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Modeling Visual Rhetorics for Persuasive Media through Self-supervised

Learning

Meiqi Guo, PhD

University of Pittsburgh, 2023

This dissertation addresses the challenging task of modeling and interpreting visual

rhetorics in persuasive media using computational models. The focus is on self-supervised

learning methods that leverage general data without specific annotations related to persua-

sion.

The research begins by modeling three fundamental modes of persuasion (ethos, pathos,

logos) in multimodal media, incorporating both text and images. Traditional visual recogni-

tion models struggle to predict the applied persuasion modes in images beyond their literal

content. Self-supervised learning methods prove to be more effective in modeling these

modes. The detection of persuasive atypicality in ad images and the interpretation of sym-

bolism are explored as common visual rhetorics for capturing viewers’ attention and creating

lasting impressions. The hypothesis that atypicality detection relies on contextual compati-

bility and understanding common-sense spatial relations of objects is validated through the

development of self-supervised attention-based techniques. To assess the feasibility of au-

tomatically interpreting symbolism, an evaluative framework is developed. It compares the

performance of language models and multi-modality models pretrained on large-scale web

data. Furthermore, a re-ranking strategy is introduced to mitigate pre-training bias and

significantly enhance model performance, bringing it on par with human performance in

certain cases.

Overall, this dissertation presents a range of techniques that enable computational in-

telligence to detect, understand, and explain the underlying messages in rhetorical media.

These methods leverage self-supervised learning and process large volumes of data, providing

unprecedented depth and insight into the analysis of persuasive visual communication.

Keywords: Visual Rhetoric, Persuasion Mode, Persuasive Atypicality, Symbolism, Per-

suasive Media, Social Media, Advertisement Understanding, Self-supervised Learning.
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1.0 Introduction

1.1 Motivation

There is a growing interest in the automated understanding of persuasive media, such

as commercial advertisements [50, 143, 109], political campaign broadcast [72, 111, 31],

viewpoint-spreading tweets [80, 110, 141], etc. Rhetorics, being a potent tool for influencing

and persuading, holds significant sway over the persuasive nature of such media [113, 76, 20].

To effectively deduce the intended message being conveyed, it becomes crucial for AI systems

to model rhetorics in persuasive media.

Previous research efforts in modeling rhetorics have predominantly focused on media in

textual or acoustic modality [142, 138, 137]. However, there is a dearth of exploration in

the realm of visual modality and multi-modality, which incorporates both images and text.

While language is widely recognized as the most effective medium for persuasive communica-

tion [17], visual rhetorics can significantly enhance persuasiveness. For instance, commercial

posters often promote products by combining captivating imagery with catchy slogans. Re-

cent studies have shown that social media posts with images garner higher popularity than

those without [71], and images shared on social platforms significantly contribute to shaping

political character development [82]. These applications and findings underscore the im-

portance of developing computational models capable of detecting and interpreting visual

rhetorics employed in persuasive multi-modal media.

Persuasion, in theory, involves one party attempting to influence another party to alter

their opinion (believing or disbelieving something) or behavior (doing or not doing some-

thing) [8, 85]. The exploration of rhetoric and persuasion traces back to Aristotle, who

proposed three fundamental modes of persuasion - ethos, pathos, and logos. These modes

serve as common strategies in rhetoric, classifying how a speaker or writer appeals to their

audience [25]. Recent work in computational models of rhetorics has been built upon this

foundation. Previous research has demonstrated the application of these modes in analyzing

the social impacts of discourses within social/environmental reports [46], as well as assessing
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the persuasiveness of scientific texts [96] or student essays [16]. However, limited attention

has been given to leveraging these modes to analyze persuasive images. We argue that de-

spite the different modalities of media, the means of persuasion should remain consistent.

Exploring the feasibility of modeling the modes of persuasion in persuasive images represents

the initial step towards understanding and modeling visual rhetorics.

While the fundamental modes of persuasion provide the overarching strategies in rhetoric,

a diverse array of rhetorical devices is essential for achieving the persuasive strategies dis-

cussed above. Rhetorical devices serve as powerful tools that enhance the persuasiveness,

impact, and memorability of speeches, writing, or visual media when employed effectively

with an audience. Observably, various forms of media exhibit distinct inclinations towards

rhetorical devices. For instance, alliteration finds particular utility in speeches, whereas vi-

sual media tends to encapsulate a wealth of vivid information, adhering to the notion that

“A picture is worth a thousand words”. However, this abundance of visual content also

introduces a greater degree of ambiguity and uncertainty in interpretation. Consequently,

identifying specific rhetorical devices employed in images or videos proves considerably more

challenging than in written texts or speeches.1 Therefore, when analyzing visual content,

it becomes more meaningful to investigate rhetorical devices that are not only commonly

employed but also possess broader applicability, such as atypicality and symbolism. Atypi-

cal portrayals intentionally crafted for persuasive purposes may involve imaginative object

transformations, utilizing devices like metaphor, hyperbole, irony, and unique visual tech-

niques. These techniques can include presenting an object with the texture of another object

(e.g., an apple with the texture of a kiwi) or distorting an object into a different shape (e.g.,

a twisted skeleton). Similarly, symbolic associations of objects can be metaphorical (e.g., a

beer depicted as fresh as an apple), analogical (e.g., a tomato resembling the phone com-

pany Apple’s logo, evoking thoughts of the fruit apple as a symbol of temptation), or ironic

(e.g., a gun pointed at the person holding it, symbolizing self-harm). Atypical and symbolic

images are particularly effective in appealing to the persuasion strategies of pathos, logos,

and ethos. For example, consider Figure 1(e), where the image creates a powerful emotional

1For instance, in written texts, distinguishing between metaphors and similes is relatively straightforward
as similes often adhere to recognizable patterns such as “as...as...” or “like”. However, these explicit patterns
cannot be easily applied to visual media.
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Figure 1: Advertising images [143] and social media posts [74] that employ rhetorical devices.

impact by symbolizing self-harm or danger. This evokes strong emotional responses, such as

fear, concern, or empathy, depending on the context. Therefore, the ability to automatically

detect atypicality and interpret symbolism plays a crucial role in developing computational

intelligence capable of inferring the implied messages conveyed through rhetorical devices in

persuasive media.

However, modeling visual rhetorics poses significant challenges for AI systems. Firstly, it

necessitates a substantial amount of common-sense knowledge and higher-level reasoning be-

yond a literal interpretation of images [1]. For example, to classify whether an image evokes

pathos in the persuasion mode, the intelligent system must understand the visual content

that commonly elicits emotional responses in humans. If the rhetorical objective is achieved

through atypical portrayals, knowledge of typical object interactions becomes crucial. Sim-

ilarly, when objects are associated with symbolic purposes, the model needs to decode the

symbolic references to infer implied messages. Secondly, scaling up the annotation of visual

rhetoric is a daunting task. Models trained with only hundreds or thousands of annotated

labels struggle to achieve sufficient performance. We argue that self-supervised learning on
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large-scale data can offer a solution to these challenges. A carefully designed learning objec-

tive can empower models to capture extensive and demanding knowledge. Large language

models have shown the ability to acquire factual and common-sense knowledge through pre-

training [26, 52, 93]. The success of language models has also inspired the development of

computer vision or multi-modal systems that learn representations from self-supervised sig-

nals [30, 75]. However, the applicability of this technique to modeling rhetoric, which requires

understanding authors’ intentions and non-literal messages conveyed in the media, remains

unclear. In this thesis, our goal is to address this question by developing computational

models for visual rhetorics through self-supervised learning. By leveraging large-scale data

and well-designed learning objectives, we aim to enable models to understand and interpret

the complexities of rhetorical devices in visual media.

1.2 Research Statement and Hypotheses

By harnessing general data without persuasion-related labels, self-supervised learning

methods can be developed to benefit the detection and interpretation of the visual rhetorics

utilized in the persuasive media. In this thesis, we aim to test the following hypotheses:

H1. The modes of persuasion, originally used for analyzing speaking or textual media,

can be adapted to effectively analyze persuasive images. The textual content accompanying

the images serves as a valuable self-supervised signal for learning knowledge that aids in

classifying the persuasion modes exhibited in the images.

H2. Atypical images can be detected by modeling contextual compatibility through self-

supervised learning methodologies. Specifically, the interactions between objects and their

spatial relative positions within the image play a significant role in the detection process.

H3. Language models and multi-modality models, trained through self-supervised learn-

ing on large-scale data, have acquired substantial knowledge of symbolism. This acquired

knowledge can be leveraged to interpret the symbolism utilized in persuasive images.
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1.3 Thesis Overview

This thesis is comprised of three distinct components, all of which share a common ob-

jective: modeling visual rhetorics for persuasive media using self-supervised learning. Each

component explores a different aspect of rhetorics. The first part examines the three fun-

damental modes of persuasion in multi-modal media, such as Tweets that incorporate both

text and images. Our research delves into understanding how these modes manifest in the

combined textual and visual elements of persuasive messages. The second and third parts of

the thesis concentrate on specific visual rhetorical devices. In the second part, we propose

a novel model architecture and an efficient training objective to detect persuasive atypical-

ity in advertising images. In the third part, we investigate the feasibility of automatically

interpreting symbolism in persuasive media. To achieve this, we construct an evaluative

framework that enables the analysis and understanding of symbolic references. Our aim is

to unravel the implied messages conveyed through rhetorics. A brief overview of this thesis

is presented below.

1.3.1 Modeling Modes of Persuasion

In Chapter 3, we delve into our research on modeling the modes of persuasion (ethos,

pathos, logos) employed in persuasive images. To begin, we curate a comprehensive multi-

modal dataset that includes annotations of image persuasiveness in tweets. Our investigation

confirms that the three fundamental modes of persuasion can be effectively adapted for the

analysis of persuasive images. One of the key challenges we encounter is the representation

of images, which proves to be a bottleneck in the modeling process. However, we discover

that the accompanying text in tweets contains valuable clues that can greatly contribute to

predicting the persuasion modes utilized in the images. Leveraging this insight, we proceed

to train a self-supervised model on a large-scale dataset of multi-modal tweets, utilizing the

tweet text as the supervision signal. By employing the text as a form of guidance during the

self-supervised learning process, we are able to enhance our model’s understanding of the

persuasion modes exhibited within the images.
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1.3.2 Detecting Atypicality

In Chapter 4, our objective is to detect persuasive atypicality in advertising images.

This form of atypicality serves a specific purpose of conveying meaning and often involves

metaphorical object transformations. Understanding the common-sense spatial relations be-

tween objects plays a crucial role in identifying persuasive atypicality. Based on this premise,

we propose an approach that utilizes contextual compatibility as a self-supervised signal. To

enable precise modeling of the spatial relations between objects, we introduce a novel method

for computing attention weights. This method facilitates a more accurate representation of

the interactions between objects in the image. Through extensive experimentation on a vi-

sual advertising dataset, we provide empirical evidence showcasing the effectiveness of our

approach, particularly in detecting atypicality transformations that involve spatial interac-

tions between objects.

1.3.3 Interpreting Symbolism

In Chapter 5, we delve into the interpretation of symbolism employed in advertising im-

ages. One of the major challenges in this task is that understanding the symbolic relationship

between an object and a concept often relies on contextual and cultural knowledge, involving

a complex chain of implicit reasoning. To address whether such specific symbolic knowledge

can be captured through large-scale self-supervised learning, we introduce an evaluative

framework. Within this framework, we compare the performance of language models and

multi-modality models in interpreting different types of symbolism, utilizing various metrics

for analysis. The results uncover the detrimental impact of biases inherent in pre-trained

corpora. Additionally, we demonstrate the effectiveness of a simple re-ranking strategy in

mitigating bias and significantly improving model performance, reaching a level comparable

to human performance in certain cases.
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1.4 Contributions

Visual rhetorics play a crucial role in making persuasive media more impactful, memo-

rable, and persuasive to the audience. However, accurately detecting and interpreting these

rhetorical devices in visual media presents unique challenges. This thesis presents a com-

prehensive investigation into the modeling of visual rhetorics for persuasive media through

self-supervised learning, encompassing three distinct parts of research. With a unifying goal

of understanding and capturing the persuasive elements present in visual media, each part

delves into a different facet of rhetorics.

• To model modes of persuasion [74]:

– We introduce a new multi-modal dataset called ImageArg, which serves as a valuable

resource for annotating image persuasiveness in tweets. The creation of this dataset

involves the development of novel strategies and schemes, ensuring the accuracy and

reliability of the annotated persuasiveness labels.

– We study the mutual influences between the modes of persuasion and other factors

such as persuasiveness, visual content, and political ideology. By exploring the

intricate relationships between these elements, we gain a deeper understanding of

how persuasion operates in the context of multi-modal media.

– We demonstrate the effectiveness of pre-training models by leveraging the textual

content accompanying the images as a self-supervised signal. By capitalizing on

the wealth of information present in the text, we show that pre-trained models can

capture substantial knowledge related to persuasion.

• To detect persuasive atypicality [35]:

– We propose a novel approach that leverages the implicit knowledge of contextual

compatibility to detect persuasive atypicality, by reconstructing masked regions

within the images as a self-supervised objective. Additionally, we explore the feasi-

bility of modeling semantic compatibility as an alternative approach to detect atypi-

cality. By comparing the performance of both approaches, we gain valuable insights

into the effectiveness of different modeling strategies.
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– We address the challenge of interpreting object-object spatial interactions within

the images. To overcome this challenge, we introduce a new method for computing

attention weights between key-query regions within our transformer-based models.

This method enables a more precise modeling of the spatial relationships between

objects, enhancing the accuracy of detecting persuasive atypicality.

– We conduct extensive experiments to evaluate the effectiveness of our proposed ap-

proaches. Furthermore, we analyze and interpret the results to gain insights into

the impact of different types of persuasive atypicality on the overall detection per-

formance.

• To interpret symbolism [36]:

– We develop an evaluative framework called SymbA, which serves as a comprehensive

resource for comparing and assessing the ability of different models, particularly

language models, in decoding symbolism. We curate two sets of evaluative data

that emphasize different aspects of symbolic relationships. Furthermore, we provide

fine-grained categorizations of the evaluative data, enabling a deeper understanding

of the characteristics of symbolic relationships that pose the greatest challenges to

the models.

– We address the issue of bias present in language models, which often favor commonly

signified concepts. We propose quantification methods to measure the extent of bias

in language models and develop techniques to mitigate this bias. Through empirical

experiments, we demonstrate the effectiveness of our debiasing method, showcasing

improvements in the performance of advanced language models.

– We explore the capabilities of a pre-trained multi-modality model in capturing sig-

nificant knowledge of symbolism. By leveraging the power of this state-of-the-art

model, which has been trained on large-scale data encompassing both images and

text, we demonstrate its effectiveness in interpreting symbolism employed in persua-

sive images.

– We conduct a performance comparison of pre-trained models for decoding symbolism

in advertising images, distinguishing between atypical and non-atypical instances.
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Overall, our contributions in the field of modeling visual rhetorics provide novel method-

ologies, resources, tools, frameworks, and insights for researchers and practitioners. The

findings and methodologies presented in this research have the potential to have a profound

impact on various domains, including advertising, marketing, social media analysis, and

content creation. By effectively detecting and interpreting the persuasive elements in visual

media, computational models can assist advertisers and marketers in creating more impact-

ful and persuasive campaigns. Moreover, understanding the rhetorical devices employed in

persuasive images can help researchers and analysts gain deeper insights into the strate-

gies used to influence public opinion, shape narratives, and convey messages through visual

media. The development of accurate and robust computational models for visual rhetorics

also opens up possibilities for enhancing content recommendation systems, sentiment anal-

ysis, and understanding the societal impact of persuasive media. Ultimately, this research

aims to bridge the gap between human cognition and computational analysis, leading to

advancements in our understanding of visual communication and paving the way for more

sophisticated and intelligent systems in the domain of persuasive media analysis.
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2.0 Background

In this chapter, we first present an overview of persuasion and rhetorics. We then review

the computational background for processing, analyzing, and interpreting persuasion and

rhetorics. Lastly, we review the literature of self-supervised learning that we use as the main

technical method in this dissertation.

2.1 Overview of Persuasions and Rhetorics

Persuasion is a fundamental aspect of human communication that aims to achieve two

major goals: influencing beliefs [8] and shaping behaviors [85]. Throughout history, individ-

uals and organizations have employed various strategies to persuade others, including the

use of argumentation structures and rhetorical devices. This section provides an overview of

persuasion, its goals, and the role of rhetorical devices in shaping persuasive communication.

2.1.1 History and Evaluation of Rhetorical Theories

The study of persuasion can be traced back to ancient Greece, where scholars such as

Aristotle, Plato, and Cicero laid the foundation for rhetorical theory. In their works, they

identified key elements of effective persuasion, including ethos, pathos, and logos. Ethos

appeals to credibility and authority, pathos evokes emotions and empathy, while logos relies

on logical reasoning and evidence. These modes serve as the foundation for understanding

persuasive communication and are often intertwined with specific rhetorical devices.

Over time, scholars and thinkers from various disciplines have contributed to the devel-

opment of rhetorical theories. From the modern theories of Kenneth Burke, who emphasized

the importance of identification and shared values [14], to the cognitive approaches of Richard

E. Petty and John T. Cacioppo, who explored the cognitive processes underlying persuasion

[95, 94], these theories have expanded our understanding of how persuasive messages are
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constructed and received.

While traditional rhetorical theories primarily focused on spoken and written communi-

cation, the emergence of visual media has necessitated the exploration of visual rhetorics.

Visual rhetorics examine the persuasive power of images, symbols, and visual representa-

tions. Scholars in this field analyze how visual elements convey meaning, evoke emotions,

and influence audience perception. Understanding visual rhetorics is crucial in today’s visual-

centric society, where images play a significant role in advertising, social media, and political

communication.

2.1.2 Visual Rhetorics

Visual rhetoric refers to the use of visual elements, such as images, graphics, and design,

to communicate persuasive messages. Though the media modality is different, visual rhetoric

operates on the same principles of persuasion as verbal and written rhetoric, aiming to

influence beliefs and behaviors. Visual elements have the power to capture attention, evoke

emotions, and convey complex ideas in a concise and impactful manner, thus can also be

analyzed by Aristotle’s modes of persuasion. For instance, a tweet featuring a statistical

chart correlating gun fatalities with gun ownership to support the argument for stricter gun

control exemplifies the use of logos, appealing to logic and evidence. A classic example of

ethos in advertising is the ubiquitous “9 out of 10 dentists recommend this toothpaste” type

of commercial, which relies on the credibility and authority of dental professionals to establish

trust and persuade consumers. An impactful example of pathos in visual rhetoric can be

observed in the use of photos depicting a hungry Syrian child with innocent eyes that seem

to convey a heartfelt plea for help. Such images have the power to evoke strong emotions

and compassion in the audience, thereby influencing their receptiveness to more lenient

immigration policies for refugees. Occasionally, an image may incorporate multiple modes

of persuasion, blending ethos, pathos, and logos harmoniously to enhance the persuasive

impact. These three modes of persuasion are interconnected, working in synergy to bolster

the strength of an argument. Collectively, they are often referred to as the rhetorical triangle,

highlighting the interdependence and complementary nature of these persuasive strategies.
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Figure 2: Examples of atypical advertising images.

Rhetorical devices are powerful tools employed in persuasive communication to make

messages more impactful and memorable to the audience. These devices go beyond the

general modes of persuasion and provide specific techniques for achieving persuasive goals.

Rhetorical devices enable communicators to create compelling narratives, establish connec-

tions with the audience, and influence their attitudes and behaviors.

Creative and atypical portrayal of objects is a common and effective rhetoric for impress-

ing audience with a persuasive purpose in visual media [47]. For example, an advertisement

may use unusual imagery or storytelling techniques to stand out and leave a lasting impres-

sion on viewers. We show some atypical advertising images in Figure 2. Each of them employ

different modes of persuasion. By drawing a kiwi inside an apple, the commercial ad sends

the message that biting an apple is as easy as biting a kiwi with their dentures, by logos.

Since the kiwi-apple object rarely appears in real life and requires some reasoning for figuring

out the conveyed message, its persuasion influence on receivers lasts longer than directly say-

ing the message in sentences. Another rhetorical technique that commonly exists in visual

and multi-modal media is symbolism. Persuasive images are not merely analogues to visual
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Figure 3: Examples of advertising images employed rhetorical devices.

perception but symbolic artifacts constructed from the conventions of cultural knowledge as

well as common experiences [112]. The visual arguments are embodied in the visual arts.

For example, the metaphorical object transformations for creating atypicality usually involve

the use of symbolism. Taking examples in Figure 2, kiwi symbolizes soft, owl symbolizes

invigorating, racing car symbolizes high-performance and speed, gun symbolizes danger, etc.

Additionally, these two powerful rhetorical devices, atypicality and symbolism, are closely

intertwined with other rhetorical devices such as metaphor and hyperbole. Metaphor is a

figure of speech that involves making a comparison between two seemingly unrelated things,

highlighting their similarities to evoke a deeper understanding or create a vivid image. Like

symbols, metaphors also replace some intended target concept with different ones; however,

a metaphor emphasizes some common property it shares with the target concept. In con-

trast, a symbol serves as a stand-in for a more complex and abstract concept under certain

context; it may not share any obvious property with the abstract concept, and it may not

be associated with solely one concept [61]. Metaphor can be considered as a type of the gen-

eralized symbolism. Atypicality can be employed within a metaphor to create unexpected

or unconventional comparisons, adding layers of meaning and engaging the audience in a

thought-provoking manner. For instance, in Figure 3, the left image portrays an advertise-

ment for a sports brand that aims to convey the concept of speed and agility. The image
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features a running woman whose shadow intriguingly resembles the distinctive shape of a

cheetah. This atypical depiction of a human’s shadow resembling a cheetah metaphorically

suggests that the woman, when wearing the brand’s sportive equipment, runs as fast as a

cheetah. By using an unexpected combination of elements, the image captures the viewer’s

attention and prompts them to associate the desirable attributes of the cheetah with the

sports brand. Hyperbole, on the other hand, is a rhetorical device that involves exagger-

ated statements or claims not meant to be taken literally. It is frequently used in atypical

images. Taking the example of the right image in Figure 3, an advertisement for a GPS

service depicts a person with an extraordinarily complex and atypical arm pointing towards

a direction. This hyperbolic representation exaggerates the complexity to an extreme ex-

tent, emphasizing the idea that finding the road without GPS is exceptionally challenging.

This hyperbolic representation creates a visually striking and attention-grabbing image that

communicates the message of the product’s ability to provide an extraordinary and powerful

experience. Furthermore, symbolism can be effectively incorporated within hyperbole to en-

hance its impact. By assigning symbolic meaning to certain elements or exaggerating their

qualities, hyperbolic statements become more visually and emotionally compelling.

Understanding and analyzing rhetorical devices in persuasive communication is essen-

tial for several reasons. Firstly, it provides insights into the mechanisms behind successful

persuasion, allowing communicators to craft more persuasive messages. Secondly, studying

rhetorical devices contributes to the fields of communication studies, linguistics, and psy-

chology, enhancing our understanding of human behavior and decision-making processes.

Finally, in the era of digital media and information overload, the ability to recognize and

evaluate rhetorical devices becomes crucial for media literacy and critical thinking.

2.2 Computational Background for Modeling Rhetorics

Developing computational approaches for the automated processing, analysis, and in-

terpretation of persuasion holds immense potential across various domains. Firstly, such

approaches can be employed to assess the quality of arguments or persuasion strategies.
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For instance, they can be utilized to score and provide feedback on student essays, predict

the effectiveness of advertising designs before their public release, and guide strategies for

political campaigns. By analyzing the predicted persuasion modes in their campaign visu-

als, political teams can identify which persuasive techniques are resonating with their target

audience. For example, they can determine whether appeals to emotion (Pathos) or logical

reasoning (Logos) are more successful in conveying their messages. Armed with this knowl-

edge, campaigns can refine their communication tactics to maximize their persuasive impact

and engage voters more effectively. Secondly, modeling persuasion is crucial in the emerging

field of argument search, where the aim is to locate persuasive materials related to a specific

topic of interest from various modalities such as text, image, speech, and more. By utilizing

computational approach to decode symbolism and detect atypicality in persuasive imagery,

search engines and recommendation systems can identify relevant and persuasive materials

related to specific topics of interest. For researchers, marketers, and content creators, this

can streamline the process of finding compelling arguments and persuasive examples to sup-

port their work. Thirdly, in the realm of social media and online platforms, computational

models for visual rhetorics can play a critical role in detecting and flagging instances of

harmful and abusive persuasive content. By identifying atypicality and inferring symbolic

meanings in images and text, automated content moderation systems can proactively detect

harmful messages, such as racist or hateful content, before they spread widely. This can help

in creating a safer online environment and mitigating the negative impact of persuasive tech-

niques used for malicious purposes. In summary, the integration of computational models

for visual rhetoric can enhance decision-making processes, improve persuasive interactions,

and contribute to a more informed and responsible use of persuasion in different contexts.

2.2.1 Computational Approaches

In the field of argument mining and generation, several computational models have been

developed to analyze argumentative structures in free text. These models examine elements

such as conclusions, premises, inference schemes, and pro- and con-relations within textual

arguments [91, 16, 34, 120, 121, 63]. However, these approaches are limited to the text
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modality and cannot be extended to analyze persuasive multi-modal media. For example,

when analyzing persuasive messages conveyed through images, these models consider the

image as a whole without the ability to classify specific regions as premises, claims, or major

claims. To address this limitation, our focus is on rhetorical devices that are employed in both

textual and visual modalities, as it is essential to consider multiple modalities holistically

when modeling persuasion [87].

While there has been some work on visual rhetorics that utilize facial expressions, bodily

gestures, and scene context to analyze the communicative intents of images, these studies

have predominantly focused on images of politicians [54, 49]. Therefore, there is a pressing

need for computational investigations into a broader range of common rhetorical techniques

utilized in various persuasive multi-modal media across different applications.

Regarding the modeling of fundamental modes of persuasion, prior work has mainly

focused on language use. For instance, Higgins and Walker demonstrate how persuasion

modes contribute to the social effects of discourses in social/environment reports [46]. Recent

studies have examined the relationship between persuasiveness and persuasion modes in

scientific texts [96] or student essays [16]. Hidey et al. analyze the order of premises within

each mode present in online persuasive forums [45]. Some studies have concentrated on one

or two specific modes, such as mining ethos in political debates [31] or classifying rhetorical

questions into logos or pathos [38].

In terms of modeling specific rhetorical devices, there has been related work on recog-

nizing metaphoric usages in natural language processing [83, 66], computer vision [122], and

multi-modal media [117, 144]. Symbolism interpretation aligns with metaphor interpreta-

tion, aiming to establish connections between surface and target concepts [106, 116, 129, 56].

Previous approaches have explored connecting symbolism and metaphor through shared fea-

tures or logical sequences, but such connections may not exist for symbolism. One prior work

utilized an image encoder pretrained on ImageNet [27] to interpret symbolism in advertis-

ing images [50]. A subsequent study argued that standard image-based predictions alone

are insufficient for symbolism prediction and demonstrated that additional fine-tuning of a

language model for processing OCR-extracted text from ads can significantly improve per-

formance [109]. The detection of persuasive atypicality is also an under-explored problem.
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Existing work focuses on detecting atypical objects in real-world images, such as diverse

defects [10]or out-of-context objects and scenes [23, 108], without a specific rhetorical objec-

tive.

2.2.2 Persuasion Dataset

To support the development of computational models, it is essential to have access to

a persuasion dataset with labeled data. Numerous instances of people persuading others

can be found in various online activities, providing opportunities for data collection. Pre-

vious research has explored different aspects of persuasion, including influence on beliefs or

attitude change through online discussions [51] or stance change towards social topics [76].

Additionally, researchers have measured the strength of persuasion by examining human de-

cisions or actions, such as lending loans [142], donating to charity [137], purchasing products

[97], funding projects [79], and more. However, much of this work has primarily focused on

language and speech as the communication modality [19, 138, 18].

In recent years, the study of argumentative relations across multiple modalities has gar-

nered increasing attention. Researchers have made notable contributions in this area, such

as Alikhani et al., who annotated discourse relations between text and accompanying im-

agery in recipe instructions [3]. Kruk et al. investigated multi-modal document intent in

Instagram posts [59], while Zhang et al. examined the implicit relationship between per-

suasive images and text [145]. These studies exemplify the interest in understanding how

different modalities interact in persuasive communication. Within the domain of visual

rhetorics, several multimodal datasets have been released to facilitate research on metaphor

comprehension [144, 1]. These datasets provide valuable resources for studying the intricate

relationship between language and visual elements, contributing to a deeper understanding

of how metaphors are conveyed and interpreted in multimodal contexts. However, there is

currently a lack of existing multimodal datasets that specifically analyze the modes of per-

suasion employed in images. While there are datasets available for studying persuasion and

understanding metaphor in multimodal contexts, there is a gap when it comes to compre-

hensive analysis and annotation of the modes of persuasion in images. This highlights the
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need for further research and the development of new datasets that focus on exploring the

various modes of persuasion utilized in visual media.

Our thesis leverages an existing dataset released by Ye et al. [143], which is specifically

designed for interpreting visual rhetorical devices in advertising. Advertising images are

intentionally designed by experts to create associations in viewers’ minds, often containing

atypical and symbolically-associated objects. The Ads dataset comprises a substantial col-

lection of advertising images, around 65k, providing ample data instances for self-supervised

learning. A significant portion of these images are annotated with atypicality labels (around

4k) and symbolism annotations (around 14k). The atypicality annotation includes a binary

label indicating whether the image is atypical or not. If it is atypical, the image is further

classified into one or several atypicality categories, such as texture replacement, object with

missing part, deformed object, and more. This level of granularity in classification provides

valuable information for developing and analyzing computational models. Additionally, the

dataset provides a sentence that describes the atypical objects present in the image. These

detailed textual descriptions further enhance the dataset’s utility for studying and modeling

atypicality in visual media. The symbolism annotation involves drawing bounding boxes

on the image to indicate the location of symbolic objects, along with their corresponding

symbolic references. However, it is important to note that a textual description specifically

focusing on the symbolic part of the image is not provided in the dataset. This limitation

hampers the precise analysis of models’ performance in interpreting symbolism. Having a

textual modality to represent the symbolic images would be beneficial as it would enable the

isolation of models’ capability in interpreting symbolism from potential visual recognition

issues that could indirectly impact their performance. This distinction is crucial because a

model’s performance in decoding symbolism may be hindered by inadequate object recogni-

tion. By separating the analysis of symbolism from visual recognition challenges, researchers

can gain a clearer understanding of the models’ specific capabilities and limitations in in-

terpreting symbolism. Overall, this dataset serves as a valuable resource for investigating

persuasion in visual media, particularly within the context of advertising. The inclusion of

atypical and symbolically-associated objects in the dataset enables the further exploration

of the persuasive impact of these rhetorical devices.
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2.3 Self-supervised Learning

In recent years, self-supervised learning has emerged as a powerful paradigm in machine

learning and artificial intelligence. Traditionally, supervised learning has been the domi-

nant approach, where models are trained on labeled data provided by human annotators.

However, acquiring large amounts of labeled data can be expensive, time-consuming, and

sometimes infeasible due to the need for expert annotation. Self-supervised learning, on the

other hand, aims to alleviate the reliance on labeled data by leveraging the inherent struc-

ture and information present in unlabeled data. It involves designing tasks or objectives

that can be automatically generated from the data itself, allowing the model to learn use-

ful representations without explicit human supervision. By exploiting the vast amounts of

unlabeled data available, self-supervised learning enables the training of deep and complex

models with millions or even billions of parameters.

Researchers have focused on addressing two key questions in the development of efficient

self-supervised learning methods. First, they aim to define effective pre-training objectives

that facilitate the learning of generalized and robust knowledge that can be applied to differ-

ent tasks [28, 103, 21]. This involves designing tasks or objectives that encourage the model

to learn meaningful representations and capture important features of the data. Second, re-

searchers strive to develop models that can be efficiently trained using self-supervised data.

This includes the design of architectures and learning algorithms that are well-suited for

self-supervised learning settings. In this section, prior efforts related to these questions are

discussed, highlighting the progress made in self-supervised learning. Furthermore, several

notable pre-trained models that are utilized in this dissertation are introduced, showcasing

their contributions to the field.

2.3.1 Pre-training Objectives

The core idea behind self-supervised learning is to formulate a pretext task that requires

the model to make meaningful predictions or decisions about the data. These pretext tasks

are carefully designed to encourage the model to capture essential features, structures, or
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patterns in the data, which can then be transferred to downstream tasks of interest. The key

advantage of self-supervised learning is that it enables models to learn rich and generalized

representations from large-scale unlabeled data, which can be further fine-tuned on smaller

labeled datasets for specific tasks.

In natural language processing (NLP), self-supervised learning has been successfully ap-

plied to language models. One common approach is to train language models to predict the

next token in a sequence given the preceding context, known as auto-regressive language

models. This allows the model to capture the semantic and syntactic properties of language,

leading to impressive results in tasks such as text generation, sentiment analysis, and machine

translation. Models such as GPT (Generative Pre-trained Transformer) [102, 103, 13] fall

into this category. Another popular approach in NLP is the use of masked language models,

exemplified by models like BERT (Bidirectional Encoder Representations from Transform-

ers) and its variations [28, 73]. In this approach, a subset of tokens in the input is masked,

and the model is trained to predict the masked tokens based on the surrounding context.

This encourages the model to learn deeper semantic understanding and contextual depen-

dencies, enabling it to excel in tasks such as text classification, named entity recognition,

and question answering. Masked language models often outperform auto-regressive models

when fine-tuned on downstream NLP tasks. However, they may underperform in text gener-

ation tasks due to the masking scheme and the assumption of independence between masked

tokens [133].

Self-supervised learning has also made significant strides in computer vision. While su-

pervised learning with labeled image datasets, such as ImageNet [27], has been widely used

[135, 6], self-supervised learning offers an alternative by leveraging unlabeled image data.

Unlike language, the raw signal in vision is continuous and high-dimensional. This has led

to the exploration of various pretext tasks for learning visual representations, such as col-

orization [147, 62, 131], jigsaw puzzles [84, 29], inpainting [89], instance discrimination [140],

recovering the input from corruptions [130], and contrastive learning between transformed

images [42, 21]. By training models to solve these pretext tasks, they can learn powerful

visual representations that can be applied to tasks like image classification, object detection,

and semantic segmentation. Furthermore, self-supervised learning has expanded beyond in-
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dividual modalities and has ventured into the realm of multi-modal learning [75, 124, 11, 81].

Given that multi-modal signals are often complementary in real-world applications [7, 145, 4],

learning representations in a multi-modal setting has gained attention. By combining infor-

mation from different modalities such as text, images, and audio, models can learn richer

and more comprehensive representations. Common pre-training objectives in images and

text include matching image-text pairs [127, 100], matching images with text and predicted

object tags [70, 146], aligning words with visual regions [22] and more. This opens up new

possibilities for applications that involve multiple modalities, such as image captioning and

visual question answering.

While self-supervised learning has shown great promise in training deep neural networks

without extensive labeled data, its effectiveness in understanding the persuasive aspects of

visual rhetoric remains uncertain. Although pre-trained models have demonstrated their pro-

ficiency in comprehending the literal visual content of images for tasks such as classification

and captioning, it remains to be seen whether they have acquired knowledge related to the

persuasive elements employed in visual rhetoric. Understanding the communicative message

conveyed by visual rhetoric requires a deeper level of analysis and interpretation beyond the

recognition of objects and scenes. It involves capturing the intended symbolism, atypicality,

and other rhetorical devices used to influence the audience’s perception and behavior. To

address this gap, new approaches and methodologies need to be developed to enhance the

capability of self-supervised learning methods in capturing and interpreting these persuasive

elements.

2.3.2 Model Architectures

Self-supervised learning has gained significant attention in recent years as a powerful

technique for training deep neural networks without relying on large amounts of labeled data.

One of the key factors contributing to the success of self-supervised learning is the choice

of model architectures that can effectively learn meaningful representations from unlabeled

data. In this section, we discuss some of the popular model architectures used in self-

supervised learning.

21



In the early days of self-supervised learning, traditional model architectures such as Con-

volutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and basic Neural

Networks (NNs) played a crucial role in representing and learning from unlabeled data.

CNNs have been the go-to architecture for computer vision tasks for over a decade, excelling

at extracting visual features from raw pixel data [64, 43, 118]. By leveraging convolutional

layers and pooling operations, CNNs capture spatial hierarchies and local patterns in images,

enabling them to learn powerful representations. On the other hand, RNNs are commonly

used for processing sequential data such as language [92], allowing them to capture temporal

dependencies and context in sequential information. Word2Vec is another classic architec-

ture used for learning language representation [78]. This architecture involves a two-layer

neural network that operates on the context of words in a large corpus of text. It represents

words as dense vectors in a continuous space, capturing semantic relationships between words

based on their co-occurrence patterns in a large corpus of text. These model architectures

have laid the groundwork for self-supervised learning by demonstrating the ability to learn

meaningful representations from unlabeled data. While they still hold value and are applied

in certain scenarios, they have been complemented and surpassed in recent years by more

advanced models like transformers.

Transformers have emerged as a groundbreaking architecture in the field of self-supervised

learning and have revolutionized natural language processing and computer vision tasks.

Originally introduced by Vaswani et al. in the context of machine translation [128], trans-

formers have proven to be highly effective in capturing long-range dependencies and contex-

tual relationships in sequential data. The key innovation of transformers lies in their self-

attention mechanism (shown in Figure 4), which allows the model to weigh the importance

of different parts of the input sequence when making predictions. This attention mechanism

enables transformers to capture global dependencies and handle variable-length inputs more

efficiently compared to traditional recurrent neural networks (RNNs). Unlike RNNs, trans-

formers process the entire input sequence in parallel, eliminating the sequential nature of

computations and making them highly parallelizable and well-suited for distributed training

on GPUs. This makes transformers well-suited for large-scale training with vast amounts of

data.
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Figure 4: Scheme of Attention: (left) Scaled Dot-Product Attention; (right) Multi-Head

Attention consists of several attention layers running in parallel [128].

In addition to their success in natural language processing [103, 28], transformers have

also demonstrated remarkable performance in computer vision tasks [88, 15, 30] and vision-

language tasks [127, 75, 65, 123, 148, 98, 68, 22]. Vision transformers (ViTs) [30] apply the

transformer architecture to image data by dividing the input image into patches and treating

them as sequential data. By leveraging self-attention mechanisms, ViTs can capture spatial

dependencies and effectively model long-range interactions between image patches. This en-

ables them to capture high-level semantic information and achieve competitive performance

in image classification, object detection, and vision-language tasks.

However, it’s important to note that using a sequence of image patches may overlook

a crucial aspect of visual content interpretation: the spatial relationships between objects.

While transformers can capture contextual dependencies within the patches, the spatial ar-

rangement of objects plays a significant role in understanding visual scenes and the conveyed

message, especially in persuasive images that employ visual rhetorics. To address this lim-

itation, further research can be conducted to better model the spatial interactions between

objects in visual data. This involves designing novel architectures or modifications to ex-

isting transformer-based models that explicitly incorporate spatial information and capture
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the relationships between image patches.

2.3.3 CLIP and Large Language Models

We introduce several notable pre-trained models that are utilized in this dissertation.

CLIP (Contrastive Language-Image Pretraining) is a state-of-the-art model that has

gained significant attention in the field of vision and language understanding [100]. It has

demonstrated remarkable performance in various vision tasks such as optical character recog-

nition), action recognition in videos, geo-localization, and many types of fine-grained object

classification. Developed by Radford et al. at OpenAI, CLIP aims to bridge the gap between

visual and textual domains by jointly training a neural network on a large corpus of image

and text pairs.

At the core of CLIP is a contrastive learning framework, which enables the model to

learn meaningful representations directly from the data. Unlike traditional methods that

rely on explicit labels or annotations, CLIP learns by contrasting positive pairs (consisting

of an image and its associated text) against negative pairs (combinations of different images

and texts). The scheme is shown in Figure 5. By optimizing the model to differentiate

between positive and negative pairs, CLIP learns to associate semantically related visual

and textual elements. The training objective of CLIP is to maximize the agreement between

image and text representations, while minimizing the agreement between mismatched pairs.

This objective encourages the model to capture the underlying semantic similarities and cor-

respondences between images and their textual descriptions. By leveraging this contrastive

learning approach, CLIP can learn to understand the nuanced relationships and contextual

information present in visual and textual data, which is necessary for understanding visual

rhetorics.

In terms of model architecture, CLIP employs a transformer-based neural network, which

allows for the modeling of complex relationships and dependencies in both images and text.

In the case of images, CLIP divides them into patches and treats them as a sequence of data,

similar to how sentences are treated as sequences of tokens in natural language processing. By

leveraging this architecture, CLIP captures both local and global information within images,
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Figure 5: Scheme of contrastive pre-training for CLIP [100].

allowing it to understand objects, their spatial relationships, and the broader context in

which they appear. This capability is essential for analyzing visual rhetorics, as it enables the

model to discern the intended messages conveyed through symbolic objects, compositional

choices, and other persuasive visual techniques.

Furthermore, CLIP benefits from its large-scale pre-training on diverse and extensive

datasets, encompassing a wide range of visual concepts and linguistic patterns. This pre-

training process enables the model to acquire a broad understanding of visual and textual

semantics, including persuasive cues and rhetorical devices employed in images. This is

crucial for understanding visual rhetorics, as persuasive images often exhibit unique and

unconventional features that require the model to go beyond simple object recognition.

In summary, CLIP’s ability to capture complex relationships between images and text, its

generalization capabilities, and its robust visual representations make it an ideal candidate for

modeling visual rhetorics. Through its contrastive learning approach and transformer-based

architecture, CLIP is expected to excel in understanding and interpreting the persuasive

impact of visual elements, enabling deeper analysis of the communicative messages conveyed

through visual rhetorics.

LLM (Large Language Models), such as BERT, RoBERTa, and the GPT series, have
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revolutionized the field of natural language processing by learning vast amounts of knowl-

edge from large-scale pre-training. These models excel at capturing and encoding complex

linguistic patterns, semantic relationships, and contextual information, enabling them to

achieve impressive performance on various language understanding tasks.

BERT leverages masked language modeling to capture rich linguistic knowledge, includ-

ing syntactic structures, semantic meanings, and even subtle nuances [28]. RoBERTa (Ro-

bustly Optimized BERT Approach)[73] builds upon BERT’s success by further optimizing

its training methodology. RoBERTa removes certain training objectives used in BERT, such

as next sentence prediction, and focuses on longer pre-training times and larger amounts

of training data. By extensively tuning hyperparameters and scaling up the training pro-

cess, RoBERTa achieves improved generalization and outperforms BERT on various NLP

benchmarks. The additional training enables RoBERTa to learn more nuanced linguis-

tic knowledge, including domain-specific information and deeper semantic representations.

GPT models are trained to predict the next word in a sequence given the preceding context.

Through massive-scale pre-training on diverse and extensive text data, GPT models acquire

a comprehensive understanding of language. They learn grammar, syntax, semantics, and

even world knowledge, allowing them to generate coherent and contextually appropriate text.

GPT-3, with its massive size of 175 billion parameters, has demonstrated unprecedented lan-

guage generation capabilities, producing human-like text across various tasks and domains

[13]. Specifically, large language models have the potential to interpret rhetorical devices

due to their exposure to a wide range of texts from diverse sources. They are trained on vast

corpora of text, encompassing different genres, styles, and topics. This exposure exposes

them to a broad spectrum of rhetorical devices used in various contexts, such as literature,

news articles, scientific papers, online forums, and social media.

The knowledge learned by these large language models is encoded in their parameters

and can be transferred to a wide range of downstream tasks. A common approach is to fine-

tune the pre-trained models on specific tasks. Additionally, prompting methods have been

developed to elicit knowledge from language models by providing explicit textual prompts.

GPT-3, for example, has demonstrated the ability to solve tasks when given a textual prompt

with only a few examples, sometimes even achieving competitive results compared to prior
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state-of-the-art fine-tuning approaches. These prompts typically involve masking certain in-

formation, such as filling in a missing word in a sentence (e.g., “Barack Obama was born in

[MASK]”). The model can generate the missing information based on its learned knowledge

and context [93, 44]. To improve the effectiveness of prompts, researchers have proposed

various methods, including mining, paraphrasing, or learning from a training corpus to gen-

erate better prompts [52, 26, 115]. The use of explicit textual prompts allows for a more

controlled and directed interaction with the language models, enabling targeted querying

and elicitation of specific knowledge. These approaches provide a means to extract valuable

information and insights from the models without extensive fine-tuning or explicit supervi-

sion. These techniques provide flexibility and efficiency in leveraging the knowledge learned

by LLMs, opening up avenues for diverse applications and analysis.

In summary, large language models have the potential to possess learned knowledge

for interpreting rhetorical devices due to their exposure to diverse textual data, contextual

understanding, self-supervised learning, and transfer learning capabilities. Their ability to

capture patterns, semantic relationships, and contextual cues equips them with the necessary

foundation to comprehend and analyze the persuasive strategies employed through rhetorical

devices. Leveraging this knowledge can aid in developing more sophisticated models and

facilitate better analysis and interpretation of rhetorics.
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3.0 Modeling Modes of Persuasion

3.1 Introduction

In this chapter, we focus on developing methods to automatically identify the mode of

persuasion used in multi-modal media aimed at changing people’s beliefs. While previous

research has primarily focused on analyzing argumentation in language-based texts such as

scientific papers and student essays [96, 16], there is a significant opportunity to leverage

other modalities, such as images, which can potentially enhance the persuasiveness of the

argument. By investigating the applicability of the three modes of persuasion to analyze

persuasive images, we aim to gain insights into the rhetorical strategies employed in multi-

modal media.

To bridge this gap, we address the lack of exploration in image persuasiveness by de-

veloping computational models that predict the modes of persuasion employed in images.

However, the absence of an annotated dataset poses a challenge, as discussed in Section 2.2.2.

To overcome this, we create a new multi-modal dataset called ImageArg, specifically designed

to annotate image persuasiveness in tweets, thereby extending the domain of persuasiveness

mining into the multi-modal realm. In Section 3.2, we discuss the challenges encountered

during the creation of this corpus, including the design choices made and the methodology

employed to ensure its validity.

The analysis conducted using ImageArg reveals a strong correlation between human

political ideology (i.e., stance towards a social topic) and the argumentative features present

in their posted tweets. This finding emphasizes the need to address political ideology bias

that may inadvertently be present in the annotated dataset. Unbalanced distributions of

tweets favoring or opposing a stance can introduce bias into computational models trained

on skewed data. Therefore, we explore the interactions between political ideology bias and

topic-relevance classifiers, and propose a method to mitigate this bias in Section 3.3.

A key challenge encountered in our research lies in the representation of images, which

proves to be a bottleneck in predicting the modes of persuasion. However, we make an impor-
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tant discovery that the accompanying text in tweets contains valuable clues that significantly

contribute to understanding the persuasion strategies employed in the images. Building upon

this insight, we train a self-supervised model on a large-scale dataset of multi-modal tweets,

utilizing the tweet text as a form of supervision signal (hypothesis H1). By leveraging the

text as guidance during the self-supervised learning process, we enhance our model’s under-

standing of the persuasion modes manifested within the images, as discussed in Section 3.4.

3.2 Dataset Collection

We collect a multi-modal dataset, ImageArg, consisting of annotations of image persua-

siveness in tweets. We choose tweets as the data source because they frequently contain both

image and text and the image in a tweet greatly increases its global influence to audience [71].

Moreover, we retrieve tweets that are relevant to a social topic, e.g. gun control, because

this kind of tweets usually try to convince an audience to support their social stance, thus

are persuasive. However, there exist several challenges for annotating the dataset. First, the

existing annotation schemes were previously developed to capture the persuasive strength of

text arguments in essays [31, 132, 16]. We need to adjust and extend them in order to cor-

rectly analyze the persuasion of images in a multi-modal setting. Second, a novel taxonomy

is required to annotate image content that explicitly identifies image functionalities in the

argumentative aspect. Last but most importantly, prior work reveals that it is difficult to

obtain a high agreement for annotating the modes of persuasion used in the text, especially

for annotating pathos [38, 45]. It is expected to be even harder with images because com-

munication in visual modality has a less capacity for effective reception of information than

in textual modality [17]. We need to explore different annotation strategies for obtaining a

high-quality annotation. We finally evaluate the inter-rater agreement on the annotations

for demonstrating the feasibility to model the visual rhetoric with the modes of persuasion

established by Aristotle.1

1The construction of this dataset was a collaborative work with Yue Dai and Zhexiong Liu [74]. I led
the design of the annotation instruction and strategies. In addition, I was fully responsible for selecting
qualified annotators through Amazon Mechanical Turk, creating annotation interface, launching annotation
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3.2.1 Annotation Schemes

The annotations are based on a persuasion taxonomy we developed to explore image

functionalities and the means of persuasion. We build a corpus of Twitter posts on a social

topic (e.g., gun control), then annotate each multi-modal post along four dimensions. The

annotation pipeline is shown in Figure 6. First, we determine (1) the stance of the entire

tweet because it contributes to extensive argumentation mining pipelines and potentially

plays an essential role in the persuasiveness-related tasks [77]. Specifically, we assume one

tweet holds a consistent stance in its text and image since the author would intend to deliver

a consistent argument. For those tweets annotated with a positive or negative stance, we

also annotate (2) the persuasiveness score of the tweet image and (3) the image content

type. The content types identify image roles in the argumentative aspect by describing

what kind of evidence is contained in the image for enhancing the persuasiveness of the

whole tweet (e.g., supportive data, authorized photos, etc.). Rather than looking at the

image alone, the visual evidence is annotated by considering the argumentative relationship

between the image and text. For those images annotated as persuasive, we identify its (4)

persuasion mode, which indicates how the images persuade audiences (e.g., by providing

strong logic, touching audiences emotionally, etc.). The annotation scheme for each task is

presented as following.

Stance. We use existing methods [80] to verify if the image holds a clear stance on a

given topic. Specifically, given a tweet (including both text and images), we ask annotators

to select among four stances: positive (i.e., support), negative (i.e., oppose), neutral, or

irrelevant to the topic.

Image Persuasiveness. We adopt five levels of persuasiveness scores proposed in a

prior work studying textual argumentation [16]:

• (L0) No persuasiveness: the annotated target fails to convince the audience at all.

• (L1) Medium persuasiveness: the annotated target partially convinces the audience.

• (L2) Persuasive: the annotated target is convincing to the audience.

• (L3) High persuasiveness: the annotated target is very convincing to the audience.

tasks, processing annotation results, computing inter-rater agreements, and conducting data analysis.
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Figure 6: The overview of our annotation pipeline. Annotators start by annotating the

argumentative stance of input tweets. Afterwards, tweets with either positive or negative

stances are annotated for image content types and persuasiveness score improvement. The

persuasion mode is further annotated if persuasiveness score improvement exceeds a given

threshold γ (γ = 0.5 in this work).

• (L4) Extreme persuasiveness: the annotated target is compelling to the audience.

Instead of asking annotators how persuasive the image is, we propose to compute it

by calculating the persuasiveness gain brought by the image. We first ask annotators to

choose one of 5 persuasiveness levels based on pure text. Next, we ask annotators to give

a second choice based on both text and image. Then we compute the difference between

these two scores (image-text score minus text-only score) for measuring the persuasiveness

of the image2. For avoiding personal bias, the final score is computed as an average of three

annotations. To interpret image persuasiveness, we use a threshold γ (γ = 0.5) that encodes

the score into a binary label (i.e., persuasive or not).

Image Content. We leverage the definition of argumentative roles of evidence in news to

categorize image content: Statistics, Testimony, and Anecdote [2]. However, these categories

developed for text fail to capture all the image contents that frequently appear in tweets, for

example, photographs. To this end, we propose three visual-dominant categories, Slogan,

Scene photo and Symbolic photo. Six categories are defined for representing the content of

images (examples are shown in Figure 7):

• Statistics: Images provide evidence by stating or quoting quantitative information, such

2We set the image persuasiveness score to 0 in the case of negative.
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Figure 7: Examples of image content types in tweets: statistics, testimony, anecdote, slogan,

scene photo, and symbolic.

as a chart or diagram showing data.

• Testimony: Images quote statements or conclusions from an authority, such as a piece

of articles or claims from an official document.

• Anecdote: Images provide information based on the author’s personal experience, such

as facts/personal stories.

• Slogan: Images embed pieces of advertising/slogan text.

• Scene photo: Images show a real scene or photograph.

• Symbolic photo: Images show a symbol/art that expresses the author’s viewpoints in

a non-literal way.

Image Persuasion Modes. We follow the three fundamental modes of persuasion

established by Aristotle [25]:

• Logos: The image appeals to logic and reasoning, which persuades audiences with rea-

soning from a fact/statistics/study case/scientific evidence. The Logos image in Figure 8
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Figure 8: Examples of persuasion modes in tweet: logos, pathos, and ethos.

provides a chart that shows the high gun deaths and the high gun ownership by the

population of the US, which implies a logical relationship between gun death and gun

ownership.

• Pathos: The image appeals to emotion, which evokes emotional impact that leads to

higher persuasiveness. The Pathos image in Figure 8 provides art that shows the grieved

“Uncle Sam” saying “no” with helplessness, which excites the desire to control guns.

• Ethos: The image appeals to ethics, which enhances credibility and trustworthiness.

The Ethos image in Figure 8 takes a screenshot of the source of a report from New York

Times, which increases credibility.

3.2.2 Annotation Strategies

Since we are the first to annotate the persuasiveness of tweet image in a multi-modal

setting, there is no annotation material, such as coding manual, that we can directly use.

Therefore, we develop annotation strategies based on several rounds of pilot annotations.

Since crowding-sourcing annotators3 have a wide range of educational background, we employ

3Our annotations were conducted on the platform of Amazon Mechanical Turk.
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Table 1: Inter-agreement for the first pilot annotation on gun control topic.

Task Alpha Count

Stance 64.5 87
Image content type 71.1 38
Image persuasion mode 19.9 38

Table 2: Inter-agreement after adjusting the annotation strategies on gun control topic.

Task Alpha Count

Stance 76.1 100
Image content type 64.6 72
Image persuasion mode - Logos 55.3 56
Image persuasion mode - Pathos 51.0 56
Image persuasion mode - Ethos 57.8 56

qualified workers who passed a well-designed qualitative test that evaluates the workers’

understanding on our annotation manual.

We start with annotating tweets about gun control. In the first-round, we ask annotators

to make a single choice from multiple candidates for each annotation task. Table 1 shows

the Krippendorff’s alpha score [57] for measuring the inter-rater agreement4. Based on the

standard interpretation of alpha scores [60, 40], we conclude that annotations on stance

and content type have a substantial inter-agreement; but the inter-agreement for annotating

persuasion mode is slight. The results reveal that extending the logos-ethos-pathos scheme

to the image modality has some difficulties. We observe that more than one persuasion

mode may appear in a tweet image, or none of the persuasion mode may be applicable. To

solve this problem, we modify the coding manual for annotating persuasion modes. We use

three-label annotation that asks to choose yes/no for each persuasion mode, instead of using

three-class annotation that asks to choose one persuasion mode from all the three. Moreover,

the annotators are requested to justify their choice by giving a brief reasoning comment. As

shown in Table 2, the inter-rater agreement on persuasion modes is greatly improved, from

4Note that the availability of annotation questions is based on the answer to the prior questions (Figure 6)
therefore each task has different sample numbers.
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Figure 9: Examples of disagreement between annotators: annotator A annotates the above

images as Pathos because these examples express emotions, while annotator B disagrees and

marks as not Pathos.

19.9 to above 50. All the three modes achieve a moderate inter-rater agreement, while

Pathos has the lowest agreement. This observation is consistent with previous work about

annotating text [38, 45]. It is likely because annotators have different emotional reasoning

(i.e., some annotators are easily evoked by images while others are not). As the examples

shown in Figure 9, one annotator recognized strong emotional impact (e.g., togetherness,

sadness, anxiety, etc.), while the other not.

We further perform pilot annotations for the topics of immigration and abortion, with the

best annotation strategies that we developed for annotating gun control. We randomly choose

100 or 200 tweets respectively on immigration or abortion for the pilot study, and adjust

the coding manual for annotating the stance by providing some topic-specific examples.

The inter-rater agreement for both topics is shown in Table 3. We observe high inter-rater

agreements on the stance annotation, which demonstrates the utility of our topic-specific

coding manual. The agreement on the content type is generally good, however, abortion has

relatively lower agreement than the other two topics. One main reason is that authors prefer

using photos to support their arguments. Such photos lead to ambiguity between scene

photos and symbolic photos. Moreover, we notice that the agreements on the persuasion

modes are not satisfying. For immigration, Ethos has the lowest agreement. One explanation

is that there are few authentic resources that provide credible and trustworthy arguments

on this topic. For abortion, the agreement on all three persuasion modes are relatively
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Table 3: Inter-agreement rate of each annotation task on the topic immigration and abortion.

Task
Immigration Abortion

Alpha Count Alpha Count

Stance 61.5 100 68.7 200
Content type 65.8 53 56.6 76
Logos 56.7 23 25.0 48
Pathos 46.0 23 37.5 48
Ethos 30.8 23 28.2 48

low, in particular, Logos surprisingly gets the lowest agreement. These studies indicate

that the inter-rater agreement on annotating persuasion mode is topic-dependent, and the

relationship between topics and persuasion modes needs further investigation. We thus

collect annotations only on the gun control topic, and leave the other two topics for future

work. The annotation instruction can be found in Appendix A.

3.2.3 Corpus Construction and Analysis

We collect raw tweets containing both image and text through TwitterAPI5. For ensuring

that our retrieved tweets are relevant to a specific topic, we use the expert-selected keywords

provided in a previous work [37]. We then retain tweets whose texts tend to be argumen-

tative, with an argument confidence score larger than 0.9 by using ArgumentText Classify

API6. This filtering process ensures our annotation data has high argumentation-confidence.

We annotate 1003 samples that hold a supporting or opposing stance towards gun con-

trol. The distribution of each annotation task is reported in Figure 10: (a) the distribution

of stance is almost balanced; (b) surprisingly, only a quarter of images are persuasive7; (c)

the most frequent content types are vision-dominant (i.e. Symbolic photo and Scene photo);

text-dominant content (i.e. Anecdote, Slogan, Testimony) also occupy a significant propor-

5https://developer.twitter.com/en/docs/twitter-api
6https://api.argumentsearch.com
7The threshold γ is set to 0.5 in our annotations since the persuasiveness score is an average of three

annotators, thus γ greater than 0.5 suggests that there is at least two annotators annotating images per-
suasiveness with L1 or higher (≥ 1) scores or at least one annotator annotating L2 or higher scores (≥
2).
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Figure 10: Distributions of (a) stance, (b) image persuasiveness, (c) image content type, and

(d) image persuasion mode in our corpus.

Figure 11: Distributions of (a) image persuasiveness, (b) content type and (c) persuasion

mode regarding stances (support in blue and oppose in red) in our corpus.

Figure 12: Distributions of image content type in different persuasion mode (a) Logos, (b)

Pathos, and (c) Ethos in our corpus.
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tion; in contract, the data-dominant content, Statistics, is the least frequent type;8 (d) nearly

half of the tweet images persuade an audience by the emotional appeal while Ethos has the

least of usage.

Next, we show how the stance relates to the image persuasiveness, content type, and

persuasion mode in Figure 11: (a) supporting and opposing stance are almost evenly dis-

tributed in persuasive or non-persuasive images, which suggests that the persuasiveness of

images is independent with the stance of arguments; (b) tweets holding an opposing stance

uses significantly more images in the type of Symbolic photos, Anecdote, and Testimony;

while tweets holding a supporting stance prefers attaching an image in the content of Scene

photos or Statistics; (c) images supporting gun control applies more Logos and Pathos but

less Ethos as their rhetorical strategy than those in the opposing stance.

To further study the relevance between image content type and persuasion mode, we

report their correlated distributions in Figure 12: (a) most Logos images contain Statistics

and Anecdote evidence, which meets the intuition that the logical reasoning can usually

be clarified by introducing anecdotes or justified by providing supportive statistics; (b) the

majority of Pathos images are Scene and Symbolic photos, which is as expected since images

generally promote emotional impression by presenting visual information; (c) nearly half

of the Ethos images contain Testimony because statements from authorities can enhance

trustworthiness. These correlations imply mutual influences between different annotation

dimensions and raise the possibility to use them as clues for modeling persuasion modes.

3.3 Political Ideology Bias in Topic-relevant Tweets

We address the issue of political ideology bias in the collection of topic-relevant tweets.

We recognize the importance of constructing a dataset with a balanced distribution of po-

litical stances to ensure unbiased modeling of rhetorical strategies in persuasive media. In

our study on collecting ImageArg, we employ a specific methodology to ensure minimal

8The sample is annotated as “Other” if the annotator thinks none of the content types can accurately
describe the image. There is only 1.89% of Others, which demonstrates that our defined scheme for content
types has a good coverage.
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bias in the annotated data. We start by using a set of expert-selected keywords to retrieve

topic-relevant tweets. Subsequently, we incorporate human annotation as the initial task in

our pipeline, where we ask human annotators to annotate the stance of the tweets. This

approach allows us to closely monitor the political ideology distribution and ensure that the

annotated data exhibits minimal bias.

While human annotation guarantees minimal bias in our small-sized sample, it is not

feasible for large-scale studies. To handle larger datasets, automatic topic detection models

are typically used for extracting relevant text about the topic of interest from a vast data

source. However, these models may inadvertently introduce or propagate biases, leading

to skewed data collections and potentially incorrect conclusions. Therefore, it is crucial to

develop accurate and unbiased topic detection models to collect reliable data.

To understand the impact of biased keywords on downstream training and retrieval, we

conduct empirical analyses using three commonly used language models: GloVe [90], ELMo

[92], and BERT [28]. Our findings indicate that BERT, among the three models, is more

prone to propagating bias and experiencing a drop in retrieval quality when trained on biased

data.

To mitigate this bias, we propose an approach that adapts Domain-Adversarial Training

[33] for the three off-the-shelf models. That is, we want a classifier that is oblivious to an

instance’s political ideology, yet still performs the main task of judging the instance’s rele-

vance to the topic. Experimental results demonstrate that our approach effectively reduces

unintended bias without significantly sacrificing retrieval accuracy. In fact, the debiased

BERT model shows a slight improvement in retrieval accuracy.

Our work addresses the widely existing issue of political ideology bias in data collection

from social media. While this bias problem is not directly related to our main task of

modeling modes of persuasion, it is crucial to acknowledge and mitigate bias to ensure the

integrity and reliability of the collected data. Further details on this study can be found in

our publication [37].
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3.4 PersuaCLIP: Image Representation Learning from Tweet Text

Supervision

Pre-trained image encoders have become instrumental in developing computational mod-

els for various computer vision tasks, particularly when labeled data is limited. In the case

of predicting modes of persuasion with the ImageArg dataset, which consists of only 228

annotated samples, the scarcity of labeled data presents a significant challenge. To over-

come this challenge, we propose to leverage self-supervised learning techniques to develop

pre-trained models using a large amount of unlabeled data. The primary objective is to

enable the self-supervised model to acquire persuasion-related knowledge.

Traditional pre-training objectives for image representation learning involve pretext tasks

that focus on image transformations such as colorization, jigsaw puzzles, cropping, noise or

blur. While these pre-trained models excel in tasks like object detection or segmentation by

understanding the visual content in a scene, they are not specifically designed to capture

the underlying intent or persuasive elements within the scene. For the task of predicting

persuasion modes, it is essential to go beyond mere object recognition. For instance, consider

the example of a statistical chart shown in Figure 13, which is a salient type of visual content

related to persuasion. Conventional image encoders, like ResNet pre-trained on ImageNet

[43], may not effectively capture such content.

However, we recognize that the accompanying text in tweets contains valuable clues

that can aid in predicting the persuasion modes. For instance, in Figure 13, phrases like

“a new study” may indicate the utilization of logical reasoning (mode of logos), while ref-

erences to the “UCD Firearm Violence Research Center” suggest an appeal to credibility

(mode of ethos). Based on this observation, we propose using the accompanying text as

the self-supervised signal for pre-training an image encoder capable of understanding visual

persuasion. By employing the text as a supervision signal during the self-supervised learning

process, we aim to train the model to acquire the necessary knowledge to predict the modes

of persuasion in tweet images. The objective is for the self-supervised model to learn the

relationship between visual and textual cues and develop a deeper understanding of per-

suasive visual content. This approach enables the model to capture the nuances and subtle
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Figure 13: Example of a tweet containing statistical charts: (a) the tweet text uses gun

violence to argue for gun control ; (b) the image makes the argument more persuasive by

providing supplementary statistics relating violence to gun ownership in California.

elements associated with persuasion, ultimately enhancing its ability to analyze and predict

the modes of persuasion utilized in persuasive images.

In developing a self-supervised model for predicting modes of persuasion, two key de-

sign components play a crucial role: model architecture and pre-training objectives. These

choices significantly impact the model’s ability to learn and capture the complex relation-

ships between visual and textual cues. In this section, we delve into our decisions regarding

these design components for our proposed model PersuaCLIP.

3.4.1 Architecture of PersuaCLIP

In our pursuit of an effective model architecture for capturing the interplay between

visual and textual cues in persuasive images, we have selected CLIP (Contrastive Language-

Image Pre-training) [100]. As discussed in Section 2.3.3, CLIP’s architecture is specifically

designed to bridge the semantic gap between images and their associated text. It leverages

a transformer-based model that encodes both images and text, enabling a unified under-

standing of the multi-modal input. Specifically, a GPT-style transformer [103] for the text

encoder and Vision Transformer (ViT) [30] for the image encoder.
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Furthermore, CLIP benefits from its large-scale pre-training on diverse and extensive

datasets, encompassing a wide range of visual concepts and linguistic patterns. This pre-

training process enables the model to learn the nuanced connections between visual and

textual elements, providing a strong foundation for modeling the persuasive aspects of vi-

sual rhetorics. By adopting CLIP as our model architecture, we leverage its state-of-the-art

performance, robust multi-modal representation learning, and its ability to capture the in-

tricate relationships between visual and textual elements. With CLIP as our foundation,

we aim to develop an effective computational model for understanding and predicting the

modes of persuasion utilized in persuasive images.

3.4.2 Pre-training Objectives of PersuaCLIP

To align our pre-training objectives with CLIP, we adopt the same approach of predicting

whether an image is paired with a text. The model learns a multi-modal embedding space

by jointly training an image encoder and text encoder to maximize the cosine similarity of

the image and text embeddings of the real pairs while minimizing the cosine similarity of

the embeddings of the incorrect pairings. By using CLIP’s pre-trained weights, we initialize

the image and text encoders, benefiting from the learned knowledge and representations.

For the pre-training corpus, we collect raw tweets containing both an image and text. To

increase the complexity of the matching task and avoid simplistic correlations, we focus on

tweets related to the same topic as ImageArg (i.e., gun control). By doing so, the model

cannot rely solely on topic similarity to predict the matching task, pushing it to learn more

intricate relationships between the paired image and text, specifically related to persuasion.9

To introduce a higher level of difficulty in the matching task, we propose masking certain

tokens in the tweet text. This masking helps prevent the model from simply selecting the

correct label without truly understanding the key relationship between the image and text

pair. Our aim is to ensure that the model grasps the underlying connection that goes beyond

surface-level cues. For this purpose, we identify and mask what we refer to as “shortcut”

9In addition, we also implement a filtering process to remove certain elements from the tweet text that
could serve as potential shortcuts for the model to solve the pre-training tasks without truly learning the
target knowledge. This filtering process involves removing hashtags, usernames, URLs, and other similar
elements.
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tokens in the tweet text. These shortcut tokens should be unrelated to persuasion but still

informative for predicting whether the image and text are a match. To achieve this, we

leverage expert-selected keywords that were used to retrieve topic-relevant tweets. These

keywords define specific subtopics within the broader social topic, ensuring that they are

related to the content of the tweets rather than their persuasive nature. For instance, in

the context of the “gun control” topic, some example keywords include “gun free”, “second

amendment”, “progun”, “PrayForOrlando”, and others. By masking these shortcut tokens,

we prevent the model from “cheating” by relying solely on the presence of a keyword in

the text to match it with the image. Instead, the model is encouraged to focus on the

deeper relationship between the image and text that is indicative of persuasion modes. To

maintain consistency between training and testing, we have made the decision not to mask

any regions in the image during the pre-training phase. Our ultimate goal is to utilize the

pre-trained image encoder for predicting the modes of persuasion employed in images. In

order to achieve this goal, it is crucial that the image encoder processes the complete image

during the training process.

However, the removal of shortcut tokens alone does not guarantee that the model will

focus solely on persuasion, as other relationships between the image and text may confound

the task. To address this, we decide to use only persuasive tweets for pre-training, further

emphasizing the importance of capturing persuasion-related knowledge.

By incorporating these modifications into our pre-training process, we aim to create a

more challenging and tailored learning environment for the model. This approach allows us

to adapt the learned knowledge from CLIP specifically to the social media context, enhancing

the model’s ability to understand and predict the modes of persuasion utilized in persuasive

images.

3.5 Experiments

We conduct a series of experiments to evaluate the performance of the proposed Persua-

CLIP model in predicting persuasion modes of tweet images. The experiments consist of
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two main steps: pre-training the PersuaCLIP model using a tweet corpus and evaluating its

performance on the ImageArg dataset.

3.5.1 Pre-training PersuaCLIP

To begin with, we pre-train the PersuaCLIP model using a variation of pre-training

objectives. To gather a suitable pre-training corpus, we utilize the TwitterAPI10 to collect

raw tweets that fulfill the following criteria: each tweet contains both an image and text,

and the content is related to the topic of gun control. The collection period spans a 10-year

timeframe, from 03/30/2013 to 03/08/2023. In total, we obtain 66,126 multi-modal tweets

meeting these requirements. To prepare the data for pre-training, we split the dataset into

a training set of 60,000 tweets and a validation set of 6,126 tweets. This division allows us

to effectively train and evaluate the matching performance of the PersuaCLIP model.

In order to mask the shortcut tokens during pre-training, we use the same expert-selected

keywords as mentioned in Section 3.2. Additionally, we construct a set of persuasive tweets

by employing the ArgumentText Classify API11. This API allows us to compute the argu-

mentative score of the tweet text, and we retain only those tweets with a score above 0.5. A

score above 0.5 indicates a higher likelihood of containing substantial argumentative content,

allowing us to prioritize more convincing and influential tweets in pre-training data. How-

ever, it is important to acknowledge that the classifier model may not be entirely accurate

in all cases and can make errors in their predictions. Since the purpose of pre-training is to

expose the model to a wide variety of examples to learn general language representations,

the specific threshold used for data selection is less critical. As a result, the initial training

set of 60,000 tweets is reduced to 9,240 after applying this filtering criterion. The validation

set consists of 930 tweets.

For the pre-training process, we utilize an existing toolkit12 with specific configurations.

The model is trained with a batch size of 64, a learning rate of 1e-6, and a total of 3 epochs.

Throughout the pre-training phase, we continuously evaluate the performance of the model

10https://developer.twitter.com/en/docs/twitter-api
11https://api.argumentsearch.com
12https://github.com/mlfoundations/open clip
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Table 4: Image-text matching performance on tweet corpus.

Model
Image to Text Text to Image
R@1 R@5 R@10 R@1 R@5 R@10

CLIP 23.93 40.09 47.27 19.26 33.01 39.47
PersuaCLIP 30.49 49.84 58.19 28.44 48.25 56.69

on the validation set. The results obtained demonstrate the superiority of our pre-trained

PersuaCLIP model in matching tweet images with their corresponding text compared to the

CLIP model, as shown in Table 4. These results serve as evidence that pre-training on a

tweet corpus significantly enhances the model’s understanding of social media content.

3.5.2 Evaluation of PersuaCLIP with ImageArg

To ensure the reliability of our results, we acknowledge the limited size of annotated

samples in the ImageArg dataset, which consists of only 228 samples. In order to mitigate the

impact of this small dataset, we employ a 5-fold cross-validation approach. This methodology

helps to reduce the potential bias and variability by randomly dividing the dataset into five

subsets. We use 60% of the data for training, 20% for validation, and the remaining 20% for

testing in each fold. By averaging the performance metrics across the five folds, we obtain a

more representative estimate of the model’s accuracy, precision, recall, F1 score, and AUC.

For preprocessing the tweet texts, we apply the same methods as described in our pub-

lished work [74], which involve removing Emoji, URLs, Mentions, and Hashtags. The images

are resized to a dimension of 224x224. As a baseline model, we utilize ResNet50, pre-trained

on ImageNet [43]. In contrast to our published work, where separate binary classifiers were

trained for each persuasion mode, in this dissertation, we employ a single classifier layer

with three prediction heads sharing weights, enabling multi-label prediction. This approach

allows the model to learn the interconnected relationship between the three modes of per-

suasion. Additionally, no visual augmentation techniques are used during training, and a

smaller learning rate is applied with an extended number of training epochs. As a result,

the experimental results of the ResNet baseline in this dissertation may differ from previous
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Table 5: Prediction performance on modes of persuasion with ImageArg (with its standard

error). The input of models is the tweet image.

Task Model Precision Recall F1 AUC

Logos

ResNet50 69.91 ± 16.58 54.11 ± 18.87 58.85 ± 14.05 80.57 ± 6.08

CLIP 77.24 ± 8.08 66.58 ± 9.35 70.80 ± 5.28 89.29 ± 4.64

PersuaCLIP 75.82 ± 8.03 62.02 ± 7.40 67.97 ± 6.64 88.77 ± 4.08

PersuaCLIP w/ masked tweets 76.88 ± 9.28 66.19 ± 8.51 70.65 ± 7.13 88.44 ± 3.60

PersuaCLIP w/ persuasive tweets 74.17 ± 8.97 59.72 ± 7.08 65.94 ± 6.98 88.66 ± 4.26

Pathos

ResNet50 73.32 ± 6.16 68.50 ± 10.28 70.32 ± 7.14 80.66 ± 9.31

CLIP 72.21 ± 11.11 75.60 ± 9.12 72.60 ± 4.89 82.64 ± 2.21

PersuaCLIP 71.83 ± 9.82 73.86 ± 6.62 71.94 ± 3.18 82.81 ± 2.30

PersuaCLIP w/ masked tweets 72.57 ± 10.43 75.71 ± 9.78 72.94 ± 5.28 82.59 ± 2.91

PersuaCLIP w/ persuasive tweets 73.69 ± 9.86 78.36 ± 7.24 75.05 ± 4.01 82.49 ± 2.48

Ethos

ResNet50 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 69.93 ± 9.83

CLIP 80.00 ± 40.00 15.78 ± 8.09 26.32 ± 13.39 83.47 ± 9.01

PersuaCLIP 80.00 ± 40.00 17.56 ± 13.12 27.81 ± 18.58 86.74 ± 6.28

PersuaCLIP w/ masked tweets 80.00 ± 40.00 17.56 ± 13.12 27.81 ± 18.58 87.11 ± 5.86

PersuaCLIP w/ persuasive tweets 40.00 ± 48.99 10.22 ± 15.50 15.43 ± 22.25 84.58 ± 6.40

reports.

Due to the limited size of the training data, we train a shallow classifier head on top of

the pre-trained image or text encoder of CLIP or PersuaCLIP while keeping the encoders

frozen. We conduct experiments using the image modality or the image-text multi-modality

as input. For the multi-modality input, we concatenate or average the image and text

embeddings before feeding them into the classifier layers. The networks are optimized using

the Adam optimizer with a learning rate of 1e-4 and a batch size of 16.

The experimental results with image input are presented in Table 5. We observe that

both CLIP and PersuaCLIP models outperform the ResNet baseline, affirming the effec-

tiveness of utilizing accompanying text as a self-supervised signal (hypothesis H1). The

improvements in predicting Logos or Ethos, as reflected in precision, recall, F1, and AUC,

are statistically significant, exceeding the standard error. On the other hand, for Pathos,

CLIP and PersuaCLIP models exhibit better recall while maintaining nearly the same pre-

cision. This suggests that the incorporation of accompanying text as a self-supervised signal

has a more substantial impact on recall, enabling the models to better identify instances
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Table 6: Prediction performance on modes of persuasion with ImageArg (with its standard

error). The input of models is both the image and the text. Comparing with models using

image input, the improvement of F1 or AUC is marked in green and the drop is marked in

red.

Task Model Precision Recall F1 AUC

Logos

CLIP 71.68 ± 10.62 61.80 ± 13.38 65.60 ± 9.76 89.01 ± 5.52

PersuaCLIP 78.51 ± 7.77 68.76 ± 9.33 73.04 ± 7.56 88.81 ± 5.88

PersuaCLIP w/ masked tweets 77.88 ± 8.84 69.81 ± 7.59 73.42 ± 7.03 89.07 ± 5.61

PersuaCLIP w/ persuasive tweets 80.69 ± 8.24 66.40 ± 10.03 72.48 ± 8.01 88.41 ± 6.34

Pathos

CLIP 73.93 ± 7.96 75.92 ± 8.91 74.23 ± 4.77 83.14 ± 3.73

PersuaCLIP 74.17 ± 7.69 75.34 ± 8.76 74.29 ± 5.81 84.17 ± 3.69

PersuaCLIP w/ masked tweets 74.40 ± 6.98 72.97 ± 10.10 73.07 ± 5.64 83.90 ± 3.92

PersuaCLIP w/ persuasive tweets 72.96 ± 7.93 72.97 ± 10.10 72.31 ± 5.97 84.47 ± 4.69

Ethos

CLIP 30.00± 40.00 6.22 ± 8.12 9.71 ± 12.20 83.68 ± 7.00

PersuaCLIP 20.00 ± 40.00 2.22 ± 4.44 4.00 ± 8.00 87.55 ± 4.76

PersuaCLIP w/ masked tweets 40.00 ± 48.99 6.22 ± 8.12 10.67 ± 13.73 87.50 ± 3.81

PersuaCLIP w/ persuasive tweets 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 85.30 ± 5.53

that belong to each persuasion mode.

In most cases, PersuaCLIP and its variations perform better than CLIP, with the excep-

tion of predicting Logos. Interestingly, masking tokens in tweets or incorporating persuasive

tweets improves the performance of PersuaCLIP in certain scenarios. For instance, Per-

suaCLIP with persuasive tweets shows promise in effectively capturing the Pathos mode.

However, the differences between the variations rarely significant. Notably, the Ethos mode

proves to be more challenging for all models, with limited performance across the board.

One contributing factor is the scarcity of annotated examples for Ethos compared to Logos

or Pathos, making the learning process more demanding.

We further conduct experiments using both image and text as input, and the results are

presented in Table 6. Comparing with Table 5, we observe that the multi-modal performance

generally outperforms the single-modality models. For example, PersuaCLIP’s F1 score

increases from 67.97 to 73.04 for logos prediction when incorporating both image and text.

This improvement can be attributed to the accompanying text’s ability to express the logic

and reasoning conveyed in the logos images. Comparing different models within Table 6, we
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find that PersuaCLIP consistently outperforms CLIP for both Logos and Pathos modes of

persuasion. However, Ethos remains a challenging mode for all models.

These findings highlight the effectiveness of PersuaCLIP and its variations in predicting

modes of persuasion using the ImageArg dataset, with multi-modal approaches yielding

improved performance compared to single-modality models. Nevertheless, Ethos prediction

remains a difficult task due to the limited availability of annotated examples.

3.5.3 Limitations

While our study provides valuable insights and advancements in predicting persuasion

modes of tweet images using the PersuaCLIP model, there are certain limitations that should

be acknowledged:

1) Limited annotated dataset: The size of the annotated dataset in ImageArg is relatively

small, consisting of only 228 samples. This limited dataset size may affect the generalizability

of the model’s performance and introduce a certain degree of uncertainty in the reported

results. It is important to acknowledge that the conclusions drawn from this dataset may

not fully capture the variability and complexity of persuasion modes in tweet images.

2) Imbalanced class distribution: The distribution of persuasion modes within the an-

notated dataset may be imbalanced, with certain modes having fewer instances compared

to others. This could potentially impact the model’s ability to accurately predict less-

represented persuasion modes. Care should be taken when interpreting the performance of

the model for specific modes with limited instances.

3) Generalizability to other topics: Our study specifically focuses on the topic of gun

control, and the PersuaCLIP model is trained and evaluated on tweets related to this topic.

The generalizability of the model’s performance to other social topics or domains may vary,

as the characteristics and patterns of persuasion modes could differ across different contexts.

Future research should explore the applicability of PersuaCLIP to a wider range of topics to

assess its robustness and adaptability.

These limitations provide valuable insights into the potential constraints and challenges

of our study. Future research efforts should address these limitations by considering larger
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and more diverse datasets and extending the evaluation to different social topics to enhance

the generalizability and applicability of PersuaCLIP in real-world scenarios.

3.6 Chapter Summary

In this chapter, our focus is on analyzing persuasive elements in multi-modal media, with

a specific emphasis on modes of persuasion in images. To facilitate this analysis, we have

created a new annotated dataset (i.e. ImageArg), and we have developed computational

models (i.e. PersuaCLIP) to predict the modes of persuasion present in the images. We

encountered several challenges during the collection and annotation of the dataset, includ-

ing the need to adjust existing annotation schemes and devise a novel taxonomy. Through

our efforts, we have discovered that the modes of persuasion can be effectively adapted for

the analysis of persuasive images, thus supporting our initial hypothesis (H1). By lever-

aging self-supervised training on a large-scale collection of multi-modal tweets and utilizing

the accompanying text as a form of supervision signal, we have enhanced our model’s un-

derstanding of the persuasion modes depicted within the images. These findings strongly

support our hypothesis H1 that the textual content accompanying the images serves as a

valuable self-supervised signal for classifying the persuasion modes. Despite the challenges

in representing images, our research contributes to the understanding of persuasive elements

in multi-modal media and provides insights into the rhetorical strategies employed.
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4.0 Detecting Atypicality

4.1 Introduction

In this chapter, we investigate detecting atypicality in persuasive images, called per-

suasive atypicality. Visually creative images, such as advertisements or public service an-

nouncements, may purposefully contain atypical portrayals of objects as a rhetorical way for

attracting viewers’ attention [47]. In the marketing and communications research community,

atypicality has gained attention because of its importance to understanding the persuasive-

ness and rhetoric of visual media [82, 72, 143]. However, detecting persuasive atypicality

is under-explored. Prior work focuses on detecting atypical objects in real-world images

[136], such as diverse defects [10] and out-of-context objects and scenes [23, 108]. Most

prior studies investigate atypicality that is (1) physically created in the real world, rather

than generated with computer graphics; and (2) predominantly accidental and certainly not

aiming to convey meaning or persuade an audience to take a certain action.

Detecting persuasive atypicality is more challenging for intelligent systems. First, atypi-

cality may involve metaphorical object transformations or intentionally surprising composed

objects (e.g. a kiwi inside an apple). Second, the atypicality transformation types are di-

verse and not limited to a specific set of categories, as they are in Wang et al.’s work [136],

in which atypical objects are all from PASCAL VOC [32]. Third, unpacking them may

require common-sense reasoning. For example, Figure 14a is an atypical advertisement for

a beverage. It is unusual for a pig to wear a bridal veil even though the pig and veil are

both normal objects. The ability to detect this type of purposefully atypical objects and

understand their roles in conveying the intent of the image is necessary for an intelligent

system to reason about information in persuasive media. In this work, we propose to model

implicit knowledge of contextual compatibility by self-supervised learning in order to detect

persuasive atypicality.

Our hypothesis H2 is that persuasive atypicality can be detected by checking the com-

patibility between each possibly atypical object and the rest of the image as context. For
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Figure 14: These images illustrate the importance of object interactions and their spatial

relative position for atypicality detection. (a) Pig wearing a bridal veil is atypical; (b) If a

handled brush instead of a veil is on top of the pig’s head, then the image is typical; (c) If

the veil’s location is different, the image may also be typical.

example, in Figure 14a, the pig is not compatible with its context (a bridal veil on its head),

and the veil is also not compatible with its context — on a pig’s head. We propose an

self-supervised approach by using reconstruction losses of masked regions. We expect that a

self-supervised model trained on masked region reconstruction could learn enough implicit

knowledge of contextual compatibility; this pre-trained model may then be used to detect

atypical images.

Additionally, we hypothesize that the interactions between objects and their spatial

relative positions play a key role in detecting atypicality (H2). If it were a handled brush

instead of a bridal veil over the pig’s head (Figure 14b), or if the veil were placed at another

location instead of on top of the pig’s head (Figure 14c), the image would no longer be

atypical. In order to better interpret object-object spatial interaction, we propose a new

method to compute the attention weights between key-query regions of our transformer-

based models.

Finally, we explore the possibility to only use the textual modality as input, i.e. object

classes in natural language, instead of the visual images when modeling the contextual com-
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patibility. In Figure 14a, knowing that there is a “pig” and a “bridal veil” and their spatial

relationship may be helpful to conclude that the image is atypical, instead of knowing exactly

what that pig or veil look like. The potential advantage of the vision-to-text translation is to

enforce the model focusing on the semantic meaning rather than the concrete visual content.

4.2 Our Approaches

We define atypicality detection as a binary classification task: for a given image, our

model aims to predict whether the image is atypical or not. We first present our unsupervised

atypicality detection system, which leverages masked region reconstruction as the pretext

task, and learns implicit knowledge of contextual compatibility from large-scale unlabeled

data. The reconstruction losses of masked regions are the clue for predicting atypicality

of a test image. We then introduce our Relative-Spatial Transformer which extends the

self-attention layer to explicitly model relative position information separately from visual

features.

4.2.1 Masked Region Reconstruction

Figure 15a shows an overview of our approach. An image I is represented by a set of

regions R = {(v1, p1), (v2, p2), ...(vn, pn)}, where vi could be region i’s visual feature vector,

pixel matrix, class labels, etc., and pi is the positional information. Our hypothesis is that

if an image is atypical, the objects appearing in it would not be compatible with each other,

thus it would be hard to reconstruct a masked region from image context. We first pre-

train a model to reconstruct a region from context using normal cases, then use it to detect

atypicality in new test images.

For the pre-training process, we take inspiration from masked language modeling (e.g.

BERT [28]) and cross-modality representation learning (e.g. LXMERT [127]). The model is

trained to reconstruct the masked regions given the remaining regions, on many general, nor-

mal images (which could potentially contain a small proportion of atypical cases). Different
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Figure 15: Model overview. (a) A set of regions extracted from the image are the input to

the Relative-Spatial Transformer Encoder. The model is trained for reconstructing the visual

feature of the masked region 2. (b) The architecture of Relative-Spatial Transformer Encoder.

The key difference from the standard Transformer Encoder is the attention computation. (c)

The mechanism for computing Relative-Spatial Self-Attention. This scheme shows the case

when region 1 is the query.

from BERT or LXMERT, which aims to learn a language or visual-language representation,

our model aims to learn the common co-occurrences and typical spatial relationship between

objects.

At test time, we mask each region in the image and compute the reconstruction loss. We

compute the average loss of all regions as a clue for predicting atypicality. We use average

rather than maximum loss because if an image is atypical, the masked region reconstruction

loss is high not only when an atypical object is masked, but also when its surrounding object

is masked since it is also hard to reconstruct a normal object from an atypical context.
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4.2.2 Relative-Spatial Transformer

Our model extends the transformer architecture [128]. Since the transformer is permutation-

invariant, a positional encoding is necessary to provide the order information of the sequential

input. For work which represents the image by a set of regions of interest, a common way

is to embed the bounding-box coordinates of each region and potentially the fraction of

image area covered [22, 127, 75]. Then the summation of the visual embedding and the posi-

tional embedding of the region is used as the input features for the transformer [15, 127, 30].

However, this technique has two weaknesses. First, when computing attention weights with

these input vectors, the visual feature and positional information share the same projection

weight without any distinction, therefore the model cannot flexibly adjust the importance

of region visual and position. Explicitly modeling relative position information separately

from other inputs (e.g. features) extends the self-attention mechanism to efficiently consider

spatial relationship between each query-key pair [114, 104, 9, 149]. Second, the positional

embedding represents the absolute coordinate of the region, however, it is the relative spatial

relationship between the masked and the context region which matters for detecting atyp-

icality (e.g. is the veil above or below the pig?). Experimentation in machine translation

[114] and music generation [48] suggested that using relative positional embeddings results

in significantly better accuracy. In order to overcome both weaknesses, we propose the

Relative-Spatial Transformer which (1) computes the visual-visual interaction and visual-

position interaction separately, and (2) is shift-invariant, similar to convolutions but unlike

a standard transformer.

Our approach follows previous ideas that define 2D relative position embeddings by

the relative distance between the position of the query and key pixel [104, 9], except that

our relative position embedding is at the region level. Besides, we can add overlapping

area information to the relative spatial feature between two regions, which a pixel-level

representation cannot. Kant et al. also consider relative spatial relationship between object

regions, but they transform spatial relationship into twelve categories and then apply the

adjacency matrices as an additional attention mask on their base model architecture [55].

Therefore, they only consider the relative spatial direction and ignore the concrete relative
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distance between pairwise objects, which loses essential information compared to our method.

Another weakness is their spatial relationship categories do not have full coverage, e.g. the

spatial relationship between two non-overlapped objects far from each other is ignored.

Our proposed Relative-Spatial Transformer (RST) follows the same architecture as the

transformer (T) [128] except for a new way for computing the multi-head self-attention

layer, as shown in Figure 15. The attention weight of the query region i and key region j is

computed as:

Arel
i,j = V T

i W T
q Wk,V Vj + V T

i W T
q Wk,PPj−i (1)

where Vi and Vj are visual features of regions i and j; Wq is the projection weight of the query

region visual feature; Wk,V and Wk,P are respectively the key region’s projection weights

of visual features and relative positions; and Pj−i is the relative position of region j with

respect to region i. The first term computes the interaction between the query and key visual

content; the second term computes the interaction between the query visual content and the

relative position of the key region. The summation of both terms shows the importance of

the key region to the query region. Then we compute the normalized attention weight αrel
i,j

as a softmax layer over Arel
i,j for all possible key regions. The last hidden layer of region i is

computed as:

hi =
∑
j

αrel
i,j WvVj (2)

where Wv projects the value region’s visual feature.

The reconstruction loss of the masked region i is computed as the mean squared error

(i.e. squared L2 norm) between the input visual feature vi and the last hidden layer hi of

the encoder:

Li = ||vi − hi||22 (3)

For computing the relative position of j with respect to i, we compute the x-axis and

y-axis distance of the top-left and bottom-right corners of the two bounding boxes:

Pj−i = [xl
j − xl

i, y
t
j − yti , x

r
j − xr

i , y
b
j − ybi ] (4)

55



where (xl
i, y

t
i) is the coordinate of the left-top corner of region i, (xr

i , y
b
i ) is the coordinate

of the right-bottom corner of region i; similarly with region j. We also explore adding

Intersection-over-Union area between region i and j as an additional relative positional

feature.

4.3 Experiments

In the subsequent experiments, we first evaluate our contextual compatibility modeling

approach on detecting persuasive atypicality in the Ads dataset [143]. Our experiments show

that Relative-Spatial Attention leads to an improvement across a diverse array of atypicality

sub-categories. Then, to understand the labelling requirement of the task, we compare

our unsupervised contextual compatibility approaches with supervised models trained on

the atypical/typical labels. Finally we compare visual versus semantic compatibility for

examining the possibility for representing the image context by text.

4.3.1 Setup

Data. We evaluate our method on the Ads dataset with their annotations on atypicality

[143]. Since each image is annotated by one or multiple annotators, we set a rule for deciding

the atypical/typical label if annotators do not agree with each other. In particular, we

consider an ad atypical if any annotator labels it as atypical. We use the ifany rule because

some atypical cases are subtle, subjective or need background knowledge, thus any annotator

providing the atypical label is cause to believe the image is not quite typical. Under this

labeling rule, there are 2,285 atypical ads and 1,643 typical ads. For the self-supervised

training, we use all ads except for those 3,928 with atypicality labels, resulting a set of around

60k images. For supervised training and for testing, we randomly split these atypical/typical

images using a 7:1:2 ratio for train:val:test sets.

In addition to the binary label saying whether the image is atypical or not, one or

several atypicality categories are annotated for each atypical image. The eight categories of
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Figure 16: Atypical object transformations in the Ads dataset [143].

atypicality are defined based on object transformations:

1) Texture Replacement 1 (TR1): Objects’ texture borrowed from another object, e.g. kiwi

inside apple, Figure 16a.

2) Texture Replacement 2 (TR2): Texture created by combining several small objects, e.g.

owl from beans, Figure 16b.

3) Object Inside Object (OIO), e.g. auto racing in car, Figure 16c.

4) Object with Missing Part (OMP), e.g. woman without mouth, Figure 16d.

5) Combination of Parts (CP): Object composed by parts from different objects, e.g. deer
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Table 7: The annotated description of atypical objects for each category [143].

Category Annotation Template

TR1 The object which has a new texture is [OBJ1] and the new texture is [OBJ2].
TR2 The object which has a new texture is [OBJ1] and the objects that have created the

texture are [OBJ2].
OIO Objects which are inside are [OBJ1] and the objects that are outside are [OBJ2].
OMP The objects which have missing parts are [OBJ1].
CP The objects that have created new object are [OBJ1].
SDO The objects that have been transformed are [OBJ1] and the transformations are

[OBJ2].
LDO The liquid which has been deformed is [OBJ1].
OR The object which is placed in the context of another object is [OBJ1] and the object

which is replaced by another object (expected object) [OBJ2].

head with hand horn, Figure 16e.

6) Solid Deformed Object (SDO), e.g. human arm bent, Figure 16f.

7) Liquid Deformed Object (LDO), e.g. beer as player, Figure 16g.

8) Object Replacement (OR): The whole object appearing in the context normally associated

with another, e.g. cigarettes placed in the context where bullets occur, Figure 16h.

In addition, if an image contains an atypical object but it cannot be assigned to any of

the aforementioned categories, then it is annotated as “Others”. Regarding the statistics on

atypical categories, Object Replacement is the most prevalent category, followed by Combi-

nation of Parts, while Object with Missing Part is the least frequent. The raw inter-rater

agreement for these categories ranges from 0.41 (for Texture Replacement 1) to 0.58 (for

Liquid Deformed Object), indicating reasonable agreement among the annotators [143].

Moreover, atypical images are also annotated with a textual description about the con-

crete atypical objects by a fixed template. For example, for the category of TR1, a descrip-

tion is collected in the form of “The object which has a new texture is [OBJ1] and the new

texture is [OBJ2]”. The templates for each category is shown in Table 7. These atypical-

ity categories and description of objects in atypical images enable us for conducting some

fine-grained analysis and providing more insights.

Input Representations. We use Faster R-CNN [105] pre-trained on Visual Genome
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[58] for extracting the visual features [6]. Faster R-CNN itself uses ResNet-101 [43] pre-

trained for classification on ImageNet [107]. We take the features of each detected object as

the visual representation of the corresponding region. We select a fixed number of objects

(36) by sorting detections by confidence score. Each region is represented by its bounding-

box coordinates and its 2048-dimensional region-of-interest (RoI) features.

Self-supervised Training and Testing. Following BERT [28], we mask 15% of regions

in each sequence at random during training. All masked regions are replaced by a trainable

vector with the same dimension as the RoI feature. The spatial information of the masked

region is given. We use a batch size of 128 and train for 20 epochs with learning rate of

1e-3. For testing, we mask one region with the learned vector at a time, then compute the

average reconstruction loss of all regions. The higher the loss, the more likely the image

is atypical. We compute the ROC-AUC score as the evaluation metric since it measures

model performance across all possible classification thresholds, by reporting the probability

the model ranks a random atypical example higher than a random typical one.

Model Size. We denote the number of layers (i.e., transformer blocks) as L, the hidden

size as H, and the number of self-attention heads as A. We primarily report results on the

model with L=1, H=768, A=81.

Baseline Models. We consider two baselines, Auto-encoder and One-Class SVM, since

they are standard methods for detecting abnormality and outliers [5, 67]. For the Auto-

encoder, we implement the same encoder as DCGAN’s discriminator and DCGAN’s gener-

ator as the decoder [101], using the hyperparameters in [101]. The loss is L2 error between

input and generated images. However, we make an interesting observation that atypicality

relates to image complexity in a potentially counter-intuitive way. We found strong correla-

tion between atypical images and relatively plain backgrounds, likely because ad designers

of atypical images want to make sure the image is plain enough for the audience to notice

the atypicality. Images with uniform background are more easily reconstructed while images

with plenty of objects are harder. Further, images with more pixels tend to contain more

information to be compressed and reconstructed. To ensure the auto-encoder captures atypi-

1There are no extra trainable parameters in RST compared to T. In Figure 15c, Wk,v is extra parameters
of size of dp∗dv (dimensions of position p & visual v vectors), but unlike RST, T requires trainable parameters
of size dp ∗ dv for projecting p to the same dimension as v for the summation.
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cality rather than complexity, we need to normalize for image complexity. We first prepossess

all images by resizing them to a fixed number of pixels (64*64). We also measure image com-

plexity (IC) as the average of horizontal and vertical gradient of pixels (IC = avg(I2x + I2y )

where Ix and Iy are respectively the horizontal and vertical gradient). Then we divide the

auto-encoder reconstruction loss by IC. In addition, to force the auto-encoder model to

learn an effective encoder and decoder, we limit the dimension of the middle hidden layer to

2048 which is much smaller than the input image dimension (3*64*64). For the One-Class

SVM model, we represent each image by the average of its 36 RoI feature vectors. Then we

fit the One-Class SVM model2 with default settings on the training images.

Evaluation Metrics. We report the micro-average for evaluation metrics to assess the

overall performance of our models across all instances in the dataset, treating each instance

equally, regardless of its category or class. The micro-average is particularly useful when

there is an imbalance in class distribution, as it gives equal importance to every instance

and provides a comprehensive measure of overall model performance.

4.3.2 Unsupervised Persuasive Atypicality Detection

The experimental results of our unsupervised contextual compatibility approaches are

shown in Table 8. To gain insights on the impact of different types of persuasive atypicality

on the detection result, we also report the model performance on the eight atypicality cat-

egories separately. Experimental results show that our approaches significantly outperform

baseline models overall (MICRO AVE) and for Combination of Parts (CP), Object Replace-

ment (OR), Others (with p-value < 0.05 by paired Student’s t-test). While Transformer

(T) is an existing architecture, and Relative-Spatial Transformer (RST) is our new design,

neither has been used for atypicality detection before. These results demonstrate that our

approach of checking for contextual compatibility is effective for detecting persuasive atypi-

cality. T outperforms the simpler baselines significantly, but RST achieves the best results

overall. By looking into each category, RST leads to an improvement across a diverse ar-

ray of atypicality types. Notably, RST demonstrates improvements over T that exceed the

2https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM
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Table 8: Performance of unsupervised models on the Ads dataset for each atypicality category

(TR1, TR2, OIO, etc.) and the micro average. We report the best AUC with its standard

error, and p-value with respect to the best performing model for others by paired Student’s

t-test. Our model (RST/T) is starred if significantly better than the best baseline (p < .05).

Methods TR1 TR2 OIO OMP CP

Auto-Encoder 54.67 p=.03 63.28 p=.41 38.79 p=.00 52.98 p=.09 57.78 p=.02

One-Class SVM 64.81 p=.50 68.27 p=.98 59.36 p=.17 65.81 ± 5.5 54.21 p=.00

Transformer (ours) 62.66 p=.09 60.72 p=.03 63.07 p=.16 42.52 p=.00 69.18* p=.54

RS Transformer (ours) 67.50 ± 3.8 68.37 ± 4.1 67.31 ± 5.4 55.18 p=.03 71.26* ± 3.7

Methods SDO LDO OR Others MICRO AVE

Auto-Encoder 56.62 p=.05 56.05 p=.23 48.57 p=.00 50.99 p=.01 52.52 p=.00

One-Class SVM 65.12 p=.40 54.43 p=.07 56.31 p=.04 54.23 p=.04 58.82 p=.02

Transformer (ours) 63.71 p=.22 61.63 p=.53 64.05* ± 2.9 63.68* ± 3.4 62.86 p=.36

RS Transformer (ours) 68.67 ± 4.8 63.99 ± 4.4 61.84 p=.37 59.68 p=.14 64.32* ± 2.0

standard error (4.84 and 7.65, respectively) for two types of Texture Replacement (TR1,

TR2) and by more than 4 points for Object Inside Object (OIO). The atypicality in these

categories predominantly arises from unusual spatial relationships between normal objects,

involving object compositions. These findings highlight the efficacy of the RST model in

capturing and understanding the complex spatial interactions contributing to atypical vi-

sual representations, especially in the aforementioned categories. Object with Missing Part

(OMP) is the only atypicality category for which the baseline model (One-Class SVM) is

better than our approaches. This is because this type of atypicality only comes from a single

object without any complex interaction with surrounding objects.

Error analysis. We qualitatively show several cases where the One-Class SVM fails

(Figure 17a - d) or both the baseline and our models fail (Figure 17e - h). One-Class

SVM fails when atypicality involves composition of normal objects (e.g., cream on top of

alcohol bottle), while our transformer models (especially RST) detect this atypicality by

learning context via self-supervised training and show large gains. However, our model

fails to capture metaphoric similarity: Figure 17e and 17f look typical at first, but shadow

versus puma, surfboard versus brand make them atypical. It also fails to interpret symbolic
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Figure 17: Detection results by the baseline and our models for selected images from the

Ads dataset.

Table 9: Ablation study of layer number of encoder and relative positional feature. We

include Transformer - L1 and RS Transformer - L1 results from Table 8 for direct comparison

with different encoder layer numbers and relation position features. The micro average AUC

scores are reported.

Methods MICRO AVE

Transformer - L1 62.86
Transformer - L4 64.14

RS Transformer - L1 64.32
RS Transformer - L4 64.39

RS Transformer - L1 - IoU 64.99
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meanings: vodka is held like a microphone by Hitler who is a symbol of power in Figure 17g.

Moreover, in Figure 17h, the milk takes on the appearance of a fountain, which is a completely

different and unexpected form for milk to be portrayed in. Models fail to capture this rare

and imaginative representation. Thus, typicality judgment requires more fine-grained visual

features, and knowledge of historical figures.

Ablation. To see the impact of the number of transformer blocks (model depth), we

conduct an ablation study on the layer number (L). Considering the variation of relation

position features, we add an additional feature, Intersection-over-Union area (IoU), to the

previous relative coordinates. Results are shown in Table 9. We find that the deeper Trans-

former greatly improves over a shallow Transformer, while Relative-Spatial Transformers are

less sensitive to depth. In addition, we observe that a shallow RS Transformer is competitive

against a deep Transformer, suggesting that the proposed RS Transformer is more efficient.

We also observe that adding the area overlap (IoU) feature slightly improves performance.

4.3.3 Labelling Requirement for the Detection

Models. To understand the labelling requirement for detecting atypicality, we compare

our unsupervised contextual compatibility approaches with supervised models trained on

the atypical/not labels. We use the same Transformer and RS Transformer architectures for

fair comparison. We also add a supervised baseline model which is trained only on the RoI

features (each image is represented by the average of all regions-of-interest features).3 For

transformers, the output layer is an average pooling over the last hidden layer followed by a

simple 2-layer neural network for predicting the atypicality label. For the RoI baseline, the

input image features feed directly to the output layer which is the same 2-layer network.

Results. Table 10 shows the comparison of unsupervised and supervised approaches.

We find that our unsupervised approaches achieve comparable performance to the super-

vised approaches, which highlights that even with labeling the task is still difficult. This also

demonstrates the effectiveness of our proposed contextual compatibility method. When look-

ing into each atypicality category, we observe the unsupervised RS Transformer outperforms

3The input features are the same as the One-Class SVM baseline. This baseline is conceptually similar
to the approach in Ye’s work [143] except that they use VGG16 for extracting the image features.
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Table 10: Experimental results on the Ads dataset. We include unsupervised results from

Tab. 8 for direct comparison with supervised performance. AUC scores for each atypicality

category and the micro average are reported. AE: Auto-encoder; SVM: One-Class SVM;

T: our proposed method with Transformer architecture; RST: our proposed method with

Relative-Spatial Transformer architecture; RoI: only using RoI features as input.

Methods TR1 TR2 OIO OMP CP SDO LDO OR Others AVE

u
n
su
p

AE 54.67 63.28 38.79 52.98 57.78 56.62 56.05 48.57 50.99 52.52
SVM 64.81 68.27 59.36 65.81 54.21 65.12 54.43 56.31 54.23 58.82
T 62.66 60.72 63.07 42.52 69.18 63.71 61.63 64.05 63.68 62.86

RST 67.50 68.37 67.31 55.18 71.26 68.67 63.99 61.84 59.68 64.32

su
p

RoI 66.40 65.80 60.13 56.82 63.77 67.41 62.67 62.98 59.41 62.85
T 66.11 63.16 63.37 64.07 66.55 71.58 70.21 66.03 62.21 65.58

RST 65.56 64.00 62.20 53.43 70.80 71.11 75.37 67.07 65.59 66.75

the supervised RST on those atypicality transformations which involve more object-object

interaction, e.g. Texture Replacement 1 or 2, Object Inside Object, Combination of Parts.

This is expected because RST efficiently learns contextual compatibility knowledge from

the large-scale normal images with the RS self-attention mechanism which is designed for

precisely modeling spatial relationship between objects. In addition, the RS Transformer

overall outperforms the original Transformer for the supervised setting as well.

4.3.4 Visual versus Semantic Compatibility

We next consider different possibilities for representing the image context, namely check-

ing visual versus semantic compatibility. Our previous experiments use Faster R-CNN RoI

features which represent the visual content of the region and then learn compatibility from

them. We now consider using the class labels predicted by Faster R-CNN as the semantic

features of the region and then we use the same model for learning semantic compatibility.

Training. For unsupervised training with transformer-based models, the input is a

sequence of class labels with the bounding-box coordinates of regions ordered by the detection

confidence score. Similarly with visual features, we mask one (or several during the training)
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Table 11: Comparison of Faster R-CNN RoI visual feature (VF) and predicted class label

(CL). AUC for each atypicality category and micro ave are reported, with best AUC per

column bolded. T: our proposed method with Transformer architecture; RST: our proposed

method with Relative-Spatial Transformer architecture.

Methods TR1 TR2 OIO OMP CP SDO LDO OR Others AVE

T w/ VF 62.66 60.72 63.07 42.52 69.18 63.71 61.63 64.05 63.68 62.86
RST w/ VF 67.50 68.37 67.31 55.18 71.26 68.67 63.99 61.84 59.68 64.32
T w/ CL 51.39 58.28 61.90 41.53 62.76 54.80 60.49 56.09 62.38 57.63

RST w/ CL 54.89 62.30 60.49 47.03 61.47 58.25 53.00 58.28 61.76 58.46

object class label by a [MASK] token in the input, and the model is trained to predict the

class label of the masked region. We use the cross-entropy loss for training and testing; the

loss is the atypicality signal. Since the input of class labels are discrete textual tokens, we

project them through an embedding layer before feeding to the transformer; at the output,

we project the last hidden layer of the masked input back to the class label by a decoder

which shares the same weight as the embedding layer. We follow the same experimental

setting as with the visual features.

Results. Experimental results are shown in Table 11. We find that checking semantic

compatibility (CL) is not as effective as checking the visual compatibility (VF) under the

unsupervised setting. Thus, visual features contain more useful information, and only check-

ing the semantic compatibility is not enough for solving this task. An intuitive reason is that

the visual features of an atypical object and a typical object are different; however, the class

label input does not have this information when the atypical object is correctly detected

by Faster R-CNN. On the other hand, the object detector might find difficult to recognize

objects in some atypical images. As a result, using the class labels as input features bring

noise to the model when learning the contextual compatibility. We examine this conjecture

by using the human annotation for describing the atypical objects (i.e. OBJ1 and OBJ2) in

the ad images. An ideal object detector should recognize the image as either OBJ1 or OBJ2.

Therefore, we examine the recall rate that OBJ1 or OBJ2 is among the top 36 predictions

by the Faster R-CNN detector. Results in each atypical category are shown in Table 12.
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Table 12: Object detector performance on recognizing the annotated objects for each atyp-

icality category.

Recall TR1 TR2 OIO OMP CP SDO LDO OR Others AVE

OBJ1 39.35 26.27 14.39 40.00 17.02 37.14 22.78 21.67 6.55 22.25
OBJ2 17.86 20.93 17.30 / / 13.63 / 22.89 / 19.72

The micro average of the recall is only around 20%, which verify our conjecture that atypical

objects are hard to be recognized. We find that the object detector tends to recognize the

atypical object by its shape more than its texture (recall on OBJ1 is higher than OBJ2 for

TR1 and TR2). OMP and SDO are relatively easier to be recognized. However, object

detector has the worst accuracy on OIO, CP and Others, which may explain why RST has a

lower performance than T when using class labels (CL) as input features for these categories.

4.3.5 Limitations

While our study on detecting atypicality in persuasive imagery provides valuable insights

and promising results, it is important to acknowledge certain limitations that should be

considered in the interpretation of our findings.

First, the study relies on a limited dataset for training and evaluation purposes. The

dataset of visual advertisements, may not fully capture the diversity and complexity of

real-world visual media, which could introduce biases or limitations in the detection and

interpretation of atypicality. Different cultures, contexts, and domains may utilize unique

and culturally specific atypical representations that are not adequately explored in this study.

Additionally, the dataset may not account for the evolving nature of persuasive techniques

and may become outdated over time.

Second, our model relies on self-supervised learning and the extraction of visual features

to detect atypicality. While our Relative-Spatial Transformer (RST) shows improved per-

formance compared to standard baselines and other transformer architectures, there are still

cases where both our models and the baseline fail to accurately classify images. For exam-
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ple, our models struggle to capture metaphoric similarity and interpret symbolic meanings,

indicating that more nuanced visual features and domain-specific knowledge are required in

these scenarios. Further research should investigate ways to enhance the models’ ability to

handle such complex and subtle forms of atypicality.

Lastly, our model is not designed for predicting fine-grained atypicality categories, such

as texture replacement, deformation, and other specific types of visual transformations.

While our approach demonstrates effectiveness in detecting overall atypicality in persuasive

imagery, it lacks the capability to distinguish and classify the specific nature of atypical trans-

formations in a granular manner. The categorization of atypicality into more specific types

can provide valuable insights into the underlying visual strategies employed in persuasive

media and further enhance our understanding of the rhetorical techniques used.

4.4 Chapter Summary

In this chapter, we have demonstrated the effectiveness of modeling contextual com-

patibility as a self-supervised approach to detect atypicality in persuasive imagery. Fur-

thermore, analyses by atypicality categories have shown that our developed Relative-Spatial

Transformer especially improves the detection performance on atypicality transformations

involving spatial interactions between objects. These experimental results strongly support

our hypothesis H2 that modeling contextual compatibility through self-supervised learning

methodologies enables the detection of atypical images, with spatial interactions between

objects being a key factor in the process. Finally, we have found that learning semantic

compatibility by predicted class labels is not sufficient and visual features are essential for

detecting atypicality.
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5.0 Interpreting Symbolism

5.1 Introduction

In this chapter, our objective is to develop computational models that can effectively

interpret the symbolism employed in persuasive images. Symbolism serves as a powerful

rhetorical device in the media, enabling messages to be conveyed more persuasively and

efficiently [125]. Decoding symbolism involves recognizing that a particular item (e.g., a

baby) is a stand-in for something else (e.g., innocence). This ability to decode symbolism

has wide-ranging applications, including understanding persuasive texts and visual media

[74, 35, 1]. For instance, a social media moderator needs to identify seemingly innocuous

phrases or objects that may indicate prohibited behavior. An intelligent writing tutor should

be able to recognize appropriate or inappropriate usage of symbolism in student essays.

Furthermore, a persuasive text/image generator can enhance message delivery by employing

symbolism effectively.

Automatic understanding of symbolism is crucial for developing computational intel-

ligence capable of making inferences about the implied meaning within media. However,

decoding symbolism is a challenging task, even for humans. One significant hurdle is the

difficulty in automatically acquiring knowledge about symbolic relationships. Symbols serve

diverse purposes, ranging from representing figures of speech and modes of thought to denot-

ing signs, passwords, and customs [53]. Some symbols may have a semantic interpretation,

such as meronyms or hyponyms, while others may be culturally dependent or require complex

reasoning chains. Consequently, some relationships are relatively easier to identify when the

related items appear together, either within the same sentence or image. In contrast, other

relationships are more challenging to discern when the represented item does not co-occur

with the symbol itself. Moreover, symbolic relationships can be situational, where the same

symbol may represent different concepts in different scenarios. For example, while a baby

often symbolizes innocence, it can signify burden and responsibility when depicted in the

arms of a harried parent.
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Recent research suggests that language models contain factual and commonsense knowl-

edge that can be extracted through fine-tuning or probing techniques [93, 126, 44, 26]. Addi-

tionally, multi-modality models like CLIP have demonstrated the acquisition of substantial

knowledge through self-supervised pre-training. This raises the possibility that these models

might also encapsulate implicit and abstract knowledge, making them powerful resources

for facilitating reasoning and other AI applications. However, the extent to which these

models capture symbolism-related knowledge remains unclear. To investigate this question,

we introduce a new probe called SymbA. In Section 5.2, we delve into the challenges of

creating such an evaluative framework, describe the constructed evaluative datasets, and

present analytical tools for analyzing various types of symbolic relationships. To effectively

evaluate the decoding of symbolism, it is crucial to isolate this aspect from potential visual

recognition problems that may affect the performance of models. While some models may

possess the capability to decode symbolism, the performance could be hindered by insuffi-

cient object recognition. To address this concern, our evaluative framework primarily focuses

on the textual modality. By emphasizing the linguistic aspects of symbolism, we can assess

models’ understanding and interpretation of symbolic relationships without being influenced

by visual cues.

5.2 Analysis Probe Construction

We present the SymbA (Symbolism Analysis) probe as a methodology to evaluate

models’ proficiency in decoding symbolism. SymbA comprises 1066 symbolic pairs, such as

”red - passion”. In these pairs, the former, typically a physical object or content, is referred

to as the signifier, while the latter, typically a more conceptual symbolic reference, is called

the signified [139]. Our symbolic pairs are derived from two datasets. One set consists

of conventional symbol pairs compiled from commonly used symbols in English literature,

which tend to be context-invariant. The other set is a subset sampled from a previous visual

advertisement corpus [50], containing situated symbol pairs where humans have annotated

the local context surrounding the signifier and the intended signified. By modifying the

69



prompt to include or exclude the local description, we can investigate the impact of situated

context on symbolism decoding.

To analyze the evaluative outcomes, we propose two tools. Firstly, we employ a heuristic

metric based on point-wise mutual information to quantify the semantic relatedness between

the signifier and its signified. This metric allows us to differentiate between “easier” pairs

and “harder” pairs, providing insights into the difficulty levels of symbolic relationships.

Secondly, drawing inspiration from previous work on commonsense relationships [119], we

define a taxonomy of symbolic relationships (e.g., UsedFor, HasProperty, etc.). By catego-

rizing the symbolic pairs into these relationships, we can conduct fine-grained analyses to

identify which types of symbolic relationships pose greater challenges for the models. To-

gether, these tools enable us to gain a deeper understanding of the models’ performance in

decoding different symbolic relationships.

5.2.1 Symbolism Data Sources

Conventional Literary Symbolism Based on the sheer volume of pretraining text

a language model has seen, it seems plausible that the language model should have come

across the more conventional, widely-used symbols. In these cases, the signified might almost

be seen as an additional word sense for the signifier. Such symbolic relationships are often

taught in high-school English classes as well as various writing courses and online resources.

Consulting multiple sources [12, 39, 119], we created a dataset of conventional symbolism

that consists of 132 signifiers that are commonly used in literature. Our dataset covers a

diverse set of signifiers that can be categorized into 11 groups1, as shown in Table 13. Object,

Animal, Plants and Nature are the most frequent types; while Action, Directions, Number

and Christian has limited instances in the dataset. There are a total of 536 signifier-signified

pairs, as each signifier may have multiple signifieds. The vocabulary size of possible signifieds

is 333.

Situated Symbolism Situated symbolism refers to symbols that arise from specific

circumstances and are not established by conventions. There is a great deal of variation

1We consulted an educational website https://www.dvusd.org/cms/lib/AZ01901092/Centricity/

Domain/2891/Gawain%20Symbols.pdf
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Table 13: Signifier types of conventional literary symbolism.

Signifier Type Count Example (signifier: signified)

Color 12 pink: femininity, flesh, ...
Nature 17 dawn: hope, illumination
Plants 18 rose: beauty, love, ...
Weather 9 mist: confusion, mystery, ...
Animal 19 lion: pride, power, ...
Setting 14 forest: evil, mystery, ...
Object 22 trophy: victory
Action 3 kiss: intimacy, fellowship, ...
Number 7 seven: creation, abundance, ...
Christian 7 angel: messenger, purity, ...
Directions 4 west: descending, old

in terms of the challenge of the task. At an extreme, one might consider a literary author

taking chapters to develop and evolve a symbol, such as the meaning of Hester Prynne’s

“A” in “The Scarlet Letter”; such a grand scale is out of the scope of this work. Here, we

focus on a more manageable context range, limited to the message conveyed in a static visual

advertisement [50]. We chose this domain because the ad offers a self-contained narrative for

the context; any symbolic reference has to either be resolved through information directly

presented in the ad or relies on commonly shared knowledge by the viewers.

The advertisement dataset includes bounding boxes around the signifiers in each ad im-

age and their corresponding signified symbol references (e.g. fitness, happiness, danger).

Although the bounding boxes are provided, no textual annotation describes the signifier,

as discussed in Section 2.2.2. Therefore, we supplemented the dataset with additional an-

notations.2 The signified vocabulary size is 53. We opted to create a balanced dataset for

evaluation by randomly sampling 10 ads from each signified group, resulting in a total of 530

instances.3 Each instance was randomly assigned to one of the 11 annotators, including the

author, 2 collaborators who were familiar with the Ads dataset, and 8 Ph.D. students who

were volunteers for the annotation. Given an ad image with a visual signifier in the bounding

2We considered a captioning generation model, training an attention-based captioning model [6] on the
COCO datasets; however, the domain gap between symbolic and general non-ad image was too large for the
resulting captions to prompt language models.

3We manually checked each instance for making sure there is no offensive content.
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Figure 18: A situated symbolism sample. Each sample contains a signifier-signified pair and

a localized description. Here the signifier is sandal ; the signified is freedom; the localized

description is sandals that look like a butterfly.

box and its ground-truth symbolic reference (i.e. signified), the annotator was asked to write

a description that should be in a short noun phrase and capable of conveying its symbolic

meaning, which we refer to as localized description. The annotation instruction can be found

in the Appendix B. To evaluate the reliability of the annotated descriptions, we qualitatively

checked the inter-rater agreement between 3 annotators for 20 samples. While their descrip-

tions did not always use the exact same wording, we found that their descriptions expressed

the same meaning 90% of the time. The head noun of each description was then manually

annotated as the signifier (referred as a task without context), while the description itself

served as the context for the signifier (cf. Fig 18, sandal is selected as the signifier, while

that look like a butterfly is a context stimulus).

Human Evaluation To assess the reliability of the datasets, inter-rater agreement be-

tween human annotators was computed. For the computational models, the task involved

selecting the correct signified from a fixed set of options (333 for conventional symbols and

53 for ad symbols). However, the same task may be challenging for a human. An alternative

approach is to simplify the experiment by presenting four answer options, including ran-

domly selected negative candidates from a fixed vocabulary, and selecting the correct answer

from among these options. We sampled a total of 50 context-dependent instances from the
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Table 14: Human evaluation for decoding symbolism.

Conventional Symbolism
Advertising Symbolism

w/o context w/ context

Raw agreement score 0.73 0.68 0.70
Krippendorff’s alpha score 0.64 0.57 0.60

Accuracy 0.77 0.71 0.68

situated ad set, as well as 50 context-independent instances. Among the context-independent

instances, 22 were sampled from the conventional set, while the remaining 28 were obtained

from the advertising set. We conducted the annotation of these 100 instances with the

help of 8 Ph.D. students from diverse cultural backgrounds (e.g., European, American, and

Chinese). To ensure impartiality and avoid any bias, both the author and collaborators

refrained from participating in the annotation task, and the annotators were deliberately

kept uninformed about any prior knowledge related to the dataset. Each instance was an-

notated by two human annotators. Given a signifier in textual modality, human annotators

were asked to select the most appropriate signified from four answer options. The raw and

adjusted inter-rater agreement scores are shown in Table 14, indicating moderate to sub-

stantial agreement [60, 40]. This demonstrates the quality of our data. Human performance

on these tasks is also reported in Table 14, highlighting the challenges even for humans. It

is important to note that the human annotators represent a variety of cultural backgrounds

and have not received task-specific training, thus reflecting the ability of a typical person

rather than the expertise of literary experts.

5.2.2 Probing Methods

In this work, we employ the method of using cloze statements as prompt templates to

probe knowledge from language models [93]. By formulating prompts with missing tokens,

we prompt the models to predict the exact missing token based on the provided context. This

approach is computationally efficient and does not require specific preparation of negative

instances. While other methods such as mining, paraphrasing [52, 41, 26] or implicit prompt-
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ing [69, 99] have been explored to discover better prompts, we focus on the unsupervised

elicitation of knowledge and do not involve training prompt-engineering methods.

To probe knowledge from multi-modality models, we directly feed the symbolic image

into the image encoder. Specifically, for the CLIP model, we compute the cosine similarity

score between the image and text embedding when replacing the missing token in the textual

prompt with each signified candidate. The candidate with the highest score is considered as

the top prediction.

5.2.3 Analytical Tools

Semantic Relatedness For quantitatively measuring the semantic relatedness between

the symbolic pair, we develop a heuristic metric based on the pointwise mutual information.

This metric measures how frequently a signifier-signified pair co-occur within the same sen-

tences in a textual corpus. We assume that if the pair co-occur frequently, then the symbolic

relationship leans towards a factoid thus considered as “easy” knowledge; on the other side,

if the pair rarely co-occur in the same sentence, then it leans towards implicit commonsense

reasoning thus considered as “hard” knowledge. So we use this metric for measuring the

knowledge difficulty.

For a given signifier x and signified y, the PMI score is computed by

pmi(x, y) = log
p(x, y)

p(x)p(y)
= log

N(x,y)
N

N(x)
N

N(y)
N

where N(x, y) is the number of sentences containing both x and y; N(x) or N(y) is respec-

tively the number of sentences containing x or y; N is the total number of sentences in the

corpus.

A higher PMI score signifies a stronger and more easily recognizable symbolic relation-

ship between two words. For example, the PMI score of 4.61 between “ornaments” and

“Christmas” in the BookCorpus dataset [150] indicates a highly semantically related sym-

bolic association. Conversely, a lower PMI score indicates a more challenging or distantly-

related symbolic connection between words. For instance, the pair ”apple” and ”sin” has a
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Table 15: Relationship type distribution of signifier-signified in the set of advertising sym-

bolism.

Relationship Type Count Example (signifier - signified)

UsedFor 52 makeup - beauty
HasProperty 46 child - youth
RelatedTo 47 mountain - adventure
Others 94 chocolate - love (SymbolOf)
Indirect 116 giraffe - love

PMI score of -3.20, indicating a less obvious or distant symbolic association between these

terms.

Symbolic Relationship Types For investigating the fine-grained types of each sym-

bolic relationship, we further annotate each signifier-signified pair according to a pre-defined

taxonomy of commonsense relationships [119]. The symbolical associations used in ads are

creative and diverse, while the conventional set mostly contains the narrowly-defined sym-

bolic relationship (i.e., SymbolOf in ConceptNet [119]). Therefore we conduct this analysis

on the ads set only. As shown in Table 15, we specifically study the three most frequent types

(i.e., UserFor, HasProperty, and RelatedTo) that appear in the advertisement set. Minor

types, such as Synonym, Antonym, IsA, Causes, SymbolOf, etc., are combined into a cate-

gory named Others. Symbolism knowledge that cannot be clearly determined is classified as

Indirect.

5.3 Re-ranking Approach for Bias Mitigation

The bias in language models’ pre-training corpus may have negative impact on knowledge

elicitation. A model’s prediction candidates that appear more frequently in the pre-training

corpus tend to be ranked higher than its appropriate position; similarly, rarer signfieds

may be unfairly penalized. For example, the language model may consider “freedom” as

a more probably predicted candidate than “serenity” since the latter word has been rarely
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seen during the pre-training. In order to reduce the bias effect brought by the pre-training

frequency, we propose a new approach for ranking the predictions by considering the prior

probability of each candidate.

Assuming that x represents the signifier, y represents the signified, t represents the

prompt (e.g. “is a symbol of”) and θ represents the parameters of the language model,

the conditional probability of y is represented as p(y|x, t, θ). In the common way, the top

candidate ypred is selected by having the highest probability: ypred = argmaxy p(y|x, t, θ) [93,

52]. In our approach, we re-rank the previously-selected top k candidates after normalizing

the conditional probability by the prior probability of each candidate:

ypred(k) = argmaxy∈Yk
log

p(y|x, t, θ)

p(y|t, θ)

where Yk is the set of previously-selected top k candidates. The intuition is that a high

p(y|x, t, θ) might not mean a good collocation between x and y if p(y|t, θ) is also high. For

example, a certain signified (e.g. love) might have a high probability when following the

prompt (e.g. “is a symbol of”), no matter which signifier is given. Our re-ranking approach

aims to reduce this bias effect.

5.4 Experiments

In this section, we present the experiments conducted to evaluate the performance of

different language models and multi-modality models in decoding symbolism. We also inves-

tigate the bias problem and measure the effectiveness of the debiasing method. Additionally,

we analyze the fine-grained performance of the models based on knowledge difficulty and re-

lationship types.

5.4.1 Setup

We compare five language models that represent different pre-training strategies, archi-

tectures and sizes: Word2Vec [78], BERT [28], RoBERTa [73], GPT-2 [103] and GPT-J-6B
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[134]; and a representative multi-modality model: CLIP [100]. As for baseline models, we

consider random guessing and co-occurrence ratio.

Random Baseline: rank signified candidates by a random order (average over 10 ran-

dom runs).

Co-occurrence Baseline: rank signified candidates by its co-occurrence ratio with the

signifier according to BookCorpus [151]. The ratio is computed by N(x,y)
N(y)

with the same

notations as defined in Section 5.2.3.

Word2Vec: rank signified candidates by the cosine similarity between the signifier word

vector and each signified candidate vector. For situated symbolism, the signifier word vector

is replaced by the context vector that is the summation of each token vector in the localized

description.4

BERT (336M parameters): rank signified candidates by the probability of the masked

token by querying the language model with a cloze prompt (i.e. “[signifier] is a symbol of

[MASK].”)5. For decoding general symbolism, “[signifier]” is replaced by the signifier token;

for decoding situated symbolism, “[signifier]” is replaced by the localized description of the

signifier.6 Notice that the majority of signifieds are tokenized as single word pieces, with

only around 20% requiring multiple word pieces. For these cases, we use the stemmed piece

to transform them into a single word piece.

RoBERTa (355M parameters): same as BERT.7

GPT-2 (124M parameters): rank signified candidates by the probability of the next

token by querying the language model with the first part of the sentence (i.e. “[signifier] is

a symbol of”).8

GPT-J (6B parameters): same as GPT-2.9

CLIP (152M parameters): rank the signified candidates by calculating the cosine sim-

ilarity score between the image and text embeddings. We replace the masked token in the

4‘word2vec-google-news-300’ in gensim 4.1.2
5Since prompt selection is not a focus of this work, we simply picked a prompt that echoes the surface

text for the “SymbolOf” relation presented in ConceptNet [119].
6‘bert-large-uncased’ in transformers 4.8.2
7‘roberta-large’ in transformers 4.24.0
8‘gpt2’ in transformers 4.8.2
9‘EleutherAI/gpt-j-6B’ in transformers 4.24.0
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Table 16: Model performance (P@n) for decoding symbolism.

Conventional Symbolism
Advertising Symbolism

w/o context w/ context
P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

Random 1.29 5.15 10.45 2.48 11.43 23.83 2.12 9.77 20.30
Co-occur 7.58 18.94 35.61 16.10 42.86 57.89 13.96 34.53 46.42
Word2Vec 5.30 25.76 46.21 18.42 43.23 57.89 14.53 32.64 47.17
BERT 10.61 27.27 40.15 10.15 25.56 39.85 11.51 27.17 39.81
RoBERTa 19.70 33.33 42.42 13.16 33.08 45.86 10.00 27.55 45.47
GPT-2 6.06 16.67 26.52 4.51 17.67 30.08 7.36 19.43 37.74
GPT-J 27.27 46.97 56.06 10.90 28.20 42.48 13.96 33.77 50.00
CLIP / / / / / / 21.13 48.30 63.02
GPT-J (open vocab) 15.15 39.39 48.48 2.63 11.28 16.92 4.91 13.02 18.68

textual prompt with each signified candidate (i.e., “a symbol of [MASK]”).10 Since the

multi-modality model requires both visual and textual input, we only evaluate its perfor-

mance on the set of advertising symbols with context. We use the corresponding ad image

as the visual input.

We evaluate each model based on how highly it ranks the ground-truth signified against

others in a fixed vocabulary. We also evaluate GPT-J’s performance under an open-vocabulary

setting. We use the precision at n (P@n) as the evaluative metric. To account for multiple

valid signifieds for a given signifier, this value is 1 if at least one of the valid signifieds is

ranked among the top n predictions, and 0 otherwise. Experiments are conducted on the

GPU model of NVIDIA Quadro RTX 5000, 16G memory, driver version 460.84 and CUDA

version 11.2.

5.4.2 Model Performance on Decoding Symbolism

In the experiments evaluating the performance of different language models and CLIP

on decoding symbolism, several key findings emerge.

Newer LMs outperform their previous iterations. Table 16 shows the overall

performance for decoding symbolism through our SymbA probe. Newer language models,

such as GPT-J, outperform their previous iterations. GPT-J shows the best overall per-

10‘ViT-B/32’ in OpenAI’s clip API
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Table 17: Model performance (P@1) on each signifier group of conventional literary symbol-

ism.

Color Nature Plants Weat. Anim. Setting Object Action Num. Christ. Direct.
RoBERTa 50.00 35.29 11.11 11.11 10.53 7.14 31.82 0.00 0.00 14.29 0.00
GPT-J 41.67 35.29 33.33 33.33 36.84 7.14 27.27 33.33 0.00 14.29 0.00

formance for decoding conventional symbols, surpassing other models. Even in the more

challenging open-vocabulary setting, GPT-J performs comparably to BERT or RoBERTa

in the fixed-vocabulary setting. Scaling up the same type of language model leads to sub-

stantial improvements, with GPT-J performing 21 points better than GPT-2 and RoBERTa

performing 9 points better than BERT in P@1.

Variations in signifiers’ types impact decoding. Table 17 compares RoBERTa and

GPT-J’s performances by signifier types. Both models excel at decoding Colors but falter

on Numbers and Directions. On average, GPT-J outperforms RoBERTa, although it has

lower accuracy for Colors and Objects. We conjecture that the Web data used to pre-train

GPT-J may be more multi-modal such that color attributes may be shown visually.

CLIP has a superior performance on situated ad symbols.As shown in Table 16,

CLIP demonstrates significantly better performance than language models when decoding

situated ad symbols. Among LMs, Word2Vec has the best P@1, and GPT-2 has the worst. It

is surprising that powerful language models such as RoBERTa perform worse than the simple

Word2Vec or the Co-occur baseline on this task. We have similar observations for decoding

the advertising symbolism without context. The prior-bias problem faced by advanced lan-

guage models may contribute to their decreased performance in decoding symbolism, while

CLIP’s multi-modal nature allows it to better associate visual and textual information.

5.4.3 Effectiveness of Debiasing

The data bias problem exists, and re-ranking significantly reduces it. We first

compute the correlation between each signified’s (yi) frequency and its predicted probabil-

ity, p(yi|x, t, θ) for verifying the existence of the bias introduced in Section 5.3. We use
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Table 18: Pearson correlation scores between candidates’ frequency and prediction probabil-

ity before or after normalized by the prior probability.

Model Pearson score before Pearson score after

BERT 0.375 -0.107
RoBERTa 0.355 -0.123
GPT-2 0.483 -0.192
GPT-J 0.363 -0.244

BookCorpus [150] as the source for estimating yi’s frequency and use the advertising sym-

bolism as testing samples. The Pearson correlation scores are reported in Table 18. Initially,

the Pearson scores are all above 0.3, considered to be positively moderate, indicating the

presence of bias [24]. However, after applying the re-ranking approach that considers the

prior probability of the signified11, the correlation decreases to a low level, from -0.107 to

-0.244, which can be interpreted as no or slight correlation [24], suggesting a mitigation of

the bias. Although the absolute correlation score decreases, there is a shift from a positive

to a negative correlation level, indicating an over-correction of the bias.

Debiased LMs and CLIP rival human performances in some cases. As shown in

Table 19, language models after re-ranking have better performance on decoding symbolism

than the original ones. In particular, the improvement for larger models such as RoBERTa

is more than 200% on decoding ad symbolism. The re-ranking approach boosts RoBERTa to

a relatively high accuracy, 25.19 (or 26.04) for decoding ad symbolism without (or with) the

situated context. Debiased RoBERTa or GPT-J surpasses CLIP’s performance in decoding

situated symbols. This suggests that LMs are effective tools for decoding symbolism when

visual content can be properly translated into textual descriptions. We conducted a simplified

4-choice task on the same dataset used for assessing human performance to further evaluate

these models. Surprisingly, the results indicate that debiased GPT-J outperforms humans in

understanding conventional symbolism, as presented in Table 20. For ad symbols, debiased

RoBERTa achieves performance close to that of humans, with only a 4-point difference.

11By considering the prior probability of yi, we compute the Pearson correlation score between yi’s fre-

quency and p(yi|x,t,θ)
p(yi|t,θ) .
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Table 19: Measuring the effectiveness (P@1) of the re-ranking approach for decoding sym-

bolism (original → re-ranked).

Conventional
Advertising

w/o context w/ context

BERT→R 10.61 → 12.88 10.15 → 17.29 11.51 → 22.08
RoBERTa→R 19.70 → 20.45 13.16 → 25.19 10.00 → 26.04

GPT-2→R 6.06 → 7.58 4.51 → 9.77 7.36 → 19.43
GPT-J→R 27.27 → 28.03 10.90 → 22.18 13.96 → 22.82

Table 20: Accuracy on the multi-choice task: human versus LMs (original → re-ranked) and

CLIP.

Conventional
Advertising

w/o context w/ context

Human 77.27 71.43 68.00

RoBERTa→R 68.18 → 77.27 35.71 → 67.86 42.00 → 64.00
GPT-J→R 72.73 → 90.91 53.57 → 64.29 50.00 → 62.00

CLIP / / 60.00
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Debiased RoBERTa and GPT-J demonstrate different strengths. Table 19

and Table 20 show that GPT-J performs better in decoding conventional symbols, while

RoBERTa excels in decoding advertising symbols. Further analysis is conducted to explain

these observations in the subsequent section.

5.4.4 Fine-grained Performance with Analytical Tools

The fine-grained analysis using the analytical tools in the SymbA probe provides insights

into the situations where LMs fail and how the re-ranking approach helps improve their

performance. With the fine-grained relationship types, we analyze LMs and CLIP’s behaviors

in decoding different types of symbolism.

Analysis by Knowledge Difficulties: 1) RoBERTa performs better on semantically-

related symbols while GPT-J excels in distantly-related symbols. We first measure

the difficulty distribution of both symbolism sets. The knowledge difficulty of symbolic pairs

is measured using the PMI score, as explained in Section 5.2.3. The mean of PMI scores for

the ad set and the conventional set are respectively -0.997 (with ±1.56 variance) and -3.872

(with ±5.96 variance). The PMI distribution of both sets is shown in Figure 19. It indicates

that the symbolism samples in the ad set are generally easier than those in the conventional

set. To gain more insights, the samples are split into different difficulty groups based on

their PMI scores. The model performance for each difficulty group is reported in Table 21.

The conventional set contains mostly hard cases (only 5% of them have PMI > -2). The

knowledge difficulty of ads symbolism is more diverse, covering both easy and hard ones.

It is observed that GPT-J performs better on harder cases and struggles with easier cases.

GPT-JR, in particular, performs well when the PMI score is extremely low, suggesting its

ability to interpret very rare symbols.

2) Debiasing improves the performance of semantically-related symbolic pairs

without significantly affecting distantly-related ones. By comparing the model per-

formance before or after re-ranking in Table 21, we find that the re-ranking approach leads to

substantial improvements for both RoBERTa and GPT-J in decoding easy cases (up to 62%

increase on P@1 for PMI > 1), with less decrease in performance for hard cases. The intu-
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Figure 19: Knowledge difficulty distribution in the conventional (green) and the advertising

(red) symbolism.

Table 21: Model performance (P@1) on the conventional literary symbolism (upper) and

the advertising symbolism (lower), on different PMI scores (measure of difficulty, from high

to low). Comparing RoBERTa with GPT-J, the higher P@1 is bolded. Comparing the

effectiveness of the re-ranking approach (original → re-ranked), the improvement is marked

in green and the drop is marked in red. We also provide an example in each PMI group for

gaining more insights.

PMI score -inf (75) <-6 (76) -6 to -5 (37) -5 to -4 (136) -4 to -3 (129) -3 to -2 (56) >-2 (27)
(Example blue - conservatism gold - dominion ladder - connection night - death apple - sin dove - purity three - tripartite )

RoBERTa →R 1.33 → 1.33 5.26 → 5.26 5.41 → 0.00 5.88 → 0.74 6.20 → 8.53 3.57 → 8.93 3.70 → 18.52
GPT-J →R 1.33 → 4.00 7.89 → 2.63 5.41 → 2.70 7.35 → 4.41 6.98 → 6.98 5.36 → 16.07 18.52 → 22.22

PMI score -inf (20) <-2 (79) -2 to -1 (108) -1 to 0 (87) 0 to 1 (45) >1 (16)
(Example igloo - refreshing gun - death bird - freedom dragon - adventure beach - vacation ornaments - christmas )

RoBERTa →R 5.00 → 5.00 6.33 → 5.06 12.04 → 10.19 10.34 → 18.39 13.33 → 48.89 6.25 → 68.75
GPT-J →R 5.00 → 10.00 6.33 → 1.27 10.19 → 7.41 8.05 → 17.24 8.89 → 51.11 6.25 → 50.00
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Table 22: The PMI score for each relationship type.

Relationship Type PMI mean ± variance

UsedFor -0.39 ± 2.35
HasProperty -1.02 ± 1.31
RelatedTo -0.86 ± 0.75
Others -0.51 ± 1.33
Indirect -1.71 ± 0.93

ition behind this improvement is that the prior probability of the signified, as a denominator

term for computing the PMI score, tends to be small when PMI is large (i.e. easy cases). So

normalizing by this small prior probability increases the ranking of the correct signified for

easy cases. Similarly, the performance on hard cases after re-ranking is expected to decrease.

Interestingly, the impact of the re-ranking approach is considerably positive for easy cases

and only slightly negative for hard cases, resulting in an overall improvement. Examining

their performance in different difficulty groups, it is observed that the accuracy of GPT-JR

and RoBERTaR generally increases as the knowledge difficulty decreases. Surprisingly, the

original models exhibit relatively stable performance and even perform slightly worse on the

easiest cases (PMI > 1).

Analysis by Relationship Types: 1) Breakdown by relationship types is con-

sistent with analysis by knowledge difficulties. We first measure the difficulty level

of each relationship type introduced in Table 15. We show the result in Table 22. Indirect

is identified as the most difficult type (because the logical reasoning between these sym-

bolic pairs is hard to identify), while UserFor is the easiest. The model performance for

each relationship type is presented in Table 23. Consistent with previous observations, the

re-ranking approach improves the decoding accuracy more for the types of UsedFor, Others

and RelatedTo, which are relatively easier (PMI > -1) compared to other types. Moreover,

RoBERTa outperforms GPT-J in decoding these types of symbols.

2) Debiasing improves LMs’ robustness without prompt engineering. To fur-

ther investigate the impact of prompt engineering, type-specific prompts are used for each

relationship type (e.g., the default “is a symbol of” is replaced by “is used for” when prob-
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Table 23: Model performance (P@1) on relationship types when using the default prompt

(“is a symbol of”) or a type-specific prompt (respectively “is used for”, “has the property

of” or “relates to” for the relationship type of “UsedFor”, “HasProperty” or “RelatedTo”).

Relationship type
UsedFor HasProperty RelatedTo Others Indirect

default specific default specific default specific default default

RoBERTa 5.77 23.08 10.87 4.35 8.51 4.26 20.21 3.45
RoBERTaR 21.15 21.15 15.22 17.39 19.15 14.89 37.23 4.31

GPT-J 9.62 19.23 10.87 19.57 4.26 2.13 14.89 2.59
GPT-JR 21.15 23.08 17.39 26.09 17.02 10.64 28.72 3.45

CLIP 21.78 / 30.77 / 14.52 / 25.17 13.77

ing a symbol in the type of UsedFor). We find that the type-specific prompt can sometimes

greatly facilitate the original models on decoding knowledge: RoBERTa increases 17 points

for UsedFor; GPT-J increases around 9 points for UsedFor or HasProperty. At first glance,

this suggests that these LMs do have knowledge about the semantic relationships between

the signifier and signified, but the general prompt cannot elicit the desired response. How-

ever, it is observed that type-specific prompts have little impact on the re-ranked models,

e.g., RoBERTa performs same when prompted by the default or the type-specific template.

The re-ranking approach helps stabilize the performance of LMs, indicating that improving

debiasing methods is more crucial than prompt engineering for developing robust models.

3) CLIP exhibits different behaviors compared to LMs when decoding differ-

ent types of symbolism. CLIP performs better in decoding the types of HasProperty and

Indirect. This difference in performance may be attributed to the importance of visual con-

tent in understanding these types of symbolism. For example, for the HasProperty type, the

model may require more detailed visual information about the signifier object to interpret

the symbolic implication of the property. Similarly, for cases of Indirect, the visual patterns

may contain denser and more useful information than the textual description, making the

visual information crucial for interpreting these types of symbolism.
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Table 24: Performance on atypical versus non-atypical advertising images.

Atypical Non-atypical
P@1 P@5 P@1 P@5

RoBERTaR 19.61 47.06 18.18 54.55
CLIP 25.49 49.02 18.18 54.55

Figure 20: Case study for comparing predictions from RoBERTa and CLIP.

5.4.5 Performance in Atypical Images

In Chapter 4, we investigated the rhetoric of atypicality in advertising images. To explore

the relationship between atypicality and symbolism interpretation in advertising images, we

specifically evaluate the performance of models in decoding symbolism on both atypical and

non-atypical images.

To accomplish this, we curate a subset of our situated symbolic set comprising 62 images,

consisting of 51 atypical and 11 non-atypical images, based on the atypicality annotations

[143]. Using the debiased RoBERTa and CLIP models, which demonstrated the best perfor-

mance in our previous experiments, we predict the symbolic reference of these images. The

RoBERTa model utilizes localized descriptions (LD) as input, while the CLIP model uses

the images themselves as input.

The results, shown in Table 24, reveal interesting findings. We observe that RoBERTa

and CLIP exhibit similar performance on non-atypical images. However, when it comes to

decoding symbolism in atypical images, CLIP outperforms RoBERTa significantly. These
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findings highlight the effectiveness of CLIP in decoding symbolism within atypical advertising

images. The superior performance of CLIP suggests its ability to capture and interpret

the nuanced and unconventional visual strategies employed in atypical imagery. Notably,

Figure 20 provides illustrative examples where CLIP successfully decoded the symbolism,

whereas RoBERTa failed. Hilter can be employed as a symbol representing either cruelty

or power. However, in Figure 20c, the posture of Hilter, specifically holding Vodka like a

microphone, signifies ”power” as a more accurate and fitting reference. By leveraging the

visual information directly, CLIP showcases its potential in understanding the symbolism

embedded in persuasive atypical advertisements. This further emphasizes the importance of

considering multimodal approaches, such as CLIP, for a comprehensive analysis of symbolism

in persuasive visual media.

5.4.6 Limitations

Because decoding symbolism is a challenging new problem, our approach and experimen-

tal results have some limitations. Our work builds on available resources, which may have a

bias toward an English/Euro-centric perspective. Additionally, the evaluative datasets that

we curated have a limited coverage of possible symbols even within the English literary tra-

dition. The symbolism datasets used may not fully capture the diversity and complexity of

symbolism in various domains, leading to potential limitations in generalizability. Moreover,

biases present in the data, such as cultural or regional biases, can impact the performance

and interpretation of the models.

Secondly, as mentioned in Section 5.2.1, our study on situated symbolism is limited to

symbolic pairs that can be found in static visual advertisements rather than longer form text

or videos. However, symbolism can be highly context-dependent and influenced by real-time

factors such as social, cultural, and personal contexts. The absence of real-time contextual

information in our experiments may restrict the models’ performance in understanding and

interpreting symbolism accurately in dynamic and evolving situations.

Finally, although our study incorporates visual information through CLIP, the reliance

on textual descriptions and prompts may limit the models’ ability to fully leverage the visual
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context. Symbolism often involves visual cues, and the textual representations alone may not

capture the richness and subtleties present in visual symbolism. Further research exploring

ways to enhance the models’ understanding and utilization of visual content could address

this limitation.

5.5 Chapter Summary

In this chapter, we evaluated the feasibility of extracting symbolic knowledge from differ-

ent language models and CLIP. Through the SymbA probe, we assessed their performance

and achieved significant insights. We found that advanced large language models like GPT-

J and RoBERTa, after undergoing debiasing, demonstrated human-level performance in

identifying the intended signified concept from a given signifier. While CLIP’s overall per-

formance in decoding situated symbols was slightly lower than language models, it exhibited

specific strengths in certain types of symbolism, such as HasProperty and Indirect relation-

ships. These results validated hypothesis H3, highlighting the potential of incorporating

pre-trained models as a valuable source of knowledge for understanding and interpreting

symbolism.
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6.0 Conclusion

6.1 Summary

In this thesis, we have undertaken a comprehensive investigation into the modeling of vi-

sual rhetorics for persuasive media using self-supervised learning. Our research has focused

on understanding and capturing the persuasive elements present in visual media, encom-

passing different facets of rhetorics. We have hypothesized that our goals could be achieved

through self-supervised learning methods by harnessing general data without persuasion-

related labels (Sec. 1.2). In Chapter 3, we have created a multi-modal dataset, specifically

designed to analyze the persuasion modes exhibited in tweet images. We have employed novel

annotation strategies to ensure the reliability of the annotated persuasion labels. Building

upon this dataset, we have developed a self-supervised multi-modality model that was pre-

trained on image-text pairs extracted from tweets. Our experimental results have provided

support for our first hypothesis (H1 in Sec. 1.2). In Chapter 4, we have presented a novel

self-supervised approach for detecting persuasive atypicality in advertising images. Its com-

peting performance has provided compelling evidence in support of our second hypothesis

that atypical images can be detected by modeling contextual compatibility and spatial in-

teractions between objects (H2 in Sec. 1.2). In Chapter 5, we have constructed a novel

evaluative framework designed to assess models’ ability to interpret symbolism. Our objec-

tive is to investigate whether advanced large language models and CLIP, through simple

self-supervised learning tasks, have acquired substantial knowledge of symbolism that can

be utilized for interpreting the symbolic elements present in persuasive images. Empirical

experiments conducted within our evaluative framework have provided strong support for

our third hypothesis (H3 in Sec. 1.2). Finally, we have explored the relationship between

atypicality and symbolism interpretation in advertising images.

The following is a summary of our contribution:

• We have conducted the first study exploring the persuasion modes of images in social

media. Our work has revealed the mutual influences between persuasion modes, per-
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suasiveness, visual content, and political ideology, enhancing our understanding of how

persuasion operates in multi-modal contexts.

• We have introduced a new multi-modal dataset, ImageArg, with annotations of social

stance, image-enhanced persuasiveness, visual content, and modes of persuasion. This

dataset has advanced multimodal persuasive media analysis.

• We have proposed a self-supervised multi-modality model for predicting persuasion modes.

Our model has shown better performance in certain cases, encouraging future exploration

in this direction.

• We have pioneered the study on unsupervised detection of persuasive atypical advertising

images. Our research has opened up possibilities for refining unsupervised detection

methods, considering additional cues, and incorporating larger and more diverse datasets.

• We have demonstrated the effectiveness of modeling visual compatibility in detecting

atypical persuasive images. This self-supervised objective potentially has broader appli-

cations in identifying images that deviate from typical representations.

• We have proposed a novel technique for effectively modeling spatial interactions between

objects. Our approach has offered opportunities for future research in improving perfor-

mance and applicability across different domains and types of persuasive media.

• We have conducted the first comprehensive study assessing language models and multi-

modality models in decoding symbolism. Our work has revealed their ability to learn

implicit and abstract knowledge through self-supervised learning tasks.

• We have presented a new evaluative framework, SymbA, consisting of symbolic data,

analytical tools and a debiasing method. Our thorough analysis has provided insights

into model performance, especially their weakness that could be improved. SymbA can

facilitate future explorations in evaluating the performance of new models in decoding

symbolism, and set a standard for constructing new frameworks and methodologies in

various tasks related to symbolic analysis.
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6.2 Future Work

We consider the following future work that aim to build upon the foundations laid by

our research and extend the knowledge and insights gained to advance the field of visual

rhetorics and persuasive media analysis.

• Expanding ImageArg dataset: Extend the ImageArg dataset by including more

diverse social topics and a larger number of annotated images. This will enhance the

dataset’s representativeness and enable more comprehensive analysis of persuasive media

in social contexts.

• Refining and optimizing self-supervised models: Further explore and refine the

self-supervised multi-modality model for predicting persuasion modes. Investigate dif-

ferent architectural variations, training strategies, and data augmentation techniques to

improve its performance and generalizability.

• Enhancing unsupervised detection methods: Continuously refine and enhance the

unsupervised detection methods for identifying persuasive atypical advertising images.

Consider incorporating additional visual and textual cues, such as image captions or

metadata, to improve the accuracy and reliability of the detection process.

• Advancing spatial interaction modeling: Further develop and expand the proposed

technique for modeling spatial interactions between objects in persuasive images. Explore

its applicability in different domains and types of persuasive media, such as political

campaigns, brand advertising, or social media content, to improve the detection and

interpretation of persuasive visual cues.

• Advancing symbolic analysis in language and multimodal models: Continue

exploring and refining the ability of language models and multimodal models to decode

symbolism. Investigate the potential of more advanced models, e.g. ChatGPT and

GPT-4 [86], novel self-supervised learning tasks, or fine-tuning techniques to enhance

their understanding and interpretation of symbolic relationships in persuasive images.

• Further research on bias mitigation: Continue investigating and developing tech-

niques to mitigate bias in language models and other computational models used in

symbolic analysis. Explore additional debiasing methods and evaluate their effectiveness
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in reducing bias and improving the performance of models in decoding symbolism and

other related tasks.

• Extending SymbA framework: Extend the SymbA framework by incorporating ad-

ditional types of symbolic data from other cultural backgrounds. Establish it as a com-

prehensive and versatile framework for evaluating models in various symbolic analysis

tasks.

• Real-world applications and impact: Apply the findings and methodologies of our

research to real-world applications in advertising, marketing, social media analysis, and

content creation. Collaborate with industry partners to develop practical tools and

systems that assist advertisers, marketers, and analysts in creating more impactful and

persuasive campaigns while understanding and mitigating potential ethical concerns.
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Appendix A Annotation Instruction for ImageArg

A.1 Stance

We setup different instructions for stance annotations on different topics since we would

like to provide detailed instructions and examples for different topics separately.

A.1.1 Stance: Gun Control

We aim to study the topic and the stance of tweets. Given a tweet accompanying with

an image, you need to answer the stance of the tweet towards a given topic, as depicted in

Figure 21. Please make sure that you have the basic knowledge about that social topic and

you understand the key message that the tweet (i.e. both the text and the image) sends.

Just skip the HIT if you are not sure.

The question is about the stance. You need to decide whether the tweet is relevant or

not to the social topic gun control. If it is relevant, then you need to annotate the stance:

supports/opposes to/doesn’t hold any stance.

A tweet is considered as relevant if it talks about anything that has to do with, but

not limited to, the following issue categories: the Second Amendment, Gun control laws,

etc. Tweets which contain the following hashtags are probably relevant to gun control:

#NoBillNoBreak, #WearOrange, #EndGunViolence, #DisarmHate, #molonlabe, etc.

A tweet should be considered as irrelevant if it mentions a gun death event or a gun

violence news, but the context is not necessarily about gun control.

Some examples for relevant tweets and their stance (we only show the text here, but you

need to answer this question from both the text and image):

• “Standing up for the second amendment and carrying a firearm for self defense.” This

tweet asks the audience to stand up for the 2nd amendment, which opposes to gun

control;

• “I don’t understand why we can’t ban assault weapons. We all know they are only used for
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Nobody NEEDS to own an assault rifle. 
#BanAssaultWeapons #GunViolence 
#GunReformNow #BoulderMassacre

Figure 21: Example of stance annotation on gun control.

hunting people. #PrayForOrlando #guncontrolplease.” This tweet talks about banning

weapons and contains the hashtag “#guncontrolplease”, which supports gun control;

• A common way to reduce violence in schools is to implement stronger security measures,

such as surveillance cameras, security systems, campus guards and metal detectors. #vi-

olence #domesticviolence #gun #gunviolence #abuse #people #world #person #work-

place.” This tweet is relevant to the topic, but we are not sure about its stance.

Some examples for non-relevant tweets (we only show the text here, but you need to

answer this question from both the text and image):

• “Love will always conquer hate. #PrayForOrlando #OrlandoShooting.” This tweet talks

about gun violence but not about gun control;

• “#Gunviolence has serious and lasting social and emotional impacts on those who directly

and indirectly experience it.” This tweet points out the impact of gun violence but not

about gun control.
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A.1.2 Stance: Immigration

We aim to study the topic and the stance of tweets. Given a tweet accompanying with

an image, you need to answer the stance of the tweet towards a given topic, as depicted in

Figure 22. Please make sure that you have the basic knowledge about that social topic and

you understand the key message that the tweet (i.e. both the text and the image) sends.

Just skip the HIT if you are not sure.

The question is about the stance. You need to decide whether the tweet is relevant or

not to the social topic immigration. If it is relevant, then you need to annotate the stance:

supports/opposes to/doesn’t hold any stance.

A tweet is considered as relevant if it talks about anything that has to do with, but not

limited to, the following issue categories: Borders, Birthright citizenship, Immigrant Crime,

DACA and the DREAM Act, Deportation debate, Economic impact, Immigration quotas,

Immigrants’ rights and access to services, Labor Market - American workers and employers,

Law enforcement, Refugees, etc.

A tweet should be considered as irrelevant if it mentions a group of immigrant people

such as Muslim, Syrian refugees but doesn’t explicitly talk about immigration issues.

Some examples for relevant tweets and their stance (we only show the text here, but you

need to answer this question from both the text and image):

• “Man feels bad for new immigrant driver in Brampton that crashed into his truck, causing

$6K worth of damages - he had no licence or insurance”. This tweet is related to the topic

of immigration under the category of Immigrant Crime, and it opposes to immigration.

• “House Bill 3438 will finally give our immigrant students some desperately needed re-

sources! Thank you State Representative Maura Hirschauer for introducing this bill!

Now, let’s make sure this bill becomes law!” This tweet is related to the topic of immi-

gration under the category of DREAM Act, and it supports immigration.

• “I’m a woman that supports Trump to fix economy, immigration, school, military more.

#MAGA3X” We consider a tweet as relevant even if it mentions several topics in addition

to immigration, and it opposes to immigration.

Some examples for non-relevant tweets (we only show the text here, but you need to
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We are not asking for anybody who is not 
eligible to receive a visa. We simply ask 
everybody who were selected as a winner on the 
Diversity Visa 2017 -2021 programs to be 
PROCESSED and to do so beyond the fiscal 
year due to refused by#MuslimBan

Figure 22: Example of stance annotation on immigration.

answer this question from both the text and image):

• “‘Will I die, miss?’ Terrified Syrian boy suffers suspected gas attack.” This tweet talks

about a Syrian boy suffering a gas attack, which may be pointing to a war or terrorist

event in Syria, not necessarily directly about an immigration issue.

• “Virtual tour of Steinbach, in partnership with MANSO, Welcome Place, Eastman Immi-

grant Services and the Steinbach LIP, coming up March 9th, 2021. It’s free so don’t miss

out!” This tweet mentions Immigrant Services, but does not talk about any immigration

issue.

• “I called on [USERNAME] for increased vaccine access for South Philadelphia seniors

and for members of our immigrant communities. We can’t let physical distance and

language barriers keep people from this lifesaving vaccine.” This tweet talks about vac-

cine access for the immigrant community but it doesn’t hold any stance towards any

immigration policy.
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A.1.3 Stance: Abortion

We aim to study the topic and the stance of tweets. Given a tweet accompanying with

an image, you need to answer the stance of the tweet towards a given topic, as depicted in

Figure 23. Please make sure that you have the basic knowledge about that social topic and

you understand the key message that the tweet (i.e. both the text and the image) sends.

Just skip the HIT if you are not sure.

The question is about the stance. You need to decide whether the tweet is relevant or

not to the social topic abortion. If it is relevant, then you need to annotate the stance:

supports/opposes to/doesn’t hold any stance.

A tweet is considered as relevant if it talks about anything that discusses whether the

abortion should be a legal option. If the arguments in the tweet text and image support that

the abortion should be a legal option, then please choose “supports”; if arguments oppose to

legal abortion, then choose “opposes to”; if arguments doesn’t hold any stance for the topic

then choose “doesn’t hold any stance”. Notice that a tweet is considered as irrelevant if it

doesn’t directly discuss whether the abortion should be a legal option or not, even though

it may talk about related topics such as babies born alive after an abortion, birth control, etc.

Texas Abortion Clinics: We Should be Able to 
Dismember Unborn Babies While Their Hearts 
are Still Beating

Figure 23: Example of stance annotation on abortion.
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A.2 Persuasiveness Level and Image Content

We aim to study the persuasiveness level of images in tweets as well as their content.

Given a tweet text shown as Figure 24, you need to give a persuasiveness score of it. Then

given a tweet accompanying an image shown as Figure 25, you need to give a persuasiveness

score again.

Nobody NEEDS to own an assault rifle. 
#BanAssaultWeapons #GunViolence 
#GunReformNow #BoulderMassacre

Figure 24: Example of a text only tweet.

Nobody NEEDS to own an assault rifle. 
#BanAssaultWeapons #GunViolence 
#GunReformNow #BoulderMassacre

Figure 25: Example of a tweet accompanying an image.

Finally, you need to select the content type of the image. The content type of an image

represents what type of the information the image mainly carries. Specifically, you need to

pick one out of six types below for each image.

Statistics: the image provides evidence by stating or quoting quantitative infor-

mation, such as a chart/data analysis, that is related to the tweet text.

An image could be considered statistics if: 1) It carries quantitative information (num-

ber/statistics/etc). 2) The key purpose of the image is to deliver this quantitative informa-

tion, in the case there are multiple content types involved.
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Statistics: Compared to other developed countries the 
US suffers from higher gun fatalities than many other 
countries it has a more than 3 times the amount of 
deaths…

NOT Statistics: America has a #GunViolence 
problem the manufacturers make money hand over 
fist, funnel millions into the #GOP and we loose lives 
and loved ones…

Figure 26: Example of tweets with statistics image and a non-statistics image.

For the examples shown in Figure 26, in the statistics example, the image mainly shows

a chart and delivers quantitative information (homicides by firearm per 1 million people). In

contrast, in the NOT statistics example, though there are numbers in the image, the main

information is a news title and the shooting scene, but not these numbers.

Testimony: the image quotes statements or conclusions from an authority, such

as a piece of an article/claim from an official document, that is related to the tweet text.

The image can be considered as testimony if: 1) The content contains texts such as

statements/conclusions/pieces of article. 2) These texts are original from other resources

such as news/celebrities/official documents/etc. 3) The key purpose of the image is to quote

the authorized statement, in the case there are multiple content types involved.

For the examples shown in Figure 27, in the Testimony tweet example, the image mainly

cites a statement given by the transportation secretary. However, in the NOT Testimony

tweet example, though it contains a piece of texts, these texts are not cited from an authority,

therefore, it is not testimony.

Anecdote: the image provides information based on the author’s personal experi-

ence, such as facts/personal stories, that are related to the tweet text.
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Testimony: Nobody NEEDS to own an assault rifle. 
#BanAssaultWeapons #GunViolence 
#GunReformNow #BoulderMassacre

NOT Testimony: Lord, make us instruments of your 
#Peace. Empower us to bring an end to 
#GunViolence, which has taken the lives of so many 
of your Beloved children

Figure 27: Example of tweets with testimony image and a non-testimony image.

Anecdote: Keep your guns but reform the #laws. 
During the founding fathers days #Guns were needed 
for protecting, hunting etc they didnt have to worry 
about over populated #malls, #terrorism etc…

NOT Anecdote: Lord, make us instruments of your 
#Peace. Empower us to bring an end to 
#GunViolence, which has taken the lives of so many 
of your Beloved children.

Figure 28: Example of tweets with anecdote image and a non-anecdote image.
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An image can be considered as an anecdote if: 1) It delivers a personal experience, Or 2)

it shows a fact/experience that comes from personal view/known by the author. 3) The key

purpose of the image is to deliver personal experience, in the case there are multiple content

types involved.

For the examples shown in Figure 28, the anecdote image shows the personal view on the

fact that guns have been developed since the period of the 2nd amendment, and therefore

the laws for guns should be developed as well. However, in the NOT anecdote example,

though it comes from a personal statement, it does not describe any fact/experience/stories.

Slogan: the image expresses a piece of advertising phrase.

An image can be considered as a slogan if: 1) It mainly delivers a piece of text as slogan;

2) The text is for advertising purposes as an advertising phrase/claim/statement. 3) The

key purpose of the image is to deliver the piece of text, in the case there are multiple content

types involved.

For the examples shown in Figure 29, the slogan image presents a phrase “Actually guns

do kill people. Gun Reform Now”, therefore it is a slogan. However, For the example of NOT

Slogan, though the image is for advertising, it does not contain a phrase for that, therefore

it is not a slogan.po

Slogan: New research shows that the US has so much 
#gunViolence because of GUNS! Make our country 
safer for everyone. Demand #GunControlNow 
#EnoughIsEnough...

NOT Slogan: Thanks for all your Thoughts and 
Prayers. They are saving lives right and left. Clearly. 
#GunControlNow #BoulderStrong #GunViolence

Figure 29: Example of tweets with slogan image and a non-slogan image.
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Scene photo: America has a #GunViolence problem 
the manufacturers make money hand over fist, funnel 
millions into the #GOP and we loose lives and loved 
ones…

Symbolic photo: Thanks for all your Thoughts and 
Prayers. They are saving lives right and left. Clearly. 
#GunControlNow #BoulderStrong #GunViolence

Figure 30: Example of tweets with scene photo image and a symbolic photo image.

Scene photo: the image shows a literal scene/photograph that is related to the

tweet text.

An image can be considered as a scene photo if: 1) It shows a literal photograph/scene.

2) The image is directly related to the text. 3) The key purpose of the image is to deliver the

image content but not the text within, in the case there are multiple content types involved.

Symbolic photo: the image shows a symbol/art that expresses the author’s view-

points in a non-literal way.

An image can be considered as a symbolic photo if: 1) It shows a symbol/art. 2) It

expresses the viewpoint from the author in an implicit way. 3) The key purpose of the image

is to deliver the image content but not the text within, in the case there are multiple content

types involved.

For example, in Figure 30, the scene photo image shows a real photograph of a gun

violence scene reported by CNN news. In the Symbolic photo, though relevant to the text,

it shows a photo/image that is related to the text in a non-literal way (blood signifies gun-

killing and the hand posture signifies praying), therefore it is not a scene photo but a symbolic

photo.
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Scene photo: #DailyBriefing #FoxNews #Democrat 
#Republican It's ridiculous to suggest that Killing An 
Unborn Baby has anything to do with "Women's 
Healthcare". That's a Damn LIE! An Unborn Baby 
Feels Pain. Democrats (mostly) &amp; some 
Republican Baby Killing are all SCUM!

Symbolic photo: Planned Parenthood kills babies for 
money. Abortion is not healthcare. Abortion is 
destroying the moral fabric (and children of course) of 
America. The next generation has been conditioned to 
kill. It's okay. Socially acceptable to them.

Figure 31: Another example of tweets with scene photo image and a symbolic photo image.

The key difference between the Scene photo and Symbolic photo is whether the photo-

graph sends a message literally or symbolically. For a scene photo, the image directly

expresses/supports the author’s view without any rhetoric; for a symbolic photo, the im-

age may have several possible interpretations and the audience can understand its symbolic

meaning after considering the tweet text. Consider the example shown in Figure 31: for the

scene photo, it directly shows a protest scene and the author opposes to the abortion by

considering it as a lie. In the symbolic photo, the author shows a photo of Notre Dame as

a symbol of anti-abortion. The photo is not directly related to abortion, but audience can

understand its symbolic meaning after reading the text.

In the case there are multiple content types involved: You need to first identify

the key purpose of the image (i.e. what is the most important information in the image).

Then please select the content type of the key purpose. Table 25 shows the summary of

content types for each key purpose employed in the images.
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Table 25: Summary of content types for each key purpose employed in the images.

Key Purpose Content Type

Quantitative information in the image Statistics

Textual information in the image

Statements or conclusions from an authority Testimony

Personal experiences/views Anecdote

Advertising phrases Slogan

Graphical information in the image
Literal photograph Scene Photo

Non-literal/rhetorical photograph Symbolic Photo

A.3 Persuasion Mode

We aim to study the argumentative roles of images in tweets. Given a tweet ac-

companying an image, we would ask you to choose the persuasion mode of the image. The

persuasion mode of an image represents how the image convinces the audience. Specifically,

we will ask you whether the image appeals to logic/emotion/credibility. Additionally, we

will ask you why you make the choices.

Q1: Does the image make the tweet more persuasive by appealing to logic and rea-

soning?

The image appeals to logic and reasoning if it persuades audiences with reasoning from

a fact/statistics/study case/scientific evidence. Specifically, if: 1) the image contains in-

formation for logic and reasoning; 2) the image presents logic and reasoning.

Also, we will ask you why you made the choice. i.e. Describing the logic/reasoning

brought by the image. Such as following, by filling the blank in the textbox:

The logic/reasoning of the image is [the correlation between gun deaths and gun ownership

by population].

For example shown in Figure 32, the left image provides a chart that shows the high gun

deaths and the high gun ownership by the population of the US, which implies [a correlation

between gun death and gun ownership which demonstrates that there will be less gun deaths
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Appeal to logic and reasoning: Gun deaths and gun 
ownership by population - by country. Hmmm. Well, 
this doesn't take much effort to figure out why we've 
got such #GunViolence…

NOT Appeal to logic and reasoning: Shootings go 
up in step with rising images of gun violence on 
screens. As depictions of violence in the media go up, 
so do instances of gun violence.

Figure 32: Example of tweets with logos image and non-logos image.

with gun control.]. On the contrary, the right image shows the scene of the shooting but

does not provide any reasoning or logic.

Q2: Does image make the tweet more persuasive by appealing to emotion?

The image appeals to emotion, if it puts audiences in a certain frame of mind by

stimulating them to identify/empathize/sympathize with the arguments.

Specifically, if : 1) the image invokes the audience with strong emotion, such

as sadness, happiness, compassion, worriness; 2) the image makes the audience iden-

tify/empathize/sympathize with the author/arguments.

Also, we will ask you why you made the choice. i.e. Describing the emotion(such as

anger/amusement/sad/etc.) or impulsion(desire to do something) brought by the image.

Such as following, by filling the blank within the [bracket]:

The image evokes my emotion/impulse of [anger].

For example shown in Figure 33, the left image shows the grieved ”Uncle Sam” saying

”no” with helplessness, which evokes the [desire for gun control]. The right image provides

an item that can revoke [compassion and forgiveness].

Q3: Does image make the tweet more persuasive by enhancing credibility and trust-
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Emotion: A personal narrative - Dr. Sonya Lewis" 
We must reject helplessness and complacency and we 
must allow ourselves to feel the raw, sick...

Emotion: Thanks for all your Thoughts and Prayers. 
They are saving lives right and left. Clearly. 
#GunControlNow #BoulderStrong #GunViolence

Figure 33: Example of tweets with pathos images.

Ethos: The US has 4.4 % of the world's population 
but 42% of gun violence. #guncontrol #gunviolence 
https://t.co/Vf4RCFB9FX"

NOT Ethos: Lord, make us instruments of your 
#Peace. Empower us to bring an end to 
#GunViolence, which has taken the lives of so many 
of your Beloved children.

Figure 34: Example of tweets with ethos image and non-ethos image.
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worthiness?

The image enhances credibility and trustworthiness, if it makes people trust some-

thing more via authorized/trusted expertise/title/reputation.

Specifically, if 1) The image cites reliable sources of the event/story/opinion/stance,

that can make the contents trustworthy. Reliable sources include news, research reports,

celebrated dictum, etc. Sources which are not proved/well-known by the audience (.e.g. an

organization logo) are not considered as reliable. 2) the image shows authorities that can

convince the audience to believe the arguments.

Also, we will ask you why you made the choice. i.e. Describing the resources of the

citation that enhances the credibility. Such as following, by filling the blank within the

[bracket]:

The credibility is enhanced by [a citation to political report]

For example shown in Figure 34, the left image takes a screenshot of the source of a

report from [New York Times], which increases credibility. The NOT Ethos right image

shows the views but are not quoted sentences that do not provide the credibility to enhance

the argument.
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Appendix B Annotation Instruction for SymbA

*Please describe the object which is in the red box.

*The description should be 1) in a short noun phrase, i.e. maximum 8 words (e.g. tooth

under an umbrella); 2) capable to tell its symbolic meaning that is already given (e.g. blood

signifies danger; lemon signifies refreshing; tooth under an umbrella signifies protection and

heath).

*Instruction for corner cases:

1) If there are multiple objects in the red box, please first identify several objects which

relate to the given symbolic meaning, then describe them and their relationship in a short

phrase, e.g. tooth under an umbrella.

2) If some attributes of the target object is essential for telling its symbolic meaning,

please describe the attribute (e.g. color, shape, status, action) with the class name together,

e.g. bleeding arm

*In summary, the goal is to infer the given symbolic meaning from your written de-

scription. If you meet some cases which are not covered by the instruction, please write a

description which helps most for inferring the given symbolic meaning.

*Some examples of expected annotations are shown on the first page of this form: [link]
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