratio, etc. While the prostate dataset has a higher

data similarity as the images mostly differ in brightness (see Appendix C.1).

We compare FedSM and FedSM-extra with baselines (1) Centralized: centralized train-

ing, which is the upper bound but prohibited in FL, (2) Local: local training on one client,

46

Table 10: Prostate Dataset: number of data (2D slices) in each client. The data sources

from client 1 to 6 are I2CVB [80], MSD [11], NCI ISBI 3T, NCI ISBI DX [1], Promise12 [2],

and ProstateX [3] respectively. Global refers to the data from all clients.

Client 1 2 3 4 5 6 Global

Train 153 404 464 361 609 1179 3170
Val 77 215 219 162 289 582 1544
Test 61 245 198 150 329 532 1515

(3) FedAvg [98], the de facto FL method, (4) FedProx [87], and (5) Scaffold [70].

3.4.1 General Results

We compare the training curves of different methods in Figure 10. The centralized

training upper bound is plotted as a horizontal dash line. We can see that the proposed

FedSM is the only FL method to close the validation gap to centralized training. FedSM

is even better than centralized training on the retinal cup segmentation task, due to the

proposed SoftPull personalization method. Note that we can not show the training curve of

FedSM-extra as its model selector has to be trained in the extra training rounds.

We summarize the testing numbers in Table 11 and 12. For retinal segmentation, FedSM

slightly improves centralized training regarding the client average Dice and global Dice by

0.2% and 0.1% respectively, while FedAvg shows a decrease of 1.9% and 0.9%. The FedSM-

extra shows the same performance as FedSM, validating the proposed simplification from

Eq. (3–1) to Eq. (3–2). For prostate segmentation, similar patterns can be observed. But

the gap becomes smaller due to higher data similarity among clients.

For retinal segmentation, FedSM not only outperforms centralized training for client 3

but also matches centralized training for the other clients. However, FedAvg is inferior to

centralized training for clients 1, 2, 3, and 5 where the local dataset size is smaller. What’s

more, FedAvg shows similar test Dice performance to local training for clients 1 and 2, and

is even inferior to local training for clients 3 and 5. Therefore, those clients do not benefit

47

0 20 40 60 80 100 120 140
Round

0.70

0.75

0.80

0.85

0.90

0.95
Be

st
 G

lo
ba

l V
al

 D
is

c
D

ic
e

Retinal Disc Segmentation

Centralized
FedAvg
FedProx
Scaffold
FedSM

0 20 40 60 80 100 120 140
Round

0.60

0.65

0.70

0.75

0.80

0.85

Be
st

 G
lo

ba
l V

al
 C

up
 D

ic
e

Retinal Cup Segmentation

Centralized
FedAvg
FedProx
Scaffold
FedSM

0 20 40 60 80 100 120 140
Round

0.76

0.78

0.80

0.82

0.84

0.86

Be
st

 G
lo

ba
l V

al
 D

ic
e

Prostate Segmentation

Centralized
FedAvg
FedProx
Scaffold
FedSM

Figure 10: Training curves comparison. The curves are non-decreasing because we record

the best result during training.

from FL via FedAvg, and may not be willing to join the FL system.

We also observe that local training does not generalize well on other clients’ data, which

is critical as it will perform poorly for patients from other clients (medical institutions).

Centralized training improves the local training on the local dataset, especially for clients

with insufficient data.

3.4.2 Validate Motivation

Validate FedSM. Recall that our first motivation is to find the closest local data

distribution for the test data. In FedSM, we first plot the TSNE map of the features extracted

from the model selector in Figure 11. To validate that the model selector can fulfill our

motivation, we sequentially choose client k ∈ {1, 2, · · · , 6} as the unseen client to test and

FL train the model with clients {1, 2, · · · , 6}/{k}. We set the threshold γ = 0 to let the

model selector select from the personalized models. We summarize the frequency in Table

13. We can see that the model selector tends to select the personalized models of clients

3 and 5 for client 6, which also matches Figure 11 and the local training results in Table

11 that clients 3 and 5 are more similar to client 6. Similar patterns can be observed for

the other clients. Therefore, the model selector indeed fulfills our motivation. Note that to

validate the model selector, we cannot let the unseen client k join the FL system. Because

in that case, the model selector tends to select its own personalized model.

48

Table 11: (low data similarity) Test Dice coefficient comparison of retinal segmentation.

“Client k Local” refers to local training on client k. The first row refers to the performance

on client 1∼6’s test data, their average, and the performance on all clients’ test data. We

report the average of disc and cup Dice coefficients here. We bold the best FL numbers. See

Appendix C.4 for their separate numbers and the visual comparison of segmentation.

Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client Avg Dice Global Dice

Centralized 0.9161 0.8760 0.8758 0.9022 0.8510 0.9179 0.8898 0.9014

Client 1 Local 0.8835 0.3331 0.7345 0.4933 0.3408 0.7015 0.5811 0.5902
Client 2 Local 0.2346 0.8620 0.0886 0.7751 0.1791 0.4106 0.4250 0.5050
Client 3 Local 0.8337 0.3402 0.8766 0.6010 0.3644 0.7794 0.6326 0.6594
Client 4 Local 0.5108 0.8574 0.3457 0.9008 0.2361 0.6822 0.5888 0.6910
Client 5 Local 0.5241 0.1584 0.3953 0.2039 0.8223 0.6222 0.4544 0.4662
Client 6 Local 0.7908 0.6649 0.7325 0.7681 0.3742 0.9150 0.7076 0.7877

FedAvg 0.8847 0.8679 0.8667 0.9015 0.7877 0.9172 0.8710 0.8923
FedProx 0.8635 0.8522 0.8547 0.8952 0.6852 0.9095 0.8434 0.8749
Scaffold 0.8380 0.8513 0.8215 0.8935 0.5671 0.9130 0.8141 0.8625

FedSM 0.9132 0.8769 0.8865 0.9041 0.8483 0.9195 0.8914 0.9028
FedSM-extra 0.9134 0.8763 0.8841 0.9038 0.8483 0.9172 0.8905 0.9007

In Table 13, we also validate that the threshold γ helps improve the performance of

FedSM for the unseen data. For those unseen data with low confidence from the model

selector, a larger γ increases the chance of the global model to be selected because maybe

none of the personalized models is suitable. By choosing a proper γ, we can further improve

the Dice of unseen clients 5 and 6 by 3%.

Validate SoftPull. Recall that our second motivation is to find a model generalizing

well on the local data distribution even with insufficient local data. To achieve it we propose

a new personalized FL optimization formulation with SoftPull to solve it. The Remark 3.3.1

of the theoretical analysis can be empirically validated by the fact that the best λ = 0.7

(closer to 1) for the retinal segmentation task with lower data similarity, and that the best

λ = 0.3 (closer to 1
K

= 1
6

= 0.17) for the prostate segmentation task with higher data

similarity.

Next, we will validate Remark 3.3.2 that a proper λ may lead to a convergence error, but

in the meantime may improve the generalization by preventing overfitting the small local

49

Table 12: (high data similarity) Test Dice coefficient comparison of prostate segmentation.

We bold the best FL numbers. See Appendix C.4 for the visual comparison.

Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client Avg Dice Global Dice

Centralized 0.9018 0.8583 0.8702 0.8844 0.8800 0.8474 0.8737 0.8651

Client 1 Local 0.8582 0.3886 0.4476 0.2849 0.3830 0.4697 0.4720 0.4336
Client 2 Local 0.7166 0.7669 0.8317 0.7341 0.6156 0.7754 0.7401 0.7403
Client 3 Local 0.6470 0.8541 0.8549 0.6735 0.6591 0.7519 0.7401 0.7496
Client 4 Local 0.4515 0.6566 0.6700 0.8518 0.4558 0.6267 0.6187 0.6148
Client 5 Local 0.8198 0.7751 0.8469 0.8029 0.8038 0.7928 0.8069 0.8016
Client 6 Local 0.8555 0.7965 0.8260 0.7206 0.6478 0.8466 0.7822 0.7809

FedAvg 0.8775 0.8575 0.8700 0.8802 0.8717 0.8532 0.8684 0.8638
FedProx 0.8948 0.8511 0.8722 0.8803 0.8668 0.8513 0.8694 0.8621
Scaffold 0.8500 0.8440 0.8570 0.8423 0.8431 0.8412 0.8463 0.8446

FedSM 0.8946 0.8596 0.8786 0.8898 0.8817 0.8535 0.8763 0.8692
FedSM-extra 0.8886 0.8584 0.8766 0.8880 0.8760 0.8542 0.8736 0.8673

dataset with the help of other clients. We plot the 1D loss surface near the trained model by

computing the loss along 10 randomly sampled unit vector directions (Figure 12), following

existing works [63, 45]. It is interesting to see that local training overfits the training data and

leads to a sharp local training optimum, which is known to generalize worse [63, 151, 45]. On

the contrary, we observe an “over-regularization” effect for FedAvg as it has an even flatter

training optimum than centralized training and a large convergence error (worse training

loss), which also leads to a worse generalization performance. Indeed, averaging model in

FedAvg can be regarded as a sort of implicit regularization. In comparison, SoftPull achieves

a tunable flatness by choosing a proper λ. Even if it leads to a convergence error, it achieves

generalization performance better than local training and comparable to centralized training.

3.4.3 Ablation Study

Personalization. We compare personalization methods in FedSM in Table 14, including

(1) FT (local fine-tuning) [139], (2) APFL [29], (3) Per-FedAvg [33], and (4) Per-FedMe [129].

All methods’ hyper-parameters are tuned for best results. SoftPull is the better interpolation

method among them, outperforming APFL by 0.62% regarding the global Dice coefficient.

50

Table 13: (retinal segmentation, Dice = average of disc and cup Dice coefficients) Model

selection frequency from the model selector when FL train with clients {1, 2, · · · , 6}/{k} and

test on the unseen client k ∈ {1, 2, · · · , 6}. From left to right, GM denotes the global model

and PM denotes the personalized model {1, 2, · · · , 6}/{k}. The model selection frequency

with the best γ, and the more detailed Dice results can be found in Appendix C.4. Note

GM is never selected as the Threshold γ is intentionally set to 0.

Unseen Client k Threshold γ GM PM1 PM2 PM3 PM4 PM5 PM6 Dice Best γ, Dice

Client k = 6 0 0 0.02 0 0.35 0 0.63 N/A 0.8587 1, 0.8906
Client k = 5 0 0 0.31 0.03 0 0.61 N/A 0.05 0.4015 0.9, 0.4304
Client k = 4 0 0 0 1.00 0 N/A 0 0 0.8869 <0.95, 0.8870
Client k = 3 0 0 0 0.57 N/A 0 0 0.43 0.8441 <0.9, 0.8446
Client k = 2 0 0 0 N/A 0 0.92 0.08 0 0.8409 <1, 0.8409
Client k = 1 0 0 N/A 0 1.00 0 0 0 0.8839 <0.99, 0.8839

It also outperforms the best counterpart by 0.44%.

Interpolation Coefficient λ. We explore different λ values of FedSM in Table 15 and

λ = 0.7 performs the best.

3.5 Conclusion

In this work, we propose FedSM to close the generalization gap between FL and cen-

tralized training for medical image segmentation for the first time. The empirical study on

real-world medical FL tasks validates our theoretical analysis and motivation to avoid the

client drift issue.

51

Figure 11: TSNE map of the features extracted form the model selector on retinal segmen-

tation task.

too sharp
desired flatness

too flat

proper flat

convergence error

worse better worse better

Figure 12: The 1D loss surface near the models trained by different methods on Client 5’s

data in retinal segmentation.

52

Algorithm 2 FedSM training.

1: Input: local dataset Dk, rounds R, number of sites K, learning rate η, ηs, coefficient λ,

client weight nk

n
.

2: Initialize: global model wg, personalized model wp,k, model selector ws, base optimizer

OPT(·)

3: for round r = 1, 2, · · · , R do

4: SERVER: send models (wg, wp,k, ws) to client k.

5: for CLIENT k ∈ {1, 2, · · · , K} in parallel do

6: initialize wg,k ← wg, ws,k ← ws

7: for batch (x, y) ∈ Dk do

8: wg,k ← OPT(wg,k, η,∇wg,k
L(f(wg,k;x), y))

9: wp,k ← OPT(wp,k, η,∇wp,k
L(f(wp,k;x), y))

10: // ys from Eq. (3–2)

11: ws,k ← OPT(ws,k, ηs,∇ws,k
Ls(fs(ws,k;x), ys))

12: end for

13: send (wg,k, wp,k, ws,k) to server

14: end for

15: SERVER: wg, ws ←
∑K

k=1
nk

n
wg,k,

∑K
k=1

nk

n
ws,k

16: SERVER: ∀k ∈ {1, 2, · · · , K}, wp,k ← λwp,k + (1− λ) 1
K−1

∑K
k′=1,k′ ̸=k wp,k′ // SoftPull

17: end for

18: Output: model (wg, {wp,k}Kk=1, ws)

Table 14: FedSM with different personalization method in retinal segmentation. Dice =

average of disc and cup Dice coefficients.

Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client Avg Dice Global Dice

FT [139] 0.9087 0.8703 0.8877 0.9003 0.8409 0.9151 0.8875 0.8984
APFL [29] 0.9083 0.8640 0.8794 0.8969 0.8416 0.9152 0.8842 0.8966

Per-FedAvg [33] 0.9051 0.8559 0.8708 0.8954 0.8031 0.9119 0.8737 0.8900
Per-FedMe [129] 0.9084 0.8646 0.8822 0.8980 0.8211 0.9162 0.8818 0.8957

SoftPull 0.9132 0.8769 0.8865 0.9041 0.8483 0.9195 0.8914 0.9028

53

Algorithm 3 FedSM inference.

1: Input: data x, model (wg, {wp,k}Kk=1, ws), threshold γ

2: ŷs = fs(ws;x)

3: if max(ŷs) > γ then

4: k = arg max(ŷs) ∈ {1, 2, · · · , K} // high confidence

5: ŷ = f(wp,k;x)

6: else

7: ŷ = f(wg;x) // low confidence

8: end if

9: Output: ŷ

Table 15: FedSM with different coefficient λ in retinal segmentation. Dice = average of disc

and cup Dice coefficients.

λ 0.1 0.3 0.5 0.7 0.9

Client Avg 0.8808 0.8859 0.8895 0.8914 0.8882
Global 0.8964 0.8896 0.9019 0.9028 0.9001

54

4.0 A New Optimizer with Data Privacy

4.1 Introduction

With deep learning models becoming prevalent but data-hungry, data privacy emerges as

an important issue. Federated learning (FL) [74] was thus introduced to leverage the massive

data from different clients for training models without directly sharing nor aggregating data.

More recently, an increasing number of FL techniques focus on addressing the cross-silo FL

[67, 41] problem, which has more and more real-world applications, such as the collaborative

learning on health data across multiple medical centers [94, 42] or financial data across

different corporations and stakeholders. During the training, the server only communicates

the model weights and updates with the participating clients.

However, the deep learning models require many training iterations to converge. Unlike

workers in data-center distributed training with large network bandwidth and relatively low

communication delay, the clients participating in the collaborative FL system are often faced

with much more unstable conditions and slower network links due to the geo-distribution.

Typically, [18] showed that one communication round in FL could take about 2 to 3 minutes

in practice. To address the communication inefficiency, the de facto standard method FedAvg

was proposed in [98]. In FedAvg, the server sends clients the server model. Each client

conducts many local training steps with its local data and sends back the updated model to

the server. The server then averages the models received from clients and finishes one round

of training. The increased local training steps can reduce the communication rounds and

cost. Here we also refer to the idea of FedAvg as periodic averaging, which is closely related

to local SGD [124, 155]. Another parallel line of works is to compress the communication to

reduce the volume of the message [113, 71, 36, 149, 147, 148]. In this paper, we do not focus

on communication compression.

Although periodic averaging methods such as FedAvg greatly improve the training effi-

ciency in FL, a new problem named client drift arises. The data distributions of different

clients are non-i.i.d. because we cannot gather and randomly shuffle the client data as data-

55

center distributed training does. Therefore, the stochastic gradient computed at different

clients can be highly skewed. Given that we do many local training steps in each training

round, skewed gradients will cause local model updating directions to gradually diverge and

overfit local data at different clients. This client drift issue can deteriorate the performance

of FedAvg drastically [50, 51], especially with a low similarity of the data distribution on

different clients and a large number of local training steps.

As a method to reduce variance and smooth the model updating direction [24] to ac-

celerate optimization, momentum SGD has shown its power in training many deep learning

models in various tasks [127, 146, 81]. Local momentum SGD [155] (i.e., FedAvgLM) main-

tains momentum for the stochastic gradient in each training step but requires averaging

local momentum buffer at the end of each training round. Therefore, FedAvgLM requires

×2 communication cost compared with FedAvg. One strategy to achieve the same commu-

nication cost as FedAvg is resetting the local momentum buffer to zero at the end of each

training round (FedAvgLM-Z) [117, 136, 137]. [51] and [61] proposed server momentum

SGD (FedAvgSM) which maintains the momentum for the average local model update in a

training round other than the stochastic gradient. The idea of FedAvgSM has been previ-

ously proposed in [21] for speech models and in [138] for distributed training, but neither

of them has applied it to FL. [51] and [61] empirically showed the ability of FedAvgSM to

tackle client drift in FL, and [138] and [61] provided the convergence analysis of FedAvgSM.

Throughout this paper, we refer to the naive combination of FedAvgSM and FedAvgLM(-

Z) as FedAvgSLM(-Z). However, FedAvgSLM(-Z) has no convergence guarantee to the

best of our knowledge. Moreover, there is a lack of understanding in the connection be-

tween the server and local momenta in FL. Whether we can further improve standard

momentum-based methods in FL remains another question.

To address the above challenging problems, in this paper, we propose a new double

momentum SGD (DOMO) algorithm, which leverages double momentum buffers to track

the server and local model updating directions separately. We introduce a novel momentum

fusion technique to coordinate the server and local momentum buffers. More importantly,

we provide the theoretical analysis for the convergence of our new method for non-convex

problems. Our new algorithm focuses on addressing the cross-silo FL problem, considering

56

the recently increasing needs on it as described at the beginning of this section. We also

regard it as time-consuming to compute the full local gradient and focuses on stochastic

methods. We summarize our major technical contributions as follows:

• Propose a new double momentum SGD (DOMO) method with a novel momentum fusion

technique.

• Derive the first convergence analysis involving both server and local standard momentum

SGD in non-convex settings and under mild assumptions, show incorporating server

momentum’s convergence benefits over local momentum SGD for the first time, and

provide new insights into their connection.

• Conduct deep FL experiments to show that DOMO can improve the test accuracy by

up to 5% compared with the state-of-the-art momentum-based method when training

VGG-16 on CIFAR-10, while the naive combination FedAvgSLM(-Z) may sometimes

hurt the performance compared with FedAvgSM.

4.2 Background and Related Work

FL can be formulated as an optimization problem of minx∈Rd
1
K

∑K−1
k=0 f (k)(x), where f (k)

is the local loss function on client k, x is the model weights with d as its dimension, and K

is the number of clients. Other basic notations are listed below. In FedAvg, the client trains

the local model for P steps using stochastic gradient ∇F (k)(x
(k)
r,p , ξ

(k)
r,p) and sends local model

update x
(k)
r,P − x

(k)
r,0 to server. Server then takes an average and updates the server model via

xr+1 = xr − α
K

∑K−1
k=0 (x

(k)
r,P − x

(k)
r,0).

Basic notations:

• Training round (total): r (R); Local training steps (total): p (P); Client (total): k (K);

• Global training step (total): t = rP + p (T = RP); Server, local learning rate: α, η;

• Momentum fusion constant β; Server, local momentum constant: µs, µl;

• Server, local momentum buffer: mr, m
(k)
r,p ; Server, (average) local model: xr, x

(k)
r,p (x(k)

r,p);

• Local stochastic gradient: ∇F (k)(x
(k)
r,p , ξ

(k)
r,p), where ξ

(k)
r,p is the sampling random variable;

57

• Local full gradient: ∇f (k)(x
(k)
r,p) = E

ξ
(k)
r,p

[∇F (k)(x
(k)
r,p , ξ

(k)
r,p)] (unbiased sampling).

Momentum-based. SOTA method server momentum SGD (FedAvgSM) maintains

a server momentum buffer with the local model update α
K

∑K−1
k=0 (x

(k)
r,P − x

(k)
r,0) to update

the server model. While local momentum SGD maintains a local momentum buffer with

∇F (k)(x
(K)
r,p , ξ

(k)
r,p) to update the local model. The communication costs compared with Fe-

dAvg are ×1, ×2 and ×1 for FedAvgSM, FedAvgLM and FedAvgLM-Z respectively.

Adaptive Methods. [109] applied the idea of using server statistics as in server mo-

mentum SGD to adaptive optimizers including Adam [72], AdaGrad [30], and Yogi [157].

[109] showed that server learning rate should be smaller than O(1) in terms of complexity,

but the exact value was unknown.

Inter-client Variance Reduction. Variance reduction in FL [70, 6] refers to correct

client drift caused by non-i.i.d. data distribution on different clients following the variance

reduction convention. In contrast, traditional stochastic variance reduced methods that

are popular in convex optimization [66, 26] can be seen as intra-client variance reduction.

Scaffold [70] proposed to maintain a control variate ck on each client k and add 1
K

∑K−1
k=0 ck−ck

to gradient ∇F (k)
r,p (x

(k)
r,p , ξ

(k)
r,p) when conducting local training. A prior work VRL-SGD [92]

was built on a similar idea with ck equal to the average local gradients in the last training

round. Both Scaffold and VRL-SGD have to maintain and communicate local statistics,

which makes the clients stateful and requires ×2 communication cost. Mime [69] proposed

to apply server statistics locally to address this issue. However, Mime has to compute the

full local gradient which can be prohibitive in cross-silo FL. It also needs ×2 communication

cost. Besides, Mime’s theoretical results are based on Storm [24] but their algorithm is based

on Polyak’s momentum. Though theoretically appealing, the variance reduction technique

has shown to be ineffective in practical neural networks’ optimization [27]. [27] showed that

common tricks such as data augmentation, batch normalization [62], and dropout [123] broke

the transformation locking and deviated practice from variance reduction’s theory.

Other. There are some other settings of FL including heterogeneous optimization [87,

137], fairness [100, 88, 86], personalization [129, 33, 65, 118], etc. These different settings,

variance reduction techniques, and server statistics can sometimes be combined. Here we

focus on momentum-based FL methods.

58

Algorithm 4 FL with double momenta.
1: Input: local training steps P ≥ 1, #rounds R, #clients K, server (local) learning rate α (η),

server (local) momentum constant µs (µl), momentum fusion constant β.

2: Initialize: Server, local momentum buffer m0,m
(k)
0,0 = 0. Local model x

(k)
0,0 = x0.

3: for r = 0, 1, · · · , R− 1 do
4: Client k:
5: (r ≥ 1) Receive x

(k)
r,0 ← xr . mr =

1
αηP (xr−1 − xr). m

(k)
r,0 ← 0. // Reset local momentum.

6: for p = 0, 1, · · · , P − 1 do

7: Option I: x
(k)
r,p ← x

(k)
r,p − ηβPmr · 1p=0 // Pre-momentum fusion (DOMO)

8: m
(k)
r,p+1 = µlm

(k)
r,p +∇F (x

(k)
r,p , ξ

(k)
r,p)

9: Option I: x
(k)
r,p+1 = x

(k)
r,p − ηm

(k)
r,p+1

10: Option II: x
(k)
r,p+1 = x

(k)
r,p − ηm

(k)
r,p+1 − ηβmr // Intra-momentum fusion (DOMO-S)

11: end for
12: Send d

(k)
r = 1

P

∑P−1
p=0 m

(k)
r,p+1 to the server.

13: Server:
14: Receive d

(k)
r from client k ∈ [K]. mr+1 = µsmr +

1
K

∑K
k=1 d

(k)
r .

15: xr+1 = xr − αηPmr+1. Send xr+1 to client k ∈ [K].
16: end for
17: Output: xR

4.3 New Double Momentum SGD (DOMO)

In this section, we address the connection and coordination of server and local mo-

menta to improve momentum-based methods by introducing our new double momentum

SGD (DOMO) algorithm. We maintain both the server and local statistics (momentum

buffers). Nevertheless, the local momentum buffer does not make the clients stateful be-

cause the local momentum buffer will be reset to zero at the end of each training round for

every client.

Motivation. We observe that FedAvgSM applies momentum SGD update after aggre-

gating the local model update from clients in the training round r. Specifically, it updates

the model at the server via xr+1 = xr−αηPmr+1 = xr−αηµsmr− αηP
K

∑K
k=1 d(k)

r (Algorithm

4 lines 14 and 15). We can see that the server momentum buffer mr is only applied at the

server side after the clients finish the training round r. Therefore, FedAvgSM fails to take

advantage of the server momentum buffer mr during the local training at the client side in

the training round r. The same issue exists for FedAvgSLM(-Z), where the local optimizer

is also momentum SGD.

59

Recognizing this issue, we propose DOMO (summarized in Algorithm 4 where 1 denotes

the indicator function) by utilizing server momentum statistics mr to help local training in

round r at the client side as it provides information on global updating direction. The whole

framework can be briefly summarized in the following steps.

1. Receive the initial model from the server at the beginning of the training round.

2. Fuse the server momentum buffer in local training steps.

3. Remove the server momentum’s effect from the local model update before sending it to

the server.

4. Aggregate local model updates from clients to update model and statistics at the server.

To avoid incurring additional communication cost than FedAvg, we 1) infer the server

momentum buffer mr via the current and last initial model (xr,xr−1), and 2) reset the local

momentum buffer m
(k)
r,0 to zero instead of averaging. Note that for FedAvgSLM, the local

momentum buffer has to be averaged.

Momentum Fusion in Local Training Steps. In each local training step, the local

momentum buffer is updated following the standard momentum SGD method (Algorithm

4 line 8). We propose two options to fuse server momentum into local training steps. The

default Option I is DOMO and the Option II is DOMO-S with “S” standing for “scatter”.

In DOMO, we apply server momentum buffer mr with coefficient βP and learning rate η

to the local model before the local training starts. β is the momentum fusion constant.

DOMO-S is an heuristic extension of DOMO by evenly scattering this procedure to all the

P local training steps. Therefore, the coefficient becomes β instead of βP . Intuitively, the

local model updating direction should be adjusted by the direction of the server momentum

buffer to alleviate the client drift issue. Furthermore, DOMO-S follows this motivation in a

more fine-grained way by adjusting each local momentum SGD training step with the server

momentum buffer.

Pre-Momentum, Intra-Momentum, Post-Momentum. To help understand the

connection between the server and local momenta better, here we propose new concepts

called pre-momentum, intra-momentum, and post-momentum. FedAvgSLM(-Z), the naive

combination, can be interpreted as post-momentum because the current server momentum

60

buffer mr is applied at the end of the training round and after all the local momentum SGD

training steps are finished. Therefore, FedAvgSLM(-Z) has no momentum fusion to help local

training. While our proposed DOMO can be regarded as pre-momentum because it applies

the current server momentum buffer mr at the beginning of the training round (p = 0) and

before the local momentum SGD training starts. Similarly, the proposed DOMO-S works as

intra-momentum because it scatters the effect of the current server momentum buffer mr to

the whole local momentum SGD training steps. These new concepts shed new insights for

the connection and coordination between server and local momenta by looking at the order of

applying server momentum buffer and local momentum buffer. Considering that server and

local momentum buffers can be regarded as the smoothed server and local model updating

direction, the order of applying which one first should not make much difference when the

similarity of data distribution across clients is high, i.e., the client drift issue is not severe.

However, when the data similarity is low, it becomes more critical to provide the information

of server model updating direction during the local training as DOMO (pre-momentum) and

DOMO-S (intra-momentum) do.

Aggregate Local Model Updates without Server Momentum. We propose to

remove the effect of server momentum mr in local model updates (Algorithm 4 line 12)

when aggregating them to server. The equivalent server momentum constant would have

been deviated to µs + β if we would not remove it.

4.4 Convergence Analysis

In this section, we will discuss our convergence analysis framework with double momenta

and the potential difficulty for the naive combination FedAvgSLM(-Z). There has been little

theoretical analysis in existing literature for FedAvgSLM(-Z) possibly due to this theoretical

difficulty. After that, we will show how the motivation of DOMO addresses it. This is the first

convergence analysis involving both server and local standard momentum SGD to the best of

our knowledge. Both resetting and averaging local momentum buffer are considered, though

we only reset it in Algorithm 4 for less communication. Please refer to the Supplementary

61

0 25 50 75 100 125 150 175 200
Communication Round

40

50

60

70

80

Te
st

 A
cc

ur
ac

y(
%

)
VGG-16, s=5%, E=1

FedAvg (58.90±1.24)
FedAvgSM (76.36±0.47)
FedAvgLM (63.29±0.36)
FedAvgLM-Z (63.84±1.29)

FedAvgSLM (76.22±0.68)
FedAvgSLM-Z (77.04±0.40)
DOMO (82.04±0.96)
DOMO-S (80.25±0.71)

0 25 50 75 100 125 150 175 200
Communication Round

40

50

60

70

80

Te
st

 A
cc

ur
ac

y(
%

)

VGG-16, s=10%, E=1
FedAvg (63.39±1.64)
FedAvgSM (82.10±0.45)
FedAvgLM (71.06±0.33)
FedAvgLM-Z (71.82±1.20)

FedAvgSLM (83.41±0.17)
FedAvgSLM-Z (81.78±0.42)
DOMO (85.54±0.11)
DOMO-S (84.82±0.24)

0 25 50 75 100 125 150 175 200
Communication Round

40

50

60

70

80

Te
st

 A
cc

ur
ac

y(
%

)

VGG-16, s=20%, E=1
FedAvg (74.00±1.36)
FedAvgSM (85.88±0.30)
FedAvgLM (76.41±0.41)
FedAvgLM-Z (79.19±0.64)

FedAvgSLM (87.48±0.12)
FedAvgSLM-Z (87.20±0.22)
DOMO (88.50±0.19)
DOMO-S (88.23±0.32)

Figure 13: CIFAR-10 training curves using the VGG-16 model with various data similarity

s.

Material for proof details.

We consider non-convex smooth objective function satisfying Assumption 4.4.1. We also

assume that the local stochastic gradient is an unbiased estimation of the local full gradient

and has a bounded variance in Assumption 4.4.2. Furthermore, we bound the non-i.i.d.

data distribution across clients in Assumption 4.4.3, which is widely employed in existing

works such as [155, 109, 138, 69]. G measures the data similarity in different clients and

G = 0 corresponds to i.i.d. data distribution as in data-center distributed training. A low

data similarity will lead to a larger G2. For simplicity, let f∗ denote the optimal global

objective value. Other basic notations have been summarized in Section “Background &

Related Works”.

Assumption 4.4.1. (L-Lipschitz Smoothness) The global objective function f(·) and local

objective function f (k) are L-smooth, i.e., ∥∇f (k)(x)−∇f (k)(y)∥2 ≤ L∥x−y∥2 and ∥∇f(x)−

∇f(y)∥2 ≤ L∥x− y∥2,∀x,y ∈ Rd, k ∈ [K].

Assumption 4.4.2. (Unbiased Gradient and Bounded Variance) The stochastic gradient

∇F (k)(x, ξ) is an unbiased estimation of the full gradient ∇f (k)(x), i.e., Eξ∇F (x, ξ) =

∇f(x),∀x ∈ Rd. Its variance is also bounded, i.e., Eξ∥∇F (x, ξ)−∇f(x)∥22 ≤ σ2, ∀x ∈ Rd.

Assumption 4.4.3. (Bounded Non-i.i.d. Distribution [155, 109, 138, 69]) For any client

k ∈ [K] and x ∈ Rd, there exists B ≥ 0 and G ≥ 0, the variance of the local full gradient in

62

0.9 0.8 0.6 0.4 0.2 0.0
Local Momentum Constant μl

0.
9

0.
6

0.
3

0.
0

Se
rv

er
 M

om
en

tu
m

 C
on

st
an

t μ
s

63.81 80.69 82.04 81.59 80.45 76.36

62.96 71.11 75.19 75.01 73.46 65.27

54.88 62.28 65.70 67.12 62.83 62.33

50.04 54.75 60.30 60.37 58.23 58.90

VGG-16, s=5%, E=1, DOMO

50

55

60

65

70

75

80

85

90

0.9 0.8 0.6 0.4 0.2 0.0
Local Momentum Constant μl

0.
9

0.
6

0.
3

0.
0

Se
rv

er
 M

om
en

tu
m

 C
on

st
an

t μ
s

81.68 84.37 85.54 84.77 84.26 82.10

78.60 78.94 81.07 80.28 79.94 77.19

70.27 71.72 76.00 76.40 73.85 71.56

58.86 62.13 71.06 68.18 64.13 63.39

VGG-16, s=10%, E=1, DOMO

50

55

60

65

70

75

80

85

90

0.9 0.8 0.6 0.4 0.2 0.0
Local Momentum Constant μl

0.
9

0.
6

0.
3

0.
0

Se
rv

er
 M

om
en

tu
m

 C
on

st
an

t μ
s

88.21 88.06 88.50 87.53 87.06 85.88

85.52 85.11 85.72 85.37 84.64 83.12

81.87 81.83 83.28 82.06 80.20 79.67

76.41 76.62 78.60 77.27 74.74 74.00

VGG-16, s=20%, E=1, DOMO

50

55

60

65

70

75

80

85

90

Figure 14: CIFAR-10 test accuracy (%) with various sever momentum constant µs and

local momentum constant µl. µs = 0 corresponds to FedAvgLM, µl = 0 corresponds to

FedAvgLM, µs = 0 &µl = 0 corresponds to FedAvg, and µs ̸= 0 &µl ̸= 0 corresponds to

DOMO.

each client is upper bounded so that 1
K

∑K−1
k=0 ∥∇f (k)(x)−∇f(x)∥22 ≤ G2.

Lemma 4.4.1. (DOMO updating rule) Let 0 ≤ r ≤ R − 1 and 0 ≤ p ≤ P − 1. Let

ŷr,p = x0− αη
(1−µs)K

∑K−1
k=0

∑r
r′=0

∑p−1
p′=0m

(k)
r′,p′+1 and zr,p = 1

1−µl
ŷr,p− µl

1−µl
ŷr,p−1 where ŷ0,−1 =

ŷ0,0 = x0, then

zr,p+1 = zr,p −
αη

(1− µl)(1− µs)K

K−1∑
k=0

∇F (k)(x(k)
r,p , ξ

(k)
r,p) (4–1)

The key of the proof is to find a novel auxiliary sequence {zr,p} that not only has a

concise update rule than the mixture of server and local momentum SGD, but also is close

to the average local model {xr,p}. One difficulty is to analyze the server model update at the

end of the training round (xr,P → xr+1) due to server momentum. To tackle it, we design

zr,P = zr+1,0 to facilitate the analysis at the end of the training round. Lemma 4.4.1 gives

such an auxiliary sequence. Before to analyze the convergence of {xr,p} with the help of {zr,p},

we only have to bound ∥zr,p − xr,p∥22 (inconsistency bound) and 1
K

∑K−1
k=0 ∥xr,p − x

(k)
r,p∥22

(divergence bound). The divergence bound measures how the local models on different

clients diverges and is more straightforward to analyze since it is only affected by local

63

0 50 100 150 200 250 300 350 400
Communication Round

40

50

60

70

80

Te
st

 A
cc

ur
ac

y(
%

)
VGG-16, s=10%, E=0.5

FedAvg (64.50±0.54)
FedAvgSM (84.14±0.27)
FedAvgLM (71.73±0.88)
FedAvgLM-Z (71.26±0.58)

FedAvgSLM (85.34±0.36)
FedAvgSLM-Z (85.34±0.20)
DOMO (86.59±0.57)
DOMO-S (86.68±0.29)

0 20 40 60 80 100
Communication Round

40

50

60

70

80

Te
st

 A
cc

ur
ac

y(
%

)

VGG-16, s=10%, E=2
FedAvg (59.27±0.50)
FedAvgSM (79.52±0.61)
FedAvgLM (64.77±0.98)
FedAvgLM-Z (64.89±0.61)

FedAvgSLM (80.60±0.98)
FedAvgSLM-Z (81.86±0.29)
DOMO (83.56±0.23)
DOMO-S (82.29±0.62)

0 25 50 75 100 125 150 175 200
Communication Round

45

50

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y(
%

)

ResNet-56, s=10%, E=1
FedAvg (61.90±0.78)
FedAvgSM (78.98±0.37)
FedAvgLM (63.53±0.35)
FedAvgLM-Z (63.20±0.80)

FedAvgSLM (77.92±0.34)
FedAvgSLM-Z (77.90±0.47)
DOMO (80.37±0.15)
DOMO-S (79.95±0.38)

Figure 15: Left and Middle: CIFAR-10 training curves using the VGG-16 model with various

local epoch E. E = 1 has been shown in the middle plot of Figure 13 and is not repeatedly

shown here. Right: CIFAR-10 training curves using the ResNet-56 model.

momentum SGD. The inconsistency bound measures the inconsistency between the auxiliary

variable and the average local model as a trade-off for a more concise update rule.

Lemma 4.4.2. (Inconsistency Bound) For DOMO, we have (zr,p − xr,p)DOMO = (1 −
α

1−µs
) η
K

∑K−1
k=0

∑p−1
p′=0 m

(k)
r,p′+1−

µlη
(1−µl)K

∑K−1
k=0 m

(k)
r,p ; while for FedAvgSLM(-Z), we have (zr,p−

xr,p)FedAvgSLM(-Z) = (zr,p − xr,p)DOMO + µs

1−µs
αηPmr.

Furthermore, assume that α ≥ (1− µs)(1− µl), let h = α
1−µs

1+µl−µp
l

1−µl
− 1 for DOMO and

h = µl

1−µl
for FedAvgLM(-Z), and we have

R−1∑
r=0

P−1∑
p=0

∥zr,p − xr,p∥22 ≤
η2

1− µl

(
P−1∑
p=0

h2µp
l

1− µP
l

)·

R−1∑
r=0

P−1∑
p=0

∥ 1

K

K−1∑
k=0

∇F (k)(x(k)
r,p , ξ

(k)
r,p)∥22 .

(4–2)

Theoretical Difficulty for FedAvgSLM(-Z) but Addressed by DOMO. From

Lemma 4.4.2, we can see that without momentum fusion, the inconsistency bound for

FedAvgSLM-Z has an additional term related to Pmr compared with DOMO. For the cor-

responding inconsistency bound, this term will lead to

R−1∑
r=0

P−1∑
p=0

∥Pmr∥22 = P 2

R−1∑
r=0

P−1∑
p=0

∥mr∥22. (4–3)

64

Table 16: CIFAR-10 test accuracy (%) when training VGG-16 using DOMO with various

hyper-parameters α and β. Data similarity s = 10% and local epoch E = 1. α is fixed at

1.0 with various β in the first column, while β is fixed at 0.9 with various α in the second

column.

β α = 1.0 β α = 1.0 α β = 0.9 α β = 0.9

1.0 81.89 ± 0.40 0.6 81.60 ± 0.40 1.0 85.54 ± 0.11 0.6 83.76 ± 0.28
0.9 85.54 ± 0.11 0.4 77.80 ± 0.88 0.9 84.63 ± 0.64 0.4 82.08 ± 0.50
0.8 83.84 ± 0.56 0.2 74.54 ± 0.49 0.8 84.83 ± 0.56 0.2 77.58 ± 0.62

Intuitively, if we ignore the constant and simply assume that ∥mr∥22 is of the same complexity

as ∥∇F∥22, then it causes an additional term of complexity O(RP 3∥∇F∥22) in the inconsis-

tency bound, much larger than the complexity O(RP 2∥∇F∥22) for DOMO in the R.H.S. of

Eq. (4–2). This also means that FedAvgSLM(-Z) is more sensitive to P and may even hurt

the performance when P is large as in FL.

Tighten Inconsistency Bound with DOMO. In Lemma 4.4.2, we also show that

DOMO can tighten the inconsistency bound. Specifically, set α = (1 − µs)(1 − µl) and

DOMO can scale the inconsistency bound down to about (1 − µl)
2 of that in FedAvgLM(-

Z) (α = 1, µs = 0). Take the popular momentum constant µl = 0.9 as an example, the

inconsistency bound of DOMO is reduced to (1 − µl)
2 = 1% compared with FedAvgLM(-

Z). Therefore, momentum fusion not only addresses the difficulty for FedAvgSLM(-Z), but

also helps the local momentum SGD training. To the best of our knowledge, this is the

first time to show that incorporating server momentum leads to convergence benefits over

local momentum. It is also intuitively reasonable in that server momentum buffer carries

historical local momentum information. But we note that this improvement analysis has not

reached the optimal yet due to inequality scaling. Therefore, we fine-tune α and β for the

best performance in practice.

When α = 1−µs and β = µs, we can see that DOMO has the same inconsistency bound

as FedAvgLM(-Z) (α = 1, µs = 0). Consider the momentum buffer as a smoothed updating

direction. Suppose the update of server momentum buffer mr+1 = µsmr + ∆r becomes

65

Table 17: SVHN test accuracy (%) when training ResNet-20.

FedAvg FedAvgSM FedAvgLM(-Z) FedAvgSLM(-Z) DOMO-S DOMO

87.79 ± 0.72 88.81 ± 0.49
88.86 ± 0.19
(87.93 ± 0.98)

88.67 ± 0.32
(88.89 ± 0.62)

90.45 ± 0.56 90.34 ± 0.83

Table 18: CIFAR-100 test accuracy (%). Second row: VGG-16. Third row: ResNet-56.

FedAvg FedAvgSM FedAvgLM(-Z) FedAvgSLM(-Z) DOMO-S DOMO

20.77 ± 1.31 35.14 ± 1.70
38.29 ± 1.01
(35.45 ± 2.04)

60.01 ± 0.28
(57.89 ± 2.79)

61.69 ± 0.41 62.47 ± 0.73

39.61 ± 0.66 61.92 ± 0.43
46.65 ± 1.38
(45.09 ± 0.26)

62.95 ± 0.51
(63.45 ± 0.61)

64.34 ± 0.59 65.84 ± 0.30

steady with ∆r → ∆ (the sum of local momentum buffer in local training), then mr will

be approximately equal to ∆
1−µs

. The coefficient 1
1−µs

leads to a different magnitude of the

server and local momenta. Setting β = µs in Lemma 4.4.2 gives α = 1 − µs, balancing the

difference by a smaller server learning rate.

With the above lemmas, we have the following convergence analysis theorem for our new

algorithm.

Theorem 4.4.1. (Convergence of DOMO) Assume Assumptions 4.4.1, 4.4.2 and 4.4.3 exist.

Let P ≤ 1−µl

6ηL
, 1−2ηL− 4µ2

l η
2L2

(1−µl)4
≥ 0, α = 1−µs and β = µs. For DOMO with either resetting

or averaging local momentum buffer in Algorithm 4 line 5, we have

1

RP

R−1∑
r=0

P−1∑
p=0

E∥∇f(xr,p)∥22 ≤
2(1− µl)(f(x0)− f∗)

ηRP
+

9η2L2P 2G2

(1− µl)2
+

ηLσ2

(1− µl)
(

1

K
+

3ηLP

2(1− µl)
+

2µ2
l ηL

(1− µl)4K
) (4–4)

Complexity. According to Theorem 4.4.1, let η = O(K
1
2R− 1

2P− 1
2) and P = O(K−1R

1
3),

then we have a convergence rate 1
RP

∑R−1
r=0

∑P−1
p=0 E∥∇f(xr,p)∥22 = O(K− 1

2R− 1
2P− 1

2) regarding

iteration complexity, which achieves a linear speedup regarding the number of clients K.

66

DOMO also has a communication complexity of 1
P

when resetting local momentum buffer,

which increases with a larger number of clients K but decreases with a larger communication

rounds R. It becomes 2
P

for averaging local momentum buffer, but 2 is a constant and does

not affect the theoretical complexity. Note that there is no µs in Theorem 4.4.1 because it

is eliminated in Lemma 4.4.2 by setting β = µs.

4.5 Experimental Results

4.5.1 Settings

All experiments are implemented using PyTorch [105] and run on a cluster where each

node is equipped with 4 Tesla P40 GPUs and 64 Intel(R) Xeon(R) CPU E5-2683 v4 cores

@ 2.10GHz. We compare the following momentum-based FL methods: 1) FedAvg, 2) Fe-

dAvgSM (i.e., server momentum SGD), 3) FedAvgLM (i.e., local momentum SGD), 4)

FedAvgLM-Z (i.e., local momentum SGD with resetting local momentum buffer), 5) Fe-

dAvgSLM (i.e., FedAvgSM + FedAvgLM), 6) FedAvgSLM-Z (i.e., Algorithm 4 Option III

which is essentially FedAvgSM + FedAvgLM-Z), 7) DOMO (i.e., Algorithm 4 Option I), and

8) DOMO-S (i.e., Algorithm 4 Option II). In particular, FedAvg, FedAvgSM, FedAvgLM-Z,

FedAvgSLM-Z, DOMO and DOMO-S have the same communication cost. FedAvgLM and

FedAvgSLM need ×2 communication cost.

We perform careful hyper-parameters tuning for all methods. The local momentum

constant µl is selected from {0.9, 0.8, 0.6, 0.4, 0.2}. We select the server momentum

constant µs from {0.9, 0.6, 0.3}. The base learning rate is selected from {..., 4 × 10−1,

2 × 10−1, 1 × 10−1, 5 × 10−2, 1 × 10−2, 5 × 10−3, ...}. The server learning rate α is se-

lected from {0.2, 0.4, 0.6, 0.8, 0.9, 1.0}. The momentum fusion constant β is selected from

{0.2, 0.4, 0.6, 0.8, 0.9, 1.0}. Following [70, 51, 137], we use local epoch E instead of local

training steps P in experiments. E = 1 is identical to one pass training of local data. We

test local epoch E ∈ {0.5, 1, 2} and E = 1 by default.

Data Similarity s. We follow [70] to simulate the non-i.i.d. data distribution. Specifi-

67

cally, fraction s of the data are randomly selected and allocated to clients, while the remaining

fraction 1 − s are allocated by sorting according to the label. The data similarity is hence

s. We run experiments with data similarity s in {5%, 10%, 20%}. By default, the data

similarity is set to 10% and the number of clients (GPUs) K = 16 following [137]. For all

experiments, We report the mean and standard deviation metrics in the form of (mean±std)

over 3 runs with different random seeds for allocating data to clients.

Dataset. We train VGG-16 [120] and ResNet-56 [48] models on CIFAR-10/1001 [76],

and ResNet-20 on SVHN2 image classification tasks. Please refer to the Supplementary

Material for details.

4.5.2 Performance

We illustrate the experimental results in Figures 13, 14, and 15 with test accuracy

(mean ± std) reported in the brackets of the legend, and Table 4.4 and 4.4. Testing per-

formance is the main metric for comparison in FL because local training metrics become

less meaningful with clients tending to overfit their local data during local training. In

overall, DOMO(-S) > FedAvgSLM(-Z) > FedAvgSM > FedAvgLM(-Z) > FedAvg

regarding the test accuracy. DOMO and DOMO-S consistently achieve the fastest em-

pirical convergence rate and best test accuracy in all experiments. On the contrary, the

initial convergence rate of FedAvgSLM(-Z) can even be worse than FedAvgSM. In particu-

lar, FedAvgSLM(-Z) can hurt the performance compared with FedAvgSM as shown in the

right plot of Figure 15, possibly due to the theoretical difficulties without momentum fu-

sion discussed in Section “Convergence of DOMO”. Besides, using server statistics is much

better than without it (FedAvgSM ≫ FedAvg and FedAvgSLM(-Z) ≫ FedAvgLM(-Z)), in

accordance with [51, 61].

Varying Data Similarity s. We plot the training curves under different data sim-

ilarity settings in Figure 13. We can see that the improvement of DOMO and DOMO-S

over other momentum-based methods increases with the data similarity s decreasing. This

property makes our proposed method favorable in FL where the data heterogeneity can be

1https://www.cs.toronto.edu/~kriz/cifar.html
2http://ufldl.stanford.edu/housenumbers/

68

https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/

complicated. In particular, DOMO improves FedAvgSLM-Z, FedAvgSM, and FedAvg by

5.00%, 5.68%, and 23.14% respectively regarding the test accuracy when s = 5%. When

s = 10% and s = 20%, DOMO improves over the best counterpart by 2.13% and 1.02%,

while DOMO-S improves by 1.41% and 0.85% respectively.

Varying the Server and Local Momentum Constant µs, µl. We explore the various

combinations of server and local momentum constant µs and µl of DOMO and report the

test accuracy in Figure 14. µs = 0.9 and µl = 0.6 work best regardless of the data similarity

s and the algorithm we use. Deviating from µs = 0.9 and µl = 0.6 leads to gradually lower

test accuracy.

Varying the Local Epoch E. We plot the training curves of VGG-16 under different

local epoch E settings in Figure 15 with data similarity s = 10%. The number of local

training steps P = 49 and 196 respectively when E = 0.5 and 2. We can see that DOMO

improves the test accuracy over the best counterpart by 1.25% and 1.70% when E = 0.5

and 2 respectively.

Varying Hyper-parameters α and β. We explore the combinations of α and β and

report the corresponding test accuracy in Table 4.4. α = 1.0 and β = 0.9 work best.

Varying Model. We also plot the training curves of ResNet-56 in the right plot of Figure

15 which exhibit a similar pattern. DOMO improves the best counterpart by 1.35% when

data similarity s = 10% and local epoch E = 1. FedAvgSLM(-Z) is inferior to FedAvgSM,

implying that a naive combination of FedAvgSM and FedAvgLM can hurt the performance.

In contrast, DOMO and DOMO-S improve FedAvgSLM by 2.45% and 2.03% respectively.

Varying Dataset. The SVHN test accuracy is summarized in Table 4.4 and we can

see that DOMO and DOMO-S improve the counterpart by 1.45% and 1.56% respectively.

The CIFAR-100 test accuracy is summarized in Table 4.4 and we can see that DOMO and

DOMO-S improve the best counterpart by 2.46% and 1.68% respectively when training

VGG-16. They improve the counterpart by 2.39% and 0.89% respectively when training

ResNet-56.

69

4.6 Conclusion

In this work, we proposed a new double momentum SGD (DOMO) method with a novel

momentum fusion technique to improve the state-of-the-art momentum-based FL algorithm.

We provided new insights for the connection between the server and local momentum with

new concepts of pre-momentum, intra-momentum, and post-momentum. We also derived

the first convergence analysis involving both the server and local Polyak’s momentum SGD

and discussed the difficulties of theoretical analysis in previous methods that are addressed

by DOMO. From a theoretical perspective, we showed that momentum fusion in DOMO

could lead to a tighter inconsistency bound. Future works may include incorporating the

inter-client variance reduction technique to tighten the divergence bound as well. Deep

FL experimental results on benchmark datasets verify the effectiveness of DOMO. DOMO

can achieve an improvement of up to 5% regarding the test accuracy compared with the

state-of-the-art momentum-based methods when training VGG-16 on CIFAR-10.

70

Appendix A “Improve the Efficiency of Model Parallelism”

A.1 Queue Size

We mentioned that queue size ”{qk} is determined by {pk} and {mk} because the input

should match the corresponding error gradient”. More specifically, it can be formulated as

follows: 

qk = mk−1 − pk−1 −mk > 0 ∀k ∈ {1, . . . , K − 1},

q0 = 0,

mk > 0 ∀k ∈ {0, . . . , K − 1},

pk > 0 ∀k ∈ {0, . . . , K − 2}, pK−1 = 0.

(A–1)

q0 = 0 and pK−1 = 0 because usually there is no need for the corresponding queue in the

first and last block. The first equation ensures that the input and backward error gradient

in one block will come from the same data batch.

A.2 Assumptions

Assumption A.2.1. (Bounded variance) Assume that the variance of the DSP stochas-

tic gradient G(x; ξ) is bounded, i.e.,

Var [G(x; ξ)] ≤ σ2. (A–2)

Assumption A.2.2. (Lipschitz continuous gradient) Assume that the loss and the

output of the blocks have Lipschitz continuous gradient, that is, ∀k ∈ {0, 1, .., K − 1}, and

∀(x0,1, ..., xk,1), (x0,2, ..., xk,2) ∈ Rd0+d1+...+dk ,

∥∇F (h0;x0,1; ...;xk,1)−∇F (h0;x0,2; ...;xk,2)∥ ≤ Lk ∥(x0,1, ..., xk,1)− (x0,2, ..., xk,2)∥ , (A–3)

and ∀x1, x2 ∈ Rd,

∥∇f(x1)−∇f(x2)∥ ≤ LK ∥x1 − x2∥ . (A–4)

71

Assumption A.2.3. (Bounded error gradient) Assume that the norm of the error

gradient that a block receives is bounded, that is, for any x ∈ Rd, ∀k ∈ {0, 1, ..., K − 2},∥∥∥∥∂fk+1(hk+1;xk+1)

∂hk+1

...
∂fK−1(hK−1;xK−1)

∂hK−1

∂L(hK , l)

∂hK

∥∥∥∥ ≤M,

∥∥∥∥∂L(hK , l)

∂hK

∥∥∥∥ ≤M. (A–5)

A.3 Basic Lemmas

Lemma A.3.1. If Assumptions A.2.2 and A.2.3 hold, the difference between DSP gradient

and BP gradient regarding the parameters of block k satisfies:

∥∥∥∇xk
L(F (h0;x

t0
0 ; ...;x

tK−1

K−1), y)− Gxk
(x

t2K−1

0 ; ...;xtK
K−1)

∥∥∥ ≤ LM
K−1∑
i=k

∥∥∥xt2K−1−i

i − xti
i

∥∥∥ . (A–6)

Proof. We gradually move the DSP gradient of the block k towards the BP gradient by

replacing one block’s backward parameters with its forward parameters at a time. K − k

steps in total are needed, and each step will introduce an error. After all the replacement

is done, it becomes the BP gradient at the forward parameters. Firstly we replace x
t2K−1−k

k

with xtk
k , and calculate the error introduced as follows,

∥∆k∥ =

∥∥∥∥∥
(
∂F (h0;x

t0
0 ; ...;x

tk−1

k−1 ;x
t2K−1−k

k)

∂x
t2K−1−k

k

−
∂F (h0;x

t0
0 ; ...;x

tk−1

k−1 ;xtk
k)

∂xtk
k

)
·

∂F (h0;x
t0
0 ; ...;xtk

k ;x
t2K−2−k

k+1)

∂F (h0;x
t0
0 ; ...;xtk

k)
· · ·

∂F (h0;x
t0
0 ; ...;x

tK−2

K−2 ;xtK
K−1)

∂F (h0;x
t0
0 ; ...;x

tK−2

K−2)
·

∂L
(
F (h0;x

t0
0 ; ...;x

tK−1

K−1), l
)

∂F (h0;x
t0
0 ; ...;x

tK−1

K−1)

∥∥∥∥∥∥
≤

∥∥∥∥∥∂F (h0;x
t0
0 ; ...;x

tk−1

k−1 ;x
t2K−1−k

k)

∂x
t2K−1−k

k

−
∂F (h0;x

t0
0 ; ...;x

tk−1

k−1 ;xtk
k)

∂xtk
k

∥∥∥∥∥ ·∥∥∥∥∥∂F (h0;x
t0
0 ; ...;xtk

k ;x
t2K−2−k

k+1)

∂F (h0;x
t0
0 ; ...;xtk

k)
· · ·

∂F (h0;x
t0
0 ; ...;x

tK−2

K−2 ;xtK
K−1)

∂F (h0;x
t0
0 ; ...;x

tK−2

K−2)
·

∂L
(
F (h0;x

t0
0 ; ...;x

tK−1

K−1), l
)

∂F (h0;x
t0
0 ; ...;x

tK−1

K−1)

∥∥∥∥∥∥
≤ LM

∥∥∥xt2K−1−k

k − xtk
k

∥∥∥ .

(A–7)

72

Secondly we replace x
t2K−2−k

k+1 with x
tk+1

k+1 , and calculate the error introduced,

∥∆k+1∥ =

∥∥∥∥∥
(
∂F (h0;x

t0
0 ; ...;xtk

k ;x
t2K−2−k

k+1)

∂xtk
k

−
∂F (h0;x

t0
0 ; ...;xtk

k ;x
tk+1

k+1)

∂xtk
k

)
·

∂F (h0;x
t0
0 ; ...;x

tk+1

k+1 ;x
t2K−3−k

k+2)

∂F (h0;x
t0
0 ; ...;x

tk+1

k+1)
· · ·

∂F (h0;x
t0
0 ; ...;x

tK−2

K−2 ;xtK
K−1)

∂F (h0;x
t0
0 ; ...;x

tK−2

K−2)
·

∂L
(
F (h0;x

t0
0 ; ...;x

tK−1

K−1), l
)

∂F (h0;x
t0
0 ; ...;x

tK−1

K−1)

∥∥∥∥∥∥
≤

∥∥∥∥∥∂F (h0;x
t0
0 ; ...;xtk

k ;x
t2K−2−k

k+1)

∂xtk
k

−
∂F (h0;x

t0
0 ; ...;xtk

k ;x
tk+1

k+1)

∂xtk
k

∥∥∥∥∥ ·∥∥∥∥∥∂F (h0;x
t0
0 ; ...;x

tk+1

k+1 ;x
t2K−3−k

k+2)

∂F (h0;x
t0
0 ; ...;x

tk+1

k+1)
· · ·

∂F (h0;x
t0
0 ; ...;x

tK−2

K−2 ;xtK
K−1)

∂F (h0;x
t0
0 ; ...;x

tK−2

K−2)
·

∂L
(
F (h0;x

t0
0 ; ...;x

tK−1

K−1), l
)

∂F (h0;x
t0
0 ; ...;x

tK−1

K−1)

∥∥∥∥∥∥
≤ LM

∥∥∥xt2K−2−k

k+1 − x
tk+1

k+1

∥∥∥ .

(A–8)

We repeatedly perform the above procedure, until we get the error in the last step,

∥∆K−1∥ =

∥∥∥∥∥
(
∂F (h0;x

t0
0 ; ...;x

tK−2

K−2 ;xtK
K−1)

∂xtk
k

−
∂F (h0;x

t0
0 ; ...;x

tK−2

K−2 ;x
tK−1

K−1)

∂xtk
k

)
·

∂L
(
F (h0;x

t0
0 ; ...;x

tK−1

K−1), l
)

∂F (h0;x
t0
0 ; ...;x

tK−1

K−1)

∥∥∥∥∥∥
≤

∥∥∥∥∥∂F (h0;x
t0
0 ; ...;x

tK−2

K−2 ;xtK
K−1)

∂xtk
k

−
∂F (h0;x

t0
0 ; ...;x

tK−2

K−2 ;x
tK−1

K−1)

∂xtk
k

∥∥∥∥∥ ·∥∥∥∥∥∥
∂L
(
F (h0;x

t0
0 ; ...;x

tK−1

K−1), l
)

∂F (h0;x
t0
0 ; ...;x

tK−1

K−1)

∥∥∥∥∥∥
≤ LM

∥∥∥xtK
K−1 − x

tK−1

K−1

∥∥∥ .

(A–9)

Add them together and we will have∥∥∥∇xk
L(F (h0;x

t0
0 ;xt1

1 ; ...;x
tK−1

K−1), l)− Gxk
(x

t2K−1

0 ;x
t2K−2

1 ; ...;xtK
K−1)

∥∥∥
= ∥∆k + ∆k+1 + ... + ∆K−1∥ ≤ ∥∆k∥+ ∥∆k+1∥+ ... + ∥∆K−1∥

≤ LM
K−1∑
i=k

∥∥∥xt2K−1−i

i − xti
i

∥∥∥ .
(A–10)

73

Lemma A.3.2. Assume Assumption A.2.2 and A.2.3 exist. The second moment of the

difference between DSP and BP gradient satisfies,

∥∥∥∇f(xt0
0 ; ...;x

tK−1

K−1)− G(x
t2K−1

0 ; ...;xtK
K−1)

∥∥∥2 ≤ 1

2
L2c0

K−1∑
k=0

k + 1

K + 1

∥∥∥xt2K−1−k

k − xtk
k

∥∥∥2 . (A–11)

Proof. Via summation of Lemma A.3.1 we can get,

∥∥∥∇f(xt0
0 ;xt1

1 ; ...;x
tK−1

K−1)− G(x
t2K−1

0 ;x
t2K−2

1 ; ...;xtK
K−1)

∥∥∥ ≤ LM

K−1∑
k=0

(k + 1)
∥∥∥xt2K−1−k

k − xtk
k

∥∥∥ .
(A–12)∥∥∥∇f(xt0

0 ;xt1
1 ; ...;x

tK−1

K−1)− G(x
t2K−1

0 ;x
t2K−2

1 ; ...;xtK
K−1)

∥∥∥2
≤ L2M2

(
K−1∑
k=0

(k + 1)
∥∥∥xt2K−1−k

k − xtk
k

∥∥∥)2

= L2M2

(
K−1∑
k=0

(k + 1)

)2(K−1∑
k=0

k + 1∑K−1
k=0 (k + 1)

∥∥∥xt2K−1−k

k − xtk
k

∥∥∥)2

≤ L2M2

(
K−1∑
k=0

(k + 1)

)2 K−1∑
k=0

k + 1∑K−1
k=0 (k + 1)

∥∥∥xt2K−1−k

k − xtk
k

∥∥∥2
=

1

2
L2M2K(K + 1)

K−1∑
k=0

(k + 1)
∥∥∥xt2K−1−k

k − xtk
k

∥∥∥2 .

(A–13)

A.4 DSP with SGD

Theorem A.4.1. Assume Assumptions A.2.1, A.2.2 and A.2.3 hold. Let c0 = M2K(K+

1)2, and c1 = −(∆t2 + 2) +
√

(∆t2 + 2)2 + 2c0∆t2. If the learning rate αn ≤ c1
Lc0∆t2

, then∑N−1
n=0 αnE

∥∥∇f(xn′
)
∥∥2∑N−1

n=0 αn

≤ 2 [f(x0)− f ∗]∑N−1
n=0 αn

+
Lσ2(2 + K∆t2 + 1

4
Kc1)

∑N−1
n=0 α2

n∑N−1
n=0 αn

. (A–14)

74

Proof. According to Lipschitz continuous, we have

f(xn+1)− f(xn) ≤
〈
∇f(xn), xn+1 − xn

〉
+

L

2

∥∥xn+1 − xn
∥∥2

= −αn ⟨∇f(xn),G(xn; ξ)⟩+
Lα2

n

2
∥G(xn; ξ)∥2

= −αn

〈
∇f(xn)−∇f(xn′

),G(xn; ξ)
〉
− αn

〈
∇f(xn′

),G(xn; ξ)
〉

+
Lα2

n

2
∥G(xn; ξ)∥2

≤ 1

2L

∥∥∥∇f(xn)−∇f(xn′
)
∥∥∥2 +

Lα2
n

2
∥G(xn; ξ)∥2 − αn

〈
∇f(xn′

),G(xn; ξ)
〉

+
Lα2

n

2
∥G(xn; ξ)∥2

≤ L

2

∥∥∥xn − xn′
∥∥∥2 − αn

〈
∇f(xn′

),G(xn; ξ)
〉

+ Lα2
n ∥G(xn; ξ)∥2 .

(A–15)

Take expectation regarding ξ on both sides,

E
[
f(xn+1)

]
− f(xn) ≤ L

2

∥∥∥xn − xn′
∥∥∥2 − αn

〈
∇f(xn′

),G(xn)
〉

+ Lα2
nE ∥G(xn; ξ)∥2

=
L

2

∥∥∥xn − xn′
∥∥∥2 +

αn

2

(∥∥∥∇f(xn′
)− G(xn)

∥∥∥2 − ∥∥∥∇f(xn′
)
∥∥∥2 − ∥G(xn)∥2

)
+ Lα2

n

(
∥G(xn)∥2 + Var [G(xn; ξ)]

)
≤ L

2

∥∥∥xn − xn′
∥∥∥2 +

αn

2

∥∥∥∇f(xn′
)− G(xn)

∥∥∥2 − (αn

2
− Lα2

n

)
∥G(xn)∥2

− αn

2

∥∥∥∇f(xn′
)
∥∥∥2 + Lα2

nσ
2

≤
K−1∑
k=0

[
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

] ∥∥∥xn
k − xn′

k

∥∥∥2 − (αn

2
− Lα2

n

)
∥G(xn)∥2

− αn

2

∥∥∥∇f(xn′
)
∥∥∥2 + Lα2

nσ
2.

(A–16)

The last inequality utilizes Lemma A.3.2. Consider the first term and take expectation,

E
∥∥∥xn

k − xn′

k

∥∥∥2 = E

∥∥∥∥∥
n−1∑

i=n−∆tk

−αiGxk
(xi; ξ)

∥∥∥∥∥
2

≤ ∆tk

n−1∑
i=n−∆tk

α2
iE
∥∥Gxk(xi; ξ)

∥∥2
≤ ∆t

n−1∑
i=n−∆t

α2
i

(∥∥Gxk
(xi)

∥∥2 + σ2
)
.

(A–17)

75

Take the total expectation and perform summation for it,

N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
E
∥∥∥xn

k − xn′

k

∥∥∥2
≤

N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t

n−1∑
i=n−∆t

α2
i

(
E
∥∥Gxk

(xi)
∥∥2 + σ2

)
≤

N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t ·∆t · α2

n

(
E ∥Gxk

(xn)∥2 + σ2
)
.

(A–18)

Take the total expectation and perform summation for all the terms,

E
[
f(xN)

]
− f(x0)

≤
N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t2α2

n

(
E ∥Gxk

(xn)∥2 + σ2
)

−
N−1∑
n=0

(αn

2
− Lα2

n

)
E

K−1∑
k=0

∥Gxk
(xn)∥2 −

N−1∑
n=0

αn

2
E
∥∥∥∇f(xn′

)
∥∥∥2 + Lσ2

N−1∑
n=0

α2
n

=
N−1∑
n=0

K−1∑
k=0

((
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t2α2

n −
αn

2
+ Lα2

n

)
E ∥Gxk

(xn)∥2

+
N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t2α2

nσ
2 −

N−1∑
n=0

αn

2
E
∥∥∥∇f(xn′

)
∥∥∥2

+ Lσ2

N−1∑
n=0

α2
n

(A–19)

E
[
f(xN)

]
− f(x0)

≤
N−1∑
n=0

K−1∑
k=0

1

4
αn

(
L2M2K(K + 1)2∆t2α2

n +
(
2∆t2 + 4

)
Lαn − 2

)
E ∥Gxk(xn)∥2

+
N−1∑
n=0

(
1

2
LK +

1

8
αnL

2M2K2(K + 1)2
)

∆t2α2
nσ

2 −
N−1∑
n=0

αn

2
E
∥∥∥∇f(xn′

)
∥∥∥2 + Lσ2

N−1∑
n=0

α2
n

≤
N−1∑
n=0

(
1

2
LK +

1

8
αnL

2M2K2(K + 1)2
)

∆t2α2
nσ

2 −
N−1∑
n=0

αn

2
E
∥∥∥∇f(xn′

)
∥∥∥2 + Lσ2

N−1∑
n=0

α2
n.

(A–20)

76

The last inequality utilizes the restriction on the learning rate. Then we have∑N−1
n=0 αnE

∥∥∇f(xn′
)
∥∥2∑N−1

n=0 αn

≤ 2 [f(x0)− f ∗]∑N−1
n=0 αn

+
Lσ2

∑N−1
n=0 α2

n

[
2 + K∆t2 + 1

4
αnLM

2K2(K + 1)2∆t2
]∑N−1

n=0 αn

.

(A–21)

A.5 DSP with Momentum SGD

The SUM method also implies the following recursions,

xn+1 +
β

1− β
vn+1 = xn +

β

1− β
vn − α

1− β
G(xn; ξ), n ≥ 0

vn+1 = βvn + ((1− β)s− 1)αG(xn; ξ), n ≥ 0.

(A–22)

vn =

xn − xn−1 + sαG(xn−1; ξ), n ≥ 1

0, n = 0.

(A–23)

Let zn = xn + β
1−β

vn.

Lemma A.5.1. Assume Assumption 1 exists. Let c2 = ((1−β)s−1)2

(1−β)2
, then

N−1∑
n=0

E ∥vn∥2 ≤ c2α
2

N−1∑
n=0

E ∥G(xn)∥2 + c2σ
2α2N. (A–24)

Proof. Let α̂ = ((1− β)s− 1)α. From Eq. (A–22),

vn+1 = βvn + α̂G(xn; ξ). (A–25)

Note that v0 = 0. Then

vn = α̂

n−1∑
i=0

βn−1−iG(xi; ξ). (A–26)

77

Then we have,

E ∥vn∥2 = α̂2E

∥∥∥∥∥
n−1∑
i=0

βn−1−iG(xi; ξ)

∥∥∥∥∥
2

= α̂2

(
n−1∑
i=0

βn−1−i

)2

E

∥∥∥∥∥
n−1∑
i=0

βn−1−i∑n−1
i=0 βn−1−i

G(xi; ξ)

∥∥∥∥∥
2

≤ α̂2

(
n−1∑
i=0

βn−1−i

)2 n−1∑
i=0

βn−1−i∑n−1
i=0 βn−1−i

E
∥∥G(xi; ξ)

∥∥2
= α̂2

n−1∑
i=0

βn−1−i

n−1∑
i=0

βn−1−i
∥∥G(xi)

∥∥2 + α̂2σ2

(
n−1∑
i=0

βn−1−i

)2

≤ α̂2

1− β

n−1∑
i=0

βn−1−i
∥∥G(xi)

∥∥2 +
α̂2σ2

(1− β)2

= (1− β)c2α
2

n−1∑
i=0

βn−1−i
∥∥G(xi)

∥∥2 + c2α
2σ2.

(A–27)

Take the total expectation and perform summation,

N−1∑
n=0

E
[
∥vn∥2

]
≤ (1− β)c2α

2

N−1∑
n=0

n−1∑
i=0

βn−1−iE
∥∥G(xi)

∥∥2 + c2α
2σ2N

= (1− β)c2α
2

N−2∑
i=0

N−1∑
n=i+1

βn−1−iE
∥∥G(xi)

∥∥2 + c2α
2σ2N

= (1− β)c2α
2

N−2∑
i=0

1− βN−1−i

1− β
E
∥∥G(xi)

∥∥2 + c2α
2σ2N

≤ c2α
2

N−2∑
n=0

E ∥G(xn)∥2 + c2σ
2α2N ≤ c2α

2

N−1∑
n=0

E ∥G(xn)∥2 + c2σ
2α2N.

(A–28)

Lemma A.5.2. Assume Assumption A.2.1 exists, then

N−1∑
n=0

E
∥∥∥xn − xn′

∥∥∥2 ≤ 2∆t2(c2 + s2)α2

N−1∑
n=0

E ∥G(xn)∥2 + 2∆t2σ2(c2 + s2)α2N. (A–29)

78

Proof. First take expectation regarding ξ,

E
∥∥∥xn − xn′

∥∥∥2 =
K−1∑
k=0

E
∥∥∥xn

k − xn′

k

∥∥∥2 =
K−1∑
k=0

E

∥∥∥∥∥
n−1∑

i=n−∆tk

vi+1
k − sαGxk

(xi; ξ)

∥∥∥∥∥
2

≤
K−1∑
k=0

∆tk

n−1∑
i=n−∆tk

E
∥∥vi+1

k − sαGxk
(xi; ξ)

∥∥2
≤

K−1∑
k=0

2∆tk

n−1∑
i=n−∆tk

(
E
∥∥vi+1

k

∥∥2 + s2α2E
∥∥Gxk

(xi; ξ)
∥∥2)

≤
K−1∑
k=0

2∆t
n−1∑

i=n−∆t

(
E
∥∥vi+1

k

∥∥2 + s2α2E
∥∥Gxk

(xi; ξ)
∥∥2)

= 2∆t

n−1∑
i=n−∆t

(
E
∥∥vi+1

∥∥2 + s2α2E
∥∥G(xi; ξ)

∥∥2)
≤ 2∆t

n−1∑
i=n−∆t

(
E
∥∥vi+1

∥∥2 + s2α2
∥∥G(xi)

∥∥2 + s2α2σ2
)
.

(A–30)

Take total expectation on both sides and perform summation,

N−1∑
n=0

E
∥∥∥xn − xn′

∥∥∥2 ≤ 2∆t
N−1∑
n=0

n−1∑
i=n−∆t

(
E
∥∥vi+1

∥∥2 + s2α2E
∥∥G(xi)

∥∥2 + s2α2σ2
)

≤ 2∆t2
N−2∑
n=0

(
E
∥∥vn+1

∥∥2 + s2α2E ∥G(xn)∥2 + s2α2σ2
)

≤ 2∆t2
N−1∑
n=0

E ∥vn∥2 + 2∆t2s2α2

N−1∑
n=0

E ∥G(xn)∥2 + 2∆t2s2α2σ2N

≤ 2∆t2(c2 + s2)α2

N−1∑
n=0

E
[
∥G(xn)∥2

]
+ 2∆t2σ2(c2 + s2)α2N.

(A–31)

Theorem A.5.1. Assume Assumption A.2.1, A.2.2 and A.2.3 hold. Let c2 = ((1−β)s−1)2

(1−β)2
,

c3 = M2K(K + 1)2∆t2(c2 + s2), c4 = 3 + β2c2 + 2(1 − β)2∆t2(c2 + s2), and c5 = 2+β2c2
1−β

+

2(1− β)∆t2(c2 + s2) +
−c4+
√

c24+4(1−β)2c3

2(1−β)
. If the learning rate α is fixed and satisfies α ≤

−c4+
√

c24+4(1−β)2c3

2(1−β)c3L
, then

1

N

N−1∑
n=0

E
∥∥∥∇f(xn′

)
∥∥∥2 ≤ 2(1− β)(f(x0)− f ∗)

Nα
+ c5σ

2Lα. (A–32)

79

Proof. According to Lipschitz continuous gradient,

f(zn+1)− f(zn)

≤
〈
∇f(zn), zn+1 − zn

〉
+

L

2

∥∥zn+1 − zn
∥∥2

= − α

1− β
⟨∇f(zn),G(xn; ξ)⟩+

Lα2

2(1− β)2
∥G(xn; ξ)∥2

= − α

1− β
⟨∇f(zn)−∇f(xn),G(xn; ξ)⟩ − α

1− β
⟨∇f(xn),G(xn; ξ)⟩

+
Lα2

2(1− β)2
∥G(xn; ξ)∥2

≤ 1

2

(
1

L
∥∇f(zn)−∇f(xn)∥2 +

Lα2

(1− β)2
∥G(xn; ξ)∥2

)
− α

1− β
⟨∇f(xn),G(xn; ξ)⟩+

Lα2

2(1− β)2
∥G(xn; ξ)∥2

=
1

2L
∥∇f(zn)−∇f(xn)∥2 − α

1− β
⟨∇f(xn),G(xn; ξ)⟩+

Lα2

(1− β)2
∥G(xn; ξ)∥2 .

(A–33)

Take expectation regarding ξ on both sides,

E
[
f(zn+1)

]
− f(zn)

≤ 1

2L
∥∇f(zn)−∇f(xn)∥2 − α

1− β
⟨∇f(xn),G(xn)⟩+

Lα2

(1− β)2
∥G(xn)∥2 +

Lα2

(1− β)2
σ2

=
1

2L
∥∇f(zn)−∇f(xn)∥2 − α

1− β

〈
∇f(xn)−∇f(xn′

),G(xn)
〉

− α

1− β

〈
∇f(xn′

),G(xn)
〉

+
Lα2

(1− β)2
∥G(xn)∥2 +

Lα2

(1− β)2
σ2

≤ 1

2L
∥∇f(zn)−∇f(xn)∥2 +

1

2

(
1

L

∥∥∥∇f(xn)−∇f(xn′
)
∥∥∥2 +

Lα2

(1− β)2
∥G(xn)∥2

)
+

α

2(1− β)

(∥∥∥∇f(xn′
)− G(xn)

∥∥∥2 − ∥∥∥∇f(xn′
)
∥∥∥2 − ∥G(xn)∥2

)
+

Lα2

(1− β)2
∥G(xn)∥2 +

Lα2

(1− β)2
σ2

= − α

2(1− β)

∥∥∥∇f(xn′
)
∥∥∥2 +

1

2L
∥∇f(zn)−∇f(xn)∥2 +

1

2L

∥∥∥∇f(xn)−∇f(xn′
)
∥∥∥2

+
α

2(1− β)

∥∥∥∇f(xn′
)− G(xn)

∥∥∥2 − (α

2(1− β)
− 3Lα2

2(1− β)2

)
∥G(xn)∥2 +

Lα2

(1− β)2
σ2.

(A–34)

80

Take the total expectation and perform summation,

N−1∑
n=0

E
[

1

2L
∥∇f(zn)−∇f(xn)∥2

]
≤

N−1∑
n=0

L

2
E ∥zn − xn∥2 =

N−1∑
n=0

Lβ2

2(1− β)2
E ∥vn∥2 . (A–35)

N−1∑
n=0

E
[

1

2L

∥∥∥∇f(xn)−∇f(xn′
)
∥∥∥2 +

α

2(1− β)

∥∥∥∇f(xn′
)− G(xn)

∥∥∥2]

≤
N−1∑
n=0

L

2
E
∥∥∥xn − xn′

∥∥∥2 +
α

4(1− β)
L2M2K(K + 1)

K−1∑
k=0

(k + 1)
N−1∑
n=0

E
∥∥∥xn

k − xn′

k

∥∥∥2
≤

N−1∑
n=0

L

2
E
∥∥∥xn − xn′

∥∥∥2 +
α

4(1− β)
L2M2K(K + 1)2

N−1∑
n=0

E
∥∥∥xn − xn′

∥∥∥2
≤

N−1∑
n=0

L

2

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
E
∥∥∥xn − xn′

∥∥∥2 .

(A–36)

Then we have,

E
[
f(zN)

]
− f(z0)

≤ − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn′

)
∥∥∥2 − (α

2(1− β)
− 3Lα2

2(1− β)2

)N−1∑
n=0

E ∥G(xn)∥2 +
Lσ2α2

(1− β)2
N

+
N−1∑
n=0

Lβ2

2(1− β)2
E ∥vn∥2 +

N−1∑
n=0

L

2

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
E
∥∥∥xn − xn′

∥∥∥2
≤ − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn′

)
∥∥∥2 − (α

2(1− β)
− 3Lα2

2(1− β)2

)N−1∑
n=0

E ∥G(xn)∥2 +
Lσ2α2

(1− β)2
N

+
Lβ2

2(1− β)2

(
c2α

2

N−1∑
n=0

E ∥G(xn)∥2 + c2σ
2α2N

)
+

L

2

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
·[

2∆t2(c2 + s2)α2

N−1∑
n=0

E ∥G(xn)∥2 + 2∆t2σ2(c2 + s2)α2N

]

= − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn′

)
∥∥∥2 − [α

2(1− β)
− α2

(
3L

2(1− β)2
+

Lβ2c2
2(1− β)2

+

L

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

)]
·
N−1∑
n=0

E ∥G(xn)∥2

+ σ2α2N

[
L

(1− β)2
+

Lβ2c2
2(1− β)2

+ L

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

]
(A–37)

81

E
[
f(zN)

]
− f(z0)

≤ − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn′

)
∥∥∥2 +

α

2(1− β)2
[(1− β)M2K(K + 1)2∆t2(c2 + s2)L2α2+

(
3 + β2c2 + 2(1− β)2∆t2(c2 + s2)

)
Lα− (1− β)] ·

N−1∑
n=0

E ∥G(xn)∥2

+ σ2α2N

[
L

(1− β)2
+

Lβ2c2
2(1− β)2

+ L

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

]
.

(A–38)

The second inequality utilizes Lemma A.5.1 and A.5.2. According to the restriction on

the learning rate, we can remove the second term in the last equality,

f∗ − f(x0) ≤ − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn′

)
∥∥∥2 + σ2Lα2N

[
1

(1− β)2
+

β2c2
2(1− β)2

+(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

]
.

(A–39)

Therefore we have,

1

N

N−1∑
n=0

E
∥∥∥∇f(xn′

)
∥∥∥2 ≤ 2(1− β)(f ∗ − f(x0))

Nα

+ σ2Lα

[
2 + β2c2

1− β
+
(
2(1− β) + αLM2K(K + 1)2

)
∆t2(c2 + s2)

]
.

(A–40)

82

Appendix B “Improve the Efficiency of Data Parallelism”

B.1 Proof of Convergence of DEF (Theorem 2.4.1)

In this section, we consider general non-convex objective functions with δ-approximate

and ring-allreduce compatible compressor. We want 1
K

∑K
k=1 ∥

1
K

∑K
k′=1 ek′,t − λtek,t∥22 to be

as close to zero as possible.

For ease of notation, let et := 1
K

∑K
k=1 ek,t, Var(et) := 1

K

∑K
k=1 ∥ek,t − et∥22. We have

1
K

∑K
k=1 ∥ek,t∥22 = ∥et∥22 + Var(et). Then

1

K

K∑
k=1

∥ 1

K

K∑
k′=1

ek,t − λtek,t∥22 =
1

K

K∑
k=1

∥et − λtek,t∥2

=
1

K

K∑
k=1

(∥et∥22 − 2λt⟨et, ek,t⟩+ λ2
t∥ek,t∥22) =

1

K

K∑
k=1

∥ek,t∥22λ2
t − 2∥et∥22λt + ∥et∥22

= (∥et∥22 + Var(et))λ
2
t − 2∥et∥22λt + ∥et∥22 .

(B–1)

When λ∗
t =

∥et∥22
∥et∥22+Var(et)

, it has the minimum
∥et∥22·Var(et)
∥et∥22+Var(et)

.

If we allow individual coefficient λk,t for each worker k ∈ [K], then λ∗
k,t =

⟨et,ek,t⟩
∥ek,t∥22

by min-

imizing ∥et−λk,tek,t∥22. However, it is impractical due to the additional K hyper-parameters

to tune when K is large.

For simplicity, let λt → λ because it is hard to manually tune λt during the training.

B.1.1 Lemmas

For ease of notation, let gk,t denotes the stochastic gradient computed at iteration t for

worker k and gt := 1
K

∑K
k=1 gk,t.

Lemma B.1.1. Let Assumptions 2.3.1, 2.3.2, and 2.4.1 hold. Let B1 = (1
K
− λ)2 + K−1

K2

and B2 = | 1
K
− λ|+ K−1

K
. We have

1

K

K∑
k=1

E∥gt − λgk,t∥22 ≤ B1σ
2 + 2(1− λ)2M2 + 2B2

2L
2 · 1

K

K∑
k=1

E∥et − λek,t∥22 , (B–2)

83

Proof. We know that gk,t = ∇f(xt − λek,t; ξk,t). Then

1

K

K∑
k=1

E∥gt − λgk,t∥22

=
1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

[∇f(xt − λek′,t; ξk′,t)−∇FS(xt − λek′,t)]

− λ[∇f(xt − λek,t; ξk,t)−∇FS(xt − λek,t)]

+
1

K

K∑
k′=1

[∇FS(xt − λek′,t)−∇FS(yt)]

− λ[∇FS(xt − λek,t)−∇FS(yt)] + (1− λ)∇FS(yt)∥22

(a)
=

1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

[∇f(xt − λek′,t; ξk′,t)−∇FS(xt − λek′,t)]

− λ[∇f(xt − λek,t; ξk,t)−∇FS(xt − λek,t)]∥22

+
1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

[∇FS(xt − λek′,t)−∇FS(yt)]− λ[∇FS(xt − λek,t)−∇FS(yt)]

+ (1− λ)∇FS(yt)∥22
(b)

≤ 1○ +
2

K

K∑
k=1

E∥ 1

K

K∑
k′=1

[∇FS(xt − λek′,t)−∇FS(yt)]− λ[∇FS(xt − λek,t)−∇FS(yt)]∥22︸ ︷︷ ︸
2○

+ 2(1− λ)2M2 ,

(B–3)

where we define

1○ =
1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

[∇f(xt − λek′,t; ξk′,t)−∇FS(xt − λek′,t)]

− λ[∇f(xt − λek,t; ξk,t)−∇FS(xt − λek,t)]∥22,

(B–4)

and (a) is due to ∇FS(xt − λek,t) = Egk,t = E∇f(xt − λek,t; ξk,t), (b) follows Assumption

2.3.2. Now we consider term 1○. For simplicity, let ak = ∇f(xt−λek,t; ξk,t)−∇FS(xt−λek,t)

84

and we will have E⟨ak, ak′⟩ = 0 when k ̸= k′. Then

1○ =
1

K

K∑
k=1

E∥(1

K
− λ)ak +

1

K

K∑
k′=1,k′ ̸=k

ak′∥22 =
1

K

K∑
k=1

[(
1

K
− λ)2 +

K − 1

K2
]︸ ︷︷ ︸

B1

∥ak∥22
(a)

≤ B1σ
2 ,

(B–5)

where (a) follows Assumption 2.3.1. B1 = 0 if and only if K = 1 and λ = 1. Now we consider

term 2○. For simplicity, let bk = ∇FS(xt−λek,t)−∇FS(yt) and B2 = | 1
K
−λ|+ K−1

K
. B2 = 0

if and only if K = 1 and λ = 1. Then

2○ =
2

K

K∑
k=1

E∥ 1

K

K∑
k′=1

bk′ − λbk∥22 =
2

K

K∑
k=1

E∥(1

K
− λ)bk +

1

K

K∑
k′=1,k′ ̸=k

bk′∥22

=
2

K

K∑
k=1

B2
2E∥

1
K
− λ

B2

bk +
1

KB2

K∑
k′=1,k′ ̸=k

bk′∥22

≤ 2

K

K∑
k=1

B2
2E(
| 1
K
− λ|
B2

∥bk∥22 +
1

KB2

K∑
k′=1,k′ ̸=k

∥bk′∥22)

=
2

K

K∑
k=1

B2
2(
| 1
K
− λ|
B2

+
K − 1

KB2

)E∥bk∥22 =
2B2

2

K

K∑
k=1

E∥bk∥22

(a)

≤ 2B2
2L

2 · 1

K

K∑
k=1

E∥et − λek,t∥22 ,

(B–6)

where (a) follows Assumption 2.4.1. Substitute terms 1○ and 2○ with their bounds and we

can complete the proof.

Lemma B.1.2. Let Assumptions 2.3.1, 2.3.2, 2.4.1, 2.4.2 and 2.3.3 hold. Let B1 =

(1
K
− λ)2 + K−1

K2 and η < 1
2L
, we have

1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

ek′,t − λek,t∥22 ≤
1

(
√

1−δ/2
1−δ
− 1)2

η2[B1σ
2 + 2(1− λ)2M2] . (B–7)

85

Proof. We have

1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

ek′,t − λek,t∥22 =
1

K

K∑
k=1

E∥et − λek,t∥22

(a)
=

1

K

K∑
k=1

E∥(ηgt−1 + et−1)− C(ηgt−1 + et−1)− λ(ηgk,t−1 + ek,t−1) + λC(ηgk,t−1 + ek,t−1)∥22

(a)
=

1

K

K∑
k=1

E∥(ηgt−1 − ληgk,t−1 + et−1 − λek,t−1)− C(ηgt−1 − ληgk,t−1 + et−1 − λek,t−1)∥22

(b)
= (1− δ) · 1

K

K∑
k=1

E∥ηgt−1 − ληgk,t−1 + et−1 − λek,t−1∥22

≤ (1− δ)(1 + β) · 1

K

K∑
k=1

E∥et−1 − λek,t−1∥22 + (1− δ)(1 +
1

β
)η2 · 1

K

K∑
k=1

E∥gt−1 − λgk,t−1∥22

(c)
= (1− δ)(1 + β) · 1

K

K∑
k=1

E∥et−1 − λek,t−1∥22 + (1− δ)(1 +
1

β
)η2[B1σ

2 + 2(1− λ)2M2]

+ (1− δ)(1 +
1

β
)2B2

2η
2L2 · 1

K

K∑
k=1

E∥et−1 − λek,t−1∥22 ,

(B–8)

where (a) follows Assumption 2.3.3, (b) follows Assumption 2.4.2, and (c) follows Lemma

B.1.1. β is a constant such that 0 < β < δ
1−δ

, i.e., (1 − δ)(1 + β) < 1. Let B3 =

(1− δ)(1 + 1
β
)2B2

2η
2L2 < 1− (1− δ)(1 + β), i.e., B3 + (1− δ)(1 + β) < 1, then

1

K

K∑
k=1

E∥et − λek,t∥22

≤ [B3 + (1− δ)(1 + β)]
1

K

K∑
k=1

E∥et−1 − λek,t−1∥22 + (1− δ)(1 +
1

β
)η2[B1σ

2 + 2(1− λ)2M2]

= (1− δ)(1 +
1

β
)[B1σ

2 + 2(1− λ)2M2]
t−1∑
t′=0

[B3 + (1− δ)(1 + β)]t−1−t′η2

<
(1− δ)(1 + 1

β
)

1−B3 − (1− δ)(1 + β)︸ ︷︷ ︸
h(β)

η2[B1σ
2 + 2(1− λ)2M2] .

(B–9)

86

Now we consider the minimum value of h(β). Its gradient regarding β is

∂h(β)

∂β
=

1− δ

β2[1−B3 − (1− δ)(1 + β)]2
[(1− δ)β2 + 2(1− δ)β + B3 − δ] . (B–10)

Therefore,

β∗ = −1 +

√
1−B3

1− δ
→ B3 = 1− (1− δ)(1 + β∗)2 < 1− (1− δ)(1 + β∗) ,

h(β∗) =
1− δ

(
√

1−B3 −
√

1− δ)2
=

1

(
√

1−B3

1−δ
− 1)2

,

1

K

K∑
k=1

E∥et − λek,t∥22 ≤
1

(
√

1−B3

1−δ
− 1)2

η2[B1σ
2 + 2(1− λ)2M2] ,

(B–11)

which completes the proof. For simplicity we can just set B3 ≤ δ/2 (we can choose a constant

> 1 other than 2), which is valid as it leads to β∗ ≤ −1 +
√

1−δ/2
1−δ

and −1 +
√

1−δ/2
1−δ

< δ
1−δ

holds. Based on the definition of B3, it also requires that

2B2
2η

2L2 <
δ/2

(1− δ)(−1 +
√

1−δ/2
1−δ

)
=

δ/2

−(1− δ) +
√

(1− δ)(1− δ/2)
, (B–12)

where the R.H.S. is monotonically increasing for 0 < δ < 1. Therefore, for all conditions

above to hold, we only need to assume that

2B2
2η

2L2 ≤ 4(1 + (1− λ)2)η2L2 < lim
δ→0

δ/2

−(1− δ) +
√

(1− δ)(1− δ/2)
= 2 . (B–13)

As 0 < λ < 1, we can simply assume η < 1
2L

.

Lemma B.1.3. Let Assumptions 2.3.1, 2.3.2, 2.4.2, and 2.3.3 hold. We have

1

K

K∑
k=1

E∥ek,t∥22 ≤
η2(σ2 + M2)

(
√

1/(1− δ)− 1)2
. (B–14)

87

Proof. We have

1

K

K∑
k=1

E∥ek,t∥22
(a)
=

1

K

K∑
k=1

E∥ηgk,t−1 + ek,t−1 − C(ηgk,t−1 + ek,t−1)∥22

(b)

≤ 1− δ

K

K∑
k=1

E∥ηgk,t−1 + ek,t−1∥22

≤ (1− δ)(1 + β) · 1

K

K∑
k=1

E∥ek,t−1∥22 + (1− δ)(1 +
1

β
)η2(σ2 + M2)

≤ (1− δ)(1 +
1

β
)(σ2 + M2)

t−1∑
t′=0

[(1− δ)(1 + β)]t−1−t′η2

≤
(1− δ)(1 + 1

β
)

1− (1− δ)(1 + β)
η2(σ2 + M2) =

1

(
√

1/(1− δ)− 1)2
η2(σ2 + M2) ,

(B–15)

where β = −1 + 1√
1−δ

, (a) follows Assumption 2.3.3, and (b) follows Assumption 2.4.2.

B.1.2 Main Proof

In this section, we need Assumptions 2.3.1, 2.3.2, 2.4.1, 2.4.2, 2.3.3, and η ≤ 1
4L

.

Firstly, we have the update rule of yt

yt+1 = xt+1 − et+1 = xt+1 −
1

K

K∑
k=1

ek,t+1

= xt −
1

K

K∑
k=1

C(ηgk,t + ek,t)−
1

K

K∑
k=1

(ηgk,t + ek,t − C(ηgk,t + ek,t))

= xt −
1

K

K∑
k=1

(ηgk,t + ek,t) = yt −
1

K

K∑
k=1

ηgk,t = yt − ηgt .

(B–16)

According to the Liptschitz gradient assumption,

E[FS(yt+1)− FS(yt)] ≤ E⟨∇FS(yt), yt+1 − yt⟩+
L

2
E∥yt+1 − yt∥22

= E⟨∇FS(yt),−
η

K

K∑
k=1

gk,t)⟩+
η2L

2
E∥ 1

K

K∑
k=1

gk,t∥22

= − η

K

K∑
k=1

E⟨∇FS(yt),∇FS(xt − λek,t)⟩︸ ︷︷ ︸
1○

+
η2L

2

1

K

K∑
k=1

E∥∇FS(xt − λek,t)∥22︸ ︷︷ ︸
2○

+
η2Lσ2

2K
.

(B–17)

88

For term 1○, we have

1○ = −ηE∥∇FS(yt)∥22 −
η

K

K∑
k=1

E⟨∇FS(yt),∇FS(xt − λek,t)−∇FS(yt)⟩

≤ −η

2
E∥∇FS(yt)∥22 +

η

2K

K∑
k=1

E∥∇FS(xt − λek,t)−∇FS(yt)∥22

≤ −η

2
E∥∇FS(yt)∥22 +

ηL2

2K

K∑
k=1

E∥et − λek,t∥22 .

(B–18)

For term 2○, we have

2○ ≤ 1

K

K∑
k=1

E[2∥∇FS(xt − λek,t)−∇FS(yt)∥22 + 2∥∇FS(yt)∥22]

≤ 2E∥∇FS(yt)∥22 +
2L2

K

K∑
k=1

E∥et − λek,t∥22 .

(B–19)

Replace 1○ and 2○ with their bounds and we have

E[f(yt+1)− f(yt)]

≤ (−η

2
+ η2L)E∥∇FS(yt)∥22 + (

ηL2

2
+ η2L3)

1

K

K∑
k=1

E∥et − λek,t∥22 +
η2Lσ2

2K

(a)

≤ −η

4
E∥∇FS(yt)∥22 + ηL2 · 1

K

K∑
k=1

E∥et − λek,t∥22 +
η2Lσ2

2K
,

(B–20)

where (a) is due to the assumption η ≤ 1
4L

for simplicity. Rearrange and sum from t = 0 to

T − 1, we will have

1

T

T−1∑
t=0

E∥∇FS(yt)∥22 ≤
4E[FS(y0)− FS(yT)]

ηT
+

2ηLσ2

K
+ 4L2 · 1

KT

T−1∑
t=0

K∑
k=1

E∥et − λek,t∥22

(a)

≤ 4E[FS(y0)− FS(y∗)]

ηT
+

2ηLσ2

K
+

4

(
√

1−δ/2
1−δ
− 1)2

η2L2[B1σ
2 + 2(1− λ)2M2]

=
4E[FS(y0)− FS(y∗)]

ηT
+

2ηLσ2

K

+
4

(
√

1−δ/2
1−δ
− 1)2

η2L2[
K − 1

K2
σ2 + (

1

K
− λ)2σ2 + 2(1− λ)2M2] ,

(B–21)

89

where (a) follows Lemma B.1.2. Let η = O(
√

K
T

), we have the convergence rate

1

T

T−1∑
t=0

E∥∇FS(yt)∥22

= O(
1√
KT

+
K

T
)
K=O(T 1/3)

= O(
1√
KT

) .

(B–22)

If we are only interested in δ, σ2 and M2, let λ =
1
K
σ2+2M2

σ2+2M2 and we have

1

T

T−1∑
t=0

E∥∇FS(yt)∥22

= O(
1

(
√

(1− δ/2)/(1− δ)− 1)2
· (K − 1

K2
σ2 +

2(1− 1
K

)2σ2M2

σ2 + 2M2
)) .

(B–23)

B.2 Proof of Generalization of DEF(-A) (Theorem 2.4.2)

We use uniform stability to bound the generalization error. Let S = {ξ1, ξ2, · · · , ξN}

be the training dataset of size N , where each data ξn is sampled from distribution D. Let

S(n) = {ξ′1, ξ′2, · · · , ξ′N} = {ξ1, ξ2, · · · , ξn−1, ξ
′
n, ξn+1, · · · , ξN} be another training datasets of

size N . We can see that S and S(n) only differs in the nth data. Let the models trained on S

and S(i) be xt and x̃t respectively for DEF-A. For DEF, they will be yt and ỹt correspondingly.

In each iteration t and under the same random sampling procedure, all workers select

the same data from S and S(n) with probability
(
N−1
K

)
/
(
N
K

)
= N−K

N
, while one of the workers

selects different data from S and S(n) with probability 1 −
(
N−1
K

)
/
(
N
K

)
= K

N
. For simplicity,

let G =
√
σ2 + M2, B2 = | 1

K
− λ| + K−1

K
. Following [44] (Theorem 3.8), we only need to

bound (xt for DEF-A and yt for DEF)

E[f(yt; ξ)− f(ỹT ; ξ)] ≤ Kt0
N

+ GE[∥yT − ỹT∥2|yt0 − ỹt0 = 0] . (B–24)

90

B.2.1 Generalization Error of DEF

In this section, we consider non-convex objective functions. We need Assumptions 2.3.1,

2.3.2, 2.4.1, 2.4.2, 2.3.3 and ηt ≤ c
t+1

. We first consider yt selecting the same data at iteration

t.

∥yt+1 − ỹt+1∥2 = ∥yt − ηtgt − ỹt + ηtg̃t∥2 ≤ ∥yt − ỹt∥2 + ηt∥gt − g̃t∥2

= ∥yt − ỹt∥2 + ηt∥
1

K

K∑
k=1

[∇f(xt − λek,t; ξk,t)−∇f(x̃t − λẽk,t; ξk,t)]∥2

≤ ∥yt − ỹt∥2 +
ηt
K

K∑
k=1

∥∇f(yt + et − λek,t; ξk,t)−∇f(ỹt + ẽt − λẽk,t; ξk,t)∥2

≤ (1 + ηtL)∥yt − ỹt∥2 +
ηtL

K

K∑
k=1

∥(et − λek,t)− (ẽt − λẽk,t)∥2

= (1 + ηtL)∥yt − ỹt∥2 +
ηtL

K

K∑
k=1

∥(1

K
− λ)(ek,t − ẽk,t) +

1

K

K∑
k′=1,k′ ̸=k

(ek′,t − ẽk′,t)∥2

≤ (1 + ηtL)∥yt − ỹt∥2 +
ηtLB2

K

K∑
k=1

∥ek,t − ẽk,t∥2︸ ︷︷ ︸
1○

.

(B–25)

Now we consider term 1○. Following the same procedures in Lemma B.1.3, but let

ηt ≤ c
t+1

and β = δ
2(1−δ)

, we have

E∥ek,t − ẽk,t∥22 ≤ (1− δ)(1 +
1

β
) · 2(σ2 + M2)

t−1∑
t′=0

[(1− δ)(1 + β)]t−1−t′η2t′

≤ 2(1− δ)(1 +
1

β
)(σ2 + M2)c2

t−1∑
t′=0

1

(t′ + 1)2

≤ 2(1− δ)(1 +
1

β
)(σ2 + M2)c2[1 + (− 1

t′ + 1
)|t−1
0]

≤ 4(1− δ)(1 +
1

β
)(σ2 + M2)c2

=
4(1− δ)(2− δ)

δ
G2c2 .

(B–26)

Because (E∥ek,t − ẽk,t∥2)2 ≤ E∥ek,t − ẽk,t∥22, we have

E 1○ ≤
√

E∥ek,t − ẽk,t∥22 ≤ 2Gc

√
(1− δ)(2− δ)

δ︸ ︷︷ ︸
B4

= 2B4Gc . (B–27)

91

At iteration t, if a worker k′ ∈ [K] selects different data from S and S(n), we have

∥yt+1 − ỹt+1∥2 ≤ ∥yt − ỹt∥2 + ηt∥gt − g̃t∥2 ≤ ∥yt − ỹt∥2 + 2Gηt . (B–28)

When we consider both circumstances, we have

E∥yt+1 − ỹt+1∥2 ≤ (1− K

N
)[(1 + ηtL)E∥yt − ỹt∥2 + ηtLB2 · 2B4Gc] +

K

N
[E∥yt − ỹt∥2 + 2Gηt]

= [1 + (1− K

N
)ηtL]E∥yt − ỹt∥2 + [

2K

N
G + 2(1− K

N
)LB2B4Gc]︸ ︷︷ ︸

B5

ηt

(a)

≤ exp((1− K

N
)ηtL)E∥yt − ỹt∥2 + B5ηt .

(B–29)

Unwind the recurrence with t = 0, 1, · · · , T − 1, we have

E∥yT − ỹT∥2 ≤
T−1∑
t=t0

B5
c

t + 1

T−1∏
t′=t+1

exp((1− K

N
)

c

t + 1
L)

= B5c
T−1∑
t=t0

1

t + 1
exp((1− K

N
)Lc

T−1∑
t′=t+1

1

t + 1
)

(a)

≤ B5c
T−1∑
t=t0

1

t + 1
exp((1− K

N
)Lc log

T

t + 1
)

= B5cT
(1−K

N
)Lc

T−1∑
t=t0

(t + 1)−(1−K
N
)Lc−1

= B5cT
(1−K

N
)Lc t

−(1−K
N
)Lc

0 − T−(1−K
N
)Lc

(1− K
N

)Lc

≤ B5

(1− K
N

)L
(
T

t0
)(1−

K
N
)Lc

(B–30)

where (a) is due to
∑T−1

t′=t+1
1

t′+1
≤
∫ T−1

t
log(t′ + 1)dt′. Following Eq. (B–24),

E[f(yt; ξ)− f(ỹT ; ξ)] ≤ Kt0
N

+
B5G

(1− K
N

)L︸ ︷︷ ︸
B6

(
T

t0
)(1−

K
N
)Lc . (B–31)

The R.H.S is minimized when

t0 = [(
N

K
− 1)LcB6]

1/((1−K
N
)Lc+1)T (1−K

N
)Lc/((1−K

N
)Lc+1) , (B–32)

92

which gives us

E[f(yT ; ξ)− f(ỹT ; ξ)] ≤ [
K

N
+

1

(N
K
− 1)Lc

][(
N

K
− 1)LcB6]

1/((1−K
N
)Lc+1)T (1−K

N
)Lc/((1−K

N
)Lc+1) .

(B–33)

Note that when K = 1, λ = 1, we will have B2 = 0, B5 = 2K
N
G, and B6 = 2G2

(N−1)L
. Then the

R.H.S. equals

[
1

N
+

1

(N − 1)Lc
](2cG2)1/((1−

1
N
)Lc+1)T (1− 1

N
)Lc/((1− 1

N
)Lc+1)

=
1 + 1/(Lc)

N − 1
T (

2cG2

T
)1/((1−

1
N
)Lc+1)

(a)

≤ 1 + 1/(Lc)

N − 1
T (

2cG2

T
)1/(Lc+1)

=
1 + 1/(Lc)

N − 1
(2cG2)1/(Lc+1)TLc/(Lc+1) ,

(B–34)

which matches the result in [44] for SGD. (a) is due to 2cG2

T
≤ 1 when t0 ≤ T .

B.2.2 Generalization Error of DEF-A

In this section, we consider non-convex objective functions and random sparsification

which satisfies Assumptions 2.4.2 and 2.3.3. We need Assumptions 2.3.1, 2.3.2, 2.4.1, and

ηt ≤ c
t+1

.

Now we consider xt.

E∥xt+1 − x̃t+1∥2
(a)
= E∥xt − C(ηtgt + et)− x̃t + C(ηtg̃t + ẽt)∥2

(a)

≤ E∥xt − x̃t∥2 + E∥C(ηtgt − ηtg̃t)∥2 + E∥C(et − ẽt)∥2

≤ E∥xt − x̃t∥2 + E
√

EC∥C(ηtgt − ηtg̃t)∥22 + E
√
EC∥C(et − ẽt)∥22

(a)
= E∥xt − x̃t∥2 + E

√
δη2t ∥gt − g̃t∥22 + E

√
δ∥et − ẽt∥22

= E∥xt − x̃t∥2 + δ
1
2ηtE∥gt − g̃t∥2 + δ

1
2E∥et − ẽt∥2

≤ E∥xt − x̃t∥2 + δ
1
2ηtE∥gt − g̃t∥2 + δ

1
2

1

K

K∑
k=1

E∥ek,t − ẽk,t∥2 .

(B–35)

93

where (a) is due to the random sparsification. When selecting the same data at iteration t,

we have

E∥xt+1 − x̃t+1∥2

≤ E∥xt − x̃t∥2 +
δ

1
2

K

K∑
k=1

E∥ek,t − ẽk,t∥2

+ δ
1
2ηtE∥

1

K

K∑
k=1

[∇f(xt − λek,t; ξk,t)−∇f(x̃t − λẽk,t; ξk,t)]∥2

≤ E∥xt − x̃t∥2 +
δ

1
2

K

K∑
k=1

E∥ek,t − ẽk,t∥2 +
δ

1
2ηtL

K

K∑
k=1

∥xt − λek,t − x̃t + λẽk,t∥2

≤ (1 + δ
1
2ηtL)E∥xt − x̃t∥2 +

δ
1
2 (1 + ηtLλ)

K

K∑
k=1

E∥ek,t − ẽk,t∥2 .

(B–36)

When selecting different data at iteration t, we have

E∥xt+1 − x̃t+1∥2 ≤ E∥xt − x̃t∥2 + δ
1
2ηt · 2G +

δ
1
2

K

K∑
k=1

E∥ek,t − ẽk,t∥2 . (B–37)

When we consider both circumstances, we have

E∥xt+1 − x̃t+1∥2 ≤ (1− K

N
)[(1 + δ

1
2ηtL)E∥xt − x̃t∥2 +

δ
1
2 (1 + ηtLλ)

K

K∑
k=1

E∥ek,t − ẽk,t∥2]

+
K

N
[E∥xt − x̃t∥2 + δ

1
2ηt · 2G +

δ
1
2

K

K∑
k=1

E∥ek,t − ẽk,t∥2]

= [1 + (1− K

N
)δ

1
2ηtL]E∥xt − x̃t∥2 +

K

N
2δ

1
2ηtG + δ

1
2 [1 + (1− K

N
)ηtLλ]

1

K

K∑
k=1

E∥ek,t − ẽk,t∥2

(a)

≤ [1 + (1− K

N
)δ

1
2ηtL]E∥xt − x̃t∥2 +

K

N
2δ

1
2ηtG + δ

1
2 [1 + (1− K

N
)ηtLλ] · 2B4Gc

(b)

≤ exp((1− K

N
)δ

1
2ηtL)E∥xt − x̃t∥2 +

K

N
2δ

1
2ηtG + δ

1
2 [1 + (1− K

N
)ηtLλ] · 2B4Gc ,

(B–38)

94

where (a) follows the Eq. (B–27). Let ηt ≤ c
t+1

, we have

E∥xT − x̃T∥2 ≤
T−1∑
t=t0

[
K

N
2δ

1
2ηtG + δ

1
2 (1 + (1− K

N
)ηtLλ) · 2B4Gc]

T−1∏
t′=t+1

exp((1− K

N
)δ

1
2ηt′L)

≤ 2δ
1
2G

T−1∑
t=t0

[
K

N

c

t + 1
+ (1 + (1− K

N
)

c

t + 1
Lλ)B4c] exp((1− K

N
)δ

1
2Lc

T−1∑
t′′=t+1

1

t′′ + 1
)

≤ 2δ
1
2G

T−1∑
t=t0

[
K

N

c

t + 1
+ (1 + (1− K

N
)

c

t + 1
Lλ)B4c] exp((1− K

N
)δ

1
2Lc log(

T

t + 1
))

= 2δ
1
2G

T−1∑
t=t0

[
K

N

c

t + 1
+ (1 + (1− K

N
)

c

t + 1
Lλ)B4c](

T

t + 1
)(1−

K
N
)δ

1
2Lc

≤ 2δ
1
2Gc[

K

N
+ 1 + (1− K

N
)LcλB4]T

(1−K
N
)δ

1
2Lc

T−1∑
t=t0

(t + 1)−(1−K
N
)δ

1
2Lc

≤ 2δ
1
2Gc[

K

N
+ 1 + (1− K

N
)LcλB4]T

(1−K
N
)δ

1
2Lc t

−1−(1−K
N
)δ

1
2Lc

0 − T−1−(1−K
N
)δ

1
2Lc

1 + (1− K
N

)δ
1
2Lc

≤
2δ

1
2G[K

N
+ 1 + (1− K

N
)LcλB4]

1 + (1− K
N

)δ
1
2L

(
T

t0
)(1−

K
N
)δ

1
2Lc .

(B–39)

Following Eq. (B–24),

E[f(xT ; ξ)− f(x̃T ; ξ)] ≤ Kt0
N

+
2δ

1
2G[K

N
+ 1 + (1− K

N
)LcλB4]

1 + (1− K
N

)δ
1
2L︸ ︷︷ ︸

B7

(
T

t0
)(1−

K
N
)δ

1
2Lc .

(B–40)

The R.H.S is minimized when

t0 = [(
N

K
− 1)LcB7]

1/((1−K
N
)δ

1
2Lc+1)T (1−K

N
)δ

1
2Lc/((1−K

N
)δ

1
2Lc+1) , (B–41)

which gives us

E[f(xT ; ξ)− f(x̃T ; ξ)]

≤ [
K

N
+

1

(N
K
− 1)Lc

][(
N

K
− 1)LcB7]

1/((1−K
N
)δ

1
2Lc+1)T (1−K

N
)δ

1
2Lc/((1−K

N
)δ

1
2Lc+1) .

(B–42)

95

B.2.3 Optimization Error of DEF

In this section, we consider non-convex objective functions under Polyak- Lojasiewicz

(PL) condition, which establishes the relation between the objective function and the gradi-

ent norm. We consider δ-approximate and ring-allreduce compatible compressor. We need

Assumptions 2.3.1, 2.3.2, 2.4.1, 2.4.2, 2.3.3, and ηt = c
t+1
≤ 1

4L
. From Eq. (B–20) and the

PL condition, we have

E[FS(yt+1)− FS(yt)] ≤ −
ηt
4
E∥∇FS(yt)∥22 + ηtL

2 · 1

K

K∑
k=1

E∥et − λek,t∥22 +
η2tLσ

2

2K

≤ −µηt
2

E[FS(yt)− FS(y∗)] + ηtL
2 · 1

K

K∑
k=1

E∥et − λek,t∥22 +
η2tLσ

2

2K
,

(B–43)

where we need ηt ≤ 1
4L

following Section B.1. Rearrange,

E[FS(yt+1)− FS(y∗)] ≤ (1− µηt
2

)E[FS(yt)− FS(y∗)] + ηtL
2 · 1

K

K∑
k=1

E∥et − λek,t∥22 +
η2tLσ

2

2K

(a)

≤ (1− µηt
2

)E[FS(yt)− FS(y∗)] +
B1σ

2 + 2(1− λ)2M2

(
√

1−δ/2
1−δ
− 1)2

η3tL
2 +

η2tLσ
2

2K
,

(B–44)

where (a) follows Lemma B.1.2. Let ηt = c
t+1

, we have

E[FS(yT)− FS(y∗)]

≤ E[FS(yt)− FS(y∗)]
T−1∏
t=0

(1− µc

2(t + 1)
)︸ ︷︷ ︸

1○

+[
B1σ

2 + 2(1− λ)2M2

(
√

1−δ/2
1−δ
− 1)2

+
σ2

2K
]L

·
T−1∑
t=0

c2

(t + 1)2

T−1∏
t′=t+1

(1− µc

2(t + 1)
)︸ ︷︷ ︸

2○

,

(B–45)

where

1○ ≤
T−1∏
t=0

exp(− µc

2(t + 1)
) = exp(−µc

2
) exp(−µc

2

T−1∑
t=1

1

t + 1
)

≤ exp(−µc

2
) exp(−µc

2
log T) = exp(−µc

2
)T−µc

2 ,

(B–46)

96

2○ ≤
T−1∑
t=0

c2

(t + 1)2
exp(−µc

2

T−1∑
t′=t+1

1

t′ + 1
)

≤
T−1∑
t=0

c2

(t + 1)2
exp(−µc

2
log

T

t + 1
) = c2T−µc

2

T−1∑
t=0

(t + 1)
µc
2
−2 .

(B–47)

When µc
2
− 2 ≥ 0,

2○ ≤ c2T−µc
2

µc
2
− 1

((T + 1)
µc
2
−1 − 1) ≤ c2

µc
2
− 1

(
T + 1

T
)
µc
2
−1T−1 . (B–48)

When µc
2
− 2 ≤ 0 and µc

2
− 2 ̸= −1,

2○ ≤ c2T−µc
2

µc
2
− 1

(1 + T
µc
2
−1 − 1) =

c2

µc
2
− 1

T−1 . (B–49)

When µc
2
− 2 = −1,

2○ ≤ c2T−1(1 + log T) . (B–50)

E[FS(yT)− FS(y∗)] = Õ(T−µc
2 + T−1) . (B–51)

B.2.4 Optimization Error of DEF-A

In this section, we consider non-convex objective functions under Polyak- Lojasiewicz

(PL) condition, which establishes the relation between the objective function and the gra-

dient norm. The compressor we consider here is random sparsification which satisfies As-

sumptions 2.4.2 and 2.3.3. We need Assumptions 2.3.1, 2.3.2, 2.4.1, and ηt = c
t+1
≤ 1

8L
.

E[FS(xt+1)− FS(xt)] ≤ E⟨∇FS(xt), xt+1 − xt⟩+
L

2
E∥xt+1 − xt∥22

(a)
= E⟨∇FS(xt),−C(ηtgt + et)⟩︸ ︷︷ ︸

1○
+
L

2
E∥C(ηtgt + et)∥22︸ ︷︷ ︸

2○
,

(B–52)

where (a) follows Assumption 2.3.3. For term 1○,

97

1○
(a)
= −E⟨∇FS(xt), δ(ηtgt + et)⟩ = −δηtE⟨∇FS(xt),

1

K

K∑
k=1

∇FS(xt − λek,t) +
et
ηt
⟩

= −δηtE∥∇FS(xt)∥22 − δηtE⟨∇FS(xt),
1

K

K∑
k=1

∇FS(xt − λek,t) +
et
ηt
−∇FS(xt)⟩

≤ −δηt
2
E∥∇FS(xt)∥22 +

δηt
2
E∥ 1

K

K∑
k=1

∇FS(xt − λek,t)−∇FS(xt) +
et
ηt
∥22

≤ −δηt
2
E∥∇FS(xt)∥22 +

δηtL
2

2K

K∑
k=1

E∥λek,t∥22 +
δ

2ηt
E∥et∥22

≤ −δηt
2
E∥∇FS(xt)∥22 +

δ(η2tL
2λ2 + 1)

2ηtK

K∑
k=1

E∥ek,t∥22 ,

(B–53)

where (a) is due to the random sparsification compressor. For term 2○,

2○
(a)
= δE∥ηtgt + et∥22 ≤ 2δη2tE∥gt∥22 + 2δE∥et∥22

= 2δη2tE∥
1

K

K∑
k=1

∇FS(xt − λek,t)∥22 +
2δη2t σ

2

K
+ 2δE∥et∥22

≤ 2δη2t
K

K∑
k=1

E∥∇FS(xt − λek,t)−∇FS(xt) +∇FS(xt)∥22 + 2δE∥et∥22 +
2δη2t σ

2

K

≤ 4δη2tE∥∇FS(xt)∥22 +
4δη2tL

2

K

K∑
k=1

E∥λek,t∥22 + 2δE∥et∥22 +
2δη2t σ

2

K

= 4δη2tE∥∇FS(xt)∥22 +
2δ(2η2tL

2λ2 + 1)

K

K∑
k=1

E∥ek,t∥22 +
2δη2t σ

2

K
,

(B–54)

where (a) is due to the random sparsification compressor. Put them together, let ηt ≤ 1
8L

,

and we have

E[FS(xt+1)− FS(xt)]

≤ −δηt
2

(1− 4ηtL)E∥∇FS(xt)∥22 +
δ(1 + 2ηtL)(1 + 2η2tL

2λ2)

2ηtK

K∑
k=1

E∥ek,t∥22 +
δη2tLσ

2

K

≤ −δηt
4
E∥∇FS(xt)∥22 +

δ(1 + λ2)

ηt
· 1

K

K∑
k=1

E∥ek,t∥22 +
δη2tLσ

2

K

(a)

≤ −µδηt
2

E[FS(xt)− FS(x∗)] +
δ(1 + λ2)ηt(σ

2 + M2)

(1/
√

1− δ − 1)2
+

δη2tLσ
2

K
,

(B–55)

98

where (a) is due to ∥∇FS(xt)∥22 ≥ 2µ(FS(xt) − FS(x∗)) according to the PL condition and

Lemma B.1.3. Rearrange,

E[FS(xt+1)− FS(x∗)] ≤ (1− µδηt
2

)E[FS(xt)− FS(x∗)] +
δ(1 + λ2)ηt(σ

2 + M2)

(1/
√

1− δ − 1)2
+

δη2tLσ
2

K
.

(B–56)

Let ηt = c
t+1

and G =
√
σ2 + M2. Take this recurrence from t = 0 to T − 1 and we have

E[FS(xT)− FS(x∗)] ≤ E[FS(x0)− FS(x∗)]
T−1∏
t=0

(1− µδc

2(t + 1)
)︸ ︷︷ ︸

3○

+
δ(1 + λ2)G2

(1/
√

1− δ − 1)2

T−1∑
t′=0

c

t′ + 1

T−1∏
t=t′+1

(1− µδc

2(t + 1)
)︸ ︷︷ ︸

4○︸ ︷︷ ︸
5○

+
δLσ2

K

T−1∑
t′=0

c2

(t′ + 1)2

T−1∏
t=t′+1

(1− µδc

2(t + 1)
)︸ ︷︷ ︸

4○︸ ︷︷ ︸
6○

,

(B–57)

where

3○ ≤
T−1∏
t=0

exp(− µδc

2(t + 1)
) = exp(−µδc

2

T−1∑
t=0

1

t + 1
) ≤ exp(−µδc

2
) exp(−µδc

2

T−1∑
t=1

1

t + 1
)

≤ exp(−µδc

2
) exp(−µδc

2
log(T)) = exp(−µδc

2
)T−µδc

2 .

(B–58)

4○ ≤
T−1∏

t=t′+1

exp(− µδc

2(t + 1)
) = exp(−µδc

2

T−1∑
t=t′+1

1

t + 1
)

≤ exp(−µδc

2
log(

T

t′ + 1
)) = (

T

t′ + 1
)−

µδc
2 ,

(B–59)

When µδc
2
≥ 1,

5○ ≤ cT−µδc
2

T−1∑
t′=0

(t′ + 1)
µδc
2

−1 ≤ cT−µδc
2 · 2

µδc
[(T + 1)

µδc
2 − 1] ≤ 2

µδ
(
T + 1

T
)
µδc
2 . (B–60)

When 0 < µδc
2
≤ 1,

5○ ≤ cT−µδc
2

T−1∑
t′=0

(t′ + 1)
µδc
2

−1 ≤ cT−µδc
2 · [1 +

2

µδc
(T

µδc
2 − 1)] ≤ 2

µδ
. (B–61)

99

When µδc
2
≥ 2,

6○ ≤ c2T−µδc
2

T−1∑
t′=0

(t′ + 1)
µδc
2

−2 ≤ c2T−µδc
2 · 1

µδc/2− 1
[(T + 1)

µδc
2

−1 − 1]

≤ c2

µδc/2− 1
(
T + 1

T
)
µδc
2

−1T−1 .

(B–62)

When µδc
2
≤ 2, µδc

2
̸= 1,

6○ ≤ c2T−µδc
2

T−1∑
t′=0

(t′ + 1)
µδc
2

−2 ≤ c2T−µδc
2 · [1 +

1

µδc/2− 1
(T

µδc
2

−1 − 1)] ≤ c2

µδc/2− 1
T−1 .

(B–63)

When µδc
2

= 1,

6○ ≤ c2T−1

T−1∑
t′=0

(t′ + 1)−1 ≤ c2T−1 · (1 + log T) . (B–64)

E[FS(xT)− FS(x∗)] = Õ(T−µδc
2 + T−1 + (1/

√
1− δ − 1)−2) . (B–65)

B.3 Proof of Generalization of SGD-(IA) (Theorem 2.4.3)

For consistency, let {yt} be the SGD solution path, i.e.,

yt+1 = yt − ηt∇f(yt; ξt) = yt − ηtgt . (B–66)

Let {xt} be the SGD-IA solution path with x0 = y0, where IA denotes momentum iterative

averaging, i.e.,

xt+1 = (1− δ)xt + δyt+1 = xt + δ(yt+1 − xt) and x0 = y0 , (B–67)

where 0 < 1− δ < 1 is the momentum constant. Then,

xt = (1− δ)tx0 +
t∑

t′=1

δ(1− δ)t−t′yt′ = (1− δ)ty0 +
t∑

t′=1

δ(1− δ)t−t′yt′ . (B–68)

Let K = 1 and λ = 1, then DEF is identical to SGD. Following Lemma B.3.1, SGD-IA is

a special case of DEF-A with C(∆) = δ∆. Note that this compressor does not compress the

message volume.

100

Lemma B.3.1. Let gt = ∇f(yt; ξt), x0 = y0, and C(−∆) = C(∆). If yt+1 = yt − ηtgt and

xt+1 = xt +C(yt+1−xt), then the update rule of xt is identical to DEF-A when K = 1, λ = 1

with compressor C, i.e.,

xt+1 = xt − C(ηtgt + et) ,

et+1 = ηtgt + et − C(ηtgt + et), e0 = 0

yt+1 = yt − ηtgt .

(B–69)

Proof. We just need to verify xt+1 = xt + C(yt+1−xt) with the 3 equations above. We have

xt+1 = x0 −
t∑

t′=0

C(ηt′gt′ + et′), yt+1 = y0 −
t∑

t′=0

ηtgt′ . (B–70)

Then

xt+1 − et+1 = x0 − et+1 −
t∑

t′=0

C(ηt′gt′ + et′)

= x0 − et+1 − C(ηtgt + et)−
t−1∑
t′=0

C(ηt′gt′ + et′)

= x0 − ηtgt − et −
t−1∑
t′=0

C(ηt′gt′ + et′)

= · · · = x0 −
t∑

t′=0

ηtgt = yt+1 ,

(B–71)

xt + C(yt+1 − xt) = xt + C(xt+1 − et+1 − xt)

= xt + C(−C(ηtgt + et)− et+1)

= xt + C(−ηtgt − et) = xt+1 ,

(B–72)

which completes the proof.

B.3.1 Generalization Error of SGD

In this section, we need Assumptions 2.3.1, 2.3.2, 2.4.1, and ηt ≤ c
t+1

. Following Sec.

B.2.1 with K = 1 and λ = 1, we have

E[f(yT ; ξ)− f(ỹT ; ξ)] = O(T (1− 1
N
)Lc/((1− 1

N
)Lc+1)) . (B–73)

101

B.3.2 Generalization Error of SGD-IA

In this section, we need Assumptions 2.3.1, 2.3.2, 2.4.1, and ηt ≤ c
t+1

. Following Sec.

B.2.2 with K = 1, λ = 1 and the compressor replaced with C(∆) = δ∆ which satisfies

Assumptions 2.4.2 and 2.3.3, we have δ
1
2 → δ in Eq. (B–35). All the other procedures are

the same, thus

E[f(xT ; ξ)− f(x̃t; ξ)] = O(T (1− 1
N
)δLc/((1− 1

N
)δLc+1)) . (B–74)

B.3.3 Optimization Error of SGD

In this section, we need Assumptions 2.3.1, 2.3.2, 2.4.1, and ηt = c
t+1
≤ 1

4L
. Following

Sec. B.2.3 with K = 1 and λ = 1, we have

E[FS(yT)− FS(y∗)] = Õ(T−µc
2 + T−1) . (B–75)

B.3.4 Optimization Error of SGD-IA

In this section, we need Assumptions 2.3.1, 2.3.2, 2.4.1, and ηt = c
t+1
≤ 1

8δL
. Following

Sec. B.2.4 with K = 1, λ = 1 and the compressor replaced with C(∆) = δ∆ which satisfies

Assumptions 2.4.2 and 2.3.3, we have the same bound as Eq. (B–53), but 2○ = δ2E∥ηtgt+et∥22
in Eq. (B–54), which leads to the need for ηt ≤ 1

8δL
. All the other procedures are the same,

therefore

E[FS(xT)− FS(x∗)] = Õ(T−µδc
2 + T−1 + (1/

√
1− δ − 1)−2) . (B–76)

102

Appendix C “Improve the Performance with Data Privacy”

C.1 Additional Dataset Information

Table 19: Prostate dataset: number of data (3D image) in each client.

Client 1 2 3 4 5 6 Global

Train 10 16 18 18 25 50 137
Val 5 8 9 9 12 25 68
Test 4 8 8 8 13 24 65

Figure 16: Representative original 2D image in retinal dataset (low data similarity). First

row: client 1 to 3. Second row: client 4 to 6.

103

Figure 17: Representative original 2D image slices in prostate dataset (high data similarity).

First row: client 1 to 3. Second row: client 4 to 6. E.g., the first slice comes from a 3D

image in client 1.

Algorithm 5 FedSM-extra inference.

1: Input: data x, model (wg, {wp,k}Kk=1, ws)
2: ŷs = fs(ws;x)
3: k = argmax(ŷs) ∈ {0, 1, · · · ,K}
4: if k > 0 then
5: ŷ = f(wp,k;x)
6: else
7: ŷ = f(wg;x)
8: end if
9: Output: ŷ

C.2 FedSM-extra Algorithm

For the training of FedSM-extra, we train the global model and personalized models first,

and then train the model selector, which incurs extra ∆R training rounds. In each training

round of FedSM-extra, the communication cost is 2wg in the previous R rounds (the global

104

and personalized models have the same model architecture). It becomes ws in the extra ∆R

training rounds.

For the inference of FedSM-extra, both the global model and personalized models can

be selected. Therefore k ∈ {0, 1, · · · , K} (For FedSM, k ∈ {1, 2, · · · , K}).

C.3 Proof of SoftPull Convergence

Let the current/total training rounds be r/R, current/total local training steps be m/M ,

the current/total global training step be t/T . We denote the personalized model during

training as wr,m
p,k . For simplicity we use fk to denote loss LDk

.

After the local training in the last training round r − 1 finishes, we get model wr−1,M
p,k

and want to

min
K∑
k=1

fk(
1

λ
wr−1,M

p,k − 1− λ

λ

1

K − 1

K∑
k′=1,k′ ̸=k

wr−1,M
p,k′) (C–1)

In the beginning of the current training round r, from Eq. (3–11), we will have

wr,0
p,k = λwr−1,M

p,k + (1− λ)
1

K − 1

K∑
k′=1,k′ ̸=k

wr−1,M
p,k′ (C–2)

In the current training round r, we consider two stages. The first stage is a transition from

then end of training round r−1 to the start of the current training round r, while the second

stage is the start to the end of current training round r. Let λ′ = Kλ−1
K−1

, 1−λ′ = K
K−1

(1−λ),

then

wr,0
p,k = λ′wr−1,M

p,k + (1− λ′)wr−1,M
p,k (C–3)

where the bar denotes an average over all clients k ∈ {1, 2, · · · , K}. It can be clearly seen

that when the data distributions of clients are very similar, we set λ = 1
K

, λ′ = 0, i.e.,

the “hard averaging” in FedAvg. When the data distributions are not similar at all, we set

λ = 1, λ′ = 1 to only do local training. In other circumstances, theoretically we should set

λ ∈ [1
K
, 1], λ′ ∈ [0, 1] according to the data similarity.

105

C.3.1 Difference

Suppose the stochastic gradient at iteration (r,m) is ∇fk(wr,m
p,k , x

r,m
p,k) and the expected

gradient is ∇fk(wr,m
p,k) = Exr,m

p,k ∈Dk
∇fk(wr,m

p,k , x
r,m
p,k) = E∇fk(wr,m

p,k , x
r,m
p,k). We need to bound

∥(wr+1,0
p,k − wr,M

p,k)∥22 = ∥(1− λ)(wr,M
p,k −

1

K − 1

K∑
k′=1,k′ ̸=k

wr,M
p,k′)∥

2
2

= (1− λ)2∥wr,M
p,k −

1

K − 1
(Kwr,M

p,k − wr,M
p,k)∥22 =

(1− λ)2K2

(K − 1)2
∥wr,M

p,k − wr,M
p,k ∥

2
2

(C–4)

where

E∥wr,M
p,k − wr,M

p,k ∥
2
2

= η2E∥
r∑

r′=0

(λ′)r−r′
M−1∑
m=0

[∇fk(wr′,m
p,k , xr′,m

p,k)−∇fk(wr′,m
p,k , xr′,m

p,k)]∥22

≤ η2(
r∑

r′=0

(λ′)r−r′)2E∥
r∑

r′=0

(λ′)r−r′∑r
r′=0(λ

′)r−r′

M−1∑
m=0

[∇fk(wr′,m
p,k , xr′,m

p,k)−∇fk(wr′,m
p,k , xr′,m

p,k)]∥22

≤ η2(
r∑

r′=0

(λ′)r−r′)
r∑

r′=0

(λ′)r−r′E∥
M−1∑
m=0

[∇fk(wr′,m
p,k , xr′,m

p,k)−∇fk(wr′,m
p,k , xr′,m

p,k)]∥22

≤Mη2(
r∑

r′=0

(λ′)r−r′)
r∑

r′=0

(λ′)r−r′
M−1∑
m=0

E∥∇fk(wr′,m
p,k , xr′,m

p,k)−∇fk(wr′,m
p,k , xr′,m

p,k)∥22

≤ 2M2(G2 + σ2)η2(
r∑

r′=0

(λ′)r−r′)2

≤ 2M2(G2 + σ2)η2[
1− (λ′)r+1

1− λ′]2

(C–5)

where E∥∇fk(wr′,m
p,k , xr′,m

p,k)∥22 ≤ 2(G2 + σ2) based on Assumptions 3.3.3 and 3.3.2. Then

E∥(wr+1,0
p,k − wr,M

p,k)∥22

≤ [1− (λ′)r+1]2(1− λ)2K2

(1− λ′)2(K − 1)2
2M2(G2 + σ2)η2

= [1− (λ′)r+1]22M2(G2 + σ2)η2

(C–6)

106

C.3.2 Local Objective

Here we consider the local objective function to optimize. From (r, 0) to (r,M), i.e.

m ∈ {0, 1, · · · ,M − 1}, due to the Lipschitz smooth assumption we have

fk(wr,m+1
k,p)− fk(wr,m

k,p)

≤ ⟨∇fk(wr,m
k,p), wr,m+1

k,p − wr,m
k,p ⟩+

L

2
∥wr,m+1

k,p − wr,m
k,p ∥

2
2

= −η⟨∇fk(wr,m
k,p),∇fk(wr,m

k,p , x
r,m
k,p)⟩+

η2L

2
∥∇fk(wr,m

k,p , x
r,m
k,p)∥22

= −η⟨∇fk(wr,m
k,p),∇fk(wr,m

k,p , x
r,m
k,p)⟩+

η2L

2
∥∇fk(wr,m

k,p)∥22 +
η2Lσ2

2

(C–7)

Take the expectation and suppose η ≤ 1
L

,

E[fk(wr,m+1
k,p)− fk(wr,m

k,p)]

≤ −η(1− ηL

2
)E∥∇fk(wr,m

k,p)∥22 +
η2Lσ2

2

≤ −η

2
E∥∇fk(wr,m

k,p)∥22 +
η2Lσ2

2

(C–8)

E∥∇fk(wr,m
k,p)∥22 ≤

2

η
E[fk(wr,m

k,p)− fk(wr,m+1
k,p)] + ηLσ2 (C–9)

M−1∑
m=0

E∥∇fk(wr,m
k,p)∥22 ≤

2

η
E[fk(wr,0

k,p)− fk(wr,M
k,p)] + MηLσ2 (C–10)

While from (r,M) to (r + 1, 0), we have

fk(wr+1,0
k,p)− fk(wr,M

k,p)

≤ ⟨∇fk(wr,M
k,p), wr+1,0

k,p − wr,M
k,p ⟩+

L

2
∥wr+1,0

k,p − wr,M
k,p ∥

2
2

≤ η

8
∥∇fk(wr,M

k,p)∥22 + (
2

η
+

L

2
)∥wr+1,0

k,p − wr,M
k,p ∥

2
2

≤ η

4
∥∇fk(wr,M−1

k,p)∥22 +
ηL2

4
∥wr,M

k,p − wr,M−1
k,p ∥22 + (

2

η
+

L

2
)∥wr+1,0

k,p − wr,M
k,p ∥

2
2

=
η

4
∥∇fk(wr,M−1

k,p)∥22 +
η3L2

4
∥∇fk(wr,M−1

k,p , xr,M−1
k,p)∥22 + (

2

η
+

L

2
)∥wr+1,0

k,p − wr,M
k,p ∥

2
2

(C–11)

107

Therefore, from (r, 0) to (r + 1, 0), we have

M−1∑
m=0

E∥∇fk(wr,m
k,p)∥22

≤ 2

η
E[fk(wr,0

k,p)− fk(wr+1,0
k,p)] + MηLσ2 +

2

η
E[fk(wr+1,0

k,p)− fk(wr,M
k,p)]

≤ 2

η
E[fk(wr,0

k,p)− fk(wr+1,0
k,p)] + MηLσ2 +

1

2
E∥∇fk(wr,M−1

k,p)∥2 + η2L2(G2 + σ2)

+ (
4

η2
+

L

η
)E∥wr+1,0

k,p − wr,M
k,p ∥

2
2

(C–12)

M−1∑
m=0

E∥∇fk(wr,m
k,p)∥22

≤ 4

η
E[fk(wr,0

k,p)− fk(wr+1,0
k,p)] + 2MηLσ2 + 2η2L2(G2 + σ2) + (

8

η2
+

2L

η
)E∥wr+1,0

k,p − wr,M
k,p ∥

2
2

(C–13)

From r = 0 to R− 1,

1

RM

R−1∑
r=0

M−1∑
m=0

E∥∇fk(wr,m
k,p)∥22

≤
4E[fk(w0,0

k,p)− fk(wR,0
k,p)]

ηRM
+ 2ηLσ2 +

2η2L2(G2 + σ2)

M

+
1

RM
(

8

η2
+

2L

η
)
R−1∑
r=0

E∥wr+1,0
k,p − wr,M

k,p ∥
2
2

=
4E[fk(w0,0

k,p)− fk(wR,0
k,p)]

ηRM
+ 2ηLσ2 +

2η2L2(G2 + σ2)

M

+
1

RM
(

8

η2
+

2L

η
)
(1− λ)2K2

(K − 1)2

R−1∑
r=0

E∥wr,M
k,p − wr,M

k,p ∥
2
2

(C–14)

C.3.3 Proposed Objective

Here we consider our proposed personalized FL objective function to optimize. For

simplicity of notation, let

ur,m
k =

1

λ
wr,m

p,k −
1− λ

λ

1

K − 1

K∑
k′=1,k′ ̸=k

wr,m
p,k′ (C–15)

108

Then

ur,m
k − wr,m

p,k =
1− λ

λ
(wr,m

p,k −
1

K − 1

K∑
k′=1,k′ ̸=k

wr,m
p,k′)

=
1− λ

λ

K

K − 1
(wr,m

p,k − wr,m
p,k)

(C–16)

Now we bound the gradient of the proposed objective.

1

K

K∑
k=1

E∥∇wr,m
p,k

K∑
k′=1

fk′(u
r,m
k′)∥22

=
1

K

K∑
k=1

E∥1

λ
∇fk(ur,m

k)− 1− λ

λ

1

K − 1
∇fk′(ur,m

k′)∥22

≤ 2

K

K∑
k=1

(
1

λ2
+

(1− λ)2

λ2(K − 1)
)E∥∇fk(ur,m

k)∥22

=
2

K

K∑
k=1

(
1

λ2
+

(1− λ)2

λ2(K − 1)
)[E∥∇fk(wr,m

k,p)∥22 + L2E∥ur,m
k − wr,m

k,p ∥
2
2]

= (
1

λ2
+

(1− λ)2

λ2(K − 1)
)

2

K

K∑
k=1

[E∥∇fk(wr,m
k,p)∥22 +

L2(1− λ)2K2

λ2(K − 1)2
E∥wr,m

k,p − wr,m
k,p ∥

2
2]

(C–17)

1

KRM

R−1∑
r=0

M−1∑
m=0

K∑
k=1

E∥∇wr,m
p,k

K∑
k′=1

fk′(u
r,m
k′)∥22

≤ (
1

λ2
+

(1− λ)2

λ2(K − 1)
)

2

KRM

K∑
k=1

R−1∑
r=0

M−1∑
m=0

[E∥∇fk(wr,m
k,p)∥22 +

L2(1− λ)2K2

(K − 1)2
E∥wr,m

k,p − wr,m
k,p ∥

2
2]

≤ 2(
1

λ2
+

(1− λ)2

λ2(K − 1)
)[

4
K

∑K
k=1(f

0
k − f ∗

k)

ηRM
+ 2ηLσ2 +

2η2L2(G2 + σ2)

M

+
1

KRM
(

8

η2
+

2L

η
)
(1− λ)2K2

(K − 1)2

K∑
k=1

R−1∑
r=0

E∥wr,M
k,p − wr,M

k,p ∥
2
2

+
1

KRM

L2(1− λ)2K2

λ2(K − 1)2

K∑
k=1

R−1∑
r=0

M−1∑
m=0

E∥wr,m
k,p − wr,m

k,p ∥
2
2]

(C–18)

109

which converges to

O(
1

ηRMλ2
+

(1− λ)2

KRMη2λ2

K∑
K=1

R−1∑
r=0

E∥wr,M
k,p − wr,M

k,p ∥
2
2

+
(1− λ)2

KRMλ4

K∑
k=1

R−1∑
r=0

M−1∑
m=0

E∥wr,m
k,p − wr,m

k,p ∥
2
2)

= O(
1

ηRMλ2
+

M
∑R−1

r=0 (1− λ)2

Rλ2
+

M2η2
∑R−1

r=0 (1− λ)2

Rλ4
)

(C–19)

Suppose η = O(1√
RM

) and M = O(R
1
3), the convergence rate is O(1

λ4
√
RM

) with an error

O(
M

∑R−1
r=0 (1−λ)2

Rλ2).

C.4 Additional Experimental Results

Figure 18: Visual comparison of retinal disc (green) and cup (blue) segmentation. Dice

denotes the retinal disc and cup Dice coefficient.

110

Figure 19: Visual comparison of prostate (green) segmentation. Dice denotes the Dice

coefficient.

Table 20: Test Dice coefficient comparison of retinal disc segmentation.

Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client Avg Dice Global Dice

Centralized 0.9628 0.9486 0.9489 0.9539 0.9242 0.9565 0.9492 0.9522

Client 1 Local 0.9454 0.4357 0.8956 0.6073 0.4464 0.8409 0.6952 0.7129
Client 2 Local 0.2936 0.9431 0.1099 0.8371 0.2439 0.4575 0.4809 0.5589
Client 3 Local 0.9420 0.3998 0.9468 0.6399 0.4349 0.8256 0.6982 0.7120
Client 4 Local 0.6830 0.9400 0.4805 0.9526 0.3088 0.7803 0.6909 0.7796
Client 5 Local 0.6102 0.2169 0.4601 0.2518 0.9033 0.7064 0.5248 0.5373
Client 6 Local 0.8806 0.7937 0.8354 0.8475 0.4413 0.9547 0.7922 0.8555

FedAvg 0.9554 0.9410 0.9372 0.9535 0.8653 0.9549 0.9346 0.9444
FedProx 0.9447 0.9343 0.9229 0.9469 0.7573 0.9480 0.9090 0.9283
Scaffold 0.9207 0.9297 0.9026 0.9474 0.6347 0.9528 0.8813 0.9170

FedSM 0.9653 0.9489 0.9545 0.9551 0.9241 0.9560 0.9507 0.9527

111

Table 21: Test Dice coefficient comparison of retinal cup segmentation.

Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client Avg Dice Global Dice

Centralized 0.8649 0.8033 0.8027 0.8507 0.7778 0.8793 0.8298 0.8507

Client 1 Local 0.8216 0.2306 0.5733 0.3793 0.2351 0.5621 0.4670 0.4675
Client 2 Local 0.1756 0.7810 0.0673 0.7184 0.1143 0.3637 0.3701 0.4511
Client 3 Local 0.7256 0.2807 0.8064 0.5621 0.2939 0.7333 0.5670 0.6068
Client 4 Local 0.3385 0.7749 0.2109 0.8491 0.1632 0.5842 0.4868 0.6024
Client 5 Local 0.4380 0.1000 0.3305 0.1560 0.7414 0.5380 0.3840 0.3952
Client 6 Local 0.7011 0.5360 0.6296 0.6886 0.3073 0.8752 0.6230 0.7198

FedAvg 0.8140 0.7949 0.7963 0.8495 0.7101 0.8795 0.8074 0.8402
FedProx 0.7822 0.7702 0.7864 0.8437 0.6132 0.8712 0.7778 0.8216
Scaffold 0.7554 0.7729 0.7405 0.8396 0.4995 0.8732 0.7469 0.8081

FedSM 0.8610 0.8049 0.8186 0.8530 0.7724 0.8830 0.8322 0.8529

Table 22: (retinal segmentation, Dice = average of disc and cup Dice coefficients) Model

selection frequency from the model selector when FL train with clients {1, 2, · · · , 6}/{k}

and test on the unseen client k ∈ {1, 2, · · · , 6}. From left to right, GM denotes the global

model and PM denotes the personalized model {1, 2, · · · , 6}/{k}. We choose the best γ.

Unseen Client k GM PM1 PM2 PM3 PM4 PM5 PM6 Best γ, Dice

Client k = 6 1.00 0 0 0 0 0 N/A 1, 0.8906
Client k = 5 0.69 0.18 0 0 0.10 N/A 0.03 0.9, 0.4304
Client k = 4 0.03 0 0.97 0 N/A 0 0 <0.95, 0.8870
Client k = 3 0 0 0.57 N/A 0 0 0.43 <0.9, 0.8446
Client k = 2 0 0 N/A 0 0.92 0.08 0 <1, 0.8409
Client k = 1 0 N/A 0 1.00 0 0 0 <0.99, 0.8839

112

Table 23: (retinal segmentation, Dice = average of disc and cup Dice coefficients) Dice

performance when FL train with clients {1, 2, · · · , 6}/{k} and test on the unseen client

k ∈ {1, 2, · · · , 6}.

Method/Unseen Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Avg

Centralized 0.8842 0.8454 0.8214 0.8866 0.4064 0.8811 0.7875
FedAvg 0.8598 0.8313 0.8224 0.8551 0.4064 0.8887 0.7773
FedProx 0.8380 0.7856 0.8267 0.8746 0.4171 0.8784 0.7701
Scaffold 0.8085 0.7998 0.8211 0.8568 0.4121 0.8708 0.7615

FedSM 0.8818 0.8619 0.8498 0.8901 0.4118 0.8646 0.7933
FedSM-extra 0.8747 0.8685 0.8467 0.8794 0.4265 0.8809 0.7963

Algorithm 6 FedSM-extra training.
1: Input: local dataset Dk, rounds R, #sites K, learning rate η, coefficient λ, weight nk

n .
2: Initialize: global model wg, personalized model wp,k, model selector ws, optimizer OPT.
3: for round r = 1, 2, · · · , R do
4: SERVER: send models (wg, wp,k) to client k.
5: for CLIENT k ∈ {1, 2, · · · ,K} in parallel do
6: initialize wg,k ← wg

7: for batch (x, y) ∈ Dn do
8: wg,k ← OPT(wg,k, η,∇wg,k

L(f(wg,k;x), y))
9: wp,k ← OPT(wp,k, η,∇wp,k

L(f(wp,k;x), y))
10: end for
11: send (wg,k, wp,k) to server
12: end for
13: SERVER: wg ←

∑K
k=1

nk
n wg,k // FedAvg

14: SERVER: ∀k ∈ {1, 2, · · · ,K}, wp,k ← λwp,k + (1− λ) 1
K−1

∑K
k′=1,k′ ̸=k wp,k′ // SoftPull

15: end for
16: // extra training rounds
17: SERVER: send models (wg, wp,n) to clients.
18: for round r = 1, 2, · · · ,∆R do
19: SERVER: send model ws to clients.
20: for CLIENT k ∈ {1, 2, · · · ,K} in parallel do
21: Initialize ws,k ← ws

22: for batch (x, y) ∈ Dn do
23: ws,k ← OPT(ws,k, ηs,∇ws,k

Ls(fs(ws,k;x), ys)) // ys from Eq. (3–1)
24: end for
25: send ws,k to server
26: end for
27: SERVER: ws ←

∑K
k=1

nk
n ws,k

28: end for
29: Output: model (wg, {wp,k}Kk=1, ws)

113

Appendix D “A New Optimizer with Data Privacy”

D.1 Task Settings

CIFAR-10. We train VGG-16 and ResNet-56 models on CIFAR-10 image classification

task. For VGG-16, there is no batch normalization layer. For ResNet-56, we replace the batch

normalization layer with the group normalization layer because non-i.i.d. data distribution

causes inaccurate batch statistics estimation and worsens the client drift issue. The number

of groups in group normalization is set to 8. The local batch size b = 32 and the total batch

size B = Kb = 512. The weight decay is 5× 10−4. The model is trained for 200 epochs with

a learning rate decay of 0.1 at epoch 120 and 160. Random cropping, random flipping, and

standardization are applied as data augmentation techniques.

SVHN. We train ResNet-20 on SVHN dataset. The number of groups in group normal-

ization is set to 8. This task is simpler than CIFAR-10 and we set E = 5, s = 2% to enlarge

the difference of different methods with a smaller model ResNet-20. The local batch size

b = 32 and the total batch size B = Kb = 512. The model is trained for 200 epochs with a

learning rate decay of 0.1 at epoch 120 and 160. The weight decay is 1 × 10−4. We do not

apply data augmentation in this task.

CIFAR-100. We train VGG-16 and ResNet-56 on CIFAR-100 dataset. The number of

groups in group normalization is set to 8. This task is harder than CIFAR-10 and we set

E = 0.4, s = 40% to make all methods converge. The local batch size b = 32 and the total

batch size B = Kb = 512. The model is trained for 200 epochs with a learning rate decay of

0.1 at epoch 120 and 160. The weight decay is 5×10−4. Random cropping, random flipping,

and standardization are applied as data augmentation techniques.

114

D.2 Proof of Theorem 1

The update of server momentum mr and model xr follows

mr+1 = µsmr +
1

KP

K−1∑
k=0

P−1∑
p=0

m
(k)
r,p+1 and xr+1 = xr − αηPmr+1 . (D–1)

The update of local momentum m
(k)
r,p follows momentum SGD excepts that it will be averaged

or reset to zero in the end of each training round. To facilitate the analysis involving both

the Polyak’s server momentum and local momentum for the first time, we propose to define

a sequence {yr} as

yr = xr +
µs

1− µs

(xr − xr−1) = xr −
µs

1− µs

αηPmr

=
1

1− µs

xr −
µs

1− µs

xr−1 (r ≥ 1) and y0 = x0 .
(D–2)

We can set x−1 = x0 to remove the condition in the bracket. It is easy to see that

yr+1 − yr =
1

1− µs

(xr+1 − xr)−
µs

1− µs

(xr − xr−1) = − α

1− µs

ηP (mr+1 − µsmr)

= − αη

(1− µs)K

K−1∑
k=0

P−1∑
p=0

m
(k)
r,p+1 .

(D–3)

We also let

ŷr,p = yr −
αη

(1− µs)K

K−1∑
k=0

p−1∑
p′=0

m
(k)
r,p′+1 such that ŷr,0 = yr and ŷr,P = yr+1 = ŷr+1,0 .

(D–4)

It is easy to see that

ŷr,p+1 − ŷr,p = − αη

(1− µs)K

K−1∑
k=0

m
(k)
r,p+1 . (D–5)

To facilitate the analysis involving local momentum in ŷr,p, we define another novel sequence

{zr,p} as

zr,p = ŷr,p +
µl

1− µl

(ŷr,p − ŷr,p−1) = ŷr,p −
µlαη

(1− µl)(1− µs)K

K−1∑
k=0

m(k)
r,p

=
1

1− µl

ŷr,p −
µl

1− µl

ŷr,p−1 (r ≥ 1 or p ≥ 1) and z0,0 = ŷ0,0 = y0 = x0 .

(D–6)

115

We can set ŷ0,−1 = ŷ0,0 to remove the condition in the bracket. Then the update of zr,p

becomes

zr,p+1 − zr,p =
1

1− µl

(ŷr,p+1 − ŷr,p)−
µl

1− µl

(ŷr,p − ŷr,p−1)

= − αη

(1− µl)(1− µs)K

K−1∑
k=0

(m
(k)
r,p+1 − µlm

(k)
r,p) .

(D–7)

If the local momentum is reset (i.e., m
(k)
r,0 ← 0) instead of being averaged, i.e.,

m
(k)
r,0 ←

1

K

K−1∑
k=0

m
(k)
r−1,P (D–8)

at the end of each training round, we need to separately consider this update rule when

p = −1 for the last equality in the above equation. Therefore, we consider two cases:

(a) average momentum;

(b) reset momentum. In particular, for this case we have either (b.1) p ̸= −1 or (b.2)

p = −1.

For 0 ≤ p ≤ P − 1 (cases (a) and (b.1)), we have

zr,p+1 − zr,p = − αη

(1− µl)(1− µs)K

K−1∑
k=0

∇F (k)(x(k)
r,p , ξ

(k)
r,p) . (D–9)

We also consider p = −1 (case (b.2)) for completeness as −1 has been used in some previous

definitions:

zr,p+1 − zr,p = zr,0 − zr,−1 = zr−1,P − zr−1,P−1

= − αη

(1− µl)(1− µs)K

K−1∑
k=0

(m
(k)
r−1,P − µlm

(k)
r−1,P−1)

= − αη

(1− µl)(1− µs)K

K−1∑
k=0

∇F (k)(x
(k)
r−1,P−1, ξ

(k)
r−1,P−1) .

(D–10)

In this way the critical property zr,P = zr+1,0 is preserved from {ŷr,p}. In contrast, the anal-

ysis of the update between xr+1,0 and xr,P−1 is more tricky. Now we analyze the convergence

of {zr,p} and compare its difference with {xr,p}.

116

D.2.1 Inconsistency Bound of ∥zr,p − xr,p∥22 (Lemma 2)

In this section, some procedures in the proof of case (a) and case (b) can be different.

Let’s first consider case (a).

zr,p = ŷr,p +
µl

1− µl

(ŷr,p − ŷr,p−1) = ŷr,p −
µlαη

(1− µl)(1− µs)K

K−1∑
k=0

m(k)
r,p

= yr −
αη

(1− µs)K

K−1∑
k=0

p−1∑
p′=0

m
(k)
r,p′+1 −

µlαη

(1− µl)(1− µs)K

K−1∑
k=0

m(k)
r,p

= xr −
µs

1− µs

αηPmr −
αη

(1− µs)K

K−1∑
k=0

p−1∑
p′=0

m
(k)
r,p′+1 −

µlαη

(1− µl)(1− µs)K

K−1∑
k=0

m(k)
r,p .

(D–11)

For DOMO algorithm, we have

xr,p =
1

K

K−1∑
k=0

x(k)
r,p = xr − βηPmr −

η

K

K−1∑
k=0

p−1∑
p′=0

m
(k)
r,p′+1 . (D–12)

Let β = µs

1−µs
α and we have,

zr,p − xr,p = (1− α

1− µs

)
η

K

K−1∑
k=0

p−1∑
p′=0

m
(k)
r,p′+1 −

µlαη

(1− µl)(1− µs)K

K−1∑
k=0

m(k)
r,p . (D–13)

We define t = rP + p, and ∇F (k)
t = ∇F (k)(x

(k)
r,p , ξ

(k)
r,p). Then for case (a) we have

∥zr,p − xr,p∥22

= ∥ η
K

K−1∑
k=0

[(1− α

1− µs

)

p−1∑
p′=0

m
(k)
r,p′+1 −

µl

1− µl

α

1− µs

m(k)
r,p]∥22

= ∥ η
K

K−1∑
k=0

[(1− α

1− µs

)

p−1∑
p′=0

t−p+p′∑
τ=0

µt−p+p′−τ
l ∇F (k)

τ − µl

1− µl

α

1− µs

t−1∑
τ=0

µt−1−τ
l ∇F (k)

τ]∥22

= ∥ η
K

K−1∑
k=0

[(1− α

1− µs

)

p−1∑
p′=0

t−p∑
τ=0

µt−p+p′−τ
l ∇F (k)

τ − µl

1− µl

α

1− µs

t−p∑
τ=0

µt−1−τ
l ∇F (k)

τ

+ (1− α

1− µs

)

p−1∑
p′=0

t−p+p′∑
τ=t−p+1

µt−p+p′−τ
l ∇F (k)

τ − µl

1− µl

α

1− µs

t−1∑
τ=t−p+1

µt−1−τ
l ∇F (k)

τ ∥22

(D–14)

117

∥zr,p − xr,p∥22

= ∥ η
K

K−1∑
k=0

[(1− α

1− µs

)

p−1∑
p′=0

t−p∑
τ=0

µt−p+p′−τ
l ∇F (k)

τ − µl

1− µl

α

1− µs

t−p∑
τ=0

µt−1−τ
l ∇F (k)

τ

+ (1− α

1− µs

)
t−1∑

τ=t−p+1

p−1∑
p′=τ−t+p

µt−p+p′−τ
l ∇F (k)

τ − µl

1− µl

α

1− µs

t−1∑
τ=t−p+1

µt−1−τ
l ∇F (k)

τ ∥22

= ∥ η
K

K−1∑
k=0

[

t−p∑
τ=0

µt−1−τ
l ∇F (k)

τ ((1− α

1− µs

)

p−1∑
p′=0

µ−p+p′+1
l − µl

1− µl

α

1− µs

)

+
t−1∑

τ=t−p+1

µt−1−τ
l ∇F (k)

τ ((1− α

1− µs

)

p−1∑
p′=τ−t+p

µ−p+p′+1
l − µl

1− µl

α

1− µs

)]∥22 .

(D–15)

For simplicity, let

h1 =
µl

1− µl

α

1− µs

− (1− α

1− µs

)

p−1∑
p′=0

µ−p+p′+1
l =

α

1− µs

1 + µl − µp
l

1− µl

− 1− µp
l

1− µl

≤ h :=
α

1− µs

1 + µl − µp
l

1− µl

− 1

(D–16)

h2 =
µl

1− µl

α

1− µs

− (1− α

1− µs

)

p−1∑
p′=τ−t+p

µ−p+p′+1
l =

α

1− µs

1 + µl − µt−τ
l

1− µl

− 1− µt−τ
l

1− µl

(D–17)

When t− p + 1 ≤ τ ≤ t− 1, i.e., 1 ≤ t− τ ≤ p− 1 < p, we have h2 < h. Suppose

α ≥ (1− µs)(1− µl) ≥ max{(1− µs)(1− µp
l)

1 + µl − µp
l

,
(1− µs)(1− µt−τ

l)

1 + µl − µt−τ
l

} (D–18)

Then it is easy to see that h1, h2 ≥ 0.

∥zr,p − xr,p∥22 ≤ ∥
η

K

K−1∑
k=0

(

t−p∑
τ=0

h1µ
t−1−τ
l ∇F (k)

τ +
t−1∑

τ=t−p+1

h2µ
t−1−τ
l ∇F (k)

τ)∥22

≤ η2(

t−p∑
τ=0

h1µ
t−1−τ
l +

t−1∑
τ=t−p+1

h2µ
t−1−τ
l)

· (
t−p∑
τ=0

h1µ
t−1−τ
l ∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22 +

t−1∑
τ=t−p+1

h2µ
t−1−τ
l ∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22)

≤ η2(
t−1∑
τ=0

hµt−1−τ
l)

t−1∑
τ=0

hµt−1−τ
l ∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22 ≤

η2h2

1− µl

t−1∑
τ=0

µt−1−τ
l ∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22 .

(D–19)

118

Let T = RP . Note that h is a function of α and p (or t). Summing from t = 0 to T − 1

yields

T−1∑
t=0

∥zr,p − xr,p∥22 ≤
η2

1− µl

T−1∑
t=0

h2

t−1∑
τ=0

µt−1−τ
l ∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22

=
η2

1− µl

T−2∑
τ=0

∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22

T−1∑
t=τ+1

h2µt−1−τ
l

≤ η2

1− µl

T−2∑
τ=0

∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22

+∞∑
t=0

h2µt
l

≤ η2

1− µl

T−2∑
τ=0

∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22

P−1∑
p=0

h2

+∞∑
n=0

µp+nP
l

=
η2

1− µl

T−2∑
τ=0

∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22

P−1∑
p=0

h2 µp
l

1− µP
l

.

(D–20)

The R.H.S. is minimized when α = (1− µs)(1− µl), h1− = µl − µp
l and we have

T−1∑
t=0

∥zr,p − xr,p∥22 ≤
η2

1− µl

T−2∑
τ=0

∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22

P−1∑
p=0

µ2
l

µp
l

1− µP
l

=
η2µ2

l

(1− µl)2

T−1∑
t=0

∥ 1

K

K−1∑
k=0

∇F (k)
t ∥22 .

(D–21)

In particular, for local momentum SGD, α = 1, µs = 0, and h1 = h2 = µl

1−µl
. Moreover, for

DOMO with α = 1−µs and β = µs, we still have h1 = h2 = µl

1−µl
. For both of them, we can

get the inconsistency bound following the above precedure by replacing h with µl

1−µl
:

T−1∑
t=0

∥zr,p − xr,p∥22 ≤
η2µ2

l

(1− µl)4

T−1∑
t=0

∥ 1

K

K−1∑
k=0

∇F (k)
t ∥22 . (D–22)

Compare the above two upper bounds and we can see that DOMO achieves (1 − µl)
2 of

the inconsistency bound in local momentum SGD. However, we note that a potential higher

improvement may be achieved as α = (1− µs)(1− µl) may not be optimal due to inequality

scaling. Therefore in experiments hyper-parameters α and β require further tuning.

As the improvement is a constant factor and does not affect the convergence rate (though

it helps empirical training), in later analysis we simply set α = 1 and β = µs to preserve the

same inconsistency bound.

119

Following similar procedures except that the local momentum is reset to 0 every P

iterations, for case (b) we have

∥zr,p − xr,p∥22 = ∥ η
K

K−1∑
k=0

[(1− α

1− µs

)

p−1∑
p′=0

m
(k)
r,p′+1 −

µl

1− µl

m(k)
r,p]∥22

= ∥ η
K

K−1∑
k=0

[(1− α

1− µs

)

p−1∑
p′=0

t−p+p′∑
τ=t−p

µt−p+p′−τ
l ∇F (k)

τ − µl

1− µl

t−1∑
τ=t−p

µt−1−τ
l ∇F (k)

τ]∥22

= ∥ η
K

K−1∑
k=0

[(1− α

1− µs

)
t−1∑

τ=t−p

p−1∑
p′=τ−t+p

µt−p+p′−τ
l ∇F (k)

τ − µl

1− µl

t−1∑
τ=t−p

µt−1−τ
l ∇F (k)

τ]∥22

= ∥ η
K

K−1∑
k=0

t−1∑
τ=t−p

µt−1−τ
l ∇F (k)

τ h2∥22 ≤ ∥ηh1

t−1∑
τ=t−p

µt−1−τ
l

K−1∑
k=0

1

K
∇F (k)

τ ∥22

≤ η2h2
1

1− µl

t−1∑
τ=t−p

µt−1−τ
l ∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22 ≤

η2h2
1

1− µl

t−1∑
τ=0

µt−1−τ
l ∥ 1

K

K−1∑
k=0

∇F (k)
τ ∥22 .

(D–23)

Compare it with Eq. (D–19) and we can see that the inconsistency bound in case (a) can

also bound that in case (b).

D.2.2 Divergence Bound of ∥xr,p − x
(k)
r,p∥22

We note that in this section, the proof is identical for either case (a) or case (b). We

first consider

1

K

K−1∑
k=0

∥∇f (k)(x(k)
r,p)− 1

K

K−1∑
k′=0

∇f (k′)(x(k′)
r,p)∥22

≤ 1

K

K−1∑
k=0

(3∥∇f (k)(x(k)
r,p)−∇f (k)(xr,p)∥22 + 3∥∇f (k)(xr,p)−∇f(xr,p)∥22

+ 3∥∇f(xr,p)−
1

K

K−1∑
k′=0

∇f (k′)(x(k′)
r,p)∥22)

≤ 6L2

K

K−1∑
k=0

∥x(k)
r,p − xr,p∥22 + 3G2 .

(D–24)

120

Then,

1

K

K−1∑
k=0

E∥xr,p − x(k)
r,p∥22

=
1

K

K−1∑
k=0

E∥ 1

K

K−1∑
k′=0

(xr − µsηPmr −
p−1∑
p′=0

ηm
(k′)
r,p′+1)− (xr − µsηPmr −

p−1∑
p′=0

ηm
(k)
r,p′+1)∥

2
2

=
η2

K

K−1∑
k=0

E∥
p−1∑
p′=0

(
1

K

K−1∑
k′=0

m
(k′)
r,p′+1 −m

(k)
r,p′+1)∥

2
2

=
η2

K

K−1∑
k=0

E∥
p−1∑
p′=0

(
1

K

K−1∑
k′=0

∇F (k′)(x
(k′)
r,p′ , ξ

(k′)
r,p′)−∇F

(k)(x
(k)
r,p′ , ξ

(k)
r,p′))

1− µp−p′

l

1− µl

∥22

≤ 2η2

K

K−1∑
k=0

E∥
p−1∑
p′=0

[
1

K

K−1∑
k′=0

(∇F (k′)(x
(k′)
r,p′ , ξ

(k′)
r,p′)−∇f

(k)(x
(k′)
r,p′))

− (∇F (k)(x
(k)
r,p′ , ξ

(k)
r,p′)−∇f

(k)(x
(k)
r,p′))]

1− µp−p′

l

1− µl

∥22

+
2η2

K

K−1∑
k=0

E∥
p−1∑
p′=0

[
1

K

K−1∑
k′=0

∇f (k′)(x
(k′)
r,p′)−∇f

(k)(x
(k)
r,p′)]

1− µp−p′

l

1− µl

∥22

≤ 2η2Pσ2

(1− µl)2
+

2η2P

(1− µl)2K

K−1∑
k=0

p−1∑
p′=0

E∥ 1

K

K−1∑
k′=0

∇f (k′)(x
(k′)
r,p′)−∇f

(k)(x
(k)
r,p′)∥

2
2

≤ 2η2Pσ2

(1− µl)2
+

2η2P

(1− µl)2

p−1∑
p′=0

(
6L2

K

K−1∑
k=0

E∥xr,p′ − x
(k)
r,p′∥

2
2 + 3G2)

≤ 12η2PL2

(1− µl)2K

p−1∑
p′=0

K−1∑
k=0

E∥xr,p′ − x
(k)
r,p′∥

2
2 +

2η2Pσ2

(1− µl)2
+

6η2P 2G2

(1− µl)2

(D–25)

Sum t from 0 to T − 1 = RP − 1 (i.e., sum p from 0 to P − 1 and sum r from 0 to R − 1)

and let P ≤ 1−µl

6ηL
,

1

KT

T−1∑
t=0

K−1∑
k=0

E∥xr,p − x(k)
r,p∥22

≤ 12η2P 2L2

(1− µl)2KT

T−1∑
t=0

K−1∑
k=0

E∥xr,p − x(k)
r,p∥22 +

2η2Pσ2

(1− µl)2
+

6η2P 2G2

(1− µl)2

≤ 1

3KT

T−1∑
t=0

K−1∑
k=0

E∥xr,p − x(k)
r,p∥22 +

2η2Pσ2

(1− µl)2
+

6η2P 2G2

(1− µl)2
3η2Pσ2

(1− µl)2
+

9η2P 2G2

(1− µl)2
.

(D–26)

121

D.2.3 Main Proof

Consider the improvement in one training round (0 ≤ p ≤ P − 1). By the smoothness

assumption,

Er,pf(zr,p+1)− Er,pf(zr,p) ≤ Er,p⟨∇f(zr,p), zr,p+1 − zr,p⟩+
L

2
Er,p∥zr,p+1 − zr,p∥22

= − η

1− µl

⟨∇f(zr,p),
1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)⟩+

Lη2

2(1− µl)2
Er,p∥

1

K

K−1∑
k=0

∇F (k)(x(k)
r,p , ξ

(k)
r,p)∥22

= − η

1− µl

⟨∇f(zr,p),
1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)⟩+

Lη2

2(1− µl)2
Er,p∥

1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)∥22

+
Lη2σ2

2(1− µl)2K
.

(D–27)

∀γ ∈ R+, the first term

− η

1− µl

⟨∇f(zr,p),
1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)⟩

= − η

1− µl

⟨∇f(zr,p)−∇f(xr,p),
1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)⟩

− η

1− µl

⟨∇f(xr,p),
1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)⟩

≤ η

2(1− µl)γ
∥∇f(zr,p)−∇f(xr,p)∥22 +

ηγ

2(1− µl)
∥ 1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)∥22

− η

2(1− µl)
(∥∇f(xr,p)∥22 + ∥ 1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)∥22 − ∥∇f(xr,p)−

1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)∥22)

≤ ηL2

2(1− µl)γ
∥zr,p − xr,p∥22 −

η(1− γ)

2(1− µl)
∥ 1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)∥22 −

η

2(1− µl)
∥∇f(xr,p)∥22

+
ηL2

2(1− µl)K

K−1∑
k=0

∥xr,p − x(k)
r,p∥22 .

(D–28)

122

Combine the above two equations,

Er,pf(zr,p+1)− Er,pf(zr,p)

≤ − η

2(1− µl)
∥∇f(xr,p)∥22 +

ηL2

2(1− µl)γ
∥zr,p − xr,p∥22 +

ηL2

2(1− µl)K

K−1∑
k=0

∥xr,p − x(k)
r,p∥22

+
Lη2σ2

2(1− µl)2K
− η

2(1− µl)
(1− γ − Lη)∥ 1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)∥22 .

(D–29)

Now we take the total expectation and sum t from 0 to T − 1 = RP − 1,

1

T
[Ef(zR−1,P)− f(z0,0)] ≤ −

η

2(1− µl)T

T−1∑
t=0

E∥∇f(xr,p)∥22 +
ηL2

2γ(1− µl)T

T−1∑
t=0

E∥zr,p − xr,p∥22

+
ηL2

2(1− µl)TK

T−1∑
t=0

K−1∑
k=0

E∥xr,p − x(k)
r,p∥22 +

Lη2σ2

2(1− µl)2K

− η

2(1− µl)T
(1− γ − Lη)

T−1∑
t=0

E∥ 1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)∥22 .

(D–30)

Based on bounds derived in section D.2.1 and D.2.2, let γ = 1
2

and 1−γ−Lη− µ2
l η

2L2

γ(1−µl)4
≥ 0,

1

T
[f∗ − f(x0)] ≤

1

T
[Ef(zR−1,P)− f(z0,0)]

≤ − η

2(1− µl)T

T−1∑
t=0

E∥∇f(xr,p)∥22 +
ηL2

2γ(1− µl)T

µ2
l η

2

(1− µl)4

T−1∑
t=0

∥ 1

K

K−1∑
k=0

∇F (x(k)
r,p , ξ

(k)
r,p)∥22

+
ηL2

2(1− µl)
[

3η2Pσ2

(1− µl)2
+

9η2P 2G2

(1− µl)2
]

+
Lη2σ2

2(1− µl)2K
− η

2(1− µl)T
(1− γ − Lη)

T−1∑
t=0

E∥ 1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)∥22

= − η

2(1− µl)T

T−1∑
t=0

E∥∇f(xr,p)∥22 +
η2Lσ2

2(1− µl)2
(

1

K
+

3ηLP

2(1− µl)
+

µ2
l ηL

γ(1− µl)4K
)

+
9η3L2P 2G2

2(1− µl)3
− η

2(1− µl)T
(1− γ − Lη − µ2

l η
2L2

γ(1− µl)4
)
T−1∑
t=0

E∥ 1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)∥22

≤ −η
2(1− µl)T

T−1∑
t=0

E∥∇f(xr,p)∥22 +
η2Lσ2

2(1− µl)2
(

1

K
+

3ηLP

2(1− µl)
+

2µ2
l ηL

(1− µl)4K
) +

9η3L2P 2G2

.

(D–31)

123

Rearrange and we have

1

T

T−1∑
t=0

E∥∇f(xr,p)∥22 ≤
2(1− µl)(f(x0)− f∗)

ηT
+

ηLσ2

(1− µl)
(

1

K
+

3ηLP

2(1− µl)
+

2µ2
l ηL

(1− µl)4K
)

+
9η2L2P 2G2

(1− µl)2
,

(D–32)

which completes the proof.

D.3 Extension to Partial Participation

In this section we show that it is possible to extend the theoretical analysis of DOMO

to cross-device FL with partial clients participation in each training round.

For the algorithm side, suppose we randomly sample a client set Vr to participate in

training round r. Let |Vr| = S. For the computation of client k, we can just replace client

k ∈ [K] (full participation) with k ∈ V r (partial participation). Correspondingly, the server

should only communicate with clients in Vr.

That is, k ∈ [K]→ k ∈ Vr and 1
K

∑K−1
k=0 →

1
S

∑
k∈Vr

.

For the convergence analysis, we should also do such replacement. But besides the

replacement, we note that now ∇f(x) = 1
K

∑K−1
k=0 ∇f (k)(x) ̸= 1

S

∑
k∈Vr
∇f (k)(x), which will

affect the following two inequalities of the proof in the previous section.

(a) Eq. (D–24):

1

K

K−1∑
k=0

∥∇f (k)(x(k)
r,p)− 1

K

K−1∑
k′=0

∇f (k′)(x(k′)
r,p)∥22 ≤

6L2

K

K−1∑
k=0

∥x(k)
r,p − xr,p∥22 + 3G2 (D–33)

New (partial participation):

1

S

∑
k∈Vr

∥∇f (k)(x(k)
r,p)− 1

S

∑
k′∈Vr

∇f (k′)(x(k′)
r,p)∥22 ≤

1

S

∑
k∈Vr

∥∇f (k)(x(k)
r,p)− 1

S

∑
k′∈Vr

∇f (k′)(x(k′)
r,p)∥22

≤ 1

S

∑
k∈Vr

[3∥∇f (k)(x(k)
r,p)−∇f (k)(xr,p)∥22 + 3∥ 1

S

∑
k′∈Vr

(∇f (k′)(xr,p)−∇f (k′)(x(k′)
r,p))∥22

+ 3∥∇f (k)(xr,p)−
1

S

∑
k∈Vr

∇f (k′)(xr,p)∥22]

(D–34)

124

1

S

∑
k∈Vr

∥∇f (k)(x(k)
r,p)− 1

S

∑
k′∈Vr

∇f (k′)(x(k′)
r,p)∥22

≤ 6L2

S

∑
k∈Vr

∥x(k)
r,p − xr,p∥22

+
1

S

∑
k∈Vr

[6∥∇f (k)(xr,p)−∇f(xr,p)∥22 + 6∥∇f(xr,p)−
1

S

∑
k′∈Vr

∇f (k′)(xr,p)∥22]

≤ 6L2

S

∑
k∈Vr

∥x(k)
r,p − xr,p∥22 + 12G2

(D–35)

This larger constant coefficient of G2 does not affect the convergence rate. This leads to

a new bound in section D.2.2

1

KT

T−1∑
t=0

K−1∑
k=0

E∥xr,p − x(k)
r,p∥22 ≤

3η2P 2σ2

(1− µl)2
+

36η2P 2G2

(1− µl)2
(D–36)

(b) In Eq. (D–28), we showed that

− η

1− µl

⟨∇f(xr,p),
1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)⟩

≤ − η

2(1− µl)
∥∇f(xr,p)∥22 −

η

2(1− µl)
∥ 1

K

K−1∑
k=0

∇f (k)(x(k)
r,p)∥22

+
ηL2

2(1− µl)K

K−1∑
k=0

∥xr,p − x(k)
r,p∥22

(D–37)

New (partial participation): suppose the client set Vr is randomly and uniformly sampled

following common practice, such that EVr [
1
S

∑
k∈Vr
∇f (k)(x)] = ∇f(x). Then

− η

1− µl

EVr⟨∇f(xr,p),
1

S

∑
k∈Vr

∇f (k)(x(k)
r,p)⟩

= − η

1− µl

EVr⟨∇f(xr,p),
1

S

∑
k∈Vr

∇f (k)(xr,p)⟩

− η

1− µl

EVr⟨∇f(xr,p),
1

S

∑
k∈Vr

(∇f (k)(x(k)
r,p)−∇f (k)(xr,p))

≤ − η

1− µl

∥∇f(xr,p)∥22 +
η

2(1− µl)
EVr [∥∇f(xr,p)∥22 + ∥ 1

S

∑
k∈Vr

(∇f (k)(x(k)
r,p)−∇f (k)(xr,p))∥22]

≤ − η

2(1− µl)
∥∇f(xr,p)∥22 + EVr [

ηL2

2(1− µl)S

∑
k∈Vr

∥x(k)
r,p − xr,p∥22]

(D–38)

125

Compared with the previous result, this bound is larger by the term

η

2(1− µl)
∥ 1

S

∑
k∈Vr

∇f (k)(x(k)
r,p)∥22 , (D–39)

which we will need to bound in the main proof. A simple way to bound it will be an

additional assumption to bound the gradient norm. In summary, not much of the current

proof in the previous section needs to be modified. For partial participation, we will need

a a stronger assumption that ∥∇f (k)(x)∥22 ≤M2. Following the modification above and the

main proof, we will have a convergence rate O(S
1
2R− 1

2P− 1
2).

126

Bibliography

[1] Nci isbi dataset. https://www.cancerimagingarchive.net/.

[2] Promise12 dataset. https://promise12.grand-challenge.org/.

[3] Prostatex dataset. https://prostatex.grand-challenge.org/.

[4] Refuge dataset. https://refuge.grand-challenge.org/details/.

[5] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’ 16), pages 265–283, 2016.

[6] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul What-
mough, and Venkatesh Saligrama. Federated learning based on dynamic regulariza-
tion. In International Conference on Learning Representations, 2020.

[7] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient
descent. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 440–445, 2017.

[8] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in
Neural Information Processing Systems, 30:1709–1720, 2017.

[9] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat,
and Cédric Renggli. The convergence of sparsified gradient methods. In Advances in
Neural Information Processing Systems, pages 5973–5983, 2018.

[10] Ahmed Almazroa, Sami Alodhayb, Essameldin Osman, Eslam Ramadan, Mohammed
Hummadi, Mohammed Dlaim, Muhannad Alkatee, Kaamran Raahemifar, and Va-
sudevan Lakshminarayanan. Retinal fundus images for glaucoma analysis: the riga
dataset. In Medical Imaging 2018: Imaging Informatics for Healthcare, Research,
and Applications, volume 10579, page 105790B. International Society for Optics and
Photonics, 2018.

127

https://www.cancerimagingarchive.net/
https://promise12.grand-challenge.org/
https://prostatex.grand-challenge.org/
https://refuge.grand-challenge.org/details/

[11] Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Bennett A
Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M Summers,
Bram van Ginneken, et al. The medical segmentation decathlon. arXiv preprint
arXiv:2106.05735, 2021.

[12] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gra-
dient push for distributed deep learning. In International Conference on Machine
Learning, pages 344–353. PMLR, 2019.

[13] Dmitrii Avdiukhin and Grigory Yaroslavtsev. Escaping saddle points with compressed
sgd. arXiv preprint arXiv:2105.10090, 2021.

[14] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd:
Distributed sgd with quantization, sparsification and local computations. Advances
in Neural Information Processing Systems, 32, 2019.

[15] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy
learning of cnns. arXiv preprint arXiv:1901.08164, 2019.

[16] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anand-
kumar. signsgd: Compressed optimisation for non-convex problems. In International
Conference on Machine Learning, pages 560–569. PMLR, 2018.

[17] Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar.
signsgd with majority vote is communication efficient and fault tolerant. In Interna-
tional Conference on Learning Representations, 2018.

[18] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan
McMahan, et al. Towards federated learning at scale: System design. arXiv preprint
arXiv:1902.01046, 2019.

[19] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Yves
Lechevallier and Gilbert Saporta, editors, Proceedings of COMPSTAT’2010, pages
177–186, Heidelberg, 2010. Physica-Verlag HD.

[20] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine
learning research, 2(Mar):499–526, 2002.

128

[21] Kai Chen and Qiang Huo. Scalable training of deep learning machines by incremental
block training with intra-block parallel optimization and blockwise model-update fil-
tering. In 2016 ieee international conference on acoustics, speech and signal processing
(icassp), pages 5880–5884. IEEE, 2016.

[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and effi-
cient machine learning library for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[23] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with
sublinear memory cost. arXiv preprint arXiv:1604.06174, 2016.

[24] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in
non-convex sgd. In Advances in Neural Information Processing Systems, pages 15236–
15245, 2019.

[25] Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V Le,
Mark Z Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, et al. Large scale
distributed deep networks. In Proceedings of the 25th International Conference on
Neural Information Processing Systems-Volume 1, pages 1223–1231, 2012.

[26] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental
gradient method with support for non-strongly convex composite objectives. Advances
in neural information processing systems, 27:1646–1654, 2014.

[27] Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimiza-
tion for deep learning. arXiv preprint arXiv:1812.04529, 2018.

[28] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[29] Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive person-
alized federated learning. arXiv preprint arXiv:2003.13461, 2020.

[30] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

129

[31] Aritra Dutta, El Houcine Bergou, Ahmed M Abdelmoniem, Chen-Yu Ho,
Atal Narayan Sahu, Marco Canini, and Panos Kalnis. On the discrepancy between
the theoretical analysis and practical implementations of compressed communication
for distributed deep learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3817–3824, 2020.

[32] Melih Elibol, Lihua Lei, and Michael I Jordan. Variance reduction with sparse gradi-
ents. In International Conference on Learning Representations, 2019.

[33] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learn-
ing with theoretical guarantees: A model-agnostic meta-learning approach. Advances
in Neural Information Processing Systems, 33, 2020.

[34] Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. Ef21
with bells & whistles: Practical algorithmic extensions of modern error feedback.
arXiv preprint arXiv:2110.03294, 2021.

[35] Francisco Fumero, Silvia Alayón, José L Sanchez, Jose Sigut, and M Gonzalez-
Hernandez. Rim-one: An open retinal image database for optic nerve evaluation.
In 2011 24th international symposium on computer-based medical systems (CBMS),
pages 1–6. IEEE, 2011.

[36] Hongchang Gao, An Xu, and Heng Huang. On the convergence of communication-
efficient local sgd for federated learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, Virtual, pages 18–19, 2021.

[37] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Invert-
ing gradients–how easy is it to break privacy in federated learning? arXiv preprint
arXiv:2003.14053, 2020.

[38] Jemin George and Prudhvi Gurram. Distributed stochastic gradient descent with
event-triggered communication. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7169–7178, 2020.

[39] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient
framework for clustered federated learning. Advances in Neural Information Process-
ing Systems, 33, 2020.

[40] Andreas Griewank. An implementation of checkpointing for the reverse or adjoint
model of differentiation. ACM Trans. Math. Software, 26(1):1–19, 1999.

130

[41] Bin Gu, An Xu, Zhouyuan Huo, Cheng Deng, and Heng Huang. Privacy-preserving
asynchronous vertical federated learning algorithms for multiparty collaborative learn-
ing. IEEE transactions on neural networks and learning systems, 33(11):6103–6115,
2021.

[42] Pengfei Guo, Puyang Wang, Jinyuan Zhou, Shanshan Jiang, and Vishal M Patel.
Multi-institutional collaborations for improving deep learning-based magnetic reso-
nance image reconstruction using federated learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2423–2432, 2021.

[43] Pengfei Guo, Dong Yang, Ali Hatamizadeh, An Xu, Ziyue Xu, Wenqi Li, Can Zhao,
Daguang Xu, Stephanie Harmon, Evrim Turkbey, et al. Auto-fedrl: Federated hy-
perparameter optimization for multi-institutional medical image segmentation. In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXI, pages 437–455. Springer, 2022.

[44] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability
of stochastic gradient descent. In International Conference on Machine Learning,
pages 1225–1234. PMLR, 2016.

[45] Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat
local minima. arXiv preprint arXiv:1902.00744, 2019.

[46] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-
trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[49] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B Gib-
bons, Garth A Gibson, Greg Ganger, and Eric P Xing. More effective distributed ml
via a stale synchronous parallel parameter server. In Advances in neural information
processing systems, pages 1223–1231, 2013.

131

[50] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data
quagmire of decentralized machine learning. In International Conference on Machine
Learning, pages 4387–4398. PMLR, 2020.

[51] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of
non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335, 2019.

[52] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7132–7141,
2018.

[53] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kil-
ian Q Weinberger. Snapshot ensembles: Train 1, get m for free. arXiv preprint
arXiv:1704.00109, 2017.

[54] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V Le, and Zhifeng Chen. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. arXiv preprint arXiv:1811.06965, 2018.

[55] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient
training of giant neural networks using pipeline parallelism. Advances in neural in-
formation processing systems, 32:103–112, 2019.

[56] Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin, James Cheng, An Xu, Zhan-
hao Liu, and Shuo Tu. Tangram: bridging immutable and mutable abstractions
for distributed data analytics. In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 191–206, 2019.

[57] Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features
replay. In Advances in Neural Information Processing Systems, pages 6659–6668, 2018.

[58] Zhouyuan Huo, Bin Gu, and Heng Huang. Large batch training does not need warmup.
arXiv preprint arXiv:2002.01576, 2020.

[59] Zhouyuan Huo, Bin Gu, qian Yang, and Heng Huang. Decoupled parallel backprop-
agation with convergence guarantee. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80

132

of Proceedings of Machine Learning Research, pages 2098–2106, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

[60] Zhouyuan Huo and Heng Huang. Straggler-agnostic and communication-efficient dis-
tributed primal-dual algorithm for high-dimensional data mining. arXiv preprint
arXiv:1910.04235, 2019.

[61] Zhouyuan Huo, Qian Yang, Bin Gu, Lawrence Carin Huang, et al. Faster on-device
training using new federated momentum algorithm. arXiv preprint arXiv:2002.02090,
2020.

[62] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[63] P Izmailov, AG Wilson, D Podoprikhin, D Vetrov, and T Garipov. Averaging weights
leads to wider optima and better generalization. In 34th Conference on Uncertainty
in Artificial Intelligence 2018, UAI 2018, pages 876–885, 2018.

[64] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex
Graves, David Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using
synthetic gradients. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1627–1635. JMLR. org, 2017.

[65] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving fed-
erated learning personalization via model agnostic meta learning. arXiv preprint
arXiv:1909.12488, 2019.

[66] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predic-
tive variance reduction. Advances in neural information processing systems, 26:315–
323, 2013.

[67] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

[68] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and
proximal-gradient methods under the polyak- lojasiewicz condition. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 795–
811. Springer, 2016.

133

[69] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J
Reddi, Sebastian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized
stochastic algorithms in federated learning. arXiv preprint arXiv:2008.03606, 2020.

[70] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for
federated learning. In International Conference on Machine Learning, pages 5132–
5143. PMLR, 2020.

[71] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Er-
ror feedback fixes signsgd and other gradient compression schemes. In International
Conference on Machine Learning, pages 3252–3261. PMLR, 2019.

[72] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[73] Anastasia Koloskova, Tao Lin, Sebastian U Stich, and Martin Jaggi. Decentralized
deep learning with arbitrary communication compression. In International Conference
on Learning Representations, 2019.

[74] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492, 2016.

[75] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997, 2014.

[76] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

[77] Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gra-
dient descent. In International Conference on Machine Learning, pages 2815–2824.
PMLR, 2018.

[78] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten
zip code recognition. Neural computation, 1(4):541–551, 1989.

[79] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P
Xing. On model parallelization and scheduling strategies for distributed machine

134

learning. In Advances in neural information processing systems, pages 2834–2842,
2014.

[80] Guillaume Lemâıtre, Robert Mart́ı, Jordi Freixenet, Joan C Vilanova, Paul M Walker,
and Fabrice Meriaudeau. Computer-aided detection and diagnosis for prostate can-
cer based on mono and multi-parametric mri: a review. Computers in biology and
medicine, 60:8–31, 2015.

[81] Jinfeng Li, Xiao Yan, Jian Zhang, An Xu, James Cheng, Jie Liu, Kelvin KW Ng,
and Ti-chung Cheng. A general and efficient querying method for learning to hash.
In Proceedings of the 2018 International Conference on Management of Data, pages
1333–1347, 2018.

[82] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed ma-
chine learning with the parameter server. In 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), pages 583–598, 2014.

[83] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication effi-
cient distributed machine learning with the parameter server. In Advances in Neural
Information Processing Systems, pages 19–27, 2014.

[84] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication effi-
cient distributed machine learning with the parameter server. Advances in Neural
Information Processing Systems, 27:19–27, 2014.

[85] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander
Smola. Parameter server for distributed machine learning. In Big Learning NIPS
Workshop, volume 6, page 2, 2013.

[86] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust
federated learning through personalization. In International Conference on Machine
Learning, pages 6357–6368. PMLR, 2021.

[87] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks. arXiv preprint
arXiv:1812.06127, 2018.

[88] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation
in federated learning. In International Conference on Learning Representations, 2020.

135

[89] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr, Nam Sung Kim, and Alexan-
der Schwing. Pipe-sgd: A decentralized pipelined sgd framework for distributed deep
net training. In Advances in Neural Information Processing Systems, volume 31, 2018.

[90] Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtarik. Acceleration for com-
pressed gradient descent in distributed and federated optimization. In International
Conference on Machine Learning, pages 5895–5904. PMLR, 2020.

[91] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can
decentralized algorithms outperform centralized algorithms? a case study for decen-
tralized parallel stochastic gradient descent. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 5336–5346, 2017.

[92] Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, and Yifei
Cheng. Variance reduced local sgd with lower communication complexity. arXiv
preprint arXiv:1912.12844, 2019.

[93] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compres-
sion: Reducing the communication bandwidth for distributed training. In Interna-
tional Conference on Learning Representations, 2018.

[94] Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. Feddg: Federated
domain generalization on medical image segmentation via episodic learning in con-
tinuous frequency space. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1013–1023, 2021.

[95] Yuejiang Liu, An Xu, and Zichong Chen. Map-based deep imitation learning for
obstacle avoidance. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 8644–8649. IEEE, 2018.

[96] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking
the value of network pruning. arXiv preprint arXiv:1810.05270, 2018.

[97] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three ap-
proaches for personalization with applications to federated learning. arXiv preprint
arXiv:2002.10619, 2020.

[98] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

136

[99] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik.
Distributed learning with compressed gradient differences. arXiv preprint
arXiv:1901.09269, 2019.

[100] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learn-
ing. In International Conference on Machine Learning, pages 4615–4625, 2019.

[101] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R De-
vanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: general-
ized pipeline parallelism for dnn training. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 1–15, 2019.

[102] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, vol-
ume 87. Springer Science & Business Media, 2013.

[103] Gergely Neu and Lorenzo Rosasco. Iterate averaging as regularization for stochastic
gradient descent. In Conference On Learning Theory, pages 3222–3242. PMLR, 2018.

[104] Arild Nøkland. Direct feedback alignment provides learning in deep neural networks.
In Advances in neural information processing systems, pages 1037–1045, 2016.

[105] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in Neural
Information Processing Systems, 32:8026–8037, 2019.

[106] Boris T Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[107] Boris T Polyak. New stochastic approximation type procedures. Automat. i Telemekh,
7(98-107):2, 1990.

[108] Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed SGD can
be accelerated. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021.

[109] Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečnỳ, Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated
optimization. In International Conference on Learning Representations, 2020.

137

[110] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically
better, and practically faster error feedback. arXiv preprint arXiv:2106.05203, 2021.

[111] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951.

[112] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[113] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir
Braverman, Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient
federated learning with sketching. In International Conference on Machine Learning,
pages 8253–8265. PMLR, 2020.

[114] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning represen-
tations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[115] David Ruppert. Efficient estimations from a slowly convergent robbins-monro process.
Technical report, Cornell University Operations Research and Industrial Engineering,
1988.

[116] Atal Sahu, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini,
and Panos Kalnis. Rethinking gradient sparsification as total error minimization.
Advances in Neural Information Processing Systems, 34, 2021.

[117] Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-source deep-learning toolkit.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 2135–2135, 2016.

[118] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated
learning using hypernetworks. arXiv preprint arXiv:2103.04628, 2021.

[119] Anil Shanbhag, Holger Pirk, and Samuel Madden. Efficient top-k query processing
on massively parallel hardware. In Proceedings of the 2018 International Conference
on Management of Data, pages 1557–1570, 2018.

[120] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

138

[121] J. Sivaswamy, S. R. Krishnadas, G. Datt Joshi, M. Jain, and A. U. Syed Tabish.
Drishti-gs: Retinal image dataset for optic nerve head(onh) segmentation. In 2014
IEEE 11th International Symposium on Biomedical Imaging (ISBI), pages 53–56,
April 2014.

[122] Liuyihan Song, Kang Zhao, Pan Pan, Yu Liu, Yingya Zhang, Yinghui Xu, and Rong
Jin. Communication efficient sgd via gradient sampling with bayes prior. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12065–12074, 2021.

[123] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[124] Sebastian U Stich. Local sgd converges fast and communicates little. In International
Conference on Learning Representations, 2018.

[125] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with
memory. In Advances in Neural Information Processing Systems, pages 4447–4458,
2018.

[126] Nikko Strom. Scalable distributed dnn training using commodity gpu cloud com-
puting. In Sixteenth Annual Conference of the International Speech Communication
Association, 2015.

[127] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. In International conference on
machine learning, pages 1139–1147, 2013.

[128] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.

[129] Canh T Dinh, Nguyen Tran, and Tuan Dung Nguyen. Personalized federated learning
with moreau envelopes. Advances in Neural Information Processing Systems, 33, 2020.

[130] Hanlin Tang, Yao Li, Ji Liu, and Ming Yan. Errorcompensatedx: error compensation
for variance reduced algorithms. Advances in Neural Information Processing Systems,
34, 2021.

139

[131] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. Decentralized training
over decentralized data. In International Conference on Machine Learning, pages
4848–4856. PMLR, 2018.

[132] Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Par-
allel stochastic gradient descent with double-pass error-compensated compression. In
International Conference on Machine Learning, pages 6155–6165. PMLR, 2019.

[133] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

[134] Leslie G Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, 1990.

[135] Thijs Vogels, Sai Praneeth Karinireddy, and Martin Jaggi. Powersgd: Practical low-
rank gradient compression for distributed optimization. Advances In Neural Informa-
tion Processing Systems 32 (Nips 2019), 32(CONF), 2019.

[136] Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the best
error-runtime trade-off in local-update sgd. arXiv preprint arXiv:1810.08313, 2018.

[137] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tack-
ling the objective inconsistency problem in heterogeneous federated optimization. In
Advances in Neural Information Processing Systems, volume 33, pages 7611–7623,
2020.

[138] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improv-
ing communication-efficient distributed sgd with slow momentum. In International
Conference on Learning Representations, 2019.

[139] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays,
and Daniel Ramage. Federated evaluation of on-device personalization. arXiv preprint
arXiv:1910.10252, 2019.

[140] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for
communication-efficient distributed optimization. In Advances in Neural Information
Processing Systems, pages 1299–1309, 2018.

140

[141] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
Terngrad: Ternary gradients to reduce communication in distributed deep learning.
Advances in Neural Information Processing Systems, 30, 2017.

[142] Jingfeng Wu, Vladimir Braverman, and Lin Yang. Obtaining adjustable regularization
for free via iterate averaging. In International Conference on Machine Learning, pages
10344–10354. PMLR, 2020.

[143] Cong Xie, Shuai Zheng, Oluwasanmi O Koyejo, Indranil Gupta, Mu Li, and Haibin
Lin. Cser: Communication-efficient sgd with error reset. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

[144] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggre-
gated residual transformations for deep neural networks. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5987–5995, 2017.

[145] An Xu and Heng Huang. Coordinating momenta for cross-silo federated learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
8735–8743, 2022.

[146] An Xu and Heng Huang. Detached error feedback for distributed sgd with random
sparsification. In International Conference on Machine Learning, pages 24550–24575.
PMLR, 2022.

[147] An Xu, Zhouyuan Huo, and Heng Huang. On the acceleration of deep learning model
parallelism with staleness. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2088–2097, 2020.

[148] An Xu, Zhouyuan Huo, and Heng Huang. Optimal gradient quantization condition for
communication-efficient distributed training. arXiv preprint arXiv:2002.11082, 2020.

[149] An Xu, Zhouyuan Huo, and Heng Huang. Step-ahead error feedback for distributed
training with compressed gradient. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 35, pages 10478–10486, 2021.

[150] Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, and Yi Yang. A unified analysis of
stochastic momentum methods for deep learning. In Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’18, page 2955–2961. AAAI
Press, 2018.

141

[151] Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wil-
son, and Chris De Sa. Swalp: Stochastic weight averaging in low precision training.
In International Conference on Machine Learning, pages 7015–7024. PMLR, 2019.

[152] Qian Yang, Zhouyuan Huo, Wenlin Wang, and Lawrence Carin. Ouroboros: On
accelerating training of transformer-based language models. In Advances in Neural
Information Processing Systems 32, pages 5519–5529. Curran Associates, Inc., 2019.

[153] Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence analysis of stochas-
tic momentum methods for convex and non-convex optimization. arXiv preprint
arXiv:1604.03257, 2016.

[154] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo
Molchanov. See through gradients: Image batch recovery via gradinversion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 16337–16346, 2021.

[155] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication
efficient momentum sgd for distributed non-convex optimization. In International
Conference on Machine Learning, pages 7184–7193. PMLR, 2019.

[156] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[157] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar.
Adaptive methods for nonconvex optimization. In Advances in neural information
processing systems, pages 9793–9803, 2018.

[158] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead op-
timizer: k steps forward, 1 step back. Advances in Neural Information Processing
Systems, 32:9597–9608, 2019.

[159] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from
gradients. arXiv preprint arXiv:2001.02610, 2020.

[160] Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, and Changyou Chen. Feature
quantization improves gan training. In International Conference on Machine Learning,
pages 11376–11386. PMLR, 2020.

142

[161] Shuai Zheng, Ziyue Huang, and James Kwok. Communication-efficient distributed
blockwise momentum sgd with error-feedback. Advances in Neural Information Pro-
cessing Systems, 32:11450–11460, 2019.

[162] Pan Zhou, Hanshu Yan, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Towards
understanding why lookahead generalizes better than sgd and beyond. Advances in
Neural Information Processing Systems, 34, 2021.

[163] Ligeng Zhu, Hongzhou Lin, Yao Lu, Yujun Lin, and Song Han. Delayed gradient
averaging: Tolerate the communication latency for federated learning. Advances in
Neural Information Processing Systems, 34, 2021.

[164] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in
Neural Information Processing Systems, 32:14774–14784, 2019.

143

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	Table 1: Best Top-1 Test Accuracy
	Table 2: Robustness (ResNet164, CIFAR-10, K=3). Each GPU is randomly slowed down.
	Table 3: Speedup Comparison Results.
	Table 4: Best Top-1 Test Accuracy on ImageNet (K=3).
	Table 5: The CIFAR-10 test accuracy (%) of DEF/DEF-A for various with VGG-16. The compression ratio is 64.
	Table 6: The CIFAR-10 test accuracy (%) comparison of under various compression ratio settings with VGG-16.
	Table 7: The ImageNet test accuracy (%) comparison under various compression ratio settings with ResNet-50.
	Table 8: The CIFAR-10/100 test accuracy (%) comparison for various model architectures. The compression ratio is 1 for SGD and 64 for the other methods.
	Table 9: Retinal Dataset: number of data (2D image) in each client. The data sources from client 1 to 6 are Drishti-GS1 6867807, RIGA almazroa2018retinal BinRushed, RIGA Magrabia, RIGA MESSIDOR, RIM-ONE fumero2011rim, and REFUGE refuge respectively. Global refers to the data from all clients.
	Table 10: Prostate Dataset: number of data (2D slices) in each client. The data sources from client 1 to 6 are I2CVB lemaitre2015computer, MSD antonelli2021medical, NCI_ISBI_3T, NCI_ISBI_DX nci-isbi, Promise12 promise12, and ProstateX prostatex respectively. Global refers to the data from all clients.
	Table 11: (low data similarity) Test Dice coefficient comparison of retinal segmentation. ``Client k Local" refers to local training on client k. The first row refers to the performance on client 16's test data, their average, and the performance on all clients' test data. We report the average of disc and cup Dice coefficients here. We bold the best FL numbers. See Appendix C.4 for their separate numbers and the visual comparison of segmentation.
	Table 12: (high data similarity) Test Dice coefficient comparison of prostate segmentation. We bold the best FL numbers. See Appendix C.4 for the visual comparison.
	Table 13: (retinal segmentation, Dice = average of disc and cup Dice coefficients) Model selection frequency from the model selector when FL train with clients {1,2,@汥瑀瑯步渠,6}/{k} and test on the unseen client k{1,2,@汥瑀瑯步渠,6}. From left to right, GM denotes the global model and PM denotes the personalized model {1,2,@汥瑀瑯步渠,6}/{k}. The model selection frequency with the best , and the more detailed Dice results can be found in Appendix C.4. Note GM is never selected as the Threshold is intentionally set to 0.
	Table 14: FedSM with different personalization method in retinal segmentation. Dice = average of disc and cup Dice coefficients.
	Table 15: FedSM with different coefficient in retinal segmentation. Dice = average of disc and cup Dice coefficients.
	Table 16: CIFAR-10 test accuracy (%) when training VGG-16 using DOMO with various hyper-parameters and . Data similarity s=10% and local epoch E=1. is fixed at 1.0 with various in the first column, while is fixed at 0.9 with various in the second column.
	Table 17: SVHN test accuracy (%) when training ResNet-20.
	Table 18: CIFAR-100 test accuracy (%). Second row: VGG-16. Third row: ResNet-56.
	Table 19: Prostate dataset: number of data (3D image) in each client.
	Table 20: Test Dice coefficient comparison of retinal disc segmentation.
	Table 21: Test Dice coefficient comparison of retinal cup segmentation.
	Table 22: (retinal segmentation, Dice = average of disc and cup Dice coefficients) Model selection frequency from the model selector when FL train with clients {1,2,@汥瑀瑯步渠,6}/{k} and test on the unseen client k{1,2,@汥瑀瑯步渠,6}. From left to right, GM denotes the global model and PM denotes the personalized model {1,2,@汥瑀瑯步渠,6}/{k}. We choose the best .
	Table 23: (retinal segmentation, Dice = average of disc and cup Dice coefficients) Dice performance when FL train with clients {1,2,@汥瑀瑯步渠,6}/{k} and test on the unseen client k{1,2,@汥瑀瑯步渠,6}.

	List of Figures
	Figure 1: Sketches of different methods with three blocks. The forward and recomputation are overlapped in DSP.
	Figure 2: DSP(1,1,0;4,2,0) with Layer-wise Staleness of {4,2,0} (the index difference between the forward and backward batch). Worker k{0,1,2} holds block k.
	Figure 3: Training loss (solid line) and testing loss (dash line) for ResNet98, ResNet164 on CIFAR-10. The first row and second row plots the loss regarding the training epochs and time respectively.
	Figure 4: Top left: Average difference of DSP and BP gradient regarding the number of parameters. The rest: Training loss (solid line), testing loss (dash line) and test top-1 accuracy(dot line).
	Figure 5: Test accuracy@1 on the ImageNet dataset.
	Figure 6: CIFAR-10 training curves of VGG-16. The compression ratio is 64 for the top row and 256 for the bottom row. EF is not plotted when the compression ratio is 256 due to divergence. From the left to right column, we plot the test accuracy (%) v.s. the wall-clock time, the test accuracy (%) v.s. training epochs, and the training loss v.s. training epochs respectively.
	Figure 7: ImageNet training curves of ResNet-50. The compression ratio is 64 for the top row and 256 for the bottom row. From the left to right column, we plot the test accuracy (%) v.s. the wall-clock time, the test accuracy (%) v.s. training epochs, and the training loss v.s. training epochs respectively.
	Figure 8: Accelerate the generalization with DEF-A. DEF-A significantly improves the test accuracy before the second learning rate decay compared with DEF.
	Figure 9: The proposed FedSM framework with ``super model".
	Figure 10: Training curves comparison. The curves are non-decreasing because we record the best result during training.
	Figure 11: TSNE map of the features extracted form the model selector on retinal segmentation task.
	Figure 12: The 1D loss surface near the models trained by different methods on Client 5's data in retinal segmentation.
	Figure 13: CIFAR-10 training curves using the VGG-16 model with various data similarity s.
	Figure 14: CIFAR-10 test accuracy (%) with various sever momentum constant s and local momentum constant l. s=0 corresponds to FedAvgLM, l=0 corresponds to FedAvgLM, s=0&l=0 corresponds to FedAvg, and s=0&l =0 corresponds to DOMO.
	Figure 15: Left and Middle: CIFAR-10 training curves using the VGG-16 model with various local epoch E. E=1 has been shown in the middle plot of Figure 13 and is not repeatedly shown here. Right: CIFAR-10 training curves using the ResNet-56 model.
	Figure 16: Representative original 2D image in retinal dataset (low data similarity). First row: client 1 to 3. Second row: client 4 to 6.
	Figure 17: Representative original 2D image slices in prostate dataset (high data similarity). First row: client 1 to 3. Second row: client 4 to 6. E.g., the first slice comes from a 3D image in client 1.
	Figure 18: Visual comparison of retinal disc (green) and cup (blue) segmentation. Dice denotes the retinal disc and cup Dice coefficient.
	Figure 19: Visual comparison of prostate (green) segmentation. Dice denotes the Dice coefficient.

	Preface
	1.0 Improve the Efficiency of Model Parallelism
	1.1 Introduction
	1.2 Background
	1.3 Diversely Stale Parameters
	1.3.1 Layer-Wise Staleness
	1.3.2 DSP Gradient
	1.3.3 Batch Pipeline Input

	1.4 Convergence Analysis
	1.4.1 DSP with SGD
	1.4.2 DSP with Momentum SGD

	1.5 Experiments
	1.5.1 Faster Training
	1.5.2 Robustness
	1.5.3 Generalization
	1.5.4 Gradient Difference

	1.6 Conclusion

	2.0 Improve the Efficiency of Data Parallelism
	2.1 Introduction
	2.2 Related Works
	2.3 Detached Error Feedback
	2.3.1 Motivation
	2.3.2 Algorithm

	2.4 Theoretical Analysis
	2.4.1 Convergence Rate
	2.4.2 Generalization Rate
	2.4.3 Extension to Iterate Averaging (IA)

	2.5 Experiments
	2.5.1 General Results
	2.5.2 Accelerate Generalization
	2.5.3 Hyperparameter

	2.6 Conclusion

	3.0 Improve the Performance with Data Privacy
	3.1 Introduction
	3.2 Related Works
	3.3 Methodology
	3.3.1 New Framework: FedSM
	3.3.1.1 Ensemble
	3.3.1.2 FedSM-extra
	3.3.1.3 FedSM

	3.3.2 New Personalization: SoftPull
	3.3.3 All Together

	3.4 Experiments
	3.4.1 General Results
	3.4.2 Validate Motivation
	3.4.3 Ablation Study

	3.5 Conclusion

	4.0 A New Optimizer with Data Privacy
	4.1 Introduction
	4.2 Background and Related Work
	4.3 New Double Momentum SGD (DOMO)
	4.4 Convergence Analysis
	4.5 Experimental Results
	4.5.1 Settings
	4.5.2 Performance

	4.6 Conclusion

	Appendix A. ``Improve the Efficiency of Model Parallelism"
	 A.1 Queue Size
	 A.2 Assumptions
	 A.3 Basic Lemmas
	 A.4 DSP with SGD
	 A.5 DSP with Momentum SGD

	Appendix B. ``Improve the Efficiency of Data Parallelism"
	 B.1 Proof of Convergence of DEF (Theorem 2.4.1)
	 B.1.1 Lemmas
	 B.1.2 Main Proof

	 B.2 Proof of Generalization of DEF(-A) (Theorem 2.4.2)
	 B.2.1 Generalization Error of DEF
	 B.2.2 Generalization Error of DEF-A
	 B.2.3 Optimization Error of DEF
	 B.2.4 Optimization Error of DEF-A

	 B.3 Proof of Generalization of SGD-(IA) (Theorem 2.4.3)
	 B.3.1 Generalization Error of SGD
	 B.3.2 Generalization Error of SGD-IA
	 B.3.3 Optimization Error of SGD
	 B.3.4 Optimization Error of SGD-IA

	Appendix C. ``Improve the Performance with Data Privacy"
	 C.1 Additional Dataset Information
	 C.2 FedSM-extra Algorithm
	 C.3 Proof of SoftPull Convergence
	 C.3.1 Difference
	 C.3.2 Local Objective
	 C.3.3 Proposed Objective

	 C.4 Additional Experimental Results

	Appendix D. ``A New Optimizer with Data Privacy"
	 D.1 Task Settings
	 D.2 Proof of Theorem 1
	 D.2.1 Inconsistency Bound of zr,p-xr,p22 (Lemma 2)
	 D.2.2 Divergence Bound of xr,p-x(k)r,p22
	 D.2.3 Main Proof

	 D.3 Extension to Partial Participation

	Bibliography

