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Alan Pearl, PhD

University of Pittsburgh, 2023

In the near future, a new generation of massively multiplexed spectroscopic surveys like

PFS, WAVES, and MOONS will enable detailed studies of galaxy evolution across cosmic

timescales and connect galaxies to dark matter halos. I have generated realistic high-redshift

mock catalogs for each of these three planned surveys to help quantify and optimize their

scientific output. This uses a procedure I developed called Calibrating Light: Illuminating

Mocks By Empirical Relations (CLIMBER), and is based on the UniverseMachine model and

UltraVISTA photometry. I have compared different targeting strategies by varying the area

and targeting completeness and quantified how these survey parameters affect the uncertainty

of the two-point correlation function. Through mock observations, I have demonstrated

that future extensions of the PFS and MOONS programs should primarily aim to reduce

cosmic variance by surveying more uncorrelated sky areas. Additionally, I developed the

galtab algorithm to enhance the efficiency of HOD inference by pretabulating populations

of galaxies in simulated halo catalogs for rapid, quasi-deterministic estimation of counts-

in-cells statistics. This methodology allows posterior probability distributions from Markov

chains to converge much more quickly by reducing the required number of trial points by

up to an order of magnitude, in addition to enabling even more drastic speedups due to

its GPU portability. Leveraging early data from DESI, I have explored the galaxy-halo

connection by supplementing number density and the two-point correlation function with

galtab-accelerated counts-in-cylinders. My analysis tightly constrains characteristic halo

masses and provides strong statistical evidence for positive assembly bias between the r-

band luminosity and the halo concentration with up to 3σ significance. Looking ahead, as

new methodologies and datasets continue to facilitate our understanding, I anticipate that

future studies will soon shift their focus from mere detections of assembly bias to delving

into its implications for galaxy formation and cosmology at greater depth.
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1.0 Introduction

1.1 Cosmology

One of the primary goals of modern astrophysics is to understand the initial conditions,

evolution, and physical laws responsible for how the universe came to be the way it is

today. The most successful model of cosmology to date, known as ΛCDM, is quite consistent

with a multitude of observations spanning nearly the entire 13.8 billion years of evolution

since the Big Bang. While ΛCDM has well-defined astrophysical implications, there remain

unanswered questions as it remains agnostic to the precise type of substances responsible for

dark energy (which is accounted for by cosmological constant, Λ, in Einstein’s field equation)

and cold dark matter (CDM). Note that, while ΛCDM has yet to be ruled out, there are

several popular alternatives, such as models that include warm dark matter or time variations

to the cosmological “constant” formulation of dark energy.

ΛCDM posits that the universe initially began expanding at the time of the Big Bang.

At this time, the spatial distribution was nearly perfectly homogeneous and isotropic (an

assumption known as the cosmological principle [46]), save for the minuscule quantum fluctu-

ations that would eventually serve as the initial random seeds to form the complex structure

present in the universe today. The evolution of this expansion can be derived from General

Relativity [37] and is quantified as a function of time using a scale length, a, that starts at

a(0) = 0 and ends at a a(tnow) = 1 today, where tnow is the age of the universe (roughly 13.8

Gyr [89]). The functional form of a(t) can be calculated given the relative composition of

the universe assigned to matter, radiation, and dark energy. During much of the first 10−32

seconds after the Big Bang, the universe expanded extremely rapidly due to an unknown

physical source we call inflation. For the next 47,000 years, the energy density of the uni-

verse was dominated by radiation (i.e., photons and other relativistic particles), resulting in

a slight deceleration of the expansion (i.e., d2a/dt2 < 0). For approximately ten billion years

following the radiation-domination period, the universe was dominated by matter, which

continued to decelerate the expansion of the universe, but not enough for it to collapse back
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in on itself. Following this time period, dark energy became dominant, which caused the

expansion to begin exponentially increasing. The expansion of the universe continues to

accelerate today, with no signs of halting.

Astronomical measurements have played a crucial role in validating the ΛCDM model

and providing precise constraints on the energy composition and expansion history of the

universe. These measurements predominantly rely on observations of light, which travels at

a constant speed, allowing us to peer into the distant past. Determining the size of the uni-

verse at different times involves measuring the stretching (i.e., redshifting) of the wavelength

of the light since it was emitted from its source. Independent measurements of distance (e.g.,

from the apparent brightness of Type Ia supernovae, which have a well-understood intrinsic

luminosity [94]) and redshift have provided tight constraints on the evolution of the scale

factor a(t). However, even higher precision constraints arise from studying the cosmic mi-

crowave background (CMB [89]), which is radiation from a mere 380,000 years after the Big

Bang when the universe was just 0.09% of its present size (a = 0.0009). The CMB reveals a

significant clustering pattern known as baryonic acoustic oscillations (BAO), which can also

be observed in later-universe galaxy populations, reinforcing our constraints. Collectively,

these measurements have revealed that approximately 70% of the universe’s energy budget

is attributed to dark energy, whereas matter — predominantly dark matter — constitutes

the remaining fraction.

Our precise understanding of the constituents and expansion history of the universe has

enabled insight into the statistical nature of the large-scale matter distribution in the uni-

verse, which seeds the formation of galaxies, which are the birthing grounds of stars, which

are capable of performing nucleosynthesis of the chemicals necessary for planets and life to

exist. Amongst these processes, however, there still exist many mysteries and computational

difficulties, particularly in fully understanding the evolutionary pathways of galaxies and

what physical processes are responsible. Likewise, there is a wealth of cosmological infor-

mation encoded into the spatial distribution of galaxies that trace the matter density field,

and this is a primary driver of modern data-driven cosmological studies. Utilizing these data

requires precise measurement of statistical observations and the development of accurate

models of the statistical prescription for galaxy formation, which are the primary goals of
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my thesis.

1.2 Gravity-Only Simulations

The quantum fluctuations present in the early universe present a statistical initial con-

dition, where the density field at any given location is drawn from a Gaussian distribution.

The density field proceeds to evolve as the overdensities grow and gravitationally attract one

another. The abundance and statistical clustering (e.g., the two-point correlation function

[32]) of overdensities can be derived analytically through linear perturbation theory, which

does a good job of explaining large-scale clustering, where gravitational collapse evolves

“linearly.” However, in regimes of high gravitational attraction (e.g., high overdensities and

small scales), this evolution becomes highly non-linear [28].

Thanks to the rapid advancement of modern supercomputers, it can be advantageous

to forgo linear perturbation theory and instead simulate the gravitational evolution of a

statistically large sample of massive particles exactly as dictated by Einstein’s theory of

general relativity [37] (which is usually approximated by Newtonian gravity). This approach

is still limited by its ignorance of all fundamental forces except gravity, but it works well

down to much smaller scales than linear perturbation theory because, in comparison, all

other forces become negligible over sufficiently large separations. This assumption is further

justified by the fact that dark matter — which accounts for 85% of all matter — is only

known to interact through gravity.

In such gravity-only simulations, groups of particles often collapse into dense, gravita-

tionally bound structures, known as halos. For the large-scale analyses that I perform in my

thesis, halos can be approximated as spherically symmetric Navarro-Frenk-White (NFW [81])

profiles, although in reality, they are better fits to triaxial distributions [62]. These struc-

tures are of particular importance because they are the only locations with strong enough

gravitational potentials for ordinary matter to collapse and form galaxies, which emit visible

light that we can see from Earth. By analyzing very large simulations, we can quantify the

statistics of these halos, such as their number density, clustering properties, and formation
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histories. The most massive halos are formed hierarchically, through the merging of smaller

progenitor halos. This leads to more massive halos being much rarer [91] and located in

highly clustered environments [56, 76]. Since the abundance and clustering of halos are im-

printed onto galaxies, we see similar trends where more massive galaxies are rarer and more

clustered.

Abundance and clustering correlate not only with the mass of halos but also with other

properties that vary for halos of different assembly histories. This phenomenon is known as

halo assembly bias [43], which relies on the fact that a given halo’s assembly history depends

on the availability of accretion material in its local environment. For example, older halos

(i.e., those that formed half of their mass earlier) tend to be more spatially clustered. The

assembly history of a halo can also leave an imprint on other properties [98], such as spin

(higher clustering produces faster spin) and concentration (higher clustering produces higher

concentration, although this trend is reversed for the most massive halos).

Over the years, numerous gravity-only simulations have played a crucial role in advancing

our understanding of the formation and evolution of cosmic structures. Conducted nearly

two decades ago, the Millennium Simulation [105] was one of the pioneering simulations,

which allowed for some of the first precise calculations of complex halo population statistics.

The Millennium Simulation, with its cubical volume of 500h−1Mpc on a side, paved the way

for the subsequent MultiDark and Bolshoi suites of simulations [61, 90, 60], each containing a

similar number of particles to the Millennium Simulation. This large suite of simulations has

given users the choice to analyze the differences between slightly different cosmological priors

and a vast range of volumes (side lengths ranging from 160h−1Mpc to 4h−1Gpc), enabling

analyses that require both higher resolution and larger sample sizes. The most recent state-

of-the-art simulations, such as the Uchuu suite [53], have pushed the computational barrier

even further, with a similar range of simulation volumes, but each simulation consists of

hundreds to thousands of times more particles than the MultiDark simulations.
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1.3 Galaxy Formation

Galaxies are the primary source of light that allows us to trace the cosmic web, and we

now have observations going back. Therefore, they are an invaluable source of data that can

help answer how the universe came to be the way it is today. Composed mainly of baryonic

matter, galaxies undergo a series of physical processes that lead to the formation of gas

clouds, stars, dust, and planets. Galaxies begin as dilute hydrogen gas clouds that approx-

imately follow the same distribution as dark matter, until the density surpasses a critical

threshold, triggering gravitational collapse. While dark matter also collapses gravitationally

in dense regions, the collapse of baryonic gas is more efficient due to its ability to radiate

away kinetic energy in the form of light. Gas clouds can continue to collapse until their

cores become hot enough to fuse hydrogen into helium, and the gas cloud becomes a star.

Stars, supernovae, and active galactic nuclei produce ionizing radiation that drives outflows

and heats the surrounding gas, slowing down further star formation (i.e., star formation

feedback).

To understand galaxy formation in the context of cosmological volumes, many research

groups have developed hydrodynamic simulations such as IllustrisTNG [83], EAGLE [99,

29], FIRE [51], and SIMBA [31], just to name a few of the most recent examples. These

simulations aim to capture much of the complex physics of galaxy formation. However,

due to the vast range of scales and processes, each code relies on various approximations

to account for the physics below the simulation resolution. While there are many high-

resolution zoom-in simulations (e.g., [100, 70, 15]) that aim to justify the approximations

made in those of larger volumes, modeling the physics of the formation of even a single galaxy

from first principles remains computationally prohibitive. Therefore, empirical galaxy-halo

connection models (as discussed in Section 1.4) play a crucial role in improving the reliability

of hydrodynamic simulations and enabling cosmological inferences.

Whether empirically or physically motivated, the test of a good galaxy formation model

is its ability to reproduce observational properties. This requires understanding how much

light is emitted by the population of stars that have been formed in each galaxy. It is

generally assumed that, whenever star formation occurs, there is a universal distribution of
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masses of the newly formed stars known as the initial mass function (IMF [23]). The IMF

predicts that low-mass stars form more frequently than high-mass stars, a trend originally

observed in the empirical distribution of stars in the solar neighborhood [97]. Using the IMF,

we can predict the light emitted by a stellar population created through an instantaneous

burst of star formation. Since the massive, bright blue stars have shorter lifetimes, the light

from the composite population gradually becomes redder over time. Therefore, blue galaxies

indicate ongoing or recent star formation, while red galaxies are either composed entirely

of older stellar populations or hide their young starlight behind optically thick dust clouds.

Infrared observations of thermal dust emission can sometimes break this dust-age degeneracy

[30].

To study the star formation history (SFH) of a galaxy, one employs a stellar population

synthesis technique (e.g., [26, 22, 68]). By combining the light from stellar populations of

different ages, the expected spectrum of a galaxy can be constructed. However, tightly

constraining a given SFH is challenging without imposing strong priors on its functional

form. Photometric data typically only offer a rough indication of a galaxy’s age and redshift.

However, high-quality observations covering a wide spectral range at high resolution can

provide more meaningful constraints [54]. Such observations are valuable for studying the

statistical dependence between galaxy assembly and the assembly of their underlying dark

matter halos.

1.4 The Galaxy-Halo Connection

Thanks to the availability of dark matter halo catalogs from gravity-only simulations, it is

possible to learn the statistical nature of galaxy formation and evolution. Models describing

the galaxy-halo connection (GHC) aim to establish a statistical relationship between galaxies

and their underlying dark matter halos, providing insights into these processes that cannot

be simulated reliably. There are many types of GHC models, ranging from models that are

physically motivated, like semi-analytic models (SAMs), to those that are purely empirical,

like subhalo abundance matching (SHAM) or the halo occupation distribution (HOD). See
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[114] and references therein for a detailed review of how these techniques are formulated and

constrained.

One of the most commonly studied relationships is the stellar-mass-to-halo-mass relation

[7]. This relationship is the most well-understood in the local universe, but it has been

characterized all the way out to z ∼ 10 [7]. Nearly all GHC models either produce or directly

assume that there is a strong, monotonic correlation between stellar mass and halo mass.

SAMs describe physical processes, such as gas cooling, star formation, and feedback to link

the growth of galaxies to that of their host halos. SHAM and HOD models directly assign

galaxies to halos based on their stellar mass, incorporating scatter to reproduce observed

statistics. It should be noted that recent studies have suggested that the stellar mass of

a galaxy may correlate better with other properties like the halo’s gravitational potential

depth, which is dependent on mass, but also introduces some dependence on the halo’s

concentration.

It is more challenging to understand the connection between halo mass and secondary

galaxy properties, such as color, star-formation rate (SFR), size, or morphology. One of

the challenges lies in the fact that these properties depend on stellar mass, which is itself

correlated with halo mass, making it difficult to disentangle additional correlations. At

fixed stellar mass, it is known that redder, lower-SFR, elliptical galaxies (which have more

compact sizes than spirals) tend to live in higher-density environments [108], suggesting

that they live in larger halo masses. In fact, several low-redshift studies [77, 128, 95] have

found very strong evidence that galaxy color correlates with halo mass, especially high stellar

masses (≳ 1011M⊙).

Recently, there has been much research into whether the properties of a galaxy depend

on its halo properties beyond the mass or gravitational potential (i.e., galaxy assembly bias).

For example, many physically motivated galaxy formation theories (e.g., [104, 116]) predict

a correlation between the accretion rate of dark matter and that of gas — the latter serving

as the fuel for star formation. This would likely imply a correlation between the SFR of the

galaxy and the mass accretion rate of the halo (i.e., assembly correlation), as is assumed

by the UniverseMachine [7], an empirical model of the GHC. Several studies have presented

evidence both supporting [49, 12, 6, 96] and challenging [84] this correlation across different
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galaxy samples. Maintaining consistency with these studies, the best-fit UniverseMachine

model prefers stronger assembly correlation for low-mass, low-redshift galaxies. However,

stronger statistical constraints on this relationship are needed to infer which physical pro-

cesses are responsible for driving and impeding the correlation between matter accretion and

star formation.

Assembly correlation is one example of galaxy assembly bias, but it is possible that

assembly bias could affect other properties of the galaxy, such as stellar mass or luminosity.

This is important because if there is indeed a correlation between stellar mass and secondary

halo properties, then the excess clustering due to halo assembly bias will be imprinted in

the galaxy clustering signal. Under the standard HOD assumption that galaxies occupy

halos as a function of halo mass alone, assembly bias could lead to biased results [125].

Some previous studies have found evidence that galaxy assembly bias is needed to explain

observations [67, 124, 112], while others still claim that observations can be explained equally

well using mass-only models [129]. This thesis presents additional evidence for assembly bias

from a novel spectroscopic dataset.

1.5 Observational Signatures

Observations of various summary statistics play a crucial role in constraining the GHC,

providing empirical data that can inform and validate our models. The most important

observational constraint is that the number density of galaxies must match the number

density of their host halos, which are known from simulations. Accurately measuring the

number density of galaxies alone, as a function of their stellar mass or luminosity, can yield

a fairly precise stellar-to-halo-mass relation. However, this requires assuming a perfectly

monotonic SHMR, which works better at the high-mass end, where the halo mass function

is very steep. Allowing for scatter in this relationship requires additional information.

Since the clustering of halo populations is also well characterized by simulations, galaxy

clustering measurements are another essential tool for understanding the GHC. The primary

metric used for clustering analyses is the two-point correlation function (2PCF [32]). The
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2PCF quantifies the excess probability of finding pairs of galaxies at different separations

compared to a random distribution. Its information can be marginalized in various ways

to optimize its information into fewer degrees of freedom. Many analyses have used line-of-

sight projected correlation functions, angular correlation functions, and the monopole and

quadrupole moments of the 2PCF, to name a few. These measurements provide insights

into galaxies’ spatial distribution and clustering properties, allowing for inferences about the

spread of halo masses and satellite occupations.

Beyond two-point metrics, higher-order functions, such as the three-point correlation

function (3PCF [44]), offer additional insights into the galaxy distribution. The 3PCF cap-

tures the configurations of each combination of three galaxies, capable of indicating non-

Gaussian features in the large-scale structure, such as the alignment of galaxies along fila-

ments. Due to the high complexity and dimensionality of high-order correlation functions,

it is common to turn to other summary statistics to probe higher-order clustering features.

For example, the void probability function characterizes the probability of finding empty

regions in the galaxy distribution. Counts-in-cells is a metric that counts the number of

neighboring galaxies within a given region around each galaxy in the observational sample

[119]. Some studies go beyond spatial clustering metrics — for example, satellite kinematics

or gravitational lensing — because galaxies’ dark matter environment directly affects their

dynamical motion and the gravitational distortion of light.

In recent years, there has been a growing interest in moving beyond summary statistics

and adopting field-level inference approaches [33]. These methods utilize models that must

reproduce the entire galaxy field, rather than focusing on a set of summary statistics, which

inevitably cannot convey all of the information available in the observed spatial distribution

of galaxies. By directly analyzing this distribution and leveraging machine learning and

likelihood-free techniques, these approaches may one day provide a more comprehensive

understanding of the GHC and its uncertainties. However, many challenges remain in our

ability to train such models in a computationally feasible, but fair way. Therefore, in my

thesis, I primarily focus on analyzing summary statistics like number density, the projected

correlation function, and counts-in-cells.
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1.6 Survey Data

A galaxy survey is a program that observes the location and light output of a represen-

tative sample of a given galaxy population. In a given survey, our ability to measure the

aforementioned three-dimensional spatial clustering statistics depends on how precisely we

can recover distance, which is approximately given by the redshift of each galaxy spectrum.

In this section, I highlight a few of the major surveys that are the most valuable to the

work of my thesis, starting with those that have contributed significantly to our current

understanding of the GHC, and ending with those coming in the near future.

The Sloan Digital Sky Survey (SDSS [1]) is one of the most influential surveys in ob-

servational astronomy. It has provided multi-color photometric and spectroscopic data for

millions of galaxies, enabling GHC studies primarily from low-redshift spectroscopic samples.

Along with spectroscopic redshifts from the 2-degree Field Galaxy Redshift Survey (2dFGRS

[25]) and 6-degree Field Galaxy Survey (6dFGS [55]), SDSS has been instrumental in mea-

suring the stellar-to-halo-mass relation in the local universe. While it is commonly assumed

that this relation does not evolve strongly with redshift, this is a major test for the coming

generation of SDSS-like surveys pushing to higher redshifts.

The Dark Energy Spectroscopic Instrument (DESI [34]) is an ongoing large-scale spec-

troscopic survey that aims to obtain spectra for tens of millions of galaxies, thanks to its

slightly wider spectroscopic coverage and automated fiber placement mechanism, which al-

lows for much more efficient use of time than the manual fiber placements required by SDSS.

For individual objects, its spectra are also of higher quality and span slightly wider wave-

length ranges compared to previous surveys, improving the statistical accuracy of redshift

measurements. These incremental improvements will allow DESI to push to slightly higher

redshifts in its luminosity-complete samples and will focus on other tracers of the density

field at higher redshifts. However, this leaves room for future surveys to continue to fill in

the gaps.

The Prime Focus Spectrograph (PFS [107]) is a massively multiplexed spectrograph that

has been installed on the Subaru Telescope. In the coming years, the PFS Galaxy Evolution

Survey will conduct a wide-field spectroscopic survey of millions of precise galaxy properties,
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such as stellar masses, ages, and redshifts, which will enable galaxy clustering measurements

into many subdivided galaxy populations at intermediate redshifts from 0.7 < z < 1.7.

TheWide-Area VISTA Extra-galactic Survey (WAVES [36]) is an upcoming near-infrared

spectroscopic survey using the 4-meter Multi-Object Spectrograph Telescope (4MOST) and

the Visible and Infrared Survey Telescope for Astronomy (VISTA). Covering a large area of

the sky, the WAVES-Deep survey will provide deep imaging of luminosity-complete samples

out to moderately higher redshift than the comparable DESI sample. By probing the prop-

erties and clustering of this population, WAVES will play a crucial role by filling the redshift

gap from 0.2 < z < 0.8.

The Multi-Object Optical and Near-infrared Spectrograph (MOONS [73]) is a future

spectroscopic survey that will operate on the Very Large Telescope. The MOONRISE survey

aims to provide high-resolution spectroscopy for a large number of galaxies at high redshifts,

from 0.9 < z < 2.6. MOONS will offer valuable insights into the physical processes governing

galaxy formation by probing galaxy kinematics and chemical properties at a very early, active

time in cosmic history, enabled by very deep spectra.

This is by no means a complete list of all the observational programs that are foundational

to our understanding of the GHC, but just a small selection of the most relevant ones to my

thesis work, which I have shown provide measurements of diverse and complementary galaxy

populations. My fiducial models are primarily informed by previous analyses of SDSS, and

I have utilized early DESI data to validate and improve these models against brand new

galaxy samples. Finally, I have forecasted the constraining power that we should achieve in

the future with PFS, WAVES, and MOONS.

1.7 Dissertation Overview

The goal of my thesis is to improve our understanding of the galaxy-halo connection

by (1) identifying optimal strategies for near-future high-redshift spectroscopic surveys to

efficiently collect the most constraining datasets and (2) analyzing early DESI with a new

CiC methodology to increase our galaxy clustering information content accurately and com-
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putationally feasibly. I have made several significant contributions that I present in the

form of two journal publications (one accepted and one in collaboration review). In the first

publication, I introduced a tool, CLIMBER, for illuminating mock galaxies derived from

the UniverseMachine, a state-of-the-art empirical model, and apply these mocks to the up-

coming PFS, WAVES, and MOONS programs. In the second publication, I introduced a

pretabulation-accelerated code, galtab, which drastically increases the efficiency with which

we can perform HOD inference via counts-in-cells statistics, and applied it to early DESI

data to find one of the most significant detections of galaxy assembly bias to date.

My dissertation is organized as follows: Chapter 1 provides a broad introduction of

background material that aims to aid the reader in understanding the context and significance

of my thesis. Chapter 2 is taken from my peer-reviewed publication detailing my methods for

generating mock galaxy catalogs using the CLIMBER methodology. Chapter 3 is taken from

my late-stage draft, currently in peer revision within the DESI collaboration, that describes

galtab and my DESI HOD analysis that it has enabled. Finally, Chapter 4 summarizes the

conclusions and accomplishments of my thesis and poses open research questions that may

guide the future work of myself and others investigating the galaxy-halo connection.
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2.0 CLIMBER: Galaxy-Halo Connection Constraints from Next-Generation

Surveys

This chapter (Pearl et al. 2023 [85]) is published in the AstroPhysical Journal.

2.1 CLIMBER Introduction

The ΛCDMmodel of cosmology has been widely accepted for decades, and its parameters

are now known to quite high precision [89]. Within this framework, it is assumed that galaxies

form inside dark matter halos [120, 17]. While halos can be accurately modeled through

gravity-only simulations (e.g., Bolshoi-Planck [60]), the fine details of galaxy formation are

strongly influenced by baryonic physics, which poses a serious challenge for theoretical models

of galaxy evolution to tackle.

In recent years, several ongoing projects have made great advancements to include bary-

onic physics in hydrodynamic simulations of galaxies in a cosmological context. These

projects include but are not limited to IllustrisTNG [83], Evolution and Assembly of GaLax-

ies and their Environments (EAGLE [99, 29]), Feedback In Realistic Environments (FIRE

[51]), and Simba [31]. However, it is still computationally prohibitive to resolve the small

scales needed to simulate the processes that regulate star formation. Therefore, all of these

hydrodynamic simulations still include analytic approximations for these small-scale pro-

cesses. It is possible to approximate the rates of processes like gas cooling and star formation

using semi-analytic models (SAMs; e.g., [121, 104]) which trace dark matter halos through

gravity-only simulations and map baryonic physics into these halos using analytic scaling re-

lations. SAMs have contributed significantly to our knowledge of galaxy formation, despite

challenges disentangling various physical processes that produce degenerate observations.

Alternatively, many studies of galaxy evolution and cosmology use empirical models to

populate galaxies on top of dark matter halos (i.e., the galaxy-halo connection; see [114]

for an extensive review). Methods such as the halo occupation distribution (HOD; e.g.,
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[10, 127, 50]) or abundance-matching (e.g., [63, 49]) are most commonly used to statistically

match the stellar masses of galaxies to the masses of their host halos. Since the number

density and clustering of halos are strongly dependent on halo mass [91, 56, 18, 76, 123],

these models are informed through observations of the stellar mass function and the two-

point correlation function [122, 92, 113].

Through analytic empirical models, we can infer the stellar-to-halo mass relation (SHMR).

The SHMR indicates halo masses that are the most efficient at forming stellar mass. At its

peak, the stellar mass can account for up to roughly 5% of the total mass of Milky Way-mass

halos, which is approximately 30% of the cosmic baryon mass fraction. However, this star

formation efficiency drops dramatically at both lower and higher halo masses. This is caused

by various processes causing star formation to shut off (i.e., quench) through heating or re-

moving the gas that was fueling the star formation. Low-mass quenching is often attributed

to stellar feedback [41] and satellite stripping [45], while high-mass quenching is primar-

ily attributed to active galactic nucleus (AGN) feedback [38]. However, its dependence on

redshift is poorly constrained by existing datasets.

Most of our constraints on the galaxy-halo connection come from low-redshift surveys

such as the Sloan Digital Sky Survey (SDSS [16]). While it is commonly assumed that

the SHMR does not evolve strongly with redshift, it is particularly difficult to probe the

same range of halos at high redshifts because these surveys quickly lose faint, low-mass

galaxies and massive galaxies are rare. Extending our empirical constraints on the galaxy-

halo connection to the high-redshift universe, where star formation rates (SFRs) were higher

and galaxy populations were rapidly evolving, should have profound implications on our

knowledge of galaxy evolution.

With the advent of highly multiplexed spectrographs being used on large telescopes,

thousands of spectra will be simultaneously measured, a number of spectroscopic surveys

will begin to map the distant universe to an unparalleled degree over the next decade. These

surveys will probe the evolution of the precise statistical distribution of galaxies at earlier

cosmological times than previously possible. Interpreting these types of datasets, however,

is particularly challenging due to the systematic sampling that is more easily avoidable in

the nearby universe. Utilizing this new information to place constraints on the galaxy-halo
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connection will require careful planning of survey designs and new theoretical frameworks.

In this paper, we present a procedure for mapping photometric properties (flux and col-

ors) onto physical properties from the UniverseMachine empirical model [7]. We refer to this

procedure as Calibrating Light: Illuminating Mocks By Empirical Relations (CLIMBER).

We use this procedure to construct mock galaxy catalogs, which we use to investigate the

mass completeness and statistical constraints that will be available from several future mas-

sively multiplexed spectroscopic galaxy surveys: the Prime Focus Spectrograph Galaxy Evo-

lution Survey (PFS [107]), the Guaranteed Time Observation Extragalactic Survey of the

Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (MOONS

[73]), and the Wide Area Vista Extragalactic Survey-Deep (WAVES [36]). For each survey,

we quantify its performance and make recommendations about future extensions to improve

its constraining power on the galaxy-halo connection.

This paper is organized as follows: Section 2.2 explains the procedure we followed to

construct our mock galaxy catalog from the fiducial UniverseMachine model (with more

details in Section 2.7) and discusses selection functions that we place to construct mock

surveys of various galaxy populations. In Section 2.3, we formulate our conservative HOD

model. In Section 2.4, we present mock measurements of number density and the two-point

correlation function, which are the primary constraints of this model. In Section 2.5, we

present projected constraints of the two-point correlation function and HOD models through

Markov chain Monte Carlo (MCMC) fits, for a variety of survey parameters. We give a brief

discussion of our conclusions in Section 2.6.

The cosmological assumptions used in each step of generating our mock catalog were

made self-consistently. Bolshoi-Planck, the UniverseMachine, and all of our following calcu-

lations use a Planck-tuned ΛCDM cosmology with parameters given in Table 1. Although

the stellar masses and SFRs from UltraVISTA [79] assumed a slightly different cosmology,

their dependence on h has been corrected to match our assumption. Note that all halo masses

refer to the virial mass of the halo, and we do not use h-scaled units with the exception of

h−1 Mpc for distance.
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Table 1: Cosmological parameters

Parameter Value Description

h 0.678 Hubble parameter

ΩΛ 0.693 density parameter for dark energy

Ωm 0.307 density parameter for total matter

Ωb 0.048 density parameter for baryonic matter

ns 0.96 normalization of the Power spectrum

σ8 0.823 amplitude of mass density fluctuation

2.2 Building the Empirically Calibrated Mock Surveys

To construct a realistic mock galaxy catalog, we start from the UniverseMachine [7]

empirical model, which is calibrated to reliably reproduce a very large number of statistics

of galaxy populations from 0 < z < 10. However, this model lacks a crucial element needed

to test empirical selection functions: the apparent brightness of each galaxy in the observed-

frame wavelengths of photometric filters. We, therefore, calibrate these model galaxies to

photometry from the UltraVISTA survey [79] using a combination of abundance matching

and random forest mapping to calculate observed mass-to-light ratios (see Section 2.2.2).

2.2.1 UniverseMachine

The UniverseMachine [7] is a sophisticated empirical galaxy-halo connection model of 44

parameters, which were iteratively fit to 1069 observed data points across a redshift range of

0 < z < 10. It traces each dark matter halo in a gravity-only simulation and assigns a SFR

to the galaxy at the center of the halo, assuming that star formation correlates with dark

matter assembly. The model thereby tracks the accumulation of stellar mass of each galaxy

over its entire formation history. The SFR of each galaxy is drawn from an empirically

motivated distribution, which is the sum of two log-normal distributions, representing a
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Light = Stellar mass / (M/Lν) 

Figure 1: Visualization of our calibration procedure (CLIMBER) developed to assign the

brightness and color of each mock galaxy taken from the UniverseMachine empirical model.

Note that we abbreviate specific SFR (sSFR; i.e., SFR divided by stellar mass) and stellar

mass-to-light ratio (M/Lν), where ν represents the effective observed-frame frequency of a

photometric band.
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quenched and star-forming population. The quenched fraction, as well as the center and

width of the star-forming distribution, are parameterized by analytic expressions dependent

on halo mass and redshift. In order to impose some assembly correlation, the SFR is not

randomly drawn from the model distribution, but instead weighted such that higher SFRs

are more likely to be assigned to halos with greater mass accretion rates. For an excellent

visual summary of this procedure, see Figure 1 of [7].

The UniverseMachine DR1 derives its halo catalog from the Bolshoi-Planck cosmological

N-body simulation [60]. The UniverseMachine then provides mock galaxy properties such

SFR and stellar mass (note that this is the “live” stellar mass, which is the integral of the

star formation history subtracted by the mass returned to the interstellar medium) into

each snapshot of this simulation. By piecing together these snapshots, the UniverseMachine

has been tuned to reproduce many observables, such as stellar mass functions, two-point

correlation functions, the star-forming main sequence, quenched fractions, environmental

quenching, and more.

Before using the UniverseMachine to generate mock surveys, one needs to define the

empirical properties of each mock galaxy to impose selection functions. This has previ-

ously been done by performing stellar population synthesis over each star formation history

to fit the UniverseMachine to UV luminosity functions and UVJ quenching classifications.

However, the UniverseMachine is only tuned to reproduce global star formation histories.

Because our goal is to apply targeting strategies, the distribution of colors and fluxes must be

reliable, and we, therefore, empirically calibrate a mapping from stellar mass and SFR (the

obs_sm and obs_sfr columns) to the brightness in various photometric filters, as explained

in Section 2.2.2.

2.2.2 CLIMBER

Most spectroscopic galaxy surveys have well-defined selection functions based on pre-

viously taken photometric data. Therefore, we need a method of predicting the observed

light of UniverseMachine galaxies at multiple wavelengths to understand the representation

of properties of the targeted galaxies (e.g., mass completeness) of these surveys. For this
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reason, we have developed a procedure to assign mock apparent magnitudes informed by an

observational dataset. We refer to this procedure as Calibrating Light: Illuminating Mocks

By Empirical Relations (CLIMBER).

In CLIMBER, we utilize the tight correlation between the mass-to-light ratio and color

of a galaxy (e.g., [9]). Analogously, we map sSFR to the mass-to-light ratio for each mock

galaxy via random forest regression. This can be trained by any observational dataset with

the desired mass, redshift, and photometric coverage. The data shown in this paper have

been calibrated to UltraVISTA photometry [79], but CLIMBER is a generalizable, flexible

procedure that can be applied to any dataset that includes mappings between empirical

fluxes and physical galaxy properties.

While the scaling relation between total SFR and stellar mass of star-forming galaxies

(the star-forming main sequence) has been measured out to z ∼ 5 [57, 117, 109, 69], the

evolution of SFRs for galaxies that fall off this relation is poorly constrained due to the

difficulty of measuring low SFRs [68]. For this reason, the UniverseMachine only evolves the

star-forming SFR distribution with redshift. In contrast, the specific SFR (sSFR) of each

quiescent galaxy in the UniverseMachine was simply drawn from a non-evolving log-normal

distribution of 10−11.8 yr−1 ± 0.36 dex. While this empirically matches the local universe,

it likely underestimates SFRs of high-redshift quiescent populations. This assumption does

not greatly influence the accumulation of stellar mass modeled in the UniverseMachine, but

it presents a problem for assigning the luminosities of quiescent galaxies. We solve this by

rescaling the sSFR distributions via conditional abundance matching, as discussed in greater

detail in Section 2.7.

The most crucial decision one needs to make before running CLIMBER is in choosing

an sSFR proxy from the calibration dataset. This proxy must (1) approximately conserve

rank-ordering with true sSFR (at fixed stellar mass), (2) produce a tight, negative correlation

with mass-to-light ratio, and (3) have a high detection fraction in the full galaxy population

– quenched and star-forming galaxies alike. From UltraVISTA, we chose to use the specific

ultraviolet SFR (sSFRUV), which is the SFR inferred from ultraviolet bands, divided by

stellar mass derived from SED fitting. These SEDs were fit by Fitting and Assessment of

Synthetic Templates (FAST [64]) using the Chabrier [23] initial mass function, an exponen-
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tially declining star formation history, and the Bruzual & Charlot [21] stellar population

synthesis model. Other sSFR proxies may be useful in different datasets. For example, we

considered using sSFRs directly from SED fits, but the grid-based values fit by FAST were

sampled too sparsely and therefore provide a poor mapping between physical properties and

flux.

See Figure 1 for a flow chart visualization of the CLIMBER procedure. To summarize, we

first perform conditional abundance matching from the model sSFR to match the empirical

sSFR distribution. Then, we train the mapping from sSFR to an observed mass-to-light

ratio using random forest. Finally, we convert the UniverseMachine stellar mass values to

luminosities via the predicted mass-to-light ratios. For further details and analysis of our

procedure, see Section 2.7.

2.2.3 Mock Survey Selections

The product of CLIMBER is a mock realization of the universe in the form of a light

cone, which can be iterated over random origins and orientations in the Bolshoi-Planck

cube. We conduct mock surveys over these light cones by performing cuts that imitate the

selection functions of several next-generation surveys. We then analyze many realizations of

each mock survey to try to determine the uncertainty of the number density and two-point

correlation function (see Sections 2.4.1 and 2.4.2) that will be measured.

In this work, we ignore the intricate details of survey geometries, overlapping pointings,

and fiber collisions, which would require targeting strategies that are not yet finalized (how-

ever, our mock catalogs will be an extremely useful tool for running targeting simulations

and analyzing the systematics they produce). We define our survey geometry by a square in

angular coordinates and remove a random subsample to account for incompleteness primar-

ily due to fiber collisions. Our two survey parameters are thus sky area and completeness

fraction.

We implement this selection using |α| < αmax and |δ| < δmax where αmax = δmax. For

small angles, the solid angle area is approximately Ω ≈ 4αmaxδmax (in radians/steradians),
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Table 2: Survey parameters

Name Area (sq. deg) Completeness Redshift Magnitude limits References
WAVES 66 95% 0.2 < z < 0.8 mz < 21.25 [36]

PFS (z < 1) 12 70% 0.7 < z < 1.0 mY < 22.5 & mJ < 22.8 [107]
PFS (z > 1) 12 70% 1.0 < z < 1.7 mJ < 22.8 [107]

MOONS (z ∼ 1) 4 72.5% 0.9 < z < 1.1 mH < 23.0 [73]
MOONS (z ∼ 1.5) 4 72.5% 1.2 < z < 1.7 mH < 23.5 [73]
MOONS (z ∼ 2) 4 72.5% 2.0 < z < 2.6 mH < 24.0 [73]

but to be precise, we calculate αmax and δmax by inverting Equation 1.

Ω =

∫ αmax

−αmax

dα

∫ δmax

−δmax

dδ cos(δ)

= 4(αmax) sin(δmax)

(1)

To perform any type of scientific study on a sample of galaxies, its selection function must

be well understood in terms of physical properties. By imposing the published magnitude

limits (see Table 2) of the WAVES, PFS, and MOONS surveys on galaxies in our mock, we

can test the fraction of galaxies at a given mass that is included in the selection function to

test how well-represented they will be in the survey. For each survey, we show the 90% and

99% mass-completeness limit as a function of redshift in Figure 2. The color-coded bands

in this figure enclose the three galaxy populations that we further analyze in this paper by

calculating mock observables (Section 2.4) to constrain our HOD model (Section 2.3). The

mass thresholds and effective redshifts of these samples are listed in Table 3. These cuts

are almost entirely above the respective 99% mass-completeness limits, which means these

surveys should observe representative samples.

Figure 2 additionally shows the comoving area probed by each survey as a function

of redshift, in comparison to that of the Bolshoi-Planck simulation, which is a periodic

cube of side length 250 h−1 Mpc. Note that WAVES reaches a slightly larger comoving

area at the high-redshift end, which may cause the cosmic variance in our mocks to be

slightly underestimated, due to the high probability of resampling the same galaxies across

realizations. While this should not affect our primary conclusions, a more precise analysis

of the cosmic variance in WAVES should use a larger simulation than Bolshoi-Planck.
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Table 3: Galaxy samples

Name Mass threshold (M⊙) Mass completeness Redshift range Effective redshift Mean sample size
WAVES 1011 99.903% 0.5 < z < 0.8 0.647 33,583
PFS 1010.5 99.997% 0.8 < z < 1.2 0.979 61,307

MOONS 1010 99.744% 1.2 < z < 1.6 1.367 41,661

2.3 HOD Formulation

2.3.1 The HOD

In this paper, we will predict the level of constraints that several upcoming surveys

will place on the galaxy-halo connection. To quantify these constraints, we use the halo

occupation distribution (HOD), which has been a standard way to measure the galaxy-halo

connection in magnitude limited surveys for nearly two decades [10].

The HOD prescribes the mean number of galaxies above a mass or luminosity threshold

per halo. This formalism is very popular due to its simplicity and utility for galaxy clus-

tering predictions. We use the HOD parameter convention introduced by [127]. Under this

formalism, we describe the expected number of central and satellite galaxies per halo above

a stellar mass threshold, M∗thresh, as

⟨Ncen⟩ =
1

2

(
1 + erf

(
log (Mh/Mmin)

σ

))
(2)

and

⟨Nsat⟩ =
(
Mh −M0

M1

)α

, (3)

where we do not assume any functional forms for the redshift and M∗thresh dependence of the

free parameters Mmin, σ, M0, M1, and α. Instead, we fit the HOD independently to each

galaxy population of interest.

We plot these equations in Figure 3 using the fiducial parameters for our PFS sample

and demonstrate how varying these parameters varies the number of galaxies per halo.

The parameters controlling ⟨Ncen⟩ are the characteristic halo mass Mmin and the char-

acteristic spread σ. The parameters controlling ⟨Nsat⟩ are the minimum halo mass M0, the

characteristic halo mass M1, and the power-law slope α.
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Figure 2: Mass completeness (upper panel) and field size (lower panel) for the targeting

strategies (given in Table 2) of PFS, WAVES, and MOONS as a function of redshift. In

the upper panel, we include 99% (solid lines) and 90% (dashed lines) completeness limits.

These values are averaged over 25 mock catalog realizations. Color-coded bands indicate the

mass-complete samples used in this analysis (see Table 3). In the lower panel, we plot the

comoving area of each field, with sky areas taken from Table 2.
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Figure 3: Mean occupation functions of centrals (Equation 2; top panels) and satellites

(Equation 3; bottom panels) per halo in our HOD model. The total number of galaxies per

halo is the sum of Ncen and Nsat. Black curves are plotted with our fiducial set of parameters

for our PFS galaxy sample. We demonstrate the effect of each model parameter by varying

them one at a time, as labeled. Note that our conservative HOD model (Section 2.3.2) always

maintains a constant Mmin/M1 ratio, and conserves total number density by automatically

updating logMmin and logM1 to account for any change in σ or α.
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Table 4: Fiducial HOD parameters (UniverseMachine “truths”)

(Parameter type) (Fixed) (Fixed) (Free) (Free) (Derived) (Derived) (Fixed) (Derived)
WAVES 9.992×10−4 5.229 0.736 1.291 12.956 13.674 12.176 0.190
PFS 4.838×10−3 8.691 0.407 1.188 12.058 12.997 11.838 0.221

MOONS 7.619×10−3 9.132 0.220 1.196 11.740 12.701 11.655 0.222

While the mean occupation function is a deterministic function of the HOD parame-

ters, note that the number of galaxies assigned to each halo is stochastically drawn from a

distribution around this mean. We draw from a Bernoulli distribution (1 or 0) for central

galaxies and a Poisson distribution for satellites. Therefore, this induces some stochasticity

in the number density and correlation function when populating a simulation of finite volume

according to our HOD.

The HOD is constrained by quantities that probe the mass of the underlying halo popu-

lation: abundance and clustering. To quantify clustering, we measure the two-point correla-

tion function, wp(rp) (see Section 2.4.2). We quantify abundance with the number density of

galaxies above the stellar mass threshold, n, which is related to the SMF (see Section 2.4.1)

by

n =

∫ ∞

M∗thresh

Φ(M∗)dM∗. (4)

The HOD can be calculated directly from the UniverseMachine by counting the average

number of galaxies above the threshold in each halo. We fit Equations 2 and 3 to this

calculation in narrow Mh bins to obtain fiducial HOD parameters for our WAVES, PFS,

and MOONS galaxy samples. We list each fiducial HOD parameter, as well as the average

number density n and satellite fraction fsat in Table 4.

2.3.2 The Conservative HOD Model

Combining information from multiple sources, we expect very strong empirical con-

straints on the number density of most galaxy populations. Even in our mock surveys

alone, we measure n to the precision of 1 to 4%, which is an order of magnitude smaller than

the fractional error of wp at large scales. Therefore, if allowed to freely vary, the number
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density causes a near-degeneracy between the HOD parameters it is sensitive to, increasing

the difficulty of calculating constraints through MCMC with little gain. We, therefore, set

the fiducial value of n as a hard prior and only consider the HOD parameter-space that con-

serves the number density from the UniverseMachine. To do this, we integrate Equations 2

and 3 with the halo mass function Φ(Mh) to obtain

ncen =

∫ ∞

0

⟨Ncen⟩Φ(Mh)dMh (5)

and

nsat =

∫ ∞

0

⟨Nsat⟩Φ(Mh)dMh, (6)

where

n = ncen + nsat. (7)

The parameter Mmin primarily sets the number density for the centrals and M1 for the

satellites. Since we have removed one degree of freedom by holding the total number density

fixed, we are free to combine these two parameters into a single parameter: M1/Mmin. This

ratio is directly influenced by the ratio of central to satellite dark matter halos predicted by

dark matter simulations. Since this is decided by our cosmological prior, we choose to hold

constant the M1/Mmin parameter measured from the UniverseMachine. Then, once a value

is chosen for each free parameter, we can individually derive M1 and Mmin by numerically

inverting Equation 7.

We remove another degree of freedom in our model by holding the fiducial value of M0

fixed. This is common practice because the observables that we examine are not sensitive

to large changes in this parameter. Therefore, we only tune two free parameters in our

conservative HOD model: σ and α. We demonstrate the effect these parameters have on

wp(rp) predictions in Figure 5. Increasing σ decreases clustering at all scales, while increasing

α increases clustering, especially at small scales. Pushing to smaller-scale measurements will

therefore be greatly beneficial in breaking the degeneracy of these parameters.
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2.4 Constraints on the HOD

Following the standard methodology, we constrain the HOD by empirical measurements

of number density and clustering of the galaxy population. Therefore, in this section, we

present mock measurements of the stellar mass function and the projected two-point corre-

lation function.

2.4.1 Stellar Mass Function

The stellar mass function (SMF), Φ(M∗), measures the number density of a galaxy

population subdivided into bins of stellar mass. This is one of the most direct measurements

of the efficiency of galaxy evolution, tracking the overall growth of galaxies over cosmic times

from the accumulation of star formation. In terms of the galaxy-halo connection, the SMF

provides an estimate for the SHMR, if we assume a good rank-order correlation between

stellar and halo mass, as is done by abundance matching models.

Spectroscopic surveys like PFS, WAVES, and MOONS will improve stellar mass estimates

of galaxies from the respective epochs they are probing due to the significantly increased

precision via spectroscopic redshifts, as well as tighter constraints on mass-to-light ratios

from stellar ages obtained by stellar population synthesis. This will substantially improve

our certainty on the distribution of stellar masses [80], while abundance measurements will

be further solidified by larger photometric surveys. Therefore, from this combination of data

sources, we expect tight constraints on the SMF for a wide range of redshifts, especially at

z > 1, in the coming years.

In each of our redshift samples, we measure the SMF over an ensemble of 25 mock survey

realizations to quantify the uncertainty of a single survey. We present the mock SMFs of

each survey in the bottom panel of Figure 4. Note that each mock SMF agrees with the

truth down to the indicated mass threshold, which is a good sign that the survey samples will

be representative of the true galaxy populations. Additionally, the upper panel of Figure 4

shows the satellite fraction as a function of stellar mass, which is also in good agreement

down to the completeness limit for each sample.
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Figure 4: Mock measurements of the stellar mass function (bottom) and satellite fraction

(top). We plot WAVES (0.5 < z < 0.8) in orange, PFS (0.8 < z < 1.2) in green, and

MOONS (1.2 < z < 1.6) in blue. Each band represents the 1σ confidence region of each

mock measurement, inferred by independent realizations (note that the satellite fraction

here assumes perfect central/satellite assignment). Vertical dashed lines represent the stellar

mass threshold we impose on each survey, while the thick dashed curves represent the true

functions without photometric target selection. The observed functions agree very well with

the true functions above the respective mass thresholds.
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As discussed in Section 2.2.3, we are able to quantify the mass completeness of each

sample by selecting all mock galaxies over the mass threshold and calculating the fraction

of them which are under the survey’s magnitude limits. Over the entire redshift range, each

sample is well over 99% complete down to its mass threshold (see Table 3).

Note that the SMF is typically used as a direct constraint for the HOD through Equa-

tion 4. However, in our conservative model, the SMF is used as a hard prior because we do

not allow the total number density of galaxies to vary (see Section 2.3.2).

2.4.2 Two-Point Correlation Function

The two-point correlation function, ξ(r), is a canonical constraint on the HOD because it

measures the clustering strength of the galaxy population, which is indicative of the clustering

strength of the underlying halo population. Since halo clustering is a strong function of halo

mass, the two-point correlation function is very sensitive to the typical mass of the halo

population [122, 92, 113]. We adopt the projected correlation function, which is defined as

wp(rp) = 2

∫ πmax

0

ξ(rp, π)dπ, (8)

where we choose πmax = 50 h−1 Mpc. The projected correlation function conveniently

integrates out most of the dependence on redshift-space distortions. This is desired because

our galaxy-halo connection model has no dependence on velocity dispersion, and we do not

want our observable to be sensitive to that level of detail.

We perform this computation in six rp bins with logarithmically spaced edges from 1-

27 h−1 Mpc. Using a relatively small number of bins here helps reduce the number of

realizations needed to calculate the covariance matrix, which must be very precise for our

analysis. Due to the systematic sampling caused by fiber collisions in multiplexed spectro-

scopic surveys, we don’t attempt to calculate the two-point correlation function below a scale

of 1 h−1 Mpc (i.e., 106 arcsec at z = 0.8, 78.7 arcsec at z = 1.2, and 65.2 arcsec at z = 1.6).

The fiber positioner patrol diameters of the instruments used by WAVES, PFS, and MOONS

will likely be similarly sized, so fiber collisions should not dominate our uncertainty and the

effect will be mostly mitigated by revisiting fields multiple times.
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Figure 5: The projected two-point correlation function. Mock 1σ constraints from each

survey are given by grey shaded regions. The UniverseMachine “truth” HOD model is

represented by the thick black dashed line, while the colored solid and dotted lines show the

effect of increasing or decreasing one parameter at a time, respectively. High-mass samples

like WAVES are much more sensitive to changes in σ, and low-mass samples like MOONS

are more sensitive to changes in α. These parameters produce similar observational effects,

but this degeneracy can be broken by probing smaller scales.
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We calculate the projected two-point correlation function using the Landy-Szalay [65]

estimator implemented in the DDrppi, DDrppi_mocks, and convert_rp_pi_counts_to_wp

functions from the Corrfunc package [102]. We measure wp(rp) from each mock survey

in Figure 5, and compare it to various predictions of our conservative HOD model (see

Section 2.3.2). These measurements are sensitive to fairly small variations in σ or α, as can

be seen in this figure. However, note that typically higher mass samples (e.g., WAVES) are

less sensitive to α and lower mass samples (e.g., MOONS) are less sensitive to σ. This is

because halo bias increases more rapidly as a function of mass at higher masses than lower

masses, causing variations in high mass halo occupation to be more sensitive to the two-

point correlation function. Conversely, at lower masses, there is less sensitivity to clustering

signals except by varying the number of satellites, which dominate the two-point correlation

function.

Our model predictions for the projected correlation function are calculated using a pe-

riodic box, for which we use the Bolshoi-Planck snapshot whose redshift is closest to the

effective redshift for the given sample, as listed in Table 3. We weight our effective redshift

(Equation 9) by pair counts, which scales with number times number density (Equation 10).

zeff =

∫ zmax

zmin
zW (z)dz∫ zmax

zmin
W (z)dz

(9)

where

W (z) = (dN/dz)n =
(dN/dz)2

dV/dz
(10)

2.4.3 MCMC Fits

We perform the measurement of wp(rp) (see Section 2.4.2) on 600 independent realiza-

tions of each mock survey, seeded by randomized orientations and origins in the Bolshoi-

Planck box, using the lightcone code provided in the UniverseMachine package. We then

calculate the mean and covariance matrix from these samples and define a six-dimensional

multivariate normal likelihood distribution for our six rp bins of wp. We then use the emcee

package to sample the posterior probability distribution of our HOD parameter-space: {σ,
α}, with a uniform prior confined to 10−5 < σ < 5 and 0.1 < α < 3. We initialize our
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Figure 6: HOD posterior probability distribution measured in WAVES (left), PFS (center),

and MOONS (right). Measured by MCMC sampling of our two-parameter conservative HOD

model at the effective redshift of each sample, and comparing the predicted wp(rp) to 600

mock realizations. For each sample, the UniverseMachine truth value is marked with a blue

circle and best-fit parameters are marked with an orange X.

MCMC chains very close to the corresponding fiducial parameters given in Table 4, but al-

low them to run many autocorrelation lengths to ensure they are well converged, as discussed

in Section 2.5.1.

Note that the wp(rp) measured by a survey could be obtained more realistically by

drawing one of the 600 realizations, rather than using the mean. However, from tests of

additional MCMC runs, we confirm that there is no strong bias in the constraining power

from using individual realizations instead of using the mean value. Therefore, we define

our likelihood using the mean, which is more stable and the only fair comparison between

measurements using various survey parameters. Note that cosmic variance and measurement

error is still incorporated through the covariance matrix.
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2.5 Results: Predictions for Next-Generation Surveys

2.5.1 Forecasts for WAVES, PFS, and MOONS

Thanks to the small number of free parameters in our model, we obtain favorably high

acceptance rates (∼ 50%) and low autocorrelation lengths (∼ 50), which helps reduce the

time required to run our MCMC chains. To ensure we are not biased by our initial guess,

we removed a burn-in of 250 iterations from the beginning of each chain, although this has

a very small effect due to the long length of our chains. In each MCMC, we sample 150,000

trial points, yielding posteriors of very high resolution. We present a corner plot of the

posterior measured in each mock survey in Figure 6. These posteriors show that our method

does a good job of constraining our HOD to a fairly small region in parameter space. The

largest difficulty is constraining the α parameter in the WAVES sample due to the high mass

centrals dominating both the number density and clustering signal, and a large covariance

between σ and α.

Putting together the information from the posteriors from WAVES, PFS, and MOONS,

we will be able to constrain the HOD across a wide range of mass and redshift. We compile

the predicted constraints on the evolution of these HOD parameters in Figure 7. Certain

parameters will still be very poorly constrained using this type of analysis; for example, α

in the WAVES sample. This is primarily because the two-point correlation function is most

sensitive to σ at high masses and α at low masses, but additional metrics may be able to

provide more information (see Section 2.8).

Note that the WAVES sample produces very poor constraints on α (the satellite occupa-

tion slope parameter), whereas the MOONS sample produces particularly strong constraints

on α. This demonstrates a fundamental difficulty of using constraints only from number

density and the two-point correlation function. Since the two-point correlation function is

primarily sensitive to the most clustered data, it is more informative for satellites at lower

mass thresholds and centrals at high mass thresholds (as seen in Figure 5). However, for the

WAVES sample, note that σ and α are nearly degenerate, which results in relatively poor

constraints for both parameters.
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Figure 7: Predicted constraints on the evolution of the HOD. We compile best fit measure-
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It should be noted that improving our techniques may lead to tighter constraints on these

regions of difficulty. First of all, it is possible to partially break the degeneracy between

central and satellite clustering by measuring the two-point correlation function to smaller

scales (sub-Mpc) using fiber collision corrections. Additionally, alternative statistics like

counts-in-cylinders tend to be more sensitive to certain galaxy populations, and therefore

provide excellent complementary information to the two-point correlation function [113].

This will be important for analyzing the real data, but will come at a greater computational

cost, particularly because this increases the size of the covariance matrix, and will likely

require many more mock realizations to calculate accurately.

2.5.2 Measurement Error vs. Survey Parameters

Telescope time is typically the limiting factor in survey design. To first order, the amount

of time a survey requires is roughly proportional to the number of objects observed. It is

therefore possible to either scale up the sky area in exchange for a decrease in completeness

fraction or vice versa. Increasing the sky area of a survey would increase the volume and

therefore decrease the cosmic sample variance; on the other hand, high completeness helps

mitigate the uncertainty of small-scale pair counts, especially when accounting for fiber

collisions [14]. Although this is not tested in this work, it should also be noted that higher

completeness fractions should be favored if the goal is to increase the accuracy of identifying

central galaxies in group reconstruction [71].

Using our mock catalogs to estimate uncertainties, we vary these survey parameters to

quantify their effects on constraining power. In Figure 8, we present the dependence of

survey parameters on the uncertainty of the projected two-point correlation function. For

PFS- and MOONS-like surveys, the only way to greatly reduce uncertainties is by increasing

the area (see top row). Increasing the number of targets in the same area makes much more

modest improvements (see bottom row). In other words, smaller area surveys like PFS and

MOONS are dominated by cosmic variance, not shot noise. Wider surveys like WAVES (left

panel) typically find that the two-point correlation function uncertainty is dominated by

cosmic variance on large scales (9-27 h−1 Mpc) and shot noise on small scales (1-3 h−1 Mpc).
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To roughly quantify the effect survey parameters have on correlation function uncer-

tainties, we calculate the percent decrease in wp error at rp = 3-9 h−1 Mpc from the true

survey parameters for two cases: (1) doubled area and half the completeness (conserving the

number of targets) and (2) doubled completeness and the same area. Since we can’t actually

calculate double the area and double the number of targets for each survey, we simply use

linear regression to fit the slope of the orange lines in Figure 8 to extrapolate these numbers.

We find that doubling the survey area decreases the uncertainty of the correlation function

at intermediate scales by 3%, 24%, and 22% for our WAVES, PFS, and MOONS samples,

respectively. For a fixed survey area, doubling the number of targets improves the same

constraints by 14%, 5%, and 2%. These numbers reinforce that the samples probed by PFS

and MOONS are dominated by cosmic variance and can only be improved significantly by

increasing the observing area.

Given the covariance matrix of wp(rp) calculated for each set of survey parameters, we

also calculate HOD constraints via our MCMC method. We present the HOD constraining

power as a function of survey parameters by varying completeness fraction and area in

Figure 9. In the WAVES survey, we only find very small changes in constraints as we

vary the survey parameters. For PFS and MOONS, the difference between Figures 9 and 8

indicates that the covariance of the two-point correlation function with respect to various

regions of the universe is significantly different from the covariance due to varying HOD

parameters. It appears that this allows the HOD to be somewhat more robust to cosmic

variance than wp. Throughout, the constraints on α may be slightly more dependent on

survey parameters than the constraints on σ.

2.5.3 Comparisons to Past Surveys

Surveys like WAVES, PFS, and MOONS will be monumental in pushing measurements

of the two-point correlation function to higher redshifts because they will provide the precise

spectroscopic measurements necessary to perform those calculations. There are currently

no existing spectroscopic datasets that are comparable in size to the z > 1 samples we will

obtain from PFS and MOONS.
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Figure 8: Precision of mock wp measurements, color-coded by rp scale, as a function of

completeness fraction. Characteristic jackknife uncertainties are shown with grey bands.

In the top panels, the sky area is varied to conserve the total number of targets (given in

Table 3). In the bottom panels, the sky area is conserved at the true value for each survey,

and therefore the number of targets increases with completeness. Particularly for the PFS

and MOONS samples, there are significantly stronger trends in the top panels. This suggests

that the uncertainties in wp(rp) are dominated by cosmic variance, as opposed to shot noise.
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Figure 9: Precision of HOD parameters σ (blue) and α (orange), as a function of completeness

fraction. The panels are arranged analogously to Figure 8. These uncertainties do not appear

to be dominated by cosmic variance as strongly as the two-point correlation function. They

are affected just as strongly by shot noise. This demonstrates the importance of propagating

uncertainties from the full covariance matrix, rather than just the diagonal components

shown in Figure 8.
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For the slightly lower redshifts probed by WAVES, the closest comparison would be prism

surveys such as the PRIsm MUlti-object Survey (PRIMUS [24]) or the Carnegie-Spitzer-

IMACS (CSI [59]). PRIMUS, the larger of these two surveys, has measured the spectra

of galaxies out to z ∼ 1.2 with a redshift precision of σz/(1 + z) ∼ 0.005. Incorporating

all fields that overlap with imaging from the Galaxy Evolution Explorer (GALEX [74]),

Spitzer Space Telescope [115], Infrared Array Camera (IRAC [39]), and various ground-

based surveys, PRIMUS has an area of 5.5 deg2 and is complete down to similar stellar

masses as WAVES (see [78]).

We compare mock measurements of the projected two-point correlation function of our

WAVES galaxy sample (0.5 < z < 0.8 and log(M∗/M⊙) > 11) for the survey parameters of

WAVES and PRIMUS in Figure 10. This plot illustrates the significantly increased precision

we can expect to obtain from this sample of galaxies. Additionally, unlike PRIMUS, we

assume that the redshift uncertainties in WAVES will be negligible compared to redshift

distortions. The additional redshift error from PRIMUS does not greatly contribute to the

errorbars of the two-point correlation function, but this does produce a small systematic

offset which may further reduce the correlation function’s sensitivity to HOD parameters.

However, most of our current understanding of the galaxy-halo connection comes from

studies of surveys that either span lower redshifts or rely on photometric redshifts. For

example, [128] use photometric redshifts from SDSS [16] and [66] from COSMOS [101]. In

Figure 11, we present key findings of these past studies in terms of the SHMR, absolute

bias, and satellite fraction of several stellar mass threshold galaxy samples and compare

to the same measurements derived from our HOD projections of the WAVES, PFS, and

MOONS surveys. These upcoming surveys will push to significantly deeper redshifts than

past surveys, with comparable uncertainties.

Measuring the HOD for various surveys at distinct redshifts and stellar mass thresholds

has been and will continue to be a powerful tool for studying galaxy evolution as measured

by mean halo mass, satellite fraction, and galaxy bias (see Figure 11). Currently, we have

little evidence for significant redshift evolution in most of these properties. However, more

precise and higher redshift measurements of these parameters will give us a much clearer

picture of how they may evolve with the age of the universe. Each of these metrics is highly
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sensitive to various models of galaxy formation, so these new measurements will have a large

impact on how we think about the important processes driving the shut down of rapid star

formation that occurred at cosmic noon.

2.6 CLIMBER Conclusions

In this paper, we present the CLIMBER procedure, which we use to calibrate photometry

into the UniversemMachine and similar models. This procedure performs well at reproducing

a broad range of properties simultaneously. Twenty-five realizations of the 0.7 < z < 1.7

mock catalog used for the PFS and MOONS samples in this work are available at https:

//alanpearl.github.io/#data. Alternatively, you may install the utilities we used to

construct these catalogs at https://github.com/AlanPearl/mocksurvey.

We have used our mock catalogs to test the forthcoming generation of massively multi-

plexed spectroscopic galaxy surveys, which will likely change our understanding of galaxy

formation, the galaxy-halo connection, and possibly even cosmology in profound ways. The

high-redshift samples being probed will provide new constraints on theories and models

which predict how populations evolve with redshift. The UniverseMachine will face new

scrutiny in its ability to reproduce clustering and environmental quenching signals in the

distant universe. The constraints on parameters of interest in the UniverseMachine will

likely tighten significantly to match the new observations. It may even be possible that the

UniverseMachine will require reparameterization in order to achieve a good fit to the new

data. Either way, analysis of these new surveys will greatly impact our understanding of

the evolution of the galaxy population’s connection to its dark matter environment over the

history of the universe.

Using the two-point correlation function, we have found that surveys such as WAVES,

PFS, and MOONS will place new constraints on the galaxy-halo connection. We characterize

constraints on the central term of the HOD with the parameters σ and logMmin. The

precision to which we measure these parameters is displayed in Figure 6. We have found that

studies of lower mass galaxies, like the MOONS sample, will not achieve strong constraints
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Figure 10: Mock measurements of the projected two-point correlation function for WAVES

vs. PRIMUS. Note that we only used 25 independent realizations to quantify the obser-

vational error of the PRIMUS measurement, compared to the 600 used for WAVES. The

increased precision from WAVES is due to its area (66 deg2) which is over 10 times that

of PRIMUS (5.5 deg2). A small systematic offset is driven by redshift errors in PRIMUS,

which we assume will be negligible compared to velocity distortions in WAVES.
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Figure 11: Compiled measurements of the galaxy-halo connection. As a function of stellar

mass, we show several studies that have measured the mean halo mass (top panel), satellite

fraction above the stellar mass threshold (middle panel), and absolute bias above the stellar

mass threshold (bottom panel). Projected HOD analysis from this work for WAVES, PFS,

and MOONS is shown by the colored points, which push to significantly higher redshifts

with comparable uncertainties to previous studies.
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from wp(rp) alone and will likely need to use other counts-in-cells statistics that are more

sensitive to the weak clustering signal of low-mass centrals.

We characterize constraints on the satellite term of the HOD with the parameters α

and logM1. The precision of these measurements is also displayed in Figure 6. We find

that the satellite term of the HOD will be most poorly constrained in high-mass samples,

where the clustering signal is dominated by centrals. In this regime, small-scale correlation

function measurements are the most sensitive to the satellite occupation of halos. Smaller-

scale measurements will be possible from these surveys using fiber collision corrections, but

those will likely come at the cost of large shot noise. Therefore, it is still important for

follow-up surveys to improve the completeness of these galaxy samples and reduce the effect

of fiber collisions.

The achievable constraining power of these parameters is dependent on survey parame-

ters, such as completeness (which reduces shot noise) and area (which reduces cosmic vari-

ance). Our conclusions can be summarized by the following key points:

• The two-point correlation function measurements from PFS and MOONS are both pri-

marily dominated by cosmic variance, rather than shot noise. We have shown that, with

fixed sample size, increasing their survey area drastically reduces this uncertainty.

• The HOD constraints from PFS and MOONS are less dominated by cosmic variance.

This demonstrates the importance of using the full covariance matrix to calculate HOD

constraints.

• From WAVES, there is a more balanced combination of shot noise, which is dominant

on small scales (1− 3 h−1 Mpc) and cosmic variance, which is dominant on large scales

(9 − 27 h−1 Mpc). The resulting HOD constraints are not strongly affected by small

changes in survey parameters.

Another important survey parameter, which has not been explored in this work, is the

number of independent fields. PFS and MOONS are both planning on dividing their survey

into several fields, which will slightly mitigate some of their large cosmic variance. Addition-

ally, our predicted future constraints could be improved by supplementing the correlation

function with counts-in-cylinders, which is more sensitive to the weak clustering of low-mass
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centrals. Simulating detailed targeting strategies may also be important for more precise

optimizations of constraining power, as this is necessary to calculate pair counts corrections

at very small scales due to fiber collisions. This is important for unbiased estimates of both

the two-point correlation function and counts-in-cylinders.

There are sure to be many discoveries in store thanks to this new generation of surveys.

This new data will be investigated from all angles of the galaxy-halo connection: empirical

models, SAMs, and hydrodynamic simulations alike will be put to the test. We hope that

through this combined effort and publicly available tools like our mock catalogs, we will be

able to utilize this data to its full potential.

2.7 CLIMBER Appendix - CLIMBER Details

The goal of Calibrating Light: Illuminating Mocks By Empirical Relations (CLIMBER)

is to estimate the luminosity of each mock galaxy in any observed photometric band. Since

star-forming galaxies host more young blue stars, color is a smooth function of specific SFR

(sSFR). Both of these quantities correlate strongly with the mass-to-light ratio, as shown by

[9]. The relationship between mass-to-light ratio in each band and sSFR is approximately a

power law that can be empirically calibrated.

However, we first need to ensure self-consistency between the model and empirical param-

eters. In the model, SFRs for the star-forming population are drawn from mass-dependent

distribution (the star-forming main sequence) which evolves with redshift. The star-forming

main sequence is matched to empirical distributions at similar redshifts to ensure the values

are physical. However, for the quiescent population, the SFRs are drawn from a non-evolving

log-normal distribution centered around an sSFR of 10−11.8 yr−1. Given that this is incon-

sistent with empirical assumptions past z ∼ 0, we adopt only their rank-ordering. For

each mock galaxy, we first map its sSFR to an empirically calibrated value of ultraviolet

sSFR (sSFRUV). We choose sSFRUV due to its tight correlation with mass-to-light ratio and

reliable measurements in both quiescent and star-forming galaxies.

It would be even better to use the total sSFR by adding infrared (IR) sSFR, but this is not
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Figure 12: Conditional abundance-matching mapping from sSFR → sSFRUV for Uni-

verseMachine mock galaxies for a range of stellar masses at the redshift slice 0.8 < z < 0.9.

After being remapped, the distribution is forced to be identical to that of UltraVISTA at

fixed stellar mass and redshift. Note that there is a near one-to-one mapping for star-forming

galaxies, but the very low sSFRs of quiescent UniverseMachine galaxies are shifted up sig-

nificantly.
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Figure 13: The relation between UV specific star formation rate and mass-to-light ratio in

the observed R band at the redshift slice 0.8 < z < 0.9. Magenta lines represent logarithmic

contours of the UltraVISTA training data, while the colored points represent logarithmic

counts of UniverseMachine mock galaxies which were fit via the Random Forest method

described in Section 2.7. We present the same relation in all other available photometric

bands in Figure 16.
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possible for the UltraVISTA dataset because 53% of our training data have no detection in the

IR. This creates an artificial discontinuity between IR detections and non-detections, thereby

forming two distinct populations in the sSFR-M/L plane (see Figure 14). Including this

discontinuity would greatly increase the difficulty in mapping from sSFR to M/L, particularly

because it would require knowing the stellar mass to know which population a galaxy is a part

of (this is primarily an observational effect in which lower mass galaxies at the same sSFR are

less likely to have infrared detections). Including the stellar mass as a feature in our random

forest is undesirable because it could have unknown consequences when extrapolating to

lower stellar masses. Due to our decision to map sSFR to sSFRUV, we warn that our mocks

may underpredict the spread in the distribution of M/L at a given sSFR. However, we believe

that this is the best option due to its continuity and accuracy in reproducing magnitude and

color distributions.

The mapping of sSFR → sSFRUV is not uniform because UV flux decreases with higher

dust obscuration, which is strongly dependent on stellar mass [118]. Therefore, we map

sSFR → sSFRUV through conditional abundance-matching (CAM) using the halotools

package, which preserves the rank-ordering at fixed stellar mass (tolerance of ∼0.05 dex). We

iterate this method in fuzzy redshift bins (width of ∼0.1) using the code fuzzy_digitize

from the halotools package. We match the distribution to identical photometric redshift

bins of the UltraVISTA survey [79]. This CAM mapping from the UniverseMachine sSFR

to UltraVISTA-calibrated sSFRUV is shown in Figure 12.

We train the mapping from sSFRUV to mass-to-light ratio using the photometry and

FAST stellar masses from UltraVISTA. We plot the feature-space of the UltraVISTA training

data in Figure 15. These 140,472 training data leave very few missing regions of feature-space

for z < 3, making it an ideal training set for our purposes. The random forest regression

(the RandomForestRegressor class from the scikit-learn package [86]) is then used to

predict log(M∗/L) from the two features {log sSFRUV, z}. The advantages of this approach

are its simplicity, flexibility, and sufficient accuracy in predicting this relation and its in-

trinsic scatter (see Figure 13 and 16). Additionally, this method automatically includes

covariance between mass-to-light ratios of different photometric bands, which is important

to accurately capture distributions of color as well as multivariate color-magnitude distri-
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Figure 14: The relation between specific star formation rate and mass-to-light ratio for

UltraVISTA galaxies in the redshift slice 0.9 < z < 1.0. In the left panel, we use total sSFR

(UV + IR), and in the right panel, we only use UV sSFR. The two plots share in common

all galaxies without any IR detection, but the galaxies with IR detection form a cloud to the

right due to their higher total sSFR (removing galaxies without IR detection removes the

remaining narrow distribution entirely). We choose not to include sSFRIR in our mass-to-

light calibration due to this discontinuity between detections and non-detections.
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Figure 17: Comparison of the color distributions between UniverseMachine mock galaxies

(blue lines) and the UltraVISTA data (grey bands) that they were fit to at the redshift slice

0.8 < z < 0.9. The fits in the top panel use the default scikit-learn hyperparameters, while

those in the bottom panel use cross-validation-optimized hyperparameters. By construc-

tion, the optimized hyperparameters predict colors with a lower mean absolute deviation.

However, we adopt the default parameters due to their significantly better performance at

reproducing the distributions as a whole.
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butions. While random forests are not particularly good at extrapolation, our mock does

not need to extrapolate in feature-space. Since we do not use stellar mass as a predictor

of M/L (except indirectly through conditional abundance matching), it generalizes reason-

ably to masses slightly below the completeness limit of UltraVISTA, although predictions

for galaxies far below this limit should be used with care.

To assess our mock catalog’s performance at matching the UltraVISTA photometry, we

compare the predicted distributions for a variety of properties, including the colors shown in

Figure 17. The mass function and luminosity functions match very well by construction, but

we also want to accurately reproduce color distributions, as the selection functions in real

surveys will often use color cuts in addition to magnitude cuts. We have tested a variety of

choices for the random forest hyperparameters used, but found that the default scikit-learn

values performed best at reproducing a broad range of properties simultaneously. The hyper-

parameter values we use are therefore: n_estimators = 10, bootstrap = True, max_depth

= None, max_features = "auto", min_samples_leaf = 1, and min_samples_split = 2.

We have applied a number of common machine learning validation methods including

5-fold cross-validation testing and learning curve analysis, using the mean absolute deviation

(MAD) of colors as our loss function, and find that these hyperparameter values yield a model

that is modestly overfitted (cross-validated MAD value of 0.150, versus a training score of

0.058). We calculated an alternative set of optimized hyperparameters by minimizing the

mean absolute deviation of the colors (via a random hyperparameter search followed by

a smaller, but exhaustive, grid search), which yielded a more converged learning curve,

indicating less overfitting (cross-validated MAD value of 0.130, versus a training score of

0.126). However, while the optimized hyperparameters perform better for predictions of

individual colors, the M/L values at fixed mass concentrate closely around the mean value

rather than capturing the full distribution. This results in worse color distributions (as

seen in the bottom panel of Figure 17). Since we are in a regime where the feature-space

distribution of the training set is nearly identical to that of the mock (by construction via

conditional abundance matching), the overfitting when using the default parameters actually

helps us, since it guarantees that the magnitude and color distributions in the mock match

those of the training data.
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2.8 CLIMBER Appendix - Additional Metrics

While the two-point correlation function provides quite good HOD constraints, it is also

very sensitive to cosmology; particularly the σ8 parameter, which controls the linear bias

of halos. It has been shown [103] that the three-point correlation function would break

this degeneracy, at least on linear scales. Calculating the three-point correlation function

with existing public codes is too expensive to run at each iteration of an MCMC chain in

our analysis. If a more efficient implementation becomes available, we would be interested

in including this statistic to compare the added constraining power. This statistic will be

especially important for joint analyses of cosmology and the galaxy-halo connection.

Additionally, using the two-point correlation function alone can miss out on important

clustering information, as it is primarily driven by the most clustered galaxies, which is

almost always satellites except at the highest masses. One can explicitly measure a signal

from central galaxies singling them out via isolation criteria or group catalog reconstruction.

One metric in particular that is capable of measuring assembly bias signals is the number of

satellites vs. central stellar mass, split into quenched and star-forming populations (shown in

private communication with Rodŕıguez-Puebla). It is unclear how accurately group catalogs

can be reconstructed from surveys like PFS and MOONS, which are incomplete due to fiber

collisions, and require the use of photometric redshifts to fill in the gaps. This may prove to

be a strong argument for extensions to these surveys prioritizing increasing the completeness

over the area, contrary to the cosmic variance tests herein.

Alternatively, it is possible to supplement the two-point correlation function with other

statistics such as counts-in-cylinders (CIC). By tuning the radius of the cylinder and inner

annulus, CIC can effectively separate the signal of centrals from satellites, without requiring

full group catalog reconstruction. [113] demonstrate that CIC + wp(rp) may be sufficient to

constrain assembly bias as well. However, further testing is required for samples affected by

fiber collisions like PFS and MOONS.
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3.0 Galtab: Assembly Bias Evidence from Low-Redshift Counts-in-Cylinders

Measurements in the DESI One-Percent Survey

This chapter (Pearl et al. 2023 in prep) will be submitted to the AstroPhysical Journal

following DESI collaboration-wide review, which is ongoing at the time of thesis submission.

3.1 Galtab Introduction

The large-scale distribution of galaxies in the universe is a powerful probe of cosmolog-

ical models (e.g., [13, 5, 2]). This is because galaxies trace the dark matter distribution,

whose distribution is set by cosmological parameters and is well-characterized by modern

simulations (e.g., [60, 53]). However, for accurate cosmological inference, it is necessary to

marginalize over the possible relationships between observational probes and the theoretical

matter distribution. Therefore, leveraging large-scale structure to constrain cosmology re-

quires flexible models of the galaxy-halo connection, and necessitates incorporating as much

empirical information as possible to tightly constrain such flexible models.

Central and satellite galaxies are thought to form at the dense centers of halo and sub-

halo potential wells, respectively. Therefore, the spatial clustering of most galaxy samples

can be described well by a halo occupation distribution (HOD; e.g., [10, 127]), which proba-

bilistically connects the average number of central and satellite galaxies a dark matter halo

hosts to its mass. This formalism can be extended through additional parameters that lead

to correlations between galaxy abundance and secondary halo properties (i.e., assembly bias

[50]), which can improve fit quality. As the data improve, further extensions to HOD mod-

els may be warranted, e.g., by relaxing the assumption of a log-normal stellar-to-halo-mass

relation or of a spatially isotropic Navarro-Frenk-White (NFW [81]) distribution of satellite

galaxies.

The most common observables used to constrain the galaxy-halo connection via spec-

troscopic galaxy samples are the number density and the projected two-point correlation
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function wp(rp) (e.g., [122, 92]). However, [113] has shown that the counts-in-cylinders

(CiC) distribution P (NCiC) offers significant complementary information on the parame-

ters of interest – particularly those that control satellite occupation and assembly bias. As

demonstrated by [106], it is also possible to quantify clustering information beyond the

two-point function using the underdensity probability function and the density-marked cor-

relation function. These studies highlight that even with existing datasets, incorporating

different measurements of the large-scale structure can help optimize model fitting.

In this paper, we extend previous analyses by incorporating a novel spectroscopic dataset;

implementing a new, more efficient CiC prediction framework; and demonstrating the gain

these provide. We leverage data from the Dark Energy Spectroscopic Instrument (DESI

[34]), which will ultimately obtain spectroscopic redshifts of 40 million galaxies in an effort

to precisely map the large-scale structure of a large volume of the observable universe. While

the full dataset is still being collected, this work utilizes redshift measurements for more than

40,000 galaxies obtained by the Survey Validation 3 (SV3) component of the DESI early data

release [35].

We approximately adopt the best-fit flat-universe cosmology from [89]. The relevant

cosmological parameters that we use are as follows: h = 0.6777, Ωm,0 = 0.30712, Ωb,0 =

0.048252, and TCMB = 2.7255 K. However, we scale all distance and distance-dependent

values to units equivalent to setting the Hubble parameter to h = 1 (e.g., h−1Mpc).

This paper is organized as follows. We describe the DESI and simulation data in Sec-

tion 3.2. We outline the summary statistics used in our analysis in Section 3.3. We detail our

methodology for measuring and predicting CiC, through the galtab package, in Section 3.4.

We present our resulting constraints on the HOD in Section 3.5, and discuss our conclusions

in Section 3.6.
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Figure 18: Footprint of the DESI Survey Validation 3 (SV3). The left panel displays the

entire survey, broken up into twenty regions that are for the most part spatially isolated from

each other. The right panel presents a close-up of the region labeled by the number 11 in

the left panel. The points shown in orange, which are located primarily near the edge of the

region, indicate objects excluded as cylinder centers in our CiC measurement, as described

in Section 3.4.2

.

3.2 Data

3.2.1 DESI BGS

The DESI Bright Galaxy Survey (BGS) is a highly complete magnitude-limited spectro-

scopic survey of z < 0.5 galaxies, which aims to target galaxies over at least 14,000 square

degrees down to a limit roughly two magnitudes fainter than the Sloan Digital Sky Survey

(SDSS [1]). Our analyses only use the BGS Bright sample, which is complete down to an

apparent r-band magnitude of mr < 19.5. Because the DESI survey is still in progress at the

time of this writing, we analyze only data from the Survey Validation 3 (SV3 [35]) dataset

(also known as the One-Percent Survey as it contains approximately 1% of the anticipated
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volume of DESI). These data were obtained in over twenty sky regions totaling an area of

173.3 sq deg, as shown in Figure 18. A significantly higher fraction of potential targets was

observed in the SV3 fields than will be the case for typical DESI survey data due to the use

of a denser tiling strategy, simplifying the corrections needed for our analysis.

We specifically use the SV3 Large Scale Structure (LSS) catalogs, which only include

sources with secure spectroscopic redshift measurements, as described in [35]. These catalogs

are well suited for clustering measurements since they are paired with 18 random realization

files, each containing 2500 objects per deg2 of sky coverage, and weights from 128 fiber

assignment realizations. We also utilize r-band absolute magnitude measurements from

fastspecfit (Moustakas et al. in prep.1), which are computed for an SDSS r-band response

curve K-corrected to the z = 0.1 reference frame. Note that all references to absolute

magnitudes in this paper, Mr, are scaled to h = 1 units; therefore, they are equivalent to

Mr − 5 log h for all other values of the Hubble parameter.

We break this data into three volume-limited samples which each cover the redshift range

0.1 < z < 0.2, constructed with absolute r-band absolute magnitude limits of Mr < −20.0,

−20.5, and −21.0. We also define a fourth sample covering a slightly higher redshift range of

0.2 < z < 0.3 with limit Mr < −21.0. We plot each sample cut in Figure 19 and summarize

these samples in Table 5. Unless otherwise specified, all observational measurements in this

paper are measured from one of these samples.

3.2.2 Small MultiDark Planck

To study the galaxy-halo connection, we must compare DESI galaxy clustering data to

an assumed distribution of underlying dark matter halos. For this halo distribution prior, we

adopt the Small MultiDark Planck simulation (SMDPL [60]), which uses the same Planck

cosmology that we assume in this work. This simulation was performed with 38403 particles,

but our analysis is based only upon the halo catalogs produced by applying the Rockstar

halo finder [8]. We adopt the virial mass from Rockstar as our halo mass, Mh.

SMDPL covers a 400h−1 Mpc periodic cube, which is over ten times the volume of our

1https://fastspecfit.readthedocs.io/
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Figure 19: Distribution of r-band absolute magnitude Mr vs. redshift. The full DESI BGS

SV3 sample is shown by the grey points. Our four volume-limited, absolute magnitude-

thresholded samples are constructed through the cuts represented by the corresponding

colored boundaries.

SV3 samples. This is sufficiently large so that cosmic-variance-like uncertainties from the

data dominate over the sample variance of this simulation volume. However, future studies

will need to use larger volume simulations to compensate for DESI’s volume, which will be

100 times that of SV3.

Table 5: DESI subsamples used for our analyses. The full sample size is given by Ntot, while

Ncyl is the number of centers of the cylinders that meet our spatial completeness criteria.

Mr threshold Redshift range Ntot Ncyl

-20.0 0.1 < z < 0.2 20,241 15,936
-20.5 0.1 < z < 0.2 11,036 8,686
-21.0 0.1 < z < 0.2 5,096 4,031
-21.0 0.2 < z < 0.3 14,874 12,543
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3.3 Observable Summary Statistics

To extract clustering information from the galaxy samples, we use three summary statis-

tics: number density ngal, the projected two-point correlation function wp(rp), and the CiC

distribution P (NCiC). We compare the observations2 with our best-fit models for these three

summary statistics for each sample in Figure 26.

The number density is calculated via the sum of the inverse individual probability (IIP;

see Section 3.4.2) weights of the galaxies in the sample divided by the comoving volume

they were sampled from. For the HOD number density predictions, the comoving volume of

SMDPL is 4003h−3Mpc3, while the volumes of the DESI samples depend on the redshift cuts

and the survey area. The DESI SV3 BGS survey area is 173.3 sq deg, which corresponds to

comoving volumes of 2.83 × 106h−3Mpc3 and 6.95 × 106h−3Mpc3 for samples with redshift

ranges of 0.1 < z < 0.2 and 0.2 < z < 0.3, respectively.

The projected two-point correlation function is a common way to quantify data clustering

at various physical scales. By integrating over the line-of-sight dimension, this statistic

decreases the dependence of the inferred clustering on velocity-space distortions. It is defined

by

wp(rp) = 2

∫ πmax

0

ξ(rp, π)dπ (11)

where ξ is the two-point correlation function, π is line-of-sight separation distance, and rp is

perpendicular separation distance. For consistency with [112], we choose πmax = 40h−1Mpc

and use twelve logarithmically spaced bins between rp of 0.158h−1Mpc and 39.81h−1Mpc.

We concatenate all 18 random files from the SV3 LSS catalogs but draw a random 20%

subsample to reduce excessive computational time. We utilize the pycorr3 package to apply

the [65] estimator, line-of-sight integration, and fiber assignment weights. The performance-

critical pair searching is powered by Corrfunc [102].

Counts-in-cylinders (CiC) is a type of counts-in-cells statistic (i.e., it quantifies the local

density of neighbors in a cell around each object; the development of such metrics has a

2i.e., Bezanson Points
3https://github.com/cosmodesi/pycorr
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long history; e.g., [52, 130, 119, 3]) that defines neighbors using a cylindrical cell along the

line-of-sight direction. As in [112], we use relatively small-scale cylinders by choosing the

radius to be RCiC = 2h−1Mpc and the half-length to be LCiC = 10h−1Mpc. Cylinders of

this scale primarily probe the number of intra-halo galaxies and are therefore sensitive to

satellite occupation. Conveniently, using a small cylindrical volume is also a computationally

favorable choice. The CiC distribution P (NCiC) can be evaluated in bins of NCiC – for which

we use ten linearly spaced bins between −0.5 and 9.5 plus twenty logarithmically spaced bins

between 9.5 and 149.5; alternatively, the majority of available information can be captured

by computing the first three to five moments of the NCiC distribution. We describe our

methods used to compute counts-in-cylinders in detail in Section 3.4.

We test the ability of each summary statistic to provide information about the HOD

by sampling uniformly from HOD parameters around their 1σ confidence interval from the

[112] Mr < −20.5 sample. We predict each of our summary statistics plus noise according

to a random draw from the covariance matrix calculated in Section 3.3.1, including CiC up

to the tenth moment. We then train a random forest [20] to predict the HOD parameters

from these summary statistics and provide a visualization of the resulting SHapley Additive

exPlanations (SHAP [72]) feature importance in Figure 20. To briefly summarize, number

density is highly important for predicting logMmin, the two-point correlation function is

broadly informative across all parameters, and the first few CiC moments are particularly

important for constraining satellite HOD parameters.

3.3.1 Covariance of Summary Statistics

To constrain our HOD model, we compare the following summary statistics as measured

in our data to model predictions: number density; the two-point correlation function (com-

puted in 12 bins in rp); and CiC (for 28 bins in NCiC). We calculate the covariance matrix of

these summary statistics by jackknife resampling using the 20 regions displayed in Figure 18.

To do this, we perform a measurement of every summary statistic simultaneously on the

subset of data that includes all but one jackknife region. We repeat this process for each

combination of 19 jackknife regions to obtain NJ = 20 jackknife realizations. The covariance
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Figure 20: SHAP feature importances for each of our summary statistics for inferring

HOD parameters. Each panel plots the importance of each feature (i.e., each quantity

that is used to predict the HOD parameters via a machine learning model), calculated by

the mean absolute SHAP value for the given HOD parameter. Summary statistics with

high feature importance are more useful for predicting the parameter. For the satellite HOD

parameters (bottom row), the first few CiC moments provide the majority of the constraining

information. See Figure 28 for beeswarm plots of the full distribution of SHAP values of the

six most important features for each parameter.

matrix of our summary statistics can then be estimated by

Σij =
NJ − 1

NJ

NJ∑
k=0

(xik − x̄i)(xjk − x̄j) (12)

where x̄i is the ith summary statistic measured in the entire dataset, and xik is the ith

summary statistic measured in the kth jackknife realization.
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3.4 Counts-in-Cylinders

Counts-in-cylinders (CiC; derived in [87] and previously used by [93, 112]) is sensitive

to higher-order n-point functions, which makes it complementary to two-point statistics

commonly used in the literature. Despite its utility, CiC is not widely adopted in galaxy-halo

connection studies, due to difficulties in correcting for systematics, excessive computational

time, and significantly increased dimensionality of the full covariance matrix. In this section,

we present our methodology to mitigate all of these problems and implement each of these

methods in an open source Python package galtab4.

After a brief explanation of our observational cylinder geometry in Section 3.4.1, we

present our weighting method in Section 3.4.2 based on individual inverse probabilities and

inverse conditional probabilities (IIP×ICP), which corrects CiC calculations to account for

clustering bias in surveys with fiber collisions. This approach is analogous to and inspired

by pair inverse probabilities (PIP) weighting [14], which we used to correct our wp(rp)

measurement. To minimize the increase in dimensionality, we suggest using only the first

three to five moments of the CiC distribution, defined in Section 3.4.3, which retain most of

the constraining information. Our analysis uses information from the entire CiC distribution,

but our results are not significantly affected by using only the first five CiC moments instead.

Additionally, we present a galaxy placeholder pretabulation method in Section 3.4.4 to speed

up our Markov-chain Monte Carlo (MCMC) procedure. This makes our CiC prediction

runtime comparable to traditional Monte Carlo wp(rp) prediction methods but with the

significant advantage of producing precise, deterministic values, which yield much higher

MCMC sampling efficiency than stochastic Monte Carlo predictions.

3.4.1 Observational Cylinder Geometry

While a cylinder perfectly aligns with the velocity distortion in an idealized simulation,

for observations, we must slightly distort its round face into a truncated cone so that it

is always perpendicular to the line-of-sight direction. We also allow a slight curve to this

4https://github.com/AlanPearl/galtab
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truncated cone’s top and bottom faces, to keep them normal to the line of sight. Then there

are only two search criteria: angular distance and line-of-sight separation. The line-of-sight

separation cut is LCiC and we define the angular radius cut to be

θCiC = arccos

(
1− 3R2

CiCLCiC

(d+ LCiC)3 − (d− LCiC)3

)
(13)

where d is the comoving distance to the center of our “cylinder”. This ensures that its

volume is still precisely 2πR2
CiCLCiC, and θCiC ≈ RCiC/d as d → ∞.

3.4.2 IIP×ICP Weighting

In order to account for fiber collisions, the DESI Large-Scale Structure catalogs come

with “bitweights” columns. These bitweights represent 128 true or false values for each

object that correspond to 128 fiber assignment realizations. Therefore, the probability that

an object in the catalog would have been assigned a fiber can be obtained by a summation of

these 128 bits plus one divided by 129 (since the object was observed, there is an understood

true for the 129th realization). We explicitly calculate the probability of assigning a fiber to

the ith galaxy using

P (i) =
sum(bitweights[i])+ 1

129
, (14)

while the probability of simultaneously assigning fibers to both the ith and jth galaxies is

P (i & j) =
sum(bitweights[i] & bitweights[j])+ 1

129
(15)

where sum and & are bitwise operations. Thanks to the high fiber completeness of SV3, the

average value of P (i) is 0.984.

In order to measure the CiC distribution, we must calculate the expectation value of the

number of galaxies we expect to find in the cylinder around every galaxy individually, NCiC,i.

For this task, we sum the inverse conditional probabilities (ICPs) of each neighboring galaxy’s

fiber assignment (conditional on the fiber assignment of the cylinder’s central galaxy). Using

the definitions from Equations 14 and 15,
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ICPj|i =
P (i)

P (i & j)
(16)

NCiC,i =
1

frand

∑
j∈Ci

ICPj|i (17)

where Ci is the set of indices of galaxies contained by the cylinder surrounding the ith

galaxy, and frand is the fraction of randoms enclosed in the cylinder compared to the expected

number occupying a circle of angular radius θCiC in order to account for incompleteness in

spatial coverage. Note that we do not include cylinders with frand < 0.9. This cut excludes

approximately 21% of the cylinders at z ∼ 0.15 and 16% of the cylinders at z ∼ 0.25, as

listed in Table 5.

We measure P (NCiC) from the sample distribution of NCiC,i values, but we need to

overweight the objects in dense regions of the sky that have been undersampled, so therefore,

we weight objects by their inverse individual probability (IIP). The IIP of the ith galaxy is

simply

IIPi =
1

P (i)
. (18)

Finally, for our binned histogram measurements of P (NCiC), we split each IIPi into two

parts, IIPi+ and IIPi−. These weights are applied to the integers above and below NCiC,i,

respectively, and are proportional to one minus that integer’s distance from NCiC,i so that

IIPi+⌈NCiC,i⌉+ IIPi−⌊NCiC,i⌋
IIPi

= NCiC,i (19)

3.4.3 Calculating the CiC Moments

In order to decrease the dimensionality of the covariance matrix, one may choose to

condense the information contained in the CiC distribution into its first few moments, which

we define as

µ1 =
N∑
i=1

wiNCiC,i (20)
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µ2 =

√√√√ N∑
i=1

wi(NCiC,i − µ1)2 (21)

µk>2 =
1

µk
2

N∑
i=1

wi(NCiC,i − µ1)
k. (22)

where NCiC,i is the number of neighbors inside the cylinder surrounding the ith galaxy in

the sample and wi is the ith IIP weight, but normalized to
∑

wi = 1 (see Section 3.4.2 for

details on NCiC,i and IIP weights). Note that µ1 is the mean, µ2 is the standard deviation,

and for k > 2, µk are standardized central moments (skewness, kurtosis, etc.), uncorrected

for degree-of-freedom bias, which is a negligible source of systematics for large sample sizes

compared to other uncertainties. In figures, we refer to µk as CiCk to be explicit that they

are moments of CiC.

3.4.4 Pretabulation with Placeholder Galaxies

Predictions of CiC from Monte Carlo HOD realizations are notoriously slow and noisy.

This stochasticity reduces the sampling efficiency of Monte Carlo explorations of model pa-

rameter space by decreasing the acceptance rate which, in turn, increases the autocorrelation

length of MCMC chains and necessitates longer chains and run times. To remedy this, we

have developed a method to calculate precise, deterministic CiC predictions by pretabulating

placeholder galaxies inside simulated halos.

Our procedure is illustrated in Figure 21. Our method requires a fiducial HOD model

to compute the expected occupation, ⟨Ncen⟩ and ⟨Nsat⟩, for each halo. For our fiducial

model, we choose the best fit of [112] that corresponds to the magnitude threshold of each

of our samples. We populate each halo with Ncen,ph central placeholders and Nsat,ph satellite

placeholders. We determine the number of satellite placeholders for each halo with the

hyperparameter Wmax according to the equation

Nsat,ph =

⌈⟨Nsat⟩
Wmax

⌉
(23)

which ensures that, for fiducial model predictions, there are enough satellite placeholders

that their individual weights are less than or equal to Wmax.
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Figure 21: Demonstration of our placeholder algorithm used to pretabulate counts-in-

cylinders pair indices. Given a fiducial model, we populate placeholder centrals for most

halos with a non-zero probability of hosting a halo. We populate many more placeholder

satellites than expected in the fiducial model so that the resulting binomial satellite occupa-

tion distribution sufficiently resembles the assumed Poisson distribution. We then tabulate

the placeholder indices in each halo for rapid CiC prediction using one of the two modes

described in Sections 3.4.5 and 3.4.6.

For centrals, we define a hyperparameter Qmin that sets the minimum quantile of central

galaxies for which to populate a central placeholder. In practice, we set Ncen,ph = 1 for

all halos with ⟨Ncen⟩ ≥ ⟨Ncen⟩min, and Ncen,ph = 0 otherwise. To solve for ⟨Ncen⟩min, we

numerically integrate and invert

Qmin =

∫ 1

⟨Ncen⟩min
Φ(⟨Ncen⟩)⟨Ncen⟩d⟨Ncen⟩∫ 1

0
Φ(⟨Ncen⟩)⟨Ncen⟩d⟨Ncen⟩

(24)

where Φ(⟨Ncen⟩)d⟨Ncen⟩ is the number density of halos with expected central occupation
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between ⟨Ncen⟩ and ⟨Ncen⟩+ d⟨Ncen⟩.
To balance accuracy and runtime (see Figure 22), we set Wmax = 0.05 and Qmin = 10−4.

In galtab, these hyperparameters can be tuned via the max weight and min quant keyword

arguments, respectively.

We may choose any parameters for our HOD model and obtain a new prediction of ⟨NX⟩
for each halo and for each galaxy type denoted by X: central or satellite. Each placeholder

galaxy is then assigned a weight, or probability, value Pi = ⟨NX⟩/NX,ph.

As is usually done in Monte Carlo HOD realizations, these galaxy probability values are

assumed to be independent. Therefore, the halo occupation of centrals follows a Bernoulli

distribution, the same as typical Monte Carlo frameworks. However, the halo occupation

of satellites follows a binomial distribution in our framework, which only converges to the

desired Poisson distribution in the low Pi ≲ 0.05 limit, hence our choice of Wmax = 0.05.

Finally, a single counts-in-cylinder search is required (we use the halotools implemen-

tation for this) to obtain a list of the indices of possible neighbors for each placeholder. This

allows us to rapidly calculate our CiC metric, as described in the following sections.

3.4.5 Pretabulated CiC Prediction: Monte Carlo Mode

In order to calculate the CiC distribution P (NCiC) from the probability values of our

pretabulated galaxies, we must consider the probability of each possible value of NCiC,i for

each cylinder i, from which the full CiC distribution is the weighted superposition of each

NCiC,i distribution. We write this as

P (NCiC) =

N∑
i=1

PiP (NCiC,i)

N∑
i=1

Pi

. (25)

In general, each P (NCiC,i) is a Poisson binomial distribution, whose calculation scales

exponentially with the number of neighbors in the ith cylinder, which is infeasible. Therefore,

the full distribution can only be calculated using our Monte Carlo mode prediction. In this

mode, we also pretabulate nMC random seeds over [0, 1) for each galaxy, which we use as

Bernoulli quantiles after assigning the Pi of each placeholder. This allows us to effectively
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create nMC independent realizations that can still produce quasi-deterministic and almost

continuous (but non-differentiable) predictions. We find that using nMC = 10 random seeds

produces reasonably stable results without excessive runtime. We will show in Section 3.4.6

that predictions of the CiC moments can be made without invoking random seeds, allowing

them to be perfectly continuous and differentiable.

3.4.6 Pretabulated CiC Prediction: Analytic Mode

Although the full P (NCiC) distribution cannot be calculated analytically from our galaxy

placeholders, the moments of this distribution can. As a simple example, the mean of this

distribution is simply the weighted average of the individual means

⟨NCiC⟩ =

N∑
i=1

Pi⟨NCiC,i⟩
N∑
i=1

Pi

(26)

where

⟨NCiC,i⟩ =
∑
j∈Ci

Pj (27)

and Ci is the set of indices of galaxies contained by the cylinder surrounding the ith galaxy.

It is possible to calculate a similar relation for the standard deviation and the higher

standardized moments we have defined in Equations 21 and 22. However, these relations

are much more complicated. Note that the mean is a special case because it is the first raw

moment (which allows Equation 26) as well as the first cumulant (which allows Equation 27).

Cumulants are a type of moment that have a special property that they are additive for

random variables which are the sum of other random variables. For example, the number

of neighbors in the ith cylinder is a random variable, which is the sum of the occupation of

each of its pretabulated placeholder companions, which themselves are random variables:

NCiC,i =
∑
j∈Ci

Xj (28)

whereXj is the occupation of the jth placeholder, which follows a Bernoulli distribution (0 or

1) with mean Pj. Therefore, the first cumulant of this Bernoulli distribution is κ1(Xj) = Pj,
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and the subsequent Bernoulli cumulants can be derived from the recursion relation

κk+1(Xj) = Pj(1− Pj)
dκk(Xj)

dPj

. (29)

Given the first kmax Bernoulli cumulants of each placeholder, we can calculate the first

kmax Poisson binomial cumulants of the ith cylinder. We can take the kth cumulant of each

random variable on both sides of Equation 28:

κk(NCiC,i) =
∑
j∈Ci

κk(Xj). (30)

From the moments of each NCiC,i, we would like the moments of the combined CiC

distribution, which is a weighted superposition of each individual cylinder’s distribution, as

expressed in Equation 25. For this step, the most convenient set of moments to use are

raw moments. The kth raw moment of NCiC,i can be obtained from its first k cumulants

according to

⟨Nk
CiC,i⟩ = κk(NCiC,i) +

k−1∑
j=1

κj(NCiC,i)⟨Nk−j
CiC,i⟩. (31)

From these individual kth raw moments, we can calculate the kth raw moment of their

superposition using a simple weighted average:

⟨Nk
CiC⟩ =

N∑
i=1

Pi⟨Nk
CiC,i⟩

N∑
i=1

Pi

. (32)

The first raw moment is µ1, but the remaining µk for 2 ≤ k ≤ kmax depend on central

moments. Therefore, the final nontrivial step of our analytic prediction framework is to

calculate the central moments using the following binomial expansion:

⟨(NCiC − ⟨NCiC⟩)k⟩ =
k∑

j=0

(
k

j

)
(−1)k−j⟨N j

CiC⟩⟨NCiC⟩k−j (33)

from which we can calculate the standard moments given in Equations 20 through 22 using

µ1 = ⟨NCiC⟩, (34)
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µ2 =
√

⟨(NCiC − ⟨NCiC⟩)2⟩, (35)

and

µk>2 =
1

µk
2

⟨(NCiC − ⟨NCiC⟩)k⟩. (36)

3.4.7 Computational Performance

In Section 3.4.4 and Figure 22, we have described our hyperparameter tuning ofWmax and

Qmin to balance runtime and accuracy. These parameters control the number of placeholders,

N , as well as the average number of placeholders per cylinder, C. To store all pretabulated

indices, the memory usage of galtab scales with O(NC).

There are also additional runtime considerations specific to each prediction mode. For the

Monte Carlo mode, the runtime scales with the number of effective Monte Carlo realizations,

nMC, so the time complexity is O(nMCNC). For the analytic mode, the runtime scales with

the highest calculated moment, kmax, so the time complexity is O(kmaxNC).

By far, the most computationally expensive step of our procedure is the summation

of occupations (or cumulants, for the analytic mode; see Equation 30) of placeholders per

cylinder. To fully optimize this calculation, we employ just-in-time (JIT) compilation via the

JAX library [19]. This also automatically ports the computation to the GPU, if available,

which can speed up the predictions by at least an order of magnitude faster than the times

reported in Figure 22.

3.5 Constraining the HOD

3.5.1 HOD Model

We employ a decorated HOD model based on the formulation of [127]. In this framework,

the halo occupations of central and satellite galaxies over a given magnitude threshold are
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described by Bernoulli and Poisson distributions, respectively. Their means are functions of

halo mass Mh, described by

⟨Ncen⟩(Mh) =
1

2

(
1 + erf

(
log(Mh/Mmin)

σlogM

))
(37)

and

⟨Nsat⟩(Mh) =

(
Mh −M0

M1

)α

(38)

where logMmin, σlogM , α, logM1, and logM0 are free parameters controlling the shape of the

mean occupation functions. These parameters must be tuned separately for each magnitude

threshold and redshift sample. We further parameterize logM0 into Q0 using

logM0 = logMmin +Q0(logM1 − logMmin) (39)

which helps us ensure that logM0 always stays between logMmin and logM1 to preserve its

sensitivity to, and the stability of, our summary statistics.

Adding further flexibility into our model, we include assembly bias parameters Acen

and Asat to introduce a halo occupation dependence on the NFW concentration. These

parameters both range from [-1, 1], and allow for redistribution of the central and satellite

occupation, respectively, from low to high concentration halos for positive A, or vice versa.

See [50] for further details on the decorated HOD parameterization.

3.5.2 MCMC Fits

We use Markov-chain Monte Carlo (MCMC) to constrain the HOD model using each

galaxy sample. We make use of the emcee [42] implementation, in which several walkers

simultaneously sample a likelihood function throughout parameter space, and occasionally

trade locations to construct MCMC chains. Ignoring the normalization constant, the log-

likelihood is given by

lnL = −1

2
(x⃗model − x⃗data)

TΣ†(x⃗model − x⃗data) (40)
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where Σ is the covariance matrix from Equation 12 and Σ† is its Moore-Penrose pseudo-

inverse [88], which prevents the reduced dimensionality of our likelihood from affecting the

likelihood numerically. Loss in dimensionality occurs when we use the full CiC distribution

(but not when we reduce this information into CiC moments) due to some eigenvalues in

the covariance matrix equaling zero when there are at least 20 summary statistics, which

is our number of jackknife realizations. We use the implementation available in the logpdf

method of the multivariate normal class from SciPy [111].

In addition, we rescale the summary statistics such that their covariance matrix has a

diagonal of ones. Mathematically, this has no effect and is equivalent to an arbitrary change

of units. However, this circumvents machine precision errors where the pseudo-inverse will

delete the constraints of summary statistics with low orders of magnitude, like number

density.

We initialize our MCMC chains around the best-fit parameters of the corresponding

magnitude threshold sample from [112], with very slight variation between the MCMC walk-

ers. We let these chains run for 60,000 trial points (3,000 iterations × 20 walkers), and

conservatively remove a burn-in of 2,000 trial points to calculate our posteriors displayed

in Figures 23, 24, and 25, as well as the maximum-likelihood points and confidence regions

reported in Tables 6 and 7, respectively. Our relatively small number of trial points is ac-

ceptable thanks to our deterministic likelihood evaluations and our prior on logM0 that

confines the MCMC to a stable region of parameter space. The autocorrelation lengths of

our chains ended up ranging from 100-300. This is about a factor of two shorter than the

autocorrelation lengths we obtain using Monte Carlo CiC evaluations, and possibly orders

of magnitudes shorter than the result from Monte Carlo wp(rp) evaluations.

To quantify how well our maximum-likelihood models agree with the data, we calculate

χ2 along with the probability of measuring data with at least this value of χ2 by chance using

the chi-squared cumulative distribution function5. In Table 6, we report this probability and

translate it into the z-score of a Gaussian to quantify the “number of sigmas” of tension that

exists between our model and data.

5i.e., the Newman Score
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3.6 Results and Discussion

The measurements from the DESI One-Percent Survey already produce reasonably tight

constraints on the HOD. For each of the four threshold samples defined in Table 5, the cor-

responding best-fit HOD parameters are given in Table 6, and 1σ confidence intervals are

given in Table 7. We have also summarized these constraints as a function of Mr threshold

and redshift into easier-to-digest plots in Figure 27. In this figure, we show that as lumi-

nosity increases from Mr of −20.0 to −21.0, the characteristic halo mass for central galaxies

gradually increases from roughly 1012.0 to 1012.4 M⊙. We find a similar increasing trend for

the characteristic halo masses containing one (and two) satellite galaxies for each sample; the

inferred slope α of the ⟨Nsat⟩(Mhalo) relation does not evolve significantly compared to the

shown error bars. Finally, we show the parameters which trace assembly bias; these are very

significantly greater than zero for centrals in the lower two magnitude threshold samples,

while satellite assembly bias is consistent with zero throughout. With only one z = 0.25

sample, we find no significant signals of redshift evolution.

Given the current relatively small sample sizes, the tightness of our constraints can be

attributed to the power of combining information from wp and CiC. We find a 3σ detection

of assembly bias for central galaxies in the two lower luminosity bins. More precisely, the

strength of the evidence for central assembly bias in each sample is as follows:

• For our −20.0 and −20.5 samples, the posterior probability that Acen > 0 is 0.9987

and 0.995, respectively. Without CiC constraints, these probabilities are only 0.860 and

0.737.

• Positive assembly bias at Mr < −21.0 is favored significantly only in the z ∼ 0.25

sample. For it, we find a posterior probability for Acen > 0 of 0.948 (or 0.828 without

CiC constraints).

• There are very poor constraints on assembly bias at Mr < −21.0 in our z ∼ 0.15 sample

whether or not we include CiC in the sample.

The constraints we find on assembly bias are consistent with the findings from studies

based on SDSS data. Despite the smaller sample size currently available from DESI, our
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wp(rp) + CiC analysis produces much stronger constraints than characterizing SDSS cluster-

ing with wp(rp) alone (e.g., [124, 110]). In fact, we achieve very similar constraining power

to [112], even though we use the same set of summary statistics. This may imply that the

assembly bias signal is stronger at the higher redshifts probed by BGS. Additionally, the

purity of the DESI samples may be higher due to the high targeting completeness in the

1% survey, which allows us to avoid having to assign redshifts to untargeted galaxies based

upon the nearest neighbors in the sky.

While the HOD model can consistently produce good fits to wp and n simultaneously

(possibly to the point of overfitting), incorporating CiC measurements results in mismatches

between the model and data in some cases. Although introducing assembly bias parameters

has slightly reduced this tension, the Mr < −21.0 sample at z ∼ 0.15 still exhibits a tension

of nearly 2σ between our models and the data. This tension is reported in Table 6 and is

readily apparent in Figure 26 (though one must use caution when assessing the mismatch

by eye since the summary statistics can be strongly covariant).

Significant tension in only one of our four samples by no means rules out the HOD model

used, but it should incentivize us to consider what else the model might be missing. In the

coming years, the size of the DESI sample will grow by a factor of 100 compared to what

was used here, so we can expect that the constraints will tighten significantly and tensions

may grow. Our model is not sufficiently flexible to fit early data samples well; therefore, it

is plausible that these models could be ruled out convincingly with the full dataset. Future

studies should explore additional ways to make the HOD more flexible such that they can

produce better fits to the DESI data; we describe a few plausible extensions here, but by no

means exhaust the possibilities.

As one example, the HOD we have used in this work assumes that the stellar-to-halo-

mass relation has a log-normal scatter, but the UniverseMachine simulations [7] exhibit a

slight skew to this scatter in several tested samples. In principle, it is simple to test the

addition of one more parameter to allow a skew-log-normal scatter.

Another modification that may be justified is to relax the assumed isotropic NFW dis-

tribution of satellite galaxies. This is a common assumption, yet it has long been known

that the distribution of subhalos is anisotropic, due to the preferential accretion of mergers

74



along filaments [126]. Additionally, recent studies have found a significant difference in the

radial profile of the halo mass associated with subhalos from NFW [40, 75]. Such modifi-

cations would be more complex but will be particularly important as small-scale clustering

measurements improve since they are sensitive to the spatial distribution of satellites.

Additionally, we have only tested for assembly bias tied to halo concentration, and have

ignored other occupation correlations that may be based upon halo spin or age [27, 98].

Another possibility is that the occupation of satellites is correlated with the occupation of

the central in the same halo due to galactic conformity [11, 58]. Both of these possibilities

would likely produce similar statistical imprints. However, a primary question to investigate

is whether these alternate assumptions lead to a biased inference of HOD parameters such

as characteristic halo masses and assembly bias. If so, all of our results could be overly

confident6.

While CiC plays a crucial role in the HOD constraints obtained via our analysis, it is

also our computational bottleneck. However, we have significantly sped up this process

with galtab, particularly by removing the stochasticity of likelihood evaluations, which

greatly improves the MCMC convergence rate. Using a stochastic estimator, convergence

is especially problematic for the lowest-number-density, brightest-threshold samples, which

exhibit order-of-magnitude increases in the acceptance rates of their MCMC chains.

Depending on the computing resources available and the dimensionality of the analy-

sis, galtab may provide even more drastic speedups. Due to the implementation in JAX,

the expensive steps are automatically executed on a GPU when available. Additionally,

our framework allows the predictions to be differentiable with respect to HOD parameters

(assuming the occupation model is compatible with JAX arrays, for which those available

in halotools require slight modifications). In principle, this allows for the use of alterna-

tive MCMC methods with improved scalability to high-dimensional or strongly covariant

posterior estimation, such as Hamiltonian Monte Carlo [82].

Our development of the galtab package provides a useful tool for further analyses of

the galaxy-halo connection that may require differentiable predictions. By combining these

new tools with upcoming enlarged samples from DESI, we anticipate that coming studies

6i.e., Zentner Points™
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will soon shift focus from mere detections of assembly bias to studying its implications for

galaxy formation in much finer detail.

3.7 Galtab Appendix - SHAP Feature Importance Calculations

As briefly discussed in Section 3.3 and plotted in Figure 20, we have roughly quantified

the importance of each summary statistic in inferring the HOD model parameters by testing

how influential each quantity for machine learning-based predictions. We performed this test

using an artificial dataset based upon uniformly sampling 1000 sets of HOD parameters via

Latin Hypercube Sampling over the projected one-dimensional 1σ confidence interval of the

fiducial fits for the Mr < −20.5 threshold sample of [112].

For each of the 1000 sets of HOD parameters, we predicted the values of all of the

summary statistics via the methods described in Section 3.4.6. We then trained a scikit-

learn [86] random forest regression model to perform the inverse mapping (i.e., predicting

HOD parameters from the values of the summary statistics).

We then calculate SHAP feature importance values for each feature (i.e., each quantity

used as an input to the random forest). SHAP values are explained in detail in [72]. In brief,

they attempt to quantify the amount of “impact” each feature has on model predictions.

To be explicit, a large positive SHAP value corresponds to a feature for which increases in

the feature value cause large increases in model predictions, and vice versa. This allows us

to analyze and distinguish the effects of positive or negative changes in each feature on the

model predictions that result.

We show the full beeswarm distribution of SHAP values for each HOD parameter in

Figure 28. We assign importance values shown in Figure 20 by taking the mean absolute

values of these distributions. Features that have large SHAP importances will correspond to

those quantities which are most useful for predicting a given HOD parameter.
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Figure 22: Hyperparameter tuning of galtab to achieve sufficient accuracy of CiC moments.

The left panels show the tuning of theWmax parameter, which is translated to a CPU runtime

in the panels on the right side of the figure, with lower values of Wmax requiring longer times,

but achieving higher accuracy. Line colors correspond to the denoted value of Qmin, the dark

grey bands correspond to a standard deviation due to tabulation stochasticity, horizontal

dashed lines correspond to truth values from halotools, and the light grey band corresponds

to a halotools standard deviation. The vertical dashed line in the left panels corresponds to

our chosen value of Wmax = 0.05, which intentionally yields a similar runtime as halotools:

approximately one CPU-second, as specified by the vertical dashed line in the right panels.
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Table 6: Maximum-likelihood HOD parameters for each sample. For each set of best-fit

parameters, the goodness of fit is given by the Akaike Information Criterion (AIC), the chi-

squared (χ2), the degrees of freedom (DoF), the p value corresponding to the probability

of measuring ≥ χ2 by chance, and the corresponding z score measure of tension. The fits

without CiC, and without assembly bias are included for comparison.

Threshold logMmin σlog M α logM1 logM0 Acen Asat AIC χ2 DoF p value Tension

-20.0 12.227 0.990 0.681 12.739 12.339 0.966 -0.156 -292.68 12.15 19 0.879 0.15σ

(no CiC) 12.114 0.884 0.858 12.946 12.430 0.540 -0.795 49.66 10.20 13 0.678 0.42σ

(no Abias) 11.968 0.481 0.778 12.763 12.459 -284.95 23.88 19 0.201 1.28σ

-20.5 12.285 0.527 0.765 13.140 12.657 0.911 -0.223 -214.70 20.51 19 0.364 0.91σ

(no CiC) 12.923 1.387 0.566 12.935 12.930 0.164 -0.317 52.74 7.70 13 0.863 0.17σ

(no Abias) 12.244 0.381 0.661 13.020 12.912 -208.36 30.85 19 0.042 2.03σ

-21.0 12.467 0.211 0.475 13.323 13.068 0.853 0.050 -233.42 54.76 42 0.090 1.70σ

(no CiC) 12.411 0.063 0.819 13.618 12.643 0.885 -0.249 58.89 3.88 13 0.992 0.01σ

(no Abias) 12.453 0.045 0.409 13.226 13.116 -234.72 57.46 42 0.056 1.91σ

-21.0 (high z) 12.388 0.271 1.005 13.565 12.813 0.817 -0.072 -141.88 25.89 19 0.133 1.50σ

(no CiC) 12.415 0.398 0.758 13.475 12.836 0.890 -0.549 57.89 17.13 13 0.193 1.30σ

(no Abias) 12.360 0.059 0.852 13.431 13.099 -136.33 35.43 19 0.012 2.50σ

Table 7: Confidence intervals of the HOD parameters from the 16th, 50th, and 84th per-

centiles of the marginalized posteriors. The confidence intervals without CiC constraints,

and without assembly bias, are included for comparison.

Threshold logMmin σlogM α logM1 logM0 Acen Asat

-20.0 12.026+0.087
−0.069 0.587+0.159

−0.136 0.748+0.059
−0.065 12.833+0.073

−0.094 12.315+0.163
−0.145 0.848+0.115

−0.210 −0.028+0.211
−0.226

(no CiC) 12.151+1.047
−0.274 0.845+1.701

−0.635 0.784+0.125
−0.149 12.833+0.177

−0.287 12.566+0.156
−0.329 0.613+0.288

−0.556 −0.260+0.502
−0.423

(no Abias) 11.951+0.080
−0.063 0.454+0.155

−0.164 0.744+0.063
−0.057 12.759+0.088

−0.084 12.427+0.127
−0.185

-20.5 12.252+0.074
−0.056 0.471+0.126

−0.122 0.707+0.065
−0.065 13.102+0.088

−0.104 12.728+0.121
−0.142 0.862+0.102

−0.205 −0.113+0.217
−0.222

(no CiC) 12.518+1.300
−0.367 0.916+1.572

−0.715 0.681+0.182
−0.257 13.094+0.224

−0.500 12.886+0.152
−0.275 0.462+0.412

−0.771 −0.072+0.607
−0.576

(no Abias) 12.213+0.074
−0.052 0.389+0.150

−0.172 0.691+0.055
−0.043 13.017+0.080

−0.065 12.837+0.067
−0.113

-21.0 12.450+0.015
−0.012 0.083+0.108

−0.057 0.423+0.108
−0.071 13.292+0.140

−0.100 13.091+0.046
−0.098 0.229+0.533

−0.758 0.047+0.154
−0.228

(no CiC) 12.464+0.125
−0.038 0.272+0.293

−0.191 0.719+0.165
−0.232 13.569+0.112

−0.206 12.871+0.236
−0.253 0.333+0.501

−0.779 −0.012+0.562
−0.522

(no Abias) 12.455+0.022
−0.011 0.098+0.160

−0.077 0.414+0.091
−0.097 13.291+0.119

−0.090 13.080+0.048
−0.088

-21.0 (high z) 12.365+0.036
−0.027 0.222+0.126

−0.144 0.895+0.089
−0.090 13.494+0.095

−0.099 12.944+0.133
−0.173 0.759+0.185

−0.380 −0.200+0.200
−0.214

(no CiC) 12.356+0.048
−0.024 0.178+0.175

−0.120 0.959+0.078
−0.118 13.563+0.052

−0.097 12.597+0.217
−0.154 0.640+0.276

−0.683 −0.218+0.252
−0.270

(no Abias) 12.366+0.035
−0.025 0.244+0.118

−0.149 0.929+0.067
−0.064 13.479+0.078

−0.073 12.964+0.113
−0.143
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Figure 23: Posterior distribution of the HOD parameters of the -20.5 threshold sample from

MCMC sampling. The 68% and 95% confidence regions are displayed by contour lines for

each two-dimensional projection, and the 68% confidence intervals are marked with dashed

vertical lines for each one-dimensional projection.
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Figure 24: Posterior distribution of the assembly bias parameters of the -20.5 threshold

sample from MCMC sampling. Overplotted in blue is the result we obtain without including

any constraints from CiC, yielding very little information about assembly bias.
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Figure 25: Posterior distribution of the assembly bias parameters of the -20.5 threshold

sample from MCMC sampling. Overplotted in orange is the result we obtain from calculating

CiC from halotools instead of galtab for the same number of MCMC iterations. Due to

the stochasticity of the halotools predictions, its acceptance rate was three times lower in

this case, causing much slower posterior convergence.
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Figure 26: Measurements and our maximum-likelihood predictions of number density (left

panels), the projected correlation function (center panels), and the CiC distribution (right

panels). The 1σ confidence intervals from the measurements of a given quantity are rep-

resented by shaded regions of the color corresponding to the sample, while the maximum-

likelihood predictions are represented by solid lines following the same color scheme. The

parameters of the best-fit models and their tensions versus the data are reported in Table 6.
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Figure 27: Variation of HOD parameters with luminosity and redshift. Median values of the

one-dimensional marginalized posteriors for the characteristic masses, logMmin (top panel)

and logM1 (middle panel) are plotted, as well as the assembly bias parameters Acen and Asat

(bottom panel). The capped error bars on these points span the 16th to the 84th percentile

of the posterior for a given parameter. Median values derived from our posteriors of other

HOD parameters σlogM (top panel) and α (middle panel) are labeled; σlogM characterizes

the spread in the Mr-Mhalo relation, and log(2)/α characterizes the log-difference between

the halo masses corresponding to ⟨Nsat⟩ ≈ 1 and ⟨Nsat⟩ ≈ 2. We apply small x-offsets to

easily distinguish the points, but all Mr thresholds are exactly −20.0, −20.5, or −21.0.
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Figure 28: The impact of each of our summary statistics on HOD inference, based upon

SHAP feature importances. The upper panel of each sub-figure shows beeswarms of the

SHAP values for each feature’s impact on predicting the given HOD parameter. Each panel

shows the six most important quantities in order of importance, and the panels are organized

in the same way those in Figure 20. See Figure 20 for a more condensed version of this

information which focuses on the mean absolute SHAP value as an importance metric.
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4.0 Conclusions

In this thesis, I have deepened our understanding of the galaxy-halo connection (GHC)

by integrating a new dataset, DESI, and enabled the integration of future datasets by de-

veloping new methodologies. I have shed light on the role of assembly bias in the statistical

relationship between galaxies and their host dark matter halos.

In Chapter 2, I focused on the development of the CLIMBER tool, which allows for

the generation of mock galaxy catalogs based on the UniverseMachine, a cutting-edge GHC

model. Utilizing CLIMBER, I explored the potential of upcoming surveys, PFS, WAVES,

and MOONS, to further deepen our understanding of galaxy clustering and GHC constraints

at intermediate redshifts. These mock catalogs will help pave the wave for future observa-

tional program proposals calculate their expected scientific outputs. It will also aid in in-

terpreting observational results accurately be providing a tool for science validation through

recovering known model parameters. Finally, I showed that the GHC constraints from PFS

and MOONS surveys will be limited by cosmic variance, and future extensions should focus

on increasing their respective sky areas. See Section 2.6 for a more detailed discussion.

In Chapter 3, I introduced the galtab pretabulation code, a powerful tool that drasti-

cally improves the efficiency of HOD inference using counts-in-cells statistics — primarily

implemented for counts-in-cylinders. Applying galtab to early DESI data, I have found a

3σ detection of assembly bias, revealing a connection between galaxy luminosity and the

assembly history of their host halo. This finding represents a significant step forward in

our understanding of the physical processes governing galaxy formation and highlights the

potential of galtab in future HOD analyses. See Section 3.6 for a more detailed discussion.

Through these contributions, I have advanced our understanding of the GHC and its

implications for galaxy formation and evolution. However, I have also unraveled some new

questions that require future investigations. In Chapter 3, I have identified a modest data-

model mismatch in the HOD analysis. I have also suggested some areas of the HOD which

could be extended to improve its realism with a relatively small degree-of-freedom increase.

For example, such extensions could allow for skew to the assumed log-normal scatter in the
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stellar-to-halo-mass relation or non-isotropic variations to the assumed NFW distribution of

satellites.

Given the unprecedented amount of spectroscopic data coming in the coming decade,

future investigations of the GHC will be significantly aided with faster and fully differentiable

predictions of galaxy spectra from star-formation histories according to assembly correlation

GHC prescriptions. Therefore, I plan to begin contributing to the ongoing development

process of the diffmah [48], diffstar [4], and dsps [47] frameworks. This will be my primary

responsibility starting this fall when I begin my first post-doctoral position at Argonne

National Laboratory. I am looking forward to embarking on this new stage of my research

career while continuing to push forward many of the goals of my thesis.
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[33] Nataĺı S. M. de Santi, Helen Shao, Francisco Villaescusa-Navarro, L. Raul Abramo,
Romain Teyssier, Pablo Villanueva-Domingo, Yueying Ni, Daniel Anglés-Alcázar,
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[46] F. K. Hansen, A. J. Banday, and K. M. Górski. Testing the cosmological principle of
isotropy: local power-spectrum estimates of the WMAP data. MNRAS, 354(3):641–
665, November 2004.

[47] Andrew P. Hearin, Jonás Chaves-Montero, Alex Alarcon, Matthew R. Becker,
and Andrew Benson. DSPS: Differentiable stellar population synthesis. MNRAS,
521(2):1741–1756, May 2023.

[48] Andrew P. Hearin, Jonás Chaves-Montero, Mathew R. Becker, and Alex Alarcon. A
Differentiable Model of the Assembly of Individual and Populations of Dark Matter
Halos. The Open Journal of Astrophysics, 4(1):7, July 2021.

[49] Andrew P. Hearin and Douglas F. Watson. The dark side of galaxy colour. MNRAS,
435(2):1313–1324, October 2013.

[50] Andrew P. Hearin, Andrew R. Zentner, Frank C. van den Bosch, Duncan Campbell,
and Erik Tollerud. Introducing decorated HODs: modelling assembly bias in the
galaxy-halo connection. MNRAS, 460(3):2552–2570, August 2016.

[51] Philip F. Hopkins, Andrew Wetzel, Dušan Kereš, Claude-André Faucher-Giguère,
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Philipp Lang, Mark T. Sargent, Mladen Novak, Brent Groves, Vernesa Smolčić, Gio-
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Górski, S. Gratton, A. Gruppuso, J. E. Gudmundsson, J. Hamann, W. Handley,
F. K. Hansen, D. Herranz, S. R. Hildebrandt, E. Hivon, Z. Huang, A. H. Jaffe,
W. C. Jones, A. Karakci, E. Keihänen, R. Keskitalo, K. Kiiveri, J. Kim, T. S. Kisner,
L. Knox, N. Krachmalnicoff, M. Kunz, H. Kurki-Suonio, G. Lagache, J. M. Lamarre,
A. Lasenby, M. Lattanzi, C. R. Lawrence, M. Le Jeune, P. Lemos, J. Lesgourgues,
F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Lilley, V. Lindholm, M. López-
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