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Radiative Corrections for ZH Production at Electron-Positron Collider
Qian Song, PhD

University of Pittsburgh, 2023

Current experimental measurements on Higgs boson properties are consistent
with the Standard Model(SM) predictions, but large experimental uncertainties still
leave room for the possibility of new physics. To reduce experimental uncertain-
ties, a so-called "Higgs factory” including the International Linear Collider (ILC)
[1, 2], Future Circular Collider (FCC-ee)[3], and Circular Electron-Positron Collider
(CEPC) [4], has been proposed. The main production channel of Higgs boson in
these eTe™ colliders is the Higgsstrahlung process, ete™ — ZH, which is projected
to be measured with sub-percent level precision at these facilities (1.2% at ILC, 0.4%
at FCC-ee, and 0.5% at CEPC). Reducing the theoretical uncertainty to the same
level as the experimental one is crucial to prevent theoretical errors from dominating
when extracting Higgs couplings, and this constitutes a significant part of this thesis,
in which the largest missing contribution, the next-to-next-to-leading order(NNLO)
electroweak corrections, will be presented. Moreover, the increasing experimental
accuracy will impose stringent bounds on new physics. The thesis also investigates
one specific class of new physics, fermionic dark matter, as a possible explanation for
potential deviations on the cross section of the Higgsstrahlung process, and explores

the parameter space that may be probed at future Large Hadron Collider(LHC).

v



Table of Contents

Preface . . . . . . . . xvii
1.0 Introduction . . . . . . . . . .. 1
1.1 the Standard Model . . . . . . . .. ... 2
1.1.1 Gauge Sector . . . . . . . ... 3
1.1.2 Fermion Sector . . . . . . . . . ... ... 4
1.1.3 Higgs Sector . . . . . . . . . ... 6
1.1.4 Gauge Invariance . . . . . . . . ... 8
1.1.5 Higgs Mechanism . . . . . . ... .. .. ... ... ..... 9
1.1.5.1 Physical Fields . . . . .. .. ... ... ... .. ... 11

1.1.5.2 Fermion Mixing Matrix . . . . . . . . . ... ... .. 15

1.2 Renormalization of the Electroweak Standard Model . . . . . . .. 18
1.2.1 Renormalization Schemes . . . . . . .. ... ... ... .. 22
1.2.2 On-shell Renormalization Condition at one-loop . . . . . . . . 23
1.2.2.1 Physical Fields and Masses . . . . . . ... ... ... 24

1.2.2.2 Electric Charge . . . .. ... ... .. ... ..... 30

1.2.2.3 Weak Mixing Angle . . . . . ... .. ... ... ... 32

1.2.2.4 Summary of Renormalization Constants at One-Loop 33

1.2.3 Renormalization Schemes of Electric Charge . . . . . . . . .. 34
1.2.3.1 «(0) Scheme . . . . .. ..o 34

1.2.3.2 a(My) Scheme . . . . . ..o 36

1233 G, Scheme . . . . ... ..o 37

1.3  Method for Feynman Diagram Evaluation . . ... ... ... ... 37



1.3.1 Tensor Decomposition . . . . . .. ... .. ... ... .... 39
1.3.2 Reduction of Tensor Integrals to Scalar Integrals . . . . . . . 43
1.3.2.1 Reduction of Tév ..................... 44
1.3.2.2 General Formulas for the Reduction of Tﬁ’,_,’up ... 50
1.3.3 Analytical Expression for One-Loop Scalar Integrals . . . . . 53
1.3.3.1 One-Point Function . . . . . .. ... ... ... ... 53
1.3.3.2 Two-Point Function . . . . . .. ... ... ... ... o4
1.3.3.3 Three-Point Function . . . . . . ... ... ... ... 56
1.3.3.4 Four-Point Function . . . . . . . ... ... ... ... 58
1.3.4 Numerical Evaluation Method . . . . . . . . .. ... ... .. 60
1.3.4.1 Feynman Parametrization. . . . . . . ... ... ... 60
1.3.4.2 Dispersion Relation . . . .. .. ... ... ... ... 62
1.3.4.3 Subtraction Method . . . . . . .. ... ... ... .. 66
2.0 Two-loop Electroweak Corrections for ete™ — Zh Process . . .. 68
2.1 Motivation . . . . . ..o 68
2.2 Polarized and Unpolarized Cross Section . . . . . . ... ... ... 72
2.3 Evaluation Method for Two-Loop Diagrams . . . .. ... ... .. 76
2.3.1 UV Finite Diagram: Planar Double-Box . . . . . . . . .. .. 78

2.3.2 UV Divergent Diagram with Subloop Divergence: Box with
Triangle Subloop . . . . . . . . ... oL 82

2.3.3 UV Divergent Diagrams with Global and Subloop Divergences:
VZH Vertex . . . . . . . . . . 87
2.3.4 Strategy for Constructing Subtraction Terms . . . . . . . .. 93
2.4 Numerical Results for Two-Loop EW Corrections to o(ete™ — ZH) 96

24.1
2.4.2

Unpolarized Beam . . . . ... .. ... .. ... ....... 97
Polarized Beam . . . . . . . .. ... 101

vi



2.4.3 Multiple Renormalization Schemes and Missing Higher Order
Corrections . . . . . . . . . ... 102

2.4.4 Treatment of Z Decay . . . . . .. .. ... .. ... ..., 105

3.0 Probing Dark Sector Fermions through Higgs Precision Study . 110

3.1 Motivation . . . . . ..o 110
3.2 TheModels . . . . .. ... 112
3.2.1 Singlet-Double Model . . . . . . .. ... .. ... ...... 112
3.2.1.1 Dirac Singlet-Double Model (DSDM) . . . . ... .. 113

3.2.1.2 Majorana Singlet-Double Model (MSDM) . . . . . .. 115

3.2.2 Doublet-Triplet Model . . . . . . . ... ... ... ... ... 119
3.2.2.1 Dirac Doublet-Triplet Model with » = —1 (DDTM1) . 119

3.2.2.2 Dirac Doublet-Triplet Model with » =0 (DDTMO) . . 122

3.2.2.3 Majorana Doublet-Triplet Model (MDTM) . . . . . . 125

3.2.3 Model Summary . . . ... ... ... 127

3.3 Constraints . . . . . ... L 128
3.3.1 Oblique Parameters . . . . ... ... ... ... ....... 130
3.32 LHC Search . . . . . . .. .. ... ... .. . 131
3.3.3 Higgs Decays . . . . . . . . . ... Lo 132

34 Impactono(ete” = ZH) . . . . ... o 134
3.4.1 Majorana Singlet-Double Model (MSDM) . . . ... ... .. 136

3.4.2 Dirac Singlet-Double Model (DSDM) . . . . .. ... ... .. 139

3.4.3 Majorana Doublet-Triplet Model (MDTM) . . ... ... .. 143
3.4.4 Dirac Doublet-Triplet Model with » =0 (DDTMO) . . . . .. 148

3.4.5 Dirac Doublet-Triplet Model with r = —1 (DDTM1) . . . . . 153

4.0 Conclusions . . . . . ... ..o 158
Appendix A. One-Loop Tensor Integral Reduction . . ... ... ... 160

vii



Appendix B. Analytical Expressions for T(fv S 164

B.1 Preliminary . . . . . . .. . ... 164
B.2 One-Point Function . . . . . . . ... ... ... L. 165
B.3 Two-Point Function . . . . . . .. ... ... ... 0. 166
B.4 Three-Point Function . . . . . . . . . ... ... ... ... 168
B.5 Four-Point Function . . . . .. .. ... .. ... ... .. ..., 175
Appendix C. Analytical Expressions of 0,2 Bijx(o,m?,m3) . . . ... .. 178
Appendix D. Analytical Expressions of 9,20, Bi;i(c, mim3) .. ... 180
Appendix E. Running Z Width and Fixed Z Width . . . . . . .. . .. 183
Bibliography . . . . . . . . 185

viil



Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

List of Tables

The chiral fermion content for the first generation, denoted by the
superscript 1, of fermions in the SM. L and R denote left-handed
and right-handed. . . . . . ... ... oo L
Summary of the renormalization constant for SM fields, masses
and coupling constant at one-loop level under on-shell scheme.

Numerical results for the integrated cross section at LO, NLO
and NNLO. Electroweak one-loop and two-loop corrections are
also provided and divided according to the number of fermion
loops symbolized as Ny. . . . . .. .. .. ...
Numerical results for the integrated ZH production cross sec-
tion, in fb, at LO, NLO and fermionic electroweak NNLO, for
different beam polarizations. The electroweak NNLO corrections
are also listed individually according to the number of fermion
loops symbolized as Ny. . . . . . . . ... ...
Numerical results for the unpolarized integrated ZH production
cross section, in fb, for two different renormalization schemes.
Results are given at LO, NLO and fermionic electroweak NNLO.
For the latter, the contributions from two (N; = 2) and one
(Ny =1) closed fermion loops are also shown individually. . . . .
Similar to Table. 5, but using input values and mixed EW-QCD

corrections from Ref. [67]. . . . . ... ... ..o

1X

33

104



Table 7:  Summary table of gauge, mass eigenstates and free parameter set

for the five models introduced in Sec. 3.2.1 and Sec. 3.2.2. . . . . 128



Figure 1:

Figure 2:
Figure 3:

Figure 4:

Figure 5:

Figure 6:

List of Figures

Distribution of Higgs potential V(|®]) = —u?|®|*> + A\®|* for
A=1,|p? =1000(GeV)2. . . . ... 9
Feynman diagram for one-loop N-point integral, where p;; = p; —p; 39
Distributions of Eq.145 for m; = 4 GeV,my = 10 GeV,u =
1 GeV with k? < k2(blue),k? = k2(orange) and k* > k2(green) . 56
The example vertex diagram that contains soft IR divergence,
where the fermions are massive. . . . . . .. ... ... ... 58
Integration contours for the dispersion relations for the one-loop
two-point functions for the cases Im((m; + m2)?) = 0(left) and
Im((my + mg)?) # O(right). The zigzag lines denote the branch
cuts, ending at the branch point (m; + ms)?. The sircle sections
are understood to have aradius R —o00. . . . . . . .. .. ... 62
Box with a subloop vertex diagrams and its corresponding coun-

terterm diagrams. . . . . . .. ... 67

x1



Figure 7:

Figure 8:

Figure 9:

Best-fit values and uncertainties for Higgs boson coupling modi-
fiers per particle type with effective photon and gluon couplings
and either Bj,, = Bunget = 0(black); By, and Bynaer included as
free parameters, the condition kwyz < 1 applied and the mea-
surement of the Higgs boson decay rate into invisible final states
included in the combination (red); or Bpsy = Biny + Bundet in-
cluded as a free parameter, the measurement of off-shell Higgs bo-
son production included in the combination, and the assumptions
described in the text applied to the off-shell coupling-strength
scale factors (blue). The SM corresponds to Biyy = Bunget = 0
and all k parameters set to unity. All parameters except k; are
assumed to be positive. . . . . ..o
Examples of two-loop Feynman diagrams with at least one closed
fermion loop. . . . . . . . ...
Planar two-loop box diagrams with top quarks in the loop. The
bottom row visually illustrates the effect of introducing Feynman
parameters for the top loop. If Vi3 = 7,7 then f' =e, ¢ =1,
whereas f'=v.and ¢ =bfor Vio=W. . ... ... ... ...

Figure 10:Feynman diagram for a box with a triangle subloop, where V; o =

(v, Z, W Vs = {Z,GO, W%, GE, HY. ... ... ...

Figure 11:Feynman diagram for a 2-loop VZH vertex, where V- = {v, Z}, f1 =

{t,b}, fo=t,Via={Z, W=} . ...

Figure 12:Diagrammatical domenstration of VZH divergence separation.

xii

93



Figure 13: Angular distribution of differential cross section for ete™ — ZH

at leading order(“LO”), next-to-leading order(“NLO”), next-to-

next-to-leading order with two closed fermion loops(“NNLO Ny =

2), and next-to-next-to-leading order with closed fermion loops(“NNLO

Ny =142 99
Figure 14:Distribution of c"**(ete™ — ZH) at different center-of-mass en-

ergy, /s, for unpolarized electron-positron bea,. “L(T)” repre-

sents the contribution from longitudinal(transverse) Z boson. . . 101
Figure 15:The mass distributions of three mass eigenstates in the Dirac

singlet-doublet model at different values of mp — mg. m{, m?

and mp are represented by the blue, yellow and green lines re-

spectively. We have chosen mg = 500GeV and y = 1(1.5) for

the solid(dashed) curve. . . . . . .. ... 115
Figure 16: The mass distributions of four mass eigenstates in the Majorana

singlet-doublet model at different values of mp—mg. m{, m) and

m® = m™ = mp are represented by the blue, yellow and green

lines respectively. We have chosen mg = 500GeV and y = 1(2)

for the solid(dashed) curve. . . . . ... ... ... .. L. 117
Figure 17:The mass distributions of five mass eigenstates in the Dirac doublet-

triplet model with r = —1 at different values of my — mp.

m?, m), mF, mi and mr are represented by the blue, yellow,

green, red and purple lines respectively. We have chosen mp =

1000GeV and y = 1(2) for the solid(dashed) curve. . . . .. .. 120

xiil



Figure 18:The mass distributions of five mass eigenstates in the Dirac doublet-
triplet model with r = 0 at different values of my. m?, mQ, m:*, m;-
and mp are represented by the blue, yellow, green, red and pur-
ple lines respectively. We have chosen mp = —100GeV and
y = 1(2) for the solid(dashed) curve. . . .. ... ... .. ...

Figure 19:The mass distributions of five mass eigenstates in the Majorana
doublet-triplet model at different values of mp — m. m?’i, mg’i
and mp are represented by the blue, yellow and green lines re-
spectively. We have chosen my = 500GeV and y = 1(2) for the
solid(dashed) curve. . . . . . .. .. ...

Figure 20: The analysis of searching for Suppersymmetry in Bino-Wino sim-
plified scenario with the best exclusion limit for each point in the
mass plane {mo, Mgt = mgo }, where mgo is the Bino mass, and
Myt = Mgy is the mass degenerate Wino mass. The charged
Wino decays through W boson. The charge neutral Wino can
decay via either Z or Higgs, and the branching ratio is assumed
tobeequal. . . ...

Figure 21:Self-energy (left) and vertex (right) Feynman diagrams with new
fermions, denoted as F, and V =~, 2. . .. .. ... ... ...

Figure 22:Parameter scan result for Majorana singlet-doublet model with
y = 1 and y = 1.5 in doublet-dominant scenario, together with
current and projected LHC constraints from Refs. [125] (“4q,
ATLAS”) and [127], (“1lbb, HL-LHC”), respectively. . . . . . . .

Figure 23:Parameter scan result for Majorana singlet-doublet model with

y = 1 in singlet-dominant scenario, together with direct search

constraints from LEP [110] and LHC [129, 131]. . . . ... ...

Xiv



Figure 24:Parameter scan result of the DSDM in the doublet-dominant
scenario at different values of m) and Amy,, where the Yukawa
coupling is chosen to be y = 1 in the upper plot and y = 1.5
in the lower one. The dashed lines are the 95% CL exclusion
contour based on Refs. [125] (“4q, ATLAS”) and [127], (“1lbb,
HL-LHC”), respectively. . . . . . ... ... ... ... ..... 141
Figure 25:Parameter scan result of the DSDM in the singlet-dominant sce-
nario with Yukawa coupling y = 1 (upper) and y = 1.5 (lower).
The LHC exclusion curves from direct searches for the new fermions
are based on Ref. [134]. . . . . .. ... ..o 142
Figure 26:Parameter scan result for Majorana doublet-triplet model with
y = 1 and y = 2 in doublet-dominant scenario, together with
current and projected LHC constraints from Refs. [125] (“4q,
ATLAS”) and [127], (“11bb, HL-LHC”), respectively. The upper
bounds on R, at LHC and HL-LHC are from Refs.[120, 121, 122]. 146
Figure 27:Parameter scan result for Majorana doublet-triplet model with
y = 1 and y = 2 in triplet-dominant scenario, together with
current and projected LHC constraints from Refs. [125] (“4q,
ATLAS”) and [127], (“1lbb, HL-LHC”), as well as the constraint
from branching fraction of the Higgs boson to di-photons from
Refs.[120, 121, 122]. . . . . . . . . . 147
Figure 28:The mass distribution of five particles in the Dirac doublet-triplet
model with » = 0, as functions of Amy, in the doublet-dominate
scenario(upper) and triplet-dominate scenario(lower). The Yukawa
coupling is chosen to be: y =1 (solid) and y = 1.5 (dashed), and
m{ =300 GeV in both plots. . . ... ... ... ... ... .. 149

XV



Figure 29:The distributions of charged neutral states mixing angle (blue),
denoted as cosfy, and charged states mixing angle (yellow), de-
noted as cos 6y, at different values of Amy, in the triplet-dominate
scenario. The Yukawa coupling is chosen to be: y = 1 (solid) and
y = 1.5 (dashed), and m) = 300 GeV in both plots. . . .. ... 150

Figure 30:Parameter scan result for DDTMO with y = 1 and y = 2 in
the large mass difference region, together with current and pro-
jected LHC constraints from Refs. [125] (“4q, ATLAS”) and
[127], (“1lbb, HL-LHC”), respectively. The lower bounds on R,
at LHC and HL-LHC are from Refs.[120, 121, 122]. . . . .. .. 152

Figure 31:Parameter scan result for DDTMO0O with y = 2.5 in the large
mass difference region, together with current and projected LHC
constraints from Refs. [125] (“4q, ATLAS”) and [127], (“1lbb,
HL-LHC”), respectively. The lower bounds on R, at LHC and
HL-LHC are from Refs.[120, 121, 122]. . . . ... ... .. ... 153

Figure 32:Parameter scan result for DDTM with y = 1(upper) and y =
2(lower) in the doublet-dominant scenario together with the con-
straint from LEP [110], the expected 95% C.L. reach at LHC
and HL-LHC from Ref.[134], and upper bounds of R, at LHC
and HL-LHC from Refs.[120, 121, 122]. . . . ... ... ... .. 156

Figure 33:Parameter scan result for DDTM with y = 1(upper) and y =
2(lower) in the triplet-dominant scenario together with the con-
straint from LEP [110], the expected 95% C.L. reach at LHC
and HL-LHC from Ref.[134], and upper bounds of R, at LHC
and HL-LHC from Refs.[120, 121, 122]. . . . . . ... ... ... 157

xXvi



Preface

First and foremost, I would like to express my sincere gratitude to my PhD
supervisor, Dr. Ayres Freitas, for his unwavering support and guidance throughout
my doctoral studies. His expertise, patience, and encouragement have inspired me
to pursue in academia. I am truly grateful for the opportunity to work with such a
dedicated and inspiring mentor.

I would like to express my sincere appreciation to the members of my PhD com-
mittee, Dr. Brian Batell, Dr. Joseph Boudreau, Dr. Wensheng Vincent Liu and Dr.
Colin Morningstar, for their invaluable guidance and feedback throughout my doc-
toral studies. I am also grateful for their time and effort spent in reviewing my thesis
and participating in my defense. Thank you for being a vital part of my academic
journey.

I would like to express my sincere gratitude to my friends and colleagues at Pitt
for their unwavering support throughout my Ph.D. life. T would like to extend a
special thanks to Lisong Chen, whose guidance in the early stages of my research
were invaluable. I am also indebted to Hongbo Cai, Iris Leung, and Keping Xie
for their insightful discussions on research and stimulating conversations beyond
academia. Additionally, I am grateful to Pengshan Pan, Shu Liu, Bomin Zhang,
Shan Hao, Zehua Wang, and Tianping Gu for their assistance in my life. I would like
to express my appreciation to Erfei Wang for the thoughtful gift from Japan. Last
but not least, I am grateful to my roommate Sicheng Lan and his cat DanHuang,
for bringing some entertainment and joy during quarantine.

Lastly, I would like to thank my parents for their encouragement and support

support throughout my life.

XVil



1.0 Introduction

The Standard Model(SM) of particle physics is a theoretical framework that de-
scribes the behavior of fundamental particles and their interactions through three of
the four fundamental forces: the strong interaction is described by Quantum Chro-
modynamics (QCD)[5, 6, 7, 8], and the description of the electromagnetic and weak
interactions is unified in the Glashow-Salam-Weinberg (GSW) model of the elec-
troweak (EW) interaction[9, 10, 11], also called the Electroweak Standard Model
(EWSM). The obstacle that EW gauge theory predicts massless gauge bosons, but
experimental facts require the force carriers of weak interactions to be massive, was
overcome by spontaneous symmetry breaking - a mechanism nowadays known as
Brout-Englert-Higgs or simply Higgs mechanism [12, 13, 14, 15]. Owing to the ob-
servation of parity violation, fermions are chiral, i.e. left- and right-handed fermions
interact differently with weak gauge bosons, which forbids the introduction of plain
fermion mass terms due to gauge invariance. The so-called Yukawa interaction terms,
which describe the interaction between chiral fermion and Higgs field, introduce the
fermion masses in a consistent manner. This chapter depicts the main features of the
SM and its renormalization, which is required to make precise predictions for EW
phenomena that can be tested at colliders. Since perturbation theory is a method
of choice in such precision calculations, some basic techniques for evaluating EW

radiative corrections is also included in this chapter.



1.1 the Standard Model

The mathematical framework of the SM is the quantum field theory featuring a
non-Abelian gauge group structure, referred to as SU(3), x SU(2); x U(1)y. The
SU(3), group corresponds to QCD, which describes the strong nuclear force respon-
sible for color symmetry. The SU(2); x U(1)y group corresponds to the EWSM,
which describes the electroweak interactions responsible for the symmetry of isospin
and hypercharge. Gauge bosons, which emerge from the generators of the gauge
group, mediate the interaction between fermions. According to gauge symmetry, all
particles should be massless.

The masses of weak gauge bosons are generated by spontaneously breaking the
EW SU(2),, x U(1)y gauge symmetry down to electromagnetic U(1), invariance.
The symmetry breaking is driven by the gauge interaction with a scalar field with
non-vanishing vacuum expectation value (vev). Specially, the SM employs a complex
scalar SU(2); doublet to break the EW gauge symmetry, so that three out of four
scalar degrees of freedom deliver the longitudinal polarizations of the massive gauge
boson. The fourth scalar corresponds to a neutral, massive boson, the so-called SM
Higgs boson.

The introduction of fermion masses through Yukawa interaction terms mixes
the flavour eigenstates of quarks, while leptons do not mix as long as neutrinos
are massless. The mixing of quark generations is well described by the Cabbino-
Kobayashi-Maskawa (CKM) matrix [16, 17], which contains the only source of CP
violation in the SM.

Thus, the Lagrangian of the SM can be decomposed into gauge, fermion and



scalar sector
Lsv = Lo + Lr + Lg, (1)

where the lowerscripts G, F, S denote gauge, fermion and scalar sector respectively,
and the Yukawa interaction term is included into the scalar part.

We will start by writing the explicit form of symmetry unbroken Lagrangian, i.e.
Higgs sector with vanishing vev, and the non-vanishing vev case will be incorporated
afterwards. Specifically, we will discuss the Higgs mechanism and CP violation in

detail.

1.1.1 Gauge Sector

According to the dimension of SM gauge group SU(3). x SU(2); x U(1)y, there
are eight QCD gauge fields and four EW gauge fields. The gauge fields belonging to
the color group SU(3), are denoted as G¥., the one belonging to weak-isospin group
SU(2),, is denoted as W, and the one belonging to weak-hypercharge group U(1)y is
called B,. The dynamics of gauge boson are encoded in the Lagrangian in terms of
the field strength tensors:

Lo = __B L, B* — Z Wz WHi Z 4GzyGuua (2)

where the indices 7 and a correspond to the number of generators in the gauge group.
It is important to note that gauge boson mass terms such as m% B, B* are forbidden
due to gauge symmetry.

The corresponding field strength tensors are given by

B,uzz = a,uBzz - auB,u (3)



W;‘W =9,W, — a,,w; + geijkwgwf (4)
G, = 0,G% — 0,G5 + g. [ GG (5)

where ¢ and g, are the gauge coupling constant for weak isospin and color groups,
respectively. €%, f®¢ are the structure constants of SU(2); and SU(3)., which is
defined through the anti-commutation relation between gauge group generators. The
gauge coupling constant for weak hypercharge is denoted as ¢, and it is not shown
in field strength tensor since the structure constant for Abelian group is zero.

We denote the eight generators of color by %, and these generators are Gell-Mann
matrices for color triplet. The generator of weak hypercharge, denoted as Yy, is a
constant. The three generators of weak isospin are represented by T°. For isospin
doublet, the generators are T = ¢'/2, where o' are the Pauli matrices. For triplet
fermion, the generators have the following form

010 0 — 0 1 0 O
- L 101 ,T2:L i 0 —i ,Ti“:L 00 0 (6)

V2 V2 V2
010 0 i 0 00 -1

The generators of triplet can also be chosen to be in the fundamental representation.

1.1.2 Fermion Sector

The SM contains three generations (copies) of chiral fermion fields with different
gauge transformation properties under SU(3), x SU(2); x U(1)y. Table. 1 lists the
first generation of fermions and its corresponding gauge transformation properties,

where u, d, v, stand for up-type quarks, down-type quarks, neutrinos and leptons.



The subscript L(R) denotes left-handed (right-handed) fields, which are obtained with

projection operators:

1%
Ly, =P, L=~P , QL=F Q=~h1 ; (7)

d

lr = Pr l,up = Pru,dr = Prd (8)

where Ppp = (1 Fv5)/2.

Quarks are color triplets, while leptons are color singlets. Additionally, the left-
handed quark @; and lepton Lj transforms as doublets under SU(2),, while the
remaining right-handed fields transform like singlets. Right-handed neutrino is not
included!. The weak hypercharges of right- and left-handed fermions are chosen in
such a way that the known electric charge of the fermions are reproduced by the

Gell-Mann-Nishijima relation

Q=1+ )

The Lagrangian of the fermion sector, in terms of chiral fermion field, reads

Lp=> (iL{PL] +iQ| PQ], + ill, P, + i}, Puf, + id}, D) (10)

j
Similar to the gauge mass term, the fermion mass term m.Ly, Ly, is also not allowed due
to gauge invariance. D* is the covariant derivative, which contains the interaction

with gauge bosons

/

Y, o
D, =0, —ig TWBM — igWiT" — ig,Got" (11)

Tn the Standard Model (SM), neutrinos are considered to be massless as the SM does not include
right-handed neutrinos. However, the discovery of neutrino oscillation, as observed in experiments
such as Super-Kamiokande [18], SNO [19], and KamLAND [20], has provided strong evidence that
neutrinos have non-zero masses. This discovery implies that an extension of the SM is required to
accommodate massive neutrinos.



e I
dy, I
hypercharge Yy, % % — % -1 —2
isospin Iy % 0 0 % 0
color triplet triplet triplet singlet singlet

Table 1: The chiral fermion content for the first generation, denoted by the super-

script 1, of fermions in the SM. L and R denote left-handed and right-handed.

where we adopt the convention of Peskin and Schroeder [21] and Schwartz [22].
Different sign conventions are used in other literature. For example, the form
Dy = 0, +ig Yw/2B, + igW;T" is used in [23]. Different sign conventions lead
to sign changes of the mixing matrix, Feynman rules and Green function, while the
physical observables are not influenced. A resource for different sign conventions of

the Standard Model is summarized in [24].

1.1.3 Higgs Sector

The scalar field ® transforms as a SU(2); doublet and color singlet. To allow for
an electrically neutral component, the scalar field must have hypercharge Yy, = +1,
which are the charge conjugate field with each other. Here we assume Yy = +1.
Under this convention, the Higgs doublet can be written as

+
d = ¢o (12)
¢



where the upper indices indicate the electric charge of the components.

sponding charge conjugate field with Yy = —1 is defined as

i 0 —i - 0+
o = ’iUQ(I)* =1 ¢ = ¢

i 0 )\ —¢~

The Lagrangian of the scalar sector is
Ls =(D"®)|(D,®) = V(®) + Ly
The Higgs potential V' and the Yukawa interaction term Ly are

V =— 20'd + \(d10)?

Ly ==Y (DY}lp® + Q) Yjiup® + QL YjidR® + h.c)

j7k

The corre-

(13)

(14)

(15)
(16)

where p, A are the scalar field quadratic and quartic coupling constant, and they

must be real to make the Higgs potential Hermitian.le,;u’d are Yukawa couplings for

lepton, up quark and down quark respectively, and they are 3 x 3 matrices. The

Hermition conjugate part, denoted as h.c, is required to ensure the Hermicity of Ly.



1.1.4 Gauge Invariance

Plugging the explicit expressions for gauge, fermion and scalar sectors, Eq. 1
becomes

Lon = __B L B* — Z Wz Wit Z 4GZVG#1/(1

+ Z (LI DL + QL PQ) + ild, Y, + il pul, + id% IpdL)

+ (D"®)1(D,®) + 1/ ®Td — \(dTD)?

— > (LLYIR® + QLY iukd + Q1 Yidp® + ho) (17)
i,k

which is invariant under the infinitesimal gauge transformations assuming vanishing

vev

B, — B, + 0,60Y

W, — Wi+ 0,00" + ge7* W66
G2 — GO+ 9,00 + g, f*°Gh50°
P [1— i3l 00" —ig 00" zgsta§9“|sz] F, F=L.Q
_ Yf

fr — 1 — z—g "50Y — igst00%| p—y, d] F,, F=1,u,d

Y Ti
o - 1 — i3y 00" — g 591}

(18)

where 660¥(+9) is the minimal gauge field transformation to the U(1)(SU(2);,SU(3).)
group.
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Figure 1: Distribution of Higgs potential V (|®|) = —pu?|®|? + \|®|* for A = 1, || =
1000(GeV)?2.

1.1.5 Higgs Mechanism

The gauge invariance of Eq.1 is realized by the scalar field with vanishing vev,
which depends on the choice of the two parameters, u and A. Generally, they are real
numbers and can be either positive or negative. If A < 0, V' is unbounded from below,
i.e. this is no minimum value of the potential, such that scalar field is not stable.

The left two possibilities are A > 0,42 < 0 and A > 0, u? > 0. If A > 0, u? < 0, the



true minimum of the potential locates at

ov(|®]) e
sqe) —° = 1®I=*Y 5 (19)

This minimum is denoted as v? = u?/(2)), the so-called vacuum expectation value

(vev). The corresponding value of the potential is

2 4
p f
V(e = £/£5) = -5 <0 (20)

The distributions of V(®) with respect to |®| for positive and negative y? are shown
in Fig.1, where we have chosen |u?| = 1000(GeV)? and A = 1.

The scalar doublet ® contains four real scalar fields. We choose the charged state

to have vanishing vev so that the remaining unbroken symmetry is U(1) . Thus,
the scalar doublet can be parametrized as
+
P = ¢ (21)

(v+h+ix)/V2

where y and ¢* have vanishing vev. The field y, ¢t and its Hermition conjugate
field ¢, are the would-be Goldstone fields, which are unphysical degrees of freedom
and can be eliminated by a transition to unitary gauge, where ¢* = x = 0. The
derivation of physical fields will be much simpler under unitary gauge, thus in the

following the scalar doublet is

10



1.1.5.1 Physical Fields

The masses of gauge bosons and fermions are generated from spontaneous break-
ing of the SU(2); x U(1)y gauge symmetry due to non-vanishing vev. Under unitary
gauge, explicit form of the kinetic term in Lg is

/

T
(D"®)T (D D) = ((au - z’%Bu . z’gwg%)@> ((aﬂ - z’%B“ - z’gwa@)@>

)
T

_ 1 i (W +iW2) (v + h) y —ig(W; —iW3) (v + h)

20— s aW3— ¢BIw+ 1)) \Buh+ HaWE — ¢Bu)(w+ D)

1 1 ) .
= 5(8uh)(8“h) + ggQ(v + h)z(Wj - zVVi)(VV”’1 + iWH2)

1
+glvt h*(—g' By + gW,))(—g' B + gW*?) (23)

where we have replaced Higgs hypercharge by y = 1. The first term is the kinetic
term for the real scalar field h. The second and third terms generate gauge bosons
masses and interaction between scalar and gauge boson, which can be clearly seen

by diagonalizing the gauge eigenstates to physical mass eigenstates

Wt 1 (1 =i\ (W,

wr) o v2\1 i ) \wz)

Z.\ 1 g —q wp [ew —sw wp (24)
A, P?+9* \g g B, Sw o cw B,

where ¢y = cosby = g/+/g>+ g%, and Oy is called the weak mixing angle or

Weinberg angle. The kinetic term in terms of mass eigenstates is

1 1 1
Liin :5(8uh)(6“h) + ZgQ(v + h)PW, W g(g2 +¢?) (v + h)*Z,Z"
1 U2g2 B (92 + 912>,02
:5(8uh)(8“h) + TW;W e /e

11



2 2
vg g _
g W W H o S W

2 /2 2 2 12
Lot g hzuzu—(g ;g )thMZ“ (25)

Masses of W and Z boson are

(9° +g7)0°

1 (26)

2_“292 2 _
My === Mz =

The gauge boson A* is massless. Higgs mass and self-interactions of Higgs are gen-

erated by the scalar potential. Under unitary gauge, the scalar potential reads
0 A
rh — M2(DT(I) _ /\((I)T(I))2 — ?(h +v)2 _ Z(h+v)4
A
= —\v?h? — \h® — Zh4 + f(p,v,\) (27)
where f(u,v, ) is a constant. Higgs mass is
m; = 2\ (28)
With mass eigenstates, the covariant derivative becomes

D, =0, — ig,Got" — i%(WJT* + W, T)

NG
—iZ,(gewT? — g'swY) —iA(gswT? + g'ewY) (29)
The coupling constant of A, is

99  _
/g2 _|_g/2 o

where we have introduced two parameters: e is the electromagnetic coupling and @

gswT? + g'ewY = e (30)

is the electric charge operator since the Lagrangian is invariant under U(1)__ after

EWSB.

12



With this convention, the couplings of W, and Z, gauge field become

g e €
L= g T - = (10— Q) @1
W w

Thus the new form of the covariant derivative is

D, =0, —ig,Gat® —i

\[8 (WrTH + W, T7)
w

(T* — 3,Q)Z, — ieQA, (32)

. €
—1

SWCw

Masses of fermions are generated by the Yukawa interaction terms. Motivated
by the observation of neutrino oscillation [18,; 19, 20], which indicates neutrinos are
massive, we choose to incorporate the right-handed neutrinos v, where ¢ stands for
the generation. Right-handed neutrino transforms like a SU(2); singlet, color singlet

and has hypercharge Yy = 0.2 With the extension of right-handed neutrinos, the

Yukawa interaction term becomes

Ly ==Y (LYLIED + LI Yvkd + QLYjidE® + QL Yjiuh® + hue) (33)

7.k
Yilj”"“’d are dimensionless couplings and 3 x 3 complex matrix for leptons, neutrinos,
up-quark and down quark. The sum over 7,k considers all fermion generations.

Lepton and quark doublets are defined as follows

1 2 3
v v v
1 _ L 2 _ L 3 _ L
L; = , L = , Ly = ,
{ 12 3
L L L
2 3
=" @a=") a=(" (34)
L — ) L — ) L —
d} dh d3
L L L

2For Yy = 0, it is possible that neutrinos are Majorana fermions. We restrict ourselfes that
all right-handed neutrinos are Dirac fermion because Majorana fermions could be forbidden by
assuming lepton number conservation.

13



The singlets are

1 1 1 1
Ik VR Ug dp

=1}, ve=|vi| s ur= [ug | , dr=|d} (35)
3 3 3 3
I VR Up dp

The right-handed fermions are written in the form like triplets, which is for the sake
of brevity. f% is the i-th component of fg.

The first and second term in Eq.33 generate masses for leptons, and the third and
forth one generate masses for quarks. Similar to gauge boson generation, fermion

masses are also proportional to Higgs boson vacuum expectation value v

Vi li
oy e = (o v v M (ot | - (B B B |
vi 5
up di
_<ﬂ};¢ U, ﬂi’z) M™ | u —(J}g & J%) M@ | +he  (36)
uj, 43

where M = vY ¥ / \/5, which are non-diagonalized and contains 9 complex num-
bers. To find the fermion mass eigenstates, four mass matrices are needed to be

diagonalized. Eight unitary rotational matrices are defined

I/in 1241 l;n ll
v =Vir | 1 N =Frr |l ,
v v e {
3/ LR 3/ br \3/ LR 3/ LR
U71n U1 d?ln d1
ul? =Urr | uy s | dy =Drr | dy (37)
un U m d
3/ LR 3/ LR 3/ LR 3/ LR



such that

mym 0 0 mym 0 0
Vi MPVi=1 0 my 0 |, Ex'MEL=| 0 my 0 (38)
0 0 myp 0 0 myy
My 0 0 Mgm 0 0
Ug'M"U,=| 0 myp 0 |, D'MDr=1 0 mgp 0 (39)
0 0 My 0 0 mgy

1.1.5.2 Fermion Mixing Matrix

Due to these rotational matrices, fermions in different generations can interact
with each other. To demonstrate this, Let’s write down the charge currents for

leptons and quarks

I i

Jf,lep: (51 Dy Ds)LVM L = (g{n oy g;)n)LVLTELW 5 (40)
) 5
dy dy'
Jpauark _ (711 s ag)Lﬂyu d| = (a’ln uy a?)LUzDL’W dy (41)
ds) '),

The combination V; Ey, is the Maki-Nakagawa-Sakata-Pontecorvo(MNSP) matrix,
and the combination U}E Dy, is the Cabibbo-Kobayashi-Maskawa(CKM) matrix. These

matrix are unitary:
T
<VLTEL> (ngL) = ElViV,tE,=FiE, =1,

T
(U}DL) (U;DL) =UlD,D,tU, =UU, =1 (42)
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The CKM and MNSP matrix are complex matrix and contain 18 variables each,
but the matrix only contains four free variables. The unitarity, XL,Xbc = 04¢, reduces
the number of variables into 9. Besides, we are free to absorb a phase when diago-
nalizing the gauge eigenstates, namely f; — €'/ f;, therefore, extra six phases can
be generated for three columns and rows of each generations. But a common phase
redefinition of all columns has no effect on matrix, so the variables of each matrix is
reduced to 9-5=4. A complex unitary matrix with four variables can be written as a
matrix with three real Euler angles and one complex phase. For example, the CKM

matrix can be parameterized as

Vo = U} Dy,
1 0 0 cos O3 0 sin@ze 13 cosfyy sinf;, 0
=10 cosfy3 sinfas 0 1 0 —sinf;y cosfy 0
0 —sinfy3 cos b — sin 6,313 0 cos 013 1 0 0

(43)

This complex phase d;3 breaks CP symmetry, thus it gives rise to the CP violations
in the SM EW interactions.

If there is no right-handed neutrinos, neutrinos are massless, which means that
neutrino gauge eigenstates is always its mass eigenstates, thus V can be arbitrary
matrix. We can choose V;, = Er, such that Vg E;, = 1. So there is no mixing between
different generations of leptons in charge current in the SM.

The neutral current interactions of quark and leptons are
ly I
= (L b ) || o= (o) ElEs | (44)
I3 y

L

16



m

p,quark [ _ _ _ Y _ _ T

Jr —<U1 U2 U3>L’Yu U2 —<UT Uy’ U;T>LULUL7M uy' (45)
U uR?
3/ L 3/ 1

The fact that UTU = E'E = 1 forbids the mixing of different generations. As a
result, there is no flavor changing neutral current(FCNC) at tree level in the SM.
Besides, the right-handed neutrinos are added in the Yukawa Lagrangian though
the SM does not contain right-handed neutrinos. The purpose of adding right-handed
neutrinos is to show one mechanism of generating neutrino mass in the SM, albeit
at the expense of violating naturalness due to extremely small Y7,

Y -10 -13
m, ==~ 107"GeV — vy, =10 46
V2 y (46)

This coupling is too small such that it seems unnatural to appear in the SM.
Besides generating neutrino masses by introducing right-handed neutrinos, the
other possibility is to introducing a Majorana mass term for the SM left-handed

neutrinos, namely
L, = m, ULV, = myULVr (47)

Such a term violates SU(2); x U(1), but it causes no problems by adding this term
to SM Lagrangian after electroweak symmetry breaking, which can be realized by
adding the dimension d = 5 Weinberg operator [25]
o9 . v, lc
Ls= 22 [LE®[@ L] +he. , L= |, LS = (48)
A l e
1
where L$ is the charge conjugate spinor, and it transforms in the same way as a

right-handed spinor under Lorentz group. The Wilson coefficient Céj allows the

17



mixing of neutrinos between different generations, thus this operator violates Lepton
number(LN) conservation. A is the energy scale at which the particles responsible
for LN violation become relevant. This Lagrangian has dimension 5 thus is not

renormalizable. After EWSB, this term yields a neutrino mass

ci o 0 v
£5 — _5 lZ,C _Vll’c L(/U _|._ h) 0 ) _|_ hC
D —C—é]vQﬁuj +h.c (49)

where we have adopted the unitary gauge for the scalar doublet.

1.2 Renormalization of the Electroweak Standard Model

The free parameters in the SM Lagrangian are chosen to have physical meaning
such as mass, couplings, and relate to experimental quantities. Firstly, the relation-
ship is modified through higher order radiative corrections. Moreover, the original
parameters in the Lagrangian, the so-called bare parameters, differ from the phys-
ical quantities by UV divergent contributions. These divergences are canceled in
renormalized theory, thus allowing meaningful predictions. The renormalizability of
non-Abelian gauge theory with spontaneous symmetry breaking, that is the SM, was
proven by 't Hooft and Veltman[26, 27] and Lee and Zinn-Justin[28, 29, 30, 31].

One of the renormalization procedures can be summarized as follows:

e choose a set of free parameters, which are bare parameters
e separate the bare parameters into renormalized parameters and counterterms,

the so-called renormalization constants
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e choose renormalization conditions to fix the counterterms, i.e. counterterms are
functions of other renormalized parameters

e express physical observables as a function of renormalized parameters

To compare the theoretical predictions and experimental measurements, the fol-

lowing steps are needed:

e choose a set of input parameters, which have been measured precisely
e fix the value of renormalized parameters with input parameters
e cvaluate theoretical predictions for physical observables with input data

e compare with experimental measurement

These steps highlight that there is a flexibility in selecting the free parameters,
renormalization conditions, and input parameters that all affect the theoretical pre-
dictions of physical observables. However, if we were able to calculate the physical
observables to an infinite order, then the differences between the various choices of
parameters would vanish. On the other side, theoretical predictions at fixed order
under different choices of free parameter set, renormalization conditions and input
parameter sets differ by higher order term, which is a possible strategy to estimate
the theory error from missing higher order corrections.

This section focuses on the renormalization process with a specific choice of free
parameters and renormalization conditions. We will go into detail on how the process
works and what steps are involved. Additionally, we will explore multiple input
parameter sets, which can be helpful in estimating missing higher-order corrections.

According to the renormalization process, we need to choose a set of free pa-
rameters firstly. In the EWSM Lagrangian, there are 5 types of free parameters,

namely
g9, m, Ay (50)
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where ¢, g are the U(1)y, and SU(2); gauge couplings respectively. p, A are from the
scalar potential. y/ is the Yukawa coupling. The Yukawa coupling matrix is a 3 x 3
matrix and varies for leptons and quarks. However, for the purposes of renormaliza-
tion, we treat it as a single parameter because the procedure for renormalizing the
Yukawa couplings is the same for all fermions.

Instead, one can choose the free parameter set to be
My, Mz, My, mg, e (51)

The advantage of this choice is that all parameters have a clear physical meaning
and can be measured directly in suitable experiments.

Furthermore, radiative corrections give rise to two main issues. Firstly, the vac-
uum expectation value v? = p2/(2)) is no longer the true minimum of the scalar
potential. Secondly, radiative corrections provide non-diagonal corrections to the
CKM matrices, thus the original bare eigenstates are no longer the actual physical
mass eigenstates.

In order to let vev always be the minimum of the Higgs potential, a counterterm
ov is introduced to the vev of the Higgs field. Or equivalently, introduce a coun-
terterm dt, which cancels all radiative corrections to Higgs field T, the so-called

tadpole diagrams, i.e.the Higgs potential contains no linear term, namely
T™ 4+ 6t=0 (52)

By applying this condition, all tadpole contributions are exactly cancelled by the
counterterms so that no tadpoles need to be taken into account in actual calculations.

In order to rediagonal the mass matrices, one has to introduce matrix valued field
renormalization constants V', which allow to define the renormalized fields in such

a way that the mass eigenstates in bare Lagrangian are the correct physical mass
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eigenstates in all orders of perturbation theory. However at high-energy scale, it is
appropriate to take all quarks except the top quark massless and ignore the quark
mixing. Thus we will omit the renormalization of CKM matrix. One can find the
renormalization of CKM matrix in other literature, such as [32].

The renormalized parameters and counterterms are defined as follows

eo=2Zee=(1+0Z.)e,
Mg, = My, + SMg,
M3, = Mz +6M}
Mo = Mg+ 6ME
mygo = my + omy

Vijo = Vij + 0V, (53)

where bare quantities are denoted with a lower index 0.

These parameters lead to a finite S-matrix element, but leaves Green’s functions
divergent. Thus, besides renormalizing those input parameters, we also need to
renormalize particle fields. Renormalization of these fields does not affect physical
predictions. They are only relevant for Green’s function and drop out when calcu-
lating S-matrix. On-shell renormalization for the fields is very convenient since it
can eliminate the wave function correction of external fields, thus simplifying the
calculation of S-matrix.

In EW sector of the SM, physical fields include gauge boson field, Higgs field,
fermion field. Unphysical ghost and Goldstone files do not affect Green’s function of
physical fields, thus not relevant for our calculations. Furthermore, the renormaliza-

tion of unphysical sector are governed by the Slavnov-Taylor identities.
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The renormalization of fields with mass eigenstate are defined in the following

way:

Wi = ZPWr = (1 + <SZW)Wi

Zo\ (247 z\ (Z\  [1+4%0Zzz  10Zza Z
Ay 72 72|\ 4 1571z 1+36Za4) \A)

1
Hy=Z}"H=(1+ 50Zi)H

1
flLo = 21]/2 foy,L = (045 + —Zf’L)ij

R=Z P = (0 + 5 ZmeR (54)

where the one without(with) subscript ”0” denotes renormalized(bare) fields.
In terms of Eq.53 and Eq.54, the SM bare Lagrangian £, can be splitted into the

renormalized Lagrangian £ and the counterterm Lagrangian L
Lo=L+L (55)

Ly and £ have the same form, but the former(latter) depends on renormalized(bare)

parameters.

1.2.1 Renormalization Schemes

The notion ”Renormalization scheme” is used in two different senses of the word.

Often the term is used in a more technique sense as
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e a specific way of performing renormalization at intermediate steps. This includes
the choice of regularization, the way field renormalizations and/or parameter
renormalizations are organized. If the same physical quantity is calculated in
terms of the same parameters to the same order in perturbation theory the result
does not depend on the choice of the scheme. The first kind of distinctions of

different schemes is therefore not relevant for the physics.

Renormalization conditions determine the relation between renormalized parameters
and counterterms, and different choices of these conditions give rise to different
renormalization schemes.

The second possible distinctions of renormalization schemes, also called input

parameter scheme, is more physical, namely as characterizing

e a specific choice of input parameters. Perturbative predictions in terms of differ-

ent input parameter sets are scheme dependent.

In Sec.1.2.2 and Sec.1.2.3, the renormalization scheme both refers to the first

case.

1.2.2 On-shell Renormalization Condition at one-loop

The renormalization constants introduced in Eq.53 and Eq.54 are fixed by impos-
ing renormalization conditions. Renormalization of free parameter in Eq.53 affects
physical predictions, while renormalization of fields in Eq.54 is only relevant for
making Green’s function finite and has no effect in calculating S-matrix elements as
discussed before. Nevertheless, renormalization of fields leads to simple forms of the
renormalization conditions for free parameters.

In the on-shell renormalization scheme, the renormalized parameters in Eq.53

23



are equal to the physical mass and couplings. Additionally, the field renormalization
is chosen in such a way that the residues of all renormalized propagators are equal
to one. This ensures that the contributions from Feynman diagrams with external
self-energies and their corresponding counterterm diagrams cancel out. Therefore,
in practical calculations using the on-shell renormalization scheme, there is no need
to include radiative corrections to external particles.

In the on-shell renormalization scheme, all renormalization conditions are for-
mulated for on mass-shell external fields. Thus the field and mass renormalization
constants as well as quark mixing matrix introduced in Eq.53 and Eq.54 are fixed
using the one particle irreducible(1PT) two-point functions. Electric charge renormal-
ization is fixed with three-point functions. In this section, we restrict to the on-shell
renormalization of the EWSM at one-loop level. Two-loop renormalization of the

EWSM can be found in Refs. [33, 34].

1.2.2.1 Physical Fields and Masses

Firstly, let us start with the definition of gauge boson 1PI two-point function.

Consider the Green’s function of gauge boson

G (k*) =D, (K*) 4+ iD,,(K*)XP (k*) D, (k) + ...
_ iDuV
1-%D,,
—1

{
"'Dyo — Dpy X De,
= iDp,(I*7)iDy, (56)

=4iD D

pv

All quantities shown above are unrenormalized. D,, is the gauge boson propagator,

and X is the self-energy correction. In 't Hooft Feynman gauge, the gauge boson
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propagator is written as

1
D

- guu(k2 - Mg) ) (57)

Qv
The self-energy correction can be decomposed into the transverse and longitudinal

part

k. k, k. k,
Euu = (g,uu - #)ET + 22

XL, (58)

denoted as X and Y;, separately.
I'* is the 1PI two-point function, and it can be calculated perturbatively by
expanding the self-energy correction
—i
~ D-D¥D

:—%—iz—iDED—.-- (59)

r

where we have dropped all the indices.

The Green’s function for fermions has the following form

iGY (p) = iS(p) +iSES + iSDSDS + - -

_ i5(p)
1-3S8 _
= iS(p)5—a5g?S(P)
= iS(p)(T7)iS(p) (60)

All quantities shown above are unrenormalized. S is the fermion propagator, and X

is the self-energy corrections. The explicit expressions are

1 .
—g = p — My + 1€ s Z(p) = pZV + TTL()ES = pPLEL +pPRER + mozs (61)
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where we have decomposed the self-energy correction into the scalar part, ¥g, and
vector part, Xy. The latter can be further decomposed into the right-handed and
left-handed contributions by inserting the left-handed and right-handed projectors,
P g.

I'f is the 1PI two-point function of fermion. Similarly, it can also be calculated
perturbatively by expanding the self-energy correction

—1i
5555
:—%—@'2—@525—.-- (62)

I/ =

At 1-loop level, 1PI two-point functions for physical fields listed in Eq.54 have

the following form

LK) =~ (K7 — M) — i(g — “R0) 00 (k%) — 200 )

DZZ(K) = gk — M) — i(ge — 02y 77(52) — i 007 )
DEA ) = D7 (k) = (g — )57 (2) — iRz )

D) = i () — (g0 — R ma i) - Py

I (k) =i(k* — M) + 157 (k)

Ty(p) =i(p — myo) +i[pPLEro(p?) + pPrE;r(PY) + myoSrs(p?)] (63)

The renormalized 1PI two-point functions are obtained by replacing all bare

parameter into the renormalized ones. Thus we obtain

2 . . k. k., .k k.,

F;‘/X/(k) = _Zguu(k2 - MI%V) - Z(g/w T2 )Zw(kz) ) Zw(k2)

waZ k) = —; k2 . M2 o o kﬂk EZZ k2 k k EZZ k2
1% ( ) - Zgl“’( Z) Z(glﬂf k2 ) T ( ) k?Q ( )7
A .k, k k,

BZAK) = A7 () = —i(g — g2 JSFAR) — ity  SEA(RY),
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Kk, Kk,

Dot (k) = =gy (k%) — i(g — 5587 (%) — =052 S04 (k)
D (k) = i(k* — Mpy) +ix" (k?),
Lp(p) = i(p = my) +ilpPrSpc(p®) + PPrSsr(p®) + mySps(p) (64)

where 3 denotes renormalized self-energies. Explicit forms of them are obtained by

performing following replacements

Dyy =k* — My — (K* — My — 6My) + 6 Zyy (K* — Mp)
Df = ? —mys — (p —mys — (5mf) + ((SZﬁL + (SZf,R)(p — mf)

1 1
Dyyr =0 — 5(SZVV,(k? - M2) + §5vav(k2 — M%) (65)

where corrections proportional to §Zdm have been neglected since we calculate [ at
one-loop order. Plugging Eq.65 into Eq.64, the transverse part of the renormalized

self-energies can be simply derived

SE(K) = SF (K) + (K — M0 Zw — 6 Mg,

S (k) = ST (k2) + (k2 — M2%)0Zy — 0ME,

ST (k%) = SF(K*) + (k* — M3)8Zz2 — M3,
SH2(K?) = S (k) + %(k;? — M3)62% — %52/*2/@2,
SAAER?) = DA (K?) — 62742,

Si =% +0Z5L,

Sir=Ypr+ 021k,

. 1 om
Sps =Yy — 5(521% + 07 5) — m—ff (66)

Note that the unphysical longitudinal part of gauge boson self-energies drops out for

on-shell external gauge boson. Since only transverse parts relate to renormalization
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constant, it’s convenient for practical calculation to project transverse part out with

the following equations

kK,

k?
)EVle EXIVQ — kkk 2V1V2 (67)

Z ViVs

kuk,
Ev}jw = _(guu - L2 )EV1V2 +

1, KMk

where ZL/;V? denotes the self-energy of the gauge bosons.

The renormalized mass parameters of physical particles are fixed by on-shell
renormalization condition, which states that the renormalized mass parameters are
equal to their physical masses, i.e. zeros of the 1PI two-point functions. Since the
propagators are the inverse of 1PI two-point functions, physical masses are also the
real parts of the poles of the corresponding propagators: Re(D™1)|,2—,,2 = 0. Due to
the reason that only transverse part of the gauge boson propagator Dy is physical,

the on-shell renormalization conditions read
(DY)'(p* = M) =0, (68)

The field renormalization constants are determined by demanding the residues of

the poles equal 1, thus we arrive at the following on-shell renormalization conditions

Red o2 (D)oo p = (69

Replacing the propagator DY with renormalized 1PI two-point functions, Eq. 68
and Eq. 69 has the following form

A~ v 1 )
Rel))) (k)e” (k)|2—arz, = 0 , A ——Rel™ (k)e" (k) = —ic, (k)

A v 1 '
Rel'77 (k)" (k) |g2=rz = 0 A TR el 2% (k)e" (k) = —ie, (k)

R0 (K)o = 0., Jim S ReF A4 (R)e" (1) = —iz, (k)
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Rel's (p)u(p)| o=z = 0, lim
Rel' 7} (k)e” (k) g2—nrz = Rel's7 (k)e" (k) |e2—o = 0. (70)

where £(k), u(p) are the external polarization vectors for gauge fields, external fermion
polarization.

Renormalization conditions allow to express the counterterms by the renormal-
ized parameters. The expressions of counterterms for gauge boson fields and masses

at one-loop order are

W (k2
SMy, = ReSy (M) | 6Zw = — ReaT—() ,
0k |2y
w
EZZ k‘2
SMy = ReXP? (M3) |, 0277 = — ReaT—() :
Ok? =02
EAZ (MQ) ZAZ(O) 82AA (kz)
§Zay = —2Re"L 2l §7,4 =212 §Z44=— L 2
M2 M2 Ok? K2—0
OxH (k2
SMp =ReX? (M}) , 6Zpy = — Re% (71)
k2=M?
The expressions of counterterms for fermions fields and masses are
m
5mf = #RG(ELL (m?) + Ef’R(mfc) + 22]075(7713:)),
0
0Zf1 = —ReXy(m}) — m?”a_sze[Ef,L(p2> + 35 r(0°) +255,5(p°)] P2
7mf
0

0Zfr = —ReXjgr(m}) — m?a—pQRe[Ef,L(PQ) + 31 (%) + 255,5(p%)] P (72)
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1.2.2.2 Electric Charge

Electric charge is renormalized through 1PI three point function. Generally, any
three-point function can be chosen, and the final result should be independent on this
choice. For generality, we choose ffA vertex to derive the renormalization condition

for electric charge. The renormalized ffA vertex has the following form
LA (p,p) = —ieQpy + ieAI A (p, ) (73)

where p,p’ is the momentum of external fermions. Under on-shell renormalization
condition, the renormalized 1PI three-point function is same as the tree level one, i.e
higher order corrections are zero. Besides, photon momentum vanishes in on-shell

limit. Thus the on-shell renormalization condition tells us

~

0 = a(p)AL A (p, p)u(p) (74)

At one-loop level, Al’:f 4 is written as

1 1
0= ﬂ(p)’yuu(p) |:—Qf (5Ze + 5Zf,v + 5521414) + A{/(O) + AQ(O) + Ufﬁ(;ZZA

_ 1
~ alpyrsuls) | ~QuoZa + M4(0) + o302z (75)
where /A\{/(S, a) I8 the vector(scalar, axial-vector) part of A{f 4 and
1 1

af, vy are the vector and axial-vector couplings of Z boson to fermion f. Eq.75 yields

1 1
yor (526 + 075y + §5ZAA) + AL (0) + AL(0) + vf§5ZZA =0 (77)

1
_Qf(st,A‘i‘AQ(O)—i-afé(SZZA =0 (78)
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Eq.77 fixes the charge renormalization constant, and it can be further simplified with

the following equation [32]
1
A‘f/<0) + Aé(O) — Q0 sy + af§6ZZA =0, (79)

which comes from the Ward identity. Thus, Eq.77 becomes

1 SW 1
0Ly = —=0Lpsa — —=02 80
9 AA cw 9 ZA ( )

One can notice that the explicit form of electric charge renormalization condition is
independent of the fermion species, reflecting electric charge universality. Insert the
expressions of field renormalization constant, the charge renormalization constant

becomes

10T sw SA2(0)

02, —_—
2 0k? =0 cw M3

(81)

Remember this formula is derived from Eq.75, which is valid only at one-loop level,

thus Eq.81 is also valid at one-loop level.
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1.2.2.3 Weak Mixing Angle

In the on-shell scheme the weak mixing angle is a derived quantity. Following

Sirlin [35], the on-shell weak mixing angle is defined as

M2
.2 2 W
sin“fy = sy =1— —=- (82)
M3
This definition is independent of a specific process and valid to all orders of pertur-
bation theory.

Since the dependent parameters sy and cy frequently appear, it is useful to

introduce the corresponding counterterms

cwo = cw +dcw , Swo = Sw + 0sw (83)
There is another type of definition for the counterterms

o = Gy + 6¢y , Siyo = Spy + Ospy (84)

Eq.83 and Eq.84 are equivalent since the explicit expressions of on-shell weak mix-
ing angle counterterms are both derived from Eq.82, in other words, weak mixing
angle counterterms are directly related to gauge boson counterterms. Adopting the

definition in Eq.83, we obtain

bew _ L(OMp M\ _ 1. (SW(My)  SE(M3)
=W "2 ) — “Re —

ow 2\ M2 MZ) 2 M, Mg )

dow __chy Sew _ 1@%(2%1\2@) - E%ZUQ‘@). (35)
Sw st oew 25y, My, M3
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1.2.2.4 Summary of Renormalization Constants at One-Loop

For future use, here we summarize the expressions for EW fields, masses and

coupling constant at one-loop level under on-shell scheme.

azw 2
fields AL AL —Re[$1p2:%]
on Z (2
A e IV,
6ZZA — QE%A(pQ = 0)
M3
ZAZ 2 _ M2
A 52AZ _ —QRG[ T (ng Z)]
azAA( 2) d
gz = G W)
op2
ox" (p?)
H 6zt = _Re[a—pg|p2=M121]
R[4 ) 1217 25057
f  0Z/ = —ReXlt (m}) —mj 5 ot
ORe|nf:L p2)+2f*R(p2)+2Ef’S(p2
6207 = ~RewiR ) -y T VTGN
=my
masses W IME, = Re[S) (p? = M)
Z  6Mj = Re[X7(p® = Mj3)]
H M} = Re[S" (7 = M)
f dmy,; = %Re <Z£»’L (m?z) + Z{;R (mfcl) + 22{;5 (mff))
1
coupling e  0Z. = —=6744 — W5 774
2 QCW
C2 ¢ c w 2 ZZ 2
b dow = i o — o ) _ 20 )

Table 2: Summary of the renormalization constant for SM fields, masses and coupling

constant at one-loop level under on-shell scheme.
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1.2.3 Renormalization Schemes of Electric Charge

In Sec.1.2.2.2, the electric charge is renormalized in the Thomason limit, where
photon momentum transfer () equals zero. This leads to the renormalized value
a = a(@Q* = 0) in the a(0) scheme. When applied to processes at energies scale
of EW gauge boson or above, this scheme leads to large logarithmic corrections
of the form Inmy/myw, which originates from light fermion loops. These large
logarithmic contributions can be absorbed into a non-perturbative quantity, which
will be discussed in Sec.1.2.3.1.

In addition to the «(0) scheme, there are two other commonly used renor-
malization schemes for electric charge: «(M%) scheme, where a(0) is evolved via
renormalization-group equation from Q? = 0 to the Z-pole energy scale, and the G,

scheme, where « is derived from the Fermi constant G, from the equation [32]:

G, T
va gt A 0

where Ar incorporates radiative corrections that are determined by matching the
muon decay matrix element in the Fermi theory and the SM.

These two schemes will be discussed in Sec.1.2.3.2 and Sec.1.2.3.3.

1.2.3.1 «(0) Scheme

An explicit expression of §Z44 in Eq.81 with fermion loop corrections is

2
a 2 mf

o) = N !
_— = = _—— — — 10
op? 1p2=0 c¥f3r 4 — D B & 4mp?

) (87)

Dimensional regularization [27] is adopted to regularize the UV divergence at one-
loop, which behaves as 1/(4 — D). II stands for the photonic vacuum polarized

induced by fermions. y is the regularization scale, yg is Euler’s constant, N/ is the
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color number of fermion (1 for f = [ and 3 for f = ¢), and Q; is the charge of
fermion.

A problem of Eq.87 is that light quark mass(m, ) are ill-defined because QCD
at the energy scale of light fermion quark is non-perturbative. Thus a perturbative
calculation of Eq.87 is adequate. This problem can be circumvented by implementing

the following subtraction:

I1(0) = ILop(0) 4 Miigne-£(0), (88)
yight-(0) = Ijigne-¢(0) — ReHlight—f<p2)J+ReHIight-f<p2) , H(p*) = &2@2)7 (89)
=Aa(p?) b
Aa(p®) = H(0)1epton — ReH(FQ)lepton/ + I1(0)nadron — ReH(pz)hadrog (90)
Aa;rpton Adhadroni-e.q7t

with p? = m?%, but this choice of my is arbitrary. The only requirement is that the
scale p? should be larger than QCD scale.

IMigne£(p®) depends on quark mass through m?/p?, and the quark mass can be
neglected in the perturbative calculation of Mg ¢(p?) if p* > mﬁght_f. Aa(p?) is
divided into a leptonic and hadronic part. The leptonic part,Acepton, can also be
calculated using perturbation theory[36, 37]. The evaluation of hadronic contribu-
tion, Acpadron, can be related to the process e®e~ — hadron using a dispersion
integral[38, 39, 40]:

oleTe™ — hadrons]

Bnan(i) = =5 [ T R - 1)

3 s —m?% — ie) olete™ — ptp~]
where we have chosen p? = M2.

Combining Eq.90 and Eq.81, the explicit expression for §Z, under «(0) scheme
at 1-loop level can be written as

1 1 1 s
0 Zelago) = §Hlight-f(0) + §Ht0p(0) + §Hbos(0) - ﬁ(SZZV(l)
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1 1 1 s
_ E(Aa(m%) + Relljgnee(m3)) + 5Hmp(O) + §Hbos(0) - %522@ (92)

with Aa(m%) = Adiepton (M%) + Athadron(Mm%).

1.2.3.2 «a(My) Scheme

At one-loop level, fine structure constant in (M) scheme can be converted from
the a(0) scheme with following equations:

a(0)

1 — Aa(m?) (93)

a(mg) =

Charge renormalization constant in «(My) scheme relates to the one in «/(0)

scheme according to
1 2
0Zelatmz) = 0Ze|aq) — §A04(mz) (94)

Comparing Eq.92 and Eq.94, one can find that a(My) scheme guarantees the com-
plete cancellation of light-fermion contributions, i.e. removes all large logarithmic

dependence on small fermion masses.
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1.2.3.3 (G, Scheme

The fine structure constant in G, and «(0) schemes are related according to

g = gGum%V(l — Z;—ZV) = «(0)(1 + Ar) (95)

©w

The numerical value for G, is extracted from the measured muon lifetime [41]. The
quantity Ar contains radiative corrections that are determined by matching the muon
decay matrix element in the Fermi theory and the full SM. Note that this scheme
does not depend on the shift A« of the running electromagnetic coupling.

At one-loop level, the charge renormalization constant in G, scheme can be

converted from the «(0) scheme according to:

1
0Zeyla, = 0Zewy|ago) — §AT (96)

1.3 Method for Feynman Diagram Evaluation

In order to express physical observables as a function of the chosen free parameter
set, perturbative calculations are required. However, such calculations at one-loop
and higher orders involve the evaluation of Feynman diagrams with loops, which
require integration over momenta. We start by introducing the basic techniques for
evaluating one-loop Feynman integrals.

Consider a one-loop Feynman diagram with N external momenta ¢; and N inter-
nal propagators, the masses of which are denoted as m;. The Feynman integral is

expressed as

(2mp)* P / p,  F(.q)
In(gimy) = 22— [ qP
N(an mZ) i7T2 D()Dl e DN_1 ’ (97)
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where [ is the loop momenta. F(l,q;) denotes the numerator and is a function of

loop momentum [ and external momenta ¢;. The denominators are
Di:(l+Pi)2—m?+i€,pz‘=ZQj,QOZO, (98)
5=0

where i€ is an infinitesimal imaginary part which is needed to shift branch points
away from integration axis. This specific choice ensures causality. After loop integral,
1e determines the correct imaginary parts of the logrithms and dilogrithms.

The one-loop Feynman integral can be either UV divergent or finite, depending
on the number of loop momenta [ in the numerator, denoted as P. If P+D—2N > 0,
the integral is UV-divergent. To regularize this divergence, we calculate the integrals
in a general dimension D # 4, using the technique of dimensional regularization.
The divergence, which is in the form of 1/(D — 4), cancels out in the renormalized
quantities.

The numerator in a loop integral can be independent of the loop momentum I,
i.e. F'is a constant or a dot product between external momenta g; - ¢;. In this case,
the loop integral is called a scalar integral, and its analytical expression is known, as
we will discuss in Sec.1.3.3. On the other hand, if F' depends on the loop momentum
[, for example ' =p; -l or ' =11, the loop integral is called a tensor integral.

In practice, the tensor integrals can be reduced to a combination of scalar in-
tegrals. This is done using a technique known as tensor reduction, which involves
decomposing the tensor integrals into linear combinations of scalar integrals. The
scalar integrals are evaluated using known analytical expressions, while the coeffi-
cients of the scalar integrals are obtained by solving a system of linear equations.
The resulting expression for the tensor integral can then be used to compute the loop

contribution to a physical process.
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Figure 2: Feynman diagram for one-loop N-point integral, where p;; = p; — p;

This section covers the methods for reducing tensor integrals to scalar integrals
based on Refs. [42, 43]. The analytical formulas for one-loop scalar integrals will also
be provided, following the methods presented in [44, 45]. Additionally, techniques

for evaluating two-loop integrals are also discussed based on [46, 47].

1.3.1 Tensor Decomposition

The general one-loop tensor integral with P indices can be written as

2mp)* P Qui - 4
TN — (— /dD M1 Hp 99
P15 P im2 qDODl"'DN—l (99)
(27711)47D Quyi " " Qup

im? /d M@ =g +p)? —mi - [(q+pn1)? —mi_]

where 1 has mass dimension and serves to keep the dimension of the integral fixed
for varying D. There is an infinitesimal imaginary parts in association with the mass

squared in the denominator, namely
(q+p;)* —m] = (qg+p;)* —mj +ic (100)
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For brevity, we will not write i explicitly.

The representative Feynman diagram for this 1-loop N-point function is shown
in Fig.2. Conventionally 7% is denoted by the Nth character of the alphabet, i.e.
T' = A, T? = B and etc. The scalar integrals carry an index 0, i.e. P = 0.

Power counting indicates that the integral is UV divergent if P+D—2N > 0. UV
divergences are regularized as poles of 1/(D —4) with dimensional regularization and
drop out in renormalized quantities. Besides, renormalized theory, which contains a
finite number of UV divergences, requires that P < N. Otherwise, the number of
UV divergences is infinite thus contradicts with renormlaized theory.

Lorentz covariance of the integrals allows to decompose the tensor integrals into
tensors constructed from external momentum p; and metric tensor g, with totally

symmetric coefficient function 771]1\7 e i namely

N—-1
T;i\i P Z T’zjlv, ,ippi17N1 “Pipup (101)

i1, ,ip=0
where artificially momentum pq is introduced in order to write the metric tensor in
a compact way. The metric tensor is recovered by omitting terms with odd pg’s and

replacing products of even py’s by

DPo,u1Po,pz 7 Guipe
D0,111P0,112P0,13 0,110 7 {gg}muz,usuzx

pO,ulp07u2p0,u3p0,u4p0,u5p0,u5 — {ggg}muzmuwsuﬁ (102)

where {g---g}.. denotes all permutation possibilities of indices. Similarly, we define

{p---p}.,{p---g---}. to stand for all permutation possibilities of indices from
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external momenta and metric tensor. For example, the explicit forms of {99} ., yopsua

and {pg}, pops are

{gg}u1u2u3u4 = GuipoGuspa + Juips Guopa + GpuapaGpops s

{pg}u1u2u3 = Pus Gpops T PuaGuips + PusGua po (103)

For later use, here we summarize the explicit Lorentz decomposition for T2 N <

4. For 1-point function:
A, (mo) =0 (104)
For 2-point functions: B.. = B...(p1;mg, mq)

Bu - pluBO )
B/u/ = g,uI/BOO +p1,up11/Bll )

B;wp = (gp);waom +p1up1up1pBlll- (105)

For 3-point functions: C... = C...(py, p2; mo, M1, M2)

2

Cy = p1uCh + poCy = prci

=1

Civ = 9w Coo + P1uP1,Cit + Prup2,Crz + Poup1Cor + P2up2u Coa

2
= ¢uCoo + Z DipDivCij

3,j=1
Cuyp = {gpl}uyp0001 + {QPQ}MVpCOOQ + {plplp?}uyp0112 + {plp?pZ}uup0122

+ P1P1P1,Crit + PouP2uP2,Ca22

2 2
= Z (g;wpip + GupPiv + gupPiu) CYOOi + Z piupjupkpcijk (106)
i=1 i k=1
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For 4-point functions: D.. = D..(p1, p2, p3; Mo, My, Mg, M3)
3
Du = ZpiuDia
i=1

3
D, = guDoo + Z PiuPjvDij

,j=1

3
Dy, = Z (g/wpip + GupPiv + gl/ppiu> Doo; + Z PipljvPrpDijr

i=1 i,j k=1
3 3
D,wpe = {99} 1wpeDoooo + Z{gpipi},uupaDOOij + Z DinljvPrpPlo Dijki
.3 i,5,k,1=1
(107)
There are no such terms like C,....,, D, ....; due to renormalizability.
The Lorentz decomposition for tensor integral with N > 5 is simply
4
N N
Tul,n-,up = Z j;l,m,ippil,m *Pipup (108)

ity ip=1

which is different from the tensor decomposition Eq.101. There are two differences:
(a) metric tensor g, disappears; (b) Only four momenta, instead of N —1 momenta
is used. The latter can be thought as in four dimensional space, only four momenta
are linearly independent, which can be viewed as the basis of the {p;} space. All the
other momenta can be expressed as the linear combination of the basis momenta.

The symmetric coefficient function T;Y , can be reduced to a linear combination

i
of scalar functions 7§ with N < 4. The coefficients of the scalar integrals are

obtained by solving a linear system, which will be discussed in the next section.
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1.3.2 Reduction of Tensor Integrals to Scalar Integrals

To provide a general understanding of the reduction method, it is better to begin
by examining the reduction of Tlﬁv before delving into the complex expressions for
the reductions of Tg,,ﬂp.

For future use, here we define some new variables.

fx,Yi; are defined as follows:
i = vk —mi+mi, Yy =mi+mi — (pi - p;)’ (109)

This quantities will appear frequently for the simplification of ¢ - py.
TN-L (k) is defined as

p-pp

TN—l (k‘)

pipp

2 4-D -
(20 Do+ Dy—1Dgy1-- Dy

which can be thought as the kth propagator is removed from T Note that

H1pp”
the first propagator of T\, (0) is Dy = (¢ + p1)* — m}, which contains an external
momentum. To bring back to the form in Eq.99, a shift of the integration momentum
has to be performed, namely ¢ — ¢ — p;..

RYVF . is defined as

M

N,k — N P _ E: Nk : -y
R#l-",upq - T#l"',uppk - Rih"',ipﬂp“#l “Pip_ipp

11, ,ip—1

= 1[TN—l (k)= TN . (0) = fiTy .. (111)

9 | s M1 pp—1

All tensor integrals on the right-hand side (RHS) have one Lorentz index less that

the original tensor integral. Besides the first two have one propagator eliminated.
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RN 00

Similarly, B>, 18

RN 00 — mN HPp—

pipp—2 T T 1 Mpgk

= |TN2L () +miTN }

H1-pp—2

M

1hP E ' N,00
- R ip_oPitpr " " Pip_opp_o

i1, ,ip—2

where two indices are eliminated for the functions on the RHS.

1.3.2.1 Reduction of T;ﬁv

The expression of T/fv is
N _
T, =

S

i1=1

Contracting Eq.113 with pi*

R TN p/kil —

_ (2rp)t=P /qul o Pr—Do— Ji

(27T,U)47D /qu i
i7T2 DOD1 tee DN_1

pu 1

, we obtain

(2mp)*-P / g 1P

i

1

Contracting Eq.114 with pi*

12 2 DOD1 ce
_ 1N
= ST ) = ST 0) -
, we obtain
pk - Z ph

where T are all scalar integrals.

11=1

44

DoDy -+ Dy-y

Dn_4

1
EfkT(fV

(112)

(113)

(114)

(115)

(116)



Since there are N — 1 different k’s, equating Eq.115 and Eq.116 leads to a (N —

1) x (N — 1) linear equation system, which can be written as

3T (1) = 5T H0) — s AT

YN - 1) - 3TN0 - LT

P1-M vt P1PN-1 TlN
e ; (117)

PN-1-P1 -+ PN—-1° PN-1 T}VV 1

where the V — 1 x N — 1 matrix composed with p; - p; is called Gram determinant,
denoted as Xy_1. The explicit properties of X_; give rise to three different cases
for solving T}.
1. det(Xy_1) #0

If the Gram determinant is not equal to 0, i.e. {p1,---,pny_1} are linearly inde-
pendent, the solutions of TV take the form

~1
i PP PLoDN-1

T]Z\fv—l PN-1-P1 -+ PN-1°'DPN-1

YL = 3TN 0) — AT

X : (118)
3T N = 1) = 5T57H0) = /v Ty

Thus T; are linear combinations of scalar integrals with coefficients as functions of
external momenta dot product p; - p; and mass my.

2. det(Xn-1) =0,{p1, -+ ,pn_1} are not linearly independent
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If the Gram determinant is equal to 0, it indicates {py,--- , pny_1} are not linearly
independent and Eq.116 fails. Suppose there are M linearly independent momenta,

Eq.116 becomes

P —Z 3 D - (119)

11=1

and the solutions of TiN is

-1
T1N br-p1 - P1°PM %T()N_l(l) - %TON_I(O) - %flT(fV
= : : : (120)

T3 PrCDL DM DM 3T (M) = 5T57H0) — 3 fu Ty
Since M momenta are linearly independent, other momenta can be written as

a linear combination of them, p, = Zf‘il cvypy- Besides, it is easy to check that

det(Xz>nr) = 0. For example, X/,1 can be written as

P1-M P1-Pm P1-PmMm+1
det
Pv-pP1 - PMcPM Pm - PM+1
Pym+1-P1 - PM+1°PM PM+1 - PM+1
M
b1-D1 T P1-Pm Z¢:1 CiP1 - Di
— det | | ' | =0 (121)
M
pm D1 e Py P >y CibM - Di
M M M M
Zizl Gpi-p1 - Zizl Cipi * "Pm Zizl Zj:1 CiCiPi - Py

3. det(Xny_1) =0,{p1, -+ ,pn-1} are linearly independent
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It is also possible that N — 1 momenta are linearly independent and det(Xy_1) =
0. In this case, the previous reduction method based on finding M linearly indepen-
dent momenta also fails, thus one has to use a different reduction algorithm. We will
use the reduction of scalar five-point function as an example.

The scalar five-point function contains four linearly independent external mo-
menta, then the loop momentum ¢ is always a linear combination of four external

momenta. Thus according to Eq.121, the following equation holds

q-q q-p1 - q-pa 2q-q 2q-p1 -+ 2q-ps
0 = dot pl"q p1:P1 p1:p4 — det 2171"61 2291"191 2191"194
Pa-q Pi D1t Pic D4 2p4-q 2py-pr 0 2pscpa
2Dy + Yoo 2g-p1 - 2q-ps
Dy —Dy+Yio—Yoo 2p1-p1 -+ 2p1-pa
:det . . .
Dy— Do+ Yo —Yoo 2ps-p1 -+ 2ps-ps
2Dg + Yoo 2g-pr o+ 294
_i qu o det Dy —Dy+Yio—Yoo 2p1-p1 -+ 2p1-pa
Z7T2 DoDl"'D4 . . .
Dy—Do+Yio—Yoo 2ps-p1 -+ 2ps-pa
(122)

Expanding the determinant along the first column we obtain

2p1-p1 o 2p1-a

1 1
0=— [ d°q————— x 2Dy + Y det
Z"YTQ qDoD1"'D4 % [ 0+ 00] xae

204 p1 - 2pa-pa
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4
+—/ D0D1 XZ Dk—D0+Yk0 3/00]

=1

2q-p ce 2q - py
x det 2Dk—1°D1 r 2Pgp—1°Pa (123)
2Dk+1°P1 2Pkl Pa

Subtracting p;T(0) and added it back, the above equation is still invariant and

obtains a new form

2p1-p1 o 2p1-pa
0 = [275(0) + YooT] x det
2p4-p1 v+ 2pacpa
4
+) (~1 (k) = T3(0) + (Yao — Yoo) T}, — pi'T5 (0) + pi T (0)]
k=1
2 20
xdet | 2pp 1 -pr cor 2pro1 - pa (124)
20641 P11 r 2Dk41 c Pa
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Writing in this form helps the algebraic simplification. Finally, we obtain

o -T50) -T5(1) -TH(2) -T503) —T5(4)

1 Yoo Yo Yoo Yos You
1 Y] Y, Y, Y] Y,
0 = (—1) x det 10 11 12 13 14 (125)
1 Yoo Yo Yoo Yos Yo
1 Y30 Ya Yo Y3 Y4
1 Yio Y Yio Yis Y

In particular, this yields T; can be reduced to a linear combination of five scalar four-
point functions, which is only true if the Gram determinant vanishes. The detailed
derivation from Eq.124 to Eq.125 can be found in Appendix.A.

Eq.125 is only for scalar five-point function. General formula for tensor N-point

function is

Do + Yoo 2q -1 e 2¢-pNa
0= ! Dg—dm ' ur o et Yio = Yoo 2pr-pr 2p1 - pa
N i7T2 qDQDl e DN—l : . . .
Y(N—l)o — Yoo 2pN-1°P1 - 2pN-1°DN-1
(126)

With the same strategy, we obtain the reduction formula for tensor N-point function

with vanishing Gram determinant

Totonr T (0) =TT, (D) o =TT, (N = 1)
1 Yoo You Yov-1)
0 = det 1 Yio Yiu e Yin-1 (127)
1 Yin-1)0 Yin—in Yinv_nv-1



which expresses TV by T7N~!. The latter can be reduced to a linearly combinations
of scalar integrals, which will be shown in Sec.1.3.2.2, thus 7% is also reduced to
scalar integrals.

Remember that this formula is only valid for dety # 0. If det y = 0, one has to

choose another reduction method.

1.3.2.2 General Formulas for the Reduction of TF]L\L__’“P

Sec.1.3.2.1 explicitly shows how to reduce tensor integrals with one index under
various conditions for the Gram determinant. For tensor integrals with more indices
T;ﬁ upr BQ.117 are modified due to the extra Tp... term. Assuming M < N —1

momenta are linearly independent, we obtain the following reduction formulas

1
N _ NOO
TOOZl ZP2_D+P_2_ [ 11-ip_2 ZR/CH ip— 2:|’

N _
Tki1-~-ip_2 = (XMl)kk [ 11 “ip_q Z(Szr 0021+ %pr—1%pr41-+ip— 1:| (128)

Similar to Eq.115, RY can be expressed as a linear combination of scalar functions.
Besides, due to the freedom to choose M linearly independent momenta, the RY-~
can be obtained in different ways, i.e. linear combination of different set of scalar
functions, which allows for checks on the analytical result as well as on numerical
stability.

To illustrate the use of Eq.128, we explicitly show the reduction for C), and Cy,,
which is defined as

O,u(u) = C,u(l/) (pi p%a Mo, M1, m?)

_ (2@)4—17 /qu[q2 _ Qu(qv) (129)

im? mg|[(q + p1)? — m3][(q + p2)? — m3]
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with

p%:MIQ’pg:M227
P21 = (p2_p1)2:M02’
1

prepe = —5 (M3 — MF = M) (130)

where p; and p, are linearly independent momenta, thus M = N — 1 = 2. Besides,
the tensor decomposition of C),(,y can be found in Eq.106.

Eq.128 yields

Ch = TP = (X3 ) R (131)
1

COO = T(?O - D - 1 |:R3700 B R?l B Rg’1]7 (132)

Chi =T = (X5 )uwe [ R = 68 Cro. (133)

The explicit form of Gram determinant is

o g ~3OME - A2 - M) -
—5(Mg — M} — M3) M3
the inverse of which is
o i O
T AMPME = (M M3 = MG \ 12 - 02— M) M2

(135)

R** is reduced to a linear combination of scalar integrals according to Eq.115,

1 1
R = §Bo(p§,mo,m2) - §BO((p1 - p2)27 may, mz) - (p% - mf + m%)Co,

1 1
R*? = §Bo(pf,mo,m1) - 580((191 —p)®,ma,ma) — (p3 —ms +mg)Co. (136)
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Thus, C} can be simply solved using Eq.131

4 1
Cy = [MQR?’J S(M2 — M2 — M2 R372},
VTOAMEZME — (M2 4+ MZE — M2 L2 (Mo — My = M)
4 1
Cy = [— M2 — M? — M2)R®? MQR&?] 137
2T AMEMZ — (M} + M2 — MZ)? o (Mo ! 2) B4 M, (137)

R* and R**can be derived from Eq.111 and Eq.112

R*® = By((p1 — p2)?, m1, ma) +miCo,

2R = Bi((p1 — p2)®, ma, ma) + Bo((p1 — p2)?, mu, ma) + (m} — pi — mg)C,
2Ry" = Bi(p3, m1,ma) — Bi((pr — p2)*,ma,ma) + (m3 — p — mg)Ca,
2R} = Bi(p}, mo, ma) + Bi((pr — p2)®, m1,ma) + Bo((p1 — p2)*, ma, my)

2R5% = —Bi((p1 — p2)*, M1, ma) + (m3 — p — m3)Co. (138)

combining with FEq.137 and

m2 —m?
=2 1 [Bo(pQ, mo, m2) - Bo(o7m0>m2)

Bl(p27m05m2) 2p2

1
- §BO(p27m07m2) (139)

Ri’i can be fully reduced to a linear combination of scalar integrals By, Cy. Thus,
the solutions of Cj; can be obtained from Eq.133.

Clp can also be reduced to scalar functions with the same strategy. For sake
of brevity, we will not explicitly list the expressions here. Remember, there are no

terms like C),,,» due to renormalizability of the SM.
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1.3.3 Analytical Expression for One-Loop Scalar Integrals

With the reduction method described in the last section, all one-loop integrals
can be reduced to the scalar ones. Thus, the analytical solutions of one-loop scalar
function is essential to obtain the analytical result for all the other tensor integrals.
Besides, these scalar functions depend on the parameter D = 4 — 2¢, where only the
first few terms in the expansion of € are encountered.

There are two methods for deriving expressions for the first few terms. Explicitly
solve the loop integral, which leads to generalized hypergeometric functions [48],
and then expand them in e. Alternatively, one can first expand the loop integral
and calculate the coefficients of the expansion in € [45]. In this work, we adopt the
latter method and list analytical expressions for Ay, By, Cp, and Dy up to O(e). A
more detailed derivation of the analytical expressions for one-loop scalar integrals as
well as the analytical properties of those integrals can be found in Appendix.B and
Refs. [44, 45].

For practical calculation, numerical evaluation is more straightforward. Various
codes are available for the numerical evaluation of one-loop scalar integrals, such as
LoopTools [49, 50], Golem95 [51, 52|, Collier [53, 54], OneLoop [55], QCDLoop [56]
and PackageX [57, 58].

1.3.3.1 One-Point Function

The scalar one-point function has the following form

1
q?> —m?2 +ie

1
Aom) = (me)— [ %

2
= 2 4+ AP (m) + €A (m) + O() (140)
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with

2

0 m
Aé)(m):mg—mQIDF
2 2 m2
AW _ 2 T2 2, 122 141
o (m) =e[m +12m m nlu2 —|—2m n M2} (141)

1.3.3.2 Two-Point Function

The scalar two-point function By(k? my, my) = By has the following form:

1
B, = 2 YENE_— dD
=) s [ O G
1
=+ B 4+ BV + 0(e?) (142)
with
k2 2 r; —1
. L
B[() ) _ln(l? — Z&T) — le[ln(l l‘j) —Zj In ]xj — 1}
2 2 2
1 T 1 k . 1 1

+ [ln(% —ig) — 2] x [In(1 — z;) — 2;1In inx— L 1]}

+ (1 —21)In(1 —21) In(1 — 29) + 1 In(—21) In(—22) + (21 — 22)

) —Lig(mQ_l )+ln(x2—x1)ln @_1} (143)

To — 1 To — 1 X2

X2

x| Lia

where z; 5 are the roots of
2?4+ (=K +m32 —mDa +m? = k*(z — z1)(z — 1) (144)

The By function has one threshold at k3 = (my + mg)?. When k? < k7, the

By function are purely real, while the imaginary part is non-zero when k? > k2.
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This discontinuity can be understood as follows. Fig.3 shows the distributions of the
Eq. 144 in the region = € {0,1}. We have set m; = 4 GeV ;my = 10 GeV . k?
are considered with three values, k? > k2, k* = k% as well as K? < k2, which are
represented by the blue, orange and green line respectively. As we can see from the
green line, Eq. 144 is negative in the region = € (0.149,0.478). Eq. 144 originates

from the integral

1 /{32
Béo) = /0 dxIn {E(x — 1) (x — z9) —ig]. (145)

Negative value of Eq. 144, i.e. the integral of logarithm in Eq. 145 with negative
argument leads to non-zero imaginary part.

The analytical formula of this discontinuity in D = 4 — 2¢ is written as

1
ABy(k*,m2,m3) = —;ImBo(k‘z, m3,m3)

2\ —e _ 1012 12 12
:27TZ< k ) F(]‘ 6) A (k 7m1’m2)@(k2_(m1+m2)2>

Arp?/)  T(2 — 2e) (k2)1—2¢

(146)

where © is the Heaviside function and A(x,y, z) = 22 + y* + 2° — 2(zy + 22 + y2).
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100

mqy=4 GeV; my=10 GeV

Figure 3: Distributions of Eq.145 for my; = 4 GeV,my = 10 GeV,u = 1 GeV with
k* < k2 (blue),k* = k3 (orange) and k* > k2(green)

1.3.3.3 Three-Point Function

The scalar three-point function Cy(p?, p3, (p1 + p2)?, M1, ma, m3) = Cy has the

following form:

1 1
Co = (pme® 6—/dD : '
0= (u'me™) i q [¢2 — m? + i€][(q + p1)?2 — m3 + i€][(q + p1 + p2)? — M3 + i€]

— 9 4 eV (147)
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O = o 33 S (-1 L)) (145)

2
K c+ 2ab 7=1 k=1 I=1
1 1 3 2
W _ O i+ 0)
6§ == x T s S S [ ) o)
j=1 1=1 k=1
—2In(1 + r{))Lis(1 + 1)) + 2Lis(1 + ()] + [In(1 + 1)) — In(1 + i)

U]
1 ! p L+75 ! !
LR i ) < Dt - o)
]1

O] o
147
+L12(1 ]”1)> e ( ® 21 ’1);)}
+ 7o rif (L4755
0 )
1+ s (1 +7;
—L13<—J(ll)> + Lis ((l)(—j)))} (149)
L+ ri(1+ 2)

where « is the root of a +ca+ca? =0 and a = p3/p?, b = p?u®, ¢ = 2p; - pa/p*. The

QAM

definitions of T'Z(]I»{) can be found in Eq.379. These expressions are valid for real mass
and momentum squared. For complex parameters, see Eq.4.26 of [43].

A special type of C function contains soft or/and collinear IR divergence. The
Cp function with soft divergence corresponds to the vertex function with intermediate
photon shown in Fig. 4. Suppose the momenta (masses) of two external fermions are
p12 (m12). The soft divergence originates from the massless photon. To regulate the
divergence, a fictitious photon mass A is introduced, and A — 0 needs to be taken at

the end. The corresponding Cy function is

1
i ] e = w3+ )2 = Mg+ pr+ pa)® — md

= ——(FIn\— ) (150)

57



Figure 4: The example vertex diagram that contains soft IR divergence, where the

fermions are massive.

with
1 1 YL 1 Y2 — 1
= 5 n —1In ],
(p1 + p2)*(y1 — v2) Y1 Yo
1 1 1
F,=FIn +p2)?) + [—ln21— — —In?(—
2 1 ((pl p2) ) (p1+p2)2(y1 _y2) 9 ( yl) 2 ( yl)
1 1 -1
—3 1112(1 — Yo) + 3 1n2(—y2) + In(—y;) In(—y2) + 21In yly In(y; — y2)
1
-1
oL, T o, A } (151)
Y1 — Y2 Y1 — Y2

where y; o are the roots of (p1 + p2)?y® + y[m3 — m3 — (p1 + p2)?] + m3 = 0. In\?

regulates the soft divergence, which cancels by adding real photon emission diagrams.

1.3.3.4 Four-Point Function

The 1-loop scalar four-point function is defined as Dy (p3, p3, p3, p3, m1, ma, ms3, my)

1 1
Dy = (y’me® 6_—/dD : .
o= (n ) im2 9 [¢2 — m? + i€][(q + p1)? — m3 + i€]
1

X : :
[(q + p1 + p2)? — m3 +i€][(q¢ + p1 + p2 + p3)? — m3 + i€]
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= DI + O(e) (152)

where we have only kept the finite order since the O(e) is usually irrelevant for 2 — 2
process. In addition, the Dy function is a linear combination of two Cy functions, as
can be seen from Eq.397, thus we disregard the explicit expressions for Dy, which
can be found in [44].

The Dy function with two small and equal masses and four external on-shell

momenta also contains collinear IR divergence, which takes the form

1 1
Dy=-— [ d”
T ) e g ) = N
1

[(q+p1+p2)* = m3ll(g + p1+p2 +p3)* = V]

2 1ty o1 ((mi+ma)?+s+A; 2 |t
— 2 ‘— —1‘ ’——1 | X 0=
P R G e s — Al el X RO ma)’)
(153)
with
pi=mi, ph=mi=p5, (m+p)’ =5, (p2=ps)* =1,
A= \/32 + 2s(m? + m3) + (m? —m3)? ,
0 for <0
0(z) = (154)
1 for >0
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1.3.4 Numerical Evaluation Method

Analytical solutions of Feynman integrals in terms of special mathematical func-
tions are preferred from an efficiency perspective. However, the analytical solutions
are challenging at two and higher loop level due to the appearance of multiple mass
scale. Thus, semi-numerical or numerical methods allow broader flexibility and bet-
ter automation.

Various numerical methods are developed for evaluating Feynman diagrams, and
they can be broadly divided into direct and indirect evaluation methods. Direct
methods such as sector decomposition[59] and Mellin-Barnes representation [60],
compute Feynman integral by directly performing integration over some variables.
Indirectly methods, on the other hand, compute Feynman integrals by solving dif-
ferential equations[61]. A comprehensive review and comparison over a variety of
numerical loop integration techniques can be found in [62].

The authors of [46, 47] have developed a new semi-numerical method correspond-
ing to the direct evaluation method based on a combination of Feynman parametriza-
tion, dispersion relation and subtraction method. This section aims to introduce
these techniques. A combination of them used for evaluating two-loop Feynman

diagrams will be discussed in Sec.2.3.1, Sec.2.3.2 and Sec.2.3.3.

1.3.4.1 Feynman Parametrization

Feynman parametrization is a technique of changing an expression into a numer-

ical integral, the general form of which is

1 ! ! 01—y xy)
_— = dxq - -- d —1)! - 1
AlAn A 1 /[; ZEn(TL ) [a1A1+"'anAn]n ( 55)
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In our calculation, it is very often to use Feynman parametrization for n < 4, thus

we write the formula explicitly

AB / dm/ fle_ery:?jy):/ | Ta- );erBP’ (156)
e[ f o
:/ d"”/ :vA+yB+(1—;p_y)C]3 (157)
:/o ), K 1—13)A+y123+(x—y)0]3’ (158)

1 11—z l-z—y 6
= d d d 159
ABCD ) x/o y/o M —a—y—DA+aBryCcropi 1Y

1 T Y 6
:/0 d‘”/o dy/o AT a-oB+@-yorop 0

Feynman parameterization is also very useful in deriving the analytical expres-

sions for 1-loop scalar integrals, as shown in Appendix.B. Implementing Feynman
parametrization for two-loop integrals offers several advantages. Firstly, by intro-
ducing Feynman parameters, the loop integrand becomes simple as it involves the
multiplication of one-loop integrals only. This avoids the need for developing new
special functions. Secondly, the integration over the parameters can carried out nu-
merically. As stated before, numerical evaluation is more appropriate for computing

two-loop Feynman integrals.

61



A
- 7T = -
- ~
- ~
’
y \\
/ I \
fl p’+ie
x
4 | A <, Reo
— — - — 3
‘ T
/
\ (my+ma)? /
\
\ /
N /
N s
g -~
~ - _|_ - -

Imeo
- T = -
-~ ~
s ~
/ AN
/ AN
/ C
/ p? + e
X
Lo - - » Reo
(my+ma)? —

Figure 5: Integration contours for the dispersion relations for the one-loop two-point

functions for the cases Im((m; +m3)?) = 0(left) and Im((m; +m3)?) # O(right). The

zigzag lines denote the branch cuts, ending at the branch point (m; + mg)%. The

sircle sections are understood to have a radius R — oo

1.3.4.2 Dispersion Relation

Implementing dispersion relation is a crucial step in the evaluation of two-loop

Feynman integrals. It allows for the disentanglement of the two subloops, enabling

the two-loop integrals to be expressed as a product of one-loop integrals. This section

presents the fundamental formulas of the dispersion relation. The application of the

dispersion relation for computing two-loop Feynman integrals will be discussed in

Sec. 2.3.1, Sec. 2.3.2, and Sec. 2.3.3.

The basic dispersion relation formula for the one-loop tensor two-point function,
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B,,(p*,m3, m3) = B,,,, has two different forms according to the mass argument:

[e%¢) 2 2
MVP(J mi, msj) 2
y , Im((my +m =0 161
u p = (m1+m2)2 P —p iy (( 1 2) ) ( )
1 B 5 2 2
/ i M P(U m17m2) ’ Im<<m1 _|_m2)2) % O (162)
. o—p%—ie
where
1
ABwp(p27 m%, mg) = ;ImBNVP(p27m%7 m%) (163)

Branch points of B,,, and ImB,,, are at Re(c) = (my + mz)?, which can be
clearly see from A/2. The integration contours must be chosen to circumvent the
branch cuts and the one we choose correspond to the dashed curve shown in Fig.5

The analytical expressions of B,,, are

1
e LRI )

1
+4p* + (m] —mj + p*) log —; + (=mi + mj +p*) log
1

1 )
2
ms5
1/, , 1

By =52 m3 —mj — By(p*, m3, m3) + m?log _m%_

1
Boo =5 (2’" Bo(p*,mi, m3) + (mi —mj +p2>Bl<p2»m?am3>

3m? + 6m3 — p? 1
+ — 2P + mj3log —
2

3
1
m:@iﬁﬁ&wmh@—aﬁ—@+ﬂﬂﬁm%@

—3m3? — 3m3 + p?
3

1
2 2 21 .
+ (m2 + m; log m§>>

1
Boos =3 <2m1B1(p m?,m2) + (m? —m3i + p*) B (p*, m3, m3)
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1
B =— 1 (2771%31(172: mi, m3) + 2(mi — mj + p*) Bu(p®, mi, mj)
—2m? + 2m3 + p? 9 1
5 + m3 log ma (164)

The L; and X functions are defined as follows

MNa,y,z) =2+ y° +2° = 2@y +az+yz) = (x —y—2)° —4yz

_ (yz)~"/?
Li(z,y,2) _log(Q()\(x,y, Z) —:17—|—y+z)1/2) (165)

The analytical expressions of ImB,,,, are

2 . 2
Im B, =mAY?(1, =1, 72)
pep
Ty1/2 mi mj. mj —mj —p’
ImBy = A2 (1, =, —2) =2 ——
b= p p
T m2 m?
ImBy = — E)\g/z(L p—Qly p—;)pQ
2 2 /1 2 2 2
tin =oA(1, 8 72 (G001, ) 4 2 )
T m2 m?
Im Byoy :ﬂ)\g/z(l’ p_le p—;)(PQ +mi —m3)
7r m? m2 [ m: m? m? m2.  2m?
ImB :—)\1/21,—1,—2(—2——1—1 AL, =, 2 +—1) 166
111 4 ( p2 pg) (pg pg )( ( p2 pg) pg ) ( )

The derivative of B,,, and ImB,,,,(p*, m3, m3) with respect to mass will also be
needed in evaluating two-loop Feynman integrals. The derivative is straightforward

and list in Appendix.C and Appendix.D.

In many cases, numerical integration of the form

> f(s)
/a as 0 (167)
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had to be handled, where one has to calculate in case of sy > a a principal value
and a residuum contribution. This can be easily coded for the numerical evaluation,

resulting in

J Ry o CEY CUEC R

s — sg Lt ie s — So
> f(s)
ds ———— 168
* /250—a ’ §— 5o + e ( )

Higher powers of propagators lead also to integration of the type

/OO ds (L (169)

s — 8o £ ig)?

A formula which proved more useful for the numerical evaluation of this integral is

given by
- F() [ f(s)+ (280 —8) — 2f(s0) _ .,
/a ds (5—so+ie)? (5 — 50)? Fimf'(s0)
2/ (so0) > f(s)
Tz S0 + /280+a ds (s — s0)? (170)

where f'(s) = df(s)/ds.
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1.3.4.3 Subtraction Method

The numerical methods described in Sec. 1.3.4.1 and Sec. 1.3.4.2 encounter chal-
lenges when dealing with UV divergent integrals, as dimensional regularization can-
not be simply applied in numerical integrals. To address these UV divergences, we
employ the subtraction method. The general idea is to subtract a few simple terms
from the original integral to make it UV finite, and then add back the analytical ex-
pressions of these subtracted terms to the total result. The strategy of this method

can be established as follows:

Tuvediv = Tuv-div — Lsubtra + Lsubtra (171)
— ——
UV-finite UV-div

where I i denotes the subtraction terms. The first one is evaluated numerically,
while the second one is UV divergent thus must be evaluated analytically.

The number of subtracted terms needed for evaluating UV diagrams varies, and
generally involves three types of subtracted terms at two-loop level: two for subloop
divergences and one more for a global divergence. The global divergence refers to the
highest order divergence of a given diagram, while the subloop divergence does not.
In two-loop Feynman diagrams, the global (subloop) divergence is proportional to
¢ 2=V where € = (4 — D)/2. The number of global and subloop divergences can be
counted by power counting the explicit Feynman integrals or by counting the number
of two/one-loop counterterms contained in the Feynman diagram. For instance, let’s
consider the box diagram with a subloop vertex shown on the left of Fig. 6. Since
there is only one one-loop counterterm diagram corresponding to this diagram, as

illustrated on the right, which implies that it contains only one subloop divergence.
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Figure 6: Box with a subloop vertex diagrams and its corresponding counterterm

diagrams.

To ensure the numerical evaluation, both the global and subloop divergences need
to be subtracted from the original integrand. The subtraction term for global diver-
gence is obtained by evaluating the same diagram but setting all external momenta
to zero. On the other hand, the subtraction term for subloop divergence is obtained
by setting all momenta except for the loop momentum inside all propagators to zero.
The practical implementation of constructing different subtraction terms is shown in

Sec.2.3.2 and Sec.2.3.3.
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2.0 Two-loop Electroweak Corrections for ete™ — Zh Process

2.1 DMotivation

After the discovery of the Higgs boson in 2012 by the ATLAS[63] and CMS|[64]
collaboration at the Large Hadron Collider(LHC), many measurements have been
performed to study its properties. As we discussed in Sec.1.1, the neutral Higgs
boson is responsible for the masses of gauge boson and fermions. More importantly,
the Higgs mechanism leads to a distinctive phenomenological imprint in the coupling
structure between Higgs and other particles, i.e. all fermionic and bosonic couplings
to the Higgs boson are proportional to the masses of the corresponding fermion and
gauge boson. Thus, measuring the properties of the Higgs boson can test the SM,
and deviations between experiments and SM prediction indicate the presence of new
physics beyond the SM. Assuming the new physics scale A is at TeV range, the
deviations in Higgs couplings, which can be parameterized as m?% /A?, is at percent
level, thus beyond the current experimental accuracy of the LHC. Under x framework,
the uncertainty for most of the higgs couplings is larger than 10% as shown in Fig. 7
from Ref. [65].

In order to detect the percent level deviations in the Higgs boson couplings,
several proposals have been made for so-called ete™ Higgs factories. These facilities,
including the International Linear Collider (ILC) [1, 2], the Future Circular Collider
(FCC-ee) [3], and the Circular Electron-Positron Collider (CEPC) [4], are lepton
colliders, thus provide a clean environment and allow for more precise and model
independent measurements of the properties of the Higgs boson.

These machines are planned to operate at center-of-mass energies of 240-250 GeV,
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where the dominant Higgs production channel is the Higgsstrahlung process ete™ —
Z H. Together with the recoil mass method, which can reconstruct the Higgs with
leptonic decay products of Z boson, the cross section of ete™ — ZH is expected to
be measured with an accuracy of about 1.2% at ILC, 0.4% at FCC-ee, and 0.5% at
CEPC. The coupling between Higgs and Z, gz~ can be extracted by comparing the
experimental result and theoretical prediction, namely (grzz/g3e,)? = o(efe” —
ZH)*®/g(ete” — ZH)™. With the so-called x framework, this can be rewritten
in terms of Kz, Kz = guzz/ glsql\éz. Thus the ratio between cross sections is directly
related to kz. Kz stands for the normalized coupling between Higgs and Z, and
kz # 1 indicate the appearance of new physics.

The interpretation of oy in terms of the k, requires precise theoretical predic-
tions o(efe” — ZH)SM, which has been calculated up to next-to-next-to-leading
order(NNLO) with mixed EW and QCD corrections[66, 67]. The numerical impact
of the mixed EW and QCD corrections is around 1.4%, which is larger than the
expected experimental accuracies of the Higgs factories. Thus, missing higher order
corrections must be calculated.

The largest missing higher order corrections is from NNLO EW corrections, which
depend on up to four independent mass scales (myg, mz, my, my;), as well as two
additional momentum scales (which can be represented by the Mandelstam variables
s and t). Therefore it is difficult to find analytical solutions, since the expressions
will be impractically large and may require the development of new special functions.
On the other hand, generic numerical methods (such as numerical integration over
Feynman parameters [68]) are highly computationally intensive.

Due to these reasons, the evaluation of NNLO EW corrections is not only neces-
sary to meet the precision requirements of future Higgs factories, but it also represents

a significant advancement in the techniques used to perform two-loop electroweak
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diagram calculations. In Sec.2.3, we outline our approach for evaluating the two-loop
diagrams contributing to the process ete™ — HZ. The numerical result and related

discussion is shown in Sec.2.4
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68% CL: —— e —f—
95% CL:

Bgsm =0 Ky<1 Kon = Kot
P, =88% p_,=96% p_, =95%

nv o

undet ol

W W W X

BSM : —
‘}11\‘3\‘\i!\\\\‘\\\\‘\\\\‘\\\\

-5 -1 -05 0 05 1 15 2

Parameter value

Figure 7: Best-fit values and uncertainties for Higgs boson coupling modifiers per
particle type with effective photon and gluon couplings and either B;,, = Bundet =
0(black); Biny and Bypaet included as free parameters, the condition kw z < 1 applied
and the measurement of the Higgs boson decay rate into invisible final states included
in the combination (red); or Besm = Biny + Bundes included as a free parameter, the
measurement, of off-shell Higgs boson production included in the combination, and
the assumptions described in the text applied to the off-shell coupling-strength scale
factors (blue). The SM corresponds to Bi,y = Bunaes = 0 and all k parameters set to

unity. All parameters except k; are assumed to be positive.
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2.2 Polarized and Unpolarized Cross Section

The eTe™ Higgs factories, such as FCC-ee, CEPC, and ILC, have different strate-
gies regarding the use of unpolarized and polarized beams. FCC-ee is primarily de-
signed to operate with unpolarized beams, but some operation modes will employ
polarized beams, which is also considered for CEPC. On the other hand, ILC plans
to use polarized beams, with up to 80% longitudinal polarization for electrons and
60% for positrons. The use of polarized beams will not only enable more precise
measurements but also provide a means to explore new physics beyond the Standard
Model.

Thus, in order to compare the theoretical predictions of o(ete”™ — ZH) with
future experimental results, it is necessary to calculate both the polarized and un-
polarized cross sections.

The perturbative expansion of the matrix element M for ete™ — ZH process is

obtained by expanding EW and QCD couplings, and it takes the following form:
M= M(O) + M(C‘é) + M(aas) + M((XQ) + M(a%‘s) 4 (172)

The upper indices stand for the expansion order of EW and QCD coupling. Note
that there is no one-loop QCD correction M(®) since the gluons do not interact with
leptons and EW gauge bosons.

The matrix element has the form
M = 5(pe )T Mu(p,-) (173)

where p.+ are the momenta of incoming positron and electron, respectively, u is
the Lorentz index of the outgoing Z boson, and I'* stands for the eeZ three-point

function. n shows the expansion order.
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For unpolarized square matrix element, one needs to average of initial spins,

which is accomplished by the Carsimir trace technique

1 *(m n 1 NG m
MOOM Oy = 5 37 WAL = ZTr{pm p T %7} (174)

etspin
where the electron and positron mass have been neglected.
On the other hand, the squared matrix element with polarized electron and
positron beam can be obtained by inserting the polarization projectors Pr1 =

(1 4+~°)/2. Thus the polarized amplitude is obtained by performing the following

replacement:
ulpe) = ulpe ) = P x ulpe) = -0 x ufp.)
= U(pe- )r = Pr X u(pe-) = ! —;% X U(pe-)
B(per) = B(pos )1, = Pr X B(pes) = ~ L0 ofpes) = D) X L o
= Dpedn = P X 0lpe) = 502 X olper) = (per) x 500 (175)

Thus for polarized square matrix elements, FEq.174 becomes

|M(m)M(n)‘e+ = M’:(_m)_ M(:_L?

7%k ej ,ek 6]

= {0y BT Py L, jk=RL (176)

€k

Instead of separately going through all the steps of the computation for left-
and right-handed polarized beams, one can alternatively derive the polarized matrix
elements from the unpolarized one, which seems more efficient for calculating the two-
loop diagrams. This is achieved by grouping certain types of diagrams. Considering
a two-loop diagram where the incoming fermion line connects with NV gauge bosons(~y

or Z), the polarized matrix elements satisfy the relationships
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M(‘gl)...VN ’RL — gie\ﬁ .. .gEeVN'D(pe+)pRF(Q)PLU(pe—)G(Q)

where gi‘ég) is the left(right)-handed coupling of eeV vertex, F' denotes the matrix

elements of fermion line, and G denotes the rest part of the matrix element. The
tree-level matrix element can be written in the same form.

The polarized squared matrix elements are

My ™™ Moy lir =g57g5 " -+ 9%~ G0)Ga) X Trlper PLF(2) Prpe- Flo),
| M) M) e, =g gi™" - 95" G(0)Gi2) X Tr[per Py Pupe- Flo)),

| M) Moy [ee, =|Mg) ™" M) |rr = 0 (178)

With | M 2) M)l unpot = (|M2) M(0)|Lr +|M2) M(0)|rL+|M2) M(0)| L+ M2) M0y |[rr) /4,

we obtain the relationship between polarized and unpolarized squared matrix element

|MV1'~~VNM | _ 4g1<:2{eZg§6V1 e gf{eVN % |M M |
2) (O)|LR = gﬁenge{eVl - -gffVN + gfezgievl . gEeVN (2)4¥4(0) lunpol;,
4gpedgeVn . oW
‘MVl VN M(O) ’RL - ee ee ee ee X ‘M@) M(O) ’unpol;
‘M(‘gl)"'VNM(o)’LL = |M(‘g1)mVNM(0)|RR =0 (179)

If the fermion line connects only with W bosons, which only interact with left-

handed fermions, thus we end up with very simple equations

| M@ " Mgy lre = 4 X [ M(2) Mg)|unpol,

| My Mgy lur = [ME)"" M)l = [M{3) ™" Mg)lrr = 0 (180)
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After calculating squared matrix element, the differential cross section can be di-

rectly obtained by multiplying the 2-body phase space. The differential cross section
up to NNLO(EW+EW) reads

do 1 m2 m?

= 1. —Z ZZHYy M2
dcos 6 327?55( s s M|

1 mZZ m%’ (0)|2 (0)x 7 () (0)% 7 r(cexs)

= 580 =5 (MO + 2Re(M " M) 4 2Re(M " M
s S S N—— ~ RN ~ _

LO NLO NNLO(EW+QCD)
+ [ MO + 2Re(M O M ("2’>) (181)
NNLO(EW-+EW)

where /s is the center of mass energy, 6 is the angle between outgoing Z boson and
incoming electron. S functions is B(x,y,2) = (z —y — 2)? — 4yz. The polarized
and unpolarized cross sections can be obtained by substituting the polarized and

unpolarized squared matrix elements, respectively, into Eq. 181.
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(d) (f)
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Figure 8: Examples of two-loop Feynman diagrams with at least one closed fermion

loop.

2.3 Evaluation Method for Two-Loop Diagrams

As shown in Eq. 181, the NNLO EW corrections involve the interference be-
tween one-loop diagrams, |M(®)|? and two-loop diagrams. The former can be eval-
uated using the techniques described in Sec. 1.3.1 and Sec. 1.3.2, which have been
implemented in modern packages for automated calculation, such as FeynCalc [69].
However, no automated packages are available for the evaluation of general two-loop
diagrams due to their complexity.

Some examples of two-loop diagrams are shown in Fig.8. Two-loop self-energy
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Fig.8(d) and their corresponding counterterm diagrams can be straightforwardly
computed by reducing the expressions to a set of know master integrals (MIs)[70],
which can be further evaluated with TVID 2.2 [71] both numerically and analyti-
cally. Two-loop vertex diagrams Fig.8(c,e,f,g) and box diagrams Fig.8(i) can also be
evaluated by reducing to Mls, but this reduction process is heavily time-consuming,
which is of order few thousands CPU hour[72].

Thus we have developed a new method for evaluating two-loop diagram, which is
based on a semi-numerical method using a combination of Feynman parametrization
and dispersion relation. This method is further developed to enable the treatment of
UV divergences by constructing subtraction terms as discussed in Sec.1.3.4.3. With
this approach, all relevant two-loop Feynman integrals are reduced to at most three-
dimensional numerical integral, which is further evaluated with Gaussian-Kronrod
quadrature integral routine.

Three different elements comprise this evaluation method, which would be hard
to understand by implementing them at the same time. Sec.2.3.1 aims for evaluation
of UV finite diagrams, which is a good example to show how to reduce two-loop
diagrams into three-dimensional numerical integrals with Feynman parametrization
and dispersion relation. Sec.sections 2.3.2 and 2.3.3 aims to show how to construct

different subtraction terms according to different UV structures.
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Figure 9: Planar two-loop box diagrams with top quarks in the loop. The bottom
row visually illustrates the effect of introducing Feynman parameters for the top

loop. If Vi o =, Z then f' =e, ¢ =t, whereas f' = v, and ¢ =b for V1, =W.

2.3.1 UV Finite Diagram: Planar Double-Box

To illustrate the implementation of Feynman parametrization and dispersion re-
lation, consider a planar double-box diagram, which contains the propagators of the
diagram in Fig.9. Generally the numerator can be arbitrary pair product among

internal and external momentum, [; - [; where l; = {q;, p;, k;}. For simplicity, let us

78



begin by choosing the numerator to be 1,

1
Jw:/f dP
ol WP TE T2 (a + p0)? — m2 (@ + pr + pa)? — 2]

1
* = @ = )@ — s - ) — s + T - R =] )

Introduce Feynman parameters for the propagators that depend only on loop mo-

memtum g¢o

1
5 —mi)[(q2 + k1)? —mt][(Q2+k1+/f2) —mj]

11—z
d
/ I/ 612 + k’) — m/?J3

1
/ d:c/ dy anQ (T W —m? (183)

with

12

m? =m? —ay(ki +ko)? — (1 —x —y)(vk? +yk3) , K = (1 —2)k; +yky (184)

In the last line, we take derivative with respect to m’? twice to make the power of

propagator be 1. Plugging it into Eq.182, we obtain

Tpran = / dx/1 mdy/d o m3, ][(q1 + p1)? —mlf/][( 1+ p1+pa)? —mi,]
1

/ a %Qm (a1 — 02)2 — m2][(gs + K')2 — m”]

(185)

Integrating the g loop leads to Bo((q1 + k)?,m'®,mZ,) function together with the

dispersion relation discussed in Sec.1.3.4.2, we obtain

D 2
/ de dy / R P e A [ PSR TP

82 o0 AB[)(O', m’2, m2/)
— dr dy ——— d 4
/ v ya(m'2>2[,0 T
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> 62 /AB 5 mlz, m2/ am/AB 5 le, m2/
_/da;dy {/ 4o APl - v) ol - qq } (186)
o0 g4 g4 oc—00

where we have introduced the short-hand notation

oo = (m' +mg)’,  G=q+k +ie,  Ow = (187)

and used the fact that ABO(UO,mQ,mg,) = 0. Unfortunately, the o integral blows
up at the lower boundary, and the term in | | is also divergent for o — oy, whereas
only the sum of the two is finite. To circumvent this problem, one can modify the

integrand according to

©° 1 (o))
dz d / do 02,ABy(o,m”, m? ( — — — )
/ y{ o0 ol 2 oc—q o(oo—G)

+ =70 52, By(0, m”, m? )}. (188)

q/
Op — 4

Here the extra term in the integrand of [ do is added back in integrated form, where
the function 92,B, can be expressed in terms of basic logarithms (see appendix).
With the modified integrand, the boundary term in eq. (186) evaluates to zero.

Inserting eq. (188) into the remainder of the ¢; loop integral, one obtains

Loan = —/dx dy {/ do 9%,ABy(o, m’z,mg,) X [Do(p%,pg,kg,kf,s,t',m%/l,mfc,,m%,Q,a)

g0

o

- ;O DO(pfupga kéza kf? S, t/7 m%ﬁ ) m?"a m%/g? UO)]

+ a9 02,By(0,m?, mg,) Do(p?, p3, K2 K, s, U, m%ﬁ,mfm, m%,Q, 00)}, (189)
where s = (p; + p2)?, t' = (py — k})?, and Dy is the well-known scalar one-loop box
function.

Since the double box diagrams are UV finite, all expressions in Eq. (189) can be

computed for D=4 dimensions.
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The full diagram represented by Fig. 9 (top) contains additional terms with
momenta ¢; 2 in the numerator stemming from the Dirac propagators and vertex
structures. For numerators depending on ¢», it is convenient to perform a Passarino-

Veltman decomposition as discussed in Sec.1.3.2 of 92, By(Gs, m"

,m,) after intro-
duction of the Feynman parameters. As a first step, let us shift the integration

momentum to ¢ = g2 + k'

/ s g
(g2 + k) = m”P[(q1 — g2)* — m)]
/I k’)“(q’ _ k,/)u ..
— [ d¢ (5 2 ' 190
/ 2 [q8 —m?P[(gh — ¢ — k)2 — m})] (190)

The terms with powers of ¢} in the numerator can be decomposed according to

m
4 4z a2 2 9
/d CE P g R —mz] 0 OwBil@nmTmy).
q
4 qé“qé”
d*q! (191)
/ 2 (g —m?P(gh — qn — k)2 — m?2)]

- g;w afn’BOO(q%) ml2a mg’) + Cjilqvlll azn’Bll(q%7 m/27 mg’) )

ete.

Each of the Passarino-Veltman functions 92, By, ((¢1 + ¥ )Z,m’z,mg,) can then be

represented through a dispersion relation in the same manner as above:

1 oo 1 0o
02, Bi;. (@, m* m?) = —/ do [Im 02, By;. (o, m", m?, — — —
@) = [ ol (o) [ -
-~ D 32, Byy. (0, m" m?). (192)
0 —qi

Explicit expressions for Im 97, B;;...(o,m3,m3) and 92, B;;. (0, m™,m?,) are collected

in the Appendix.D.
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Figure 10: Feynman diagram for a box with a triangle subloop, where Vo, =

{v, 2, W}, Vs = {Z,G°, W*,G*, H}.

Similarly, the ¢; loop will in general contain terms with different powers of ¢; in
the numerator, some of which in fact originate from Eq. 191. These lead to Passarino-
Veltman functions Dy, Ds, D3, Dy, etc. [42], which can be evaluated numerically
by using, for example, the techniques introduced in Ref. [49, 73]. In some cases,
there are cancellations between terms in the numerator and denominator, resulting

in C(), Cl, CQ, Co(), ... and BQ, Bl, BOO, ... functions.
2.3.2 UV Divergent Diagram with Subloop Divergence: Box with Tri-
angle Subloop

This section aims to illustrate the strategy of constructing subtraction term for
diagrams with subloop UV divergence only. One such example is box diagram with

triangle subloop as shown in Fig.10. To manifest this UV divergence, we choose
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numerator to be ¢3. The corresponding Feynman integral is

2
1 ox—ver — dD dD QQ
b / DB+ k= q2)? — m2)[E — m2[(qz + ka)® — md]
1
y . (193
N [ PRI EJeton | ASRIagpy cpmpecy (g cpmpey M

For brevity, we have omitted the constant 1/(iw?) that always accompanies loop
integrals. Introduce Feynman parameters for the propagators that depend only on

loop momentum ¢

1
(43 — m[(q2 + k2)* — mf]

/ E : / g 1 (194)
0 [(q2 + K')* — m"™]? 0 om'? [(qa + k)2 — m'?

with & = zky , m”? = m? + (2* — z)k3. Similarly, the derivative aims to make the

power of propagator be 1. Plugging into Eq.193, we obtain

1
Tyox—ver —%/0 dx/qu1quz [ — m%/l][((h Fpa)?— ml}/][(ql 1+ po)? — m%@
1 1 2
aThr=] TP A T T e =
1 1
NI R Ry (e ey
N2
SR 2] 12 AT i )qz>2 - (195)

In Eq.195, we shift the internal momentum ¢, — ¢» + k’. Before integrating over ¢,

tensor reduce is needed following the strategy stated in Sec.1.3.2

(2 — K) =q5 —2¢2 - K + K* = gugbqs — 205 K" + k” (196)
Hov
¢4 ) y y

/qu2 43 — m%][(qgl ip)2 mp (p*,mi, m3) = ¢""Boo +p"p"Bu (197)
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m
d” ! — BRp® m2. m2) = "B .
/ & (2 — m2][(q1 + p)? — m3] (p”,my,m3) = g" By (198)

After ¢y integration, we obtain

1
[ / da / i’
b 2, J, Yad = m [+ p2)? — m3[(qn + pr+ p2)? — mi)

1 0
(1 + k)2 —m? ] (92 {DBOO(qhm mt>+qlBll(QI7m mt)
V3

- 2k/ : 6131(6%7 m/27 m?) + k/2BO((jfv m/27 m?) (199)

where ¢, = ¢, + k1 + k. Clearly Im(m/+m;)? = 0, so we use Eq.161 as the dispersion

relation formula

1
T = [ da / 2"
’ / q1 —mi (@ +p1)* = m3][(q + p1+ p2)? — mi,]
g [ 1 P
ot k1) — mvg] 3_2/ daa —7 |:DABOO(O' m'*,my)

+ @ABy(o,m”? m?) — 2K - GAB (o0, m?, m}) + K?ABy(o, m, m?)
_]ggX ver —l— ]ééx ver + ]éOX—Ver + ][())OX—VQI' Y (200)

where we have used a short notation for the inetgral with AB;;

i 0 [ . c¢i:AB;;
Ib]ox ver / d$/d q —]8_2/ do O']—q%j (201)

and oy = (m’ + my)?. Before performing integration over ¢y, it is crucial to check if

the integrand is finite as o goes infinity. With the help pf Eq.166, we obtain

< 1
lim I =~ / do— = log oo, (202)
T—00 a0 g
o 1 1
11 ~ —
Jh_)m Ibox ver ™ /UO dO’; - 0__(2)7 (203)
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© 1 1
lim 7} ~ / do— = —, (204)

oo box—ver ) o2 o0
<1 1
lim Iy ~ = =—. 2
al—)rgo box—ver /GO dao_g o0 ( 05)
0 contains logarithmic divergence, which is the local divergence in the Feynman

. . . . 00,subt 00
diagram. To deal with this divergence, we subtract a term, I,/ , to make I .

finite, and then add this term back analytically. As we can see from Eq. 205, 1/0?

contains no divergence, thus one should expect that

< 1
: 00 00,subt \ _
o_lgglo <Ibox—ver - Iboxsfver> - /UO do_; (206)
This can be realized through
AB
T ver ¢ = (207)
o
Thus, we obtain
ooxver = Toox—ver = Thonover + Toon-ver = Tooxver  Tooxver (208)
1
D
e
b 0 lgf — m (g + p1)? — m3)[(qn + p1 + p2)? — mi,
1

o [ 1
— do= x AB 2 2
[@+MmeX%/ 075 X ABo(o,m”,m)

o0
1
=D X Dg[---] x / dz Opy2 Boo(0,m", m?)
0
1
= D x D[] x / da lamangV(o, m'?,m?) 4 Oy BENI®(0, m"? m?)
0
(209)

The analytical expressions for the last integral can be obtained by plugging in Eq.164,

performing the derivative and analytical integration. The explicit result reads

=53 = (210)

. 1 ) 2 2 2
N 2 m“+m 2 12my —m
/0 dx Oy By’ (0,m", my) /0 I =g
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7log —2
m3 & 4m?

—m3 + 2m7 + my\/mi — 4m?

1 4 2 2 2 p)
m mi — 2m; + mp\/m; — 4dm
finte 2 2\ t t h t

/0 dx Op2Byy (0, m™,mj) = ——

+ 7 log -~
t
) 2my, . mi 4+ mp/mi — 4m?
+ 2Liy( > 2) — 2Liy( ) (211)
mp + +/my — 4m;

2m?

where D = 4 — 2¢ is the dimension of the integral. The analytical expressions for D

. . . . 00,subt
is also known, thus we obtian analytical expressions for I, 7" .
The final expression of Iy ox—ver 18
__ 700, finite 11 1 0 00,subt
Ibox—ver - Ibovaer + Ibox—ver + ]box—ver + ]box—ver + Ibovaer (212)
__ rfinite 00,subt
- Ibovaer + Ibox—ver (213)

The first term is UV finite, thus can be evaluated numerically. More importantly, the

00,subt
]bovaer

UV divergent and finite part of are obtained analytically. The UV divergence

cancels with the one in corresponding counterterm diagrams. Taking V} = V5, =
Vi3 = W, f' = b as an example, the UV divergent part for loop diagram and its

corresponding CT diagram is

loop diagram : — 2.808566335 x 107 + 1.176922426 x 10~%

CT diagram : + 2.808566335 x 107% — 1.176922426 x 10 % (214)

Clearly, the sum of them equals 0.
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Figure 11: Feynman diagram for a 2-loop VZH vertex, where V. = {v,Z}, fi =
{t7 b}u f2 = ta ‘/172 = {Zv Wi}

2.3.3 UV Divergent Diagrams with Global and Subloop Divergences:
VZH Vertex

In this section, we discuss the evaluation method for diagrams with both global
and subloop divergences, and one such example is the VZH vertex diagram shown

in Fig.11. To manifest the UV divergences, we choose numerator to be ¢2¢? + ¢i:

Fo — / dPg, dPq, %4 + 4
im? an? [q? — m?‘z”(‘h —pn)? — m?fg][(ch —p1 —Dp2)? — m?”z]

1
& @t 7o) — (e @ = ] (215)

By power counting one can see that this integral has sub-loop divergences for
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both the ¢; and ¢» loops, as well as a global two-loop divergence

d*q; 1
lim IVZH = 76121—4 = IOgOO
4 = lim Iygy = oo (216)
q1,42—00

q1—00
digy 1
lim [VZH = —q;—4 = IOgOO
q2—00 17T QQ
Before we introduce Feynman parameters, this global divergence must be sub-

tracted first. The global divergence is cancelled by subtracting the same integral

with all external momenta set to zero (i.e. p1 = ps = p, = py = 0)

Iz = Ivzn — I + R = Fvgn + R (217)
Iei=Y is equivalent to the vacuum diagram
I = Ivan(py = p2 = p. = pn = 0)
_ / gy d"q Gai +a
in? m? gy —migJlat —mi,lla —m7)]
(218)

1

X
[g3 — mi,][63 — mi][(ge + @) — m3 ]

and it can be evaluated analytically by reducing it to MIs. Two subloop divergences

exist in I, the explicit form of which is
oo / gy dD(h{ %4+ @ (219)
Ve iw? in® g —m3 (e —pn)® —m3 ][ — p1— p2)® —m3,]
1
X
43 —mi, )2 + p1 + p2)? — miy][(g2 + @1)? — mF ]
G347 + g }
i —millaf — milla —mi,llad —mi,][(e2 + @1)® — mi]

[¢7 —m3,][q7
We introduce Feynman parameters to i,y for the propagators depending on

loop momentum ¢, only, thus we obtain

1

45 — m%@][(% +p1+p2)? — m%q]
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with

k' =api 4+ xpo , m” = (1 —z)mj, +amj, + (2° — z)(p1 + p2)*

mg = (1 — z)mi, +amj, (221)

Similarly, the derivative aims to make the power of propagator to be 1. Plugging

into Eq.215, we obtain

o _/ / dq dDQz{ 4 ¢4t + 4
Vet in? iw® | O [0 — m2)[(q1 — pn)> — m2,)[(q1 — p1 — p2)? — m2]

[(612 + k)2 — m2]? [(Q2 +q1)* - m?«l]
Oz (a7 — m3,][af — m3,][af — mfg][qg —mi|[(g2 + @1)* —m3 ]

/1 dm/ "4y quz{ 0 (22 — K)’q% + qf
in? in? \ e laf = m3Jl(ar = pn)? = mij [l(@ = p)? —mf)]

[q—m]K%+m k') —m3 |
) Ba; + 4t
Bt [~ P21~ n ] — ]2 = 62][(QQ+Q1)2—W?1]} (223)

Similarly, we need to perform tensor decomposition. The numerator involving ¢ is

same as the one in Eq.193, so we can directly use the result therein. We obtain

o= [ as [ L2 {2 TN (TR ey

x [¢iDBoo(G7, m™,m%,) + ¢4 Bu (G5, m™,m3,)

- QQ%I{;/ : CIIBI((ji ml27 m?ﬁ) + Q%(ka + Qf)BO((j%a m,27 m?ﬁ)]
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0 1
am62 ' mfg] s me][q me]

[%DBOO(meo 7mf1) + ChBll(‘hamo 7m3”1>

2K - B mPm) + K+ ) BoldsmZm)] } (224)

where ¢; = q; — k. Since Im{(m/ + my,)?} = Im{(m{ + my,)*} = 0, we use Eq.161

as the dispersion relation formula. I,y becomes

I / da:/ dD(h{ 1 0 /Ood 1
— g
ver im? m?@”(Ql —pn)? — m?@][(Ql —p)? — mffz)] Oz J g 0 —(qi

X [Q%DABOO(O-7 m/2’ m?l) + Q%Q%ABll (O-’ m/27 m?“l)

— 2¢ik" - UAB (0, m"”,m%,) + ¢; (K? 4 ¢}) ABo(o, m”?,m7,)]

1 0 /OO d 1
— o
lqf - me][q me][q mf2] O Joy o —qi
x [qtDAByo(o, mg, mffl) + qiABy (0, mE, m?cl)

— 2q1k’ (]1ABl(0' m() amfl) +qq (kl2 + QI)ABO(U mO 7m§1)} }

1,00 1,11 1,1 1,0
=Iyzn + Lyzn + Lyzn + Lyzn (225)

where o9 = (m' 4+ my,)?, 0y = (mj +my, ). The short notation Iy, reads

0 [q

e \Foa 100 oy o
_ 1 0 Ood i ABij (0, mg, m%,) 226
[-qi---]0 ’ —a .

1 it Jot o —qi

Same as what we shown in Sec.2.3.2, . 1210{ contains logarithmic divergence, which

can be taken care of by constructing subtraction terms

1,00 __ 71,00 1,00,subt 1,00subt __ 71,00finite 1,00subt
IVZH ]VZH - ]VZH + ]VZH IVZH + IVZH (227)
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with

D
1 ,00subt _ d~q
VZH 2

q% 0 /OO do_DABoo(O’, m’Q, m?cl)
[‘J% - mffg][((h —pn)? — m%][(‘h —p)? — mf@] Omr2 S, o
2 ~  DARB mi2, m?2
X 0 [ g2 Bmlomg mfl)} (228)
lgi — meHQ mfg][q ] O, 2 Joy 9

1
= F()() X A dx 8m/2 BOO(O,m'Q,m%)
1
— F}, x /0 dx Oy Boo(0, mg', m3,) (229)

where Fjy and F{, are the integral related to loop momentum ¢;. They are linear

combinations of 1-loop scalar functions

Fyo = D x [By(p2?, mfo, mé) + m?cQCO(th, (1 +p2)2,pz2,m§2,m§2, m?cQ)} (230)

[ Bo(
Fjy =D x [BO(O m?cz,mffz) + m?QCO(O,O,O,mi,mi,m%)]
_D(D-

2
7 Aol (231)

Besides the subloop divergence originates from I\l,’SIO{, there is a subloop divergence
from I\l,%él and [%,’QH term. Although they behave like 1/0? as o goes to infinity, these
two terms contains logrithmic divergence as ¢; tends to infinity, which can be clearly

seen by power counting

1
li I“l_/d“ — =1 232
Jim Tz, @ g = logoo (232)
1
4
q}IL%oIVZH = /d G s = log oo (233)
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To make it UV finite as ¢; — 0o, we can subtract a term that same as Iy and Iypy

except setting all momenta inside ¢, propagators to zero. This term is written as

JL1I+0,subt _ / dPq dDCIz{ Qil
Ve in? in? \ [qf — m3 gt —m3,][qf — m3,]lgf — m3]
1
2

X
45 — m%@][(‘h +p1 4 p2)? — m%ﬁ]

4
_ 81 }
[¢7 —m3 gt — m3,][¢7 —m3 gt — m3 ][g5 —mi,)le —mi, ]
]‘ 4 2
= 2 2 ){8mf1A0<mf1)

8(m2, —mp)P(m3, —m3,

— [-2(D* = 4)ym3 m3, + D(D +2)m}, + D(D — 2)mj;2}A0(m§2)}

{ i = ) B+ i ) = AaC) + Aol | (230
By subtracting this term and add it back, we obtain

1,11 1,0 1,11 1,0 1,11+0,subt 1,11+0,subt
Lygn + Igw = Lvgn + Lyzn — Lyzn + Iyzn

71,1140 finite 1,1140,subt
- [VZH + IVZH (235)

After constructing subtraction terms for one global and two subloop divergence,

the final expressions of Iyzy becomes

_ 711,00,finite 1,1140,finite 1,1 Pext=0 1,00,subt 1,11+0,subt
]VZH _IVZH + ]VZH + ]VZH + ]VZH + IVZH + IVZH
__ rfinite Pext=0 1,00,subt 1,1140,subt
=lyzy T ]VZH + ]VZH + ]VZH (236)

The strategy for constructing subtraction terms is diagrammatically illustrated
in Fig.12.

The diagram labeled by [+ ]gnite corresponds to [{}%iﬁf. The vacuum diagram

corresponds to 174", The diagrams shown in the second and third line correspond

1,00,subt 1,1140,subt
to Iy and Iyyy separately.
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----lfinite

+@<_

Figure 12: Diagrammatical domenstration of VZH divergence separation.

2.3.4 Strategy for Constructing Subtraction Terms

In Sec.2.3.2 and Sec.2.3.3, we demonstrated the process of constructing the sub-
traction terms by explicitly choosing the numerators. However, it is worth noting
that this process does not need to be carried out case-by-case. In practice, it is
relatively easy to construct the subtraction term for any arbitrary diagram. We will
demonstrate the automation by taking the two-loop vertex diagram Fig. 11 as an

example. The general tensor integral can be written as

qu2 dDCh no,n1,M n n n
I:/ D™ x a4t

im2 g2 -
no,n1,n2,2,J
y 1
(@3 —mi,) (a2 +p)* = mi) (@2 + @) —m3,)
1
% 5 (237)

(67 —m%,) (¢ — pn)? —m3) (@1 — p)? —m3,)’
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where {p}°,q1",¢5*} denotes dot products among external momentum p; and loop
momentum ¢ 2, and n; denote the power of each of them. The index j labels all
possible dot product conditions. For example for ng = 0,n; = ny = 2, the possible

dot products read

{0, a1 = (- @1)(q2 - @),
(0], ¢, 63} = (¢ @) (@1 - @2).- (238)

The SM Feynman rules require that n; < 4,ny < 2,mn9 4+ nq +ny < 6. CZ-O’”“"Q is the
coefficient of a dot product, and it is a function of masses and dimension D. The
integral Eq.237 contains a subloop divergence from the ¢; loop, which originate from
the numerators ¢;* with n; > 4. To make the ¢; integral UV finite, the following
subtraction term is constructed:

o dDQZ dDQl 2,4,0 1,4,1
]subtr_ . . Z X {pz’(h’ }]+C X {prUQQ}]

M2 gm? 4=
1/7]

+CO42 X {pMQIan}] +Cl40 X {p},qf,qg}j

—|—C041 x {pwa?qQ}] —|—CO40 X {p?,q117qg}.7
1

(@3 —m3,) (g2 +p)* —mi, ) (@7 —m7,)

1
@)@ )@ ) (239)

X

From Eq. 239, one can see that the loop integrals of ¢; and ¢, are disentangled. After

performing the loop integration, one obtains

I = By(p?, m%é, m%/vl) X [ale(m?cl) + agAg(mch) (240)
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where a; are functions of masses, external momenta and dimension D. A similar

subloop subtraction term needs to be introduced in the vacuum integrals for the

global divergence. Combining the two subloop subtraction terms, we obtain

Isubtr = [BO(p27 TTL%/Q,?TL%/I) - B()(Oa m%/27m%/1)i|

X [ale(m?cl) + (IQA() (m§2>i| .

(241)

This term can now be expanded in powers of € = (4 — D)/2, resulting in the expres-

sions

sdli\l;tr [B(()O p mV2> m%ﬁ) B(()O)(Ov m%/zv m%/1):|
0) 4 0) 4
al (mf )+ a2 (me)
Subtr - |:B(()0 p mVQ’ m%/'l) B(()O) (07 m%@’ m%/1):|
0 0) 4(0
[ A( ) mf1 —i—ag)Aé)(mch)
1) 4(—1 1) 4(—1
+ P Af m2) + o AL (m3,)|
BW (p2 2 2y _ gW 0. m2 2
+ 0 (p 7mV27mV1> 0 ( 7mV27mV1)

0 -1 0 -1
x [l 45V (m3,) + A5 V3]

(242)

(243)

where (n) denote the expansion order in e. Eq. 243 indicates that O(e) parts of one-

loop scalar functions must be taken into account. Analytical expressions for these

can be found in Ref. [45].
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2.4 Numerical Results for Two-Loop EW Corrections to o(e*e™ — ZH)

The analytical expressions for the LO cross section can be found in [74]. For the
NLO cross section, both unpolarized and polarized beams are available. The NLO
result for unpolarized beams can be found in [75, 76, 78|, while the polarized beam
result is presented in [79]. The NNLO mixed EW+QCD corrections were calculated
by two groups, with [66] presenting an analytical result [80] and [67] presenting a
numerical result.

The NNLO EW corrections to the process ete™ — HZ were estimated be on
the order of 1%, and can be decomposed into contributions with and without closed
fermionic loops. The contribution with closed fermionic loops is expected to dominate
due to the large Yukawa coupling and large flavour numbers. While it would be
ideal to calculate both contributions, it may not be necessary since the expected
experimental precision is also of around 1%. In this case, including only the fermionic
contribution may be sufficient to meet the required level of accuracy.

Thus in this section we only present results for two-loop EW diagrams with
fermionic loops. However, the evaluation method discussed in Sec.2.3 can also be
employed to evaluate diagrams without fermionic loops. Besides, the numerical re-
sults presented do not include QED initial-state radiation (ISR). At the order that we
are working, QED ISR factorizes and can be taken into account through convolution
with a universal structure function, see e.g. Ref. [81].

The following input parameters are used for the numerical evaluation:

my = 80.379 GeV =  my = 80.352 GeV,
my? = 91.1876 GeV = myz = 91.1535 GeV,
mpy = 125.1 GeV, my = 172.76 GeV,
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o' =137.036, Aa = 0.059,

Vs = 240 GeV. (244)

where /s represents the center-of-mass energy, and the masses of all other fermions
are set to be 0. The discussion of differences between experimental and the on-shell

mzw,'zw can be found in Appendix.E.

2.4.1 Unpolarized Beam

Table.3 lists the results for the integrated unpolarized cross section at LO,NLO
and NNLO, where corrections are further divided according to the number of fermion
loops, denoted by N;. Besides, it is worth mention that the corrections with fermion
loops are gauge invariant, thus the comparison between them are meaningful. This
is also the reason that we didn’t list the corrections from different vertices or self-
energies, which is gauge invariant by summing all corrections.

One can see that corrections with more fermion loops dominate, the reasons of
which are the large top mass and large falvour number dependence. Taking the self-
energy corrections as an example, the ratio between the cross section of diagrams
with one and two top-quark self-energy loop behaves approximately as

o(N; =1) N mym; Bo(s, m;, mi)By(s, my, m%) ~ my (245)
o(N, = 2) it B(s, i, m?) o

Similarly, the ratio between the cross section of diagrams with one and two light-

fermion self-energy loop behaves approximately as

R— U(Nf#t = 1) ~ NfBo(S,O,O)Bo(S,m%,WQZ) -~ 1 (246)
T o(Npu=2) N2B3(s,0,0) Ny

Thus, the cross sections with more fermion loops dominate.
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Table 3: Numerical results for the integrated cross section at LO, NLO and NNLO.
Electroweak one-loop and two-loop corrections are also provided and divided accord-

ing to the number of fermion loops symbolized as Ny.

(fb) Contribution (fb)
ot 222.958
oNLO 229.893
O(an,-1) 21.130
O(an, o) —14.195
o NNLO 231.546
O(ak,—2) 1.881
O(ay,—1) —0.226

From Table.3, one can see that NLO corrections increases op,o by 3%, which is due
to the cancellation between fermionic Ny = 1 and bosonic Ny = 0 contributions. The
NNLO(EW+EW) corrections turns out to be 0.7% of the NLO correction, where the
contribution with two fermionic loops is much greater than the one with one fermion
loop. Besides the top-quark and flavor number enhancement, another reason is
accidental numerical cancellation in the contribution with one femrion loop. This
can be clearly seen from the plot of differential cross section, which is shown in

Fig.13.
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Figure 13: Angular distribution of differential cross section for ete™ — ZH at leading
order(“LO"), next-to-leading order(“NLO”), next-to-next-to-leading order with two
closed fermion loops(“NNLO Ny = 2), and next-to-next-to-leading order with closed
fermion loops(“NNLO Ny =1+ 2).

In Fig.13, the contributions of two fermion loops is the dashed green curve,
and the sum of one and two fermion loop is denoted with blue curve. Thus the
contributions due to one fermion loop is the difference between the green and blue
curve, which is positive in the region | cos 6| < 0.59, and negative when | cos 6| > 0.59.
Thus integrating over the whole angle regions leads to small total cross section of
contributions due to one fermion loop.

Another interesting feature of the angular distribution of the differential cross
section is its slight shape change, which arises from the appearance of new Lorentz

structures at the loop level that are not present at tree level. These structures include
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the ZZH, vZ H vertices, and box diagram. At tree level, they can be written as

e cos Oy

He _ my g
ZZH jtree sin GW
wv —
F’yZH,tree =0
M —
Fbox,tlree =0 (247)

where the indices represent the polarization vectors of gauge boson. Scalar particles

contain no indices. At higher loop level, the general form of ZZH, vZ H vertices are

F%;H,loop = Flglw + FQkilkg + F3kgki/ + F4k1pk2aeuupa

FzEH,loop = Glgﬂ’/ + sz?k;j + nggk‘ll/ + G4k1pk2(j€w/ﬂ0’ (248)

where k; is the momenta of Z and photon. The Lorentz structure for box diagram

can be written as

= KipY + Koph + Kspt (249)

m
I-‘box,loop

Clearly, there are new Lorentz structure, which is responsible for shape change.
Moreover, the angular distribution is maximum at cosf = 0, which is due to
longitudinal Z boson. This can be seen from tree level cross section. The tree level

cross section for longitudinal and transverse Z boson is:

o™ do 28 _mp s ¥ (o — o) oot (250)
— — = Cos
dQY  o=t=x1dQ 16 (s —m%)? v Sty ’
e _ 0BT my s+ (siy —3)°2
T T Ty (s —m%)? Sty 3’ (251)
doee do o®B  mi sy (shy —3)° 3 B% 2\ (sin6?). (252)
= —_— = - —)(sin
Q) o=t1x=0d) 8 (s —m%)? v Sty 2°6m7 3 ’
2B mE s+ (sh =32 p%s 2
- glree — Z 2 —). 253
oL 4 (s —m%)? Sty (6m2Z * 3) (253)
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Figure 14: Distribution of o"*(ete” — ZH) at different center-of-mass energy,
/s, for unpolarized electron-positron bea,. “L(T)” represents the contribution from

longitudinal(transverse) Z boson.

Fig. 14 shows the distribution of c"*(ete™ — ZH) at different center-of-mass
energy, /s, for unpolarized electron-positron bea,. “L(T)” represents the contri-
bution from longitudinal(transverse) Z boson. As one can read from this figure,
the longitudinal mode dominates at /s = 240GeV , so the differential cross section

peaks at /2.

2.4.2 Polarized Beam

Numerical result of o(ete™ — ZH) with polarized beam is listed in Table. 4. As

can be seen from this table, the electroweak NNLO corrections depend strongly on

101



Table 4: Numerical results for the integrated ZH production cross section, in fb, at
LO, NLO and fermionic electroweak NNLO, for different beam polarizations. The
electroweak NNLO corrections are also listed individually according to the number

of fermion loops symbolized as Ny.

erer erer

o0 [fb] 541.28 350.55
oNLO [fh] 507.92 411.66
oNNLO [fp] 507.51 418.68
O(0%,_,)  L75 5.77
O(e},,)  —215 1.25

the beam polarization.

The contributions with two closed fermions loops (N = 2) are significantly larger
for right-handed electron polarization and left-handed positron polarization than for
the opposite case. The contribution with one closed fermion loop (N; = 1) has
opposite signs for the two polarization, which leads to an accidental cancellation for

the unpolarized cross-section.
2.4.3 Multiple Renormalization Schemes and Missing Higher Order Cor-
rections

In this section, we display the numerical result of two different schemes of electric
charge. One scheme, called the o(0) scheme, defines v = €?/(47) as the electromag-

netic coupling at zero momentum, and the second scheme, called the G, scheme,
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relates the weak coupling to the Fermi coupling G,

G 2
7% - 8;712 (1+ Ar). (254)
w

Details of electric charge renormalization schemes can be found in Sec.1.2.3.

The input value of a(0) scheme has been shown in Eq.244. In G, scheme, we
use the input parameters in eq. (244), together with G, = 1.1663787 x 107°. The
numerical results for total cross section obtained in the two renormalization schemes
are shown in Tab 5.

One can realize that the total cross section of G, scheme is always greater than
a(0) scheme due to the larger effective fine structure constant. However, the radiative
corrections in G, scheme is smaller. The one-loop EW radiative corrections in G/,

scheme can be parametrized as [76]

59 =520 oAy (255)

weak — “weak

. . .G
The fermionic contributions in §_*

e are reduced by Ar, while bosonic contribution

hardly changes, which leads to a reduction of radiative corrections.

Another feature from the table is that the numerical difference between two
schemes, i.e. dependence on renormalization schemes, decreases as more and more
radiative contributions are included, which is expected by perturbative theory.

In fact, this convergence is further improved when including the mixed electroweak-
QCD two-loop corrections [66, 67]. We use numerical results for this contribution
from Ref. [67]. In order to do so, we have to compute our electroweak corrections
for the same input parameters used there. The results are shown in Table. 6.

The prediction for the cross-section including all available results agrees very
well between the two renormalization schemes, with a difference of 0.12 fb. As we

discussed in Sec.1.2, renormalization scheme difference can be utilized to estimate
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Table 5: Numerical results for the unpolarized integrated ZH production cross sec-
tion, in fb, for two different renormalization schemes. Results are given at LO, NLO
and fermionic electroweak NNLO. For the latter, the contributions from two (N; = 2)

and one (Ny = 1) closed fermion loops are also shown individually.

«(0) scheme G, scheme scheme dependence

ot [fb] 222.96 239.18 16.22
oNLO - [fb] 229.89 232.08 2.19
oNNLO ] 231.55 232.74 1.19
O(a,—o) 1.88 0.73
O(ak,-1) —0.23 —0.07

Table 6: Similar to Table. 5, but using input values and mixed EW-QCD corrections
from Ref. [67].

a(0) scheme G, scheme scheme dependence

o0 [fb] 223.14 239.64 16.50
oNLO [fb] 229.78 232.46 2.68
o NNLOEWXQED ] 232.21 233.29 1.08
o NNLO.EW [f] 233.86 233.98 0.12
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missing higher-order corrections, where the dominant impact is expected from the
bosonic electroweak NNLO corrections, i.e. from two-loop contributions without
closed fermion loops.

Therefore, one can use the difference between the two renormalization schemes
as an order-of-magnitude estimate of the perturbative theory uncertainty. Since this
estimate is only a lower bound on the size of missing higher-order contributions, we
conservatively multiply it by a factor 2, thus arrive at an error estimate of 0.24 fb.

The alternative estimation is obtained from QRe{Mz‘O)M(ZbOS)} S Mos) [
where M j pos) is the matrix element of the bosonic NLO corrections. This leads to
a contribution of 0.65 fb to the cross-section. One may expect that the unknown
2 Re{./\/l?o)./\/l(g,bos)} is smaller is due to several suppression factors in the Born matrix
element M g): (a) the e-e-Z couplings in the initial state are smaller than the e-v-W
couplings, which appear in the 1-loop box diagrams, by a factor 2732 ~ 0.35; (b) the
s-channel Z propagator produces a factor m%/(s — m%) ~ 0.17 for /s = 240 GeV.

Thus it seems plausible that the missing bosonic electroweak NNLO corrections
have an impact between 0.24 and 0.65 fb on the SM prediction for the ZH pro-
duction cross-section. These theory error estimates, 0.1 — 0.3% are lower than the
anticipated experimental precision (0.4-1%), but a direct calculation of these missing

contributions is still desirable.

2.4.4 Treatment of Z Decay

Both the Z and Higgs bosons are unstable particles, so we must take into account
their decays when calculating the cross section. Due to the small width-to-mass
ratio of Higgs boson, I'yy/mpy = O(1079), the Narrow-Width-Approximation (NWA)

can be used to treat Higgs decay. In this approximation, the cross section for the
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process ete”™ — ZH — ZX can be written as the product of the cross section for
ete” — ZH and the branching ratio of H — X, namely

olete” = ZX) — olete” = ZH) x Br(H — X) (256)

However, the width-to-mass ratio of Z boson, I'z/mz = O(1072), is much larger.
In Ref. [77], the authors calculated the mixed EW+QCD corrections for the process
ete” = ZH — ptpu~ H by employing the NWA for the Z decay as well as using
a fixed width. Their result shows that the cross section obtained using the NWA
deviates from the one obtained with a fixed width by 4%. Consequently, NWA is not
a suitable method for treating Z boson decay, especially considering the anticipated
high precision measurements at future Higgs factories, which is around 1%.

Since the implementation of NWA is relatively simple, we first consider the treat-
ment of the Z boson. Considering outgoing Z boson decaying into p*pu~ pair, the
complete all-orders matrix element for the process ete™ — ptu~H can be written

as

1
Mee—)uuH - Fprod 3 Fdec + Mbkgd (257)

p? —my + Xz(p?)
The first term is the matrix element with on-shell Z decay, where I',;0q and I'gec
are the e"e”ZH and Zu™p~ Green’s function, respectively, and ¥, is the Z-boson
self-energy. Myygqa denotes the contribution to ete™ — p™u~H process without Z
resonance.

When expanding the above matrix element perturbatively without breaking gauge
invariance, we adopt the complex pole method. The complex pole, so = m%—imzl 'z,

of Z propagator satisfies the following equation

s0—my +3(s0) =0 = m3 = 59+ X(s0) (258)
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Plugging Eq (258) into Eq (257)

1

Mee = F TO F ec M 259
et e Sy e T et C9)
Fprod]:‘dec
= TP + Miga (260)
(72— so)(1 + 2L
Expanding I' and ¥ around complex mass
2 2 ! 1 2 2 "
2) = 0 > — S0 o) t 5Pz — So 0
L(pz) = Llso) + (P = s0)I" (s0) + 5 (P2 = 50)°T" (s0) (261)

"

S2(02) = Sals0) + (02— 50)Sy(s0) + 5 (7 — 50)"Syls0) + () (262)

Plugging these into Eq (260), we obtain
(Coroa(s0) + (P% — 50)proa (50)) Taec(50) + (% — 50)Tgec(50)

(p% — s0)(1 + X5 (s0) + 5(p% — 50)27(s0)
1 Fprod(SO)Fdec(SO) FPTOd(SO)F:iec(SO) + F;rod(so)rdec(so)

Mee%,u,uH = + Mbkgd

= ; + M + ;
P —s0  1+X(s0) 1+ % (s0)

Fprod(so)rdec(so)zé(so) 2
R AT A
= o R(s0) + 5(s0) + (7 = )" (263)

Given that I'y < mgz, we can expand R,S around sy = m%, thus

_ 1 PZ — So
Mee—m,uH == pZZ — s R(So) + p2Z — SOS(SQ) (264)
1 ,
= 5——(R(m%) + (so — m%)R (m%))
Pz — So
2 —m2 — (sg — m> ,
§ P2 mE 0T M) (0 4 (s mp)S () (265)
Pz — So
1 2 — m2
= ——R(m%) + "Z—"Z5(m3) + O(so — m3) (266)
Pz — So 7 — S0
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Each of the terms is separately gauge invariant. Since the experimental analysis
will select p™p~ pair with invariant mass close to the Z resonance, p% ~ m%, which
leads to pz — sg ~ I'z, thus the terms in the series expansion in Eq. 266 decrease in
numerical magnitude. If one seeks NNLO accuracy in leading R term, NLO accuracy
is sufficient in subleading S terms and LO precision for the following term.

Focusing on the leading R term, the different cross section is written as
1 2
do = Zd¢3|Mee—muH| (267)

where @3 is the three-body phase space, plugging the explicit form we get
do . 1 1 )\(S, 512, m%) FpmdFdeC 1 2
d cos 012dp1ads1od cos Opddy 165 (2)5 8s 1+X, p2—s0
(268)

where s19, 012, @12 is the invariant mass, polar angle and azimuthal angle of the p*pu~
pair. 0y, ¢y is the polar and azimuthal angle between outgoing Higgs and incoming

electron beam. After integrating all variables except sis, 012, we obtain

1 1 1 A 2 | R 1

do _ L Arion (s, 512, m7;) « prod /dec .

dcosbiadsiy 25 (2m)° 8 8s (14 3,)% (p? — m?2)2 + m?l';,
)\(87 512, m%{) 1 F?)I”Od 1—‘(Qlec 1

3272 16721+ X, 1+ %, (p2 —m2)2 + m2l'%

)

M1, s12/s,mY /) M2 T T i'my,
= | Mol i 2 212 272
R 327s 16 x 3n(1+X7) (p2 —m2)2 + m?l'%,
da(e+;:~>ZH)

(269)

To obtain the cross section for ete™ — p*u~H, we should replace p% = s15 of
o(ete” — ZH) and performing the integration over it.
The additional factor of 1/3 in the last line of the calculation comes from the

unstable Z boson. When we break down a 2 — 3 process into a 2 -+ 2 and a 1 — 2
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process, we need to sum over all possible Z boson polarizations. This summation
gives rise to a factor
M1, H2
Pz Pz
R 270
g ol (270)

Multiplying the 2 — 2 and 1 — 2 processes give rise an additional constant

— pipe plzum vive png) (271)
(g s ) G2 (9 5 )9
2 4
p: D
= (4-2%= 4 5 (272)
p?  pi
-3 (273)

However, for a 2 — 3 process, Z boson polarization only appears in the intermediate
state, and we need to multiply an extra factor of 1/3 to account for all possible

polarizations.
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3.0 Probing Dark Sector Fermions through Higgs Precision Study

3.1 Motivation

Although the discovery of the Higgs boson at the LHC by the ATLAS and CMS
collaborations confirmed all particle contents of the SM, it is clear that this theory
is not a complete description of nature, and one such evidence is dark matter. The
existence of dark matter was first proposed by Fritz Zwicky in the 1930s [82], based
on his observations that the velocity dispersion of galaxies in the Coma cluster of
galaxies was far too large to be supported by the luminous matter. Since then,
numerous studies have confirmed the presence of dark matter at various scales, from
individual galaxies to the entire universe. In fact, dark matter is believed to make
up about 27% of the total mass-energy content of the universe, with ordinary matter
comprising only about 5%.

In particle physics, dark matter is the leading empirical evidence for new particles,
and dark matter candidates are motivated not only by cosmology, but also by robust
problems in particle physics. There are striking hints that it may be linked to
attempts to understand electroweak symmetry breaking, the leading puzzle in the
field today. Dark matter includes WIMPs, hidden dark matter, sterile neutrinos, and
axions, etc. Besides, supersymmetry and models with extra dimensions also provide
a dark matter candidate.

The search for dark matter has been pursued through direct detection, which
measures the cross section for dark matter scattering off atomic nuclei, sets strong
bounds on dark matter properties. Meanwhile, collider searches for dark matter typ-

ically focus on events with missing energy/momentum, providing a complementary
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approach to direct detection. Despite many years of searches, neither approach has
yielded any conclusive evidence of dark matter.

With the high experimental accuracy expected at future colliders, precision mea-
surements of Higgs boson properties may reveal deviations that must be attributed
to new physics, such as SM extension with extra scalars [83, 84] or fermions [85,
86, 87, 83, 89]. The effect of SM with extended scalar on Higgs physics has been
studied comprehensively in Refs. [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], while the
studies with extended fermions [101, 102, 103] focus on how to create a dark matter
candidate satisfying all relevant constraints. Since the possible deviation on Higgs
boson properties will also put stringent bound on these new fermions, it is important
to understand how precision measurements will constrain these new fermions.

In this section, our focus is on the Higgs portal with fermionic dark matter,
which is one of the simplified dark matter models *. We will investigate this model
from both indirect and direct perspectives. In the indirect search, we will study its
impact on Higgs precision studies, with a primary focus on o(e*e™ — ZH), which
is anticipated to be measurable with a precision of about 1.2% at ILC [1, 2], 0.4%
at FCC-ee [3] and 0.5% at CEPC [4], and explore the parameter space that leads to
deviations greater than 0.5%. In the direct search, we examine the direct production
of the new fermions associated with this model at the (HL-)LHC. By considering both
aspects, we can obtain implication on whether the parameter regions associated with
deviations greater than 0.5% have been and can be covered by the direct searches

for new physics at the (HL)-LHC.

n simplified dark matter models, the new fermions may belong to a larger dark sector. Without
assuming any specifics about this larger dark sector, we do not incorporate constraints from dark
matter relic density and direct detection, as done in previous studies [101, 102, 103].
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3.2 The Models

We start by introducing two UV complete models that extend the SM with
vector fermions: the singlet-doublet model[85, 86, 87, 101, 103] and the doublet-
triplet model[88, 89, 101, 103]. Both models contains two fermion multiplets to form
a Yukawa interaction term. Besides, we impose the Z; symmetry, under which the
new fermion multiplets are odd while the SM particles are even. This Z, symmetry
ensures the lightest dark matter stable, thus become a dark matter candidate and
escapes detection giving signatures of missing energy and momentum. Besides, both
models are treated as simplified models rather than full theories, i.e. the fermions
could be part of a larger dark sector thus we do not expect our model can satisfy the

constraints from the dark matter relic density and direct detection.

3.2.1 Singlet-Double Model

The SM is extended with one fermion singlet xys and one doublet xp, which
transform under the Electroweak gauge group SU(2);, x U(1)y as
+
X 1
xo=|""]~(23), xs~(1,0). (274)
0 2
XD
Both fields are vector-like fermions. Since the hypercharge of the singlet xg equals
zero, it can be either a Dirac or a Majorana fermion. We discuss both of these

possibilities.

112



3.2.1.1 Dirac Singlet-Double Model (DSDM)
We start from the Dirac case. The Lagrangian for the dark sector is

Loy DO —msXsxs — mpXpXxp — (YxsxpH +h.c.), (275)

where y is the Yukawa coupling. In general, the Yukawa coupling y are complex, but
the complex phase can be absorbed into the Fermion spinors. Therefore, y can always
be chosen to be real. Discussions of the consequences of introducing a non-zero phase
can be found in Refs. [104, 105].

After the electroweak symmetry breaking (EWSB), the neutral component of
dark matter acquires extra mass from Yukawa interaction term, thus the mass matrix
of neutral component obtains non-diagonal elements. The new Lagrangian of the
mass term can be written as

Xs

x5

£ == (vs ¥h) M (276)

with

MN _ mg yy/\/§ (277)

yr/V2  mp

where N stands for the neutral. The mass matrix can be diagonalized by the following

rotational matrix

cosfy sinf,
Ry = ’ (278)

—sinfy cosb,
where

mp —mg

) 1
o 310 7

), (Ams)? = (mg — mp)? + 2y (279)
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The heavy and light mass eigenstates, x;, and x;, are given by
0 _ 0 . 0_ _ o 0
X;, = cosboxp +sinfhxs , x; = —sinbaxp + cosbaxs (280)
with corresponding mass eigenvalues

1
mpy, = §(m5 +mp £+ Amy) (281)

The charged state xT = x7}, is pure doublet with mass equal to mp. The mass
distributions of three mass eigenstates at different values of mp — mg are shown in
Fig.15, where m?, m{ and mp are represented by the blue, yellow and green lines
respectively. We have chosen mg = 500GeV and y = 1(1.5) for the solid(dashed)
curve. The x? is the lightest particle thus become a dark matter candidate. As
the Yukawa coupling increasing, m(m)) decreases(increases) since it depends on y
negatively(positively). When mg < mp, x? is singlet-dominant, and x9 are doublet-
dominant thus has the same mass as x*. When mg > mp, x? are doublet-dominant
thus m) ~ mp.

In the mass eigenstate basis, the interactions between new fermions and SM

particles are

A e , e(cd — si)
LD [ @—0 o+ 6_0‘“ +]W+ w W o+ 1 +7
Ty LSO cos XX WS = X 2
e ) B _ 1 . _ _
- [sm2 O X" X, + cos® Gaxp v x] + 5 sin(262) (X7 + X0V xh) | Z
2SWCW 2
Yy . _ _ _ _
-5 [Sm(%z)(x%x% — XIX7) + cos(26) (X X7 + X?X%)] h (282)

where £ denotes the unrenormalized Lagrangian. Since new fermions are vector-like,
the couplings of left-handed and right-handed fermion are same. Besides, the cou-
pling with weak gauge boson is proportional to its coefficient of doublet component.

Charged component does not interact with Higgs boson since its mass is not changed

after EWSB.
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Figure 15: The mass distributions of three mass eigenstates in the Dirac singlet-
doublet model at different values of mp — mg. m?, m and mp are represented by
the blue, yellow and green lines respectively. We have chosen mg = 500GeV and

y = 1(1.5) for the solid(dashed) curve.

3.2.1.2 Majorana Singlet-Double Model (MSDM)

The SM is extended with a Majorana singlet and a Dirac doublet fermion, and
it is more convenient to express them in terms of Weyl spinors. The Dirac doublet

corresponds to two left-handed Weyl doublets with opposite hypercharge. Under the
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Electroweak gauge group SU(2);, x U(1)y, they transform according to

+ c0
XD 1 . XD 1
XD = ~(2,5), Xp= ~(2,—5) (283)
0 2 c— 2
XD XD

The two-component Weyl fermion form a Dirac fermion by (xp, ex%) — xp, where
€ is 2 x 2 antisymmetric tensor. Additionally, we assume that the two Weyl spinors
couple to the Higgs field with equal but opposite strengths. This particular coupling
choice forbids any new physics contributions to the oblique 7" parameter due to the
custodial symmetry. Other coupling choices can be found in the literature, such as
[101, 102]. Under this assumption, the dark sector Lagrangian in two-component

notation is expressed as

1
Lpm D —5MsXsXs + mpxHexn — y(xsH xp — xsxpeH) + h.c. (284)

After the EWSB, the neutral components acquire additional mass contributions
from the non-zero Higgs vacuum expectation value (vev), which results in the La-

grangian of the mass term expressed as
cmassN (Lo vy he) (285)
DM QXZ 15 X7 €

where x = (xs, x5, xp)" and

ms  —yu/V2 yu/V2
MY = —yv/V/2 0 —mp (286)
yv/\/§ —mp 0
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[GeV]

Figure 16: The mass distributions of four mass eigenstates in the Majorana singlet-
doublet model at different values of mp — mg. m?, m) and m?, = m™ = mp are
represented by the blue, yellow and green lines respectively. We have chosen mg =

500GeV and y = 1(2) for the solid(dashed) curve.

The mass matrix can be diagonalized by the following transformation

XY cosl, — \/Li sin @, \/iﬁ sin @, Xs
XY sin @, \/Li cosf, — \/Li cos b, %

The mixing angle can be obtained from Eq. 279 by performing the replacement
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2 — 4. The corresponding mass eigenvalues are

= mp (288)

1
my, = §(m5 +mp £ Amy) , md,

where (Amy)? = (mg — mp)? + 4y*0v%.

The charged components remain pure doublet with mass m* = mp. The mass
distribution of four mass eigenstates as a function of mp — mg is shown in Fig.16,
where m{, m? and m®, = m"™ = mp are represented by the blue, yellow and green
line respectively. We have chosen mg = 500GeV , and the Yukawa coupling are
considered with values y = 1 and y = 2. The x? is the lightest particle thus become
a dark matter candidate. The relationship between masses and Yukawa coupling is
same as the Dirac singlet-doublet model.

In the mass eigenstate basis, the interactions between new fermions and SM

particles are

~ (& .
LD — [sm Oaxpy"xt — cosOaxi v xT + X%ﬁ“f] W,

Sw
e(ct, —s%,) _ e )
MX x*Z, — [sm 040" X2, — cos 94x?fy“)<2n] Z,
28w ew 2swew
Yy .
-3 [Sln(294)(x2x2 —XIX) — 2 608(292)X9Lx?} h (289)

Comparing with Dirac singlet case, one find that the x{x; W* coupling for Majorana
singlet case is suppressed by 1/4/2. Similar to DSDM, X%, and x™ does not interact
with Higgs boson since its mass is not changed after EWSB.

The extension of the SM with a Majorana singlet and a Dirac doublet fermions
corresponds to the Bino-Higgsino system? with decoupled Wino in Minimal Super-
symmetric Model (MSSM) with tan 8 = 1,5 = ¢’/v/2. The search for Higgsino pair

production has been explored at the LHC, and the search results can be implemented

2Bino is the dark matter candidate, and Higgsinos are heavier thus can decay into Bino.
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in our model. The implementation of LHC search result will be discussed with more

details in Sec. 3.4.

3.2.2 Doublet-Triplet Model

In this model, the SM is extended with one fermion doublet, xp and one fermion

triplet xr, which transforms under the Electroweak gauge group SU(2);, x U(1)y as

r+1
Xr-i—l 1 Xt
D
XD = ~ (2, 5 +r),xr=| x| ~G7) (290)
XB r—1
X1

where the superscript denotes the charge. We consider the cases r = 0, —1, thus
both multiplets contain a neutral component. For r = 0, the triplet can be either
a Dirac or Majorana fermion, while the doublet is always a Dirac fermions. Thus,
there are three possible cases: r = —1 with Dirac triplet, » = 0 with Dirac triplet,

and r = 0 with Majorana triplet.

3.2.2.1 Dirac Doublet-Triplet Model with » = —1 (DDTM1)

For r = —1, the doublet and triplet components are
0 — \/§ 0
XD = Xf) , X1 = XT{_ >_(T (291)
XD X1 —Xxr/ V2

where the triplet is expressed in its adjoint representation.

The Lagrangian of dark sector is

Lpm = —mpXpXp — mrTr(Xrxr) — (yXoxrH +h.c.) (292)
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Figure 17: The mass distributions of five mass eigenstates in the Dirac doublet-triplet
model with r = —1 at different values of my — mp. mY, m), m;*, m and my are
represented by the blue, yellow, green, red and purple lines respectively. We have

chosen mp = 1000GeV and y = 1(2) for the solid(dashed) curve.

After EWSB, the mass matrices for charged and charged neutral fermions in the

bases (x7,xp) and (x7, xp) are

2 —yv/2
mr yv/\/_ MC — mr yv/ (203)

MY =
yo/V2  mp —yv/2  mp
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where C'(N) denotes the charged(charged neutral) components. They can be diago-

nalized with the following transformations

0 cos O sin 0 9 . cos sin 6
Xh _ 2 2 X1 ’ Xh _ 1 1 Xr (294)

XY —sinfy cos by X% X; —sinf; cosb, Xp

where sin®fyq) = 1/2 + (my — mp)/(2Amaq)) and (Amgm))? = (mp — mp)? +

2(1)y*v?. The masses for charged and charged neutral mass eigenstates are
0 1 _ 1
my,, = §(mD+mTi—Am2) , My, = §(mp+mTiAm1) (295)

while x;~ remains pure triplet with mass m~~ = my. The physical mass spectrum
is shown in Fig. 17 for two different Yukawa couplings, y = 1 and y = 2. X! is lightest
thus becomes a dark matter candidate. As Yukawa coupling increasing, the masses
for X?L’i increase, while decrease for X?’i, which can be understood from Eq. 295. The
pure triplet particle x7.~ is independent on the Yukawa coupling. As mp—mp > yv,
sinf; » = 0, X?’i becomes doublet-dominate, which behaves like mp, thus the curve

tends to mp = 1000GeV. As mr — mp > yv, X?L’i becomes triplet-dominate, thus

0+
mh ~ mT.

The interactions between extra fermions and EW gauge bosons are

Lo+ QL [(—2 cos 0; cos 05 + /2 sin 6; sin 02) X XY
Sw

+ (V2 cos By sin 6; + 2 cos B sin Ba) " x?
+ (2 cos B sin 61 4 V2 cos 0 sin 6a) x; x5
+ (\/5 cos 6 cos 05 — 2sin 0, sin 92)Xl+’YHX?

+ x5 *(2sin 01y, — 2 cos 91)(,:)] W,

3o (€05 0+ DXRYXG + (sin” 6, + DX}y "x?
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— 5 s n} + X x0) — (5in? B — 25%)XE 7 xi
— (cos® Oy — 2s3)X, "Xy — %Sin 20, (X5 " xi + X" x)
—(1- 28%)@*7“)6’] Z,
+ %y [sin 262 (X — XhR) — cos 28 (X + X))

sin 264 cos 20,

=5 i =) + =+ XX | (296)

Both doublet and triplet fermions interact with weak gauge bosons, thus the
couplings are more complicated compared with the singlet-doublet case. x;~ does

not interact with Higgs since its mass does not change after EWSB.

3.2.2.2 Dirac Doublet-Triplet Model with » = 0 (DDTMO)

For » = 0, the doublet and triplet have the following components

Xb X2/V2 X7
XD = 0 y XT = _, 0 (297)
XD X1 Xt/ V2
The Lagrangian for dark sector is same as the one with » = —1, which is shown in

Eq.292. After EWSB, the mass matrices for charged and neutral fermions are

oMme= " /2 (298)

yv/2  mp —yw/vV2  mp

MY = mr  yv/2

in the bases (x%,x%) and (x4, x5). Clearly, the mass matrices for neutral and

charged states are same as the one with » = —1 by interchange the charged and
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charged neutral component M¢ <+ MY, Thus we obtain the following rotational

matrices
0 cosf; sinf 9 Al cosfy sinf B3
Xh _ 1 1 X1 7 Xh _ 2 2 Xr (299)
XY —sin#; cosf, % X, —sinfy cosb, X5
and the corresponding masses
. 1 1
my,, = §(mD+mT:I:Am1) , My, = §(mD+mTiAm2) (300)

The negative charged component X; is pure triplet with mass my. If mpp > 0,
my > mli, i.e. the lightest particle is not charged neutral. To address this problem,
we perform the transformation, X?’i — i75x?’i, which cause m?’i — —ml’i. The
mass difference becomes
mf] | = 5 (Amy — Amy)
1

=3 <\/(mD —mp)? 4 3202 — \/(mp — mp)? + 2y202) <0. (301)

The the mass distributions of all five particles in this model after this transformation
is shown in Fig. 18. m?,m%,mli,mf and mr are represented by the blue, yellow,
green, red and purple lines respectively. We have chosen mp = —100GeV and
considered two values for the Yukawa coupling, y = 1 (solid) and y = 2 (dashed). As
one can read from this figure, the lightest particle is charged neutral. One can also
notice that m) ~ mf ~ my, which indicates that these three particles are triplet
dominant, while m?’i are doublet-dominant.

The interactions between X?j and W h are same as the y = —1 case by inter-
changing 60; <> 0. The interactions involving x,. are
_c

LD+ Sy [+ X3 (sin 1 x7 + cos O x3) | W, (302)
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Due to the change of hypercharge, simply interchanging the mixing angle does not
lead to the correct interaction between new fermions and Z boson. The Lagrangian

involving new fermions and Z boson has the following form

A

) _ _ 1 . _ _
L£D-— [Sm2 010" X, + cos” 01XV NG + = sin 201 (G x] + XX
SWCw 2
— (14 cos? 0y — 28124/)922’}/“)(}: — (14 sin? 0y — ZS%V))Z;W"XI_
L. b~ oAy — -
+ 5 sin 200" xy + X0 xR) + 2Xrxr | 2 (303)
800 I mD=—100 GeV |
LT e —— | y-2
, I
600 s
, —
5 | m;;
~ 400 . 8
, — mj
200 —my
ol ]
5(130 660 7(1)0 800 900

Figure 18: The mass distributions of five mass eigenstates in the Dirac doublet-
triplet model with » = 0 at different values of mr. m?,m%,mf,mf and myp are
represented by the blue, yellow, green, red and purple lines respectively. We have

chosen mp = —100GeV and y = 1(2) for the solid(dashed) curve.
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3.2.2.3 Majorana Doublet-Triplet Model (MDTM)

Same as Majorana singlet Model, we rewrite the Lagrangian in terms of Weyl

spinors. The doublets have the same form with Eq.283, and the triplet is

X3/V2 X
X1 = B . (304)
X1 X7/ V2

With two-component notation, the Lagrangian of the mass and Yukawa interac-

tions terms is
1
Loy D MpXHEXD — §mTTr(XTXT) — y(HTXTXD — XgEXTH) + h.c. (305)

As for the Majorana singlet-doublet model, we assume the Yukawa couplings for two

doublets are same but with opposite sign. After EWSB, the Lagrangian for the mass

terms is
1 X o
m. - c— T
DM = 2 (XOT XD XDD) ME x|~ <XT XD ) ME )T hc.,  (306)
0 XD
XD

and the mass matrices are

mr  yv/2 —yv/2
N c [ mr y/V2
M™ =1 yv/2 0 —mp | » M” = (307)
/2 0 yv/\/§ mp
—yv —mp

The mass matrices can be diagonalized by

X cosfy sinfy/v2 —sinby/vV2)\ [ x%
Xm| =1 0 i/V2 i/V2 X5 | o
XY sinfly, —cosfy/\V/2 cosby/v2 X%
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+ - +
X costly sinb, X7

= (308)
X —sinfy cos by X5
The corresponding masses are
1
m%jl =my, = §(mD +mp 4+ Amy) , md, =mp (309)

The mass distribution of five mass eigenstates in the Majorana doublet-triplet model
at different values of mp — my is shown in Fig.19. One can notice that X?’i are
both lightest and mass degenerate, while this mass degeneracy if lifted by one-loop
corrections involving gauge bosons [106, 107, 108, 109], and only the neutral be-
comes dark matter candidate. When mp > mp, all three heavy particles are triplet
dominant, and two light particles are doublet dominant. One the other hand, when
my > mp, light particles become triplet dominant. Heavy particles, explicitly Xf
and X9 become doublet-dominant. Therefore, mg’i A mp.

The interaction between new fermions and SM particles is

. e o sin 20
L3_|_E[—X;W((l+005292)X2+181n92><9n+ 5 2X?>

) . sin 26 B
+x " ((1 +sin” 0)X7 + i cos by, + — 2X2>] W,

. . 1. _ - _
[(z cos Oo XY — i sin Oy xh )y xS, — = sin 20o(X "X, + XSYX;)
QSWcW 2
(1 + cos? 0y = 253 )X 7" x5 + (1+ sin? 0 — 253 )X %7 | Z
1 : _ _ _ _
+ 5 [ sin 202 (X0x? — Xox%) + cos 205(¥0xY + ¥0xh)

+sin20>(x; X7 — X7 x5, ) + cos205(x5 X, + X;LX;)] h (310)

The extension of the SM with Dirac doublet and Majorana triplet fermion cor-

responds to the Higgsino-Wino system(with decoupled bino) in MSSM for tan 5 =
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1,y = ¢g. The experimental constraints on this scenario can be used to constrain

parameters of MDTM, which will be discussed more in Sec. 3.4.

1000

< 900
S. I
0
-500
-500 0 500
mp-my[GeV]

Figure 19: The mass distributions of five mass eigenstates in the Majorana doublet-

triplet model at different values of mp — mr. m?’i, m%i and mp are represented by

the blue, yellow and green lines respectively. We have chosen myr = 500GeV and

y = 1(2) for the solid(dashed) curve.

3.2.3 Model Summary

In Table.7, we summarized the gauge, mass eigenstates as well as the free param-

eter set that we will implemented for calculate o(ete™ — ZH) for models introduced

in Sec. 3.2.1 and Sec. 3.2.2.
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models  gauge states mass states  free parameters

+
XD
DSDM s =xg:xp = | Xhox* y, mp, Amyy = mj —mj
XD
+
XD
MSDM Xs = Xg7 XD = 0 X?L,l? X([))v XB Y, m?a ATnhl = m% - m?
XD
. X7
XD _ -
DDTML xp=|""|.xr=| xz | XhoXooX " yvmf, Amy=m —m)
XD _
X
) X7
XD _
DDTMO xp =" " foxr=| x5 | XhoXapX™  ymi, Amuw = mj —m]
XD ’_
X1
) X7
XD
o o= () s || o A=
XD _
XT

Table 7: Summary table of gauge, mass eigenstates and free parameter set for the

five models introduced in Sec. 3.2.1 and Sec. 3.2.2.

3.3 Constraints

Before implementing any constraints, we restrict the free parameters introduced

in Table.7 to the following ranges:

e m) <1TeV, mf >103.5 GeV

my is the mass of lightest charged neutral particle. We are interested in the dark
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matter candidate with mass below TeV range, which is possible to be found at
colliders. The lower bound on mli, which is the mass of the lightest charged
particle, comes from the exclusion limit searching for charginos at LEP [110].
Amx = mx — m? < 1.5 TeV

Amyx (introduced in Table.7) is the mass difference between heavy particle with
mass mx and the lightest dark matter. The sensitivity of the collider searches
depends on the visible energy released in the decay process. The mass difference
range at the order of TeV covers all phenomenological possibilities: (a) non-
compressed spectra, AM > My wy; (b) compressed spectra AM ~ O(1GeV);
(¢) nearly-degenerate spectra AM ~ O(100MeV). Each scenario corresponds to
different final states, which will be discussed more in Sec.3.3.2.

O<y<3

Large values of Yukawa coupling are constrained by perturbativity, i.e. the cor-

rections from higher order loops should be suppressed, which requires y/7m < 1.

Besides, all parameters are chosen to be real since the complex phase vanishes with

field redefinition.

While one could impose the relic density as a constraint on the parameter space,

in the spirit of simplified models we will not do this here in order not to cut away

regions of parameter space that might be interesting from a collider perspective.

Instead we note that there are several alternate possibilities to avoid a too large

relic density in this case. For example, First, if x{ is not absolutely stable, but

just long lived enough to escape the detectors, the relic density constraint can be

satisfied while the collider phenomenology is unchanged. Another possibility is a

non-standard cosmological history, for example late decaying particles can inject

additional entropy after Y? freezes out, such that its relic density is diluted.

129



Instead, the constraints we implemented include oblique parameters, current and
expected dark matter search results at the LEP, LHC as well as HL-LHC, and the

relative decay ratio of Higgs to diphotons with respect to the SM result R, = I'(H —

YY) /Tsm(H — v7).

3.3.1 Oblique Parameters

Given that new physics is heavier than the W and Z boson, the new physics
indirectly contribute to the propagators of gauge boson, i.e. the so-called oblique
corrections[111, 112, 113]. The effects of oblique corrections are parameterized into
six oblique parameters: S, T,U,V,X and W, but only the first three parameters con-
tribute to electroweak precision observables. Furthermore, we fix U=0, which is
motivated by the fact that U is suppressed by an additional factor M2 /M2 com-
pared to S and T where M, is the energy scale of new physics. This suppression
can also be understood from EFT: S and T correspond to dimension-6 operator
H'W,0*HB" and H'(D,H)(D"H)'H, while the operator contributing to U in the
lowest order is a dimension-8 operator H'W¢,o*HHW"*o"H [114].

The definitions of S and T at one-loop level are

0 MPOB)-MpO)_d- s IE0n)  meos) o
4s%,c3, M2 cwSw M2 M2
52 1 2s 1

T=——Y"_%440) 4+ — "W - W _wZ419) — _—_nZ7(() (312

«a CIQ/I/M%T()+M%/T<) CWM%T() M%T()( )

where ¥V stands for the self-energy corrections from new physics, and I(p?) =
Y (p?)/p?. Under the assumption U = 0, the numerical value of S and T from
multiparameter fit at 95% CL are [41]

S=-001+0.14, T"=0.04 £ 0.12. (313)
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3.3.2 LHC Search

Due to the Z5 symmetry, fermionic dark matter must be produced in pairs, and
particles heavier than x eventually decay into x?. The dark matter pair production

channels at hadron colliders include

a7 = W = x (= W) + X (= X + Z7/H), (314)
a7 = 72 = X(= X} + Z°/H) + X°(—= x] + Z*/H) (315)
97 = Z" = X (= ;W) +xT (= (W), (316)

where y*° denote the heavier charged and charged neutral particles, and they even-
tually devay to the lightest charged neutral particle through W,Z or H 3. The fist
production channel leads to the strongest constraints since the production cross sec-
tion is largest. The reason is that Z f f vertex is suppressed by weak mixing angle.
The final Z, W and Higgs can decay either leptonically or hadronically, which lead
to the signatures with hadronic, semi-leptonic and fully leptonic final states plus
missing energy.

Fully hadronic final states benefit from large SM gauge boson decay branching
ratios, thus this search channel is sensitive to the scenarios with large mass splitting.
Multi lepton final state is sensitive to the scenario with moderate mass splitting,
while this search fails in the compressed mass scenario, since the leptons from the
decays become too soft to pass the event selection trigger. In such case, an energetic
jet from initial state radiation can help enhance the detectability of the signal. The
final state particles recoil against the ISR jet, i.e. the missing transverse momenta is

at the same order as the jet, thus the signal can be detected. According to [115], the

3The heavier charged neutral particles can also decay via photon through loop-induced interac-
tion, which is suppressed thus not included.
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final state with a soft photon, jet and missing energy can also improve sensitivity of
compressed mass scenario.

Fig. 20 from Ref. [116] illustrates the analysis conducted to search for Supersym-
metry in the Bino-Wino simplified scenario. The figure displays the best exclusion
limit achieved for each point in the mass plane {m (05 Mg mig}, where myo rep-
resents the Bino mass, and Mg+ = Mgy corresponds to the mass-degenerate Wino
mass. It is evident from the plot that the fully hadronic final state provides the
best sensitivity at large mass difference, and the semi-leptonic final state also shows
comparable sensitivity in this scenario. On the other hand, the soft-lepton final state

can reach the scenario where mass different is of tens of GeV.

3.3.3 Higgs Decays

In the doublet-triplet model, the decay rate of Higgs to di-photons is changed at
one-loop level due to the presence of virtual charged fermions. The decay ratio with

respect to the SM rate is given by

L(h — vy)
Cam(h — v7)

Ay )2

= At

- ‘1 + (317)

The one-loop corrections for the SM, Agy and the fermionic dark matter A, are

defined as

ASM = ZN AfAF(TF) +AB TW s ZQXyX ) (318)
f

with 7, = m? /4m?. N, is the color number of SM fermions, and my is the Higgs
mass. ), and y, are the charge number and Yukawa coupling of new fermions. The
loop functions Ay p for 7 <1 are given by [103, 117, 118, 119]

2
72

Ap(T) = {7‘ + (7 — 1) arcsin® \/_}
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Figure 20: The analysis of searching for Suppersymmetry in Bino-Wino simplified
scenario with the best exclusion limit for each point in the mass plane {mﬁ), Mg+ =
mig}, where myo is the Bino mass, and Mygx = My is the mass degenerate Wino
mass. The charged Wino decays through W boson. The charge neutral Wino can

decay via either Z or Higgs, and the branching ratio is assumed to be equal.

Ap(T) = —i{27'2 + 37 + (67 — 2) arcsin® \/?} (319)

72

If the new fermions are light such that 7 > 1, then Ar becomes[117, 118, 119]

AF(T)Z%{T—Tzl[lni\/%:—mr}. (320)
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However, the case of 7 > 1 has been excluded by LEP search [110] since Mg >
103.5 GeV > myg/2.
For the three doublet-triplet models discussed in Section 3.2.2; the expression for

A, is given by

= ——F—————|—FAp(t+) — —TAp(T = ) X
Y 20my — ) Ny co 2 for DDTMO, MDTM
(321)

The current measurements of R, from the ATLAS and CMS experiments at 95%
CL are RATEAS = 1.04703% [120] and RSM® = 1.12 + 0.18 [121], respectively. The
projected result at HL-LHC can be found in Ref. [122], in which the uncertainties
are expected to reduced to 8% by combining ggF and bbH channel. The expected
result at FCC-ee is REC“% = 140.18[123]. However, this precision is comparatively
lower than the projected HL-LHC result thus implementing the FCC-ee experiment

for studying R, may not be necessary.

3.4 Impact on o(ete” — ZH)

The deviation of o(e*e™ — ZH) due to new fermions is defined as

oPM(ete™ — ZH)

)=
oM(ete- — ZH) "’

(322)

where ¢FPM

considers the contribution from new fermions only. Both integrated cross
sections are computed assuming unpolarized electron-positron beams. The inclusion
of polarized beams does not introduce any changes, as all dark sector fermions are

considered to be vector fermions. The Standard Model contribution, oM (efe™ —
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Figure 21: Self-energy (left) and vertex (right) Feynman diagrams with new fermions,

denoted as F', and V =, Z.

ZH), takes into account one-loop EW as well as fermionic two-loop electroweak
corrections, and the corresponding result is obtained from Table 3. On the other
hand, the cross section for the process involving dark sector fermions, o™PM(efe™ —
Z H), incorporates one-loop electroweak corrections only.

At the one-loop level, the inclusion of new fermions contributes to o™®(ete™ —
Z H) through self-energy and vertex contributions. The corresponding Feynman dia-
grams illustrating these contributions are depicted in Fig. 21. It is worth noting that
the vertex contributions with V' = A dominate in this case. This dominance arises
from the large Yukawa coupling and the less x\Z couplings, which is suppressed by
weak mixing angle.

Input parameters used are same as Eq.244, and on-shell renormalization scheme

is employed for fields, mass and electromagnetic coupling e. The «(0) scheme is used
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for the latter, i.e. e is renormalized to its value in Thomson limit. In Sec.1.2.3.1,
we discussed that the SM electromagnetic renormalization constant §Z°™ shown in
Eq.81 is ill-defined due to light fermions, while this problem does not appear in

calculating the contributions from dark sector fermions, §Z"PM

, since new charged
fermions are all massive. Besides, dark fermions are intermediate states so dark

matter fields and masses do not need to be renormalized.

3.4.1 Majorana Singlet-Double Model (MSDM)

For Majorana singlet-doublet model, we choose y, m), Amy; = m{ —m) as free
parameters. There are two solutions to the relations between the Lagrangian param-
eter set, {mg, mp,y}, and the free parameter set we chosen, which originate from

the mixing angle, sin?#,. In terms of free parameters, it is written as

1 / 4
.. 2 o
S 94 = 5 <1 + 1-— E), (323)

where x = Am/(vy). The positive solution leads to doublet-dominant x9, thus we
refer this solution as doublet-dominant scenario, and the other as singlet-dominant
scenario. Besides, * > 2 is required to satisfy the condition sin®#, < 1, which
gives rises to large mass difference between ! and x? assuming y = O(1), Am =
O( 500 GeV ). To constrain dark matter particles with large mass difference, we
implement the collider search with energetic leptonic and hadronic final states [116,
124, 125, 126, 127].

In the doublet-dominant scenario, the dark matter candidate remains mostly a
singlet, and all three heavy particles are nearly degenerate masses doublets. This
scenario is similar to the Bino-Higgsino system (with decoupled Wino) in the Min-

imal Supersymmetric Standard Model (MSSM) for tan 5 = 1 and y = ¢g. Fig. 22
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displays the results of a parameter scan for y = 1 (upper plot) and y = 1.5 (lower
plot). In each plot, different size of the cross section relative deviation is illustrated
with different colored stars. The green, yellow, red, and purple stars represent de-
viations of {0,0.5%}, {0.5%, 1%}, {1%,3%}, and {3%, oo} respectively. Parameter
space points excluded by oblique parameters is indicated by gray stars, but they do
not appear in the Majorana singlet-doublet model due to custodial symmetry. The
most stringent constraint in current LHC data arises from searches of Higgsino pair
production with fully hadronic final state, denoted as “4q, ATLAS” in Fig.. 22. For
massless dark matter, mass differences smaller than 900 GeV are excluded at 95%
confidence level (CL). The expected 95% CL exclusion region at HL-LHC, focusing
on the final state with 1 lepton and 2 b-jets, places an upper limit on Amy,; around
1100 GeV. For y = 1, only a small part of the survived parameter space points yields
deviations greater than 1%. More parameter points lead to deviations greater than
3% for y = 1.5.

In singlet-dominant scenario, mj, ~ mg > mp ~ m}, thus the production chan-
nel from pp — X%ix%jF. Due to the small mass difference between pure doublet
and the dark matter candidate, we implement the collider search for compressed
Higgsinos [124, 129, 130, 131, 132, 133] and replace Amy,; by Amp; = mp — my.
The result of a parameter scan in the singlet-dominant region with y = 1 fixed is
shown in Fig. 23. Two regions exhibit 6 > 0.5%: m{ < 50, GeV and m{ =~ 100, GeV.
The first region leads to large relative deviations due to the threshold effects and has
already been excluded by LEP. In the second region, m} reaches its minimum value.
The LHC search with three soft lepton in the final states excludes mass difference
up to 60 GeV at 95% CL. Increasing the Yukawa coupling to 1.5 does not cause any

qualitative differences thus not shown.
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Figure 22: Parameter scan result for Majorana singlet-doublet model with y = 1

and y =

1.5 in doublet-dominant scenario, together with current and projected

LHC constraints from Refs. [125] (“4q, ATLAS”) and [127], (“llbb, HL-LHC”),

respectively.
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Figure 23: Parameter scan result for Majorana singlet-doublet model with y = 1

in singlet-dominant scenario, together with direct search constraints from LEP [110]

and LHC [129, 131].

3.4.2 Dirac Singlet-Double Model (DSDM)

In the Dirac singlet-doublet model, the chosen set of free parameters consists
of y,m{ and Amy; = m$ —m?. Similar to the MSDM, the chosen free parameters
lead to the doublet-dominant and singlet-dominant scenario, according to the two

solutions of the mixing angle

1 2
in? g :—(11,/1——) 24
S Uo 5 :L‘2 (3 )
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where = Amy/(vy) > v/2. Besides, it also give rise to O(350GeV mass differences
between x9 and XV assuming y = O(1).

Fig. 24 displays the distribution of § in the doublet-dominant scenario for two
different values of y, y = 1 and y = 1.5. For y = 1, the oblique parameters exclude
heavy neutral particle mass below 750 GeV. As for y = 1.5, m) < 1500GeV is
excluded. The dashed lines correspond to the constraints from collider search, which
are identical to the MSDM in doublet-dominant scenario. The DSDM in the doublet-
dominant scenario is also similar to the Bino-Higgsino scenario, thus these constraints
can be directly incorporated. For y = 1, most of the parameter space points survive,
while only a few points lead to 0 > 0.5%. These points are sssociated with TeV scale
mass difference, while relatively light x?. For y = 1.5, survived parameter space
points with § > 0.5% corresponds to much heavier y?.

In the singlet-dominant scenario, heavy neutral particle, x, is singlet-dominant
thus the production channel involving x? is suppressed. The relevant channel is pp —
xExT, which is equivalent to charged Higgsino pair production [134]. Therefore, in
this scenario, it is more convenient to use Amp = mp — m? as free parameters.
The expected 95% CL exclusion contours from the search for charged Higgsino pair
production at the LHC (assuming 100 fb™" at 13 TeV) and HL-LHC (assuming 3
ab™! at 13 TeV) are implemented in Fig. 25 and excludes the mass difference below
20 GeV for m{ < 190GeV . The region where mp < 103.5GeV , indicated by the red
dashed line, has been excluded by LEP [110]. For y = 1.5, most points in the region
Amp; > 20GeV are excluded by the oblique parameters, resulting in the survived
points with & > 0.5% concentrate in the region Amp; ~ 20GeV . For y = 1, more
points are survived, and they can have various different mass differences. In both
plots, survived points can lead to § > 0.5%, which indicate that the future Higgs

factories can probe the parameter space not covered at the LHC.
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Figure 24: Parameter scan result of the DSDM in the doublet-dominant scenario at

different values of m{ and Amy,, where the Yukawa coupling is chosen to be y = 1

in the upper plot and y = 1.5 in the lower one.

The dashed lines are the 95% CL

exclusion contour based on Refs. [125] (“4q, ATLAS”) and [127], (“1lbb, HL-LHC”),

respectively.
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Figure 25: Parameter scan result of the DSDM in the singlet-dominant scenario with
Yukawa coupling y = 1 (upper) and y = 1.5 (lower). The LHC exclusion curves from

direct searches for the new fermions are based on Ref. [134].
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3.4.3 Majorana Doublet-Triplet Model (MDTM)

For Majorana doublet-triplet model, y,m? and Amy = mj — m{ are chosen as
free parameters. Similar to the Majorana singlet-doublet model, for each choice of

free parameters {y, Amy,}, the mixing angle has two different values

| 1 2
sm292:§(1i,/1—ﬁ), (325)

where © = Amy/(vy) > /2 to ensure all parameters are real. Following what
we did in the Majorana singlet-doublet model, we will refer the positive solution
as “ doublet-dominant ” scenario, under which X2’+ is doublet-dominant, and the
second as “ triplet-dominant ” scenario. Besides, x > /2, which corresponds to a
mass difference of the order Amy = O(400 GeV), must be satisfied to ensure all
parameters are real. As discussed in Sec. 3.4.1, collider search through energetic
leptons and hadronic jets can put stringent bound on dark matter with large mass
differences. These searches has been performed in [124, 125, 126, 127, 116].

In the doublet-dominant scenario, three heavy particles are all doublets and
nearly mass degenerate, while two light particles are triplets, which is similar to
the Wino-Higgsinos scenario (with decoupled Bino) in MSSM. In the Wino-Higgsino
scenario, it is typically assumed that the three Higgsino components are mass degen-
erate, namely Myt = Mgy = Mg, However, in our model, the mass ordering is such
that m%, < my = mi5. Despite this difference, when considering the effects of mixing
angles and mass differences, the modifications to the cross section are found to be less
than 10%. Consequently, the bounds on the mass difference are adjusted by approxi-
mately O(10GeV), which is very small and causes no qualitative difference. Thus the
results in Wino-Higgsino scenario can be directly implemented. Moreover, it is worth

mentioning that the exclusion limits for Bino-Higgsino scenario [124, 126, 127, 116]
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can also be implemented, which is due to the observation that exclusion limit for
Wino-Higgsino scenario is almost same as the one for Bino-Higgsino scenario [125].

In the triplet-dominant scenario, the dark matter production channels include
P — XExT X E O xy ™, where xF are mass degenerate triplet-dominant states,
and x? is pure doublet. Production channels involving x? are suppressed by sin® 6y
0. Thus the dominant production channels are pp — Xf X7 X%Xf, which is equivalent
to Higgsino-Wino scenario. Additionally according to the analysis in Ref. [125], the
exclusion limits for the Higgsino-Wino scenario are found to be very similar to those
of the Bino-Wino scenario. Therefore, we also incorporate the exclusion contours
obtained from studies on the Bino-Wino scenario [126, 127, 116].

Fig. 26 and Fig. 27 display the scan result in doublet- and triplet-dominant sce-
nario respectively, together with the constraints from oblique parameters, branching
fraction of the Higgs boson to di-photons, as well as the collider searches. The con-
straints of Higgs boson’s branching fraction are denoted by the black solid, dashed
and dot-dashed lines, which represent the upper limits of R, at the CMS, ATLAS
as well as HL-LHC, respectively. The arrows point to the allowed regions.

The constraints from oblique parameter and R, exhibit similar behavior in both
scenarios for a same Yukawa coupling. The oblique parameters exclude m} up to 50
GeV for y = 1, while exclude m{ up to 150 GeV for y = 2. The constraint from R,
covers a larger region, and the most stringent one comes from the projected result
at the HL-LHC. The mass of x} up to 300 GeV is excluded for a 1.5 TeV x} in the
case of y =1, and m,o < 800 GeV is excluded in the case of y = 2.

The constraint from LHC collider searches in the doublet-dominant scenario
is different from the triplet-dominant case. The exclusion contour in the triplet-
dominant scenario is more stringent due to the higher pair production cross section

of Winos compared to Higgsinos. The most stringent constraint comes from the
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expected exclusion contour at the HL-LHC, excluding triplet masses up to 1.3 TeV
and doublet masses up to 1.1 TeV, assuming a massless x?. For y = 1, all surviving
points with § > 0.5% are expected to be excluded at 95% at the HL-LHC. Increas-
ing y to 2 allows for more surviving points that satisfy 0 > 0.5%, and the precise
measurement of o(ete” — ZH) as well as R, can cover a larger region compared to

the direct searches at the LHC and HL-LHC.
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Figure 26: Parameter scan result for Majorana doublet-triplet model with y = 1 and
y = 2 in doublet-dominant scenario, together with current and projected LHC con-
straints from Refs. [125] (“4q, ATLAS”) and [127], (“11bb, HL-LHC"), respectively.
The upper bounds on R, at LHC and HL-LHC are from Refs.[120, 121, 122].
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Figure 27: Parameter scan result for Majorana doublet-triplet model with y = 1
and y = 2 in triplet-dominant scenario, together with current and projected LHC
constraints from Refs. [125] (“4q, ATLAS”) and [127], (“1lbb, HL-LHC”), as well
as the constraint from branching fraction of the Higgs boson to di-photons from
Refs.[120, 121, 122].
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3.4.4 Dirac Doublet-Triplet Model with » =0 (DDTMO)

For Dirac doublet-triplet model with zero hypercharge, the free parameter set
is {y,m?, Amy = m) — m{}. Similar to the Majorana singlet-doublet model, the
mixing angles defined in Eq.299 have two different values for each choice of free

parameters {y, my }, and are written as

1

sin?§; = 5(1 V1= x*2>, (326)
1/, Vi—z?

sin® By = —(1 + —x)
V1+a?

5 (327)
where z = (mQ + m?)/(vy).? We refer to the positive solution as the ”doublet-
dominated scenario,” in which X%i are mainly doublets, and the other solution stands
for the "triplet-dominated scenario.”

Fig. 28 shows the mass distributions of the five particles as a function of Amy,
for two Yukawa coupling choices, y = 1 and y = 1.5, with m{ set to 300 GeV.
In the doublet-dominant scenario, the lightest particle, x=, is charged, resulting
in the exclusion of the entire doublet-dominant scenario. However, in the triplet-
dominated scenario, x! can be the lightest particle if Amy > v?y?/8m). The figure
also reveals that m) ~ m and my ~ m) ~ mj, as previously demonstrated in
Fig. 18. This behavior can be further explained by Fig. 29, which displays the mixing
angle distributions in the triplet-dominated scenario. The plot clearly illustrates that
cosfly ~ cosf; ~ 1. According to Eq.299, large values of cosf,; indicate that the

heavy particles, X%i, are predominantly triplets, resulting in their masses being close

to mp.

4The definition of x differs from other models, which is defined as z = Am/(vy), due to the
replacement of m{ with —m{ to ensure that x} is the lightest particle.
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Figure 28: The mass distribution of five particles in the Dirac doublet-triplet model

with r = 0, as functions of Amy, in the doublet-dominate scenario(upper) and triplet-

dominate scenario(lower). The Yukawa coupling is chosen to be: y = 1 (solid) and

y = 1.5 (dashed), and m{ = 300 GeV in both plots.
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Figure 29: The distributions of charged neutral states mixing angle (blue), denoted
as cos by, and charged states mixing angle (yellow), denoted as cosf, at different

values of Amy, in the triplet-dominate scenario. The Yukawa coupling is chosen to

be: y =1 (solid) and y = 1.5 (dashed), and m{ = 300 GeV in both plots.

Fig. 30 displays 4 in triplet-dominant scenario at different values of m and Amy,,
and the Yukawa coupling is chosen to be y = 1(2) in the upper(lower) plot. In this
figure, a new type of point is introduced and represented by dark gray stars. These
points correspond to parameter choices that result in complex masses or my < my,
and they are unphysical thus excluded. This condition removes a few points in the
region of small mass differences both for y = 1 and y = 2, while more points are
excluded due to oblique parameters for y = 1. As the Yukawa coupling increasing to

2, only a few points are not excluded by the oblique parameter.
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For both Yukawa couplings, the parameter space points with § > 0.5% concen-
trate in the region with large mass difference, which can be best constrained through
collider searches using energetic leptons and hadronic jets in the final states. The rel-
evant channels includes the production of charged states pairs, pp — Xfxf, x5,
as well as the production of charged-neutral pairs, pp — X%xf, X2xE.5 The cross
section of summing over all channels are approximately twice the cross section of
Wino-pair productions, namely pp — WEWF + WO+, Consequently, the 95%
CL contour in this model corresponds to the 1o exclusion region in the search for
Wino-pair production, which can be obtained through extrapolation.

The results from the collider searches for Wino-pair production, as analyzed in
Refs. [125, 127], are incorporated into Fig. 30. The most stringent constraint, from
the expected 95% CL contour at the HL-LHC, excludes mass differences up to 1.3
TeV assuming a massless dark matter candidate. Combining the constraint from the
Higgs diphoton decay branching fraction [120, 121, 122], all parameter points with
0 > 0.5% are excluded for y = 1. However, a few surviving points with § > 0.5%
exist in the y = 2 case, resulting in TeV-scale heavy fermions. In Fig.31, the scan
result for y = 2.5 is shown. The entire parameter region with m{ < 1TeV is excluded
by oblique parameters, necessitating an extension of m?. Similar to the y = 2 case,
the surviving parameter space points with § > 0.5% concentrate in the region where
new fermions have TeV-scale masses. This region can be explored at a 100 TeV
hadron collider, as analyzed in Ref. [128]. Additionally, precision measurements of
the cross section for ete”™ — ZH can provide complementary information to the

direct searches conducted at a 100 TeV hadron collider.

5The production channel pp — Xli x;" is not taken into account since mli — m? = 0(20 GeV).
6The production of neutral pairs, pp — X?Lxg, can also contribute. However, this channel is
significantly suppressed by the factor sin? §; ~ 0.
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Figure 30: Parameter scan result for DDTMO with y = 1 and y = 2 in the large
mass difference region, together with current and projected LHC constraints from

Refs. [125] (“4q, ATLAS”) and [127], (“1lbb, HL-LHC"), respectively. The lower
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bounds on R, at LHC and HL-LHC are from Refs.[120, 121, 122].
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Figure 31: Parameter scan result for DDTMO with y = 2.5 in the large mass difference
region, together with current and projected LHC constraints from Refs. [125] (“4q,
ATLAS”) and [127], (“1lbb, HL-LHC”), respectively. The lower bounds on R, at
LHC and HL-LHC are from Refs.[120, 121, 122].

3.4.5 Dirac Doublet-Triplet Model with r = —1 (DDTM1)

In the Dirac doublet-triplet model with » = —1, we consider the following free
parameters: {y, m{, Amy = mj — m{}. Similar to the Majorana case, two solutions
for the mixing angle in terms of these free parameters leads to two scenario: the
doublet dominate scenario and triplet dominate scenario. In the doublet(triplet)-

dominate scenario, m;" is almost doublet(triplet). In both scenarios, the production

153



channel is limited to pp — mlimljF 7 for two reasons: (a) mfE is the lightest heavy
particle; (b) all the other heavy particles are much heavier and effectively decouple.
To illustrate the latter explicitly, we can express the masses of decoupled heavy

particles in terms of Am,

0 0

mp—mp 1
Amll 42 ’
+ 0

Am” :@,

— 0

m—-md 1 1 1 [ 24 1

— =4+ —+ /16 — — + —, 328
Amy; 2+8ZB2 +8 T +ZU2 (328)

where x = Amy/(vY). To ensure all parameters real, the condition z? < (3/4 —
1/4/2) = 0.043, is imposed, which leads to relative heavy m$, m~~ and mj". Thus
the production cross section involving those particles can be ignored.

For a doublet Xli, the production channel, pp — )(lixf, is equivalent to charged
Higgsinos pair production. Besides, the condition 22 < 0.043 causes Amy of order 50
GeV for a O(1) Yukawa coupling. As explained in the previous section, scenarios with
such small mass differences can be best searched for by using the hard jet plus soft
leptons signature at the LHC. The expected 95% CL reach of LHC13 with 100fb™*
and 3ab™! from the analysis in Ref.[134] is shown by the light and dark blue dotted
lines in Fig. 32 respectively. The exclusion contour from LEP [110] (red dotted line)
is also shown in the figure. These bounds are also imposed for the triplet Xli. To
account for the differences of the production cross section between the doublet- and
triplet-dominant scenario, the following recast was performed:

Triplet Doublet ., ¥ Triplet(pp—i”X') Doublet _ 1
Srlpe :S ouble %S oubple X_ (329)

+
O_Doublet (pp—=xi"x]) 5

"The production channel, pp — XliX?y can also contribute, and leads the final states with soft
lepton and jet [135]. However, the exclusion region from this channel is weaker than pp — mlj[ml:F

thus not included.
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where ”Triplet(Doublet)” stands for the triplet(doublet)-dominant scenario. This
equation implies that the 95% C.L. exclusion contour for a triplet Xli corresponds to
100 exclusion contour in the doublet case, which is realized by extrapolating Table. 4
of Ref. [134].

The distributions of ¢ in the doublet- and triplet-dominate scenario are shown in
Fig. 32 and Fig. 33 respectively. In both scenarios, the Yukawa coupling is considered
with values 1 and 2, and ¢ exhibits similar distributions for a same Yukawa coupling.

In the doublet-dominant scenario for the case of y = 1, the oblique parameters
exclude the region of large mass differences for small m{. The constraint from R,
at HL-LHC excludes a few more points at small mass difference. As the Yukawa
coupling increasing to 2, all parameter points with Am; > 16GeV are ruled out
by the oblique parameters. The constraint from collider search for charged Higgsino
pair productions, which is complementary to the constraints from oblique parameters,
and R,, can in addition exclude masses of x? up to 200GeV for Amy, < 20GeV. As
a consequence in the case of y = 2, the survived points focus in the region with
Amy < 20GeV and m) > 200 GeV . While for y = 1, the survived points are also
in the region m{ > 200 GeV , but there is less stringent bound on Amy,.

The scan result in the triplet-dominant scenario exhibit a similar behavior com-
pared to the doublet case. Although the collider search is not as strong as the charged
Higgsino case due to the suppression of production cross section, the oblique param-
eters exclude more points. As a consequence, less points are survived, but they can

also yield 0 > 0.5%.

155



[GeV]

0

4

/

m

Am,,

[GeV]

0

+

1

m

Amy,

Figure 32: Parameter scan result for DDTM with y = 1(upper) and y = 2(lower)
in the doublet-dominant scenario together with the constraint from LEP [110], the
expected 95% C.L. reach at LHC and HL-LHC from Ref.[134], and upper bounds of

70

60

'DDTM1-doublet, y=1
- % ExcludebyST * 1%<6<3%
6<0.5% *  623%

0.5%<6<1%

soft 21, LHC ]
soft 21, HL-LHC

70

60 f

100 200 300
m[GeV]
"DDTM1-doublet, y=2 0.5%<6<1% ===nnnn- soft2, LHC -
- % Exclude by ST * 1%<0<3%  =======- soft 2|, HL-LHC
0<0.5% * 023% 000 mememmees LEP
E " _GMS * * R
i TR
ok ** o »*
K k- RHLELHC 4 08
%, *k K Kk *R# xS
** /‘ ]
s * ‘f\'* *
_ - * * ¢* * b
e e WS S
-‘..‘.k*. *~
..~..~ “\ ]
..'~‘ - ]
| e S mmy ) 4
200 300 400
m![GeV]

R, at LHC and HL-LHC from Refs.[120, 121, 122].

156



T T T T T T T
DDTM1-triplet, y=1

——
0.5%<6<1%

- T T T T T ]
70 DDTM1-triplet, y=1 *  0.5%<6<1% ===-=---- soft 21, LHC ]
- % Excludeby ST * 1%<6<3%  ======-- soft 2I, HL-LHC 1
60 ]
' 6<0.5% * 623%  mmeeeees LEP
=
(0]
O,
(=

-m

+ —
g
N
=
g
m)[GeV]
T T T T T T T T T T T T T T T
70 DDTM1-triplet, y=2 0.5%<6<1% ======== soft 2I, LHC ]
- % ExcludebyS,T * 1%<6<3%  ====--=- soft 21, HL-LHC
60 F .
E 6<0.5% * 628% @ mmmeee- LEP
=
()
o
O~
g
+I\
g
N
£
<
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4.0 Conclusions

The future Higgs factories, such as the International Linear Collider (ILC), Future
Circular Collider electron-positron (FCC-ee), and Circular Electron Positron Collider
(CEPC), are poised to provide unprecedented experimental accuracy in measuring
the properties of the Higgs boson. Among the dominant production channels, the
Higgsstrahlung process ete™ — ZH plays a critical role in extracting the Higgs to
Z-boson coupling. However, to fully exploit the potential of these experimental facil-
ities, it is imperative that theoretical uncertainties do not surpass the experimental
ones.

To achieve this, the theoretical precision of the Higgsstrahlung process must be
at least comparable to the anticipated experimental accuracy of 1.2% at ILC, 0.4%
at FCC-ee, and 0.5% at CEPC. The inclusion of Next-to-Next-to-Leading Order
Electroweak (NNLO EW) corrections has paved the way towards achieving such a
goal. With the addition of these corrections, the theoretical uncertainty is reduced
to about 0.7%, making it comparable to the experimental accuracy. The attainment
of such a level of theoretical and experimental precision is a major milestone in the
pursuit of precision measurements of the Higgs boson, and opens up new avenues for
exploring the properties of the Standard Model and beyond.

In the pursuit of high-precision measurements at future Higgs factories, it is
expected that deviations in the cross section measurements of the Higgsstrahlung
process may become apparent. These deviations, if observed, would need to be
explained by new physics beyond the Standard Model. To address this possibility,
we explore the Higgs portal models with fermion multiplets as a potential source of

such new physics and investigate the resulting deviations on the cross section of the
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Higgsstrahlung process. We specifically focus on regions of the parameter space that
exhibit significant deviations and find that some portions of this parameter space
may be accessible to future hadron colliders. Our investigation sheds light on the
potential implications of these new models and the potential for their detection in

future experiments.
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Appendix A One-Loop Tensor Integral Reduction

This Appendix illustrates the deviation from Eq. 124 to Eq. 125. Start with
Eq. 124, which has the following form

2p1-pr o 2p1opa
0 = [2T4(0) + YpoTy] x det :

204 p1 -+ 2pa-Dpa

+ ) (=D x [Tih(k) = (T*(0) + piT5(0)) + pa T3 (0) + (Yio — Yoo)T}]

=1
20y - 2ph
xdet | 2pp_y-p1 -+ 2pp_1-Da (330)
2pk+1 i 2 2pk+l * P4

Writing in this form helps the algebraic simplification: (1) T}/(k) x det(---) = 0; (2)
TH(0) + pa T3 (0) x det(--+) = 0; (3) Y5, paTi(0) x det(---) = 0. Thus, Eq.330

becomes
2p1-p1 - 2p1-Da
0 = [2T4(0) + YpoTy] x det :
204 p1 - 2pa-pa
2p1-ps -+ 2pa-pa
+ T3H(0) x det :
2p3-p1 -+ 2p3-Dpa
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2 e 29
4 . ’
+ Z(_l)k(YkO - YOO)T[? xdet | 2pp_1-p1r o 2pk-1Da (331)
k=1
2Dk41 D1 2Dk41 P4
According to the property
2p1 Py o 2ps-py 2p1-p1 -+ 2p1-pa
P ' = (—1) x det P (332)
2p3-p1 v+ 2p3-pa 2p4p1 cr 2pa-pa
Eq.331 can be further simplified to
2p1-p1 v+ 2p1cpa
0 = [T(0) + YooT§] x det :
2p4p1 o 2pa-pa
20y - 2p)
4 ' ’
+ ) (=1 (Yao — Yoo)T x det | 2p 4 -py -+ 2pe1 - pa
k=1
2Dk41 D1 r 2Dk41 t Pa
Do+Yo 2q-p1 -+ 2q-ps4
1 1 Yio—Yoo 2p1-p1 -+ 2p1-ps
=— [ d°g———— x det 333
12 qDOD1 cee D4 ¢ : : : ( )
Yio— Yoo 2ps-p1 -+ 2ps-pa
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Using
2p; - p;

Eq.333 becomes

1 1
0=— [ d°g——
2'7-(-2 qDoD1"'D4
Do +Yo Di— Do+ Yo — Yoo
Yio — Yoo Yii —Yio — Yo1 + Yoo
x det
Yio — Yoo Yar — Yio — You + Yoo
Dy + Yoo
1 Yio — Yoo
=— [ dPg———— x det
iwn | © "DoDy Dy -
Ya0 — Yoo
T3 (0) + YooI§y Ty (1) + You TP
Yi0 — Yoo Y — Yo
= det
Yo — Yoo Yy — Yo

=Y —Yio—Yo; + Yoo, 2¢-p; =

D; — Do+ Yo; — Yoo (334)
Dy — Dy + Yos — Yoo
Yis — Yio — You + Yoo
Yis — Yio — You + Yoo
Dy + Yo Dy~ Yo
Yy — Yo Yis —Yu
Y — Yo Yig — You
T (4) 4+ You I
Yis — Y,
14— You (335)
Yig — You

where we have used the property that the matrix determinant does not change by

adding the first column to each of the other columns. We can also enlarge this 5 x 5

matrix determinant by adding one column and one row, which is chosen to be

1 Yoo YOI

0 TE0) + YooIp Ti(1) + Yo TP
0=det |0 Y10 — Yoo Yii—Yn

0 Yo — Yoo Yy — Yo
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To(4) + YouI§

Yia — You (336)

Yigs — You



Adding the first row to each of the other rows and exchanging the first and second

rows, we end up with

0 = det

+ det

= (—1) x det

0
1
1
1
1
1

0
0
0
0
0
0

T5(0) T3(0) T5(0) Ty(0) Ty(0)

Yoo
Yio
Y20
Y30
Yio

YooIg YouTy YTy YosT§ YouT§

0

o o o O

15

1
1

You

Yoo
Y12
Y2
Y3
Yo

Yo3
Yi3
Y3
Y33
Yis

You
Yi4
You
Y4
Y

(337)
You
Y,
H (338)
Yoy
Y34
Yia

The equivalence between Eq.337 and Eq.338 can be easily checked with Mathematica.

Eq.338 is exactly Eq.125 and can be solved for the scalar five-point function 7. In

particular this yields 77 can be reduced to a linear combination of five scalar four-

point functions, which is only true if the Gram determinant vanishes.

1
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Appendix B Analytical Expressions for Tév =4

In this appendix, we will provide a detailed derivation of the analytical expres-
sions for TON =4 As mentioned in Sec. 1.3.2, all one-loop tensor integrals can be
reduced to scalar integrals. Therefore, by obtaining analytical expressions for scalar

integrals, the one-loop tensor integrals are also known analytically. Remember that

Ty = Ao, Ty = By, Ty = Co, Ty = D (339)

B.1 Preliminary

To derive the analytical expressions for one-loop scalar integral, the following

property is crucial

P
In(A):/d q[q2—A+i5]”
D 1
:/d Na+p?—A+igm (340)

which follows the Lorentz invariance of Feynman integral. The analytical expression

for I,, reads
—)(A —ig)z " (341)

We also list some important integrals, which are related to logarithmic log, di-

logarithmic Liy and tri-logarithmic functions Lis,

! 1 1. a+bd
I(a,b) = d = -1 42
(a,0) /0 xax+b an b’ (342)
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I(a,x;) = /0 dz Infa(z — 1) (x — 25) — ic]

—ln(a—i5)+§<ln(1 ) —an L 1), (343)

Lig(z) = — /0 dt@ _ /01 dtw, (344)
Lig(z) = /0 ) dtLiQT(t), (345)

/01 %hﬂ(l + at) = In(—a) In*(1 + a)
+21n(1 + a)Lis(1 + a) — 2Liy(1 + a) + 2Liz(1) (346)

Ydt 51 t
/—ln2 TN (1 4 ar) = In(1 + ay)]
0

t ]."—Clgt
— 1
y {{mu_m @giﬂ « (1 + ay)

14 a9 ar(1+ ag)
. 1+CL1 . CL2<1+CL1) .
—In(1 4+ as)| + 2Li — 2Lig | ———= F e
( 2)] 21+CL2 2(&1(1"‘@2) T
14+ a; . (ax(1+ay) .
— 2L 2Lig| ————= 347
131+6L2 + 13((11(1—1—@2) T ( )
B.2 One-Point Function
The scalar one-point function reads:
Ao(m) = (me) s [ dPq
0 i q> —m?+ie
1
_ 2 € 2
= (ree) Iy () (348)
Plugging in Eq. 341 and expanding D = 4 — 2¢ up to O(¢), we obtain
m?, .
Ag(m) = —m?(—5) €T (e —1) (349)
1
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1 m2 2 m2 1 m2

B.3 Two-Point Function

The scalar two-point function By(k? my, ms) = By has the following form:

1
By = (p*me®)" / TR
—mi +iel[(q + k)2 — m3 + i€]

(pPmerE)e (%K + 2(=Kk* —m? +m3) +mi — ic) (351)

1
= (u?me’®)° / / 2 27.2 2 2 2 2 _ ;]2
q+mk) — (222 + x(—k% — mi +m3) + mi — ig]

where we have used Feynman parametrization. Plugging in Eq. 341 and expanding

D =4 — 2¢ up to O(e), we obtain

12 2 2 _ 2 2 —e
By = €"#T() / dx [—2x2 + * 722 M+ 221 - zs}
o Lu 1 Il
1 k,2 —€
= 7T (e) / dx [—Q(x —z1)(z —1xg) — ie}
0 H
1
=>4+ B" +eBlV (352)
€
where
1 ]{?2
Béo) — —/ dxIn {—2(95 —z1)(x — x9) — ia} (353)
0 H
1 1 2 1 1 k2
Bé ) = / dxﬁx + / dxa In® {E(x —x)(r — x9) — ia} (354)
and we define x5 as follows
K 5, —kK*4+mi-m? mi K .
Px + e $+F—15:E(x—x1)(a:—x2)—z5 (355)
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With Eq.343, we obtain

(0)—_nk—2—z’ latn r—x1)(r —x
BY = 1 (uz ;) - /d In[(z — 21)(x — 22)]
= —In( ——zg Z/ dzIn[(z — z;)]
/{32 T, —1
:—ln(ﬁ—za)—Z[ln(l—xj)—len ]x» —1] (356)

where we have imposed In(ab) = Ina + Inb in the second line because the imaginary
part of z; and x5 has opposite sign, i.e. z125, = —ic.
Similarly, B[()l) is
1 2 k2

2 k , , !
Bél) =13 + §1n2 (E — lé?) + ln(ﬁ — 15) X /0 dxln[(x —x)(x — xQ)}

+ %/ dzIn®[(z — z1) (2 — 22)]

71_2

1 k2
:124—51 (M——zg)—i—ln E_Zg Z/ dxln x—x])}

+%/1 dzn®[(v — z,)] +%/ doIn?[(z — 22)] +/01 dzIn(z — 21) In(z — 22)

0 0

I ' Lj
+ (1 —2z1)In(1l — 1) In(1 — x2) + z1 In(—21) In(—x2) + (27 — x9)

. T2 . x2_1 Ig—l
L —L 1 — 1)1 357
() ~ L2 ) ey — ) 2 357
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B.4 Three-Point Function

The scalar three-point function Cy(p?, p2, (p1 + p2)?, my, ma, m3) = Cy has the

following form:

1 1
C, = 2___YE 6,—/dD : . -
0= (ume™) T —m2 +id[(q + p1)? — mE +ic)[(q + pr + p2)® — m3 + ie]
I v 2
= (u’me’® 6,—/ dx/ d /dD
(i ) 2 J, 0 Y 4 [(q1 + zp2 + yp1 — pr — p2)* —m2,J?
2 1 x
2 € 2
= (pu“me’”) Z7T_2/0 dx/o dy ]3(mxy) (358)

where we have used Feynman parametrization and miy is

miy = (zp2 +yp —p1 —p2)” — (1 = 2)(p1 + p2)’?
—(z—y)pt+ (1 —2)ym2 +ym? + (x — y)m3 — ic
= 2°p3 + y°pi + 2xyp1 - po + x(—p3 + m3 — m3)
y(=p% = 2p1 - po +m2 —m2) +md —ic (359)

According to Eq.341, we get

1 T
Co = p2eI(1 +¢) / dx/ dylaz® + by® + cxy + dx + ey + f] o (360)
0 0

where
_ﬁ b—p—% _ 2p1p2 d —p3 +m3 — mj
T T T e 0T 12 ’
—p2_9 2 _ .2 2
o= PTG, M (361)
12 ’ I

Transforming y to ax + y, the integrand becomes
(a + ac+ a?b)x? + by + (2ab + c)xy + (d + ae)x + ey + f
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= by* + (2ab+ )y + (d + ae)x + ey + f (362)

We choose o, which obeys a + ac + o?b = 0, such that the term proportional 2
vanishes. Since « obeys a quartic function, the solution of o can be real or imaginary
depends on if b* — 4ac is positive or negative. At first, we restrict b*> — 4ac > 0, i.e.

« is real. So the three-point function becomes

1 1-a)z
Co =327 T(1 + ¢) / dx/ dy [by2 + (2ab + ¢)xy + (d + ae)x + ey + f} o
0 —ax
(363)

Thus, the integration over x can be done easily if we interchange the integration

order between x and y, which can be realized with the following trick

1 1-a)z 1 1-a)z 1 —azx
/d:r:/ dy—/d:v/ dy—/dx/ dy
0 —azx 0 0 0 0
-« 1 —a 1
:/ dy / dx—/ dy/ dx (364)
0 y/(1—a) 0 —y/a

It is evident that this transformation requires either « real, or more precisely that
there are no singularities in the complex y plane in the triangle. Plugging in this

transformation, the three-point function becomes
Co = 2T (1 + ¢)
-« 1 1
X {/ dy / dz[(2aby + cy + d+ ae)z + by* + ey + f] T “dx
0 y/(1—a)

—a 1
— / dy/ dz[(2aby + cy + d + ae)z + by* + ey + f] _1_6} (365)
0 —y/a

The x integral can be integrated easily. Define N(y) be the coefficient of z, i.e.
N(y) = (2ab+ ¢)y + d + ae, we obtain

I'(1+e)

11—« 1 _
Cy = —p 2eEe {/ dy——[N(y) + by®> + ey + f]°
)= —p i yN(y)[ (y) + by* + ey + f]
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11—« 1 e
—/0 dyw[%i\f(y) +by? + ey + f]

—/O_Oédyﬁ[]\f(y)4—byz+ey+f]E

—« 1 y 9 6}

+ dy——-[—ZN(y) + by + ey + 366
/0 y N(y)[ SN(y) + by +ey f] (366)

= O\ 4 eV (367)

where in the last line, we have expanded D = 4 — 2¢ up to O(e). The zeroth order

of three-point function reads

-« Inlby? N 11—« Inld 2 +ey+ f+-LN
20 :/ gy Bby* + ey + f + N(y)] _/ dy [by* + ey + [+ 75N (y)]
- 0

.Y N(y) N(y)
s

The three-point function of order O(e) is

11—« 1 2 bu? N 1-a IDQ by? +ey+ f+-LN
22 :/ gy WY ey + f+ Nl _/ " [by? + ey + f+ 5N ()]
- 0

« N(y) N(y)
B /a a In? [by? + ej]yv—(ky;” — IN(y)] (369)

Note that extra constant term also appears when performing the expansion, but the

integral of such constant term over y leads to zero, namely

11—« 11—« 0
/ dy — / dy/ dy =0 (370)
- 0 -

The integrand in Eq.368 and Eq.369 contains a first order pole as N(yo) = 0. To

let the residue of the pole vanishes, we introduce a constant term to Eq.368

120" = / oy @{hﬂbzﬁ +ey+ f+ N(y)] - Inbyd + eyo + f]}

—/0 . dy ﬁ{ln[byQ%—ey—l—f—i—%N(y)] —ln[byg—i-eyg—l—f}}
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’ 1 2 Y 2
—/_ady W{ln[by +ey+ f— EN(y)} — In[byg +ey0~|—ﬂ} (371)

and Eq.369
-« 1
ol = [y e ey £ N - 0+ e+ 11}

—/0 dy ﬁ{hﬂ[b;f—key%—f—l—%]\f@)} —ln2[by§+eyo+f]}

— /ady %{hﬁ [by? + ey + f — %N(y)} — In?[byg + eyo + f]} (372)

Note that the integral of this constant term vanish, thus adding this constant

term does not change the value of C’éo). The explicit expression for this constant

term 1s

T=bys +eyo+ f
—d — ea 2 —d — ex (2bd — ec)*  €?
—p( L B B 2 373
(2ab+c) 6(2ab+c)+f 4b(c? — 4ab) 4b+f (373)
where o« = (—c £+ v/¢? — 4ab) /(2b).

The variable transformation y = ¢ — a,y = (1 — )y, y = —ay/’ of Eq.368 leads

to the following expression

—MZC(O):/ld Infby? + (c+e)y+a+d+ f]—InT
0 0 (c+2ab)y + d+ ea + 2a + co
U If(a+b+o)y*+ (e+d)y+ f] —InT
_/0 (c+2ab)(1 — a)y +d + ea
—{—/1d ln[ayQ—l—dy—i—ﬂ —InT
0 (c+2ab)ay —d — ea
_/1d { Qi) =T WmQy(y) —InT  WmQs(y) —InT }
0 (

X (1—a)

X

c+2ab)(y —y1)  (c+2ab)(y—1y2) (c+2ab)(y —ys3)
1

= (S =5+ 5) (374)
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Following same steps, Eq.369 becomes

2#2Cé1):/1d In*lby® + (c+e)y+a+d+ f]—*T
0 (c+2ab)y+d+ea+2a+ ca
U ?[(a+b+0)y? + (e+dy+ f] —In*T
_/0 (c+2ab)(1 — a)y+d+ ex
/ld 1n2[ay2+dy+f]—ln2T
0 —(c+ 2ab)ay + d + ex
/ld {1n2@1<y>—1n2T B 1n2Q2<y>—1n2T+1n2Q3(y>—1n2T}
o (c+2ab)(y —y1) (c+2ab)(y—y2)  (c+2ab)(y — y3)
1

"ot QOéb(Jl —ht ) (375)

X1—a«

X

Keep in mind that the residue of the pole vanishes since Q;(y;) = T. Q;(y) are
defined as

Qiy) =by*+ (c+e)y+ta+d+ f
iy + (—pl 4+ mi — m3)y + m3 —ie
_ -
Q(y)=(a+b+c)y’+ (e+dy+ f
(p1 + p2)?y? + (—(p1 + p2) + mi — m)y + mj —ic
112

Qs(y) =ay* +dy + f

_ Py’ + (=ph +mg —my)y +mi — e

- (376)
y; are
__d+ea+2a+ca
1= c+2ab '
. d+ ex
2= T e 2a0) (1 —a)
d+ ea)a
Ys = —<c+—za)b- (377)
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(Q);’s are quadratic functions of y, the roots are labelled by y;; and y;0, and Q;(y;) =
T, thus we can express In (; in the form
mQ; = |T(1 - L= yq - L25%,
Yin — Yi Yi2 — Y

Y—Yi Y—Yi
=InT +In(1 — +1In(1 — 378
( Yi1 _yi> ( Yi2 _yi> ( )

where we have used the properties that: (a) the imaginary part of 7" and @, are
same; (b) y — yi/yin — yi and y — y;/yi2 — y; are opposite.
For later use, we define two new variables
(1) Yi @  Yi—1

) = = (379)
’ Yij — Yi / Yij — Yi

Now it remains to calculate the integrals S;, J;

1
SZ-—/ dy ! {ani—lnT}
0 Y=Y

—/1dy ! {{IHT—i—ln(l— R )1 —lnT}

0 Y—Y Yir — Yi Yi2 — Yi

Yi 1 1 — ay. — .
:(/ +/ )dy {[lnT+ln(1— P Y )} —lnT}
0 vi Y—UYi Yir — Yi Yi2 — Yi

K3

(380)
! 1
Ji:/ dy {1n2Q,-—1n2T}
0 Y—Yi
b ~yi —u ]
:/ dy {{IHT—Hn(l— vy )+ In(1 - A )1 —ln2T}
0 Y=Y Yir — Y Yiz — Yi
v ' 1 Y~ Y Y—Yi ? 2
= + dy In7T +In(1— )+ In(1 - )| —In"T
0 vi Y—Y Yir — Yi Yiz — Yi
(381)
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Transforming y = y;(1 — s) for the first integration contour and y = y; +t(1 — ;)

for the second, we obtain

Lt

Si:/ 7{ lnT+1n(1+tr )—i—ln(l—l—ter))] —lnT}
0 i
1

d
—/ —S{ lnT—l—ln(l—l—sr )+1n(1+5r( )} —lnT}
o S UL

= Liy(—r{) + Lis(—r®) = Lis(—r?) = Liy(—r?) (382)

2
InT + In(1 + tr, 1)) +In(1+ tr(Z))} — In? T}

7{
Yds (] 2
—/ { In7T + In(1 +3r§11)) +1In(1 —1—57“521))} —ln2T}
0

QIHT{ —In(1 +ur ) —In(1 + wr®)) + In(1 + wr?) + In(1 + ur@))}
2
+ [ln(l +u ( L)+ In(1+ ur(Q))] [ln(l + urgll)) +1In(1+ urg))] }
2

2 2
— [ln(l + urfl)) +In(1 + urg))} }

" du @ @
—|—/ —{ {ln(l +ury’) + In(1 4 ur;, )}
0 U
_ 21nT{Li2(—7"§11)) + Lig(—ry)) — Lig(—r}) — Lig(—rl ))]
Ld
4 / _u{2ln2(1 + urg)) +21n*(1 + w"g)) —2In*(1 + urfll)) 21n*(1 + urg))
0 U

- {In(l—f—urg)) —ln(l—l—m“g))r {ln(l—l—ur Y —In(1 + url) >)]2} (383)

The expression for last integral can be obtained with Eq.346 and Eq.347.
With the analytical expressions of .S; and J;, we can write the analytical expres-

sions for C’(()O) , Cél)

3 2 2
1 1 S
C = - > DD (=)L), (384)




—21n(1+7‘( )L12(1+7“())—|—2L13 1+r(l))} [1 (1+7‘ ) ln(l—l—r())]

1 1+ r
X [Eln(r§2)+n(—r]2, 0 ) [ In( 1—|—r 0y — ln(l—l—r())}
‘ 1+r(l) ‘ (l)(1+r ) ‘ 1—1—7“%) ' r§12)(1+r§l1))
+Lis( —— ) — Lia 0 — Li; o ) Tl = 0
1+ 7}, Y1 +7%) 1+7) i (1+7j5)
(385)

These expressions are valid for real mass and momentum squared. For complex

parameters, the expressions can be found in Eq.4.26 of [43].

B.5 Four-Point Function

The 1-loop scalar four-point function, Dy(p?, p3, p3, p3, mi, ma, m3, my) = Dy, is

defined as

1
¢? —mi +ie][(q + p1)? — m3 + ic]
1
[(q + p1 + p2)? — m3 + ie]] C]+p1+p2+p3) —mj + ig]

= (u’mer®) /dx/dy/dz/dD Di
Yz

7T
6
— (e / dz / dy / dz T(m2,.) (386)

1
o= ey /dﬂq[
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with

Dy =[(q1 + (y = 2)pr + (@ = y)(p1 +p2) + (1 = 2)(p1 +p2 +p3))* —mg,.] (387)
My, —az? + by2 + gz2 +cry + hxz 4+ jyz +de+ey+kz+ f

=pia’ +p3y” + piz* + (202 - pa)ay + (201 - pa)az + (2p1 - p2)y2

+(m3 —mi —p3)z + (m3 —m3 — p; — 22 - P3)y

+ (mi —mj —pi —2p1 - p2 — 2p1 - p3)z + M — e (388)

According to Eq.341, we obtain

Dy = (1*me"®)T(2 + ) / dm/ dy/ dz [m2,.] (389)

el

/ da / dy / dz [m?,.] (390)

where we have only kept the finite order since the O(e) is usually irrelevant for 2 — 2
process.

Performing projective transformation, where A; are all positive, we obtain

DY / i / dy / 0z [A Ay As Ay x [M2,] 2 (391)
with

M?,. = m?

TYz :cyz(pij — qij, My — Mz) (392)
pi; and M; are

qij = (P +mi + m3) A Ay — mPAT —mi A
= 1;;AiA; — miA? —m3AZ, (393)
M = mi A7, (394)
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The A; are chosen in such a way that the coefficients of 2%, zz and yz disappear,

which is equivlant to

Gfy =0 — lpA1Ay — miA] — m3 A3,
Qs = Qo — lLisA1 Az — mIA? = I3 Ay A — m3 A3,

0l = g3y — haAi Ay — miAT = Iy Ag Ay — m3AS (395)

The solutions for the coefficients A; are

Al B 112 + Z%Q — 4m%m%

Ag N Qm% ’

PN
l23A2 - llSAl ’
m3AZ —m3 A3

B l24A2 - l14A1

Ay

(396)

Note that there is a freedom for choosing A; since we solved four variables through

three linear equations. Thus Eq.391 becomes

1 x Y
DY) = /0 dzx /0 dy /0 dz [Aj Ay Az Ag] X [d'2® + by + doy + do+ ey + Kz + f]7°

1 x 1 1
— [A1 4,454 de [ dy =]
[A14245 4]X/0 x/o Y ax? + by +cdey+de+ey+ f
1
— 397
a’a:Q+b’y2+c’xy+d’x~|—e’y+k’y—|—f] (397)

where o = a((pi; = ¢i;, m; — M;) and it is same for all the other variables. Clearly,
Eq.397 is the sum of two three-point functions, thus it is straightforward to derive

the analytical expression for D(()O) with Eq.360.
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Appendix C Analytical Expressions of 9,2 Bijx(c, m7, m3)

In this appendix, explicit expressions of 0,2 Biji(p®, m, m3) as well as its imag-

inary part for various tensor integrals are listed. As before, we use the notation

O, = 0/0(m?), and we also make use of the abbreviations
A= 0% +mi+mi —2(om? + omi + mim3), (398)

m?+m3—s+ A2 [ 1 (300)
2 m2m3

Expressions of 8m%Bijk(p2, m?,m3) as well as its imaginary part for various tensor

[y = log

integrals are

2 2
o —mi+m;

Im 8,,, Bo(o, m3, m3) = —7 2 : (400)
Im 0,,, B1(0,m3,m3) =7 o(mi +0T)%1/_2 o)+ : (401)
Im 8,,, Boo(o, m}, m3) = —7 Al/Q(mZ;Zm% —9) : (402)
Im By, Buy (o m?, m2) = mioc —mimio ;371?22 + miX — m3\ | (403)
1m0y, Booy (0,2, m2) = A/2(3m2o + 3277;%’0 — 302 +2)) ’ (404)

Im O,,,, Bi11(0, m?,m3) = ﬁ {—mSo + mioc(3mj + 4mjo + o* — 5A)
— 2(mjo — 2my0” + mio° + N — Ao?)}, (405)
Om, Bo(o, m2,m3) = —% <log mL% —log mi% - 2211(0 _;1’}3 i m%)) , (406)

Om, B1(0,m3,m3) = —% + % ((mg —m3) x (log mi% — log mig)

¥ 3o —mi )+ m? —m3) ~ A, (407)
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1 1 1 A\ + 20m2
amlBOO(Ua my, m2) - Z_l 10g E% + E<0(20 — m% —+ m%) — T2
1 1
x (log —5 — log —) + 1V Ao — m} + m%)) 7 (408)
1 A 3 2
8mlBll(CT, m%, m2) = —3(0(1.50 — m% + mg) — #
o

1 1 (0 —m2 +m3)(\+ om3)
% (log — — log —=) + L 2), 409
(o5 2y~ log 1) e (409)
1 1 1
Om, Boo1 (0, m?}, m3) = 13 log m + 2153 ((Q(m% —m3)® + o + 3om; — 3om))

1 1 2(m3 —m2)? — (o +m? +m3
. (logﬁ_l‘)gﬁ)%—ll)\m (mi — m3) ( 1 2))

i 3 1203
6mi — 12mim3 + 6m3 — 6mioc — 6m3o — 5o 410
2602 , (410)
6(m? —m3)? + 3m20 — Im3o + 202
Omy Bin (o, m3, m5) = — - 2 605’1 2
_(mi =m3)® +mio(2mi — 2m3 + o) (1o 1 L)
204 8 m3 s m3

[
04/\11/2 X ((mf —m3)* — (m} —m3)*(mi + 3m3)o

— mimso® + 3myo” — m%a?’) . (411)
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Appendix D Analytical Expressions of 0,,20,,2 Biji(0, m2, m3)

In this appendix, explicit expressions of 9,,20,,2 Bijx(0, m?, m3) as well as its imag-
i

inary part for various tensor integrals are listed.

Im 82, By(o,mi,m3) = —m ;All/% : (412)
Im &2, Bi(o,m7,m3) = dmio” — (mi _02133/; 7)(A = 2m5o) : (413)
Im 872,11300(0, mi,mi) = —m % , (414)
Im 87%11311(0, m?,m3) = 2r A+ o(my + 7:3%)\;/;)] — 20°mim; , (415)
Im 82, Booi(0,m3, m3) = (i = m%)(;;;;\?ga) + mao” ; (416)
Im &2, Biii(o,m3, m3) = ﬁ {(m] —m3 — 0)[3\* + 4mjo A
+0%(3(m] —mj — o)(mi +mj + o) — 2mim3)]
+120°[m] 4+ my — o(m] + m3)]}, (417)
Im 0,,, Oy, Bo(o, m?,m3) = 7 2(mi J;\;Z% —9) : (418)
1m0y, O, By (0, m2, mi2) = 7 27" = (15 ;Zﬁ — o)A~ 2mio). (419)
1m0y, O, Boo(o, 2, m2) = 7 (71— mi;fjg;ggmf +m) (420)
Im O, O, Br1 (0, m3,m3) = 7 03;/2 (2m2 2(m2 +m2 — o) — A[2\
o(3mi +m3 — U)]) ) (421)

2 mi+mi—s
amlamgBO(0-7 m%7mg) = X{_l + : )\1/22
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x log i ;%_ )\1/2} , (422)
Oy Oy B1(0, m3,m3) = %{%%—i—m% + %Oogmi% — log %)

+)\l11/2<a—mj+m§+2m§(a—)\mf+m§))}, (123)
Oy Oy Boo (0, m7, m3) = %{1 + W(log mif — log mig)

n )\511/2 ((mf ;mg)Q P - m%)} | (424)

1 mio 1 m?2—m? 1 1
2 2 2 1 2
Oy Omy B11(0,mi, m3) = i {—2(2 + 3 ) — (5 - ) (log i log _m2>

1 2
h
0-/\3/2

+ (—Q(mf —m3)* + (m? —m3)*(Tm? + 5m3)o

— 30%(3m] +m3y) + o®(5m} +m3) — 04) } : (425)

2 2

1 2
Omy Oy Boo1 (0, mf, mz) = {Z(mf — m%) —o0+ (M — m%)

" 4o? o
1 1 2 .
X <log w2 log Ea) + N2 <)\(m1 —m3)
+omi(c +m? —m — 22)>} , (426)

1

208

2mio

YO

Omy,Om, B111 (0, m%, m2) = {(U - m% + mg) x (6 +

2 _

<3(m2 mi)?

1 1
+2m3 — 4m7 + O‘) X (log — — log —2>
my my

20,
i <(m§ —m3) x 3\ +4om3) + oA

ot i) o

A

181



The integrated functions for zero momentum are given by, in terms of 7 = m3/m?,

02, Bo(0,m?, m2) = (1"11_;)2 [1 +rt2r fiﬂ , (428)

02, By (0,m?,m2) = 2(1"—_1_;3 :—1 5 —2r(2+7) lhirr] , (429)

02, Boo(0,m?, m2) = 4&”—502 :—1 + 35 + 212 fi:] , (430)

02, Byy(0,m2,m3) = ﬁ :1 £ 107 + 72+ 6r(1 +7) 1“1} , (431)

02, Booy (0, m2,m3) = 12(7?—51)3 {1 — 57— 2r% — 672 1“1] , (432)
0%, Bi11(0,m?, m3) = 12&”—1_4”5 {—3 AT — 1172 4 7% — 127(2 + 3r) 1111_7»70} :

(433)

Oy Oy Bo(0, m2, m2) = i {—2 C (14 )BT ] (434)

(1 —r)? 1—r

O Oy Br (0, m2, m2)) = 2(;1——1_47«)3 :5 (24 4r) lhirr] , (435)

Oy, Oy Boo (0, m2, m2) = 4&”—5/02 :—1 —r—2r 11117;1 , (436)

o, Oy B11(0, m2, m2) = % :—17 — 8+ 72— 6(1+ 3r) ;iﬂ . (437)
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Appendix E Running Z Width and Fixed Z Width

Z propagator under Dyson resummation follows the Breit-Wigner form

1
D = . 438
2(5) s—m% +imzly (438)

In terms of this expression, the corresponding cross section with intermediate Z boson

can be written as

o~ i (439)

(s —m%)? + m3T%

/4 where

One can simply derive that o becomes maximal at /s = mz(1 + 7?)
v =myz/I'z. However in experiment, the peak of the cross section shifts with energy
about AE ~ 34 MeV. The experimental data is better fitted with running width,

which is written as

S
~ 440
T G mip sy o

The maximum corresponding to this running width cross section is /s = mz(1 +

7?)~1/4 and the energy difference between fixed width and running width is

1
AE = mz(1+4H)Y" —my(1 +4%)~ 14 ~ §’yzmz ~ 34 MeV (441)
y—>

which explains this peak shift.
To produce the correct peak in theoretical calculation, the energy dependent Z

boson width with arbitrary EW corrections can be safely taken care of by performing

the following transformation

G.Dy(s) = G,Dy(s) (442)
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where G, is the fermi constant and

1
D, (s) = . 143
2(5) s —mZ +im, 17, (443)
my = mz(1+~%) 712, (444)
Iy =Tz(1+~%)72, (445)
’ G,
Cu= 14y (446)

m',, 1", are formal parameters without physical interpretation.

Under this transformation, position of the new peak can be correctly reproduced
s =my(1+2) = mz(1+92) 721+ ) = my(1 445~ (447)

More details can be found in [136].
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