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SHOOTING FOR THE MOON WITH WEIGHTED ENSEMBLE

APPLICATIONS

Anthony T. Bogetti, PhD

University of Pittsburgh, 2023

Rare events, which are infrequent, but relatively fast once they occur, are ubiquitous in

biology. Conventional molecular dynamics (cMD) simulations can only sample rare events

up to the microseconds timescale on typical resources because they spend most of their com-

puting time sampling stable states. Path sampling strategies, which exploit the separation of

timescales inherent in rare events, focus computing power on the transitions between stable

states and are orders of magnitude more efficient than cMD. The weighted ensemble (WE)

strategy is a particularly promising path sampling strategy that has not yet reached its full

potential. In this dissertation, I describe various advances to the WE strategy that I have

developed and demonstrate how those advances have allowed us to “shoot for the moon” by

simulating larger systems on longer timescales. In Chapter 1 of this dissertation, I motivate

the need for path sampling and discuss the features of WE that set it apart from other path

sampling strategies. In Chapter 2, I describe various protein conformational switches and

how path sampling strategies can rationally enhance switching kinetics by focusing sampling

on the transient states of switches. This chapter highlights WE simulations of the SARS-

CoV-2 protein, showcasing the ability of WE to generate complete pathways for systems up

to a million atoms and processes as slow as the seconds timescale. In Chapter 3, I present

advances to the open-source WESTPA software package (version 2.0) that were motivated

by a recent SARS-CoV-2 “stress test.” In Chapter 4, I introduce a minimal, adaptive bin-

ning (MAB) scheme for WE simulations and showcase the MAB scheme using three systems

of varying model resolution. In Chapter 5, I describe LPATH, a general, semi-automated

tool for performing bottom-up clustering of simulated pathways into distinct classes using a

text-string pattern matching algorithm commonly used in plagiarism detection. Together,

the above chapters demonstrate the potential of WE path sampling to “shoot for the moon”,

tackling larger systems and/or longer timescales.
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1.0 THE NEED FOR PATH SAMPLING

1.1 INTRODUCTION

Rare events are happening all around us; hurricanes, stock market crashes and even

pandemics are some examples of rare events. A rare event is rare, in the sense that it

happens infrequently, but another important characteristic of a rare event is that once it

does occur, it happens quickly. Many important biological processes, such as protein-ligand

unbinding and large-scale protein conformational transitions, are rare events and are known

to occur on slow timescales of up to seconds and beyond.1 Because these biological events

are rare events, their apparent slow timescales are not due to the event itself, but the time

spent waiting for the event to occur.

Molecular dynamics simulations, coupled with all-atom models, are capable of generating

molecular movies of biological processes. Viewing a molecular movie is the most direct way

to access the mechanism of biological processes such as conformational changes. Typically,

molecular dynamics simulations involve the integration of Newton’s law of motion over the

course of a very short timestep (2 femtoseconds). In order to simulate a biological event

on the timescale of microseconds, a total of 500 million integrations would be required.

While this large number of integrations may seem daunting, advances in computing hard-

ware have enabled all-atom, conventional molecular dynamics (cMD) simulations to generate

pathways for biological events of medium-sized proteins (∼100,000 atoms, when including

explicit solvent molecules) up to the multi-microseconds timescale on typical computing re-

sources.1 Specialized hardware, i.e. Anton, can enable the simulation of processes as slow as

the milliseconds timescale.2,3 However, many interesting protein motions–such as large-scale

conformational changes–occur on timescales beyond milliseconds.1 Additional challenges to

all-atom cMD, which are summarized in Figure 1, are that massive systems (e.g., larger

than one million atoms)4–10 or the use of either polarizable models (e.g., AMOEBA or

DRUDE)11,12 or sub-atomic models (e.g., hybrid QM/MM potentials)13–15 will restrict to

sampling to much shorter timescales (e.g., hundreds of nanoseconds to a few microseconds).
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MM

Chemical reactions

μs
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SARS-CoV-2 
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Figure 1: Challenges to all-atom conventional molecular dynamics (cMD) simulations in

terms of system size, timescale and model detail. Special-purpose computing resources such

as Anton can access up to milliseconds time scale processes for a medium-sized protein

and classically-treated models (light blue box). Increasing model detail, such as the use

of polarizable force fields (AMOEBA or DRUDE) or addition of a quantum mechanical

potential to model reacting atoms, can further increase the computational cost of cMD.

2



One way to simulate longer-timescale processes relies on the fact that most challenging

biological events are rare events. Because rare events are dominated by waiting times, cMD

simulations are limited in the timescales they can access due to their inefficiency in simulat-

ing rare events: wasting computational power simulating the waiting time. Path sampling

simulation strategies recognize this separation of timescales and seek to re-allocate the com-

putational power of MD simulations from the waiting time to the actual event itself. In

the past few decades, path sampling strategies have become popular methods for simulating

rare events with rigorous kinetics.16–19 Because the transition time of a rare event is orders

of magnitude faster than the time spent waiting in the initial stable state, path sampling

strategies are orders of magnitude more efficient than cMD in generating transition pathways.

Prominent examples of path sampling strategies that use trajectory segments to generate

interface-to-interface transitions include transition interface sampling,20 forward flux sam-

pling,21,22 and milestoning.23–25 In contrast, the weighted ensemble strategy uses trajectory

segments to generate region-to-region transitions.26,27

In my thesis, I focus on the weighted ensemble (WE) path sampling strategy.18,26 The

goal of the WE strategy, which is illustrated in Figure 2, is to populate empty regions

in configurational space, such as bins, through splitting (creating replicas) of promising

trajectories, providing an even coverage of trajectories across a progress coordinate. To

accomplish this goal, a user defines a progress coordinate, which is a general measure of

how far a system has traveled towards a defined goal, and divides that coordinate into bins.

The WE strategy assigns statistical weights to an initial set of trajectories and completes

two operations in an iterative process: (1) propagate stochastic dynamics (e.g., using a

weak Langevin thermostat) for the trajectories in parallel for a short time interval tau (e.g.,

100 ps) and (2) apply a resampling procedure, which involves both splitting and merging

trajectories. The splitting step, which enriches sampling for success, creates a replica (the

coordinates and velocities are copied, but with a different random seed for the thermostat to

ensure stochasticity) of a trajectory that transitions to an unoccupied or under-populated bin

and is continued until a target number of trajectories per bin is reached. The merging step,

which saves computing time, terminates unproductive trajectories in a bin and is applied

when the number of trajectories in a given bin is greater than the specified target number of

3



Too much time 
spent here.

Not enough time 
spent here.

Split to enrich 
for success

Merge to save 
computing time

Split to enrich 
for success

Merge to save 
computing time

Focus sampling 
on transitions.

Bin progress 
coordinate

Figure 2: The weighted ensemble path sampling strategy focuses sampling on transitions.

First, a progress coordinate is divided into bins. Within each bin, splitting (shown in the

blue box) and merging (shown in the purple box) of trajectories occurs to maintain a target

number of trajectories per bin. Each trajectory segment is assigned a statistical weight at

the start of the WE simulation and the total weight of all trajectories must always sum

to one. The trajectory weights are divided among the children trajectories in the case of

splitting and transferred from a terminated trajectory to a surviving trajectory in the case

of merging.
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trajectories per bin. The WE resampler divides a trajectory’s weight among child trajectories

in the case of splitting, or combines a terminated trajectory’s weight with another trajectory

in the case of merging. The sum of all trajectory weights, at all times during the simulation,

must sum to one. In addition, when merging, the choice of which trajectory to transfer

the weight of a terminated trajectory must be random. Thus, throughout the resampling

process, the WE strategy remains statistically unbiased, providing continuous pathways and

direct calculations of rate constants.28

The WE strategy shares many features with transition interface sampling, forward flux

sampling and milestoning, such as scalability and the use of trajectory segments to generate

transitions between partitions of phase space.27 However, WE differentiates itself from other

path sampling methods by intervening at more frequent intervals in the sampling process.

Instead of catching trajectories “in the act” of crossing a new interface, the weighted ensemble

strategy splits trajectories that have progressed into newly visited bins after fixed, short time

intervals. The more frequent splitting of trajectories in the WE strategy makes monitoring

simulation progress easier; further, more frequent opportunities for merging help minimize

information loss.27 Finally, because trajectory weights are independent of the progress coor-

dinate, it is possible to change the progress coordinate and reposition bins at any time during

a WE simulation.18 My thesis highlights the enhanced adaptability of the weighted ensem-

ble strategy, and demonstrates how this adaptability facilitates the simulation of ambitious

systems.

1.2 KEY PARAMETERS AND RULES OF THE WEIGHTED ENSEMBLE

STRATEGY

The success of a WE simulation can depend heavily on the careful selection of a few key

parameters summarized in Figure 3 and discussed in detail below. The progress coordinate

is the most impactful parameter in a WE simulation. When a WE simulation begins, an MD

engine propagates many trajectory “walkers”–replicates of the system–forward in time. After

dynamics propagation, the WE algorithm makes an informed decision about which walkers

5



Figure 3: The key parameters of a WE simulation and their varying impact on simulation

results. The progress coordinate is the most impactful on a simulation’s success followed by

the division of configurational space and the resampling time interval. The WE resampling

algorithm integrates the progress coordinate and division of configurational space into a

decision-making function that is also user-adjustable.
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to split and which to merge before the next round of dynamics. The progress coordinate mea-

sures how close each walker is to reaching the simulation’s desired goal. Progress coordinates

can either focus sampling towards a target (such as increasing the RMSD of a certain region

of a protein from the starting structure to simulate a conformational change) or can explore

phase space with no target (such as increasing the RMSD of the entire protein to simulate a

protein’s conformational ensemble).29 A progress coordinate can be multi-dimensional–with

secondary and tertiary dimensions providing orthogonal system degrees of freedom that could

be helpful in enhancing the simulation of a process of interest. The progress coordinate is

intended to describe the slowest relevant motion of the process one wishes to sample by

fully capturing the transition of interest from start to finish. It is helpful for the progress

coordinate to be continuous (non-discrete) to encourage sampling at intermediate values.

A progress coordinate can be chosen based on physical intuition and need not be perfect,

as WE is able to enhance sampling even with an inefficient coordinate. Determining an

effective progress coordinate for a system is a common challenge for not only weighted

ensemble, but a wide variety of path sampling and other enhanced sampling approaches

including umbrella sampling and metadynamics.30–33 The main caveat of the WE strategy

is that, due to the choice of progress coordinate, orthogonal motions in a system may be

under-sampled. However, in the worst case, those motions will be sampled in a “brute-force”

manner with the same efficiency as cMD.

The second most impactful parameter of a WE simulation is the division of configu-

rational space, which typically involves bins. Binning, or any scheme that groups walkers

in configurational space, guides the WE algorithm to split walkers with different progress

coordinate values and merge walkers with similar progress coordinate values. Users can de-

fine a rectilinear binning scheme in one, two, of three-dimensional space. It is also possible

to devise nested binning schemes in which one binning scheme is placed inside of another

binning scheme. Both nested binning and adaptive Voronoi binning28 can focus sampling

at specific intersections of high-dimensional phase space. A good binning scheme promotes

an even distribution of walkers per bin along the progress coordinate.34,35 Bin boundaries

should be close enough that walkers can transition to empty bins, but far enough apart that

walkers cannot vacate the bin too quickly. In addition, a good binning scheme should be

7



effective in sampling a transition of interest, which usually involves placing bins more finely

along the barriers in progress coordinate space.

The WE resampler, a more integrated component, selects walkers for splitting or merging

using both the progress coordinate and binning of walkers. While challenging to modify

and construct, different resampling algorithms open a wealth of new possibilities for the WE

method. For instance, custom resamplers can project multi-dimensional progress coordinates

down to one or two dimensions before making split/merge decisions. In addition, modified

resampling algorithms allow for the implementation of binless resampling strategies, such as

REVO.36,37 When modifying the WE resampler, one must keep in mind two “unbreakable

rules” of the WE strategy. The first rule is that at any given iteration, the weights of

all walkers must sum to one. The second rule is that when redistributing walker weights,

whether through merging or from a post-merging operation, the redistribution of weight

must be random.26 To be clear for the case of merging, the decision of which walkers to

consider for merging can be based on any metric, but once walkers are selected, the choice of

which one survives must be made randomly based on each walker’s weight. Breaking either

of these rules would result in statistical bias.

1.3 SHOOTING FOR THE MOON WITH WEIGHTED ENSEMBLE

APPLICATIONS

The WE strategy can provide continuous transition pathways and direct calculations of

rate constants.18 However, the effectiveness of WE is limited by large systems (> 500,000

atoms) and/or long timescales (> the ms timescale). Converging simulations of large and/or

long timescale systems to a non-equilibrium steady state for rate constant estimates can be

extremely challenging.39,40 However, it is possible to generate continuous pathways for these

ambitious systems, which provide powerful insights into the molecular mechanism. Chapter

2 of my thesis showcases mechanistic insight from continuous pathways generated by WE

simulations of SARS-CoV-2 spike opening.41 The SARS-CoV-2 spike protein, detailed in

Figure 4, has been a valuable stress test for developing new methods for the WE strategy,

8



Figure 4: The SARS-CoV-2 spike protein undergoes a large-scale conformational change

from RBD-down to a single RBD-up. This conformational change, which occurs on the

seconds timescale, has provided an invaluable stress test for the WE strategy. Adapted with

permission.38 Copyright 2021 American Chemical Society.
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such as adaptive binning.

1.4 RECENT ADVANCES IN WEIGHTED ENSEMBLE SOFTWARE AND

METHODOLOGY

The open-source WESTPA software package42 has enabled the simulation of numerous,

ambitious rare-event processes with the WE strategy.41,43–47 While we were simulating the

SARS-CoV-2 spike protein opening, a stress test for both the WE method and the WESTPA

software package, I realized that tackling such ambitious systems over simpler toy models

was extremely valuable. We needed to innovate. I began my work by contributing improve-

ments to the WESTPA code, helping to upgrade the code to Python 3, reorganize the core

components of the code and add tools for new methods I developed. I discuss my contribu-

tions, and the contributions of many others that led to the major release of WESTPA 2.0,48

in Chapter 3 of my thesis.

One innovation to the WE methodology that I developed in response to stress tests like

the simulation of the SARS-CoV2 spike protein was the Minimal Adaptive Binning (MAB)

scheme for WE simulations.49 Choosing an effective–and resource efficient–binning scheme

is a challenge in running WE simulations, especially for more complex systems. Binning

schemes can be especially challenging to define when progress coordinates are more than two

dimensions or when different dimensions of the progress coordinate are important at different

times during the simulation. The MAB scheme I devised and implemented in WESTPA 2.0

updates bin positions on-the-fly based on the positions of 1) the walkers that have traveled

the furthest along the progress coordinate (in one or both directions) and 2) a bottleneck

walker. The MAB scheme, which I discuss in Chapter 4 of this thesis, is more efficient

in generating pathways for transitions over high energy barriers when compared with fixed

binning schemes and has generated pathways for ambitious systems such as the SARS-CoV-2

spike opening system described in Chapter 2.41 In addition, the MAB scheme has removed

much of the trial and error in placing bins for a given resampling time interval and target

number of walkers per bin.
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Inspired by the SARS-CoV-2 spike opening simulations, I also developed the LPATH

tool which provides a general, semi-automated workflow for analysis of pathway ensembles

from both path sampling and cMD simulations. I implemented LPATH and a wealth of

plotting tools in WESTPA 2.0. In Chapter 5 of this thesis, I discuss the LPATH tool in

more detail, including its relation to the pathway similarity analysis (PSA) and pathway

histogram analysis of trajectories (PHAT) approaches.50,51 The LPATH tool has proven

useful in preliminary attempts to analyze cMD and WE pathway ensembles of an alanine

dipeptide model system and spike opening of the original and Delta SARS-CoV-2 strains.

For the sake of brevity, I have included only a selection of projects during my PhD in this

thesis (among eight primary-author publications). Additional projects that have facilitated

my WE studies of ambitious biological processes41,52 include developing an implicitly polar-

ized force field for proteins and protein mimetics (AMBER ff15ipq-m) that yields reasonable

dynamical parameters53 and developing and implementing a method for more efficient rate

constant estimates from WE simulation.54 I was also a primary contributor to two sets of

tutorials for the WESTPA software package55,56 and an international team effort involving

COVID-19 research that resulted in two publications,9,57 one of which was awarded the 2020

Gordon Bell Special Prize in HPC-based COVID-19 Research.
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2.0 THE NEXT FRONTIER FOR DESIGNING SWITCHABLE

PROTEINS: RATIONAL ENHANCEMENT OF KINETICS

Reprinted with permission from Bogetti, A. T.,† Presti, M. F.,† Loh, S. N. and Chong,

L. T. J. Phys. Chem. B 2021, 125 (32), 9069-9077. † denotes co-first authorship. Copyright

2021 American Chemical Society.

2.1 INTRODUCTION

Protein conformational switches—proteins that adopt either active (ON) or inactive

(OFF) conformations in response to signals such as ligand binding and incident light—have

been exploited as the core machinery behind novel biosensors, therapeutic agents, and

“smart” biomaterials.58,59 The fundamental characteristics of a switch include its signal-to-

noise ratio (the extent to which the switch converts between ON and OFF states), sensitivity

(what levels of effector are required for activation), and response time (the time required for

the switch to turn on and off). Signal-to-noise in biological switches can be a complex phe-

nomenon that is sometimes modulated by agonists/antagonists that induce partial or alter-

nate ON/OFF states, and improving signal-to-noise is an active subfield of its own in switch

design. The response time has proven to be even more challenging to optimize. Most design

strategies focus on stable states, specifically, the ON and OFF conformations. Switching

mechanisms can consist of introducing a second stable state in a monomeric protein, cre-

ating new protein–protein or protein–ligand binding interfaces, and fusing protein domains

such that they achieve input–output communication. These efforts are typically guided by

structures of existing proteins or, more recently, by principles of de novo design.60,61 Either

way, they seek to define the structures and optimize the activities of the stable ON/OFF

states of the protein. In general, it is left to chance that the stable states interconvert with

reasonable rates.

The above scenario is illustrated by the free energy diagrams of Figure 5 by using the
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example of a protein biosensor into which two stable conformations have been engineered

(represented by OFF and ON states with the latter binding the target ligand; Figure 5A).

Some of the basic properties of the switch, for example, signal-to-noise (turn-on/turn-off

ratio) and limit of detection, can be optimized by adjusting the relative thermodynamic

stabilities of OFF and ON conformations and the ligand binding affinity (Kd) of the ON

state, respectively (Figure 5A). Because the structures of OFF and ON states are typically

known, these goals can be achieved by using well-established experimental and theoretical

approaches. The response time (given by [kON + kOFF ]
−1) is proportional to the height of

the transition state ensemble (TSE) between OFF and ON.Accelerating the response time

can be accomplished by introducing interactions that stabilize the TSE but not the ground

states (Figure 5B) or, more commonly, by deleting native interactions that are present in

the ground states but absent in the TSE (Figure 5C). In either case the TSE must be

characterized by experimental and/or computational means.

Here, we examine recent advances in tackling what we regard as the next frontier in

the design of switchable proteins: the rational tuning of kinetics (i.e., turn-on and turn-

off rates). Oftentimes this means making a switch cycle between ON and OFF sites more

rapidly, so that it can react to conditions that change over a wide range of time scales. In

other cases, the goal is to make the switch respond more slowly. For instance, decreasing

the turn-off rate is useful for enhancing the sensitivity of biosensors because it enables the

ON signal to accumulate and for activating optogenetic tools because it allows for a durable

biological response that persists well after light is removed, with reduction of photodamage

and photobleaching. For the purpose of this review we assume that faster kinetics/lower

barrier heights are intended, although the same principles apply if one desires the opposite

effect. The main goal is to be able to optimize response times to match that of a given

biological process or practical application.

This frontier is a particularly challenging one, requiring the analysis of transient states

that experiments typically cannot capture. While these transient states are ideally generated

as part of complete, atomically detailed pathways of the switching process from molecular

dynamics simulations, such simulations have not been feasible due to the long time scales

of switching processes (>milliseconds). Of particular interest is therefore the synergistic use
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Figure 5: Manipulating barrier heights to accelerate switching rates. (A) Free energy diagram

of a protein biosensor with stable OFF and ON states, showing the transition path between

them (red). Optimizing the equilibrium properties of the switch (turn-on/turn-off ratio, limit

of detection) can be achieved by introducing mutations that shift the relative thermodynamic

stabilities of OFF and ON conformations and alter the affinity of the ON state for the target

ligand. (B) As in a classic enzyme mechanism, conformational switching can be accelerated

by stabilizing the TSE. (C) In practice, it is often more tractable to lower the TSE barrier

by destabilizing the ON and OFF folds by introducing mutations that delete interactions

that are present in the stable states and absent in the TSE.
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of experimental techniques and computational strategies that can enable the generation of

detailed structures of transient states for the design of more responsive switchable proteins.

We also comment on promising future directions.

We define a protein conformational switch as one in which input and output function-

alities are integrated into a single molecule, often by means of fusing receptor and reporter

domains in such a way as to facilitate allosteric, interdomain conformational changes. Switch

designs can be classified into three broad categories. The first uses an input domain that

has naturally evolved the ability to switch between two stable conformations in response to

a stimulus. In the second design, the input domain is an existing protein that has but a

single fold, with conformational change being achieved via a folding/unfolding reaction that

is linked to ligand binding. The third category involves similar mechanisms but employs

de novo design principles to generate sequences and structures that may not have existed

previously. In each case, the designer is faced with the challenge of converting the binding

interaction to an observable signal by means of coupling the input response to an output

response. Below we discuss the kinetic barriers that are present in some examples of each

category and the experimental approaches that have been used to identify and modulate

these barriers.

2.2 EXPERIMENTAL APPROACHES FOR CHARACTERIZING

TRANSITION STATES

Central to both experimental and computational approaches for tuning rates is to first

identify and characterize TSEs between switch conformations. Depending on the type of

switch, as discussed below, these transitions can vary in extent from whole-molecule fold-

ing/unfolding to rigid-body domain movement to localized structural rearrangements. The

challenge facing experimental methods is to observe sparsely populated states that approx-

imate the relevant TSEs. A protein engineering method known as ϕ-value analysis62 has

been used to map the TSEs of global folding/unfolding. This technique entails introducing a

point mutation into a protein and measuring the extent to which it changes the equilibrium
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constant between native and unfolded states versus the rates of folding and/or unfolding.

ϕ-analysis has been applied to many proteins, and some guiding principles have emerged.63

NMR- and MS-based methods have been employed to probe more subtle conformational

changes, often providing per-residue resolution and rates of interconversion. Recent exam-

ples include using ZZ-exchange NMR spectroscopy to measure site-specific folding rates of

protein L9,64 amide hydrogen/deuterium exchange to characterize conformational dynamics

of dopamine65 and XylE membrane-bound transporters,66 and NMR relaxation dispersion to

uncover hidden states and their rates of interconversion in glycotransferase fold switching67

and dihydrofolate reductase enzymatic function.68

2.3 BINDING-INDUCED FOLDING SWITCHES

All native proteins can be made to unfold, and many proteins (including some that are

disordered) recognize ligands with high affinity and specificity when they are folded. These

features make binding-induced folding a generalizable platform for biosensor engineering.

One such example is the alternate frame folding (AFF) design, which was used to convert the

small calcium binding protein calbindin D9k into the fluorescent calcium sensor, calbindin-

AFF.69 The AFF modification entailed duplicating the N-terminal EF-hand of calbindin

(that contained a calcium-binding residue; cyan in Figure 6A) and fusing it to the protein’s

C-terminus (magenta). Joining the two polypeptides with a linker long enough to span the

N-to-C distance of calbindin allowed calbindin-AFF to switch between two folding “frames”,

one of which corresponded to the original amino acid sequence (WT frame) and the other

to that of a circular permutant (CP frame). The duplicate segments extend from the C-

terminus and N-terminus of the WT and CP frames, respectively, as disordered peptides.

Binding of calcium to one of the duplicate EF-hands induces it to fold and dock against the

shared region of calbindin-AFF (gray), displacing and unfolding its counterpart. The switch

was driven in either direction by mutating a calcium-binding residue in one or the other

duplicate EF-hand, and the conformational change was reported by strategic placement of

donor and quencher fluorophores. The turn-on and turn-off half times were in the 1–10 s
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range.

For AFF and other binding-induced folding switch designs, it is reasonable to anticipate

that ON/OFF switching times may be accelerated by lowering the barriers to folding and

unfolding. Typically, this is done by introducing mutations that raise the free energy of

native or denatured states relative to that of the TSE by using the ϕ-value analysis approach.

Nevertheless, identifying rate-enhancing mutations by experimental means remains largely a

hit-or-miss prospect. Moreover, in the case of calbindin-AFF, the rate-limiting step appears

to involve partial unfolding rather than global unfolding,70 the former of which being more

challenging to characterize by traditional ϕ-value analysis. Computational methods were

invaluable to improving the response rate of calbindin-AFF (vide infra).

2.4 BIOSENSORS WITH PREEXISTING SWITCHABLE INPUT

DOMAINS

In contrast to calbindin-AFF, the GCaMP family of genetically encoded calcium indi-

cators (GECIs) employ an input domain (calmodulin, or CaM) that naturally evolved to

undergo a dramatic conformational change upon calcium binding. In its calcium-free state,

CaM’s N-terminal EF-hand, C-terminal EF-hand, and connecting polypeptide adopt a com-

pact, closed conformation. Binding of Ca2+ to the EF-hands induces a shift to an extended

state that exposes the connecting helix for binding to many protein domains such as the

RS20 peptide from myosin light chain kinase. To transduce this change to a fluorescent out-

put, GCaMPs fuse RS20 (magenta in Figure 6B) and CaM (cyan) to the N- and C-termini of

GFP (gray) that has been circularly permuted near its chromophore.71 The interaction be-

tween CaM and RS20 protects the chromophore from solvent access, resulting in fluorescent

turn-on.

GCaMPs and other GECIs have revolutionized studies of calcium signaling in vivo. To

do so, it was necessary to shorten their response times to match those of rapid fluctuations

in cellular calcium concentration (1–100 ms). The GCaMP response time is limited by its

turn-off rate, which is determined not only by calcium release but also by the extended-to-
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Figure 6: Protein conformational switches and their response times. (A) The calbindin-AFF

construct (PDB ID for calbindin D9k: 3ICB) switches via Ca2+-driven unfolding/folding of

two duplicate EF-hands (cyan and magenta) and their dissociation/docking with a shared re-

gion (gray). (B) The GCaMP calcium sensor (PDB ID: 3EK4) entails Ca2+-induced binding

of CaM (cyan) to the RS20 peptide (magenta), which protects the GFP (gray) chromophore

from solvent and turns on fluorescence. (C) The LOVTRAP optogenetic construct (PDB

ID: 5EFW) involves light-triggered dissociation of the Jα helix (magenta) from LOV2 (gray),

resulting in dissociation of Zdark (cyan). (D) The lucCage biosensor (PDB ID: 7CBC) is

composed of a cage (gray) and a latch (cyan), to which an analyte recognition domain (ma-

genta) has been fused. Binding of the analyte together with a key (which resembles the

latch; not shown) causes the latch to dissociate and expose a sequence in the latch that

complements and activates a reporter enzyme. (E) The SARS-CoV-2 spike protein (PDB

ID: 6VXX) involves opening of the receptor binding domain (cyan) from the core domain

(gray), as gated by a glycan (magenta) attached to the N343 residue.
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closed conformational change of CaM that follows. Chemical intuition predicts that mutating

residues in the CaM EF-hands (that weaken calcium binding) as well in RS20 (that weaken

peptide binding) will accelerate the turn-off rate. Both predictions proved correct; turn-off

rates were increased from [2.48 to 4.68 s−1],72 [5.8 to 21 s−1],73 and [4.62 to 99 s−1],74 in various

GCaMP GECIs. These results illustrate a central point of this review. Accelerated turn-off

rates tended to correlate with higher Kd of the sensors, especially for the EF-hand mutants.

This relationship arises because any mutation that weakens ligand binding affinity (RS20 can

be considered a second ligand in the GCaMP switch) will likely raise the free energy of the

ON state relative to that of the OFF state, thus changing the sensor’s equilibrium properties

(e.g., sensitivity). If one wishes to optimize response time without perturbing affinity, the

mutation(s) should alter the free energies of the ground states relative to the TSE and not

with respect to each other (Figure 5B). Rational selection of these mutation sites requires

knowledge of the allosteric mechanism gained through experimental or computational means.

The class of photoactivatable proteins exemplified by the second light-oxygen-voltage-

sensing domain 2 (LOV2) from Avena sativa phototropin 1 is another example of a bioswitch

built from pre-existing allosteric domains. Blue light absorption triggers the ON state, in

which a covalent bond forms between the flavin mononucleotide (FMN) chromophore and

a conserved cysteine.75 Cys adduct formation is coupled with the rotation of a conserved

Gln with concomitant unfolding and dissociation of the N-terminal helix (A’α) and the C-

terminal helix (Jα; magenta in Figure 6C) from the LOV2 core domain (gray).76,77 When

the blue light is removed, the photoadduct spontaneously breaks and LOV2 returns to its

OFF state, with A’α and Jα folding and rebinding to the core domain. Covalent changes

to the FMN chromophore occur on the microsecond time scale, and Jα unfolding proceeds

on the millisecond time scale. The ON to OFF reversion, however, requires minutes to

hours, making it the rate-limiting step in the photocycle. Random mutagenesis of 7 of

the ∼20 amino acid sites that comprise the FMN binding pocket identified mutants that

exhibit reversion rates from 21-fold faster to 78-fold slower than those of WT LOV2.78] The

mechanism(s) of rate enhancement remain unclear but may involve destabilization of the

Cys-FMN adduct.

An example of LOV2 used as in input domain for a functional switch is the LOV2
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Trap and Release of Protein (LOVTRAP) system.79 LOVTRAP is a two-component switch

consisting of LOV2 and Zdark, a 38-residue peptide that was evolved by mRNA display

to bind the dark conformation of LOV2. The crystal structure of the dark-state complex

revealed that Zdark (cyan in Figure 6C) binds to the LOV2 core domain as well as the

tip of Jα. Light-induced unfolding of Jα causes Zdark to dissociate in under a second. As

anticipated from earlier LOV2 studies, the dark-to-light conformational change limits the

overall response time of LOVTRAP. Reassociation half-times were tuned from 10-fold faster

to 26-fold slower (covering a range of 2 s to 9 min) relative to the WT LOV2 construct79

by mutating two of the FMN-contacting residues previously described.78,80 LOVTRAP has

been used to introduce photocontrol to protein subcellular localization and protein–protein

interactions. A protein of interest (POI) is fused to Zdark (or LOV2), and LOV2 (or Zdark)

is sequestered to an organelle or anchored to a membrane. Light irradiation causes the POI

to dissociate and diffuse to its preferred cellular location and interact with its natural binding

partner.81 In addition to its use in the modular, two-component Zdark system, reversible Jα

unfolding has been employed to regulate functions of specific proteins by directly fusing

LOV2 to nanobodies,76 Src kinase,82 Rac,83 CamKII,84 and others. A guide for how to

engineer LOV2-based photoswitches, along with tables of the characterized kinetic mutants

and potential applications, has been published recently.85

2.5 DE NOVO DESIGNED SWITCHES

While building complex allosteric pathways such as those encoded in the CaM and LOV2

sequences is presently out of reach, de novo design of novel protein scaffolds and binding

interfaces has reached adolescence, if not maturity. De novo methods thus establish a route

for creating binding domains that can be customized to recognize ligands of choice as well

as new mechanisms for transducing input to output signals via coupled binding events. The

latching orthogonal cage–key (LOCKR) family of protein switches, developed by Baker and

colleagues, is composed of a six-helix bundle with the first five helices designated as the

“cage” (gray in Figure 6D) and the sixth as the “latch” (cyan).86 The “key” is an exogenously
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added helix that resembles the latch and competes with the latch for docking to the cage.

The latch embeds a peptide that can bind a protein partner but is made cryptic by burial in

the latch–cage interface. The switch is turned on by addition of the key, which displaces the

latch and exposes the peptide for binding its partner. The identity of the peptide establishes

the output signal; existing examples are a Bim sequence (programmed cell death) and a

degron peptide (protein degradation).

LOCKR switches are activated by a single binding event but are capable of multiple out-

put functionalities. The related lucCage design reverses this relationship to enable biosensors

that bind different targets and produce a dedicated output signal (e.g., luminescence).87 To

do so, the latch was modified to contain a domain at its C-terminus (magenta in Figure 6D)

that was de novo engineered to possess shared affinity for the cage as well as to any one of

a number of analytes to be detected. The activating peptide, also in the latch, was changed

to a split luciferase fragment. The complementary luciferase fragment was fused to the key.

The combination of analyte binding to the latch and key binding to the cage displaces the

latch and allows the luciferase fragments to complement, turning on bioluminescence.

LOCKR and lucCage represent combinations of folds and stabilizing interactions that

do not exist in nature. Moreover, the Rosetta-based computational methods used to design

them only target the final, lowest-energy structure. They do not consider partially folded

structures, pathways, or barriers. A fundamental question thus arises: how do switching

rates of de novo designed proteins compare with rates of folding/unfolding and conforma-

tional changes of natural proteins? LOCKR and lucCage exhibit turn-on and turn-off times

in the minutes-to-hours scale.87 These times are similar to those of the protein fragment

exchange (FREX)-based biosensors.88 Introduced in 2014, FREX sensors established the

analogous unlocking/exchange mechanism to generate output (FRET) but were made from

the human fibronectin 3 binding scaffold. This limited comparison suggests that de novo

switches already operate with rates in the biological regime even though their designs are

based solely on thermodynamic and not kinetic principles. Baker speculates that the folding

landscapes of de novo designed proteins tend to be smooth funnels, devoid of large energy

barriers, because the design process successfully eliminates competing low-energy states with

very different structures.61 Nevertheless, there is always room for improvement, and response
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times of switches based on de novo designs and natural proteins alike can be optimized by

using the computational approaches described below.

2.6 COMPUTATIONAL APPROACHES TO TUNING RATES

To our knowledge, only one computational study has reported the rational enhancement

of kinetics for a protein conformational switch.89 The goal of this study was to speed up the

slow response time (hundreds of milliseconds) of the engineered protein-based calcium sensor,

calbindin-AFF (Figure 6A), by at least an order of magnitude to detect fast physiological

Ca2+ fluctuations. The computational strategy involved (i) a minimal, residue-level protein

model (one bead per residue), (ii) a Go-type potential90 that was parametrized to reproduce

the thermodynamic stability of each switch component, and (iii) the weighted ensemble (WE)

path sampling strategy,26 which can be orders of magnitude more efficient than standard

simulations in generating pathways and rate constants for rare events (e.g., protein folding

and protein binding) without introducing any external bias in the dynamics or altering the

free energy landscape (Figure 7A).18 The only prerequisites for this strategy are the structure

and experimental folding free energy of the nonpermutant switch component. Despite the

simplicity of the simulation model, this strategy identified previously untested mutations that

decreased response time by as much as 32-fold (590 to 19 ms) via preferential destabilization

of the ground states relative to the transition path ensemble (TPE), which is defined as

all transient states in productive pathways, beginning where the trajectory last exited the

initial state and ending where the trajectory first entered the target state. In particular, we

focused on large, hydrophobic residues that form the most pairwise residue contacts in the

initial ground state relative to the TPE-prime candidates for “underpacking” mutations that

destabilize the ground state by removing hydrophobic interactions. Importantly, a negative

control mutation was correctly predicted to have little effect on the kinetics despite being

located near the other mutations. Furthermore, this study demonstrated that the efficiency

of the WE strategy relative to standard simulations in estimating rate constants increases

exponentially with the effective free energy barrier and can therefore be applied to switches
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of a similar size (less than a few hundred amino acids) with even slower response times (<100

s).89

Although the WE strategy has not been used with atomistic models to rationally manip-

ulate the kinetics for an engineered protein-based conformational switch, the strategy has

enabled the generation of rate constants and atomistic pathways for complex biological pro-

cesses such as protein folding,43 protein–protein binding,45 and protein–ligand unbinding.91

Furthermore, encouraging WE results have been obtained for the activation process of a

particularly large natural switchable protein: the glycosylated SARS-CoV-2 spike protein,4

which must open before binding the human ACE2 receptor to fuse and infect the human host

cell. The system for this WE simulation consisted of the head region (residues 16–1140),

explicit water molecules, and a physiological ionic strength (150 mM NaCl), totaling almost

half a million atoms.

As part of an international team effort that was awarded the 2020 Gordon Bell Spe-

cial Prize for HPC-Based COVID-19 Research, WE simulations yielded atomically detailed

pathways for the opening of the spike receptor binding domain (cyan in Figure 6E) from

glycan-shielded state (down) to exposed (up) and open states (Figure 7B).9 The conforma-

tions of the open state align closely with the cryo-EM structure of the ACE2-bound spike

protein.92 While standard MD simulations would require hundreds of years to capture a

single, atomically detailed pathway for the opening of the spike—a seconds time scale pro-

cess93—the WE simulations generated hundreds of pathways for spike opening in 45 days by

using 100 NVIDIA V100 GPUs in parallel on the TACC Longhorn supercomputer. These

pathways reveal that a glycan attached to the N343 residue (magenta in Figure 6E) functions

as a gate that controls the opening (switching) process of the spike protein. The functional

importance of this glycan has been validated by biolayer interferometry experiments, which

revealed a 56% reduction in binding to the ACE2 receptor when N343 is mutated to an

alanine. Furthermore, the large-scale collective motions of the spike-opening process are

consistent with those observed in two-dimensional cryogenic electron microscopy images of

the spike protein.41 The WE simulations set a new high-water mark for ensemble simulations

of atomistic pathways, capturing seconds time scale motions for a massive protein system.

In another simulation study, which was completed on the Folding@home distributing

23



Figure 7: Weighted ensemble simulations of the opening of the SARS-CoV-2 spike protein.

(A) Schematic of the weighted ensemble strategy. Trajectories (blue circles) are initiated from

state A with equal statistical weights, propagating the dynamics in parallel (blue arrows) for

fixed time intervals and applying a resampling procedure after each time interval to ensure

equal coverage of configurational space (in this illustration, two trajectories per bin along a

two-dimensional progress). The resampling procedure involves replicating trajectories that

make transitions to less visited bins and occasionally terminating trajectories that have not

made such transitions while rigorously tracking the trajectory weights (indicated by the

sizes of the circles). The process of running dynamics and resampling is repeated until a

desired number of trajectories have arrived in the target state B. (B) The SARS-CoV-2

spike activation process simulated using the WE strategy. The simulations involved the

head region of the spike protein (gray) with full glycosylation (blue) and captured hundreds

of switching pathways from the “down” state of the receptor binding domain (cyan) to the

“up” and “open” states. Based on these pathways, the glycan attached to the N343 residue

(magenta) functions as a gate that controls the switching process.
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computing resource, adaptive sampling also captured the open conformations of the spike

protein,94 including the ACE2-bound spike conformation that was sampled by the WE sim-

ulations.41 Like the WE strategy, adaptive sampling is an enhanced sampling strategy that

involves iteratively splitting (or replicating) trajectories that have progressed closer to the

target state. Together, these results demonstrate the power of “splitting” strategies in sam-

pling switching processes that are beyond the milliseconds time scale and the value of ap-

plying such strategies with atomistic models—even when the estimation of rate constants

remains a challenge. In contrast to many engineered protein conformational switches, it is

not of interest to enhance the switch response time of the spike protein. Rather, the ultimate

goal of these studies is to inform strategies for locking the protein in the OFF state, for ex-

ample, by targeting structures of stable or transient states with small molecules as potential

drug inhibitors of COVID-19.

2.7 FUTURE AREAS OF IMPROVEMENT FOR COMPUTATIONAL

STRATEGIES

Promising avenues for improving the effectiveness of computational strategies in tuning

the kinetics of protein conformational switches include (i) more accurate residue-level, coarse-

grained simulation models (force fields) that can offer orders of magnitude speedup over

all-atom force fields and (ii) more efficient enhanced sampling strategies to enable faster

predictions of mutations that can enhance switching kinetics. Given the slow response times

of many engineered protein-based switches, enhanced sampling strategies are essential for

capturing switching pathways, even with the use of coarse-grained force fields.

An ongoing challenge of coarse-grained force fields is the ability to simulate protein folding

transitions with realistic kinetics. Go-type potentials90 on their own have been useful from

the perspective of protein engineering in terms of (i) their abilities to reproduce experimental

stabilities of individual switch components by optimizing the primary adjustable parameter

(the well-depth ϵ) and (ii) their abilities to capture the cooperativity of protein folding,

yielding fragment stabilities that are consistent with experimental data.89 However, such
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models yield artificially accelerated dynamics due to the neglect of stabilizing non-native

interactions95 and may not capture non-native, metastable intermediates. On the other

hand, the latest generation of coarse-grained force fields that include non-native interactions

such as the MARTINI 396 and SIRAH 2.0 force fields97 have not yet matured to the point of

being adequate on their own for simulating the folding transitions that can occur for certain

protein conformational switches, requiring restraints to maintain secondary structures. To

combine the best of both worlds, one might use a hybrid of a Go-type potential and coarse-

grained force field such as MARTINI 3 or SIRAH 2.0.98 In the very least, electrostatic

interactions—both native and non-native—could be used with Go-type potentials to provide

a more realistic, rugged free energy landscape for more quantitative modeling of the protein

switching process.

A major challenge of the WE strategy and many other enhanced sampling strategies is

the identification of a progress coordinate for the process of interest (e.g., conformational

switching). Recent deep learning approaches identify potential progress coordinates by en-

coding a high-dimensional set of conformational and dynamical features from a training set

of trajectory data onto a low-dimensional representation of the features; the progress coordi-

nate can then be decoded to obtain physically relevant details. Two such approaches are the

Convolutional Variational Autoencoder (CVAE) method99 and the Reweighted Autoencoded

Variational Bayes for Enhanced Sampling (RAVE) method.100 The CVAE method has been

applied to protein folding, differentiating between various intermediates in the folding pro-

cess of Fs-peptide,99 and the RAVE method has been able to detect subtle loop fluctuations

in the T4 lysozyme enzyme.101 Both of these studies highlight the promise of such strategies

for aiding the enhanced sampling of large conformational transitions of protein switches. In

addition, such strategies could learn effective progress coordinates more efficiently by us-

ing complete pathways of the switching processes from WE simulations as training data.9

These simulations could involve coarse-grained models even if the end goal is to simulate

with all-atom models—as long as the coarse-grained simulations have captured the relevant

slow motions of the process. Once an effective progress coordinate has been identified, an

adaptive binning strategy such as the Minimal Adaptive Binning (MAB) strategy may be

applied to automate the placement of bins along the progress coordinate during a simulation

26



to more efficiently surmount “bottleneck” regions.49

Finally, several strategies have been developed for more efficient estimation of rate con-

stants from simulations that have not yet reached a steady state. These strategies include

the Rates from Event Duration (RED) scheme, which can estimate rate constants with up

to 50% greater efficiency than the original scheme for WE simulations26 by incorporating

the probability distribution of sampled event durations (barrier crossing times).54 Rate con-

stants can also be estimated more efficiently by constructing a history-augmented Markov

state model (haMSM) from completed simulations (e.g., weighted ensemble, adaptive sam-

pling, and standard simulations).40 In contrast to a standard MSM, an haMSM does not

require the use of a long lag time (e.g., ∼100 ns) and can therefore provide pathway and

kinetics observables for time scales that are both shorter and longer than the lag time.102

To further accelerate convergence to a steady state, an haMSM could be constructed pe-

riodically during a WE simulation to iteratively reweight trajectories.102 The combination

of this on-the-fly reweighting with WE simulation could enable the estimation of rate con-

stants for processes as slow as the seconds time scale, including the switching process of the

SARS-CoV-2 spike.41

Computational strategies for tuning rates might be applied in two stages. In the first

stage, a large set of switch constructs could be virtually screened by using coarse-grained

simulations, qualitatively ranking the constructs based on the extent of switching (signal-

to-noise) and kinetics (response time). In the second stage, the top one to three switch

constructs from the first stage could be characterized by using all-atom simulations to quan-

titatively identify candidate residues for mutation to improve the response time of the switch.

As mentioned above, both stages benefit greatly from the application of enhanced sampling

strategies that provide rigorous kinetics (e.g., the WE strategy). To further improve on the

efficiency of the computational strategy, deep learning/artificial intelligence strategies could

be used to identify more effective progress coordinates for the enhanced sampling and to aid

in the detailed analysis of how the protein conformational transitions can occur.
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2.8 INTEGRATING EXPERIMENTAL AND COMPUTATIONAL

APPROACHES

The power of synergistically combining experimental and computational strategies has

been demonstrated for the engineered calbindin-AFF calcium sensor89—the only study (to

our knowledge) to date that has been successful in rationally enhancing the response time

of a protein switch. While time-resolved experiments can measure rate constants for the

overall switching process and the thermodynamic stabilities of each switch component (i.e.,

folding free energies), molecular simulations can provide complete pathways for the switching

process, including structures of transient states, which are essential for predicting mutations

that could enhance the kinetics. The only prerequisites for these simulations are the struc-

tures of the individual switch components and the experimental folding free energy of each

component. The latter is used to parametrize the simulation model to yield the expected

relative stabilities of the stable states. In the case of a AFF switch construct, only the

structure and folding free energy of the parent protein were required for parametrization of

the model. The other stable state is a circular permutant of the same protein which can

be modeled based on the structure of the parent protein. To further reduce the amount of

guesswork and effort required of experiments, these simulations could be used to virtually

screen candidate mutations for enhanced response times. Importantly, both thermodynamic

and kinetics experiments provide validation of the simulations and help inform the level of

detail that is required of the simulation models.

2.9 CONCLUDING THOUGHTS

In closing, experimental and computational strategies have matured to the point where

they can be synergistically combined to reduce the amount of guesswork required to en-

gineer protein conformational switches with desired response times. In our own studies,

experimentally determined protein structures and thermodynamic stabilities played critical

roles in establishing computational simulations and calibrating them. Conversely, theoreti-
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cal results inform experiments. For example, de novo approaches alone are seldom sufficient

to generate functioning switches. Instead, they typically define structures and amino acid

sequences that serve as the starting points for directed or random mutagenesis and library

screening experiments. While the prediction of switch response times on time scales beyond

milliseconds remain a challenge for atomistic simulations, such simulations of the seconds

time scale switching process of the massive SARS-CoV-2 spike protein have demonstrated

that the generation of complete pathways for the switching process is in its own right highly

valuable, providing direct views of how the protein switches from the OFF to the ON state,

including the structures of transient states for manipulating the switching kinetics. Given

the ever-ongoing advances in computer software and hardware, the future is bright for quan-

titative predictions of switching kinetics.
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3.0 WESTPA 2.0: HIGH-PERFORMANCE UPGRADES FOR WEIGHTED

ENSEMBLE SIMULATIONS AND ANALYSIS OF LONGER-TIMESCALE

APPLICATIONS

Reprinted with permission from Russo, J. D.,† Zhang, S.,† Leung, J. M. G.,† Bogetti,

A. T.,† Thompson, J. P., DeGrave, A. J., Torrillo, P. A., Pratt, A. J., Wong, K. F., Xia,

J., Copperman, J., Adelman, J. L., Zwier, M. C., LeBard, D. N., Zuckerman, D. M. and

Chong, L. T. J. Chem. Theory Comput. 2022, 18 (2), 638-649. † denotes co-first authorship.

Copyright 2022 American Chemical Society.

3.1 INTRODUCTION

The field of molecular dynamics (MD) simulations of biomolecules arguably is following

a trajectory that is typical of mathematical modeling efforts: as scientific knowledge grows,

models grow ever more complex and ambitious, rendering them challenging for computation.

While early MD simulations focused on single-domain small proteins,103 modern simulations

have attacked ever larger complexes4,5 and even entire virus particles.7–10 This trend be-

lies the fact that record-setting small-protein simulations in terms of total simulation time

remain limited to the millisecond scale on special-purpose resources2 and to <100 µs on

typical university clusters. These limitations have motivated the development of numer-

ous approaches to accelerate sampling, among which are rigorous path sampling approaches

capable of providing unbiased kinetic and mechanistic observables.17,18,20,23,26,104–109

Our focus is the weighted ensemble (WE) path sampling approach,18,26 which has helped

transform what is feasible for molecular simulations in the generation of pathways for long-

timescale processes (>µs) with rigorous kinetics. Among these simulations are notable ap-

plications, including atomically detailed simulations of protein folding,43 coupled protein

folding and binding,44 protein-protein binding,45 protein-ligand unbinding,46 and the large-

scale opening of the SARS-CoV-2 spike protein.41 The latter is a significant milestone-both in
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the system size (half a million atoms) and timescale (seconds).41 Instrumental to the success

of the above applications have been advances in not only WE methods but also software.41

Here, we present the next generation (version 2.0) of the most cited, open-source WE

software called WESTPA (WE Simulation Toolkit with Parallelization and Analysis).42

WESTPA 2.0 is designed to further enhance the efficiency of WE simulations with high-

performance algorithms for the following: (i) further enhanced sampling via restarting from

reweighted trajectories, adaptive binning, and/or binless strategies, (ii) more efficient han-

dling of large simulation data sets, and (iii) analysis tools for the estimation of first passage

time (FPT) distributions and for more efficient estimation of rate constants. Similar to its

predecessor, WESTPA 2.0 is a highly scalable, portable, and interoperable Python package

that embodies the full range of the WE’s capabilities, including a rigorous theory for any

type of stochastic dynamics (e.g., MD and Monte Carlo simulations) that is agnostic to the

model resolution.28 In comparison to other open-source WE packages such as accelerated

weighted ensemble with a "Work Queue" distributed-computing framework (AWE-WQ)110

and a weighted ensemble python (wepy) tool,111 WESTPA is unique in its (i) high scalability

with nearly perfect scaling out to thousands of CPU cores41 and GPUs and (ii) demonstrated

ability to interface with a variety of dynamics engines and model resolutions, including atom-

istic,45 coarse-grained,112 whole-cell,113 and nonspatial system models.114,115

After a brief overview of the WE strategy (Section 3.2), we describe the organization of

WESTPA 2.0 (Section 3.3) and new analysis tools that further expand the capabilities of

the software package (Section 3.4). Together, these features greatly facilitate the execution

and analysis of WE simulations of even larger systems and/or slower timescales.

3.2 OVERVIEW OF THE WE PATH SAMPLING STRATEGY

The WE strategy enhances the sampling of rare events (e.g., protein folding, protein

binding, and chemical reactions) by orchestrating the periodic resampling of multiple, par-

allel trajectories at fixed time intervals τ (Figure 8).26 The statistically rigorous resampling

scheme maintains an even coverage of the configurational space by replicating (“splitting”)
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trajectories that have made transitions to newly visited regions and potentially terminating

(“merging”) trajectories that have overpopulated previously visited regions. The configura-

tional space is typically defined by a progress coordinate that is divided into bins where

an even coverage of this space is defined as a constant number of trajectories occupying

each bin; alternatively, trajectories may be grouped by a desired feature for “binless” resam-

pling schemes.36 Importantly, trajectories are assigned statistical weights that are rigorously

tracked during resampling; when trajectories are replicated in a given bin, the weights are

split among child trajectories and when trajectories are terminated in a probabilistic fash-

ion, the weights are merged with a continued trajectory of that bin. This rigorous tracking

ensures that no bias is introduced into the ensemble dynamics, enabling direct estimates of

rate constants.28

WE simulations can be run under equilibrium or nonequilibrium steady-state conditions.

To maintain nonequilibrium steady-state conditions, trajectories that reach the target state

are “recycled” back to the initial state, retaining the same statistical weight.39 The advantage

of equilibrium WE simulations over steady-state WE simulations is that the target state

need not be strictly defined in advance since no recycling of trajectories at the target state

is applied.116 On the other hand, steady-state WE simulations have been more efficient in

yielding successful pathways and estimates of rate constants. Equilibrium observables can be

estimated from either equilibrium WE simulations or the combination of two nonequilibrium

steady-state WE simulations in the opposite directions when the historical information is

taken into account.117

3.3 ORGANIZATION OF WESTPA 2.0

Below, we present the organization of WESTPA 2.0, beginning with code reorganization

to facilitate software development (Section 3.3.1) and then proceeding to a description of

a Python application programming interface (API) for setting up, running, and analyzing

WE simulations (Section 3.3.2); a minimal adaptive binning (MAB) mapper (Section 3.3.3);

a generalized resampler module that enables the implementation of both binned and bin-
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Figure 8: Basic WE protocol. As illustrated for the simulation of a protein–protein binding

process, a two-dimensional progress coordinate is divided into bins with the goal of occupying

each bin with a target number of four trajectories. Four equally weighted trajectories are

initiated from the unbound state and subjected to a resampling procedure at periodic time

intervals τ for the following: (i) to enrich for success, trajectories that make transitions

to less-visited bins are replicated to generate a target of four trajectories in these bins,

splitting the weights evenly among the child trajectories (green spheres) and (ii) to save

computing time, the lowest-weight trajectories in bins that have exceeded four trajectories

are terminated, merging their weights with those of higher-weight trajectories in these bins

(purple spheres). Spheres are sized according to their statistical weights.
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less schemes (Section 3.3.4); and an HDF5 framework for more efficient handling of large

simulation data sets (Section 3.3.5).

3.3.1 Code reorganization to facilitate software development

The WESTPA 2.0 software is designed to facilitate the maintenance and further devel-

opment of the software according to the established and emerging best practices for Python

development and packaging. The code has been consolidated and reorganized to better in-

dicate the role of each module (Figure 9). The software can now be installed as a standard

Python package using pip or by running setup.py. The package will continue to be avail-

able through Conda via conda-forge, which streamlines the installation process by enabling

WESTPA and all software dependencies to be installed at the same time. We have imple-

mented automated GitHub Actions for continuous integration testing and code quality checks

using the Black Python code formatter as a precommit hook, alongside flake8 for nonstyle

linting. Templates are provided for GitHub issues and pull requests. Both the user’s and

developer’s guides are available on the GitHub wiki along with the Sphinx documentation of

key functions with autogenerated docstrings. Further support will continue to be provided

through WESTPA users’ and developers’ email lists hosted on Google Groups (linked on

https://westpa.github.io).

3.3.2 Python API for setting up, running, and analyzing WE simulations

To simplify the process of setting up and running WE simulations, WESTPA 2.0 features

a Python API that enables the user to execute the relevant commands within a single Python

script instead of invoking a series of command-line tools, as previously done in WESTPA

1.0 (Figure 10A). This also provides tools for third-party developers to build and develop

WESTPA-based applications and plugins, for example, the integration of WESTPA into the

cloud-based computing platform, OpenEye Scientific’s Orion,118 or the history-augmented

Markov state model (haMSM) restarting plugin (Section 3.4.2), which uses the results of a

WESTPA simulation to perform a steady-state analysis then restart the simulation based

on the results of that analysis.
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Figure 9: Reorganization of WESTPA 1.0 to WESTPA 2.0. In version 2.0,

WESTPA is installed using Python and relies on only a single environment vari-

able such that commands can be called directly through Python. To reflect these

changes, we have updated our original suite of WESTPA tutorials for version 2.0

(https://github.com/westpa/westpa_tutorials/tree/westpa-2.0-restruct).55
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Figure 10: Comparison of workflows for setting up and running WE simulations using

WESTPA 1.0 and 2.0, a demonstration of using the Python API for WESTPA 2.0, and

GPU performance of the updated API within a cloud computing environment. (A) The

Python API in WESTPA 2.0 enables a user to fully define, initialize, and run a WESTPA

simulation from within a single Python script (right panel), without needing to invoke com-

mand line utilities required in WESTPA 1.0 (left panel). (B) Example of defining a custom

simulation manager with the WESTPA 2.0 API (top panel) and using the newly defined

simulation manager and WESTPA 2.0 API to programmatically control and run a WE sim-

ulation (bottom panel). (C) Example workflow diagram from the Orion user interface using

the Python classes constructed from the internal WESTPA APIs. (D) Performance of the

WESTPA 2.0 API using the WESTSimulationRunner class within an Amazon Web Services

environment using a combination of numerous g4dn instances as a function of the wall clock

time in Universal Coordinated Time (UTC) units.
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Figure 10B provides an example of how to programmatically call the WESTPA 2.0 API

from the Orion cloud platform, which could in principle be any Python script within any

supercomputing or personal computing environment. First, a developer can write any cus-

tom simulation or work manager of their choice by subclassing or completely rewriting core

WESTPA components (top panel). Second, a workflow can be constructed by invoking

a simple set of WESTPA 2.0 Python commands to perform any WE simulation (bottom

panel). Typically, a user of the WESTPA 2.0 Python API only needs a handful of API

endpoints to perform a complicated simulation protocol. As an example of the power of

the simplicity of the Python API, we demonstrate how a workflow can be constructed from

the defined workflow kernels (Figure 10C) and show the GPU performance over wall-clock

time (in Coordinated Universal Time; UTC) from a drug-like molecule in a membrane per-

meability simulation (Figure 10D). Using the internal API, a user’s simulation can request

large amounts of computational resources per iteration. In this case, thousands of GPUs are

requested per WE iteration for a simulation of butanol crossing a natural membrane mimetic

system (https://github.com/westpa/westpa2_tutorials).

To facilitate the development of custom analysis workflows in cases where more flexibility

is required than that of the existing w_ipa analysis tool,55 WESTPA 2.0 includes the new

westpa.analysis Python API. This API provides a high-level view of the data contained in

the main WESTPA HDF5 file (west.h5) and facilitates retrieval of trajectory data, reducing

the overhead of writing custom analysis code in Python and performing quick, interactive

analysis of individual trajectories (or walkers). The westpa.analysis API is built on three

core data types: run, iteration, and walker. A run is a sequence of iterations; an iteration

is a collection of walkers. Key instance data can be accessed via attributes and methods.

For example, a walker has attributes such as the statistical weight (weight), progress coordi-

nate values (pcoords), starting conformation (parent), and child trajectories after replication

(children) as well as a method, trace, to trace its history (as a pure Python alternative to the

w_trace tool). The API also provides facilities for retrieving and concatenating trajectory

segments. These include support for (i) type-aware concatenation of trajectory segments

represented by NumPy arrays or MDTraj trajectories, (ii) use of multiple threads to po-

tentially increase performance when segment retrieval is an I/O bound operation, and (iii)
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display of progress bars. Finally, the API provides a convenience function, time_average,

for computing the time average of an observable over a sequence of iterations (e.g., all or

part of a run).

3.3.3 MAB mapper

To automate the placement of bins along a chosen progress coordinate during WE sim-

ulation, we have implemented the MAB scheme49 as an option in the westpa.core.binning

module. The MAB scheme positions a specified number of bins along a progress coordinate

after each resampling interval τ by (1) tagging the positions of the trailing and leading tra-

jectories along the progress coordinate and evenly placing a specified number of bins between

these positions and (2) tagging “bottleneck” trajectories positioned on the steepest proba-

bility gradients and assigning these trajectories to their own bins (Figure 11A,B). Despite

its simplicity, the MAB scheme requires less computing time than manual, fixed binning

schemes in surmounting large free energy barriers, resulting in more efficient conformational

sampling and estimation of rate constants.49 To apply the MAB scheme, users specify the

MABBinMapper option along with accompanying parameters such as the number of bins in

the west.cfg file (Figure 19C).

Figure 11D illustrates the effectiveness of the MAB scheme in enhancing the efficiency

of simulating the membrane permeability of a drug-like molecule (tacrine). Relative to a

fixed binning scheme, the MAB scheme results in an earlier flux of tacrine through a model

cellular membrane bilayer (∼5 vs ∼7 ns), and this flux increases more quickly, achieving

values that are 2 orders of magnitude higher for the duration of the test.

The MAB scheme provides a general framework for the user creation of more complex

adaptive binning schemes.49 Users can now specify nested binning schemes in the west.cfg file

(Figure 11E). To run WESTPA simulations under nonequilibrium steady-state conditions

(i.e., with the “recycling” of trajectories that reach the target state) with the MAB scheme,

users can nest a MABBinMapper inside of a RecursiveBinMapper bin and specify a target

state as the outer bins. Multiple individual MABBinMappers can be created and placed at

different locations of the outer bins using a recursive scheme, offering further flexibility in
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Figure 11: The MAB scheme is more efficient in surmounting free energy barriers than

manual fixed binning schemes. (A) Bin positions and trajectories after replication using the

MAB scheme vs a manual binning scheme with the same positions of trajectories (blue circles,

sized according to statistical weights) along a chosen progress coordinate and a target of two

trajectories per bin. (B) Enlarged “bottle” diagrams highlighting the bottleneck region (pink)

along with the relative positions and weights of trajectories for the MAB and manual binning

schemes in panel (A). (C) MAB scheme options in the westpa.core.binning module and the

corresponding user-defined options in the west.cfg file. (D) Flux of a drug-like molecule

(tacrine) permeating through a neat POPC membrane as a function of the molecular time

using fixed binning (blue) or adaptive binning (MAB scheme) (red). Solid lines represent

mean fluxes, and the shaded regions represent 95% confidence intervals. The molecular time

is defined as Nτ , where N is the number of WE iterations and τ is the fixed time interval

(100 ps) of each WE iteration. (E) Schematic of a simple recursive binning case in which

closely spaced inner bins are “nested” within a wider outer bin.
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the creation of advanced binning schemes.

3.3.4 Generalized resampler module that enables binless schemes

In the original (default) WE resampling scheme, trajectories are split and merged based

on a predefined set of bins.26 In WESTPA 2.0, we introduce a generalized resampler module

that enables the users to implement both binned and “binless” resampling schemes, providing

the flexibility to resample trajectories based on a property of interest by defining a grouping

function. While grouping on the state last visited (e.g., initial or target state) was previously

possible using the binning machinery in WESTPA 1.0,119 our new resampler module provides

a more general framework for creating binless schemes by defining a group/reward function of

interest; such schemes enable the use of nonlinear progress coordinates that may be identified

by machine learning techniques. Following others,120 the resampler module includes options

for (i) specifying a minimum threshold for trajectory weights to avoid running trajectories

with inconsequentially low weights and (ii) specifying a maximum threshold for trajectory

weights to avoid a single large-weight trajectory from dominating the sampling, increasing

the number of uncorrelated successful events that reach the target state.

As illustrated in Figure 12, the implementation of a binless scheme requires two modifi-

cations to the default WESTPA simulation: (i) a user-provided group module containing the

methods needed to process the resampling property of interest for each trajectory walker,

and (ii) updates to the west.cfg file specifying the resampling method in the group_function

keyword and the attribute in the group_arguments keyword.

We provide two examples of implementing binless schemes in the westpa-2.0-restruct

branch of the WESTPA_Tutorials GitHub repository. The basic_nacl_group_by_history

example illustrates the grouping of the trajectory based on its “history”, that is, a shared

parent N WE iterations back. The parameter N is specified in the keyword hist_length

under the group_arguments keyword in the west.cfg file. This WESTPA configuration file

also specifies the name of the grouping function method, group.walkers_by_history, in the

group_function keyword. In the basic_nacl_group_by_color example, trajectory walkers

are tagged based on “color” according to the state last visited. Only walkers that have the
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Figure 12: Flowchart for implementing binless resampling schemes in WESTPA 2.0. The

implementation involves grouping trajectories by feature (using the group_function keyword

defined in the group module) before splitting and merging. The functionality for positioning

bins along a chosen progress coordinate remains available in WESTPA 2.0.
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same color are merged, thereby increasing the sampling of pathways in both directions. State

definitions are declared within the group_arguments keyword in the west.cfg file.

3.3.5 HDF5 framework for more efficient handling of large simulation data sets

One major challenge of running WE simulations has been the management of the result-

ing large data sets, which can amount to tens of terabytes over millions of trajectory files.

To address this challenge, we have developed a framework for storing the trajectory data in a

highly compressed and portable HDF5 file format. The format is derived from the HDFRe-

porter class implemented in the MDTraj analysis suite121 and maintains compatibility with

NGLView,122 an iPython/Jupyter widget for the interactive viewing of molecular structures

and trajectories. A single HDF5 file is generated per WE iteration, which includes a link to

each trajectory file stored in the main WESTPA data file (west.h5). Thus, the new HDF5

framework in WESTPA 2.0 enables users to restart a WE simulation from a single HDF5

file rather than millions of trajectory files and simplifies data sharing as well as analysis.

The dramatic reduction in the number of trajectory files also eliminates a potentially large

overhead from the file system that results from the storage of numerous small files. For

example, a 53% overhead has been observed for a 7.5-GB data set of 103,260 trajectory files

generated from NTL9 protein folding simulations (Figure 13), occupying 11.5 GB of actual

disk storage on a Lustre file system.

To test the effectiveness of the HDF5 framework in reducing the amount of data storage

required for WE simulations, we applied the framework to a set of three independent WE

simulations of Na+/Cl− association and one WE simulation involving p53 peptide conforma-

tional sampling (Figure 13A,B). Our results revealed 27 and 85% average reduction in the

total size of trajectory files generated during the Na+/Cl− association and p53 peptide sim-

ulations, respectively, relative to that obtained using WESTPA 1.0. Given a fixed number

of bins, the sizes of per-iteration HDF5 files were also shown to converge as the simulation

progresses (Figure 13C,D), suggesting that the storage of trajectory data by iteration not

only facilitates the management of the data but also yields files of roughly equal sizes. The

difference in the reduction efficiency that we observed between the Na+/Cl− and p53 peptide
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systems can be attributed to differences in the simulation configurations including the format

of the output trajectories, restart files, and other factors such as the verbosity of logging.

Our tests revealed that the additional steps introduced by the HDF5 framework for

managing the trajectory coordinate and restart files did not have any significant impact

on the WESTPA runtime (Figure 13E), which is normalized by the number of trajectory

segments per WE iteration given that the evolution of bin occupancies by trajectories can

vary among different runs due to the stochastic nature of the MD simulations (after 60

iterations, the WESTPA 1.0 run occupied six more bins than the WESTPA 2.0/HDF5

run). This variation in the bin occupancy is unlikely to be affected by the HDF5 framework

since it simply manages the trajectory and restart files and does not alter how the system is

simulated. The differences in bin occupancies/total number of trajectories may also partially

contribute to the large reduction in the per-iteration file sizes for the HDF5 run observed in

Figure 13D for the p53 peptide. However, the majority of this file size reduction results from

efficient HDF5 data compression of trajectory coordinate, restart, and log files. Finally, the

trajectory data saved in the HDF5 files can be extracted and analyzed easily using MDTraj

in combination with our new analysis framework presented in Section 3.4 (Figure 13F).

3.4 ANALYSIS TOOLS

WESTPA 2.0 features new analysis tools for estimating rate constants more efficiently

using the distribution of “barrier crossing” times (Section 3.4.1), accelerating the convergence

using a haMSM to reweight trajectories (Section 3.4.2) and estimating the distribution of

FPTs (Section 3.4.3).

3.4.1 RED scheme for rate constant estimation

To more efficiently estimate the rate constants from WE simulations, we have imple-

mented the rates from event durations (RED) scheme as an analysis tool called w_red in

the WESTPA 2.0 software. The RED scheme exploits the transient ramp-up portion of a
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Figure 13: Demonstration of the usage of the HDF5 framework for two example systems.

(A) Na+/Cl− association simulation where Na+ (yellow sphere) and Cl− (green sphere) ions

were solvated in explicit water (blue transparent surface). (B) Conformational sampling of

a p53 peptide (residues 17-29) in a generalized Born implicit solvent.44 (C) Comparison of

file sizes of per-iteration HDF5 files for the Na+/Cl− association simulation as a function of

the WE iteration using WESTPA 1.0 and 2.0 with the HDF5 framework. The result was

obtained from three independent simulations where the solid curves show the mean file sizes,

while the light bands show the standard deviations. (D) Same comparison as panel (C) for

a single simulation of the p53 peptide; hence, no error bars are shown. (E) Comparison of

wall-clock runtimes normalized by the number of trajectory segments per WE iteration using

WESTPA 1.0 and 2.0 with the HDF5 framework option turned on. (F) Time evolution of the

heavy-atom rmsd of the p53 peptide from its MDM2-bound conformation using trajectories

obtained using WESTPA’s analysis tools.
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WE simulation by incorporating the probability distribution of event durations (or “barrier

crossing” times) from a WE simulation as part of a correction factor (Figure 14A).54 The cor-

rection factor accounts for the systematic error that results from the statistical bias toward

the observation of events with short durations and reweights the event duration distribution

accordingly. When applied to an atomistic WE simulation of a protein–protein binding pro-

cess, the RED scheme is >25% more efficient than the original WE scheme26 in estimating

the association rate constant (Figure 14B).54

The code for estimating the rate constants using the RED scheme takes as an input

the assign.h5 files and direct.h5 files generated by the w_ipa analysis tool. Users then

specify in the analysis section of the west.cfg file that analysis scheme w_red should analyze

along with the initial/final states and the number of frames per iteration. Executing w_red

from the command line will output the corrected flux estimates as a new data set called

red_flux_evolution to the users’ existing direct.h5 file (Figure 14C). The RED rate constant

estimates can then be accessed through the Python h5py module and plotted versus time

to assess the convergence of the estimates. To estimate the uncertainties in observables

calculated from a small number of trials (i.e., the number of independent WE simulations),

we recommend using the Bayesian bootstrap approach.26,124 If it is not feasible to run multiple

independent simulations with a certain system due to either the system size or the timescale

of the process of interest, a user can apply a Monte Carlo bootstrapping approach to a single

simulation’s RED rate constant estimate.

3.4.2 haMSM restarting plugin

haMSMs provide a powerful tool for the estimation of stationary distributions and rate

constants from transient, unconverged WE data.40 Thus, the approach has a similar mo-

tivation to the RED scheme. (48) In haMSM analysis, instead of discretizing trajectories

via the WE bins used by WESTPA, as in the WESS and WEED reweighting plugins for

a non-equilibrium steady state and equilibrium state, respectively,39,116 a much finer and

more numerous set of “microbins” is employed to calculate the steady-state properties with

a higher accuracy. These estimates, in turn, can be used to start new WE simulations from

45



Figure 14: The RED scheme for more efficient rate constant estimation. (A) Schematic

illustrating the RED scheme, which incorporates the distribution of event durations as part

of a correction factor for rate constant estimates that account for the statistical bias toward

the observation of events with short durations. (B) Application of the original and RED

schemes to estimate the associate rate constant of a protein–protein binding process involving

the barnase and barstar proteins as a function of the molecular time in a WE simulation.

The molecular time is defined as Nτ , where N is the number of WE iterations and τ is

the fixed time interval (20 ps) of each WE iteration. Simulations were previously run using

WESTPA 1.0 with the GROMACS 4.6.7 MD engine.123 (C) Schematic illustrating how users

can generate a data set for calculating the RED scheme correction factor from the simulation

data stored in the analysis HDF5 files and apply the correction factor to the rate constant

estimate using the new w_red tool.
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a steady-state estimate, accelerating the convergence of the simulation.124 The new plugin

provides a streamlined implementation of the restarting protocol that runs automatically as

part of a WESTPA simulation, a capability which did not previously exist.

The msm_we package provides a set of analysis tools for using typical WESTPA HDF5

output files, augmented with atomic coordinates, to construct an haMSM. A nearly typical

MSM model-building procedure125 is used (Figure 15): WE trajectories are discretized into

clusters (microbins) and transitions among microbins are analyzed. However, instead of

reconstructing entire trajectories, the msm_we analysis computes the flux matrix by taking

each weighted parent/child segment pair, extracting and discretizing one frame from each,

and measuring the flux between them–that is, the weight is transferred.

The haMSM restarting plugin in WESTPA 2.0 makes use of the analysis tools provided

by msm_we to incorporate this functionality directly into WESTPA. It manages running a

number of independent simulations, initialized from some starting configuration, and aug-

ments their output HDF5 with the necessary atomic coordinates. Data from all independent

runs are gathered and used to build a single haMSM. Stationary probability distributions

and rate constants are estimated from this haMSM.

This plugin can be used to start a set of new WE simulation runs, initialized closer to

the steady state (Figure 16). The haMSM and the WE trajectory data are used to build

a library of structures and their associated steady-state weights. These are used to initiate

a new set of independent WE runs, which should start closer to the steady state and thus

converge more quickly. The process can be repeated iteratively, as shown in Figure 16A.

The result of this restarting procedure is shown in Figure 16B. For challenging systems, the

quality of the haMSM will greatly affect the quality of the steady-state estimate. A further

report is forthcoming on strategies for building high-quality haMSMs.

To use this plugin, users must specify a function that ingests coordinate data and fea-

turizes the data. Dimensionality reduction may be performed on this featurized data. An

effective choice of featurization provides a more granular structural description of the system

without including a large number of irrelevant coordinates that add noise without adding

useful information. For example, a limited subset of the full atoms such as only α-carbons or

even a strided selection of the α-carbons, may be sufficient to capture the important struc-
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Figure 15: Workflow for constructing an haMSM from trajectories. First, the atomistic

trajectories are featurized and discretized. The flux matrix is then computed by computing

fluxes between discrete states. The flux matrix is row-normalized into a transition matrix.

Estimates of steady-state populations and rate constants are obtained from the analysis of

the transition matrix. Figure created with biorender.com.
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Figure 16: Application of the haMSM restarting plugin to the ms folding process of the NTL9

protein. (A) Diagram of the haMSM restarting plugin’s functionality. (B) Example of the

restarting plugin functionality in the accelerated convergence of NTL9 folding rate constants

from a WESTPA 2.0 simulation using the AMBER 16 MD engine.126 haMSM estimates at

restarting points are shown as dots, WE direct fluxes are shown as red lines, and the 95%

credibility region from the direct WE is shown in gray. (C) Distribution of the FPTs for

NTL9 folding from the haMSM built at the final restart of the simulation in Figure 16B.

The weighted average of the blue FPT distribution is shown in black dashed lines, and the

MFPT estimate from the haMSM’s steady-state estimate is shown in green.Figure created

with biorender.com.
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tural information. Choosing the featurization based on rotation-invariant distances, such as

pairwise atomic distances instead of atomic positions, can also help capture the structural

fluctuations without sensitivity to large-scale motion of the entire system.

To validate the convergence of the restarted simulations, a number of independent repli-

cates of the restarting protocol should be performed. These replicates should demonstrate

both the stability in flux estimates across restarts and relatively constant-in-time direct fluxes

within the restarts. If limited to a single replicate, the agreement between the haMSM flux

estimate and the direct flux should also be validated.

3.4.3 Estimating FPT distributions

FPTs and their mean values (MFPTs) are key kinetics quantities to characterize many

stochastic processes (from a macrostate to another) in chemistry and biophysics such as

chemical reactions, ligand binding and unbinding, protein folding, and diffusion processes of

small molecules within crowded environments. WE simulations, via the Hill relation, provide

unbiased estimates of the MFPT directly once the steady state is reached39 or indirectly

via non-Markovian haMSM analysis,116 but the mathematically rigorous estimation of the

FPT distribution is not available and has been a challenge for WE simulation. Suárez

and coworkers, however, have shown that the FPT distributions estimated from haMSM

models provide semi-quantitative agreement with unbiased reference distributions in different

systems.117 Details on building haMSMs are described above in Section 3.4.2, and more

information can be found in the refs116 and.117

Here, we extend and strengthen the earlier FPT distribution analysis from WE data.

The original code for calculating the FPT distribution was published on a separate GitHub

repository (https://github.com/ZuckermanLab/NMpathAnalysis). Recently, we reorganized

and refactored the code in class hierarchical structures: a base class (MatrixFPT) for calcu-

lating MFPT and FPT distributions using a general transition matrix as an input parameter

and two derived classes (MarkovFPT and NonMarkovFPT) using transition matrices from

Markovian analysis and non-Markovian analysis, respectively, as mentioned in the haMSM

in Section 3.4.2. The updated code has been merged into the msm_we package described
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in Section 3.4.2 along with some updates on building a transition matrix from classic MD

simulation trajectories.

The new code enables the robust estimation of the FPT distribution. Figure 16C shows

the non-Markovian estimation of the FPT distribution of transitions between macrostates A

and B from the WE simulation of NTL9 protein folding.

3.5 SUMMARY

WESTPA is an open-source, highly scalable, interoperable software package for applying

the WE strategy, which greatly increases the efficiency of simulating rare events (e.g., protein

folding and protein binding) while maintaining rigorous kinetics. The latest WESTPA re-

lease (version 2.0) is a substantial upgrade from the original software with high-performance

algorithms enabling the simulation of ever more complex systems and processes and imple-

menting new analysis tools. WESTPA 2.0 has also been reorganized into a more standard

Python package to facilitate the code development of new WE algorithms, including bin-

less strategies. With these features available in the WESTPA toolbox, the WE community

is well-poised to take advantage of the latest strategies for tackling major challenges in

rare-event sampling, including the identification of slow coordinates using machine learn-

ing techniques,99,100 and the interfacing of the WE strategy with other software involving

complementary rare-event sampling strategies (e.g., OpenPathSampling,127,128 SAFFIRE,109

and ScMile129 and analysis tools (e.g., LOOS,130 MDAnalysis,131 and PyEmma.132 WESTPA

has also been interfaced with OpenEye Scientific’s Orion platform118 on the Amazon Web

Services cloud computing facility. We hope that the above new features of WESTPA will

greatly facilitate the efforts by the scientific community to tackle grand challenges in the

simulation of rare events in a variety of fields, including the molecular sciences and systems

biology.
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4.0 A MINIMAL, ADAPTIVE BINNING SCHEME FOR WEIGHTED

ENSEMBLE SIMULATIONS

Adapted with permission from Torillo, P. A.†, Bogetti, A. T.† and Chong, L. T. J. Phys.

Chem. A 2021, 125, 1642-1649. † denotes co-first authorship. Copyright 2021 American

Chemical Society.

4.1 INTRODUCTION

Path sampling strategies have been pivotal in enabling the simulation of pathways and

kinetics for rare events such as protein un(binding),44–46,133–135 protein (un)folding,29,43,136,137

and membrane permeation.138,139 These strategies exploit the fact that the time required to

cross a free energy barrier (tb) is much shorter than the dwell time in the preceding stable

(or metastable) state (tb ≪ tdwell) during which the system is “waiting” for a lucky transition

over the barrier.107,140 By focusing the computational power on the actual transitions between

stable states rather than on the stable states themselves, path sampling strategies can be

orders of magnitude more efficient than standard simulations in sampling the functional

transitions of rare events without introducing any bias into the dynamics.27

A major challenge for path sampling strategies has been the division of configurational

space for a rare-event process. The application of these strategies can therefore be greatly

streamlined by schemes that automate the adaptive placement of bins along a chosen progress

coordinate. Such adaptive binning schemes have included the use of Voronoi bins28,119,120 and

a variance-reduction approach34 for the weighted ensemble strategy;18,26 interfaces have also

been used as “bins” to improve flux through bottlenecks between (meta)stable states109,141,142

for nonequilibrium umbrella sampling142 and forward flux sampling.143

Here, we present a minimal adaptive binning (MAB) scheme within the framework of

the weighted ensemble strategy. The scheme can be used with high-dimensional progress

coordinates and exhibits the following features: (i) no prior test simulations or training sets
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are required as the scheme relies only on the positions of the trailing and leading trajectories

along the progress coordinate at chosen fixed time intervals; (ii) fewer bins are required com-

pared with a manual binning scheme due to earlier identification of bottlenecks along the

progress coordinate; (iii) the maximum number of CPUs (or GPUs) required is easily esti-

mated prior to running the simulation since a similar number of bins are occupied throughout

the simulation; and (iv) the scheme is easily extensible to more sophisticated schemes for

adaptive binning. To demonstrate the power of the adaptive binning scheme, we applied

the algorithm to simulations of the following processes, in order of increasing complexity:

(i) transitions between states in a double-well toy potential, (ii) molecular association of the

Na+ and Cl− ions, and (iii) conformational transitions of an N-terminal peptide fragment of

the p53 tumor suppressor.

4.2 THEORY

4.2.1 The weighted ensemble strategy

The weighted ensemble (WE) strategy involves running many trajectories in parallel

and applying a resampling procedure at fixed time intervals τ to populate empty bins in

configurational space, typically along a progress coordinate.18,26 The resampling procedure

involves replicating trajectories that advance toward a target state, enriching for success

in reaching the target state via a “statistical ratcheting” effect; to save computing time,

trajectories that have not made any progress may be terminated, depending on which bin

they occupy. Importantly, the rigorous tracking of trajectory weights ensures that no bias is

introduced into the dynamics, thereby enabling the calculation of nonequilibrium observables

such as rate constants. Furthermore, since the trajectory weights are independent of the

progress coordinate, the progress coordinate as well as bin positions can be adjusted “on-

the-fly” during a WE simulation.28

WE simulations can be carried out under nonequilibrium steady-state or equilibrium con-

ditions.116 Nonequilibrium steady-state trajectories that reach the target state are “recycled”
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by terminating the trajectories and starting a new trajectory from the initial state with the

same statistical weight. Equilibrium trajectories are not recycled, which means that target

states need not be strictly defined in advance of the simulation.

4.2.2 The MAB scheme

The minimal adaptive binning (MAB) scheme works by first placing a fixed number of

evenly spaced bins between “boundary” trajectories: the trailing and leading trajectories

along the progress coordinate at a given time. Then, the trailing, leading and "bottleneck"

trajectories (described below) are assigned to separate bins. The WE strategy then replicates

and prunes trajectories within each bin at fixed time intervals (WE iterations) to maintain

a target number of trajectories per bin; trajectory weights are split or merged, respectively,

according to rigorous statistical rules.28

When running a WE simulation, a steep energy barrier will often slow progress in a

particular direction of the progress coordinate. In order to enhance the chance of surmounting

that steep barrier, more splitting will need to occur along the barrier. In practical terms,

this means that a user will need to space bins more finely along the steep barrier so that

there is a higher chance of transitioning into a new bin and therefore splitting. The MAB

scheme, a heuristic approach, does not directly detect the location of a steep energy barrier,

but does so indirectly. If a leading trajectory is not progressing very far per iteration, the

bins that MAB uses to split that leading trajectory will have all been very close to each

other, mimicking the fine spacing of bins that would be optimal for surmounting a barrier

based on a known potential energy curve or surface.

For the bottleneck trajectory detection, MAB will still have the goal of surmounting

the steep energy barrier again (to generate multiple, independent crossing events) by more

frequent splitting but cannot rely on the movement of the leading trajectory since that

trajectory will already have surmounted the barrier. The bottleneck detection feature will

then rely on another indirect indicator of where a steep barrier may be: one based on

probability differentials. If a steep barrier is present, it is likely that splitting is the only way

trajectories have overcome that barrier and after many rounds of splitting the trajectories
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at the top of the barrier will be lower in weight than those at the base of the barrier.

The bottleneck trajectory in each uphill direction of interest is identified by calculating the

following value of a probability differential Z for each bottleneck candidate and choosing the

trajectory that maximizes the following objective function at a given time:

Z = log(pi)− log

(
n∑

j=1

pj

)
(1)

where pi is the log of the weight of trajectory i under consideration and
∑n

j=1 pj is the log

of the cumulative weight of all n trajectories that have surpassed trajectory i along the

progress coordinate in the direction of interest. The log of the weights are used in bottleneck

detection due to the fact that WE trajectories, especially near the bottleneck, can have

weight differentials in excess of an order of magnitude. Z therefore favors the selection

of relatively heavy-weight trajectories with the smallest cumulative weight ’ahead’ of them

along the progress coordinate. This relative weight differential effectively acts as a proxy for

a bottleneck.

Figure 17 illustrates the steps of the MAB scheme for a one-dimensional progress coor-

dinate:

1. Run dynamics for one WE iteration with a fixed interval τ .

2. Tag boundary and bottleneck trajectories with regard to the current WE iteration.

3. Adapt bin positions by dividing the progress coordinate evenly into a specified, fixed

number of bins between the positions of the tagged trailing and leading trajectories;

assign trailing, leading, and bottleneck trajectories to separate bins.

4. Replicate and prune trajectories to maintain a target number of trajectories in each bin.

5. Run dynamics with updated bins and repeat steps 1–4.

For a multidimensional progress coordinate, steps 2 and 3 are carried out for each di-

mension of the progress coordinate. When multiple bottlenecks exist, replication of the most

major bottleneck trajectory at the current WE iteration enriches for successful transitions

over the corresponding bottleneck, enabling later bottlenecks along the landscape to be tack-

led. To avoid the replication of trajectories outside of the desired configurational space (e.g.,

regions of unintentional protein unfolding), the MAB scheme includes the option to specify
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Figure 17: Illustration of the MAB scheme for adaptive placement of bins along a one-

dimensional progress coordinate. The scheme involves five steps. (1) Run dynamics for a

short, fixed time interval τ using initial bins indicated by gray vertical lines. Trajectories

are represented by red circles with sizes that are proportional to their statistical weights. (2)

Tag boundary and bottleneck trajectories (highlighted in gold). (3) Adapt bin boundaries

(blue vertical lines) by placing a fixed number of bins evenly between the positions of the

trailing and leading trajectories along the progress coordinate and assigning each boundary

and bottleneck trajectory to a separate bin (blue boxes). (4) Replicate and prune trajectories

to maintain a target number of trajectories per bin. (5) Repeat steps 1–4 with updated bin

positions until a desired amount of sampling is achieved.
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minimum and/or maximum limits of another observable as an additional dimension to the

progress coordinate for the replication of trajectories. Since the number of trajectories per

bin is fixed and a similar number of bins are occupied throughout the WE simulation, in-

cluding separate bins for boundary and bottleneck trajectories, we can easily estimate the

maximum number of CPUs (or GPUs) required for the simulation. A Python implementation

of the MAB scheme is available for use with the WESTPA software package.42

4.3 METHODS

4.3.1 WE simulations

All WE simulations were carried out using the open-source WESTPA software package.42

For each benchmark system, we compared the efficiency of the MAB scheme for adaptive

binning to a manual, fixed binning scheme. We present progress coordinates and binning

schemes for each benchmark system below.

4.3.2 The double-well toy potential

The double-well toy potential consists of two equally stable states separated by a 34 kT

free energy barrier. The potential was defined as

V/kt = −60× cos2x+
3.75

sin2x
(2)

For the manual binning scheme, a one-dimensional progress coordinate was divided into 20

bins along a theoretical X position metric ranging from an initial state A at X = 0.5 to a

target state B at X = 2.5; for the MAB scheme, a fixed number of bins ranging from 5 to

20 was used throughout the WE simulation for the same progress coordinate at any given

time to determine the impact of the number of bins on the efficiency of generating successful

transitions. For each binning scheme, a single WE simulation was run with a fixed time

interval τ of 5 × 10−5 for each iteration and a target number of 5 trajectories/bin, yielding

a total simulation time of 200 000 δt.
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Dynamics were propagated according to the overdamped Langevin equation:

X(t+ δt) = X(t)− δt

γ
∇XV + δXG (3)

where γ is the friction coefficient, δt is the time step, and δXG is a Gaussian random

displacement with zero mean and variance 2kT
γ
δt with δt = 5 × 10−5 and reduced units of

γ = 1 and kT = 1.

4.3.3 The Na+/Cl− system

To sample Na+/Cl− associations in explicit solvent, 5 independent, nonequilibrium steady-

state WE simulations were carried out for each of the two binning schemes. A one-dimensional

progress coordinate was used which consisted of the Na+/Cl− separation distance. A total

of 28 bins were equally spaced from a maximum value of 20 Å down to a target state at

2.6 Å. For both binning schemes, 1000 WE iterations were run with a fixed time interval τ

of 2 ps for each iteration and a target number of 4 trajectories/bin, yielding an aggregate

simulation time of 0.2 µs.

Dynamics were propagated using the AMBER18 software package144 with the TIP3P wa-

ter model145 and corresponding Joung and Cheatham ion parameters.146 Simulations were

started from an unassociated state with a 12 Å Na+/Cl− separation and a truncated octa-

hedral box of explicit water molecules that was sufficiently large to provide a minimum 12 Å

clearance between the ions and box walls. The temperature and pressure were maintained

at 298 K and 1 atm using the Langevin thermostat (collision frequency of 1 ps−1) and Monte

Carlo barostat (with 100 fs between attempts to adjust the system volume), respectively.

Nonbonded interactions were truncated at 10 Å, and long-range electrostatics were treated

using the particle mesh Ewald method.147

4.3.4 P53 peptide

To sample alternate conformations of the p53 peptide (residues 17–29), a single equilib-

rium WE simulation was run using each of the two binning schemes and a two-dimensional

progress coordinate that consisted of (i) the heavy-atom RMSD of the peptide from its
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MDM2-bound, α-helical conformation, and (ii) the end-to-end distance of the peptide. For

both binning schemes, the WE simulations were run using a fixed time interval τ of 50 ps

for each iteration and a target number of 4 trajectories/bin. A total simulation time of 2.0

µs was generated for each binning scheme (338 and 200 WE iterations for the MAB and

manual binning schemes, respectively). The MAB scheme used a maximum of 44 bins while

the manual binning scheme used a maximum of 294 bins that were evenly spaced between

an RMSD of 0 and 20 Å and end-to-end distance of 0–26 Å. For the MAB scheme, no other

limits were specified for the replication of trajectories.

Dynamics were propagated using the AMBER18 software package144 with the Amber

ff14SBonlysc force field148 and a generalized Born implicit solvent model (GBneck2 and

mbondi3 intrinsic radii).149 Simulations were started from an energy-minimized conforma-

tion of the peptide that was based on the crystal structure of the MDM2-p53 peptide complex

(PDB code: 1YCR).150 The temperature was maintained at 298 K using the Langevin ther-

mostat and a collision frequency of 80 ps−1 for water-like viscosity.

4.3.5 Standard simulations

A total of 5 independent 1 µs standard MD simulations were run for the Na+/Cl−, and a

single 2 µs simulation was carried out for the p53 peptide. Details of dynamics propagation

and starting structures for these simulations are the same as those described above for the

WE simulations.

4.3.6 Calculation of rate constants

The association rate constant kRED for the Na+/Cl− system was directly calculated from

the WE simulation using the rate event duration (RED) scheme:54

kRED =
F̂ (tmax)

C
(4)

where F̂ (tmax) is the cumulative probability of transitions from the unassociated state to

the associated state up to the maximum (longest) trajectory length tmax of the steady-state

WE simulation; C is a correction factor equal to
∫ tmax

0

∫ t

0
h̃(tb)dtbdt, which incorporates the
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transient phase of the time evolution of the rate-constant estimate using the distribution

h̃(tb) of event durations (barrier crossing times) that are less than or equal to tmax.

Uncertainties in the rate constants represent 95% confidence intervals, which is the stan-

dard error of the mean for each system multiplied by a critical value. For a large sample

size (> 30), this critical value would be 1.96, as obtained from a z-test. However, for the

calculations in this study, which involve a smaller sample size (< 30), critical values for de-

termining the confidence interval at 95% were obtained from a t test using the appropriate

number of degrees of freedom (number of independent simulations minus 1) for each system.

4.3.7 Estimation of WE efficiency in computing rate constants

The efficiency Sk of WE simulations in computing the association rate constant for the

Na+/Cl− system was estimated using the following:26

Sk =
tBF

tWE

(
∆k2BF

∆k2WE

)
(5)

where tBF/WE is the aggregate simulation time for standard “brute force” (BF) simulation

or WE simulation, respectively, and ∆kBF/WE is the relative error in the rate constants for

the corresponding simulations where the absolute error is represented by the 95% confidence

interval. Thus, the efficiency of the WE simulation in calculating the rate constant is deter-

mined by taking the ratio of aggregate times for the WE and brute force simulations that

would be required to estimate the rate constant with the same relative error, with larger

values of Sk corresponding to a more efficient simulation. The relative error in the rate

constant is assumed to be inversely proportional to the simulation time.

4.4 RESULTS

We demonstrate the power of our minimal adaptive binning (MAB) scheme compared to

fixed, manual binning schemes in the weighted ensemble (WE) sampling of rare events. We

applied the MAB scheme to the following processes, listed in order of increasing complexity:
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(i) transitions between stable states in a double-well toy potential, (ii) molecular associations

of the Na+/Cl− ions, and (iii) conformational sampling of a peptide fragment of tumor

suppressor p53.

4.4.1 Simulations with a double-well toy potential

To test how effectively the MAB scheme performs for a process with a large free energy

barrier, we focused on a double-well toy potential in which two equally stable states are

separated by a 34 kT (20 kcal/mol at room temperature) barrier. WE simulations with a

manual binning scheme (see Figure 18A for bin positions) yielded no pathways from the

initial state at X = 0.5 to the target state at X = 2.5 after 12 000 WE iterations, occupying

only 14% of the fixed bins (Figure 18B). In contrast, the MAB scheme generated pathways

to the target state in 60 WE iterations, occupying 99% of the bins (Figure 18C). This greater

efficiency is due to the identification of bottleneck regions right before the trajectory weights

have sharply fallen. These regions correspond to the upward slope of the free energy barrier

(Figure 18D) where trajectories that are about to re-cross the high barrier get "stuck" due

to the boundary trajectories maintaining their positions far apart from each other.

4.4.2 Simulations of the Na+/Cl− association process

To determine the effectiveness of the MAB scheme for a relatively fast process (ns time

scale), we simulated the Na+/Cl− association process in explicit solvent (Figure 19A). Given

the modest free energy barrier for this process,151 it was feasible to compute association rate

constants using standard simulations, providing validation of the rate constants computed

using WE simulations and manual/MAB binning schemes.

Table 1 shows the computed rate constants, the efficiencies relative to standard simula-

tions, and the number of successful pathways for WE simulations with the MAB and manual

binning schemes. Regardless of the binning scheme, the WE simulations yield rate constants

that are within the error of the value from standard simulations (see also Figure 21 in the

SI). Given the modest free energy barrier for this process, there is only a 1.6-fold gain in

efficiency for the MAB scheme relative to the manual binning scheme (see Figure 19B for
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Figure 18: Transitions between stable states of a double-well toy potential. (A) The double-

well potential in units of KBT and manual binning scheme with 20 bins indicated by vertical

lines. (B) Probability distribution as a function of the WE iteration for a manual binning

scheme. (C) Probability distribution as a function of the WE iteration for the MAB scheme.

(D) Probability distribution of bottleneck walkers identified by the MAB scheme using 20

bins at any given time.
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Figure 19: Molecular association of the Na+ and Cl− ions. (A) The Na+/Cl− system in

explicit solvent. (B) Potential of mean force for the Na+/Cl− association process in units of

KBT with bin positions for the manual scheme indicated by vertical lines. (C) Probability

distribution of the positions of bottleneck trajectories tagged by the MAB scheme along the

progress coordinate.

bin positions). The MAB scheme also resulted in a 2-fold gain in the number of successful

pathways related to the manual binning scheme. Consistent with our results for the double-

well toy potential, the majority (60%) of the bottleneck trajectories occupied bins along the

upward slope of the free energy barrier; the remaining bottleneck trajectories (40%) occupied

bins located beyond the target state and are only present due to running these simulations

without a recycling condition (Figure 19C).

4.4.3 Conformational sampling of the p53 peptide

Given that the WE strategy has previously enhanced the conformational sampling of

various biomolecules,44,152 we applied the MAB scheme to the conformational sampling of a

p53 peptide (Figure 20A). As expected, WE simulations using either the MAB scheme or

the previously reported manual binning scheme55 yielded greater coverage of configurational

space than standard simulations with the same total computing time (Figure 20B,C). The

MAB scheme placed bins more efficiently than the manual binning scheme, resulting in the

occupation of 66% of the specified bins (29 out of 44 bins) compared to only 17% (50 out
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simulation type k (M−1s−1) simulation time (µs) Sk # successful pathways

WE w/ MAB (3.9 ± 0.3) × 1010 1.0 5.1 2498

WE w/ manual bins (4.1 ± 0.4) × 1010 1.0 3.1 1226

Table 1: Computed Rate Constants for the Na+/Cl− Association Process Using WE Sim-

ulations with the MAB Scheme and Manual Binning Scheme. Uncertainties represent 95%

confidence intervals determined by a t-test. For each binning scheme, five WE simulations

were run with each yielding 0.2 µs of total simulation time. The efficiency Sk of WE relative

to standard simulations was calculated as described in Methods. For reference, the computed

rate constant based on five 1 µs standard simulations was (3.9± 0.3)× 1010M−1s−1.

of 294 bins) for the manual binning scheme. Notably, the MAB scheme sampled a “horn

shaped” region of the probability distribution which consists of primarily low-probability

trajectories. This region was not sampled when using the manual binning scheme (or stan-

dard simulations) and includes a more extensive set of left-handed helices as well as PPII

conformations, which have previously been identified as the dominant state by UV resonance

Raman spectroscopy.153

4.5 DISCUSSION

On average, the minimal adaptive binning (MAB) scheme replicates more trajectories

in steeper regions of the free energy landscape. As mentioned above for the double-well toy

potential and Na+/Cl− system (Figure 18D and Figure 19C, respectively), our MAB scheme

identified bottleneck regions as the upward slopes of the free energy barriers, immediately be-

fore the barrier peaks (transition states). In contrast, a recently published variance-reduction

strategy, which also seeks the most optimal placement of bins in weighted ensemble simula-

tions, has identified such regions as the vicinity of the transition states; i.e., finer binning in

transition-state regions yields the lowest variance in an observable of interest.34 This slight
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Figure 20: Conformational sampling of a p53 peptide. Probability distributions as a func-

tion of the two-dimensional WE progress coordinate from simulations of the p53 peptide

(residues 19–23): (A) starting conformation of the p53 peptide (cyan) for the WE simula-

tion, extracted from the crystal structure150 of its complex with the MDM2 protein (gray);

(B) WE simulations using the manual binning scheme; and (C) WE simulations using the

MAB scheme. Also shown are Ramachandran plots of the p53 peptide for the manual bin-

ning scheme and MAB scheme. Regions sampled by standard simulations are delineated in

red.
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difference in the locations of the bottleneck regions is likely due to the fact that the goals

of the MAB scheme and variance-reduction strategy are different. The MAB scheme aims

to surmount free energy barriers whereas the variance-reduction strategy aims to minimize

the variance of an observable of interest.34 Our results suggest that the MAB scheme would

be particularly effective in surmounting large barriers when used with a “committor” coor-

dinate,107,154–157 which tracks the probability that a given system configuration will commit

to the target state before returning to the initial state: a nearly optimal, one-dimensional

progress coordinate for the rare-event process of interest.158,159

The MAB scheme identifies bottleneck trajectories using an objective function that is

easily extensible to track any arbitrary value. In its current form, the objective function

tracks the probability of the trajectory in question along with the cumulative probability of

all trajectories that are further along the progress coordinate of interest, all on a logarithmic

scale. This requirement of having some trajectories that have surpassed the trajectory of

interest makes it unlikely for identified bottleneck trajectories to be ones that have departed

along orthogonal degrees of freedom (i.e., differentiating between a leading trajectory and a

bottleneck trajectory). Alternatively, users may modify the objective function to track the

average or maximum probability among trajectories that have surpassed the trajectory in

question.

By identifying appropriate bin positions for use with other key WE parameters (i.e.,

resampling interval τ and target number of trajectories per bin), the MAB scheme greatly

reduces the need for trial-and-error selection of these parameters, which are highly coupled

to one another. To maximize the “statistical ratcheting” effect of the WE strategy, we rec-

ommend using the shortest possible τ -value that maintains high scaling of the WESTPA

software with the number of GPUs (or CPU cores) on a given computing resource.55 Fur-

thermore, our results indicate that a target number of either 4 or 5 trajectories per bin is

sufficient to surmount large barriers or greatly enhance conformational sampling. If the goal

is to simply generate pathways to a target state of interest, we recommend applying the MAB

scheme with the minimal number of bins (e.g., 5, with separate bins for the two boundary

trajectories and one bottleneck trajectory in the direction of interest, and two bins between

the boundary trajectories) to reduce the total computational time required for the simula-
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tion. On the basis of our tests with the double-well toy potential, the number of bins does

not affect the ability of trajectories to reach the target state using the same total computing

time (Figure 22 in the SI). However, if a greater diversity of trajectories or a rate-constant

estimate is desired, we recommend applying the MAB scheme with a larger number of bins

(15–20) to replicate more trajectories and yield more even coverage of configurational space

along the progress coordinate.

4.6 CONCLUSIONS

To streamline the execution of weighted ensemble (WE) simulations, we developed a min-

imal adaptive binning (MAB) scheme for automatically adjusting the positions of bins along

a progress coordinate. Our scheme adjusts bin positions according to the positions of trailing,

leading, and “bottleneck” trajectories at the current WE iteration. Despite its simplicity, the

MAB scheme results in greater sampling of configurational space relative to manual binning

schemes for all three benchmark processes of this study: (i) transitions between states of a

double-well toy potential; (ii) Na+/Cl− association; and (iii) conformational sampling of a

peptide fragment of the tumor suppressor p53. Due to the earlier identification of bottle-

necks along the progress coordinate, the MAB scheme enables the simulation of pathways

for otherwise prohibitive large-barrier processes and a greater diversity of pathways when

desired, all with dramatically fewer bins than manual binning schemes. As demonstrated

previously, the efficiency of WE simulations relative to standard simulations is even greater

for slower processes, increasing exponentially with the effective free energy barrier when the

progress coordinate is appropriately binned.89

We recommend the MAB scheme as a general, minimal scheme for automating the place-

ment of bins in combination with any rare-event sampling strategy that requires a progress

coordinate. A particularly effective application of the scheme could be its use with a commit-

tor coordinate, which is a nearly optimal, one-dimensional progress coordinate for ordering

states along simulated pathways for a process of interest according to a “kinetic ruler.” Re-

gardless, the MAB scheme provides an ideal launching point for future developments of more
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sophisticated binning strategies by yielding initial, promising bins for further optimization.
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4.8 SUPPORTING INFORMATION

Figure 21: Computed rate constants for the molecular association process involving Na+ and

Cl− ions in explicit solvent as a function of molecular time Nτ where N is the number of

WE iterations and τ is the fixed time interval for WE resampling. The rate constant from

standard simulations is shown with the uncertainty as a grey shaded line. Results are shown

for A) the manual binning scheme and B) the MAB scheme.

70



Figure 22: Probability distributions as a function of the progress coordinate X from WE

simulations with the double-well potential and MAB scheme using different numbers of bins

and the same total computing time (200,000 δt). Distributions of successful trajectories

by their corresponding weights (trajectory weights shown on the logscale) are shown in the

second row.
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5.0 LPATH: A SEMI-AUTOMATED PYTHON TOOL FOR CLUSTERING

MOLECULAR PATHWAYS

5.1 INTRODUCTION

Pathways generated by physics-based simulations are the most direct observations of

a molecular mechanism. Furthermore, the ensemble of simulated pathways often involves

multiple routes through phase space. The identification of these routes is challenging given

the diversity and variable lengths of pathways. In addition, the massive amount of trajectory

data generated by path sampling strategies (e.g., tens of terabytes) can be unwieldy to

analyze.

Current methods for pathway analysis involve two main steps: (1) projecting path-

ways onto a low-dimensional phase space and (2) clustering pathways based on a similarity

metric. The pathway similarity analysis (PSA) method50 is a “bottom-up” approach that

projects pathways onto a low-dimensional phase space consisting of the pairwise root-mean-

squared deviation of sampled conformations and then clusters the pathways based on pairwise

Hausdorff160 or Fréchet161 geometric pathway distances. The pathway histogram analysis of

trajectories (PHAT) method51 presents an approach to quantify pathway diversity via pop-

ulations of discrete classes. One way that PHAT presents for generating pathway classes is a

“bottom-up” approach similar to PSA in which “set similarities” are used to generate similar-

ity scores between pathways (though any similarity metric, such as the geometric distances

used in PSA, can be used), which are clustered into distinct classes using Voronoi clustering.

Another approach is “top-down” where fundamental sequences, or discrete-state trajectories

with loops removed, are calculated from a discrete model (such as a Markov state model)

and used to sort pathways.

In this application note, we present the Linguistics Pathway Analysis of Trajectories

with Hierarchical clustering (LPATH) tool, which uses a bottom-up approach to clustering

pathways based on a similarity metric that is commonly used in computational linguistics

for plagiarism detection software.162 Similar to both the PSA and PHAT methods, LPATH
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generates a histogram of pathway classes. Our projection of pathways onto one-dimensional

text strings greatly accelerates the hierarchical clustering of pathways and subsequent anal-

ysis of path ensembles. While the LPATH tool is designed for simulations run using the

weighted ensemble (WE) path sampling method,18,26 as implemented in the WESTPA 2.0

software package,48 this tool can also be applied to conventional MD (cMD) simulations.

We demonstrate the effectiveness of our LPATH tool in pathway analysis by focusing on a

benchmark application involving simulated pathways for a conformational transition of an

alanine dipeptide.

5.2 WORKFLOW APPLICATION TO ALANINE DIPEPTIDE

The workflow for the LPATH tool is presented in Figure 23 and involves four steps: 1)

discretization, 2) extraction, 3) matching and 4) clustering. An additional step (plotting) is

available as part of the tool but not discussed here. Further details of each step are provided

below in the context of our benchmark application involving the conformational sampling of

alanine dipeptide in generalized Born implicit solvent,163 i.e., the transition from the C7eq

to C7ax conformational states (Figure 24).

5.2.1 System details

In this benchmark application, we demonstrate the use of the LPATH tool for analyzing

20 independent cMD simulations and 5 independent WE simulations–all of which were dis-

cretized based on ϕ/ψ angles. The total simulation time of the WE simulations is 14.6 µs

and 60 µs for the cMD simulations. All simulations were run with the Amber 22 package.164

A timestep of 4 fs was enabled by using a hydrogen mass repartitioning (HMR) scheme

and coordinates were saved every 1 ps for analysis. The cMD simulations generated 122

successful pathways and the WE simulations generated 83 successful pathways. For optimal

pathway clustering analysis results, we recommend the generation of at least 50 pathways.
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Figure 23: Workflow of the LPATH tool. The workflow consists of five steps that are

executed using four command-line options, with matching and clustering both being a part

of the “match” option (‘lpath match’).
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Figure 24: The alanine dipeptide benchmark system. Alanine dipeptide, capped with acetyl

and N-methyl groups is shown in A. Rotation around ϕ and ψ angles results in the probability

distribution of conformations shown in B. In this workflow application, the transition between

C7eq and C7ax is explored, which involves crossing a high energy barrier in the ϕ dimension

(∼5 kcal/mol).
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5.2.2 Analyzing multiple independent simulations

Whenever possible, we strongly recommend generating multiple independent simula-

tions to assess the variation between runs. Prior to applying the five steps of the LPATH

workflow, multiple, independent WE simulations should be first combined with WESTPA’s

‘w_multi_west’ tool with the ‘–ibstates’ flag and multiple independent cMD simulations

should be concatenated.

5.2.3 Step 1: discretize phase space

The goal of this step is to separate regions of phase-space into discrete states. If the

pathway ensemble was generated by WE simulation, one has the option to discretize based

on the WE trajectory segment IDs, unique number identifiers assigned to WE segments at

each iteration which serve as general “states.” When defining states based on phase-space, we

recommend using at least three states in addition to the start and end states. The defined

discrete states can consist of metastable intermediates or transient states.

The main choice in this first step is whether to use trajectory segment IDs for state defini-

tions or to use phase-space discretization. As an example of using phase-space discretization,

we focus on alanine dipeptide simulations and define 4 intermediate states in terms of ϕ/ψ

conformational angles that are labeled in Figure 24. Users should avoid using trajectory

segment IDs as a metric if the simulation data is generated from multiple, independent WE

simulations, since such IDs are not directly comparable between independent simulations.

The use of segment IDs for discretization is beneficial, however, in cases where it is difficult to

discretize the phase space based on one or two features. One could also cluster the WE data

in phase space using an algorithm such as k-means to automatically identify general states in

interest. For a single WE simulation of the alanine dipeptide system, the choice of whether

to use discretized states or segment IDs did not significantly influence the conclusions of the

pathway analysis (Figure 28 in the SI).

The ‘lpath.discretize’ function uses WESTPA’s ‘w_assign’ tool to assign segments to

states according to a scheme defined in the user’s west.cfg file. The resulting assign.h5 file

is then used in the subsequent step of successful pathway extraction. To discretize a cMD
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trajectory, LPATH requires a text file of molecular features for each trajectory frame and a

custom function for assigning states based on these features. The output for this step will

be a states.npy file for the next step of successful pathway extraction.

5.2.4 Step 2: extract successful pathways

The goal of this step is to identify all successful pathways (pathways that have reached

a state B after being initialized in some state A) and save them in a convenient format for

further analysis. Pathway extraction is slightly different between WE and cMD simulations.

For WE simulations, a start and end state are provided based on the discretization performed

in step 1. Then, all pathways that travel from the start to end states are traced back and

added to a list. Additional information about these pathways is also saved such as the

weights of trajectory segments and, optionally, progress coordinate or auxiliary (additional)

simulation data. The weights can be used later to generate a histogram of pathway class

probability and the progress coordinate data for advanced plotting. For cMD simulations,

a start and end state are provided based on the discretization done in step 1 and pathways

connecting the two states are then extracted and saved to a list. A few key choices must be

made in the extraction step, as presented below.

There are two main choices in the pathway extraction step. The first, and perhaps the

most important choice is whether to extract–for each pathway–the entire successful pathway

(including time spent in the start state) or just the transition portion of the pathway that does

not include any “dwell time” in the initial stable state. The first option, to keep the entire

pathway (‘–trace-basis’), results in longer pathways overall with many shared trajectory

segments, as the point of divergence is likely to happen at the barrier between start and

end states. Extracting the entire pathway can provide users with a more complete picture

of their trajectory ensemble, including more general information about how pathway classes

diverge. Note that the use of WE trajectory segment IDs requires the ‘–trace-basis’ flag.

On the other hand, extracting solely the transition portion of the pathways leads to overall

shorter pathways but reveals more subtle points of differences between pathway classes. For

a single WE simulation involving alanine dipeptide, we tested the extraction of the entire
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pathway vs only the transition portion and found that both methods identified the same two

overall pathway classes. However, the exclusion of pathway points in the start state revealed

more minute differences in the pathways taking the bottom route into the C7ax state (Figure

29 in the SI). For most systems, we recommend analyzing only the transition portion of

pathways.

The second choice relates to the resolution of points used when the pathways are ex-

tracted. The choice of resolution can be controlled through the “stride” option which oper-

ates slightly differently for WE vs cMD simulations. By default, analysis on WE simulations

are done on conformations extracted at the WE resampling frequency τ . However, users

may provide a value with the ‘–stride’ option to dictate how many data points to to access

at a sub-τ time resolution. For instance, a ‘–stride=10’ on a WE simulation with τ=100 ps

and output of 1 ps would yield conformations at every 10 ps. The resulting pathways are

10x longer than if one had used a τ -resolution for extraction. If a pathway happens to exit

the start state or enter the target state mid-τ , only the sub-τ points after the exit or before

the entry are kept. For cMD simulations, on the other hand, a stride of 10 would result in

a coarser resolution for extracted pathways with 10x fewer points than the default resolu-

tion. Note that extracted pathways must consist of a minimum of 10 points for meaningful

clustering of the pathways, and the number of points can be adjusted using the ‘–stride’

parameter.

Some additional choices that could influence the clustering of pathways is the decision

to impose a threshold for deleting pathways based on pathway length and the decision to

combine states that experience many “back-and-forth” transitions. The LPATH tool will

automatically alert users if pathways with fewer than 10 total frames exist in the pathway

ensemble, due to the fact that shorter pathways could potentially be very fast pathways that

skip over intermediate states, obscuring the final pathway class results. It is recommended to

remove these shorter pathways by specifying a pathway length threshold with the ‘–exclude-

min-length’ parameter. Users may also consider higher thresholds in the case where the

pathway ensemble consists of more than 25% pathways below the default 10 frame threshold,

but should ensure that after pathway removal, at least 50 pathways remain for matching.

The LPATH tool will also alert users to pathways that contain many repeating back-and-
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forth transitions between two states. These back-and-forth movements can contribute a lot of

noise to matching and result in pathways appearing more dissimilar to each other than they

actually are. By re-running the discretization step and combining the states experiencing

many back-and-forth transitions, this source of noise can be eliminated.

5.2.5 Step 3: match and cluster pathways into classes

The goal of this step is to compute pairwise pathway similarity and identify distinct

pathway classes using hierarchical agglomerative (bottom-up) clustering. First, for each

extracted pathway, we construct a text string sequence based on either the discretized states

defined in step 1 or WE segment IDs. Next, we perform a pairwise matching of pathway

string sequences using the Gestalt pattern matching algorithm162 to generate a similarity

score:

similarityAB =

(
2 ∗ length(longest_common_subsequenceAB)

lengthA + lengthB

)
(6)

The Gestalt pattern matching algorithm,162 borrowed from the field of computational lin-

guistics and commonly used in plagiarism detection software, is a key component of the

LPATH tool’s matching functionality. In Gestalt pattern matching, shared, non-consecutive

substrings in each pair of pathways are normalized by the combined length of both pathways

(Equation 6). The normalization step enables the comparison of text strings with different

lengths, greatly facilitating analysis of the heterogeneous pathway ensemble. The similarity

score returned from the Gestalt pattern matching equation ranges from 0 to 1 and repre-

sents the fraction of shared characters present between the two pathways. We convert this

similarity score to a distance (necessary for the use of these scores in hierarchical clustering)

by subtracting it from 1, such that a similarity of 0.9 will result in a similarity score be-

tween the pathways of 0.1. We then construct a pairwise distance matrix from the pathway

similarities and perform hierarchical agglomerative (“bottom-up”) clustering on the matrix

using the Ward linkage.165 An example of Gestalt pattern matching applied to two example

strings is shown in Figure 25.

The main choice for this step is whether to match with the longest common subsequence
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Figure 25: Two example strings being compared with the Gestalt pattern matching algo-

rithm. The algorithm is applied using A) the longest common subsequence, and B) the

longest common substring, which is only composed of continuous lengths of states.
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or the longest common substring. The subsequence allows for non-continuous points of

similarity and should result in higher matching scores overall only if the pathway re-converge

after diverging, which is not expected to happen too much during a WE simulation. Note

that for the use of trajectory segment IDs for assignment using WE simulation data, the

matching can only be performed with the substring option. Varying the use of subsequence

vs substring in the case of matching pathways for a single WE simulation of alanine dipeptide

did not change the conclusions of the pathway analysis (Figure 30 in the SI).

An additional choice for matching is the ability to “condense” pathway strings before

matching. A condensed pathway string eliminates consecutive repeats to provide a funda-

mental sequence of states visited by each pathway, regardless of how much time is spent in

each state. Pathways that visit the same sequence of states, but spend different amounts

of time in each state, can appear more dissimilar during matching than they actually are.

The ability to condense pathway strings reduces the effect of pathway length on matching

and focuses the pattern matching on the fundamental sequence of states visited, further

eliminating noise from the pathway ensemble.

5.2.6 Step 4: plotting and interpreting the results

The goal of this step is to identify distinct pathway classes based on a dendrogram (tree

diagram) of the clustering results. We first analyzed the set of 5 independent WE simulations

in which only the transition portions of successful pathways were discretized in ϕ/ψ space.

Figure 26A displays the dendrograms constructed using 32 successful pathways from a WE

simulation of alanine dipeptide after removing pathways with fewer than 50 frames. Each

vertical “leaf” in the dendrogram represents a pathway, which is connected to other leaves

through horizontal “nodes”. Dendrogram branches with nodes closer together in the vertical

direction are more similar to each other. A horizontal line should be drawn to divide the

dendrogram vertically between nodes with a maximum distance separation, representing the

most distinct grouping of pathways into distinct classes. In the case of this WE simulation,

we draw the horizontal line at y=1.5 to divide the dendrogram into 2 pathway classes. If it

is unclear from the dendrogram how many pathway classes are present, it is recommended
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Figure 26: Pathway analysis of 5 independent WE simulations for the C7eq to C7ax tran-

sition for alanine dipeptide. A) Dendrograms of successful WE trajectories after removing

pathways less than 50 frames (N=32) and matching condensed pathway strings reveal two

distinct pathway classes. B) Directed network plots of all the condensed pathways in each

pathway class reveal two main routes through phase space. The size of each node is scaled

to match the relative time the pathways spend in each state. The upper route crosses when

ψ=50 and the lower route when ψ=-100. C) Histograms of distinct pathway classes reveal

that the "upper" route is more probable compared to the "lower" route.

82



to review each previous step in the LPATH workflow to make sure that 1) at least three

states were used for discretization of phase space, 2) at least 50 pathways were extracted

and 3) each pathway contains at least 10 points for matching. In addition, the decision

of how many pathway classes are present should take the total number of pathways into

account. To ensure good statistics, we recommend that each pathway class identified from

the dendrogram contain at least 10 pathways, so a total of 30 pathways should not be divided

into more than 3 pathway classes.

Based on the dendrograms alone, it is not clear how the pathway classes relate to the

mechanism of transition from start to end states in the WE simulation. Figures such as those

shown in Figure 26B, which can be generated with LPATH’s plotting functionality, trace the

entire set of pathways in each pathway cluster and plot a directed network of the condensed

pathways, revealing the "fundamental" routes pathways take through phase space. Though

not necessary, we the network plots we have shown here scale each node by the relative time

the pathways spend in each state. Alanine dipeptide’s transition from C7eq to C7ax appears

to cross the main energy barrier in ϕ along two main “routes,” one at ψ=50 (the upper route)

and one at ψ=-100 (the lower route). The relative probability of alanine dipeptide pathways

being in each pathway class is plotted in Figure 26C. Based on the pathway histograms

the lower route is more probable compared to the upper route. The LPATH tool can also

determine when during a WE simulation the pathway ensemble diverges into the chosen

classes and incorporate this divergence point into the directed network plots.

We next analyzed 20 independent, 3 µs cMD simulations in which successful pathways

excluding the time spent in the initial state were discretized in ϕ/ψ space. The cMD pathway

dendrogram (Figure 27A) reveals two pathway classes from a total of 122 successful pathways

after removing pathways with fewer than 50 frames. The two pathways classes traverse the

same two routes through ϕ/ψ space (Figure 27B) discovered in the WE simulation, with the

“upper” path still being the most probable compared to the “lower” path (Figure 27C).
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Figure 27: Pathway analysis of 20, 3 µs cMD simulations for the C7eq to C7ax transition

for alanine dipeptide. A) Dendrograms of successful WE trajectories (N=122, using only

the transition portion of the pathways after exiting the initial state) reveal three distinct

pathway classes. B) Traces of all pathways in each pathway class reveal the same two

main routes through phase space as were discovered from the WE simulations. The upper

route crosses when ψ=50 and the lower route when ψ=-100. However, class 1 appears to

contain patwhays that take both routes, suggesting that the dendrogram should be further

subdivided into more than 2 classes. C) Histograms of distinct pathway classes reveal that

the upper route is more probable compared to the lower routes.
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5.3 CONCLUSIONS

The LPATH tool reveals distinct classes in the pathway ensemble by discretizing phase

space, extracting successful pathways and clustering those pathways. The heart of the

LPATH tool is the use of the Gestalt pattern matching algorithm from computational lin-

guistics which clusters solely based on the matching of text strings representing the path-

ways. The generality of the pattern matching algorithm, which can match pathways of

variable lengths, allows for the semi-automated workflow presented above. We demonstrate

the effectiveness of the LPATH tool in analyzing two different pathway ensembles of alanine

dipeptide, one from cMD simulations and one from a WE simulation. The distinct pathway

classes identified by our tool revealed two distinct pathway routes from the C7eq to C7ax

states. The interoperability of the LPATH tool allows for the implementation of alternate

methods such as the geometric matching used in the PSA and the Voronoi clustering used

in PHAT.
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5.5 SUPPORTING INFORMATION

Figure 28: WE segment ID discretization vs ϕ/ψ discretization for a WE simulation of

alanine dipeptide. For the alanine dipeptide WE simulation, there is no significant difference

between the use of WE segment IDs vs ϕ/ψ angles for discretization. The pathways in each

case were assigned to the exact same classes at all levels of the heirarchy. The dendrograms,

however, are slightly different in terms of the inter-relatedness of the 172 total pathways.
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Figure 29: Use of the entire successful pathway vs only the transition portion for a WE sim-

ulation of alanine dipeptide. For the alanine dipeptide WE simulation, there is a significant

difference between the use of just the transition portion of the pathways (left column) vs

the entire pathways (right column) for matching. In A), dendrograms reveal four pathway

classes in the case of using just the barrier crossing portions of the successful pathways but

only two when using the entire pathways. In B), traces of all pathways in each successful

pathway class reveal two main routes through phase space. The upper route crosses when

ψ=50 and the lower route when ψ=-100. When just the barrier crossing portions are used for

matching, classes 1, 2 and 4 describe the lower route but are clustered into separate classes,

likely from subtle differences in time spent sampling the alpha R region. In C) histograms

of pathway probabilities reveal that the upper route is more probable compared to the lower

route.
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Figure 30: Substring vs subsequence matching for a WE simulation of alanine dipeptide.

For the alanine dipeptide WE simulation, there is no significant difference between the use

of substring vs subsequence for matching. The pathways in each case were assigned to the

exact same classes. The dendrograms, however, are slightly different in terms of the inter-

relatedness of the 172 total pathways.
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6.0 CONCLUSIONS AND FUTURE DIRECTIONS

In the field of path sampling, large system sizes (greater than one million atoms),

long timescales (beyond ms) and/or more detailed models (e.g., polarizable11,12 or hybrid

QM/MM13–15 models) remain challenges to sampling many rare events. In this thesis, I be-

gan in Chapter 1 by motivating the need for path sampling strategies to simulate rare events

and introducing the weighted ensemble (WE) strategy, which focuses computing power on

functional transitions rather than solely sampling stable states. In Chapter 2, I then pre-

sented a perspective on large, biological switches, such as the SARS-CoV-2 spike protein,

that undergo their respective transitions on timescales up to and beyond seconds, highlight-

ing the need for innovation to the WE strategy in order to generate transition pathways and

calculate rate constants for these ambitious processes. Next, in Chapters 3, I described how

I contributed to the development of the WESTPA 2.0 software package for WE simulations,

which provides high-performance implementations of new methodologies I present in the

subsequent chapters. In Chapter 4, I introduced a minimal adaptive binning scheme for WE

simulations, followed in Chapter 5 by introducing LPATH, a general, semi-automated path-

way analysis tool for identifying distinct pathway classes from any MD pathway ensemble.

The innovations described in this thesis have made WE simulations more efficient, effective

and user-friendly.

However, despite the promising advances discussed above, I believe the WE strategy

has not yet reached its full potential. For some biological processes, such as protein-ligand

unbinding, especially in the case where the ligand is highly charged, it is challenging for WE

simulations to generate pathways and out of reach to estimate rate constants. One particular

ligand-unbinding process, which involves a charged ADP molecule unbinding from a motor

protein receptor called Eg5 is <200,000 atoms and occurs on the seconds timescale.166,167

Being highly charged, ADP must navigate a rugged energy landscape to unbind, making the

selection of an effective progress coordinate especially difficult. Progress coordinates typical

for protein-ligand unbinding processes, such as a minimum distance between ligand and

receptor, are rendered less effective when high electrostatic attraction pulls ADP to various
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sites in the spacious binding pocket. So far, only a three-dimensional combination of an

unbinding RMSD, a minimum distance between the ligand and receptor, and the interaction

energy between the ligand and receptor has been effective at generating unbinding events

in WE simulations. Arriving at this combination of coordinates involved a lot of trial and

error. More automated methods for progress coordinate detection are needed not just for

WE simulations, but for path sampling simulations as a whole.

Machine learning (ML) strategies have recently shown promise in detecting effective

progress coordinates that can be used to enhance a variety of sampling strategies, particu-

larly the RAVE and SGOOP methods.100,168 These ML techniques exploit some underlying

order in an initial trajectory ensemble to decide which motion of the system would be most

promising for observing a transition of interest. An example of one such ML technique is the

variational autoencoder employed in DeepDriveMD,99,169 which finds a latent-space repre-

sentation of a set of trajectories and identifies outliers in that latent space. In DeepDriveMD,

outliers in this latent space are most likely system configurations that are undergoing fluctu-

ations in a promising direction related to a transition and are therefore split to enhance for

success along that fluctuation. Recent applications of the DeepDrive workflow to WE sim-

ulations of Eg5-ADP unbinding have shown promise in automatically identifying a progress

coordinate to describe the unbinding process.

Another challenge to WE simulations of Eg5-ADP unbinding involves binning along a

high-dimensional progress coordinate. Even with adaptive binning, which removes much of

guess-work from the setup of WE simulations, binning in high-dimensional space can lead to

inefficient use of computing resources. The use of “checkpointing”, or subdividing the entire

progress coordinate space into multiple MAB schemes, which is similar to the ideas behind

the weighted ensemble-milestoning (WEM) method,170 can help to more efficiently focus

computing power on specific regions of high-dimensional space. This “multi-MAB” approach

has already proven useful in simulations of ligand permeation through a membrane,52 and

has successfully generated unbinding pathways for the Eg5-ADP system.

A promising way of performing WE resampling in higher dimensions is through binless

schemes. Binless schemes such as REVO36,37 have performed well for protein-ligand unbind-

ing of small, uncharged ligands. I have re-cast the MAB scheme as a binless resampler to
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create a balanced progress resampler (BPR). This resampler collapses a multi-dimensional

coordinate into a one-dimensional “coordinate” for resampling purposes, taking the product

of a progress score in each progress coordinate dimension (a metric of how close to a dimen-

sion’s “target” value the trajectory is) and scaling that product by the trajectory weights.

The BPR scheme and other binless resampers enable the incorporation of a wide range of

information–such as WE trajectory weights and progress coordinate data from previous WE

iterations–into the decision on which trajectories to split and merge, making these schemes

much more flexible and efficient than current binned schemes.

By combining more automated progress coordinate detection with more efficient resam-

pling in high-dimensional phase space, the WE strategy should soon be able to generate

an ensemble of pathways for challenging rare events such as Eg5-ADP unbinding. Recent

attempts to identify a progress coordinate for Eg5-ADP unbinding using a variational au-

toencoder are promising in their ability to separate out conformations from a representative

unbinding trajectory in latent space. In addition, recent unbinding pathways generated

with the BPR indicate that binless resampling is not only more efficient, but also able to

generate unbinding events with less than 50% of the computational time required for a cor-

responding simulation using a multi-MAB scheme. In conclusion, I anticipate that ligand

unbinding processes involving charged ligands, such as the Eg5-ADP ligand unbinding pro-

cess, will prove invaluable for future methods development. The lack of an obvious, effective,

low-dimensional progress coordinate in Eg5-ADP unbinding, and in other processes such as

water dissociation from a magnesium ion, provides a challenge to the generation of pathways

that can serve as a valuable “stress test” for path sampling methods.
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