
New Nonlinear Machine Learning Algorithms With Theoretical Analysis

by

Guodong Liu

BS, Shanghai Jiao Tong University, 2011

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2023



UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Guodong Liu

It was defended on

June 27th 2023

and approved by

Liang Zhan, PhD, Associate Professor, Department of Electrical and Computer Engineering

Zhi-Hong Mao, PhD, Professor, Department of Electrical and Computer Engineering

Wei Gao, PhD, Associate Professor, Department of Electrical and Computer Engineering

Wei Chen, PhD, Associate Professor, The School of Medicine, Department of Pediatrics

Dissertation Director: Heng Huang, PhD, John A. Jurenko Endowed Professor,

Department of Electrical and Computer Engineering

ii



Copyright © by Guodong Liu

2023

iii
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Guodong Liu, PhD

University of Pittsburgh, 2023

Recent advances in machine learning have spawned progress in various fields. In the

context of machine learning data, nonlinearity is an intrinsic property. Therefore, a nonlin-

ear model will facilitate the flexibility of representation and fit the data properly. However,

increasing flexibility usually means the higher complexity and less interpretability. Thus,

there is a niche for designing feasible nonlinear machine learning models to handle the fore-

mentioned challenges.

As a part of this work, a new method, called as sparse shrunk additive models (SSAM) is

proposed. This model explores the structure information among features for high-dimensional

nonparametric regression with the allowance of the flexible interactions among features. It

bridges the sparse kernel regression and sparse feature selection. Theoretical results on the

convergence rate and sparsity characteristics are established by the novel analysis techniques

with integral operator and concentration estimate.

Most of the nonlinear models usually involve tuning multiple (up to thousands) hyper-

parameters, which plays a pivotal role in model generalization. Another part of this work is

a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG).

We proved the feasibility analysis of using HOZOG to achieve hyperparameter optimization

under the condition of Lipschitz continuity. The extensive experiments verify the analysis.

For large-scale data, there remain computational challenges in implementing various al-

gorithms. To address this issue, we propose a new regularized modal regression model with

robust sampling strategy. Unlike conventional sampling for large-scale least squares, our

sampling probabilities are dependent on the robust loss function for learning the conditional

mode. We provide theoretical analysis to support the proposed model: the approximation

bound is established by error analysis with Rademacher complexity, and the robustness char-

acterization is provided based on the finite sample breakdown point analysis. Experiments on

both synthetic and real-world data show promising performance of the proposed estimator.
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1.0 Introduction

1.1 Background

Recent advances in machine learning have spawned progress in various fields such as

medical diagnosis, information extraction and financial forecasting. These applications are

generating vast amounts of data. These data can be highly complicated and heterogeneous.

What we would like to do is to learn from data: to extract important patterns and trends

and understand “what does data say”.

1.1.1 Linear Models

In Machine learning community, liner model must be the most common used and well-

developed tool to understand the world of data. It assumes that the underlying function

of data presentation is linear in the input. Liner models have been studied since the very

early stage (before the computer stage) of statistics, and they still play an important role in

today’s computer era [41]. They are simple and able to provide an adequate and interpretable

explanation of how the input actually effect the output. However, linear models could

perform competitive only when the scale of data is small and with a low signal noise ratio

or sparse assumption [14].

Under the setting of nowadays machine learning application, the amount of data collected

in a wide array of scientific domains is dramatically increasing in both size and complexity,

and the relationship between the input and output are highly possible to be not linear.

These complicated data dose not satisfy the forementioned assumptions anymore. While

nonlinear models can facilitate the flexibility of representation and fit the data properly [82].

Following the well-known “no free lunch” principle [101], increased flexibility usually means

higher complexity and less interpretability. Thus, there is a niche for designing feasible

nonlinear machine learning models to handle these challenges.
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1.1.2 Sparse Additive Models

Additive models [74, 44, 73, 109, 108, 13, 59] provide a feasible extension of linear models,

making them more flexible while still remaining the treasured property of interpretability.

Beyond that, the familiar tools for inference in linear models are also available for additive

models. Among additive models, sparse additive models [109] have shown good performance

in combining variable selection with regression and classification tasks due to their addi-

tive hypothesis function spaces and sparse regularization. In most of these sparse models,

the interactions between features are often ignored or just discussed under prior structure

information, there is a blank of how to find the interaction among correlated features auto-

matically, and This is one main focus of this work.

On the other hand, since more and more complicated nonlinear models are prosed, and

these new machine learning algorithms usually involve tuning multiple (from one to thou-

sands) hyperparameters. These hyperparameters usually play a pivotal role in terms of

model generalizability.

1.1.3 Hyperparameters Optimization

Classic hyperparameters optimization techniques such as grid search [37, 58] and random

search [7] have a very restricted application in modern hyperparameter optimization tasks,

because they only can manage a very small number of hyperparameters and cannot guarantee

to converge to local/global minima.

modern hyperparameter tuning tasks, black-box optimization [24] and gradient-based

algorithms [30] are currently the dominant approaches due to the advantages in terms of

effectiveness, efficiency, scalability, simplicity and flexibility. How to design a new hyperpa-

rameter optimization technique [38] inheriting all benefits from both approaches is still an

open problem.

2



1.1.4 Modal Regression

Modal regression [80, 17, 53] has attracted much attention in statistical machine learn-

ing research, because the resulting estimator is more efficient and robust than ordinary least

square-based estimation in the case of outliers or heavy-tail error distribution. Unlike con-

ventional regression for learning conditional mean or median, modal regression focuses on

estimating the conditional mode of a response Y given input X = x [107, 106]. The mode

can better reveal numerical characteristic of a statistical distribution or data set, which is

usually missed by the traditional mean for data with outliers or the skewed noise distribution

[15].

1.2 Contribution

We summarize our contribution as follows:

• A sparse shrunk additive algorithm is proposed to improve the feature selection abil-

ity of nonlinear models. It is a uniform framework to bridge sparse feature selection,

sparse sample selection, and feature interaction structure learning tasks. SSAM can be

implemented efficiently and its effectiveness is supported by the empirical studies.

• Generalization bound on the excess risk is provided for SSAM under mild conditions,

which implies the fast convergence rate can be achieved. Additionally, the necessary and

sufficient condition is derived to characterize the sparsity of SSAM.

• A zeroth-order gradient algorithm to solve the problem of hyperparameters optimization

is proposed. This is the first method having the benefits of Effectiveness, efficiency, scal-

ability, simplicity and flexibility. We provide an upper bound to the Lipschitz constant

of the A-based constrained optimization problem which theoretically guarantees.

• A fast modal regression with robust sampling method is proposed and we establish its

asymptotic and robust analysis on function estimation. The current results fills the gap

of modal regression for large-scale data computation and extends the gradient-based

sampling from the conditional mean regression to the mode setting.

3



1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we propose a sparse shrunk

additive algorithm to look into the relations between data variables. Generalization bound

on the excess risk is provided for SSAM under mild conditions, which implies the fast conver-

gence rate can be achieved. In Chapter 3, we propose a zeroth-order gradient algorithm to

solve the problem of hyperparameters optimizationan and an upper bound to the Lipschitz

constant of the A-based constrained optimization problem which theoretically guarantees.

In Chapter 4, we propose a fast modal regression with robust sampling, and establish its

asymptotic and robust analysis on function estimation.

Finally, we conclude the thesis in Chapter 5.
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2.0 Sparse Shrunk Additive Models

Most existing feature selection methods in literature are linear models, so that the non-

linear relations between features and response variables are not considered. Meanwhile, in

these feature selection models, the interactions between features are often ignored or just

discussed under prior structure information. To address these challenging issues, we con-

sider the problem of sparse additive models for high-dimensional nonparametric regression

with the allowance of the flexible interactions between features. A new method, called as

sparse shrunk additive models (SSAM), is proposed to explore the structure information

among features. This method bridges sparse kernel regression and sparse feature selection.

Theoretical results on the convergence rate and sparsity characteristics of SSAM are estab-

lished by the novel analysis techniques with integral operator and concentration estimate.

In particular, our algorithm and theoretical analysis only require the component functions

to be continuous and bounded, which are not necessary to be in reproducing kernel Hilbert

spaces. Experiments on both synthetic and real-world data demonstrate the effectiveness of

the proposed approach.

2.1 Introduction

Sparse feature selection has attracted much attention in machine learning community

for learning tasks with high-dimensional data, especially useful in bioinformatics related

applications. Linear models with `1-norm regularization, such as Lasso [93] and Dantzig

selector[11], have been well studied for their theoretical properties and extensively used for

feature selection applications. However, in many applications, the linear assumption could

be too restricted to select the optimal features, because the relations between features and

response variables could be nonlinear. Because of the difficulties in both computational

algorithm and learning theory analysis, only few of existing feature selection methods in

literature focus on the nonlinear feature selection.

5



To enhance the ability of feature selection models with considering nonlinear relation-

ship between features and response variables, several sparse learning based additive models

were proposed for regression [74, 44, 73, 109, 108, 13] and classification [110, 12], which are

extensions of original additive models [40]. Note that, in these additive models, each compo-

nent function is a univariate smooth function [74, 44, 73, 109, 110] or is defined on grouped

features with prior structure information [12, 108]. Although these sparse additive models

can conduct nonlinear feature selection, all of them do not explore the important feature

interaction without prior structure information. Recently, the shrunk additive least square

approximation (SALSA) [49] method was introduced to utilizing the feature interactions,

but without feature selection mechanism.

On the other hand, the sparse sample selection arises from learning tasks with large-

scale data. The generalized Lasso was proposed in [76] to handle the regression problem

with addressing sample sparsity, and its learning theory has been studied in [85]. Recently,

Nyström approximation has been used for selecting important samples (landmark points) in

kernel methods, which show that the predictor can be derived efficiently from data dependent

hypothesis spaces associated with subsamples [52, 1, 77]. While some fast algorithms have

been developed for sparse kernel regression, none of them is capable of the feature selection

and provides the interpretability of prediction.

To address the above challenges, in this paper, we propose a novel sparse shrunk additive

model (SSAM) for jointly selecting features and samples with learning the feature interactions

and mining the structure information among features. Different to previous models, our new

method will simultaneously conduct sparse feature selection, sparse sample selection, and

feature interactions learning. Our SSAM can utilize the component functions from general

continuous and bounded function space [91, 14] and can be implemented efficiently via the

optimization technique in [65].

More important, to better understand the learning theory properties of SSAM, we inves-

tigate its convergence rate and sparsity. The proposed SSAM involves the shrunk structure

on features and the `1-norm regularization on data dependent hypothesis spaces. While

these features provide the superior flexibility and adaptivity of SSAM, there are new tech-

nical difficulties to characterize its theory properties. To address the new difficulties, we

6



introduce a novel decomposition on the excess generalization error, and develop the recent

approximation techniques with integral operator and concentration estimates with empirical

covering numbers. Our main contributions in this paper include:

• A sparse shrunk additive algorithm is proposed to improve the feature selection abil-

ity of nonlinear models. It is a uniform framework to bridge sparse feature selection,

sparse sample selection, and feature interaction structure learning tasks. SSAM can be

implemented efficiently and its effectiveness is supported by the empirical studies.

• Generalization bound on the excess risk is provided for SSAM under mild conditions,

which implies the fast convergence rate can be achieved. Additionally, the necessary and

sufficient condition is derived to characterize the sparsity of SSAM.

2.2 Sparse Shrunk Additive Models

Let X ⊂ Rn be an explanatory feature space and let Y ⊂ [−1, 1] be the response set.

Let z := {zi}mi=1 = {(xi, yi)}mi=1 be independent copies of a random sample (x, y) following

an unknown intrinsic distribution ρ on Z := X × Y . Denote the marginal distribution of ρ

on X as ρX and denote the conditional distribution for given x ∈ X as ρ(·|x). Given z, the

main goal of regression learning is to infer a functional relation between the input x ∈ X and

the corresponding output y ∈ Y . Usually, the expected risk associated with least squares

loss is used to evaluate the prediction performance, which is denoted by

E(f) =

∫
Z

(y − f(x))2dρ(x, y).

In theory, the minimizer of E(f) over all measurable functions is the regression function

fρ(x) =

∫
Y
ydρ(y|x).

7



2.2.1 Sparse Additive Models

Additive models [40] aim to find the predictor in the special hypothesis space F = {f :

f(X) =
∑n

j=1 fj(Xj), X = (X1, ..., Xn) ∈ X}. Here, each fj ∈ Fj is one-dimensional smooth

function, and its typical examples include the spline function and the Gaussian function.

The optimization framework of standard additive model is

min
fj

1

m

m∑
i=1

(yi −
n∑
j=1

fj(xij))
2. (2-1)

Theoretical analysis on (2-1) shows the good performance of additive model relies on the

condition that the number of features n is not large relative to the sample size m.

The algorithm of sparse additive models (SpAM) [74] is proposed to address the feature

selection in the high dimensional setting, which can be formulated as the following regularized

framework

min
fj

{ 1

m

m∑
i=1

(yi −
n∑
j=1

fj(xij))
2 + λ

n∑
j=1

‖fj‖
}
, (2-2)

where λ > 0 is a regularization parameter and
∑n

j=1 ‖fj‖ behaves liken an `1 ball across

different components to encourage functional sparsity [74, 108]. The SpAM (2-2) can be

solved efficiently in terms of the back-fitting algorithm [41], and has been extended to the

group sparse additive regression [44, 73, 108].

2.2.2 Shrunk Additive Models

Although SpAM (2-2) has nice properties, it ignores the interactions between features.

Recently, a novel method, called shrunk additive least squares approximation (SALSA), is

proposed in [49] and has shown satisfactory prediction performance.

For any given 1 ≤ k ≤ n and {1, 2, ..., n}, we denote d =
(
n
k

)
as the number of index

subsets with k elements . It is easy to see that d = n as k = 1 and d = n(n−1)
2

as k = 2. Let

x(j) ∈ Rk be a subset of x with k features and denote its corresponding space as X (j).

8



Denote HK(j) as a reproducing kernel Hilbert space (RKHS) [3, 82, 83] associated with

a symmetric and positive definite kernel K(j) : X (j) × X (j) → R, j ∈ {1, ..., d}. The SALSA

is dependent on the hypothesis space with additive kernels, which is defined by:

H =
{ d∑

j=1

f (j) : f (j) ∈ HK(j) , j = 1, 2, ..., d
}
.

Indeed, (H, ‖ · ‖K) also is an RKHS for K =
∑d

j=1 K
(j), where ‖f‖2

K = inf{
∑d

j=1 ‖f (j)‖2
K(j) :

f =
∑d

j=1 f
(j)} [73, 16, 109].

Given training samples z = {(xi, yi)}mi=1, the SALSA in [49] can be formulated as the

following optimization problem:

f̃z = arg min
f=

∑d
j=1 f

(j)∈H

{ 1

n

m∑
i=1

(
yi −

d∑
j=1

f (j)(x
(j)
i )
)2

+η
d∑
j=1

‖f (j)‖2
K(j)

}
, (2-3)

where η > 0 is a regularization parameter.

Remark 6 in [49] tells us that the predictor of SALSA can be expressed as:

f̃z =
d∑
j=1

f̃ (j)
z =

d∑
j=1

m∑
i=1

wiK
(j)(x

(j)
i , ·), wi ∈ R .

It also has been demonstrated that SALSA in (2-3) can be considered as kernel ridge

regression with shrunk features and additive kernels [49]. Despite nice theoretical and empir-

ical analysis, SALSA does not address the sparsity of shrunk features. For high dimensional

data, the sparsity on shrunk features usually is benefit to explore the structure information

among features, which will improve the interpretability of learning model.
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2.2.3 New Sparse Shrunk Additive Models

To improve the sparsity of SALSA, we propose a new algorithm, named as sparse shrunk

additve models (SSAM). Some sparse methods (e.g., Lasso [93] and kernelized Lasso [76])

can be considered as the special cases of our new model. It is interesting that SSAM also is a

natural but nontrivial extension of sparse regularized regression in data dependent hypothesis

spaces [85, 91, 29].

For any given training samples z, we introduce the following data dependent hypothesis

space:

Hz = {f : f(x) =
d∑
j=1

f (j)(x(j)), f (j) ∈ H(j)
z }, (2-4)

where H(j)
z = {f (j) =

∑m
i=1 α

(j)
i K(j)(x

(j)
i , ·) : α

(j)
i ∈ R} and K(j) : X (j) × X (j) → R be

a continuous function satisfying ‖K(j)‖∞ < +∞. Without loss of generality, this paper

assumes ‖K(j)‖∞ ≤ 1 for each 1 ≤ j ≤ d.

The predictor of SSAM can be expressed as

fz =
d∑
j=1

f (j)
z =

d∑
j=1

m∑
t=1

α̂
(j)
t K(j)(x

(j)
t , ·),

where, for 1 ≤ t ≤ m and 1 ≤ j ≤ d,

{α̂(j)
t } = arg min

α
(j)
t ∈R,t,j

{
λ

d∑
j=1

m∑
t=1

|α(j)
t |

+
1

m

m∑
i=1

(
yi −

d∑
j=1

m∑
t=1

α
(j)
t K(j)(x

(j)
t , x

(j)
i )
)2
}
. (2-5)

Let α(j) = (α
(j)
1 , ..., α

(j)
m )T ∈ Rm and K

(j)
i = (K(j)(x

(j)
1 , x

(j)
i ), ..., K(j)(x

(j)
m , x

(j)
i ))T ∈ Rm.

Denote Ki = ((K
(1)
i )T , ..., (K

(d)
i )T )T ∈ Rmd and α = ((α(1))T , ..., (α(d))T )T ∈ Rmd, we can

see
∑d

j=1(K
(j)
i )Tα(j) = KT

i α. Moreover, by denoting Y = (y1, y2, ..., ym)T ∈ Rm and K =

(K1, ...,Km)T ∈ Rm×md, we have

α̂ = arg min
α∈Rmd

{ 1

m
‖Y −Kα‖2

2 + λ‖α‖1

}
. (2-6)
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Moreover, for j ∈ {1, ..., d} and q ∈ {1, 2}, define

‖f (j)‖q`q = inf
{
mq−1

m∑
t=1

|α(j)
t |q :

f (j) =
m∑
t=1

α
(j)
t K(j)(x

(j)
t , ·)

}
and ‖f‖q`q :=

∑d
j=1 ‖f (j)‖q`q for f =

∑d
j=1 f

(j). Then, we can formulate SSAM from the

viewpoint of function approximation as below

fz = arg min
f∈Hz

{ 1

m

m∑
i=1

(yi − f(xi))
2 + λ‖f‖`1

}
. (2-7)

Except the additive structure on Hz, (2-7) is consistent with the sparse kernel machine in

data dependent hypothesis spaces [76, 85].

SSAM can be transformed to other methods by explicit selections on k,K(j). When

k = 1 and K(j)(x(j), x̃(j)) = x(j), our model is equivalent to Lasso [93]. When k = n and

K(j)(x(j), x̃(j)) = K(x, x̃), SSAM can be considered the kernelized Lasso [76].

Different from SALSA [49], our SSAM is based on general kernel, which is not necessary

to be a Mercer kernel. Moreover, our SSAM not only can handle regression prediction by

using the interactions between features, but also can explore the structure of shrunk features

for model selection. The previous SALSA only works for prediction task.

2.2.4 Comparisons With the Related Methods

Now we provide some comparisons for SSAM in (2-5) with the related regularized meth-

ods, including Kernel ridge regression (KRR), Least absolute shrinkage and selection operator

(Lasso) [93], Kernelized Lasso (KLasso) [76, 92], Additive model with kernel regularization

(KAM) [16], Sparse additive models (SpAM) [74], Component selection and smoothing op-

erator (COSSO) [56], and Shrunk additive least squares approximation (SALSA) [49]. A

brief summary is presented in Table 1 to show the algorithmic properties including the

component function, the regularizer on each component, sample/feature sparsity, feature

interaction, and the number of additive components.
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From Table 1, we know that SSAM bridges sparse kernel regression and sparse additive

models. In theory, SSAM not only can exploit the interactions among features for predic-

tion, but also handle the selections on features and samples simultaneously. In particular,

the selection of shrunk features can be used to characterize the structure among features,

which is essentially different from the grouped features under prior knowledge [108]. By

introducing the shrunk features, the proposed SSAM encourages the group features to be

selected simultaneously, while the previous sparse additive models [64, 44] usually select

feature individually.

Indeed, as shown in [4] ,the nonparametric group Lasso can be seen as a variable selection

method in a generalized additive model, and can also be seen as equivalent to learning a

convex combination of kernel, a framework referred to multiple kernel learning (MKL). The

link between the group Lasso and MKL is established in [4] based on the works in [5, 34].

However, there are key deferences between our SSAM and MKL (or group Lasso in [4]):

1) Hypothesis space (continuous and bounded function space VS RKHS). The proposed SSAM

only requires the component functions to be continuous and bounded, which are not nec-

essary to be in reproducing kernel Hilbert spaces (RKHS). That is to say, we consider the

generalized kernel-based hypothesis space [85, 91, 14], which is not necessary to be associated

with positive definite kernel used in [4].

2) Regularization (1-norm with data-dependent hypothesis space VS Hilbert norm with data-

independent RKHS). We use the 1-norm on coefficients, which is different from the Hilbert

norm used in the nonparametric group Lasso [4]. From the function approximation point of

view, we find the prediction function from data dependent hypothesis spaces [85, 91, 14, 29]

with sparsity restriction on samples and features simultaneously (via 1-norm). However, the

nonparametric group Lasso [4] is associated with data independent RKHS and only addresses

the feature sparsity. In addition, the kernel Lasso [76] only focuses on the sample sparsity

since it does not consider the input variable decomposition.

3) Learning theory (Error bound based on integral operator approximation and concentration

estimate with empirical covering numbers VS Consistency based on covariance operator anal-

ysis). According to 1) and 2), the theory analysis for MKL (e.g. [5, 34]) or group Lasso [4]

doesn’t hold true for our approach under mild restriction on component function. As studied
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in [85, 91, 14, 29], the learning theory analysis is much more difficult for data-dependent hy-

pothesis space with generalized kernel. In this paper, we overcame the difficulty of theoretical

analysis by developing and integrating the integral operator approximation [87, 91, 84] and

the concentration estimation with empirical covering numbers [102, 85].

2.3 Theoretical Analysis

We begin this section with some necessary definitions and assumptions used in our anal-

ysis. Let L2
ρX (j)

be a square-integrable function space on X (j) with distribution ρX (j) . For

each j ∈ {1, 2, ..., d} and f ∈ L2
ρX (j)

, define the integral operator LK(j) : L2
ρX (j)

→ L2
ρX (j)

as

LK(j)(f)(x(j)) =

∫
X (j)

K(j)(x(j), u)f(u)dρX (j)(u).

Define K̃(j)(x(j), x̃(j)) =
∫
K(j)(x(j), u)K(j)(x̃(j), u)dρX (j)(u). It has been verified in [91] that

K̃(j) is a Mercer kernel and LK̃(j) = LK(j)LT
K(j) : L2

ρX (j)
→ L2

ρX (j)
is a self-adjoint positive

operator with decreasing eigenvalues {λ(j)
t }∞t=1 and eigenfunctions {ψ(j)

t }∞t=1, where {ψ(j)
t }∞t=1

form an orthonormal basis of L2
ρX (j)

. For given r > 0, define the r-th power Lr
K̃(j) of LK̃(j) by

Lr
K̃(j)(

∑
t

cj,tψ
(j)
t ) =

∑
t

cj,t(λ
(j)
t )rψ

(j)
t ,∀(cj,t)t∈N ∈ `2.

Assumption 1. Assume that fρ =
∑d

j=1 f
(j)
ρ , where for each j ∈ {1, 2, ..., d}, f (j)

ρ : X (j) → R

is a function of the form f
(j)
ρ = Lr

K̃(j)(g
(j)
ρ ) with some r > 0 and g

(j)
ρ ∈ L2

ρX (j)
.

This regularity condition on fρ has been studied for coefficient-based regularized re-

gression with general kernel [91, 84]. For the additive model with Mercer kernel, similar

assumption has been introduced in [16].

We also need the Lipschitz continuous condition on each kernel K(j). The restrictive

condition has been studied extensively in learning theory of kernel methods, e.g., [85, 84].

In particular, the Gaussian kernel satisfies this condition.
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Assumption 2. For each j ∈ {1, 2, ..., d}, the kernel function K(j) : X (j) × X (j) → R is Cs

with some s > 0 satisfying

‖K(j)(u, v)−K(j)(u, v′)‖ ≤ cs‖v − v′‖s2,∀u, v, v′ ∈ X (j)

for some positive constant cs.

From the definition of fρ and Y ∈ [−1, 1], we know that |fρ(x)| ≤ 1 for any x ∈ X .

Thus, we can utilize the following projection operator to get tight error estimate which is a

standard technique in error analysis [18, 90].

Definition 1. The projection operator π is defined on the space of measurable functions

f : X → R as π(f)(x) = max
{
− 1,min{f(x), 1}

}
.

Denote

p =


2k/(k + 2s), if s ∈ (0, 1];

2k/(k + 2), if s ∈ (1, 1 + k/2];

k/s, if s ∈ (1 + k/2,∞).

(2-8)

Our first theoretical result is the upper bound of E(π(fz))− E(fρ).

Theorem 1. Let Assumptions 1 and 2 be true. For any 0 < δ < 1, with confidence 1 − δ,

there exists positive constant c̃1 independent of m, δ such that:

(1) If r ∈ (0, 1
2
) in Assumption 1, setting λ = m−θ1 with θ1 ∈ (0, 2

2+p
),

E(π(fz))− E(fρ) ≤ c̃1 log(8/δ)m−γ1 ,

where γ1 = min
{

2rθ1,
1−θ1+2rθ1

2
, 2

2+p
− (2− 2r)θ1,

2(1−pθ1)
2+p

}
.

(2) If r ≥ 1
2

in Assumption 1, taking λ = m−θ2 with some θ2 ∈ (0, 2
2+p

),

E(π(fz))− E(fρ) ≤ c̃1 log(8/δ)m−γ2 ,

where γ2 = min
{
θ2,

1
2
, 2

2+p
− θ2

}
.
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Theorem 4 provides the upper bound of generalization error to SSAM with Lipshitz

continuous kernel. For r ∈ (0, 1
2
), as s→∞, we have γ1 → min{2rθ1,

1
2

+ (r− 1
2
)θ, 1− 2θ1 +

2rθ1}. Moreover, when r → 1
2

and θ1 → 1
2
, the convergence rate O(m−

1
2 ) can be reached.

For r ≥ 1
2
, taking θ2 = 1

2+p
, we get the convergence rate O(m−

1
2+p ).

The following result is about a special case when f
(j)
ρ ∈ H(j).

Theorem 2. Assume that f
(j)
ρ ∈ H(j) for each 1 ≤ j ≤ d. Take λ = m−

2
2+3p in (2-5). For

any 0 < δ < 1, with confidence 1− δ we have

E(π(fz))− E(fρ) ≤ c̃2 log(1/δ)m−
2

2+3p ,

where c̃2 is a positive constant independent of m, δ, and p is defined in (2-8).

Under the strong condition on fρ, the convergence rate can be arbitrary close to O(m−1)

as s→∞.

Now we summarize the comparisons on the related convergence analysis of additive

models with feature interactions.

• For SALSA in [49], the convergence rate with polynomial decay is also obtained under

mild condition on fρ. Different from our work, the previous analysis is limited to the

Mercer kernel and the error is expressed with the expectation version.

• For the generalized SpAM in [95], theoretical analysis demonstrates its effectiveness to

estimate the underlying component functions, which provides stronger guarantees than

generalization bound. However, the condition on H(j) is much restrictive than SSAM.

• For the fixed design setting, the COSSO estimator in [56] has a convergence rateO(m−
s̃

2s̃+1 ),

where s̃ is the order of smoothness of the components in Sobolev space. It can be seen

from Theorem 5 that the faster learning rate of SSAM can be reached as K ∈ C∞.

In the future, it is natural to extend the current result from uniform boundedness to un-

bounded sampling by the analysis techniques in [90, 99, 39].

Besides the generalization ability, SSAM also advocates the sparsity on features and

samples by employing the `1 regularization. The sparsity of SSAM can be characterized as

below.
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Theorem 3. For t ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., d}, α̂(j)
t = 0 if and only if∣∣∣ 1

m

m∑
i=1

(yi − fz(xi))K(j)(x
(j)
t , x

(j)
i )
∣∣∣ < λ

2
.

Theorem 3 provides a necessary and sufficient condition for the zero pattern of α̂. In

terms of the discussions in [85], Theorem 3 also implies the probabilistic confidence bound

to ensure the sparsity of α̂
(j)
t in (2-5). In particular, for the fixed design setting, the sparsity

recovery may be achieved by adding some conditions [29, 104]. We leave it for future study.

2.4 Proof

The proofs of Theorems 4 and 5 involve a integration of techniques for error analysis

with integral operator approximation [87, 91, 84, 67] and the empirical process theory for

analyzing kernel methods [70, 102, 16]. The proof of Theorem 3 follows the analysis technique

for sparse characterization [85, 92].

2.4.1 Key Error Decomposition

The key to bound E(π(fz)) − E(fρ) is a novel error decomposition, where some inter-

mediate functions are constructed as the stepping stone functions. Then, we bound the

decomposed terms respectively in terms of operator approximation and concentration equal-

ities for empirical processes.

From Proposition 1 in [84], we know that LT
K(j) = UL

1
2

K̃(j) and LK(j) = L
1
2

K̃(j)U
T for each

j ∈ {1, 2, ..., d}, where U is a partial isometry on L2
ρX (j)

with UTU being the orthogonal

prediction onto the RKHS HK̃(j) .

For any j ∈ {1, 2, ..., d}, define the intermediate function f
(j)
λ by

f
(j)
λ = arg min

f∈L2
ρ
X (j)

{
‖LK(j)f (j) − f (j)

ρ ‖2
L2
ρ
X (j)

+λ‖UTf (j)‖2
L2
ρ
X (j)

}
. (2-9)
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Denote fλ =
∑d

j=1 f
(j)
λ and gλ =

∑d
j=1 g

(j)
λ with g

(j)
λ = LK(j)f

(j)
λ .

Define the empirical version of gλ as

ĝλ(x) =
1

m

m∑
i=1

d∑
j=1

f
(j)
λ (x

(j)
i )K(j)(x

(j)
i , x(j)), x ∈ X . (2-10)

Now we give the following error decomposition.

Proposition 1. For fz, ĝλ defined in (2-5) and (2-10), respectively, there holds

E(π(fz))− E(fρ) ≤ E1 + E2 + E3,

where

E1 = E(π(fz))− Ez(π(fz)) + Ez(ĝλ)− E(ĝλ),

E2 = E(ĝλ)− E(gλ) + λ‖ĝλ‖`1

and

E3 = E(gλ)− E(fρ).

Proof. According the definition of fz, we have

E(π(fz))− E(fρ)

≤ E(π(fz))− Ez(π(fz)) + Ez(ĝλ)− E(fρ) + λ‖ĝλ‖`1

+
{
Ez(fz) + λ‖fz‖`1 − (Ez(ĝλ) + λ‖ĝλ‖`1)

}
≤ E(π(fz))− Ez(π(fz)) + Ez(ĝλ)− E(fρ)

+λ‖ĝλ‖`1 . (2-11)

Note that

Ez(ĝλ)− E(fρ) = (E(ĝλ)− E(gλ)) + E(gλ)− E(fρ)

+Ez(ĝλ)− E(ĝλ). (2-12)

Combining both (2-11) and (2-12), we get the desired decomposition.
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The error term E1 measures the divergence between the empirical risk and the corre-

sponding expected risk, which usually is called sample error in learning theory. In terms of

recent theoretical progress for learning with data dependent hypothesis spaces [85, 84, 29], we

can bound sample error E1 via concentration inequality associated with empirical covering

numbers [102, 16].

The error term E2 reflects the drift risk for learning with hypothesis spacesHz andH, and

hence is called as the hypothesis error. By relating E(ĝλ)−E(gλ) with
∑d

j=1 ‖ĝ
(j)
λ −g

(j)
λ ‖L2

ρ
X (j)

,

we can estimate this hypothesis error through the inequality in Hilbert space [70, 87].

2.4.2 Estimate of Approximation Error E3

The error term E3 is called the approximation error, which describes the approximation

ability of regularized scheme. Following the approximation analysis with integral operator

in [87, 84, 67], we derive the upper bound of E2 based on the properties of LK̃(j) , 1 ≤ j ≤ d.

The following lemma is used in our analysis, which is proved in Proposition 2 in [84].

Lemma 1. From the definition of f
(j)
λ and g

(j)
λ = LK(j)f

(j)
λ , j ∈ {1, 2, ..., d}, there are

f
(j)
λ = U(λI + LK̃(j))−1L

1
2

K̃(j)f
(j)
ρ

and

‖f (j)
λ ‖

2
L2
ρ
X (j)

= ‖UTf
(j)
λ ‖

2
L2
ρ
X (j)

.

Lemma 2. Under Assumption 1, there holds

‖LK̃(j)f
(j)
λ − f

(j)
ρ ‖2

L2
ρ
X (j)

+ λ‖f (j)
λ ‖

2
L2
ρ
X (j)

≤ λmin{1,2r}‖g(j)
ρ ‖2

L2
ρ
X (j)

(2 + ‖Lr−
1
2

K̃(j)‖2 + ‖Lr−1

K̃(j)‖2).
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Proof. Recall that {λ(j)
i , ψ

(j)
i }i≥1 are the normalized eigenpairs of the integral operator LK̃(j)

and {ψ}i≥1 form an orthogonal basis of L2
ρX (j)

. Let g
(j)
ρ = L−r

K̃(j)f
(j)
ρ =

∑∞
t=1 atψ

(j)
t . Then

‖g(j)
ρ ‖2

L2
ρ
X (j)

=
∑∞

t=1(a
(j)
t )2 <∞.

If Assumption 1 holds for some r ∈ (0, 1
2
), then from Lemma 9 we have

‖f (j)
λ ‖

2
L2
ρ
X (j)

= ‖UTf
(j)
λ ‖

2
L2
ρ
X (j)

= ‖UTU(λI + LK̃(j))−1L
1
2

K̃(j)f
(j)
ρ ‖2

L2
ρ
X (j)

= ‖(λI + LK̃(j))−1L
1
2

K̃(j)f
(j)
ρ ‖2

L2
ρ
X (j)

= ‖(λI + LK̃(j))−1L
1
2

+r

K̃(j)L
−r
K̃(j)f

(j)
ρ ‖2

L2
ρ
X (j)

Moreover,

λ‖f (j)
λ ‖

2
L2
ρ
X (j)

= λ‖(λI + LK̃(j))−1L
1
2

+r

K̃(j)L
−r
K̃(j)f

(j)
ρ ‖2

L2
ρ
X (j)

= λ
∥∥∥∑
t≥1

(λ
(j)
t )

1
2

+r

λ
(j)
t + λ

a
(j)
t ψ

(j)
t

∥∥∥2

L2
ρ
X (j)

= λ
∑
t≥1

λ
(j)
t

λ
(j)
t + λ

· λ2r
t

λt + λ
(a

(j)
t )2

≤ λ2r
∑
t≥1

λ
(j)
t

λ
(j)
t + λ

(a
(j)
t )2

≤ λ2r‖g(j)
ρ ‖2

L2
ρ
X (j)

, (2-13)

where the first inequality follows from Lemma 1 in [67] and the second inequality is obtained

based on the definition of g
(j)
ρ .

If Assumption 1 is true for some r ≥ 1
2
,

λ‖f (j)
λ ‖

2
L2
ρ
X (j)

= λ‖(λI + LK̃(j))−1LK̃(j)L
r− 1

2

K̃(j)L
−r
K̃(j)f

(j)
ρ ‖2

L2
ρ
X (j)

≤ λ‖Lr−
1
2

K̃(j)‖2 · ‖L−r
K̃(j)f

(j)
ρ ‖2

L2
ρ
X (j)

≤ λ‖Lr−
1
2

K̃(j)‖2 · ‖g(j)
ρ ‖2

L2
ρ
X (j)

. (2-14)
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Now turn to bound ‖g(j)
λ − f

(j)
ρ ‖2

L2
ρ
X (j)

. From Lemma 9, we can deduce that

g
(j)
λ = LK(j)f

(j)
λ = LK̃(j)(λI + LK̃(j))−1f (j)

ρ

= (λI + LK̃(j))−1LK̃(j)f (j)
ρ

and

‖g(j)
λ − f

(j)
ρ ‖2

L2
ρ
X (j)

= λ2‖(λI + LK̃(j))−1f (j)
ρ ‖2

L2
ρ
X (j)

.

For r ∈ (0, 1), we have

λ‖g(j)
λ − f

(j)
ρ ‖2

L2
ρ
X (j)

= λ2‖(λI + LK̃(j))−1Lr
K̃(j)L

−r
K̃(j)f

(j)
ρ ‖2

L2
ρ
X (j)

≤ λ2
∑
t≥1

(a
(j)
t )2

( (λ
(j)
t )r

λ
(j)
t + λ

)2

≤ λ2r‖g(j)
ρ ‖2

L2
ρ
X (j)

. (2-15)

For r ≥ 1, we get

λ‖g(j)
λ − f

(j)
ρ ‖2

L2
ρ
X (j)

= λ2‖(λI + LK̃(j))−1LK̃(j)Lr−1

K̃(j)L
−r
K̃(j)f

(j)
ρ ‖2

L2
ρ
X (j)

≤ λ2‖Lr−1

K̃(j)‖2‖L−r
K̃(j)f

(j)
ρ ‖2

L2
ρ
X (j)

≤ λ2‖Lr−1

K̃(j)‖2‖g(j)
ρ ‖2

L2
ρ
X (j)

. (2-16)

Combining (2-13)-(2-16), we get the desired result.

Lemma 3. For j ∈ {1, 2, ..., d} and g
(j)
λ = LK(j)f

(j)
λ with f

(j)
λ defined in Section 4, there hold

‖f (j)
λ ‖∞ ≤

√
2 + ‖Lr−

1
2

K̃(j)‖2 + ‖Lr−1

K̃(j)‖2

·λmin{− 1
2
,r−1}‖g(j)

ρ ‖L2
ρ
X (j)

and

‖f (j)
λ ‖L2

ρ
X (j)

≤
√

2 + ‖Lr−
1
2

K̃(j)‖2 + ‖Lr−1

K̃(j)‖2

·λmin{0,r− 1
2
}‖g(j)

ρ ‖L2
ρ
X (j)

.
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Proof. Note that

f
(j)
λ = U(λI + LK̃(j))−1L

1
2

K̃(j)f
(j)
ρ

= LTK(j)(λI + LK̃(j))−1f (j)
ρ

and

‖g(j)
λ − f

(j)
ρ ‖L2

ρ
X (j)

= λ‖(λI + LK̃(j))−1f (j)
ρ ‖L2

ρ
X (j)

.

Therefore,

‖f (j)
λ ‖∞ ≤ ‖(λI + LK̃(j))−1f (j)

ρ ‖L2
ρ
X (j)

= λ−1‖LK(j)f
(j)
λ − f

(j)
ρ ‖L2

ρ
X (j)

≤
√

2 + ‖Lr−
1
2

K̃(j)‖2 + ‖Lr−1

K̃(j)‖2

·λmin{− 1
2
,r−1}‖g(j)

ρ ‖L2
ρ
X (j)

.

The second statement follows directly form the result of Lemma 10.

Proposition 2. For gλ =
∑d

j=1 g
(j)
λ =

∑d
j=1 LK̃(j)f

(j)
λ , there holds

E3 ≤ λmin{1,2r}
(

2 + ‖Lr−
1
2

K̃(j)‖2 + ‖Lr−1

K̃(j)‖2
)

·
( d∑
j=1

‖g(j)
ρ ‖L2

ρ
X (j)

)2

.

Proof. Based on Cauchy-Schwarz inequality, we can observe that√
E3 =

(∫
Z

(gλ(x)− fρ(x))2dρ(x, y)
) 1

2

=
(∫
Z

( d∑
j=1

(g
(j)
λ (x(j))− f (j)

ρ (x(j))
)2
dρ(x, y)

) 1
2

≤
d∑
j=1

‖LK̃(j)f
(j)
λ − f

(j)
ρ ‖L2

ρ
X (j)

(2-17)

Lemma 10 tells us that ∀j ∈ {1, 2, ..., d}

‖LK̃(j)f
(j)
λ − f

(j)
ρ ‖L2

ρ
X (j)

≤
√

2 + ‖Lr−
1
2

K̃(j)‖2 + ‖Lr−1

K̃(j)‖2λmin{ 1
2
,r}‖g(j)

ρ ‖L2
ρ
X (j)

.

Combining this estimate with (4-37), we get the desired upper bound on E3.
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2.4.3 Estimate of Hypothesis Error E2

The hypothesis error reflects the divergence between ĝλ and gλ on the expected risk and

regularization. The following inequality from [70, 87] is used to bound the divergence.

Lemma 4. Let H be a Hilbert space. For an independent random variable ξ on Z with

values in H, assume that ‖ξ‖H ≤M <∞ almost surely. For any given independent identical

distributed samples {zi}mi=1 ⊂ Z and any δ ∈ (0, 1), there holds∥∥∥ 1

m

m∑
i=1

ξ(zi)− Eξ
∥∥∥
H

≤ 2M log(2/δ)

m
+

√
2E‖ξ‖2

H log(2/δ)

m

with confidence at least 1− δ/2.

Proposition 3. For any 0 < δ < 1, with confidence 1− δ, we have

E(ĝλ)− E(gλ)

≤ 16
√
cλmin{0,r− 1

2
}
( log(2/δ)

m
+

√
log(2/δ)

m

)
·
( d∑
j=1

‖g(j)
ρ ‖L2

ρ
X (j)

+ (
d∑
j=1

‖g(j)
ρ ‖L2

ρ
X (j)

)2
)

and

E2 ≤ c2

(
λmin{0,r− 1

2
}

√
log(2/δ)

m
+ λmin{ 1

2
,r}
)
,

where c = 2 + ‖Lr−
1
2

K̃(j)‖2 + ‖Lr−1

K̃(j)‖2 and c2 is a positive constant independent of m, δ.
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Proof. From Cauchy-Schwarz inequality, we can see that

E(ĝλ)− E(gλ)

≤
(∫
Z

(2y − ĝλ(x)− gλ(x))2dρ(x, y)
) 1

2

·
(∫
Z

(ĝλ(x)− gλ(x))2dρ(x, y)
) 1

2

≤
(

8 + 2

∫
Z

(ĝλ(x)− gλ(x))2dρ(x, y)
) 1

2

·
(∫
Z

(ĝλ(x)− gλ(x))2dρ(x, y)
) 1

2

≤
(√

8 +
√

2
d∑
j=1

‖ĝ(j)
λ − g

(j)
λ ‖L2

ρ
X (j)

)
·

d∑
j=1

‖ĝ(j)
λ − g

(j)
λ ‖L2

ρ
X (j)

. (2-18)

Denote ξ(j) = f
(j)
λ (x(j))K(x(j), u) for any j ∈ {1, 2, ..., d}. Then, from Lemma 3, we can

deduce that

‖ξ(j)‖L2
ρ
X (j)
≤ ‖f (j)

λ ‖L2
ρ
X (j)
≤
√
cλmin{0,r− 1

2
}‖g(j)

ρ ‖L2
ρ
X (j)

and

E‖ξ(j)‖2
L2
ρ
X (j)

≤ ‖f (j)
λ ‖

2
L2
ρ
X (j)

≤ cλmin{0,2r−1}‖g(j)
ρ ‖2

L2
ρ
X (j)

.

Moreover, for any j ∈ {1, ..., d} and u ∈ X (j),

‖ĝ(j)
λ − g

(j)
λ ‖L2

ρ
X (j)

=
∥∥∥ 1

m

m∑
i=1

ξ
(j)
i − Eξ(j)

∥∥∥
L2
ρ
X (j)

≤
2
√
cλmin{0,r− 1

2
}‖g(j)‖L2

ρ
X (j)

log(2/δ)

m

+λmin{0,r− 1
2
}‖g(j)

ρ ‖L2
ρ
X (j)

√
2c log(2/δ)

m
, (2-19)

where the last inequality is derived from Lemma 4. Then, we obtain the first statement by

combining the estimates (2-18) and (2-19).
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Now consider the upper bound of λ‖ĝλ‖`1 . From the definition of ĝλ, we have

λ‖ĝλ‖`1 ≤ λ

d∑
j=1

‖f (j)
λ ‖∞ ≤

d∑
j=1

‖LK(j)f
(j)
λ − f

(j)
ρ ‖L2

ρ
X (j)

≤
√
cλmin{0,r− 1

2
}

d∑
j=1

‖g(j)‖L2
ρ
X (j)

.

Combining this estimate with the first statement, we derive the desired upper bound of

E2.

2.4.4 Estimate of Sample Error E1

In this paper, the sample error is estimated by the analysis technique associated with

the empirical covering numbers. The empirical covering numbers with `2-metric is denoted

by N2(F , ε) and its detail definition can be founded in [96, 85].

Definition 2. For a function set F and u = (ui)
k
i=1 ∈ X , the metric d2,u is defined by

d2,u(f, g) =

√√√√1

k

k∑
i=1

(f(ui)− g(ui))2, ∀f, g ∈ F .

For every ε > 0, the empirical covering number is defined as N2(F , ε) = supk∈N supu∈Xk N2,u(F , ε),

where

N2,u(F , ε) = inf
{
l ∈ N : ∃{fi}li=1 such that

F ⊂ ∪li=1{f ∈ F : d2,u(f, fi) ≤ ε}
}
.

The following concentration inequality is established in [102].
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Lemma 5. Let F be a measurable function set on Z. Assume that, for any f ∈ F , ‖f‖∞ ≤ B

and E(f 2) ≤ cEf for some positive constants B, c. If for some a > 0 and s ∈ (0, 2),

logN2(F , ε) ≤ aε−p for any ε > 0, then there exists a constant c′p such that for any δ ∈ (0, 1),

∣∣∣Ef − 1

m

m∑
i=1

f(zi)
∣∣∣

≤ 1

2
Ef + c′p max{c

2−p
2+p , B

2−p
2+p}( a

m
)

2
2+p

+
(2c+ 18B) log(1/δ)

m

with confidence at least 1− 2δ.

For any R > 0, denote

B(j)
R =

{
f (j) =

m∑
i=1

α
(j)
i K(j)(u

(j)
i , ·) ∈ H(j) :

‖f (j)‖`1 ≤ R
}

and

BR =
{
f =

d∑
j=1

f (j) : ‖f‖`1 ≤ R
}
,

where

‖f‖`1 = inf
{ d∑

j=1

‖f (j)‖`1 : f =
d∑
j=1

f (j), f (j) ∈ H(j)
}
.

Now we state the estimate on the empirical covering numbers of B1. Similar analysis can

be found in [16] for B1 in reproducing kernel Hilbert spaces.

Lemma 6. For any j ∈ {1, 2, ..., d}, assume that K(j) ∈ Cs for some s > 0. Then,

logN2(B1, ε) ≤ d1+pcpε
−p,

where p is defined in Section 3 and cp is a constant independent of ε.
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Proof. For every j ∈ {1, 2, ..., d} and x(j) ∈ (X (j))S, there exists a set {f (j)
i }

Nj
i=1 with Ni =

N2(B(j)
1 , ε) such that

∀f (j) ∈ B(j)
1 , ∃ ij ∈ {1, 2, ..., Nj}, s.t.,

d2,x(j)(f (j) − f (j)
ij

) ≤ ε.

For f =
∑d

j=1 f
(j) ∈ B1, we know f (j) ∈ B(j)

1 . For every x = (x`)
S
`=1 ∈ X S, we have

x(j) = (x
(j)
` )S`=1 ∈ (X (j))S, j ∈ {1, 2, ..., d}. Let f̃ =

∑d
j=1 f

(j)
ij

. Then

d2,x(f, f̃)

=
{ 1

S

S∑
`=1

(f(x`)− f̃(x`))
2
} 1

2

=
{ 1

S

S∑
`=1

(
d∑
j=1

f (j)(x
(j)
` )−

d∑
j=1

f̃
(j)
ij

(x
(j)
` ))2

} 1
2

≤
d∑
j=1

{ 1

S

S∑
l=1

(f (j)(x
(j)
` )− f̃ (j)

ij
(x

(j)
` ))2

} 1
2

≤
d∑
j=1

d2,x(j)(f (j) − f (j)
ij

)

≤ dε.

Therefore,

logN2(B1, dε) ≤
d∑
j=1

logN2(B(j)
1 , dε).

According to Theorem 2 in [85] (also see Lemmas 2 and 3 in [84]) and considering

‖f (j)‖`1 ≤
√
m‖f (j)‖2

`2
, we further get

logN2(B1, dε) ≤ dcpε
−p.

Setting ε̃ = dε, we get the desired result.
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Proposition 4. Under Assumptions 1 and 2, for any δ ∈ (0, 1), there holds

E1 ≤
1

2
(E(π(fz))− E(fρ)) +

1

2
(E(ĝλ)− E(gλ))

+E3 + C1 log(2/δ)
(
λ−

2p
2+pm−

2
2+p

+λmin{−1,2r−2}m−
2

2+p +m−1
)

with confidence 1− δ, where C1 is a positive constant independent m,λ, δ, and p is defined

in Section 3.

Proof. The sample error E1 can be decomposed as

E11 = E(π(fz))− E(fρ)− (Ez(π(fz))− Ez(fρ))

and

E12 = Ez(ĝλ)− Ez(fρ)− (E(ĝλ)− E(fρ)).

In the sequel, we will bound E11 and E12 respectively.

Denote

GR = {g(z) = (y − π(f)(x))2 − (y − fρ(x))2 : f ∈ BR}.

For any g ∈ GR, we can deduce that |g(z)| ≤ 8 and Eg2 ≤ 16Eg. Let g1, g2 ∈ GR associated

with f1, f2 respectively. It can be seen that

|g1(z)− g2(z)| ≤ 4|π(f1)(x)− π(f2)(x)|

≤ 4|f1(x)− f2(x)|.

This means

logN2(GR, ε) ≤ logN2(BR,
ε

4
) ≤ logN2(B1,

ε

4R
)

≤ cpd
1+p(4R)pε−p,

where the last inequality follows form Lemma 6.
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Applying Lemma 5 to GR, we have with confidence 1− δ
2

Eg − 1

m

m∑
i=1

g(zi) ≤
1

2
(E(π(f))− E(fρ))

+c̃1(R
2p
2+pm−

2
2+p +m−1 log(2/δ)),∀g ∈ GR,

where c̃1 is a constant independent of m, δ.

From the definition of fz in Section 2, we know fz ∈ BR with R = λ−1. Then

E11 ≤
1

2
(E(π(fz))− E(fρ))

+c̃1(λ−
2p
2+pm−

2
2+p +m−1 log(1/δ)) (2-20)

with confidence 1− δ
2
.

Now we turn to bound E12. Denote

Ĝ =
{
ĝ =

d∑
j=1

ĝ
(j)
λ : ĝ

(j)
λ =

1

m

m∑
i=1

f
(j)
λ (v

(j)
i )K(v

(j)
i , ·)

}
and

Ĥ =
{
h : h(z) = (y − ĝ(x))2 − (y − fρ(x))2, ĝ ∈ Ĝ

}
.

We can verify that

‖h‖∞ = sup |2y − ĝ(x)− fρ(x)| · |ĝ(x)− fρ(x)|

≤ (3 +
d∑
j=1

‖f (j)
λ ‖∞)2

and

Eh2 ≤ (3 +
d∑
j=1

‖f (j)
λ ‖∞)2Eh.

For any given ĝ1, ĝ2 ∈ Ĥ, the corresponding h1, h2 ∈ Ĥ satisfy

|h1(z)− h2(z)| ≤ 2(1 +
d∑
j=1

‖f (j)
λ ‖∞)|ĝ1(x)− ĝ2(x)|.
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Then, from Lemma 6 and ĝ ∈ BR with R =
∑d

j=1 ‖f
(j)
λ ‖∞, we have

logN2(Ĥ, ε)

≤ logN2

(
Ĝ, ε

2(1 +
∑d

j=1 ‖f
(j)
λ ‖∞)

)
≤ logN2

(
B1,

ε

2
∑d

j=1 ‖f
(j)
λ ‖∞(1 +

∑d
j=1 ‖f

(j)
λ ‖∞)

)
≤ cpd

1+p2p(
d∑
j=1

‖f (j)
λ ‖∞ +

d∑
j=1

‖f (j)
λ ‖

2
∞)pε−p.

Applying Lemma 5 to Ĥ, with confidence 1− δ
2

we have

E12 =
m∑
i=1

h(zi)− Eh ≤
1

2
(E(ĝλ)− E(fρ))

+c̃2‖fλ‖2
∞(m−

2
2+p +m−1 log(2/δ))

≤ 1

2
(E(ĝλ)− E(gλ) + E3)

+dc̃′2λ
min{−1,2r−2}(m−

2
2+p +m−1 log(2/δ)),

where the last inequality follows from Lemma 3 and c̃2, c̃
′
2 are some positive constants.

Combining this with the estimates of E11 in (2-20), we get the upper bound on E1.

2.4.5 Proof of Theorem 1

Proof. Combining Propositions 1-4, we have with confidence 1− 4δ

E(π(fz))− E(fρ)

≤ C log(2/δ)(λmin{1,2r} + λmin{0,r− 1
2
}m−

1
2

+λmin{−1,2r−2}m−
2

2+p + λ−
2p
2+pm−

2
2+p ).

When r ∈ (0, 1
2
), by setting λ = m−θ1 with 0 < θ1 < min{1

p
, 1

(2+p)(1−r)}, we get with

confidence 1− 4δ

E(π(fz))− E(fρ) ≤ 4C log(2/δ)m−γ1 ,

where γ1 = min
{

2rθ1,
1
2

+ (r − 1
2
)θ1,

2
2+p
− (2− 2r)θ1,

2
2+p
− 2pθ1

2+p

}
.
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When r ≥ 1
2
, taking λ = m−θ2 with some 0 < θ2 < min{1

p
, 2

2+p
}, we have with confidence

1− 4δ

E(π(fz))− E(fρ) ≤ 4C log(2/δ)m−γ2 ,

where

γ2 = min
{
θ2,

1

2
,

2

2 + p
− θ2,

2

2 + p
− 2pθ2

2 + p

}
,

This completes the proof.

2.4.6 Proof of Theorem 2

Theorem 2 is dependent on much stronger conditions on fρ than Theorem 1. The proof

can be obtained directly by the estimate of E11 in Proposition 4.

Proof. Since f
(j)
ρ ∈ H(j) for each j ∈ {1, 2, ..., d}, we know that fρ ∈ H. Then,

E(π(fz))− E(fρ)

≤ E(π(fz))− Ez(π(fz))

+{Ez(fz) + λ‖fz‖`1 − (Ez(fρ) + λ‖fρ‖`1)}

≤ E(π(fz))− E(fρ)− (Ez(π(fz))− Ez(fρ)) + λ‖fρ‖`1

= E11 + λ‖fρ‖`1 .

From the estimate of E11 in (2-20), with confidence 1− δ we have

E(π(fz))− E(fρ) ≤ c̄ log(1/δ)(λ−
2p
2+pm−

2
2+p + λ),

where c̄ is a positive constant independent of m,λ.

Taking λ such that λ−
2p
2+pm−

2
2+p = λ, we get the desired result.
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2.4.7 Proof of Theorem 3

Proof. Denote α = (α
(j)
t )t,j ∈ Rmd, where t ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., d}. Define

G(α) =
1

m

m∑
i=1

(
yi −

d∑
j=1

m∑
t=1

α
(j)
t K(j)(x

(j)
t , x

(j)
i )
)2

+λ
d∑
j=1

m∑
t=1

|α(j)
t |.

Recall that fz =
∑d

j=1

∑m
t=1 α̂

(j)
t K(j)(x

(j)
t , ·) and α̂ = (α̂

(j)
t )t,j is the maximizer of G(α).

Let I+ = {(t, j) : α̂
(j)
t > 0}, I− = {(t, j) : α̂

(j)
t < 0}, and I0 = {(t, j) : α̂

(j)
t = 0}.

For (t, j) ∈ I+, we get

∂G(α)

∂α
(j)
t

∣∣∣
α=α̂

= − 2

m

m∑
i=1

(yi − fz(xi))K(j)(x
(j)
t , x

(j)
i ) + λ

= 0

This means

1

m

m∑
i=1

(yi − fz(xi))K(j)(x
(j)
t , x

(j)
i ) =

λ

2
.

Similarly, for (t, j) ∈ I−, there exists

1

m

m∑
i=1

(yi − fz(xi))K(j)(x
(j)
t , x

(j)
i ) = −λ

2
.

For (t, j) ∈ I0, there holds

− 2

m

m∑
i=1

(yi − fz(xi))K(j)(x
(j)
t , x

(j)
i )− λ ≤ ∂G(α)

∂α
(j)
t

∣∣∣
α=α̂

≤ − 2

m

m∑
i=1

(yi − fz(xi))K(j)(x
(j)
t , x

(j)
i ) + λ.

This means, for any (t, j) ∈ I0,∣∣∣ 1

m

m∑
i=1

(yi − fz(xi))K(j)(x
(j)
t , x

(j)
i )
∣∣∣ < λ

2
.

This completes the proof.
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2.5 Experimental Results

This section shows the empirical evaluation of SSAM. We first introduce the experimental

setups following [49], and then validate SSAM’s ability for feature selection and regression

prediction.

We consider SSAM for pairwise interaction setting, and set k = 2, d =
(
n
2

)
. Simi-

lar with [49], each kernel on X (j) is generated from Gaussian kernel. For example, when

x
(j)
s = (xs1, xs2) and x

(j)
t = (xt1, xt2), the shrunk kernel K(j)(x

(j)
s , x

(j)
t ) = exp{− (xs1−xt1)2

2µ21
} ·

exp{− (xs2−xt21)2

2µ22
}, where µi = 4.5σim

− 1
10 and σi is the standard deviation on i-th coordina-

tion. The regularization parameter λ is chosen via five-fold cross validation with respect to

the mean square error (MSE).

We implement our SSAM method via accelerated proximal gradient methods [65] to get

the coefficient vector α̂. For sparse representation and feature selection, we compute
m∑
t=1

α̂
(j)
t

on the j-th pairwise features, and then select the informative shrunk features. For synthetic

data, we compare our model with COSSO [56] to validate our motivation for feature selection.

For real-word benchmark data, we compare MSE of SSAM with SALSA [49], COSSO [56],

SpAM [74], and Lasso [93].

2.5.1 Experiments With Synthetic Data

Following the ideas in [56, 108], we use two different types of data to evaluate the model

selection ability of SSAM. The first type of synthetic data has at most one informative

pairwise features and the second one has at least two pairwise features. Since SALSA

does not concern the selection of shrunk features, we compare the performance SSAM with

COSSO [56]. As shown in Table 1, COSSO is based on component functions on both single

and pairwise input features.

Generate synthetic data: We generate the n-dimensional input xi = (xi1, xi2, ..., xin)T

with xij =
Wij+ηUi

1+η
and n = 10, where W and U are sampled from independent uniform

distributions defined in [−0.5, 0.5]. Parameter η controls the magnitude of correlation. Inputs

are independent if η = 0 and correlated if η = 1.
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Table 2: Precision@τ for Feature Selection

(a) Synthetic Data I

f ∗ (m,n, η) τ SSAM COSSO

4 3.88 3.69

5 3.92 3.81(100,10,0)

6 3.93 3.85

4 3.37 2.58

5 3.68 2.80

a

(100,10,1)

6 3.82 2.91

1 0.97 1

2 0.97 1(100,10,0)

3 0.97 1

1 0.95 0.62

2 0.95 0.65

b

(100,10,1)

3 0.98 0.68

4 3.94 0.63

5 3.97 0.68(100,10,0)

6 3.97 0.75

4 3.69 0.84

5 3.87 0.91

c

(100,10,1)

6 3.92 0.94

(b) Synthetic Data II

f ∗ (m,n, η) τ SSAM COSSO

2 1.05 0.73

3 1.13 0.90(100,10,0)

4 1.20 0.90

2 1.04 0.13

3 1.10 0.16

e

(100,10,1)

4 1.12 0.20

2 0.72 0.88

3 0.93 1(100,10,0)

4 1.23 1

2 1.90 0.94

3 1.94 0.94

f

(100,10,1)

4 1.95 0.97

3 2.94 2.98

4 2.94 2.98(100,10,0)

5 2.94 3

3 2.85 2.14

4 2.85 2.40

g

(100,10,1)

5 2.85 2.49

Example set I: We apply SSAM with 100 training samples on three underlying functions

(a. simple additive model, b. simple pairwise interaction model, c. multi-ways interaction
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model). For xt = (xt1, xt2, ..., xtn)T ,

a. f ∗(xt) = xt1 + xt2 + xt3 + exp(−xt4)

b. f ∗(xt) = (2xt1 − 1)(2xt2 − 1)

c. f ∗(xt) = (2sin(xt1)− 1)(2sin(xt2)− 1)

·(2sin(xt3)− 1)(2sin(xt4)− 1)

Example set II: We also apply SSAM with 100 training samples on much complicated

interaction models (e. overlapped pairwise interaction, f . independent pairwise interaction,

g. circle related pairwise interaction):

e. f ∗(xt) = (2sin(xt1)−1)(2sin(xt2)−1)

+sin(xt1)sin(xt3),

f. f ∗(xt) = 2exp(xt1+xt2+0.2)+2exp−1(xt3+xt4),

g. f ∗(xt) = (2xt1−1)(2xt2−1)+(2xt2−1)(2xt3−1)

+(2xt1−1)(2xt3−1).

The final output is y = f ∗(x) + ε, where ε ∼ N (0, 0.25). For each example, we make

feature selection according to the values of
100∑
t=1

α̂
(j)
t for j ∈ {1, ..., 45}. The Precision@τ is

used to measure the performance of feature selection, which describes the number of truly

informative features in the top-τ selected results. Tables 2(a) and 2(b) provide the average

results on Precision@τ after repeating 100 times. In most cases, SSAM performs better

than COSSO for feature selection. Especially, SSAM behaves more stable than COSSO in

complicated models (e.g. c, g) and dependent features.
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Table 3: Average MSE on Real Data.

SSAM SALSA COSSO SpAM Lasso

Insulin 1.0146 1.0206 1.1379 1.2035 1.1103

Skillcraft 0.5432 0.5470 0.5551 0.90545 0.6650

Airfoil 0.4866 0.5176 0.5178 0.9623 0.5199

Forestfire 0.3477 0.3530 0.3753 0.9694 0.5193

Housing 0.3787 0.2642 1.3097 0.8165 0.4452

CCPP 0.0694 0.0678 0.9684 0.0647 0.0740

Music 0.6295 0.6251 0.7982 0.7683 0.6349

Telemonit 0.0689 0.0347 5.7192 0.8643 0.0863

2.5.2 Experiments With Real-world Benchmark Data

We compare the prediction performance of SSAM with the most related additive models,

where eight data sets are used under the same experimental setups in [49]. The data sets from

UCI repository (http://archive.ics.uci.edu/ml) and [94], which include Insulin (n = 50,m =

256), Skillcraft (n = 18,m = 1700), Airfoil (n = 40,m = 750), Forestfire (n = 10,m = 211),

Housing (n = 12,m = 256), CCPP (n = 59,m = 2000), Music (n = 90,m = 1000),

Telemonit (n = 19,m = 1000). As shown in Table 3, on all eight benchmark datasets,

our SSAM has best results on four of them, second best results on three of the rest, and

third best result on the rest one. Experimental results show that our SSAM has comparable

performance with SALSA, even if only pairwise interaction features are used.As shown in

[49], SALSA has shown competitive performance with many nonparametric models and

parametric models (but SALSA cannot do feature selection). Therefore, SSAM is effective

for regression prediction besides its capacity for sparse feature selection.
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Table 4: Precision@τ for Feature Selection

f ∗ (m,n, η) τ SSAM

4 3.95

5 4.00(20000,10,0)

6 4.00

4 3.90

5 3.90

a

(20000,10,1)

6 4.00

4 3.90

5 4.00(20000,10,0)

6 4.00

4 3.70

5 4.00

c

(20000,10,1)

6 4.00

3 2.90

4 2.95(20000,10,0)

5 3.00

3 2.85

4 2.85

g

(20000,10,1)

5 3.00

2.5.3 More Experimental Results

According to the reviewer comments of scalability, we did new experiments on simulated

data for the high dimensional setting (20,000 samples and other settings remain the same).

The average results (with 20 repeats) in Table 4 demonstrate that SSAM scales well in high

dimensional setting.

One reviewer suggested us to compare with more methods beside COSSO. We added new
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Table 5: Average MSE on Real Data.

SSAM RMR

Insulin 1.0146 1.0198

Skillcraft 0.5432 0.6486

Airfoil 0.4866 0.5314

Forestfire 0.3477 0.3765

Housing 0.3787 0.4375

CCPP 0.0694 0.0667

Music 0.6295 0.6210

Telemonit 0.0689 0.0824

comparison results on simulated data with SpAM and the other new method RMR [100] in

Table 6 7. The new results also verify the effectiveness of the proposed method.

In addition, we added new experimental results on real data with RMR in Table 5, This

results also show the proposed method is better.

2.5.4 Conclusion

In this paper, we proposed a uniform scheme for nonlinear feature and sample selections

under additive models. Learning theory analysis has been provided to demonstrate the

convergence and sparsity properties of SSAM, where involves novel analysis technique with

integral operator and concentration estimation. Experiments on both synthetic and real-

world datasets support the effectiveness of our new model.
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Table 6: Precision@τ for Feature Selection

f ∗ (m,n, η) τ SSAM SpAM RMR

4 3.88 3.85 3.81

5 3.92 3.90 3.95(100,10,0)

6 3.93 3.97 3.97

4 3.37 3.50 2.64

5 3.68 3.61 3.02

a

(100,10,1)

6 3.82 4.00 3.06

1 0.97 0.94 1.00

2 0.97 1.00 2.00(100,10,0)

3 0.97 1.00 2.00

1 0.95 0.94 0.91

2 0.95 1.00 0.91

b

(100,10,1)

3 0.98 1.00 0.98

4 3.94 3.93 3.55

5 3.97 3.96 3.71(100,10,0)

6 3.97 3.98 3.81

4 3.69 3.54 2.82

5 3.87 3.83 3.20

c

(100,10,1)

6 3.92 3.40 3.46

Synthetic Data I.
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Table 7: Precision@τ for Feature Selection

f ∗ (m,n, η) τ SSAM SpAM RMR

2 1.05 1.00 1.67

3 1.13 1.17 1.96(100,10,0)

4 1.20 1.19 2.13

2 1.04 1.00 1.26

3 1.10 1.13 1.64

e

(100,10,1)

4 1.12 1.30 2.97

2 0.72 0.89 1.83

3 0.93 1.00 2.37(100,10,0)

4 1.23 1.00 2.97

2 1.90 2.00 1.13

3 1.94 2.00 1.66

f

(100,10,1)

4 1.95 2.00 1.93

3 2.94 2.90 3.00

4 2.94 2.98 3.00(100,10,0)

5 2.94 3.00 3.00

3 2.85 2.80 2.50

4 2.85 2.82 2.72

g

(100,10,1)

5 2.85 3.00 2.84

Synthetic Data II.
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3.0 Optimizing Large-Scale Hyperparameters via Automated Learning

Algorithm

Modern machine learning algorithms usually involve tuning multiple (from one to thou-

sands) hyperparameters which play a pivotal role in terms of model generalizability. Black-

box optimization and gradient-based algorithms are two dominant approaches to hyperpa-

rameter optimization while they have totally distinct advantages. How to design a new

hyperparameter optimization technique inheriting all benefits from both approaches is still

an open problem. To address this challenging problem, in this paper, we propose a new

hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG). Specif-

ically, we first exactly formulate hyperparameter optimization as an A-based constrained

optimization problem, where A is a black-box optimization algorithm (such as deep neural

network). Then, we use the average zeroth-order hyper-gradients to update hyperparameters.

We provide the feasibility analysis of using HOZOG to achieve hyperparameter optimiza-

tion. Finally, the experimental results on three representative hyperparameter (the size is

from 1 to 1250) optimization tasks demonstrate the benefits of HOZOG in terms of sim-

plicity, scalability, flexibility, effectiveness and efficiency compared with the state-of-the-art

hyperparameter optimization methods.

3.1 Introduction

Modern machine learning algorithms usually involve tuning multiple hyperparameters

whose size could be from one to thousands. For example, support vector machines [97] have

the regularization parameter and kernel hyperparameter, deep neural networks [51] have the

optimization hyperparameters (e.g., learning rate schedules and momentum) and regulariza-

tion hyperparameters (e.g., weight decay and dropout rates). The performance of the most

prominent algorithms strongly depends on the appropriate setting of these hyperparameters.

Traditional hyperparameter tuning is a bi-level optimization problem as follows.
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min
λ∈Rp

f(λ) = E(w(λ), λ), s.t. w(λ) ∈ arg minw∈RdL(w, λ) (3-21)

where w ∈ Rd are the model parameters, λ ∈ Rp are the hyperparameters, the outer ob-

jective E 1 represents a proxy of the generalization error w.r.t. the hyperparameters, the

inner objective L represents traditional learning problems (such as regularized empirical risk

minimization problems), and w(λ) are the optimal model parameters of the inner objective

L for the fixed hyperparameters λ. Note that the size of hyperparameters is normally much

smaller than the one of model parameters (i.e., p� d). Choosing appropriate values of hy-

perparameters is extremely computationally challenging due to the nested structure involved

in the optimization problem. However, at the same time both researchers and practitioners

desire the hyperparameter optimization methods as effective, efficient, scalable, simple and

flexible2 as possible.

Classic techniques such as grid search [37] and random search [7] have a very restricted

application in modern hyperparameter optimization tasks, because they only can manage

a very small number of hyperparameters and cannot guarantee to converge to local/global

minima. For modern hyperparameter tuning tasks, black-box optimization [88, 24] and

gradient-based algorithms [62, 31, 30] are currently the dominant approaches due to the

advantages in terms of effectiveness, efficiency, scalability, simplicity and flexibility which

are abbreviated as E2S2F in this paper. We provide a brief review of representative black-

box optimization and gradient-based hyperparameter optimization algorithms in §3.2.1, and

a detailed comparison of them in terms of the above properties in Table 8.

Table 8 clearly shows that black-box optimization and gradient-based approaches have

totally distinct advantages, i.e., black-box optimization approach is simple, flexible and

salable in term of model parameters, while gradient-based approach is effective, efficient and

scalable in term of hyperparmeters. Each property of E2S2F is an important criterion to a

successful hyperparameter optimization method. To the best of our knowledge, there is still

1The choice of objective function E depends on the specified tasks. For example, accuracy, AUC or F1
can be used for binary classification problem. Square error loss or absolute error loss can be used as the
objective of E for regression problems on validation samples.

2“effective”: good generalization performance. “efficient”: running fast. “scalable”: scalable in terms of
the sizes of hyperparameters and model parameters. “simple”: easy to be implemented. “flexible”: flexible
to various learning algorithms.
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Table 8: Representative Black-box Optimization and Gradient-Based Hyperparameter Op-

timization Algorithms.

Algorithm Type
Properties

Effective Efficient Scalable-H Simple Flexible Scalable-P

GPBO [88] BB ♣ ♣ 7 X X X
BOHB [24] BB ♣ ♣ 7 X X X
HOAG [69] G X X X 7 7 7

RMD [62] G X X X 7 7 7

RFHO [30, 31] G X X X 7 7 7

HOZOG BB+G X X X X X X

no algorithm satisfying all the five properties simultaneously. Designing a hyperparameter

optimization method having the benefits of both approaches is still an open problem.

To address this challenging problem, in this paper, we propose a new hyperparameter op-

timization method with zeroth-order hyper-gradients (HOZOG). Specifically, we first exactly

formulate hyperparameter optimization as an A-based constrained optimization problem,

where A is a black-box optimization algorithm (such as the deep neural network). Then,

we use the average zeroth-order hyper-gradients to update hyperparameters. We provide

the feasibility analysis of using HOZOG to achieve hyperparameter optimization. Finally,

the experimental results of various hyperparameter (the size is from 1 to 1250) optimiza-

tion problems demonstrate the benefits of HOZOG in terms of E2S2F compared with the

state-of-the-art hyperparameter optimization methods.

3.2 Hyperparameter Optimization Based on Zeroth-Order Hyper-Gradients

In this section, we first give a brief review of black-box optimization and gradient-based

algorithms, and then provide our HOZOG algorithm. Finally, we provide the feasibility

analysis of HOZOG.
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3.2.1 Brief Review of Black-Box Optimization and Gradient-based Algorithms

3.2.1.1 Black-box Optimization Algorithms

Black-box optimization algorithms view the bilevel optimization problem f as a black-

box function. Existing black-box optimization methods [88, 24] mainly employ Bayesian

optimization [10] to solve (3-21). Black-box optimization approach has good simplicity and

flexibility. However, a lot of references have pointed out that it can only handle hyperparme-

ters from a few to several dozens [24] while the number of hyperparmeters in real hyperpa-

rameter optimization problems would range from hundreds to thousands. Thus, black-box

optimization approach has weak scalability in term of the size of of hyperparmeters.

3.2.1.2 Gradient-based Algorithms

The existing gradient-based algorithms can be divided into two parts (i.e., inexact

gradients and exact gradients). The approach of inexact gradients first solves the inner

problem approximately, and then estimates the gradient of (3-21) based on the approximate

solution by the approach of implicit differentiation [69]. Because the implicit differentiation

involves Hessian matrices of sizes of d× d and d× p where p� d, they have poor scalability.

The approach of exact gradients3 treats the inner level problem as a dynamic system, and

use chain rule [79] to compute the gradient. Because the chain rule highly depends on

specific learning algorithms, this approach has poor flexibility and simplicity. Computing

the gradients involves Hessian matrices of sizes of p×p and d×p. Thus, the approach of exact

gradients has better scalability than the approach of inexact gradients because normally we

have p� d.

3.2.1.3 Enlightenment

As introduced in [66, 36], zeroth-order gradient (also known as finite difference approx-

imation [19]) technique is a black-box optimization method which estimates the gradient

3Although the inner-problem is usually solved approximately e.g. by taking a finite number of steps of
gradient descent, we still call this kind of methods as exact gradients throughout this paper to avoid using
too complex terminology.
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only by two function evaluations. Thus, zeroth-order gradient technique belongs both to

black-box optimization and gradient-based optimization. We hope that the hyperparame-

ter optimization method bases on zeroth-order hyper-gradients4 can inherit all benefits as

described in Table 8.

3.2.2 HOZOG Algorithm

I Principle: Instead of directly computing the hyper-gradient as in [69, 62, 30, 31],

we use two function evaluations (i.e., the zeroth-order hyper-gradient technique [66, 36])

to estimate the hyper-gradient, and update hyperparameters with hyper-gradients which

derives our HOZOG algorithm.

Before presenting HOZOG algorithm in detail, we first clarify what problem we are

solving exactly.

I What problem we are solving exactly? As mentioned in (3-21), the inner level

problem in the traditional hyperparameter tuning is finding the model parameters that

minimize the inner objective L, (i.e., w(λ) ∈ arg minw∈RdL(w, λ)). However, in the real-world

hyperparameter tuning problems, we are usually trying to find an approximate minimum

solution of L by an optimization algorithm if the inner level problem L in convex. If the

inner level problem L in non-convex, we usually try to find an approximate local solution

or a stationary point. Thus, we replace the inner level problem by w(λ) = A(λ) where A

is an optimization algorithm which approximately solves the inner objective L. Further,

we replace the bi-level optimization problem (3-21) by the following A-based constrained

optimization problem (3-22).

min
λ∈Rp

f(λ) = E(w(λ), λ), s.t. w(λ) = A(λ) (3-22)

where w(λ) are the values returned by the optimization algorithm A.

• Hyperparameters : Hyperparameters can be divided into two types, i.e., problem-based

hyperparameters and algorithm-based hyperparameters.

4We call the gradient w.r.t. hyperparameter as hyper-gradient in this paper.
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1. Problem-based hyperparameters: The problem-based hyperparameters are the hyper-

parameters involved in learning problems such as the regularization parameter and the

architectural hyperparameters in deep neural networks.

2. Algorithm-based hyperparameters: These are the hyperparameters involved in optimiza-

tion algorithms such as the learning rate, momentum and dropout rates.

The traditional bi-level optimization problem (3-21) can only formulate the problem-based

hyperparameters. However, our A-based constrained optimization problem (3-22) can for-

mulate both types of hyperparameters.

I Algorithm: To solve the A-based constrained optimization problem (3-22), we propose

HOZOG algorithm in Algorithm 1, where the “for” loop is referred to as “meta-iteration”.

We describe the two key operations of Algorithm 1 (i.e., estimating the function value and

average zeroth-order hyper-gradient) in detail as follows.

• Estimating the function value: We treat the optimization algorithm A as a black-box

oracle. Given hyperparameters λ, the black-box oracle A returns model parameters w(λ).

Based on the pair of λ and w(λ), the function value can be estimated as E(w(λ), λ).

• Computing the average zeroth-order hyper-gradient : Zeroth-order hyper-gradient can be

computed as ∇̄f(λ) = p
µ

(f(λ+ µu)− f(λ))u based on the two function evaluations f(λ +

µu) and f(λ), where u ∼ N(0, Ip) is a random direction drawn from a uniform distribution

over a unit sphere, and µ is an approximate parameter. ∇̄f(λ) has a large variance due to

single direction u. To reduce the variance, we use the average zeroth-order hyper-gradient

(3-23) by sampling a set of directions {ui}qi=1.

∇̂f(λ) =
p

µq

q∑
i=1

(f(λ+ µui)− f(λ))ui (3-23)

Based on the average zeroth-order hyper-gradient ∇̂f(λ), we update the hyperparameters

as follows.

λ← λ− γ∇̂f(λ) (3-24)

Note that ∇̂f(λ) is a biased approximation to the true gradient ∇f(λ). Its bias can be

reduced by decreasing the value of µ. However, in a practical system, µ could not be too
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Algorithm 1 Hyperparameter Optimization Method With Zeroth-order Hyper-gradients

(HOZOG)

Input: Learning rate γ, approximate parameter µ, size of directions q and black-box inner

solver A.

1: Initialize λ0 ∈ Rp.

2: for t = 0, 1, 2, . . . , T − 1 do

3: Generate u = [u1, . . . , uq], where ui ∼ N(0; Ip).

4: Compute the average zeroth-order hyper-gradient ∇̂f(λt) =

p
µq

∑q
i=1 (f(λt + µui)− f(λt))ui, where f(λt) is estimated based on the solution

returned by the black-box inner solver A.

5: Update λt+1 ← λt − γ∇̂f(λt).

6: end for

Output: λT .

small, because in that case the function difference could be dominated by the system noise

(or error) and fails to represent the function differential [55].

• Parallel acceleration. Because the average zeroth-order hyper-gradient involves q + 1

function evaluations as shown in (3-23), we can use GPU or multiple cores to compute the

q + 1 function evaluations in parallel to accelerate the computation of average zeroth-order

hyper-gradients.

3.2.3 Feasibility Analysis

I Challenge: In treating the optimization algorithm A(λ) as a black-box oracle that maps

λ to w, the most important problem is whether the mapping function A(λ) is continuous

which is the basis of using the zeroth-order hyper-gradient technique to optimize (3-22).

• Continuity: Before discussing the continuity of the A-based constrained optimization

problem f(λ), we first give the definitions of iterative algorithm and continuous function in

Definitions 3 and 4 respectively.

Definition 3 (Iterative algorithm). Assume the optimization algorithm A(λ) can be for-

mulated as a nested function as A(λ) = wT and wt = Φt(wt−1, λ) for t = 1, . . . , T , where
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T is the number of iterations, w0 is an initial solution, and, for every t ∈ {1, . . . , T},

Φt : (Rd × Rp) → Rd is a mapping function that represents the operation performed by

the t-th step of the optimization algorithm. We call the optimization algorithm A(λ) as an

iterative algorithm.

Definition 4 (Continuous function). For all λ ∈ Rp, if the limit of f(λ + δ) as δ ∈ Rp

approaches 0 exists and is equal to f(λ), we call the function f(λ) is continuous everywhere.

Based on Definitions 3 and 4, we give Theorem 4 to show that the A-based constrained

optimization problem f(λ) is continuous under mild assumptions. The proof is provided in

Appendix.

Theorem 4. If the hyperparameters λ are continuous and the mapping functions Φt(wt−1, λ)

(for every t ∈ {1, . . . , T}) are continuous, the mapping function A(λ) is continuous, and the

outer objective E is continuous, we have that the A-based constrained optimization problem

f(λ) is continuous w.r.t. λ.

We provide several popular types of optimization algorithms to show that almost existing

iterative algorithms are continuous mapping functions which would make f(λ) continious.

1. Gradient descent algorithms: If A is a gradient descent algorithm (such as SGD

[32], SVRG [75, 2], SAGA [20], SPIDER [25]), the updating rules can be formulated as

w ← w−γ′v, where v is a stochastic or deterministic gradient estimated by the current w,

and γ′ is the learning rate. To accelerate the training of deep neural networks, multiple

adaptive variants of SGD (e.g., Adagrad, RMSProp and Adam [33]) have emerged.

2. Proximal gradient descent algorithms: IfA is a proximal gradient descent algorithm

[111, 103, 35], the updating rules should be the form of w ← Prox(w− γ′v), where Prox

is a proximal operator (such as the soft-thresholding operator for Lasso [93]) which is

normally continuous [9, 113].

It is easy to verify that the mapping functions A(λ) corresponding to these iterative algo-

rithms are continuous according to Theorem 4.

For a continuous function f(λ), there exists a Lipschitz constant L (see Definition 5)

which upper bounds |f(λ1)−f(λ2)|
‖λ1−λ2‖ , ∀λ1, λ2 ∈ Rp. Unfortunately, exactly calculating the Lips-
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chitz constant of f(λ) is NP-hard problem [98]. We provide an upper bound5 to the Lipschitz

constant of f(λ) in Theorem 5.

Definition 5 (Lipschitz continuous constant). For a continuous function f(λ), there exists

a constant L such that, ∀λ1, λ2 ∈ Rp, we have ‖f(λ1)− f(λ2)‖ ≤ L‖λ1 − λ2‖. The smallest

L for which the inequality is true is called the Lipschitz constant of f(λ).

Theorem 5. Given the continuous mapping functions Φt(wt−1, λ) where t ∈ {1, . . . , T}),

At = ∂Φt(wt−1,λ)
∂wt−1

, Bt = ∂Φt(wt−1,λ)
∂λ

. Given the continuous objective function E(wT , λ), AT+1 =

∂E(wT ,λ)
∂wT

and BT+1 = ∂E(wT ,λ)
∂λ

. Let LAt = supλ∈Rp,w∈Rd ‖At+1‖2, LBt = supλ∈Rp,w∈Rd ‖Bt‖2.

Let L(f) denote the Lipschitz constant of the continuous function f(λ), we can upper bound

L(f) by
∑T+1

t=1 LBtLAt+1 . . . LAT+1
.

I Conclusion: Because the A-based constrained optimization problem f(λ) is continuous,

we can use the zeroth-order hyper-gradient technique to optimize f(λ) [66]. [66] provided

the convergence guarantee of zeroth-order hyper-gradient method when f(λ) is Lipschitz

continuous as defined in Definition 5.

3.3 Experiments

We conduct the hyperparameter optimization experiments on three representative learn-

ing problems (i.e., l2-regularized logistic regression, deep neural networks (DNN) and data

hyper-cleaning), whose sizes of hyperparameters are from 1 to 1250. We also test the pa-

rameter sensitivity analysis of HOZOG under different settings of parameters q, µ and γ,

which are included in Appendix due to the page limit. All the experiments are conducted

on a Linux system equipped with four NVIDIA Tesla P40 graphic cards.

• Compared algorithms: We compare our HOZOG with the representative hyperparam-

eter optimization approaches such as random search (RS) [7], RFHO with forward (FOR) or

5Although the upper bound is related to T , our simulation results show that it does not grow exponentially
with T because LAt or LBt is not larger than one at most times.
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Table 9: The Parameter Settings of HOZOG in the Experiments.

Experiment # HP Dataset q µ γ

l2-regularized logistic regression 1

News20 1 0.01 0.05

Covtype 1 0.01 0.03

Real-sim 1 0.01 0.005

Deep Neural Networks

2-layer CNN 100

CIFAR-10

1 1 1

VGG-16 20 3 1 1

ResNet-152 10 3 1 1

Data hyper-cleaning 500/1250 Mnist 5 1 1

reverse (REV) gradients [30] 6, HOAG [69]7, GPBO [88] 8 and BOHB [24] 9. Most of them are

the representative black-box optimization and gradient-based hyperparameter optimization

algorithms as presented in Table 8. We implement our HOZOG in Python10.

• Evaluation criteria: We compare different algorithms with three criteria, i.e., ‖∇f(λ)‖2,

suboptimality and test error, where “suboptimality” denotes f(λ)− f(λ�) and f(λ�) is the

minimum value of f(λ) for all λ which have been explored, and test error is the average loss

on the testing set. Note the hyper-gradients ∇f(λ) for all method except for FOR and REV

are computed by Eq. (3-23).

• Datasets: The datasets used in experiments are News20, Covtype, Real-sim, CIFAR-10

and Mnist datasets from LIBSVM repository, which is available at https://www.csie.ntu.

edu.tw/~cjlin/libsvmtools/datasets/. Especially, for News20 and Mnist two multi-class

datasets, we transform them to binary classification problems by randomly partitioning the

data into two groups.

• Parameters of HOZOG: The values of parameters q, µ and γ in HOZOG are given in

6The code of RFHO is is available at https://github.com/lucfra/RFHO.
7The code of HOAG is available at https://github.com/fabianp/hoag.
8The code of GPBO is available at http://github.com/fmfn/BayesianOptimization/.
9The code of BOHB is available at https://github.com/automl/HpBandSter. Note that BOHB is an

improved version of Hyperband [54]. Thus, we do not compare HOZOG with Hyperband.
10We will release the code of HOZOG and the experiments after the paper is accepted.
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Table 9. Especially, q plays an important role to HOZOG because it determines the accuracy

and the running time of estimating the gradients. We empirically observe that q ≤ 5 has a

good balance between the two objectives.

3.3.1 l2-Regularized Logistic Regression

Experimental setup: We consider to estimate the regularization parameter in the l2-

regularized logistic regression model. We split one data set into three subsets (i.e., the

train set Dtr, validation set Dval and test set Dt) with a ratio of 2:1:1. We use the logistic

loss l(t) = log(1 + e−t) as the loss function. The hyperparameter optimization problem for

l2-regularized logistic regression is formulated as follows.

arg min
λ∈[−10,10]

∑
i∈Dval

l(yi〈xi, w(λ)〉), s.t. w(λ) ∈ arg min
w∈Rd

∑
i∈Dtr

l(yi〈xi, w(λ)〉) + eλ‖w‖2 (3-25)

The solver used for solving the inner objective is L-BFGS11 [57] for HOAG and Adam [50]

for the others.

Results and discussions: Figure 1 presents the convergence results of suboptimality,

‖∇f(λ)‖2 and test error vs. the running time for different methods. Note that we take

same initial values of λ and w for all gradient-based methods, while the black-box methods

naturally start from different points. Because HOAG works with tolerances and warm start

strategy, HOAG has a fast convergence at the early stage but a slow convergence at the

late stage as shown in Figures 1(d)-1(f). We observe that HOZOG runs faster than other

gradient-based methods. This is because that FOR and REV need much time to compute

hyper-gradients. Figures 1(d)-1(f) provide ‖∇f(λ)‖2 of different methods as functions of

running time. We can see that the black-box methods (i.e., BOHB and GPBO) spend

much time on exploring because ‖∇f(λ)‖2 of these methods didn’t strictly go down in the

early stage. Overall, all the results show that HOZOG has a faster convergence than other

methods.

11The implementation is available at https://github.com/fabianp/hoag.

51

https://github.com/fabianp/hoag


0 2 4 6 8 10 12 14 16
Time (in seconds)

103

4×102

6×102

2×103

Te
st
 e
rro
r

HOZOG
BOHB
BO
HOAG
FOR
REV
RS

(a) News20

0 10 20 30 40 50 60
Time (in seconds)

7.88×104

7.92×104

7.96×104

8×104

Te
st
 e
rro

r

(b) Covtype

0 5 10 15 20 25 30
Time (in seconds)

1.4×103

1.7×103

2.3×103

2×103

Te
st
 e
rro

r

(c) Real-sim

0 2 4 6 8 10 12 14 16
Time (in seconds)

10−2

10−1

100

101

102

103

Su
bo

pt
im

al
ity

(d) News20

0 10 20 30 40 50 60
Time (in seconds)

10−2
10−1
100
101
102
103
104

Su
bo

pt
im

al
ity

(e) Covtype

0 5 10 15 20 25 30
Time (in seconds)

10−2

10−1

100

101

102

103

104

Su
bo

pt
im

al
ity

(f) Real-sim

0 2 4 6 8 10 12 14 16
Time (in seconds)

100

101

102

||∇
f(λ

)||
2

(g) News20

0 10 20 30 40 50 60
Time (in seconds)

100

101

102

103

||∇
f(λ

)||
2

(h) Covtype

0 5 10 15 20 25 30
Time (in seconds)

101

102

||∇
f(λ

)||
2

(i) Real-sim

Figure 1: Comparison of Different Hyperparameter Optimization Algorithms for l2-

Regularized Logistic Regression. (a)-(c): Test Error. (d)-(f): Suboptimality. (g)-(i):

‖∇f(λ)‖2.
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Figure 2: Comparison of Different Hyperparameter Optimization Algorithms for 2-layer

CNN, VGG-16 and ResNet-152. (a)-(c): Test Error. (d)-(f): Suboptimality. (g)-(i):

‖∇f(λ)‖2.
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3.3.2 Deep Neural Networks

Experimental setup: We validate the advantages of HOZOG on optimizing learning rates

of DNN which is much more complicated in both structure and training compared to l2-

regularized logistic regression.

Specifically, the training of modern DNN is usually an intriguing process, involving mul-

tiple heuristic hyperparameter schedules, e.g. learning rate with exponential weight decay.

Instead of intuitive settings, we propose to apply epoch-wise learning rates and jointly op-

timize these hyperparameters. The experiments are conducted on CIFAR-10 dataset with

50,000 samples. To demonstrate the scalability of HOZOG, three deep neural networks with

various structure are used, including (1) two layers DNN (2-layer CNN) with convolutional,

max pooling, and normalizing layers; (2) VGG-16 [86], (3) ResNet-152 [42]. The initial-

ization of inner problem is randomized for different meta-iterations to avoid the potential

dependence on the quirks of particular settings. In detail, for all experiments we apply 50

meta-iterations and optimize inner problems using stochastic gradient descent, with batch

size of 256. On CNN, 100 epochs for inner problem are used, which indicates 100 hyperpa-

rameters are involved. On VGG-16, the original model takes 224 × 224 images as inputs,

and we adjust the size of the first fully-connected layer from 7× 7 convolution to 1× 1 to fit

CIFAR-10 inputs. Here 20 epochs for inner are used. On ResNet-152, similar processing is

exploited and the inner epoch is 10.

Results and discussions: The results are summarized in Figure 2. The experimental

results show that the learning rates computed by HOZOG achieve the lowest test error and

the fastest descending speed compared to baselines on all tasks. Moreover, the proposed

method requires much less time to attain the best hyperparameters, and tends to have

smaller variances in gradients. It is noteworthy that, some state-of-the-art hyperparameter

optimization approaches (including HOAG, REV and FOR) are missing in this setting, due

to the algorithms of REV and FOR are limited to smooth functions and the implementation

of HOAG is limited to the hyperparameter optimization problems with a small number of

hyperparamters. However, these difficulties are avoided by our HOZOG, which also demon-

strates the flexibility of HOZOG. Moreover, as a brutal search method, the performance of

RS is very unstable, which can be identified from the hyper-gradients. For BO and BOHB,
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the instability also exists, potentially due to the highly complexity of the network structure.

Another noteworthy problem with respect to BO and BOHB is the computational overhead

in sampling, which make the meta-iteration extremely time consuming, compared to other

methods.

We observe that the difficulty of this problem mainly comes from model complexity,

instead of hyper-parameter numbers. For CNN with 100 hyper-parameters, HOZOG shows

advantages in both time and suboptimality, although baselines can also efficiently find a

reasonable solution. For VGG-16 and ResNet-152, we notice that though the size of hy-

perparameters is reduced, it takes baselines longer time to find acceptable results. Instead,

HOZOG still shows fast convergence empirically. This observation indicates that HOZOG

is potentially more suitable for hyperparameter optimization in large DNN.

3.3.3 Data Hyper-Cleaning

Experimental setup: We evaluate HOZOG on tuning the hyperparameters of data hyper-

cleaning task. Compared with the preceding problems, the data cleaning task is more chal-

lenging, since it has more hyperparameters (hundreds or even thousands).

Assuming that we have a label noise dataset, with only limited clean data provided. The

data hyper-cleaning task is to allocate a hyperparameter weight λi to a certain data point or

a group of data points to counteract the influence of noisy samples. We split a certain data

set into three subsets: Dtr of Ntr training samples, Dval of Nval validation samples and a test

set Dt containing the Nt samples. We set random labels to d0.5 ∗ Ntre training examples,

and select a random subset Df from Dtr.

Similar to [30], we considered a plain softmax regression model with parameters W

(weights) and b (bias). The error of a model (W, b) on an example (x, y) was evaluated

by using the cross-entropy l(W, b, (x, y)) both in the training objective function, L, and in

the validation one, E. We added in L an hyperparameter vector λ ∈ RNh that weights

each group of examples in the training phase through sigmoid function, i.e. L(W, b) =

1
Ntr

∑
g∈G
∑

i∈g sigmoid(λg)l(W, b, (xi, yi)), where G contain Nh groups random select from

Dtr. Thus, we have the hyperparameter optimization problem as follows.

arg min
λ∈RNh

E(W (λ), b(λ)), s.t. [W (λ), b(λ)] ≈ arg min
W,b

L(W, b) (3-26)
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We instance two subset dataset for the MNIST dataset, with Ntr = 5000, Nval = 5000,

Nt = 10000, Nh = 1250 and Ntr = 1000, Nval = 1000, Nt = 4000, Nh = 500. We use a

standard gradient descent method for the inner problem with fixed learning rate 0.05 and

4000 iteration. RS is used as baseline method, and BOHB and REV are used as comparison.

Results and discussions: Figure 3 presents the results of HOZOG, BOHB, REV and RS

for data hyper-cleaning. Note that the methods of GPBO, FOR and HOAG are missing

here, because the hyperparameter size is beyond the capability of their implementations.

The results show that HOZOG can beat RS and BOHB easily, while not perform completely

as good as REV in the long run. This is because REV is an exact gradient method whose

convergence rate is faster than the one of zeroth-order gradient method (i.e., HOZOG) by

a constant whose value is depending on p [66]. However, computing the exact gradients in

REV is costly. Specifically, REV takes about 40 seconds to finish the computation of one

hyper-gradient under the setting of 1250 hyperparameters, which is only about 24 seconds

for HOZOG. This is the reason why our method converges faster than REV in the early stage

of training. Importantly, the application scenarios of REV are limited to smooth functions,

e.g., not suitable for the experimental settings of convolutional neural networks and deeper

neural networks. However, our HOZOG can be utilized to a broader class of functions (i.e.,

continuous functions).

3.3.4 Discussion: Importance of HOZOG

The experimental results show that the black-box optimization methods have a weak

performance for the high-dimensional hyperparameter optimization problems which is also

verified in a large number of existing references [10, 88], while they have the advantages of

simplicity and flexibility. On the other hand, the existing gradient-based methods [30, 31]

need experienced researchers to provide a customized program against the optimization

algorithm and sometime it would fail, while they have the advantages of scalability and

efficiency. HOZOG inherits all the benefits from both approaches in that, the gradients

are computed in a black-box manner, while the hyperparameter search is accomplished via

gradient descent. Especially, for high-dimensional hyperparameter optimization problems
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Figure 3: Comparison of Different Hyperparameter Optimization Algorithms for Data

Hyper-Cleaning. (a)-(b): Suboptimality. (c)-(d): ‖∇f(λ)‖2. (e)-(f): Test Error.

which have no customized RFHO algorithm, HOZOG currently is the only choice for this

kind of problems to the best of our knowledge.
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3.4 Proof

3.4.1 Proof of Theorem 4

Before proving Theorem 4, we first give Lemma 7.

Lemma 7. Let f and g be a continuous function of Rd × Rp → R, and let w0 ∈ Rd and

λ0 ∈ Rp. Assume that f and g are continuous at the points w0 and λ0, and let a be a real

number. If h = f(g(w, λ), λ), then h is continuous at w0 and λ0.

Proof. Given δ′ ∈ Rd and δ ∈ Rp, according to the definition of continuous function in

Definition 4, we have that

lim
δ′→0,δ→0

h(w0 + δ′, λ0 + δ) (3-27)

= lim
δ′→0,δ→0

f(g (w0 + δ′, λ0 + δ) , λ0 + δ)

= f

(
lim

δ′→0,δ→0
g (w0 + δ′, λ0 + δ) , λ0

)
= f(g(w0, λ0), λ0)

where the second equality uses the definition of continuous function in Definition 4. This

completes the proof.

If the hyperparameters λ are continuous and the mapping functions Φt(w, λ) (for every

t ∈ {1, . . . , T}) are continuous, the mapping function A(λ) is continuous, and the outer

objective E is continuous, we have that the A-based constrained optimization problem f(λ)

is continuous w.r.t. λ.

Proof. As defined in Definition 3, the mapping function is actually the function

A(λ) = wT = ΦT (ΦT−1(. . . (Φ1(w0, λ), λ), . . . , λ) (3-28)

Because each mapping function Φt(w, λ) is continuous w.r.t. w and λ, we can recursively

use Lemma 7 to have that the mapping function A is continuous w.r.t. λ.

Because f(λ) = E(wT , λ) and the function E(w, λ) is continuous w.r.t. w and λ, we

have that the function f(λ) is continuous w.r.t. λ according to Lemma 7. This completes

the proof.
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3.4.2 Proof of Theorem 5

Before proving Theorem 5, we first give Lemma 8 which is provided in [26].

Lemma 8 ([26]). If f(λ) : Rp → R is a Lipschitz continuous function. Then, its Lipschitz

constant L(f) is

L(f) = sup
λ∈Rp
‖∂λf(f(λ))‖2 (3-29)

Given the continuous mapping functions Φt(wt−1, λ) where t ∈ {1, . . . , T}), At = ∂Φt(wt−1,λ)
∂wt−1

,

Bt = ∂Φt(wt−1,λ)
∂λ

. Given the continuous objective function E(wT , λ), AT+1 = ∂E(wT ,λ)
∂wT

and

BT+1 = ∂E(wT ,λ)
∂λ

. Let LAt = supλ∈Rp,w∈Rd ‖At+1‖2, LBt = supλ∈Rp,w∈Rd ‖Bt‖2. Let L(f) de-

note the Lipschitz constant of the continuous function f(λ), we can upper bound L(f) by∑T+1
t=1 LBtLAt+1 . . . LAT+1

.

Proof. Firstly, according to the chain rule [78], we give the computation of ∂λf(f(λ)) as

follows.

∂λf(λ) =
∂E(wT , λ)

∂wT

∂wT
∂λ

+
∂E(wT , λ)

∂λ
(3-30)

= AT+1
∂wT
∂λ

+BT+1

= AT+1

(
∂ΦT (wT−1, λ)

∂wT−1

∂wT−1

∂λ
+
∂ΦT (wT−1, λ)

∂λ

)
+BT+1

= AT+1

(
AT

∂wT−1

∂λ
+BT

)
+BT+1

= AT+1AT
∂wT−1

∂λ
+ AT+1BT +BT+1

=
T+1∑
t=1

BtAt+1 . . . AT+1
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Secondly, according to Lemma 8, we have that

L(f) = sup
λ∈Rp
‖∂λf(λ)‖2 (3-31)

= sup
λ∈Rp
‖∂λf(λ)‖2

= sup
λ∈Rp

∥∥∥∥∥
T+1∑
t=1

BtAt+1 . . . AT+1

∥∥∥∥∥
2

≤
T+1∑
t=1

sup
λ∈Rp
‖BtAt+1 . . . AT+1‖2

≤
T+1∑
t=1

sup
λ∈Rp,w∈Rd

‖Bt‖2 sup
λ∈Rp,w∈Rd

‖At+1‖2 . . . sup
λ∈Rp,w∈Rd

‖AT+1‖2

≤
T+1∑
t=1

LBtLAt+1 . . . LAT+1

This completes the proof.

3.5 Conclusion

Effectiveness, efficiency, scalability, simplicity and flexibility (i.e., E2S2F) are important

evaluation criteria for hyperparameter optimization methods. In this paper, we proposed

a new hyperparameter optimization paradigm with zeroth-order hyper-gradients (HOZOG)

which is the first method having all these benefits to the best of our knowledge. We proved

the feasibility of using HOZOG to achieve hyperparameter optimization under the condition

of Lipschitz continuity. The experimental results on three representative hyperparameter

(the size is from 1 to 1250) optimization tasks not only verify the result in the feasibility

analysis, but also demonstrate the benefits of HOZOG in terms of E2S2F, compared with

the state-of-the-art hyperparameter optimization methods.
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4.0 Fast Modal Regression With Robust Sampling

Modal regression has shown promising prediction ability and robustness to data with

outliers or heavy-tailed noise. However, for large-scale data, there is still computational

challenge for the implementation of modal regression. To address this issue, in this paper,

we propose a new regularized modal regression model with robust sampling strategy. Unlike

conventional sampling for large-scale least squares, our sampling probabilities are dependent

on the robust loss function for learning the conditional mode. We provide theoretical analysis

to support the proposed model: the approximation bound is established by error analysis

with Rademacher complexity, and the robustness characterization is provided based on the

finite sample breakdown point analysis. The experiments are conducted on both synthetic

and real-word data sets and the empirical results demonstrate the promising performance of

resulting estimator.

4.1 Introduction

Modal regression [80, 17, 53] has attracted much attention in statistical machine learn-

ing research, because the resulting estimator is more efficient and robust than ordinary least

square-based estimation in the case of outliers or heavy-tail error distribution. Unlike con-

ventional regression for learning conditional mean or median, modal regression focuses on

estimating the conditional mode of a response Y given input X = x [107, 106]. The mode

can better reveal numerical characteristic of a statistical distribution or data set, which is

usually missed by the traditional mean for data with outliers or the skewed noise distribution

[15].

There are some theoretical studies for modal regression based on maximizing a condi-

tional density or a jointed density, see, e.g., [107, 106, 15, 81, 27]. Typical works include

the parametric estimation in [106] and nonparametric estimate method in [15]. In [106], an

expectation-maximization (EM) algorithm is proposed for modal linear regression and its
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asymptotic properties are investigated. In [15], a local modal regression is proposed based

on kernel density estimation and theoretical analysis is provided to characterize its asymp-

totic error bounds as well as techniques for constructing confidence sets and prediction sets.

Recently, from the viewpoint of statistical learning, a novel modal regression algorithm is

formulated in [27] under the empirical risk minimization (ERM) framework. In particular,

theoretical foundations of the EMR-based modal regression are established in [27] including

the approximation ability, robustness characterization, and relationship with the maximum

correntropy criterion [60, 43, 28]. Besides the above theoretical analysis, there exist some

application-oriented studies for modal regression in [53, 63, 23]. In particular, some em-

pirical comparisons have been given in [63] for nonparametric forecasting problems via the

conditional mean regression, the conditional median regression, and the conditional mode

regression.

These studies push the progress of modal regression along the directions of both theo-

retical understanding and real-word applications. However, in large-scale data setting, the

existing modal regression methods face the computational difficulty. This poses two impor-

tant questions: Can we reduce the computational burden of modal regression by developing

sampling strategies used in large-scale least square regression? Can we establish statistical

guarantees for the corresponding fast modal regression? To answer the first question, we

design a new robust sampling strategy with similar motivation in fast linear least-squares

[21, 22, 61, 72], and then propose a regularized modal regression based on structural risk

minimization. Since modal regression has not the solution representation as linear least-

squares, we develop a robust solution-independent sampling to select important samples.

This strategy not only can improve the computational feasibility and efficiency of modal

regression, but also enhance the robustness of the gradient-based sampling in [112]. To reply

the second question, we establish the approximation rate estimate to the conditional mode

function and robustness analysis for the proposed method.

The main contribution of this paper is to propose a fast modal regression with robust

sampling, and establish its asymptotic and robust analysis on function estimation. The

current results fills the gap of modal regression for large-scale data computation and extends

the gradient-based sampling from the conditional mean regression to the mode setting.
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The rest of this paper is organized as follows. In section 4.2, we recall the background

of modal regression from statistical learning aspect and formulate our sampling algorithm.

Asymptotic theory and empirical evaluations of the proposed method are provided in Sections

4.4 and 4.6 respectively. Section 4.7 closes the paper with a brief conclusion.

4.2 Modal Regression With Robust Sampling

4.2.1 Modal Regression

Let X ⊂ Rp be an input space and Y ⊂ R be the corresponding output set. Assume that

independent identical distributed (i.i.d) observations z = {(xi, yi)}ni=1 ⊂ X ×Y are generated

by

Y = f ∗(X) + ε, (4-32)

where mode(ε|X = x) = arg max
t

pε|X(t|X = x) = 0 for any x ∈ X and pε|X is the conditional

density of ε conditioned on X. It is easy to see that

f ∗(x) = mode(Y |X = x) = arg max
t

pY |X(t|X = x),∀x ∈ X ,

where pY |X is the conditional density of Y for given X. Denote ρ on X × Y as the intrinsic

distribution for data generated from (4-32), and denote ρX as its marginal distribution on

X . For modal regression, the learning performance of a measurable prediction function

f : X → Y can be measured by the modal regression criterion [27], which is defined as

R(f) =

∫
X
pY |X(f(x)|X = x)dρX (x). (4-33)

It can be verified that the maximizer of R(f) over all measurable function is the target mode

f ∗. Hence, modal regression algorithms aim to construct a estimator f : X → R such that

R(f) as large as possible. However, we can not get the estimator through R(f) directly,

since the marginal distribution ρX and conditional density pY |X are unknown in real-word

applications. Fortunately, R(f) is equivalent to the density of variable εf (x, y) = y − f(x)
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at the point 0 (see Theorem 5.1 in [27]). Then, based on kernel density estimation, we can

introduce a empirical modal regression criterion

Rσ
z(f) =

1

nσ

n∑
i=1

φ(
yi − f(xi)

σ
),

where φ is a kernel representing function symmetric about 0 with width σ. As summarized

in [27], many kernel functions can be used for density estimation, e.g., Gaussian kernel,

Epanechnikov kernel, quadratic kernel, triweight kernel, and sigmoid function. With respect

to Rσ
z(f), we denote its expectation version as

Rσ(f) =
1

σ

∫
X×Y

φ(
y − f(x)

σ
)dρ(x, y).

It is worth noticing that the quantitative relationship between R(f) and Rσ(f) has been

established in [27].

Different from previous studies for modal regression, we consider the learning setting

with large scale data, where n � p. For the large-scale least squares, there are extensive

discussions for subsampling strategies to improve their computational feasibility, e.g., the

leverage-based sampling [22, 61], the column subset sampling [105], and the gradient-based

sampling [112]. Since modal regression has not similar solution expression as linear least

squares, we extend the gradient-based sampling [112] to the robust modal regression.

4.2.2 Fast Sampling Modal Regression

Integrating the sampling strategy in [112] and linear modal regression [107, 106], we

perform the sampling modal regression through the following three steps:

Step 1. We get a subset S0 with m0 samples from z by uniform sampling and derive a

pilot predictor f0(x) = wT0 x with

w0 = arg min
w∈Rp

{ 1

m0

∑
(x,y)∈S0

(y − wTx)2
}
. (4-34)

Step 2. Setting σ = ( 1
n

∑n
i=1(yi−wT0 xi)2)

1
2 . We get the right derivation gi =

∂+φ(
yi−w

T
0 xi
σ

)

∂w0

for each zi = (xi, yi) ∈ z. The subset S = {(x̃i, ỹi)}mi=1 ⊂ z is collected by sampling

probabilities { ‖gi‖2∑
‖gi‖2}

n
i=1.
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Step 3. The renew predictor fS = wTSx, where wS is obtained by the following regularized

scheme

wS = arg max
w∈Rp

{ 1

m

m∑
i=1

φ(
ỹi − wT x̃i

σ
)− λσ‖w‖2

2

}
. (4-35)

Here, λ > 0 is a regularized parameter and usually chosen by cross-validation in applications.

Following the conjugated function theory [8] and half-quadratic optimization [68, 43], we

know that the regularized scheme in (4-35) can be transformed as a optimization problem of

iterative weighted least squares. Due to space limitation, we provide the optimization steps

in the supplementary materials.

When the iterative time is T , the computation complexities for the first and the third

steps are O(m0p
2) and O(mp2T ), respectively. Considering the complexity O(np) for the

second step, we deduce that the total computation complexity is O(max{np,m0p
2,mp2T})

for the above sampling modal regression.

In particular, for Gaussian kernel-based density estimation, we have

gi = −2xi(yi − wT0 xi) exp
{
− (yi − wT0 xi)2

σ2

}
and

wS = arg max
w∈Rp

{ 1

m

m∑
i=1

exp
{
− (ỹi − wT x̃i)2

σ2

}
− λσ‖w‖2

2

}
.

Thus, the proposed sampling modal regression can be considered as sampling algorithm

under maximum correntropy criterion [71, 60, 28]. That is to say our model contains the

sampling correntropy regression as its special case.
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4.3 Computing Algorithm

We apply half-quadratic (HQ) optimization [68] to solve the regularized modal regression

problem. Given a convex problem min
s
u(s), it is equivalent to optimize the following half-

quadratic reformulation:

min
s,t

Q(s, t) + v(t),∀s, t ∈ R

The quadratic function Q(s, t) and dual potential function v : R→ R satisfiy:

u(s) = min
t
Q(s, t) + v(t),∀s ∈ R.

where v can be determined via convex conjugacy approach:

According to [8], ∀f(a) is closed and convex, ∃ convex function g(b), such that f(a) =

max
b

(ab − g(b)), where g is the conjugate of f , i.e., g = f ?and f = g?. Also, the following

statement is estabilshed:

arg max
b

(ab− g(b)) = f ′(a)

In [43],have been provided the optimization steps for Gaussian kernel setting. This optimiza-

tion strategy could be employed to general kernels density estimation,as well. For example,

a Epanechnikov kernel φ(e) = 3
4
(1 − e2)I[|e|≤1]. Let us define a function f , which is convex

and closed:

f(a) =

 3
4
(1− a), 0 ≤ a ≤ 1

0, a ≥ 1.

As mentioned above, there must exist a convex function g such that f(a) = max
b

(ab− g(b))

and φ(e) = f(e2) = max
b

(e2b − g(b)). Therefore, our regularized modal regression can be

rewritten as

max
w∈Rp,b∈Rn

{ n∑
i=1

(
bi(
yi − wTxi

σ
)2 − g(bi)

)
− nσλ

p∑
j=1

w2
j

}
. (4-36)

The above minimization problem can be solved by alternating optimization algorithm.
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4.4 Approximation and Robustness Analysis

This section provides our main theoretical results on the upper bound of R(f ∗)−R(fS)

and robustness characterization of fS. Detail proofs are provided in the supplementary

material.

4.4.1 Approximation Bound

Our approximation bound depends on the following conditions on f ∗, φ, and pε|x. These

assumptions have been used or discussed in [27].

Assumption 3. Assume that f ∗(x) = mode(Y |X = x) is a linear function of x, that is

f ∗(x) = wT∗ x for some w∗ ∈ Rp.

Assumption 4. Suppose that ‖x‖2 ≤ a <∞ for any x ∈ X , and the representing function

φ satisfies the following conditions:

(1) ∀u ∈ R, φ(u) ≤ φ(0) <∞, and φ is Lipschitz continuous with constant Lφ.

(2)
∫
R φ(u)du = 1 and

∫
R u

2φ(u)du <∞.

The bounded input is a natural condition for linear regression [47, 48] and the restriction

for φ holds true for many kernels for density estimation, e.g., Gaussian, Epanechnikov kernel,

Quadratic kernel. To bridge R(f) and Rσ(f), we recall the following condition introduced

in [27].

Assumption 5. The conditional density pε|X is second-order continuously differentiable and

‖p′′ε|X‖∞ is bounded.

Now, we state the upper bound on the excess modal error.

Theorem 6. Let Assumptions 3-5 be true. Taking λσ
5
3 = O(m−

1
3 ) and σ = O(m−

1
11 ), we

have

R(f ∗)−R(fS) ≤ C log(4/δ)m−
2
11

with confidence at least 1− δ, where C is a positive constant independent of m, δ.
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Theorem 6 demonstrates that the proposed method has convergence rate with polynomial

decay. To best of our knowledge, this is the first learning theory analysis for sampling modal

regression. Moreover, under Assumption 3 in [27], we can derive that ‖fS − f ∗‖2
L2
ρX
→ 0

with approximation order O(m−
2
11 ). Now we give some comparisons for our result with the

related analysis for modal regression [106, 27] and gradient-based sampling [112].

• The asymptotic analysis of modal regression has been established in [106] for EM algo-

rithm and in [27] for empirical risk minimization method. Different from the previous

works, our current result focuses on sampling regularized scheme for large scale data.

• The approximation ability of least-squares with gradient-based sampling has been pre-

sented in [112] under some eigenvalue condition for data-dependent matrix. Different

from previous result measured by MSE criterion, our analysis is to characterize the ap-

proximation ability of estimator to the conditional mode function and independent of

the eigenvalue condition. As a byproduct, our result also provides the convergence of

sampling correntropy regression.

To proof Theorem 1, we first introduce a data-free intermediate function fλ = wTλx,

where

wλ = arg max
w∈Rp

{ 1

σ

∫
X×Y

φ(
y − wTx

σ
)dρ(x, y)− λ‖w‖2

2

}
.

Then, we present the error decomposition on the excess error R(f ∗)−R(fS) and bound the

decomposed error terms based on analysis techniques in [27, 47, 48]. For the proof in the

supplementary material, the Rademacher complexity [6] is used to measure the capacity of

hypothesis function space.

4.4.2 Robustness Characterization

There are various notations for quantifying the algorithmic robustness, e.g., the influence

function, the breakdown point, and the sensitivity curve [89, 27]. Here, we measure the

robustness of fS in (4-35) via its finite sample breakdown point [45, 46]. As illustrated in

[46, 27], the finite sample breakdown can characterize the robustness of re-decreasing M-

estimator and reflect the largest amount of contamination that an estimator can tolerate
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before return arbitrary values. In particular, we do not require the boundedness of input to

explore the robustness of fS in terms of the finite sample breakdown point.

For given sampling set S = {(x̃i, ỹi)}mi=1, wS is the responding estimator defined in (4-35).

Let S∪S ′ be the corrupted training samples, where S ′ = {(x̃m+j, ỹm+j)}kj=1 is arbitrary point

set from X ×Y . Then, the finite sample contamination breakdown point of wS is defined by

ε(wS) = min
1≤k≤m

{ k

m+ k
: sup

S′
‖wS∪S′‖2 =∞

}
,

where wS∪S′ denotes the estimator from (4-35) associated with S ∪ S ′.

Theorem 7. Assume that φ(u) = φ(−u) and lim
t→∞

φ(t) = 0. Let

M =
m∑
i=1

φ(
ỹi−wTS x̃i

σ
)

φ(0)
− λσ

φ(0)
‖wS‖2

2.

Then the finite sample breakdown point of wS in (4-35) is

ε(wS) =
k∗

m+ k∗
,

where k∗ ≥ dMe and dMe is the smallest integer not less than M .

Theorem 7 shows that the breakdown point of (4-35) depends on φ, σ, which is similar

with the modal linear regression in [106] and empirical risk minimization in [27]. Our result

extends the previous analysis in [106] to the regularized modal regression under structural risk

minimization. Moreover, the steps 1 and 2 before (4-35) are useful to reduce the fraction of

outliers in training samples, and hence improve the finite sample breakdown point. Therefore,

the sampling procedures not only improve the computation feasibility for large scale data,

but also strengthen the robustness of modal regression.
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4.5 Proofs of Theorem 6 and Theorem 7

To establish the approximation estimation in Theorem 1, we introduce a data-free inter-

mediate function fλ = wTλx, where

wλ = arg max
w∈Rp

{ 1

σ

∫
X×Y

φ(
y − wTx

σ
)dρ(x, y)− λ‖w‖2

2

}
.

The following decomposition on R(f ∗)−R(fS) is key to our approximation analysis.

Proposition 2. Under Assumptions 1-3, there holds

R(f ∗)−R(fS)

≤ Rσ(f ∗)−Rσ(fS) + σ2‖p′′ε|X‖∞
∫
R
u2φ(u)du

≤ Rσ(fλ)−Rσ
S(fλ) +Rσ

S(fS)−Rσ(fS)

+σ2‖p′′ε|X‖∞
∫
R
u2φ(u)du+ λ‖w∗‖2

2.

Proof. The first statement follows from Theorem 10 in [27]. Now, we consider the

decomposition of Rσ(f ∗)−Rσ(fS). We can deduce that

Rσ(f ∗)−Rσ(fS)

= Rσ(f ∗)− λ‖w∗‖2
2 −Rσ(fS) + λ‖w∗‖2

2

≤ Rσ(fλ)− λ‖wλ‖2
2 −Rσ(fS) + λ‖w∗‖2

2

≤ Rσ(fλ)−Rσ
S(fλ)

+
{
Rσ
S(fλ)− λ‖wλ‖2

2 −
(
Rσ
S(fS)− λ‖wS‖2

2

)}
+Rσ

S(fS)−Rσ(fS) + λ‖w∗‖2
2

≤ Rσ(fλ)−Rσ
S(fλ) +Rσ

S(fS)−Rσ(fS) + λ‖w∗‖2
2,

where the first and second inequalities follow from the definitions of fλ and fS, respectively.

Combining the above decomposition with the first statement, we get the desired result. �

The error term Rσ
S(fS) − Rσ(fS) can be bounded by the concentration estimate asso-

ciated with Rademacher complexity. As a capacity measure of hypothesis function space,

Rademacher complexity has been used extensively for error analysis of learning algorithms

[6, 47, 48] .
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Definition 6. Let {xi}mi=1 ∈ Xm be independent samples selected according to µ and let F

be a class of functions mapping from X to R. Define the Rademacher complexity of F to be

Rm(F) = EµEε

[
sup
f∈F

1

m

m∑
i=1

εif(xi)
]
,

where {εi}mi=1 are independent random variables uniformly chosen from {−1, 1}.

The uniform concentration inequality with Rademacher complexity has been provided in

Theorem 8 [6]. In particular, some explicit versions are given in [47, 48] for linear function

classes.

Lemma 9. Assume that loss function ψ(f, z) is L Lipschitz continuous with respect to f

and |ψ(f, z)| ≤ c for any z ∈ Z and f ∈ F . For any δ ∈ (0, 1), with confidence 1− δ there

holds

1

m

m∑
i=1

ψ(f, zi)− Eψ(f, z) ≤ 2LRm(F) + c

√
ln(2/δ)

2m
.

The error term Rσ(fλ)−Rσ
S(fλ) can be estimated by the Bernstein inequality [? ? ].

Lemma 10. Let ξ be a random variable on a probability space Z with mean Eξ and variance

ν. If |ξ(z)− Eξ| ≤Mξ for almost all z ∈ Z, then with confidence 1− δ

Eξ − 1

m

m∑
i=1

ξ(zi) ≤
2Mξ log(1/δ)

3m
+

√
2ν2 log(2/δ)

m
.

Proposition 3. Under Assumption 2, for any δ ∈ (0, 1), there holds

Rσ(fλ)−Rσ
S(fλ) +Rσ

S(fS)−Rσ(fS)

≤ 2aLφ

√
φ(0)

mλσ5
+ 4φ(0)

√
ln(4/δ)

nσ2

+
4φ(0) log(4/δ)

nσ

with confidence at least 1− δ.
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Proof. We first bound Rσ
S(fS) − Rσ(fS). For any measurable functions f1, f2, and

(x, y) ∈ X × Y , there holds∣∣∣ 1
σ
φ(
y − f1(x)

σ
)− 1

σ
φ(
y − f2(x)

σ
)
∣∣∣ ≤ σ−2Lφ|f1(x)− f2(x)|.

This means σ−1φ(y−f(x)
σ

) has Lipschitz constant σ−2Lφ. From Assumption 2, we know that

σ−1φ(y−f(x)
σ

) ≤ σ−1φ(0). Moreover, the definition fS tells us that

λ‖wS‖2
2 ≤ Rσ

S(fS)−Rσ
S(0) ≤ σ−1φ(0),

which implies ‖wS‖2 ≤
√

φ(0)
λσ

.

Denote

F =
{
f(x) = wTx : ‖wS‖2 ≤

√
φ(0)

λσ
, ‖x‖2 ≤ a

}
.

According to Theorem 3 in [47] (or Theorem 7 in [48]), we know that Rm(F) ≤ a
√

φ(0)
mσλ

.

Applying Lemma 9 to ψ(f, z) = σ−1φ(y−f(x)
σ

), f ∈ F , we obtain that

Rσ
S(fS)−Rσ(fS) ≤ 2aLφ

√
φ(0)

mλσ5
+ 2φ(0)

√
ln(4/δ)

nσ2

+
4φ(0) log(4/δ)

nσ
(4-37)

with confidence at least 1− δ.

Now we turn to bound Rσ(fλ) −Rσ
S(fλ). Taking ξ(x, y) = σ−1φ(y−f(x)

σ
), we know that

0 < ξ(x, y) ≤ σ−1φ(0) and |ξ −Eξ| ≤ σ−1φ(0). By means of Bernstein inequality in Lemma

10, we have

Rσ(fλ)−Rσ
S(fλ) ≤

4φ(0) log(2/δ)

3mσ
+ φ(0)

√
2 ln(2/δ)

m
(4-38)

with confidence at least 1− δ.

The desired upper bounds follows by combining (4-37) and (4-38). �

It is a position to present the proof of Theorem 1.

Proof of Theorem 6: Combining Propositions 2 and 3, we get with confidence at least

1− δ

R(f ∗)−R(fS) ≤ C log(4/δ)(σ−
5
2λ−

1
2m−

1
2 + σ2 + λ),
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where C is a positive constant depending on φ(0), w∗, Lφ .

Setting λ = σ2 = σ−
5
2λ−

1
2m−

1
2 , we get σ = m−

1
11 and λ = m−

2
11 . Then, with confidence

at least 1− δ, we have

R(f ∗)−R(fS) ≤ 3C log(4/δ)m−
1
11 .

This completes this proof.

Our proof of Theorem 7 is inspired by the robustness analysis in [106].

Proof of Theorem 7: Observe that the regularized scheme of modal regression can be

rewritten as the optimization problem

max
{ m∑

i=1

φ( ỹi−f(x̃i)
σ

)

φ(0)
− λσ‖w‖2

2

φ(0)

}
.

Denote φ∗(t) = φ(t)/φ(0). When k < M , there exists k + mζ < M for some ζ > 0. Let

φ∗(t) ≤ ζ for |t| ≥ c. Let w be any real vector such that |y − wTx| ≥ c for any (x, y) ∈ S.

Then,

m+k∑
i=1

φ∗(ỹi − wTS x̃i)−
λσ‖wS‖2

2

φ(0)
≥M. (4-39)

On the other hand, considering φ∗(t) ≤ 1 for any t ∈ R, we have

m+k∑
i=1

φ∗(ỹi − wT x̃i)−
λσ‖w‖2

2

φ(0)
≤ kζ +m ≤M. (4-40)

Combining inequalities (4-39) and (4-40), we have

m+k∑
i=1

φ∗(ỹi − wT x̃i)−
λσ‖w‖2

2

φ(0)

≤
m+k∑
i=1

φ∗(ỹi − wTS x̃i)−
λσ‖wS‖2

2

φ(0)
.

From the above relationship and the definition of wS∪S′ , one knows that wS∪S′ must satisfy

|ỹi−wTS∪S′x̃i| < c for at least one point in S. Therefore, wS∪S′ stays bounded no matter how

S ′ varies, which means k∗ ≥ dMe.
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4.6 Experimental Analysis

This section provides the empirical evaluation of our sampling method on both synthetic

examples and real datasets. The following three sampling methods are used for comparison

with our approaches:

• Uniform Sampling (US). Uniformly select points from the total dataset, therefore,

the sampling probability for the ith sample πi = 1
n
.

• Leverage-based Sampling (LS). A wide accepted sampling method, with the sampling

probability πi ∝ XT
i (XTX)−1Xi.

• Gradient-based Sampling (GS)[112]. This is a state-of-the-art sampling method,

which is based on the gradient with least square loss.

4.6.1 Synthetic Data

Data Set: We construct the sample matrix X ∈ Rn×d by drawing elements indepen-

dently from mixture Gaussian distribution as follows:

Xij ∼
1

2
N (−u, τ 2) +

1

2
N (u, η2τ 2) (4-41)

We set the sample size n as 20,000, and the number of variables p as 100 for all toy data.

Following [112] ,we synthesize three kinds of toy dataset:

• Toy-1: u = 0 and η = 1, this is a standard Gaussian distribution.

• Toy-2: u = 0 and η = 5, this is a mixture Gaussian distribution with two variance.

• Toy-3: u = −5 and η = 1, this is a mixture Gaussian distribution with two peaks.

Given X, we then generate the output Y ∈ Rn by the following liner model:

Y = Xω + ε, (4-42)

where ω ∈ Rd is simulated from normal distribution N (0, 1), and ε denotes sample inde-

pendent noise. To verify the robustness of our method, we consider four kinds of noise as

below:
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Table 10: Average MSE and Standard Deviation on Synthetic Data

Data Kernel Noise US LS GS Ours

Toy-1

Gaussian

Gaussian 4.8349±0.0796 4.8120±0.0821 4.7081±0.1183 4.5083±0.1035

Chi-square 2.4734±0.0819 2.4680±0.0661 2.6903±0.1311 2.3732±0.0697

Exponential 2.9665±0.0639 2.9734±0.0879 2.8941±0.1195 2.7024±0.0675

Student’s-t 2.4138±0.0931 2.4542±0.0919 2.6443±0.2945 2.2544±0.0919

Sigmoid

Gaussian 5.0240±0.0666 5.0260±0.0758 4.7162±0.0945 4.5397±0.0901

Chi-square 2.7509±0.0828 2.7429±0.0676 2.7033±0.1100 2.3366±0.0668

Exponential 3.1510±0.0698 3.1204±0.0697 2.8428±0.0853 2.6020±0.0843

Student’s-t 2.7725±0.0956 2.7519±0.0933 2.6249±0.2015 2.2229±0.0664

Toy-2

Gaussian

Gaussian 4.8709±0.0825 4.8717±0.0888 4.6780±0.1080 4.5529±0.1081

Chi-square 2.4966±0.0778 2.5273±0.0691 2.6930±0.1103 2.3965±0.0859

Exponential 2.9446±0.0726 2.9584±0.0565 2.8889±0.1026 2.6831±0.0394

Student’s-t 2.4675±0.0763 2.4821±0.0723 2.6181±0.1611 2.2531±0.0679

Sigmoid

Gaussian 5.0313±0.0577 5.0185±0.0580 4.7132±0.1008 4.5254±0.0654

Chi-square 2.7783±0.0853 2.7925±0.0826 2.7639±0.2082 2.3537±0.0808

Exponential 3.1786±0.0838 3.1524±0.0842 2.8994±0.1135 2.6133±0.0935

Student’s-t 2.7960±0.1272 2.7884±0.1344 2.7694±0.5226 2.2593±0.1233

Toy-3

Gaussian

Gaussian 4.9725±0.0750 4.9791±0.0876 4.6846±0.1110 4.5338±0.0615

Chi-square 2.5907±0.0841 2.5999±0.1005 2.7708±0.1457 2.4366±0.0854

Exponential 3.0206±0.0788 2.9943±0.0835 2.8780±0.0931 2.6503±0.0635

Student’s-t 2.5314±0.0641 2.6059±0.0787 2.6321±0.1527 2.2828±0.0605

Sigmoid

Gaussian 4.8090±0.0630 4.8163±0.0647 4.6962±0.1236 4.4520±0.0789

Chi-square 2.6280±0.0539 2.6352±0.0809 2.7690±0.1432 2.3264±0.0472

Exponential 2.9715±0.0854 2.9918±0.0906 2.8513±0.0818 2.6119±0.0712

Student’s-t 2.6184±0.0853 2.6283±0.1073 2.9514±1.0399 2.2650±0.0940

• Gaussian noise: ε ∼ N (0, 22), a Gaussian distribution with mean 0, and variance 22.

• Chi-square noise: ε ∼ X 2(1), a Chi-square distribution with 1 degree of freedom.

• Exponential noise: ε ∼ E(1.5), a Exponential distribution with rate parameter 1.5.

• Student-T noise: ε ∼ T (4), a Student-T distribution with 4 degrees of freedom.

Experiment results. We set the sampling rate at 0.05 for all datasets and evaluate these

methods via average mean square error (MSE) and standard deviation with 20 repetitions.
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As the current method just restricts the conditional density mode at zero, it can employ

various kernels (e.g., Gaussian kernel, Sigmoid kernel). The empirical results on toy data

are reported in Table 1, which shows that our method outperforms the other sampling

methods on prediction accuracy and stability.

Following [106], we further introduce the average and standard deviation of the coverage

possibilities to better characterize the robustness of our model. The coverage possibility

describes the average coverage probability (in 20 replicates) of data for prediction intervals

with similar lengths centered around each estimated regression line. The Gaussian kernel

is used for density estimation. Table 2 shows that our method has the highest coverage

probability in all cases except some Gaussian noise data, where σ is defined in Step 2 in

Section 2.2 for each training data. This empirical result further supports the robustness of

our approach. As least squares under MSE criterion can be considered as optimal measure for

data with Gaussian noise, it is reasonable that well performance of gradient-based sampling

[112] for the Gaussian noise setting.

4.6.2 Real-World Data

We further evaluate our method on eight real-world datasets: CASP, YearPrediction-

MSD, CBMD-1, CBMD-2 from UCI (UCI); cadata from StatLib (StatLib); cpusmall, let-

terscale, shuttlescale from libSVM (libSVM).

Similar to toy data, we still calculate the average MSE and standard deviation over

20 repetitions for different sampling methods. Beside considering the conditional density

estimation with Gaussian kernel, we also implement the proposed method with some non-

Gaussian kernels (e.g., Epanechnikov kernel, Quadratic kernel, Sigmoid kernel, and Logistic

kernel). The experiment results are shown in Table 3, which demonstrate the competitive

performance of our approach over the other baseline methods.

4.6.3 Running Time

As mentioned at the beginning, sampling can reduce computational burden of modal

regression. To verify this motivation for algorithm design, we compare the running time
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between our sampling modal regression and

modal regression with full samples (MR). All experiments are conducted on a quad-core

Intel(R) i7 CPU @ 2.20GHz laptop with 16GB memory. The operating system is OS X

10.10.4 and the software we use is MATLAB R2016a (64-bit) 9.0.0.

Experimental results are shown in Figure 1. Note that there is a great gap, about

e5, between modal regression with whole data and sampling data, which represents more

than 100 times running time difference. Hence, our method can improve the computation

feasibility of modal regression efficiently.

4.7 Conclusion

This paper proposed a new fast modal regression algorithm with robust sampling strat-

egy. Our method addresses the computational efficiency issue for large-scale data computa-

tion, where the existing modal regression approaches often fail due to the high computational

cost. Our model is more robust than the sampling methods for least squares to handle the

data with outliers, heavy-tailed noise, and skewed noise. Theoretical foundations have been

provided for the proposed method, such as the approximation bound and robustness char-

acterization. The extensive empirical evaluations are provided to support the promising

performance of the proposed approach. Our theoretical analysis enriches the learning theory

for robust sampling technique and fast modal regression.
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Table 11: Average and Standard Deviation of Coverage Probability

Data Width Noise US LS GS Ours

Toy-1

0.01σ

Gaussian 0.0110±0.0009 0.0105±0.0013 0.0263±0.0012 0.0309±0.0024
Chi-square 0.0221±0.0020 0.0225±0.0019 0.0262±0.0018 0.0357±0.0024

Exponential 0.0191±0.0020 0.0188±0.0016 0.0253±0.0016 0.0327±0.0027
Student’s-t 0.0225±0.0016 0.0225±0.0023 0.0296±0.0020 0.0368±0.0022

0.05σ

Gaussian 0.0542±0.0034 0.0536±0.0035 0.1332±0.0080 0.1365±0.0079
Chi-square 0.1159±0.0107 0.1143±0.0090 0.1343±0.0091 0.1620±0.0087

Exponential 0.0924±0.0072 0.0923±0.0064 0.1247±0.0047 0.1470±0.0081
Student’s-t 0.1097±0.0069 0.1129±0.0116 0.1565±0.0072 0.1665±0.0061

0.1σ

Gaussian 0.0542±0.0034 0.0536±0.0035 0.1332±0.0080 0.1365±0.0079
Chi-square 0.1159±0.0107 0.1143±0.0090 0.1343±0.0091 0.1620±0.0087

Exponential 0.0924±0.0072 0.0923±0.0064 0.1247±0.0047 0.1470±0.0081
Student’s-t 0.1097±0.0069 0.1129±0.0116 0.1565±0.0072 0.1665±0.0061

0.2σ

Gaussian 0.1082±0.0075 0.1091±0.0085 0.2696±0.0143 0.2597±0.0141
Chi-square 0.2202±0.0161 0.2241±0.0195 0.2843±0.0116 0.3130±0.0195

Exponential 0.1853±0.0171 0.1867±0.0147 0.2621±0.0098 0.2747±0.0167
Student’s-t 0.2139±0.0170 0.2211±0.0186 0.3019±0.0131 0.3135±0.0172

Toy-2

0.01σ

Gaussian 0.0108±0.0010 0.0110±0.0013 0.0262±0.0018 0.0306±0.0017
Chi-square 0.0221±0.0021 0.0228±0.0021 0.0263±0.0010 0.0360±0.0027

Exponential 0.0178±0.0015 0.0195±0.0018 0.0255±0.0016 0.0327±0.0021
Student’s-t 0.0217±0.0018 0.0221±0.0016 0.0312±0.0017 0.0367±0.0023

0.05σ

Gaussian 0.0518±0.0045 0.0538±0.0048 0.1257±0.0053 0.1316±0.0080
Chi-square 0.1088±0.0063 0.1091±0.0078 0.1265±0.0052 0.1573±0.0067

Exponential 0.0920±0.0074 0.0907±0.0062 0.1205±0.0066 0.1407±0.0078
Student’s-t 0.1127±0.0076 0.1096±0.0062 0.1450±0.0076 0.1599±0.0073

0.1σ

Gaussian 0.1041±0.0104 0.1110±0.0097 0.2854±0.0107 0.2645±0.0164
Chi-square 0.2293±0.0136 0.2402±0.0210 0.3147±0.0121 0.3287±0.0180

Exponential 0.1828±0.0206 0.1922±0.0161 0.2826±0.0092 0.3001±0.0132
Student’s-t 0.2192±0.0117 0.2239±0.0147 0.3232±0.0129 0.3322±0.0146

0.2σ

Gaussian 0.2080±0.0161 0.2166±0.0195 0.4987±0.0203 0.4918±0.0255
Chi-square 0.4243±0.0360 0.4468±0.0300 0.5833±0.0216 0.5874±0.0188

Exponential 0.3536±0.0202 0.3616±0.0129 0.5217±0.0244 0.5412±0.0287
Student’s-t 0.4157±0.0281 0.4163±0.0269 0.5610±0.0136 0.5618±0.0301

Toy-3

0.01σ

Gaussian 0.0106±0.0009 0.0103±0.0010 0.0265±0.0017 0.0305±0.0017
Chi-square 0.0219±0.0017 0.0226±0.0020 0.0255±0.0011 0.0353±0.0020

Exponential 0.0182±0.0018 0.0178±0.0014 0.0242±0.0020 0.0319±0.0024
Student’s-t 0.0215±0.0023 0.0225±0.0026 0.0298±0.0020 0.0356±0.0020

0.05σ

Gaussian 0.0530±0.0035 0.0533±0.0041 0.1215±0.0076 0.1298±0.0074
Chi-square 0.1051±0.0073 0.1081±0.0073 0.1184±0.0048 0.1522±0.0094

Exponential 0.0903±0.0086 0.0895±0.0082 0.1130±0.0057 0.1400±0.0083
Student’s-t 0.1071±0.0073 0.1071±0.0070 0.1381±0.0064 0.1551±0.0075

0.1σ

Gaussian 0.1055±0.0060 0.1078±0.0096 0.2552±0.0190 0.2503±0.0150
Chi-square 0.2199±0.0144 0.2165±0.0208 0.2704±0.0140 0.2994±0.0152

Exponential 0.1779±0.0139 0.1830±0.0136 0.2507±0.0123 0.2690±0.0174
Student’s-t 0.2156±0.0184 0.2187±0.0146 0.2860±0.0094 0.3002±0.0172

0.2σ

Gaussian 0.2043±0.0153 0.2096±0.0135 0.4833±0.0231 0.4646±0.0176
Chi-square 0.4209±0.0237 0.4106±0.0314 0.5417±0.0253 0.5750±0.0348

Exponential 0.3485±0.0237 0.3546±0.0203 0.4888±0.0246 0.5155±0.0279
Student’s-t 0.4073±0.0296 0.4041±0.0256 0.5293±0.0157 0.5417±0.0231
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Table 12: Average MSE and Standard Deviation on Real-World Data

Data Kernel US LS GS Ours

CASP Gaussian 0.9308±0.2485 0.7726±0.0255 0.8149±0.0137 0.7631±0.0184

CBMD-1 Gaussian 0.5587±0.0810 0.6030±0.1440 0.5257±0.0119 0.3620±0.0157

CBMD-2 Gaussian 1.0308±0.0793 0.9603±0.0893 0.8104±0.0102 0.4149±0.1096

yearsMDS Gaussian 0.8726±0.0091 0.8367±0.0115 0.8188±0.0022 0.7730±0.0018

Cadata Epanechnikov 0.3937±0.0193 0.3958±0.0054 0.4064±0.0049 0.3838±0.0126

CPUsmall Sigmoid 0.5529±0.2169 0.4631±0.1841 0.4250±0.0259 0.3555±0.0750

Letterscale Logistic 0.8166±0.0548 0.7989±0.0423 0.7316±0.0062 0.7284±0.0062

shuttlescale Quadratic 0.3452±0.1003 0.3891±0.0152 0.3961±0.0075 0.3103±0.0075

Ours MR Ours MR Ours MR Ours MR
-5

-4

-3

-2

-1

0

1
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toy-1 toy-3 letter shuttle

Figure 4: Boxplot of Logarithm of Different Average Running Time on Four Datasets
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5.0 Conclusion

This body of work stands as a contribution to the evolving of machine learning, more

specifically in tackling the challenges posed by nonlinear, high-dimensional data, complex

models, and large-scale data processing.

A major focus of this research is to address the intrinsic nonlinearity inherent in machine

learning data. Acknowledging that the flexibility of representation provided by nonlinear

models can lead to a more accurate fit of data, we sought to balance this need for flexibility

with the resulting increase in model complexity and loss of interpretability. To this end, we

introduced a novel methodology, the Sparse Shrunk Additive Models (SSAM). This method

is unique in that it leverages the structure information among features in high-dimensional

nonparametric regression, allowing for flexible interactions among features. It essentially

bridges the gap between sparse kernel regression and sparse feature selection, which pre-

viously stood as separate methodologies. Notably, we have established theoretical results

regarding the convergence rate and sparsity characteristics of this novel method. These

results were obtained by employing innovative analysis techniques incorporating integral

operator and concentration estimate.

The complexity of nonlinear models often necessitates tuning of multiple, sometimes

thousands, of hyperparameters. This process is pivotal in achieving model generalization.

To streamline this process, we developed a new hyperparameter optimization method, the

Zeroth-Order Hyper-Gradients (HOZOG). This part of our work was rooted in the need for

a scalable, efficient method for hyperparameter optimization, and we provided the feasibility

analysis of using HOZOG in such contexts. We proved that under the condition of Lipschitz

continuity, HOZOG can effectively optimize hyperparameters, as confirmed by extensive

experiments.

The handling of large-scale data presents a multitude of computational challenges that

algorithms may struggle to address. To confront this, we proposed a novel regularized modal

regression model that incorporates a robust sampling strategy. Our method deviates from

conventional sampling for large-scale least squares. Instead, our sampling probabilities are
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dependent on a robust loss function with the goal of learning the conditional mode. In

support of this approach, we provided a comprehensive theoretical analysis that includes an

approximation bound established via error analysis with Rademacher complexity. Further-

more, we offered a robustness characterization based on finite sample breakdown point anal-

ysis. The empirical results obtained from experiments conducted on synthetic and real-world

datasets serve to further underscore the promising performance of the proposed estimator.

In summary, the thesis presented here offers some progress in machine learning method-

ologies, providing viable solutions for handling nonlinearity, model complexity, and the com-

putational challenges of large-scale data. These methodologies, as they continue to evolve,

hold promise for advancing some machine learning fields. I hope these works can stand as a

step stone for future research and inspire new methodologies and enhancing our understand-

ing of machine learning and its applications.
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sparse additive models with interactions in high dimensions. In AISTATS, 2016.

[96] AW Van der Vaart and Jon Wellner. Weak Convergence and Empirical Processes.
Springer, 1996.

[97] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

[98] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks:
analysis and efficient estimation. In Advances in Neural Information Processing Sys-
tems, pages 3835–3844, 2018.

[99] Cheng Wang and Ding-Xuan Zhou. Optimal learning rates for least squares regular-
ized regression with unbounded sampling. J. Complexity, 27(1):55–67, 2011.

[100] Xiaoqian Wang, Hong Chen, Weidong Cai, Dinggang Shen, and Heng Huang. Reg-
ularized modal regression with applications in cognitive impairment prediction. In
Advances in neural information processing systems, pages 1448–1458, 2017.

[101] David H Wolpert and William G Macready. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

88



[102] Qiang Wu, Yiming Ying, and Ding-Xuan Zhou. Multi-kernel regularized classifiers.
J. Complexity, 23(1):108–134, 2007.

[103] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive
variance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[104] Lei Yang, Shaogao Lv, and Junhui Wang. Model-free variable selection in reproducing
kernel hilbert space. J. Mach. Learn. Res., 17:1–24, 2016.

[105] T. Yang, L. Zhang, R. Jin, and S. Zhu. An explicit sampling dependent spectral error
bound for column subset selection. In ICML, pages 2061–2070, 2015.

[106] W. Yao and L. Li. A new regression model: modal linear regression. Scandinavian
Journal of Statistics, 41(3):656–671, 2014.

[107] W. Yao, B.G. Lindsay, and R. Li. Local modal regression. Journal of Nonparametric
Statistics, 24(3):647–663, 2012.

[108] Junming. Yin, Xi Chen, and Eric P. Xing. Group sparse additive models. In ICML,
2012.

[109] Ming Yuan and Ding Xuan Zhou. Minimax optimal rates of estimation in high di-
mensional additive models. Ann. Statist., 44(6):2564–2593, 2016.

[110] Tuo Zhao and Han Liu. Sparse additive machine. In AISTATS, pages 1435–1443,
2012.

[111] Tuo Zhao, Mo Yu, Yiming Wang, Raman Arora, and Han Liu. Accelerated mini-batch
randomized block coordinate descent method. In Advances in neural information
processing systems, pages 3329–3337, 2014.

[112] R. Zhu. Gradient-based sampling: An adaptive importance sampling for least-squares.
In NIPS, pages 406–414, 2016.

[113] Hui Zou. The adaptive lasso and its oracle properties. Journal of the American
statistical association, 101(476):1418–1429, 2006.

89


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Properties of Kernel Methods and Additive Models
	2. Precision@ for Feature Selection 
	3. Average MSE on Real Data.
	4. Precision@ for Feature Selection 
	5. Average MSE on Real Data.
	6. Precision@ for Feature Selection 
	7. Precision@ for Feature Selection 
	8. Representative Black-box Optimization and Gradient-Based Hyperparameter Optimization Algorithms.
	9. The Parameter Settings of HOZOG in the Experiments. 
	10. Average MSE and Standard Deviation on Synthetic Data
	11. Average and Standard Deviation of Coverage Probability
	12. Average MSE and Standard Deviation on Real-World Data

	List of Figures
	1. Comparison of Different Hyperparameter Optimization Algorithms for l2-Regularized Logistic Regression. (a)-(c): Test Error. (d)-(f): Suboptimality. (g)-(i):  f()2. 
	2. Comparison of Different Hyperparameter Optimization Algorithms for 2-layer CNN, VGG-16 and ResNet-152. (a)-(c): Test Error. (d)-(f): Suboptimality. (g)-(i):  f()2.
	3. Comparison of Different Hyperparameter Optimization Algorithms for Data Hyper-Cleaning. (a)-(b): Suboptimality. (c)-(d):  f()2. (e)-(f): Test Error. 
	4. Boxplot of Logarithm of Different Average Running Time on Four Datasets 

	Preface
	1.0 Introduction
	1.1 Background
	1.1.1 Linear Models
	1.1.2 Sparse Additive Models
	1.1.3 Hyperparameters Optimization
	1.1.4 Modal Regression

	1.2 Contribution
	1.3 Thesis Organization

	2.0 Sparse Shrunk Additive Models
	2.1 Introduction
	2.2 Sparse Shrunk Additive Models
	2.2.1 Sparse Additive Models
	2.2.2 Shrunk Additive Models
	2.2.3 New Sparse Shrunk Additive Models
	2.2.4 Comparisons With the Related Methods

	2.3 Theoretical Analysis 
	2.4 Proof
	2.4.1 Key Error Decomposition
	2.4.2 Estimate of Approximation Error E3
	2.4.3 Estimate of Hypothesis Error E2
	2.4.4 Estimate of Sample Error E1
	2.4.5 Proof of Theorem 1
	2.4.6 Proof of Theorem 2
	2.4.7 Proof of Theorem 3

	2.5 Experimental Results
	2.5.1 Experiments With Synthetic Data
	2.5.2 Experiments With Real-world Benchmark Data
	2.5.3 More Experimental Results
	2.5.4 Conclusion


	3.0 Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm
	3.1 Introduction
	3.2 Hyperparameter Optimization Based on Zeroth-Order Hyper-Gradients
	3.2.1 Brief Review of Black-Box Optimization and Gradient-based Algorithms
	3.2.1.1 Black-box Optimization Algorithms
	3.2.1.2 Gradient-based Algorithms
	3.2.1.3 Enlightenment

	3.2.2 HOZOG Algorithm
	3.2.3 Feasibility Analysis

	3.3 Experiments
	3.3.1 l2-Regularized Logistic Regression
	3.3.2 Deep Neural Networks
	3.3.3 Data Hyper-Cleaning
	3.3.4 Discussion: Importance of HOZOG

	3.4 Proof
	3.4.1 Proof of Theorem 4
	3.4.2 Proof of Theorem 5

	3.5 Conclusion

	4.0 Fast Modal Regression With Robust Sampling
	4.1 Introduction
	4.2 Modal Regression With Robust Sampling
	4.2.1 Modal Regression
	4.2.2 Fast Sampling Modal Regression

	4.3 Computing Algorithm
	4.4 Approximation and Robustness Analysis
	4.4.1 Approximation Bound
	4.4.2 Robustness Characterization

	4.5 Proofs of Theorem 6 and Theorem 7
	4.6 Experimental Analysis
	4.6.1 Synthetic Data
	4.6.2 Real-World Data
	4.6.3 Running Time

	4.7 Conclusion

	5.0 Conclusion
	Bibliography

