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Current experimental measurements on Higgs boson properties are consistent

with the Standard Model(SM) predictions, but large experimental uncertainties still

leave room for the possibility of new physics. To reduce experimental uncertain-

ties, a so-called ”Higgs factory” including the International Linear Collider (ILC)

[1, 2], Future Circular Collider (FCC-ee)[3], and Circular Electron-Positron Collider

(CEPC) [4], has been proposed. The main production channel of Higgs boson in

these e+e− colliders is the Higgsstrahlung process, e+e− → ZH, which is projected

to be measured with sub-percent level precision at these facilities (1.2% at ILC, 0.4%

at FCC-ee, and 0.5% at CEPC). Reducing the theoretical uncertainty to the same

level as the experimental one is crucial to prevent theoretical errors from dominating

when extracting Higgs couplings, and this constitutes a significant part of this thesis,

in which the largest missing contribution, the next-to-next-to-leading order(NNLO)

electroweak corrections, will be presented. Moreover, the increasing experimental

accuracy will impose stringent bounds on new physics. The thesis also investigates

one specific class of new physics, fermionic dark matter, as a possible explanation for

potential deviations on the cross section of the Higgsstrahlung process, and explores

the parameter space that may be probed at future Large Hadron Collider(LHC).
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1.0 Introduction

The Standard Model(SM) of particle physics is a theoretical framework that de-

scribes the behavior of fundamental particles and their interactions through three of

the four fundamental forces: the strong interaction is described by Quantum Chro-

modynamics (QCD)[5, 6, 7, 8], and the description of the electromagnetic and weak

interactions is unified in the Glashow-Salam-Weinberg (GSW) model of the elec-

troweak (EW) interaction[9, 10, 11], also called the Electroweak Standard Model

(EWSM). The obstacle that EW gauge theory predicts massless gauge bosons, but

experimental facts require the force carriers of weak interactions to be massive, was

overcome by spontaneous symmetry breaking - a mechanism nowadays known as

Brout-Englert-Higgs or simply Higgs mechanism [12, 13, 14, 15]. Owing to the ob-

servation of parity violation, fermions are chiral, i.e. left- and right-handed fermions

interact differently with weak gauge bosons, which forbids the introduction of plain

fermion mass terms due to gauge invariance. The so-called Yukawa interaction terms,

which describe the interaction between chiral fermion and Higgs field, introduce the

fermion masses in a consistent manner. This chapter depicts the main features of the

SM and its renormalization, which is required to make precise predictions for EW

phenomena that can be tested at colliders. Since perturbation theory is a method

of choice in such precision calculations, some basic techniques for evaluating EW

radiative corrections is also included in this chapter.

1



1.1 the Standard Model

The mathematical framework of the SM is the quantum field theory featuring a

non-Abelian gauge group structure, referred to as SU(3)C × SU(2)L × U(1)Y. The

SU(3)C group corresponds to QCD, which describes the strong nuclear force respon-

sible for color symmetry. The SU(2)L × U(1)Y group corresponds to the EWSM,

which describes the electroweak interactions responsible for the symmetry of isospin

and hypercharge. Gauge bosons, which emerge from the generators of the gauge

group, mediate the interaction between fermions. According to gauge symmetry, all

particles should be massless.

The masses of weak gauge bosons are generated by spontaneously breaking the

EW SU(2)L × U(1)Y gauge symmetry down to electromagnetic U(1)em invariance.

The symmetry breaking is driven by the gauge interaction with a scalar field with

non-vanishing vacuum expectation value (vev). Specially, the SM employs a complex

scalar SU(2)L doublet to break the EW gauge symmetry, so that three out of four

scalar degrees of freedom deliver the longitudinal polarizations of the massive gauge

boson. The fourth scalar corresponds to a neutral, massive boson, the so-called SM

Higgs boson.

The introduction of fermion masses through Yukawa interaction terms mixes

the flavour eigenstates of quarks, while leptons do not mix as long as neutrinos

are massless. The mixing of quark generations is well described by the Cabbino-

Kobayashi-Maskawa (CKM) matrix [16, 17], which contains the only source of CP

violation in the SM.

Thus, the Lagrangian of the SM can be decomposed into gauge, fermion and

2



scalar sector

LSM = LG + LF + LS, (1)

where the lowerscripts G, F, S denote gauge, fermion and scalar sector respectively,

and the Yukawa interaction term is included into the scalar part.

We will start by writing the explicit form of symmetry unbroken Lagrangian, i.e.

Higgs sector with vanishing vev, and the non-vanishing vev case will be incorporated

afterwards. Specifically, we will discuss the Higgs mechanism and CP violation in

detail.

1.1.1 Gauge Sector

According to the dimension of SM gauge group SU(3)C × SU(2)L ×U(1)Y, there

are eight QCD gauge fields and four EW gauge fields. The gauge fields belonging to

the color group SU(3)C are denoted as Ga
µ, the one belonging to weak-isospin group

SU(2)L is denoted as W i
µ and the one belonging to weak-hypercharge group U(1)Y is

called Bµ. The dynamics of gauge boson are encoded in the Lagrangian in terms of

the field strength tensors:

LG = −1

4
BµνB

µν −
3∑

i=1

1

4
W i

µνW
µν,i −

8∑
a=1

1

4
Ga

µνG
µν,a (2)

where the indices i and a correspond to the number of generators in the gauge group.

It is important to note that gauge boson mass terms such as m2
BBµB

µ are forbidden

due to gauge symmetry.

The corresponding field strength tensors are given by

Bµν = ∂µBν − ∂νBµ (3)
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W i
µν = ∂µW

i
ν − ∂νW

i
µ + gϵijkW j

µW
k
ν (4)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν (5)

where g and gs are the gauge coupling constant for weak isospin and color groups,

respectively. ϵijk, fabc are the structure constants of SU(2)L and SU(3)C, which is

defined through the anti-commutation relation between gauge group generators. The

gauge coupling constant for weak hypercharge is denoted as g
′
, and it is not shown

in field strength tensor since the structure constant for Abelian group is zero.

We denote the eight generators of color by ta, and these generators are Gell-Mann

matrices for color triplet. The generator of weak hypercharge, denoted as YW , is a

constant. The three generators of weak isospin are represented by T i. For isospin

doublet, the generators are T i = σi/2, where σi are the Pauli matrices. For triplet

fermion, the generators have the following form

T 1 =
1√
2


0 1 0

1 0 1

0 1 0

 , T 2 =
1√
2


0 −i 0

i 0 −i
0 i 0

 , T 3 =
1√
2


1 0 0

0 0 0

0 0 −1

 (6)

The generators of triplet can also be chosen to be in the fundamental representation.

1.1.2 Fermion Sector

The SM contains three generations (copies) of chiral fermion fields with different

gauge transformation properties under SU(3)C × SU(2)L × U(1)Y. Table. 1 lists the

first generation of fermions and its corresponding gauge transformation properties,

where u, d, ν, l stand for up-type quarks, down-type quarks, neutrinos and leptons.
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The subscript L(R) denotes left-handed(right-handed) fields, which are obtained with

projection operators:

LL = PL L = PL

ν

l

 , QL = PL Q = PL

u

d

 , (7)

lR = PR l, uR = PRu, dR = PRd (8)

where PL,R = (1∓ γ5)/2.

Quarks are color triplets, while leptons are color singlets. Additionally, the left-

handed quark QL and lepton LL transforms as doublets under SU(2)L, while the

remaining right-handed fields transform like singlets. Right-handed neutrino is not

included1. The weak hypercharges of right- and left-handed fermions are chosen in

such a way that the known electric charge of the fermions are reproduced by the

Gell-Mann-Nishijima relation

Q = I3W +
YW

2
(9)

The Lagrangian of the fermion sector, in terms of chiral fermion field, reads

LF =
∑
j

(iL̄j
L
/DLj

L + iQ̄j
L
/DQj

L + il̄jR /DljR + iūj
R
/Duj

R + id̄jR /DdjR) (10)

Similar to the gauge mass term, the fermion mass termmL̄LLL is also not allowed due

to gauge invariance. Dµ is the covariant derivative, which contains the interaction

with gauge bosons

Dµ = ∂µ − ig
′ YW

2
Bµ − igW i

µT
i − igsG

a
µt

a (11)

1In the Standard Model (SM), neutrinos are considered to be massless as the SM does not include
right-handed neutrinos. However, the discovery of neutrino oscillation, as observed in experiments
such as Super-Kamiokande [18], SNO [19], and KamLAND [20], has provided strong evidence that
neutrinos have non-zero masses. This discovery implies that an extension of the SM is required to
accommodate massive neutrinos.
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Q1
L =

u1
L

d1L

 u1
R d1R L1

L =

ν1
L

l1L

 l2R

hypercharge YW
1
3

4
3

−2
3

−1 −2
isospin IW

1
2

0 0 1
2

0

color triplet triplet triplet singlet singlet

Table 1: The chiral fermion content for the first generation, denoted by the super-

script 1, of fermions in the SM. L and R denote left-handed and right-handed.

where we adopt the convention of Peskin and Schroeder [21] and Schwartz [22].

Different sign conventions are used in other literature. For example, the form

Dµ = ∂µ + ig
′
YW/2Bµ + igW i

µT
i is used in [23]. Different sign conventions lead

to sign changes of the mixing matrix, Feynman rules and Green function, while the

physical observables are not influenced. A resource for different sign conventions of

the Standard Model is summarized in [24].

1.1.3 Higgs Sector

The scalar field Φ transforms as a SU(2)L doublet and color singlet. To allow for

an electrically neutral component, the scalar field must have hypercharge YW = ±1,
which are the charge conjugate field with each other. Here we assume YW = +1.

Under this convention, the Higgs doublet can be written as

Φ =

ϕ+

ϕ0

 (12)
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where the upper indices indicate the electric charge of the components. The corre-

sponding charge conjugate field with YW = −1 is defined as

Φ̃ ≡ iσ2Φ
∗ = i

0 −i
i 0

ϕ−

ϕ0∗

 =

 ϕ0∗

−ϕ−

 (13)

The Lagrangian of the scalar sector is

LS =(DµΦ)†(DµΦ)− V (Φ) + LY (14)

The Higgs potential V and the Yukawa interaction term LY are

V =− µ2Φ†Φ + λ(Φ†Φ)2 (15)

LY =−
∑
j,k

(L̄j
LY

l
jkl

k
RΦ + Q̄j

LY
u
jku

k
RΦ̃ + Q̄j

LY
d
jkd

k
RΦ + h.c) (16)

where µ, λ are the scalar field quadratic and quartic coupling constant, and they

must be real to make the Higgs potential Hermitian.Y l,u,d
jk are Yukawa couplings for

lepton, up quark and down quark respectively, and they are 3 × 3 matrices. The

Hermition conjugate part, denoted as h.c, is required to ensure the Hermicity of LY .
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1.1.4 Gauge Invariance

Plugging the explicit expressions for gauge, fermion and scalar sectors, Eq. 1

becomes

LSM = −1

4
BµνB

µν −
3∑

i=1

1

4
W i

µνW
µν,i −

8∑
a=1

1

4
Ga

µνG
µν,a

+
∑
j

(iL̄j
L
/DLj

L + iQ̄j
L
/DQj

L + il̄jR /DljR + iūj
R
/Duj

R + id̄jR /DdjR)

+ (DµΦ)†(DµΦ) + µ2Φ†Φ− λ(Φ†Φ)2

−
∑
j,k

(L̄j
LY

l
jkl

k
RΦ + Q̄j

LY
u
jku

k
RΦ̃ + Q̄j

LY
d
jkd

k
RΦ + h.c) (17)

which is invariant under the infinitesimal gauge transformations assuming vanishing

vev

Bµ → Bµ + ∂µδθ
y

W i
µ → W i

µ + ∂µδθ
i + gϵijkW j

µδθ
k

Ga
µ → Ga

µ + ∂µδθ
a + gsf

abcGb
µδθ

c

FL →
[
1− i

Y F
W

2
g

′
δθy − ig

T i

2
δθi − igst

aδθa|F=Q

]
FL, F = L,Q

fR →
[
1− i

Y f
W

2
g

′
δθy − igst

aδθa|F=u,d

]
FL, F = l, u, d

Φ→
[
1− i

YW

2
g

′
δθy − ig

T i

2
δθi

]
Φ (18)

where δθy(i,a) is the minimal gauge field transformation to the U(1)Y(SU(2)L, SU(3)C)

group.
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Figure 1: Distribution of Higgs potential V (|Φ|) = −µ2|Φ|2 + λ|Φ|4 for λ = 1, |µ2| =
1000(GeV)2.

1.1.5 Higgs Mechanism

The gauge invariance of Eq.1 is realized by the scalar field with vanishing vev,

which depends on the choice of the two parameters, µ and λ. Generally, they are real

numbers and can be either positive or negative. If λ < 0, V is unbounded from below,

i.e. this is no minimum value of the potential, such that scalar field is not stable.

The left two possibilities are λ > 0, µ2 < 0 and λ > 0, µ2 > 0. If λ > 0, µ2 < 0, the
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true minimum of the potential locates at

∂V (|Φ|)
∂(|Φ|) = 0 ⇒ |Φ| = ±

√
µ2

2λ
(19)

This minimum is denoted as v2 = µ2/(2λ), the so-called vacuum expectation value

(vev). The corresponding value of the potential is

V (|Φ| = ±
√

µ2

2λ
) = −µ4

4λ
< 0 (20)

The distributions of V (Φ) with respect to |Φ| for positive and negative µ2 are shown

in Fig.1, where we have chosen |µ2| = 1000(GeV)2 and λ = 1.

The scalar doublet Φ contains four real scalar fields. We choose the charged state

to have vanishing vev so that the remaining unbroken symmetry is U(1)em. Thus,

the scalar doublet can be parametrized as

Φ =

 ϕ+

(v + h+ iχ)/
√
2

 (21)

where χ and ϕ+ have vanishing vev. The field χ, ϕ+ and its Hermition conjugate

field ϕ−, are the would-be Goldstone fields, which are unphysical degrees of freedom

and can be eliminated by a transition to unitary gauge, where ϕ± = χ = 0. The

derivation of physical fields will be much simpler under unitary gauge, thus in the

following the scalar doublet is

Φ =

 0

(v + h)/
√
2

 (22)
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1.1.5.1 Physical Fields

The masses of gauge bosons and fermions are generated from spontaneous break-

ing of the SU(2)L×U(1)Y gauge symmetry due to non-vanishing vev. Under unitary

gauge, explicit form of the kinetic term in LS is

(DµΦ)†(DµΦ) =

(
(∂µ − i

g′

2
Bµ − igW a

µ

σa

2
)Φ

)†(
(∂µ − i

g′

2
Bµ − igW a

µ

σa

2
)Φ

)

=
1

2

 ig
2
(W 1

µ + iW 2
µ)(v + h)

∂µh− i
2
(gW 3

µ − g′Bµ)(v + h)

T

×

 −ig
2
(W 1

µ − iW 2
µ)(v + h)

∂µh+ i
2
(gW 3

µ − g′Bµ)(v + h)


=

1

2
(∂µh)(∂

µh) +
1

8
g2(v + h)2(W 1

µ − iW 2
µ)(W

µ,1 + iW µ,2)

+
1

8
(v + h)2(−g′Bµ + gW 3

µ)(−g′Bµ + gW µ,3) (23)

where we have replaced Higgs hypercharge by y = 1. The first term is the kinetic

term for the real scalar field h. The second and third terms generate gauge bosons

masses and interaction between scalar and gauge boson, which can be clearly seen

by diagonalizing the gauge eigenstates to physical mass eigenstatesW+
µ

W−
µ

 =
1√
2

1 −i
1 i

W 1
µ

W 2
µ

 ,

Zµ

Aµ

 =
1√

g2 + g′2

g −g′

g′ g

W 3
µ

Bµ

 =

cW −sW
sW cW

W 3
µ

Bµ

 (24)

where cW = cos θW = g/
√
g2 + g′2, and θW is called the weak mixing angle or

Weinberg angle. The kinetic term in terms of mass eigenstates is

Lkin =
1

2
(∂µh)(∂

µh) +
1

4
g2(v + h)2W+

µ W−µ +
1

8
(g2 + g′2)(v + h)2ZµZ

µ

=
1

2
(∂µh)(∂

µh) +
v2g2

4
W+

µ W−µ +
(g2 + g′2)v2

8
ZµZ

µ

11



+
vg2

2
hW+

µ W−µ +
g2

4
hhW+

µ W−µ

+
(g2 + g′2)v2

4
hZµZ

µ +
(g2 + g′2)

8
hhZµZ

µ (25)

Masses of W and Z boson are

m2
W =

v2g2

2
, m2

Z =
(g2 + g′2)v2

4
(26)

The gauge boson Aµ is massless. Higgs mass and self-interactions of Higgs are gen-

erated by the scalar potential. Under unitary gauge, the scalar potential reads

Lh
V = µ2Φ†Φ− λ(Φ†Φ)2 =

µ2

2
(h+ v)2 − λ

4
(h+ v)4

= −λv2h2 − λvh3 − λ

4
h4 + f(µ, v, λ) (27)

where f(µ, v, λ) is a constant. Higgs mass is

m2
h = 2λv2 (28)

With mass eigenstates, the covariant derivative becomes

Dµ =∂µ − igsG
a
µt

a − i
g√
2
(W+

µ T+ +W−
µ T−)

− iZµ(gcWT 3 − g′sWY )− iAµ(gsWT 3 + g′cWY ) (29)

The coupling constant of Aµ is

gsWT 3 + g′cWY =
gg′√
g2 + g′2

≡ eQ (30)

where we have introduced two parameters: e is the electromagnetic coupling and Q

is the electric charge operator since the Lagrangian is invariant under U(1)em after

EWSB.
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With this convention, the couplings of Wµ and Zµ gauge field become

g√
2
=

e√
2sW

, gcWT 3 − g′sWY =
e

sW cw
(T 3 − s2WQ) (31)

Thus the new form of the covariant derivative is

Dµ =∂µ − igsG
a
µt

a − i
e√
2sW

(W+
µ T+ +W−

µ T−)

− i
e

sW cw
(T 3 − s2WQ)Zµ − ieQAµ (32)

Masses of fermions are generated by the Yukawa interaction terms. Motivated

by the observation of neutrino oscillation [18, 19, 20], which indicates neutrinos are

massive, we choose to incorporate the right-handed neutrinos νi
R, where i stands for

the generation. Right-handed neutrino transforms like a SU(2)L singlet, color singlet

and has hypercharge YW = 0.2 With the extension of right-handed neutrinos, the

Yukawa interaction term becomes

LY = −
∑
j,k

(L̄j
LY

l
jkl

k
RΦ + L̄j

LY
ν
jkν

k
RΦ̃ + Q̄j

LY
d
jkd

k
RΦ + Q̄j

LY
u
jku

k
RΦ̃ + h.c) (33)

Y l,ν,u,d
ij are dimensionless couplings and 3× 3 complex matrix for leptons, neutrinos,

up-quark and down quark. The sum over j, k considers all fermion generations.

Lepton and quark doublets are defined as follows

L1
L =

ν1
L

l1L

 , L2
L =

ν2
L

l2L

 , L3
L =

ν3
L

l3L

 ,

Q1
L =

u1
L

d1L

 , Q2
L =

u2
L

d1L

 , Q3
L =

u3
L

d3L

 (34)

2For YW = 0, it is possible that neutrinos are Majorana fermions. We restrict ourselfes that
all right-handed neutrinos are Dirac fermion because Majorana fermions could be forbidden by
assuming lepton number conservation.
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The singlets are

lR =


l1R

l2R

l3R

 , νR =


ν1
R

ν2
R

ν3
R

 , uR =


u1
R

u2
R

u3
R

 , dR =


d1R

d2R

d3R

 (35)

The right-handed fermions are written in the form like triplets, which is for the sake

of brevity. f i
R is the i-th component of fR.

The first and second term in Eq.33 generate masses for leptons, and the third and

forth one generate masses for quarks. Similar to gauge boson generation, fermion

masses are also proportional to Higgs boson vacuum expectation value v

Lmass
y ⊂−

(
ν̄1
R ν̄2

R ν̄3
R

)
Mν


ν1
L

ν2
L

ν3
L

− (
l̄1R l̄2R l̄3R

)
M l


l1L

l2L

l3L



−
(
ū1
R ū2

R ū3
R

)
Mu


u1
L

u2
L

u3
L

− (
d̄1R d̄2R d̄3R

)
Md


d1L

d2L

d3L

+ h.c. (36)

where M f = vY f/
√
2, which are non-diagonalized and contains 9 complex num-

bers. To find the fermion mass eigenstates, four mass matrices are needed to be

diagonalized. Eight unitary rotational matrices are defined
νm
1

νm
2

νm
3


L,R

= VL,R


ν1

ν2

ν3


L,R

,


lm1

lm2

lm3


L,R

= EL,R


l1

l2

l3


L,R

,


um
1

um
2

um
3


L,R

= UL,R


u1

u2

u3


L,R

,


dm1

dm2

dm3


L,R

= DL,R


d1

d2

d3


L,R

(37)
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such that

V −1
R MνVL =


mνm1

0 0

0 mνm2
0

0 0 mνm3

 , E−1
R M lEL =


mlm1

0 0

0 mlm2
0

0 0 mlm3

 (38)

U−1
R MuUL =


mum

1
0 0

0 mum
2

0

0 0 mum
3

 , D−1
R MdDL =


mdm1

0 0

0 mdm2
0

0 0 mdm3

 (39)

1.1.5.2 Fermion Mixing Matrix

Due to these rotational matrices, fermions in different generations can interact

with each other. To demonstrate this, Let’s write down the charge currents for

leptons and quarks

Jµ,lep
L =

(
ν̄1 ν̄2 ν̄3

)
L
γµ


l1

l2

l3


L

=
(
ν̄m
1 ν̄m

2 ν̄m
3

)
L
V †
LELγ

µ


lm1

lm2

lm3


L

(40)

Jµ,quark
L =

(
ū1 ū2 ū3

)
L
γµ


d1

d2

d3


L

=
(
ūm
1 ūm

2 ūm
3

)
L
U †
LDLγ

µ


dm1

dm2

dm3


L

(41)

The combination V †
LEL is the Maki-Nakagawa-Sakata-Pontecorvo(MNSP) matrix,

and the combination U †
LDL is the Cabibbo-Kobayashi-Maskawa(CKM) matrix. These

matrix are unitary:(
V †
LEL

)†(
V †
LEL

)
= E†

LVLVL † EL = E†
LEL = 1 ,(

U †
LDL

)†(
U †
LDL

)
= U †

LDLDL † UL = U †
LUL = 1 (42)
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The CKM and MNSP matrix are complex matrix and contain 18 variables each,

but the matrix only contains four free variables. The unitarity, X†
abXbc = δac, reduces

the number of variables into 9. Besides, we are free to absorb a phase when diago-

nalizing the gauge eigenstates, namely fL → eiαffL, therefore, extra six phases can

be generated for three columns and rows of each generations. But a common phase

redefinition of all columns has no effect on matrix, so the variables of each matrix is

reduced to 9-5=4. A complex unitary matrix with four variables can be written as a

matrix with three real Euler angles and one complex phase. For example, the CKM

matrix can be parameterized as

VCKM = U †
LDL

=


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




cos θ13 0 sin θ13e
−iδ13

0 1 0

− sin θ13e
iδ13 0 cos θ13




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

1 0 0


(43)

This complex phase δ13 breaks CP symmetry, thus it gives rise to the CP violations

in the SM EW interactions.

If there is no right-handed neutrinos, neutrinos are massless, which means that

neutrino gauge eigenstates is always its mass eigenstates, thus VL can be arbitrary

matrix. We can choose VL = EL such that V †
LEL = 1. So there is no mixing between

different generations of leptons in charge current in the SM.

The neutral current interactions of quark and leptons are

Jµ,lep
L =

(
l̄1 l̄2 l̄3

)
L
γµ


l1

l2

l3


L

=
(
lm1 lm2 lm3

)
L
E†

LELγ
µ


lm1

lm2

lm3


L

(44)
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Jµ,quark
L =

(
ū1 ū2 ū3

)
L
γµ


u1

u2

u3


L

=
(
ūm
1 ūm

2 ūm
3

)
L
U †
LULγ

µ


um
1

um
2

um
3


L

(45)

The fact that U †U = E†E = 1 forbids the mixing of different generations. As a

result, there is no flavor changing neutral current(FCNC) at tree level in the SM.

Besides, the right-handed neutrinos are added in the Yukawa Lagrangian though

the SM does not contain right-handed neutrinos. The purpose of adding right-handed

neutrinos is to show one mechanism of generating neutrino mass in the SM, albeit

at the expense of violating naturalness due to extremely small Y ν
ij ,

mν =
yνv√
2
∼ 10−10GeV → yν = 10−13 (46)

This coupling is too small such that it seems unnatural to appear in the SM.

Besides generating neutrino masses by introducing right-handed neutrinos, the

other possibility is to introducing a Majorana mass term for the SM left-handed

neutrinos, namely

Lν = mν ν̄LνL = mννLνL (47)

Such a term violates SU(2)L×U(1)Y, but it causes no problems by adding this term

to SM Lagrangian after electroweak symmetry breaking, which can be realized by

adding the dimension d = 5 Weinberg operator [25]

L5 =
Cij

5

Λ
[L̄i,c

L Φ][Φc,†Lj
L] + h.c. , LL =

νl

l

 , Lc
L =

 lc

−νc
l

 (48)

where L̄c
L is the charge conjugate spinor, and it transforms in the same way as a

right-handed spinor under Lorentz group. The Wilson coefficient Cij
5 allows the
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mixing of neutrinos between different generations, thus this operator violates Lepton

number(LN) conservation. Λ is the energy scale at which the particles responsible

for LN violation become relevant. This Lagrangian has dimension 5 thus is not

renormalizable. After EWSB, this term yields a neutrino mass

L5 =
Cij

5

Λ

(
l̄i,c −νi,c

l

) 0

1√
2
(v + h)

(
1√
2
(v + h) 0

)νj
l

lj

+ h.c

⊃ −Cij
5

2Λ
v2νi,c

l νj
l + h.c (49)

where we have adopted the unitary gauge for the scalar doublet.

1.2 Renormalization of the Electroweak Standard Model

The free parameters in the SM Lagrangian are chosen to have physical meaning

such as mass, couplings, and relate to experimental quantities. Firstly, the relation-

ship is modified through higher order radiative corrections. Moreover, the original

parameters in the Lagrangian, the so-called bare parameters, differ from the phys-

ical quantities by UV divergent contributions. These divergences are canceled in

renormalized theory, thus allowing meaningful predictions. The renormalizability of

non-Abelian gauge theory with spontaneous symmetry breaking, that is the SM, was

proven by ’t Hooft and Veltman[26, 27] and Lee and Zinn-Justin[28, 29, 30, 31].

One of the renormalization procedures can be summarized as follows:

• choose a set of free parameters, which are bare parameters

• separate the bare parameters into renormalized parameters and counterterms,

the so-called renormalization constants
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• choose renormalization conditions to fix the counterterms, i.e. counterterms are

functions of other renormalized parameters

• express physical observables as a function of renormalized parameters

To compare the theoretical predictions and experimental measurements, the fol-

lowing steps are needed:

• choose a set of input parameters, which have been measured precisely

• fix the value of renormalized parameters with input parameters

• evaluate theoretical predictions for physical observables with input data

• compare with experimental measurement

These steps highlight that there is a flexibility in selecting the free parameters,

renormalization conditions, and input parameters that all affect the theoretical pre-

dictions of physical observables. However, if we were able to calculate the physical

observables to an infinite order, then the differences between the various choices of

parameters would vanish. On the other side, theoretical predictions at fixed order

under different choices of free parameter set, renormalization conditions and input

parameter sets differ by higher order term, which is a possible strategy to estimate

the theory error from missing higher order corrections.

This section focuses on the renormalization process with a specific choice of free

parameters and renormalization conditions. We will go into detail on how the process

works and what steps are involved. Additionally, we will explore multiple input

parameter sets, which can be helpful in estimating missing higher-order corrections.

According to the renormalization process, we need to choose a set of free pa-

rameters firstly. In the EWSM Lagrangian, there are 5 types of free parameters,

namely

g′ , g , µ , λ , yf (50)
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where g′, g are the U(1)Y and SU(2)L gauge couplings respectively. µ, λ are from the

scalar potential. yf is the Yukawa coupling. The Yukawa coupling matrix is a 3× 3

matrix and varies for leptons and quarks. However, for the purposes of renormaliza-

tion, we treat it as a single parameter because the procedure for renormalizing the

Yukawa couplings is the same for all fermions.

Instead, one can choose the free parameter set to be

MW ,MZ ,MH ,mf , e (51)

The advantage of this choice is that all parameters have a clear physical meaning

and can be measured directly in suitable experiments.

Furthermore, radiative corrections give rise to two main issues. Firstly, the vac-

uum expectation value v2 = µ2/(2λ) is no longer the true minimum of the scalar

potential. Secondly, radiative corrections provide non-diagonal corrections to the

CKM matrices, thus the original bare eigenstates are no longer the actual physical

mass eigenstates.

In order to let vev always be the minimum of the Higgs potential, a counterterm

δν is introduced to the vev of the Higgs field. Or equivalently, introduce a coun-

terterm δt, which cancels all radiative corrections to Higgs field TH , the so-called

tadpole diagrams, i.e.the Higgs potential contains no linear term, namely

TH + δt = 0 (52)

By applying this condition, all tadpole contributions are exactly cancelled by the

counterterms so that no tadpoles need to be taken into account in actual calculations.

In order to rediagonal the mass matrices, one has to introduce matrix valued field

renormalization constants δV , which allow to define the renormalized fields in such

a way that the mass eigenstates in bare Lagrangian are the correct physical mass
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eigenstates in all orders of perturbation theory. However at high-energy scale, it is

appropriate to take all quarks except the top quark massless and ignore the quark

mixing. Thus we will omit the renormalization of CKM matrix. One can find the

renormalization of CKM matrix in other literature, such as [32].

The renormalized parameters and counterterms are defined as follows

e0 = Zee = (1 + δZe)e,

M2
W,0 = M2

W + δM2
W

M2
Z,0 = M2

Z + δM2
Z

M2
H,0 = M2

H + δM2
H

mf,0 = mf + δmf

Vij,0 = Vij + δVij (53)

where bare quantities are denoted with a lower index 0.

These parameters lead to a finite S-matrix element, but leaves Green’s functions

divergent. Thus, besides renormalizing those input parameters, we also need to

renormalize particle fields. Renormalization of these fields does not affect physical

predictions. They are only relevant for Green’s function and drop out when calcu-

lating S-matrix. On-shell renormalization for the fields is very convenient since it

can eliminate the wave function correction of external fields, thus simplifying the

calculation of S-matrix.

In EW sector of the SM, physical fields include gauge boson field, Higgs field,

fermion field. Unphysical ghost and Goldstone files do not affect Green’s function of

physical fields, thus not relevant for our calculations. Furthermore, the renormaliza-

tion of unphysical sector are governed by the Slavnov-Taylor identities.
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The renormalization of fields with mass eigenstate are defined in the following

way:

W±
0 = Z

1/2
W W± = (1 +

1

2
δZW )W±,Z0

A0

 =

Z
1/2
ZZ Z

1/2
ZA

Z
1/2
AZ Z

1/2
ZZ

Z

A

 =

1 + 1
2
δZZZ

1
2
δZZA

1
2
δZAZ 1 + 1

2
δZAA

Z

A

 ,

H0 = Z
1/2
H H = (1 +

1

2
δZH)H,

fL
i,0 = Z

1/2,f,L
ij fj,L = (δij +

1

2
Zf,L

ij )fj,L

fR
i,0 = Z

1/2,f,R
ij fj,R = (δij +

1

2
Zf,R

ij )fj,R (54)

where the one without(with) subscript ”0” denotes renormalized(bare) fields.

In terms of Eq.53 and Eq.54, the SM bare Lagrangian L0 can be splitted into the

renormalized Lagrangian L and the counterterm Lagrangian δL

L0 = L+ δL (55)

L0 and L have the same form, but the former(latter) depends on renormalized(bare)

parameters.

1.2.1 Renormalization Schemes

The notion ”Renormalization scheme” is used in two different senses of the word.

Often the term is used in a more technique sense as
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• a specific way of performing renormalization at intermediate steps. This includes

the choice of regularization, the way field renormalizations and/or parameter

renormalizations are organized. If the same physical quantity is calculated in

terms of the same parameters to the same order in perturbation theory the result

does not depend on the choice of the scheme. The first kind of distinctions of

different schemes is therefore not relevant for the physics.

Renormalization conditions determine the relation between renormalized parameters

and counterterms, and different choices of these conditions give rise to different

renormalization schemes.

The second possible distinctions of renormalization schemes, also called input

parameter scheme, is more physical, namely as characterizing

• a specific choice of input parameters. Perturbative predictions in terms of differ-

ent input parameter sets are scheme dependent.

In Sec.1.2.2 and Sec.1.2.3, the renormalization scheme both refers to the first

case.

1.2.2 On-shell Renormalization Condition at one-loop

The renormalization constants introduced in Eq.53 and Eq.54 are fixed by impos-

ing renormalization conditions. Renormalization of free parameter in Eq.53 affects

physical predictions, while renormalization of fields in Eq.54 is only relevant for

making Green’s function finite and has no effect in calculating S-matrix elements as

discussed before. Nevertheless, renormalization of fields leads to simple forms of the

renormalization conditions for free parameters.

In the on-shell renormalization scheme, the renormalized parameters in Eq.53
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are equal to the physical mass and couplings. Additionally, the field renormalization

is chosen in such a way that the residues of all renormalized propagators are equal

to one. This ensures that the contributions from Feynman diagrams with external

self-energies and their corresponding counterterm diagrams cancel out. Therefore,

in practical calculations using the on-shell renormalization scheme, there is no need

to include radiative corrections to external particles.

In the on-shell renormalization scheme, all renormalization conditions are for-

mulated for on mass-shell external fields. Thus the field and mass renormalization

constants as well as quark mixing matrix introduced in Eq.53 and Eq.54 are fixed

using the one particle irreducible(1PI) two-point functions. Electric charge renormal-

ization is fixed with three-point functions. In this section, we restrict to the on-shell

renormalization of the EWSM at one-loop level. Two-loop renormalization of the

EWSM can be found in Refs. [33, 34].

1.2.2.1 Physical Fields and Masses

Firstly, let us start with the definition of gauge boson 1PI two-point function.

Consider the Green’s function of gauge boson

Gµν(k
2) = iDµν(k

2) + iDµρ(k
2)Σρσ(k2)Dρν(k

2) + ...

=
iDµν

1− ΣρσDρσ

= iDµρ
−i

Dρσ −DρηΣηξDξσ

iDρν

= iDµρ(Γ
ρσ)iDρν (56)

All quantities shown above are unrenormalized. Dµν is the gauge boson propagator,

and Σ is the self-energy correction. In ’t Hooft Feynman gauge, the gauge boson
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propagator is written as

1

Dµν

= gµν(k
2 −M2

0 ) , (57)

The self-energy correction can be decomposed into the transverse and longitudinal

part

Σµν = (gµν −
kµkν
k2

)ΣT +
kµkν
k2

ΣL, (58)

denoted as ΣT and ΣL separately.

Γµν is the 1PI two-point function, and it can be calculated perturbatively by

expanding the self-energy correction

Γ =
−i

D −DΣD

= − i

D
− iΣ− iDΣD − · · · (59)

where we have dropped all the indices.

The Green’s function for fermions has the following form

iGf (p) = iS(p) + iSΣS + iSΣSΣS + · · ·

=
iS(p)

1− ΣS

= iS(p)
−i

S − SΣS
iS(p)

= iS(p)(Γf )iS(p) (60)

All quantities shown above are unrenormalized. S is the fermion propagator, and Σ

is the self-energy corrections. The explicit expressions are

− 1

S
= /p−m0 + iϵ , Σ(p) = /pΣV +m0ΣS = /pPLΣL + /pPRΣR +m0ΣS (61)
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where we have decomposed the self-energy correction into the scalar part, ΣS, and

vector part, ΣV . The latter can be further decomposed into the right-handed and

left-handed contributions by inserting the left-handed and right-handed projectors,

PL,R.

Γf is the 1PI two-point function of fermion. Similarly, it can also be calculated

perturbatively by expanding the self-energy correction

Γf =
−i

S − SΣS

= − i

S
− iΣ− iSΣS − · · · (62)

At 1-loop level, 1PI two-point functions for physical fields listed in Eq.54 have

the following form

ΓW
µν(k) = −igµν(k2 −M2

W,0)− i(gµν −
kµkν
k2

)ΣW
T (k2)− i

kµkν
k2

ΣW
L (k2),

ΓZZ
µν (k) = −igµν(k2 −M2

Z,0)− i(gµν −
kµkν
k2

)ΣZZ
T (k2)− i

kµkν
k2

ΣZZ
L (k2),

ΓZA
µν (k) = ΓAZ

µν (k) = −i(gµν −
kµkν
k2

)ΣZA
T (k2)− i

kµkν
k2

ΣZA
L (k2),

ΓAA
µν (k) = −igµν(k2)− i(gµν −

kµkν
k2

)ΣAA
T (k2)− i

kµkν
k2

ΣAA
L (k2),

ΓH(k) = i(k2 −M2
H,0) + iΣH(k2),

Γf (p) = i(/p−mf,0) + i[/pPLΣf,L(p
2) + /pPRΣf,R(p

2) +mf,0Σf,S(p
2)] (63)

The renormalized 1PI two-point functions are obtained by replacing all bare

parameter into the renormalized ones. Thus we obtain

Γ̂W
µν(k) = −igµν(k2 −M2

W )− i(gµν −
kµkν
k2

)Σ̂W
T (k2)− i

kµkν
k2

Σ̂W
L (k2),

Γ̂ZZ
µν (k) = −igµν(k2 −M2

Z)− i(gµν −
kµkν
k2

)Σ̂ZZ
T (k2)− i

kµkν
k2

Σ̂ZZ
L (k2),

Γ̂ZA
µν (k) = Γ̂AZ

µν (k) = −i(gµν −
kµkν
k2

)Σ̂ZA
T (k2)− i

kµkν
k2

Σ̂ZA
L (k2),
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Γ̂AA
µν (k) = −igµν(k2)− i(gµν −

kµkν
k2

)Σ̂AA
T (k2)− i

kµkν
k2

Σ̂AA
L (k2),

Γ̂H(k) = i(k2 −M2
H) + iΣ̂H(k2),

Γ̂f (p) = i(/p−mf ) + i[/pPLΣ̂f,L(p
2) + /pPRΣ̂f,R(p

2) +mf Σ̂f,S(p
2)] (64)

where Σ̂ denotes renormalized self-energies. Explicit forms of them are obtained by

performing following replacements

DV V = k2 −M2
V,0 → (k2 −M2

V − δM2
V ) + δZV V (k

2 −M2
V )

Df = /p−mf → (/p−mf − δmf ) + (δZf,L + δZf,R)(/p−mf )

DV V ′ = 0→ 1

2
δZV V ′(k2 −M2

V ) +
1

2
δZV ′V (k

2 −M2
V ′) (65)

where corrections proportional to δZδm have been neglected since we calculate Γ̂ at

one-loop order. Plugging Eq.65 into Eq.64, the transverse part of the renormalized

self-energies can be simply derived

Σ̂W
T (k2) = ΣW

T (k2) + (k2 −M2
W )δZW − δM2

W ,

Σ̂H(k2) = ΣH(k2) + (k2 −M2
H)δZH − δM2

H ,

Σ̂ZZ
T (k2) = ΣZZ

T (k2) + (k2 −M2
Z)δZZZ − δM2

Z ,

Σ̂AZ
T (k2) = ΣAZ

T (k2) +
1

2
(k2 −M2

Z)δZ
AZ − 1

2
δZAZk2,

Σ̂AA
T (k2) = ΣAA

T (k2)− δZAAk2,

Σ̂f,L = Σf,L + δZf,L,

Σ̂f,R = Σf,R + δZf,R,

Σ̂f,S = Σf,S −
1

2
(δZf,L + δZf,R)−

δmf

mf

. (66)

Note that the unphysical longitudinal part of gauge boson self-energies drops out for

on-shell external gauge boson. Since only transverse parts relate to renormalization
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constant, it’s convenient for practical calculation to project transverse part out with

the following equations

ΣV1V2
µν = −(gµν −

kµkν
k2

)ΣV1V2
T +

kµkν
k2

ΣV1V2
L

⇒ ΣV1V2
T =

−1
D − 1

(gµν − kµkν

k2
)ΣV1V2

µν , ΣV1V2
L =

kµkν

k2
ΣV1V2

µν (67)

where ΣV1V2
µν denotes the self-energy of the gauge bosons.

The renormalized mass parameters of physical particles are fixed by on-shell

renormalization condition, which states that the renormalized mass parameters are

equal to their physical masses, i.e. zeros of the 1PI two-point functions. Since the

propagators are the inverse of 1PI two-point functions, physical masses are also the

real parts of the poles of the corresponding propagators: Re(D−1)|p2=m2 = 0. Due to

the reason that only transverse part of the gauge boson propagator DV
T is physical,

the on-shell renormalization conditions read

(DV
T )

−1(p2 = M2
V ) = 0, (68)

The field renormalization constants are determined by demanding the residues of

the poles equal 1, thus we arrive at the following on-shell renormalization conditions

Re

{
∂

∂p2
(DV

T )
−1|p2=M2

V

}
= i, (69)

Replacing the propagator DV
T with renormalized 1PI two-point functions, Eq. 68

and Eq. 69 has the following form

ReΓ̂W
µν(k)ε

ν(k)|k2=M2
W

= 0 , lim
k2→M2

W

1

k2 −M2
W

ReΓ̂W
µν(k)ε

ν(k) = −iεµ(k)

ReΓ̂ZZ
µν (k)ε

ν(k)|k2=M2
Z
= 0 , lim

k2→M2
Z

1

k2 −M2
Z

ReΓ̂ZZ
µν (k)ε

ν(k) = −iεµ(k)

ReΓ̂AA
µν (k)ε

ν(k)|k2=0 = 0 , lim
k2→0

1

k2
ReΓ̂AA

µν (k)ε
ν(k) = −iεµ(k)
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ReΓ̂H(k)|k2=M2
H
= 0 , lim

k2→M2
H

1

k2 −M2
H

ReΓ̂H(k) = i

ReΓ̂f (p)u(p)|p2=m2
f
= 0 , lim

p2→m2
f

/p+mf

p2 −m2
f

ReΓ̂f (p) = iu(p),

ReΓ̂ZA
µν (k)ε

ν(k)|k2=M2
Z
= ReΓ̂AZ

µν (k)ε
ν(k)|k2=0 = 0. (70)

where ε(k), u(p) are the external polarization vectors for gauge fields, external fermion

polarization.

Renormalization conditions allow to express the counterterms by the renormal-

ized parameters. The expressions of counterterms for gauge boson fields and masses

at one-loop order are

δM2
W = ReΣW

T

(
M2

W

)
, δZW = − Re

∂ΣW
T (k2)

∂k2

∣∣∣∣
k2=M2

W

,

δM2
Z = ReΣZZ

T

(
M2

Z

)
, δZZZ = − Re

∂ΣZZ
T (k2)

∂k2

∣∣∣∣
k2=M2

Z

,

δZAZ = −2ReΣ
AZ
T (M2

Z)

M2
Z

, δZZA = 2
ΣAZ

T (0)

M2
Z

, δZAA = − ∂ΣAA
T (k2)

∂k2

∣∣∣∣
k2=0

δM2
H = ReΣH

(
M2

H

)
, δZH = − Re

∂ΣH (k2)

∂k2

∣∣∣∣
k2=M2

H

(71)

The expressions of counterterms for fermions fields and masses are

δmf =
mf

2
Re(Σf,L

(
m2

f ) + Σf,R(m
2
f ) + 2Σf,S(m

2
f

)
),

δZf,L = −ReΣf,L(m
2
f )−m2

f

∂

∂p2
Re[Σf,L(p

2) + Σf,R(p
2) + 2Σf,S(p

2)]
∣∣∣
p2=m2

f

δZf,R = −ReΣf,R(m
2
f )−m2

f

∂

∂p2
Re[Σf,L(p

2) + Σf,R(p
2) + 2Σf,S(p

2)]
∣∣∣
p2=m2

f

(72)
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1.2.2.2 Electric Charge

Electric charge is renormalized through 1PI three point function. Generally, any

three-point function can be chosen, and the final result should be independent on this

choice. For generality, we choose ff̄A vertex to derive the renormalization condition

for electric charge. The renormalized ff̄A vertex has the following form

Γ̂ff̄A
µ (p, p′) = −ieQfγµ + ieΛ̂ff̄A

µ (p, p′) (73)

where p, p′ is the momentum of external fermions. Under on-shell renormalization

condition, the renormalized 1PI three-point function is same as the tree level one, i.e

higher order corrections are zero. Besides, photon momentum vanishes in on-shell

limit. Thus the on-shell renormalization condition tells us

0 = ū(p)Λ̂ff̄A
µ (p, p)u(p) (74)

At one-loop level, Λ̂ff̄A
µ is written as

0 = ū(p)γµu(p)

[
−Qf

(
δZe + δZf,V +

1

2
δZAA

)
+ Λf

V (0) + Λf
S(0) + vf

1

2
δZZA

]
− ū(p)γµγ5u(p)

[
−QfδZf,A + Λf

A(0) + af
1

2
δZZA

]
(75)

where Λ̂f
V (S,A) is the vector(scalar, axial-vector) part of Λ̂ff̄A

µ , and

δZf,V =
1

2
(δZf,L + δZf,R) , δZf,A =

1

2
(δZf,L − δZf,R) (76)

af , vf are the vector and axial-vector couplings of Z boson to fermion f . Eq.75 yields

−Qf

(
δZe + δZf,V +

1

2
δZAA

)
+ Λf

V (0) + Λf
S(0) + vf

1

2
δZZA = 0 (77)

−QfδZf,A + Λf
A(0) + af

1

2
δZZA = 0 (78)

30



Eq.77 fixes the charge renormalization constant, and it can be further simplified with

the following equation [32]

Λf
V (0) + Λf

S(0)−QfδZf,V + af
1

2
δZZA = 0, (79)

which comes from the Ward identity. Thus, Eq.77 becomes

δZe = −
1

2
δZAA −

sW
cW

1

2
δZZA (80)

One can notice that the explicit form of electric charge renormalization condition is

independent of the fermion species, reflecting electric charge universality. Insert the

expressions of field renormalization constant, the charge renormalization constant

becomes

δZe =
1

2

∂ΣAA
T (k2)

∂k2

∣∣∣
k2=0
− sW

cW

ΣAZ
T (0)

M2
Z

(81)

Remember this formula is derived from Eq.75, which is valid only at one-loop level,

thus Eq.81 is also valid at one-loop level.
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1.2.2.3 Weak Mixing Angle

In the on-shell scheme the weak mixing angle is a derived quantity. Following

Sirlin [35], the on-shell weak mixing angle is defined as

sin2 θW = s2W = 1− M2
W

M2
Z

(82)

This definition is independent of a specific process and valid to all orders of pertur-

bation theory.

Since the dependent parameters sW and cW frequently appear, it is useful to

introduce the corresponding counterterms

cW,0 = cW + δcW , sW,0 = sW + δsW (83)

There is another type of definition for the counterterms

c2W,0 = c2W + δc2W , s2W,0 = s2W + δs2W (84)

Eq.83 and Eq.84 are equivalent since the explicit expressions of on-shell weak mix-

ing angle counterterms are both derived from Eq.82, in other words, weak mixing

angle counterterms are directly related to gauge boson counterterms. Adopting the

definition in Eq.83, we obtain

δcW
cW

=
1

2

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
=

1

2
Re

(
ΣW

T (M2
W )

M2
W

− ΣZZ
T (M2

Z)

M2
Z

)
,

δsW
sW

= −c2W
s2W

δcW
cW

=
1

2

c2W
s2W

Re

(
ΣW

T (M2
W )

M2
W

− ΣZZ
T (M2

Z)

M2
Z

)
. (85)

32



1.2.2.4 Summary of Renormalization Constants at One-Loop

For future use, here we summarize the expressions for EW fields, masses and

coupling constant at one-loop level under on-shell scheme.

fields W δZW = −Re[∂Σ
W
T (p2)

∂p2
|p2=M2

W
]

Z δZZZ = −Re[∂Σ
ZZ
T (p2)

∂p2
|p2=M2

Z
]

δZZA = 2
ΣZA

T (p2 = 0)

M2
Z

A δZAZ = −2Re[Σ
AZ
T (p2 = M2

Z)

M2
Z

]

δZAA = −∂ΣAA
T (p2)

∂p2
|p2=0

H δZH = −Re[∂Σ
H(p2)

∂p2
|p2=M2

H
]

f δZf,L = −ReΣf,L
(
m2

f

)
−m2

f

∂Re[Σf,L(p2)+Σf,R(p2)+2Σf,S(p2)]
∂p2

∣∣∣
p2=m2

f

δZf,R = −ReΣf,R
(
m2

f

)
−m2

f

∂Re[Σf,L(p2)+Σf,R(p2)+2Σf,S(p2)]
∂p2

∣∣∣
p2=m2

f

masses W δM2
W = Re[ΣW

T (p2 = M2
W )]

Z δM2
Z = Re[ΣZ

T (p
2 = M2

Z)]

H δM2
H = Re[ΣH(p2 = M2

H)]

f δmf,i =
mf,i

2
Re

(
Σf,L

ii

(
m2

f,i

)
+ Σf,R

ii

(
m2

f,i

)
+ 2Σf,S

ii (mf,i
2)
)

coupling e δZe = −
1

2
δZAA − sW

2cW
δZZA

θW
δsW
sW

= − c2W
s2W

δcW
cW

, δcW
cW

= 1
2
Re

(
ΣW

T (M2
W )

M2
W
− ΣZZ

T (M2
Z)

M2
Z

)

Table 2: Summary of the renormalization constant for SM fields, masses and coupling

constant at one-loop level under on-shell scheme.
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1.2.3 Renormalization Schemes of Electric Charge

In Sec.1.2.2.2, the electric charge is renormalized in the Thomason limit, where

photon momentum transfer Q equals zero. This leads to the renormalized value

α = α(Q2 = 0) in the α(0) scheme. When applied to processes at energies scale

of EW gauge boson or above, this scheme leads to large logarithmic corrections

of the form lnmf/mZ,W , which originates from light fermion loops. These large

logarithmic contributions can be absorbed into a non-perturbative quantity, which

will be discussed in Sec.1.2.3.1.

In addition to the α(0) scheme, there are two other commonly used renor-

malization schemes for electric charge: α(M2
Z) scheme, where α(0) is evolved via

renormalization-group equation from Q2 = 0 to the Z-pole energy scale, and the Gµ

scheme, where α is derived from the Fermi constant Gµ from the equation [32]:

Gµ√
2
=

πα

2M2
W (1−M2

W/M2
Z)

(1 + ∆r) (86)

where ∆r incorporates radiative corrections that are determined by matching the

muon decay matrix element in the Fermi theory and the SM.

These two schemes will be discussed in Sec.1.2.3.2 and Sec.1.2.3.3.

1.2.3.1 α(0) Scheme

An explicit expression of δZAA in Eq.81 with fermion loop corrections is

∂ΣAA
T

∂p2

∣∣∣
p2=0

= Π(0) = N f
c Q

2
f

α

3π
(

2

4−D
− γE − log

m2
f

4πµ2
) (87)

Dimensional regularization [27] is adopted to regularize the UV divergence at one-

loop, which behaves as 1/(4 − D). Π stands for the photonic vacuum polarized

induced by fermions. µ is the regularization scale, γE is Euler’s constant, N f
c is the
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color number of fermion (1 for f = l and 3 for f = q), and Qf is the charge of

fermion.

A problem of Eq.87 is that light quark mass(mu,d,s) are ill-defined because QCD

at the energy scale of light fermion quark is non-perturbative. Thus a perturbative

calculation of Eq.87 is adequate. This problem can be circumvented by implementing

the following subtraction:

Π(0) = Πtop(0) + Πlight-f(0), (88)

Πlight-f(0) = Πlight-f(0)− ReΠlight-f(p
2)︸ ︷︷ ︸

≡∆α(p2)

+ReΠlight-f(p
2) , Π(p2) =

ΣAA
T (p2)

p2
, (89)

∆α(p2) = Π(0)lepton − ReΠ(p2)lepton︸ ︷︷ ︸
∆αlepton

+Π(0)hadron − ReΠ(p2)hadron︸ ︷︷ ︸
∆αhadroni.e.q ̸=t

(90)

with p2 = m2
Z , but this choice of mZ is arbitrary. The only requirement is that the

scale p2 should be larger than QCD scale.

Πlight-f(p
2) depends on quark mass through m2

q/p
2, and the quark mass can be

neglected in the perturbative calculation of Πlight-f(p
2) if p2 ≫ m2

light-f. ∆α(p2) is

divided into a leptonic and hadronic part. The leptonic part,∆αlepton, can also be

calculated using perturbation theory[36, 37]. The evaluation of hadronic contribu-

tion, ∆αhadron, can be related to the process e+e− → hadron using a dispersion

integral[38, 39, 40]:

∆αhadron(m
2
Z) = −

α

3

∫ ∞

0

ds
′ R(s

′
)

s′(s′ −m2
Z − iϵ)

, R(s) =
σ[e+e− → hadrons]

σ[e+e− → µ+µ−]
(91)

where we have chosen p2 = M2
Z .

Combining Eq.90 and Eq.81, the explicit expression for δZe under α(0) scheme

at 1-loop level can be written as

δZe|α(0) =
1

2
Πlight-f(0) +

1

2
Πtop(0) +

1

2
Πbos(0)−

sW
2cW

δZZγ(1)

35



=
1

2
(∆α(m2

Z) + ReΠlight-f(m
2
Z)) +

1

2
Πtop(0) +

1

2
Πbos(0)−

sW
2cW

δZZγ(1) (92)

with ∆α(m2
Z) = ∆αlepton(m

2
Z) + ∆αhadron(m

2
Z).

1.2.3.2 α(MZ) Scheme

At one-loop level, fine structure constant in α(MZ) scheme can be converted from

the α(0) scheme with following equations:

α(mZ) =
α(0)

1−∆α(m2
Z)

(93)

Charge renormalization constant in α(MZ) scheme relates to the one in α(0)

scheme according to

δZe|α(mZ) = δZe|α(0) −
1

2
∆α(m2

Z) (94)

Comparing Eq.92 and Eq.94, one can find that α(MZ) scheme guarantees the com-

plete cancellation of light-fermion contributions, i.e. removes all large logarithmic

dependence on small fermion masses.
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1.2.3.3 Gµ Scheme

The fine structure constant in Gµ and α(0) schemes are related according to

αGµ =

√
2

π
Gµm

2
W (1− m2

W

m2
Z

) = α(0)(1 + ∆r) (95)

The numerical value for Gµ is extracted from the measured muon lifetime [41]. The

quantity ∆r contains radiative corrections that are determined by matching the muon

decay matrix element in the Fermi theory and the full SM. Note that this scheme

does not depend on the shift ∆α of the running electromagnetic coupling.

At one-loop level, the charge renormalization constant in Gµ scheme can be

converted from the α(0) scheme according to:

δZe(1)|Gµ = δZe(1)|α(0) −
1

2
∆r (96)

1.3 Method for Feynman Diagram Evaluation

In order to express physical observables as a function of the chosen free parameter

set, perturbative calculations are required. However, such calculations at one-loop

and higher orders involve the evaluation of Feynman diagrams with loops, which

require integration over momenta. We start by introducing the basic techniques for

evaluating one-loop Feynman integrals.

Consider a one-loop Feynman diagram with N external momenta qi and N inter-

nal propagators, the masses of which are denoted as mi. The Feynman integral is

expressed as

IN(qi;mi) =
(2πµ)4−D

iπ2

∫
dDl

F (l, qi)

D0D1 · · ·DN−1

, (97)
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where l is the loop momenta. F (l, qi) denotes the numerator and is a function of

loop momentum l and external momenta qi. The denominators are

Di = (l + pi)
2 −m2

i + iε , pi =
i∑

j=0

qj , q0 = 0 , (98)

where iε is an infinitesimal imaginary part which is needed to shift branch points

away from integration axis. This specific choice ensures causality. After loop integral,

iε determines the correct imaginary parts of the logrithms and dilogrithms.

The one-loop Feynman integral can be either UV divergent or finite, depending

on the number of loop momenta l in the numerator, denoted as P . If P+D−2N ≥ 0,

the integral is UV-divergent. To regularize this divergence, we calculate the integrals

in a general dimension D ̸= 4, using the technique of dimensional regularization.

The divergence, which is in the form of 1/(D − 4), cancels out in the renormalized

quantities.

The numerator in a loop integral can be independent of the loop momentum l,

i.e. F is a constant or a dot product between external momenta qi · qj. In this case,

the loop integral is called a scalar integral, and its analytical expression is known, as

we will discuss in Sec.1.3.3. On the other hand, if F depends on the loop momentum

l, for example F = pi · l or F = l · l, the loop integral is called a tensor integral.

In practice, the tensor integrals can be reduced to a combination of scalar in-

tegrals. This is done using a technique known as tensor reduction, which involves

decomposing the tensor integrals into linear combinations of scalar integrals. The

scalar integrals are evaluated using known analytical expressions, while the coeffi-

cients of the scalar integrals are obtained by solving a system of linear equations.

The resulting expression for the tensor integral can then be used to compute the loop

contribution to a physical process.
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Figure 2: Feynman diagram for one-loop N-point integral, where pij = pi − pj

This section covers the methods for reducing tensor integrals to scalar integrals

based on Refs. [42, 43]. The analytical formulas for one-loop scalar integrals will also

be provided, following the methods presented in [44, 45]. Additionally, techniques

for evaluating two-loop integrals are also discussed based on [46, 47].

1.3.1 Tensor Decomposition

The general one-loop tensor integral with P indices can be written as

TN
µ1,··· ,µP

=
(2πµ)4−D

iπ2

∫
dDq

qµ1 · · · qµP

D0D1 · · ·DN−1

(99)

=
(2πµ)4−D

iπ2

∫
dDq

qµ1 · · · qµP

[(q2 −m2
0)][(q + p1)2 −m2

1] · · · [(q + pN−1)2 −m2
N−1]

where µ has mass dimension and serves to keep the dimension of the integral fixed

for varying D. There is an infinitesimal imaginary parts in association with the mass

squared in the denominator, namely

(q + pj)
2 −m2

j = (q + pj)
2 −m2

j + iε (100)
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For brevity, we will not write iε explicitly.

The representative Feynman diagram for this 1-loop N-point function is shown

in Fig.2. Conventionally TN is denoted by the Nth character of the alphabet, i.e.

T 1 ≡ A, T 2 ≡ B and etc. The scalar integrals carry an index 0, i.e. P = 0.

Power counting indicates that the integral is UV divergent if P+D−2N ≥ 0. UV

divergences are regularized as poles of 1/(D−4) with dimensional regularization and

drop out in renormalized quantities. Besides, renormalized theory, which contains a

finite number of UV divergences, requires that P ≤ N . Otherwise, the number of

UV divergences is infinite thus contradicts with renormlaized theory.

Lorentz covariance of the integrals allows to decompose the tensor integrals into

tensors constructed from external momentum pi and metric tensor gµν with totally

symmetric coefficient function TN
i1,··· ,ip , namely

TN
µ1,··· ,µP

=
N−1∑

i1,··· ,iP=0

TN
i1,··· ,ippi1,µ1 · · · piP ,µP

(101)

where artificially momentum p0 is introduced in order to write the metric tensor in

a compact way. The metric tensor is recovered by omitting terms with odd p0’s and

replacing products of even p0’s by

p0,µ1p0,µ2 → gµ1µ2

p0,µ1p0,µ2p0,µ3p0,µ4 → {gg}µ1µ2µ3µ4

p0,µ1p0,µ2p0,µ3p0,µ4p0,µ5p0,µ6 → {ggg}µ1µ2µ3µ4µ5µ6 (102)

where {g · · · g}··· denotes all permutation possibilities of indices. Similarly, we define

{p · · · p}···, {p · · · g · · · }··· to stand for all permutation possibilities of indices from
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external momenta and metric tensor. For example, the explicit forms of {gg}µ1µ2µ3µ4

and {pg}µ1µ2µ3 are

{gg}µ1µ2µ3µ4 = gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 ,

{pg}µ1µ2µ3 = pµ1gµ2µ3 + pµ2gµ1µ3 + pµ3gµ1µ2 (103)

For later use, here we summarize the explicit Lorentz decomposition for TN
P , N ≤

4. For 1-point function:

Aµ(m0) = 0 (104)

For 2-point functions: B··· = B···(p1;m0,m1)

Bµ = p1µB0 ,

Bµν = gµνB00 + p1µp1νB11 ,

Bµνρ = (gp)µνρB001 + p1µp1νp1ρB111. (105)

For 3-point functions: C··· = C···(p1, p2;m0,m1,m2)

Cµ = p1µC1 + p2µC2 =
2∑

i=1

piµCi

Cµν = gµνC00 + p1µp1νC11 + p1µp2νC12 + p2µp1νC21 + p2µp2νC22

= gµνC00 +
2∑

i,j=1

piµpjνCij

Cµνρ = {gp1}µνρC001 + {gp2}µνρC002 + {p1p1p2}µνρC112 + {p1p2p2}µνρC122

+ p1µp1νp1ρC111 + p2µp2νp2ρC222

=
2∑

i=1

(
gµνpiρ + gµρpiν + gνρpiµ

)
C00i +

2∑
i,j,k=1

piµpjνpkρCijk (106)
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For 4-point functions: D··· = D···(p1, p2, p3;m0,m1,m2,m3)

Dµ =
3∑

i=1

piµDi,

Dµν = gµνD00 +
3∑

i,j=1

piµpjνDij

Dµνρ =
3∑

i=1

(
gµνpiρ + gµρpiν + gνρpiµ

)
D00i +

3∑
i,j,k=1

piµpjνpkρDijk

Dµνρσ = {gg}µνρσD0000 +
3∑
i,j

{gpipi}µνρσD00ij +
3∑

i,j,k,l=1

piµpjνpkρplσDijkl

(107)

There are no such terms like Cµ1···µ4 , Dµ1···µ5 due to renormalizability.

The Lorentz decomposition for tensor integral with N ≥ 5 is simply

TN
µ1,··· ,µP

=
4∑

i1,··· ,iP=1

TN
i1,··· ,ippi1,µ1 · · · piP ,µP

(108)

which is different from the tensor decomposition Eq.101. There are two differences:

(a) metric tensor gµν disappears; (b) Only four momenta, instead of N − 1 momenta

is used. The latter can be thought as in four dimensional space, only four momenta

are linearly independent, which can be viewed as the basis of the {pi} space. All the
other momenta can be expressed as the linear combination of the basis momenta.

The symmetric coefficient function TN
i1,··· ,ip can be reduced to a linear combination

of scalar functions TN
0 with N ≤ 4. The coefficients of the scalar integrals are

obtained by solving a linear system, which will be discussed in the next section.
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1.3.2 Reduction of Tensor Integrals to Scalar Integrals

To provide a general understanding of the reduction method, it is better to begin

by examining the reduction of TN
µ before delving into the complex expressions for

the reductions of TN
µ1···µP

.

For future use, here we define some new variables.

fk, Yij are defined as follows:

fk ≡ p2k −m2
k +m2

0 , Yij = m2
i +m2

j − (pi − pj)
2 (109)

This quantities will appear frequently for the simplification of q · pk.
TN−1
µ1···µP

(k) is defined as

TN−1
µ1···µP

(k) ≡ (2πµ)4−D

iπ2

∫
dDq

qµ1 · · · qµP

D0 · · ·Dk−1Dk+1 · · ·DN+1

(110)

which can be thought as the kth propagator is removed from TN
µ1···µP

. Note that

the first propagator of TN−1
µ1···µP

(0) is D1 = (q + p1)
2 −m2

1, which contains an external

momentum. To bring back to the form in Eq.99, a shift of the integration momentum

has to be performed, namely q → q − pi ̸=k.

RN,k
µ1···µP−1

is defined as

RN,k
µ1···µP−1

≡ TN
µ1···µP

pµP

k =
M∑

i1,··· ,iP−1

RN,k
i1,··· ,iP−1

pi1µ1 · · · piP−1µP−1

=
1

2

[
TN−1
µ1···µP−1

(k)− TN−1
µ1···µP−1

(0)− fkT
N
µ1···µP

]
(111)

All tensor integrals on the right-hand side (RHS) have one Lorentz index less that

the original tensor integral. Besides the first two have one propagator eliminated.
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Similarly, RN,00
µ1···µP−2

is

RN,00
µ1···µP−2

≡ TN
µ1···µP

g
µP−1µP

k =
M∑

i1,··· ,iP−2

RN,00
i1,··· ,iP−2

pi1µ1 · · · piP−2µP−2

=
[
TN−1
µ1···µP−2

(0) +m2
0T

N
µ1···µP−2

]
(112)

where two indices are eliminated for the functions on the RHS.

1.3.2.1 Reduction of TN
µ

The expression of TN
µ is

TN
µ1

=
(2πµ)4−D

iπ2

∫
dDq

qµ1

D0D1 · · ·DN−1

(113)

=
N−1∑
i1=1

TN
i1
pi1,µ1 (114)

Contracting Eq.113 with pµ1

k , we obtain

RN,k = TN
µ1
· pµ1

k =
(2πµ)4−D

iπ2

∫
dDq

q · pk
D0D1 · · ·DN−1

=
(2πµ)4−D

iπ2

∫
dDq

1

2
× Dk −D0 − fk

D0D1 · · ·DN−1

=
1

2
TN−1
0 (k)− 1

2
TN−1
0 (0)− 1

2
fkT

N
0 (115)

Contracting Eq.114 with pµ1

k , we obtain

TN
µ1
· pµ1

k =
N−1∑
i1=1

TN
i1
pi1 · pk (116)

where TM
0 are all scalar integrals.
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Since there are N − 1 different k’s, equating Eq.115 and Eq.116 leads to a (N −
1)× (N − 1) linear equation system, which can be written as

1
2
TN−1
0 (1)− 1

2
TN−1
0 (0)− 1

2
f1T

N
0

...

1
2
TN−1
0 (N − 1)− 1

2
TN−1
0 (0)− 1

2
fN−1T

N
0



=


p1 · p1 · · · p1 · pN−1

...
. . .

...

pN−1 · p1 · · · pN−1 · pN−1




TN
1

...

TN
N−1

 (117)

where the N − 1×N − 1 matrix composed with pi · pj is called Gram determinant,

denoted as XN−1. The explicit properties of XN−1 give rise to three different cases

for solving TN
k .

1. det(XN−1) ̸= 0

If the Gram determinant is not equal to 0, i.e. {p1, · · · , pN−1} are linearly inde-

pendent, the solutions of TN
i take the form

TN
1

...

TN
N−1

 =


p1 · p1 · · · p1 · pN−1

...
. . .

...

pN−1 · p1 · · · pN−1 · pN−1


−1

×


1
2
TN−1
0 (1)− 1

2
TN−1
0 (0)− 1

2
f1T

N
0

...

1
2
TN−1
0 (N − 1)− 1

2
TN−1
0 (0)− 1

2
fN−1T

N
0

 (118)

Thus Ti are linear combinations of scalar integrals with coefficients as functions of

external momenta dot product pi · pj and mass mk.

2. det(XN−1) = 0, {p1, · · · , pN−1} are not linearly independent
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If the Gram determinant is equal to 0, it indicates {p1, · · · , pN−1} are not linearly
independent and Eq.116 fails. Suppose there are M linearly independent momenta,

Eq.116 becomes

TN
µ1
· pµ1

k =
M∑

i1=1

TN
i1
pi1 · pk (119)

and the solutions of TN
i is

TN
1

...

TN
M

 =


p1 · p1 · · · p1 · pM

...
. . .

...

pM · p1 · · · pM · pM


−1

1
2
TN−1
0 (1)− 1

2
TN−1
0 (0)− 1

2
f1T

N
0

...

1
2
TN−1
0 (M)− 1

2
TN−1
0 (0)− 1

2
fMTN

0

 (120)

Since M momenta are linearly independent, other momenta can be written as

a linear combination of them, pl =
∑M

i=1 cMpM . Besides, it is easy to check that

det(XL>M) = 0. For example, XM+1 can be written as

det


p1 · p1 · · · p1 · pM p1 · pM+1

...
. . .

...
...

pM · p1 · · · pM · pM pM · pM+1

pM+1 · p1 · · · pM+1 · pM pM+1 · pM+1



= det


p1 · p1 · · · p1 · pM

∑M
i=1 cip1 · pi

...
. . .

...
...

pM · p1 · · · pM · pM
∑M

i=1 cipM · pi∑M
i=1 cipi · p1 · · ·

∑M
i=1 cipi · ·pM

∑M
i=1

∑M
j=1 cicjpi · pj

 = 0 (121)

3. det(XN−1) = 0, {p1, · · · , pN−1} are linearly independent
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It is also possible that N−1 momenta are linearly independent and det(XN−1) =

0. In this case, the previous reduction method based on finding M linearly indepen-

dent momenta also fails, thus one has to use a different reduction algorithm. We will

use the reduction of scalar five-point function as an example.

The scalar five-point function contains four linearly independent external mo-

menta, then the loop momentum q is always a linear combination of four external

momenta. Thus according to Eq.121, the following equation holds

0 = det


q · q q · p1 · · · q · p4
p1 · q p1 · p1 · · · p1 · p4
...

...
. . .

...

p4 · q p4 · p1 · · · p4 · p4

 = det


2q · q 2q · p1 · · · 2q · p4
2p1 · q 2p1 · p1 · · · 2p1 · p4

...
...

. . .
...

2p4 · q 2p4 · p1 · · · 2p4 · p4



= det


2D0 + Y00 2q · p1 · · · 2q · p4

D1 −D0 + Y10 − Y00 2p1 · p1 · · · 2p1 · p4
...

...
. . .

...

D4 −D0 + Y40 − Y00 2p4 · p1 · · · 2p4 · p4



=
1

iπ2

∫
dDq

1

D0D1 · · ·D4

× det


2D0 + Y00 2q · p1 · · · 2q · p4

D1 −D0 + Y10 − Y00 2p1 · p1 · · · 2p1 · p4
...

...
. . .

...

D4 −D0 + Y40 − Y00 2p4 · p1 · · · 2p4 · p4


(122)

Expanding the determinant along the first column we obtain

0 =
1

iπ2

∫
dDq

1

D0D1 · · ·D4

× [2D0 + Y00]× det


2p1 · p1 · · · 2p1 · p4

...
. . .

...

2p4 · p1 · · · 2p4 · p4
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+
1

iπ2

∫
dDq

1

D0D1 · · ·D4

×
4∑

k=1

(−1)k[Dk −D0 + Yk0 − Y00]

× det



2q · p1 · · · 2q · p4
...

. . .
...

2pk−1 · p1 · · · 2pk−1 · p4
2pk+1 · p1 · · · 2pk+1 · p4

...
. . .

...


(123)

Subtracting pµ4T
4
0 (0) and added it back, the above equation is still invariant and

obtains a new form

0 = [2T 4
0 (0) + Y00T

5
0 ]× det


2p1 · p1 · · · 2p1 · p4

...
. . .

...

2p4 · p1 · · · 2p4 · p4


+

4∑
k=1

(−1)k × [T 4
µ(k)− T 4

µ(0) + (Yk0 − Y00)T
5
µ − pµ4T

4
0 (0) + pµ4T

4
0 (0)]

× det



2pµ1 · · · 2pµ4
...

. . .
...

2pk−1 · p1 · · · 2pk−1 · p4
2pk+1 · p1 · · · 2pk+1 · p4

...
. . .

...


(124)
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Writing in this form helps the algebraic simplification. Finally, we obtain

0 = (−1)× det



T 5
0 −T 4

0 (0) −T 4
0 (1) −T 4

0 (2) −T 4
0 (3) −T 4

0 (4)

1 Y00 Y01 Y02 Y03 Y04

1 Y10 Y11 Y12 Y13 Y14

1 Y20 Y21 Y22 Y23 Y24

1 Y30 Y31 Y32 Y33 Y34

1 Y40 Y41 Y42 Y43 Y44


(125)

In particular, this yields T 5
0 can be reduced to a linear combination of five scalar four-

point functions, which is only true if the Gram determinant vanishes. The detailed

derivation from Eq.124 to Eq.125 can be found in Appendix.A.

Eq.125 is only for scalar five-point function. General formula for tensor N-point

function is

0 =
1

iπ2

∫
dDq

qµ1 · · · qµP

D0D1 · · ·DN−1

× det


D0 + Y00 2q · p1 · · · 2q · pN−1

Y10 − Y00 2p1 · p1 · · · 2p1 · p4
...

...
. . .

...

Y(N−1)0 − Y00 2pN−1 · p1 · · · 2pN−1 · pN−1


(126)

With the same strategy, we obtain the reduction formula for tensor N-point function

with vanishing Gram determinant

0 = det



TN
µ1···µP

−TN−1
µ1···µP

(0) −TN−1
µ1···µP

(1) · · · −TN−1
µ1···µP

(N − 1)

1 Y00 Y01 · · · Y0(N−1)

1 Y10 Y11 · · · Y1(N−1)

...
...

...
. . .

...

1 Y(N−1)0 Y(N−1)1 · · · Y(N−1)(N−1)


(127)
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which expresses TN by TN−1. The latter can be reduced to a linearly combinations

of scalar integrals, which will be shown in Sec.1.3.2.2, thus TN is also reduced to

scalar integrals.

Remember that this formula is only valid for det y ̸= 0. If det y = 0, one has to

choose another reduction method.

1.3.2.2 General Formulas for the Reduction of TN
µ1,··· ,µP

Sec.1.3.2.1 explicitly shows how to reduce tensor integrals with one index under

various conditions for the Gram determinant. For tensor integrals with more indices

TN
µ1···µP

, Eq.117 are modified due to the extra T00··· term. Assuming M < N − 1

momenta are linearly independent, we obtain the following reduction formulas

TN
00i1···iP−2

=
1

D + P − 2−M

[
RN,00

i1···iP−2
−

M∑
k=1

RN,k
ki1···iP−2

]
,

TN
ki1···iP−2

= (X−1
M )kk′

[
RN,k′

i1···iP−1
−

P−1∑
r=1

δk
′

irT
N
00i1···ir−1ir+1···iP−1

]
. (128)

Similar to Eq.115, RN,···
··· can be expressed as a linear combination of scalar functions.

Besides, due to the freedom to choose M linearly independent momenta, the RN,···
···

can be obtained in different ways, i.e. linear combination of different set of scalar

functions, which allows for checks on the analytical result as well as on numerical

stability.

To illustrate the use of Eq.128, we explicitly show the reduction for Cµ and Cµν ,

which is defined as

Cµ(ν) = Cµ(ν)(p
2
1, p

2
2;m0,m1,m2)

=
(2πµ)4−D

iπ2

∫
dDq

qµ(qν)

[q2 −m2
0][(q + p1)2 −m2

1][(q + p2)2 −m2
2]

(129)
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with

p21 = M2
1 , p22 = M2

2 ,

p21 = (p2 − p1)
2 = M2

0 ,

p1 · p2 = −
1

2
(M2

0 −M2
1 −M2

2 ) (130)

where p1 and p2 are linearly independent momenta, thus M = N − 1 = 2. Besides,

the tensor decomposition of Cµ(ν) can be found in Eq.106.

Eq.128 yields

Ck = T 3
k = (X−1

2 )kk′R
3,k′ , (131)

C00 = T 3
00 =

1

D − 1

[
R3,00 −R3,1

1 −R3,1
2

]
, (132)

Cki = T 3
ki = (X−1

2 )kk′
[
RN,k′

i − δk
′

i C00

]
. (133)

The explicit form of Gram determinant is

X2 =

 M2
1 −1

2
(M2

0 −M2
1 −M2

2 )

−1
2
(M2

0 −M2
1 −M2

2 ) M2
2

 , (134)

the inverse of which is

X−1
2 =

4

4M2
1M

2
2 − (M2

1 +M2
2 −M2

0 )
2

 M2
2

1
2
(M2

0 −M2
1 −M2

2 )

1
2
(M2

0 −M2
1 −M2

2 ) M2
1


(135)

R3,k is reduced to a linear combination of scalar integrals according to Eq.115,

R3,1 =
1

2
B0(p

2
2,m0,m2)−

1

2
B0((p1 − p2)

2,m1,m2)− (p21 −m2
1 +m2

0)C0,

R3,2 =
1

2
B0(p

2
1,m0,m1)−

1

2
B0((p1 − p2)

2,m1,m2)− (p22 −m2
2 +m2

0)C0. (136)
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Thus, Ck can be simply solved using Eq.131

C1 =
4

4M2
1M

2
2 − (M2

1 +M2
2 −M2

0 )
2

[
M2

2R
3,1 +

1

2
(M2

0 −M2
1 −M2

2 )R
3,2
]
,

C2 =
4

4M2
1M

2
2 − (M2

1 +M2
2 −M2

0 )
2

[1
2
(M2

0 −M2
1 −M2

2 )R
3,2 +M2

1R
3,2
]
. (137)

R3,00 and R3,k
i can be derived from Eq.111 and Eq.112

R3,00 = B0((p1 − p2)
2,m1,m2) +m2

0C0,

2R3,1
1 = B1((p1 − p2)

2,m1,m2) +B0((p1 − p2)
2,m1,m2) + (m2

1 − p21 −m2
0)C1,

2R3,1
2 = B1(p

2
2,m1,m2)−B1((p1 − p2)

2,m1,m2) + (m2
2 − p22 −m2

0)C2,

2R3,2
1 = B1(p

2
1,m0,m2) +B1((p1 − p2)

2,m1,m2) +B0((p1 − p2)
2,m1,m2)

+ (m2
2 − p22 −m2

0)C1,

2R3,2
2 = −B1((p1 − p2)

2,m1,m2) + (m2
2 − p22 −m2

0)C2. (138)

combining with Eq.137 and

B1(p
2,m0,m2) =

m2
0 −m2

1

2p2

[
B0(p

2,m0,m2)−B0(0,m0,m2)
]

− 1

2
B0(p

2,m0,m2) (139)

R3,i
k can be fully reduced to a linear combination of scalar integrals B0, C0. Thus,

the solutions of Cij can be obtained from Eq.133.

Cµνρ can also be reduced to scalar functions with the same strategy. For sake

of brevity, we will not explicitly list the expressions here. Remember, there are no

terms like Cµνρσ due to renormalizability of the SM.
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1.3.3 Analytical Expression for One-Loop Scalar Integrals

With the reduction method described in the last section, all one-loop integrals

can be reduced to the scalar ones. Thus, the analytical solutions of one-loop scalar

function is essential to obtain the analytical result for all the other tensor integrals.

Besides, these scalar functions depend on the parameter D = 4− 2ϵ, where only the

first few terms in the expansion of ϵ are encountered.

There are two methods for deriving expressions for the first few terms. Explicitly

solve the loop integral, which leads to generalized hypergeometric functions [48],

and then expand them in ϵ. Alternatively, one can first expand the loop integral

and calculate the coefficients of the expansion in ϵ [45]. In this work, we adopt the

latter method and list analytical expressions for A0, B0, C0, and D0 up to O(ϵ). A

more detailed derivation of the analytical expressions for one-loop scalar integrals as

well as the analytical properties of those integrals can be found in Appendix.B and

Refs. [44, 45].

For practical calculation, numerical evaluation is more straightforward. Various

codes are available for the numerical evaluation of one-loop scalar integrals, such as

LoopTools [49, 50], Golem95 [51, 52], Collier [53, 54], OneLoop [55], QCDLoop [56]

and PackageX [57, 58].

1.3.3.1 One-Point Function

The scalar one-point function has the following form

A0(m) = (µ2πeγE)ϵ
1

iπ2

∫
dDq

1

q2 −m2 + iε

=
m2

ϵ
+ A

(0)
0 (m) + ϵA

(1)
0 (m) +O(ϵ2) (140)
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with

A
(0)
0 (m) = m2 −m2 ln

m2

µ2

A
(1)
0 (m) = ϵ

[
m2 +

π2

12
m2 −m2 ln

m2

µ2
+

1

2
m2 ln2 m

2

µ2

]
(141)

1.3.3.2 Two-Point Function

The scalar two-point function B0(k
2,m1,m2) = B0 has the following form:

B0 = (µ2πeγE)ϵ
1

iπ2

∫
dDq

1

[q2 −m2
1 + iε][(q + k)2 −m2

2 + iε]

=
1

ϵ
+B

(0)
0 + ϵB

(1)
0 +O(ϵ2) (142)

with

B
(0)
0 = − ln

(k2

µ2
− iε

)
−

2∑
j=1

[
ln(1− xj)− xj ln

xj − 1

xj

− 1
]

B
(1)
0 =

π2

12
+

1

2
ln2

(k2

µ2
− iε

)
+

2∑
j=1

{
1

2
ln(1− xj) ln

2(1− xj) +
1

2
xj ln

2(1− xj)

+
[
ln(

k2

µ2
− iε)− 2

]
×

[
ln(1− xj)− xj ln

xj − 1

xj

− 1
]}

+ (1− x1) ln(1− x1) ln(1− x2) + x1 ln(−x1) ln(−x2) + (x1 − x2)

×
[
Li2

( x2

x2 − x1

)
− Li2

( x2 − 1

x2 − x1

)
+ ln(x2 − x1) ln

x2 − 1

x2

]
(143)

where x1,2 are the roots of

k2x2 + (−k2 +m2
2 −m2

1)x+m2
1 = k2(x− x1)(x− x2) (144)

The B0 function has one threshold at k2
0 = (m1 + m2)

2. When k2 < k2
0, the

B0 function are purely real, while the imaginary part is non-zero when k2 > k2
0.

54



This discontinuity can be understood as follows. Fig.3 shows the distributions of the

Eq. 144 in the region x ∈ {0, 1}. We have set m1 = 4 GeV ,m2 = 10 GeV . k2

are considered with three values, k2 > k2
0, k

2 = k2
0 as well as K2 < k2

0, which are

represented by the blue, orange and green line respectively. As we can see from the

green line, Eq. 144 is negative in the region x ∈ (0.149, 0.478). Eq. 144 originates

from the integral

B
(0)
0 =

∫ 1

0

dx ln

[
k2

µ2
(x− x1)(x− x2)− iε

]
. (145)

Negative value of Eq. 144, i.e. the integral of logarithm in Eq. 145 with negative

argument leads to non-zero imaginary part.

The analytical formula of this discontinuity in D = 4− 2ϵ is written as

∆B0(k
2,m2

2,m
2
2) ≡ −

1

π
ImB0(k

2,m2
2,m

2
2)

= 2πi
( k2

4πµ2

)−ϵ Γ(1− ϵ)

Γ(2− 2ϵ)

λ
1
2
−δ(k2,m2

1,m
2
2)

(k2)1−2ϵ
Θ(k2 − (m1 +m2)

2)

(146)

where Θ is the Heaviside function and λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz).
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Figure 3: Distributions of Eq.145 for m1 = 4 GeV,m2 = 10 GeV, µ = 1 GeV with

k2 < k2
0(blue),k

2 = k2
0(orange) and k2 > k2

0(green)

1.3.3.3 Three-Point Function

The scalar three-point function C0(p
2
1, p

2
2, (p1 + p2)

2,m1,m2,m3) = C0 has the

following form:

C0 = (µ2πeγE)ϵ
1

iπ2

∫
dDq

1

[q2 −m2
1 + iε][(q + p1)2 −m2

2 + iε][(q + p1 + p2)2 −m2
2 + iε]

= C
(0)
0 + ϵC

(1)
0 (147)
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with

C
(0)
0 = − 1

µ2

1

c+ 2ab

3∑
j=1

2∑
k=1

2∑
l=1

(−1)j+lLi2(−r(l)jk ), (148)

C
(1)
0 = −C(0)

0 × lnT +
1

µ2

1

c+ 2ab

3∑
j=1

2∑
l=1

(−1)j+l

{ 2∑
k=1

[
− ln(−r(l)jk ) ln

2(1 + r
(l)
jk )

− 2 ln(1 + r
(l)
jk )Li2(1 + r

(l)
jk ) + 2Li3(1 + r

(l)
jk )

]
+
[
ln(1 + r

(l)
j1 )− ln(1 + r

(l)
j2 )

]
×

[
1

2
ln(r

(l)
jk ) + η

(
− r

(l)
jk ,

1 + r
(l)
j2

r
(l)
j2 − r

(l)
j1

)
×
[
ln(1 + r

(l)
j1 )− ln(1 + r

(l)
j2 )

]
+ Li2

(
1 + r

(l)
j1

1 + r
(l)
j2

)
− Li2

(
r
(l)
j2 (1 + r

(l)
j1 )

r
(l)
j1 (1 + r

(l)
j2 )

)]

− Li3

(
1 + r

(l)
j1

1 + r
(l)
j2

)
+ Li3

(
r
(l)
j2 (1 + r

(l)
j1 )

r
(l)
j1 (1 + r

(l)
j2 )

)}
(149)

where α is the root of a+ cα+ cα2 = 0 and a = p22/µ
2, b = p21µ

2, c = 2p1 · p2/µ2. The

definitions of r
(k)
ij can be found in Eq.379. These expressions are valid for real mass

and momentum squared. For complex parameters, see Eq.4.26 of [43].

A special type of C0 function contains soft or/and collinear IR divergence. The

C0 function with soft divergence corresponds to the vertex function with intermediate

photon shown in Fig. 4. Suppose the momenta (masses) of two external fermions are

p1,2 (m1,2). The soft divergence originates from the massless photon. To regulate the

divergence, a fictitious photon mass λ is introduced, and λ→ 0 needs to be taken at

the end. The corresponding C0 function is

C0 =
1

iπ2

∫
dDq

1

[q2 −m2
1][(q + p1)2 − λ2][(q + p1 + p2)2 −m2

2]

= −1

2
(F1 lnλ

2 − F2) (150)
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Figure 4: The example vertex diagram that contains soft IR divergence, where the

fermions are massive.

with

F1 =
1

(p1 + p2)2(y1 − y2)

[
ln

y1 − 1

y1
− ln

y2 − 1

y2

]
,

F2 = F1 ln((p1 + p2)
2) +

1

(p1 + p2)2(y1 − y2)

[1
2
ln2(1− y1)−

1

2
ln2(−y1)

− 1

2
ln2(1− y2) +

1

2
ln2(−y2) + ln(−y1) ln(−y2) + 2 ln

y1 − 1

y1
ln(y1 − y2)

− 2Li2
y1 − 1

y1 − y2
+ 2Li2

y1
y1 − y2

]
(151)

where y1,2 are the roots of (p1 + p2)
2y2 + y[m2

2 −m2
1 − (p1 + p2)

2] + m2
1 = 0. lnλ2

regulates the soft divergence, which cancels by adding real photon emission diagrams.

1.3.3.4 Four-Point Function

The 1-loop scalar four-point function is defined asD0(p
2
1, p

2
2, p

2
3, p

2
4,m1,m2,m3,m4)

D0 = (µ2πeγE)ϵ
1

iπ2

∫
dDq

1

[q2 −m2
1 + iε][(q + p1)2 −m2

2 + iε]

× 1

[(q + p1 + p2)2 −m2
3 + iε][(q + p1 + p2 + p3)2 −m2

4 + iε]
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= D
(0)
0 +O(ϵ) (152)

where we have only kept the finite order since the O(ϵ) is usually irrelevant for 2→ 2

process. In addition, the D0 function is a linear combination of two C0 functions, as

can be seen from Eq.397, thus we disregard the explicit expressions for D0, which

can be found in [44].

The D0 function with two small and equal masses and four external on-shell

momenta also contains collinear IR divergence, which takes the form

D0 =
1

iπ2

∫
dDq

1

[q2 −m2
1][(q + p1)2 − λ2]

=
1

[(q + p1 + p2)2 −m2
3][(q + p1 + p2 + p3)2 − λ2]

=
2

t
ln
∣∣∣ t
λ2

∣∣∣× 1

Λ
ln
∣∣∣(m1 +m2)

2 + s+ Λ

(m1 +m2)2 + s− Λ

∣∣∣− i
2π

t
ln
∣∣∣ t
λ2

∣∣∣× 1

Λ
θ(−s+ (m1 +m2)

2)

(153)

with

p21 = m2
1 , p22 = m2

2 = p23 , (p1 + p2)
2 = s , (p2 = p3)

2 = t,

Λ =
√

s2 + 2s(m2
1 +m2

2) + (m2
1 −m2

2)
2 ,

θ(x) =

 0 for x ≤ 0

1 for x > 0
(154)
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1.3.4 Numerical Evaluation Method

Analytical solutions of Feynman integrals in terms of special mathematical func-

tions are preferred from an efficiency perspective. However, the analytical solutions

are challenging at two and higher loop level due to the appearance of multiple mass

scale. Thus, semi-numerical or numerical methods allow broader flexibility and bet-

ter automation.

Various numerical methods are developed for evaluating Feynman diagrams, and

they can be broadly divided into direct and indirect evaluation methods. Direct

methods such as sector decomposition[59] and Mellin-Barnes representation [60],

compute Feynman integral by directly performing integration over some variables.

Indirectly methods, on the other hand, compute Feynman integrals by solving dif-

ferential equations[61]. A comprehensive review and comparison over a variety of

numerical loop integration techniques can be found in [62].

The authors of [46, 47] have developed a new semi-numerical method correspond-

ing to the direct evaluation method based on a combination of Feynman parametriza-

tion, dispersion relation and subtraction method. This section aims to introduce

these techniques. A combination of them used for evaluating two-loop Feynman

diagrams will be discussed in Sec.2.3.1, Sec.2.3.2 and Sec.2.3.3.

1.3.4.1 Feynman Parametrization

Feynman parametrization is a technique of changing an expression into a numer-

ical integral, the general form of which is

1

A1 · · ·An

=

∫ 1

0

dx1 · · ·
∫ 1

0

dxn(n− 1)!
δ(1− x1 · · ·xn)

[α1A1 + · · ·αnAn]n
(155)
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In our calculation, it is very often to use Feynman parametrization for n ≤ 4, thus

we write the formula explicitly

1

AB
=

∫ 1

0

dx

∫ 1

0

dy
δ(1− x− y)

[xA+ yB]2
=

∫ 1

0

dx
1

[(1− x)A+ xB]2
, (156)

1

ABC
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
2δ(1− x− y − z)

[xA+ yB + zC]3

=

∫ 1

0

dx

∫ 1−x

0

dy
2

[xA+ yB + (1− x− y)C]3
(157)

=

∫ 1

0

dx

∫ x

0

dy
2

[(1− x)A+ yB + (x− y)C]3
, (158)

1

ABCD
=

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz
6

[(1− x− y − z)A+ xB + yC + zD]4
(159)

=

∫ 1

0

dx

∫ x

0

dy

∫ y

0

dz
6

[(y − z)A+ (1− x)B + (x− y)C + zD]4
. (160)

Feynman parameterization is also very useful in deriving the analytical expres-

sions for 1-loop scalar integrals, as shown in Appendix.B. Implementing Feynman

parametrization for two-loop integrals offers several advantages. Firstly, by intro-

ducing Feynman parameters, the loop integrand becomes simple as it involves the

multiplication of one-loop integrals only. This avoids the need for developing new

special functions. Secondly, the integration over the parameters can carried out nu-

merically. As stated before, numerical evaluation is more appropriate for computing

two-loop Feynman integrals.
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Figure 5: Integration contours for the dispersion relations for the one-loop two-point

functions for the cases Im((m1+m2)
2) = 0(left) and Im((m1+m2)

2) ̸= 0(right). The

zigzag lines denote the branch cuts, ending at the branch point (m1 + m2)
2. The

sircle sections are understood to have a radius R→∞

1.3.4.2 Dispersion Relation

Implementing dispersion relation is a crucial step in the evaluation of two-loop

Feynman integrals. It allows for the disentanglement of the two subloops, enabling

the two-loop integrals to be expressed as a product of one-loop integrals. This section

presents the fundamental formulas of the dispersion relation. The application of the

dispersion relation for computing two-loop Feynman integrals will be discussed in

Sec. 2.3.1, Sec. 2.3.2, and Sec. 2.3.3.

The basic dispersion relation formula for the one-loop tensor two-point function,
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Bµνρ(p
2,m2

1,m
2
2) = Bµνρ, has two different forms according to the mass argument:

Bµνρ =

∫ ∞

(m1+m2)2
dσ

∆Bµνρ(σ,m
2
1,m

2
2)

σ − p2 − iϵ
, Im((m1 +m2)

2) = 0 (161)

=

∫ +∞

−∞
dσ

1

2πi

Bµνρ(σ,m
2
1,m

2
2)

σ − p2 − iϵ
, Im((m1 +m2)

2) ̸= 0 (162)

where

∆Bµνρ(p
2,m2

1,m
2
2) =

1

π
ImBµνρ(p

2,m2
1,m

2
2) (163)

Branch points of Bµνρ and ImBµνρ are at Re(σ) = (m1 + m2)
2, which can be

clearly see from λ1/2. The integration contours must be chosen to circumvent the

branch cuts and the one we choose correspond to the dashed curve shown in Fig.5

The analytical expressions of Bµνρ are

B0 =
1

2p2

(
2L1(p

2,m2
1,m

2
2)λ

1/2(p2,m2
1,m

2
2)

+ 4p2 + (m2
1 −m2

2 + p2) log
1

m2
1

+ (−m2
1 +m2

2 + p2) log
1

m2
2

)
B1 =

1

2p2

(
m2

1 −m2
2 −B0(p

2,m2
1,m

2
2) +m2

1 log
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1B0(p
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B11 =
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1,m
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+
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2 log

1

m2
2
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B001 =

1

8
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2m2

1B1(p
2,m2

1,m
2
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B111 =−
1

4p2

(
2m2

1B1(p
2,m2

1,m
2
2) + 2(m2

1 −m2
2 + p2)B11(p

2,m2
1,m

2
2)

+
−2m2

1 + 2m2
2 + p2

6
+m2

2 log
1

m2
2

)
(164)

The L1 and λ functions are defined as follows

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) = (x− y − z)2 − 4yz ,

L1(x, y, z) = log

(
(yz)−1/2

2(λ(x, y, z)− x+ y + z)1/2

)
(165)

The analytical expressions of ImBµνρ are

ImB0 =πλ1/2(1,
m2

1

p2
,
m2

2

p2
)

ImB1 =
π

2
λ1/2(1,
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1
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,
m2

2

p2
)
m2

2 −m2
1 − p2

p2

ImB00 =−
π

12
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,
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2

p2
)p2
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,
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2
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)
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1

3
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1

p2
,
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2

p2
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1
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ImB001 =

π
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,
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2

p2
)(p2 +m2
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π

4
λ1/2(1,
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,
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2
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2
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1
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− 1)(λ(1,
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,
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2m2
1
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(166)

The derivative of Bµνρ and ImBµνρ(p
2,m2

1,m
2
2) with respect to mass will also be

needed in evaluating two-loop Feynman integrals. The derivative is straightforward

and list in Appendix.C and Appendix.D.

In many cases, numerical integration of the form∫ ∞

a

ds
f(s)

s− s0 ± iε
(167)
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had to be handled, where one has to calculate in case of s0 > a a principal value

and a residuum contribution. This can be easily coded for the numerical evaluation,

resulting in ∫ ∞

a

ds
f(s)

s− s0 ± iε
=

∫ s0

a

ds
f(s)− f(2s0 − s)

s− s0
∓ iπf(s0)

+

∫ ∞

2s0−a

ds
f(s)

s− s0 ± iε
(168)

Higher powers of propagators lead also to integration of the type∫ ∞

a

ds
f(s)

(s− s0 ± iε)2
(169)

A formula which proved more useful for the numerical evaluation of this integral is

given by∫ ∞

a

ds
f(s)

(s− s0 ± iε)2
=

∫ s0

a

f(s) + f(2s0 − s)− 2f(s0)

(s− s0)2
∓ iπf ′(s0)

+
2f(s0)

a− s0
+

∫ ∞

2s0+a

ds
f(s)

(s− s0)2
(170)

where f ′(s) = df(s)/ds.
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1.3.4.3 Subtraction Method

The numerical methods described in Sec. 1.3.4.1 and Sec. 1.3.4.2 encounter chal-

lenges when dealing with UV divergent integrals, as dimensional regularization can-

not be simply applied in numerical integrals. To address these UV divergences, we

employ the subtraction method. The general idea is to subtract a few simple terms

from the original integral to make it UV finite, and then add back the analytical ex-

pressions of these subtracted terms to the total result. The strategy of this method

can be established as follows:

IUV-div = IUV-div − Isubtra︸ ︷︷ ︸
UV-finite

+ Isubtra︸ ︷︷ ︸
UV-div

(171)

where Isubtra denotes the subtraction terms. The first one is evaluated numerically,

while the second one is UV divergent thus must be evaluated analytically.

The number of subtracted terms needed for evaluating UV diagrams varies, and

generally involves three types of subtracted terms at two-loop level: two for subloop

divergences and one more for a global divergence. The global divergence refers to the

highest order divergence of a given diagram, while the subloop divergence does not.

In two-loop Feynman diagrams, the global (subloop) divergence is proportional to

ϵ−2(−1), where ϵ = (4−D)/2. The number of global and subloop divergences can be

counted by power counting the explicit Feynman integrals or by counting the number

of two/one-loop counterterms contained in the Feynman diagram. For instance, let’s

consider the box diagram with a subloop vertex shown on the left of Fig. 6. Since

there is only one one-loop counterterm diagram corresponding to this diagram, as

illustrated on the right, which implies that it contains only one subloop divergence.
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Figure 6: Box with a subloop vertex diagrams and its corresponding counterterm

diagrams.

To ensure the numerical evaluation, both the global and subloop divergences need

to be subtracted from the original integrand. The subtraction term for global diver-

gence is obtained by evaluating the same diagram but setting all external momenta

to zero. On the other hand, the subtraction term for subloop divergence is obtained

by setting all momenta except for the loop momentum inside all propagators to zero.

The practical implementation of constructing different subtraction terms is shown in

Sec.2.3.2 and Sec.2.3.3.
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2.0 Two-loop Electroweak Corrections for e+e− → Zh Process

2.1 Motivation

After the discovery of the Higgs boson in 2012 by the ATLAS[63] and CMS[64]

collaboration at the Large Hadron Collider(LHC), many measurements have been

performed to study its properties. As we discussed in Sec.1.1, the neutral Higgs

boson is responsible for the masses of gauge boson and fermions. More importantly,

the Higgs mechanism leads to a distinctive phenomenological imprint in the coupling

structure between Higgs and other particles, i.e. all fermionic and bosonic couplings

to the Higgs boson are proportional to the masses of the corresponding fermion and

gauge boson. Thus, measuring the properties of the Higgs boson can test the SM,

and deviations between experiments and SM prediction indicate the presence of new

physics beyond the SM. Assuming the new physics scale Λ is at TeV range, the

deviations in Higgs couplings, which can be parameterized as m2
H/Λ

2, is at percent

level, thus beyond the current experimental accuracy of the LHC. Under κ framework,

the uncertainty for most of the higgs couplings is larger than 10% as shown in Fig. 7

from Ref. [65].

In order to detect the percent level deviations in the Higgs boson couplings,

several proposals have been made for so-called e+e− Higgs factories. These facilities,

including the International Linear Collider (ILC) [1, 2], the Future Circular Collider

(FCC-ee) [3], and the Circular Electron-Positron Collider (CEPC) [4], are lepton

colliders, thus provide a clean environment and allow for more precise and model

independent measurements of the properties of the Higgs boson.

These machines are planned to operate at center-of-mass energies of 240-250 GeV,
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where the dominant Higgs production channel is the Higgsstrahlung process e+e− →
ZH. Together with the recoil mass method, which can reconstruct the Higgs with

leptonic decay products of Z boson, the cross section of e+e− → ZH is expected to

be measured with an accuracy of about 1.2% at ILC, 0.4% at FCC-ee, and 0.5% at

CEPC. The coupling between Higgs and Z, gHZZ can be extracted by comparing the

experimental result and theoretical prediction, namely (gHZZ/g
SM
HZZ)

2 = σ(e+e− →
ZH)exp/σ(e+e− → ZH)SM. With the so-called κ framework, this can be rewritten

in terms of κZ , κZ = gHZZ/g
SM
HZZ . Thus the ratio between cross sections is directly

related to κZ . κZ stands for the normalized coupling between Higgs and Z, and

κZ ̸= 1 indicate the appearance of new physics.

The interpretation of σHZ in terms of the κZ requires precise theoretical predic-

tions σ(e+e− → ZH)SM, which has been calculated up to next-to-next-to-leading

order(NNLO) with mixed EW and QCD corrections[66, 67]. The numerical impact

of the mixed EW and QCD corrections is around 1.4%, which is larger than the

expected experimental accuracies of the Higgs factories. Thus, missing higher order

corrections must be calculated.

The largest missing higher order corrections is from NNLO EW corrections, which

depend on up to four independent mass scales (mH , mZ , mW , mt), as well as two

additional momentum scales (which can be represented by the Mandelstam variables

s and t). Therefore it is difficult to find analytical solutions, since the expressions

will be impractically large and may require the development of new special functions.

On the other hand, generic numerical methods (such as numerical integration over

Feynman parameters [68]) are highly computationally intensive.

Due to these reasons, the evaluation of NNLO EW corrections is not only neces-

sary to meet the precision requirements of future Higgs factories, but it also represents

a significant advancement in the techniques used to perform two-loop electroweak
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diagram calculations. In Sec.2.3, we outline our approach for evaluating the two-loop

diagrams contributing to the process e+e− → HZ. The numerical result and related

discussion is shown in Sec.2.4
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Figure 7: Best-fit values and uncertainties for Higgs boson coupling modifiers per

particle type with effective photon and gluon couplings and either Binv = Bundet =

0(black); Binv and Bundet included as free parameters, the condition κW,Z ≤ 1 applied

and the measurement of the Higgs boson decay rate into invisible final states included

in the combination (red); or BBSM = Binv + Bundet included as a free parameter, the

measurement of off-shell Higgs boson production included in the combination, and

the assumptions described in the text applied to the off-shell coupling-strength scale

factors (blue). The SM corresponds to Binv = Bundet = 0 and all κ parameters set to

unity. All parameters except κt are assumed to be positive.
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2.2 Polarized and Unpolarized Cross Section

The e+e− Higgs factories, such as FCC-ee, CEPC, and ILC, have different strate-

gies regarding the use of unpolarized and polarized beams. FCC-ee is primarily de-

signed to operate with unpolarized beams, but some operation modes will employ

polarized beams, which is also considered for CEPC. On the other hand, ILC plans

to use polarized beams, with up to 80% longitudinal polarization for electrons and

60% for positrons. The use of polarized beams will not only enable more precise

measurements but also provide a means to explore new physics beyond the Standard

Model.

Thus, in order to compare the theoretical predictions of σ(e+e− → ZH) with

future experimental results, it is necessary to calculate both the polarized and un-

polarized cross sections.

The perturbative expansion of the matrix elementM for e+e− → ZH process is

obtained by expanding EW and QCD couplings, and it takes the following form:

M =M(0) +M(α) +M(ααs) +M(α2) +M(α2αs) + · · · (172)

The upper indices stand for the expansion order of EW and QCD coupling. Note

that there is no one-loop QCD correction M (αs) since the gluons do not interact with

leptons and EW gauge bosons.

The matrix element has the form

M(n) = v̄(pe+)Γ
µ,(n)u(pe−) (173)

where pe± are the momenta of incoming positron and electron, respectively, µ is

the Lorentz index of the outgoing Z boson, and Γµ stands for the eeZ three-point

function. n shows the expansion order.
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For unpolarized square matrix element, one needs to average of initial spins,

which is accomplished by the Carsimir trace technique

|M (m)M (n)|unpol =
1

4

∑
e±spin

M∗(m)M (n) =
1

4
Tr

{
Γ̄µ,(m)

/pe+Γ
(m)
µ /pe−

}
(174)

where the electron and positron mass have been neglected.

On the other hand, the squared matrix element with polarized electron and

positron beam can be obtained by inserting the polarization projectors PR,L =

(1 ± γ5)/2. Thus the polarized amplitude is obtained by performing the following

replacement:

u(pe−)⇒ u(pe−)L = PL × u(pe−) =
1− γ5

2
× u(pe−)

⇒ u(pe−)R = PR × u(pe−) =
1 + γ5

2
× u(pe−)

v̄(pe+)⇒ v̄(pe+)L = PR × v̄(pe+) =
1 + γ5

2
× v̄(pe+) = v̄(pe+)×

1− γ5
2

⇒ v̄(pe+)R = PL × v̄(pe+) =
1− γ5

2
× v̄(pe+) = v̄(pe+)×

1 + γ5
2

(175)

Thus for polarized square matrix elements, Eq.174 becomes

|M (m)M (n)|e+j ,e−k
= M

∗(m)

e+j ,e−k
M

(n)

e+j ,e−k
= Tr

{
Γ̄µ,(m)

/pe+PjΓ
(m)
µ Pk/pe−

}
, j, k = R,L (176)

Instead of separately going through all the steps of the computation for left-

and right-handed polarized beams, one can alternatively derive the polarized matrix

elements from the unpolarized one, which seems more efficient for calculating the two-

loop diagrams. This is achieved by grouping certain types of diagrams. Considering

a two-loop diagram where the incoming fermion line connects with N gauge bosons(γ

or Z), the polarized matrix elements satisfy the relationships

MV1···VN

(2) |LR = geeV1
R · · · geeVN

R v̄(pe+)PLF(2)PRu(pe−)G(2)
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MV1···VN

(2) |RL = geeV1
L · · · geeVN

L v̄(pe+)PRF(2)PLu(pe−)G(2)

MV1···VN

(2) |LL = MV1···VN

(2) |RR = 0 (177)

where geeVL(R) is the left(right)-handed coupling of eeV vertex, F denotes the matrix

elements of fermion line, and G denotes the rest part of the matrix element. The

tree-level matrix element can be written in the same form.

The polarized squared matrix elements are

|MV1···VN

(2) M(0)|LR =geeZR geeV1
R · · · geeVN

R G(0)G(2) × Tr[�pe+PLF(2)PR�pe−F(0)],

|MV1···VN

(2) M(0)|RL =geeZL geeV1
L · · · geeVN

L G(0)G(2) × Tr[�pe+PRF(2)PL�pe−F(0)],

|MV1···VN

(2) M(0)|LL =|MV1···VN

(2) M(0)|RR = 0 (178)

With |M(2)M(0)|unpol = (|M(2)M(0)|LR+|M(2)M(0)|RL+|M(2)M(0)|LL+|M(2)M(0)|RR)/4,

we obtain the relationship between polarized and unpolarized squared matrix element

|MV1···VN

(2) M(0)|LR =
4geeZR geeV1

R · · · geeVN
R

geeZR geeV1
R · · · geeVN

R + geeZL geeV1
L · · · geeVN

L

× |M(2)M(0)|unpol,

|MV1···VN

(2) M(0)|RL =
4geeZL geeV1

L · · · geeVN
L

geeZR geeV1
R · · · geeVN

R + geeZL geeV1
L · · · geeVN

L

× |M(2)M(0)|unpol,

|MV1···VN

(2) M(0)|LL = |MV1···VN

(2) M(0)|RR = 0 (179)

If the fermion line connects only with W bosons, which only interact with left-

handed fermions, thus we end up with very simple equations

|MW ···W
(2) M(0)|RL = 4× |M(2)M(0)|unpol,

|MW ···W
(2) M(0)|LR = |MW ···W

(2) M(0)|LL = |MW ···W
(2) M(0)|RR = 0 (180)
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After calculating squared matrix element, the differential cross section can be di-

rectly obtained by multiplying the 2-body phase space. The differential cross section

up to NNLO(EW+EW) reads

dσ

d cos θ
=

1

32πs
β(1,

m2
Z

s
,
m2

H

s
)|M2|

=
1

32πs
β(1,

m2
Z

s
,
m2

H

s
)

(
|M (0)|2︸ ︷︷ ︸

LO

+2Re(M (0)∗M (α))︸ ︷︷ ︸
NLO

+2Re(M (0)∗M (ααs)︸ ︷︷ ︸
NNLO(EW+QCD)

+ |M (α)|2 + 2Re(M (0)∗M (α2))︸ ︷︷ ︸
NNLO(EW+EW)

)
(181)

where
√
s is the center of mass energy, θ is the angle between outgoing Z boson and

incoming electron. β functions is β(x, y, z) = (x − y − z)2 − 4yz. The polarized

and unpolarized cross sections can be obtained by substituting the polarized and

unpolarized squared matrix elements, respectively, into Eq. 181.
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(a) (b) (c)

(d) (e) (f)

(h)(g) (i)

Figure 8: Examples of two-loop Feynman diagrams with at least one closed fermion

loop.

2.3 Evaluation Method for Two-Loop Diagrams

As shown in Eq. 181, the NNLO EW corrections involve the interference be-

tween one-loop diagrams, |M (α)|2 and two-loop diagrams. The former can be eval-

uated using the techniques described in Sec. 1.3.1 and Sec. 1.3.2, which have been

implemented in modern packages for automated calculation, such as FeynCalc [69].

However, no automated packages are available for the evaluation of general two-loop

diagrams due to their complexity.

Some examples of two-loop diagrams are shown in Fig.8. Two-loop self-energy
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Fig.8(d) and their corresponding counterterm diagrams can be straightforwardly

computed by reducing the expressions to a set of know master integrals (MIs)[70],

which can be further evaluated with TVID 2.2 [71] both numerically and analyti-

cally. Two-loop vertex diagrams Fig.8(c,e,f,g) and box diagrams Fig.8(i) can also be

evaluated by reducing to MIs, but this reduction process is heavily time-consuming,

which is of order few thousands CPU hour[72].

Thus we have developed a new method for evaluating two-loop diagram, which is

based on a semi-numerical method using a combination of Feynman parametrization

and dispersion relation. This method is further developed to enable the treatment of

UV divergences by constructing subtraction terms as discussed in Sec.1.3.4.3. With

this approach, all relevant two-loop Feynman integrals are reduced to at most three-

dimensional numerical integral, which is further evaluated with Gaussian-Kronrod

quadrature integral routine.

Three different elements comprise this evaluation method, which would be hard

to understand by implementing them at the same time. Sec.2.3.1 aims for evaluation

of UV finite diagrams, which is a good example to show how to reduce two-loop

diagrams into three-dimensional numerical integrals with Feynman parametrization

and dispersion relation. Sec.sections 2.3.2 and 2.3.3 aims to show how to construct

different subtraction terms according to different UV structures.

77



q1 q2

q1+p1+p2 q2+k1+k2
p2

p1

q1+p1

k2

k1

q2+k1

q 1
−
q 2

V1

V2

f ′ q′ t

t

t

e

e

H
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↓
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Figure 9: Planar two-loop box diagrams with top quarks in the loop. The bottom

row visually illustrates the effect of introducing Feynman parameters for the top

loop. If V1,2 = γ, Z then f ′ = e, q′ = t, whereas f ′ = νe and q′ = b for V1,2 = W .

2.3.1 UV Finite Diagram: Planar Double-Box

To illustrate the implementation of Feynman parametrization and dispersion re-

lation, consider a planar double-box diagram, which contains the propagators of the

diagram in Fig.9. Generally the numerator can be arbitrary pair product among

internal and external momentum, li · lj where li = {qi, pi, ki}. For simplicity, let us
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begin by choosing the numerator to be 1,

Iplan =

∫
dDq1 d

Dq2
1

[q21 −m2
V1
][(q1 + p1)2 −m2

f ′ ][(q1 + p1 + p2)2 −m2
V2
]

× 1

[(q1 − q2)2 −m2
q′ ][q

2
2 −m2

t ][(q2 + k1)2 −m2
t ][(q2 + k1 + k2)2 −m2

t ]
. (182)

Introduce Feynman parameters for the propagators that depend only on loop mo-

memtum q2

1

[q22 −m2
t ][(q2 + k1)2 −m2

t ][(q2 + k1 + k2)2 −m2
t ]

=

∫ 1

0

dx

∫ 1−x

0

dy
2

[(q2 + k′)2 −m′2]3

=

∫ 1

0

dx

∫ 1−x

0

dy
∂2

∂2m′2
1

(q2 + k′)2 −m′2 , (183)

with

m′2 = m2
t − xy(k1 + k2)

2 − (1− x− y)(xk2
1 + yk2

2) , k′ = (1− x)k1 + y k2 (184)

In the last line, we take derivative with respect to m′2 twice to make the power of

propagator be 1. Plugging it into Eq.182, we obtain

Iplan =

∫ 1

0

dx

∫ 1−x

0

dy

∫
dDq1

1

[q21 −m2
V1
][(q1 + p1)2 −m2

f ′ ][(q1 + p1 + p2)2 −m2
V2
]

×
∫

dDq2
∂2

∂2m′2
1

[(q1 − q2)2 −m2
q′ ][(q2 + k′)2 −m′2]

(185)

Integrating the q2 loop leads to B0((q1 + k)2,m′2,m2
q′) function together with the

dispersion relation discussed in Sec.1.3.4.2, we obtain∫
dx dy

∫
dDq2

2

[(q1 − q2)2 −m2
q′ ][(q2 + k′)2 −m′2]3

=

∫
dx dy

∂2

∂(m′2)2

∫ ∞

σ0

dσ
∆B0(σ,m

′2,m2
q′)

σ − q̃21
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=

∫
dx dy

{∫ ∞

σ0

dσ
∂2
m′∆B0(σ,m

′2,m2
q′)

σ − q̃21
−
[
∂m′∆B0(σ,m

′2,m2
q′)

σ − q̃21

]
σ→σ0

}
, (186)

where we have introduced the short-hand notation

σ0 = (m′ +mq′)
2, q̃1 = q1 + k′ + iϵ, ∂m′ =

∂

∂(m′2)
, (187)

and used the fact that ∆B0(σ0,m
′2,m2

q′) = 0. Unfortunately, the σ integral blows

up at the lower boundary, and the term in [ ] is also divergent for σ → σ0, whereas

only the sum of the two is finite. To circumvent this problem, one can modify the

integrand according to∫
dx dy

{∫ ∞

σ0

dσ ∂2
m′∆B0(σ,m

′2,m2
q′)

(
1

σ − q̃21
− σ0

σ(σ0 − q̃21)

)
+

σ0

σ0 − q̃21
∂2
m′B0(0,m

′2,m2
q′)

}
. (188)

Here the extra term in the integrand of
∫
dσ is added back in integrated form, where

the function ∂2
m′B0 can be expressed in terms of basic logarithms (see appendix).

With the modified integrand, the boundary term in eq. (186) evaluates to zero.

Inserting eq. (188) into the remainder of the q1 loop integral, one obtains

Iplan =−
∫

dx dy

{∫ ∞

σ0

dσ ∂2
m′∆B0(σ,m

′2,m2
q′)×

[
D0(p

2
1, p

2
2, k

′2
2 , k

′2
1 , s, t

′,m2
V1
,m2

f ′ ,m2
V2
, σ)

− σ0

σ
D0(p

2
1, p

2
2, k

′2
2 , k

′2
1 , s, t

′,m2
V1
,m2

f ′ ,m2
V2
, σ0)

]
+ σ0 ∂

2
m′B0(0,m

′2,m2
q′)D0(p

2
1, p

2
2, k

′2
2 , k

′2
1 , s, t

′,m2
V1
,m2

f ′ ,m2
V2
, σ0)

}
, (189)

where s = (p1 + p2)
2, t′ = (p1 − k′

1)
2, and D0 is the well-known scalar one-loop box

function.

Since the double box diagrams are UV finite, all expressions in Eq. (189) can be

computed for D=4 dimensions.
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The full diagram represented by Fig. 9 (top) contains additional terms with

momenta q1,2 in the numerator stemming from the Dirac propagators and vertex

structures. For numerators depending on q2, it is convenient to perform a Passarino-

Veltman decomposition as discussed in Sec.1.3.2 of ∂2
m′B0(q̃

2
1,m

′2,m2
q′) after intro-

duction of the Feynman parameters. As a first step, let us shift the integration

momentum to q′2 ≡ q2 + k′:∫
d4q2

qµ2 q
ν
2 · · ·

[(q2 + k′)2 −m′2]3[(q1 − q2)2 −m2
q′ ]

=

∫
d4q′2

(q′2 − k′)µ(q′2 − k′)ν · · ·
[q′22 −m′2]3[(q′2 − q1 − k′)2 −m2

q′ ]
. (190)

The terms with powers of q′2 in the numerator can be decomposed according to∫
d4q′2

q′µ2
[q′22 −m′2]3[(q′2 − q1 − k′)2 −m2

q′ ]
= −q̃µ1 ∂2

m′B1(q̃
2
1,m

′2,m2
q′) ,∫

d4q′2
q′µ2 q

′ν
2

[q′22 −m′2]3[(q′2 − q1 − k′)2 −m2
q′ ]

(191)

= gµν ∂2
m′B00(q̃

2
1,m

′2,m2
q′) + q̃µ1 q̃

ν
1 ∂2

m′B11(q̃
2
1,m

′2,m2
q′) ,

etc.

Each of the Passarino-Veltman functions ∂2
m′Bij...((q1 + k′)2,m′2,m2

q′) can then be

represented through a dispersion relation in the same manner as above:

∂2
m′Bij...(q̃

2
1,m

′2,m2
q′) =

1

π

∫ ∞

σ0

dσ [Im ∂2
m′Bij...(σ,m

′2,m2
q′)]

[
1

σ − q̃21
− σ0

σ(σ0 − q̃21)

]
+

σ0

σ0 − q̃21
∂2
m′Bij...(0,m

′2,m2
q′) . (192)

Explicit expressions for Im ∂2
m′Bij...(σ,m

2
1,m

2
2) and ∂2

m′Bij...(0,m
′2,m2

q′) are collected

in the Appendix.D.
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p1−→

e+
p2−→

H
k2−→
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q1+p1+p2−−−−−→

f ′

q 1
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p 2

−−
−→

V1

q1←− V3

q
1 +

k
1

−−−→

t

q2+k2−−−→
t q

2
−→

t
q
2−
q
1−
k
1

←−−−−−

Figure 10: Feynman diagram for a box with a triangle subloop, where V1,2 =

{γ, Z,W±}, V3 = {Z,G0,W±, G±, H}.

Similarly, the q1 loop will in general contain terms with different powers of q1 in

the numerator, some of which in fact originate from Eq. 191. These lead to Passarino-

Veltman functions D1, D2, D3, D00, etc. [42], which can be evaluated numerically

by using, for example, the techniques introduced in Ref. [49, 73]. In some cases,

there are cancellations between terms in the numerator and denominator, resulting

in C0, C1, C2, C00, ... and B0, B1, B00, ... functions.

2.3.2 UV Divergent Diagram with Subloop Divergence: Box with Tri-

angle Subloop

This section aims to illustrate the strategy of constructing subtraction term for

diagrams with subloop UV divergence only. One such example is box diagram with

triangle subloop as shown in Fig.10. To manifest this UV divergence, we choose
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numerator to be q22. The corresponding Feynman integral is

Ibox−ver =

∫
dDq1 d

Dq2
q22

[(q1 + k1 − q2)2 −m2
t ][q

2
2 −m2

t ][(q2 + k2)2 −m2
t ]

× 1

[q21 −m2
V1
][(q1 + p2)2 −m2

f ′ ][(q1 + p1 + p2)2 −m2
V2
][(q1 + k1)2 −m2

V3
]
. (193)

For brevity, we have omitted the constant 1/(iπ2) that always accompanies loop

integrals. Introduce Feynman parameters for the propagators that depend only on

loop momentum q2

1

[q22 −m2
t ][(q2 + k2)2 −m2

t ]

=

∫ 1

0

dx
1

[(q2 + k′)2 −m′2]2
=

∫ 1

0

dx
∂

∂m′2
1

[(q2 + k′)2 −m′2]
(194)

with k′ = xk2 , m′2 = m2
t + (x2 − x)k2

2. Similarly, the derivative aims to make the

power of propagator be 1. Plugging into Eq.193, we obtain

Ibox−ver =
∂

∂m′2

∫ 1

0

dx

∫
dDq1d

Dq2
1

[q21 −m2
V1
][(q1 + p2)2 −m2

f ′ ][(q1 + p1 + p2)2 −m2
V2
]

× 1

[(q1 + k1)2 −m2
V3
]
× 1

[(q2 + k′)2 −m′2]

q22
[(q1 + k1 − q2)2 −m2

t ]

=
∂

∂m′2

∫ 1

0

dx

∫
dDq1d

Dq2
1

[q21 −m2
V1
][(q1 + p2)2 −m2

f ′ ][(q1 + p1 + p2)2 −m2
V2
]

× 1

[(q1 + k1)2 −m2
V3
]
× 1

[q22 −m′2]

(q2 − k′)2

[(q1 + k1 + k′ − q2)2 −m2
t ]

(195)

In Eq.195, we shift the internal momentum q2 → q2 + k′. Before integrating over q2,

tensor reduce is needed following the strategy stated in Sec.1.3.2

(q2 − k′)2 = q22 − 2q2 · k′ + k′2 = gµνq
µ
2 q

ν
2 − 2qµ2k

′µ + k′2 (196)∫
dDq2

qµ2 q
ν
2

[q22 −m2
1][(q1 + p)2 −m2

2]
= Bµν(p2,m2

1,m
2
2) = gµνB00 + pµpνB11 (197)
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∫
dDq2

qµ2
[q22 −m2

1][(q1 + p)2 −m2
2]

= Bµ(p2,m2
1,m

2
2) = gµB1 (198)

After q2 integration, we obtain

Ibox−ver =
∂

∂2
m

∫ 1

0

dx

∫
dDq1

1

[q21 −m2
V1
][(q1 + p2)2 −m2

f ′ ][(q1 + p1 + p2)2 −m2
V2
]

1

[(q1 + k1)2 −m2
V3
]
× ∂

∂2
m

[
DB00(q̃

2
1,m

′2,m2
t ) + q̃21B11(q̃

2
1,m

′2,m2
t )

− 2k′ · q̃1B1(q̃
2
1,m

′2,m2
t ) + k′2B0(q̃

2
1,m

′2,m2
t )

]
(199)

where q̃1 = q1+k1+k′. Clearly Im(m′+mt)
2 = 0, so we use Eq.161 as the dispersion

relation formula

Ibox−ver =

∫ 1

0

dx

∫
dDq1

1

[q21 −m2
V1
][(q1 + p1)2 −m2

f ′ ][(q1 + p1 + p2)2 −m2
V2
]

1

[(q1 + k1)2 −m2
V3
]
× ∂

∂2
m

∫ ∞

σ0

dσ
1

σ − q̃21

[
D∆B00(σ,m

′2,m2
t )

+ q̃21∆B11(σ,m
′2,m2

t )− 2k′ · q̃1∆B1(σ,m
′2,m2

t ) + k′2∆B0(σ,m
′2,m2

t )

]
=I00box−ver + I11box−ver + I1box−ver + I0box−ver , (200)

where we have used a short notation for the inetgral with ∆Bij

I ijbox−ver =

∫ 1

0

dx

∫
dDq1

1

[· · · q1 · · · ]
∂

∂2
m

∫ ∞

σ0

dσ
cij∆Bij

σ − q̃21
(201)

and σ0 = (m′ +mt)
2. Before performing integration over q1, it is crucial to check if

the integrand is finite as σ goes infinity. With the help pf Eq.166, we obtain

lim
σ→∞

I00box−ver ≈
∫ ∞

σ0

dσ
1

σ
= log∞, (202)

lim
σ→∞

I11box−ver ≈
∫ ∞

σ0

dσ
1

σ3
=

1

σ2
0

, (203)
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lim
σ→∞

I1box−ver ≈
∫ ∞

σ0

dσ
1

σ2
=

1

σ0

, (204)

lim
σ→∞

I0box−ver ≈
∫ ∞

σ0

dσ
1

σ2
=

1

σ0

. (205)

I00box−ver contains logarithmic divergence, which is the local divergence in the Feynman

diagram. To deal with this divergence, we subtract a term, I00,subtbox−ver, to make I00box−ver

finite, and then add this term back analytically. As we can see from Eq. 205, 1/σ2

contains no divergence, thus one should expect that

lim
σ→∞

(
I00box−ver − I00,subtbox−ver

)
=

∫ ∞

σ0

dσ
1

σ2
. (206)

This can be realized through

I00,subtbox−ver ∝
∆B00

σ
. (207)

Thus, we obtain

I00box−ver = I00box−ver − I00,subtbox−ver + I00,subtbox−ver = I00,finitebox−ver + I00,subtbox−ver (208)

I00,subtbox−ver =

∫ 1

0

dx

∫
dDq1

D

[q21 −m2
V1
][(q1 + p1)2 −m2

f ′ ][(q1 + p1 + p2)2 −m2
V2
]

1

[(q1 + k1)2 −m2
V3
]
× ∂

∂2
m

∫ ∞

σ0

dσ
1

σ
×∆B00(σ,m

′2,m2
t )

= D ×D0[· · · ]×
∫ 1

0

dx ∂m′2B00(0,m
′2,m2

t )

= D ×D0[· · · ]×
∫ 1

0

dx

[
∂m′2Bdiv

00 (0,m
′2,m2

t ) + ∂m′2Bfinite
00 (0,m′2,m2

t )

]
(209)

The analytical expressions for the last integral can be obtained by plugging in Eq.164,

performing the derivative and analytical integration. The explicit result reads∫ 1

0

dx ∂m′2Bdiv
00 (0,m

′2,m2
t ) =

2

D − 4

∫ 1

0

dx
m′2 +m2

t

4
=

2

D − 4

12m2
t −m2

h

24
(210)
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∫ 1

0

dx ∂m′2Bfinte
00 (0,m′2,m2

t ) = −
m4

t

m2
h

[
π log

m2
h − 2m2

t +mh

√
m2

h − 4m2
t

4m2
t

+ π log
−m2

h + 2m2
t +mh

√
m2

h − 4m2
t

m2
t

+ 2Li2(
2mh

mh +
√
m2

h − 4m2
t

)− 2Li2(
m2

h +mh

√
m2

h − 4m2
t

2m2
t

)

]
(211)

where D = 4− 2ϵ is the dimension of the integral. The analytical expressions for D0

is also known, thus we obtian analytical expressions for I00,subtbox−ver.

The final expression of Ibox−ver is

Ibox−ver = I00,finitebox−ver + I11box−ver + I1box−ver + I0box−ver + I00,subtbox−ver (212)

= Ifinitebox−ver + I00,subtbox−ver (213)

The first term is UV finite, thus can be evaluated numerically. More importantly, the

UV divergent and finite part of I00,subtbox−ver are obtained analytically. The UV divergence

cancels with the one in corresponding counterterm diagrams. Taking V1 = V2 =

V3 = W, f ′ = b as an example, the UV divergent part for loop diagram and its

corresponding CT diagram is

loop diagram :− 2.808566335× 10−6 + 1.176922426× 10−6i

CT diagram : + 2.808566335× 10−6 − 1.176922426× 10−6i (214)

Clearly, the sum of them equals 0.
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Figure 11: Feynman diagram for a 2-loop VZH vertex, where V = {γ, Z}, f1 =

{t, b}, f2 = t, V1,2 = {Z,W±}.

2.3.3 UV Divergent Diagrams with Global and Subloop Divergences:

VZH Vertex

In this section, we discuss the evaluation method for diagrams with both global

and subloop divergences, and one such example is the VZH vertex diagram shown

in Fig.11. To manifest the UV divergences, we choose numerator to be q22q
2
1 + q41:

IVZH =

∫
dDq2
iπ2

dDq1
iπ2

q22q
2
1 + q41

[q21 −m2
f2
][(q1 − ph)2 −m2

f2
][(q1 − p1 − p2)2 −m2

f2
]

× 1

[q22 −m2
V2
][(q2 + p1 + p2)2 −m2

V1
][(q2 + q1)2 −m2

f1
]

(215)

By power counting one can see that this integral has sub-loop divergences for
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both the q1 and q2 loops, as well as a global two-loop divergence

lim
q1→∞

IVZH =
d4q1
iπ2

1

q41
= log∞

lim
q2→∞

IVZH =
d4q2
iπ2

1

q42
= log∞

⇒ lim
q1,q2→∞

IVZH =∞ (216)

Before we introduce Feynman parameters, this global divergence must be sub-

tracted first. The global divergence is cancelled by subtracting the same integral

with all external momenta set to zero (i.e. p1 = p2 = pz = ph = 0)

IVZH = IVZH − Ipext=0
VZH + Ipext=0

VZH = I1VZH + Ipext=0
VZH (217)

Ipext=0
VZH is equivalent to the vacuum diagram

Ipext=0
VZH = IVZH(p1 = p2 = pz = ph = 0)

=

∫
dDq2
iπ2

dDq1
iπ2

q22q
2
1 + q41

[q21 −m2
f2
][q21 −m2

f2
][q21 −m2

f2
]

× 1

[q22 −m2
V2
][q22 −m2

V1
][(q2 + q1)2 −m2

f1
]

(218)

and it can be evaluated analytically by reducing it to MIs. Two subloop divergences

exist in I1VZH, the explicit form of which is

I1VZH =

∫
dDq2
iπ2

dDq1
iπ2

{
q22q

2
1 + q41

[q21 −m2
f2
][(q1 − ph)2 −m2

f2
][(q1 − p1 − p2)2 −m2

f2
]

(219)

× 1

[q22 −m2
V2
][(q2 + p1 + p2)2 −m2

V1
][(q2 + q1)2 −m2

f1
]

− q22q
2
1 + q41

[q21 −m2
f2
][q21 −m2

f2
][q21 −m2

f2
][q22 −m2

V2
][q22 −m2

V1
][(q2 + q1)2 −m2

f1
]

}
We introduce Feynman parameters to I1VZH for the propagators depending on

loop momentum q2 only, thus we obtain

1

[q22 −m2
V2
][(q2 + p1 + p2)2 −m2

V1
]
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=

∫ 1

0

dx
1

[(q2 + k′)2 −m′2]2
=

∫ 1

0

dx
∂

∂m′2

1

[(q2 + k′)2 −m′2]

1

[q22 −m2
V2
][q22 −m2

V1
]
=

∫ 1

0

dx
1

[q22 −m′2
0 ]

2
=

∫ 1

0

dx
∂

∂m′2
0

1

[q22 −m′2
0 ]

(220)

with

k′ = xp1 + xp2 , m′2 = (1− x)m2
V1

+ xm2
V2

+ (x2 − x)(p1 + p2)
2 ,

m′2
0 = (1− x)m2

V1
+ xm2

V2
(221)

Similarly, the derivative aims to make the power of propagator to be 1. Plugging

into Eq.215, we obtain

I1VZH =

∫ 1

0

dx

∫
dDq1
iπ2

dDq2
iπ2

{
∂

∂m′2

q22q
2
1 + q41

[q21 −m2
f2
][(q1 − ph)2 −m2

f2
][(q1 − p1 − p2)2 −m2

f2
]

× 1

[(q2 + k′)2 −m′2]2[(q2 + q1)2 −m2
f1
]

− ∂

∂m′2
0

q22q
2
1 + q41

[q21 −m2
f2
][q21 −m2

f2
][q21 −m2

f2
][q22 −m′2

0 ][(q2 + q1)2 −m2
f1
]

}
(222)

=

∫ 1

0

dx

∫
dDq1
iπ2

dDq2
iπ2

{
∂

∂m′2

(q2 − k′)2q21 + q41
[q21 −m2

f2
][(q1 − ph)2 −m2

f2
][(q1 − p)2 −m2

f2
]

× 1

[q22 −m′2]2[(q2 + q1 − k′)2 −m2
f1
]

− ∂

∂m′2
0

q22q
2
1 + q41

[q21 −m2
f2
][q21 −m2

f2
][q21 −m2

f2
][q22 −m′2

0 ][(q2 + q1)2 −m2
f1
]

}
(223)

Similarly, we need to perform tensor decomposition. The numerator involving q2 is

same as the one in Eq.193, so we can directly use the result therein. We obtain

I1VZH =

∫ 1

0

dx

∫
dDq1
iπ2

{
∂

∂m′2

1

[q21 −m2
f2
][(q1 − ph)2 −m2

f2
][(q1 − p)2 −m2

f2
]

×
[
q21DB00(q̃

2
1,m

′2,m2
f1
) + q21 q̃

2
1B11(q̃

2
1,m

′2,m2
f1
)

− 2q21k
′ · q̃1B1(q̃

2
1,m

′2,m2
f1
) + q21(k

′2 + q21)B0(q̃
2
1,m

′2,m2
f1
)
]
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− ∂

∂m′2
0

1

[q21 −m2
f2
][q21 −m2

f2
][q21 −m2

f2
]

×
[
q21DB00(q

2
1,m

′2
0 ,m

2
f1
) + q41B11(q

2
1,m

′2
0 ,m

2
f1
)

− 2q21k
′ · q1B1(q

2
1,m

′2
0 ,m

2
f1
) + q21(k

′2 + q21)B0(q
2
1,m

′2
0 ,m

2
f1
)
]}

(224)

where q̃1 = q1 − k′. Since Im{(m′ +mf1)
2} = Im{(m′

0 +mf1)
2} = 0, we use Eq.161

as the dispersion relation formula. I1VZH becomes

I1VZH =

∫ 1

0

dx

∫
dDq1
iπ2

{
1

[q21 −m2
f2
][(q1 − ph)2 −m2

f2
][(q1 − p)2 −m2

f2
]

∂

∂m′2

∫ ∞

σ0

dσ
1

σ − q̃21

×
[
q21D∆B00(σ,m

′2,m2
f1
) + q21 q̃

2
1∆B11(σ,m

′2,m2
f1
)

− 2q21k
′ · q̃1∆B1(σ,m

′2,m2
f1
) + q21(k

′2 + q21)∆B0(σ,m
′2,m2

f1
)
]

− 1

[q21 −m2
f2
][q21 −m2

f2
][q21 −m2

f2
]

∂

∂m′2
0

∫ ∞

σ′
0

dσ
1

σ − q21

×
[
q21D∆B00(σ,m

′2
0 ,m

2
f1
) + q41∆B11(σ,m

′2
0 ,m

2
f1
)

− 2q21k
′ · q1∆B1(σ,m

′2
0 ,m

2
f1
) + q21(k

′2 + q21)∆B0(σ,m
′2
0 ,m

2
f1
)
]}

=I1,00VZH + I1,11VZH + I1,1VZH + I1,0VZH (225)

where σ0 = (m′ +mf1)
2, σ′

0 = (m′
0 +mf1)

2. The short notation I1,ijVZH reads

I1,ijVZH =

∫ 1

0

dx

∫
dDq1
iπ2

{
1

[· · · q1 · · · ]
∂

∂m′2

∫ ∞

σ0

dσ
cij∆Bij(σ,m

′2,m2
f1
)

σ − q̃21

− 1

[· · · q1 · · · ]
∂

∂m′2
0

∫ ∞

σ′
0

dσ
c′ij∆Bij(σ,m

′2
0 ,m

2
f1
)

σ − q21

}
(226)

Same as what we shown in Sec.2.3.2, I1,00VZH contains logarithmic divergence, which

can be taken care of by constructing subtraction terms

I1,00VZH = I1,00VZH − I1,00,subtVZH + I1,00subtVZH = I1,00finiteVZH + I1,00subtVZH (227)
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with

I1,00subtVZH =

∫ 1

0

dx

∫
dDq1
iπ2

{
q21

[q21 −m2
f2
][(q1 − ph)2 −m2

f2
][(q1 − p)2 −m2

f2
]

∂

∂m′2

∫ ∞

σ0

dσ
D∆B00(σ,m

′2,m2
f1
)

σ

× q21
[q21 −m2

f2
][q21 −m2

f2
][q21 −m2

f2
]

∂

∂m′2
0

∫ ∞

σ′
0

dσ
D∆B00(σ,m

′2
0 ,m

2
f1
)

σ

}
(228)

= F00 ×
∫ 1

0

dx ∂m′2 B00(0,m
′2,m2

f1
)

− F ′
00 ×

∫ 1

0

dx ∂m′2
0
B00(0,m

′2
0 ,m

2
f1
) (229)

where F00 and F ′
00 are the integral related to loop momentum q1. They are linear

combinations of 1-loop scalar functions

F00 = D ×
[
B0(pz

2,m2
f2
,m2

f2
) +m2

f2
C0(ph

2, (p1 + p2)
2, pz2,m2

f2
,m2

f2
,m2

f2
)
]

(230)

F ′
00 = D ×

[
B0(0,m

2
f2
,m2

f2
) +m2

f2
C0(0, 0, 0,m

2
f2
,m2

f2
,m2

f2
)
]

=
D2(D − 2)

8m2
f2

A0(m
2
f2
) (231)

Besides the subloop divergence originates from I1,00VZH, there is a subloop divergence

from I1,11VZH and I1,0VZH term. Although they behave like 1/σ2 as σ goes to infinity, these

two terms contains logrithmic divergence as q1 tends to infinity, which can be clearly

seen by power counting

lim
q1→∞

I1,11VZH =

∫
d4q1

1

q41
= log∞ (232)

lim
q1→∞

I1,0VZH =

∫
d4q1

1

q41
= log∞ (233)
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To make it UV finite as q1 →∞, we can subtract a term that same as I1,11VZH and I1,0VZH

except setting all momenta inside q1 propagators to zero. This term is written as

I1,11+0,subt
VZH =

∫
dDq1
iπ2

dDq2
iπ2

{
q41

[q21 −m2
f2
][q21 −m2

f2
][q21 −m2

f2
][q21 −m2

f1
]

× 1

[q22 −m2
V2
][(q2 + p1 + p2)2 −m2

V1
]

− q41
[q21 −m2

f2
][q21 −m2

f2
][q21 −m2

f2
][q21 −m2

f1
][q22 −m2

V2
][q22 −m2

V1
]

}
=

1

8(m2
f1
−mf2)

3(m2
V1
−m2

V2
)

{
8m4

f1
A0(m

2
f1
)

−
[
−2(D2 − 4)m2

f1
m2

f2
+D(D + 2)m4

f1
+D(D − 2)m4

f2

]
A0(m

2
f2
)

}
×

{[
m2

V1
−m2

V2

]
B0((p1 + p2)

2,m2
V1
,m2

V2
)− A0(m

2
V1
) + A0(m

2
V2
)

}
(234)

By subtracting this term and add it back, we obtain

I1,11VZH + I1,0VZH = I1,11VZH + I1,0VZH − I1,11+0,subt
VZH + I1,11+0,subt

VZH

= I1,11+0,finite
VZH + I1,11+0,subt

VZH (235)

After constructing subtraction terms for one global and two subloop divergence,

the final expressions of IVZH becomes

IVZH =I1,00,finiteVZH + I1,11+0,finite
VZH + I1,1VZH + Ipext=0

VZH + I1,00,subtVZH + I1,11+0,subt
VZH

=IfiniteVZH + Ipext=0
VZH + I1,00,subtVZH + I1,11+0,subt

VZH (236)

The strategy for constructing subtraction terms is diagrammatically illustrated

in Fig.12.

The diagram labeled by [· · · ]finite corresponds to IfiniteVZH . The vacuum diagram

corresponds to Ipext=0
VZH . The diagrams shown in the second and third line correspond

to I1,00,subtVZH and I1,11+0,subt
VZH separately.
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V1
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f1 f2

finite

Figure 12: Diagrammatical domenstration of VZH divergence separation.

2.3.4 Strategy for Constructing Subtraction Terms

In Sec.2.3.2 and Sec.2.3.3, we demonstrated the process of constructing the sub-

traction terms by explicitly choosing the numerators. However, it is worth noting

that this process does not need to be carried out case-by-case. In practice, it is

relatively easy to construct the subtraction term for any arbitrary diagram. We will

demonstrate the automation by taking the two-loop vertex diagram Fig. 11 as an

example. The general tensor integral can be written as

I =

∫
dDq2
iπ2

dDq1
iπ2

∑
n0,n1,n2,i,j

cn0,n1,n2

ij × {pn0
i , qn1

1 , qn2
2 }j

× 1

(q22 −m2
V2
)((q2 + p)2 −m2

V1
)((q2 + q1)2 −m2

f1
)

× 1

(q21 −m2
f2
)((q1 − ph)2 −m2

f2
)((q1 − p)2 −m2

f2
)
, (237)
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where {pn0
i , qn1

1 , qn2
2 } denotes dot products among external momentum pi and loop

momentum q1,2, and ni denote the power of each of them. The index j labels all

possible dot product conditions. For example for n0 = 0, n1 = n2 = 2, the possible

dot products read

{p0i , q21, q22}1 = (q1 · q1)(q2 · q2),

{p0i , q21, q22}2 = (q1 · q2)(q1 · q2). (238)

The SM Feynman rules require that n1 ≤ 4, n2 ≤ 2, n0 + n1 + n2 ≤ 6. cn0,n1,n2

ij is the

coefficient of a dot product, and it is a function of masses and dimension D. The

integral Eq.237 contains a subloop divergence from the q1 loop, which originate from

the numerators qn1
1 with n1 ≥ 4. To make the q1 integral UV finite, the following

subtraction term is constructed:

Iq1subtr =

∫
dDq2
iπ2

dDq1
iπ2

∑
i,j

[
c2,4,0ij × {p2i , q41, q02}j + c1,4,1ij × {p1i , q41, q12}j

+ c0,4,2ij × {p0i , q41, q22}j + c1,4,0ij × {p1i , q41, q02}j
+ c0,4,1ij × {p0i , q41, q12}j + c0,4,0ij × {p0i , q41, q02}j

]
× 1

(q22 −m2
V2
)((q2 + p)2 −m2

V1
)(q21 −m2

f1
)

× 1

(q21 −m2
f2
)(q21 −m2

f2
)(q21 −m2

f2
)
. (239)

From Eq. 239, one can see that the loop integrals of q1 and q2 are disentangled. After

performing the loop integration, one obtains

Iq1subtr = B0(p
2,m2

V2
,m2

V1
)×

[
a1A0(m

2
f1
) + a2A0(m

2
f2
)
]

(240)
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where ai are functions of masses, external momenta and dimension D. A similar

subloop subtraction term needs to be introduced in the vacuum integrals for the

global divergence. Combining the two subloop subtraction terms, we obtain

Isubtr =
[
B0(p

2,m2
V2
,m2

V1
)−B0(0,m

2
V2
,m2

V1
)
]

×
[
a1A0(m

2
f1
) + a2A0(m

2
f2
)
]
. (241)

This term can now be expanded in powers of ϵ = (4−D)/2, resulting in the expres-

sions

Idivsubtr =
[
B

(0)
0 (p2,m2

V2
,m2

V1
)−B

(0)
0 (0,m2

V2
,m2

V1
)
]

×
[
a
(0)
1 A

(−1)
0 (m2

f1
) + a

(0)
2 A

(−1)
0 (m2

f2
)
]
, (242)

Ifinsubtr =
[
B

(0)
0 (p2,m2

V2
,m2

V1
)−B

(0)
0 (0,m2

V2
,m2

V1
)
]

×
[
a
(0)
1 A

(0)
0 (m2

f1
) + a

(0)
2 A

(0)
0 (m2

f2
)

+ a
(1)
1 A

(−1)
0 (m2

f1
) + a

(1)
2 A

(−1)
0 (m2

f2
)
]

+
[
B

(1)
0 (p2,m2

V2
,m2

V1
)−B

(1)
0 (0,m2

V2
,m2

V1
)
]

×
[
a
(0)
1 A

(−1)
0 (m2

f1
) + a

(0)
2 A

(−1)
0 (m2

f2
)
]
. (243)

where (n) denote the expansion order in ϵ. Eq. 243 indicates that O(ϵ) parts of one-
loop scalar functions must be taken into account. Analytical expressions for these

can be found in Ref. [45].
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2.4 Numerical Results for Two-Loop EW Corrections to σ(e+e− → ZH)

The analytical expressions for the LO cross section can be found in [74]. For the

NLO cross section, both unpolarized and polarized beams are available. The NLO

result for unpolarized beams can be found in [75, 76, 78], while the polarized beam

result is presented in [79]. The NNLO mixed EW+QCD corrections were calculated

by two groups, with [66] presenting an analytical result [80] and [67] presenting a

numerical result.

The NNLO EW corrections to the process e+e− → HZ were estimated be on

the order of 1%, and can be decomposed into contributions with and without closed

fermionic loops. The contribution with closed fermionic loops is expected to dominate

due to the large Yukawa coupling and large flavour numbers. While it would be

ideal to calculate both contributions, it may not be necessary since the expected

experimental precision is also of around 1%. In this case, including only the fermionic

contribution may be sufficient to meet the required level of accuracy.

Thus in this section we only present results for two-loop EW diagrams with

fermionic loops. However, the evaluation method discussed in Sec.2.3 can also be

employed to evaluate diagrams without fermionic loops. Besides, the numerical re-

sults presented do not include QED initial-state radiation (ISR). At the order that we

are working, QED ISR factorizes and can be taken into account through convolution

with a universal structure function, see e.g. Ref. [81].

The following input parameters are used for the numerical evaluation:

mexp
W = 80.379 GeV ⇒ mW = 80.352 GeV,

mexp
Z = 91.1876 GeV ⇒ mZ = 91.1535 GeV,

mH = 125.1 GeV, mt = 172.76 GeV,
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α−1 = 137.036, ∆α = 0.059,

√
s = 240 GeV. (244)

where
√
s represents the center-of-mass energy, and the masses of all other fermions

are set to be 0. The discussion of differences between experimental and the on-shell

mZ,W ,ΓZ,W can be found in Appendix.E.

2.4.1 Unpolarized Beam

Table.3 lists the results for the integrated unpolarized cross section at LO,NLO

and NNLO, where corrections are further divided according to the number of fermion

loops, denoted by Nf . Besides, it is worth mention that the corrections with fermion

loops are gauge invariant, thus the comparison between them are meaningful. This

is also the reason that we didn’t list the corrections from different vertices or self-

energies, which is gauge invariant by summing all corrections.

One can see that corrections with more fermion loops dominate, the reasons of

which are the large top mass and large falvour number dependence. Taking the self-

energy corrections as an example, the ratio between the cross section of diagrams

with one and two top-quark self-energy loop behaves approximately as

R =
σ(Nt = 1)

σ(Nt = 2)
≈ m2

Zm
2
tB0(s,m

2
t ,m

2
t )B0(s,m

2
Z ,m

2
Z)

m4
tB

2
0(s,m

2
t ,m

2
t )

≈ m2
Z

m2
t

(245)

Similarly, the ratio between the cross section of diagrams with one and two light-

fermion self-energy loop behaves approximately as

R =
σ(Nf ̸=t = 1)

σ(Nf ̸=t = 2)
≈ NfB0(s, 0, 0)B0(s,m

2
Z ,m

2
Z)

N2
fB

2
0(s, 0, 0)

≈ 1

Nf

(246)

Thus, the cross sections with more fermion loops dominate.
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Table 3: Numerical results for the integrated cross section at LO, NLO and NNLO.

Electroweak one-loop and two-loop corrections are also provided and divided accord-

ing to the number of fermion loops symbolized as Nf .

(fb) Contribution (fb)

σLO 222.958

σNLO 229.893

O(αNf=1) 21.130

O(αNf=0) −14.195
σNNLO 231.546

O(α2
Nf=2) 1.881

O(α2
Nf=1) −0.226

From Table.3, one can see that NLO corrections increases σLO by 3%, which is due

to the cancellation between fermionic Nf = 1 and bosonic Nf = 0 contributions. The

NNLO(EW+EW) corrections turns out to be 0.7% of the NLO correction, where the

contribution with two fermionic loops is much greater than the one with one fermion

loop. Besides the top-quark and flavor number enhancement, another reason is

accidental numerical cancellation in the contribution with one femrion loop. This

can be clearly seen from the plot of differential cross section, which is shown in

Fig.13.
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Figure 13: Angular distribution of differential cross section for e+e− → ZH at leading

order(“LO”), next-to-leading order(“NLO”), next-to-next-to-leading order with two

closed fermion loops(“NNLO Nf = 2), and next-to-next-to-leading order with closed

fermion loops(“NNLO Nf = 1 + 2).

In Fig.13, the contributions of two fermion loops is the dashed green curve,

and the sum of one and two fermion loop is denoted with blue curve. Thus the

contributions due to one fermion loop is the difference between the green and blue

curve, which is positive in the region | cos θ| < 0.59, and negative when | cos θ| > 0.59.

Thus integrating over the whole angle regions leads to small total cross section of

contributions due to one fermion loop.

Another interesting feature of the angular distribution of the differential cross

section is its slight shape change, which arises from the appearance of new Lorentz

structures at the loop level that are not present at tree level. These structures include
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the ZZH, γZH vertices, and box diagram. At tree level, they can be written as

Γµν
ZZH,tree =

e cos θW
sin θW

mZg
µν

Γµν
γZH,tree = 0

Γµ
box,tree = 0 (247)

where the indices represent the polarization vectors of gauge boson. Scalar particles

contain no indices. At higher loop level, the general form of ZZH, γZH vertices are

Γµν
ZZH,loop = F1g

µν + F2k
µ
1k

ν
2 + F3k

µ
2k

ν
1 + F4k1ρk2σϵ

µνρσ

Γµν
γZH,loop = G1g

µν +G2k
µ
1k

ν
2 +G3k

µ
2k

ν
1 +G4k1ρk2σϵ

µνρσ (248)

where ki is the momenta of Z and photon. The Lorentz structure for box diagram

can be written as

Γµ
box,loop = K1p

µ
1 +K2p

µ
2 +K3p

µ
z (249)

Clearly, there are new Lorentz structure, which is responsible for shape change.

Moreover, the angular distribution is maximum at cos θ = 0, which is due to

longitudinal Z boson. This can be seen from tree level cross section. The tree level

cross section for longitudinal and transverse Z boson is:

dσtree
T

dΩ
= Σ

σ=±1
Σ

λ=±1

dσ

dΩ
=

α2β

16

m2
Z

(s−m2
Z)

2

s4W + (s2W − 1
2
)2

c4W s4W
(cos θ2 + 1), (250)

⇒ σtree
T =

α2βπ

4

m2
Z

(s−m2
Z)

2

s4W + (s2W − 1
2
)2

c4W s4W

2

3
, (251)

dσtree
L

dΩ
= Σ

σ=±1
Σ
λ=0

dσ

dΩ
=

α2β

8

m2
Z

(s−m2
Z)

2

s4W + (s2W − 1
2
)2

c4W s4W

3

2
(
β2s

6m2
Z

+
2

3
)(sin θ2), (252)

⇒ σtree
L =

α2βπ

4

m2
Z

(s−m2
Z)

2

s4W + (s2W − 1
2
)2

c4W s4W
(
β2s

6m2
Z

+
2

3
). (253)
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Figure 14: Distribution of σtree(e+e− → ZH) at different center-of-mass energy,
√
s, for unpolarized electron-positron bea,. “L(T)” represents the contribution from

longitudinal(transverse) Z boson.

Fig. 14 shows the distribution of σtree(e+e− → ZH) at different center-of-mass

energy,
√
s, for unpolarized electron-positron bea,. “L(T)” represents the contri-

bution from longitudinal(transverse) Z boson. As one can read from this figure,

the longitudinal mode dominates at
√
s = 240GeV , so the differential cross section

peaks at π/2.

2.4.2 Polarized Beam

Numerical result of σ(e+e− → ZH) with polarized beam is listed in Table. 4. As

can be seen from this table, the electroweak NNLO corrections depend strongly on
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Table 4: Numerical results for the integrated ZH production cross section, in fb, at

LO, NLO and fermionic electroweak NNLO, for different beam polarizations. The

electroweak NNLO corrections are also listed individually according to the number

of fermion loops symbolized as Nf .

e+Re
−
L e+L e

−
R

σLO [fb] 541.28 350.55

σNLO [fb] 507.92 411.66

σNNLO [fb] 507.51 418.68

O(α2
Nf=2) 1.75 5.77

O(α2
Nf=1) −2.15 1.25

the beam polarization.

The contributions with two closed fermions loops (Nf = 2) are significantly larger

for right-handed electron polarization and left-handed positron polarization than for

the opposite case. The contribution with one closed fermion loop (Nf = 1) has

opposite signs for the two polarization, which leads to an accidental cancellation for

the unpolarized cross-section.

2.4.3 Multiple Renormalization Schemes and Missing Higher Order Cor-

rections

In this section, we display the numerical result of two different schemes of electric

charge. One scheme, called the α(0) scheme, defines α = e2/(4π) as the electromag-

netic coupling at zero momentum, and the second scheme, called the Gµ scheme,
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relates the weak coupling to the Fermi coupling Gµ,

Gµ√
2
=

g2

8m2
W

(1 + ∆r). (254)

Details of electric charge renormalization schemes can be found in Sec.1.2.3.

The input value of α(0) scheme has been shown in Eq.244. In Gµ scheme, we

use the input parameters in eq. (244), together with Gµ = 1.1663787 × 10−5. The

numerical results for total cross section obtained in the two renormalization schemes

are shown in Tab 5.

One can realize that the total cross section of Gµ scheme is always greater than

α(0) scheme due to the larger effective fine structure constant. However, the radiative

corrections in Gµ scheme is smaller. The one-loop EW radiative corrections in Gµ

scheme can be parametrized as [76]

δ
Gµ

weak = δ
α(0)
weak − 2∆r (255)

The fermionic contributions in δ
Gµ

weak are reduced by ∆r, while bosonic contribution

hardly changes, which leads to a reduction of radiative corrections.

Another feature from the table is that the numerical difference between two

schemes, i.e. dependence on renormalization schemes, decreases as more and more

radiative contributions are included, which is expected by perturbative theory.

In fact, this convergence is further improved when including the mixed electroweak-

QCD two-loop corrections [66, 67]. We use numerical results for this contribution

from Ref. [67]. In order to do so, we have to compute our electroweak corrections

for the same input parameters used there. The results are shown in Table. 6.

The prediction for the cross-section including all available results agrees very

well between the two renormalization schemes, with a difference of 0.12 fb. As we

discussed in Sec.1.2, renormalization scheme difference can be utilized to estimate
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Table 5: Numerical results for the unpolarized integrated ZH production cross sec-

tion, in fb, for two different renormalization schemes. Results are given at LO, NLO

and fermionic electroweak NNLO. For the latter, the contributions from two (Nf = 2)

and one (Nf = 1) closed fermion loops are also shown individually.

α(0) scheme Gµ scheme scheme dependence

σLO [fb] 222.96 239.18 16.22

σNLO [fb] 229.89 232.08 2.19

σNNLO [fb] 231.55 232.74 1.19

O(α2
Nf=2) 1.88 0.73

O(α2
Nf=1) −0.23 −0.07

Table 6: Similar to Table. 5, but using input values and mixed EW-QCD corrections

from Ref. [67].

α(0) scheme Gµ scheme scheme dependence

σLO [fb] 223.14 239.64 16.50

σNLO [fb] 229.78 232.46 2.68

σNNLO,EW×QCD [fb] 232.21 233.29 1.08

σNNLO,EW [fb] 233.86 233.98 0.12
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missing higher-order corrections, where the dominant impact is expected from the

bosonic electroweak NNLO corrections, i.e. from two-loop contributions without

closed fermion loops.

Therefore, one can use the difference between the two renormalization schemes

as an order-of-magnitude estimate of the perturbative theory uncertainty. Since this

estimate is only a lower bound on the size of missing higher-order contributions, we

conservatively multiply it by a factor 2, thus arrive at an error estimate of 0.24 fb.

The alternative estimation is obtained from 2Re{M∗
(0)M(2,bos)} ≲ |M(1,bos)|2,

whereM(1,bos) is the matrix element of the bosonic NLO corrections. This leads to

a contribution of 0.65 fb to the cross-section. One may expect that the unknown

2Re{M∗
(0)M(2,bos)} is smaller is due to several suppression factors in the Born matrix

elementM(0): (a) the e-e-Z couplings in the initial state are smaller than the e-ν-W

couplings, which appear in the 1-loop box diagrams, by a factor 2−3/2 ∼ 0.35; (b) the

s-channel Z propagator produces a factor m2
Z/(s−m2

Z) ∼ 0.17 for
√
s = 240 GeV.

Thus it seems plausible that the missing bosonic electroweak NNLO corrections

have an impact between 0.24 and 0.65 fb on the SM prediction for the ZH pro-

duction cross-section. These theory error estimates, 0.1 − 0.3% are lower than the

anticipated experimental precision (0.4–1%), but a direct calculation of these missing

contributions is still desirable.

2.4.4 Treatment of Z Decay

Both the Z and Higgs bosons are unstable particles, so we must take into account

their decays when calculating the cross section. Due to the small width-to-mass

ratio of Higgs boson, ΓH/mH = O(10−5), the Narrow-Width-Approximation (NWA)

can be used to treat Higgs decay. In this approximation, the cross section for the
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process e+e− → ZH → ZX can be written as the product of the cross section for

e+e− → ZH and the branching ratio of H → X, namely

σ(e+e− → ZX)
∣∣∣
NWA

= σ(e+e− → ZH)× Br(H → X) (256)

However, the width-to-mass ratio of Z boson, ΓZ/mZ = O(10−2), is much larger.

In Ref. [77], the authors calculated the mixed EW+QCD corrections for the process

e+e− → ZH → µ+µ−H by employing the NWA for the Z decay as well as using

a fixed width. Their result shows that the cross section obtained using the NWA

deviates from the one obtained with a fixed width by 4%. Consequently, NWA is not

a suitable method for treating Z boson decay, especially considering the anticipated

high precision measurements at future Higgs factories, which is around 1%.

Since the implementation of NWA is relatively simple, we first consider the treat-

ment of the Z boson. Considering outgoing Z boson decaying into µ+µ− pair, the

complete all-orders matrix element for the process e+e− → µ+µ−H can be written

as

Mee→µµH = Γprod
1

p2z −m2
Z + ΣZ(p2z)

Γdec +Mbkgd (257)

The first term is the matrix element with on-shell Z decay, where Γprod and Γdec

are the e+e−ZH and Zµ+µ− Green’s function, respectively, and ΣZ is the Z-boson

self-energy. Mbkgd denotes the contribution to e+e− → µ+µ−H process without Z

resonance.

When expanding the above matrix element perturbatively without breaking gauge

invariance, we adopt the complex pole method. The complex pole, s0 = m2
Z−imZΓZ ,

of Z propagator satisfies the following equation

s0 −m2
Z + Σ(s0) = 0 ⇒ m2

Z = s0 + Σ(s0) (258)
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Plugging Eq (258) into Eq (257)

Mee→µµH = Γprod
1

p2z − s0 − Σ(s0) + ΣZ(p2z)
Γdec +Mbkgd (259)

=
ΓprodΓdec

(p2z − s0)(1 +
−Σ(s0)+ΣZ(p2z)

p2z−s0
)
+Mbkgd (260)

Expanding Γ and Σ around complex mass

Γ(p2z) = Γ(s0) + (p2z − s0)Γ
′
(s0) +

1

2
(p2z − s0)

2Γ
′′
(s0) (261)

ΣZ(p
2
z) = ΣZ(s0) + (p2z − s0)Σ

′

Z(s0) +
1

2
(p2z − s0)

2Σ
′′

Z(s0) + (...) (262)

Plugging these into Eq (260), we obtain

Mee→µµH =
(Γprod(s0) + (p2Z − s0)Γ

′

prod(s0))(Γdec(s0) + (p2Z − s0)Γ
′

dec(s0)

(p2Z − s0)(1 + Σ
′
Z(s0) +

1
2
(p2Z − s0)Σ

′′
Z(s0)

+Mbkgd

=
1

p2Z − s0

Γprod(s0)Γdec(s0)

1 + Σ
′
Z(s0)

+Mbkgd +
Γprod(s0)Γ

′

dec(s0) + Γ
′

prod(s0)Γdec(s0)

1 + Σ
′
Z(s0)

− Γprod(s0)Γdec(s0)Σ
′′
Z(s0)

2(1 + Σ
′
Z(s0))

2
+O(p2Z − s0)

=
1

p2Z − s0
R(s0) + S(s0) + (p2Z − s0)S

1 (263)

Given that ΓZ ≪ mZ , we can expand R,S around s0 = m2
Z , thus

Mee→µµH =
1

p2Z − s0
R(s0) +

p2Z − s0
p2Z − s0

S(s0) (264)

=
1

p2Z − s0
(R(m2

Z) + (s0 −m2
Z)R

′
(m2

Z))

+
p2Z −m2

Z − (s0 −m2
Z)

p2Z − s0
(S(m2

Z) + (s0 −mZ)S
′
(m2

Z)) (265)

=
1

p2Z − s0
R(m2

Z) +
p2Z −m2

Z

p2Z − s0
S(m2

Z) +O(s0 −m2
Z) (266)
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Each of the terms is separately gauge invariant. Since the experimental analysis

will select µ+µ− pair with invariant mass close to the Z resonance, p2Z ∼ m2
Z , which

leads to pZ − s0 ∼ ΓZ , thus the terms in the series expansion in Eq. 266 decrease in

numerical magnitude. If one seeks NNLO accuracy in leading R term, NLO accuracy

is sufficient in subleading S terms and LO precision for the following term.

Focusing on the leading R term, the different cross section is written as

dσ =
1

2s
dΦ3|Mee→µµH |2 (267)

where Φ3 is the three-body phase space, plugging the explicit form we get

dσ

d cos θ12dϕ12ds12d cos θHdϕH

=
1

16s

1

(2π)5

√
λ(s, s12,m2

H)

8s
×
∣∣∣ΓprodΓdec

1 + Σ
′
Z

1

p2z − s0

∣∣∣2
(268)

where s12, θ12, ϕ12 is the invariant mass, polar angle and azimuthal angle of the µ+µ−

pair. θH , ϕH is the polar and azimuthal angle between outgoing Higgs and incoming

electron beam. After integrating all variables except s12, θ12, we obtain

dσ

d cos θ12ds12
=

1

2s

1

(2π)5
4π

1

8
2π

√
λ(s, s12,m2

H)

8s
× (

Γ2
prodΓ

2
dec

(1 + Σ
′
Z)

2

1

(p2z −m2
z)

2 +m2
zΓ

2
Z

)

=

√
λ(s, s12,m2

H)

32πs2
1

16π2

Γ2
prod

1 + Σ
′
Z

Γ2
dec

1 + Σ
′
Z

1

(p2z −m2
z)

2 +m2
zΓ

2
Z

=
λ(1, s12/s,m

2
H/s)

32πs
|Mpro|2︸ ︷︷ ︸

dσ(e+e−→ZH)

m−1
Z Γ2

dec

16× 3π(1 + Σ
′
Z)

π−1mZ

(p2z −m2
z)

2 +m2
zΓ

2
Z

(269)

To obtain the cross section for e+e− → µ+µ−H, we should replace p2Z = s12 of

σ(e+e− → ZH) and performing the integration over it.

The additional factor of 1/3 in the last line of the calculation comes from the

unstable Z boson. When we break down a 2→ 3 process into a 2→ 2 and a 1→ 2
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process, we need to sum over all possible Z boson polarizations. This summation

gives rise to a factor

gµ1µ2 − pµ1

Z pµ2

Z

m2
Z

, (270)

Multiplying the 2→ 2 and 1→ 2 processes give rise an additional constant

= (gµ1µ2 − pµ1µ2
z

m2
z

)gµ1µ2(g
ν1ν2 − pν1ν2z

m2
z

)gν1ν2 (271)

= (4− 2
p2z
p2z

+
p4z
p4z
) (272)

= 3 (273)

However, for a 2→ 3 process, Z boson polarization only appears in the intermediate

state, and we need to multiply an extra factor of 1/3 to account for all possible

polarizations.
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3.0 Probing Dark Sector Fermions through Higgs Precision Study

3.1 Motivation

Although the discovery of the Higgs boson at the LHC by the ATLAS and CMS

collaborations confirmed all particle contents of the SM, it is clear that this theory

is not a complete description of nature, and one such evidence is dark matter. The

existence of dark matter was first proposed by Fritz Zwicky in the 1930s [82], based

on his observations that the velocity dispersion of galaxies in the Coma cluster of

galaxies was far too large to be supported by the luminous matter. Since then,

numerous studies have confirmed the presence of dark matter at various scales, from

individual galaxies to the entire universe. In fact, dark matter is believed to make

up about 27% of the total mass-energy content of the universe, with ordinary matter

comprising only about 5%.

In particle physics, dark matter is the leading empirical evidence for new particles,

and dark matter candidates are motivated not only by cosmology, but also by robust

problems in particle physics. There are striking hints that it may be linked to

attempts to understand electroweak symmetry breaking, the leading puzzle in the

field today. Dark matter includes WIMPs, hidden dark matter, sterile neutrinos, and

axions, etc. Besides, supersymmetry and models with extra dimensions also provide

a dark matter candidate.

The search for dark matter has been pursued through direct detection, which

measures the cross section for dark matter scattering off atomic nuclei, sets strong

bounds on dark matter properties. Meanwhile, collider searches for dark matter typ-

ically focus on events with missing energy/momentum, providing a complementary
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approach to direct detection. Despite many years of searches, neither approach has

yielded any conclusive evidence of dark matter.

With the high experimental accuracy expected at future colliders, precision mea-

surements of Higgs boson properties may reveal deviations that must be attributed

to new physics, such as SM extension with extra scalars [83, 84] or fermions [85,

86, 87, 88, 89]. The effect of SM with extended scalar on Higgs physics has been

studied comprehensively in Refs. [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], while the

studies with extended fermions [101, 102, 103] focus on how to create a dark matter

candidate satisfying all relevant constraints. Since the possible deviation on Higgs

boson properties will also put stringent bound on these new fermions, it is important

to understand how precision measurements will constrain these new fermions.

In this section, our focus is on the Higgs portal with fermionic dark matter,

which is one of the simplified dark matter models 1. We will investigate this model

from both indirect and direct perspectives. In the indirect search, we will study its

impact on Higgs precision studies, with a primary focus on σ(e+e− → ZH), which

is anticipated to be measurable with a precision of about 1.2% at ILC [1, 2], 0.4%

at FCC-ee [3] and 0.5% at CEPC [4], and explore the parameter space that leads to

deviations greater than 0.5%. In the direct search, we examine the direct production

of the new fermions associated with this model at the (HL-)LHC. By considering both

aspects, we can obtain implication on whether the parameter regions associated with

deviations greater than 0.5% have been and can be covered by the direct searches

for new physics at the (HL)-LHC.

1In simplified dark matter models, the new fermions may belong to a larger dark sector. Without
assuming any specifics about this larger dark sector, we do not incorporate constraints from dark
matter relic density and direct detection, as done in previous studies [101, 102, 103].
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3.2 The Models

We start by introducing two UV complete models that extend the SM with

vector fermions: the singlet-doublet model[85, 86, 87, 101, 103] and the doublet-

triplet model[88, 89, 101, 103]. Both models contains two fermion multiplets to form

a Yukawa interaction term. Besides, we impose the Z2 symmetry, under which the

new fermion multiplets are odd while the SM particles are even. This Z2 symmetry

ensures the lightest dark matter stable, thus become a dark matter candidate and

escapes detection giving signatures of missing energy and momentum. Besides, both

models are treated as simplified models rather than full theories, i.e. the fermions

could be part of a larger dark sector thus we do not expect our model can satisfy the

constraints from the dark matter relic density and direct detection.

3.2.1 Singlet-Double Model

The SM is extended with one fermion singlet χS and one doublet χD, which

transform under the Electroweak gauge group SU(2)L × U(1)Y as

χD =

χ+
D

χ0
D

 ∼ (2,
1

2
) , χS ∼ (1, 0). (274)

Both fields are vector-like fermions. Since the hypercharge of the singlet χS equals

zero, it can be either a Dirac or a Majorana fermion. We discuss both of these

possibilities.
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3.2.1.1 Dirac Singlet-Double Model (DSDM)

We start from the Dirac case. The Lagrangian for the dark sector is

LDM ⊃ −mSχ̄SχS −mDχ̄DχD − (yχSχ̄DH + h.c.), (275)

where y is the Yukawa coupling. In general, the Yukawa coupling y are complex, but

the complex phase can be absorbed into the Fermion spinors. Therefore, y can always

be chosen to be real. Discussions of the consequences of introducing a non-zero phase

can be found in Refs. [104, 105].

After the electroweak symmetry breaking (EWSB), the neutral component of

dark matter acquires extra mass from Yukawa interaction term, thus the mass matrix

of neutral component obtains non-diagonal elements. The new Lagrangian of the

mass term can be written as

Lmass,N
DM = −

(
χ̄S χ̄0

D

)
MN

χS

χ0
D

 (276)

with

MN =

 mS yν/
√
2

yν/
√
2 mD

 (277)

whereN stands for the neutral. The mass matrix can be diagonalized by the following

rotational matrix

R2 =

 cos θ2 sin θ2

− sin θ2 cos θ2

 , (278)

where

sin2 θ2 =
1

2

(
1 +

mD −mS

∆m2

)
, (∆m2)

2 = (mS −mD)
2 + 2y2v2 (279)
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The heavy and light mass eigenstates, χh and χl, are given by

χ0
h = cos θ2χ

0
D + sin θ2χS , χ0

l = − sin θ2χ
0
D + cos θ2χS (280)

with corresponding mass eigenvalues

m0
h,l =

1

2
(mS +mD ±∆m2) (281)

The charged state χ+ = χ+
D is pure doublet with mass equal to mD. The mass

distributions of three mass eigenstates at different values of mD −mS are shown in

Fig.15, where m0
l ,m

0
h and mD are represented by the blue, yellow and green lines

respectively. We have chosen mS = 500GeV and y = 1(1.5) for the solid(dashed)

curve. The χ0
l is the lightest particle thus become a dark matter candidate. As

the Yukawa coupling increasing, m0
l (m

0
h) decreases(increases) since it depends on y

negatively(positively). When mS ≪ mD, χ
0
l is singlet-dominant, and χ0

h are doublet-

dominant thus has the same mass as χ+. When mS ≫ mD, χ
0
l are doublet-dominant

thus m0
l ≈ mD.

In the mass eigenstate basis, the interactions between new fermions and SM

particles are

L̂ ⊃ e√
2sW

[
sin θ2χ̄

0
hγ

µχ+ + cos θ2χ̄
0
l γ

µχ+
]
W+

µ +
e(c2W − s2W )

2sW cW
χ̄+γµχ+Zµ

− e

2sW cW

[
sin2 θ2χ̄

0
hγ

µχ0
h + cos2 θ2χ̄

0
l γ

µχ0
l +

1

2
sin(2θ2)(χ̄

0
hγ

µχ0
l + χ̄0

l γ
µχ0

h)
]
Zµ

− y√
2

[
sin(2θ2)(χ̄

0
hχ

0
h − χ̄0

l χ
0
l ) + cos(2θ2)(χ̄

0
hχ

0
l + χ̄0

l χ
0
h)
]
h (282)

where L̂ denotes the unrenormalized Lagrangian. Since new fermions are vector-like,

the couplings of left-handed and right-handed fermion are same. Besides, the cou-

pling with weak gauge boson is proportional to its coefficient of doublet component.

Charged component does not interact with Higgs boson since its mass is not changed

after EWSB.
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Figure 15: The mass distributions of three mass eigenstates in the Dirac singlet-

doublet model at different values of mD −mS. m0
l ,m

0
h and mD are represented by

the blue, yellow and green lines respectively. We have chosen mS = 500GeV and

y = 1(1.5) for the solid(dashed) curve.

3.2.1.2 Majorana Singlet-Double Model (MSDM)

The SM is extended with a Majorana singlet and a Dirac doublet fermion, and

it is more convenient to express them in terms of Weyl spinors. The Dirac doublet

corresponds to two left-handed Weyl doublets with opposite hypercharge. Under the
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Electroweak gauge group SU(2)L × U(1)Y, they transform according to

χD =

χ+
D

χ0
D

 ∼ (2,
1

2
) , χc

D =

χc0
D

χc−
D

 ∼ (2,−1

2
) (283)

The two-component Weyl fermion form a Dirac fermion by (χD, ϵχ
c∗
D )→ χD, where

ϵ is 2× 2 antisymmetric tensor. Additionally, we assume that the two Weyl spinors

couple to the Higgs field with equal but opposite strengths. This particular coupling

choice forbids any new physics contributions to the oblique T parameter due to the

custodial symmetry. Other coupling choices can be found in the literature, such as

[101, 102]. Under this assumption, the dark sector Lagrangian in two-component

notation is expressed as

LDM ⊃ −
1

2
mSχSχS +mDχ

c
DϵχD − y(χSH

†χD − χSχ
c
DϵH) + h.c. (284)

After the EWSB, the neutral components acquire additional mass contributions

from the non-zero Higgs vacuum expectation value (vev), which results in the La-

grangian of the mass term expressed as

Lmass,N
DM = (−1

2
χ̄iMN

ijχj + h.c.), (285)

where χ = (χS, χ
c0
D , χ

0
D)

T and

MN =


mS −yv/

√
2 yv/

√
2

−yv/
√
2 0 −mD

yv/
√
2 −mD 0

 (286)
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Figure 16: The mass distributions of four mass eigenstates in the Majorana singlet-

doublet model at different values of mD − mS. m0
l ,m

0
h and m0

m = m+ = mD are

represented by the blue, yellow and green lines respectively. We have chosen mS =

500GeV and y = 1(2) for the solid(dashed) curve.

The mass matrix can be diagonalized by the following transformation
χ0
h

χ0
m

χ0
l

 =


cos θ4 − 1√

2
sin θ4

1√
2
sin θ4

0 i√
2

i√
2

sin θ4
1√
2
cos θ4 − 1√

2
cos θ4



χS

χc0
D

χ0
D

 , (287)

The mixing angle can be obtained from Eq. 279 by performing the replacement

117



2→ 4. The corresponding mass eigenvalues are

m0
h,l =

1

2
(mS +mD ±∆m4) , m0

m = mD (288)

where (∆m4)
2 = (mS −mD)

2 + 4y2v2.

The charged components remain pure doublet with mass m+ = mD. The mass

distribution of four mass eigenstates as a function of mD −mS is shown in Fig.16,

where m0
l ,m

0
h and m0

m = m+ = mD are represented by the blue, yellow and green

line respectively. We have chosen mS = 500GeV , and the Yukawa coupling are

considered with values y = 1 and y = 2. The χ0
l is the lightest particle thus become

a dark matter candidate. The relationship between masses and Yukawa coupling is

same as the Dirac singlet-doublet model.

In the mass eigenstate basis, the interactions between new fermions and SM

particles are

L̂ ⊃ e

2sW

[
sin θ4χ

0
hγ

µχ+ − cos θ2χ
0
l γ

µχ+ + χ0
mγ

µχ+
]
W+

µ

+
e(c2W − s2W )

2sW cW
χ−γµχ+Zµ −

e

2sW cW

[
sin θ4χ

0
hγ

µχ0
m − cos θ4χ

0
l γ

µχ0
m

]
Zµ

− y

2

[
sin(2θ4)(χ

0
hχ

0
h − χ0

l χ
0
l )− 2 cos(2θ2)χ

0
hχ

0
l

]
h (289)

Comparing with Dirac singlet case, one find that the χ0
iχ

±
j W

± coupling for Majorana

singlet case is suppressed by 1/
√
2. Similar to DSDM, χ0

m and χ+ does not interact

with Higgs boson since its mass is not changed after EWSB.

The extension of the SM with a Majorana singlet and a Dirac doublet fermions

corresponds to the Bino-Higgsino system2 with decoupled Wino in Minimal Super-

symmetric Model (MSSM) with tan β = 1, y = g′/
√
2. The search for Higgsino pair

production has been explored at the LHC, and the search results can be implemented

2Bino is the dark matter candidate, and Higgsinos are heavier thus can decay into Bino.
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in our model. The implementation of LHC search result will be discussed with more

details in Sec. 3.4.

3.2.2 Doublet-Triplet Model

In this model, the SM is extended with one fermion doublet, χD and one fermion

triplet χT , which transforms under the Electroweak gauge group SU(2)L ×U(1)Y as

χD =

χr+1
D

χr
D

 ∼ (2,
1

2
+ r) , χT =


χr+1
T

χr
T

χr−1
T

 ∼ (3, r) (290)

where the superscript denotes the charge. We consider the cases r = 0,−1, thus
both multiplets contain a neutral component. For r = 0, the triplet can be either

a Dirac or Majorana fermion, while the doublet is always a Dirac fermions. Thus,

there are three possible cases: r = −1 with Dirac triplet, r = 0 with Dirac triplet,

and r = 0 with Majorana triplet.

3.2.2.1 Dirac Doublet-Triplet Model with r = −1 (DDTM1)

For r = −1, the doublet and triplet components are

χD =

χ0
D

χ−
D

 , χT =

χ−
T /
√
2 χ0

T

χ−−
T −χ−

T /
√
2

 (291)

where the triplet is expressed in its adjoint representation.

The Lagrangian of dark sector is

LDM = −mDχ̄DχD −mTTr(χ̄TχT )− (yχ̄DχTH + h.c.) (292)
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Figure 17: The mass distributions of five mass eigenstates in the Dirac doublet-triplet

model with r = −1 at different values of mT − mD. m0
l ,m

0
h,m

±
l ,m

±
h and mT are

represented by the blue, yellow, green, red and purple lines respectively. We have

chosen mD = 1000GeV and y = 1(2) for the solid(dashed) curve.

After EWSB, the mass matrices for charged and charged neutral fermions in the

bases (χ0
T , χ

0
D) and (χ−

T , χ
−
D) are

MN =

 mT yv/
√
2

yv/
√
2 mD

 , MC =

 mT −yv/2
−yv/2 mD

 (293)
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where C(N) denotes the charged(charged neutral) components. They can be diago-

nalized with the following transformationsχ0
h

χ0
l

 =

 cos θ2 sin θ2

− sin θ2 cos θ2

χ0
T

χ0
D

 ,

χ−
h

χ−
l

 =

 cos θ1 sin θ1

− sin θ1 cos θ1

χ−
T

χ−
D

 (294)

where sin2 θ2(1) = 1/2 + (mT − mD)/(2∆m2(1)) and (∆m2(1))
2 = (mD − mT )

2 +

2(1)y2v2. The masses for charged and charged neutral mass eigenstates are

m0
h,l =

1

2
(mD +mT ±∆m2) , m−

h,l =
1

2
(mD +mT ±∆m1) (295)

while χ−−
T remains pure triplet with mass m−− = mT . The physical mass spectrum

is shown in Fig. 17 for two different Yukawa couplings, y = 1 and y = 2. χ0
l is lightest

thus becomes a dark matter candidate. As Yukawa coupling increasing, the masses

for χ0,±
h increase, while decrease for χ0,±

l , which can be understood from Eq. 295. The

pure triplet particle χ−−
T is independent on the Yukawa coupling. As mT−mD ≫ yv,

sin θ1,2 = 0, χ0,±
l becomes doublet-dominate, which behaves like mD, thus the curve

tends to mD = 1000GeV. As mT −mD ≫ yv, χ0,±
h becomes triplet-dominate, thus

m0,±
h ≈ mT .

The interactions between extra fermions and EW gauge bosons are

L̂ ⊃+
e

2sW

[
(−2 cos θ1 cos θ2 +

√
2 sin θ1 sin θ2)χ

+
h γ

µχ0
h

+ (
√
2 cos θ2 sin θ1 + 2 cos θ1 sin θ2)χ

+
h γ

µχ0
l

+ (2 cos θ2 sin θ1 +
√
2 cos θ1 sin θ2)χ

+
l γ

µχ0
h

+ (
√
2 cos θ1 cos θ2 − 2 sin θ1 sin θ2)χ

+
l γ

µχ0
l

+ χ++
T γµ(2 sin θ1χ

−
l − 2 cos θ1χ

−
h )
]
W−

µ

+
e

2sW cW

[
(cos2 θ2 + 1)χ̄0

hγ
µχ0

h + (sin2 θ2 + 1)χ̄0
l γ

µχ0
l
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− 1

2
sin 2θ2(χ̄

0
hγ

µχ0
l + χ̄0

l γ
µχ0

h)− (sin2 θ2 − 2s2W )χ̄+
h γ

µχ−
h

− (cos2 θ2 − 2s2W )χ̄+
l γ

µχ−
l −

1

2
sin 2θ1(χ̄

+
h γ

µχ−
l + χ̄+

l γ
µχ−

h )

− (1− 2s2W )χ++
T γµχ−−

T

]
Zµ

+
1√
2
y
[
sin 2θ2(χ̄

0
l χ

0
l − χ̄0

hχ
0
h)− cos 2θ2(χ̄

0
hχ

0
l + χ̄0

l χ
0
h)

+
sin 2θ1√

2
(χ+

h χ
−
h − χ+

l χ
−
l ) +

cos 2θ1√
2

(χ+
h χ

−
l + χ+

l χ
−
h )
]
h (296)

Both doublet and triplet fermions interact with weak gauge bosons, thus the

couplings are more complicated compared with the singlet-doublet case. χ−−
T does

not interact with Higgs since its mass does not change after EWSB.

3.2.2.2 Dirac Doublet-Triplet Model with r = 0 (DDTM0)

For r = 0, the doublet and triplet have the following components

χD =

χ+
D

χ0
D

 , χT =

χ0
T/
√
2 χ+

T

χ−
T
′ χ0

T/
√
2

 (297)

The Lagrangian for dark sector is same as the one with r = −1, which is shown in

Eq.292. After EWSB, the mass matrices for charged and neutral fermions are

MN =

 mT yv/2

yv/2 mD

 , MC =

 mT −yv/
√
2

−yv/
√
2 mD

 (298)

in the bases (χ0
T , χ

0
D) and (χ+

T , χ
+
D). Clearly, the mass matrices for neutral and

charged states are same as the one with r = −1 by interchange the charged and
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charged neutral component MC ↔ MN . Thus we obtain the following rotational

matricesχ0
h

χ0
l

 =

 cos θ1 sin θ1

− sin θ1 cos θ1

χ0
T

χ0
D

 ,

χ+
h

χ+
l

 =

 cos θ2 sin θ2

− sin θ2 cos θ2

χ+
T

χ+
D

 (299)

and the corresponding masses

m0
h,l =

1

2
(mD +mT ±∆m1) , m−

h,l =
1

2
(mD +mT ±∆m2) (300)

The negative charged component χ−′

T is pure triplet with mass mT . If mD,T > 0,

m0
l > m±

l , i.e. the lightest particle is not charged neutral. To address this problem,

we perform the transformation, χ0,±
l → iγ5χ0,±

l , which cause m0,±
l → −m0,±

l . The

mass difference becomes

|m0
l | − |m±

l | =
1

2

(
∆m1 −∆m2

)
=

1

2

(√
(mD −mT )2 + y2v2 −

√
(mD −mT )2 + 2y2v2

)
≤ 0. (301)

The the mass distributions of all five particles in this model after this transformation

is shown in Fig. 18. m0
l ,m

0
h,m

±
l ,m

±
h and mT are represented by the blue, yellow,

green, red and purple lines respectively. We have chosen mD = −100GeV and

considered two values for the Yukawa coupling, y = 1 (solid) and y = 2 (dashed). As

one can read from this figure, the lightest particle is charged neutral. One can also

notice that m0
h ≈ m±

h ≈ mT , which indicates that these three particles are triplet

dominant, while m0,±
l are doublet-dominant.

The interactions between χ0,+
l,h and W,h are same as the y = −1 case by inter-

changing θ1 ↔ θ2. The interactions involving χ−
T are

L̂ ⊃+
e

2sW

[
+ χ+

T γ
µ(sin θ1χ

0
l + cos θ1χ

0
h)
]
W−

µ (302)
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Due to the change of hypercharge, simply interchanging the mixing angle does not

lead to the correct interaction between new fermions and Z boson. The Lagrangian

involving new fermions and Z boson has the following form

L̂ ⊃ − e

2sW cW

[
sin2 θ1χ̄

0
hγ

µχ0
h + cos2 θ1χ̄

0
l γ

µχ0
l +

1

2
sin 2θ1(χ̄

0
hγ

µχ0
l + χ̄0

l γ
µχ0

h)

− (1 + cos2 θ2 − 2s2W )χ̄+
h γ

µχ−
h − (1 + sin2 θ2 − 2s2W )χ̄+

l γ
µχ−

l

+
1

2
sin 2θ2(χ̄

+
h γ

µχ−
l + χ̄+

l γ
µχ−

h ) + 2χ̄+
Tχ

−
T

]
Zµ (303)
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Figure 18: The mass distributions of five mass eigenstates in the Dirac doublet-

triplet model with r = 0 at different values of mT . m0
l ,m

0
h,m

±
l ,m

±
h and mT are

represented by the blue, yellow, green, red and purple lines respectively. We have

chosen mD = −100GeV and y = 1(2) for the solid(dashed) curve.
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3.2.2.3 Majorana Doublet-Triplet Model (MDTM)

Same as Majorana singlet Model, we rewrite the Lagrangian in terms of Weyl

spinors. The doublets have the same form with Eq.283, and the triplet is

χT =

χ0
T/
√
2 χ+

T

χ−
T χ0

T/
√
2

 (304)

With two-component notation, the Lagrangian of the mass and Yukawa interac-

tions terms is

LDM ⊃ mDχ
c
DϵχD −

1

2
mTTr(χTχT )− y(H†χTχD − χcT

D ϵχTH) + h.c. (305)

As for the Majorana singlet-doublet model, we assume the Yukawa couplings for two

doublets are same but with opposite sign. After EWSB, the Lagrangian for the mass

terms is

Lmass
DM = −1

2

(
χ0
T χc0

D χ0
D

)
MN


χ0
T

χc0
D

χ0
D

− (
χ−
T χc−

D

)
MC

χ+
T

χ+
D

+ h.c., (306)

and the mass matrices are

MN =


mT yv/2 −yv/2
yv/2 0 −mD

−yv/2 −mD 0

 , MC =

 mT yv/
√
2

yv/
√
2 mD

 (307)

The mass matrices can be diagonalized by
χ0
h

χ0
m

χ0
l

 =


cos θ2 sin θ2/

√
2 − sin θ2/

√
2

0 i/
√
2 i/

√
2

sin θ2 − cos θ2/
√
2 cos θ2/

√
2



χ0
T

χc0
D

χ0
D

 ,
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χ+
h

χ+
l

 =

 cos θ2 sin θ2

− sin θ2 cos θ2

χ+
T

χ+
D

 (308)

The corresponding masses are

m0
h,l = m+

h,l =
1

2
(mD +mT ±∆m2) , m0

m = mD (309)

The mass distribution of five mass eigenstates in the Majorana doublet-triplet model

at different values of mD − mT is shown in Fig.19. One can notice that χ0,±
l are

both lightest and mass degenerate, while this mass degeneracy if lifted by one-loop

corrections involving gauge bosons [106, 107, 108, 109], and only the neutral be-

comes dark matter candidate. When mD ≫ mT , all three heavy particles are triplet

dominant, and two light particles are doublet dominant. One the other hand, when

mT ≫ mD, light particles become triplet dominant. Heavy particles, explicitly χ±
h

and χ0
h become doublet-dominant. Therefore, m0,±

h ≈ mD.

The interaction between new fermions and SM particles is

L̂ ⊃+
e

2sW

[
− χ+

h γ
µ
(
(1 + cos2 θ2)χ

0
h + i sin θ2χ

0
m +

sin 2θ2
2

χ0
l

)
+ χ+

l γ
µ
(
(1 + sin2 θ2)χ

0
l + i cos θ2χ

0
m +

sin 2θ2
2

χ0
h

)]
W−

µ

+
e

2sW cW

[
(i cos θ2χ

0
l − i sin θ2χ

0
h)γ

µχ0
m −

1

2
sin 2θ2(χ̄

+
a γ

µχ−
l + χ̄+

c γ
µχ−

h )

+ (1 + cos2 θ2 − 2s2W )χ̄+
a γ

µχ−
h + (1 + sin2 θ2 − 2s2W )χ̄+

c γ
µχ−

l

]
Zµ

+
1√
2
y
[
sin 2θ2(χ̄

0
cχ

0
l − χ̄0

aχ
0
h) + cos 2θ2(χ̄

0
aχ

0
l + χ̄0

cχ
0
h)

+ sin 2θ2(χ
+
l χ

−
l − χ+

h χ
−
h ) + cos 2θ2(χ

+
h χ

−
l + χ+

l χ
−
h )
]
h (310)

The extension of the SM with Dirac doublet and Majorana triplet fermion cor-

responds to the Higgsino-Wino system(with decoupled bino) in MSSM for tan β =
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1, y = g. The experimental constraints on this scenario can be used to constrain

parameters of MDTM, which will be discussed more in Sec. 3.4.

y=1
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m
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Figure 19: The mass distributions of five mass eigenstates in the Majorana doublet-

triplet model at different values of mD −mT . m
0,±
l ,m0,±

h and mD are represented by

the blue, yellow and green lines respectively. We have chosen mT = 500GeV and

y = 1(2) for the solid(dashed) curve.

3.2.3 Model Summary

In Table.7, we summarized the gauge, mass eigenstates as well as the free param-

eter set that we will implemented for calculate σ(e+e− → ZH) for models introduced

in Sec. 3.2.1 and Sec. 3.2.2.
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models gauge states mass states free parameters

DSDM χS = χ0
S, χD =

χ+
D

χ0
D

 χ0
h,l, χ

+ y,m0
l ,∆mhl = m0

h −m0
l

MSDM χS = χ0
S, χD =

χ+
D

χ0
D

 χ0
h,l, χ

0
D, χ

+
D y,m0

l ,∆mhl = m0
h −m0

l

DDTM1 χD =

χ0
D

χ−
D

 , χT =


χ0
T

χ−
T

χ−−
T

 χ0
h,l, χ

−
h,l, χ

−− y,m0
l ,∆mll = m+

l −m0
l

DDTM0 χD =

χ+
D

χ0
D

 , χT =


χ+
T

χ0
T

χ
′−
T

 χ0
h,l, χ

+
h,l, χ

− y,m0
l ,∆mhl = m0

h −m0
l

MDTM χD =

χ+
D

χ0
D

 , χT =


χ+
T

χ0
T

χ−
T

 χ0,±
l , χ0,±

h , χ0
m y,m0

l ,∆mhl = m0
h −m0

l

Table 7: Summary table of gauge, mass eigenstates and free parameter set for the

five models introduced in Sec. 3.2.1 and Sec. 3.2.2.

3.3 Constraints

Before implementing any constraints, we restrict the free parameters introduced

in Table.7 to the following ranges:

• m0
l < 1 TeV, m±

l ≥ 103.5 GeV

m0
l is the mass of lightest charged neutral particle. We are interested in the dark
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matter candidate with mass below TeV range, which is possible to be found at

colliders. The lower bound on m±
l , which is the mass of the lightest charged

particle, comes from the exclusion limit searching for charginos at LEP [110].

• ∆mXl = mX −m0
l < 1.5 TeV

∆mXl (introduced in Table.7) is the mass difference between heavy particle with

mass mX and the lightest dark matter. The sensitivity of the collider searches

depends on the visible energy released in the decay process. The mass difference

range at the order of TeV covers all phenomenological possibilities: (a) non-

compressed spectra, ∆M > MZ,W,h; (b) compressed spectra ∆M ∼ O(1GeV);

(c) nearly-degenerate spectra ∆M ∼ O(100MeV). Each scenario corresponds to

different final states, which will be discussed more in Sec.3.3.2.

• 0 < y < 3

Large values of Yukawa coupling are constrained by perturbativity, i.e. the cor-

rections from higher order loops should be suppressed, which requires y/π < 1.

Besides, all parameters are chosen to be real since the complex phase vanishes with

field redefinition.

While one could impose the relic density as a constraint on the parameter space,

in the spirit of simplified models we will not do this here in order not to cut away

regions of parameter space that might be interesting from a collider perspective.

Instead we note that there are several alternate possibilities to avoid a too large

relic density in this case. For example, First, if χ̃0
1 is not absolutely stable, but

just long lived enough to escape the detectors, the relic density constraint can be

satisfied while the collider phenomenology is unchanged. Another possibility is a

non-standard cosmological history, for example late decaying particles can inject

additional entropy after χ̃0
1 freezes out, such that its relic density is diluted.
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Instead, the constraints we implemented include oblique parameters, current and

expected dark matter search results at the LEP, LHC as well as HL-LHC, and the

relative decay ratio of Higgs to diphotons with respect to the SM result Rγ = Γ(H →
γγ)/ΓSM(H → γγ).

3.3.1 Oblique Parameters

Given that new physics is heavier than the W and Z boson, the new physics

indirectly contribute to the propagators of gauge boson, i.e. the so-called oblique

corrections[111, 112, 113]. The effects of oblique corrections are parameterized into

six oblique parameters: S,T,U,V,X and W, but only the first three parameters con-

tribute to electroweak precision observables. Furthermore, we fix U=0, which is

motivated by the fact that U is suppressed by an additional factor M2
new/M

2
Z com-

pared to S and T where Mnew is the energy scale of new physics. This suppression

can also be understood from EFT: S and T correspond to dimension-6 operator

H†W a
µνσ

aHBµν and H†(DµH)(DµH)†H, while the operator contributing to U in the

lowest order is a dimension-8 operator H†W a
µνσ

aHH†W bµνσbH [114].

The definitions of S and T at one-loop level are

α

4s2W c2W
S =

Πnew
ZZ (M2

Z)− Πnew
ZZ (0)

M2
Z

− c2W − s2W
cW sW

Πnew
Zγ (M2

Z)

M2
Z

− Πnew
γγ (M2

Z)

M2
Z

(311)

αT = − s2W
c2WM2

Z

ΣAA
T (0) +

1

M2
W

ΣWW
T (0)− 2sW

cWM2
Z

ΣZA
T (0)− 1

M2
Z

ΣZZ
T (0) (312)

where Σnew stands for the self-energy corrections from new physics, and Π(p2) =

Σ(p2)/p2. Under the assumption U = 0, the numerical value of S and T from

multiparameter fit at 95% CL are [41]

S = −0.01± 0.14 , T = 0.04± 0.12. (313)
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3.3.2 LHC Search

Due to the Z2 symmetry, fermionic dark matter must be produced in pairs, and

particles heavier than χ0
l eventually decay into χ0

l . The dark matter pair production

channels at hadron colliders include

qq̄′ → W ∗− → χ±(→ χ0
lW

∗±) + χ0(→ χ0
l + Z∗/H), (314)

qq̄′ → Z∗ → χ0(→ χ0
l + Z∗/H) + χ0(→ χ0

l + Z∗/H) (315)

qq̄′ → Z∗ → χ±(→ χ0
lW

±∗) + χ∓(→ χ0
lW

∓∗), (316)

where χ±,0 denote the heavier charged and charged neutral particles, and they even-

tually devay to the lightest charged neutral particle through W,Z or H 3. The fist

production channel leads to the strongest constraints since the production cross sec-

tion is largest. The reason is that Zff vertex is suppressed by weak mixing angle.

The final Z, W and Higgs can decay either leptonically or hadronically, which lead

to the signatures with hadronic, semi-leptonic and fully leptonic final states plus

missing energy.

Fully hadronic final states benefit from large SM gauge boson decay branching

ratios, thus this search channel is sensitive to the scenarios with large mass splitting.

Multi lepton final state is sensitive to the scenario with moderate mass splitting,

while this search fails in the compressed mass scenario, since the leptons from the

decays become too soft to pass the event selection trigger. In such case, an energetic

jet from initial state radiation can help enhance the detectability of the signal. The

final state particles recoil against the ISR jet, i.e. the missing transverse momenta is

at the same order as the jet, thus the signal can be detected. According to [115], the

3The heavier charged neutral particles can also decay via photon through loop-induced interac-
tion, which is suppressed thus not included.
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final state with a soft photon, jet and missing energy can also improve sensitivity of

compressed mass scenario.

Fig. 20 from Ref. [116] illustrates the analysis conducted to search for Supersym-

metry in the Bino-Wino simplified scenario. The figure displays the best exclusion

limit achieved for each point in the mass plane {mχ̃0
1
,mχ̃±

1
= mχ̃0

2
}, where mχ̃0

1
rep-

resents the Bino mass, and mχ̃±
1
= mχ̃0

2
corresponds to the mass-degenerate Wino

mass. It is evident from the plot that the fully hadronic final state provides the

best sensitivity at large mass difference, and the semi-leptonic final state also shows

comparable sensitivity in this scenario. On the other hand, the soft-lepton final state

can reach the scenario where mass different is of tens of GeV.

3.3.3 Higgs Decays

In the doublet-triplet model, the decay rate of Higgs to di-photons is changed at

one-loop level due to the presence of virtual charged fermions. The decay ratio with

respect to the SM rate is given by

Rγ =
Γ(h→ γγ)

ΓSM(h→ γγ)
=

∣∣∣1 + Aχ

ASM

∣∣∣2 (317)

The one-loop corrections for the SM, ASM and the fermionic dark matter Aχ are

defined as

ASM =
∑
f

NcA
2
fAF (τF ) + AB(τW ) , Aχ =

∑
χ

Q2
χyχ

v

mχ

AF (τχ) (318)

with τi = m2
H/4m

2
i . Nc is the color number of SM fermions, and mH is the Higgs

mass. Qχ and yχ are the charge number and Yukawa coupling of new fermions. The

loop functions Af,B for τ ≤ 1 are given by [103, 117, 118, 119]

AF (τ) =
2

τ 2

{
τ + (τ − 1) arcsin2

√
τ
}
,
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Figure 20: The analysis of searching for Suppersymmetry in Bino-Wino simplified

scenario with the best exclusion limit for each point in the mass plane {mχ̃0
1
,mχ̃±

1
=

mχ̃0
2
}, where mχ̃0

1
is the Bino mass, and mχ̃±

1
= mχ̃0

2
is the mass degenerate Wino

mass. The charged Wino decays through W boson. The charge neutral Wino can

decay via either Z or Higgs, and the branching ratio is assumed to be equal.

AB(τ) = −
1

τ 2

{
2τ 2 + 3τ + (6τ − 2) arcsin2

√
τ
}

(319)

If the new fermions are light such that τ > 1, then AF becomes[117, 118, 119]

AF (τ) =
2

τ 2

{
τ − τ − 1

4

[
ln

1 +
√
1− τ−1

1−
√
1− τ−1

− iπ
]2}

. (320)
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However, the case of τ > 1 has been excluded by LEP search [110] since mχ̃±
1

>

103.5 GeV > mH/2.

For the three doublet-triplet models discussed in Section 3.2.2, the expression for

Aχ is given by

Aχ =
v2y2

2(m±
h −m±

l )

( 1

m±
h

AF (τχ±
h
)− 1

m±
l

AF (τχ±
l
)
)
×

 1 for DDTM

2 for DDTM0, MDTM

(321)

The current measurements of Rγ from the ATLAS and CMS experiments at 95%

CL are RATLAS
γ = 1.04+0.20

−0.18 [120] and RCMS
γ = 1.12 ± 0.18 [121], respectively. The

projected result at HL-LHC can be found in Ref. [122], in which the uncertainties

are expected to reduced to 8% by combining ggF and bbH channel. The expected

result at FCC-ee is RFCC−ee
γ = 1±0.18[123]. However, this precision is comparatively

lower than the projected HL-LHC result thus implementing the FCC-ee experiment

for studying Rγ may not be necessary.

3.4 Impact on σ(e+e− → ZH)

The deviation of σ(e+e− → ZH) due to new fermions is defined as

δ =
σFDM(e+e− → ZH)

σSM(e+e− → ZH)
, (322)

where σFDM considers the contribution from new fermions only. Both integrated cross

sections are computed assuming unpolarized electron-positron beams. The inclusion

of polarized beams does not introduce any changes, as all dark sector fermions are

considered to be vector fermions. The Standard Model contribution, σSM(e+e− →
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Figure 21: Self-energy (left) and vertex (right) Feynman diagrams with new fermions,

denoted as F , and V = γ, Z.

ZH), takes into account one-loop EW as well as fermionic two-loop electroweak

corrections, and the corresponding result is obtained from Table 3. On the other

hand, the cross section for the process involving dark sector fermions, σFDM(e+e− →
ZH), incorporates one-loop electroweak corrections only.

At the one-loop level, the inclusion of new fermions contributes to σFDM(e+e− →
ZH) through self-energy and vertex contributions. The corresponding Feynman dia-

grams illustrating these contributions are depicted in Fig. 21. It is worth noting that

the vertex contributions with V = A dominate in this case. This dominance arises

from the large Yukawa coupling and the less χχZ couplings, which is suppressed by

weak mixing angle.

Input parameters used are same as Eq.244, and on-shell renormalization scheme

is employed for fields, mass and electromagnetic coupling e. The α(0) scheme is used
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for the latter, i.e. e is renormalized to its value in Thomson limit. In Sec.1.2.3.1,

we discussed that the SM electromagnetic renormalization constant δZSM
e shown in

Eq.81 is ill-defined due to light fermions, while this problem does not appear in

calculating the contributions from dark sector fermions, δZFDM
e , since new charged

fermions are all massive. Besides, dark fermions are intermediate states so dark

matter fields and masses do not need to be renormalized.

3.4.1 Majorana Singlet-Double Model (MSDM)

For Majorana singlet-doublet model, we choose y,m0
h,∆mhl = m0

h −m0
l as free

parameters. There are two solutions to the relations between the Lagrangian param-

eter set, {mS,mD, y}, and the free parameter set we chosen, which originate from

the mixing angle, sin2 θ4. In terms of free parameters, it is written as

sin2 θ4 =
1

2

(
1±

√
1− 4

x2

)
, (323)

where x = ∆m/(vy). The positive solution leads to doublet-dominant χ0
h, thus we

refer this solution as doublet-dominant scenario, and the other as singlet-dominant

scenario. Besides, x ≥ 2 is required to satisfy the condition sin2 θ2 ≤ 1, which

gives rises to large mass difference between χ0
h and χ0

l assuming y = O(1), ∆m =

O( 500 GeV ). To constrain dark matter particles with large mass difference, we

implement the collider search with energetic leptonic and hadronic final states [116,

124, 125, 126, 127].

In the doublet-dominant scenario, the dark matter candidate remains mostly a

singlet, and all three heavy particles are nearly degenerate masses doublets. This

scenario is similar to the Bino-Higgsino system (with decoupled Wino) in the Min-

imal Supersymmetric Standard Model (MSSM) for tan β = 1 and y = g. Fig. 22
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displays the results of a parameter scan for y = 1 (upper plot) and y = 1.5 (lower

plot). In each plot, different size of the cross section relative deviation is illustrated

with different colored stars. The green, yellow, red, and purple stars represent de-

viations of {0, 0.5%}, {0.5%, 1%}, {1%, 3%}, and {3%,∞} respectively. Parameter

space points excluded by oblique parameters is indicated by gray stars, but they do

not appear in the Majorana singlet-doublet model due to custodial symmetry. The

most stringent constraint in current LHC data arises from searches of Higgsino pair

production with fully hadronic final state, denoted as “4q, ATLAS” in Fig.. 22. For

massless dark matter, mass differences smaller than 900 GeV are excluded at 95%

confidence level (CL). The expected 95% CL exclusion region at HL-LHC, focusing

on the final state with 1 lepton and 2 b-jets, places an upper limit on ∆mhl around

1100 GeV. For y = 1, only a small part of the survived parameter space points yields

deviations greater than 1%. More parameter points lead to deviations greater than

3% for y = 1.5.

In singlet-dominant scenario, m0
h ≈ mS ≫ mD ≈ m0

l , thus the production chan-

nel from pp → χ0,±
D χ0,∓

D . Due to the small mass difference between pure doublet

and the dark matter candidate, we implement the collider search for compressed

Higgsinos [124, 129, 130, 131, 132, 133] and replace ∆mhl by ∆mDl = mD − m0
l .

The result of a parameter scan in the singlet-dominant region with y = 1 fixed is

shown in Fig. 23. Two regions exhibit δ ≥ 0.5%: m0
l ≤ 50,GeV and m0

l ≈ 100,GeV.

The first region leads to large relative deviations due to the threshold effects and has

already been excluded by LEP. In the second region, m0
h reaches its minimum value.

The LHC search with three soft lepton in the final states excludes mass difference

up to 60 GeV at 95% CL. Increasing the Yukawa coupling to 1.5 does not cause any

qualitative differences thus not shown.

137



★

★

★

★

★

★

★

★

★

★

★

★

★

★★

★

★

★

★★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★★

★

★

★

★

★

★

★

★

★
★

★

★★

★

★

★★

★

★

★
★

★

★

★
★

★

★★

★
★

★

★★

★

★

★

★

★

★

★

★ ★

★

★

★
★

★

★

★

★

★

★

★

★

★★
★

★

★

★

★★

★

★

★

★

★

★

★

★

★

★

★

★★
★★

★
★

★
★

★

★

★

★

★

★

★
★

★

★

★

★
★

★ ★

★

★

★

★

★

★

★

★

★

★

★ ★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★
★

★

★

★
★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★ ★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★★

★

★

★

★

★

★

★

★

★

★

★

★

★ ★

★

★

★

★★

★

★

★

★
★

★

★

★
★

★

★

★

★

★

★ ★

★

★

★
★

★

★

★

★

★

★

★

★

★
★

★

★
★

★

★

★

★
★

★

★

★

★

★

★★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★
★

★

★ ★

★

★
★

★
★

★

★

★
★

★

★

★

★

★

★★

★

★

★
★

★

★ ★★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★ ★

★

★

★

★

★

★

★

★

★

★

★

★
★ ★

★

★

★
★

★

★ ★★

★

★

★

★

★

★

★

★

★

★

★ ★

★
★

★

★

★

★

★

★
★

★

★

★
★

★★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★
★

★

★
★

★
★

★

★
★

★

★ ★

★

★
★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★★

★

★

★

★
★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★ ★

★

★

★

★★

★
★

★

★

★

★★
★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★★

★

★

★

★★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★
★

★

★

★
★

★

★ ★

★

★
★

★

★

★
★★

★
★

★

★

★

★

★
★

★
★

★

★

★

★

★

★
★
★

★

★★

★

★
★

★

★

★

★★

★

★

★

★

★
★

★

★

★

★
★

★

★

4q, ATLAS

1lbb, HL-LHC

★ δ⩽0.5%

★ 0.5%⩽δ⩽1%

★ 1%⩽δ⩽3%

★ δ⩾3%

★ Exclude by S,T

MSDM-doublet, y=1

0 200 400 600 800 1000

600

800

1000

1200

1400

1600

1800

m
l

0
[GeV]

Δ
m

h
l=
m

h0
-
m

l0
[G

e
V
]

★

★

★

★

★

★
★

★
★★

★

★
★

★

★
★

★

★
★

★

★

★

★
★

★ ★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★ ★

★

★

★

★

★

★

★

★
★

★ ★

★

★
★

★

★

★★

★

★

★
★ ★

★ ★

★

★

★

★

★

★

★

★ ★

★

★★

★

★

★

★

★

★

★

★

★
★

★

★

★
★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★ ★★

★

★
★

★

★

★
★

★

★

★
★

★

★

★★

★

★ ★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★ ★

★

★

★

★ ★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★ ★

★

★

★

★

★

★

★

★

★

★
★★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★ ★

★

★

★

★

★

★

★

★
★

★ ★

★

★

★

★

★

★

★

★

★

★

★

★ ★

★

★
★

★

★

★ ★

★

★

★

★

★

★

★

★
★

★

★

★

★★

★ ★

★★

★

★★
★

★

★

★

★ ★

★

★

★

★

★

★

★

★

★

★

★

★★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★
★

★

★

★ ★

★

★

★ ★

★

★

★

★

★

★

★

★

★ ★

★

★

★

★

★

★

★
★

★

★
★

★

★

★★
★

★
★★★

★

★
★

★

★

★

★

★

★

★

★
★

★

★★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★ ★

★

★

★

★★

★

★

★

★

★

★

★

★

★
★

★
★

★

★
★

★

★

★

★

★

★

★

★
★

★

★

★

★★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★★
★★

★

★ ★★

★

★

★

★

★

★

★

★
★

★
★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★
★

★

★

★

★

★

★

★

★
★

★

★
★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★ ★

★
★
★

★

★★
★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

4q, ATLAS

1lbb, HL-LHC

★ δ⩽0.5%

★ 0.5%⩽δ⩽1%

★ 1%⩽δ⩽3%

★ δ⩾3%

★ Exclude by S,T

MSDM-doublet, y=1.5

0 200 400 600 800 1000

800

1000

1200

1400

1600

1800

m
l

0
[GeV]

Δ
m

h
l=
m

h0
-
m

l0
[G

e
V
]

Figure 22: Parameter scan result for Majorana singlet-doublet model with y = 1

and y = 1.5 in doublet-dominant scenario, together with current and projected

LHC constraints from Refs. [125] (“4q, ATLAS”) and [127], (“1lbb, HL-LHC”),

respectively.

138



★

★★

★

★

★
★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★
★

★
★

★
★

★

★

★

★
★

★

★
★

★

★

★

★

★

★

★

★
★

★

★★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★★
★

★

★

★

★

★

★★

★

★

★

★

★

★

★

★

★

★★

★

★

★

★★

★ ★

★

★

★

★

★

★

★
★

★★

★

★

★

★

★

★

★

★

★ ★
★

★
★

★

★★

★ ★

★

★

★

★

★

★

★

★

★
★
★

★

★

★

★
★

★

★

★ ★

★

★

★

★★

★★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★ ★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★★

★

★

★

★
★

★

★

★

★

★

★

★
★

★

★

★

★

★

★
★★

★

★

★

★ ★

★

★

★

★
★

★
★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★ ★

★

★
★

★

★

★

★

★

★
★

★

★

★
★

★

★ ★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★★

★

★
★

★

★

★

★

★★

★

★

★
★

★ ★

★

★

★★

★

★

★

★

★
★

★

★

★

★
★

★

★

★

★

★

★★

★

★

★

★
★

★

★
★

★
★

★

★

★

★

★

★

★

★★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★★★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★
★

★★

★
★

★

★

★

★

★

★

★

★
★

★

★

★

★
★

★★

★

★

★

★

★
★

★
★

★★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★
★★

★

★

★

★

★

★

★

★
★

★

★

★

★ ★

★

★★

★

★

★

★

★★ ★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★
★

★

★

★
★

★ ★

★

★

★

★

★

★

★★

★

★

★

★

★

★★

★

★★

★

★

★

★

★

★

★

★

★
★

★★

★

★

★

★

★
★

★★

★

★

★★

★

★

★★
★

★
★ ★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★★

★

★

★

★

★

★

★

★

★

★
★

★

★ ★

★

★ ★

★ ★

★

★

★

★

★

★

★

★

★ ★
★

★

★★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★
★

★
★

★

★

★
★

★
★

★

★

★★
★

★

★

★

★

★
★

★★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★ ★
★

★

★

★

★

★
★

★

★

★

★

★

★★

★

★

★

★

★

★

★

★

★

★ ★

★
★

★

★

★

★

★
★

★

★
★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★★★

★

★

★
★

★
★

★
★

★
★

★
★
★

★

★

★

★ ★

★

★

★ ★

★

★

★★
★

★

★★
★ ★

★

★
★

★

★

★

★

★

★

★

★

★

★
★

★

★

★
★

★

★★

★

★★
★

★

★

★

★
★

★

★
★

★
★

★★

★
★

★

★

★

★ ★

★
★

★

★

★

★★

★

★

★
★

★

★

★

★

★

★

★

★

★

★★

★

★★

★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★ ★

★

★

soft 2l, LHC

soft 3l, LHC

LEP★ δ⩽0.5%

★ 0.5%⩽δ⩽1%

★ 1%⩽δ⩽3%

★ δ⩾3%

★ Exclude by S,T

MSDM-singlet, y=1

0 50 100 150 200
0

50

100

150

200

m
l

0
[GeV]

Δ
m

D
l=
m

D
-
m

l0
[G

e
V
]

Figure 23: Parameter scan result for Majorana singlet-doublet model with y = 1

in singlet-dominant scenario, together with direct search constraints from LEP [110]

and LHC [129, 131].

3.4.2 Dirac Singlet-Double Model (DSDM)

In the Dirac singlet-doublet model, the chosen set of free parameters consists

of y,m0
l and ∆mhl = m0

h −m0
l . Similar to the MSDM, the chosen free parameters

lead to the doublet-dominant and singlet-dominant scenario, according to the two

solutions of the mixing angle

sin2 θ2 =
1

2

(
1±

√
1− 2

x2

)
(324)
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where x = ∆mhl/(vy) ≥
√
2. Besides, it also give rise to O(350GeV mass differences

between χ0
h and χ0

l assuming y = O(1).
Fig. 24 displays the distribution of δ in the doublet-dominant scenario for two

different values of y, y = 1 and y = 1.5. For y = 1, the oblique parameters exclude

heavy neutral particle mass below 750 GeV. As for y = 1.5, m0
h ≲ 1500GeV is

excluded. The dashed lines correspond to the constraints from collider search, which

are identical to the MSDM in doublet-dominant scenario. The DSDM in the doublet-

dominant scenario is also similar to the Bino-Higgsino scenario, thus these constraints

can be directly incorporated. For y = 1, most of the parameter space points survive,

while only a few points lead to δ ≥ 0.5%. These points are sssociated with TeV scale

mass difference, while relatively light χ0
l . For y = 1.5, survived parameter space

points with δ ≥ 0.5% corresponds to much heavier χ0
l .

In the singlet-dominant scenario, heavy neutral particle, χ0
h, is singlet-dominant

thus the production channel involving χ0
h is suppressed. The relevant channel is pp→

χ±χ∓, which is equivalent to charged Higgsino pair production [134]. Therefore, in

this scenario, it is more convenient to use ∆mDl = mD − m0
l as free parameters.

The expected 95% CL exclusion contours from the search for charged Higgsino pair

production at the LHC (assuming 100 fb−1 at 13 TeV) and HL-LHC (assuming 3

ab−1 at 13 TeV) are implemented in Fig. 25 and excludes the mass difference below

20 GeV for m0
l ≤ 190GeV . The region where mD ≤ 103.5GeV , indicated by the red

dashed line, has been excluded by LEP [110]. For y = 1.5, most points in the region

∆mDl ≥ 20GeV are excluded by the oblique parameters, resulting in the survived

points with δ ≥ 0.5% concentrate in the region ∆mDl ≈ 20GeV . For y = 1, more

points are survived, and they can have various different mass differences. In both

plots, survived points can lead to δ ≥ 0.5%, which indicate that the future Higgs

factories can probe the parameter space not covered at the LHC.
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Figure 24: Parameter scan result of the DSDM in the doublet-dominant scenario at

different values of m0
l and ∆mhl, where the Yukawa coupling is chosen to be y = 1

in the upper plot and y = 1.5 in the lower one. The dashed lines are the 95% CL

exclusion contour based on Refs. [125] (“4q, ATLAS”) and [127], (“1lbb, HL-LHC”),

respectively.
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Figure 25: Parameter scan result of the DSDM in the singlet-dominant scenario with

Yukawa coupling y = 1 (upper) and y = 1.5 (lower). The LHC exclusion curves from

direct searches for the new fermions are based on Ref. [134].
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3.4.3 Majorana Doublet-Triplet Model (MDTM)

For Majorana doublet-triplet model, y,m0
l and ∆mhl = m0

h −m0
l are chosen as

free parameters. Similar to the Majorana singlet-doublet model, for each choice of

free parameters {y,∆mhl}, the mixing angle has two different values

sin2 θ2 =
1

2

(
1±

√
1− 2

x2

)
, (325)

where x = ∆mhl/(vy) ≥
√
2 to ensure all parameters are real. Following what

we did in the Majorana singlet-doublet model, we will refer the positive solution

as “ doublet-dominant ” scenario, under which χ0,+
h is doublet-dominant, and the

second as “ triplet-dominant ” scenario. Besides, x ≥
√
2, which corresponds to a

mass difference of the order ∆mhl = O(400 GeV), must be satisfied to ensure all

parameters are real. As discussed in Sec. 3.4.1, collider search through energetic

leptons and hadronic jets can put stringent bound on dark matter with large mass

differences. These searches has been performed in [124, 125, 126, 127, 116].

In the doublet-dominant scenario, three heavy particles are all doublets and

nearly mass degenerate, while two light particles are triplets, which is similar to

the Wino-Higgsinos scenario (with decoupled Bino) in MSSM. In the Wino-Higgsino

scenario, it is typically assumed that the three Higgsino components are mass degen-

erate, namely mχ̃±
1
= mχ̃0

1
= mχ̃0

2
. However, in our model, the mass ordering is such

that m0
m < m0

h = m±
h . Despite this difference, when considering the effects of mixing

angles and mass differences, the modifications to the cross section are found to be less

than 10%. Consequently, the bounds on the mass difference are adjusted by approxi-

mately O(10GeV), which is very small and causes no qualitative difference. Thus the

results in Wino-Higgsino scenario can be directly implemented. Moreover, it is worth

mentioning that the exclusion limits for Bino-Higgsino scenario [124, 126, 127, 116]
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can also be implemented, which is due to the observation that exclusion limit for

Wino-Higgsino scenario is almost same as the one for Bino-Higgsino scenario [125].

In the triplet-dominant scenario, the dark matter production channels include

pp → χ±
h χ

∓
h , χ

0
hχ

±
h , χ

0
mχ

0,±
h , where χ0,±

h are mass degenerate triplet-dominant states,

and χ0
m is pure doublet. Production channels involving χ0

m are suppressed by sin2 θ2 ≈
0. Thus the dominant production channels are pp→ χ±

h χ
∓
h , χ

0
hχ

±
h , which is equivalent

to Higgsino-Wino scenario. Additionally according to the analysis in Ref. [125], the

exclusion limits for the Higgsino-Wino scenario are found to be very similar to those

of the Bino-Wino scenario. Therefore, we also incorporate the exclusion contours

obtained from studies on the Bino-Wino scenario [126, 127, 116].

Fig. 26 and Fig. 27 display the scan result in doublet- and triplet-dominant sce-

nario respectively, together with the constraints from oblique parameters, branching

fraction of the Higgs boson to di-photons, as well as the collider searches. The con-

straints of Higgs boson’s branching fraction are denoted by the black solid, dashed

and dot-dashed lines, which represent the upper limits of Rγ at the CMS, ATLAS

as well as HL-LHC, respectively. The arrows point to the allowed regions.

The constraints from oblique parameter and Rγ exhibit similar behavior in both

scenarios for a same Yukawa coupling. The oblique parameters exclude m0
l up to 50

GeV for y = 1, while exclude m0
l up to 150 GeV for y = 2. The constraint from Rγ

covers a larger region, and the most stringent one comes from the projected result

at the HL-LHC. The mass of χ0
l up to 300 GeV is excluded for a 1.5 TeV χ0

h in the

case of y = 1, and mχ0
l
≤ 800 GeV is excluded in the case of y = 2.

The constraint from LHC collider searches in the doublet-dominant scenario

is different from the triplet-dominant case. The exclusion contour in the triplet-

dominant scenario is more stringent due to the higher pair production cross section

of Winos compared to Higgsinos. The most stringent constraint comes from the
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expected exclusion contour at the HL-LHC, excluding triplet masses up to 1.3 TeV

and doublet masses up to 1.1 TeV, assuming a massless χ0
l . For y = 1, all surviving

points with δ ≥ 0.5% are expected to be excluded at 95% at the HL-LHC. Increas-

ing y to 2 allows for more surviving points that satisfy δ ≥ 0.5%, and the precise

measurement of σ(e+e− → ZH) as well as Rγ can cover a larger region compared to

the direct searches at the LHC and HL-LHC.
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Figure 26: Parameter scan result for Majorana doublet-triplet model with y = 1 and

y = 2 in doublet-dominant scenario, together with current and projected LHC con-

straints from Refs. [125] (“4q, ATLAS”) and [127], (“1lbb, HL-LHC”), respectively.

The upper bounds on Rγ at LHC and HL-LHC are from Refs.[120, 121, 122].
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Figure 27: Parameter scan result for Majorana doublet-triplet model with y = 1

and y = 2 in triplet-dominant scenario, together with current and projected LHC

constraints from Refs. [125] (“4q, ATLAS”) and [127], (“1lbb, HL-LHC”), as well

as the constraint from branching fraction of the Higgs boson to di-photons from

Refs.[120, 121, 122].
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3.4.4 Dirac Doublet-Triplet Model with r = 0 (DDTM0)

For Dirac doublet-triplet model with zero hypercharge, the free parameter set

is {y,m0
l ,∆mhl = m0

h − m0
l }. Similar to the Majorana singlet-doublet model, the

mixing angles defined in Eq.299 have two different values for each choice of free

parameters {y,mhl}, and are written as

sin2 θ1 =
1

2

(
1±
√
1− x−2

)
, (326)

sin2 θ2 =
1

2

(
1±
√
1− x−2

√
1 + x−2

)
, (327)

where x = (m0
h + m0

l )/(vy).
4 We refer to the positive solution as the ”doublet-

dominated scenario,” in which χ0,±
h are mainly doublets, and the other solution stands

for the ”triplet-dominated scenario.”

Fig. 28 shows the mass distributions of the five particles as a function of ∆mhl

for two Yukawa coupling choices, y = 1 and y = 1.5, with m0
l set to 300 GeV.

In the doublet-dominant scenario, the lightest particle, χ±
m, is charged, resulting

in the exclusion of the entire doublet-dominant scenario. However, in the triplet-

dominated scenario, χ0
l can be the lightest particle if ∆mhl > v2y2/8m0

l . The figure

also reveals that m0
l ≈ m±

l and mT ≈ m0
h ≈ m±

h , as previously demonstrated in

Fig. 18. This behavior can be further explained by Fig. 29, which displays the mixing

angle distributions in the triplet-dominated scenario. The plot clearly illustrates that

cos θ2 ≈ cos θ1 ≈ 1. According to Eq.299, large values of cos θ2,1 indicate that the

heavy particles, χ0,±
h , are predominantly triplets, resulting in their masses being close

to mT .

4The definition of x differs from other models, which is defined as x = ∆m/(vy), due to the
replacement of m0

l with −m0
l to ensure that χ0

l is the lightest particle.
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Figure 28: The mass distribution of five particles in the Dirac doublet-triplet model

with r = 0, as functions of ∆mhl in the doublet-dominate scenario(upper) and triplet-

dominate scenario(lower). The Yukawa coupling is chosen to be: y = 1 (solid) and

y = 1.5 (dashed), and m0
l = 300 GeV in both plots.
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Figure 29: The distributions of charged neutral states mixing angle (blue), denoted

as cos θ2, and charged states mixing angle (yellow), denoted as cos θ1, at different

values of ∆mhl in the triplet-dominate scenario. The Yukawa coupling is chosen to

be: y = 1 (solid) and y = 1.5 (dashed), and m0
l = 300 GeV in both plots.

Fig. 30 displays δ in triplet-dominant scenario at different values of m0
l and ∆mhl,

and the Yukawa coupling is chosen to be y = 1(2) in the upper(lower) plot. In this

figure, a new type of point is introduced and represented by dark gray stars. These

points correspond to parameter choices that result in complex masses or mT < m0
l ,

and they are unphysical thus excluded. This condition removes a few points in the

region of small mass differences both for y = 1 and y = 2, while more points are

excluded due to oblique parameters for y = 1. As the Yukawa coupling increasing to

2, only a few points are not excluded by the oblique parameter.

150



For both Yukawa couplings, the parameter space points with δ ≥ 0.5% concen-

trate in the region with large mass difference, which can be best constrained through

collider searches using energetic leptons and hadronic jets in the final states. The rel-

evant channels includes the production of charged states pairs, pp→ χ±
h χ

∓
h , χ

±
mχ

∓
m,

5,

as well as the production of charged-neutral pairs, pp → χ0
hχ

±
h , χ

0
hχ

±
m.

6 The cross

section of summing over all channels are approximately twice the cross section of

Wino-pair productions, namely pp → W̃±W̃∓ + W̃ 0W̃±. Consequently, the 95%

CL contour in this model corresponds to the 1σ exclusion region in the search for

Wino-pair production, which can be obtained through extrapolation.

The results from the collider searches for Wino-pair production, as analyzed in

Refs. [125, 127], are incorporated into Fig. 30. The most stringent constraint, from

the expected 95% CL contour at the HL-LHC, excludes mass differences up to 1.3

TeV assuming a massless dark matter candidate. Combining the constraint from the

Higgs diphoton decay branching fraction [120, 121, 122], all parameter points with

δ ≥ 0.5% are excluded for y = 1. However, a few surviving points with δ ≥ 0.5%

exist in the y = 2 case, resulting in TeV-scale heavy fermions. In Fig.31, the scan

result for y = 2.5 is shown. The entire parameter region with m0
l ≤ 1TeV is excluded

by oblique parameters, necessitating an extension of m0
l . Similar to the y = 2 case,

the surviving parameter space points with δ ≥ 0.5% concentrate in the region where

new fermions have TeV-scale masses. This region can be explored at a 100 TeV

hadron collider, as analyzed in Ref. [128]. Additionally, precision measurements of

the cross section for e+e− → ZH can provide complementary information to the

direct searches conducted at a 100 TeV hadron collider.

5The production channel pp→ χ±
l χ

∓
l is not taken into account since m±

l −m0
l = O(20 GeV).

6The production of neutral pairs, pp → χ0
hχ

0
h, can also contribute. However, this channel is

significantly suppressed by the factor sin2 θ1 ≈ 0.
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Figure 30: Parameter scan result for DDTM0 with y = 1 and y = 2 in the large

mass difference region, together with current and projected LHC constraints from

Refs. [125] (“4q, ATLAS”) and [127], (“1lbb, HL-LHC”), respectively. The lower

bounds on Rγ at LHC and HL-LHC are from Refs.[120, 121, 122].
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Figure 31: Parameter scan result for DDTM0 with y = 2.5 in the large mass difference

region, together with current and projected LHC constraints from Refs. [125] (“4q,

ATLAS”) and [127], (“1lbb, HL-LHC”), respectively. The lower bounds on Rγ at

LHC and HL-LHC are from Refs.[120, 121, 122].

3.4.5 Dirac Doublet-Triplet Model with r = −1 (DDTM1)

In the Dirac doublet-triplet model with r = −1, we consider the following free

parameters: {y,m0
l ,∆mll = m±

l −m0
l }. Similar to the Majorana case, two solutions

for the mixing angle in terms of these free parameters leads to two scenario: the

doublet dominate scenario and triplet dominate scenario. In the doublet(triplet)-

dominate scenario, m+
l is almost doublet(triplet). In both scenarios, the production
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channel is limited to pp → m±
l m

∓
l

7 for two reasons: (a) m±
l is the lightest heavy

particle; (b) all the other heavy particles are much heavier and effectively decouple.

To illustrate the latter explicitly, we can express the masses of decoupled heavy

particles in terms of ∆m,

m0
h −m0

l

∆mll

= 1 +
1

4x2
,

m±
h −m0

l

∆mll

=
1

4x2
,

m−− −m0
l

∆mll

=
1

2
+

1

8x2
+

1

8

√
16− 24

x
+

1

x2
, (328)

where x = ∆mll/(vY ). To ensure all parameters real, the condition x2 ≤ (3/4 −
1/
√
2) = 0.043, is imposed, which leads to relative heavy m0

h,m
−− and m±

h . Thus

the production cross section involving those particles can be ignored.

For a doublet χ±
l , the production channel, pp→ χ±

l χ
∓
l , is equivalent to charged

Higgsinos pair production. Besides, the condition x2 ≤ 0.043 causes ∆mll of order 50

GeV for aO(1) Yukawa coupling. As explained in the previous section, scenarios with

such small mass differences can be best searched for by using the hard jet plus soft

leptons signature at the LHC. The expected 95% CL reach of LHC13 with 100fb−1

and 3ab−1 from the analysis in Ref.[134] is shown by the light and dark blue dotted

lines in Fig. 32 respectively. The exclusion contour from LEP [110] (red dotted line)

is also shown in the figure. These bounds are also imposed for the triplet χ±
l . To

account for the differences of the production cross section between the doublet- and

triplet-dominant scenario, the following recast was performed:

STriplet = SDoublet × σTriplet(pp→χ±
l χ∓

l )

σDoublet(pp→χ±
l χ∓

l )
≈ SDoublet × 1

5
(329)

7The production channel, pp → χ±
l χ

0
l , can also contribute, and leads the final states with soft

lepton and jet [135]. However, the exclusion region from this channel is weaker than pp→ m±
l m

∓
l

thus not included.
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where ”Triplet(Doublet)” stands for the triplet(doublet)-dominant scenario. This

equation implies that the 95% C.L. exclusion contour for a triplet χ±
l corresponds to

10σ exclusion contour in the doublet case, which is realized by extrapolating Table. 4

of Ref. [134].

The distributions of δ in the doublet- and triplet-dominate scenario are shown in

Fig. 32 and Fig. 33 respectively. In both scenarios, the Yukawa coupling is considered

with values 1 and 2, and δ exhibits similar distributions for a same Yukawa coupling.

In the doublet-dominant scenario for the case of y = 1, the oblique parameters

exclude the region of large mass differences for small m0
l . The constraint from Rγ

at HL-LHC excludes a few more points at small mass difference. As the Yukawa

coupling increasing to 2, all parameter points with ∆mll ≥ 16GeV are ruled out

by the oblique parameters. The constraint from collider search for charged Higgsino

pair productions, which is complementary to the constraints from oblique parameters,

and Rγ, can in addition exclude masses of χ0
l up to 200GeV for ∆mll ≤ 20GeV. As

a consequence in the case of y = 2, the survived points focus in the region with

∆mll ≤ 20GeV and m0
l ≥ 200 GeV . While for y = 1, the survived points are also

in the region m0
l ≥ 200 GeV , but there is less stringent bound on ∆mll.

The scan result in the triplet-dominant scenario exhibit a similar behavior com-

pared to the doublet case. Although the collider search is not as strong as the charged

Higgsino case due to the suppression of production cross section, the oblique param-

eters exclude more points. As a consequence, less points are survived, but they can

also yield δ ≥ 0.5%.
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Figure 32: Parameter scan result for DDTM with y = 1(upper) and y = 2(lower)

in the doublet-dominant scenario together with the constraint from LEP [110], the

expected 95% C.L. reach at LHC and HL-LHC from Ref.[134], and upper bounds of

Rγ at LHC and HL-LHC from Refs.[120, 121, 122].
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Figure 33: Parameter scan result for DDTM with y = 1(upper) and y = 2(lower)

in the triplet-dominant scenario together with the constraint from LEP [110], the

expected 95% C.L. reach at LHC and HL-LHC from Ref.[134], and upper bounds of

Rγ at LHC and HL-LHC from Refs.[120, 121, 122].
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4.0 Conclusions

The future Higgs factories, such as the International Linear Collider (ILC), Future

Circular Collider electron-positron (FCC-ee), and Circular Electron Positron Collider

(CEPC), are poised to provide unprecedented experimental accuracy in measuring

the properties of the Higgs boson. Among the dominant production channels, the

Higgsstrahlung process e+e− → ZH plays a critical role in extracting the Higgs to

Z-boson coupling. However, to fully exploit the potential of these experimental facil-

ities, it is imperative that theoretical uncertainties do not surpass the experimental

ones.

To achieve this, the theoretical precision of the Higgsstrahlung process must be

at least comparable to the anticipated experimental accuracy of 1.2% at ILC, 0.4%

at FCC-ee, and 0.5% at CEPC. The inclusion of Next-to-Next-to-Leading Order

Electroweak (NNLO EW) corrections has paved the way towards achieving such a

goal. With the addition of these corrections, the theoretical uncertainty is reduced

to about 0.7%, making it comparable to the experimental accuracy. The attainment

of such a level of theoretical and experimental precision is a major milestone in the

pursuit of precision measurements of the Higgs boson, and opens up new avenues for

exploring the properties of the Standard Model and beyond.

In the pursuit of high-precision measurements at future Higgs factories, it is

expected that deviations in the cross section measurements of the Higgsstrahlung

process may become apparent. These deviations, if observed, would need to be

explained by new physics beyond the Standard Model. To address this possibility,

we explore the Higgs portal models with fermion multiplets as a potential source of

such new physics and investigate the resulting deviations on the cross section of the
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Higgsstrahlung process. We specifically focus on regions of the parameter space that

exhibit significant deviations and find that some portions of this parameter space

may be accessible to future hadron colliders. Our investigation sheds light on the

potential implications of these new models and the potential for their detection in

future experiments.
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Appendix A One-Loop Tensor Integral Reduction

This Appendix illustrates the deviation from Eq. 124 to Eq. 125. Start with

Eq. 124, which has the following form

0 = [2T 4
0 (0) + Y00T

5
0 ]× det


2p1 · p1 · · · 2p1 · p4

...
. . .

...

2p4 · p1 · · · 2p4 · p4


+

4∑
k=1

(−1)k × [T 4
µ(k)− (T 4µ(0) + pµ4T

4
0 (0)) + p4µT

4
0 (0) + (Yk0 − Y00)T

5
µ ]

× det



2pµ1 · · · 2pµ4
...

. . .
...

2pk−1 · p1 · · · 2pk−1 · p4
2pk+1 · p1 · · · 2pk+1 · p4

...
. . .

...


(330)

Writing in this form helps the algebraic simplification: (1) T 4
µ(k)× det(· · · ) = 0; (2)

T 4
µ(0) + p4µT

4
0 (0) × det(· · · ) = 0; (3)

∑3
k=1 p4µT

4
0 (0) × det(· · · ) = 0. Thus, Eq.330

becomes

0 = [2T 4
0 (0) + Y00T

5
0 ]× det


2p1 · p1 · · · 2p1 · p4

...
. . .

...

2p4 · p1 · · · 2p4 · p4



+ T 4
0 (0)× det


2p1 · p4 · · · 2p4 · p4

...
. . .

...

2p3 · p1 · · · 2p3 · p4
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+
4∑

k=1

(−1)k(Yk0 − Y00)T
5
µ × det



2pµ1 · · · 2pµ4
...

. . .
...

2pk−1 · p1 · · · 2pk−1 · p4
2pk+1 · p1 · · · 2pk+1 · p4

...
. . .

...


(331)

According to the property
2p1 · p4 · · · 2p4 · p4

...
. . .

...

2p3 · p1 · · · 2p3 · p4

 = (−1)× det


2p1 · p1 · · · 2p1 · p4

...
. . .

...

2p4 · p1 · · · 2p4 · p4

 (332)

Eq.331 can be further simplified to

0 = [T 4
0 (0) + Y00T

5
0 ]× det


2p1 · p1 · · · 2p1 · p4

...
. . .

...

2p4 · p1 · · · 2p4 · p4



+
4∑

k=1

(−1)k(Yk0 − Y00)T
5
µ × det



2pµ1 · · · 2pµ4
...

. . .
...

2pk−1 · p1 · · · 2pk−1 · p4
2pk+1 · p1 · · · 2pk+1 · p4

...
. . .

...



=
1

iπ2

∫
dDq

1

D0D1 · · ·D4

× det


D0 + Y00 2q · p1 · · · 2q · p4
Y10 − Y00 2p1 · p1 · · · 2p1 · p4

...
...

. . .
...

Y40 − Y00 2p4 · p1 · · · 2p4 · p4

 (333)
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Using

2pi · pj = Yij − Yi0 − Y0j + Y00 , 2q · pj = Dj −D0 + Y0j − Y00 (334)

Eq.333 becomes

0 =
1

iπ2

∫
dDq

1

D0D1 · · ·D4

× det


D0 + Y00 D1 −D0 + Y01 − Y00 · · · D4 −D0 + Y04 − Y00

Y10 − Y00 Y11 − Y10 − Y01 + Y00 · · · Y14 − Y10 − Y04 + Y00

...
...

. . .
...

Y40 − Y00 Y41 − Y40 − Y01 + Y00 · · · Y44 − Y40 − Y04 + Y00



=
1

iπ2

∫
dDq

1

D0D1 · · ·D4

× det


D0 + Y00 D1 + Y01 · · · D4 + Y04

Y10 − Y00 Y11 − Y01 · · · Y14 − Y04

...
...

. . .
...

Y40 − Y00 Y41 − Y01 · · · Y44 − Y04



= det


T 4
0 (0) + Y00T

5
0 T 4

0 (1) + Y01T
5
0 · · · T 4

0 (4) + Y04T
5
0

Y10 − Y00 Y11 − Y01 · · · Y14 − Y04

...
...

. . .
...

Y40 − Y00 Y41 − Y01 · · · Y44 − Y04

 (335)

where we have used the property that the matrix determinant does not change by

adding the first column to each of the other columns. We can also enlarge this 5× 5

matrix determinant by adding one column and one row, which is chosen to be

0 = det



1 Y00 Y01 · · · Y04

0 T 4
0 (0) + Y00T

5
0 T 4

0 (1) + Y01T
5
0 · · · T 4

0 (4) + Y04T
5
0

0 Y10 − Y00 Y11 − Y01 · · · Y14 − Y04

...
...

...
. . .

...

0 Y40 − Y00 Y41 − Y01 · · · Y44 − Y04


(336)
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Adding the first row to each of the other rows and exchanging the first and second

rows, we end up with

0 = det



0 T 4
0 (0) T 4

0 (0) T 4
0 (0) T 4

0 (0) T 4
0 (0)

1 Y00 Y01 Y02 Y03 Y04

1 Y10 Y11 Y12 Y13 Y14

1 Y20 Y21 Y22 Y23 Y24

1 Y30 Y31 Y32 Y33 Y34

1 Y40 Y41 Y42 Y43 Y44



+ det



0 Y00T
5
0 Y01T

5
0 Y02T

5
0 Y03T

5
0 Y04T

5
0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(337)

= (−1)× det



T 5
0 −T 4

0 (0) −T 4
0 (1) −T 4

0 (2) −T 4
0 (3) −T 4

0 (4)

1 Y00 Y01 Y02 Y03 Y04

1 Y10 Y11 Y12 Y13 Y14

1 Y20 Y21 Y22 Y23 Y24

1 Y30 Y31 Y32 Y33 Y34

1 Y40 Y41 Y42 Y43 Y44


(338)

The equivalence between Eq.337 and Eq.338 can be easily checked with Mathematica.

Eq.338 is exactly Eq.125 and can be solved for the scalar five-point function T 5
0 . In

particular this yields T 5
0 can be reduced to a linear combination of five scalar four-

point functions, which is only true if the Gram determinant vanishes.
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Appendix B Analytical Expressions for TN≤4
0

In this appendix, we will provide a detailed derivation of the analytical expres-

sions for TN≤4
0 . As mentioned in Sec. 1.3.2, all one-loop tensor integrals can be

reduced to scalar integrals. Therefore, by obtaining analytical expressions for scalar

integrals, the one-loop tensor integrals are also known analytically. Remember that

T 1
0 = A0, T

2
0 = B0, T

3
0 = C0, T

4
0 = D0. (339)

B.1 Preliminary

To derive the analytical expressions for one-loop scalar integral, the following

property is crucial

In(A) =

∫
dDq

1

[q2 − A+ iε]n

=

∫
dDq

1

[(q + p)2 − A+ iε]n
, (340)

which follows the Lorentz invariance of Feynman integral. The analytical expression

for In reads

In(A) = i(−1)nπD
2
Γ(n− D

2
)

Γ(n)
(A− iε)

D
2
−n (341)

We also list some important integrals, which are related to logarithmic log, di-

logarithmic Li2 and tri-logarithmic functions Li3,

I(a, b) =

∫ 1

0

dx
1

ax+ b
=

1

a
ln

a+ b

b
, (342)
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I(a, xi) =

∫ 1

0

dx ln
[
a(x− x1)(x− x2)− iε

]
= ln(a− iε) +

2∑
i=1

(
ln(1− xi)− xi ln

xi − 1

xi

− 1

)
, (343)

Li2(x) = −
∫ x

0

dt
ln(1− t)

t
= −

∫ 1

0

dt
ln(1− xt)

t
, (344)

Li3(x) =

∫ x

0

dt
Li2(t)

t
, (345)∫ 1

0

dt

t
ln2(1 + at) = ln(−a) ln2(1 + a)

+ 2 ln(1 + a)Li2(1 + a)− 2Li2(1 + a) + 2Li3(1) (346)∫ 1

0

dt

t
ln2 1 + a1t

1 + a2t
= [ln(1 + a1)− ln(1 + a2)]

×
{[

ln
a2 − a1
1 + a2

− ln

(
1− a2(1 + a1)

a1(1 + a2)
± iε

)]
× [ln(1 + a1)

− ln(1 + a2)] + 2Li2
1 + a1
1 + a2

− 2Li2

(
a2(1 + a1)

a1(1 + a2)
∓ iε

)}
− 2Li3

1 + a1
1 + a2

+ 2Li3

(
a2(1 + a1)

a1(1 + a2)
∓ iε

)
(347)

B.2 One-Point Function

The scalar one-point function reads:

A0(m) = (µ2πeγE)ϵ
1

iπ2

∫
dDq

1

q2 −m2 + iε

= (µ2πeγE)ϵ
1

iπ2
I1(m

2) (348)

Plugging in Eq. 341 and expanding D = 4− 2ϵ up to O(ϵ), we obtain

A0(m) = −m2
(m2

µ2

)−ϵ
eγEϵΓ(ϵ− 1) (349)
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= m2

{
1

ϵ
+ 1− ln

m2

µ2
+ ϵ

[
1 +

π2

12
− ln

m2

µ2
+

1

2
ln2 m

2

µ2

]}
+O(ϵ2) (350)

B.3 Two-Point Function

The scalar two-point function B0(k
2,m1,m2) = B0 has the following form:

B0 = (µ2πeγE)ϵ
1

iπ2

∫
dDq

1

[q2 −m2
1 + iε][(q + k)2 −m2

2 + iε]

= (µ2πeγE)ϵ
1

iπ2

∫ 1

0

dx

∫
dDq

1

[(q + xk)2 − (x2k2 + x(−k2 −m2
1 +m2

2) +m2
1 − iε]2

= (µ2πeγE)ϵ
1

iπ2

∫ 1

0

dx I2(x
2k2 + x(−k2 −m2

1 +m2
2) +m2

1 − iε) (351)

where we have used Feynman parametrization. Plugging in Eq. 341 and expanding

D = 4− 2ϵ up to O(ϵ), we obtain

B0 = eγEϵΓ(ϵ)

∫ 1

0

dx

[
k2

µ2
x2 +

−k2 +m2
2 −m2

1

µ2
x+

m2
1

µ2
− iε

]−ϵ

= eγEϵΓ(ϵ)

∫ 1

0

dx

[
k2

µ2
(x− x1)(x− x2)− iε

]−ϵ

=
1

ϵ
+B

(0)
0 + ϵB

(1)
0 (352)

where

B
(0)
0 = −

∫ 1

0

dx ln

[
k2

µ2
(x− x1)(x− x2)− iε

]
(353)

B
(1)
0 =

∫ 1

0

dx
π2

12
x+

∫ 1

0

dx
1

2
ln2

[
k2

µ2
(x− x1)(x− x2)− iε

]
(354)

and we define x1,2 as follows

k2

µ2
x2 +

−k2 +m2
2 −m2

1

µ2
x+

m2
1

µ2
− iε =

k2

µ2
(x− x1)(x− x2)− iε (355)
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With Eq.343, we obtain

B
(0)
0 = − ln

(k2

µ2
− iε

)
−
∫ 1

0

dx ln
[
(x− x1)(x− x2)

]
= − ln

(k2

µ2
− iε

)
−

2∑
j=1

∫ 1

0

dx ln
[
(x− xj)

]
= − ln

(k2

µ2
− iε

)
−

2∑
j=1

[
ln(1− xj)− xj ln

xj − 1

xj

− 1
]

(356)

where we have imposed ln(ab) = ln a+ ln b in the second line because the imaginary

part of x1 and x2 has opposite sign, i.e. x1x2 = −iε.
Similarly, B

(1)
0 is

B
(1)
0 =

π2

12
+

1

2
ln2

(k2

µ2
− iε

)
+ ln

(k2

µ2
− iε

)
×

∫ 1

0

dx ln
[
(x− x1)(x− x2)

]
+

1

2

∫ 1

0

dx ln2
[
(x− x1)(x− x2)

]
=

π2

12
+

1

2
ln2

(k2

µ2
− iε

)
+ ln

(k2

µ2
− iε

)
×

2∑
j=1

∫ 1

0

dx ln
[
(x− xj)

]
+

1

2

∫ 1

0

dx ln2
[
(x− x1)

]
+

1

2

∫ 1

0

dx ln2
[
(x− x2)

]
+

∫ 1

0

dx ln(x− x1) ln(x− x2)

=
π2

12
+

1

2
ln2

(k2

µ2
− iε

)
+

2∑
j=1

{
1

2
ln(1− xj) ln

2(1− xj) +
1

2
xj ln

2(1− xj)

+
[
ln(

k2

µ2
− iε)− 2

]
×

[
ln(1− xj)− xj ln

xj − 1

xj

− 1
]}

+ (1− x1) ln(1− x1) ln(1− x2) + x1 ln(−x1) ln(−x2) + (x1 − x2)

×
[
Li2

( x2

x2 − x1

)
− Li2

( x2 − 1

x2 − x1

)
+ ln(x2 − x1) ln

x2 − 1

x2

]
(357)
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B.4 Three-Point Function

The scalar three-point function C0(p
2
1, p

2
2, (p1 + p2)

2,m1,m2,m3) = C0 has the

following form:

C0 = (µ2πeγE)ϵ
1

iπ2

∫
dDq

1

[q2 −m2
1 + iε][(q + p1)2 −m2

2 + iε][(q + p1 + p2)2 −m2
2 + iε]

= (µ2πeγE)ϵ
1

iπ2

∫ 1

0

dx

∫ x

0

dy

∫
dDq

2

[(q1 + xp2 + yp1 − p1 − p2)2 −m2
xy]

3

= (µ2πeγE)ϵ
2

iπ2

∫ 1

0

dx

∫ x

0

dy I3(m
2
xy) (358)

where we have used Feynman parametrization and m2
xy is

m2
xy = (xp2 + yp1 − p1 − p2)

2 − (1− x)(p1 + p2)
2

− (x− y)p21 + (1− x)m2
3 + ym2

1 + (x− y)m2
2 − iε

= x2p22 + y2p21 + 2xyp1 · p2 + x(−p22 +m2
2 −m2

3)

+ y(−p21 − 2p1 · p2 +m2
1 −m2

3) +m2
3 − iε (359)

According to Eq.341, we get

C0 = µ−2eγEϵΓ(1 + ϵ)

∫ 1

0

dx

∫ x

0

dy
[
ax2 + by2 + cxy + dx+ ey + f

]−1−ϵ
(360)

where

a =
p22
µ2

, b =
p21
µ2

, c =
2p1p2
µ2

, d =
−p22 +m2

2 −m2
3

µ2
,

e =
−p21 − 2p1p2 +m2

1 −m2
2

µ2
, f =

m2
3

µ2
− iε (361)

Transforming y to αx+ y, the integrand becomes

(a+ αc+ α2b)x2 + by2 + (2αb+ c)xy + (d+ αe)x+ ey + f
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= by2 + (2αb+ c)xy + (d+ αe)x+ ey + f (362)

We choose α, which obeys a + αc + α2b = 0, such that the term proportional x2

vanishes. Since α obeys a quartic function, the solution of α can be real or imaginary

depends on if b2 − 4ac is positive or negative. At first, we restrict b2 − 4ac > 0, i.e.

α is real. So the three-point function becomes

C0 =µ−2eγEϵΓ(1 + ϵ)

∫ 1

0

dx

∫ (1−α)x

−αx

dy
[
by2 + (2αb+ c)xy + (d+ αe)x+ ey + f

]−1−ϵ

(363)

Thus, the integration over x can be done easily if we interchange the integration

order between x and y, which can be realized with the following trick∫ 1

0

dx

∫ (1−α)x

−αx

dy =

∫ 1

0

dx

∫ (1−α)x

0

dy −
∫ 1

0

dx

∫ −αx

0

dy

=

∫ 1−α

0

dy

∫ 1

y/(1−α)

dx−
∫ −α

0

dy

∫ 1

−y/α

dx (364)

It is evident that this transformation requires either α real, or more precisely that

there are no singularities in the complex y plane in the triangle. Plugging in this

transformation, the three-point function becomes

C0 = µ−2eγEϵΓ(1 + ϵ)

×
{∫ 1−α

0

dy

∫ 1

y/(1−α)

dx
[
(2αby + cy + d+ αe)x+ by2 + ey + f

]−1−ϵ
dx

−
∫ −α

0

dy

∫ 1

−y/α

dx
[
(2αby + cy + d+ αe)x+ by2 + ey + f

]−1−ϵ
}

(365)

The x integral can be integrated easily. Define N(y) be the coefficient of x, i.e.

N(y) = (2αb+ c)y + d+ αe, we obtain

C0 = −µ−2eγEϵΓ(1 + ϵ)

ϵ

{∫ 1−α

0

dy
1

N(y)

[
N(y) + by2 + ey + f

]−ϵ
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−
∫ 1−α

0

dy
1

N(y)

[ y

1− α
N(y) + by2 + ey + f

]−ϵ

−
∫ −α

0

dy
1

N(y)

[
N(y) + by2 + ey + f

]−ϵ

+

∫ −α

0

dy
1

N(y)

[
− y

α
N(y) + by2 + ey + f

]−ϵ
}

(366)

= C
(0)
0 + ϵC

(1)
0 (367)

where in the last line, we have expanded D = 4 − 2ϵ up to O(ϵ). The zeroth order

of three-point function reads

−µ2C
(0)
0 =

∫ 1−α

−α

dy
ln[by2 + ey + f +N(y)]

N(y)
−
∫ 1−α

0

dy
ln
[
by2 + ey + f + y

1−α
N(y)

]
N(y)

−
∫ 0

−α

dy
ln
[
by2 + ey + f − y

α
N(y)

]
N(y)

(368)

The three-point function of order O(ϵ) is

2µ2C
(1)
0 =

∫ 1−α

−α

dy
ln2[by2 + ey + f +N(y)]

N(y)
−

∫ 1−α

0

dy
ln2

[
by2 + ey + f + y

1−α
N(y)

]
N(y)

−
∫ 0

−α

dy
ln2

[
by2 + ey + f − y

α
N(y)

]
N(y)

(369)

Note that extra constant term also appears when performing the expansion, but the

integral of such constant term over y leads to zero, namely∫ 1−α

−α

dy −
∫ 1−α

0

dy

∫ 0

−α

dy = 0 (370)

The integrand in Eq.368 and Eq.369 contains a first order pole as N(y0) = 0. To

let the residue of the pole vanishes, we introduce a constant term to Eq.368

−µ2C
(0)
0 =

∫ 1−α

−α

dy
1

N(y)

{
ln[by2 + ey + f +N(y)]− ln[by20 + ey0 + f ]

}
−

∫ 1−α

0

dy
1

N(y)

{
ln
[
by2 + ey + f +

y

1− α
N(y)

]
− ln

[
by20 + ey0 + f

]}

170



−
∫ 0

−α

dy
1

N(y)

{
ln
[
by2 + ey + f − y

α
N(y)

]
− ln

[
by20 + ey0 + f

]}
(371)

and Eq.369

2µ2C
(1)
0 =

∫ 1−α

−α

dy
1

N(y)

{
ln2[by2 + ey + f +N(y)]− ln2[by20 + ey0 + f ]

}
−

∫ 1−α

0

dy
1

N(y)

{
ln2

[
by2 + ey + f +

y

1− α
N(y)

]
− ln2

[
by20 + ey0 + f

]}
−

∫ 0

−α

dy
1

N(y)

{
ln2

[
by2 + ey + f − y

α
N(y)

]
− ln2

[
by20 + ey0 + f

]}
(372)

Note that the integral of this constant term vanish, thus adding this constant

term does not change the value of C
(0)
0 . The explicit expression for this constant

term is

T ≡ by20 + ey0 + f

= b
(−d− eα

2αb+ c

)2
+ e

(−d− eα

2αb+ c

)
+ f =

(2bd− ec)2

4b(c2 − 4ab)
− e2

4b
+ f (373)

where α = (−c±
√
c2 − 4ab)/(2b).

The variable transformation y = y′ − α, y = (1− α)y′, y = −αy′ of Eq.368 leads

to the following expression

−µ2C
(0)
0 =

∫ 1

0

dy
ln[by2 + (c+ e)y + a+ d+ f ]− lnT

(c+ 2αb)y + d+ eα + 2a+ cα

−
∫ 1

0

dy
ln
[
(a+ b+ c)y2 + (e+ d)y + f

]
− lnT

(c+ 2αb)(1− α)y + d+ eα
× (1− α)

+

∫ 1

0

dy
ln
[
ay2 + dy + f

]
− lnT

(c+ 2ab)αy − d− eα
× α

=

∫ 1

0

dy

{
lnQ1(y)− lnT

(c+ 2αb)(y − y1)
− lnQ2(y)− lnT

(c+ 2αb)(y − y2)
+

lnQ3(y)− lnT

(c+ 2αb)(y − y3)

}
=

1

c+ 2αb
(S1 − S2 + S3) (374)
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Following same steps, Eq.369 becomes

2µ2C
(1)
0 =

∫ 1

0

dy
ln2[by2 + (c+ e)y + a+ d+ f ]− ln2 T

(c+ 2αb)y + d+ eα + 2a+ cα

−
∫ 1

0

dy
ln2

[
(a+ b+ c)y2 + (e+ d)y + f

]
− ln2 T

(c+ 2αb)(1− α)y + d+ eα
× 1− α

−
∫ 1

0

dy
ln2

[
ay2 + dy + f

]
− ln2 T

−(c+ 2ab)αy + d+ eα
× α

=

∫ 1

0

dy

{
ln2Q1(y)− ln2 T

(c+ 2αb)(y − y1)
− ln2Q2(y)− ln2 T

(c+ 2αb)(y − y2)
+

ln2Q3(y)− ln2 T

(c+ 2αb)(y − y3)

}
=

1

c+ 2αb
(J1 − J2 + J3) (375)

Keep in mind that the residue of the pole vanishes since Qi(yi) = T . Qi(y) are

defined as

Q1(y) = by2 + (c+ e)y + a+ d+ f

=
p21y

2 + (−p21 +m2
1 −m2

2)y +m2
2 − iε

µ2

Q2(y) = (a+ b+ c)y2 + (e+ d)y + f

=
(p1 + p2)

2y2 + (−(p1 + p2) +m2
1 −m2

3)y +m2
3 − iε

µ2

Q3(y) = ay2 + dy + f

=
p22y

2 + (−p22 +m2
2 −m2

3)y +m2
3 − iε

µ2
(376)

yi are

y1 = −
d+ eα + 2a+ cα

c+ 2αb
,

y2 = −
d+ eα

(c+ 2αb)(1− α)
,

y3 = −
(d+ eα)α

c+ 2αb
. (377)
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Qi’s are quadratic functions of y, the roots are labelled by yi1 and yi2, andQi(yi) =

T , thus we can express lnQi in the form

lnQi = ln

[
T
(
1− y − yi

yi1 − yi
)
(
1− y − yi

yi2 − yi
)

]
= lnT + ln

(
1− y − yi

yi1 − yi
) + ln

(
1− y − yi

yi2 − yi
) (378)

where we have used the properties that: (a) the imaginary part of T and Qi are

same; (b) y − yi/yi1 − yi and y − yi/yi2 − yi are opposite.

For later use, we define two new variables

r
(1)
ij =

yi
yij − yi

, r
(2)
ij =

yi − 1

yij − yi
(379)

Now it remains to calculate the integrals Si, Ji

Si =

∫ 1

0

dy
1

y − yi

{
lnQi − lnT

}
=

∫ 1

0

dy
1

y − yi

{[
lnT + ln

(
1− y − yi

yi1 − yi
) + ln

(
1− y − yi

yi2 − yi
)

]
− lnT

}
=

(∫ yi

0

+

∫ 1

yi

)
dy

1

y − yi

{[
lnT + ln

(
1− y − yi

yi1 − yi
) + ln

(
1− y − yi

yi2 − yi
)

]
− lnT

}
(380)

Ji =

∫ 1

0

dy
1

y − yi

{
ln2Qi − ln2 T

}
=

∫ 1

0

dy
1

y − yi

{[
lnT + ln

(
1− y − yi

yi1 − yi
) + ln

(
1− y − yi

yi2 − yi
)

]2
− ln2 T

}
=

(∫ yi

0

+

∫ 1

yi

)
dy

1

y − yi

{[
lnT + ln

(
1− y − yi

yi1 − yi
) + ln

(
1− y − yi

yi2 − yi
)

]2
− ln2 T

}
(381)
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Transforming y = yi(1− s) for the first integration contour and y = yi+ t(1− yi)

for the second, we obtain

Si =

∫ 1

0

dt

t

{[
lnT + ln(1 + tr

(2)
i1 ) + ln(1 + tr

(2)
i2 )

]
− lnT

}
−

∫ 1

0

ds

s

{[
lnT + ln(1 + sr

(1)
i1 ) + ln(1 + sr

(1)
i2 )

]
− lnT

}
= Li2(−r(1)i1 ) + Li2(−r(1)i2 )− Li2(−r(2)i1 )− Li2(−r(2)i2 ) (382)

Ji =

∫ 1

0

dt

t

{[
lnT + ln(1 + tr

(2)
i1 ) + ln(1 + tr

(2)
i2 )

]2
− ln2 T

}
−

∫ 1

0

ds

s

{[
lnT + ln(1 + sr

(1)
i1 ) + ln(1 + sr

(1)
i2 )

]2
− ln2 T

}
=

∫ 1

0

du

u

{
2 lnT

[
− ln(1 + ur

(1)
i1 )− ln(1 + ur

(1)
i2 ) + ln(1 + ur

(2)
i1 ) + ln(1 + ur

(2)
i2 )

]
+

[
ln(1 + ur

(2)
i1 ) + ln(1 + ur

(2)
i2 )

]2
−
[
ln(1 + ur

(1)
i1 ) + ln(1 + ur

(1)
i2 )

]2}
= 2 lnT

[
Li2(−r(1)i1 ) + Li2(−r(1)i2 )− Li2(−r(2)i1 )− Li2(−r(2)i2 )

]
+

∫ 1

0

du

u

{[
ln(1 + ur

(2)
i1 ) + ln(1 + ur

(2)
i2 )

]2
−
[
ln(1 + ur

(1)
i1 ) + ln(1 + ur

(1)
i2 )

]2}
= 2 lnT

[
Li2(−r(1)i1 ) + Li2(−r(1)i2 )− Li2(−r(2)i1 )− Li2(−r(2)i2 )

]
+

∫ 1

0

du

u

{
2 ln2(1 + ur

(2)
i1 ) + 2 ln2(1 + ur

(2)
i2 )− 2 ln2(1 + ur

(1)
i1 )− 2 ln2(1 + ur

(1)
i2 )

−
[
ln(1 + ur

(2)
i1 )− ln(1 + ur

(2)
i2 )

]2
+

[
ln(1 + ur

(1)
i1 )− ln(1 + ur

(1)
i2 )

]2}
(383)

The expression for last integral can be obtained with Eq.346 and Eq.347.

With the analytical expressions of Si and Ji, we can write the analytical expres-

sions for C
(0)
0 , C

(1)
0

C
(0)
0 = − 1

µ2

1

c+ 2ab

3∑
j=1

2∑
k=1

2∑
l=1

(−1)j+lLi2(−r(l)jk ), (384)
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C
(1)
0 =

1

2µ2

1

c+ 2ab

3∑
j=1

(−1)j+1Jj

= −C(0)
0 × lnT +

1

µ2

1

c+ 2ab

3∑
j=1

2∑
l=1

(−1)j+l

{ 2∑
k=1

[
− ln(−r(l)jk ) ln

2(1 + r
(l)
jk )

− 2 ln(1 + r
(l)
jk )Li2(1 + r

(l)
jk ) + 2Li3(1 + r

(l)
jk )

]
+
[
ln(1 + r

(l)
j1 )− ln(1 + r

(l)
j2 )

]
×

[
1

2
ln(r

(l)
jk ) + η

(
− r

(l)
jk ,

1 + r
(l)
j2

r
(l)
j2 − r

(l)
j1

)
×

[
ln(1 + r

(l)
j1 )− ln(1 + r

(l)
j2 )

]
+ Li2

(
1 + r

(l)
j1

1 + r
(l)
j2

)
− Li2

(
r
(l)
j2 (1 + r

(l)
j1 )

r
(l)
j1 (1 + r

(l)
j2 )

)]
− Li3

(
1 + r

(l)
j1

1 + r
(l)
j2

)
+ Li3

(
r
(l)
j2 (1 + r

(l)
j1 )

r
(l)
j1 (1 + r

(l)
j2 )

)}
(385)

These expressions are valid for real mass and momentum squared. For complex

parameters, the expressions can be found in Eq.4.26 of [43].

B.5 Four-Point Function

The 1-loop scalar four-point function, D0(p
2
1, p

2
2, p

2
3, p

2
4,m1,m2,m3,m4) = D0, is

defined as

D0 = (µ2πeγE)ϵ
1

iπ2

∫
dDq

1

[q2 −m2
1 + iε][(q + p1)2 −m2

2 + iε]

× 1

[(q + p1 + p2)2 −m2
3 + iε][(q + p1 + p2 + p3)2 −m2

4 + iε]

= (µ2πeγE)ϵ
1

iπ2

∫ 1

0

dx

∫ x

0

dy

∫ y

0

dz

∫
dDq

6

D4
xyz

= (µ2πeγE)ϵ
6

iπ2

∫ 1

0

dx

∫ x

0

dy

∫ y

0

dz I4(m
2
xyz) (386)

175



with

Dxyz =[(q1 + (y − z)p1 + (x− y)(p1 + p2) + (1− x)(p1 + p2 + p3))
2 −m2

xyz] (387)

m2
xyz =ax2 + by2 + gz2 + cxy + hxz + jyz + dx+ ey + kz + f

=p23x
2 + p22y

2 + p21z
2 + (2p2 · p3)xy + (2p1 · p3)xz + (2p1 · p2)yz

+(m2
3 −m2

4 − p23)x+ (m2
2 −m2

3 − p22 − 2p2 · p3)y

+ (m2
1 −m2

2 − p21 − 2p1 · p2 − 2p1 · p3)z +m2
4 − iε (388)

According to Eq.341, we obtain

D0 = (µ2πeγE)ϵΓ(2 + ϵ)

∫ 1

0

dx

∫ x

0

dy

∫ y

0

dz [m2
xyz]

−2−ϵ (389)

= D
(0)
0 +O(ϵ)

=

∫ 1

0

dx

∫ x

0

dy

∫ y

0

dz [m2
xyz]

−2 (390)

where we have only kept the finite order since the O(ϵ) is usually irrelevant for 2→ 2

process.

Performing projective transformation, where Ai are all positive, we obtain

D
(0)
0 =

∫ 1

0

dx

∫ x

0

dy

∫ y

0

dz [A1A2A3A4]× [M2
xyz]

−2 (391)

with

M2
xyz = m2

xyz(pij → qij,mi →Mi). (392)

pij and Mi are

qij = (p2ij +m2
i +m2

j)AiAj −m2
iA

2
i −m2

jA
2
j

= lijAiAj −m2
iA

2
i −m2

jA
2
j , (393)

M2
i = m2

iA
2
i . (394)
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The Ai are chosen in such a way that the coefficients of z2, xz and yz disappear,

which is equivlant to

q212 = 0 → l12A1A2 −m2
1A

2
1 −m2

2A
2
2,

q213 = q223 → l13A1A3 −m2
1A

2
1 = l23A2A3 −m2

2A
2
2,

q214 = q224 → l14A1A4 −m2
1A

2
1 = l24A2A4 −m2

2A
2
2 (395)

The solutions for the coefficients Ai are

A1

A2

=
l12 ±

√
l212 − 4m2

1m
2
2

2m2
1

,

A3 =
m2

2A
2
2 −m2

1A
2
1

l23A2 − l13A1

,

A4 =
m2

2A
2
2 −m2

1A
2
1

l24A2 − l14A1

(396)

Note that there is a freedom for choosing A1 since we solved four variables through

three linear equations. Thus Eq.391 becomes

D
(0)
0 =

∫ 1

0

dx

∫ x

0

dy

∫ y

0

dz [A1A2A3A4]× [a′x2 + b′y2 + c′xy + d′x+ e′y + k′z + f ]−2

= [A1A2A3A4]×
∫ 1

0

dx

∫ x

0

dy
1

k′

[ 1

a′x2 + b′y2 + c′xy + d′x+ e′y + f

− 1

a′x2 + b′y2 + c′xy + d′x+ e′y + k′y + f

]
(397)

where a′ = a((pij → qij,mi →Mi) and it is same for all the other variables. Clearly,

Eq.397 is the sum of two three-point functions, thus it is straightforward to derive

the analytical expression for D
(0)
0 with Eq.360.
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Appendix C Analytical Expressions of ∂m2
1
Bijk(σ,m

2
1,m

2
2)

In this appendix, explicit expressions of ∂m2
1
Bijk(p

2,m2
1,m

2
2) as well as its imag-

inary part for various tensor integrals are listed. As before, we use the notation

∂mi
≡ ∂/∂(m2

i ), and we also make use of the abbreviations

λ = σ2 +m4
1 +m4

2 − 2(σm2
1 + σm2

2 +m2
1m

2
2), (398)

l1 = log

[
m2

1 +m2
2 − s+ λ1/2

2

√
1

m2
1m

2
2

]
(399)

Expressions of ∂m2
1
Bijk(p

2,m2
1,m

2
2) as well as its imaginary part for various tensor

integrals are

Im ∂m1B0(σ,m
2
1,m

2
2) = −π

σ −m2
1 +m2

2

σλ1/2
, (400)

Im ∂m1B1(σ,m
2
1,m

2
2) = π

σ(m2
1 +m2

2 − σ) + λ

σ2λ1/2
, (401)

Im ∂m1B00(σ,m
2
1,m

2
2) = −π

λ1/2(m2
1 −m2

2 − σ)

4σ2
, (402)

Im ∂m1B11(σ,m
2
1,m

2
2) = π

m4
1σ −m2

1m
2
2σ −m2

1σ
2 +m2

1λ−m2
2λ

σ3λ1/2
, (403)

Im ∂m1B001(σ,m
2
1,m

2
2) = π

λ1/2(3m2
1σ + 3m2

2σ − 3σ2 + 2λ)

2σ3
, (404)

Im ∂m1B111(σ,m
2
1,m

2
2) =

π

σ4λ1/2

{
−m6

1σ +m2
1σ(3m

2
2 + 4m2

2σ + σ2 − 5λ)

− 2(m6
2σ − 2m4

2σ
2 +m2

2σ
3 + λ2 − λσ2)

}
, (405)

∂m1B0(σ,m
2
1,m

2
2) = −

1

2σ

(
log

1

m2
1

− log
1

m2
2

− 2
2l1(σ −m2

1 +m2
2)

λ1/2

)
, (406)

∂m1B1(σ,m
2
1,m

2
2) = −

1

σ
+

1

2σσ

(
(m2

2 −m2
1)× (log

1

m2
1

− log
1

m2
2

)

+
l1
λ1/2

((σ −m2
1 +m2

2)(σ +m2
1 −m2

2)− λ
)
, (407)
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∂m1B00(σ,m
2
1,m

2
2) =

1

4
log

1

m2
1

+
1

4σ2

(
σ(2σ −m2

1 +m2
2)−

λ+ 2σm2
2

2

× (log
1

m2
1

− log
1

m2
2

) + l1
√
λ(σ −m2

1 +m2
2)
)
, (408)

∂m1B11(σ,m
2
1,m

2
2) =

1

σ3

(
σ(1.5σ −m2

1 +m2
2)−

λ+ 3σm2
2

2

× (log
1

m2
1

− log
1

m2
2

) +
(σ −m2

1 +m2
2)(λ+ σm2

2)

l1
√
λ

)
, (409)

∂m1B001(σ,m
2
1,m

2
2) = −

1

12
log

1

m2
1

+
1

24σ3

(
(2(m2

1 −m2
2)

3 + σ3 + 3σm4
2 − 3σm4

1)

× (log
1

m2
1

− log
1

m2
2

) + l1λ
1/22(m

2
1 −m2

2)
2 − σ(σ +m2

1 +m2
2)

12σ3

)
+

6m4
1 − 12m2

1m
2
2 + 6m4

2 − 6m2
1σ − 6m2

2σ − 5σ2

36σ2
, (410)

∂m1B111(σ,m
2
1,m

2
2) = −

6(m2
1 −m2

2)
2 + 3m2

1σ − 9m2
2σ + 2σ2

6σ3

− (m2
1 −m2

2)
3 +m2

2σ(2m
2
1 − 2m2

2 + σ)

2σ4
(log

1

m2
1

− log
1

m2
2

)

l1
σ4λ1/2

×
(
(m2

1 −m2
2)

4 − (m2
1 −m2

2)
2(m2

1 + 3m2
2)σ

−m2
1m

2
2σ

2 + 3m4
2σ

2 −m2
2σ

3
)
. (411)
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Appendix D Analytical Expressions of ∂m2
i
∂m2

j
Bijk(σ,m

2
1,m

2
2)

In this appendix, explicit expressions of ∂m2
i
∂m2

j
Bijk(σ,m

2
1,m

2
2) as well as its imag-

inary part for various tensor integrals are listed.

Im ∂2
m1

B0(σ,m
2
1,m

2
2) = −π

4m2
2

σλ1/2
, (412)

Im ∂2
m1

B1(σ,m
2
1,m

2
2) = π

4m2
2σ

2 − (m2
1 −m2

2 − σ)(λ− 2m2
2σ)

σ2λ3/2
, (413)

Im ∂2
m1

B00(σ,m
2
1,m

2
2) = −π

λ+ 2m2
1σ

2σ2λ1/2
, (414)

Im ∂2
m1

B11(σ,m
2
1,m

2
2) = 2π

λ[λ+ σ(m2
1 +m2

2 − σ)]− 2σ2m2
1m

2
2

σ3λ3/2
, (415)

Im ∂2
m1

B001(σ,m
2
1,m

2
2) = π

(m2
1 −m2

2)(λ+m2
2σ) +m2

2σ
2

2σ3λ1/2
, (416)

Im ∂2
m1

B111(σ,m
2
1,m

2
2) =

π

σ4λ3/2

{
(m2

1 −m2
2 − σ)[3λ2 + 4m2

2σλ

+ σ2(3(m2
1 −m2

2 − σ)(m2
1 +m2

2 + σ)− 2m2
1m

2
2)]

+ 12σ3[m4
1 +m4

2 − σ(m2
1 +m2

2)]
}
, (417)

Im ∂m1∂m2B0(σ,m
2
1,m

2
2) = π

2(m2
1 +m2

2 − σ)

λ3/2
, (418)

Im ∂m1∂m2B1(σ,m
2
1,m

2
2) = π

4m2
1σ

2 − (m2
2 −m2

1 − σ)(λ− 2m2
1σ)

σ2λ3/2
, (419)

Im ∂m1∂m2B00(σ,m
2
1,m

2
2) = π

(m2
1 −m2

2)
2 − σ(m2

1 +m2
2)

2σ2λ1/2
, (420)

Im ∂m1∂m2B11(σ,m
2
1,m

2
2) = π

1

σ3λ3/2

(
2m2

1σ
2(m2

1 +m2
2 − σ)− λ[2λ

+ σ(3m2
1 +m2

2 − σ)]
)
, (421)

∂m1∂m2B0(σ,m
2
1,m

2
2) =

2

λ

{
−1 + m2

1 +m2
2 − s

λ1/2
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× log
−m2

1 −m2
2 + σ − λ1/2

2
√

m2
1m

2
2

}
, (422)

∂m1∂m2B1(σ,m
2
1,m

2
2) =

1

σ

{
σ −m2

1 +m2
2

λ
+

1

2σ

(
log

1

m2
1

− log
1

m2
2

)
+

l1
λ1/2

(σ −m2
1 +m2

2

σ
+

2m2
2(σ −m2

1 +m2
2)

λ

)}
, (423)

∂m1∂m2B00(σ,m
2
1,m

2
2) =

1

2σ

{
1 +

m2
1 −m2

2

2σ

(
log

1

m2
1

− log
1

m2
2

)
+

l1
λ1/2

((m2
1 −m2

2)
2

σ
−m2

1 −m2
2

)}
, (424)

∂m1∂m2B11(σ,m
2
1,m

2
2) =

1

σ2

{
−2

(
2 +

m2
2σ

λ

)
−
(1
2
− m2

1 −m2
2

σ

)(
log

1

m2
1

− log
1

m2
2

)
+

l1
σλ3/2

(
−2(m2

1 −m2
2)

4 + (m2
1 −m2

2)
2(7m2

1 + 5m2
2)σ

− 3σ2(3m4
1 +m4

2) + σ3(5m2
1 +m2

2)− σ4
)}

, (425)

∂m1∂m2B001(σ,m
2
1,m

2
2) =

1

4σ2

{
2(m2

1 −m2
2)− σ +

((m2
1 −m2

2)
2

σ
−m2

1

)
×

(
log

1

m2
1

− log
1

m2
2

)
+

2l1
σλ1/2

(
λ(m2

1 −m2
2)

+ σm2
2(σ +m2

1 −m− 22)
)}

, (426)

∂m1∂m2B111(σ,m
2
1,m

2
2) =

1

2σ3

{
(σ −m2

1 +m2
2)× (6 +

2m2
2σ

λ
)− σ

−
(3(m2

2 −m2
1)

2

σ
+ 2m2

2 − 4m2
1 + σ

)
×
(
log

1

m2
1

− log
1

m2
2

)
2l1

σλ1/2

(
(m2

2 −m2
1)× (3λ+ 4σm2

2) + σλ

+
2m4

2σ
2(m2

1 −m2
2 + s)

λ

)}
. (427)
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The integrated functions for zero momentum are given by, in terms of r = m2
2/m

2
1,

∂2
m1

B0(0,m
2
1,m

2
2) =

m−4
1

(1− r)2

[
1 + r + 2r

ln r

1− r

]
, (428)

∂2
m1

B1(0,m
2
1,m

2
2) =

m−4
1

2(1− r)3

[
−1− 5r − 2r(2 + r)

ln r

1− r

]
, (429)

∂2
m1

B00(0,m
2
1,m

2
2) =

m−2
1

4(1− r)2

[
−1 + 3r + 2r2

ln r

1− r

]
, (430)

∂2
m1

B11(0,m
2
1,m

2
2) =

m−4
1

3(1− r)4

[
1 + 10r + r2 + 6r(1 + r)

ln r

1− r

]
, (431)

∂2
m1

B001(0,m
2
1,m

2
2) =

m−2
1

12(1− r)3

[
1− 5r − 2r2 − 6r2

ln r

1− r

]
, (432)

∂2
m1

B111(0,m
2
1,m

2
2) =

m−4
1

12(1− r)5

[
−3 + 47r − 11r2 + r3 − 12r(2 + 3r)

ln r

1− r

]
,

(433)

∂m1∂m2B0(0,m
2
1,m

2
2) =

m−4
1

(1− r)2

[
−2− (1 + r)

ln r

1− r

]
, (434)

∂m1∂m2B1(0,m
2
1,m

2
2)) =

m−4
1

2(1− r)3

[
5 + r + (2 + 4r)

ln r

1− r

]
, (435)

∂m1∂m2B00(0,m
2
1,m

2
2) =

m−2
1

4(1− r)2

[
−1− r − 2r

ln r

1− r

]
, (436)

∂m1∂m2B11(0,m
2
1,m

2
2) =

m−4
1

6(1− r)4

[
−17− 8r + r2 − 6(1 + 3r)

ln r

1− r

]
. (437)
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Appendix E Running Z Width and Fixed Z Width

Z propagator under Dyson resummation follows the Breit-Wigner form

DZ(s) =
1

s−m2
Z + imZΓZ

. (438)

In terms of this expression, the corresponding cross section with intermediate Z boson

can be written as

σ ∼ s

(s−m2
Z)

2 +m2
ZΓ

2
Z

(439)

One can simply derive that σ becomes maximal at
√
s = mZ(1 + γ2)1/4, where

γ = mZ/ΓZ . However in experiment, the peak of the cross section shifts with energy

about ∆E ∼ 34 MeV. The experimental data is better fitted with running width,

which is written as

σ ∼ s

(s−m2
Z)

2 + s2γ2
(440)

The maximum corresponding to this running width cross section is
√
s = mZ(1 +

γ2)−1/4, and the energy difference between fixed width and running width is

∆E = mZ(1 + γ2)1/4 −mZ(1 + γ2)−1/4 ≃
γ→0

1

2
γ2mZ ≃ 34 MeV (441)

which explains this peak shift.

To produce the correct peak in theoretical calculation, the energy dependent Z

boson width with arbitrary EW corrections can be safely taken care of by performing

the following transformation

GµDZ(s) = G
′

µD
′

Z(s) (442)
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where Gµ is the fermi constant and

D′
Z(s) =

1

s−m′2
Z + im

′
ZΓ

′
Z

, (443)

m′
Z = mZ(1 + γ2)−1/2, (444)

Γ′
Z = ΓZ(1 + γ2)−1/2, (445)

G
′

µ =
Gµ

1 + iγ
. (446)

m′
Z ,Γ

′
Z are formal parameters without physical interpretation.

Under this transformation, position of the new peak can be correctly reproduced

s = m
′

Z(1 + γ2)1/4 = mZ(1 + γ2)−1/2(1 + γ2)1/4 = mZ(1 + γ2)−1/4 (447)

More details can be found in [136].

184



Bibliography

[1] H. Baer et al. “The International Linear Collider Technical Design Report -
Volume 2: Physics,” [arXiv:1306.6352 [hep-ph]].

[2] P. Bambade et al. “The International Linear Collider: A Global Project,”
[arXiv:1903.01629 [hep-ex]].

[3] A. Abada et al. [FCC Collaboration], “FCC-ee: The Lepton Collider : Future
Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228,
261 (2019).
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