
New Graph-based Representation Learning Algorithms

by

Yanfu Zhang

Master of Science, University of Rochester, 2017

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2023

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Yanfu Zhang

It was defended on

June 27th 2023

and approved by

Wei Gao, PhD, Associate Professor, Department of Electrical and Computer Engineering

Liang Zhan, PhD, Associate Professor, Department of Electrical and Computer Engineering

Zhi-Hong Mao, PhD, Professor, Department of Electrical and Computer Engineering

Wei Chen, PhD, Professor, Department of Pediatrics, School of Medicine

Dissertation Director: Heng Huang, PhD, John A. Jurenko Endowed Professor, Department

of Electrical and Computer Engineering

ii

Copyright © by Yanfu Zhang

2023

iii

New Graph-based Representation Learning Algorithms

Yanfu Zhang, PhD

University of Pittsburgh, 2023

In recent years, graph neural networks (GNN) have succeeded in many structural data

analyses, including information retrieval, recommendation system, and social network analysis.

Although the first-order graph convolutional networks are initially designed for single-view

node-level representation learning, the graph-level analysis using GNNs applies according

to recent studies, e.g., the shared structures can be learned from single-view graph data.

The dissertation focuses on the efficient and robust graph-level representation learning

using GNNs. Several effective methods are proposed to address the critical problems in

graph representation learning, including over-smoothing, graph structural difference, and fast

training. The application of graph representation learning on medical data is also studied,

including new methods for single-view, multi-view, and unsupervised medical data analysis.

iv

Table of Contents

Preface . xiv

1.0 Introduction . 1

2.0 Improving Network Embedding via New Second-Order Continuous

Graph Neural Networks . 3

2.1 Motivation . 3

2.2 Related Work . 5

2.3 Proposed Method . 7

2.3.1 Second-Order Continuous GNNs . 7

2.3.1.1 Revisiting Messaging Passing Neural Networks and First-Order

Continuous GNNs . 7

2.3.1.2 Second-Order Continuous Graph Neural Networks 9

2.3.2 Implementation of Second-Order Continuous GNN 10

2.3.3 Enhanced Explanation for Graph Neural Networks Using Second-Order

Information . 10

2.3.3.1 Problem Formulation . 11

2.3.3.2 Semi-model-aware GNN Explainer 12

2.3.4 First-Order v.s. Second-Order . 13

2.4 Experimental Results . 16

2.4.1 Datasets and Experiment Settings . 16

2.4.2 Baseline Methods . 18

2.4.3 Comparison Results . 18

2.4.3.1 Semi-Supervised Node Classification 18

2.4.3.2 Graph Classification . 19

2.4.3.3 Prediction Explanation . 19

2.4.4 Analysis of Model Parameters . 20

2.4.4.1 The model performance v.s. Integration Time 20

v

2.4.4.2 The Effect of Damping Term 20

2.5 Conclusion . 20

3.0 Robust Self-Supervised Structural Graph Neural Network 26

3.1 Motivation . 26

3.1.1 Notations . 28

3.2 Related Works . 29

3.2.1 Graph Representation Learning . 29

3.2.2 Graph Contrastive Learning . 29

3.2.3 Network Proximity . 30

3.2.4 Deep Implicit Layers . 31

3.3 Proposed Method . 31

3.3.1 Self-Supervised Graph Neural Network via Wasserstein Proximity . . 33

3.3.2 (Asymptotically) Distributionally Robust Contrastive Learning 35

3.3.2.1 Distributionally Robust Contrastive Learning 35

3.3.2.2 Asymptotically Distributionally Robust Contrastive Learning . 36

3.3.3 Computing Wasserstein Distance via Deep Implicit Layer 37

3.3.4 Algorithm and Implementation . 39

3.4 Experimental Results . 40

3.4.1 Training Self-Supervised Graph Neural Network 41

3.4.2 Downstream Analysis . 41

3.4.2.1 Node Classification . 41

3.4.2.2 Graph Classification . 42

3.4.2.3 Top-k Similarity Search . 42

3.4.3 Ablation Studies . 43

3.4.3.1 Model Robustness . 43

3.4.3.2 Cardinality of Embedding Set 43

3.4.3.3 Computational Time . 44

3.5 Conclusion . 44

4.0 Training Graph Neural Network Faster using Stale Gradients 51

4.1 Motivation . 51

vi

4.1.1 Organization and Notations . 52

4.2 Preliminary and Related Work . 54

4.2.1 Preliminary . 54

4.2.2 Related Work . 55

4.3 Gradient Flashback Method . 56

4.4 Convergence Analysis . 60

4.5 Appendix . 62

4.5.1 Proof of Theorem 1 . 62

4.5.2 Proof of Theorem 2 . 65

4.6 Experiments . 66

4.6.1 Experiment Settings . 66

4.6.2 Comparison with Baselines . 66

4.6.3 Convergence Results . 67

4.6.4 Efficiency Under Various Settings . 68

4.7 Conclusion . 69

5.0 Applying Graph Representation Learning to Varied Medical Imaging

Problems . 74

5.1 Learning Shared Structure from Single-view Graph data 74

5.1.1 Motivation . 74

5.1.2 Methodology . 75

5.1.2.1 Preliminary . 76

5.1.2.2 Graph Convolutional Network without Pre-defined Graph Struc-

ture . 77

5.1.2.3 Can we apply GCN to graph data without predefined graph

structure? . 77

5.1.2.4 How can we find a “good” graph structure for brain connectome? 79

5.1.2.5 Is GCN preferred compared to naive neural network? 82

5.1.3 Pseudo-Label . 82

5.1.4 Experiments . 84

5.1.4.1 Data Description . 84

vii

5.1.4.2 Experiment Setting . 85

5.1.4.3 Performance Comparison . 86

5.1.5 Conclusion . 88

5.2 Heterogeneous Graph Neural Networks Integrating Multi-view graphs 88

5.2.1 Motivation . 88

5.2.2 Methodology . 89

5.2.2.1 Preliminary . 89

5.2.2.2 Predicting PD Clinical Scores via Heterogeneous GCN 90

5.2.3 Experiments . 93

5.2.3.1 Data Description . 93

5.2.3.2 Experiment Settings . 94

5.2.3.3 Results . 95

5.2.4 Conclusion . 95

5.3 Unsupervised Multi-View Graph Representation Learning 97

5.3.1 Motivation . 97

5.3.2 Methodology . 99

5.3.3 Experimental Results . 103

5.3.4 Conclusion . 107

6.0 Conclusion . 108

Bibliography . 110

viii

List of Tables

1 Statistics of datasets for node classification. 22

2 Statistics of datasets for graph classification. 22

3 Node classification results on citation networks. The Cora, Citeseer, and Pubmed

columns summarize the results using standard test-training split. The corre-

sponding columns with superscript ∗ summarize the results over 10 random splits

test-training split. The values for GCN-GODE and GAT-GODE are taken from

the original paper. Best-performing methods are bold faced, and the runner-ups

are underlined. For the random split, The results of GCN-GODE and GAT-GODE

are not available and are denoted by −. 23

4 Graph Classification results. 24

5 Explanation AUC results. 24

6 The statistic for the pre-training datasets. Among these datasets, Academia,

DBLP-SNAP, and DBLP-NetRep are academic datasets, and the rest are social

networks. 45

7 Node Classification Results. 46

8 Graph Classification Results. 47

9 Top-k Similarity Search (k = 40). Best-performing self-supervised methods are

bold faced. Best performing non-self-supervised methods are denoted by ∗. . . 48

10 The comparison of per-step time for the baseline and our method using different

subgraph size (denoted by superscripts). 50

11 Dataset description and model/training details. 71

12 Comparison of different training methods on multiple tasks and multiple datasets.

Top: running time of different methods, the best results are marked in bold font;

bottom: test accuracy of the models trained using different methods. The time

efficiency and consistent performance can be observed from the values. 71

ix

13 Quantitative comparison of baselines and the proposed method. Both the mean

and the standard error are given, and the best results are bold faced. Metrics

without significant difference between baselines and FCGCN are denoted with ⋆;

the metric without significant difference between FCGCN and kGCN/RGCN is

denoted with ⋄. 86

14 The comparison of the proposed method with baselines. For both metrics, smaller

values indicate better results. The values are displayed as mean(µ) ± standard

deviation (σ) from five tests. Bold font indicates the best performance. 96

15 Predictions with different combination of modals. Values follow the instruction

in Table. 14. Bold font indicates the best performance. 96

16 The comparison on classification tasks. 105

17 The comparison on regression tasks. 106

x

List of Figures

1 Learn the second order GNN. 7

2 A ball-spring system under the second order dynamics (elastic force, gravity, and

friction). 21

3 The pipeline for subgraph sampling. We compute the edge embeddings using a

deep neural network. We use the invertible Gaussian reparameterization trick

to sample the subgraph, which allows the straight-through gradients estimation

for the back-propagation. We update the embedding network using Monte Carlo

method to optimize the mutual information between the explanation and the

computation graph. 21

4 Training loss (left) and validation accuracy (right) under different integration time. 25

5 Training loss (left) and validation accuracy (right) with different damping terms. 25

6 Subgraphs generated from the same node (colored in red) are similar, and from

different nodes are dissimilar (red v.s. blue). To learn a robust encoder, we fix

the keys, i.e. Gki and Gkj , and focus on the most difficult query Gqi (solid red

line) instead of random queries (dashed red lines). 32

7 The r-ego subgraphs surrounding the nodes of interest are fed into the structural

GNN to obtain the embedding sets. Wasserstein distance is then computed as

the network proximity. 34

8 An example shows the distribution of r-ego subgraphs are determined by the

sampling methods. The node of interest is colored in red, and three possible

subgraphs are shaded in different colors (middle column). Under different sampling

techniques (e.g. altering the backward jump probability in random walks), the

distribution of subgraphs are presumably different (right column). 45

xi

9 The model performance under different subgraph distributions. We test five

different sampling settings for the second stage: for neighborhood sampling with

different neighbor size, we consider NS 4 and NS 5; for random walk with restart

with different restart probability, we consider RWR 0.6, RWR 0.7 and RWR

0.8. The results are based on 10-fold validation accuracy on RDT-B. Our model

performs similar under different settings, which indicates our method is robust to

distribution shift. 49

10 Model performance v.s. sampling size. 50

11 The growing of the receptive fields layer-wise. Top line: the growing for exact

method; bottom line: the growing for sampled methods. Involved nodes in each

nodes are labelled with different colors. Clearly, deep network causes the size of

involved nodes in bottom layers exploded, particularly for exact method. 53

12 The training process of the proposed method. Naive GCN model are splitted into

multiple sequential sub-models. In the forward step, the outputs are computed

using current model; in the backward step, the updating is computed using

stale error gradients. We name it gradient flashback due to the re-occurrence of

historical gradients. 70

13 The results of loss against time on training set. For all datasets, the proposed

method converges much faster than naive methods, given the same sampling

scheme. In the long run, it also attains an identical performance with naive

stochastic methods, which verifies the convergence analysis. 72

14 The results of accuracy against epoch on test set. For all datasets, the proposed

method attains an identical performance with naive stochastic methods, given

the same sampling scheme. 72

15 Running time per epoch. The proposed method consumes much less time com-

pared to naive stochastic methods using the same sampling scheme. 73

16 The iterative procedure of random graph generation, GCN training, and embed-

dings inference. 79

17 The structure of the proposed method. Brain connectome is transformed into

embeddings using GCN and MLP is used for regression successively. 81

xii

18 Comparison of training curves of FCGCN and RGCN. 85

19 Visualization of clustering of clinical depression scores using t-SNE and PCA

respectively, from a random start. The clustering is obtained through K-Means

with K = 4 and 8 . 87

20 The proposed heterogeneous GCN for PD clinical scores prediction. (a) illustrates

the entire structure, in which multi-modal brain networks are generated from

MRIs, and sequentially processed by GCN and MLP; (b) depicts the stacked

convolutional layer and pooling layer; (c) provides a detailed description of the

pooling procedure, including node merge, graph distillation and feature pooling. 91

21 The structure of the proposed method. Each view uses an independent VGAE to

learn a unified µ, while the σ is different. 98

22 Left: a simple DNN. Right: the corresponding DAG. Each edge represents a

network, and each node denote an intermediate representation. 100

a Round-Robin . 102

b Proportionality . 102

24 Left to right: ADNI, NACC, PPMI. 107

xiii

Preface

I would like to extend my deepest gratitude to Dr. Heng Huang for his unwavering

support and guidance as my advisor throughout these past several years. His expertise and

mentorship have been invaluable in shaping and conducting this research. I am immensely

grateful for the publication opportunities, travel assistance, and research support he has

provided during this journey.

I would also like to express my sincere appreciation to Professor Wei Chen, Professor Wei

Gao, Professor Zhihong Mao, and Professor Liang Zhan for their gracious commitment to

serving on my PhD dissertation committee. Their insightful suggestions and constructive

feedback on the dissertation study and future research plans have been instrumental in its

development. I am truly grateful for the time and guidance they have dedicated to my

academic growth.

I am also indebted to every collaborator who has contributed to my PhD journey. I would

like to extend a special thanks to Dr. Liang Zhan and Dr. Wei Chen for their invaluable

guidance and support in my research endeavors. Additionally, I want to express my gratitude

to Professor Feihu Huang, Professor Lei Luo, Professor Feng Zheng, Professor Xiaoqian Wang,

Professor Hongchang Gao, Dr. Zhouyuan Huo, Guodong Liu, Shangqian Gao, Wenhan Xian,

Dr. Runxue Bao, An Xu, Dr. Haoteng Tang, Xiaotian Dou, Junyi Li, Zhengmian Hu, Xidong

Wu, and Yihan Wu for their collaboration and support. It has been an honor and privilege

to work alongside such talented individuals. I am grateful for the opportunity to learn from

them and for the valuable friendships we have formed.

Lastly, I would like to express my heartfelt appreciation to my parents for their unwavering

love and boundless support throughout my academic journey. Their encouragement and

belief in my abilities have been the driving force behind my achievements. I am eternally

grateful for everything they have done for me, and I recognize that this milestone would not

have been possible without their unwavering dedication.

xiv

1.0 Introduction

In recent years, graph neural networks (GNN) have achieved significant success in various

structural data analyses, such as information retrieval, recommendation systems, and social

network analysis. Graph neural networks can learn representations at both the node-level

and graph-level, which can be utilized in a wide range of downstream analyses. This proposal

aims to study several crucial problems in graph representation learning systematically and

introduces new models and optimization methods.

Our contributions encompass both methodology and application. From a methodology

standpoint, we propose a framework that utilizes second-order graph neural networks, which

typically exhibit a more flexible transformation than their first-order counterparts. Addition-

ally, we introduce a semi-model-agnostic method based on our model to enhance prediction

explanations by incorporating high-order information. We learn structural embeddings, where

proximity is characterized using the 1-Wasserstein distance. To achieve this, we put forward

a distributionally robust self-supervised graph neural network framework for learning these

representations. The embeddings are computed based on subgraphs centered around the node

of interest, representing the node itself and its neighbors. Moreover, our model is end-to-end

trainable. Furthermore, we propose a faster training method for GCN. The bottleneck

in training GCN arises from the network depth and the sampling behavior. Rather than

improving the sampling process, we focus on ’reducing’ the depth by reusing stale gradients.

In terms of applications, we demonstrate the effectiveness of graph representation learning

in medical data analysis. We employ GNNs to learn the shared graph structure, characterizing

the graph distribution based on a small-world model. Specifically, we show that GCN can be

applied even without a given graph structure by utilizing a naive complete graph. Furthermore,

we propose a method to learn the graph structure from data, enhancing the performance

of GCN by generating random graphs with small-world properties for model training. We

introduce a heterogeneous GCN for multi-view networks. We propose an adaptive pooling

scheme driven by graph structure and network patterns. This scheme benefits from gathering

local information, resulting in a compact yet informative graph and providing computational

1

and training efficiency. Moreover, we propose to learn unified representations from multi-modal

brain networks using unsupervised learning techniques. To enhance the generalization ability

of the learned representations for different downstream analyses, these representations should

exhibit disentanglement and proportionality for different modalities. Our approach ensures

that the learned representations effectively capture information from various modalities and

can be leveraged by a wide range of downstream analyses.

2

2.0 Improving Network Embedding via New Second-Order Continuous Graph

Neural Networks

2.1 Motivation

Recently, there is growing interest in designing graph neural networks (GNN) to solve

a variety of web research problems, such as social network analysis [91], recommendation

systems [143], fraud detection [183], natural languages [79], brain connectome analysis [177],

etc.. Graph neural networks are primitively motivated by graph convolution [30, 64] based

on spectral graph theory. Consecutive researches [38, 149, 47, 153, 50, 154, 173] show GNNs

are powerful in learning graph embeddings, and the simplicity and effectiveness of GNN can

be boosted via generalizing the graph convolution operation to aggregate the information

from the nodes of interest and their neighbors. Some representative variants include Graph-

Sage [50], Message Passing Neural Network [153], Graph Attention Network [130] and Graph

Isomorphism Network [149].

There is some discrepancy between the practical requirements for business scenarios and

the existing research. For example, one usually wants to make a personalized recommendation

targeting on individual users. Deeper networks usually are beneficial for learning more complex

data distributions. But node representations may be over-smoothed [64, 96, 149] due to the

low-frequency filtering property of many GNNs. As a result, the user difference is blurred,

which becomes a hindrance if one wants to make personalized recommendation. Another

example is that it is difficult to build business decision based on the black-box predictions

of GNNs [152, 81, 159]. In social networks, finding influential neighbors can significantly

improve the understanding of the user behavior. As such, there is some interest in explaining

the GNN predictions based on a small subgraph.

To address these problems, in this paper, we propose a novel second-order continuous

graph neural network. There were some attempts to address over-smoothing problem [149,

76]. Inspired by an emerging research topic connecting the residual network and ordinary

differential equations [25], continuous-depth GNNs was proposed based on the dynamics

3

of hidden layers and show advantages than the discretized counterparts in better memory

efficiency and superior performance. The first-order frameworks adopted by existing graph

ODEs characterize the diffusion process which cannot fully address the over-smoothing

problem because the heat kernel is usually the Gaussian. Besides, many methods [103, 146]

use augmented features as an ad-hoc step for numerical stability. The selection of feature

augmentation is thus discretionary and lacks interpretability. Our approach learns the second-

order dynamics of GNNs and considers the effect of a force term and a damping term to

avoid over-smoothing, which can be viewed as discretizing the variants of wave equations.

Our model can also be viewed as a coupled first-order equation with interpretable augmented

feature velocity. Previous GNN explanation methods are usually model-agnostic, which omits

the second-order information in our model. We design a new semi-model-agnostic method

that explicitly considers the high-order information but leaves the GNN structure untouched

to enhance the prediction explanation.

Our contributions can be summarized as follows:

• We propose a second-order continuous GNN based on the message passing neural network

framework. Our second-order model can be expressed as a coupled first-order equation

via augmenting the node features with their gradients, and the implementation is feasible

using the popular first-order framework.

• We construct an analog between continuous GNNs and partial differential equations

because graph Laplacian can be viewed as discretized Laplacian operator on manifolds.

• We introduce a method to explain the GNN prediction via leveraging the high-order

information with an independent edge embedding network. The explanation is agnostic

to the specific GNN structure.

• We conduct extensive experiments on several graphs datasets of homophily, which is

an important property of social networks [86, 100, 186]. The results show that our

method outperforms related baselines in various downstream tasks, and the second-order

information can boost the model explanation.

4

2.2 Related Work

Neural ODEs: Residual network [53] is an important method to push neural networks

to extreme depths. It is observed that the skip links in ResNet can be seen as an Euler

discretization of a continuous transformation. Based on this connection, the research on

neural ODEs evokes emerging interest. A popular framework, Neural ODEs [25], considers the

continuous-depth neural networks via taking the limit of this discretization. The optimization

w.r.t. the ODE solvers adopt the adjoint sensitivity method [104], which treats the ODE

solve as a black box and solve a second augmented ODE backward. The continuous depths

make neural ODEs suitable for modeling the dynamics of complex systems, particularly

those that cannot be described analytically. Meanwhile, it is difficult for standard neural

networks to learn symmetries and conservation laws while neural ODEs can address this

issue. For example, Hamiltonian Neural Networks [48] and Lagrangian Neural Networks [29]

can produce energy-conserving models for various tasks.

Augmented Neural ODEs In Neural ODEs, the hidden states evolves continuously

according to a differential equation, whose velocity is described by a neural network. Once

the dynamics are known, the gradients of some objective with regard to the model parameters

can be computed through adjoint sensitivity method. It is shown that the feature mapping

learned by Neural ODEs is a homeomorphism [36], which implies the existence of functions

Neural ODEs cannot represent. Augmented Neural ODEs [36] is proposed to address these

limitations via introducing additional features. A related variant of augmented neural ODEs

is the Second Order Neural ODEs [95]. SONODE explicitly considers the velocities as

augmented dimensions, and proposes to learn the acceleration. The inductive bias introduced

in SONODE is beneficial in learning many dynamical systems governed by second order laws,

such as Newton’s equations of motion and oscillators. SONODE can be solved either using

the adjoint state directly or using the coupled first order ODE. Of note, augmented neural

ODEs can also learn high-order dynamics. However, the high order dynamics learned by

ANODE are characterized by abstract functions and the augmented features typically are

entangled, which leads to difficulties in interpretability.

Graph Representation Learning: Graph representation learning is featured by mining

5

the topological structures of graphs and encoding nodes with low-dimensional embeddings.

Representative works collect local patterns and learn mappings from graphs to vectors,

including Word2Vec [87], DeepWalk [102], and LINE [124]. To simultaneously exploit the

structural knowledge and the enriched side information in attribute graphs, increasing

interests are paid to GNNs. GNN [64] is based on graph convolution, an extension of regular

convolutions that can process structural data. Via designing a more efficient aggregation

mechanism, GraphSage [153, 50, 154] and Message Passing Neural Network (MPNN) [47]

broaden the application of GNNs to the analysis for large-scale graphs. Graph Attention

Network (GAN) [130] introduces an attention mechanism into general network analysis, and

self-attention is proposed for graph pooling [74] for graph classification tasks. Based on the

relationship between GNNs and graph isomorphism problem, Graph Isomorphism Network

(GIN) [149] and Deep Graph Convolutional Neural Network(DGCNN) [166] are designed.

On the other hand, there is some attempt to learn interpretable graph representation [152],

particularly for some applications, e.g., brain networks [122, 123].

Continuous-depth Graph Neural Networks The idea behind continuous-depth neural

networks is also employed in graph neural networks to handle structural data. Graph

neural ordinary Differential Equations (GDEs) [103] propose a continuum of GNN layers

to characterize the input-output relationship. In detail, the static models and Spatio-

temporal models are developed to handle different tasks. Alternatively, Continuous Graph

Neural Networks (CGNN) [146] proposes a propagation scheme inspired by diffusion-based

methods. Specifically, the representations learned by CGNN have entangled w.r.t. the

graph structure and the node features while the terminal time goes to infinite time. The

continuous-depth formulation of GNNs also inspires some related methods. For example, the

numerical gap between the discrete and continuous graph diffusion process can affect the

model performance [141], and Simple Graph Convolution [142] can be boosted by decoupling

the terminal time and the finite difference steps. Continuous Graph Flow (CGF) [32], as a

graph generative model, generalizes the messaging passing mechanism to continuous time.

6

2.3 Proposed Method

𝒉 𝒕 + 𝒅𝒕 = 𝒉 𝒕 + ሶ𝒉 𝒕
ሶ𝒉 𝒕 + 𝒅𝒕 = ሶ𝒉 𝒕 + ሷ𝒉 𝒕

ሷ𝒉 𝒕 = 𝒇 𝒗, 𝒕 +

𝒖∈𝑵𝒗

𝒘𝒗𝒖𝒈(𝒖, 𝒕)

𝒉 𝒕 , ሶ𝒉 𝒕 𝒉 𝒕 + 𝒅𝒕 , ሶ𝒉 𝒕 + 𝒅𝒕

Figure 1: Learn the second order GNN.

In this section, we first review the Messaging Passing Neural Network (MPNN) and the

first-order continuous GNN, then describe our second-order continuous GNNs. Figure. 6

illustrates the second-order dynamics of the node embeddings on a manifold, which will be

detailed in the following. Via reformulating our model as coupled first-order neural ODEs,

we give a simple implementation. We propose a method to explain the GNN prediction

jointly using the first and the second order information. At last, motivated by the connection

between graph Laplacian and the Laplace-Beltrami operator, we discuss some properties of

continuous GNNs from the view of neural partial differential equations instead of ordinary

differential equations.

2.3.1 Second-Order Continuous GNNs

2.3.1.1 Revisiting Messaging Passing Neural Networks and First-Order Contin-

uous GNNs

Existing continuous GNNs are based on the continuous counterpart of residual structures

in GNNs. In this part, we first describe the Messaging Passing Neural Network (MPNN),

then recap the first-order continuous GNN under this framework.

7

We denote a graph G by its node set V and its edge set E . For a single node v ∈ V , we use

N (v) := {u ∈ V : (v, u) ∈ E ∨ (u, v) ∈ E} to denote its neighbors. A MPNN layer performs a

spatial-based convolution on v, and the representation of v at layer l + 1 is defined on the

representations of v and its neighbor N (v) at layer l,

h(v)(l + 1) = u

h(v)(l),
∑

u∈N (v)

m
(
h(v)(l),h(u)(l)

) . (2.1)

Specifically, we have h(v)(0) = xv, which is the input to the MPNN. xv can be node features

or some representations learned by an encoder. u and m are functions with trainable

parameters.

A general first-order continuous GNN can be defined by first setting u(x,y) := x +

g(x,y) [103], where g
(
h(v)(l),h(N (v))(l)

)
= g

(∑
u∈N (v) m

(
h(v)(l),h(u)(l)

))
is some func-

tion, (2.1) can be written as,

h(v)(l + 1)− h(v)(l) = g
(
h(v)(l),h(N (v))(l)

)
. (2.2)

By interpreting the layer l as a discretezation step in time t, the continuous-depth counterpart

of MPNN is defined on the continuity equation of the above difference equation,

ḣ(v)(t) = f
(v)
MPNN(H ,θ) := g

(
h(v)(t),h(N (v))(t)

)
. (2.3)

Here H refers to all node feartures, and θ refers to the model parameters, which defines the

differential function. Formally, given input node features, the continuous MPNNs compute

the node representations by solving the Cauchy problem,

ḣ(v)(t) = g
(
h(v)(t),h(N (v))(t)

)
, h(v)(0) = x

(v)
0 . (2.4)

Similar to neural ODEs, the forward pass is to solve the problem numerically using ODE

solvers, and the optimization of parameters uses the adjoint sensitivity method.

8

2.3.1.2 Second-Order Continuous Graph Neural Networks

In this paper, we consider a second-order dynamics for GCN. Specifically, we alter the

definition of u and the second-order model is defined as,

ḧ(v)(t) = f
(v)
MPNN(H ,θ) := g

(
h(v)(t),h(N (v))(t)

)
. (2.5)

g(·) considers the interaction the neighbors have on the center node v. More generally, we

consider two additional terms for (2.5), a term for the velocity decay and a term only related

to the center node. Finally, our second-order continuous GNNs solves the following Cauchy

problem,

ḧ(v)(t) + αḣ(v)(t) = f(h(v)(t)) + g
(
h(v)(t),h(N (v))(t)

)
, (2.6)

h(v)(0) = x
(v)
0 , ḣ(v)(0) = 0. (2.7)

Here α > 0 is a small positive number, f(h(v)(t)) is the force term. The initial state for

ḣ(v)(0) is set to 0 for simplicity. The differential and the node representations at time t is

then given by ḣ(v)(t) =
∫ t

0
ḧ(v)(t)dt and h(v)(t) = x

(v)
0 +

∫ t

0
ḣ(v)(t)dt. αḣ(v)(t) is usually called

a damping term.

Our model has a straightforward physical explanation. Let every node in a graph represent

a ball. The features describe the spatial position of the balls. The edges denote the existence

of the interaction between balls, for example, we can think that two linked nodes are two

balls connected by a spring. The damping term can be viewed as friction. The force term

is associate with the medium a ball lies in, which is not dependent on the other balls. For

example, the balls are placed on a curved surface and are under the influence of a component

of weight. An one-dimensional example is illustrated in Fig. 2.

9

2.3.2 Implementation of Second-Order Continuous GNN

The forward pass of our model can be accomplished via off-the-shelf ODE solvers. Similar

to the first-order scenario, the backpropagation can be performed via the adjoint sensitivity

method [104], which treats ODE solvers as black-boxes and has a low memory cost. The

adjoint state of (2.8) can be computed using Lagrangian methods.

Proposition 1. The adjoint state of (2.8) follows the second order ODE r̈ = r⊺ ∂ḧ
∂h(v)

− αṙ⊺.

The update of the model parameters is the integral dL
dθ

= −
∫ 0

t
r⊺ ∂x

∂θ
ds.

Our model is a special case of Proposition 3.1 in [95], and the above result is obtained by

substituting the damping ḧ. The second-order differential equations in our approach can also

be viewed as first-order coupled differential equations [95]. This relation gives an alternative

model of our second-order CGNN as first-order augmented Neural ODEs. More specifically,

we augment the node features to include their differentials z(v) =
[
h(v)(t), ḣ(v)(t)

]
, then our

second-order continuous GNN can then be represented as a first-order Cauchy problem,

z(v) =
[
h(v)(t), ḣ(v)(t)

]
, ż(v) =

[
ḣ(v)(t), ḧ(v)(t)

]
, z

(v)
0 =

[
x
(v)
0 , 0

]
. (2.8)

As pointed out in [95], the adjoint state of the second-order model is equivalent to the adjoint

state of the coupled first-order model. The disentangled representation in second-order models

may involve more computation than the entangled augmented NODE. Due to this reason, we

use the first-order optimization for simplicity in our implementation. In detail, we maintain

z(v) in our continuous GNNs, and in the forward pass ż(v) is obtained by concatenating ḣ(v)

from the stale z and the newly computed ḧ(v). No modification is required for the backward

propagation.

2.3.3 Enhanced Explanation for Graph Neural Networks Using Second-Order

Information

In the representation learning for graph data, the high-order part of z is discarded.

However, it can provide some information in explaining the prediction of GNNs, which

indicates that our second-order continuous GNN enjoys better interpretability compared

10

to first-order methods. More specifically, in this section we propose a new method for

example-level explanations via employing the first-order and the second-order information

jointly.

2.3.3.1 Problem Formulation

We employ the definition of example-level explanation from [152]. Assume we have a

trained GNN ŷ = f(Gc, xc). Here Gc(v) is a computation graph spanned from v ∈ G, which

is the induced subgraph on the full G involved in computing the prediction for v. The

associated adjacency matrix is Ac(v). xc(v) is the associated feature set {xj|vj ∈ Gc(v)}.

Using the computation graph instead of the full graph can greatly reduce the computational

burden. Given a node v, its explanation is (Gs, xs(v)). Here Gs is a small subgraph on

the computation graph Gc(v) and xs(v) is a small subset of node features, masked out by

{xj|vj ∈ Gs(v)}. (Gs, xs(v)) are important the prediction ŷv. The importance is evaluated

using mutual information I,

max
Gs

I(y, (Gs, xs)) = H(Y)−H(Y |G = Gs, x = xS), (2.9)

here H is the entropy. Typical explanation-generation methods are model-agnostic by

fixing the GNN f(Gc, xc), therefore, H(Y) is constant. The second term can be bounded,

H(Y |G = Gs, x = xS) = −EY |GS ,xS
[logPf (Y |G = GS, X = XS)], (2.10)

We use As(v) to represent the adjacency matrix of GS. Of note, model-agnostic methods fail

to make use the second-order information in our model. To address this problem, we provide

a semi-model-aware explanation-generation method in the following.

11

2.3.3.2 Semi-model-aware GNN Explainer

The explanation adjacency matrix can be expressed by As(v) = Ac(v)⊙M , where M is a

mask matrix, and its entries are binary. Using this expression, directly optimizing (2.10) boils

down to an integer problem with respect to M , and the size of feasible set is 2|E|. To make the

problem tractable, we resort to a relaxation of M using mean-field variational approximation,

and using Monte Carlo method to compute the explanation. As illustrated in Fig. 3, our

method sample subgraphs by two steps. First, we decompose the distribution of G into a

multivariate Bernoulli distribution as P (G) = Π(i,j)∈EP (eij), here eij ∈ [0, 1] is the relaxed

entry of M , denoting the probability that edge (vi, vj) is selected. We compute eij using an

edge embedding network based on the node embeddings. Second, the subgraph is sampled

from P (G) using a reparameterization trick. Since the sampling is not differentiable, we use

straight through estimator (STE) to enable the back-propagation. We feed the sampled

subgraphs into the GNN with weights frozen, and update the edge embedding network with

respect to (2.10).

In detail, we compute the embedding for edge (vi, vj) by a deep neural network. Since

our GNN works on undirected graphs, we anonymize the edge direction by defining,

µij,Σij =
1

2

(
ϕ(zvi , zvj) + ϕ(zvj , zvi)

)
. (2.11)

Similar to variaitional autoencoder, we learn a mean and a variance for the edge embeddings.

In the sampling step, we use the reparameterization trick from the invertible Gaussian

family [105],

eij = g(µij + ϵ ∗Σij, τ), (2.12)

here ϵ ∼ N (0,1) is a Gaussian noise of the same size |Ec|, τ is a temperature parameter,

g(·, τ) is an invertible smooth function. Specifically, we let,

g(y, τ) = softmax++(w, τ) =
exp(yk/τ)∑K−1 exp(yk/τ) + δ

, (2.13)

here δ > 0 ensures the invertibility. limτ←0 softmax++(y, τ) is one-hot [105], which allows the

straight through gradient estimation. Compared to Gumbel-Softmax, the invertible Gaussian

reparameterization is more flexible.

12

To pursue a compact explanation, we also consider a regularization with respect to the

size of the sampled subgraphs. To sum up, we update ϕ(·) with respect to the sampled

subgraphs using the following objectives,

min
ϕ
T =− EY |GS ,xS

[logPf (Y |G = GS, X = XS)] + (2.14)

λ
(
ReLU

(∑
eij −Km

))2
.

here Km is a predetermined positive integer limiting the node numbers in subgraphs.

2.3.4 First-Order v.s. Second-Order

Existing works usually let

g

 ∑
u∈N (v)

m
(
h(v)(t),h(u)(t)

) = σ(
∑

u∈N (v)

wu(h
(v)(t)− h(u)(t))), (2.15)

which can be viewed as applying some generalized graph Laplacian to the features. Graph

Laplacian matrix associated to a point cloud converges to the Laplace-Beltrami operator

on the underlying data manifold [13]. As such, to better capture the data distribution, we

should consider both temporal and spatial continuity in GNNs, which corresponds to the

depth and the data distributions respectively. We insert the continuous Laplacian operator

to (2.3) and abuse v to represent the hidden state, the first order continuous GNNs can be

written as a standard heat equation,

ḣ(v, t) = ∆h(v, t), h(v, 0) = h0. (2.16)

Similarly, the second-order continuous GNNs can be written as an inhomogeneous wave

equations,

ḧ(v, t) + αḣ(v, t) = ∆h(v, t) + f(v, t), (2.17)

h(v, 0) = h0,
∂

∂t
h(v, 0) = 0. (2.18)

Compared to standard Neural ODEs, the properties of continuous GNNs can be better

characterized by the associated partial differential equations. For simplicity, we omnit the

13

weights in GNNS. In the rest of the section, we will use these simplified models to tentatively

show that the over-smoothing effect is intrinsic in first-order continuous GNNs, and discuss

some pros and cons to use the second-order methods instead of the first-order method.

Over-Smoothing Effect as Intrinsic Property of First-Order Continuous Graph

Neural Networks: First-order continuous graph neural networks are intimately related to

the heat equation, which characterizes the diffusion of heat on a manifold. More specifically,

existing works define a Cauchy problem for the homogeneous heat equation. However, the

steady-state solution of the heat equation implies that the over-smoothing is intrinsic for

first-order continuous graph neural networks. To see this, we have the following proposition:

Proposition 2. Let h0 ∈ L1(Rn), namely
∫
Rn|h0|dx < ∞. For any x ∈ Rk, we have

limt→+∞|h(x, t)| = 0.

Proof. This is a direct result by applying the fundamental solution of heat equation [40].

The fundamental solution is,

h(x, t) =

∫
Rn

Φ(x− y, t)h0(y)dy, (2.19)

Φ(x, t) :=
1

(4πt)n/2
exp(−|x|

2

4t
), (2.20)

The heat kernel Φ(x, t) is a Gaussian, and we have

|h(x, t)| ≤ 1

(4πt)n/2

∫
Rn

exp(−|x− y|2

4t
)h0(y)dy (2.21)

≤ 1

(4πt)n/2

∫
Rn

|h0(y)|dy.

Then we have limt→+∞|h(x, t)| = limt→+∞
1

(4πt)n/2

∫
Rn|h0(y)|dy = 0. ■

Using the above result we immediate have limt→+∞|h(v1, t)− h(v2, t)| = 0 for any two

nodes v1 and v2. In the context of continuous graph neural networks, it means that node

features are eventually blurred when the terminal time goes to infinity. More specifically,

the steady-state solution have exponential decay rate which is not related to the specific

form of the original feature distribution h0. This result also implies that the learned data

representations are more dispersed to compensate for the exponential decay w.r.t. the terminal

time if the model is trained using a longer integral time.

14

The solution of the second-order CGNN: The solution of the second-order CGNN is

dependent on the initial values. For simplicity, we consider a forced wave equation via setting

α = 0 in (2.17) and assume the feature dimension n is even. First we obtain a homogeneous

problem by letting f(v, t) = 0. Using the spherical means [40], the solution is,

h(x, t) =
1

n!!

[(
∂

∂t

)(
1

t

∂

∂t

)n−2
2
(

1

(n+ 1)α(n+ 1)
· (2.22)∫

B(x,t)

h0(y)

(t2 − |y − x|2)1/2
dy

)]
,

Here B(x, t) is a ball, α(n+ 1) is the volume of n-dimension unit ball. Next we insert f(v, t)

and let h0(v) = 0. We have the following nonhomogeneous problem,

∂2

∂t2
h(v, t) = ∆h(v, t) + f(v, t),h(v, 0) = 0,

∂

∂t
h(v, 0) = 0. (2.23)

Define h(v, t; s) to be the solution of a homogeneous problem with starting time s and initial

value h(v, s) = f(v, t). Duhamel’s principle asserts that hn(v, t) :=
∫ t

0
h(v, t; s)ds is the

solution to (2.22). The full solution to the forced wave equation is then the sum of (2.23) and

h(v, s). The outputs of the second-order model are always related to the initial values since

h0(y) is contained in the formulae, which avoids the zero value problem in the first-order case.

The solution takes a different form when the feature dimension is odd, but the dependency

on initial states are still valid.

More Discussions: In this part, we discuss the pros and cons of using second-order

continuous GNN instead of the first-order continuous GNN.

Second-order continuous GNN usually learn a smoother transformation than the first-

order, which may alleviate over-fitting. The first-order and the second-order continuous GNN

both attempt to compute a depth-varying vector field via solving Cauchy problems. However,

a severe issue with the first-order Cauchy problem is the stiffness of the learned vector fields.

More specifically, the feature mapping g is a homeomorphism, so the features of Neural ODEs

preserve the topology of the input space [36]. Instead, the second-order neural ODEs are not

limited to homeomorphic transformations [95].

The first-order augmented ODE implementation of our approach avoids the ad-hoc feature-

augmentation in existing first-order graph ODEs and allows better interpretability. To address

15

this stiffness of learned representations, Augmented Neural ODEs (ANODE) [36] proposes

mapping the node features to higher dimensions, which is a widely used trick in Graph-based

Neural ODEs. Although augmented neural ODEs can learn high-order dynamics [95], the

learned augmented features are difficult to be interpreted, because the high-order behavior

is entangled in these features. Our model explicitly defines the augmented features as the

gradients of the node features, which have fixed size and clear interpretability.

Sometimes, the second-order models may not be advantageous compared to the augmented

first-order models. For example, our definition of the second-order model may not be the

minimal augmentation [95]. On the other hand, sometimes, there exist eminent higher-order

dynamics behind the data transformation, which can be learned by augmented first-order

models. In this case, the second-order models may lose their interpretability and performance

superiority.

In general, although it is difficult to claim there exists a performance gap between the

optimal potential first-order and the second-order continuous GNN, second-order model has

better interpretability, has a simpler form, and usually learns a less stiff data distribution.

As such, second-order continuous GNN is more likely to give better performance in practice.

2.4 Experimental Results

This section evaluates the performance of our approach on the semi-supervised node and

graph classification tasks.

2.4.1 Datasets and Experiment Settings

Semi-supervised Node Classification For this task, three benchmark datasets are used,

including Cora, Citeseer, and Pubmed. We use the standard data splits for the benchmark

datasets, where 20 nodes of each class are used for training and another 500 labeled nodes

are used for validation. We also include the experiments with random splits. The statistics

of datasets are described in Table 1.

16

Graph Classification For this task, we predict the labels for graphs. We consider five

datasets [151], including IMDB-Binary (IMDB-B), IMDB-Multi (IMDB-M), COLLAB, Reddit

Binary (RDT-B), and Reddit-Multi5k (RDT-M). The statistics of datasets are described in

Table 2.

Explanation for Graph Neural Network In this task, we follow the setting in GNNEx-

plainer [152] and PGExplainer [81] and construct four kinds of node classification datasets. (1)

BA-Shapes is a single graph without node features. We first generate a base Barabasi-Albert

(BA) graph with 300 nodes. Then we attach 80 “house”-structured graph motifs to the nodes

in the base graph randomly. We add 0.1 random edges to perturb the graph. Nodes in

the base BA graph is labelled with 0. The top, middle, and bottom nodes of the houses

are labelled with 1, 2 and 3 respectively. (2) BA-Community is a union of two BA-Shapes

graphs with node features. We assign eight classes to the nodes based on the BA-Shapes

graph community and the structural roles. We generate node features using two Gaussian

distributions for the two BA-Shapes respectively. (3) Tree-Cycles is also a base-motif graph.

We use an 8-level balance binary tree as the base graph, and attach 80 six-node circle graph

motifs to the base graph. (4) Tree-Grids uses the same base graph as Tree-Cycles but 3-by-3

grid graph motifs. Table 2 illustrates the synthesized datasets.

Experimental Settings: For the classification tasks, we consider three variants of our

second-order continuous GNNs: proposed, where neither the damping nor the force term

is used; proposed∗, which uses the force term; proposed∗∗, in which both the damping and

the force term are used. In all models we use one linear layer, one continuous GNN layer,

and one linear prediction layer. For proposed, we use a standard graph convolution layer

to approximate the dynamics. For proposed∗, the force term is approximated by one linear

linear with sigmoid function. For proposed∗∗, the damping term α is set to 0.95. The terminal

time for the continuous layer is set to 15. The hidden dimension is 16. For the prediction

layer, we use a dropout rate of 0.2. Cora and Citeseer are trained for 100 epochs using

rmsprop optimizer with learning rate 0.005. The rest of the involved datasets are train for

200 epochs using Adam optimizer with learning rate 0.005. All results were collected using

single NVIDIA P40 with 24GB GPU memory.

For the explanation task, we follow the quantitative evaluation settings in GNNEx-

17

plainer [152] and PGExplainer [81]. The explanation is assessed as a binary classification of

edges. Specifically, the edges inside motifs are regarded as positive, and negative otherwise.

eij is viewed the prediction score. We report the average AUC scores and the standard

deviations based on ten repeats of the experiments.

2.4.2 Baseline Methods

We include representative discrete GNN and continuous GNN methods as the baselines.

Given the relation between our second-order method and augmented neural ODEs, we also

include related methods. The following results are obtained by run the official implementation

of the baselines. When the codes are not available, we cite the values from the original papers.

Discrete GNNs: For standard discrete GNNs we consider the Graph Convolutional Network

(GCN) [64] and the Graph Attention Network (GAT) [130]. Both are the most representative

GNN methods, and are conidered as widely used baselines for related continuous GNNs

methods [103, 146].

Continuous GNNs: We include three state-of-the-art continuous GNN models as the related

baselines, Graph Neural Ordinary Differential Equations (GDE) [103], Ordinary differential

equations on graph networks (GODE) [188], and continuous GNN (CGNN) [146]. We include

three variants for GDE with different ODE solvers. For CGNN, we also include two variants,

CGNN with weights (WCGNN) and diffusion CGNN.

Augmented Neural ODEs: We include Augmented Neural ODEs (ANODE) and Second

Order Neural ODEs (SONODE) as baselines. Both ANODE [36] and SONODE [95] are

designed for non-structural data, so we only use the node features and drops the graph for

these two methods.

2.4.3 Comparison Results

2.4.3.1 Semi-Supervised Node Classification

: The results for semi-supervised node classification on standard test-train splits are

summarized in Table 7 . In most cases, continuous methods outperforms discrete GNNs.

18

For non-graph methods ANODE and SONODE, the performance is significantly lower than

GNNs. The results demonstrates that our approach has superior performance compared to

the first-order continuous GNNs in most cases. Particularly, damping term can help improve

the performance. Meanwhile, the huge gap between non-graph ANODEs and our approach

show that the structural information is critical in node classification, and partial differential

equations are of potential. Table 7 summarizes the results for both the predefined and the

random test-train splits. Similar observations can be confirmed. It is also observed that GAT

is less stable considering the data splits, compared to the continuous methods.

2.4.3.2 Graph Classification

: The results for graph classification are summarized in Table 8. Compare to the standard

baselines, continuous GNNs are generally superior in peformance. Among all continuous

methods, our approach with a damping term performs the best. We also notice that the

average size of graphs has a large influence on the performance of continuous GNNs. For

example, the improvement of continuous methods are much more prominent for RDT-B and

RDT-M than for IMDB-B and IMDB-M.

2.4.3.3 Prediction Explanation

: The results for prediction explanation are summarized in Table 5. The explanation

accuracy is computed based on the ground truth node labels for the synthetic datasets. A

better explainability method has higher prediction scores for edges that are in the ground-

truth explanation. We compare the explainability of our method to two first-order continuous

GNNs. Proposed First-order omit the high order information, which serves as an ablation

study. Proposed Second-order is our full method. The quantitative results show that different

first order models show similar explainability in most cases. Our second-order method shows

some improvement compared to the first order methods.

19

2.4.4 Analysis of Model Parameters

2.4.4.1 The model performance v.s. Integration Time

: Figure 4 describes the semi-supervised node classification performance of our method

when the model is trained using different integration time. It can be observed that the

predicting power is robust to the different integration time. For the first order method,

heuristic augmented features are used to achieve a similar phenomenon. Our method suggest

a more explicit explanation by defining the high-order behaviors.

2.4.4.2 The Effect of Damping Term

: We notice that the damped version of our approach usually yield the best performance,

in which α is a tunable hyperparamater. Figure. 5 describes the semi-supervised node

classification performance of our method when the model is trained using different α. It can

be observed that our approach is insensitive to α for a wide range of [0.01, 0.10]. When α

is larger (for example, 0.2), the gradients vanishes quickly and the model performance is

witnessed to decrease slightly.

2.5 Conclusion

In this paper we propose a second order Continuous GNN. Compared to existing methods,

our approach employs a second order dynamics, which avoids the over-smoothing and provide

additional information to understand the prediction. Our method also can be viewed as

a continuous GNN model with interpretable augmented features. Extensive experiments

demonstrate that our approach outperforms related baselines for social network applications

and has better interpretability.

20

1

2 3

1
2

3

t=0

t → +∞

Figure 2: A ball-spring system under the second order dynamics (elastic force, gravity, and

friction).

… …

round

reparameterize
0.4

0.6

0.9

0.4

0.5

0.2

0.7

0.6

embed

(a) (b) (c) (d)

Figure 3: The pipeline for subgraph sampling. We compute the edge embeddings using a

deep neural network. We use the invertible Gaussian reparameterization trick to sample the

subgraph, which allows the straight-through gradients estimation for the back-propagation.

We update the embedding network using Monte Carlo method to optimize the mutual

information between the explanation and the computation graph.

21

Table 1: Statistics of datasets for node classification.

Dataset # Nodes # Edges # Features # Classes # Label Rate

Cora 2708 5429 1433 7 0.036
Citeseer 3327 4732 3703 6 0.052
Pubmed 19717 44338 500 3 0.003

Table 2: Statistics of datasets for graph classification.

Dataset IMDB-B IMDB-M COLLAB RDT-B RDT-M

graphs 1000 1500 5000 2000 5000
classes 2 3 3 2 5

avg.# nodes 19.8 13.0 74.5 429.6 508.5

22

Table 3: Node classification results on citation networks. The Cora, Citeseer, and Pubmed

columns summarize the results using standard test-training split. The corresponding columns

with superscript ∗ summarize the results over 10 random splits test-training split. The

values for GCN-GODE and GAT-GODE are taken from the original paper. Best-performing

methods are bold faced, and the runner-ups are underlined. For the random split, The results

of GCN-GODE and GAT-GODE are not available and are denoted by −.

Dataset Cora Citeseer Pubmed Cora∗ Citeseer∗ Pubmed∗

GCN [64] 81.8± 0.8 70.8± 0.8 80.0± 0.5 80.5± 1.1 72.3± 0.9 79.4± 1.5
GAT [130] 82.6± 0.7 71.5± 0.8 79.7± 0.4 80.1± 1.5 72.4± 1.2 78.4± 1.6

GDE-rk2 [103] 82.9± 0.5 72.4± 0.5 79.8± 0.4 81.4± 0.5 72.1± 0.6 78.9± 0.7
GDE-rk4 [103] 83.8± 0.5 72.4± 0.5 79.7± 0.4 81.6± 0.4 71.8± 0.5 79.5± 0.6
GDE-dpr5 [103] 81.9± 1.1 69.0± 1.1 78.3± 0.7 79.3± 1.3 68.1± 0.9 75.1± 0.9

GCN-GODE [188] 81.8± 0.3 72.4± 0.8 80.1± 0.3 − − −
GAT-GODE [188] 83.3± 0.3 72.1± 0.6 79.1± 0.5 − − −

CGNN [146] 83.8± 1.1 72.7± 0.6 82.2± 0.5 82.5± 1.0 72.2± 1.0 80.4± 1.3
WCGNN [146] 83.6± 0.7 72.8± 0.7 82.1± 0.5 82.0± 1.0 72.2± 0.9 79.8± 0.9

ANODE [36] 58.4± 1.5 61.6± 0.8 69.8± 0.5 59.6± 1.3 59.9± 1.1 70.7± 0.5
SONODE [95] 59.9± 1.3 61.5± 0.9 70.1± 0.4 60.1± 1.4 60.3± 0.9 71.0± 0.6

Proposed 83.3± 0.9 72.9± 0.8 82.0± 0.7 82.5± 0.8 72.7± 0.6 79.4± 1.0
Proposed∗ 83.5± 0.6 72.5± 1.0 81.5± 0.5 82.6± 0.6 71.6± 0.8 79.9± 0.8
Proposed∗∗ 84.3± 0.8 73.2± 0.9 82.1± 0.5 83.5± 1.0 72.1± 0.8 80.9± 0.9

23

Table 4: Graph Classification results.

Dataset IMDB-B IMDB-M COLLAB RDT-B RDT-M

GCN [64] 70.9± 4.6 49.4± 3.2 73.3± 3.1 82.9± 2.8 52.4± 2.1

GDE-rk2 [103] 70.4± 3.5 48.5± 3.6 75.6± 1.6 87.9± 1.7 54.1± 1.6

GDE-rk4 [103] 71.5± 3.8 48.1± 2.9 74.9± 1.3 86.4± 1.5 54.3± 1.4

GDE-dpr5 [103] 69.1± 4.1 48.2± 3.0 71.0± 2.5 83.1± 3.4 52.0± 2.2

CGNN [146] 71.4± 3.3 47.4± 3.6 75.4± 1.9 87.7± 2.2 55.3± 1.5

WCGNN [146] 71.8± 2.9 48.9± 2.3 75.7± 2.1 88.2± 2.3 54.9± 1.2

Proposed 71.6± 3.1 49.4± 3.0 75.2± 2.2 88.0± 2.0 53.7± 1.5

Proposed∗ 71.9± 3.8 48.5± 3.4 76.0± 1.7 87.5± 2.1 53.2± 1.4

Proposed∗∗ 72.5± 3.6 48.8± 2.9 76.3± 2.5 89.6± 1.8 56.0± 1.7

Table 5: Explanation AUC results.

BA-Shapes BA-Community Tree-Cycles Tree-Grid

Base
Community 0

Community 1Motifs

GDE-rk2 [103] 0.934± 0.013 0.877± 0.022 0.914± 0.010 0.873± 0.016

CGNN [146] 0.926± 0.017 0.849± 0.016 0.955± 0.015 0.881± 0.007

Proposed First-order 0.930± 0.015 0.911± 0.024 0.949± 0.008 0.887± 0.015

Proposed Second-order 0.954± 0.011 0.955± 0.021 0.975± 0.011 0.912± 0.013

24

Figure 4: Training loss (left) and validation accuracy (right) under different integration time.

Figure 5: Training loss (left) and validation accuracy (right) with different damping terms.

25

3.0 Robust Self-Supervised Structural Graph Neural Network

3.1 Motivation

Many real-world web based research and applications involve structural data which

can be represented using graphs, such as social networks [91], natural languages [79], etc.

Graph Neural Networks (GNNs) [64, 30, 38, 47, 149, 47, 153, 50, 154] have shown superior

performance in learning graph embeddings from structured web data, and the effectiveness has

been verified by many downstream tasks, e.g. text processing [111, 148], fraud detection [156],

recommendation systems [184, 158], and social network link prediction [119, 144]. For example,

textGNN [185] extends the twin tower model to employ the user interactions in natural

language understanding [128]; in anomaly detection, attention-based GNNs allow users to

deduce the root cause of a detected anomaly [31]; in recommendation systems [101], interest

aware message-passing can avoid the influence of high-order neighbors with no common

interest of a user [77].

By far, most works focus on the analysis for one single graph or a fixed set of graphs.

Recently, self-supervised graph representation learning achieved some success both in research

and many real web applications [187]. The data sparsity problem is common due to cost

of collecting and labelling the data. On the other hand, many problems require domain

knowledge, and traditional unsupervised methods lack clear guidance in model designing.

Given the success of transfer learning in other machine learning areas, a natural question

is the feasibility of generalizable, transferrable, and robust graph representation learning.

Inductive representation learning [50] is one of the early works that notice the generalization

of GNNs to “unseen” nodes during the learning. Graph Contrastive Coding [107], inspired

by the success of contrastive learning, takes one step further to consider the transferability of

GNNs. Inspired by self-supervised GNN, there is also evidence showing that the robustness

of representations can be enhanced by graph augmentations [157]. At a high level, the

prevailing self-supervised GNN pipeline learns the node embeddings via characterizing their

local patterns (i.e. subgraphs centered at the nodes of interest) and makes use of the instance

26

discrimination [145] framework to learn the relationships between these embeddings. There

are some success attempts to apply self-supervised learning to real problems. For example,

in recommendation systems, the quality of users and items representations from historical

interactions is central to the success of collaborative filtering. Via incorporating item contents

into the learning scheme, the contrastive-based methods can enforces dimension-wise similarity

between feature representation and collaborative embedding, which avoid some noise edges,

such as the irrelevant interaction of users with a large bulk of items. With the dramatic social

media boom, the social recommender system can find the high-order connectivity information

from the social influential users using self-supervised methods [158]. and capture the behavior

of users even for those having few interactions with items. In fraud detection in finance and

spammer discovery in social media, the hop-count distribution is different for anonymous

nodes and normal nodes, and predicting shortest path length between a pair of nodes using

self-supervised learning methods can provide some evidence to anomaly detection [156].

Although the success of aforementioned self-supervised methods in social networks and

related applications, several important problems remain to address. Firstly, the node represen-

tation learned in most existing self-supervised methods is focused on the node-wise proximity,

and the proximity of local structures is less considered. Secondly, the local consistency of

the users are seldom considered, which is related to distribution shift. Sub-graph sampling

techniques are widely exploited in the training of GNNs as a consequence of the size of

modern large-scale graph data. However, additional distribution shifts would be introduced

by different sub-graph sampling techniques, while prior works implicitly assume that the data

distribution is universal for different sources. The distributional shift potentially deteriorates

the generalization and transferability. These problems urge network proximity defined on

the embedding of local structures and invoke an explicit consideration on the distributional

robustness of the self-supervised GNNs.

To address the aforementioned challenging problems, in this paper, we proposed a novel

distributionally robust graph contrastive learning framework, dubbed learning structural

embeddings. In contrast to existing works that focus on the node-wise proximity, our

method learns the local-structural level proximity via gathering an embedding set describing

both a node and its neighbors, i.e. a subgraph surrounding the node of interest. The

27

difference between two nodes is then characterized via the Wasserstein distance defined on

the distribution of nodes of corresponding subgraphs. To alleviate the distributional shift,

we further design a distributionally robust contrastive learning framework by constraining

the maximal inconsistency for similar subgraphs. The Wasserstein distance to measure the

proximity for self-supervised learning is considerably challenging in computation because

the contrastive loss function based on the Wasserstein distance becomes a difficult bi-level

optimization problem. In this paper, we employ a differentiable implicit layer to deal with

the Wasserstein distance, making our framework end-to-end trainable. Our contributions are

summarized as follows:

• We propose new graph embeddings at a local-structural level via learning the embedding

sets for the subgraphs, which are composed of the nodes of interest and their neighbors.

The Wasserstein distance is adopted as the network proximity.

• We introduce a distributionally robust contrastive learning framework. To circumvent the

difficult minimax problem, the original problem is relaxed to an asymptotic formulation.

We resort to the differentiable optimization methods to compute the Wasserstein distance,

which makes the full network end-to-end trainable.

• Extensive experiments are conducted on various tasks and representative datasets. The

results demonstrate that our algorithm outperforms other state-of-the-art methods in

several important downstream analysis. The ablation study validates the effectiveness of

our approach.

3.1.1 Notations

Throughout the paper, the bold capital and bold lowercase symbols are used to represent

matrices and vectors, respectively. If all elements of a matrix A are greater than or equal to

0, we denote it by A ≥ 0. We use G = {V,E} to represent a graph. Here V is the node set,

and E is the edge set. Finally, a n× n-identity matrix is denoted by In, 1n is a n-dimension

one vector, and 0 denotes a zero matrix.

28

3.2 Related Works

3.2.1 Graph Representation Learning

Graph representation learning is featured by mining the topological structures of graphs

and encoding nodes with low-dimensional embeddings. Representative works, including

Word2Vec [87], DeepWalk [102], and LINE [124], collect local patterns and learn mappings

from graphs to vectors. To capture the highly non-linear property of attributed graphs,

Deep Attribute Embedding Network (DANE) [45] upgrades the shallow models in the

aforementioned model to deep networks.

There are increasing interest in GNN [64], which is developed from graph convolution

and can simultaneously exploit the structural knowledge and the enriched side information

in attribute graphs. GCN [64] shows the superiority of the first-order graph convolution for

semi-supervised node classification. GraphSage [153, 50, 154] and Message Passing Neural

Network (MPNN) [47] broaden the application of GNNs to the analysis for large-scale graphs

via a more efficient aggregation mechanism. Graph Attention Network (GAN) [130] introduces

the attention mechanism which is shown to be effective in general network analysis. recently,

the relation between GNNs and graph isomorphism problem is studied, based on which Graph

Isomorphism Network (GIN) [149] is designed.

In this paper we use GIN as the backbone models in our self-supervised graph neural

networks.

3.2.2 Graph Contrastive Learning

Recently, contrastive learning has attracted a surge of attention in a machine learning

community. A typical scheme is to select an anchor, a positive instance, and a negative

instance, and maximize the margin between the similar pair (anchor v.s. positive) and the

negative pair (anchor v.s. negative). Instance discrimination [145] is a popular self-supervised

framework that achieves state-of-the-art performance in many computer vision tasks, for

example, SimCLR [26] and SimCLRv2 [27].

Graph contrastive learning requires different objectives due to the unique data structure,

29

such as Jensen-Shannon estimator [132, 118], the noise-contrastive estimation (NCE) [157]

and parametric estimation method using projection head [52]. To generate graph views,

different augmentation methods are proposed. One of the most commom method is node

attribute masking [157] which applies the feature transformations. For a given graph, edge

perturbation [157, 107] can randomly adds or drops edges. Another direction is sampling-

based transformation. For example, ego-nets sampling, such as in DGI [132], InfoGraph [118]

and MVGRL [52], can be viewed as the unification of the contrast between graph-level and

node-level representations.

In this work, we adopt the InfoNCE loss [97] and instance discrimination [145] methods,

which are demonstrated to have good performance in graph pre-training [107].

3.2.3 Network Proximity

There are several perspectives concerning the definition for the proximity between different

nodes in networks. A variety of works are based on the neighborhood similarity computed

locally from the neighborhood of the vertices, for example, Jaccard similarity and cosine

similarity. On the other hand, the structural similarity consider the similarity w.r.t. local

patterns. Models of this genre include structural diversity [127], motif [88, 15], and spectral

methods [34]. A more fine-grained definition [124] considers the first-order proximity, second-

order proximity, and high-order proximity. GraRep [21] considers the connectivity between

different nodes via explicitly constructing the probability transition matrix. Alternatively,

DeepWalk [102] explores the connectivity and the local pattern via random walk with restart.

For attribute graphs, GNN [64] and its variants [153, 130] are powerful tools to leverage

the side information in computing network proximity. Another related topic to the network

proximity is the graph matching problem, where a principally similar idea to the graph neural

network is developed. The representative works in this direction include the Weisfeiler-Lehman

Isomorphism Test [113] and the related graphlet methods [114].

30

3.2.4 Deep Implicit Layers

Deep neural networks are heavily dependent on the gradient-based optimization, e.g.

Momentum Stochastic Gradient Descent [120] and Adam [63]. However, constrained opti-

mization is seldom integrated into deep neural networks due to the difficulty of the automatic

differentiation concerning the boundary.

Recently, neural ordinary differential equations [25] provides a new interpretation for the

residual neural layers, which states that each residual layer can be viewed as one differential

operation. Inspired by this perspective, it is shown that deep neural networks can be utilized

to solve convex constrained problems, referred to as differentiable optimization [4]. OptNet [6]

is an initial study, in which a special deep layer is designed to solve quadratic programming

problems. Of note, in regular tasks, the parameters in the convex constrained problems of

interest usually are computed using the outputs from preceding layers. An important result

of the deep implicit layer is that the gradient of the parameters can be computed using the

implicit function theorem.

In this paper, we use Wasserstein distance to characterize the node proximity, which

can be formulated as a linear programming problem. Given the success of deep earth move

distance in few-shot learning [162], we adopt the deep implicit layer to compute Wasserstein

distance, which admits a fully end-to-end graph neural network.

3.3 Proposed Method

At a high level, we sample subgraphs spanned from a node and learn the embeddings via a

graph encoder to capture the local pattern. Each node is an individual class and the similarity

of subgraphs is characterized by the network proximity defined on the embeddings. Figure 6

illustrates the pipeline of our approach. We consider a subgraph triplet
(
Gqi , (Gki , Gkj)

)
, in

which Gqi and Gki are from the same node and Gkj is from a different one. We encourage a

large margin between the proximity for similar pair (Gqi , Gki) and that for dissimilar pair

(Gqi , Gkj).

31

𝐺𝑘𝑖

𝐺𝑞𝑖

𝐺𝑘𝑗

generate
r-ego

subgraphs

graph
encoder

distributionally robust
Network proximity

Figure 6: Subgraphs generated from the same node (colored in red) are similar, and from

different nodes are dissimilar (red v.s. blue). To learn a robust encoder, we fix the keys, i.e.

Gki and Gkj , and focus on the most difficult query Gqi (solid red line) instead of random

queries (dashed red lines).

Compared to prior works, our approach is robust in two senses. Firstly, we expand

the embedding space and exploit Wasserstein distance as the network proximity. Sampling

subgraphs is a standard step for modern large-scale graph analysis. In this paper, we propose

to use structural embeddings defined on subgraphs crawling around the nodes of interest, i.e.

the comprehensive information gathered from the center nodes and their neighbors. We use

the structural embeddings, which are sets of node embeddings, to explicitly capture the subtle

difference between subgraphs. More specifically, we characterize the non-linear and non-local

relationships between these embeddings by Wasserstein distance. Of note, we propose to

utilize an automatic differentiable solver to compute the Wasserstein distance, which leads

to an end-to-end trainable network. Secondly, we focus on the most ambiguously similar

pairs, which leads to our formulation insensitive to data distributions. For example, sampling

techniques and their parameters may introduce fluctuation concerning the distribution

of subgraphs. We propose an asymptotically distributionally robust contrastive learning

framework, which is reluctant to distribution shift and easy for computation.

In the following, we first formalize our self-supervised GNN and the associated network

proximity in §3.3.1. Then, in §3.3.2 we propose our distributionally robust contrastive learning

32

framework and formulate an asymptotic scenario to make the problem tractable. At last,

in §3.3.3 we introduce an end-to-end trainable neural network featured by a differentiable

implicit layer to compute the Wasserstein distance. We summarize the full algorithm and

discuss some details in §3.3.4.

Notations: we use the bold capital and bold lowercase symbols to represent matrices and

vectors. A ≥ 0 denotes all elements of a matrix A are greater than or equal to 0. G = {V,E}

is a graph, V is the node set, and E is the edge set. A n× n-identity matrix is denoted by

In, 1n is a n-dimension one vector, and 0 denotes a zero matrix.

3.3.1 Self-Supervised Graph Neural Network via Wasserstein Proximity

We adopt the r-ego network [107] to represent the local structure of node i, defined as

follow,

Definition 1. r-ego network [107] For graph G = (V,E), the r-neighbors of a node v ∈ V

are defined as Nv = {u|d(u, v) ≤ r}, where d(u, v) is the shortest path length between node u

and v. The r-ego network of v, denoted by Gv, is the subgraph induced by Nv.

r-ego networks can be augmented via graph sampling techniques, e.g. random walks with

restart [125]. We consider two subgraphs via augmenting the same node i, denoted as Gqi

and Gki , and other subgraphs from different nodes {j} ⊂ V , denoted as {Gkj}. In instance

discrimination learning, each r-ego network is viewed as a distinct instance. Therefore, Gqi

and all Gkj are considered to be similar, and Gqi and Gki are considered to be dissimilar.

Specifically, Gqi is referred to as the query, and the elements in the set {Gkj} ∪ {Gki} are

referred to as the keys.

Our self-supervised GNN are then encouraged to maximize the margin between similar

instances and dissimilar instances. We define fq, fk : V ×S → Y , where S is the augmentation

function space and Y is the embedding space. fq(·) and fk(·) map an augmentation of a

node to the query embeddings and the key embeddings respectively, and for simplicity we

omit the augmentation function. Let dg : Y × Y → R be a network proximity function, then

dg (fq(i), fk(j)) represents the proximity between query node i and key node j. Finally, let

ℓd(·) be the objective function for our self-supervised graph neural network, which is defined

33

on the proximity between a group of nodes and detailed in the following.

GIN𝐺𝑗1

𝐺𝑖1

GIN𝐺𝑗2

𝐺𝑖2

GIN𝐺𝑗𝐶

𝐺𝑖𝐶

𝐺𝑗

𝐺𝑖 𝒴𝑖

𝒴𝑗

Wasserstein
Distance

subgraph embeddings

Figure 7: The r-ego subgraphs surrounding the nodes of interest are fed into the structural

GNN to obtain the embedding sets. Wasserstein distance is then computed as the network

proximity.

Prior works usually defines Y ⊆ Rn, i.e. a n-dimension vector space. In this paper,

we propose to enlarge the capacity of the embedding space by defines Y ⊆ Rn×m. The

computation of our method is illustrated in Fig. 7.

In the sampling framework, the node representations are computed on the induced sub-

graph instead of the full graphs, in which potential bias is introduced due to the perturbation

in the sampled r-ego subgraph Gi. To address this problem, an alternative method is to

expand the node representations to subgraph representations which allows some uncertainty.

More specifically, we use an embedding set for r-ego subgraph Gi = (Vi, Ei), instead of the

fixed vector representation. Let yic be the embedding for a node vic ∈ Gi, the embedding set

for Gi can be denoted as Yi = {yic|c = 1, 2, . . . , C} with C be the cardinality of Vi. To learn

an embedding set, we can use a two-stage subgraphs sampling on top of a general graph

34

neural network backbone: given the node i, in the first stage, we sample Gi to obtain Vi, and

in the second stage we sample Ḡi = {Gic|c = 1, 2, . . . , C}. All Gic are fed into the backbone

model and the node embeddings are gathered to form a subgraph embedding.

The embedding sets are composed of multiple node representations therefore having better

representation abilities and larger capacity for capturing the subtle difference in sampled

subgraphs. The network proximity defined on the embedding sets can be interpreted as a

matching problem. We adopt the 1-Wasserstein distance to evaluate the difference between

Y and Ỹ ,

W
(
Y , Ỹ

)
= min

xij

C∑
i,j=1

xijc(yi, ỹj), c(yi, ỹj) = 1− y⊺
i ỹj

|yi||ỹj|
, (3.1)

here xij is a match and we reserve the constraints concerning xij for the next section. The

cost function c(yi, ỹj) measures the dissimilarity between yi and ỹj.

3.3.2 (Asymptotically) Distributionally Robust Contrastive Learning

3.3.2.1 Distributionally Robust Contrastive Learning

: The support of the embeddings Yi for node i is exactly the feasible set for r-ego

subgraphs Gi. Prior works consider an empirical expectation form for the objective functions.

However, as aforementioned, the distributions of r-ego subgraphs are presumably affected

by the specific sampling method. Local structures potentially lead to significantly different

distributions for r-ego subgraphs, and an example is given in Fig. 8. As such, it may introduce

bias into the learned global information. To avoid this bias, robustness is desired for our

self-supervised graph neural networks.

In this paper, we focus on the difficult queries instead of equally treating all queries.

Specifically, for given keys and candidate r-ego subgraphs, we only consider the most difficult

query, defined as the one that has the worst similarity with the matched key. Formally, we

define,

L = min
fq ,fk

max
Gqi

− 1

N

N∑
i=1

log
1

Z
exp (Wπi

(Gqi , Gki)) , (3.2)

35

here Wπi
is Wasserstein distance dependent on a data-related constrain πi whose details will

be discussed in the next section. Z is a normalization term,

Z = exp (Wπi
(Gqi , Gki)) +

m∑
j=1

exp
(
Wπj

(
Gqi , Gkj

))
. (3.3)

We refer (3.2) as the distributionally robust contrastive learning, because a contrastive objective

is adopted and the it can be represented as a distributionally robust optimization (DRO)

problem.

The distributionally robust formulation is weakly related to the support of the embedding

set Yi. Rather, compared to the expectation form, it directly constrains the most diverse

match between the query and key. This property assures the learned model is robust to

distribution shift caused by either the sampling methods for r-ego subgraphs or the data

difference.

3.3.2.2 Asymptotically Distributionally Robust Contrastive Learning

: The DRO problem defined by (3.2) can be solved via the duality form. In detail,

a feasible method is to solve the inner maximal problem and the outer minimal problem

alternatively, for example, the projected gradient descent in adversarial training. However, in

our case the inner problem is difficult and the reasons are two-folded. Firstly, the closed-form

solution is difficult to derive, due to the complexity of the subgraph distributions and the

computation of the Wasserstein distance. Secondly, the graph data are structural and discrete,

which means that gradient-based methods cannot be immediately adopted. To overcome the

challenge, we propose an asymptotic relaxation.

For simplicity, let ℓw(Gqi) = log 1
Z exp (Wπi

(Gqi , Gki)). We re-write (3.2) as follow,

max
Gqi

ℓw(Gqi) =
∑

(Ii(Gqi)ℓw(Gqi)) (3.4)

here Ii(Gqi) is an indicator function,

Ii(Gqi) =

1, Gqi = argmax

Gqi

ℓw(Gqi)

0, otherwise

.

36

Problem (3.2) is transformed into an integer optimization problem. To make the problem

tractable, we relax Ii(Gqi) with hi(Gqi),

hi(Gqi) =

(
1 + exp

(
1

τ

(
Ŵi −Wπi

(Gqi , Gki)
)))−1

, (3.5)

here τ is a temperature parameter, Ŵi is threshold indicating the maximal Wasserstein

distance. The relaxation is referred to as asymptotically Distributional robustness because

when τ → 0 and Ŵi → maxGqi
Wπi

(Gqi , Gki), hi(Gqi) converges to the distributionally robust

objective. Ŵi can be empirically estimated and updated during the optimization, and the

details are given in §3.3.4.

3.3.3 Computing Wasserstein Distance via Deep Implicit Layer

(3.2) involves the computation of the 1-Wasserstein distance between the queries and the

keys, which can be formulated as a linear programming problem,

Wπi
(G1, G2) = min

xij

∑
i

∑
j

cijxij, (3.6)

s.t. xij ≥ 0,
∑
i

xij = sj,
∑
j

xij = di, ∀i, j,

here cij, sj and di are parameters computed from the embeddings, which can be viewed as

functions defined on some input θ. In our case, θ can be interpreted as the embeddings and

other model parameters. Directly integrating (3.6) in our deep model will lead to intractable

gradients. To solve this challenged problem, we resort to a deep implicit layer encoding the

Wasserstein distance computation. A deep implicit layer exploits the (Karush–Kuhn–Tucker)

KKT conditions to solve a convex problem with the parameters fixed, and computes the

gradients w.r.t. θ using the implicit function theorem. As such, we can build a deep neural

network by integrating the graph encoder and the Wasserstein layer, which can solve (3.6)

and can be trained in an end-to-end manner. For self-containedness, the detailed derivation

of the deep implicit layer encoding the Wasserstein distance is given in the following.

37

Let N = m × n, f(x,θ) = c⊺x, x ∈ RN , and the k-th entry is xij with i = ⌊k/n⌋ and

j = k mod n. c : Θ→ RN is the vectorized form of the cost function. We first re-write (3.6)

as,

Wπi
(G1, G2) = min f(x,θ), (3.7)

s.t. G(θ)x ≤ 0, h(x,θ) = 0,

here G(θ) = diag (−1), and diag (·) maps the given vector to a diagonal matrix. Let s ∈ Rm

and d ∈ Rn be the vectorized sj(θ) and di(θ). h(x,θ) = Ax − [s,d], where [s,d] is the

concatenation of s and d. A ∈ RN×(n+m) arranges the linear constraints, , defined as,

A =

1

. . .

1

diag (1) · · · diag (1)

 . (3.8)

(3.7) is a constrained convex problem. Let v and λ be the dual variables for the equalities

and inequalities in the constraints, its Lagrangian is,

L (x,v,λ,θ) = c⊺x+ λG(θ)x+ vh(x,θ). (3.9)

It is easy to verify that (3.7) satisfies the Slater’s condition and the twice differentiability.

As such, the KKT conditions of (3.9) are the necessary and sufficient optimality conditions

for (3.7). More specifically, define g (x,v,λ,θ) = [∇xL(x,v,λ,θ), diag(λ)G(θ)x, h(x,θ)]⊺.

If g(z̃,θ) = 0 for some z̃ = (x̃, ṽ, λ̃) where x̃ and ṽ are both feasible, then the KKT

conditions are satisfied and x̃ is optimal. We can compute the partial Jacobian regarding z

(omitting the last two columns) and θ as,

Dzg(z̃,θ) =

Dx∇xL(z̃,θ)

diag(λ̃)DxG(θ)x̃

Dxh(x,θ)

 , Dθg(z, θ) =

Dθ∇xL(z̃,θ)

diag(λ̃)DθG(θ)x̃

Dθh(x,θ)

 . (3.10)

The following theorem characterizes the differentiability of convex optimization.

38

Theorem 1. (Differentiability of a Convex Optimization Problem [9]) Given a convex problem,

assume (1) Slater condition holds, (2) all derivative exists, (3) {i|λi = 0 and fi(x,θ)} = ∅, and

(4) Dxg(x,v,λ,θ) is non-singular. If g(x̃, ṽ, λ̃,θ) = 0, the solution mapping has a single-

valued localization s around x̃, ṽ, λ̃ that is continuously differentiable in a neighborhood Q of

θ with Jacobian satisfying, Dθs(θ) = −Dzg(x̃, ṽ, λ̃,θ)
−1Dθg(x̃, ṽ, λ̃,θ) for every θ ∈ Q.

Remark 1. Theorem 1 is an immediate result from the Implicit Function Theorem [66].

Recall that in our problem, θ are the embeddings of subgraphs. Theorem 1 states that the

gradient w.r.t. θ can be computed according to (3.10). In other words, backward propagation

is feasible.

3.3.4 Algorithm and Implementation

Algorithm 1 Distributionally Robust Self-Supervised Graph Neural Network

Input: Graph G, key size C

Output: Model Parameter W

1 Initialize τ , Ŵi;

2 while epoch not end do

3 for i ∈ V do

4 Sample r-ego subgraphs, Gqi and Gki ;

5 Sample r-ego subgraphs, Gkj , j = 1, 2, . . . , C;

6 Update W w.r.t. (3.4) and (3.5), ;

7 Ŵi ← 0.999×max
{
Ŵi,Wπi

(Gqi , Gki)
}
;

8 τ ← 0.999× τ ;

9 end

10 end

The first stage of sampling is based on neighbor sampling, and the second stage is based

on random walk with restart. To accelerate the training, we use the one-hop neighbors in

the first stage. We use Graph Isomorphism Network (GIN) as the backbone model in our

structural GNN. For the Wasserstein distance, let u and v be two embedding sets, sj in (3.6)

39

is defined by,

sj =
Cs̄j∑C
i=1 s̄j

, where s̄j = max

{
C∑

k=1

u⊺
jvk, 0

}
, (3.11)

and di is defined similarly. We initialize Ŵi and τ in (3.5) with 0 and 3 respectively. Ŵi is

estimated dynamically and τ is gradually decreasing during training. The full algorithm is

summarized in Algo. 1.

Our implementation is based on the DGL package 1 and OptNet [6], which is designed

for solving quadratic programming (QP) problems. Specifically, the backward propagation

is accomplished via automatic differentiation through a customized QP solver 2. To tailor

our problem to fit into OptNet, we only need to substitute the objective function c⊺x with a

quadratic form 1
2
(c⊺x)2, and the above derivation remains untouched. It is easy to verify that

the surrogate quadratic objective has the same optimums as the original linear programming

problem (3.6).

3.4 Experimental Results

In this section, we evaluate our approach for downstream graph analysis, which includes

two steps. We first pre-train the model using several large-scale graph datasets. Then we

finetune the pre-trained model according to the specific tasks. In §3.4.1 we describe the

pre-training setting of our robust self-supervised graph neural network. In §3.4.2 we detail

the finetuning and evaluate our approach on three standard downstream benchmarks via

comparing the performance with related baselines. In §3.4.3 we conduct the ablation study

to demonstrate the effectiveness of our design.

1https://docs.dgl.ai/index.html
2https://github.com/locuslab/qpth

40

https://docs.dgl.ai/index.html
https://github.com/locuslab/qpth

3.4.1 Training Self-Supervised Graph Neural Network

We follow the experimental setting in GCC [107] and use six graph datasets from

NetRep [108] and SNAP [153, 8] covering academic graphs and social networks. In detail,

we use Academia and two DBLP datasets for academic graphs, and Facebook, IMDB, and

LiveJournal datasets for social networks. The statistics of the pre-training datasets are

summarized in Table 6.

For our robust self-supervised method, we adopt a 5-layer 64-hidden-units GIN as the

backbone model. We use one-hop neighborhood sampling with 5 neighbors in the first stage,

and a random walk with restart probability 0.8 in the second stage. The query encoder

is trained using Adam optimizer with learning rate of 0.001, β1 = 0.5, β2 = 0.999, and

ϵ = 10−8. We use the momentum contrast (MoCo) method [54] to update the key encoders.

The mini-batch size is 32, and the dictionary size is 16384. The momentum is set to 0.9. The

pre-train takes 50000 steps and the learning rate is decayed by 1
10

in step 10000 and step

30000. We include two versions of our approach, proposed∆ which omits the distributional

robust consideration, and proposed which is the full approach.

3.4.2 Downstream Analysis

We consider three standard benchmark tasks for graph learning algorithms, i.e. node

classification, graph classification, and top-k similarity search. Through the experiments,

we use GCC [107] and its variants as the self-supervised baselines. Supervised baselines are

detailed in the associated experiments to be discussed in the following.

3.4.2.1 Node Classification

: In this task, we predict the unknown node labels in a partially labeled network. We

adopt US-Airport and H-index as the benchmark datasets. US-Airport contains the airline

activity levels among 1190 airports. H-index is an academic dataset indicating the distribution

of the h-index of authors extracted from OAG [163]. We use the pre-trained query encoder to

extract features and a logistic regression classifier to make the final prediction. Specifically,

41

we finetune the query encoder and the classifier for 90 epochs using a batch size of 128.

We consider ProNE [164], GraphWave [34], and Struct2Vec [41] as supervised baselines.

The cardinality of subgraphs sets is 5. The results are presented in Table 7. For node

classification, we find the pre-trained graph neural networks are superior to the supervised

models. For example, our model outperforms the best supervised baseline, Struc2Vec, by

up to 2.7. Compared to self-supervised baselines, our algorithm shows improvement with

better stability for different datasets. The distributional robust consideration also improves

the model performance significantly.

3.4.2.2 Graph Classification

: In this task, we predict the labels for graphs. We consider five datasets [151], including

IMDB-Binary (IMDB-B), IMDB-Multi (IMDB-M), COLLAB, Reddit Binary (RDT-B), and

Reddit-Multi5k (RDT-M). We finetune the pre-trained encoder and a classifier parallel to

the node classification. The main difference is that we use the full graphs instead of r-ego

networks.

We consider DGK [151], Graph2Vec [92], InfoGraph [118], DGCNN [166], and GIN [149] as

supervised baselines. The results are presented in Table 8. Of note, our approach consistently

outperforms the self-supervised baselines on most datasets. For COLLAB, our approach is

competitive to the best-performing self-supervised baselines. Meanwhile, our method is also

competitive to the supervised baselines. For example, our method has the same performance

with the best-performing baseline, GIN, on IMDB-B, and is also very close on IMDB-M. In

COLLAB, our model surpasses the best performing supervised baseline by a large margin.

3.4.2.3 Top-k Similarity Search

: Given two graphs, the top-k similarity search attempts to find the most similar vertices

in one graph for the vertices in the other graphs. We adopt the co-author graphs [165] of K-I

(KDD v.s. ICDM) S-C (SIGIR v.s. CIKM), and S-I (SIGMOD v.s. ICDE) and define the

ground truth similarity as the common authors in both conferences. We use top-10 accuracy,

i.e. HITS@10 as the performance measurements. Of note, this is an unsupervised task, and

42

we use the pre-trained model without finetuning. The baseline methods include random

guess, RolX [55], Panther++ [165], and GraphWave [34]. The results are presented in Table 9.

Compared to the in-place methods, such as Panther++, the self-supervised methods show

competitive performances. Particularly, the proposed method show improvements compared

to the state-of-the-art self-supervised methods.

3.4.3 Ablation Studies

3.4.3.1 Model Robustness

: To evaluate the distributional robustness with the presence of distribution shift,we

consider different sampling settings for building the structural embeddings, and the results

are summarized in Fig. 9. We test five different sampling settings for the second stage: for

neighborhood sampling with different neighbor size, we consider NS 4 and NS 5; for random

walk with restart with different restart probability, we consider RWR 0.6, RWR 0.7 and RWR

0.8. The results are based on 10-fold validation accuracy on RDT-B. Different sampling

settings will lead to different subgraph distributions. The results show that our method is

insensitive to the choice of sampling settings.

3.4.3.2 Cardinality of Embedding Set

: The first sampling stage in computing our structural embeddings is neighborhood

sampling, and in the above experiments, we consider 5 neighbors within one-hop for each

node of interest. In this section, we alter the value of C, the cardinality of the embedding

set, to show its relationship with the model performance. The results are summarized in

Fig. 10. The results show that with the growth of the neighbor size, the model performance

first increases then stay stable. The cardinality used in this paper is chosen to balance the

computational efficiency and the performance.

43

3.4.3.3 Computational Time

: Our approach outperforms related baselines in several representative graph-related

tasks. A potential disadvantage is that our approach requires longer computational time

compared to related pretraining graph methods. Table. 10 describes the pretraining time for

the baseline GCC and our approach using different subgraph size (denoted by superscripts).

It can be observed that our approach takes moderately longer training time than GCC [107],

and the per-step time is positive correlated with the size of subgraphs.

3.5 Conclusion

In this paper, we propose a robust self-supervised graph neural network. We design

structural embeddings to explicitly represent both the nodes of interest and their neighbors

and utilize 1-Wasserstein distance to characterize network proximity. We formulate an

asymptotically distributionally robust contrastive learning framework, which is reluctant

to distributional shift. We exploit a differentiable optimization framework to compute the

network proximity, which makes our model end-to-end trainable. The experimental results

demonstrate that our approach outperforms state-of-the-art baselines in various downstream

graph analyses and our design is effective in improving model robustness.

44

P=0.2

P=0.5

P=0.3

P=0.3

P=0.3

P=0.4

r-ego subgraphs

sampler 1 sampler 2

distribution

Figure 8: An example shows the distribution of r-ego subgraphs are determined by the

sampling methods. The node of interest is colored in red, and three possible subgraphs

are shaded in different colors (middle column). Under different sampling techniques (e.g.

altering the backward jump probability in random walks), the distribution of subgraphs are

presumably different (right column).

Table 6: The statistic for the pre-training datasets. Among these datasets, Academia,

DBLP-SNAP, and DBLP-NetRep are academic datasets, and the rest are social networks.

Dataset Academia DBLP-SNAP DBLP-NetRep IMDB Facebook LiveJournal

nodes 137969 317080 540486 896305 3097165 4843953

edges 739384 2099732 30491458 7565894 47334788 85691368

45

Table 7: Node Classification Results.

Dataset US-Airport H-index

nodes 1190 5000

edges 13599 44020

ProNE 62.3 69.1

GraphWave 60.2 70.3

Struc2vec 66.2 −

GCC-E2E 65.3 77.7

GCC-MoCo 65.8 76.1

GCC-rand∗ 63.6 77.2

GCC-E2E∗ 68.4 78.8

GCC-MoCo∗ 66.5 80.9

Proposed∆ 68.1 80.7

Proposed 68.9 81.2

46

Table 8: Graph Classification Results.

Dataset IMDB-B IMDB-M COLLAB RDT-B RDT-M

graphs 1000 1500 5000 2000 5000

classes 2 3 3 2 5

avg.# nodes 19.8 13.0 74.5 429.6 508.5

DGK 67.1 44.7 73.4 78.0 40.8

Graph2Vec 71.1 50.2 − 76.9 48.2

InfoGraph 73.3 50.1 − 83.1 53.5

GCC-E2E 71.5 49.3 74.8 86.9 53.1

GCC-MoCo 72.4 49.3 79.0 90.1 53.4

DGCNN 70.2 48.0 73.7 − −

GIN 75.6 51.5 80.2 89.4 54.5

GCC-rand∗ 75.5 51.0 78.6. 87.9 52.0

GCC-E2E∗ 71.2 47.6 79.1 86.1 48.6

GCC-MoCo∗ 73.3 50.5 81.1 88.0 53.2

Proposed∆ 74.9 53.0 80.7 89.9 55.4

Proposed 75.6 53.1 81.2 90.4 55.9

47

Table 9: Top-k Similarity Search (k = 40). Best-performing self-supervised methods are bold

faced. Best performing non-self-supervised methods are denoted by ∗.

Dataset K-I S-C S-I

—V— 2607 3548 2559

—E— 4774 7076 6668

ground truth 697 874 898

Random 0.0566 0.0447 0.0521

RolX 0.1288 0.0984 0.1309

Panther++ 0.1558 0.1185∗ 0.1320

GraphWave 0.1693∗ 0.0995 0.1470∗

GCC-E2E 0.1564 0.1247 0.1336

GCC-MoCo 0.1521 0.1178 0.1425

Proposed 0.1588 0.1191 0.1439

48

NS 4 NS 5 RWR 0.6 RWR 0.7 RWR 0.8

89.0

89.5

90.0

90.5

91.0

Ac
cu
ra
cy
 %

RDT-B

Figure 9: The model performance under different subgraph distributions. We test five

different sampling settings for the second stage: for neighborhood sampling with different

neighbor size, we consider NS 4 and NS 5; for random walk with restart with different restart

probability, we consider RWR 0.6, RWR 0.7 and RWR 0.8. The results are based on 10-fold

validation accuracy on RDT-B. Our model performs similar under different settings, which

indicates our method is robust to distribution shift.

49

2 3 4 5 6
Cardinal of the Structural Embeddings

88.0

88.5

89.0

89.5

90.0

90.5

91.0
Ac
cu
ra
cy
 %

Figure 10: Model performance v.s. sampling size.

Table 10: The comparison of per-step time for the baseline and our method using different

subgraph size (denoted by superscripts).

Method Time (ms)

GCC MoCo 4.31

Proposed3 5.87

Proposed4 5.93

Proposed5 6.16

50

4.0 Training Graph Neural Network Faster using Stale Gradients

4.1 Motivation

Convolutional Neural Networks (CNN) [72, 73] have been successfully used in various

machine learning tasks with grid-structural data, including machine learning and natural

language processing [67, 89, 53, 62, 61]. Inspired by the same principle, Graph Convolutional

Network (GCN) [17, 30, 37, 94] and its variants [131, 64, 50] are proposed to handle arbitrarily

structural data, and have achieved state-of-the-art results in many applications, for example

graph embedding and node classification [51, 133, 124, 49, 65, 102, 112]. Compared to neural

networks, GCN can learn better node expressions based on both the nodes and their neighbors.

Particularly, the association between distant nodes can be captured by applying high-order

graph kernel or stacking multiple layers.

Despite the benefits of GCN, a severe problem lies in the training on large dataset [24,

23, 58]. Efficient training methods, such as stochastic gradient descent, can process data on

affordable batches. However, when training GCN a similar procedure is obstructed by the

“batch explosion”, as illustrated in Fig. 11. The inference of a single node requires the induced

sub-graph constructed on the receptive fields. With multiple stacked layers, the receptive

fields are yielded by recursively crawling along neighbored nodes in the graphs. Eventually,

a small batch will grow explosively into a large vertices set, and for dense graphs or deep

structures, the receptive fields may even take over the whole graphs. This phenomenon will

result in the annoyingly high consumption of memory and time in stochastic methods.

There have been some attempts to accelerate the training of GCN. An initial study is

GraphSage [50], in which a scheme of node-wise neighbor sampling (NS) is developed. Instead

of considering all neighbors, Dl neighbors are sampled at the l-th layer to reduce the receptive

field size. The hidden units are estimated based on the sampled sub-graphs. [24] further

proposed to use layer-wise importance sampling (IS) to decrease the sample variance and

attain a better estimation. Adaptive sampling [58] is another layer-wise sampling method,

which is shown to yield more accurate results by learning a sampling function. Skip links are

51

also used to promote the message passing between distant nodes. To improve the estimator,

[23] modified the model using control variable method, through storing historical states and

approximated the updating accordingly. To sum up, all these methods focus on reducing the

estimation variance.

In this paper we propose a faster training method for GCN from a different perspective.

A close investigation on the “batch explosion” will reveal the fact that, the bottleneck is

introduced by both the network depth and the sampling behavior. Instead of improving the

sampling, we focus on “reducing” the depth. However, directly using shallow networks is

opposed to the principle of exploiting deep structures [39, 116, 121], thus not an immediate

solution to our purpose. To overcome this difficulty, we propose to divide the naive GCN

model into sequential sub-models during training. In summary, our major contributions

are given as follows:

1) We re-formulate the original model optimization problem into a constraint problem.

Moreover, we propose to use gradient flashback to break the sampling and updating

dependency between sub-models, which enables a simultaneously training.

2) We provide a theoretical analysis to established the convergence for non-convex problems

under certain conditions, and provide a discussion on the variance of the sampled neighbor

sets.

3) The experiments demonstrate that the proposed method can greatly reduce the running

time per epoch compared to naive stochastic methods, and achieve consistent results in

both convergence rate and generalization ability. We also show that the proposed method

is compatible with various network designs and sampling schemes.

4.1.1 Organization and Notations

The rest of this paper is organized as follow: §4.2 presents the necessary background and

related work; §4.3 described the proposed method; §4.4 provides the theoretical results on

convergence analysis; §4.6 shows the experiment results; §4.7 concludes the paper.

Throughout the paper, ∥ · ∥ denotes the vector ℓ2 norm and the matrix spectral norm,

respectively. If not specified, matrices are denoted using bold upper case letters, vectors are

52

layer 3 layer 2 layer 1

exact

sample

Figure 11: The growing of the receptive fields layer-wise. Top line: the growing for exact

method; bottom line: the growing for sampled methods. Involved nodes in each nodes are

labelled with different colors. Clearly, deep network causes the size of involved nodes in

bottom layers exploded, particularly for exact method.

53

in bold lower case letters, and scalars are in plain letters.

4.2 Preliminary and Related Work

4.2.1 Preliminary

A graph can be represented as {V,E,W }, with V = {v1, v2, · · · , vn} the set of n vertices,

E ⊆ V × V the set of m edges, and W the weighted adjacency matrix of the graph. The

adjacency matrix W ∈ Rn×n, and Wij encodes the relation between vi and vj if there is

an edge, and 0 otherwise. The degree matrix of a graph can be expressed with diagonal

matrix D ∈ Rn×n, with the diagonal entries dii =
∑

j wi,j, representing the degree of node

i. Graph Laplacian is an essential operation in spectral graph analysis, typically defined as

Lc = D−W in combinatorial form and Ln = In−D−1/2WD−1/2 in normalized form, with

In a identity matrix. GCN is designed to analysis the signals on nodes, with a given graph

structure. As the name indicates, GCN is an extension of CNN. Convolution on 2-D matrices,

for example images, is well defined, serving as the basic building block in CNN. Graph

convolution, however, is difficult to perform directly in spatial domains, due to the irregularity

of neighbors of distinct nodes. One strategy is to conduct the operation in frequency domain

using graph Laplacian, which is feasible according to the convolution theorem [84]. By

definition, Laplacian matrix is positive semi definite, such that the eigenvalue decomposition

exists, L = U ⊺ΛU , and U = [u0,u1, · · · ,un−1] specifies a Fourier basis. The graph Fourier

transform [115] is then defined as x̂ = U ⊺x, with x ∈ Rn the signal, and the inverse transform

x = Ux̂. The spectral representation of node signals, x̂, allows the fundamental filtering

operation for graphs.

One potential problem here is that in spectral domain, the filter is not naturally localized.

Polynomial parametrization for localized filters [30] is proposed to tackle this challenge,

through learning the coefficients ΘK of a K-order Chebyshev polynomial. In detail, the filter

is defined as gθ(Λ) =
∑K−1

k=0 θkTk(Λ), and the graph convolution is defined as y = Ugθ(Λ)U ⊺x,

with y the filtered signal, θk the trainable parameters and Tk(Λ) the polynomials. By the

54

stable recurrence relation of Chebyshev polynomial, the costly multiplication in Fourier

transform can also be reduced. Parallel to CNN, pooling operation in graph settings is

accomplished by the graph coarsening [33] procedure.

The above method is suitable for graph classification, which is extended to node clas-

sification later [64]. By truncating the Chebysheve polynomial to only first order, GCN

model can be reformulated similar to multi-layer perceptron, with each layer defined as

y = σ(D̃−1/2ÃD̃−1/2xΘ), with Ã = A+ In, D̃ defined as aforementioned D, Θ the train-

able parameters, and σ(·) an activation function. In the proposed method we will adopt the

first order approximation version of GCN as the first stage to obtain embeddings for a graph,

then use a MLP in the second stage for the regression task.

4.2.2 Related Work

The fast training of GCN usually exploits stochastic methods with back-propagation [110].

Previous studies mainly focus on reducing the receptive fields via sampling techniques. Based

on the sampling manners, these methods can be separated into two categories, node-wise

sampling and layer-wise sampling. Neighbor sampling (NS) proposed by [50] is a typical

node-wise sampling method. For each layer, NS randomly samples Dl neighbors for each

node and estimator the value as,

(
PH l

)
u
≈ n(u)

Dl

∑
v∈n̂u

Puvh
l
v, (4.1)

here P = D̃−1/2ÃD̃−1/2, n̂u is a subset of Dl random neighbors of node u. Instead of

sampling neighbors for each node, layer-wise methods directly sample the receptive field for

each layer altogether. Given a sampling distribution q(v), the estimation is,

(
PH l

)
u
≈ V

S

∑
vs∼q(v)

Puvh
l
vs/q(vs), (4.2)

here V and S are the node number and sample size, respectively. Importance sampling

(IS) [24] and adaptive sampling (AS) [58] are two notable layer-wise methods. IS uses

importance distribution to reduce the estimation variance. AS learns a sample distribution

conditioned on the higher layer, to capture the node relations.

55

However, there ares some drawbacks in these methods. For node-wise sampling, the recep-

tive field is still growing by O (
∏

l Dl), which is not applicable for dense graphs. Meanwhile,

node-wise methods have a similar problem in the growth. Moreover, in practise node-wise

methods can sample no neighbors for some nodes, which lead to meaningless zero activation

values.

4.3 Gradient Flashback Method

In this section, we propose a novel gradient flashback method for training large-scale

GCN.

First, we review the naive GCN model [64] with L layers, which is written as,

hl+1
i = σ(Phl

iW
l), l = 1, 2 . . . , L, (4.3)

here hl
i is the inputs of sample i to l-th layer, and hl+1

i is the outputs, and P is the graph-

structure matrix, W l is the trainable weights of l-th layer, and σ(·) is activation function, and

L is the number of layers. h1
i is defined as sample xi, and the outputs of the last layer hL+1

i

is defined as outputs ŷi. Then training this model can be described the following problem

min
W
L(X,Y ,W), (4.4)

where W = [W 1,W 2 . . . ,W L] is the collection of trainable parameters, X are the inputs in

matrix form, Y are the corresponding targets, and L(·) is the loss function.

Recently, to training large-scale deep neural networks, the stochastic methods are widely

used, which include the stochastic gradient descent (SGD [109]) and its variants such as

Adam [63]. Similarly, these stochastic methods such as SGD can also be used to train the

GCN, but an additional layer-wise sampling is also required. In fact, the updating of shallow

layers are dependent on deeper layers in both gradient computing and sampling, which is

highly inefficient. Thus, we propose a fast gradient flashback method to train the large-scale

GCN. Specifically, the proposed method partitions the naive GCN model into a sequence of

sub-models, and accomplishes the sampling and updating using historical error gradients,

56

which breaks the dependency and accelerates the training. The sequential sub-models can be

written as,

hik+1
= fk(hik ,Wk), k = 1, 2 . . . , K, (4.5)

where fk(·) is the k-th sub-model defined as in (4.3), hik and hik+1
the inputs and outputs,

respectively, and Wk is the wrapped trainable parameter of fk(·).

With the modified GCN model, we can transform problem (4.4) into a constrained

problem as follows:

min
W
LK(HK ,WK), (4.6)

s.t. H1 = X, Hk+1 = fk(Hk,Wk), k = 1, · · · , K − 1,

To solve the above problem (4.6), we use the following iterative rule to update parameters:

W t+1
k = W t

k − γ
∂fk(H

t
k,W

t
k)

∂W t
k

gt−K+k
k ,

H t+1
k+1 = fk(Hk,W

t+1
k), k = 1, · · · , K − 1

W t+1
K = W t

K − γ
∂LK(H

t
K ,W

t
K)

∂W t
K

,

(4.7)

with

gt−kk =
∂fk+1(H

t−K+k
k+1 ,W t−K+k

k+1)

∂H t−K+k
k+1

,

where t−K + k ≤ 0. In fact, this iterative optimization method can be viewed as a variant

of stochastic gradient descent method. The main modification is that, for each sub-model, we

update the outputs in real-time as well as storing residual error gradients and sampled nodes

in the forward step, and train the sub-model with stale error gradients in the back-propagation.

For each batch, different sub-models can be trained simultaneously, instead of waiting for the

sub-graph sampling and error gradients in current batch. The error gradients are computed

in t-th step and flash back after several steps for training, which is the reason we name the

method gradient flashback. Intuitively the gradient flashback will become close to real-time

gradients, and in next section, a theoretical analysis will be given.

Finally, the proposed training algorithm is summarized in Algo. 2. Then we combined

the proposed method with neighbor sampling, and the sampling procedure is summarized in

Algo. 3.

57

Algorithm 2 Fast training GCN using gradient flashback

Input: Graph G, Features X, Labels Y , Epoch Limits T , Sub-Models numbers K

Output: Model Parameter W

1 initialization;

2 compute P ;

3 construct K sub-models, each with parameters Wk;

4 while epoch < T do

5 for k ≤ K do

6 require hidden states Hk−1 as inputs to sub-model k, H0 = X;

7 forward compute Hk, update stale hidden states Hk;

8 end

9 while epoch not end do

10 shuffle data;

11 for k ≤ K do

12 if epoch¡K-k then

13 pass

14 else

15 obtain batch data and approximate P̂ following Algo. 3;

16 update Wk w.r.t. (4.7), compute gk−1;

17 update stale gradients gk−1 and stale batch V k−1 with gk−1 and Vk−1

respectively;

18 end

19 end

20 end

21 end

58

Algorithm 3 Fetching batch data

Input: Graph matrix P , Current epoch t, Sub-Model index k

Output:

1 initialization;

2 if k is K then

3 obtain a new batch VK from all vertices;

4 else

5 fetch historical batch V k;

6 end

7 for l ≤ lk do

8 for u ∈ Vk do

9 sample n̂u from neighbor set nu of vertex u;

10 for v ∈ n̂u do

11 update P̂uv = ∥n(u)∥/∥n̂u∥Puv;

12 end

13 end

14 end

15 collect all sampled vertices to construct Vk−1;

16 return Vk−1, P
l

k;

59

4.4 Convergence Analysis

In this section, we demonstrate that the proposed method is guaranteed to converge to a

critical point for non-convex problems given certain conditions, and the convergence rate is

sub-linear.

We begin with introducing the common-used assumptions in SGD, which are also adopted

throughout our analysis,

Assumption 1. Throughout the paper we make the same assumptions ensuring the conver-

gence of SGD on the candidate problem [16],

1. (Smoothness)The objective function L : Rd → R is continuously differentiable and the

gradient function of L, namely, ∇L → Rd → R, is Lipschitz continuus with Lipschitz

constant L > 0, i.e.,

∥∇L(w)−∇L(w)∥2 ≤ L∥w − w∥, w, w ∈ Rd. (4.8)

2. (Moment limits) The objective function and SGD satisfy the following:

a. The sequence of iterates {wt} is contained in an open set over which L is bounded

below by a scalar Linf .

b. The updating is descending in expectation, namely there exist µ,

⟨∇L(wt),E⟩ ≥ µ ∥L(wt)∥22 . (4.9)

c. The second moment of the gradients of objective is upper bounded, that is, there exist

M ≥ 0, such that,

E[∥∇L(wt)∥22] ≤M, for H ,W. (4.10)

To bridge the gap between the proposed method and SGD, we decompose the gradi-

ent flashback into immediate gradient plus disturbing terms. Thus we introduce another

assumption to constraint the disturbing term.

Assumption 2. The following assumptions evaluate the gradient flashback method,

60

1. (Bounded Sub-model Gain) The spectral norm of the gradients of sub-models are

upper-bounded, that is, there exist a constant ϕ1 ≥ 0 such that,∥∥∥∥∂fk(Hk,Wk)

∂Hk

∥∥∥∥ ≤ ϕ1, k = 1, 2 . . . , K − 1, (4.11)

2. (Bounded Objective Gain) The spectral norm of the second order gradients of the

objective regarding the parameters are upper bounded, that is, there exist a constant ϕ2 ≥ 0

such that, ∥∥∥∥∂2LK(HK ,WK)

∂HK∂WK

∥∥∥∥ < ϕ2,∥∥∥∥∂2LK(HK ,WK)

∂HK
2

∥∥∥∥ < ϕ2,

(4.12)

Based on the above assumptions, we study the convergence rate of the proposed method

in the following.

Theorem 2. In Algorithm 2, given an appropriate γ, there exist constants Mk, η
∗
k ∈ R+, for

k ∈ N+, we have

1

T

T∑
t=0

E
[∥∥∇Lt

2

∥∥2
2

]
≤ L

0
2 − L∗2
T

+
Lγ2

2

K∑
k=1

Mkη
∗
k, (4.13)

where L∗2 is the optimal value of the objective,

Remark 2. Theorem 2 shows that under some mild conditions, our algorithm has a conver-

gence rate of O(1/T), which is the same with naive stochastic methods. By simultaneously

training multiple shallow sub-models, we can significantly reduce the time complexity per epoch

and accelerate stochastic training. We also include an analysis on the estimation of sampled

sub-graphs, which shows the necessity of batch normalization.

Theorem 3. Given the neighbor set nu of vertex u, n̂u contains |n̂u| nodes sampled using

distribution {qv} without replacement, and the estimator is unbiased. Assume

E
[(

P̂uvi − Puvi

)(
P̂uvj − Puvj

)
xvixvj

]
= 0, (4.14)

then there exists a constant cs > 0, such that the second centre moments of the approximation

satisfies,

V aru(P̂uxu) ≤ cs
∑
v∈nu

(Puvxv)
2 . (4.15)

61

Remark 3. Theorem 3 shows that compared to the exact method, the estimator admits

a moderate variance increase. This results provide some insights on the stability of the

training. For neighbor sampling, the equality holds. Particularly, the above results show that

through normalization, the variance can be greatly reduced regardless of the sampling methods.

Although the naive GCN [64] does not exploit batch normalization, this result can help explain

the performance improvement of successive works utilizing this techniques [23].

4.5 Appendix

In this section, we at detail provide the proofs of the above theorems.

4.5.1 Proof of Theorem 1

Proof. Without loss of generality, we first consider a naive GCN split into two sub-models,

namely K = 2. This problem can be described as follows:

min
W1,W2

L2(H ,W2), s.t. H = f1(X,W1), (4.16)

To solve the above problem (4.16), we use an updating rule as follows:

W t+1
1 = W t

1 − γ
∂f1(X,W t

1)

∂W t
1

∂L2(H
t−1,W t−1

2)

∂H t−1 ,

W t+1
2 = W t

2 − γ
∂L2(H

t,W t
2)

∂W t
2

,

H t+1 = f1(X,W t+1
1),

(4.17)

For simplicity, let Lt1,t2
2

.
= L2(H

t1 ,W t2
2), and Lt

2
.
= L2(H

t,W t
2). Following SGD, we have

Lt+1
2 − Lt

2 ≤ −⟨∇Lt
2,W

t+1 −W t⟩+ L

2
∥W t+1 −W t∥2, (4.18)

where W t .
= [W t

1,W
t
2], and

∥W t+1 −W t∥2 = ∥W t+1
1 −W t

1∥22 + ∥W t+1
2 −W t

2∥2. (4.19)

62

Here W2 term is identical to SGD settings. For W1 term, we use the gradient flashback to

update as follows:

γ−2∥W t+1
1 −W t

1∥2 =
∥∥∥∥ ∂H t

∂W t
1

∂Lt−1
2

∂H t−1

∥∥∥∥2 = ∥∥∥∥ ∂H t

∂W t
1

[
∂Lt

2

∂H t
+

(
∂Lt−1

2

∂H t−1 −
∂Lt

2

∂H t

)]∥∥∥∥2
=

∥∥∥∥ ∂H t

∂W t
1

[
∂Lt

2

∂H t
+

(
∂Lt,t−1

2

∂H t
− ∂Lt

2

∂H t

)
+

(
∂Lt−1

2

∂H t−1 −
∂Lt,t−1

2

∂H t

)]∥∥∥∥2
≤
∥∥∥∥ ∂H t

∂W t
1

∂Lt
2

∂H t

∥∥∥∥2︸ ︷︷ ︸
T1

+

∥∥∥∥ ∂H t

∂W t
1

(
∂Lt,t−1

2

∂H t
− ∂Lt

2

∂H t

)∥∥∥∥2 + ∥∥∥∥ ∂H t

∂W t
1

(
∂Lt−1

2

∂H t−1 −
∂Lt,t−1

2

∂H t

)∥∥∥∥2︸ ︷︷ ︸
T2

,

(4.20)

where the term T1 is the same as the classic gradient descent method, and the term T2 is the

disturbance introduced by the gradient flashback. Using Assumption. 2, the second term can

be bounded,∥∥∥∥ ∂H t

∂W t
1

(
∂Lt,t−1

2

∂H t
− ∂Lt

2

∂H t

)∥∥∥∥2=
∥∥∥∥∥ ∂H t

∂W t
1

∫ 1

0

∂2L2

(
H t,W t−1

2 + δ(W t
2 −W t−1

2)
)

∂H t∂δ
dδ

∥∥∥∥∥
2

(4.21)

≤

∥∥∥∥∥ ∂H t

∂W t
1

∫ 1

0

∂2L2

(
H t,W δ

)
∂H t∂W δ

(
W t

2 −W t−1
2

)T
dδ

∥∥∥∥∥
2

≤
∫ 1

0

∥∥∥∥ ∂H t

∂W t
1

∥∥∥∥2
∥∥∥∥∥∂2L2

(
H t,W δ

)
∂H t∂W δ

∥∥∥∥∥
2 ∥∥W t

2 −W t−1
2

∥∥2 dδ ≤ η1
γ2

∥∥W t
2 −W t−1

2

∥∥2 ,
(4.22)

where η1 = ϕ2
1ϕ

2
2 is the deduced bound coefficient. Similarly, the third term can be bounded∥∥∥∥ ∂H t

∂W t
1

(
∂Lt−1

2

∂H t−1 −
∂Lt,t−1

2

∂H t

)∥∥∥∥2 ≤ ηt
∥∥H t −H t−1∥∥2

2
≤ η2

γ2

∥∥W t
1 −W t−1

1

∥∥2 ,
where ηt and η2 are the deduced bound coefficients similar to η1. The two inequalities follow

by twice linear integration, also using Assumption. 2. Without loss of generality, we assume

63

η2 < 1. This can be ensured by simply shrinking the hidden units for early sub-models and

amplifying the results back in the last sub-model. Take the expectation of both size of (4.18),

E[Lt+1
2]− Lt

2 ≤ −⟨∇Lt
2,E

[
W t+1 −W t

]
⟩+ L

2
E
[∥∥W t+1

2 −W t
2

∥∥2]+ Lγ2

2
E

[∥∥∥∥ ∂H t

∂W t
1

∂Lt
2

∂H t

∥∥∥∥2
]

+
Lη1
2

E
[∥∥W t

2 −W t−1
2

∥∥2]+ Lη2
2

E
[∥∥W t

1 −W t−1
1

∥∥2]
≤ −µ

∥∥∇Lt
2

∥∥2+Lγ2

2
E

[∥∥∥∥ ∂H t

∂W t
1

∂Lt
2

∂H t

∥∥∥∥2
]
+
Lγ2

2
E

[∥∥∥∥ ∂Lt
2

∂W t
2

∥∥∥∥2
]
+ (4.23)

Lη2
2

E
[∥∥W t

1 −W t−1
1

∥∥2]+Lγ2η1
2

E

[∥∥∥∥ ∂Lt−1
2

∂W t−1
2

∥∥∥∥2
]
. (4.24)

Then summing over t, we have

E[LT
2]− L0

2 ≤ −µ
T−1∑
t=0

E
[∥∥∇Lt

2

∥∥2
2

]
+

Lγ2

2

T−1∑
t=0

E

[∥∥∥∥ ∂Lt
2

∂W t
2

∥∥∥∥2
]
+

Lγ2η1
2

T−1∑
t=0

E

[∥∥∥∥ ∂Lt−1
2

∂W t−1
2

∥∥∥∥2
]

+
Lγ2

2

T−1∑
t=0

E

(∥∥∥∥ ∂H t

∂W t
1

∂Lt
2

∂H t

∥∥∥∥2
)

+
Lη2
2

T−1∑
t=0

E
[∥∥W t

1 −W t−1
1

∥∥2]
≤ −µ

T∑
t=0

E
[∥∥∇Lt

2

∥∥2
2

]
+

Lγ2M1T

2 (1− η2)
+

Lγ2M2T (η1 − η2 + 1)

2(1− η2)
, (4.25)

where the last inequality follows by η2 < 1, whose the last term is a shrunken version∑T−1
t=0 E

[∥∥W t+1
1 −W t

1

∥∥2
2

]
. Here M1 and M2 are the upper bounds of the gradient second

moment of W1 and W2 accordingly. Since L∗2 is the optimal value, we have L0
2 − E(LT

2) ≤

L0
2 − L∗2. Then we obtain

1

T

T∑
t=0

E
(∥∥∇Lt

2

∥∥2
2

)
≤ L

0
2 − L∗2
T

+
Lγ2

2

[
M1

1− η2
+

M2 (η1 − η2 + 1)

1− η2

]
. (4.26)

Clearly, we can wrap k = 1, 2 . . . k − 1 to an integral constraint and apply above analysis.

The wrapped constraints also follow the sub-linear bound, thus the result hold. ■

64

4.5.2 Proof of Theorem 2

Proof. The estimator is unbiased, En̂u

[∑
v∈n̂u

P̂uvxv

]
=
∑

v∈nu
Puvxv, and let the sampling

probability {qv} and the corresponding normalization term c, then the expectation of the

estimator can be written as,

En̂u

[∑
v∈n̂u

P uvxv

]
= EIv

[∑
v∈nu

cIvPu,vxv

]
, (4.27)

where Iv is the indicating random variable, with 1 indicating the occurrence of v in the sample

n̂u and 0 otherwise.

Next, the variance of the estimator with regard to {qv} is,

V arn̂u(P̂uxu) = EIv

∥∥∥∥∥∑
v∈nu

cIvPuvxv −
∑
v∈nu

Puvxv

∥∥∥∥∥
2
 = EIv

∑
v∈nu

∥∥∥h̊v

∥∥∥2 + ∑
{v1,v2}⊆nu

h̊v1h̊v2

(4.28)

where h̊v
.
= cIvPuvxv − Puvxv, and the first term follows

EIv

[∥∥∥h̊v

∥∥∥2] = EIv

[(
(cIv − 1)Puvxv

)2]
= EIv

[
(cIv − 1)2

]
(Puvxv)

2 , (4.29)

and the second term E
(∑

v1,v2∈nu
h̊v1h̊v2

)
= 0 follows by Assumption 2. Thus, the variance

of the estimator is given by,

V aru(P uxu) ≤
∑
v∈nu

EIv
[
(cIv − 1)2

] ∑
v∈nu

(Puvxv)
2 =

(∑
v∈nu

EIv (cIv)
2 − ∥V ∥

)∑
v∈nu

(Puvxv)
2 ,

(4.30)

where the last equality follows the definition of c and Ev,
∑

v∈V cIv = ∥V ∥.
∑

v∈nu
EIv (cIv)

2

is upper bounded by cIv > 0. ■

65

4.6 Experiments

In this section, we validate the effectiveness of the proposed method. We describe the

experiment settings in 4.6.1, include the model accuracy and running time per epoch results

in 4.6.2, present the convergence results in 4.6.3, and demonstrate the versatility of the

proposed method in 4.6.4.

4.6.1 Experiment Settings

We evaluate the performance of the proposed method empirically on the following

benchmarks tasks: Cora, Citeseer and Pubmed. For accuracy and running time comparison,

we evaluate the performances on both the supervised tasks and semi-supervised tasks. In the

supervised tasks, we use all labelled data as the training set. In the unsupervised tasks, we

adopt a coherent split of data used in [64] for fair comparison. For other comparisons we only

report the results on supervised tasks. A GCN model with one hidden layer is implemented

for all datasets, and we report the results trained using different accelerating methods. We

compare the proposed methods to related baselines, including stochastic methods without

sampling (full), neighbor sampling (NS) [50], and importance sampling (IS) [24]. Based on

naive GCN [64], batch normalization [60] are added to the model besides the last layer, to

reduce the sample variance [23]. The statistics of the involved datasets, the corresponding

model parameters and the training details are summarized in Table. 11. Here the rows

semi-supervised and supervised are the sizes of training set for the two tasks, respectively.

The proposed method is implemented in Tensorflow [2]. In the proposed method, K is set

to 2, and the neighbor sampling is used. We use cross-entropy loss and Adam optimizer [63]

throughout the experiments, and the step-size is fixed to 0.01. All experiments are performed

on a server with one Intel i-7 CPU and three Titan X (PASCAL) GPUs.

4.6.2 Comparison with Baselines

In this section we report the model accuracy and running time on different training

methods. Table. 12 summarizes the running time and test accuracy on the aforementioned

66

supervised and semi-supervised tasks and the three datasets regarding different methods.

For the supervised tasks, the epoch running time of naive GCN grows extremely fast with

regard to the graph size. Stochastic methods can make the process more efficient, through

training on induced sub-graphs. NS and IS use sampled sub-graphs, which can slightly reduce

the running time in our experiments. With denser and larger graphs, the time efficiency can

be further improved. Meanwhile, large sample size will lead to longer training time. Notably,

the proposed method significantly reduces the training time for all datasets. This indicates

that the proposed method can provide solid improvements in faster training of GCN, based

on existing methods. In fact, in the proposed method, multiple sub-models accomplish the

sampling simultaneously, and with adequate CPU resources, the acceleration on large dataset,

for example Pubmed can be further promoted.

For accuracy results, the model trained without stochastic methods are also included

to establish the “expected” performance. The model trained using stochastic methods on

induced sub-graphs yields slightly worse results than exact methods. The model trained

using the proposed method attains almost identical results to the stochastic methods on most

datasets. Moreover, the proposed method has smaller generalization error on some datasets.

To sum up, the convergence of the proposed method is confirmed by these results, and the

performances of both time efficiency and model accuracy are demonstrated.

For the semi-supervised tasks, similar results can be confirmed: the proposed method

consumes much less training time, and attains at least comparable generalization ability

compared to baselines. Notably, IS appears to be unstable in the semi-supervised tasks, due

to the trivial zero activation issue. However, the proposed method using IS can achieve a

much better generalization ability. Empirically, it implies that the proposed method can

stabilize the training with IS.

4.6.3 Convergence Results

In this section we show the convergence results of the proposed method empirically.

Figure. 14 gives the train loss tendency against epochs for supervised tasks. For Cora and

Citeseer, the loss decreasing of NS and IS are similar; for Pubmed, IS attains a slightly

67

smaller loss compared to NS. From the results we can find that, for a given sample scheme,

the proposed method has a identical convergence rate with naive stochastic methods. In the

long run, the loss curves of naive stochastic methods with either NS or IS are oscillating

occasionally during training, but the proposed method are more stable.

Figure. 13 depicts the accuracy trending on test sets against epochs. Again, with given

sampling schemes, the proposed method can yield the same results with naive stochastic

methods, but costs much less time. These results demonstrate that the proposed method

has the same sub-linear convergence rate and generalization abilities with naive stochastic

methods, as well as providing significant efficiency improvement.

4.6.4 Efficiency Under Various Settings

The proposed method is independent of sampling method and network structure. In this

section we show the efficiency of the proposed method with various settings.

Figure. 15 shows the running time per epoch with different depths and K. For 3-layer

GCN, the hidden unit numbers are 32 and 16 respectively. When K = 2, we split the first two

layers and the last layer as two sub-models; when K = 3, we split each layer as a sub-model.

For 4-layer GCN, the numbers of hidden units are 32, 32, and 16 respectively. When K = 2,

we split the first two layers and the last two layers as two sub-models; when K = 3, we

split the first two layers, the third layer, and the last layer as three sub-models. We only

include the results using NS, because IS has a similarly performance. With the network

growing deeper, the running time per epoch increases rapidly. The proposed method can

greatly reduce the training time to almost half of the naive stochastic methods, for different

network depth. Different K corresponds to different number of sub-models, and larger K

yields a similar results to smaller K. This is due to the bottleneck of CPU, which handles

the sampling computation.

68

4.7 Conclusion

In this paper we proposed a fast training method for GCN. We split the naive GCN

model into sequential sub-models, and re-formulated the optimization problem. With gra-

dient flashback, multiple sub-models can sample sub-graphs and update model parameters

simultaneously. We also provided a theoretical analysis on the convergence rate for non-

convex problems. The experiments showed that the proposed method can be assembled

with different model structures and sampling methods, and share consistent convergence

rate and generalization ability with naive stochastic methods. Particularly, the proposed

method consumes much less time per epoch thus accelerating the training, and can stabilize

the training of stochastic methods.

69

naïve model

b
ackw

ard

fo
rw

ar
d

h
isto

rical g
rad

ien
ts

sub-model

flashback

split model

Figure 12: The training process of the proposed method. Naive GCN model are splitted into

multiple sequential sub-models. In the forward step, the outputs are computed using current

model; in the backward step, the updating is computed using stale error gradients. We name

it gradient flashback due to the re-occurrence of historical gradients.

70

Table 11: Dataset description and model/training details.

dataset Cora Citeseer Pubmed

nodes 2708 3327 19717

edges 5429 4732 44338

classes 7 6 3

features 1433 3703 500

semi-supervised 140 120 60

supervised 1208 1812 18217

hidden units 16 16 16

batch size 128 128 128

Table 12: Comparison of different training methods on multiple tasks and multiple datasets.

Top: running time of different methods, the best results are marked in bold font; bottom: test

accuracy of the models trained using different methods. The time efficiency and consistent

performance can be observed from the values.

Supervised Semi-Supervised

dataset Cora Citeseer Pubmed Cora Citeseer Pubmed

running time

full 0.5346 1.2111 6.7703 0.2045 0.3189 0.2122

NS 0.4242 1.1356 2.6538 0.1866 0.2994 0.1914

IS 0.4246 1.1423 2.6366 0.1743 0.2870 0.1896

proposed 0.1237 0.4665 1.5527 0.0283 0.0663 0.0297

test accuracy

naive 0.8690 0.7720 0.8740 0.7810 0.6370 0.7670

full 0.8560 0.7692 0.8869 0.7613 0.6225 0.7465

NS 0.8457 0.7571 0.8667 0.7879 0.6479 0.7336

IS 0.8590 0.7672 0.8432 0.6817 0.5852 0.6913

proposed 0.8550 0.7690 0.8720 0.8050 0.7080 0.7410

71

Figure 13: The results of loss against time on training set. For all datasets, the proposed

method converges much faster than naive methods, given the same sampling scheme. In

the long run, it also attains an identical performance with naive stochastic methods, which

verifies the convergence analysis.

Figure 14: The results of accuracy against epoch on test set. For all datasets, the proposed

method attains an identical performance with naive stochastic methods, given the same

sampling scheme.

72

3-layer GCN.

cora citeseer pubmed
0

1

2

3

4

5

6
T

im
e

NS

K=2

K=3

4-layer GCN.

cora citeseer pubmed
0

2

4

6

8

10

12

T
im

e

NS

K=2

K=3

Figure 15: Running time per epoch. The proposed method consumes much less time compared

to naive stochastic methods using the same sampling scheme.

73

5.0 Applying Graph Representation Learning to Varied Medical Imaging

Problems

This section will discuss some graph-based representation methods designed for various

applications[20, 170, 171, 43, 172, 139, 83, 182, 179, 174, 147, 178, 176, 140, 46, 175, 169].

5.1 Learning Shared Structure from Single-view Graph data

5.1.1 Motivation

Connetome describes the neural connection within a brain [117]. Utilizing state-of-the-

art neuroimaging techniques including functional resting state magnetic resonance imaging

(rs-fMRI) [28] and structural diffusion tensorfimaging (DTI) [71], it is possible to capture

the connectome at macro-scopic scale, which refers to the scenario involving anatomically

segregated brain regions and inter-regional pathways. By graph based analysis, the information

encoded by the connectome can promote critical understanding on how the brain manages

cognition, what signals the connections convey and how these signals affect brain regions [42].

It has been discovered to be helpful in the early diagnosis of several neurological disorders,

including epilepsy, Alzheimer’s disease, and autism [134, 80, 44, 150]. Across depressed

patients and normal subjects, functional brain connectomes derived from rs-fMRI also display

distinct patterns [155, 129, 168], and some computational methods have been proposed to

study the relation, for example linear support vector machine (SVM) [160], partial least

square (PLC) [155]. Deep learning methods, which are successful on many tasks, are exploited

as well. In [138], convolution neural network for classification is applied to brain networks

with nodes reordered using a spectral clustering method.

Although meaningful clinical representations can be obtained from brain networks through

previous methods, some issues still exists. The human connectome has sophisticated and non-

linear structure, which may not be well captured by shallow linear models. Meanwhile, deep

74

learning methods suffer from the enormous parameter sizes, which is both difficult for training

and vulnerable to over-fitting potentially. Besides, many methods do not make good use or

even fail to preserve the graph structure. Thus, a concise graph based deep learning method is

preferred on the task to discover the relation between human connectome and clinical scores.

In the studies on graph data, great efforts are spent on node embeddings, with the majority of

which are based on graph spectral properties and random walk techniques [49, 102, 12, 133].

Recently, several convolutional neural network methods for graph data are proposed [7].

Particularly, the graph convolution network (GCN) [30] based on spectral graph theory and

its variants [64] are flexible in both graph and node analysis. However, GCN explicitly

requires a known graph structure, which is typically not available in brain connectome. To

address this challenge, in this paper we studied the GCN with unknown graph structure. In

detail, we showed that GCN without given graph structure is applicable, by using a naive

complete graph. Meanwhile, a method was propose to learn the graph structure from data to

improve the performance of GCN, by generating random graph with small-world property

for model training. The experiments demonstrates that the proposed method outperforms

related baselines in the prediction of clinical depression scores, and the learned graph is

superior to the naive complete graph settings.

The rest of this paper is organized as follow. §5.1.2 provides the preliminary and describes

the detail of the proposed method. §5.1.4 shows the experiments and the results. §5.1.5

concludes the paper.

5.1.2 Methodology

To address the problem of predicting clinical depression scores, we proposed a two-stage

regression method. The first stage is to obtain the embeddings of a single connectome,

involving a graph convolution network that can be applied to data without predefined precise

graph structure; the second stages is merely a standard MLP, for regression based on the

embeddings. We introduced the the preliminary on GCN in §5.1.2.1, and considered the GCN

formulation without predefined graph structure in §5.1.2.2. In §5.1.3 the entire algorithm is

given and some details are discussed.

75

5.1.2.1 Preliminary

A graph can be represented as {V,E,W}, with V = {v1, v2, · · · , vn} the set of n vertices,

E ⊆ V × V the set of m edges, and W the weighted adjacency matrix of the graph. The

adjacency matrix W ∈ Rn×n, and Wij encodes the relation between vi and vj if there is

an edge, and 0 otherwise. The degree matrix of a graph can be expressed with diagonal

matrix D ∈ Rn×n, with the diagonal entries dii =
∑

j wi,j, representing the degree of node

i. Graph Laplacian is an essential operation in spectral graph analysis, typically defined as

Lc = D −W in combinatorial form and Ln = In −D−1/2WD−1/2 in normalized form, with

In a identity matrix. Graph convolutional network (GCN) [30] is designed to analysis the

signals on nodes, with a given graph structure. As the name indicates, GCN is an extension

of convolutional neural network (CNN). Convolution on 2D matrices, for example images,

is well defined, serving as the basic building block in CNN. Graph convolution, however, is

difficult to perform directly in spatial domains, due to the irregularity of neighbors of distinct

nodes. One strategy is to conduct the operation in frequency domain using graph Laplacian,

which is feasible according to the convolution theorem [84]. By definition, Laplacian matrix

is positive semi definite, such that the eigenvalue decomposition exists, L = UTΛU , and

U = [u0, u1, · · · , un−1] specifies a Fourier basis. The graph Fourier transform [115] is then

defined as x̂ = UTx, with x ∈ Rn the signal, and the inverse transform x = Ux̂. The spectral

representation of node signals, x̂, allows the fundamental filtering operation for graphs.

One potential problem in the above formulations is that in spectral domain, the filter is not

naturally localized. Polynomial parametrization for localized filters [30] is proposed to tackle

this challenge, through learning the coefficients ΘK of a K-order Chebyshev polynomial.

In detail, the filter is defined as gθ(Λ) =
∑K−1

k=0 θkTk(Λ), and the graph convolution is

defined as y = Ugθ(Λ)U
Tx, with y the filtered signal, θk the trainable parameters and Tk(Λ)

the polynomials. By the stable recurrence relation of Chebyshev polynomial, the costly

multiplication in Fourier transform can also be reduced. Parallel to CNN, pooling operation

in graph settings is accomplished by the graph coarsening [33] procedure.

The above method is suitable for graph classification, which is extended to node clas-

sification later [64]. By truncating the Chebysheve polynomial to only first order, GCN

76

model can be reformulated similar to multi-layer perceptron, with each layer defined as

y = σ(D̃−1/2ÃD̃−1/2xΘ), with Ã = A + In, D̃ accordingly defined as D, Θ the trainable

parameters, and σ(·) an activation function. In the proposed method we will adopt the first

order approximation version of GCN as the first stage to obtain embeddings for a graph,

then use a MLP in the second stage for the regression task.

5.1.2.2 Graph Convolutional Network without Pre-defined Graph Structure

Standard GCN, as well as its variants, defines the graph convolution based on a known

adjacency matrix A. However, in our task we only know human connectomes are equipped

with graph structure, while the precise graph is never provided. In this section we attempt

to answer three questions: (1). can we apply GCN to graph data without predefined graph

structure? (2). how can we find a “good” graph structure based on the task and the data?

and (3). is GCN preferred compared to naive neural network?

5.1.2.3 Can we apply GCN to graph data without predefined graph structure?

The answer to the first question establishes the foundation of the solvability of the task.

we will give the problem formulation and show that GCN is applicable under such formulation.

For a standard perceptron layer,

vec(y) = σ(vec(x)W) ≃ σ(vec(x)(L̃g ⊗ Θ̃)T) = L̃gxΘ̃, (5.1)

where vec(·) is vectorization operator, x ∈ Rn×n, W ∈ Rn×c with c the channels of output y,

⊗ Kronecker product, and L̃g and Θ̃ the decomposition of W . If the eigenvalue decomposition

of L̃g exists,

L̃g = UT
g Λ̃gUg, (5.2)

then y = σ(UT
wΛwUwx) is identical with GCN [64] by their form, thus

Λ̃g = θ0 + θ1(
2

λmax

Λg − In), (5.3)

where Λg is the eigenvalues of the underlying graph Laplacian Lg, and the graph Laplacian

shares the same eigenvectors as L̃g, thus Lg = UT
g ΛgUg. Eq. (5.3) implies that given a

77

perceptron, an equivalent GCN layer can be induced. Essentially if Lg is given, we are

inserting priors on the weight matrix W in perceptron, and the parameters of the model can

be greatly reduced to merely θ0 and θ1.

Following the above argument, we can formulate Lg by selecting meaningful priors if it

is not given. Here we show a naive choice, which is effective in denoising sense. The input

connectome is x = [x1, x2, · · · , xn], and We treat the column xi ∈ Rn as the signals for the

corresponding node i. Assume the collected connectome data are noisy,

x = x0 + σ0, (5.4)

where σ0 is a random noise matrix with entry-independent Gaussian distribution, and x0 is

the clean graph. For single layer GCN,

y = (θ0 − θ1)x−
2θ1
λmax

Lgx, (5.5)

the first term is 0 is we choose θ0 − θ1 = 0, making no contribution to the output. For the

second term, we want to select the Lg that minimizes the effect of noise σ0,

Lg = argmin
Lg

Eσ0

(∥∥∥∥ 2θ1
λmax

Lgσ0

∥∥∥∥2
F

)
, (5.6)

where ∥ · ∥F is the Frobenius norm and Eσ0(·) is the expectation over σ0. Let
2θ1
λmax

≃ 1. The

decomposition Lg = UT
g ΛgUg still exists. Ug is an orthogonal matrix and σ0 is Gaussian, thus

Ugσ0 is still Gaussian. Let Ugσ0 = [σ1, σ2, · · · , σn],

Lg = argmin
Lg

Eσ0

(
tr

(∑
i

λ2
iσ

T
i σi

))
= argmin

Lg

∑
i

λ2
iEσi

(
n× tr

(
σT
i σi

))
= argmin

Lg

∥Lg∥2FnEσi

(
tr
(
σT
i σi

))
= argmin

Lg

∥Lg∥2F ,

(5.7)

To this end we just need to choose the Lg with minimum Frobenius norm,

∥Lg∥2F = tr((In −D−1/2AD−1/2)2)

= tr(In − 2D−1/2AD−1/2 +D−1/2AD−1AD−1/2)

≥ tr(In) = n,

(5.8)

78

brain network

graph structure

GCN

embeddings distribution

generate

Figure 16: The iterative procedure of random graph generation, GCN training, and embed-

dings inference.

because tr(D−1/2AD−1/2) = 0 and tr(D−1/2AD−1AD−1/2) ≥ 0. Let L∗g = In − 1
n−1 , then

the minimum is attained. L∗g provides the best denoising effect, given Gaussian noise. Not

surprisingly, such a Lg corresponds to a complete graph, which is a naive choice of graph

structure. Intuitively, it indicates that if nothing is known about the potential node relations,

we can just assume all node are related equivalently.

Moreover, the above result also minimizes the kernel norm,

argmin
Lg

Eσ0

(∥∥∥∥ 2θ1
λmax

Lgσ0

∥∥∥∥
∗

)
≡ argmin

Lg

Eσ0

(∥∥∥∥ 2θ1
λmax

Lgσ0

∥∥∥∥
F

)
, (5.9)

which further strengthens the advantages of the naive complete graph choice.

5.1.2.4 How can we find a “good” graph structure for brain connectome?

Although the naive as well as intuitive choice of complete graph is sufficient for alleviating

Gaussian noise, the real-life data are sophisticated and more flexible methods are expected.

This boils down to the importance of the second problem.

79

When different graph Laplacian is used, the obtained GCN will has different parameters

and the outputs are generally different. Assume two GCNs are trained on the same data

using L1 and L2 respectively, and for one layer the parameters are Θ1 and Θ2 accordingly, to

make the two GCNs to yield the same outputs, we need,

L1XΘ1 = L2XΘ2, (5.10)

which can be re-formulated as,

L−12 L1X −XΘ2Θ
−1
1 = 0, (5.11)

the equation is a Sylvester function with fixed L−12 L1 and Θ2Θ
−1
1 , and the solution set X is

the data. To fit the data L−12 L1 and Θ2Θ
−1
1 must have common eigenvalues, which is possible

only when the network is wide, namely Θ1,Θ2 ∈ Rd×c, and c ≥ d. This usually will not

happen in realistic models. Therefore, selecting graph structure is necessary.

A “good” graph structure is supposed to have two properties: ideally it should reflect the

structure of data; also, it should be stable, in the sense that networks with similar graph

structures should share similar parameters and outputs. Intuitively, we can initialize the

graph Laplacian with high correlations in brain connectomes, and update the network in

order to exploit the data structure. However, the naive back-propagation method in training

neural networks is not applicable, because unlike normal neural network parameters, graph

Laplacian is a structural matrix, satisfying some particular properties. Instead of solving the

complex constraint optimization problem, we propose a random generated graph Laplacian

using small-world model during the training, to infer the underlying data structure.

In the proposed method GCN is used to extract the embeddings of connectomes, on which

a popular assumption is that its prior distribution is known. Further, we assume distributions

are associated with the graph structure. For simplicity, we assume the underlying model is

known, and our target is to obtain embeddings characterizing both the dependent variables

and the graph structure. Therefore we can apply a loop structure during training, which is

illustrated in Fig. 16: novel random graph is iterative generated, used as the graph structure

training the current model; meanwhile, the latent embeddings are optimized with the evolving

of the random graph. The training ultimately yields stable embeddings, and we use the

80

clinical depression scores

MLP

embeddings of connectome

n * 1

graph structure

graph convolutional network

brain network

human connectome

extract

Figure 17: The structure of the proposed method. Brain connectome is transformed into

embeddings using GCN and MLP is used for regression successively.

expectation of the generated random graph in the inference, which can be viewed as a “good”

graph structure, because it integrates the average results of the embeddings.

In this paper, we use the small-world network to relate the latent embeddings to the

graph structure. In this model, the distance between most nodes are a small number of

hops or steps, and nodes with common neighbors are more likely to be directly connected.

Meanwhile, human brains are also found to display some properties of this model [18, 10],

which provides an intuitive interpretation: ROIs commutes information through small-world

like networks, whose behaviors are simulated by the GCN. The embeddings of connectome

are h ∈ Rn, and the probability of the existence of an edge between node i and j is [75],

peij =
ϵp

|hi − hj|δp + ϵp
, (5.12)

here δp and ϵp are hyper parameters. During training random graph structure is generated

using Eq. (5.12), meanwhile the graph parameters are adjusted according to the embeddings.

We apply K-means algorithm to cluster the clinical depression scores and obtain the centers

of the embeddings for each cluster during the loop. The random graph is then generated

81

by sampling these centers. The cluster of each subject is called “pseudo-label” and kept

unchanged throughout.

5.1.2.5 Is GCN preferred compared to naive neural network?

Exploiting neural network in node classification has been actively studied. The extension

to multi-task regression problem on graph data thus is natural. Naive neural network methods

flatten the graph data into vectors and build a multi-layer perceptron for the regression

task, which involves enormous amounts of parameters: the dimension of a single input is

n2, and the hidden units are decided accordingly. In the proposed model, the parameter

sizes are significantly reduced. Meanwhile, the number of hidden units for both stages can

be drastically decreased. Though over-parameterization has some potential benefits [35], it

makes the model difficult for training, particularly in our task with limit data.

Sparsity is highly effective in solving high-dimension machine learning tasks. Unfortunately

utilizing sparsity structure is not trivial in neural network models. The first-stage of the

proposed method, in which the graph data is reduced to vector embeddings, can be viewed

as dimension reductions. Particularly, unlike “black-box” encoder models with elusive

representations, the connectome embeddings are explicit connected to the graph structure of

human brains, and clustered according to the depression scores, which is more explainable.

5.1.3 Pseudo-Label

To this end we achieve approval answers on the three questions and in this section the

entire method is given. The proposed method is composed of two stages. In the first stage a

GCN is used to extract the embeddings of a connectome, and in the second stage a MLP is

used for the regression using the embeddings. The model’s structure is illustrated in Fig. 17.

The proposed method is straight-forward if the naive complete graph is used in the GCN.

If the graph structure is to be learned, the proposed method explicitly requires data “labels”

for inferring the graph structure. In this paper we use K-Means to generate the pseudo data

“labels” based on the dependent variables during training. The objective is,

82

Algorithm 4 Training GCN without pre-defined graph structure

Input: training set x, validation set xv, clinical depression scores y, hyper

parameters δp, σp.

Output: the embedding of the graph and the trained model

1 Initialization;

2 for k do

3 K-Means, generate pseudo labels c, w.r.t y;

4 repeat

5 while epoch not end do

6 Obtain embeddings h, i.e. the output of GCN;

7 Estimate center for each cluster;

8 Generate a random graph w.r.t. Eq. (5.12);

9 Train GCN and MLP w.r.t. Eq. (5.19);

10 end

11 Generate expected graph laplacian;

12 until converge;

13 end

14 Choose best model on validation set.

L = ∥Ŷ − Y ∥F + λ1∥W∥2 + λ2∥Ĥ −H∥, (5.13)

where Ŷ and Y are estimated and ground truth clinical depression scores respectively, W is

the model parameter, Ĥ and H are estimated and ground truth connectome pseudo-labels

respectively, and λ1 and λ2 is a tunable parameter. The optimization generally follows the

procedure of EM algorithm, because the embeddings are sufficient statistics for inferring

the graph structure. The algorithm involving learning the graph structure is summarized in

Algorithm. 4.

K-Means method is known to be sensitive to parameters and converges only to local min-

imum. In our experiments we found that with fixed k and random initialization occasionally

83

the graph structure converge to unsatisfactory results. To achieve the best performance, we

can use multiple starts with different k in the K-Means step and choose the best model with

regard to validation data.

5.1.4 Experiments

5.1.4.1 Data Description

We conducted the experiments to predict clinical depression scores using the Human

Connectome Project (HCP) data (www.humanconnectomeproject.org). The fMRI measure-

ments were obtained on a 3T GE Signa HDx scanner with a 2D EP/GR. The subjects were

asked to not take psychotropic drugs before experiments. The images were acquired when

they laid down with eyes open, kept awake and thought of nothing, after-while processed

following SPM8 standard procedures. Different brain regions with different resolutions were

defined based on voxels, according to the automatic anatomical labeling atlas [126]. Between

each pair of regions, functional connectivity were computed using the cross correlation of the

corresponding time-series.

The rs-FMRI signals involving 1000 subjects are obtained with different ROI resolutions.

Through our experiment, we use the connectome with resolution of 50 and 100 node graphs.

For all subjects, eight measures of clinical depression scores are used as the dependent variables,

including ASR Anxious/Depressed, ASR Thought Problems, ASR Attention Problems, ASR

Aggressive Behavior, ASR Rule Breaking Behavior, ASR DSM Depressive Problems, ASR

DSM Anxiety Problems and ASR DSM Antisocial Personality Problems Raw Scores. In the

pre-processing, we normalized the depression scores to zero mean and unit variance, and

randomly split subjects to the training, validation, and test sets, respectively using 70%,

10%, and 20% of the data. We repeated the allocation 5 times and reported the mean and

standard error of mean absolute error (MAE).

84

0 1000 2000 3000 4000 5000 6000

training epochs

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-l
o

g
 M

A
E

performance curve, BN-50

train MAE, RGCN

test MAE,RGCN

train MAE, FCGCN

test MAE,FCGCN

0 1000 2000 3000 4000 5000 6000

training epochs

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-l
o

g
 M

A
E

performance curve, BN-100

train MAE, RGCN

test MAE,RGCN

train MAE, FCGCN

test MAE,FCGCN

Figure 18: Comparison of training curves of FCGCN and RGCN.

5.1.4.2 Experiment Setting

We compare the proposed method with several other regression methods: multivariate

Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Elastic

Net (EN), which is the combination of L1 and L2 norm, and Multi-Layer Perceptron (MLP).

For RR, LASSO, and EN, the hyper-parameter was tuned on validation data. For MLP, we

used a two layer structure and kept the hidden layers of the size with the embeddings of

the proposed method. Through the paper, the proposed method is adapted from the fast

GCN using first-order approximation. In this section, we provide both the results using

Fully-Connected Graph Convolution Network (FCGCN), and Random generated Graph

Convolution Network (RGCN). Besides, we also provide the results of simple sparse graph

(kGCN), keeping top 50% strongest edges of the average correlations. In RGGCN, we use

a two layer GCN in the first stage, with 10 hidden units, and also a two layer MLP in the

second stage, with 20 hidden units. Leaky ReLU is exploited as the activation function. For

the random graph, we use δp = 2 and σP = 0.01, and run six independent K-Means with

k ranging from 3 to 8, respectively. The results are reported based on the validation set.

The RMSProp optimization algorithm is used with learning rate of 0.001. For FCGCN and

kGCN, identical parameter settings are utilized, except that the graph structure is fixed as a

85

Table 13: Quantitative comparison of baselines and the proposed method. Both the mean and

the standard error are given, and the best results are bold faced. Metrics without significant

difference between baselines and FCGCN are denoted with ⋆; the metric without significant

difference between FCGCN and kGCN/RGCN is denoted with ⋄.

Methods MAE, BN-50 MAE, BN-100

RL 1.1176± 0.1723 1.2510± 0.1625

LASSO 0.9996± 0.1783 1.0078± 0.1025

EN 0.9538± 0.1616 0.9476± 0.0773

MLP 0.8202± 0.1258⋆ 0.7690± 0.0339⋆

FCGCN 0.8176± 0.1656 0.7704± 0.0220

kGCN 0.8397± 0.0864⋄ 0.7449± 0.0516⋄

RGCN 0.7372± 0.0684 0.7226± 0.0579⋄

complete graph or a simple sparse graph.

5.1.4.3 Performance Comparison

The results of the proposed method using both complete graph and learned graph are listed

in Table. 13. From the table we can find that the proposed method constantly outperform

linear baselines on all scales. This results imply that non-linear models are potentially more

suitable for our task. Particularly, FCGCN yields comparable results with MLP, using

much less parameters, which demonstrates the advantages of GCN models. kGCN shows

improvements against FCGCN w.r.t. MAE, but worsens MSE. Meanwhile, the proposed

method using trainable graph structure has better performance than complete graph case,

showing the importance of graph structure selection and the effectiveness of the proposed

algorithm.

We also want to mention that with the random generated graph structure, the training

of the proposed method actually is faster than the fixed scenario. The training curve is

86

Figure 19: Visualization of clustering of clinical depression scores using t-SNE and PCA

respectively, from a random start. The clustering is obtained through K-Means with K = 4

and 8

illustrated in Fig. 18, in which RGCN provides a higher prediction ability and a smaller

generalization error. This results further demonstrate that the learned structure fits the data

better thus yields better performances.

In this paper we use K-Means as the clustering algorithm, which, though serves solid

functions in our experiments, may not be stable. To depict this phenomenon, we present

the clustering results by dimension reductions using both t-SNE and principle component

analysis, and the results are listed in Fig. 19. Apparently, the clustering may not be intuitively

preferable. That explains the necessity to improve the robustness of the proposed method

through multiple start K-Means.

87

5.1.5 Conclusion

In this paper we proposed a novel method to predict the clinical scores using brain

connectomes. We demonstrate that GCN can be applied to graph data even without pre-

defined graph structure, and proposed an effective algorithm to learn the graph structure

from the data. The experiments show the proposed method outperform standard methods,

and particularly the learned graph structure yields a better results than the naive complete

graph assumption.

5.2 Heterogeneous Graph Neural Networks Integrating Multi-view graphs

5.2.1 Motivation

Large-scale connection in the brains convey important insights in understanding the

underlying yet unknown mechanism of many mental disorders [117, 18, 42]. With whole

brain tractography, brain’s anatomical networks represented as major fiber bundles can

be reconstructed from diffusion-weighted MRI (DWI). There are various brain networks,

generated from different tractography algorithms based on either voxel-wise diffusion model or

cross-voxel fiber tracking, each finding the place in revealing targeted brain abnormalities, such

as autism spectrum disorder [68], Parkinson’s disease [22], and even in genetics. Nevertheless,

for distinctive diagnosis tasks it is elusive to decide a universally optimal method and

accompanied processing, e.g. dimension reduction [161], as that these tractography algorithms

differ in the selection and accuracy of fiber extraction, robustness, and particularly the

relevance between the extracted fiber bundles and the tasks. Essentially, tentative studies

have demonstrated that multi-modal brain networks can provide complementary viewpoint

toward the classification tasks, in leveraging the scattered information from acquisitions

with diverse tractography algorithms. For example, it is showed that multi-view graph

convolutional network [167] has state-of-the-art performance in classifying Parkinson’s disease

(PD) status.

To take one step further, we propose to predict the clinical measures, instead of directly

88

classifying the disease status. The behind motivation lies in that, many mental disorders are

degenerative, which can be inferred from the gradual progress of brain connectivity patterns,

and that clinical measures, compared to simply classification, better capture the progress.

Through integrating multi-modal brain networks in our prediction, a comprehensive assessment

is constructed, and the potential deterioration from sub-optimal of single tractography is

alleviated. To address the prediction problem, we resort to a cascade model, composed of a

heterogeneous graph convolutional network (GCN) for brain network embeddings and a multi-

layer perceptron (MLP) for regression. Our contributions are two-folded: first, we propose a

heterogeneous GCN to predict the clinical scores from multi-modal brain networks, which

benefits from the natural graph structures of diverse brain networks; second, an adaptive

pooling scheme, driven by both graph structure and network patterns, is proposed, which is

beneficial from gathering local information, yielding a faithful graph with smaller size, and

enjoying efficiency in both computation and training. We name the proposed method as

“heterogeneous” in that the graph convolution and pooling are customized for varied modal.

The proposed method is verified on the data from the Parkinson Progression Marker Initiative

(PPMI) [85], a cohort study aiming at identifying and validating PD progression markers.

The experimental results show that our method outperforms related baselines significantly. It

is also demonstrated that by integrating multi-modal brain networks, the proposed method

achieves higher accuracy, and yields more stable prediction.

The rest of this paper is organized as follow. §5.2.2 provides the preliminary and describes

the detail of the proposed method. §5.2.3 shows the experiments and the results. §5.2.4

concludes the paper.

5.2.2 Methodology

5.2.2.1 Preliminary

A graph can be represented as {V,E,W}, with V = {v1, v2, · · · , vn} the set of n vertices,

E ⊆ V × V the set of m edges, and W ∈ Rn×n the weighted adjacency matrix of the graph.

In this paper, vertices are Region Of Interest (ROIs). Graph Laplacian is an operation in

spectral graph analysis [84], typically defined as Lc = D −W in combinatorial form and

89

Ln = In −D−1/2WD−1/2 in normalized form, with D ∈ Rn×n the diagonal matrix and In

a identity matrix. Graph convolutional network (GCN) [30] is designed as an extension of

convolutional neural network (CNN), to analysis the signals on nodes, with a given graph

structure. One strategy is to conduct Graph convolution in frequency domain using the

eigenvalue decomposition of graph Laplacian, L = UTΛU , and U = [u0, u1, · · · , un−1] specifies

a Fourier basis. The graph Fourier transform [115] is then defined as x̂ = UTx, with x ∈ Rn the

signal, and the inverse transform x = Ux̂. The spectral representation of node signals, x̂, allows

the fundamental filtering operation for graphs. For computational accessibility, polynomial

parametrization for localized filters [30] is proposed through learning the coefficients ΘK of

a K-order Chebyshev polynomial. The filter is defined as gθ(Λ) =
∑K−1

k=0 θkTk(Λ), and the

graph convolution is defined as y = Ugθ(Λ)U
Tx, with y the filtered signal, θk the trainable

parameters and Tk(Λ) the polynomials. Parallel to CNN, pooling operation in graph settings

is accomplished by the graph coarsening [33] procedure. By truncating the Chebyshev

polynomial to only first order, a faster version of GCN can be reformulated [64] similar to

multi-layer perceptron, with each layer defined as y = σ(D̃−1/2ÃD̃−1/2xΘ), with Ã = A+ In,

D̃ accordingly defined as D, Θ the trainable parameters, and σ(·) an activation function.

In graph classification, a major concern is to represent graphs with embeddings. Previous

approaches [154] include averaging all the node embeddings in a final layer, computing “virtual

node” connected to all nodes, operating over sets using deep node aggregation, concatenating

all embeddings, and training hierarchical structure. A majority of these methods apply a

deterministic graph clustering subroutine, while some end-to-end methods require additional

structure to compute the pooling structure.

5.2.2.2 Predicting PD Clinical Scores via Heterogeneous GCN

The proposed method has two stages, as illustrated in Figure. 20. In the first stage,

the per-modal embeddings for brain networks are generated via heterogeneous GCN; in the

second, the concatenated embeddings are regressed to the clinical scores via MLP. Parallel to

convolutional neural networks, the proposed GCN is formed by stacking graph convolutional

layer and pooling layer sequentially. The fast graph convolutional [64] is applied, using

90

node merge (by color)

feature pooling

layer output

MLP

m
o

d
al

 n

m
o

d
al

 2

m
o

d
al

 1

(a). multi-modal network

(b). GCN: convolutional layer
and pooling layer

(c). adaptive pooling scheme

GCN

GCNGCNGCN

concatenate

pooling

convolution

graph distillation

Figure 20: The proposed heterogeneous GCN for PD clinical scores prediction. (a) illustrates

the entire structure, in which multi-modal brain networks are generated from MRIs, and

sequentially processed by GCN and MLP; (b) depicts the stacked convolutional layer and

pooling layer; (c) provides a detailed description of the pooling procedure, including node

merge, graph distillation and feature pooling.

corresponding rows of brain network matrix as node features. We also propose a novel

efficient adaptive pooling scheme, to learn data-driven pooling windows, construct reduced

while structural-preserving graphs and aggregate pooled features.

Although graph convolution is a quite established technique, pooling on graphs is challeng-

ing in many senses. A major difficulty is the structural irregularity of graph data, compared

to naive application scenarios such as images. For CNNs, typically pooling layer defines

the operation on a window sliding along images with strides, which shrinks the input size

and augments the receptive field of convolution. However, the window and the minified

91

graph are ambiguous due to the diverse topology. Another issue dedicated to our task is

that the heterogeneity of brain networks calls for modal-specific designs. Last but not least,

practical models should avoid potential computational inefficiency caused by complicated

node operation. We prefer graph pooling sharing several appealing properties as CNN:

• Locality: The pooling windows aggregate local information from neighbor or related

nodes.

• Loyalty: The reduced graph characterizes the structure of primary graph and data.

• Likely: The computation is efficient. Additionally, the data-driven pooling scheme should

be end-to-end trainable, subject to deep learning principle.

To address these challenges, we imitate the process of CNN pooling, and decompose the

graph pooling into two steps, node merge and graph distillation [154]. In the first step, nodes

are clustered and features are computed accordingly; in the second, graph is reduced for

follow-up graph convolution. Formally, the l-th pooling layer is defined as,

H l
p = P lH l, (5.14)

here H l ∈ Rnl−1×kl is the output of graph convolutional layer l, P l ∈ Rnl×nl−1
is a trainable

pooling matrix, H l
p ∈ Rnl×kl is the output of pooling layer, and nl and kl are the number of

nodes and feature length, respectively. The reduced graph is defined as,

Al = argmin
A

∥Al−1 − P lAP lT∥F + f(A, x), (5.15)

here Al is the graph matrix from layer l, and f(A, x) are defined to coincide in the naive

regression objective, and ∥ ·∥F is Frobenius norm. The first term can be derived by preserving

the graph convolution consistency for pooled nodes,

UPH
l
p ≈ UP lH l, (5.16)

here UP and U are the Fourier basis of after and before pooling, respectively. Naturally, it

can be interpreted as the eccentricity of the reduced graph to the graph at hand, and the

second term considers the data fidelity. In principle, this pooling structure is defined using

P l and Al, learned from both graph and data.

92

Now we delve into the details and discuss how the aforementioned concerns are resolved

through some further consideration. We decompose the pooling matrix,

P l = Al
pA

l−1, (5.17)

here Al
p ∈ Rnl×nl−1

is a sparse assigning matrix, and each row of Al
p represents a cluster

in the reduced graph. Each cluster aggregates the vicinity of assigned nodes; meanwhile,

the co-occurrence of assigned (perhaps distant) nodes represent a high-level relation beyond

neighboring. Therefore, locality is attained by sparsity regularization related to Al
p. Loyalty

is also maintained via compelling Al to satisfy (5.15). Combining the above arguments boils

down to the objective,

L = ∥x− x̂∥F + λ1

∑
l

∥Al−1 − P lAlP lT∥F + λ2

∑
l

∥Al
P∥1, (5.18)

here the first term is the tedious regression loss, λ1 and λ2 are tunable parameters. This

formulation only exerts slight computation burden to naive graph convolutional layer in the

inference stage; the training is also an end-to-end routine on an integral structure and avoids

some potential redundancy [154]. Jointly, these indicate the likely of the adaptive scheme in

both training and computation. Finally, each modality is dealt with using individual GCN,

with modal-specified graph and pooling setup, which leads to an intuitive explanation for

the effectiveness of the proposed method, that heterogeneity is contained in the first stage,

modal-fusion in the second.

5.2.3 Experiments

5.2.3.1 Data Description

We analyzed the data from PPMI (http://www.ppmi-info.org), which includes 145

healthy controls (HC) (mean age = 66.70± 10.95, 96 males) and 474 subjects with PD (mean

age=67.33± 9.33, 318 males). No significant differences was identified in age between HC

and PD (P=0.5). We utilized the diffusion-weighted MRI-derived structure connectome to

predict several PD clinical scores, including the Montreal Cognitive Assessment (MoCA) Test,

the Tremor Dominant (TD) scores and the Postural Instability and Gait Difficulty (PIGD)

93

scores, REM Sleep Behavior Disorder (RBD) scores, the Geriatric Depression Scale (GDS),

and the University of Pennsylvania Smell Identification Test (UPSIT).

For each subject’s T1-weighted MRI, we applied ROBEX, a robust automated brain

extraction program trained on manually “skull-stripped” MRI data [59], to remove the

extra-cerebral tissue. These skull-stripped volumes were carefully examined and manually

edited if needed. Anatomical scans were then underwent the standard FreeSurfer (V6.0,

http://surfer.nmr.mgh.harvard.edu/) parcellation, based on which 84 cortical and subcortical

ROIs are defined.

For each subject’s diffusion-weighted MRI, firstly bet and eddy correct functions in FSL

(http://www.fmrib.ox.ac.uk/fsl) were applied to remove the non-brain tissue and correct for

the possible distortions, and then the gradient table was adjusted correspondingly for each

subject. In order to avoid the distortions at tissue-fluid interfaces, echo-planar induced suscep-

tibility artifacts were corrected by elastically aligning skull-stripped b0 images to each subject’s

T1 MRI using Advanced Normalization Tools (ANTs, http://stnava.github.io/ANTs/) with

SyN algorithm. The resulted 3D deformation was then applied to the remaining diffusion-

weighted volumes to generate the full preprocessed diffusion-weighted MRI data. Finally,

based on the 84 ROIs derived from the T1 data, we reconstructed three brain structural

graphs using three whole brain probabilistic tractography algorithms, including Orientation

Distribution Function-based Hough voting [3] and PICo [98] as well as ball-and-sticks-based

Probtrackx [11]. (please refer to [161] for more details). Each brain network was normalized

by dividing the maximum values in the matrix to reduce the potential computation biases

from the differences in scale and range from different tractography algorithms.

5.2.3.2 Experiment Settings

We compare the proposed method with several related methods: multivariate Ridge

Regression(RR), Least Absolute Shrinkage and Selection Operator(LASSO), combined l1 and

l2 norm (ElasticNet), Neural Networks (NN), and Convolutional Neural Network (CNN). For

RR, LASSO and ElasticNet, we search the coefficient of the regularization term ranging from

0.001 to 100 and report the best results. For neural network, we use a two layer structure

94

with 100 hidden units and Relu activation function. For the proposed method, we use two

layer GCN for each modality. The feature length for each layer is [16, 32] respectively, and

the graph size after pooling is [32, 8]. An one-layer perceptron is used for regression. Both λ1

and λ2 are set to 0.001 in the objective. We use Adam optimizer [63] with a learning rate

0.001, and a batch size of 128. All clinical measures are normalized to [0, 1] by different tests.

We reported the root mean square error (RMSE) and mean absolute value (MAE) on 5-fold

cross validation as the evaluation metrics.

5.2.3.3 Results

We first present the comparison of the performance of the proposed method with multiple

baselines, and the results are summarized in Table 14. On both metrics, we observe that the

proposed method outperforms baselines consistently. For linear methods, sparse methods

achieve better prediction accuracy compared to non-sparse methods, RR. Non-linear models,

including NN, CNN, and the proposed model, also improve the prediction performances

against linear models in general. The baseline deep methods, NN and CNN, have similar

results. Particularly, the proposed method outperforms NN with much less parameters and

has better performance with similar parameter size compared to CNN.

In Table 15 we also include the prediction performance of different combination of modals.

Obviously, the network using single modal brain network yields much worse prediction,

compared to multi-modal networks. The results also imply some interesting observations:

particular subsets of involved modals may attain decent results, though the optimal combi-

nation require brutal search; the prediction yielded by the network integrating all modals,

generally, is the best or at least comparable with the best. To this end it is fair to claim

that multi-modality helps the prediction of PD clinical measures, and that more modals are

always preferred.

5.2.4 Conclusion

In this paper, we propose a graph convolutional network to predict the PD clinical

measures, using multi-modal brain networks. Particularly, we propose an adaptive pooling

95

Table 14: The comparison of the proposed method with baselines. For both metrics, smaller

values indicate better results. The values are displayed as mean(µ) ± standard deviation (σ)

from five tests. Bold font indicates the best performance.

Method RMSE MAE

RR 0.2382± 0.0069 0.1699± 0.0038

LASSO 0.2293± 0.0041 0.1613± 0.0033

ElasticNet 0.1969± 0.0011 0.1546± 0.0015

NN 0.1965± 0.0102 0.1544± 0.0057

CNN 0.1965± 0.0081 0.1545± 0.0049

Our method 0.1922± 0.0128 0.1455± 0.0064

Table 15: Predictions with different combination of modals. Values follow the instruction in

Table. 14. Bold font indicates the best performance.

Modality RMSE MAE

Hough+Probtrackx+PICo 0.1922± 0.0128 0.1455± 0.0064

Hough+Probtrackx 0.1909± 0.0111 0.1458± 0.0060

Probtrackx+PICo 0.1948± 0.0123 0.1472± 0.0067

Hough+PICo 0.1927± 0.0126 0.1458± 0.0061

Hough 0.1941± 0.0124 0.1470± 0.0071

Probtrackx 0.1958± 0.0135 0.1488± 0.0070

PICo 0.1970± 0.0127 0.1501± 0.0068

scheme driven by both graph structure and brain data, which is efficient in computing and

end-to-end training. The experiment results demonstrate that the proposed method attains

state-of-the-art results compared to related baselines, and integrating multi-modal brain

network is highly effective in the prediction task.

96

5.3 Unsupervised Multi-View Graph Representation Learning

5.3.1 Motivation

Human brain connectomes [19] are models of complex brain networks and can be derived

from diverse experimental modalities and tractography algorithms. Large-scale brains con-

nections convey important insights for understanding the underlying yet largely unknown

mechanisms of many mental disorders [68, 82, 177, 22]. Nevertheless, the apparent character-

istics of brain networks are profoundly influenced by the tractography algorithms. The designs

of tractography algorithms, including tensor-based deterministic algorithms [3], probabilistic

approaches [98], random forest [93] and Deep Neural Network (DNN) [106], and regular-

ized methods guided by biologically plausible fascicle structures [5], are inspired by specific

experimental questions [18], e.g., different tractography algorithms are used for predicting

or classifying neurodegenerative or neurodevelopmental conditions based on various brain

abnormalities. For example, the selection and accuracy of the extracted fibers are different

for different tractography algorithms, and the relevance of the extracted fiber bundles depend

on the different tasks and questions being addressed. Therefore, it is elusive to decide a

universally optimal modality of brain networks and associated processing pipeline for distinct

diagnostic tasks [18, 137].

Multi-view methods can leverage the available information from diverse tractography

algorithms simultaneously, and tentative studies have demonstrated that multi-modal brain

networks can provide complementary viewpoints for the classification tasks, e.g., multi-view

graph convolutional network [167] is found to have state-of-the-art performance in classifying

Parkinson’s disease (PD) status. However, previous multi-view methods have two restrictions

regarding general prediction tasks of neurodegenerative conditions. First, many methods

are designed for some specific tasks. If one want to tailor these methods to other tasks, it

is necessary to carefully tune the hyperparameters. Second, though some methods learn

representations from multi-view brain networks, the learning is guided by some predefined

prediction tasks, which may introduce bias to overemphasize a particular modality. As such,

the learned embeddings cannot represent multi-modal brain networks comprehensively, and

97

𝒗𝒊𝒆𝒘 𝟒

𝒗𝒊𝒆𝒘 𝟑
view-specific

encoder

view-specific
encoder

view-specific
encoder

view-specific
encoder

view-specific
decoder

view-specific
decoder

view-specific
decoder

view-specific
decoder

𝝁

Downstream
analysis

𝝈𝟏

𝝈𝟐

𝝈𝟒

𝝈𝟑

𝝁 𝟏

𝝁 𝟐

𝝁 𝟑

𝝁 𝟒

𝒗𝒊𝒆𝒘 𝟐

𝒗𝒊𝒆𝒘 𝟏

𝒗𝒊𝒆𝒘 𝟒

𝒗𝒊𝒆𝒘 𝟑

𝒗𝒊𝒆𝒘 𝟐

𝒗𝒊𝒆𝒘 𝟏

reparametrizeencoder decoder reconstruction

network

reparametrizelegend
view fusion

Figure 21: The structure of the proposed method. Each view uses an independent VGAE to

learn a unified µ, while the σ is different.

their application to the related analysis in a broader scope is potentially constrained.

To address these problem, we propose to learn unified representations from multi-modal

brain networks via unsupervised learning techniques. To extend the generalization ability of

the learned representations to different downstream analysis, the representations shall be of

disentanglement and proportionality concerning different modalities. Here, disentanglement

refers to the representations encoding salient attributes of data explicitly, which can help

the analysis of the prediction tasks and the modalities. Proportionality refers to a balanced

contribution to the representations of each modality, which avoids the potential bias on

specific modalities. In other words, in our approach the learned representations can fairly

convey the information from different modalities and can be exploited by various downstream

analysis. More specifically, in this paper we propose a multi-view graph auto-encoder to learn

the disentangled graph embeddings from brain networks. We formulate the proportionality-

awareness in multi-view representation learning as a network scheduling problem via an

analogy between training deep networks and the graph flow problems. The experimental

results demonstrate the effectiveness of the proposed method.

98

5.3.2 Methodology

The proposed method is illustrated in Fig. 21. For each view, a Variational Graph

Auto-encoder (VGAE) [65] is exploited. Let G(v) denote the brain networks of the vth view,

f (v) and g(v) the corresponding encoder and decoder, [µ(v)|σ(v)] = f(G(v)) is the estimated

mean and variance of the encoder. The unified representations are computed by max-out

the stacked µ(v) by the position, which can be denoted as µ = maxpool1d([µ(v)]). The

reparameterization for the vth view is then computed using µ and σ(v). µ ∈ Rk is also used

as the embeddings. According to the structure of VGAE, σ(v) ∈ Rk. Besides the view-wise

VGAE loss, we push µ and µ(v) to be close so that the learned embeddings for different

views are consistent. The disentanglement of the representations is acquired via introduce

the β-VAE loss [56]. Disentangled representations are compact and interpretable [14]. The

objective for our multi-view GVAE is:

L =
∑
v∈V

B
(
log
(
P (G̃(v))

))
+ βKL

(
P (z(v))|N (0, 1))

)
+ λ(µ(v) − µ)2 (5.19)

here the first term is the reconstruction loss, the second is the Kullback-Leibler divergence,

and the last is the multi-view consistency.

As aforementioned, the representations shall also be fair to different views. In the above

auto-encoder framework, the decoder is used for evaluating the vividness of the learned

representations. However, for multi-view data, the reconstruction for different views is not

necessarily equally accurate. When the imbalance occurs, some views are less included in the

learned representations. To address this problem, we consider to learn fair representations

regarding different views, which indicates the view-wise loss in (5.19) is close to each other.

Such fairness, referred to as proportionality, can be achieved via an alternative training

routine of the above model. We will formulate an analog between flow network problem and

the training of multi-view model in the following. Based on the formulation, we design a

scheduling algorithm to satisfy the proportionality requirement.

Training Multi-view Network: a Flow Network Perspective Directed Acyclic Graph

(DAG) is an important tool in graphical models [57]. It is also exploited to express network

99

𝑠2 𝑣0

𝑠1

𝑡1
network 4network 1

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

network 3

view 2

view 1

network 2

network 1

network 4

Figure 22: Left: a simple DNN. Right: the corresponding DAG. Each edge represents a

network, and each node denote an intermediate representation.

structures by many popular deep learning frameworks [99, 1]. Inspired by this idea, we make

an analogy between training the deep network and the flow network problems.

In Fig. 22, we illustrate an example for multi-view learning. To simplify the elaboration,

we consider a structure taking two views s1 and s2, as inputs. The network consists of four

sub-networks, each corresponding to one edge in the DAG. v0 is a fused hidden representation,

and t1 is the prediction. For multiple inputs, ⊕ denotes the fusion operation for the outputs

of multiple sub-networks, and it can either a weighted summation or concatenation. Consider

a network trained after t steps using gradient based method. In the t+ 1 step, we can define

the flow di,j from predecessor i to successor j as di,j = △L
(
f
(t+1)
j (h

(t+1)
i ,H(t)

j\i)
)
, here L is

an objective defined on the targets, and △L denotes the loss difference between step t+ 1

and t. Let Pij represent the set of all paths from sources to targets containing ei,j. f
(t+1)
j

refers to the network to compute the final outputs with all paths in Pij updated. Pij can be

defined on the node i and a set Hj\i. Here Hj\i denotes any cut set containing node j that

separate sources and targets, and Hj\i does not include any node in Pij except j.

Our definition satisfies the flow conservation, which states that if a node is neither a

source or a target, its net flow shall be 0. For a node j with multiple incoming flow, the fusion

operation is defined as hj =
∑

i∈Pj
PijWijfij (hi), here Pj is the predecessor set of node j,

fij is the sub-network between node i and j. For different fusion oeprations, Pi and Wi take

different forms. For example, when both Pi and Wi are the identity matrices, the fusion

is by summation; if Wi is the augmented matrix (Ii|0), fusion by concatenation is feasible

100

by setting Pi as the corresponding permutation matrix. For a node with multiple outgoing

flow, the output is equally distributed. We abuse the notation Hj ≡ Hj\i ∪ {i}. Consider a

fixed given cut Hj for node j, we can induce two additional cuts: HPj
, which excludes j and

include all its predecessors; and HSj , which excludes j and include all its successors. Under

the updating rule of backward propagation, the incoming flow with respect to node j is,∑
i∈Pj

di,j ≈
∂L
∂fj

∑
i∈Pj

PijWij
∂fj
∂hi

dhi =
∂L
∂fj

∂fj
∂hj

dhj, (5.20)

the above equation follows because the partial differential is 0 except dhi and dhj term.

Similarly, the outgoing flow is,∑
k∈Sj

dj,k ≈
∑
k∈Sj

∂L
∂fk

PjkWjk
∂fk
∂hj

dhj =
∂L
∂fj

∂fj
∂hj

dhj, (5.21)

(5.20) and (5.21) are bridged by the change in hj, which ensures the net flow to be 0.

If we extend the above analogy to the accumulative case, the flow is defined to be the

loss decrease with respect to the particular structure represented by i → j. Noteworthy,

it is not the pure contribution of i → j. Rather, it is more of the quantification of the

total loss decrease of the particular structure, as the definition considers both the upstream

and downstream computation of the entire network. The empirical loss is related to the

generalization bound of the learned representations concerning downstream tasks. As such,

the accumulated flow can be interpreted as the amount of information learned from each

view informally. Based on this analogy, we define that the proportionality is achieved if the

view-wise flow, i.e. the accumulated
∑

k∈Sj dj,k for some view j, is balanced.

Alternative Training Routine with Proportionality Awareness Conventionally, the

proportionality concerning different views can be written as a constrained optimization

problem, and a standard training routine is based on SGD. From the flow perspective,

the proportional training can be interpreted as multiple views competing for the updating

resources in the backward propagation, which is a network scheduling algorithm. More

specifically, during the training, the accumulated flow is continuously updated, which reflexes

the dynamic of loss decrease and the generalization ability. A proportional representation is

then equivalent to a balanced flow avoiding the overload of some specific path.

101

Round-Robin
Input: v views, max epoch e

Output: model f

1 Initialize f .

2 repeat

3 for i← 1 to v do

4 Optimize (5.19) w.r.t. view j.

5 until max epoch;

Proportionality

Input: v views, max epoch e

Output: model f

1 Initialize f .

2 repeat

3 Compute priority w.r.t. (5.24)

4 Optimize (5.19) w.r.t. view j

with the highest priority.

5 until max epoch;

In detail, we define the total flow as the loss decrease. When the learning rate is small

enough, the summation of view-wise SGD update is equivalent to a round-robin update

with respect to each view. Here, the objective associated with each view is optimized in a

predefined turn. To avoid a specific view taking up too much updating resources, we can

maximize the total flow of the network while allowing the minimal level of service for all

views via introducing a competing mechanism for each view to occupy the update based on

the estimated flow. We refer to this method as proportionality. The updating priority of

each view is based on the current loss decrease and the historical cumulative loss decrease.

Assume the loss decrease of view i at update t can be foreseen as ri,t. The throughput of

view i is defined as historical cumulative loss decrease at step t:

θi,t = θi,0 +
t∑

l=1

ri,lIi,l
t

=
n− 1

n
θi,t−1 +

1

n
ri,t−1Ii,t−1, (5.22)

where Ii,l is an indicator. Ii,l = 1 if the lth update is conducted on view i, and 0 otherwise.

Based on (5.22), the priority pi,t for view i can be defined, and the t + 1 update is then

applied to the view with the highest priority:

argmax
i∈V

{pi,t} , pi,t =
ri,t+1

ϵ+ θi,t
(5.23)

where ϵ is a small positive number for computational stability. Notably, the above algorithms

is not immediately applicable to our formulation, as that ri,t is not pre-assigned as in standard

102

proportionally fairness algorithms. Instead, the values are only known after the update is

finished. Thus, we propose a compensation update method: at the beginning, we use one

round robin update and compute initial ri,0. In the following steps we use proportionally

fairness algorithm, but computing the priority using the loss decrease from the last applied

update:

argmax
i≤v

{
ri,ti

di + θi,t

}
, ti = max l, s.t. l ≤ t, Ii,l = 1, (5.24)

The proportionality and convergence of our scheduling algorithm are guaranteed under some

weak conditions, and the analysis can be found in [70].

5.3.3 Experimental Results

In this experiments we use three datasets, including the data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC),

and the Parkinson Progression Marker Initiative (PPMI). The preprocessed ADNI brain

networks [136] include 51 healthy controls (HC) (mean age=69.69± 10.27, 29 males), 112

people with Mild Cognitive Impairment (MCI) (mean age=71.68± 9.89, 41 males) and 39

individuals with AD (mean age=75.56± 8.99, 14 males). The similarly preprocessed NACC

brain networks [135] include 329 HCs (mean age=60.96 ± 8.96, 107 males), 57 with MCI

(mean age=73.60 ± 7.93, 38 males), and 54 AD patients (mean age = 72.02 ± 10.41, 32

males). The similarly preprocessed PPMI brain networks [180, 181] includes 145 HC (mean

age = 66.70 ± 10.95, 96 males) and 474 subjects with PD (mean age=67.33 ± 9.33, 318

males). Nine different views are reconstructed using T-FACT, T-RK2, T-TL, T-SL, O-FACT

and O-RK2, Probt, Hough, and PICo (Please refer to [161] for more details on the brain

network reconstruction). We use a modified network structure based on graph variational

auto-encoder. The view-wise graph is the averaged brain connectome, and the node features

are the corresponding row for each brain connectome. We set β = 4 recommended by

β-VAE [56]. The performance is not sensitive to λ, and we set it to 0.001. In the encoder, we

use three graph convolutional layers for µ and σ respectively. The first two layers are shared,

both with 64 hidden units. The embedding length is 32. The encoder are limited in layers

103

due to the potential over-smoothing for graph convolutional layers. Our model is trained 100

epochs using ADAM with batch size 32 and learning rate 0.0001.

Evaluating the Proposed Method in Down-streaming Analysis: We compare our

approach with related baselines on several classification and regression tasks. The ablation

study is also included.

Table 16 summarizes the classification results. For ADNI and NACC, we predict the HC

and AD. For PPMI we predict HC and PD. For multi-view predictions, we include principal

component analysis (PCA), multi-view non-negative matrix factorization (MVNMF) [78],

co-regularized spectral clustering (MVSC) [69] and Deep Metric Graph Convolutional Network

(DMGCN) [68]. We use the aforementioned methods to learn the representations, and then

exploit two off-the-shelves methods, sparse logistic regression, and random forest to make the

final prediction. We report AUC on 5-fold cross-validation. To make the comparison self-

contained, single view results are also included. For the ablation study, in propose-I neither

disentanglement nor proportionality is considered, and in proposed-II the disentanglement

is considered. The full approach is proposed∗. We omit more single-view ablation study in

the experiments because our objective is designed for multi-view data. Of note, integrating

multi-view data is also shown to be beneficial for brain network analysis [180]. From the

results, we find that the prediction ability of different views with respect to different tasks

are complicated, and heavily coupled with the algorithms. Multi-view methods, generally,

can improve the prediction ability. However, the advantage of multi-view data is intriguing

and needs careful examination. The proposed method have good performances and are

robust with respect to different tasks. And at last, the ablation study demonstrates that the

performance can be improved through considering disentanglement and proportionality.

Table 17 summarizes the regression results. We use the learned representation to pre-

dict several clinical scores, including the Tremor Dominant scores (TD), the University of

Pennsylvania Smell Identification Test (UPSIT), and the Montreal Cognitive Assessment

Test (MoCA). Mean squared error (MSE) is used as the metric evaluating the prediction. All

scores are normalized to [0, 1]. The results show that the prediction is more complicated with

respect to the particular medical scores and views. Similarly, we can observe the advantage

of utilizing multi-view data and the robust and superior prediction abilities of our approach.

104

Table 16: The comparison on classification tasks.

Sparse Logistic Regression

ADNI NACC PPMI

Single View

FSL 0.7786± 0.0976 0.7669± 0.0799 0.6597± 0.0584
PICo 0.7615± 0.1408 0.7119± 0.1103 0.6065± 0.0486

T-FACT 0.7451± 0.0379 0.6581± 0.0411 0.5850± 0.0433
O-FACT 0.7278± 0.1066 0.7094± 0.0866 0.5921± 0.0353
ODF-Rk2 0.7568± 0.0821 0.6890± 0.0366 0.5942± 0.0331
T-RK2 0.7276± 0.0797 0.7281± 0.0674 0.5921± 0.0353
T-SL 0.7402± 0.1371 0.6582± 0.0785 0.5884± 0.0389
T-TL 0.6875± 0.0682 0.7358± 0.0799 0.5851± 0.0423
Hough 0.7559± 0.0780 0.7271± 0.0549 0.5536± 0.0391

Multi View

all views 0.7966± 0.0904 0.7301± 0.1325 0.5716± 0.0378
MVNMF 0.8149± 0.0550 0.7685± 0.0958 0.6104± 0.0332
MVSC 0.8203± 0.0791 0.7595± 0.1013 0.6205± 0.0373
DMGCN 0.8058± 0.1006 0.7557± 0.0898 0.6141± 0.0707
Proposed-I 0.8074± 0.0493 0.7491± 0.0897 0.6122± 0.0442
Proposed-II 0.8185± 0.0770 0.7549± 0.0790 0.6240± 0.0234
proposed∗ 0.8278± 0.1537 0.8090± 0.1472 0.6250± 0.0472

Random Forest

ADNI NACC PPMI

Single View

FSL 0.8124± 0.0455 0.3737± 0.7065 0.5753± 0.0255
PICo 0.7838± 0.1067 0.1588± 0.9463 0.5475± 0.0244

T-FACT 0.8383± 0.0483 0.7029± 0.1184 0.5654± 0.0331
O-fact 0.7817± 0.1512 0.3789± 0.6903 0.5478± 0.0228
O-RK2 0.7617± 0.1087 0.7879± 0.1333 0.5566± 0.0382
T-RK2 0.7764± 0.1275 0.7029± 0.1333 0.5486± 0.0361
T-SL 0.8148± 0.0587 0.7235± 0.1163 0.5386± 0.0347
T-TL 0.7695± 0.0862 0.7009± 0.1164 0.5411± 0.0410
Hough 0.8368± 0.0671 0.7011± 0.1797 0.5276± 0.0344

Multi View

all views 0.8560± 0.0574 0.7615± 0.1053 0.5743± 0.0464
MVNMF 0.8826± 0.0830 0.8317± 0.1561 0.5659± 0.0528
MVSC 0.8827± 0.0457 0.7997± 0.1435 0.5753± 0.0348
DMGCN 0.8862± 0.0503 0.8307± 0.1493 0.5683± 0.0323
Proposed-I 0.8578± 0.0516 0.7919± 0.0725 0.5590± 0.0250
Proposed-II 0.8678± 0.0573 0.8327± 0.0988 0.5699± 0.0382
Proposed∗ 0.8946± 0.0510 0.8359± 0.1321 0.5814± 0.0274

105

Table 17: The comparison on regression tasks.

TD UPSIT MoCA

Single View

FSL 0.0749± 0.0167 0.0794± 0.0054 0.0381± 0.0033
PICo 0.0714± 0.0078 0.0983± 0.0101 0.0394± 0.0027

T-FACT 0.0404± 0.0037 0.0545± 0.0043 0.0210± 0.0021
O-FACT 0.0410± 0.0018 0.0508± 0.0066 0.0208± 0.0036
O-RK2 0.0428± 0.0079 0.0503± 0.0015 0.0208± 0.0027
T-RK2 0.0441± 0.0034 0.0500± 0.0051 0.0212± 0.0025
T-SL 0.0427± 0.0012 0.0512± 0.0058 0.0212± 0.0017
T-TL 0.0406± 0.0059 0.0517± 0.0019 0.0210± 0.0027
Hough 0.0434± 0.0036 0.0495± 0.0058 0.0225± 0.0044

Multi View

all views 0.0414± 0.0045 0.0524± 0.0034 0.0227± 0.0074
MVNMF 0.0378± 0.0122 0.0507± 0.0041 0.0207± 0.0030
MVSC 0.0355± 0.0047 0.0499± 0.0046 0.0199± 0.0013
DMGCN 0.0365± 0.0071 0.0487± 0.0085 0.0202± 0.0015
Proposed-I 0.0358± 0.0024 0.0501± 0.0022 0.0209± 0.0019
Proposed-II 0.0361± 0.0035 0.0492± 0.0033 0.0200± 0.0022
Proposed∗ 0.0351± 0.0059 0.0484± 0.0044 0.0199± 0.0022

Evaluating the Proportionality during Training: In this section, we demonstrate the

proposed method can achieve proportionality using the proposed training scheduling method.

Figure 24 illustrates the training loss of the proposed deep network against epochs, and

the shaded area represents the variance regarding different views. From the results, we can

observe that the proposed method effectively reduces the variance during training, which

indicates the learned representations proportionally represent different modalities of brain

networks. The results also show the training routine aware of proportionality converges

slightly slower than the standard training routine. However, with moderate epochs their

performance difference is negligible.

Discussions: There some works applying the fairness principle on brain analysis [90]. Our

method is designed for representation learning for multi-view brain connectomes, particularly

focusing on the disentangled and proportional property (which is related to algorithmic

fairness) for the learned embeddings. Our experimental results demonstrate that the proposed

method can be applied to various downstream works. As such, it is of potential to apply our

106

Figure 24: Left to right: ADNI, NACC, PPMI.

method to broader applications, including generating a refined connectome matrix,

5.3.4 Conclusion

In this paper, we propose an unsupervised method to learn unified graph embeddings

for multi-view brain networks. We design a multi-view graph variational auto-encoder to

learn the representations with disentanglement and proportionality. The experimental results

demonstrate that the learned representations can be effectively used by various downstream

tasks.

107

6.0 Conclusion

In this dissertation, we propose several new representation-learning algorithms to address

the challenges of structural big data mining. Firstly, we propose a framework employing

second-order graph neural networks, which usually learn a less stiff transformation than the

first-order counterpart. Our method can also be viewed as a coupled first-order model, which

is easy to implement. We propose a semi-model-agnostic method based on our model to

enhance the prediction explanation using high-order information. We construct an analog

between continuous GNNs and some famous partial differential equations and discuss some

properties of the first and second-order models. Secondly, we learn structural embeddings in

which the proximity is characterized by 1-Wasserstein distance. We propose a distributionally

robust self-supervised graph neural network framework to learn the representations. More

specifically, in our method, the embeddings are computed based on subgraphs centering

at the node of interest and represent both the node of interest and its neighbors, which

better preserves the local structure of nodes. To make our model end-to-end trainable, we

adopt a deep implicit layer to compute the Wasserstein distance, which can be formulated

as a differentiable convex optimization problem. Meanwhile, our distributionally robust

formulation explicitly constrains the maximal diversity for matched queries and keys. As

such, our model is insensitive to the data distributions and has better generalization abilities.

Lastly, We propose a faster training method for GCN. The bottleneck in training GCN is

introduced by both the network depth and the sampling behavior. Instead of improving the

sampling, we focus on “reducing” the depth via reusing stale gradients.

We also design several representation learning methods to show their effectiveness on

application problems. Firstly, we learn the shared graph structure to characterize the graph

distribution using GNNs based on a small-world model. In detail, we showed that GCN

without given graph structure is applicable, by using a naive complete graph. Meanwhile, a

method was proposed to learn the graph structure from data to improve the performance of

GCN, by generating random graph with small-world property for model training. Secondly, we

propose a heterogeneous GCN for multi-view networks. An adaptive pooling scheme, driven

108

by both graph structure and network patterns, is also proposed, which is beneficial from

gathering local information, yielding a faithful graph with smaller size, and enjoying efficiency

in both computation and training. And thirdly, we propose to learn unified representations

from multi-modal brain networks via unsupervised learning techniques. To extend the

generalization ability of the learned representations to different downstream analysis, the

representations shall be of disentanglement and proportionality concerning different modalities.

In our approach the learned representations can fairly convey the information from different

modalities and can be exploited by various downstream analysis.

109

Bibliography

[1] Mart́ın Abadi, , et al. Tensorflow: A system for large-scale machine learning. In OSDI,
pages 265–283, 2016.

[2] Mart́ın Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[3] Iman Aganj et al. A hough transform global probabilistic approach to multiple-subject
diffusion mri tractography. Medical image analysis, 15(4):414–425, 2011.

[4] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and
Zico Kolter. Differentiable convex optimization layers. arXiv preprint arXiv:1910.12430,
2019.

[5] Farzane Aminmansour et al. Learning macroscopic brain connectomes via group-sparse
factorization. In Advances in Neural Information Processing Systems, pages 8847–8857,
2019.

[6] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in
neural networks. In International Conference on Machine Learning, pages 136–145.
PMLR, 2017.

[7] James Atwood et al. Diffusion-convolutional neural networks. In NeurIPS, pages
1993–2001, 2016.

[8] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group
formation in large social networks: membership, growth, and evolution. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 44–54, 2006.

[9] Shane Barratt. On the differentiability of the solution to convex optimization problems.
arXiv preprint arXiv:1804.05098, 2018.

[10] Danielle Smith Bassett et al. Small-world brain networks. The neuroscientist, 12(6):512–
523, 2006.

110

[11] Timothy EJ Behrens et al. Probabilistic diffusion tractography with multiple fibre
orientations: What can we gain? Neuroimage, 34(1):144–155, 2007.

[12] Mikhail Belkin et al. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In NeurIPS, pages 585–591, 2002.

[13] Mikhail Belkin et al. Towards a theoretical foundation for laplacian-based manifold
methods. Journal of Computer and System Sciences, 74(8):1289–1308, 2008.

[14] Yoshua Bengio et al. Representation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

[15] Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of
complex networks. Science, 353(6295):163–166, 2016.

[16] Léon Bottou et al. Optimization methods for large-scale machine learning. SIAM
Review, 60(2):223–311, 2018.

[17] Joan Bruna et al. Spectral networks and locally connected networks on graphs. arXiv
preprint arXiv:1312.6203, 2013.

[18] Ed Bullmore et al. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nature reviews neuroscience, 10(3):186, 2009.

[19] Edward T Bullmore and Danielle S Bassett. Brain graphs: graphical models of the
human brain connectome. Annual review of clinical psychology, 7:113–140, 2011.

[20] Liu Cao, Longxu Jin, Hongjiang Tao, Guoning Li, Zhuang Zhuang, and Yanfu Zhang.
Multi-focus image fusion based on spatial frequency in discrete cosine transform domain.
IEEE signal processing letters, 22(2):220–224, 2014.

[21] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations
with global structural information. In Proceedings of the 24th ACM international on
conference on information and knowledge management, pages 891–900, 2015.

[22] Chelsea Caspell-Garcia et al. Multiple modality biomarker prediction of cogni-
tive impairment in prospectively followed de novo parkinson disease. PLoS One,
12(5):e0175674, 2017.

111

[23] Jianfei Chen et al. Stochastic training of graph convolutional networks with variance
reduction. In International conference on machine learning, pages 941–949, 2018.

[24] Jie Chen et al. Fastgcn: fast learning with graph convolutional networks via importance
sampling. arXiv preprint arXiv:1801.10247, 2018.

[25] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural
ordinary differential equations. arXiv preprint arXiv:1806.07366, 2018.

[26] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International conference
on machine learning, pages 1597–1607. PMLR, 2020.

[27] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey
Hinton. Big self-supervised models are strong semi-supervised learners. arXiv preprint
arXiv:2006.10029, 2020.

[28] R Cameron Craddock et al. Disease state prediction from resting state functional
connectivity. Magnetic Resonance in Medicine, 62(6):1619–1628, 2009.

[29] Miles Cranmer, Sam Greydanus, et al. Lagrangian neural networks. arXiv preprint
arXiv:2003.04630, 2020.

[30] Michaël Defferrard et al. Convolutional neural networks on graphs with fast localized
spectral filtering. In NeurIPS, pages 3844–3852, 2016.

[31] Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multi-
variate time series. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 4027–4035, 2021.

[32] Zhiwei Deng, Megha Nawhal, Lili Meng, and Greg Mori. Continuous graph flow. arXiv
preprint arXiv:1908.02436, 2019.

[33] Inderjit S Dhillon et al. Weighted graph cuts without eigenvectors a multilevel approach.
IEEE TPAMI, 29(11), 2007.

[34] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural
node embeddings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD

112

International Conference on Knowledge Discovery & Data Mining, pages 1320–1329,
2018.

[35] Simon S Du et al. Gradient descent finds global minima of deep neural networks.
arXiv preprint arXiv:1811.03804, 2018.

[36] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. arXiv
preprint arXiv:1904.01681, 2019.

[37] David K Duvenaud et al. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pages 2224–2232,
2015.

[38] David K Duvenaud, Dougal Maclaurin, et al. Convolutional networks on graphs for
learning molecular fingerprints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28,
pages 2224–2232. Curran Associates, Inc., 2015.

[39] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks.
In Conference on Learning Theory, pages 907–940, 2016.

[40] Lawrence C Evans. Partial differential equations. Graduate studies in mathematics,
19(2), 1998.

[41] Daniel R Figueiredo, Leonardo Filipe Rodrigues Ribeiro, and Pedro HP Saverese.
struc2vec: Learning node representations from structural identity. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Halifax, NS, Canada, pages 13–17, 2017.

[42] Alex Fornito et al. Graph analysis of the human connectome: promise, progress, and
pitfalls. Neuroimage, 80:426–444, 2013.

[43] Igor Fortel, Mitchell Butler, Laura E Korthauer, Liang Zhan, Olusola Ajilore, Ira
Driscoll, Anastasios Sidiropoulos, Yanfu Zhang, Lei Guo, Heng Huang, et al. Brain
dynamics through the lens of statistical mechanics by unifying structure and function.
In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019:
22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings,
Part V 22, pages 503–511. Springer, 2019.

113

[44] Hongchang Gao et al. Identifying connectome module patterns via new balanced
multi-graph normalized cut. In MICCAI, pages 169–176, 2015.

[45] Hongchang Gao and Heng Huang. Deep attributed network embedding. In Twenty-
Seventh International Joint Conference on Artificial Intelligence (IJCAI)), 2018.

[46] Shangqian Gao, Feihu Huang, Yanfu Zhang, and Heng Huang. Disentangled differen-
tiable network pruning. In European Conference on Computer Vision, pages 328–345.
Springer, 2022.

[47] Justin Gilmer, Samuel S Schoenholz, et al. Neural message passing for quantum
chemistry. In International Conference on Machine Learning, pages 1263–1272. PMLR,
2017.

[48] Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks.
arXiv preprint arXiv:1906.01563, 2019.

[49] Aditya Grover et al. node2vec: Scalable feature learning for networks. In ACM
SIGKDD, pages 855–864. ACM, 2016.

[50] Will Hamilton et al. Inductive representation learning on large graphs. In Advances in
Neural Information Processing Systems, pages 1024–1034, 2017.

[51] William L Hamilton et al. Representation learning on graphs: Methods and applications.
arXiv preprint arXiv:1709.05584, 2017.

[52] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation
learning on graphs. In International Conference on Machine Learning, pages 4116–4126.
PMLR, 2020.

[53] Kaiming He et al. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[54] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-
trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

114

[55] Keith Henderson et al. Rolx: structural role extraction & mining in large graphs.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1231–1239, 2012.

[56] Irina Higgins et al. beta-vae: Learning basic visual concepts with a constrained
variational framework. Iclr, 2(5):6, 2017.

[57] Feihu Huang and Songcan Chen. Learning dynamic conditional gaussian graphical
models. IEEE Transactions on Knowledge and Data Engineering, 30(4):703–716, 2017.

[58] Wenbing Huang et al. Adaptive sampling towards fast graph representation learning.
In Advances in Neural Information Processing Systems, pages 4563–4572, 2018.

[59] Juan Eugenio Iglesias et al. Robust brain extraction across datasets and comparison
with publicly available methods. IEEE transactions on medical imaging, 30(9):1617–
1634, 2011.

[60] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[61] Nal Kalchbrenner et al. A convolutional neural network for modelling sentences. arXiv
preprint arXiv:1404.2188, 2014.

[62] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[63] Diederik P Kingma et al. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[64] Thomas N Kipf et al. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[65] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[66] Steven G Krantz and Harold R Parks. The implicit function theorem: history, theory,
and applications. Springer Science & Business Media, 2012.

115

[67] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[68] Sofia Ira Ktena et al. Distance metric learning using graph convolutional networks:
Application to functional brain networks. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 469–477. Springer, 2017.

[69] Abhishek Kumar, Piyush Rai, and Hal Daume. Co-regularized multi-view spectral
clustering. In Advances in neural information processing systems, pages 1413–1421,
2011.

[70] Harold J Kushner et al. Convergence of proportional-fair sharing algorithms under
general conditions. IEEE T. on Wireless Communications, 3(4):1250–1259, 2004.

[71] Denis Le Bihan et al. Diffusion tensor imaging: concepts and applications. Journal of
Magnetic Resonance Imaging, 13(4):534–546, 2001.

[72] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[73] Yann LeCun et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

[74] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Interna-
tional conference on machine learning, pages 3734–3743. PMLR, 2019.

[75] Cheng Li et al. From which world is your graph. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 1469–1479. Curran Associates, Inc., 2017.

[76] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns
go as deep as cnns? In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9267–9276, 2019.

[77] Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. Interest-aware message-
passing gcn for recommendation. In Proceedings of the Web Conference 2021, pages
1296–1305, 2021.

116

[78] Jialu Liu, Chi Wang, Jing Gao, and Jiawei Han. Multi-view clustering via joint
nonnegative matrix factorization. In SIAM International Conference on Data Mining,
pages 252–260. SIAM, 2013.

[79] Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. Multi-task identifica-
tion of entities, relations, and coreference for scientific knowledge graph construction.
arXiv preprint arXiv:1808.09602, 2018.

[80] Dijun Luo et al. New probabilistic multi-graph decomposition model to identify
consistent human brain network modules. In ICDM, pages 301–310, 2016.

[81] Dongsheng Luo, Wei Cheng, et al. Parameterized explainer for graph neural network.
arXiv preprint arXiv:2011.04573, 2020.

[82] Lei Luo, Jie Xu, Cheng Deng, and Heng Huang. Robust metric learning on grassmann
manifolds with generalization guarantees. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 4480–4487, 2019.

[83] Lei Luo, Yanfu Zhang, and Heng Huang. Adversarial nonnegative matrix factorization.
In International Conference on Machine Learning, pages 6479–6488. PMLR, 2020.

[84] Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

[85] Kenneth Marek et al. The parkinson progression marker initiative (ppmi). Progress in
neurobiology, 95(4):629–635, 2011.

[86] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Ho-
mophily in social networks. Annual review of sociology, 27(1):415–444, 2001.

[87] Tomas Mikolov et al. Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013.

[88] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and
Uri Alon. Network motifs: simple building blocks of complex networks. Science,
298(5594):824–827, 2002.

[89] Volodymyr Mnih et al. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

117

[90] Daniel Moyer, Greg Ver Steeg, Chantal MW Tax, and Paul M Thompson. Scanner
invariant representations for diffusion mri harmonization. Magnetic resonance in
medicine, 84(4):2174–2189, 2020.

[91] Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. Information network
or social network? the structure of the twitter follow graph. In Proceedings of the 23rd
International Conference on World Wide Web, pages 493–498, 2014.

[92] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen,
Yang Liu, and Shantanu Jaiswal. graph2vec: Learning distributed representations of
graphs. arXiv preprint arXiv:1707.05005, 2017.

[93] Peter F Neher et al. A machine learning based approach to fiber tractography using
classifier voting. In MICAI, pages 45–52, 2015.

[94] Mathias Niepert et al. Learning convolutional neural networks for graphs. In Interna-
tional conference on machine learning, pages 2014–2023, 2016.

[95] Alexander Norcliffe, Cristian Bodnar, et al. On second order behaviour in augmented
neural odes. arXiv preprint arXiv:2006.07220, 2020.

[96] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive
power for node classification. arXiv preprint arXiv:1905.10947, 2019.

[97] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[98] Geoffrey JM Parker et al. A framework for a streamline-based probabilistic index of
connectivity (pico) using a structural interpretation of mri diffusion measurements.
Journal of Magnetic Resonance Imaging: An Official Journal of the International
Society for Magnetic Resonance in Medicine, 18(2):242–254, 2003.

[99] Adam Paszke et al. Automatic differentiation in pytorch. 2017.

[100] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

118

[101] Marco Pennacchiotti and Siva Gurumurthy. Investigating topic models for social media
user recommendation. In Proceedings of the 20th international conference companion
on World wide web, pages 101–102, 2011.

[102] Bryan Perozzi et al. Deepwalk: Online learning of social representations. In ACM
SIGKDD, pages 701–710. ACM, 2014.

[103] Michael Poli, Stefano Massaroli, et al. Graph neural ordinary differential equations.
arXiv preprint arXiv:1911.07532, 2019.

[104] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge,
2018.

[105] Andres Potapczynski, Gabriel Loaiza-Ganem, and John P Cunningham. Invert-
ible gaussian reparameterization: Revisiting the gumbel-softmax. arXiv preprint
arXiv:1912.09588, 2019.

[106] Philippe Poulin et al. Learn to track: Deep learning for tractography. In MICCAI,
pages 540–547, 2017.

[107] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network
pre-training. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1150–1160, 2020.

[108] Scott C Ritchie et al. A scalable permutation approach reveals replication and
preservation patterns of network modules in large datasets. Cell systems, 3(1):71–82,
2016.

[109] Herbert Robbins and Sutton Monro. A stochastic approximation method. In Herbert
Robbins Selected Papers, pages 102–109. Springer, 1985.

[110] David E Rumelhart et al. Learning representations by back-propagating errors. nature,
323(6088):533, 1986.

[111] Deepak Saini, Arnav Kumar Jain, Kushal Dave, Jian Jiao, Amit Singh, Ruofei Zhang,
and Manik Varma. Galaxc: Graph neural networks with labelwise attention for extreme
classification. In Proceedings of the Web Conference 2021, pages 3733–3744, 2021.

119

[112] Michael Schlichtkrull et al. Modeling relational data with graph convolutional networks.
In European Semantic Web Conference, pages 593–607. Springer, 2018.

[113] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and
Karsten M Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning
Research, 12(9), 2011.

[114] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten
Borgwardt. Efficient graphlet kernels for large graph comparison. In Artificial intelli-
gence and statistics, pages 488–495. PMLR, 2009.

[115] David I Shuman et al. The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains. IEEE Signal
Processing Magazine, 30(3):83–98, 2013.

[116] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[117] Olaf Sporns et al. The human connectome: a structural description of the human
brain. PLoS computational biology, 1(4):e42, 2005.

[118] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsuper-
vised and semi-supervised graph-level representation learning via mutual information
maximization. arXiv preprint arXiv:1908.01000, 2019.

[119] Xiangguo Sun, Hongzhi Yin, Bo Liu, Hongxu Chen, Qing Meng, Wang Han, and
Jiuxin Cao. Multi-level hyperedge distillation for social linking prediction on sparsely
observed networks. In Proceedings of the Web Conference 2021, pages 2934–2945,
2021.

[120] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. In International conference on
machine learning, pages 1139–1147. PMLR, 2013.

[121] Christian Szegedy et al. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[122] Haoteng Tang, Lei Guo, et al. Hierarchical brain embedding using explainable graph
learning. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI),
pages 1–5. IEEE, 2022.

120

[123] Haoteng Tang, Guixiang Ma, et al. Commpool: An interpretable graph pooling
framework for hierarchical graph representation learning. Neural Networks, 143:669–
677, 2021.

[124] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:
Large-scale information network embedding. In Proceedings of the 24th international
conference on world wide web, pages 1067–1077, 2015.

[125] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart
and its applications. In Proceedings of the Sixth International Conference on Data
Mining, ICDM ’06, page 613–622, USA, 2006. IEEE Computer Society.

[126] Nathalie Tzourio-Mazoyer et al. Automated anatomical labeling of activations in
spm using a macroscopic anatomical parcellation of the mni mri single-subject brain.
Neuroimage, 15(1):273–289, 2002.

[127] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg. Structural diver-
sity in social contagion. Proceedings of the National Academy of Sciences, 109(16):5962–
5966, 2012.

[128] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[129] Ilya M Veer et al. Whole brain resting-state analysis reveals decreased functional
connectivity in major depression. Frontiers in systems neuroscience, 4:41, 2010.

[130] Petar Veličković, Guillem Cucurull, et al. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[131] Petar Velickovic et al. Graph attention networks. arXiv preprint arXiv:1710.10903,
1(2), 2017.

[132] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and
R Devon Hjelm. Deep graph infomax. arXiv preprint arXiv:1809.10341, 2018.

[133] Daixin Wang et al. Structural deep network embedding. In ACM SIGKDD, pages
1225–1234. ACM, 2016.

121

[134] De Wang et al. Human connectome module pattern detection using a new multi-graph
minmax cut model. In MICCAI, pages 313–320, 2014.

[135] Qi Wang, Lei Guo, Paul M Thompson, Clifford R Jack Jr, Hiroko Dodge, Liang Zhan,
Jiayu Zhou, Alzheimer’s Disease Neuroimaging Initiative, et al. The added value
of diffusion-weighted mri-derived structural connectome in evaluating mild cognitive
impairment: A multi-cohort validation. Journal of Alzheimer’s Disease, 64(1):149–169,
2018.

[136] Qi Wang, Mengying Sun, Liang Zhan, Paul Thompson, Shuiwang Ji, and Jiayu Zhou.
Multi-modality disease modeling via collective deep matrix factorization. In Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1155–1164, 2017.

[137] Qi Wang, Liang Zhan, Paul M Thompson, Hiroko H Dodge, and Jiayu Zhou. Discrimi-
native fusion of multiple brain networks for early mild cognitive impairment detection.
In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pages
568–572. IEEE, 2016.

[138] Shen Wang et al. Structural deep brain network mining. In ACM KDD, pages 475–484.
ACM, 2017.

[139] Xinjun Wang, Zhe Sun, Yanfu Zhang, Zhongli Xu, Hongyi Xin, Heng Huang, Richard H
Duerr, Kong Chen, Ying Ding, and Wei Chen. Brem-sc: a bayesian random effects
mixture model for joint clustering single cell multi-omics data. Nucleic acids research,
48(11):5814–5824, 2020.

[140] Xinjun Wang, Zhongli Xu, Haoran Hu, Xueping Zhou, Yanfu Zhang, Robert Lafyatis,
Kong Chen, Heng Huang, Ying Ding, Richard H Duerr, et al. Secant: a biology-guided
semi-supervised method for clustering, classification, and annotation of single-cell
multi-omics. PNAS nexus, 1(4):pgac165, 2022.

[141] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the diffusion
process in linear graph convolutional networks. arXiv preprint arXiv:2102.10739, 2021.

[142] Felix Wu, Amauri Souza, et al. Simplifying graph convolutional networks. In Interna-
tional conference on machine learning, pages 6861–6871. PMLR, 2019.

122

[143] Shu Wu, Yuyuan Tang, et al. Session-based recommendation with graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 346–353, 2019.

[144] Wei Wu, Bin Li, Chuan Luo, and Wolfgang Nejdl. Hashing-accelerated graph neural
networks for link prediction. In Proceedings of the Web Conference 2021, pages
2910–2920, 2021.

[145] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature
learning via non-parametric instance discrimination. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3733–3742, 2018.

[146] Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural networks.
In International Conference on Machine Learning, pages 10432–10441. PMLR, 2020.

[147] Wenhan Xian, Feihu Huang, Yanfu Zhang, and Heng Huang. A faster decentralized
algorithm for nonconvex minimax problems. Advances in Neural Information Processing
Systems, 34:25865–25877, 2021.

[148] Qianqian Xie, Jimin Huang, Pan Du, Min Peng, and Jian-Yun Nie. Graph topic neural
network for document representation. In Proceedings of the Web Conference 2021,
pages 3055–3065, 2021.

[149] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? arXiv preprint arXiv:1810.00826, 2018.

[150] Noriaki Yahata et al. A small number of abnormal brain connections predicts adult
autism spectrum disorder. Nature communications, 7:11254, 2016.

[151] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the
21th ACM SIGKDD international conference on knowledge discovery and data mining,
pages 1365–1374, 2015.

[152] Rex Ying, Dylan Bourgeois, et al. Gnnexplainer: Generating explanations for graph
neural networks. Advances in neural information processing systems, 32:9240, 2019.

[153] Rex Ying et al. Graph convolutional neural networks for web-scale recommender
systems. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 974–983, 2018.

123

[154] Zhitao Ying et al. Hierarchical graph representation learning with differentiable pooling.
In Advances in Neural Information Processing Systems, pages 4805–4815, 2018.

[155] Kosuke Yoshida et al. Prediction of clinical depression scores and detection of changes in
whole-brain using resting-state functional mri data with partial least squares regression.
PloS one, 12(7):e0179638, 2017.

[156] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive
learning automated. arXiv preprint arXiv:2106.07594, 2021.

[157] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang
Shen. Graph contrastive learning with augmentations. Advances in Neural Information
Processing Systems, 33, 2020.

[158] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, and
Xiangliang Zhang. Self-supervised multi-channel hypergraph convolutional network for
social recommendation. In Proceedings of the Web Conference 2021, pages 413–424,
2021.

[159] Hao Yuan, Jiliang Tang, et al. Xgnn: Towards model-level explanations of graph
neural networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 430–438, 2020.

[160] Ling-Li Zeng et al. Identifying major depression using whole-brain functional connec-
tivity: a multivariate pattern analysis. Brain, 135(5):1498–1507, 2012.

[161] Liang Zhan et al. Comparison of nine tractography algorithms for detecting abnormal
structural brain networks in alzheimer’s disease. Frontiers in aging neuroscience, 7:48,
2015.

[162] Chi Zhang et al. Deepemd: Differentiable earth mover’s distance for few-shot learning.
arXiv e-prints, pages arXiv–2003, 2020.

[163] Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu,
Yan Wang, Bin Shao, Rui Li, et al. Oag: Toward linking large-scale heterogeneous
entity graphs. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2585–2595, 2019.

[164] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. Prone: Fast and
scalable network representation learning. In IJCAI, volume 19, pages 4278–4284, 2019.

124

[165] Jing Zhang et al. Panther: Fast top-k similarity search on large networks. In Proceedings
of the 21th ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1445–1454, 2015.

[166] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep
learning architecture for graph classification. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

[167] Xi Zhang et al. Multi-view graph convolutional network and its applications on
neuroimage analysis for parkinson’s disease. arXiv preprint arXiv:1805.08801, 2018.

[168] Xian Zhang et al. Can depression be diagnosed by response to mother’s face? a
personalized attachment-based paradigm for diagnostic fmri. PloS one, 6(12):e27253,
2011.

[169] Yanfu Zhang, Runxue Bao, Jian Pei, and Heng Huang. Toward unified data and
algorithm fairness via adversarial data augmentation and adaptive model fine-tuning.
In 2022 IEEE International Conference on Data Mining (ICDM), pages 1317–1322.
IEEE, 2022.

[170] Yanfu Zhang, Li Ding, and Gaurav Sharma. A local-linear-fitting-based matting
approach for accurate depth upsampling. In 2016 IEEE Western New York Image
and Signal Processing Workshop (WNYISPW), pages 1–5. IEEE, 2016.

[171] Yanfu Zhang, Li Ding, and Gaurav Sharma. Hazerd: an outdoor scene dataset and
benchmark for single image dehazing. In 2017 IEEE international conference on image
processing (ICIP), pages 3205–3209. IEEE, 2017.

[172] Yanfu Zhang, Li Ding, and Gaurav Sharma. Local-linear-fitting-based matting for
joint hole filling and depth upsampling of rgb-d images. Journal of Electronic Imaging,
28(3):033019–033019, 2019.

[173] Yanfu Zhang, Hongchang Gao, et al. Robust self-supervised structural graph neural
network for social network prediction. In Proceedings of the ACM Web Conference
2022, pages 1352–1361, 2022.

[174] Yanfu Zhang, Shangqian Gao, and Heng Huang. Exploration and estimation for model
compression. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 487–496, 2021.

125

[175] Yanfu Zhang, Shangqian Gao, and Heng Huang. Recover fair deep classification models
via altering pre-trained structure. In European Conference on Computer Vision, pages
481–498. Springer, 2022.

[176] Yanfu Zhang, Shangqian Gao, Jian Pei, and Heng Huang. Improving social network
embedding via new second-order continuous graph neural networks. In Proceedings of
the 28th ACM SIGKDD conference on knowledge discovery and data mining, pages
2515–2523, 2022.

[177] Yanfu Zhang and Heng Huang. New graph-blind convolutional network for brain
connectome data analysis. In International Conference on Information Processing in
Medical Imaging, pages 669–681. Springer, 2019.

[178] Yanfu Zhang, Lei Luo, and Heng Huang. Unified fairness from data to learning
algorithm. In 2021 IEEE International Conference on Data Mining (ICDM), pages
1499–1504. IEEE, 2021.

[179] Yanfu Zhang, Lei Luo, Wenhan Xian, and Heng Huang. Learning better visual
data similarities via new grouplet non-euclidean embedding. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 9918–9927, 2021.

[180] Yanfu Zhang, Liang Zhan, Weidong Cai, Paul Thompson, and Heng Huang. Integrating
heterogeneous brain networks for predicting brain disease conditions. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pages
214–222. Springer, 2019.

[181] Yanfu Zhang, Liang Zhan, Paul M Thompson, and Heng Huang. Biological knowledge
guided deep neural network for brain genotype-phenotype association study. In
Multimodal Brain Image Analysis and Mathematical Foundations of Computational
Anatomy, pages 84–92. Springer, 2019.

[182] Yanfu Zhang, Liang Zhan, Shandong Wu, Paul Thompson, and Heng Huang. Disen-
tangled and proportional representation learning for multi-view brain connectomes.
In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021:
24th International Conference, Strasbourg, France, September 27–October 1, 2021,
Proceedings, Part VII 24, pages 508–518. Springer, 2021.

[183] Da Zheng, Minjie Wang, et al. Learning graph neural networks with deep graph library.
In Companion Proceedings of the Web Conference 2020, pages 305–306, 2020.

126

[184] Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, and Yong Li. Dgcn: Diversified
recommendation with graph convolutional networks. In Proceedings of the Web
Conference 2021, pages 401–412, 2021.

[185] Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqi Yang,
Liangjie Zhang, Ruofei Zhang, and Huasha Zhao. Textgnn: Improving text encoder
via graph neural network in sponsored search. In Proceedings of the Web Conference
2021, pages 2848–2857, 2021.

[186] Jiong Zhu, Yujun Yan, et al. Generalizing graph neural networks beyond homophily.
arXiv preprint arXiv:2006.11468, 2020.

[187] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph
contrastive learning with adaptive augmentation. In Proceedings of the Web Conference
2021, pages 2069–2080, 2021.

[188] Juntang Zhuang, Nicha Dvornek, et al. Ordinary differential equations on graph
networks. 2019.

127

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Statistics of datasets for node classification.
	2. Statistics of datasets for graph classification.
	3. Node classification results on citation networks. The Cora, Citeseer, and Pubmed columns summarize the results using standard test-training split. The corresponding columns with superscript summarize the results over 10 random splits test-training split. The values for GCN-GODE and GAT-GODE are taken from the original paper. Best-performing methods are bold faced, and the runner-ups are underlined. For the random split, The results of GCN-GODE and GAT-GODE are not available and are denoted by -.
	4. Graph Classification results.
	5. Explanation AUC results.
	6. The statistic for the pre-training datasets. Among these datasets, Academia, DBLP-SNAP, and DBLP-NetRep are academic datasets, and the rest are social networks.
	7. Node Classification Results.
	8. Graph Classification Results.
	9. Top-k Similarity Search (k=40). Best-performing self-supervised methods are bold faced. Best performing non-self-supervised methods are denoted by .
	10. The comparison of per-step time for the baseline and our method using different subgraph size (denoted by superscripts).
	11. Dataset description and model/training details.
	12. Comparison of different training methods on multiple tasks and multiple datasets. Top: running time of different methods, the best results are marked in bold font; bottom: test accuracy of the models trained using different methods. The time efficiency and consistent performance can be observed from the values.
	13. Quantitative comparison of baselines and the proposed method. Both the mean and the standard error are given, and the best results are bold faced. Metrics without significant difference between baselines and FCGCN are denoted with ; the metric without significant difference between FCGCN and kGCN/RGCN is denoted with .
	14. The comparison of the proposed method with baselines. For both metrics, smaller values indicate better results. The values are displayed as mean() standard deviation () from five tests. Bold font indicates the best performance.
	15. Predictions with different combination of modals. Values follow the instruction in Table. 14. Bold font indicates the best performance.
	16. The comparison on classification tasks.
	17. The comparison on regression tasks.

	List of Figures
	1. Learn the second order GNN.
	2. A ball-spring system under the second order dynamics (elastic force, gravity, and friction).
	3. The pipeline for subgraph sampling. We compute the edge embeddings using a deep neural network. We use the invertible Gaussian reparameterization trick to sample the subgraph, which allows the straight-through gradients estimation for the back-propagation. We update the embedding network using Monte Carlo method to optimize the mutual information between the explanation and the computation graph.
	4. Training loss (left) and validation accuracy (right) under different integration time.
	5. Training loss (left) and validation accuracy (right) with different damping terms.
	6. Subgraphs generated from the same node (colored in red) are similar, and from different nodes are dissimilar (red v.s. blue). To learn a robust encoder, we fix the keys, i.e. Gki and Gkj, and focus on the most difficult query Gqi (solid red line) instead of random queries (dashed red lines).
	7. The r-ego subgraphs surrounding the nodes of interest are fed into the structural GNN to obtain the embedding sets. Wasserstein distance is then computed as the network proximity.
	8. An example shows the distribution of r-ego subgraphs are determined by the sampling methods. The node of interest is colored in red, and three possible subgraphs are shaded in different colors (middle column). Under different sampling techniques (e.g. altering the backward jump probability in random walks), the distribution of subgraphs are presumably different (right column).
	9. The model performance under different subgraph distributions. We test five different sampling settings for the second stage: for neighborhood sampling with different neighbor size, we consider NS 4 and NS 5; for random walk with restart with different restart probability, we consider RWR 0.6, RWR 0.7 and RWR 0.8. The results are based on 10-fold validation accuracy on RDT-B. Our model performs similar under different settings, which indicates our method is robust to distribution shift.
	10. Model performance v.s. sampling size.
	11. The growing of the receptive fields layer-wise. Top line: the growing for exact method; bottom line: the growing for sampled methods. Involved nodes in each nodes are labelled with different colors. Clearly, deep network causes the size of involved nodes in bottom layers exploded, particularly for exact method.
	12. The training process of the proposed method. Naive GCN model are splitted into multiple sequential sub-models. In the forward step, the outputs are computed using current model; in the backward step, the updating is computed using stale error gradients. We name it gradient flashback due to the re-occurrence of historical gradients.
	13. The results of loss against time on training set. For all datasets, the proposed method converges much faster than naive methods, given the same sampling scheme. In the long run, it also attains an identical performance with naive stochastic methods, which verifies the convergence analysis.
	14. The results of accuracy against epoch on test set. For all datasets, the proposed method attains an identical performance with naive stochastic methods, given the same sampling scheme.
	15. Running time per epoch. The proposed method consumes much less time compared to naive stochastic methods using the same sampling scheme.
	16. The iterative procedure of random graph generation, GCN training, and embeddings inference.
	17. The structure of the proposed method. Brain connectome is transformed into embeddings using GCN and MLP is used for regression successively.
	18. Comparison of training curves of FCGCN and RGCN.
	19. Visualization of clustering of clinical depression scores using t-SNE and PCA respectively, from a random start. The clustering is obtained through K-Means with K = 4 and 8
	20. The proposed heterogeneous GCN for PD clinical scores prediction. (a) illustrates the entire structure, in which multi-modal brain networks are generated from MRIs, and sequentially processed by GCN and MLP; (b) depicts the stacked convolutional layer and pooling layer; (c) provides a detailed description of the pooling procedure, including node merge, graph distillation and feature pooling.
	21. The structure of the proposed method. Each view uses an independent VGAE to learn a unified , while the is different.
	22. Left: a simple DNN. Right: the corresponding DAG. Each edge represents a network, and each node denote an intermediate representation.
	a. Round-Robin
	b. Proportionality
	24. Left to right: ADNI, NACC, PPMI.

	Preface
	1.0 Introduction
	2.0 Improving Network Embedding via New Second-Order Continuous Graph Neural Networks
	2.1 Motivation
	2.2 Related Work
	2.3 Proposed Method
	2.3.1 Second-Order Continuous GNNs
	2.3.1.1 Revisiting Messaging Passing Neural Networks and First-Order Continuous GNNs
	2.3.1.2 Second-Order Continuous Graph Neural Networks

	2.3.2 Implementation of Second-Order Continuous GNN
	2.3.3 Enhanced Explanation for Graph Neural Networks Using Second-Order Information
	2.3.3.1 Problem Formulation
	2.3.3.2 Semi-model-aware GNN Explainer

	2.3.4 First-Order v.s. Second-Order

	2.4 Experimental Results
	2.4.1 Datasets and Experiment Settings
	2.4.2 Baseline Methods
	2.4.3 Comparison Results
	2.4.3.1 Semi-Supervised Node Classification
	2.4.3.2 Graph Classification
	2.4.3.3 Prediction Explanation

	2.4.4 Analysis of Model Parameters
	2.4.4.1 The model performance v.s. Integration Time
	2.4.4.2 The Effect of Damping Term

	2.5 Conclusion

	3.0 Robust Self-Supervised Structural Graph Neural Network
	3.1 Motivation
	3.1.1 Notations

	3.2 Related Works
	3.2.1 Graph Representation Learning
	3.2.2 Graph Contrastive Learning
	3.2.3 Network Proximity
	3.2.4 Deep Implicit Layers

	3.3 Proposed Method
	3.3.1 Self-Supervised Graph Neural Network via Wasserstein Proximity
	3.3.2 (Asymptotically) Distributionally Robust Contrastive Learning
	3.3.2.1 Distributionally Robust Contrastive Learning
	3.3.2.2 Asymptotically Distributionally Robust Contrastive Learning

	3.3.3 Computing Wasserstein Distance via Deep Implicit Layer
	3.3.4 Algorithm and Implementation

	3.4 Experimental Results
	3.4.1 Training Self-Supervised Graph Neural Network
	3.4.2 Downstream Analysis
	3.4.2.1 Node Classification
	3.4.2.2 Graph Classification
	3.4.2.3 Top-k Similarity Search

	3.4.3 Ablation Studies
	3.4.3.1 Model Robustness
	3.4.3.2 Cardinality of Embedding Set
	3.4.3.3 Computational Time

	3.5 Conclusion

	4.0 Training Graph Neural Network Faster using Stale Gradients
	4.1 Motivation
	4.1.1 Organization and Notations

	4.2 Preliminary and Related Work
	4.2.1 Preliminary
	4.2.2 Related Work

	4.3 Gradient Flashback Method
	4.4 Convergence Analysis
	4.5 Appendix
	4.5.1 Proof of Theorem 1
	4.5.2 Proof of Theorem 2

	4.6 Experiments
	4.6.1 Experiment Settings
	4.6.2 Comparison with Baselines
	4.6.3 Convergence Results
	4.6.4 Efficiency Under Various Settings

	4.7 Conclusion

	5.0 Applying Graph Representation Learning to Varied Medical Imaging Problems
	5.1 Learning Shared Structure from Single-view Graph data
	5.1.1 Motivation
	5.1.2 Methodology
	5.1.2.1 Preliminary
	5.1.2.2 Graph Convolutional Network without Pre-defined Graph Structure
	5.1.2.3 Can we apply GCN to graph data without predefined graph structure?
	5.1.2.4 How can we find a ``good'' graph structure for brain connectome?
	5.1.2.5 Is GCN preferred compared to naive neural network?

	5.1.3 Pseudo-Label
	5.1.4 Experiments
	5.1.4.1 Data Description
	5.1.4.2 Experiment Setting
	5.1.4.3 Performance Comparison

	5.1.5 Conclusion

	5.2 Heterogeneous Graph Neural Networks Integrating Multi-view graphs
	5.2.1 Motivation
	5.2.2 Methodology
	5.2.2.1 Preliminary
	5.2.2.2 Predicting PD Clinical Scores via Heterogeneous GCN

	5.2.3 Experiments
	5.2.3.1 Data Description
	5.2.3.2 Experiment Settings
	5.2.3.3 Results

	5.2.4 Conclusion

	5.3 Unsupervised Multi-View Graph Representation Learning
	5.3.1 Motivation
	5.3.2 Methodology
	5.3.3 Experimental Results
	5.3.4 Conclusion

	6.0 Conclusion
	Bibliography

