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Type Ia supernovae are bright transient events with similar peak brightness. Once cali-

brated and standardized, type Ia supernova samples become powerful cosmological probes,

especially for measuring dark energy and the universe’s accelerating expansion. Rising ten-

sions between independent measurements in an era of precision cosmology underscores the

importance of accounting for systematic errors in analyses. This is particularly true for

type Ia supernova cosmology, where observations are fit to empirical models in place of elu-

sive theoretical alternatives. Additional concerning systematics include those arising from

redshift dependence of the underlying supernova population.

This dissertation explores two topics in type Ia supernova systematics. The established

type Ia supernova host galaxy bias, where intrinsically brighter type Ia supernovae prefer

less massive, younger hosts, alongside its potential dependence on observation methods and

fitting techniques, is studied in chapter two. Various host galaxy stellar mass and specific

star formation rates samples are estimated from photometry or spectroscopy using different

galaxy property fitting software, from which different estimates of the host bias are calculated

and then compared. No evidence is found that the choice in method or technique influences

the host bias, let alone being the source of it.

The dissertation’s third chapter introduces a new physics-agnostic empirical model which

provides more detailed exploration of phase-independent flux variation than that afforded

by ubiquitous comparable models, such as SALT2. It is demonstrated that there is sufficient

signal-to-noise in available data sets to constrain models beyond the commonly used two

parameter empirical model. The results also indicate that intrinsic flux variation can be

misidentified as dust-like, highlighting the difficulty estimated dust properties of type Ia

supernovae. For the second project, more work is needed to better separate dust-like flux

variation from intrinsic variability, and to analyze the model’s standardization performance
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for cosmology applications.

Both topics studied advance our understanding of supernova cosmology systematics while

stressing nuance in exploring sources of and solutions to these errors.
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mvr captures vari-

ation not readily describable as dust-like. . . . . . . . . . . . . . . . . 84

Figure 23:The top plot presents phase-independent chromatic flux variation tem-

plates L1
′ and L2

′. L1
′ has a recovered total-to-selective extinction of

Rint
V = 2.4. The bottom plot presents a decomposition of L2

′ into its par-

allel and perpendicular components with respect to the CCM89 plane.

L2
′ clearly captures some dust-like variability, despite being dominated

by intrinsic modes. Although the low-resolution wavelength binning pre-

vents quantification of spectral features, the most impressive L2
′ vari-

ability appears in the Ca II H&K regime. . . . . . . . . . . . . . . . . 86

xvi



Figure 24:This figure demonstrates a ±0.2 mag c2 variation (blue for CCM89-basis

c′2, maroon for cMVR
2 ) of L2

′ overlaid on SALT2’s mean template t = 0

phase spectrum (dashed black line). The spectrum is binned via syn-

thetic photometry with top hat filters, presented as black diamonds.

Flux units are normalized by synthetic photometry wavelength 4048 Å
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1.0 Introduction

1.1 Cosmology and Dark Energy

Cosmology is the study of the universe and its evolution. Although every society has

developed and celebrated unique and varied explanations of the universe since well before the

written word, it is only relatively recent that a rigorous scientific framework was harnessed

to quantify answers to some timeless questions: how old is the universe, where did it come

from, and how will it end?

The first half of the twentieth century saw two important scientific developments leading

to the genesis of modern cosmology. The first was empirical, beginning with definitive

observational evidence of the universe’s expansion, as measured by Edwin Hubble in 1929

and initially proposed by Georges Lemâıtre in 1927 [76, 103]. Observed recessional velocities

of galaxies is independent of viewing angle (more succinctly, it is isotropic), with recessional

velocity following a linear relation with respect to measured distance. This relationship is

the Hubble-Lemâıtre law (commonly referred to as Hubble’s Law):

v = H0d (1)

whereH0 is the Hubble constant, a cosmological parameter quantifying the present expansion

rate of the universe usually given in units of km s−1 Mpc−1.

The Hubble constant, being independent of viewing angle, alongside the Copernican prin-

ciple, gives rise to two cosmological principles: that at sufficiently large distance scales, the

universe is effectively isotropic and homogeneous. These properties, alongside an additional

constraint of path connectedness, are encapsulated within an expanding spacetime geom-

etry called the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric [57]. A spacetime

interval for the FLRW metric is

−dτ 2 = −c2dt2 + a(t)2
[
dr2 + Sk(r)

2dΩ
]

(2)
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where dΩ = dθ2 + sin2θdϕ2 and Sk(r) is a function of r and Gaussian curvature k:

Sk(r) =



√
k
−1

sin(r
√
k) if k > 0

r if k = 0√
|k|−1

sinh(r
√
k) if k < 0.

(3)

Cosmic Microwave Background observations, alongside baryon acoustic oscillations mea-

surements from large scale structure surveys, place exceptionally strong constraints on the

universe’s spatial curvature, finding k = 0 at 0.2% precision [127]. For simplicity, only flat

FLRW geometries are considered in further detail (i.e. k = 0 and Sk(r) = r). a(t) is the scale

factor, which relates the physical distance between objects given the coordinate distance on

an FLWR manifold at time t. This is readily clear when considering a constant t (dt = 0),

which reduces Equation 2 to an isotropic and homogeneous spatial geometry.

The second key development was Albert Einstein’s general theory of relativity in 1915,

which relates the curvature of spacetime to the mass-energy distribution within, providing

a necessary framework to formally describe the time evolution of the universe’s underlying

geometry [50]. Specifically, general relativity affords a model of a(t)’s time evolution as func-

tions of the universe’s constituent energy and mass densities such as bayronic matter, dark

matter, photons, neutrinos, etc. Applying the Einstein field equations to the FLRW metric

produce the Friedmann equations [57], which equate the time evolution of a(t) to pressure

p and density ρ, alongside an integration constant Λ, referred to here as the cosmological

constant: ( ȧ
a

)2

= H2

=
8πGρ

3
+

Λc2

3

(4)

and an acceleration equation

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
. (5)

H(t) is the Hubble parameter and is a measure of the universe’s expansion rate at time t.

Here, the Hubble constant H0 is interpreted as the Hubble parameter measured at present.

2



Both parts of the right side of equation 5 are worth interpreting. The linear combination

of pressure and density leads to a decrease in the scale factor’s acceleration, which is what

one would expect from gravity: mass and energy should slow expansion due to the attractive

nature of gravity. This is in stark contrast to cosmological constant, which instead allows

for an effective negative pressure and providing a possible energy density that can not only

maintain expansion, but even accelerate it. The cosmological constant is an example dark

energy model, models of energy densities that exerts negative pressure. In this case, a

cosmological constant results in dark energy density that is constant with respect to time.

Other models for dark energy have been proposed but will not be considered here — see

Weinberg et al. 2013 for more about alternative dark energy models or modifications to

general relativity to similarly account for an accelerating universe [167].

Equation 4 is commonly rewritten in terms of density parameters Ωi, where each density

component ρi is divided by a critical density ρc = 8πG/3H2. Accounting for each density

component’s dependence on a(t), Equation 4 can be rewritten as

H2 = H2
0 [ΩMa−3 + ΩΛ] (6)

where indicesM and Λ correspond to the density parameters for matter and the cosmological

constant as measured at present, respectively. Relativistic species, such as photons and

neutrinos, have negligible contributions to this expression during the epochs probed by SN Ia

observations and are omitted.

Equation 6’s empirical utility is limited by its explicit use of a(t), a quantity not directly

measurable. Fortunately, the relationship between cosmological redshift (z, the redshift

due to the expansion of the universe) and a(t) affords an easy substitution. Defining the

present scale factor a0 = 1, this relationship is a(z) = 1/(1 + z), with z is defined as

(λobserved−λemitted)/λemitted. Therefore, the line of sight coordinate distance d
mod
c (z) between

an Earth-based observer and an object with measured redshift z can be solved by integrating

a null geodesic line element from Equation 6 after an appropriate transformation from a to

z:

dmod
c (z) =

c

H0

∫ z

0

dz

[ΩM(1 + z)3 + ΩΛ]1/2
. (7)
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The time elapsed between photon emission and observation can also be directly inferred

from its observed redshift via an integration similar to Equation 7. Similarly, the current

age of the universe can be calculated from said equation, with best estimates currently being

around 13.7 billion years [127, 1]. As such, there are explicit one-to-one relationships between

photon travel time, photon travel distance, observed redshift, and the scale factor.

1.2 Constraining Cosmologies From Observations

The explicit dependence of coordinate distance on key cosmological parameters (namely,

H0 and energy densities ΩM and ΩΛ) means observations from Earth can directly constrain

an FLRW-derived cosmological model. One such approach is to compared predicted physical

distances derived from dmod
c (z) from the observed flux of an object with known luminosity

and redshift z. See Hogg 1999 for a pedagogical summary of this formalism, including

generalizations of the following derivations for k ̸= 0 cosmologies [72].

The observed luminosity distance dL is

F =
L

4πd2L
(8)

where L is the absolute luminosity (the luminosity that would be measured by an observed

at 10 pc) and F is the observed flux. For a k = 0 cosmology, the predicted luminosity

dmod
L (z) at redshift z is

dmod
L (z) = (1 + z)dmod

c (z). (9)

In the limit as z → 0, dmod
L (z) ≈ cz/H0, meaning Hubble’s law is recovered in this low redshift

limit since v/c ≈ z in this regime. Note that at low redshifts it is effectively impossible to

constrain energy densities ΩM and ΩΛ — see Figure 1. Assuming sufficiently large redshifts

(i.e. z > 0.2), comparisons between the observed luminosity distance dL and the predicted

luminosity distance dmod
L (z) can directly constrain cosmological models. With a sufficiently

bright class of objects with known or derivable absolute luminosity, we should be able to

estimate cosmological parameters.
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Figure 1: This plot compares luminosity distance predicted from differing flat cosmologies

k = 0 for a fixed H0 = 70 km s−1 Mpc−1, with 0 ≤ ΩM ≤ 1. Labeled is the current

best estimates: ΩM = 0.3 and ΩΛ = 0.7. At low redshifts (z < 0.2) it is very difficult to

differentiate between different cosmologies — that SNe Ia are visible out to z ≈ 2 makes

clear their utility for observational cosmology.
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The luminosity distance dmod
L (z) is almost always presented as a distance modulus, or the

apparent magnitude for an observer at 10 pc. For an object with known intrinsic brightness

here indexed by i, the predicted and observed distance moduli are respectively defined as:

µmod(zi) = 5 log10

[
dmod
L (zi)

10

]
(10)

µi = mi −M = 5 log10(dL,i)− 5 (11)

m is the observed apparent magnitude and M is the object’s absolute magnitude (or appar-

ent magnitude at 10 pc). Astrophysical phenomena with known or estimable M that are

sufficiently similar for all population members are called standard candles. Such astronomi-

cal objects may vary with time (they might be transient or variable events). We care most

about these objects’ peak brightness.

Obviously, standard candles have immediate utility in constraining cosmologies. For

distance measurements made with these objects, a quantity of interest is the Hubble residual,

which is the difference between observed and predicted distance moduli:

∆µi = µi − µmod(zi). (12)

With a sample of observed standard candles, cosmological parameters can therefore be in-

ferred by minimizing Hubble residual scatter.

A class of astrophysical objects must satisfy additional important properties before be-

ing used as a standard candle. First, their underlying population properties should be

relatively constant with redshift, or any redshift-depend change in properties must be well

understood. As a simple example, consider a hypothetical standard candle that becomes

intrinsically brighter as the universe expands, and that this is not accounted for. The result

will be cosmological parameter estimates will be systematically biased by erroneously infer-

ring shorter distances due to the redshift dependence of the underlying object’s population

properties.

Standard candles also need to be sufficiently bright. Bright objects are more likely to be

observed and are visible at greater distances. Sufficiently bright means that the objects exist

within the Hubble flow, or at a sufficient distance that cosmic expansion dominates the ob-

served redshift. This corresponds to an observed redshift of z > 0.03, or a recessional velocity
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of at least ≈ 9000 km s−1. Peculiar redshifts, or redshift arising from local gravitational inter-

action, can easily dominate the observed redshift for z < 0.03. For H0 = 70 km s−1 Mpc−1,

this redshift corresponds to a distance of 128 Mpc. Comparing predicted dLz to measured dL

without first correcting for peculiar motion will increase Hubble residual scatter — peculiar

velocity can be both positive and negative relative to an Earth-based observer. For redshifts

z < 0.03, peculiar velocity dominates the observed motion. Naturally, having a standard

candles bright enough to be readily observed beyond z = 0.03 is advantageous since it re-

duces the impact of peculiar motion. See Davis et al. 2011 for a summary peculiar velocity

error treatment for standard candles in cosmology [46].

Constraining cosmological parameters from data is ultimately an exercise in regression,

so in general the more data we have, the more precise our estimates. This is particularly true

since observational error and intrinsic brightness dispersion decrease the statistical weight of

individual standard candle observations. Naturally, for a fixed intrinsic luminosity, a more

frequent standard candle is preferred over a less frequent one, since this affords more frequent

observed events. Here again, brighter standard candles probing higher redshifts further

improve regression by extending data set’s ‘lever arm’. Observations of standard candles with

discernible peak luminosity dispersion will necessarily be biased towards brighter objects at

higher redshifts due to observational limitations here on Earth: in other words, we will

preferentially observe brighter objects when at the limit of our detector’s sensitivity. This is

called the Malmquist Bias and must be corrected for to prevent any subsequent systematic

error [105].

There is no clear cut requirement over how ‘standard’ a standard candle must be. In

principle, a more frequent hypothetical standard candle with a larger observed sample (say,

N ∼ 103) that has an intrinsic brightness dispersion of ∼ 1 mag may be preferable to another

hypothetical type with an dispersion closer to ∼ 0.1 mag, but with only has a dozen such

observed objects. Ignoring systematic errors, statistical constraining power goes σ/
√
N for

some intrinsic dispersion σ and sample size N . Obviously, the larger the population size and

the tighter the population’s luminosity dispersion, the more constraining power the standard

candle has. Systematic errors complicate this otherwise straightforward calculation.
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1.3 Distance Indicators: Type Ia Supernovae

Supernovae are the cataclysmic end of certain stars or stellar remnants. A star’s evolution

is largely determined by its starting mass: for those with M < 8M⊙ (where M⊙ is one

solar mass), the terminal phase is a degenerate stellar core called a white dwarf, while

for M > 8M⊙ the result is a core-collapse supernovae. White dwarf stars, under certain

conditions, also lead to a supernovae.

Supernovae are intensely energetic events being capable of outshining their entire host

galaxy for weeks after exploding. This brightness is key to their utility: we can observe

these transient events at immense distances, distances sufficient to constrain fundamental

cosmological parameters. These derived luminosity distances from line-of-sight observations

provide exceptional constraining power on ΩΛ by directly probing how the universe has

expanded.

For historic reasons, supernovae are classified by spectral line features, or the lack thereof:

type I supernovae, which lack hydrogen lines, and type II supernovae, which feature hydrogen

lines [114]. All Type II supernovae are core collapse supernovae. If a type I supernova features

distinct silicon features, then it is labeled a type Ia supernova — these supernovae are

thermonuclear explosions of white dwarf progenitors [51]. Other type I supernova subclasses

lacking silicon exist and instead result from stellar core collapse. For brevity throughout,

type Ia supernova will be shortened to SN Ia (SNe Ia for plural).

Much of the following discussion summarizing SNe Ia research is from the Maoz et al.

2014 review [111]. SNe Ia are believed to result from the thermonuclear combustion of white

dwarfs due to binary system interactions [73]. This is fundamentally different than other

supernovae types, which instead result from the core collapse of massive stars incapable

of further exothermic fusion. Unique among supernovae are that SNe Ia occur in both

young and old stellar populations — indeed, SNe Ia are among the most numerous of all

supernova types. They also exhibit a remarkable homogeneity in their spectral evolution

and peak brightness. This peak brightness is particularly high, even compared to most other

supernovae, averaging at about 1043 erg s−1 near maximum brightness. About 85% of the

explosion energy is deposited between rest frame U and I band wavelengths (between 3600
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and 8000 Å), which makes SNe Ia easily observable from ground-based observatories.

Binary systems that include carbon/oxygen white dwarf stars are excellent candidate

SN Ia progenitor systems. The degenerate equation of state governing a white dwarf means

the electron-degenerate gas has an effectively unchanging volume or pressure with response

to temperature change. This means that if a runaway nuclear reaction starts on an otherwise

stable white dwarf — a reaction which is strongly dependent upon temperature — the result

will be the rapid and efficient nuclear combustion of almost the entire white dwarf. This

provides sufficient energetics to account for the observed ∼ 104 km s−1 feature broadening

in spectra, an artifact of an expanding cloud of radioactive debris and ash left over from

the explosion. It also explains the apparent lack of hydrogen and helium in SN Ia spectra,

which are present in nearly all other stellar systems. A massive production of radioactive

material then heats the expanding ejecta born from the explosion, resulting in an increase

in observed brightness until it peaks approximately two or three weeks after explosion1.

56Ni, with a half-life of 9 days, decays into 56Co, which has a half-life of 114 days, which

finally decays into stable 56Fe [7]; this decay channel naturally explains the characteristic

‘dog leg’ in SN Ia light curves about one week post B-band maximum. White dwarf stars

have a theoretical maximum Chandrasekhar mass Mlimit = 1.44M⊙, which if exceeded could

lead to a cataclysmic thermonuclear event. Such a limit purports a natural explanation for

why SNe Ia have similar peak brightness. These transients remain readily visible for many

months, with the expanding, opaque ejecta cloud being energized by the aforementioned

radioactive decay.

This relatively large time window for observation, their observability in wavelengths

transparent to Earth’s atmosphere, relatively consistent peak brightness, and sufficiently

high frequency seem to make SNe Ia a prime choice to measure cosmic distances. With an

accurate model capturing an SN Ia’s spectral evolution, observations could be fit to photo-

metric/spectroscopic time series (also called light curves) from which derive peak luminosity

can be inferred. With this peak luminosity information, we could then constrain cosmological

parameters from using a suitably large number of observed events.

This ideal portrayal is incomplete. As summarized in Maoz et al. and further in

1This exact time of peak brightness is wavelength dependent.
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Soker 2019 [156], theoretical modeling for SNe Ia is incomplete. For example, how a white

dwarf star is destabilized leading to a runaway thermonuclear explosion is not understood.

There are two proposed progenitor scenarios, or channels, that attempt to explain this desta-

bilization. Single degenerate models propose a binary star system where a degenerate star

accretes material from a non-degenerate companion until the the Chandrasekhar mass is

exceeded, which, under certain conditions, then results in an SN Ia [169]. Double degen-

erate models instead propose accretion of matter from within an inspiraling white dwarf

binary system, with one binary dwarf eventually exceeding the Chandrasekhar limit, or

both merging with catastrophic consequences [78]. Apart from many outstanding theoreti-

cal uncertainties in both proposed scenario, neither are able to actually replicate observed

SN Ia spectral evolution. Similarly, proposed detonation or deflagration models ostensi-

bly sourced by the aforementioned progenitor channels fail to produce chemical abundances

within an expanding ejecta that match observations [170]. This all has been complicated

further by observational evidence supporting notable variation in SN Ia ejecta mass as de-

rived from bolometric luminosity light curves, demonstrating that there are significant rates

of non-Chandrasekhar mass progenitors in nature [148].

From the perspective of observational astronomers, SNe Ia do not form a homogeneous

population. Despite their similar peak brightness, there are discernible degrees of variation

in color, light curve duration (also called stretch or width), and spectral feature properties

such as equivalent width line velocity. That there appears to be spectral SN Ia subtypes calls

into question the supposed physical homogeneity of SN Ia [166, 21, 17] and at present, no

theoretical model can account for these variations or subtypes, let alone average population

behavior. Intrinsic SN Ia peak brightness dispersion is ∼ 1 mag in rest-frame B-band

brightness, the wavelength range where they are the brightest [22, 152]. Such dispersion

makes it difficult to constrain cosmologies without a very large sample size, a size not afforded

by past and current observational resources. Some mechanisms, such as variable progenitor

metallicity influencing 56Ni production [170], or temperature dependence driving Fe line

blanketing [85], provide some meaningful insight into the underlying physics of SNe Ia, but

a complete, cohesive theoretical framework remains elusive.

During the early 1990s, a growing pool of evidence for SN Ia variety and subtypes nearly
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derailed SNe Ia’s usage in observational cosmologies as standard candles. Fortunately, in

exploring this diversity, significant empirical relationships between SN Ia brightness and

other observables were identified [22]. Importantly, these relationships identified correlations

between peak brightness with other observables. Because these other observables were mea-

sured or inferred independently of peak brightness measurements, these relationships could

be exploited to correct for intrinsic brightness dispersion in a process called standardization.

1.3.1 Type Ia Supernova Standardization and Dark Energy

It was the seminal Branch letter in 1993 that confirmed without doubt that peak lumi-

nosity correlated both with light curve duration (width or stretch) and with B-band peak

B−V color [22]. These relations will be referred to throughout this dissertation as the width-

luminosity relationship (WLR) and color-luminosity relationship (CLR), respectively. SN Ia

samples standardized via the WLR and CLR then provided convincing evidence of a uni-

verse undergoing accelerating expansion at the end of the millennia and establishing SNe Ia’s

exceptional utility as distance measures for modern observational cosmology [123, 131].

The first two decades of the twenty-first century have seen SN Ia cosmology [16, 25],

baryon acoustic oscillations inferred from large scale structure surveys [9], spatial correlations

from weak lensing [77, 109], galaxy cluster abundance constraints [13], and CMB observations

[74, 127] all establish ΛCDM2 as the leading cosmological model of the universe, with dark

energy in the form of the cosmological constant currently dominating the universe’s energy

budget [16, 127, 1].

SNe Ia observations are first fit to a model quantifying light curve properties such as

peak brightness, stretch, and color at maximum before the sample is standardized. As men-

tioned, empirical models, such as the popular SALT23 model, are used in place of theoretical

models [65]. A standardization model is then selected — here the ubiquitous linear Tripp

standardization model [161]. The Tripp model for SALT2 (with per-SN parameters x1 and

2CDM refers to cold dark matter, a nonrelativistic dark matter model that weakly interacts with baryonic
matter [121] Current observations favor CDM for its ability to explain hierarchical structure formation in
the universe.

3SALT2 x1 and c capture stretch and (B − V )max − ⟨(B − V )max⟩ variation in the SN Ia population,
respectively. It has been used in every major SN Ia cosmology analysis since 2014 and is, at the time of
writing, the de facto standard in the field.
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c) defines the standardized SN Ia distance modulus µ∗
s,i as an augmented Equation 11 with

two additional global nuisance variables α and β:

µ∗
s,i = mi −Ms + αx1,i − βci (13)

where Ms is a now free parameter, interpreted as the standardized absolute magnitude.

Specifically, Ms would the peak absolute brightness of an SNe Ia’s after its light curve shape

has been appropriately corrected for by parameters x1 and c, respectively. The effectiveness

of the Tripp standardization procedure with the SALT2 model is profound, decreasing SN Ia

intrinsic dispersion from ≈ 1 mag to ≤ 0.15 mag in recent analyses [16, 152, 1].

With the standardization model a χ2 objective function can then be defined over a sample

of N SNe Ia indexed by i:

χ2
SN =

N∑
i

[mi −Ms + αx1,i − βci − µ(zi|H0,ΩM ,ΩΛ)]
2

σ2
i + σ2

int

.

(14)

For brevity, Equation 14 assumes each SNe Ia to be independent, ignoring the covariance

arising from population brightness dispersion, instrument calibration, and light curve fitting,

amongst others. See Betoule et al. 2014 for a summary of covariance matrix estimation and

handling for multi-survey SN Ia cosmology analyses [16]. Optimizing χ2
SN with respect to

global parameters then provides a best-fit cosmology estimate alongside nuisance variables

Ms, α, and β, which directly inform sample standardization. See Kim 2011 for a detailed

summary of this process and comparison of different techniques to optimize χ2
SN , including a

discussion about estimating the intrinsic dispersion parameter σ2
int frequently fit for in SN Ia

cosmological studies [96].
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1.3.2 Distance Ladders

H0 cannot be directly constrained with standardized SN Ia samples due to a degeneracy

betweenMs andH0. This is made apparent by inserting Equation 13 into the Hubble residual

definition Equation 12:

∆µmod(zi) = mi−Ms+αx1,i−βci+log

(
H0

c

)
−log(1+zi)−log

(∫ zi

0

dz

[ΩM(1 + z)3 + ΩΛ]1/2

)
.

Ms and H0 are both global offset parameters — any attempt to minimize ∆µ(z) dispersion

will lead to degenerate Ms and H0 solutions. In other words, standardized SNe Ia alone

provide only relative distance measurements — they cannot provide a distance scale zero

point4.

Fortunately, other standard candles with absolute magnitudes not inferred via standard-

ization can break the Ms-H0 degeneracy, assuming these other standard candles occur in

SN Ia host galaxies. Cepheids, variable stars whose peak luminosity is directly related to

their luminosity periodicity, are readily observed in nearby galaxies, including numerous

SN Ia hosts. By constraining H0 locally, Cepheid observations calibrate SN Ia distance mod-

uli onto an absolute distance scale, effectively breaking the Ms − H0 degeneracy. A recent

example of this technique is the SH0ES project by Riess et al. 2019 [133]. Pinning relative

SN Ia distance measurements with absolute Cepheid observations is an example of a distance

ladder.

Cepheids are not the only distance indicators used to build up the SN Ia distance ladder.

A relatively recent alternative is the tip of the red giant branch (TGRB) method to estimate

as absolute distances, as demonstrated by Freedman et al. 2019 in conjunction with the

Carnegie Supernova Project [56]. Calibration of standardized SN Ia distance moduli with

local standard candles are examples of cosmic distance ladders in action5 — see Figure 2

examples ladder workflows.

4You can constrain ΩM and ΩΛ with only SNe Ia, despite the Ms-H0 degeneracy.
5You can also anchor SN Ia distances using the CMB.
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Figure 2: A workflow summarizing various local universe distance ladders used to calibrate

absolute distance scales for type Ia supernova cosmology.
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1.4 Present Tensions and Systematic Errors

To first order, the larger the SN Ia sample, the more constraining power one has on

cosmological parameters as estimated with Equation 14. Naturally, appreciable resources

have been allocated to observing more SNe Ia along an increasingly wide redshift range via

sequences of ever-improving SN Ia surveys. Dark energy was discovered at the turn of the

millennia using two data sets of 42 and 34 SNe Ia, respectively, with a maximum redshift

of z = 0.83 — the recent Pantheon+ joint survey analysis by Brout et al. 2022 sports

over 1550 spectroscopically-confirmed SNe Ia out to redshift z = 2.26 [25]. This dramatic

increase in statistics will soon be dwarfed by the upcoming Legacy Survey of Space and time

(LSST) through the Vera C. Rubin Observatory, which is expected to observe ∼ 107 over

its ten year program starting in 2024 [79]. Such a massive sample size provides impressive

constraining power on dark energy measurements and have ushered in an era of precision

SN Ia cosmology. It has also highlighted the growing concern of systematic errors, known or

unknown, that could bias such precise cosmological parameter estimates.

Such improvements are not isolated to SN Ia cosmology. Similarly impressive strides

in baryon acoustic oscillations and CMB measurements have placed increasingly tight con-

straints on energy densities ΩM and ΩΛ, and H0 independent of SN Ia cosmology. Unfortu-

nately, these increasingly confident measurements have come into tension with those found

for the local universe using SNe Ia, particularly when anchored with Cepheids [55]. Here,

local observations mean, in a cosmological sense luminosity distances tracing cosmological

history out to about z ≈ 2, corresponding to when the universe was dark energy or matter

dominated. In contrast, CMB observations, which corresponds to a redshift of z ≈ 1100, an

era when the universe’s evolution was instead dominated by radiation. Figure 3 compares

different H0 measurements and makes obvious the divergence between Cepheid and CMB

measurements (Planck provides the most recent CMB H0 measurement). More recently,

researchers from the H0LiCOW project have exploited strongly lensed quasars to locally

constrain H0 via lens-induced time delays [171]. Such a measurement is a measurement

independent of those made from SNe Ia and CMB cosmology analyses.

This so called ‘Hubble tension’ has brought parameter estimation methodologies under
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unprecedented scrutiny as opposing teams scour their own and other’s techniques. A major

concern is this tension arises not from some exciting new physics, but instead arises from

improperly handled or unaccounted for systematic errors. As discussed, SN Ia cosmology

requires a hierarchy of steps to yield parameter constraints. Each of these steps can introduce

multiple systematic errors into one’s analysis, some of which are known and others that are

not. Although all empirical research is prone to systematic error and subsequent bias, SN Ia

cosmology’s distance ladder calibration, empirical modeling, and standardization procedures

puts these analyses at particular risk. That we lack a theoretical underpinning of SN Ia

progenitor and explosion physics only complicates this matter further. Indeed, understanding

the source of and properly accounting for these systematics has been of primary focus for

SN Ia cosmologists well before the Hubble tension developed.

Here, we separate sources of SN Ia systematic errors into two broad categories6: distance

ladder calibration systematics which primarily affect H0 measurements, and SN Ia modeling

or standardization systematics which directly impact ΩM and ΩΛ, amongst other energy

density parameters. Historically, researchers also had to account for systematic errors aris-

ing from calibrating different SN Ia survey samples which requires challenging photometric

zero-point calibrations and covariance propagation[16, 152, 25]. These joint analyses were

necessary not only to decrease statistical error, but to increase the joint sample’s redshift

range. Current and future surveys such as the Dark Energy Survey and LSST have partly or

will largely alleviate this source of systematic error, so these will not be considered further.

Two of the competing SNe Ia distance ladder schemes are an excellent case study of

distance ladder calibration influencingH0 estimates due to systematics. SH0ES is the leading

Cepheid calibration program and finds H0 = 73.2 ± 1.3 km s−1 Mpc−1, while Carnegie

Supernova Project’s tip of the red giant branch (TRGB) calibration finds H0 = 69.6±1.9 km

s−1 Mpc−1 [133, 56]. Cepheid-based measurements contrast with Planck’s most recent H0 =

67.5±0.5 km s−1 Mpc−1 at a 5σ significance level. Both teams have subsequently reanalyzed

the other’s data sets and scrutinized each calibration methodology, trying to explain the

discrepancy between Cepheids and TRGB calibration as improper handling of systematics.

6Excluded here are systematics arising from of instrument calibration and peculiar velocities, the latter
of which is notoriously challenging for low redshift SNe Ia. For a review on SN Ia peculiar velocities, see
Davis et al. 2011 [46].
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Figure 3: A comparison of recent H0 measurements for various methods taken from Freed-

man 2021 [55]. Here, TRGB and cepheids are local H0 determinations constrained using

SNe Ia. Planck provides the most recent CMB measurements. At present, SNe Ia with

cepheids and CMB measurements have a 3σ discrepancy, which could be the result of new

physics that diverges local and CMB cosmological parameter estimates, or faults in respective

analyses. Such faults could include observational bias and improper handling or considera-

tion of systematic errors.
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Such a development is in an excellent example of systematic error treatment being placed

under extreme scrutiny by researchers — see Valentino et al. 2021 for a summary of this

Hubble tension, including additional comparisons with other H0 measurements [48].

The second category concerns itself with the underlying SN Ia population’s properties and

how they could potentially bias cosmological analyses. Such systematics bias relative distance

measurements between SNe Ia. Of chief concern is population drift with redshift, something

that would quickly undermine a standard candle’s utility for cosmology. There is circum-

stantial evidence for such drift in the SN Ia population, such as progenitor metallicity[54]

and host galaxy properties both correlating with peak brightness; see Section 2.2 for a re-

view of this host bias. Galaxy demographics and average metallicity rates are functions of

redshift, which means the underlying SN Ia population could change with redshift. There is

also evidence than current standardization procedures do not capture all SN Ia population

flux variation that correlates with peak brightness, either because of incomplete modeling

[147, 20] or limited standardization formalism [144]. Accounting for incomplete standardiza-

tion also requires improved understanding of SN Ia foreground dust extinction, which likely

relates further to the measured dependence of standardized Hubble residuals on host galaxy

properties [26].

1.5 Dissertation Summary

The focuses of this work are two topics in SN Ia systematics research that impact relative

distance measurements, although the first topic may be important in understanding distance

ladder calibration systematics as well. The first explores the dependence of observational

method and fitting technique on host bias measurements, paying particular attention to

host mass and specific star formation rate. The second project introduces a new empirical

SN Ia model that extends phase-independent flux variation templates beyond past models

to explore both intrinsic and dust-like variability in greater detail allowed in past analyses.

Neither directly pertain to cosmological measurements, but instead explore SN Ia popula-

tion properties, properties which are of fundamental importance for precision cosmology,
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especially for next generation surveys.

1.5.1 Chapter 2: The Host Bias

Measuring the host bias requires observing host galaxies either before or after SN Ia.

How these host galaxies are observed, and how physical properties are derived from said

observations, could influence the measured host bias and its implication Chapter 2 summa-

rizes research comparing SN Ia host galaxy property estimates from various observational

methods and fitting techniques and see if SN Ia bias measurements change with method-

ology or technique. Clarifying this potential source of systematics is an important step to

understanding the host bias and its origins by identifying or removing an obvious source

candidate. This chapter also discusses best practices for galaxy property estimations and

some limits of respective observational methods.

1.5.2 Chapter 3: Dust Attenuation and Intrinsic Variation

Dust extinction is a constant component of observational astronomy or cosmology, Dust

preferentially affects lower wavelengths, resulting in severely diminished SN Ia flux in the

rest frame B-band. Because there is no theoretical model for SN Ia spectral evolution, it

is difficult to ascertain a dust extinction zero point for SNe Ia. This further results in a

degeneracy between intrinsic variability and dust extinction for a given SN Ia. Chapter 3

introduces a new empirical SN Ia model that attempts to better separate or constrain intrinsic

variability from dust-like behavior. Constraining intrinsic and extrinsic modes of variation

better illuminates the underlying SN Ia population’s nuanced properties, paving the way to

an improved standardization scheme via superior empirical modeling.
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2.0 The Dependence of the Type Ia Supernova Host Bias on Observation or

Fitting Technique

This chapter was published in the Astrophysical Journal in January 2022 and was au-

thored by Jared Hand, Shu Liu, Llúıs Galbany, Daniel Perrefort, Michael Wood-Vasey, and

Chris Burns [68].

More luminous Type Ia supernovae (SNe Ia) prefer less massive hosts and regions of

higher star formation. This correlation is inverted during width-color-luminosity light curve

standardization resulting in step-like biases (here called the host step bias) of distance mea-

surements with respect to host properties. Using the PISCO supernova host sample and

SDSS, GALEX, and 2MASS photometry, we compare host stellar mass and specific star

formation rate (sSFR) from different observation methods, including local vs. global, and

fitting techniques to measure their impact on the host step biases. Mass step measurements

for all our mass samples are consistent within a 1σ significance from -0.03±0.02 mag to

-0.04±0.02 mag. Including or excluding UV information had no effect on measured mass

step size or location. Specific SFR (sSFR) step sizes are more significant than mass step

measurements and varied from 0.05 ± 0.03 mag (Hα) and 0.06 ± 0.02 mag (UV) for a 51

host sample. The sSFR step location is influenced by mass sample used to normalize star

formation and by sSFR tracer choice. The step size is reduced to 0.04±0.03 mag when using

all available 73 hosts with Hα measurements. This 73 PISCO host subsample overall lacked

a clear step signal, but here we are searching for whether different choices of mass or sSFR

estimation can create a step signal. We find no evidence that different observation or fitting

techniques choice can create a distance measurement step in either mass or sSFR.
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2.1 Introduction

Brighter (dimmer) SNe Ia prefer less (more) massive and star-forming (quiescent) host

galaxies — this trend is reversed post-standardization. The most commonly used host prop-

erty to quantify this bias is stellar mass (see Section 2.2 for details), with recent SN Ia

analyses incorporating a luminosity correction term for host mass during standardization

[40, 16, 152]. This effect is typically quantified against Hubble residuals µSN − µmod(zSN),

or the difference between the standardized brightness and that predicted by the best-fit

cosmology. The ubiquitous host bias measured post-standardization is the mass step, but

similar step-like trends between specific star formation rate (sSFR) and Hubble residuals

for both global and local 1 kpc apertures have been observed [45, 137]. As dust, age, and

metallicity correlate with mass and sSFR, similar trends have been observed for they prop-

erties; all trends are more pronounced when compared to stretch (see 2.2 for more details).

The existence of these biases in historical data sets is not ubiquitous, though. Variation

in trends between SFR and SN Ia properties based on SFR calibration was observed in

D’Andrea et al. 2011 [45], and no mass step was found in the initial analysis of DES SNe Ia

[24]; subsequent DES analyses have measured a mass step [155, 89]. This prompts the ques-

tion: does the measured host-property bias depend on the chosen observation method and

fitting technique used to estimate host galaxy properties?

Any attempt to explain the relationship between SNe Ia and their host galaxy’s properties

should begin with quantifying whether the significance of observed trends vary between choice

of observation method and fitting technique. The host bias extends from the local 1 kpc

environment to the entirety to a global aperture; integral field spectroscopy (IFS) samples

such as PISCO [59], in providing resolved spectral information of a galaxy, are an ideal tool

to measure the host bias. Pragmatism has necessitated the use of photometry to constrain

host properties in nearly all cosmology analyses. We considered the following questions:

1. Does observational technique have a significant effect on measured global and local host

bias?

2. Does the fitting technique used to estimate host properties effect the measured host bias?
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We here built a set of of host galaxy samples and then inferred galaxy properties using

different observational and fitting techniques. We compared stellar mass and SFR estimates

from the PISCO sample. Using the PISCO SN Ia subsample, we then compared different

stellar mass and sSFR estimate samples to SN Ia properties, looking primarily for differences

in the resulting host-SN Ia property trends between mass/sSFR estimate samples. Finally,

the larger observed size and strength of the sSFR host bias relationship relative to the stellar

mass host bias is both presented and discussed.

In Section 2.2 we summarize SN Ia host studies up to the present followed by a summary

of the considered data set in Section 2.3. Section 2.4 provides an overview of our methodology,

including summaries of fitting techniques used. Our results are provided and discussed in

Section 2.5, and concluding remarks presented in Section 2.6.

2.2 Background

The inferred presence of an observed correlation between the properties of SNe Ia and

their host’s properties is common in the literature. Parameters of light curve width variation

(such as x1 in SALT2 [65]) see lower x1 values prefer more massive hosts, older stellar popu-

lations, and environments of larger SFR [158, 88, 64, 40, 16, 152]. Both Sullivan et al. 2010

and Gupta et al. 2011 saw a relationship between the SALT2 color parameter c and host mass

and host age, respectively, albeit at a lower significance than x1 [158, 64]; Scolnic et al 2018

found no significant color trend [152]. Recently, Pruzhinskaya et al. 2020 found a statisti-

cally significant dependence of SALT2 x1 on host galaxy morphology, with lower x1 SNe Ia

preferring elliptical and lenticular galaxies [130].

The observed correlation between SNe Ia and host properties are not explicitly included

nor accounted for with a canonical Tripp standardization model, resulting in an apparent

over-correction of the host bias post-standardization. For example, both the SN Legacy

Survey [158] and SDSS SN Survey [145] found a ‘mass step’, where SNe Ia with brighter

Hubble residuals were on average hosted by more massive galaxies [88, 99, 64]. In comparing

residuals in the fitted distance modulus of SNe Ia with respect to cosmological prediction
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to their host masses, both SDSS and SNLS samples observed a sudden step-like change in

Hubble residual vs mass near 1010M⊙. [40], [16], and [152] also observed this mass step at

1010M⊙ in their combined SN Ia sample analyses. Initial analysis by [24] of Dark Energy

Survey (DES) SN Ia found no evidence for a mass step post-standardization, although more

thorough methodology for an updated SN Ia sample did indeed recover a mass step [155, 89].

Using SNIFS spectrophotometry from SNFactory, Rigault et al. 2013 & 2018 [138, 137] found

that Hubble residuals are strongly dependent upon SFR and sSFR, respectively, the latter

having observed a 5σ relationship between Hubble residual and sSFR and confirming the

tentative findings of [45]. Recently, Jones et al. 2018 compared u − g color of SN Ia 1.5

kpc local environment apertures against randomly selected 1.5 kpc apertures within the

host, finding that the SN Ia environment correlates with SN Ia distance slightly more than

random apertures, and found a local stellar mass step after the global mass step had been

corrected for [83]. Hayden et al. 2013 used both mass and metallicity to reduce Hubble

residual scatter [70]. Roman et al. 2018 used U − V as a proxy for stellar age and found an

age mass step of similar magnitude and significance as the fiducial mass step, and found a 7σ

relationships between local U − V measurement and distance [140]. Rose et al. 2019, using

principal component analysis, found a strong relationship between a linear combination of

host galaxy properties and Hubble residuals [141]. Brout et al. 2020 presented a model that

explain the mass step post-light curve standardization via SALT2 resulting from improper

treatment of host dust, which was further expanded in Popovic et al. 2021 [26, 129]. In

contrast, Uddin et al. 2020 found a clear dependence on Hubble residuals calculated from

light curves fit with SNooPy with host mass calculated for visible and NIR light curves that

was inconsistent with the model presented by Brout and Popovic [162]. Both Gonzalez-

gaitan et al. 2020 and Ponder et al. 2020 found tentative evidence for a host mass step for

SNooPy-fit NIR light curves for SN Ia [62, 128].

The use of simple stellar population (SSP) templates and stellar population synthe-

sis (SPS) libraries has been a central part any endeavor to estimate a galaxy properties;

these properties include stellar mass [44], stellar age, star formation rate [91, 92], and gas-

phase/stellar metallicity [160, 61, 95]. Likewise, complex systematic uncertainties in mod-

eling and from observational limitations propagate into uncertainties in derived property
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estimates. Past SN Ia cosmology analyses have generally treated SSP/SPS libraries and

fitting software as black boxes when estimating host properties, and frequently relied on few

data points from photometry spanning a narrow wavelength range. Redshift, stellar mass,

stellar age, dust extinction, metallicity, and star formation rate are often degenerate with

each other and large systematic covariances complicate fitting methods [86, 23, 160, 61].

Such degeneracies, together with systematic uncertainties, result in dramatic uncertainties

for some best fit parameters (see section 3 introduction for more information).

Although optical multi-wavelength photometry of host galaxies has been the primary tool

used to estimate host mass and SFR [158, 88, 37, 16, 152, 24], optical wavelength spectra [45,

82], UV or IR photometry in addition to optical spectra or photometry [64, 6], and IFS [138,

137, 59] have been used. Childress et al. 2013 and Gupta et al. 2011 [37, 64] both found stellar

mass estimates using optical, IR, and UV photometry change little from mass estimates using

optical photometry only, consistent with the results of Bell & deJong 2001[14]. [45] used

sSFR estimates from SDSS II spectra and two different mass estimates: one from SPS model

best fits using SDSS II spectra and one from [64]. Hayden 2013[70] directly compared three

different mass estimates for a set of SDSS host galaxies using metallicity estimates from the

Fundamental Metallicity Relation [110] to further reduce Hubble residual scatter.

2.3 Data

We consider 319 galaxies observed as part of the PMAS/PPak Integral-field Supernova

Hosts Compilation from the PISCO project[59]. These observations were complemented by

optical ugriz photometry from the Sloan Digital Sky Survey (SDSS), near-infrared (NIR)

JHKS photometry from the Two Micron All Sky Survey (2MASS), and ultraviolet (UV)

NUV+ and FUV photometry from the Galaxy Evolution Explorer (GALEX). Figure 4 shows

the redshift distribution of the sample, which spans a range of 0.00013 < z < 0.0875. These

319 galaxies host 375 SNe, of which 198 are SNe Ia.

PanSTARRS DR1 [36] was considered to expand coverage, but added complexity with

overlapping visible wavelength photometry and our constraint to northern hemisphere tar-
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gets resulted in it being disregarded in favor of SDSS. Follow up analyses will likely make

use of PanSTARRs DR2, especially if our observation footprint extends into the southern

hemisphere.

2.3.1 PISCO Supernova Sample

PISCO is a compilation of SN host galaxies observed with integral field unit (IFU)

spectroscopy using the same instrument PMAS/PPak [143, 90] mounted to the 3.5 m Calar

Alto telescope. PISCO was built from an initial sample of SN host galaxies obtained by

the CALIFA survey [146, 60, 58] and extended with new observations of SN hots based on

different science goals. See the PISCO paper for more details [59].

The PISCO SN Ia subsample had 198 objects. When calculating distance moduli all 14

peculiar SNe Ia were ignored (e.g. SN 1991bg and 1991T-like objects), while 83 normal SNe Ia

lacked available optical photometry, with many only having NIR light curves. SN 2014J was

excluded due to its extremely low redshift and host galaxy M82’s mass estimation difficulties.

We used the SALT2 output fits for 30 unpublished SNe Ia from Carnegie Supernova Project

II (CSPII, Suntzeff et al., in prep), bringing the sample to 101. During SALT2 fitting we

removed SN 2006lf, which had an very high Milky Way color excess of E(B − V ) = 0.821,

giving a final total of 100 SNe Ia used. SDSS coverage reduced this count to 76, while mutual

SDSS and GALEX coverage further reduced the number to 66 (Section 2.5.2). Four SN Ia

hosts lacked Hα flux measurements and 11 host galaxies had unavailable GALEX FUV or

NUV flux measurements. These too were all excluded, bringing the total SN Ia count to 51

for sSFR analysis (Section 2.5.4). See Tables 1 and 2 for a summary of sample reductions.

2.3.2 PISCO Host Galaxy Global Parameters

Stellar mass estimates and integrated Hα flux measurements of all PISCO galaxies were

taken from [59] with mass estimates made using STARLIGHT [39]. Mass estimates were

calculated using a SSP library built using [27] (BC03) with a [35] initial mass function (IMF).

PISCO used a more complex set of basis templates, instead of just BC03 used here (see ,

Section 3.2.1 of PISCO 2018 for more details [59]) — otherwise, the methodology we used
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Figure 4: Distribution of redshifts for galaxies considered by this paper. This includes a

total of 319 galaxies selected from the PISCO sample with supplementary observations from

2MASS, SDSS DR12, and GALEX. All considered targets were observed by PISCO and

detected in 2MASS.
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Table 1: Summary of SNe Ia sample size reductions. Details on specific SN Ia removal is

provided in Section 2.3.1 Each row defines a subgroup of the row described above.

SN Ia Subsample Condition SN Ia Count

Total PISCO SNe Ia 198

Normal SNe Ia 184

Available visible photometry + CSPII 101

Excluding specific SNe Ia 100

Available STARLIGHT mass estimates 97

to estimate masses with STARLIGHT was identical.

2.3.3 SDSS DR12 Optical Photometry

The Sloan Digital Sky Survey (SDSS) is a multi-year, multi-program survey performed

at the Apache Point Observatory (APO) using the SDSS 2.5 m telescope [173, 63]. We used

observations from SDSS Data Release 12 [3] to provide imagining data for host galaxies in

the ugriz filters [49]. Mutual coverage between SDSS and PISCO is available for 239 of the

319 galaxies (74.9%).

All SDSS fields were selected using the nearest neighbor search functions built into the

DR12 CASJOBS database1 and downloaded from the Science Archive Server (SAS)2.

2.3.4 2MASS IR Photometry

The Two Micron All Sky Survey (2MASS) was a three-year program run at the Whipple

Observatory and Cerro Tololo Inter-American Observatory [154]. 2MASS observed 99.998%

of the sky with three near infrared (NIR) passbands JHKs, resulting in all PISCO galaxies

having corresponding 2MASS images. Optimal operations result in a 2.5–3.4” PSF with a

1http://skyserver.sdss.org/CasJobs/SchemaBrowser.aspx
2https://dr12.sdss.org/
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Table 2: Summary of mass and sSFR step analyses subsample sizes starting with 97 available

STARLIGHT mass estimates.

SN Ia Subsample SN Ia Count

SDSS coverage 76

SDSS+GALEX coverage 66

Available Hα measurements 73

Available Hα and SDSS+GALEX coverage 51

Pixel size of 2.0”. Images were obtained using the Infrared Science Archive (IRSA).3

2.3.5 GALEX Photometry

The Galaxy Evolution Explorer (GALEX) is a space-based observatory with a 1.2 de-

gree diameter circular field of view that observed through two ultra-violet (UV) bands,

FUV (135–175 nm) and NUV (175–280 nm) [113]. A total of 287 PISCO galaxies reside

within GALEX’s footprint for a mutual coverage of 90.0%, although only 203 were also

within SDSS coverage. Images were downloaded from the four primary GALEX surveys

using STSci MAST services 4, with precedent placed on exposure time when choosing fields.

Where possible we used “Deep Imaging Survey” fields (DIS: 30,000 s exposure), followed by

“Medium Imaging Survey” fields (MIS: 1500 s exposure), and finally the “All-sky Imaging

Survey” fields (AIS: 100×10 s exposures [113]. If available, Nearby Galaxy Survey (NGS)

fields were used instead of AIS fields. Guest investigator fields were also used when neces-

sary. 2.2% of PISCO galaxies had DIS coverage, 5.1% had NGS coverage, 14.4% had MIS

coverage, and 80.9% had AIS coverage or were observed as part of the guest investigator

program.

3https://irsa.ipac.caltech.edu/frontpage/
4https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
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2.4 Methodology

We performed our global photometry and combined that with corresponding PISCO IFS

to estimate host galaxy properties. For details on PISCO data reduction we refer the reader

to [59]. As one brief note, the PISCO IFS apertures were hexagonal, while the apertures on

the imaging data we analyzed here are elliptical.

2.4.1 Photometric Image Preparation

Foreground objects in images from each data set were removed by masking. The position

and appropriate aperture size of foreground objects in SDSS images were determined using

Source Extractor on r -band images [15]. All identified objects were visually reviewed and

assigned a proportion factor (αSDSS) which corrected the Kron radius calculated by Source

Extractor (rk):

rcork = αSDSS rk.

This factor was used to decrease the area of measured foreground objects so to not compro-

mise the shape of the host galaxy. Pixel values within the scaled aperture were masked and

replaced using an interpolation to account for lost photons in the masked region.

For SDSS, we replaced all foreground objects within a circular region of the host less

than A × rcork using a two-dimensional linear interpolation. With GALEX and 2MASS, we

instead masked foreground objects due to lower field signal-to-noise leading to unrealistic

interpolation results. All foreground objects outside this radius but within a radius of 2.8(A×

rcork ) were simply masked and unused. For 2MASS and GALEX we masked all foreground

objects within a radius of 2.8(A× rcork ). SDSS images were provided background-subtracted

with FITS header information for background reconstruction. Background images were

provided with GALEX field downloads and were used directly in background subtraction.

Zero pixels in both image and provided background fields were masked for GALEX NUV and

FUV data sets. As both fields were masked, this did not increase our background estimation.
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2.4.2 Galaxy Parameter Estimation

To explore how the host galaxy bias varies with fitting technique, we required host prop-

erty estimates from multiple techniques. To this end, we used three fitting programs to

estimate host properties two for photometry and one for IFS. These fitting techniques make

use of simple stellar population (SSPs) libraries, or use stellar population synthesis (SPS)

libraries built by convolving a set of SSPs with a star formation history (SFH) parame-

terization and a recipe to handle dust extinctions to produce a library of composite stellar

populations (CSPs) [165, 42]. It is important to explicitly note that simple stellar population

(SSP) or stellar population synthesis (SPS) libraries contain numerous sources of systematic

uncertainties and that even with high-quality observations, systematic model uncertainties

endemic to SPS libraries are larger than what is expected from observational errors alone

[43].

2.4.2.1 ZPEG

ZPEG estimates galaxy redshifts by fitting photometry against a library of CSPs con-

structed from the theoretical spectral library PEGASE.2. This resulting template fit provides

additional information such as stellar mass, star formation rate, etc. The best-fit template is

determined using maximum likelihood analysis with a χ2 function for the difference between

synthetic photometry computed from templates and observed photometry. Specifically, χ2

values are calculated for each point along a four-dimensional grid of parameters (E(B− V ),

t∗, redshift, and template), with the best-fit model being the minimal χ2 value on the grid

χ2
Z =

N∑
i

[
Fλ,i − αFλ,mod

(
t∗, E(B − V ), z

)]2
σ2
i

(15)

where N is the number of filters, Fmod is the model flux density from given template of

age t∗ and color excess E(B − V ), σ2
i is the measured observation variance for data point

i, and α is a scaling parameter to match normalized template SEDs to the observed flux.

Uncertainty in the best-fit model is determined by calculating the reduced χ2 (χ2
r) value of

the best-fit model and finding the corresponding model parameters whose model χ2 (χ2
err)
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Figure 5: Systematic variation in estimated mass (left column) from variation in SFH (top),

IMF (middle), and SPS library (bottom). Along the x-axes are the base template sets with

a delayed-τ SFH (top), a Chabrier IMF (middle), and a BC03 library (bottom). Along the

y-axes are (top) an exponential decay τ model, (middle) a Salpeter IMF, (bottom) FSPS.
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satisfy χ2
err ≤ χ2

r + 1. Spectroscopic redshifts can be provided for each object to simplify

fitting.

With ZPEG, we used the PEGASE.2 library, a Salpeter IMF, included nebular emissions,

and averaged SFR over 500 million years starting at present. We used the default 200-

ages Salpeter library of 15 galaxy templates provided with ZPEG, excluding the starburst

template due to its extremely nonphysical description of galaxy evolution. A foreground dust

screen with color excess E(B−V ) with values ranging from 0 to 0.4 mags in intervals of 0.2

mags was added for each template when fitting. There is a setting “AGE CONSTR Z0” for

ZPEG that when turned off can result in dramatic underestimation of mass, especially if the

starburst template is included. We kept the default setting of “T” to keep it enabled.

2.4.2.2 FAST++

FAST++ is a C++ implementation of FAST with added functionality [98, 150, 151].

Given photometry or spectra, FAST++ determines a best-fit SED from a provided SPS

library on a five-dimensional grid, with each grid point corresponding to a CSP SED with

age t∗, SFH time scale τ , V band extinction AV , and stellar metallicity Z∗ at some redshift

z. Note that the CSP is constructed using the selected SFH parameterization and dust

extinction model. The redshift parameter can be fixed by providing a spectroscopic redshift

value as input for fitting. At each point on the grid a χ2 value is calculated:

χ2
F =

N∑
i

[
Fλ,i − Fλ,mod(t∗, τ, AV , Z∗, z)

]2
σ2
i

(16)

where N is the number of combined photometric and spectroscopic data points and σ2
i is

the observation variance for data point i. Confidence intervals for parameters and derived

quantities (such as stellar mass and SFR) are determined using Monte Carlo sampling of the

grid around the lowest χ2.

SFR was averaged over the last 500 million years as done with ZPEG. Unless otherwise

stated, we used a Calzetti dust law with a uniform and constant foreground dust screen

with the BC03 SPS library calculated using a delayed exponential (delayed-τ) SFH and a

Chabrier IMF [32, 35].
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Using FAST++ we compared the systematic effects of changing different SPS library

components (Figure 5). Mass estimates exhibited the expected systematic offset from a

change in IMF (Chabrier vs. Salpeter) and were unchanged for different SFH models (expo-

nential or τ vs. delayed-τ). The global shift from changing to a Salpeter IMF was 0.24 dex.

Leaving IMF and SFH fixed, when then compared mass estimates for the SPS libraries from

BC03 to the newer FSPS [43]. The particular FSPS library used was the default provided

by FAST/FAST++ as described in Aird et al. 2017, Appendix A [2]. FSPS estimated sys-

tematically higher mass at 0.12 dex with a standard deviation of 0.12 dex — a higher scatter

than that due to changing IMF or SFH but well within the average error in mass estimates

and the expected 0.3 dex template uncertainty.

2.4.2.3 Fitting IFS with STARLIGHT

STARLIGHT fits observations to linear combinations of SSPs attenuated by a given dust

law in a process called spectral inversion fitting [39]. This differs from FAST++ and ZPEG

which instead fit observations to a library of composite stellar populations, themselves built

from SSPs using some star formation history and dust law.

STARLIGHT fits spectra by masking emission lines. A Fitzpatrick dust model with

RV = 3.1 was used for dust correction [52]. The best-fit SED is determined by minimizing

the resulting χ2 value against the model SED Mλ using an implementation of the Metropolis

algorithm [39], with:

Mλ = Mλ,010
−0.4(Aλ−Aλ,0)

[
N∗∑
i

xiFλ,i

]
⊙N (v∗, σv∗) (17)

where xi and Fλ,i are the fractional contribution and synthetic flux density of ith SSP SED,

respectively, ⊙ is the convolution operator, and the normal distribution N models velocity

dispersion due to stellar motion v∗. Mλ,0 is the normalized synthetic flux density. The

population vector elements xi serve as weights for each Fλ,i, from which one can infer SFH,

metallicity, and other properties as a weighted sum of the properties of each contributing

Fλ,i. To improve consistency with FAST++’s BC03 and the Chabrier IMF template library

described above, the PISCO mass estimates used here were recalculated using a SPS library

constructed from the BC03 library and Chabrier IMF as well.
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2.4.3 Hubble Residuals

Hubble residuals are the difference between the measured distance modulus and that

predicted by the assumed cosmology at a given redshift zCMB: µ − µmod(zCMB;H0,ΩΛ). To

better facilitate comparison with existing literature, Hubble residuals were estimated in a

similar fashion to the Joint Light-Curve Analysis, or JLA using the light curve fitter SALT2

[16].

70 of 100 used PISCO SNe Ia had light curves fit with the SNCOSMO implementation

of SALT2 using the JLA fiducial light curve template [65, 12]. In particular, we fit for the

scaling parameter (x0), the effective stretch parameter (x1), and the color parameter (c).

Milky Way dust extinction was taken into account during fitting using [149] dust maps with

a Cardelli dust law [33]. If a light curve was observed by more than one survey, then each

set of observations were fit separately. The light curve fits were then visually inspected and

the better fit was used.

The 30 remaining SNe Ia were observed as part of the unpublished CSPII (Suntzeff et

al, in prep). Preliminary SALT2 parameters were provided by CSPII for this analysis, as

many low-mass PISCO SN Ia hosts consisted primarily of CSPII hosts.

To standardize fitted SN Ia luminosity, cosmological parameters were held fixed assuming

a flat ΛCDM cosmology with H0 = 70 and ΩΛ = 0.7 using astropy’s cosmology suite [8]. The

distance modulus per SN is calculated assuming a linear relationship between both SALT2

color parameter c and SALT2 stretch parameter x1 versus absolute B-band magnitude MB

with slopes α and β, respectively [161]:

µB = mB + αx1 − βc−MB. (18)

Here, α and β are nuisance variables calculated using a maximum likelihood analysis akin

to the JLA’s treatment:

χ2
H =

NSN∑
i

(
µB,i − µmod(zCMB,i;H0,ΩΛ)

)2
σ2
i + σ2

int

. (19)

We ignored covariance between SNe for simplicity and fixed intrinsic dispersion to σ2
int =

0.1 to be consistent with the recent Pantheon analysis [152]. We did not decompose intrinsic
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scatter into components incorporating dependencies on α and β [112]. Given this project’s

focus on studying the host bias before and after standardization, no attempt was made to

incorporate host properties into equation 19. Magnitude uncertainty due to peculiar velocity

was estimated using an empty-universe approximation with a peculiar velocity of σv = 300

km s−1 for each SN [46]:

σµ =
σv

c

5

ln(10)

[
1 + zCMB

zCMB(1 +
zCMB

2
)

]
. (20)

2.4.4 Linear Regression and Stan

When comparing SFR estimates we used a Bayesian linear regression mixture model

LinMix developed and described by [87] 5. This model takes into account uncertainties in

both dependent and independent variables by modeling the true values of said variables

as latent parameters described by a Gaussian mixture model. Otherwise, Ordinary Least

Squares (OLS) linear regression implemented with SciPy6 was used where noted [164].

We used Stan7 to sample the posterior of a model between Hubble residuals and host

property in place of a step function. The built-in StancHamiltonian Monte Carlo sampler

approximates the Jacobian of model parameters, and since a step function features an unde-

fined derivative at the step location, we instead used a shifted and scaled hyperbolic tangent

(tanh) model:

[µ− µmod(z)](x) = ∆µ tanh
x− xs

α
+∆µ0 (21)

where x is the host property of interest (mass or sSFR). ∆µ and xs parameterized the step

size and step location, respectively with xs(M⊙)
.
= Ms and xs(sSFR)

.
= sSFRs for the mass

and sSFR step location parameters. Parameter ∆µ0 accounted for any systematic y-axis

offset. Parameter α determined the transition scale and was fixed to α = 0.01 to enforce a

step-like trend, akin to the logistics model for Pantheon [152]. Appendix B details priors

used and their respective motivations.

5https://github.com/jmeyers314/linmix
6https://www.scipy.org/
7https://mc-stan.org/
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Figure 6: (top) Hubble diagram comparing SALT2-standardized PISCO SN Ia distance

moduli to a predicted flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and ΩΛ = 0.7

given as the dashed line. Nuisance parameters MB, α, and β, and the fixed intrinsic SN

Ia scatter σint are given at the top of the top plot. (bottom) Hubble residuals µ − µmod(z)

against redshift, with a dashed line at µ− µmod(z) = 0 for reference.
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2.5 Results and Analysis

The mass step is the most common characterization of the host-correlated bias in SN Ia

distance standardization [40, 16, 152]. But given that all host properties are is correlated

with other host properties, it is not surprising that both SFR and sSFR step-like biases

have also been detected [45, 138, 136, 137]. In this work we use our available Hα flux and

UV photometry alongside optical spectra and photometry to estimated various mass and

sSFR samples to determine if any chosen observation method or fitting technique leads to a

significant change in the measured host bias.

The analysis is presented with each subsection having both a summary of results followed

by a discussion to make our analysis more digestible for the reader.

2.5.1 Mass Estimate Comparisons

Figure 7 compares fit mass estimates from FAST++ and ZPEG using SDSS and SDSS+GALEX

photometry. There was a median offset of -0.43 dex (for SDSS only) and -0.54 dex (for

SDSS+GALEX), largely consistent with that expected from differences between the Chabrier

and Salpeter IMFs (∼0.2 dex) and the stellar libraries BC03 and PEGASE.2 (∼0.1 dex) [116].

The increase in median offset after including GALEX was likely driven by discrepancies be-

tween handling of young, massive stars in the respective libraries.

We compared mass estimates from FAST++ and ZPEG using SDSS optical ugriz to

STARLIGHT mass estimates using PISCO optical spectra. Only 308 of 319 PISCO hosts

had BC03+Chabrier IMF STARLIGHT mass estimates. Of those 308 PISCO targets, very

low redshift hosts Andromeda, M82, and NGC 6946 had failed mass estimates. Low redshift

NGC 2276 was observed as three targets, each with failed mass estimates and were excluded.

This reduced the usable STARLIGHT mass sample to 302 galaxies with STARLIGHT mass

estimates. Our requirement for mutual SDSS coverage reduced our working sample to 237

hosts. In comparing mass estimates, we measured an average offset of 0.03 dex between

the FAST++ and STARLIGHT mass samples with a standard deviation of 0.33 dex (Fig-

ure 8). This small offset stemmed from the FAST++ SPS library and the SSP basis used by
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Figure 7: A comparison of stellar mass estimates between ZPEG and FAST++ for SDSS-

only and SDSS+GALEX photometry. Error bars are taken directly from the respective

fitting technique. A diagonal one-to-one grey line is included for reference.
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STARLIGHT both being constructed with a BC03 library and a Chabrier IMF. A global me-

dian offset of 0.47 dex towards larger ZPEG mass estimates was caused by use of a Salpeter

IMF and the PEGASE.2 spectral library for ZPEG [116]. Mass offset standard deviation

between the ZPEG and STARLIGHT mass samples was 0.28 dex, slightly less than that

measured for FAST++ mass values.

Mass estimates from optical photometry and IFS were mostly consistent with predicted

global offsets. ZPEG mass estimates made with only SDSS photometry had systemically

∼0.15 dex higher values than their STARLIGHT or FAST++ counterparts — this could

be from the choice in library or dust model of ZPEG being biased towards older red stellar

populations without UV constraints. Random variation was consistent with SPS library

uncertainties of ∼0.3 dex, with some further scatter arising from different aperture size and

shape between PISCO IFS and our in-house photometry.

2.5.1.1 Effects of Incorporating UV Information

With FAST++ we compared mass estimates with and without GALEX NUV and FUV

photometry. This required GALEX coverage and limited our sample to 211 galaxies from

237. Adding UV information helped better constrain FAST++’s AV dust parameter, with

average AV uncertainty decreasing by a factor of 2 from 0.6 mag to 0.3 mag. There was

an appreciable anti-correlation between the change in fit AV and the change in fit mass

(Pearson’s r score of -0.74). Figure 9 shows three clear outliers where mass increased by

more than 0.6 dex once UV information was included: UGC 02134 and UGC 09165, both

inclined spiral galaxies with clear UV signals, and 2MASXJ02305208, the smallest of a triple

elliptical cluster. Note that both SN Ia hosts UGC 09165 and 2MASXJ02305208 had mass

estimates shift from above to below the canonical mass step location log10(M/M⊙) = 10,

but that these SNe Ia lacked optical light curves and were not used in our mass step analysis

(Section 2.5.2).

UV flux comes from active or recent star formation. A quiescent galaxy incorrectly

described with a star forming model SED using only optical photometry can be correctly

identified as elliptical once UV information is included, as was the case for 2MASXJ02305208.
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Figure 9: Absolute change in BC03 FAST++ stellar mass estimates after including GALEX

photometry for 211 hosts. Three outliers exhibit mass increases of > 0.6 dex, which would

shift them over the fiducial mass step location marked with the vertical solid line. However

we don’t have light curves for the corresponding SNe Ia and thus these hosts aren’t actually

used in the host galaxy bias analysis present here. No mass shift magnitude greater than 0.2

dex was observed for massive hosts with log10(M/M⊙) > 11, marked with the vertical dotted

line. Note the correlation between differences in the best-fit AV and mass — an example of

the mass-age-dust degeneracy.
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Figure 10: A comparison between K–band absolute magnitude and FAST++ mass estimates

determined using 2MASS+SDSS photometry for our PISCO sample. The dashed black line

references log10(M/M⊙) = 10, the approximate location of the canonical mass step. The

standard deviation of residual in mass estimates for galaxies above the dotted line is 0.35

dex compared to 0.46 dex for those below. The solid black line is the linear OLS fit.
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For UGC 02134 and UGC 09165, UV information provided further information about dust-

obscured star formation, resulting in a lower stellar mass estimate after UV addition. Apart

from these these outliers, remaining shifts in mass were within the 0.4 dex, with 52 estimates

shifting with absolute value greater than 0.2 dex. All but five of theses 52 hosts with absolute

value shifted from higher to lower mass with UV information included. This information

helped break the color degeneracy for these 47 objects, with redness instead attributed to

dust-obscured young stars with lower mass-to-light ratios as opposed to older red dwarf stars

with high mass-to-light ratios, reducing mass estimates.

Nonetheless, aside from identifying galaxies that are forming no stars, mass estimation

is largely insensitive to dust effects [42]. This means that including UV information does not

significant change mass estimates the vast majority of our sample (1.4% of our 211 hosts for

this subsample). No hosts with SDSS mass log10(M/M⊙) > 11 changed by more than 0.2 dex

after including UV information. Overall, we do recommend including UV information when

estimating mass given its ability to partially break the color degeneracy by distinguishing

old stellar populations from dust-obscured young stars, but it does not significant change

mass estimates for the sample.

2.5.1.2 Mass from NIR

We also experimented with including 2MASS NIR information with SDSS photometry,

finding mass estimate averages effectively unchanged. Fit mass estimate uncertainty de-

creased for hosts with log10(M/M⊙) > 10, though.

We considered the linear relationship between 2MASS K -band magnitudes and FAST++

mass estimates using 2MASS and SDSS photometry, akin to the methodology used in the

JLA [16] (Figure 10). Two trends were present: (1) a linear relationship between absolute

magnitude and mass estimate, with brighter absolute magnitudes being correlated with

larger masses; and (2) an increase in the typical magnitude uncertainty for dimmer objects.

The standard deviation of mass estimate residual was 0.35 dex below log10(M/M⊙) = 10

and 0.46 dex above. Neither relationship was surprising, but we explicitly mention these

as the resulting trend is visibly and logically heteroscedastic — dimmer objects will have
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larger observational errors, thus biasing lower-mass galaxies towards greater mass estimate

uncertainties. This should have no influence upon a step function model for a host bias

correction, as the ordering of mass estimates would be effectively unchanged given the K -

mag trend with mass is clearly linear: a change in slope would have no impact upon said

step model.

2.5.2 Host Mass Bias Comparison

Hubble residuals for 76 SNe Ia were compared against three mass estimates samples:

FAST++ using SDSS, ZPEG using SDSS, and STARLIGHT using PISCO IFS. These SN Ia

hosts had both SDSS coverage and available STARLIGHT mass estimates. The decision

to use only visible wavelength SDSS photometry for FAST++ mass estimates here were

to maximize our usable sample and because PISCO SED only covers visible wavelengths.

Linear OLS regressors fit for all three mass samples found slope values consistent with a zero

slope. Using our tanh step model implemented with Stan, we found Ms = 9.78 ± 0.37 and

∆µ = −0.04± 0.02 mag for the FAST++ mass sample. For the STARLIGHT mass sample

we found Ms = 9.91±0.56 and ∆µ = −0.03±0.02 mag. With all available 97 STARLIGHT

mass estimates the fit step size and location were more consistent with the 76 FAST++

mass sample at Ms = 9.83± 0.33 and ∆µ = −0.04± 0.02 mag. ZPEG fit parameters for the

76-host sample saw a less than 1σ-significant shift of 0.23 dex to Ms = 10.06± 0.53 with a

slightly reduced step size of ∆µ = −0.03 ± 0.02 mag. This shift toward a higher mass step

location relative to the FAST++ mass sample was consistent with an expected ∼0.3 dex

bias towards higher mass due to ZPEG’s using the PEGASE.2 library and a Saltpeter IMF

(Section 2.5.1). Also, the ZPEG and STARLIGHT step locations coincided with center

of our mass step location bounds, [9, 11], albeit with ZPEG’s step location being 0.15 dex

higher than STARLIGHT’s. These parameter uncertainties were higher than their FAST++

counterpart by 0.16 dex and 0.19 dex for ZPEG and STARLIGHT, respectively, and were

sufficient to span the allowed step location parameter space. See Table 3 for a summary of

tanh model results for our used mass subsamples.

We found no evidence that using optical spectra versus optical photometry created any
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Figure 11: Comparison of 76 PISCO Hubble residuals to three sets of stellar mass estimates.

SDSS ugriz photometry was used to calculate FAST++ and ZPEG mass estimates. The bias

towards high-mass SN Ia hosts in the PISCO sample is apparent. Tanh function fit results

are given as a solid orange line for FAST++, a dashed green line for ZPEG, and a dotted

purple line for STARLIGHT. The bottom panel is a comparison of 66 mass estimates from

FAST++ excluding (orange diamonds) and including (purple x’s) GALEX photometry from

the base SDSS ugriz. Despite noted shifts from high to low mass, both samples measured

the same step function size, despite 10 fewer data points.
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Table 3: Tanh model parameter results for the various mass samples used in this analysis.

Mass Sample Ms ∆µ ∆µ0

76 FAST++ 9.78± 0.37 −0.04± 0.02 0.02± 0.02

66 FAST++ 9.73± 0.39 −0.04± 0.03 0.02± 0.02

66 FAST++ & UV 9.76± 0.35 −0.05± 0.03 0.02± 0.02

76 ZPEG 10.06± 0.53 −0.03± 0.02 0.02± 0.02

76 STARLIGHT 9.91± 0.56 −0.03± 0.02 0.01± 0.02

97 STARLIGHT 9.83± 0.33 −0.04± 0.02 0.02± 0.02

biased mass step. All step size variation between the 76-host mass samples were within 1σ of

each other. Despite these two mass samples having different observation method and fitting

technique, using all 97 STARLIGHT mass estimates produced fits results clearly consistent

with the 76-host FAST++ mass sample fit parameters. We interpreted the increased step

location uncertainty and reduced step size of the 76-host STARLIGHT sample fit as an

artifact of our reduced sample size. The ZPEG mass step location was predicted to be

greater than that fit for STARLIGHT and FAST++ mass samples (Section 2.5.1), but its

reduced step size relative to FAST++ results and a less constrained step location could

have affected the best-fit ZPEG step location. A similar weakness in mass step signal for

the 76-host ZPEG and STARLIGHT samples relative to the FAST++ sample was partly

due to the lower scatter between ZPEG and STARLIGHT mass estimates as presented in

Section 2.5.1. Again, our reduced statistics were likely to blame for weak signal detection.

2.5.2.1 Effects of Incorporating UV Information

The 66 SN Ia hosts with both SDSS and GALEX coverage had mass estimates compared

both with and without UV photometry. As seen in Figure 9, below log10(M/M⊙) < 11 there

was a preferred shift to lower mass for a substantial portion of the PISCO sample once UV

information was included. This trend carried over for these 66 hosts, with arrows in the
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bottom plot of Figure 11 predominately pointing towards lower mass. In particular, eight

mass estimates changed by 2σ = 0.28 dex, with seven of the eight shifting to a lower mass

once UV information was included. For the 66 mass estimates fit with GALEX information

we found Ms = 9.73 ± 0.39 and ∆µ = −0.04 ± 0.03 mag; mass estimates made only SDSS

only fit for parameter values Ms = 9.76 ± 0.35 and ∆µ = −0.05 ± 0.3 mag. T hese were

both relatively consistent and consistent with the previously discussed 76-host SDSS sample

results.

None of the three PISCO hosts with mass changes greater than 0.6 dex were used in our

mass step analysis, thus preventing an extreme shift in mass over the mass step location.

We observed an asymmetry in mass change direction after including UV information for

many of our SN Ia, but these mass changes were relatively small at ∼ 0.4 dex and did not

translate to notable qualitative change in the step model parameter values or uncertainties.

Adding UV information caused an insignificant 0.33-σ change in mass step from -0.04 mag

to -0.05 mag. Although we cannot rule out the possibility of occasional SN Ia host galaxies

being misidentified when UV information is excluded, the majority of hosts had largely stable

mass estimates with or without UV information (98.5% in our 211 sample). Regardless, we

recommend mass estimates be made with UV information included where possible to prevent

potentially large mass estimate errors.

2.5.3 SFR Comparison

Hα SFR estimates were calculated using a linear relationship provided by Calzetti et al. 2013

[31]. For consistency, a similar linear relationship for UV luminosity was also used to es-

timate UV SFR values. Using a single parameter star formation history for both ZPEG

and FAST++ resulted in poorly constrained template SFR values. As such, we excluded

template SFR samples from the remainder of our analysis.

Hα and UV SFR values were estimated using relationships from Leitherer et al. 1999

recalibrated for a Chabrier IMF [102]. Hα SFRs were calibrated for a stellar mass range

of 0.1–100 M⊙ and star forming timescale τ ≥ 6 Myr. Type-B recombination was assumed

47



2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
FUV log(SFR)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

NU
V 

lo
g(

SF
R)

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
PISCO H  log(SFR)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

GA
LE

X 
UV

 lo
g(

SF
R)

SN Ia hosts
NUV slope = 0.57±0.04
FUV slope = 0.55±0.04

Figure 12: A comparison of global aperture SFR estimates using various techniques. The

left-hand plot compares FUV and NUV SFR estimates, which show very clear agreement

with each other. The right-hand plot compares FUV and NUV SFR estimates to Hα SFR

estimates. The orange dotted line corresponds to NUV LinMix mean fit, while the purple dot-

dashed line corresponds to FUV LinMix mean fit. Note that UV-calibrated SFR estimates

include two sources of error: one from UV flux uncertainty and another 15% fractional error

from calibration uncertainty. Open circles correspond to the PISCO SN Ia subsample.
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with Te = 104K and ne = 100 cm−1:

SFR(Hα) = (0.88) 5.5× 10−42L(Hα) (22)

where the factor of 0.88 accounts for our use of a Chabrier IMF instead of a Salpeter IMF and

L(Hα) is the luminosity calculated from the observed flux and luminosity distance. PISCO

corrected Hα flux for nebular host attenuation using measured versus theoretical Hα/Hβ

ratios [59].

We used a UV SFR calibration valid for stellar mass range of 0.1-100 M⊙ and star forming

timescale τ = 10 Myr:

SFR(UVi) = (0.88) 4.3× 10−47λiL(UVi) (23)

where i indexes the NUV and FUV effective wavelengths. For both equations, L has units

ergs s−1. STARLIGHT AV values were used to dust-correct UV flux via a Fitzpatrick dust

extinction law with RV = 3.1, consistent with STARLIGHT’s dust treatment described

in Subsection 2.4.2.3 [52]. Note that UV-calibrated SFR estimates carried a further 15%

fractional error added in quadrature with luminosity uncertainty [31].

Four SN Ia hosts lacked Hα flux measurements, excluding these from further analysis.

We also note that SN Ib SN2003i’s host IC2481 had erroneously large FUV flux uncertainty,

as seen in both plots of Figure 12.

The left-hand plot from Figure 12 demonstrated expected consistency between our NUV

and FUV SFR estimates. There was a global median offset of 0.22 dex towards higher NUV

SFR estimates, an artifact in the chosen SFR calibration’s explicit linear dependence on

wavelength that is partly accounted for by the mentioned 15% fractional error added to our

estimates. Indeed, the offset remained unchanged when UV SFR estimates uncorrected for

attenuation were instead used.

In the right-hand plot of Figure 12, we compared UV-calibrated SFR estimates to Hα-

calibrated SFR estimates from PISCO spectra. To account for uncertainties along both axes

we used LinMix to regress these UV samples against our Hα sample. Said regressions both

had fit slopes less than one; OLS linear regression results were nearly identical to the mean

LinMix model parameters. When UV photometry was uncorrected for dust, UV-Hα SFR
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regression slopes were shallower at a 2.5σ significance. An physical source of the observed

scatter resulted from UV flux tracing SFR timescales of 10-100 Myr; nebular emissions such

as Hα trace a near-instantaneous (< 10 Myr) SFR timescale [91]. We attempted to alleviate

this by using a UV SFR relationship recalibrated for a shorter star formation timescale

(≈ 10 Myr), but such recalibration translates to only a global offset in log10(SFR) estimates.

Readily apparent in Figure 13 is said star formation timescale reducing the fit slope in SFR

sample comparison, with UV SFR values being consistently larger than Hα SFR estimates

in the range log10 SFR(Hα) < −1. This was consistent with Hα and UV flux both capturing

very early star formation, but only UV flux capturing B-type stellar flux contribution after

ionizing O-type stars have died out. Difference in our elliptical UV photometry apertures

and PISCO’s hexagonal apertures contributed to the observed scatter as well.

2.5.4 sSFR Bias Comparison

In the top plot of Figure 14 we took 51 Hubble residuals of SNe Ia with PISCO Hα and

GALEX FUV+NUV photometry coverage to three sSFR samples: FUV and NUV SFRs

normalized by FAST++ mass estimates, and Hα SFR normalized by STARLIGHT mass

estimates. FAST++ mass estimates were calculated with GALEX and SDSS photometry.

Linear OLS fits gave consistent slopes relative to each sSFR sample and were each statistically

consistent with a zero slope. With our Stan-implemented tanh model we found all three

51 host sSFR samples fit for slightly larger (and positive) step sizes than our mass step

results with Hα giving ∆µ = 0.05 ± 0.02, NUV giving ∆µ = 0.06 ± 0.02, and FUV giving

∆µ = 0.06± 0.02. NUV and FUV step locations were sSFRs = −10.14± 0.42 and sSFRs =

−10.28 ± 0.52, respectively. The fit Hα step location was at a 0.5 dex lower sSFR with

sSFRs = −10.96 ± 0.41. Normalizing Hα sSFR values with FAST++ mass estimates gave

a step location closer to its UV sSFR counterparts with sSFRs = −10.48± 0.52 and ∆µ =

0.06 ± 0.03 mag. Using instead all available 73 SN Ia hosts with global Hα flux to fit Hα

sSFR values against Hubble residuals saw the step size inexplicably drop a 1σ-significant

shift by 0.03 mag to only ∆µ = 0.02 ± 0.02, with the step location parameter fitting for

sSFRs = −10.83± 0.73. This step location was effectively unconstrained within the bounds
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Figure 13: The top plot compares sSFR to stellar mass for all three flux-calibrated SFR

samples for global aperture for our 51 host SN Ia subsample. The bottom plot similarly

compares SFR to stellar mass. The lack of UV sSFR values below -12 dex is apparent.

Dashed lines are for reference.
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Table 4: Tanh model parameter results for the various sSFR samples used in this analysis.

sSFR Sample sSFRs ∆µ ∆µ0

51 Hα −10.96± 0.48 0.05± 0.03 0.03± 0.02

73 Hα −10.83± 0.73 0.02± 0.03 0.02± 0.02

51 Hα & FAST++ −10.42± 0.41 0.06± 0.03 0.03± 0.02

51 FUV −10.28± 0.52 0.06± 0.02 0.04± 0.02

51 NUV −10.14± 0.42 0.06± 0.02 0.04± 0.03

enforced on the sampler. See Table 4 for a summary of all sSFR tanh model results.

In Figure 15 we compared SALT2 parameters x1 and c to the same three sSFR samples,

marking with vertical lines the best-fit sSFR step location for each of the three samples.

Obvious in this plot were the lowest Hα sSFR estimates being less than the lowest UV

sSFR estimates by an order of magnitude. To see if the SN Ia host bias was dependent on

SFR tracer, we calculated the rank correlations coefficient Spearman’s ρ of the three sSFR

samples against SALT2 x1. A relative comparison of these ρ values demonstrated uniformity

with modest rank correlation with ρ = 0.61 for Hα, ρ = 0.66 for NUV, and ρ = 0.62 for

FUV sSFR samples, providing tempered support for star formation epoch (10 Myr versus

100 Myr) being an insignificant factor in our host bias measurement. Interestingly, when

repeated with UV SFR estimates uncorrected for dust, both NUV and FUV Spearman’s ρ

values decreased to ρ = 0.55 and ρ = 0.54, highlighting the important of dust corrections

when measuring the SN Ia host bias.

Hα sSFR step size parameters had uncertainties within 2σ significance of a zero step

fit, but FUV and NUV sSFR step size parameters fit with a 3σ significance from a zero

step. Despite a modest sample size of 51 hosts, this 3σ significance was the the best of any

step models we fit in our analysis. The combination of SFR and stellar mass provided a

stronger and larger step signal than mass alone, consistent past results [142, 137]. The mass

sample chosen to normalize Hα SFR values influenced sSFR step location, with Hα SFR

normalized by FAST++ mass values having a step location closer to UV sSFR estimates by
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Figure 14: The top plot is a comparison of differing sSFR estimates to Hubble residuals for

51 SNe Ia. The bottom plot is a comparison the Hα sSFR estimates using STARLIGHT or

FAST++ mass estimates (consistent and inconsistent apertures, respectively). sSFR tanh

model fits are given in the top plot for Hα (solid orange), NUV (dotted purple), and FUV

(dashed green). The bottom plot compares Hα sSFR normalized using STARLIGHT (orange

diamonds) and FAST++ (purple x’s) masses. The solid orange line is the best fit tanh model

for sSFR values from STARLIGHT mass estimates, the dotted purple line is the tanh model

result instead using FAST++ mass values.
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0.05 dex. This observed sSFR step location shift was an order of magnitude larger than the

corresponding 0.05 dex median mass offset between these 51 FAST++ and STARLIGHT

mass values. The lower minimum Hα SFR (as seen in Figures 13 and 15) explained the

remaining difference between the the Hα and UV sSFR step locations. The observed step

location change for NUV and FUV sSFR samples was a consequence of an explicit wavelength

dependence in our SFR UV calibration. There was only a slight increase in step size from Hα

to UV sSFR samples. This less than 1σ change was statistically insignificant and provided

no evidence that tracing differing star formation timescales influenced sSFR step size. Using

all available 73 Hα sSFR values normalized by STARLIGHT did result in weak step size

detection well within 1σ of a zero step. When fitting for the mass step using only these 73

PISCO hosts, we found an unconstrained mass step location, evidence that this particular

PISCO host subset simply had a weak to nonexistent mass step signal.

We found no evidence that observation method nor fitting technique influenced sSFR step

size. Lending support to this conclusion, the host bias strength inferred from Spearman’s ρ

rank correlations between x1 and sSFR samples were very similar. The sSFR step location

was partly influenced by SFR tracer choice. Different SFR tracers measure different star

formation ages Hα-based SFR tracks young O-type stars, while UV-based SFR includes a

wider range massive stars.

2.6 Conclusion

This project sought to determine whether different observation methods or fitting tech-

niques create or change the observed SN Ia host bias in the SN Ia standardized magnitudes.

When we examined subsets with more complete complementary photometry, the reduced

statistics resulted in all mass step sizes being at or within a 2σ significance with respect to

a zero step, ranging from -0.03±0.02 mag to -0.04±0.02 mag. Mass step size values for our

three optical wavelength mass samples (FAST++ and ZPEG with SDSS, STARLIGHT with

PISCO) were all relatively consistent, being within a 1σ significance of each other (Table 3).

The mass step location, but not size, varied under different IMF and stellar spectra choice.
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Including GALEX UV when fitting for photometric mass estimates with FAST++ led to an

insignificant 0.33σ change in mass step size and no discernible change in corresponding step

location. Not including UV information could ostensibly influence mass step measurement,

but that was not the case for our used PISCO subsample. Given that this could matter,

including available UV information during SPS fitting is the best practice.

The dust-corrected sSFR samples were fit against Hubble residuals for a 51-host subsam-

ple with both UV and SDSS coverage alongside available Hα flux measurements (Table 4).

Physically different star formation timescales traced by Hα and UV flux sourced a Hα sSFR

step location ∼0.7 dex lower than UV sSFR step locations. Step size parameter values for

these sSFR samples were all within 1σ of each other. The sSFR steps from both FUV or

NUV sSFR samples were the most statistically significant of all our step model runs at 3σ,

with a step size of 0.06±0.02 mag. Alternatively, using all available 73 PISCO SN Ia hosts

with Hα flux produced the smallest step size of any model fit, being more than a factor of

two less than the corresponding 51 host sample Hα step size parameter value and within a

1σ significance of a zero step. With the 51 PISCO sample across all three sSFR samples the

sSFR step sizes were clearly consistent for all observation methods and fitting techniques.

Thus, we concluded that the methodology or technique choice had no significant effect on

sSFR step size measurements. Indeed, for this project only a particular change in sample

size led to a discernible change in sSFR step parameter value for our particular data set.

We undertook this study expecting to find that these differences would matter for the

current state of SN Ia cosmology. We found that they did not in the presently available

sample, but we nevertheless urge continued attention by the SN cosmology community to

advances in our understanding of galaxy properties. Given the complex nature of the SN Ia

host bias problem, it is paramount that galaxy community resources be researched and

utilized to reach a resolution in the future and to be mindful of coming developments in

both SED fitting and SPS research.
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3.0 An Agnostic Approach To Building Empirical Type Ia Supernova Light

Curves: Evidence for Intrinsic Color Variation using Nearby Supernova

Factory Data

This chapter is the product of a DoE Office of Science SCGSR 2019 Award1 alongside

DoE advisor Dr. Alex Kim of the Lawrence Berkeley National Laboratory. At the time of

writing it is in internal review with the Nearby Supernova Factory2 [5]. It will be submitted

to the Astrophysical Journal Summer 2023.

We present a new empirical type Ia supernova (SN Ia) model with three chromatic flux

variation templates: one phase-dependent and two phase-independent. No underlying dust

extinction model or patterns of intrinsic variability are assumed. Implemented with Stan and

trained using spectrally-binned Nearby Supernova Factory spectrophotometry, we examine

this model’s two-dimensional, phase-independent flux variation space using two motivated

basis representations. In both, the first phase-independent template captures variation that

appears dust-like, while the second captures a combination of effectively intrinsic variabil-

ity and second order dust-like effects. Previous empirical SN Ia models either assume an

effective dust extinction recipe in their architecture, or only allow for a single mode of phase-

independent variation. The presented results demonstrate such an approach may be insuffi-

cient, because it could ‘leak’ noticeable intrinsic variation into phase-independent templates.

Per-SN dust properties are then estimated with additional forward modeling, where we find

that including intrinsic-color-dominated SNe Ia in effective RV estimation biases one’s results

low, albeit by an amount too small to explain chronically low average RV estimates from

most past SN Ia sample analyses. An effective RV = 2.55 is recovered for dust-dominated

SNe Ia. For intrinsic-dominated SNe Ia we find RV = 2.25, and for the whole sample we

find RV = 2.47. Future work will increase our model’s wavelength bin count and incorpo-

rate a third phase-independent template to better separate intrinsic variation from dust-like

variability.

1https://science.osti.gov/wdts/scgsr
2https://snfactory.lbl.gov/
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3.1 Introduction

There are two errors that limit SNe Ia’s capacity to constrain cosmological parameters:

the number of observed SNe Ia (statistical uncertainty) errors resulting from observation

bias, modeling error, and calibration (systematics). Recent SN Ia cosmology analyses have

significantly reduced statistical uncertainty by utilizing over 103 spectroscopically confirmed

SNe Ia [16, 152]. LSST, via the Vera Rubin Observatory, will further increase our usable

SN Ia sample by at least an order of magnitude over ten years after its commissioning [79].

Although internal photometric calibration will remain an important systematic to account

for, LSST will alleviate tedious inter-survey photometric calibration systematics performed

in many past analyses while still providing impressive statistics. As a result, LSST will

increase the relative importance of systematics arising from SN Ia light curve modeling and

standardization for constraining cosmological parameters.

3.1.1 Photometric Variation and Empirical Models

All SNe Ia peak in brightness at the rest-frame B -band wavelength and exhibit a single

local maximum blueward of 5000 Å. As mentioned, light curve width correlates with B -band

maximum brightness so that longer duration SNe Ia are systematically brighter [124]. We

refer to this as the width-luminosity relation (WLR). Similarly, bluer SN Ia light curves

are systematically brighter at B -band maximum, which we similarly refer to as the color-

luminosity relation (CLR) [132].

One can interpret SN Ia empirical models as transforming high-dimensional sets of ob-

servations to a lower-dimensional set of parametric latent templates that inscribe dominant

modes of SN Ia variability. Many models directly obtain light curves and modes of light curve

variability (namely, the WLR and CLR) directly from photometry [135, 80, 29]. These light

curve fitters or distance estimators require K-corrections of observed photometry to model

rest-frame pass-bands, complicating error propagation alongside other issues [97, 117, 108].

More importantly, they only capture aforementioned photometric variational modes, being

insensitive to substantially more complex SN Ia variability revealed with spectroscopy.
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SN Ia spectral variability is either intrinsic to SN Ia populations or is extrinsic, instead

arising from processes external to the explosion, such as dust extinction or an SN Ia’s inter-

action with its circumstellar environments [117, 80]. Furthermore, photometric relationships

emerge from spectral variation, with the temperature dependence of Fe line blanketing at

least partly driving the WLR and explaining its wavelength dependence being such an ex-

ample [85]. Variation in progenitor mass also contributes to the WLR, as lower-mass SN Ia

progenitors are systematically dimmer and have faster-declining light curves compared to

their more massive counterparts [148]. Certain spectral features directly correlate with pho-

tometric SN Ia properties, such as the F(6420 Å)/F(4430 Å) line ratio correlating with

maximum B-band brightness [11], and the ratio of Si II λλ5972 and 6355 Å (or Si II λλ5972

and 3858 Å) correlating with light curve width [118].

Many SN Ia subtypes have been categorized by their spectral variation [21, 17]. Grouping

SNe Ia based on Si II variability during a Tripp standardization procedure has been shown

to reduce SN Ia dispersion post-standardization more than use of only color and stretch

alone [166, 53]. Furthermore, spectral information can improve effective total-to-selective

extinction RV estimation, with Chotard 2011 using spectral features to recover an effective

RV value consistent the Milky Way average RV = 3.1 [38]. Given this plethora of spec-

tral variety within SNe Ia, and this variety’s potential to further improve standardization,

commonly used and recent SN Ia models make heavy use of spectroscopic observations in

training.

Most recent SN Ia models reduce the dimensionality of SN Ia observations by constructing

combinations of underlying spectral or color variation templates, with one template capturing

the average, or fiducial, spectral evolution of SNe Ia. This approach removes any need

for K-corrections and related uncertainty propagation [108]. The ubiquitous SALT model

family (and its cousin SiFTO) are the canonical example of the spectral template technique

[65, 41, 16, 126]. This family of linear SN Ia models capture variation beyond a mean

spectral surface with a first-order flux variation template and a phase-independent color

template (with per-SN contribution parameters x1 and c, respectively). SALT2’s success

over prior models saw its widespread adoption and continuous improvement, with the most

recent version SALT3 extending its wavelength coverage to the near-infrared (NIR) [93].
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More statistically rigorous linear spectral template models have also been developed, such

as BayeSN with its potent hierarchical Bayesian framework [107, 108, 159].

A plethora of sophisticated models have recently been developed using SNfactory’s spec-

trophotometric time series [5]. [147] and their SNEMO model extracts up to 15 linear

principal functional components from a set of SN Ia spectral surfaces trained using Gaus-

sian processes to maximally explain SN Ia variation. Alternatively, Leget et al. in their

SUGAR model treats SN Ia variation as a linear combination of spectral index templates,

extending the initial work of Chotard 2011 into a fully generative model [101]. SNEMO and

SUGAR, along with all the models mentioned so far, utilize linear dimensionality reduction

techniques.

Boone et al. 2011 apply the Isomap method with their Twins Embedding model to train

a nonlinear parameterization of intrinsic SN Ia variation at maximum brightness [20] , while

Stein et al. 2022 introduce a nonlinear probabilistic autoencoder (PAE) that captures intrin-

sic variation across both wavelength and phase [157]. Both find that a nonlinear approach

requires only three intrinsic model components to describe SN Ia spectral variation where

more traditional linear principal component analysis model would require seven components

or more [147]. These two models also demonstrate noticeable improvements over SALT2 in

standardized SN Ia dispersion from ≈ 0.12 mags to ≤ 0.09 mags. Improvements through

nonlinear technique application are not limited to light curve models: Rubin et al. 2015 intro-

duce the hierarchical Bayesian framework UNITY that allows for nonlinear standardization,

leading again to improved SN Ia dispersion post-standardization relative to the linear Tripp

approach [144].

3.1.2 The RV Question

Phase-independent SN Ia variation is an amalgamation of extrinsic and (possibly) in-

trinsic components [117, 80, 125]. Assumptions are usually made to decouple these two

variational modes, be it by assuming a functional dependence of intrinsic phase-independent

variation on SN Ia light curve shape [125, 28], fitting for or assuming an effective dust ex-

tinction curve with some effective RV [80, 94, 29, 108], or combining all phase-independent
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variational modes into a single effective ‘color’ template [65, 93].

The steepness with respect to wavelength of SN Ia extinction curves that describe extrin-

sic variation, commonly quantified with RV , is a source of ongoing debate — all mentioned

approaches (or combinations thereof) recover suspiciously steep extinction curves (or low

RV ). For example, Kessler et al. 2009 find a best-fit RV ≈ 2 trying to minimize Hubble

residual scatter with MCLS2k2 or when fitting an effective dust curve to SALT2’s phase-

independent color model [94]. Similarly, Phillips et al. 2013 and Burns et al. 2014 recover

low RV values when assuming dependence of intrinsic phase-independent variation on light

curve proxies (i.e. ∆m15(B) or SNooPY’s SBV ) [125, 28].

Alternatively, hierarchical Bayesian spectral template models such as BayeSN recover

RV ≈ 2.9 [107, 108], more consistent with the Milky Way Average [33], while single-epoch

spectroscopic methods have recovered higher RV values as well [38, 75] Nevertheless, it

remains unanswered if low RV values are an artifact of incomplete modeling, or if SN Ia

do actually do ‘prefer’ steeper extinction curves. If SN Ia are indeed better described with

steeper extinction curves, then it is unclear whether this steepness arises from peculiar host

galaxy dust properties, or from improper ‘leaking’ of intrinsic variation into an empirical

model’s extracted extinction curve(s).

Improper derivation of SN Ia RV is a proposed source for the now ubiquitous mass step

bias. This bias sees brighter standardized SN Ia occur more frequently in more massive hosts

[88, 158, 128, 162]; similar step biases for star formation rate and stellar population age also

exist [45, 138, 137, 140, 141]; Brout et al. 2019 finds that if one models the underlying per-SN

RV population with a relatively wide Gaussian distribution centered at RV ≈ 2, then the

mass step bias is largely nullified [24]. Alternatively, with BayeSN Thorp et al. 2021 finds that

lower and higher mass hosts feature different effective RV values at a ≈ 1σ significance, with

both host mass subsamples obtaining systematically higher RV values than that found by

Brout et al. 2019 [159]. Overall, clarifying per-SN RV population properties is an important

step to understanding the mass step’s size and origin.
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3.1.3 Shortcomings in Phase-Independent Modeling

All past models either assume a dust extinction model for explicit phase-independent

templates (MCLS2k2, SNooPY, SNEMO, SUGAR, BayeSN, and current nonlinear models)

or include a single phase-independent template which does not differentiate between intrinsic

and extrinsic variation (the SALT family). Excluding the maximum brightness model Twins

Embedding, each of these models characterize phase-independent variability with only a

single model component. Physical considerations alone demonstrate this to be an insufficient

treatment. As summarized in Weingartner 2001, one would expect at least two extrinsic

variation parameters per SN Ia: one gauging dust column density or optical depth (i.e.

AV ) and the other probing second order characteristics such as dust grain properties (i.e.

RV ) [168]. Furthermore, it is plausible that empirical SN Ia models could extract intrinsic

variation into a phase-independent template set. In this era of precision cosmology, modeling

and standardization systematics remain stubborn obstacles to maximizing current and future

SN Ia survey utility. Better understanding underlying extracted modes of phase-independent

variation could answer outstanding questions about the SN Ia population (i.e. the low SN Ia

RV debate or the source of the bias associated with host properties), and improve both SN Ia

modeling and standardization.

We present a new SN Ia empirical model to explore deeper the phase-independent vari-

ability of SNe Ia. This model features three chromatic flux variation templates: one phase-

dependent and two phase-independent. These two phase-dependent components provide the

flexibility to account for multi-parameter dust models while also absorbing an intrinsic time-

averaged flux variation beyond that accounted for by the phase-dependent component. All

templates are physics-agnostic, as no assumptions are made about expected spectral features

or dust treatment. This new model is trained on SNfactory’s rest-frame spectrophotometric

time series.

Our model bears some similarities with BayeSN. Both models are linear models imple-

mented with Stan. How phase-independent variability is accounted for varies in approach,

though. BayeSN implements a single-component dust extinction recipe within a hierarchical

model framework, from which they recover an effective RV that is largely consistent with the
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Milky Way average. This dust extinction recipe only considers a global RV for their training

sample. In contrast, our model has two phase-independent templates, providing it two model

degrees of freedom for which no physical assumptions are made. Unlike BayeSN, our model

does not directly incorporate redshift information, nor model spectral surface residuals.

In Section 3.2 we introduce the training set and its quality cuts. We describe our model

and fitting technique in Section 3.3, with global model template and refit per-SN parameter

results being presented in Section 3.4. Section 3.5 explores per-SN dust property estimates

after additional forward modeling with an assumed underlying absolute extinction population

model. Finally, we provide concluding remarks in Section 3.6.

3.2 Data

Between 2004 and 2014 SNfactory observed spectrophotometric time series of nearly 300

SNe Ia with the SuperNova Integral Field Spectrograph [5] (SNIFS, Lantz [100]). SNIFS is

continuously mounted at the University of Hawaii 2.2 m telescope, using dual-channel, mod-

erate resolution (R ∼ 600− 1300) spectrographs to simultaneously observe transient events

from 3200 to 5200 Å and 5100 to 10000 Å, respectively. This unique and homogeneous SN Ia

data set is calibrated with CALSPEC and Hamuy standard stars [18, 67, 66]. The photomet-

ric calibration method is summarized in Buton et al. 2013, with Pereira et al. 2013 further

describing non-photometric-night calibration [122, 30]. Host-galaxy subtraction methodol-

ogy is presented in Bongard et al. 2011 [19]. Each SNe Ia has also been fit using SALT2.4

[16].

For our SN Ia training sample we generate synthetic SN-frame photometry using nλ log-

distributed top-hat filters from published rest-frame SNfactory spectra [4]. These rest-frame

observed spectra are in units of 1010erg s−1 cm−2 and have been de-redshifted to a reference

redshift z = 0.05. Cosmological time dilation is also accounted for by the aforementioned

rest-frame transformations. This work does not attempt to fit absolute magnitudes or fit

for cosmological parameters, so per-SN redshifts are not used. Due to high flux variance at

wavelength boundaries, and because most objects have a higher redshift than z = 0.05, the
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per-spectra reference frame wavelength range is truncated to between 3350 Å and 8030 Å.

The spectral resolution of this top-hat filter synthetic photometry is flexible — for this

work, we use a modest nλ = 10 filter count. These nλ = 10 bins are spaced at constant

spectral resolution R, providing a wavelength bin size of ≈ 400 Å resolution for bluer bands

and ≈ 500 Å for redder bands. SNfactory data consists of flux densities along a uniform

grid of wavelengths. Because of this uniform spacing, we simply sum flux densities along

the wavelength range defining our top-hat filters and then multiply said sum by the filter’s

wavelength range to calculate top-hat synthetic photometry:

Fbin = [λmax − λmin]
max∑

i=imin

fλi
. (24)

Similarly, each corresponding variance spectrum is summed in quadrature to calculate syn-

thetic photometry uncertainties.

For every observation, for the binned synthetic photometry a signal-to-noise ratio (SNR)

of at least SNR > 5 is required. It is also required that each SN Ia to have at least eight

separate days of observations. Where a single SN Ia has multiple spectra for a given night,

the weighted average of these flux values is used as a single effective observation. Given

the difficulty in constraining date of maximum in SN Ia empirical models, we demand that

there exist at least one observation two days before SALT2 maximum phase. Furthermore,

no SNe Ia with an observation gap greater than four days within a four-day range before

and after SALT2 maximum are used. SN Ia light curves do not have significant structure

less than four days, so gaps of this size or smaller have no discernible impact on results. For

consistency, the chosen maximum gap size of four days is the same as our fixed Gaussian

process mean predictor length scale hyperparameter later described in Section 3.3. These

cuts leave 80 SNe Ia in the training sample.

The distribution of SN Ia color parameters for any model is asymmetric due to the

positive-definite nature of dust extinction [153, 107, 26]. SN Ia stretch parameters such as

SALT2’s stretch proxy x1 are also best modeled with asymmetric distributions [153]. We

are interested in the Gaussian core of these distributions and partly ‘symmetrize’ the data

set by clipping extended tails of our SALT2 c and x1 samples. Specifically, a 2σ clipping is

done on each SALT2 c and x1 parameter samples in the direction each parameter’s longer
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tail (Figure 16). The c clipping prevent heavily reddened SNe Ia from dominating recovered

dust-like behavior and obscuring dust properties of the average SN Ia in training set — this

c cut removes particularly reddened SNe Ia with peak apparent B− V > 0.18. The clipping

is motivated by our interest in the core of the SN distribution that is used for cosmology, but

comes at the expense of removing rarer objects that potentially provide more information

on modeling SN colors. A total of 73 SNe Ia remain after SALT2-parameter σ clippings,

consisting of 1155 individual spectra. The redshift range for this subsample is 0.01 < z < 0.08

along a range of host galaxy masses (8 < log10(M) < 12).

Relative to Aldering et al. 2020 [4], and similar in spirit to Boone et al. 2021 [20], we

remove spectra having poor extractions caused by very low SNR. This step removes seven

spectra, leaving 1148 to train the model.

3.3 Model

Global template parameters and per-SN parameters are differentiated by upper-case and

lower-case characters, respectively. This model discretizes phase and wavelength space, using

np = 16 phase nodes ranging from −16 ≤ tp,i ≤ 44 in four-day intervals; as mentioned in

Section 3.2, nλ = 10 with bins of constant R. Each phase-dependent template is an np × nλ

matrix of parameter nodes, while each phase-independent template is a length-nλ vector.

The model prediction of the time-dependent SED evolution of an individual SN Ia is

based on a temporal interpolation over a set of wavelength-dependent light curves at fixed

phases Fλ,eff that are specific to that supernova. The interpolation is controlled by a kernel

K, which operates on Fλ,eff as shown in Eq. 25. This equation is the same used to predict

the mean in a Gaussian process, so we refer to this interpolation scheme as the Gaussian

Process Mean Predictor (GPMP):

fλ(t) = K(t− t0, tp)K
−1(tp, tp)Fλ,eff. (25)
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Figure 16: SALT2 c and x1 cuts to better capture a Gaussian ‘core’ for training. The

shaded regions correspond to 2σ clippings along the longer tail of each respective c and x1

distribution.
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Feff = (   ∘ exp ∘

χ0 + s1 ×

+ c1 ×

+ c2 ×

Fiducial template F0

Phase-dependent template M1

Phase-independent template L̂′ 1

Phase-independent template L̂′ 2

Warping template Ω

)
Template parameters

per-SN parameters

Figure 17: A schematic of our model’s flux nodes. Each SN Ia has an effective flux node

matrix Feff that is an element-wise product of the sample’s fiducial flux template F0 and

a warping matrix Ω. This warping matrix includes the phase-dependent chromatic flux

variation template M1, two phase-independent chromatic flux variation templates L1
′ and

L2
′ (which make up the two dimension phase-independent chromatic variation model), and

per-SN parameters χ0 (achromatic offset), s1 (phase-dependent chromatic flux variation

contribution), and c1 and c2 (phase-independent chromatic flux template contributions).

Presented here are the L1
′ and L2

′ basis representation of the phase-independent templates

(see Section 3.3.3 for more information). Per-band nodes are presented in this plot having

the same figure color.
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These GPMP kernel matrices K specifically are calculated with a stationary p = 2 Matérn

covariance function C5/2 to ensure interpolated curves are twice-differentiable:

Kij = C5/2(|tp,i − tp,j|; ρ, σ2). (26)

Fλ,eff is the light curve at wavelength λ on a grid of phase nodes; all nλ = 10 light curves

form the flux node matrix Feff. tp,i ∈ tp is a vector indexing the model’s np phase nodes

and the per-SN parameter t0 aligns said SN Ia’s observations with the model’s phase grid.

Intuitively, the first kernel matrix K in Eq. 25 maps each observation to our phase node

space after said observation phase ti is translated by t0, while the second accounts for Fλ,eff

flux node covariance at grid phases tp,i and tp,j. GPMPs provide a natural framework to

translate observed phase ti by the per-SN t0 parameter to the model grid’s phase zero-point.

Note that t0 is not the fit date of maximum brightness—instead, t− t0 aligns observation

phase with the model’s phase grid tp. As we train the model using rest-frame transformed

spectrophotometry, each t0 is fit in its SN Ia’s reference z = 0.05 frame. The kernel length

scale hyperparameter ρ is fixed to match the phase node interval resolution of 4 days, al-

though the model is insensitive to any reasonable choice in ρ (for example, ρ ≈ 1 week).

Furthermore, by fixing ρ = 4, the matrix K is calculated and inverted only once during

sampling. The uncertainty hyperparameter σ2 is set to unity since it cancels out in Eq. 25.

The Feff of each SN is decomposed via element-wise multiplication (also called the

Hadamard operation ◦) from a fiducial flux template matrix F0 and a warping matrix Ω:

Feff = F0 ◦Ω. (27)

F0 encodes the training sample’s mean flux evolution via a set of fiducial light curves, while

Ω encodes deviations from these fiducial light curves for a given SN Ia. Specifically, each

column Ωλ of matrix Ω, for a given λ node, is defined as:

log(Ωλ) = −2.5(χ0 + s1Mλ,1 + c1Lλ,1 + c2Lλ,2). (28)

Mλ,1 is the λ-node column of the phase-dependent chromatic flux variation template matrix

M1. M1 therefore encodes training sample light curve variation. Lλ,1 and Lλ,2 are the λ-node

elements of the two phase-independent chromatic flux variation template vectors L1 and L2,
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respectively (these appear as scalars in Equation 28 because of their phase independence).

Each explicit per-SN parameter is contained within the warping template: the achromatic

offset parameter χ0, the phase-dependent chromatic flux variation parameter s1, and the two

phase-independent chromatic flux variation parameters c1 and c2. Both intrinsic brightness

variability and peculiar velocity effects are accounted for by the χ0 parameters.

Figure 17 illustrates this model’s architecture, specifically displaying the transformed

phase-independent template basis L1
′ and L2

′ vectors later discussed in Section 3.3.3. Fig-

ure 18 is a directed acyclic graph of our model. Its conditional probability structure only

connects observations to the model flux — deterministic connections (transformations and

definitions) are presented with dashed arrows. Global template parameters are located in

the top blue box and per-SN parameters in the bottom red box.

3.3.1 Template Constraints and Per-SN parameter Models

The third λ band, tp,i = 0 phase node of F0 is fixed to one — it is referred to here as fixed

band 3 and corresponds to the wavelength node at 4084 Å, the top-hat filter band closest

to a standard B -band. This constraint prevents any scaling degeneracy between F0 and

the model’s χ0 parameters while also setting the specific phase node that the t0 parameter

aligns observations to. Physical consideration further requires all F0 flux node parameters

be bound to greater than or equal zero, so we enforce nonnegative values for all flux values.

All chromatic flux variation templates L1, L2, M1 have scaling degeneracies with their

respective per-SN parameters c1, c2, and s1. For example, the transformations s1 → s1/α

and M1 → αM1 leave the model unchanged; identical degeneracies exist for c1-L1 and c2-L2.

Each scaling degeneracy is removed by requiring these three templates be normalized. This

is a straightforward procedure for L1 and L2, where each are instantiated in Stan as unit

vectors, but a more involved process is used to normalize template matrix M1. We first

define a unit vector of length np × nλ that is then transformed into M1 by ‘chopping’ said

unit vector into nλ column vectors (each of length np) that forms the column space of a now

normalized M1
3. No further constraints or bounds are placed on template parameters.

3The unit vector constraints for L1, L2, and M1 are what prevent these templates from being described
as color variation templates. If instead we constrained these templates at a reference wavelength node to be
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Feff = F0 ∘ Ω
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Figure 18: A directed acyclic graph representation of our model. Per-SN model parameters

are located in the bottom red box; global template parameters are in the top blue box.

The dashed arrows are deterministic relations (transformations and definitions). The only

explicit conditional probability in the model’s architecture relates observations f obs
λ (t) to

modeled flux fλ(t). We perform Gaussian process mean predictor (GPMP) interpolation

per-band in mapping effective template nodes Feff nodes to a predicted flux fλ(t).
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Zero-mean constraints are placed on per-SN parameter sets c1, c2, and s1. A reference

SN Ia could be selected to serve as the c1, c2, and s1 zero points, but we opt instead to

require these per-SN parameter sets to always have a mean of zero. These constraints are

enforced structurally by instantiating these parameter sets as centered vectors (Appendix

C).

3.3.2 Fitting the Model

The SNfactory data set comes with variance spectra estimated from photon statistics and

detector noise. To these we add in quadrature a 3% relative flux error for each observation.

For each SN Ia, a further error equal to 2% of said SN Ia’s maximum observed flux is also

added in quadrature. The first source of error preferentially increases high-flux observational

error, while the second largely affects low-flux observations, particularly those 20 or more

days after peak brightness. SNfactory spectral variance are chronically underestimated —

this injected error is sufficient to allow Stan’s instantiated samplers to explore the posterior.

All added uncertainty is diagonal: no covariance is injected into our data before training.

To prevent overfitting, the data’s measurement errors are sampled from a Cauchy distri-

bution. This distribution’s extended symmetric tails places less statistical weight on outliers

than a normal distribution otherwise would. For each flux observation f obs
λ (t) with its cor-

responding measurement uncertainty σfλ(t), our likelihood function takes the form:

f obs
λ (t) ∼ Cauchy

[
fλ(t), σfλ(t)

]
. (29)

Each observation is assumed independent.

The model is implemented and trained using the statistics programming language Stan

[34]. Built into Stan is a No U-Turns (NUTS) Hamiltonian Monte Carlo sampler well

suited for sampling our model’s high-dimensional posterior. No explicit priors are placed on

templates or per-SN parameter sets, instead leaving them with default implicit flat priors

along any aforementioned bounds (Section 3.3.1).

Stan is informed with initial conditions estimated by first running simpler versions of the

model. We do this only to improve sampling efficiency — it is not necessary for our model’s

fixed to zero, then these templates would have units color, per the usual astronomical definition.
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convergence. This process is done iteratively, starting with the simplest model that only

obtains t0, F0, and χ0 parameters (a mean light curve model). The results of this simplest

model then become the initial conditions for a more complex model that includes L1 and

c1 parameters. Other components (specifically, L2 and c2, and then M1 and s1) are then

added and trained using prior model iteration’s fit as initial conditions until all the described

model’s components are incorporated. Note that we use SALT2’s tmax as initial conditions

for t0 parameters when training the simplest of these models.

With Stan’s default NUTS we pull 4000 samples for each of type 16 instantiated samplers:

2000 warm-up followed by 2000 samples iterations per-chain. Stan is run on the University

of Pittsburgh’s Computational Resource Center4. Convergence metrics were calculated after

post-processing using techniques provided in [163]. After training and post-processing, each

SN Ia is refit with template parameters fixed (F0, M1, L1, and L2) to determine final values

for per-SN Ia χ0, s1, c1, and c2, permitting a direct comparison of these per-SN parameters

against other empirical SN Ia models.

There is no selected standard ∆MB = 0 SN Ia identified in the training sample, leaving a

nontrivial linear degeneracy between achromatic offset parameters χ0 and phase-independent

parameters c1 and c2. For physical reasons, c1 and c2 should not correlate with intrinsic

magnitude, which ideally should only be captured by χ0.

Linear transformations from Leget 2020 are used to remove correlations between both

the c1 and χ0 parameters, and the c2 and χ0 parameters, as summarized in Appendix D

[101]. Implementing this directly in the Stan model leaves results unchanged but does reduce

sampling efficiency, so this step is performed after sampling.

3.3.3 Interpreting the Phase-independent Templates

Each sampler from Stan explores a plane spanned by the template vectors L1 and L2
5.

Even after decorrelating χ0 from c1 and c2, the output basis {L1,L2} is not unique, a

4https://crc.pitt.edu/
5In general, a plane is an affine space, not a vector space. All planes described in this paper do pass

through the embedding vector space’s origin, which ensures they are proper 2D vector subspaces. Because
of this, all planes discussed either intersect or are parallel. For brevity, in this paper we refer to any 2D
subspaces as planes.
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consequence of this model’s physics-agnostic architecture. This is because for any nonsingular

linear transformation the output basis vectors (i.e. aL1+bL2 and cL1+dL2 for a, b, c, d ∈

R and ab − cd ̸= 0) necessarily span the aforementioned plane. To quantify this plane’s

convergence (as opposed to only its basis vectors), for each posterior sample we calculate

a bivector L = L1 ∧L2 that, by definition, spans the plane of interest. Importantly, the

bivector representation L is no longer ambiguous.

A bivector is a geometric object representing an oriented plane element constructed from

the wedge product (see Figure 19 for an illustration). Intuitively, a bivector corresponds to

a plane like a vector corresponds to a line, and the wedge product is the dual to a cross

product in three dimensions. Unlike the cross product, the wedge product generalizes to

any finite-dimensional vector space greater than two, meaning bivectors are well-defined in

this model’s 10-dimensional wavelength node space. Now any SN Ia’a phase-independent

chromatic flux variation curve c = c1 L1+c2 L2 can be interpreted as residing in the plane

spanned by L, regardless of the selected L1,L2 basis.

Each component of the bivector L is calculated as follows:

Lij =
L1,iL2,j − L1,jL2,i√∑nλ

k=1

∑nλ

m>k

(
L1,kL2,m − L1,mL2,k

) , (30)

where L̂1,i is the ith wavelength component of template L1 and L̂2,i is the ith wavelength

component of template L2. Importantly, this representation is independent of L1,L2 choice.

Note that L is normalized so as to represent a unit plane element. With these transformed

parameters Lij, the model can unambiguously be tested for convergence and the best-fit

templates be determined.

3.3.4 Bases for the Phase-Independent Chromatic Variation Model

We now seek a pair of vectors, L1 and L2 that span L and readily provide insight into

the physical origin of the model’s two-dimensional phase-independent chromatic flux model.

Two such bases are considered.

The first basis, called the maximum variance ratio (MVR) basis, is derived directly from

the corresponding c1–c2 distribution. New and uncorrelated parameter sets cmvr
1 and cmvr

2
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v1

v2

v1 ∧ v2

v1 × v2

Figure 19: This is an illustration of a bivector (the blue parallelogram) v1 ∧ v2 constructed

by the vectors v1 and v2 (the red vectors) in three dimensions. A three-dimensional space

allows for the corresponding cross product to be included for reference (the red dashed

vector). Bivectors, like vectors, are oriented objects, with the bivector v1 ∧ v2 having a

counter-clockwise orientation determined by component vector ordering (here represented

with an oriented red loop). Reversing the product order reverses a bivector’s ‘circulation’

or orientation: v2 ∧ v1 = −v1 ∧ v2. Note that the cross product does not generalize to all

finite-dimensional vector spaces, while the wedge product ∧ does.
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with their relative variance maximized are found via a linear transformation. The result is a

basis for L where L1
mvr accounts for the most chromatic flux diversity by a single template in

L, while L2
mvr captures any remaining variation. This basis amounts to the assumption that

two independent physical effects affect chromatic flux variation (e.g. amount of dust, intrinsic

SN Ia diversity) while designating as much of the variance as possible to one source (e.g.

dust). This assumption provides some useful insights even if it does not totally satisfy our

physical expectations, as it does not consider additional possible effects (e.g. kind of dust),

nor that supernovae and their progenitor environments likely correlate with said effects. This

basis’s solution is found by numeric minimization; it is not orthogonal.

The MVR basis is determined as follows. A basis centered at the origin can be described

by the angle between unit vectors and their orientation. Starting with an orthogonalized

output basis from Stan L = [L1
orth,L2

orth] for L and a per-SN coefficient matrix c (here

arranged as an nsn × 2 matrix), adding an extra angle θ between the basis is achieved with

the transformation

L̃ = ML

=

 1 0

sin θ cos θ

L.
(31)

In this L̃ basis, the per-SN coefficients c′ = cM−1 have an orientation given by V T from

the singular value decomposition (SVD) of c′ = UΣV T . Taking V TM and normalizing its

rows to be unit vectors gives the properly oriented basis given θ. Note that these primed

components here are unrelated to those introduced below.

For this basis, the ellipticity of its corresponding c distribution is again found using

SVD, given by log Σ11 − log Σ22. An optimizer is used to determine the θ that maximizes

the ellipticity.

We also desire a basis that readily separates rapidly changing chromatic flux variation

(i.e. that akin to absorption/emission features) from continuum-like chromatic flux varia-

tion (i.e. dust-like behavior). This continuum-like variation is assumed to be dust-like, given

dust extinction’s ubiquitous contribution to SN Ia color/chromatic flux variation. For the

second basis, the vector L1
′ simultaneously resides within the planes spanned by both L
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and the Cardelli-Clayton-Mathis (CCM89) dust model Cardelli1989, defining the first basis

component. This intersection ensures it captures smooth, CCM89-like chromatic variabil-

ity. The other basis vector L2
′ is chosen to be perpendicular to L1

′, while still residing in

the L plane; this basis is orthogonal by construction. Note that L2
′ will not necessarily be

perpendicular to the plane spanned by CCM89, but is still guaranteed to provide the least

continuum-like variability w.r.t. wavelength (and therefore, the most spectral-feature-like

behavior) allowed by L. This basis provides a useful representation not because it recov-

ers a mathematically valid dust extinction curve, but instead because it clearly separates

rapidly changing chromatic flux variation from continuum-like variability. It is important

to remember that intrinsic variability could still affect the direction of the first basis vector

L1
′, which means this basis does not guarantee a physical decomposition into exclusive dust

and intrinsic components. As such, any dust-like properties inferred from L1 in isolation

are physically ambiguous. Forward modeling introduced in Section 3.5 explores per-SN and

effective dust-like properties.

The CCM89-derived basis is calculated as follows. Since CCM89 has two basis curves

a(λ) and b(λ) (one for each parameter AV and AV /RV , respectively), one can construct

a CCM89 unit bivector Lccm from discretized curves a(λ) → a and b(λ) → b using an

appropriately modified version of Equation 30: L̂1,i → ai and L̂2,i → bi. The two planes

spanned by L and Lccm then intersect within the nλ-dimensional wavelength vector space

along a line. It is the vector which spans this intersecting line that defines the new L1
′

template:

L1
′ = Intersection[L,Lccm]. (32)

We are free to choose a new L2 as long as it resides within the subspace represented by L. To

minimize this L2 template’s dust-like properties, L2
′ is defined as a θ = π/2 radian rotation

of L1
′ within the plane spanned by L via a rotation operator RL(θ/2):

L2
′ = RL(π/4)L1

′ R−1
L (π/4). (33)

This rotation maximizes the component of L2
′ that is perpendicular to the plane spanned by

Lccm. The new {L1
′,L2

′} also transforms the c1 and c2 parameters sets, here labeled c1 → c′1

and c2 → c′2.
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Figure 20 provides a three-dimensional view of the geometric intuition involved in finding

the CCM89-derived basis. All calculations discussed here are implemented using geometric

algebra, which provides a novel approach to study oriented subspaces. Geometric alge-

bra implementations for calculating intersections, projections, and rotation operations are

summarized in Appendix F. Although we exploit geometric algebra’s elegance and inter-

pretability to perform all said operations, each operation could be done using more classical

linear algebra techniques if desired.

3.3.5 Handling Similar Solutions

In training, the samplers converge to groups of very similar solutions. We find that si-

multaneously obtaining global template and per-SN parameters leaves the resulting samplers

sensitive to the three least representative SNe Ia in the training sample (based on residuals).

These groups are associated with slightly different solutions for these three SNe Ia, as seen by

eye and quantitatively through their χ0 solutions. Consider the following analogy: think of

a dog with its body being the model’s global templates and its tail’s position corresponding

to per-SN parameters. The dog’s body reacts to a small change in the tail’s location, but

only subtly. It is this ‘wagging’ of per-SN solutions that is causing a very subtle change in

template parameters, preventing complete convergence.

The worst performing SN Ia PTF11mkx consistently sees a 1σ difference between χ0

values between different chain groups — considering that this χ0 parameter fit uncertainty

is only ≈ 1%, this tail wagging is very subtle. Indeed, when refitting per-SN parameters with

a one of the group solutions as a fixed global template (Section 3.4.4), all chains converge

to the same solutions for the three SNe Ia. Similarly, if two different group solutions are

separately held constant and refit individually, the two resulting per-SN parameter sets are

indistinguishable. Because each group’s solution are consistently very similar, we opt to

use the weighted average of all solutions for the best-fit template. This decision to use an

average of all groups, as opposed to using a specific solution, has no impact on the remaining

analysis.

Note that refitting with fixed t0 parameters does not prevent this subtle grouping, nor
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Figure 20: A three-dimensional representation the CCM89-basis’s geometric intuition. The

blue solid vector is the transformed L1
′ template spanning the intersection of two planes, one

spanned by the model bivector L = L1 ∧L2 and the other spanned by the CCM89 bivector

Lccm = a ∧ b. The red solid vector is a π/2 rotation in the plane spanned by L that defines

the transformed L2
′ template. The decomposition L2

′ = L2
′(∥) +L2

′(⊥) with respect to the

CCM89 plane spanned by Lccm is given with the red dashed arrows.
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does cutting these three SNe Ia from the training set. If these three aforementioned trou-

blesome SNe Ia are removed, the next few SNe Ia that are the least representative of this

newly trimmed sample start ‘wagging’. This instability may be a feature of our model. In

particular, the flat prior we use for the c1 and c2 distributions may bias the results for the

least representative SNe Ia of a given training sample. Considering that global template pa-

rameters again were effectively unchanged with their removal, we retain those three SNe Ia

for the remainder of the analysis.

3.4 Best-fit Model Results

Our model, as implemented with Stan, consists of global template parameters and per-

SN parameters. We define the best fit solution to be the mode of a 365-dimensional template

parameter space6, with each per-SN parameter marginalized before estimating from HMC

sampling the posterior’s maximum. This mode is estimated using a mean shift clustering

algorithm implemented in the scikit-learn package using the default flat kernel [120]. To

estimate a consistent best-fit solution, bivector components L = L1 ∧L2 (Equation 30) are

used instead of L1 and L2 components directly. This process is analogous to maximum a

posteriori estimation of the HMC-sampled posterior, but allows first for the aforementioned

post-processing. Marginal posterior dispersion for each parameter are presented as 68%-

th percentile error bars. Residuals of the best-fit model, alongside binned averages, are

presented in Figure 21.

Two of the 16 HMC samplers were rejected after fitting because 1) their resulting mean

t0 parameter values were notably different from SALT2’s maximum phase values, 2) the

resulting fit light curves exhibit nonphysical inflection points, and 3) these two samplers

have notably inconsistent ln p values relative to the 14 retained samplers. The 14 remaining

samplers converge to three very similar group solutions of which the weighted average is

taken; see Section 3.3.5 for more details.

6159 from F0, 159 from M1, 9 from L1 and 9 from L2, specifically.
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Figure 21: Best-fit model residuals with respect to observations presented for each of our

ten bands. Eight day binned averages for each band are presented as black diamonds, with

error bars being binned standard deviations.
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3.4.1 Phase-independent Chromatic Flux Variation Templates

Ostensibly, if L were to only capture CCM89 dust-like behavior, then the planes spanned

by L and Lccm would be effectively parallel and any intersection poorly constrained. This

turns out to not be the case, with the best-fit solution recovering a planar separation angle

of about 80◦.

3.4.1.1 Maximum Variance Ratio Basis

Figure 22 presents the MVR basis as described in Section 3.3.4. Qualitatively, L1
mvr

appears nominally more dust-like than its counterpart L2
mvr. Figure 22 includes the best fit

CCM89 curve Rmvr
V = 2.18 for reference, showcasing that its most extreme divergence from

CCM89 is blueward of 5000 Å. L2
mvr, on the other hand, captures variation that is not readily

describable as dust-like: normal dust extinction should be absorptive across the optical

wavelength range whereas the sign flip in L2
mvr produces simultaneous brightening/dimming

on either side of 4000 Å. Although the degree of variation increases as wavelength decreases,

there is a distinct flip in behavior around 4000 Å. Such behavior is inconsistent with dust

extinction.

The conditions for the target parameter set distributions is to assign maximum variance

to one component while keeping the second component uncorrelated. These conditions yield

a basis consistent with the expectation that dust-like variation is the primary contributor to

SN Ia phase-independent chromatic flux variation while intrinsic SN Ia diversity uncorrelated

with dust accounts for additional variability.

3.4.1.2 CCM89-derived Basis

The template L1
′ is presented in the top plot of Figure 23. As summarized in Sec-

tion 3.3.4, the intersection of the plane spanned by L with the plane spanned by Lccm

defines the first phase-independent chromatic flux template L1
′. This L1

′ template, as ex-

pected, captures continuum-like variation akin to dust extinction.

From L1
′ we find an intersection total-to-selective extinction ratio of Rint

V = 2.4. As men-
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Figure 22: The blue solid line corresponds to the first MVR component L1
mvr, which appears

nominally more consistent with dust-like variation than its counterpart L2
mvr, given as the

magenta dashed. L1
mvr has a best-fit Rmvr

V = 2.18 given as the gray dotted line, with most of

its divergence from a CCM89 curve occurring blueward of 5000 Å. L2
mvr captures variation

not readily describable as dust-like.
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tioned in 3.3.4, this RV is not physically interpretable. Later in Section 3.5, after additional

forward modeling we extract per-SN dust properties with an assumed underlying AV model.

Also presented in the top plot of Figure 23 is template L2
′. Unlike L1

′, L2
′ captures the

more rapidly changing flux variability allowable by L. Specifically, L2 is capturing wavelength

variation at scales smaller than that expected by continuum dust variability, at least within

the optical regime. Indeed, its features nominally align with spectral feature. Also note the

similarity between L2
′ and L2

mvr despite their vastly different constructions.

L2
′ is not perpendicular to the CCM89 plane because the plane spanned by L is itself not

perpendicular. As such, L2
′ also captures a dust-like component alongside its dominating

spectral-like component. The bottom panel presents this template’s decomposition into

parallel and perpendicular components defined with respect to CCM89’s plane for reference.

As such, this parallel component L2
′(∥) is used in conjunction with L1

′ later in Section 3.5

when we estimate per-SN dust properties with additional forward modeling.

3.4.1.3 Intrinsic Variation

Both of the best-fit template representations L2
′ and L2

mvr capture pronounced phase-

independent chromatic flux variation blueward of 4500 Å that is inconsistent with dust

(see Figure 24). Indeed, no extrinsic phenomena readily describe this behavior. Variation

blueward of 4500 Å includes the prominent Ca II H&K feature and its Si III counterpart, Si II

λ4130, C II λ4267, Fe II λ4404, and Mg II λ4481. With our choice of splitting the spectral

range into nλ = 10 synthetic filters, the model cannot completely distinguish between said

features, although at least one node for both L2
′ and L2

mvr and their corresponding variation

seemingly align with Ca II H&K. A hint of chromatic flux variability ostensibly aligns with

SNe Ia’s signature Si II λ6347 feature and the O III NIR triplet are visible in Figure 23, but

in practice do not affect any resulting model flux predictions (again, see Figure 24).

We use the same dataset used for the SNEMO model [147]. Comparing both L2
′ and

L2
mvr to SNEMO2 and SNEMO7 eigenvectors (with two and seven components, respec-

tively) yields indecisive insight, though. Figure 6 shows SNEMO eigenvectors describing

similar L2
′ or L2

mvr behavior at maximum, but all of these eigenvectors are clearly phase
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Figure 23: The top plot presents phase-independent chromatic flux variation templates L1
′

and L2
′. L1

′ has a recovered total-to-selective extinction of Rint
V = 2.4. The bottom plot

presents a decomposition of L2
′ into its parallel and perpendicular components with respect

to the CCM89 plane. L2
′ clearly captures some dust-like variability, despite being dominated

by intrinsic modes. Although the low-resolution wavelength binning prevents quantification

of spectral features, the most impressive L2
′ variability appears in the Ca II H&K regime.
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maroon for cMVR
2 ) of L2

′ overlaid on SALT2’s mean template t = 0 phase spectrum (dashed

black line). The spectrum is binned via synthetic photometry with top hat filters, presented

as black diamonds. Flux units are normalized by synthetic photometry wavelength 4048 Å

value to unity and example spectral features blueward of 4500 Å are presented for reference.
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dependent — no eigenvector’s evolution seems approximately phase independent. Figures 9

through 12 present some unexplained variation for SNEMO2 blueward of 4500 Å that is

nominally phase-independent up to six days post-maximum; this all but disappears with

SNEMO7. That SNEMO2, itself similar to SALT2, sees unexplained phase-independent

variability around maximum that aligns with L2
′ and L2

mvr features seems indicative of our

model’s performance, but such a claim taken alone is likely an excessive interpretation.

SNfactory data is also used for the Twins Embedding nonlinear model [20]. More inter-

esting insight is gained in their comparing their findings with our template representations

L2
′ and L2

mvr, since Twins Embedding is currently a phase-independent, maximum-phase

model. Blueward of 4500 Å, spectral variation recovered by Twins Embedding loosely aligns

with the both L2
′ and L2

mvr templates (see there Figures 4, 6, and 10 for reference). Recov-

ering this consistent variation in our phase-independent template, albeit at lower wavelength

bin resolution, lends credibility that L as a whole is capturing intrinsic variation.

Past analyses by Branch 1993 and Riess et al. 1998 find Ca II H&K features are rela-

tively stable in the week before and weeks after peak B -band brightness, with this effective

phase-independence being sufficiently stable to exploit for the latter’s ‘snapshot’ methodol-

ogy from which they constrain luminosity distances [22, 134] . Both L basis representations

do capture intrinsic, phase-independent variation around Ca II H&K, but this alone is not

profound evidence of fundamental Ca II H&K time independence in the SN Ia population.

SN Ia Ca II H&K features, as with all spectral features, demonstrably evolve with time. In

its current form, this model cannot distinguish between phase-averaged spectral variation

or truly phase-independent intrinsic variation. Indeed, a goal of this project is to demon-

strate that intrinsic chromatic flux variation can ‘leak’ into phase-independent components,

something that is occurring in these results.

3.4.2 Fiducial Template

Figure 25 presents GPMP interpolations of each band’s best-fit Fλ,0’s nodes as solid

curves. Fixed band 3’s template is the third solid curve presented in the top plot of Figure 25.

The ubiquitous NIR bump is recovered for redder bands (bottom plot of Figure 25), with this
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second maximum occurring ≈ 25 days after our fixed-band peak brightness as expected [81].

Apart from the reddest template curve centered at 7401 Å, peak-brightness phase per-band

occurs earlier for bluer bands and later for redder band, again consistent with established

trends [81]. As would be expected by its I -band overlap, the reddest template curve exhibits

somewhat more complex behavior than other curves, such as an inflection point between its

two local maxima (bottom plot, Figure 25).

Note that each fiducial template light curve’s peak brightness phase does not align with

our tp,i = 0 flux node, meaning t0 should not be interpreted as the fixed band 3’s peak

brightness phase. This is ultimately inconsequential, requiring only that each light curve’s

peak brightness phase be calculated deterministically after fitting, and has no effect on this

analysis or its conclusions.

3.4.3 Phase-dependent Chromatic flux Variation Template

As shown in Figure 25, the best-fit phase-dependent variation template M1 exhibits

stretch-like behavior across all bands. The shaded regions in these plots show phase-

dependent light curve variation from−0.09 < s1 < 0.09 mag, which approximately captures

the dispersion of the fit s1 parameter set (the set’s standard deviation is 0.09 mag). The

lighter shaded regions correspond to positive s1 values, while the darker correspond to neg-

ative values. As s1 increases (decreases), Feff node values increases (decreases) with respect

to F0’s node values, resulting in each GPMP interpolation curve global maximum decreasing

(increasing). This change in Feff node scaling is offset for by a change in χ0, correlating χ0

and s1 parameter sets (see Section 3.4.4).

The sign of M1 template’s contribution is a function of phase: for each curve there are

two phases where M1 template’s contribution reverses in sign. For positive (negative) s1, the

result is a narrowing (broadening) of the effective flux curve. The phase and degree of this

broadening varies between bands in a manner consistent with theory, being more extreme

for bluer wavelengths [85]. Furthermore, Figure 26 plots our model’s ∆m3(15) as a function

of s1, demonstrating our M1 template indeed recovers stretch-like behavior for this model’s

B -band analog fixed band 3.
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Figure 25: A visualization of ±0.09 mag variation in s1 on the model’s fiducial flux template

F0, as warped by the phase-dependent chromatic flux template M1. Positive s1 contribution

is given by light shaded regions, while negative s1 contribution is given by the dark shaded

regions. Solid lines are the GPMP interpolated light curve for that band’s fiducial template

nodes. The top two plots illustrate recovered stretch-like behavior by the template M1, with

broadening to narrowing of effective light curves as s1 increases in value. The bottom plot

captures stretch-like behavior further convolved with NIR bump variational modes (bump

location and size).
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Figure 26: The model’s ∆m3(15) (the ∆mB(15) analog for the fixed band 3) as a function

of s1 calculated for the fixed band 3 along the training sample’s obtained s1 value range.

For redder bands, stretch-like behavior is convolved with NIR bump variation (bottom

plot of Figure 25). A 3D mesh plot Figure 27 best illustrates these two modes of NIR

variation: bump depth and bump location. As expected, these variation modes also correlate

with stretch [29, 47], with stretch appearing as the valley-like feature in Figure 27.

For fixed band 3, the phase of maximum brightness relative to our zero-phase node is a

function of s1. This movement in maximum brightness location, made clear in Figure 25,

ranges from +1 day for our most negative s1 = −0.15 mag SN Ia to −3 days for our most

positive s1 = 0.22 mag. Again, this has no effect on our analysis, requiring only an a

posteriori calculation at phase of maximum brightness if desired.

3.4.4 Per-Supernova Results

Each SN Ia is refit with template parameters fixed to the previously discussed best-fit so-

lution. Scatter plots comparing parameter sets include Spearman rank correlation coefficient
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Figure 27: A contoured three-dimensional view of our phase-dependent variation template

but with reversed wavelength angle to highlight the NIR bump variation. The valley-like

structure corresponds to stretch-like behavior extracted by our M1 template.
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(SCC) calculations alongside corresponding p-values. For color, only the CCM89-derived ba-

sis parameter sets c′1 and c′2 are presented. Although both the MVR and CCM89-derived

bases yield quite similar results, the latter is more readily interpreted, since it provides for

its first component a mathematically valid CCM89 curve and a convenient decomposition of

its second.

In Figure 28, per-SN parameter sets for c′1, c
′
2, and s1 are compared with corresponding χ0

values. The measured SCC value of 0.59 between the training sample’s s1 and χ0 parameter

sets results from a varying s1 changing the resulting Feff scaling, requiring a compensating

change in χ0 to offset (see Section 3.4.3). By construction, c′1 and c′2 sets are decorrelated

with χ0 (see Section 3.3.3). Higher rank correlations are recovered for c′1 vs s1 and c′1 vs c′2

compared to c′2 vs s1, as seen in the scatter plots of Figure 29.

We also quantify the fractional variance of the c′1 and c′2 bivariate distribution not ex-

plained by CCM89-like behavior. Each SN Ia phase-independent chromatic flux variation

vector c = c′1 L1
′ +c′2 L2

′ is first normalized. The perpendicular component with respect to

the CCM89 plane spanned by Lccm of each normalized c is then calculated via a projec-

tion operation (see Appendix F.2). This resulting distribution has a median value of 0.13

with 68th percentiles [0.05, 0.4] and provides a measure of our sample’s fractional variance

attributable to captured phase-independent chromatic variability which is not dust-like. Un-

surprisingly, dust-like variation, which explains the remaining ≈ 87% variance, dominates

captured phase-independent variability. Even if this dust-like variation was the exclusive

result of actual dust attenuation (no ‘leaking’ of intrinsic variability into dust-like behavior),

the remaining ≈ 13% variance, which instead arises from intrinsic variability in the sample,

is not negligible. L, with L2
′ in particular, is capturing a discernible addition of SN Ia

variation over past two-component models (i.e. SALT2).

3.4.4.1 Comparison to SALT2

This new SN Ia model and SALT2 are trained using optical wavelength observations,

with neither making assumptions about dust attenuation, making it an obvious comparator.

One technical difference is our model’s accounting for phase-dependent variability with a
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multiplicative variation template as opposed to SALT2’s flux variation linear component,

which is obviously additive in flux space. Nonetheless, s1 and x1 should correlate. This

is the case as seen in Figure 30, with a rank correlation of −0.89 between x1 and s1. As

presented in Section 3.4.3, this model’s M1 templates obtains stretch-like behavior, just as

SALT2’s first-order variation template M1(t, λ) does.

The phase-independent chromatic flux variation template basis {L1
′,L1

′} is selected with-

out consideration of SALT2’s CL(λ) phase-independent chromatic variation model. As such,

any correlations between c′1 or c
′
2 and SALT2 c are nontrivial — as seen in the top plot of Fig-

ure 31, only SALT2 c and c′1 are correlated with a rank correlation of 0.78. Considering L1
′ is

the maximal CCM89 dust-like vector allowed, that SALT2 c and c′1 are strongly correlated is

an artifact of SALT2’s CL(λ) template predominately capturing dust-like variation. Indeed,

the latest SALT3 recovers a CL(λ) curve that is consistent with SALT2 and similarly aligns

with CCM89 between 4000 Å and 7000 Å [93]. As seen in Figure 13 of Kenworthy et al. 2021,

both of SALT2 and SALT3 CL(λ) templates begin to diverge from CCM89 near where L2
′

starts to exhibit most of its variability [93].

The bottom plot of Figure 31 demonstrates that c′2 and SALT2 c parameter sets are

uncorrelated. As one would hope, the presented model’s two-component phase-independent

chromatic variation model captures SN Ia variation beyond that of SALT2. For reference,

we provide best fit linear relationships between SALT2 x1 and s1, and between SALT2 c and

c′1:

c′1(c) = 8.74(±0.88)c+ 0.094(±0.056) (34)

s1(x1) = −0.089(±0.004)x1 + 0.0089(±0.0035). (35)

3.5 Measuring Total-to-selective Extinction

That L1 and the component of L2
′ parallel to the CCM89 plane means there is infor-

mation in the {c′1, c′2} parameter set to potentially constrain per-SN dust properties if we
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Figure 30: Per-SN comparison of our stretch parameter s1 versus SALT2’s stretch proxy x1.

A linear best fit is provided with a solid black line. Error bars correspond to 68th percentiles.
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provide an appropriate AV model. This section describes the methodology for, results of,

and limitations related to estimating these dust-like parameters from our base model.

Before this forward modeling, the parameter set {c′1, c′2} is first transformed to a new

parameter set {ca, cb}, where components ca and cb are defined with respect to the CCM89

basis vectors a and b. This is done by projecting each SN Ia chromatic flux variation vector

c = c1 L1+c2 L2 onto said CCM89 basis vector, a process described in Appendix E.

An AV = 0 SN Ia spectrum from the training sample is not known a priori, no is a

candidate AV ≈ 0 used as a reference to define an AV zero point for the SN Ia sample.

Indeed, it is partly for this reason that zero-mean constraints are enforced for parameter sets

c1 and c2, constraints that are necessarily retained in the transformed ca and cb parameter

sets. Is it also for this reason that ca = AV or cb = AV /RV cannot be directly equated

— AV and RV can only be distinguished by making assumptions about their underlying

populations.

3.5.1 Forward Modeling

A hierarchical Bayesian total-to-selective attenuation (TSE) model is used to estimate

pertinent per-SN dust parameters from the transformed ca and cb samples. Figure 32 presents

a directed acyclic graph of this model. As mentioned before, intrinsic SN Ia variation may

project onto the CCM89 plane, so instead of fitting for per-SN AV and RV values directly,

AV and RV proxies αV and ρV are respectively fit for instead. Later we attempt to identify

valid AV ≈ αV and RV ≈ ρV subsamples from forward modeling results.

It is not known a priori if intrinsic variation has been erroneously allocated as CCM89

dust-like behavior, so we account for this by modeling αV as a combination of extrinsic

and intrinsic subpopulations. The extrinsic population, corresponding to dust-dominated

SNe Ia7, is assumed drawn from an exponential distribution with rate λ, while the remaining

intrinsic population is drawn from a Gaussian distribution centered at µ = 0 with a scale σ.

The full αV population is a convolution of these exponential and Gaussian distributions, or

7Technically, this should read dust-like-dominated SNe Ia, since we cannot say with certainty that this
subpopulation’s constituents are truly dominated by dust-sourced variation.
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an exponentially-modified Gaussian (ExMod) distribution:

f(αV |µ = 0, σ, λ) ∼ λ

2
e

[
λ
2
(λσ2−2αV )

]
erfc

(λσ2 − αV√
2σ

)
, (36)

where erfc(u) = 1− erf(u) is the complimentary error function. This distribution is similarly

used by Jha et al. 2007, albeit in their case to model maximum B − V instead of AV [80].

µ = 0 normalizes the αV ExMod population so that if σ → 0 (no intrinsic ‘leaking’ into the

full αV population), then the αV population model will reduce to an exponential distribution.

An informative Gaussian hyperprior is placed on λ centered at µλ = 5, here taken from

Thorp et al.2021 [159], with a narrow dispersion of 0.1. A loose Gaussian hyperprior centered

at zero with dispersion of 0.5 is used for σ, serving only to inform this parameter’s scale.

Both λ and σ are bounded to be greater than zero.

The ρV population is modeled with a loose Cauchy distribution that allows for negative

ρV values. This prior serves only to prevent erratic sampling of ρV for αV ≈ 0 SNe Ia.

Latent parameters sets c∗a and c∗b are introduced for the ca and cb sets, respectively, where

they are related to the αV and ρV sets via the following transformations:

c∗a = αV − ᾱV (37)

c∗b = βV − β̄V (38)

βV ≡ αV /ρV . (39)

ᾱV and β̄V respectively are location parameters for this each transformation 37 and 38.

Due to the positive-definite value of dust attenuation, we require parameters ᾱV and β̄V to

both be strictly positive. Each ca (cb) observation is then drawn from a normal distribution

centered at c∗a (c∗b) with a covariance matrix C:

[ca, cb] ∼ N
(
[c∗a, c

∗
b ], C

)
(40)

This covariance matrix is estimated from the sample covariance for all ca and cb samples8.

8The constraints ⟨c1⟩ = ⟨c2⟩ = 0 reduce the C’s rank by two, so including all 73 training sample SNe Ia
leads to a singular covariance matrix. Removing any single SN Ia remedies this problem by extracting one
each of the ca and cb chains. Our TSE model is robust to removed SN Ia choice; we remove SN2011hr to
satisfy Min(|cb − 0.05|), which implies αV ≈ βV ≈ 0.
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Stan is again used to sample an implemented TSE model’s posterior, using four samplers

performing 2000 samplings each, 1000 of which serve for burn-in. Satisfactory convergence

is obtained for all parameters based on R̂ scores. Table 3.5.1 summarizes these TSE model

priors and parameter bounds.

3.5.2 Results

TSE model components and marginal posterior estimates are provided in the far-left

column of Table 3.5.1. The resulting αV distribution, given in Figure 33, highlights the

consequence of removing heavily-reddened SNe Ia from our training sample (Section 3.2).

Although their removal prevents overfitting of phase-independent flux variation templates

presented in Section 3.4, it diminishes the training sample’s capacity to constrain the TSE

model’s exponential tail of the αV population distribution. The strong hyperprior on the

exponential rate hyperparameter dominates the resulting αV distribution’s positive tail.

The resulting ρV sample is notably more complicated than its αV counterpart. Be-

cause of the pole at ρV = 0, we ignore SNe Ia with unconstrained rhoV values where

SNR(ρV ) = ⟨ρV ⟩/STD(ρV ) > 3. This signal-to-noise cutoff cutoff is not arbitrary there

is pronounced clusterings of SNR(ρV ) above SNR(ρV ) = 5 and where SNR(ρV ) ≪ 1. Phys-

ically interpretable RV values approximately range only from 2 ≤ RV ≤ 5, giving a range

∆RV ≈ 3 for the minimum and maximum valid RV values [28]. Considering the massive

uncertainties for most SNe Ia ρV values near αV , we ignore them as unconstrained through

the TSE model.

Remaining SNe Ia with constrained ρV are split into a nominally extrinsic subsample

where αV > 0, and a nominally intrinsic subsample where αV < 0. Ideally, such a definition

would mean dusty objects indeed satisfy AV = αV as alpha → inf. Results summarized in

Section 3.4.1 highlight how intrinsic SN Ia chromatic flux variation could ‘leak’ into extracted

dust-like properties, even for aforementioned extrinsic subsample where αV > 0. At best for

the extrinsic subsample, αV ≈ AV .

We recover the following mean (median) values for the ρV parameter subset: ρV =

2.55 (2.50) for extrinsic, ρV = 2.25 (2.31) for intrinsic, and ρV = 2.47 (2.46) for the full
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ρV

αV

σ λ

β̄V

ᾱV

c*a = αV − ᾱV

c*b = αV

ρV
− β̄V

[ca, cb]

ExMod Model

Figure 32: A directed acyclic graph of the total-to-selective attenuation (SE) model. Solid

arrows are conditional probabilities; dashed arrows are deterministic relations (transforma-

tions or definitions). The red square corresponds to per-SN parameters and data. The

dashed orange box contains the αV population’s exponentially modified Gaussian (ExMod)

distribution’s parameters and hyperparameters. The αV sample’s truncation towards larger

αV is an artifact of cutting heavily reddened SNe Ia from the training sample.
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Figure 33: An exponentially modified (ExMod) Gaussian distribution with its three param-

eters (solid blue) is the convolution of an exponential distribution (dotted magenta) and a

Gaussian distribution (dashed orange). The solid gray histogram is the best-fit αV distribu-

tion. Posterior means for free parameters of the αV population’s model ExMod distribution

are given in the legend.
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Table 5: Priors/hyperpriors for the TSE model parameters/hyperparameters. Parameter

bounds are provided, as global parameter posterior mean and standard deviation (Per-SN

parameter posterior values are provided in Table 12).

Param. Prior Bounds Best Fit

αV ExMod(0, 1/Kλ, λ) (−∞,∞) Table 12

ρV Cauchy(0, 30) (−∞,∞) Table 12

λ N(5, 0.1) [0,∞) 5.04± 0.1

σ N(0, 0.5) [0,∞) 0.15± 0.02

ᾱV U(−∞,∞) [0,−∞) 0.28± 0.03

β̄V U(−∞,∞) [0,−∞) 0.10± 0.007

constrained sample. The corresponding 68th percentiles are [2.35, 2.75], [1.98, 2.52], and

[2.27, 2.69], respectively.

The bifurcation of ρV is not a physical effect, but instead an artifact of TSE model’s

dependence on ρ−1
V . The pole at ρ = 0 leads to an asymmetric bias, driving down ρV values

for αV < 0 and driving up ρV values for αV > 0. This model-induced bias has been con-

firmed with simulation. Note that if this model effect were ignored, one would erroneously

measure an average ρV bias of ∆ρV ∼ 0.2 between intrinsic and extrinsic subsamples. Given

that such a small effect is well within error for all per-SN ρV estimates, and because of the

the aforementioned model bifurcation bias, we do not conclude intrinsic or extrinsic αV sub-

samples have different ρV distributions. Similarly, we do not conclude RV is systematically

lower for intrinsic-dominated SNe Ia relative to extrinsic-dominated SNe Ia.

ρV values approach an asymptotic limit equal to the intersection Rint=2.4
V as |αV | → inf,

the result of a the strong correlation between ca and c′1 parameter sets. At face value, this

asymptotic ρV behavior is qualitatively consistent with more reddened SNe Ia preferring

lower RV values [80, 28], but the aforementioned 2σc sample cut (Section 3.2) excludes very

highly-reddened SN Ia such as SN 2012cu, for which Huang et al. 2017 estimates RV = 2.97
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with an AV ≈ 3 [75]; the highest αV = AV obtained by the TSE model is only AV ≈ 0.5.

More importantly, this apparent increase in ρV for less dusty (but still ‘dust-dominated)

SNe Ia far more likely an artifact of the TSE model’s bias due to its ρ−1
V dependence than it

is evidence of interesting physics.

The aforementioned limitations of the TSE model’s implementation and data set com-

pel us to refrain from further interpretation or from making additional conclusions about

underlying per-SN dust-like parameters and their distributions. Importantly, these results

highlight how a potentially incorrect interpretation can arise from unaccounted model bias

or incomplete data.

3.6 Conclusion

In this article, we introduce a new empirical SN Ia linear model that expands beyond sim-

ilar analyses by introducing a second phase-independent chromatic flux variation template

into its architecture. We obtain three model variation components at high signal-to-noise:

one phase-dependent chromatic flux variation template M1 and two phase-independent chro-

matic flux variation templates L1 and L2, which are represented together by the bivector L.

The phase-dependent model component recovers stretch and NIR bump variation; it along

with the phase-independent templates are consistent with SALT2’s two model components.

The model’s extended phase-independent architecture captures a nuanced combination

of variability. Analysis of the two-dimensional, phase-independent chromatic flux variation

plane spanned by L is done two bases: one that maximizes variation ratios (MVR) between

c1 and c2 parameter sets, and another that is defined with respect to the CCM89 dust

plane. The MVR approach recovers nominally dust-like variation for its dominant component

L1
mvr, with a fit RMVR

V = 2.18, while L2
mvr trace potentially low-resolution intrinsic features.

The CCM89 basis yields similar, albeit somewhat more physically-interpretable, results.

Specifically, this basis naturally decomposes L into one template capturing continuum-like

wavelength variation (L1
′) and another capturing rapidly changing chromatic flux variation

w.r.t. wavelength (L2
′). Component L1

′ is defined as the intersection of our model’s phase-
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Figure 34: A comparison of fit ρV versus αV from the TSE model. The obtained SN Ia

sample is split into unconstrained (gray ‘X’ points) and constrained (solid black diamonds)

ρV subsamples, where constrained ρV values have σρV < 3. The blue shaded region is un-

constrained subsample samplings. The constrained subsample is further split into extrinsic

(αV > 0, magenta region) and intrinsic (αV ≤ 0, yellow region) subsamples. The horizontal

solid lines and dashed lines are mean and median ρV values, respectively, for both of the

extrinsic and intrinsic subsamples. The horizontal dotted line across the entire plot corre-

sponds to Rint
V = 2.4, being there for reference only. Finally, a right-hand subplot presents

extrinsic (magenta) and intrinsic (yellow) ρV samplings from the posterior. Note that the

bifurcation is an artifact of the TSE model’s dependence on ρ−1
V , not due to underlying

physics.
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independent chromatic flux variation plane with CCM89 dust-like behavior. L2
′ is orthogonal

to L1
′ and can contain phase-averaged intrinsic spectral variation not related to the M1

template; by construction, it can also contain residual CCM89-like variation.

Despite very different construction methods, L2
′ and L2

mvr are remarkably similar.

As derived from the CCM89 basis, the fractional variance of intrinsic spectral variation

for the two-dimensional phase-independent chromatic flux variation plane (with 68th per-

centiles) is 0.13−0.4
+0.05 — dust-like variation dominates L1

′ and L2
′ in combination, but resid-

ual spectroscopic-feature-like variation is not negligible. Despite this model’s coarse nλ = 10

wavelength bin count, we find that the features in L2
′ and L2

mvr both align with known SN Ia

spectral features. Because of intrinsic variation ‘leaking’ into these two phase-independent

components, we make no strong conclusion about the recovered dust attenuation curve from

either L1
′ or L1

mvr.

Per-SN dust-like properties proxies AV → αV and RV → ρV are estimated via additional

forward modeling after assuming an underlying αV model, here assumed to be assume an αV

exponentially modified Gaussian population distribution. Prior removal of heavily reddened

SNe Ia from the training set limits the data’s capacity to constrain the the αV distribution’s

exponential tail during forward modeling. Meanwhile, the resulting bifurcation in the ρV

sample is an artifact of the forward modeling, not evidence for intrinsic-dominated SNe Ia

having systematically higher RV values. Because of limits in data and the uncovered model

bias, we draw no conclusions from forward modeling results, instead presenting it to avoid

potential pitfalls in future research.

Future work will increase synthetic photometry spectral resolution to enable better iden-

tification of spectral features. We plan to directly integrated a two-component dust attenu-

ation model into this future model’s architecture to remove the additional forward modeling

step. This dust recipe, which will be implemented to avoid a pole at RV = 0, will be

complemented by a single phase-independent template that will capture residual spectrum-

like, phase-independent variation. These improvements will provide a framework to better

study recovered dust-like properties and potentially separate true dust effects from intrinsic

variation.
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4.0 Thesis Concluding Remarks

Errors in current precision cosmological parameters measurements forH0, Ωm, and ΩΛ are

dominated by systematic errors [152]. Considering the dramatic increase in SN Ia statistics

expected from next generation surveys such as LSST, the resulting decrease in random error

will significantly help exploring systematics [79]. Naturally, concerted efforts have sought

to explore the source and and quantify the effects of all known systematic errors in SN Ia

cosmology over the past two decades. This dissertation presents projects exploring two such

sources: the host galaxy bias and unaccounted SN Ia intrinsic variability.

The project presented in Chapter 2 asks a straightforward question: do the methods

used to observe SN Ia host galaxies, or the techniques used to fit observations for physi-

cal host properties, influence the resulting host bias estimate? Although the host sample

used in the Chapter 2 analysis is biased towards high-mass galaxies (log10 > M⊙), the re-

sulting host bias measurements with respect to mass and sSFR are consistent regardless

of observation method or fitting technique. Step sizes statistically consistent with zero are

recovered across all analyses host property estimate samples. These findings are also con-

sistent with past analyses finding a stronger host bias signal for sSFR compared to stellar

mass [137] — although sSFR and mass steps are statistically consistent with a zero step, the

recovered sSFR steps are 25% larger than the mass steps, despite reduced statistics. Over-

all, we demonstrate that host bias estimates are largely independent of the aforementioned

methodology or techniques.

Chapter 3 introduced a new empirical SN Ia model that extends beyond the de facto

standard SALT2 with an additional phase-independent chromatic flux variation template.

This project’s goal was to study SN Ia population variability beyond SALT2 to explore in-

trinsic variability and to better constrain variation from dust extinction. The new model’s

two phase-independent flux templates capture multi-modal dust-like behavior, but simulta-

neously capture phase-independent intrinsic variability as well. This complicates a quan-

titative interpretation, but the qualitative implications are clear. First, intrinsic SN Ia

population variation can be readily captured by empirical models with phase-independent
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templates. Whether this additional variability correlates with peak brightness is beyond the

project’s scope — we do not consider absolute magnitudes. That said, this new model clearly

demonstrates that there is sufficient signal-to-noise to extract additional variation templates

beyond those in SALT2. Note that our results are not in isolation — there is a growing list

of new models similarly extracting additional variational modes beyond SALT2, with many

further recovering unaccounted for covariance with peak brightness [108, 147, 101, 20, 157].

Where our model stands out is its unequivocal capture of intrinsic variability within its

phase-independent chromatic flux variation templates.

This simultaneous extraction of intrinsic and dust-like variation in our model’s phase-

independent templates demonstrates the harsh reality of separating intrinsic variation from

extrinsic variation using empirical models: it is incredibly difficult to do without having truly

dust-free SN Ia observations a priori. Regardless, this new model’s two phase-independent

flux templates enable additional forward modeling beyond that afforded by SALT2 to con-

strain per-SN dust-like properties. In doing so, we find an interesting bifurcation in the RV

analog distribution with intrinsic-dominated SN Ia having systematically lower RV analog

values. Further investigation determined this is an artifact of the forward modeling itself,

erroneously biasing RV values high for positive AV values. The bifurcation is not a physical

effect. This, and limitations of the training data, lead us to refrain from making conclusions.

As such, past concerns regarding low effective SN Ia population RV relative to the Milky

Way average RV = 3.1 remain unchallenged by our analysis.

4.1 Future Directions

The project presented in Chapter 2 should be repeated using a less biased host galaxy

sample (specifically, with stellar mass 8 < log10(M/M⊙) < 10) available now or in the near

future. The ever-growing PISCO sample [58] is reducing said bias by targeting more lower-

mass SN Ia hosts (Galbany private comm.). Alternatively, the AMUSING project, a similar

program based in the southern hemisphere (as opposed to PISCO’s northern hemisphere

coverage) would provides a complementary SN Ia host sample with high resolution IFS with

110



which to repeat the original project [58, 104]. AMUSING IFS became available after the

publication Hand et al. 2022.

Overall, the work summarized in Chapter 3 demonstrates that current observation data

sets have sufficient signal-to-noise to extract at least two phase-independent variation tem-

plates. This achievement means it may be possible to separate dust extinction effects from

intrinsic variation, and eventually improve our understanding of the underlying SN Ia pop-

ulation’s intrinsic diversity. Such work will likely require NIR observations, a wavelength

regime where dust extinction is negligible and where SNe Ia are standard candles independent

of standardization [172, 10, 128].

We stopped short of performing any SN Ia standardization or cosmology with the new

empirical SN Ia model presented in Chapter 3. This was partly because redshifts and the

photometric zero-point for SNfactory observations remain private, complicating publications

of cosmology analyses using said data. Nonetheless, a natural extension of our initial work

would be to compare standardization performance with different model versions to quantify

improvements from additional templates. For example, it would be interesting to define a

simplified model version with architecture akin to a SALT2-like design (one phase-dependent

template, one phase-independent template as opposed to one phase-dependent template, two

phase-independent templates in the current model). From there, identical training samples

could be standardized with these two models and intrinsic dispersion compared. After SNfac-

tory’s public release of all prerequisite data, such an analysis should be undertaken.

More care should be afforded when selecting the training sample for empirical SN Ia

models. We made no effort to ensure the underlying training set is representative of known

SN Ia host galaxy property demographics. A training sample that includes an appropriate

collection of SNe Ia from low and high mass galaxies is an important consideration for all

empirical models, ours included. Other host properties, such as star formation rate and

metallicity, should be considered as well.

Overall, the future utility of SNe Ia in cosmology remains bright. Next-generation empir-

ical SN Ia models and standardization procedures will further decrease standardized intrinsic

dispersion, while homogeneous photometric calibration and massive statistics provided by

LSST will dramatically reduce related systematics and random error. Such statistics will

111



also enable SNe Ia to be used not only as standard candles, but also as tracers of peculiar

motion from large-scale structure in the local universe, providing yet another cosmological

probe. LSST presents its own challenges due to unprecedented data volumes that must

be addressed. For example, spectroscopic followup of allSNe Ia discovered by LSST will

not be feasible, meaning photometric classification will be necessary to make full use of

∼ 105 high-quality SN Ia light curves [106]. How to classify transients and account for false

positives with LSST remains an open area of research and debate, although this is of less

concern for high-fidelity SNe Ia light curve observations. With time and a growing data

set, LSST’s capacity to transform precision cosmology and extend the field’s understanding

is both widespread and palpable, setting the stage for future surveys and collaborations to

succeed as SN Ia cosmology transitions into the realm of big data. Understanding the un-

derlying SN Ia population, as the projects presented in this dissertation focused on, is ever

more important during this transition, maximizing the transformative constraining power of

LSST type Ia supernova observations in applications to astrophysics and cosmology.
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Appendix A Issues with 1 kpc Photometry with GALEX

We initially planned to perform 1 kpc circular aperture photometry around our SNe Ia

to compare local UV and Hα SFR estimates, but the large GALEX PSF proved cumbersome

to work with. For pulse height bin values above 10 the PSF FWHM averaged at 5.3” or the

NUV band and 4.2” for the FUV band [115]. The PSF for GALEX NUV and FUV images

was notably asymmetric for many observations. Thus, we excluded local 1 kpc aperture

photometry from this project as these apertures’ angular sizes were almost always less than

average PSF as shown in Figure 35.

To get an idea of flux loss, we assumed a Gaussian profile for the PSF of a centralized

point source and calculated the fractional flux loss as 1 kpc apertures decreased in size with

increasing redshift. T he left and right teal curves in Figure 35 correspond to point source

NUV and FUV flux loss fraction with redshift, respectively. Such calculations were crude

approximations of extended structure, but the rapid blurring of UV flux with increasing

redshift was dramatically evident — only targets with z < 0.025 did not simultaneously

suffer from ∼ 50% point source flux loss and ∼ 50% flux contribution from outside the 1 kpc

aperture. By z = 0.05, you are effectively capturing none of the true flux originating from

the 1 kpc aperture, instead almost entirely capturing photons originating from outside your

aperture. This approximation for a point source at the center of the aperture ignored the

far more complex flux blurring for a resolved host.

Motivating our use of 1 kpc aperture photometry was to better approximate local prop-

erties such as SFR and stellar mass. This was partly in response to GALEX’s use in past

SN Ia host galaxy studies using apertures with radii as large as 4 kpc [136, 84, 140]. To

treat UV flux measured from such an aperture as a proxy for local UV SFR is not physical.

Indeed, even a 1 kpc radius aperture is nearly four times the radius of the largest molecular

clouds. With these issues, it was obvious that GALEX could not be used to reasonably

estimate SFR rates smaller than the entire host galaxy for all but the closest targets with

z < 0.01.
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Figure 35: The solid monotonically-decreasing curve is the angular size of 1 kpc circular

apertures in arc-seconds as a function of redshift z. Black diamonds correspond to the

PISCO SNe Ia with ‘usable’ 1 kpc GALEX photometry. The horizontal orange dotted line

is GALEX NUV average PSF size of 5.3”, while the horizontal purple dashed line is GALEX

FUV average PSF of 4.2”. The monotonically-ascending teal dot-dashed curves approximates

a central point source’s NUV or FUV flux loss fraction as the 1 kpc aperture size decreases

with redshift. Teal shaded regions cover apertures with less than 50% NUV (light+dark)

and FUV (dark-only) point source flux loss.
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Appendix B Tanh Model

Stan’s HMC sampler calculates a numerical Jacobian matrix of model parameters. A

true step function such as a Heaviside function has an undefined derivative at the specified

step location which prevented model convergence for nearly all data sets we used. Some

works form the literature instead used a logistics function with a rapidly transitioning curve

[152, 26, 129]. We chose to use a hyperbolic tangent function in place of a logistics function

since tanh(0) = 0 and its antisymmetry, although such properties were lost when adding the

y-axis offset parameter ∆µ0. You can derive a a shifted tanh from a logistics function:

1

1 + e−2x
=

1

2
+

1

2
tanhx. (41)

A relatively loose prior was placed on ∆µ to prevent the sampler from getting lost at

extreme ∆µ values:

∆µ ∼ N (0, 0.5). (42)

The measured host bias step size in the literature is on the order of 0.1 mag or less. Physically-

motivated bounds were set to limit the sign of the step based on the host galaxy property

being used: ∆µ ∈ (−∞, 0] and ∆µ ∈ [0,∞) for mass and sSFR, respectively. The direction

of the host bias post-standardization is established, hence bounding the step direction.

For both The mass and sSFR step size parameters xs(M⊙)
.
= Ms and xs(sSFR)

.
= sSFRs

both had a modest prior to deter the sampler from becoming stuck at parameter boundaries:

xs ∼ N (c, 1) (43)

where c = 10 for Ms and c = −11 for sSFRs. Values for c were the midpoints for the

boundaries Ms ∈ [9, 11] and sSFRs ∈ [−12.5,−9.5]. These bounds were placed to keep the

fit step location within the actual mass or sSFR distribution for our subsamples used.

∆µ0 partly captured the systematic offset from zero for Hubble residual systematic off-

sets. As such, we used the informative prior:

∆µ0 ∼ N
(
⟨µ− µ(z)⟩, SE[µ− µ(z)]

)
(44)
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where SE[µ−µ(z)] is the standard error of the subsample Hubble residual mean ⟨µ−µ(z)⟩.

For our 76 host SN Ia mass subsample ⟨µ−µ(z)u⟩ = 0.010 mag with SE[µ−µ(z)] = 0.003 mag

and for our 66 host mass subsample ⟨µ−µ(z)⟩ = 0.012 mag with SE[µ−µ(z)] = 0.003 mag.

For our 51 host sSFR subsample ⟨µ−µ(z)⟩ = 0.042 mag with SE[µ−µ(z)] = 0.004 mag and

for our 73 host sSFR subsample ⟨µ− µ(z)⟩ = 0.031 mag with SE[µ− µ(z)] = 0.003 mag.

Fixing the scaling term α and fitting our model with values increasing from α = 0.01

up to α = 0.5 had no appreciable effect on the sampled posterior. If instead promoted to

a free parameter and provided a uniform prior, α trended to large values, resulting in a

pseudo-linear regression. Providing an informative exponential prior with λ = 0.3 to keep

α from trending past α = 1 resulted in a near-identical posterior to those resulting from

simpler models with fixed α. Promoting λ to a free hyperparameter with a inverse-gamma

hyperprior again resulted in similar results, with the data only marginally influencing the

λ marginal posterior. We opted to leave the scaling term fixed to α = 0.01 to provide a

smooth step function approximation.
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Appendix C Centered Vectors for SN Ia Parameters

A centered vector is a vector v with the mean of its components being zero. There are

numerous ways to structural enforce centered vectors in Stan1. For performance reasons we

opt for a shifted simplex method.

A simplex ∆ of dimension n is a vector with the constraint that its components at to one:∑i
n ∆i = 1. Dividing the sum of the simplex by its component count n gives that simplex’s

mean: ⟨∆⟩ = 1/n. Therefore, any simplex ∆ instantiated in Stan can be transformed via

translation by a factor −1/n into a centered simplex ∆⟨0⟩ with a mean of zero:

∆
⟨0⟩
i = ∆i − 1/n. (45)

Finally, any centered vector r with component ri can be defined as the product of a centered

simplex ∆⟨0⟩ and a scaling parameter r:

ri = r∆
⟨0⟩
i = r

(
∆i − 1/n

)
. (46)

1https://mc-stan.org/docs/2_18/stan-users-guide/parameterizing-centered-vectors.html
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Appendix D Achromatic Offset and Chromatic Parameter Degeneracy

As described in Leget et al. 2020, for all SNe Ia there is a degeneracy between an achro-

matic offset parameter (i.e. χ0) and a phase-independent chromatic variation vector (i.e.

c1 L1+c2 L2) [101]. With an explicit length-nλ vector of ones 1 to represent achromatic

offset behavior in wavelength space, one can define a vector for each SN Ia:

v ≡ χ01+ c1 L1+c2 L2 . (47)

For two arbitrary constants {α1, α2}, the vector v is invariant under the following transfor-

mations:

v = χ′
01+ c1 L1

′+c1 L2
′

L1
′ = L1−α11

L2
′ = L2−α21

χ′
0 = χ0 + α1c1 + α2c2.

At each iteration during sampling or in post-processing, this degeneracy can be removed

by choosing a fixed {α1, α2} and then recalculating the components of v. Both c1 and

c2 parameter sets should be uncorrelated with peak brightness dispersion, so α1 or α2 are

calculated so that both c1 and χ0, and c2 and χ0, are uncorrelated. Representing parameter

sets as length-nsn vectors c1, c2 and χ′
0, and starting from the transformation definition for

χ′
0 above, we require:σc1χ′

0

σc2χ′
0

 =

σc1χ0

σc2χ0

+

α1σc1c1 + α2σc1c2

α1σc2c1 + α2σc2c2

 =

σc1χ0

σc2χ0

+

α1

α2

σc1c1 σc1c2

σc2c1 σc2c2

 = 0, (48)

or after solving for the vector [α1, α2]
T :α1

α2

 = −

σc1χ0

σc2χ0

σc1c1 σc1c2

σc2c1 σc2c2

−1

, (49)
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where the matrix on the right-hand side of this equation as the precision matrix for our c1

and c2 samples.

Both L1
′ and L2

′ are maintained as unit vectors. This is enforced after each transforma-

tion by normalizing L1
′ and L2

′ by factors |L1−α11| and |L2−α21|. Each parameter set

for c1 and c2 are multiplied by their respective factors to preserve the products c1 L1
′ and

c2 L2
′, respectively.
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Appendix E Transforming the CCM89 Basis for Forward Modeling

Each SN Ia has its own phase-independent chromatic flux variation vector c = c′1 L1
′ +c′2 L2

′.

Because L2
′ is a combination of extrinsic and intrinsic chromatic flux variation, this two-

component vector c provides unprecedented information to explore per-SN dust properties.

To further explore these properties, c is transformed from this L1
′ and L2

′ to a CCM89 basis

(a(λ) → a and b(λ) → b): c = caa + cbb + e. Here e is a perpendicular remainder that

satisfies e · a = e · b = 0. Note that e can be identified as c2 L2
′(⊥). Each c vector is then

projected onto the CCM89 plane spanned by Lccm: cccm = c′1 L1
′+c′2 L2

′(∥) = caa+cbb. The

transformation from {L1
′,L2

′(∥)} basis to the {a,b} cccm basis is constructed from following

two equations:

cccm · a = caa
2 + cbb · a (50)

cccm · b = caa · b+ cbb
2 (51)

from which solutions for ca and cb can be found via matrix inversion:ca
cb

 =
1

a2b2 − (a · b)2

 b2 −a · b

−a · b a2

cccm · a

cccm · b

 . (52)

Although this linear transformation mathematically permits us to equate caa + cbb =

AV (a+b/RV ), ca and cb cannot physically be identified as AV nor BV = AV /RV , respectively.

To associate ca and cb with dust parameters AV and RV requires knowing the ca and cb values

of a dust-free SN Ia, information for which we are lacking. Indeed, it is enforcing c1 and c2

parameter sets to be mean-zero that defines a dust-free SN Ia in our full model (Section ??).

Note that because our c′1 and c′2 parameter sets have a mean of zero, so do the transformed

ca and cb parameter sets.
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Appendix F Brief Introduction to Geometric Algebra

Geometric algebra provides a robust, elegant, and easy to interpret framework to per-

form geometric operations. It extends linear algebra by introducing the geometric product,

a combination of the inner product and outer product. Although we directly calculate inter-

sections, rotations, and projections/rejections using geometric algebra, these operations can

be performed using linear algebra instead.

We will assume through that our vector space finite-dimensional and that each vector’s

elements is real-valued (specifically, we assume our vector space’s field are the real numbers

R). We will also utilize a canonical basis representation of our vector, such a Cartesian basis

for Rn, {ê1, ê2, . . . , ên}. All geometric algebra calculations are implemented with the clifford

package [139]. For a more detailed introduction, see Hitzer 2013 [71].

Geometric algebra extends elementary vector algebra using the geometric product. The

geometric product of two vectors {x,y} ∈ Rn combines a symmetric inner (or dot) product

with an antisymmetric outer (or wedge) product.

xy = x · y + x ∧ y =
n∑

i=1

xiyi +
n∑

i=1

n∑
j>i

(xiyj − yixj) êi ∧ êj (53)

= |x||y| cos θxy + |x||y| sin θxyx̂ ∧ ŷ. (54)

In the last step we define the angle θxy as the angle between the two vectors x and y. The

inner product maps our vectors to our underlying field R, yielding a scalar and is a symmetric

operation: x · y = y · x. The wedge product of two vectors x and y is an antisymmetric

operation: êi ∧ êj = − êj ∧ êi = 0 (if i = j). The object output by the wedge product of two

vectors is called a bivector and is an oriented plane element.

It is common in geometric algebra to refer to a scalar as the 0-blade and a bivector as

the 2-blade. Similarly, vectors such as x and y are referred to as 1-blades. In general, a k-

blade is a k-dimensional object with can be generated by k-wedge (or k-geometric) products

of k independent vectors. These k-vectors are themselves oriented k-dimensional subspace
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elements. The produced object xy is a linear combination of two grades of k-blades (a 0-

vector and a 2-vector, specifically) that we call a multivector. In general, a multivector is

a linear combination k-blades. Also, each multivector M has an inverse such that via the

goemtric product MM−1 = 1. Furthermore, any multivector defined as a product of vectors

M = a1a2...am has a corresponding multivector called its reverse: M† = amam−1...a1.

We can derive a canonical basis of our geometric algebra using the geometric product

on our starting vector space’s canonical basis as a generating set. Because canonical basis

is orthogonal, the geometric product of canonical basis components reduces to a wedge

product for i ̸= j: êi êj = 0 + êi ∧ êj, or to an inner product for i = j: êi êi = êi · êi +0.

As an example, for a vector space of dimension n = 3, the generated geometric algebra

canonical basis has 8 basis elements: {1; ê1, ê2, ê3; ê1 ê2, ê1 ê3, ê2 ê3; ê1 ê2 ê3}. This set of

basis elements naturally fall into grades of equal subspace dimension: one scalar element,

three one-dimensional basis vectors (the starting vector space’s canonical vector basis), three

two-dimensional basis bivectors, and one three-dimensional basis trivector. The geometric

algebra over R3 basis elements therefore prescribes corresponding sets of orthogonal bases

for all possible subspaces that exist within R3. The generation of basis elements generalizes

naturally for any finite dimension vector space Rn, with the resulting geometric algebra Gn

having 2n generated basis components. The respective subspaces, or grades, of the geometric

algebra (i.e. the bivector or grade-2 components) have dimensionality
(
n
k

)
, where k is the

grade of interest. Note that the last element in this geometric algebra basis is called the

pseudoscalar i, since ii = −1 for any dimension n in a way analogous with an imaginary

number. Finally, we can decompose any multivector M using a grade projection operation:

M =
n∑

k=1

⟨M⟩k, (55)

where the k-grade projection operator ⟨M⟩k returns the k-blade component of M.
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F.1 Reflections and Rotations

Consider two vectors r,x ∈ Rn. Say we reflect r along x. This operation can be in-

terpreted as negating the component of r perpendicular to x. The geometric product can

be used to decompose r into its parallel and perpendicular components relative to the unit

vector x̂:

rx̂ = r · x̂+ r ∧ x̂ (56)

r = (r · x̂)x̂−1 + (r ∧ x̂)x̂−1. (57)

The component (r · x̂)x̂−1 is proportional to the projection of r onto x, while the component

(r ∧ x̂)x̂−1 is the perpendicular (or rejected) remainder. From this decomposition we can

define a reflection r′ of r along x:

r′ = −(r · x̂)x̂−1 + (r ∧ x̂)x̂−1

= −(x̂ · r)x̂−1 − (x̂ ∧ r)x̂−1

= −(x̂ · r+ x̂ ∧ r)x̂−1

= −x̂rx̂−1

= −x̂rx̂.

Here we exploit a unit vector’s geometric algebra inverse being itself (x̂x̂ = x̂ · x̂ = 1).

Any rotation can be decomposed into two reflections, with the rotational plane being

spanned by two vectors we reflect against. Picking another vector y ∈ Rn, we write the rota-

tion r′ of r in the plane corresponding to grade-2 (or bivector component) of the multivector

R = x̂ŷ as:

r′ = ŷx̂rx̂ŷ

= R†rR.

This bilinear operation on r by the unit 2-vector R is indeed a rotation. To see this, let us

insert a more illuminating form of R:

r′ =
(
cos

θxy
2

− sin
θxy
2
x̂ ∧ ŷ

)
r
(
cos

θxy
2

+ sin
θxy
2
x̂ ∧ ŷ

)
. (58)
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To interpret this result, consider first the geometric algebra of vector space R2 with its

four generated basis elements {1; ê1, ê2; ê1 ê2}. In two dimensions any bivector x̂ ∧ ŷ is

proportional our unit pseudoscalar ê1 ê2, itself which behaves identically to the imaginary

number (similarly denoted as i). Substituting i for x̂∧ŷ = ê1 ê2 into Equation 58, we recover

the canonical form of a rotation by an angle θ in two dimensions:

r′ = e−iθ/2reiθ/2. (59)

For higher dimensions we can similarly treat the bivector x̂ ∧ ŷ as being the imaginary

number of the two-dimensional subspace spanned by said bivector. Therefore, any rotation

of a vector r by an angle θ within a plane spanned by the unit bivectorÂ = x̂ ∧ ŷ can be

written:

r′ = e−Âθ/2reÂθ/2 = R†rR. (60)

This unit bivector is interpreted as a generator of rotation within the plane spanned by Â;

the multivector R (which has scalar and bivector components) is called a rotor.

F.2 Projection and Rejection of Vectors onto a Bivector

Consider a vector v and a bivector A. Similar to Subsection F.1, we can decompose a

v into components parallel and perpendicular to the plane spanned by A:

vA = v · A+ v ∧ A (61)

v = (v · A)A−1 + (v ∧ A)A−1. (62)

If the wedge product of any vector with a A is zero, then said vector must exist within

the plane spanned by that A. Alternatively, any vector with no projection onto A requires

said vector be perpendicular to A. Just as in Subsection F.1, we therefore identify this

decomposition into parallel (projected) and perpendicular (rejected) components relative to

a plane spanned by A:

v∥ = (v · A)A−1 (63)

v⊥ = (v ∧ A)A−1. (64)
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F.3 Intersection of Planes

This section describes the formalism readily displayed in Figure 20. It is the most

complicated of the operations we implement using geometric algebra and is included for

completeness, despite its complexity. As with other operations, it is possible to calculate

this intersection using conventional linear algebra techniques. Indeed, we confirmed this

geometric algebra implementation with such a conventional approach.

Intuitively, a bivector is to a plane what a vector is to a line. Just as one can find the

intersection of two lines using their representing vectors, one also can find the intersection

of two planes using their representing bivectors.

Consider two bivectors A and B, each of which represent two different planes. If these

two planes intersect (which we will assume they do), then there are at most two linearly

independent vectors a and b that exist each of the respective planes spanned by A and B,

but that do not reside along these two planes’ intersection. Furthermore, the intersection of

A and B is a well-defined, one-dimensional subspace necessarily spanned by some vector, a

vector that we will call c. This means that A = a ∧ a and B = c ∧ b, and taken together,

these two bivectors span a three-dimensional subspace (because they share the intersection

subspace spanned by c). This volume and its orientation can be represented using a trivector

a ∧ b ∧ c. Normalizing this then trivector gives us the intersection’s unit volume element:

i =
a ∧ B
|a ∧ B|

=
b ∧ A
|b ∧ A|

. (65)

We want a formal expression for c from the starting bivectors A and B, though. To

get this, we first find a bivector whose plane is simultaneously perpendicular to both A and

B, which can be done by taking the grade projection of the geometric product AB to its

bivector component: ⟨AB⟩2. The vector perpendicular to this bivector ⟨AB⟩2, but which

still exists within the volume spanned by the intersection unit volume i, is the intersection

vector c we are looking for. It turns out that taking the geometric product of i with ⟨AB⟩2
performs exactly this operation:

c = i⟨AB⟩2. (66)
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Once way to think about this is that the unit volume i rotates the bivector ⟨AB⟩2 by π/2

and projects out the vector c perpendicular to the bivector ⟨AB⟩2.
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Table 6: Global mass in log10(M/M⊙). FAST++, ZPEG masses limited to SDSS or

SDSS+GALEX coverage (labeled ‘GALEX Mass’). The first 25 entries are shown here.

A full version of this table is available online.

Galaxy STARLIGHT Mass Fast++ Mass ZPEG Mass GALEX Mass

2MASSJ00164451 10.094 10.200 10.765 –

2MASSJ00235669 9.653 9.790 10.192 9.770

2MASSJ23243021 10.219 9.910 10.452 9.890

2MASXJ22532475 9.891 9.960 10.348 10.300

2MASXJ00234829 10.539 9.850 10.829 9.860

2MASXJ01144386 10.434 10.300 10.723 10.430

2MASXJ01403375 10.640 10.760 11.262 11.000

2MASXJ02305208 10.013 9.660 10.787 10.300

2MASXJ04424248 11.023 – – –

2MASXJ07192718 9.939 – – –

2MASXJ08374557 9.387 9.710 9.436 9.980

2MASXJ09591230 9.826 – – –

2MASXJ10525434 10.147 9.780 10.787 –

2MASXJ12095669 10.285 10.410 10.816 –

2MASXJ12385810 10.638 9.900 10.844 9.840

2MASXJ15024995 9.311 9.490 9.938 –

2MASXJ15393305 10.996 11.150 11.530 11.090

2MASXJ15570268 9.839 10.080 10.082 10.080

2MASXJ16065563 10.163 10.050 10.500 10.240

2MASXJ16152860 9.807 9.950 10.207 10.030

2MASXJ16301506 10.725 10.450 10.910 10.390

2MASXJ17100856 10.202 10.170 10.605 10.160

2MASXJ18242915 9.475 – – –

2MASXJ21352164 11.302 11.160 11.360 11.200

2MASXJ23024668 10.675 10.640 11.161 10.650

127



Table 7: Global SFR in M⊙yr
−1.

Galaxy FAST++ SFR Hα SFR NUV SFR FUV SFR ZPEG SFR

2MASXJ22532475 0.692 0.395 1.253 0.577 0.000

2MASXJ00234829 141.254 3.910 20.854 10.341 124.738

2MASXJ01144386 3.388 1.692 2.822 1.638 13.274

2MASXJ08374557 10.715 1.649 3.722 1.596 16.866

2MASXJ15570268 0.741 0.010 0.367 0.211 10.864

2MASXJ16152860 0.724 0.108 0.981 0.538 0.551

2MASXJ16301506 27.542 1.632 3.108 2.095 19.861

2MASXJ17100856 0.020 0.034 0.268 0.245 1.782

2MASXJ23024668 0.000 0.263 0.105 0.075 4.634

ARP143 4.898 1.482 5.137 3.094 5.383

ARP70 26.303 1.215 4.171 2.908 7.194

CGCG004-035 3.890 0.542 2.596 1.455 5.012

CGCG008-023 1.318 2.253 6.753 3.583 1.315

CGCG047-117 64.565 3.356 5.592 3.931 14.454

CGCG107-031 0.380 0.029 0.415 0.352 0.000

CGCG207-042 3.467 1.071 3.151 2.100 40.832

CGCG308-009 0.209 0.023 0.185 0.144 0.000

CGCG476117 51.286 1.193 2.242 1.362 8.433

FGC175A 0.155 0.260 1.076 1.318 1.239

GALEXASCJ012052 1.202 0.176 1.806 1.020 1.622

GALEXASCJ234457 30.903 0.495 3.326 2.141 26.363

IC0208 2.291 0.245 1.071 0.623 6.180

IC0701 11.749 2.350 2.752 1.749 8.610

IC0758 4.677 0.044 0.160 0.116 6.353

IC1481 3.020 1.411 6.567 2.494 19.588
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Table 8: In-house global photometry for SDSS and GALEX, part 1. Only GALEX photom-

etry with SDSS coverage was measured. Given as AB magnitudes; -99 marks negative flux.

The first 25 entries are shown here. A full version of this table is available online.

Galaxy mu σmu mg σmg mr σmr

2MASSJ00164451 19.522 0.258 17.730 0.020 16.919 0.014

2MASSJ00235669 17.894 0.054 16.737 0.005 16.492 0.007

2MASSJ23243021 19.010 0.118 17.363 0.009 16.539 0.006

2MASXJ00234829 16.298 0.046 15.597 0.006 15.074 0.007

2MASXJ01144386 16.983 0.071 15.902 0.008 15.286 0.007

2MASXJ01403375 17.235 0.092 15.842 0.008 15.147 0.007

2MASXJ02305208 17.268 0.066 16.119 0.007 15.248 0.004

2MASXJ08374557 17.472 0.077 16.399 0.011 15.936 0.011

2MASXJ10525434 17.080 0.053 16.179 0.007 15.638 0.007

2MASXJ11123493 17.033 0.052 16.064 0.007 15.447 0.006

2MASXJ11500404 17.178 0.039 15.635 0.005 14.875 0.003

2MASXJ12095669 17.249 0.048 15.797 0.005 14.970 0.004

2MASXJ12385810 17.352 0.079 16.419 0.011 15.782 0.010

2MASXJ15024995 17.948 0.092 16.413 0.012 15.845 0.009

2MASXJ15393305 16.579 0.054 15.286 0.005 14.449 0.004

2MASXJ15570268 17.752 0.083 16.374 0.008 15.580 0.006

2MASXJ16065563 16.311 0.056 15.230 0.008 14.891 0.008

2MASXJ16152860 18.085 0.134 16.823 0.012 16.104 0.010

2MASXJ16301506 16.960 0.064 15.789 0.008 15.144 0.006

2MASXJ17100856 17.798 0.076 16.191 0.006 15.471 0.005

2MASXJ21352164 17.328 0.130 15.943 0.009 15.062 0.006

2MASXJ22532475 17.066 0.077 15.499 0.005 14.814 0.005

2MASXJ23024668 17.992 0.104 16.219 0.006 15.345 0.004

ARP143 13.572 0.007 12.328 0.001 11.720 0.001

ARP70 15.566 0.047 14.259 0.004 13.531 0.003
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Table 9: In-house global photometry for SDSS and GALEX, part 2. Only GALEX photom-

etry with SDSS coverage was measured. Given as AB magnitudes; -99 marks negative flux.

The first 25 entries are shown here. A full version of this table is available online.

Galaxy mi σmi
mz σmz mNUV σmNUV

mFUV σmFUV

2MASSJ00164451 16.485 0.015 16.128 0.050 -99.000 -99.000 -99.000 -99.000

2MASSJ00235669 16.280 0.009 16.109 0.028 18.676 0.048 19.239 0.106

2MASSJ23243021 16.119 0.007 15.930 0.028 22.980 0.398 23.196 0.514

2MASXJ00234829 14.675 0.008 14.783 0.030 17.661 0.034 18.158 0.064

2MASXJ01144386 14.940 0.008 14.734 0.034 18.174 0.056 18.523 0.092

2MASXJ01403375 14.735 0.007 14.384 0.018 18.693 0.090 18.925 0.135

2MASXJ02305208 14.721 0.004 14.591 0.012 19.920 0.489 -99.000 -99.000

2MASXJ08374557 15.509 0.011 15.342 0.033 18.813 0.097 19.552 0.212

2MASXJ10525434 15.341 0.008 15.151 0.034 -99.000 -99.000 -99.000 -99.000

2MASXJ11123493 15.068 0.007 14.688 0.025 18.422 0.050 19.284 0.163

2MASXJ11500404 14.513 0.004 14.262 0.009 20.588 0.222 -99.000 -99.000

2MASXJ12095669 14.565 0.004 14.281 0.012 -99.000 -99.000 -99.000 -99.000

2MASXJ12385810 15.459 0.011 15.080 0.028 19.298 0.116 19.734 0.248

2MASXJ15024995 15.433 0.010 15.326 0.030 -99.000 -99.000 -99.000 -99.000

2MASXJ15393305 14.054 0.004 13.822 0.011 18.930 0.101 22.090 1.304

2MASXJ15570268 15.280 0.007 14.869 0.025 20.112 0.295 20.519 0.546

2MASXJ16065563 14.522 0.008 14.502 0.036 17.177 0.037 17.599 0.107

2MASXJ16152860 15.700 0.012 15.442 0.032 20.148 0.189 21.911 1.727

2MASXJ16301506 14.761 0.006 14.468 0.022 18.730 0.105 19.668 0.294

2MASXJ17100856 15.108 0.005 14.809 0.019 21.724 0.668 20.789 0.429

2MASXJ21352164 14.499 0.005 14.250 0.015 -99.000 -99.000 20.613 1.575

2MASXJ22532475 14.483 0.005 14.212 0.020 18.084 0.059 19.099 0.163

2MASXJ23024668 14.902 0.004 14.561 0.010 21.219 0.097 22.513 0.326

ARP143 11.417 0.001 11.179 0.004 14.712 0.010 15.149 0.019

ARP70 13.068 0.003 12.797 0.010 17.264 0.033 18.020 0.075
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Table 10: In-house global photometry 2MASS. Only 2MASS photometry with SDSS coverage

was measured. Given as AB magnitudes. -99 marks negative flux. The first 25 entries are

shown here. A full version of this table is available online.

Galaxy mH σmH
mJ σmJ

mK σmK

2MASSJ00164451 15.485 0.397 16.047 0.451 16.439 1.304

2MASSJ00235669 15.755 0.479 16.203 0.475 18.210 5.562

2MASSJ23243021 15.358 0.324 15.465 0.268 15.180 0.404

2MASXJ00234829 13.329 0.171 14.607 0.326 14.105 0.417

2MASXJ01144386 -99.000 -99.000 14.672 0.377 14.144 0.455

2MASXJ01403375 13.856 0.208 14.157 0.182 13.793 0.242

2MASXJ02305208 13.160 0.100 13.805 0.104 13.574 0.134

2MASXJ08374557 14.847 0.462 15.332 0.506 14.678 0.456

2MASXJ10525434 -99.000 -99.000 15.940 0.948 -99.000 -99.000

2MASXJ11123493 14.657 0.504 14.719 0.399 14.487 0.567

2MASXJ11500404 12.939 0.120 13.699 0.097 13.465 0.150

2MASXJ12095669 14.019 0.268 14.034 0.156 14.034 0.250

2MASXJ12385810 16.121 2.423 15.263 0.731 14.925 0.922

2MASXJ15024995 14.778 0.570 15.113 0.463 14.607 0.453

2MASXJ15393305 12.818 0.127 13.347 0.129 13.106 0.165

2MASXJ15570268 14.630 0.406 14.387 0.203 14.981 0.547

2MASXJ16065563 13.338 0.244 13.982 0.316 13.817 0.426

2MASXJ16152860 13.842 0.192 14.678 0.251 14.398 0.321

2MASXJ16301506 13.701 0.179 13.994 0.158 13.769 0.232

2MASXJ17100856 14.163 0.183 14.317 0.139 13.955 0.189

2MASXJ21352164 13.649 0.231 13.797 0.180 14.021 0.288

2MASXJ22532475 14.868 0.777 13.796 0.187 14.147 0.419

2MASXJ23024668 13.672 0.143 14.053 0.097 14.050 0.158

ARP143 11.349 0.082 10.893 0.035 11.070 0.066

ARP70 12.872 0.270 12.415 0.098 12.783 0.194
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Table 11: Model per-SN parameter median values with 68th percentile upper and lower

values or standard deviation for our first 10 SNe Ia. SALT2 x1 and c included for reference.

Per-SN parameters χ0 − ⟨χ0⟩, s1, c1, and c2 have been transformed to magnitudes. A full

table of all training SNe Ia is available upon request.

SN χ0 − ⟨χ0⟩ s1 c1 c2 t0

SNF20060512-001 −0.04± 0.03 −0.02± 0.01 −0.33± 0.09 0.12± 0.03 53882.5± 0.12

SNF20060526-003 −0.06± 0.03 −0.07± 0.01 −0.31± 0.09 −0.04± 0.02 53893.4± 0.21

SNF20061020-000 0.30± 0.03 0.21± 0.01 0.44± 0.11 0.08± 0.03 54037.9± 0.19

SNF20061021-003 −0.08± 0.03 −0.05± 0.01 0.38± 0.08 −0.04± 0.02 54039.7± 0.13

SNF20061022-005 −0.11± 0.03 −0.08± 0.02 −0.34± 0.10 0.15± 0.03 54040.8± 0.17

SNF20061111-002 0.08± 0.03 −0.01± 0.01 −0.30± 0.12 −0.05± 0.03 54060.8± 0.18

SNF20070424-003 0.08± 0.03 −0.05± 0.01 −0.26± 0.09 −0.07± 0.02 54225.8± 0.16

SNF20070506-006 −0.19± 0.03 −0.07± 0.01 −0.94± 0.08 0.09± 0.02 54245.9± 0.10

SNF20070630-006 −0.09± 0.02 −0.04± 0.01 −0.16± 0.08 −0.06± 0.02 54294.9± 0.11

SNF20070717-003 −0.12± 0.02 0.03± 0.01 0.90± 0.08 −0.12± 0.02 54310.3± 0.11
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Table 12: Selective extinction model derived per-SN parameter median values with 68th

percentile uncertainty or standard deviation for our first 10 SNe Ia. Note SN2011hr was

dropped when calculated derived parameters to resolve covariance matrix rank deficiency

(flagged N/A). A corresponding full table of all training SNe Ia is available upon request.

SN ca cb αV ρV

SNF20060512-001 −0.08± 0.02 −0.04± 0.01 0.04± 0.02 25.91± 37.11

SNF20060526-003 −0.08± 0.02 −0.03± 0.01 0.01± 0.02 10.02± 22.95

SNF20061020-000 0.12± 0.03 0.04± 0.01 0.23± 0.03 2.80± 0.19

SNF20061021-003 0.09± 0.02 0.04± 0.01 0.21± 0.02 2.55± 0.13

SNF20061022-005 −0.08± 0.03 −0.04± 0.01 0.04± 0.02 33.26± 43.43

SNF20061111-002 −0.08± 0.03 −0.03± 0.01 0.01± 0.01 10.92± 42.15

SNF20070424-003 −0.07± 0.02 −0.02± 0.01 0.01± 0.03 4.67± 20.31

SNF20070506-006 −0.23± 0.02 −0.10± 0.01 −0.11± 0.03 2.04± 0.21

SNF20070630-006 −0.04± 0.02 −0.01± 0.01 0.07± 0.02 2.55± 0.37

SNF20070717-003 0.22± 0.02 0.10± 0.01 0.34± 0.02 2.42± 0.09
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man, L. Galbany, J. Garćıa-Bellido, M. Gatti, E. Gaztanaga, D. W. Gerdes, T. Gi-
annantonio, K. Glazebrook, D. A. Goldstein, D. Gruen, R. A. Gruendl, J. Gschwend,
G. Gutierrez, W. G. Hartley, S. R. Hinton, D. L. Hollowood, K. Honscheid, J. K.
Hoormann, B. Hoyle, D. Huterer, B. Jain, D. J. James, M. Jarvis, T. Jeltema, E. Ka-
sai, S. Kent, R. Kessler, A. G. Kim, N. Kokron, E. Krause, R. Kron, K. Kuehn,
N. Kuropatkin, O. Lahav, J. Lasker, P. Lemos, G. F. Lewis, T. S. Li, C. Lidman,
M. Lima, H. Lin, E. Macaulay, N. MacCrann, M. A. G. Maia, M. March, J. Marriner,
J. L. Marshall, P. Martini, R. G. McMahon, P. Melchior, F. Menanteau, R. Miquel,
J. J. Mohr, E. Morganson, J. Muir, A. Möller, E. Neilsen, R. C. Nichol, B. Nord,
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Heather L. Morrison, Benôit Mosser, Demitri Muna, Adam D. Myers, Kirpal Nand ra,
Jeffrey A. Newman, Mark Neyrinck, Duy Cuong Nguyen, Robert C. Nichol, David L.
Nidever, Pasquier Noterdaeme, Sebastián E. Nuza, Julia E. O’Connell, Robert W.
O’Connell, Ross O’Connell, Ricardo L. C. Ogando, Matthew D. Olmstead, Audrey E.
Oravetz, Daniel J. Oravetz, Keisuke Osumi, Russell Owen, Deborah L. Padgett, Nikhil
Padmanabhan, Martin Paegert, Nathalie Palanque-Delabrouille, Kaike Pan, John K.
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M. Hamuy, and J. D. Lyman. On the environments of Type Ia supernovae within
host galaxies. MNRAS, 448(1):732–753, March 2015.

[7] W. D. Arnett. Type I supernovae. I - Analytic solutions for the early part of the light
curve. ApJ, 253:785–797, February 1982.

136



[8] Astropy Collaboration, T. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droettboom,
E. Bray, T. Aldcroft, M. Davis, A. Ginsburg, A. M. Price-Whelan, W. E. Kerzendorf,
A. Conley, N. Crighton, K. Barbary, D. Muna, H. Ferguson, F. Grollier, M. M. Parikh,
P. H. Nair, H. M. Unther, C. Deil, J. Woillez, S. Conseil, R. Kramer, J. E. H. Turner,
L. Singer, R. Fox, B. A. Weaver, V. Zabalza, Z. I. Edwards, K. Azalee Bostroem, D. J.
Burke, A. R. Casey, S. M. Crawford, N. Dencheva, J. Ely, T. Jenness, K. Labrie, P. L.
Lim, F. Pierfederici, A. Pontzen, A. Ptak, B. Refsdal, M. Servillat, and O. Streicher.
Astropy: A community Python package for astronomy. A&A, 558:A33, October 2013.
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