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Towards Optimizing Left Ventricular Assist Device (LVAD) Therapy for

Patients with Advanced Heart Failure: Exploring Machine Learning

Applications in Pre- and Post-LVAD Therapy

Faezeh Movahedi, PhD

University of Pittsburgh, 2023

Heart failure is a significant global public health concern affecting millions of individuals.

Implantable Left Ventricular Assist Devices (LVADs) have proven beneficial for patients with

advanced heart failure who are unresponsive to conventional treatments. However, despite

the improved survival rates associated with LVADs, this therapy carries a high risk of recur-

rent and severe adverse events (AEs) that lead to increased morbidity and mortality. Many

clinical studies have examined the AE profiles of LVAD patients, but these studies often

focus on statistical analysis and treat each AE as a separate event, overlooking potential

relationships and interactions among AEs. This thesis aims to overcome these limitations

by exploring three machine learning applications integrated with a National registry dataset

during both pre- and post-implantation time frames. The first module involves post-LVAD

sequential AE pattern mining and clustering, providing a comprehensive view of the AE

landscape in the LVAD population. By identifying critical time points and subgroups with

distinct AE patterns that significantly impact therapy outcomes, this module may serve to

inform personalized care strategies, resource allocation, and follow-up scheduling. The sec-

ond module developed a pre-implant predictive risk model that assesses AE risk based on

patients’ preoperative clinical profiles. This model may serve to enhance patient selection

and management of high-risk patients prior to the procedure. The third module created a

post-LVAD risk model predicting future AEs based on pre- and post-LVAD clinical profiles

supplemented with the patients’ AE history in first critical weeks. This risk may help clin-

icians to anticipate subsequent AEs and employ preventive measures. These three modules

collectively represent a crucial step towards optimizing LVAD therapy and supporting hu-

man decision-making by integrating comprehensive clinical information, treatment history,

and temporal events. Future translation of these modules into clinical application software

iv



will contribute to a clinical decision support system through the integration of various data

mining tasks linked with temporal clinical milestones.
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1.0 Introduction

1.1 Motivation

1.1.1 Advanced Heart Failure

Heart failure (HF) is characterized as an abnormality in the structure or function of the

heart, with typical symptoms including breathlessness, persistent coughing, swelling in an-

kles, and fatigue [1]. HF is a chronic condition and may gradually progress to advanced HF.

There is no globally uniform definition for advanced HF. Some clinicians believe advanced

HF should be defined based on high-risk factors of mortality, while others insist on factors

like poor quality of life and severe symptoms [2]. Multiple classification systems exist to

characterize patients with HF. Based on the 4-level classification by the New York Heart

Association, patients with HF who are unable to carry out any physical activity without dis-

comfort and show symptoms of HF at rest are categorized as stage 4 (advanced HF) [3]. The

American Heart Association also introduced an A-to-D staging system, in which stage D (ad-

vanced HF) is defined as having refractory heart failure despite optimal medical therapy [4].

Recurrent HF-related hospitalizations, intolerance of neurohormonal antagonists, increased

diuretic use, organ failure, malnutrition, and refractory arrhythmias are characteristics of

patients with stage D of HF [5].

HF is a major public health issue that affects approximately 5.7 million people in the

United States and about 26 million people worldwide [6–8]. There are about 670,000 newly

diagnosed cases of HF per year in the United States [7,8]. It is estimated that the prevalence

of HF will increase by 46% from 2012 to 2030, resulting in over 8 million people aged 18 years

or older with HF [6]. HF is one of the leading causes of death and is associated with significant

morbidity and poor quality of life [6, 9, 10]. HF is the primary cause of over one million

hospitalizations and the secondary cause of over three million hospitalizations in the United

States [2]. The annual cost of HF in the United States is $39 billion (estimated in 2010),

which accounts for approximately 4%of total healthcare costs [2,11,12]. A disproportionate
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portion of the annual costs of HF is incurred by patients with advanced HF [11]. There

are no accurate statistics about the prevalence of advanced HF due to disagreements among

organizations regarding its definition [2, 4]. Nevertheless, it is estimated that advanced

HF currently affects approximately 250,000 to 500,000 people in the United States [2, 4].

Advanced HF is a chronic disease, and it is possible that all patients with HF might eventually

progress to advanced HF. Therefore, it is impossible to define the incidence of advanced HF.

1.1.2 The Rise of Left Ventricular Assist Devices (LVADs)

Advanced HF poses significant challenges in terms of treatment and management. Tra-

ditional therapies, such as medical treatment and symptom management, often fall short in

providing satisfactory outcomes for patients with advanced HF [13]. In such cases, alter-

native therapies become crucial in improving patient outcomes and quality of life. While

heart transplant is considered the gold standard treatment for eligible patients, the limited

availability of donor organs means that only a minority of patients can undergo heart trans-

plants [13]. In the United States, the number of donors per year is approximately 2,000-2,500,

which is about 10 times less than the number of patients in need of heart transplants [14,15].

This shortage of donor organs has necessitated the development of innovative therapies, with

left ventricular assist devices (LVADs) emerging as a groundbreaking solution for advanced

HF.

LVADs are surgically implantable mechanical circulatory support devices designed to

augment the pumping function of the left ventricle of the heart. The latest technology of

LVAD, HeartMate 3, is depicted in Fig. 1. These devices serve as blood pumps, facilitating

the flow of blood from the weakened left ventricle to the aorta, ensuring adequate blood

supply to the rest of the body. The history of LVADs over the past two decades is extensive,

marked by numerous significant errors, but also remarkable achievements. LVAD technology

has witnessed remarkable advancements, leading to the development of more compact, less

invasive, and increasingly efficient devices [16,17]. See 2.1.1 to learn about the generation of

LVADs. Over the years, LVADs have evolved from pulsatile-flow pumps to more advanced

continuous-flow pumps. These newer generations of LVADs, such as the HeartMate II,
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Figure 1: llustration of HeartMate 3 LVAD.

HeartWare Ventricular Assist Device (HVAD), and HeartMate 3, offer improved durability,

reduced risks of complications, and enhanced patient outcomes. The miniaturization of

devices and the implementation of magnetically-powered and levitating technologies have

further contributed to the advancements in LVAD therapy.

The rise of LVADs can be attributed to their significant clinical benefits. Patients with

advanced HF who do not respond well to traditional therapies or are ineligible for heart

transplants can find a lifeline in LVAD therapy. These devices offer a bridge to transplant

(BTT) for patients awaiting heart transplants, providing temporary support until a suitable

donor organ becomes available. Additionally, LVADs offer destination therapy (DT) for

patients who are not eligible for heart transplants but require long-term mechanical support

as a permanent therapy. When analyzing overall survival based on device indication, it

becomes evident that patients in BTT group demonstrate superior 1- and 5-year survival

rates compared to those in the DT group [18].

In recent years, there has been a notable surge in the number of LVAD implants, es-

tablishing these devices as a standard treatment for advanced HF. Based on the Society of
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the STS Access & Publications Task Force under the
Workforce on Research Development. Patient consent
for STS-Intermacs data collection was obtained at
enrolling centers according to local Institutional
Review Board requirements.

STATISTICAL ANALYSIS. For descriptive purposes, cate-
gorical variables are expressed as frequencies and
percentages. Continuous variables are expressed asmeans
! SD. Categorical variables were comparedwith c2 testing,
and continuous variables were compared with the t test.
Kaplan-Meier survival estimates were calculated with
censoring patients at the time of transplantation or
cessation of device support. Patients undergoing a
device exchange were not censored in the analysis. For

all survival analyses, differences for specific subsets of
data were compared with log-rank testing.

Outcomes associated with specified strategies at the
time of implant, including BTT, bridge to candidacy
(BTC), and destination therapy (DT), were examined
using the competing-outcomes analysis by Fine and
Gray, in which multiple mutually exclusive outcomes
are tracked over time. At any point in time, the sum of
the proportion (percentage) of patients in each outcome
category equals 100%.

Adverse events were calculated as event count, event
rate (per patient-year), patient count, and patient per-
centage. Multiphase parametric hazard modeling was
used to identify the shape of the hazard (instantaneous
risk) for post-LVAD death. This method has been used

FIGURE 1 Consol idated Standards of Repor t ing Tr ia ls d iagram shows al l mechanica l c i rcu la to ry suppor t dev ices and le f t

ventr icu lar ass is t dev ice implants based on flow type over t ime. (A ) D iagram depicts a l l durab le mechanical c i rcu la tory

suppor t dev ices entered in to The Socie ty of Thoracic Surgeons Interagency Regist ry for Mechanica l ly Ass is ted Ci rcu latory

Suppor t ( In termacs) , January 1 , 2012, to December 31 , 2021. (B ) Annua l year ly cont inuous flow lef t ventr icu lar ass is t dev ice

(CF LVAD) implants by flow configurat ion .
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Figure 2: The annual number of CF-LVAD implants categorized by flow configuration. The

devices include axial-flow pumps (HeartMate II; Abbott Laboratories), centrifugal hybrid

levitation (HeartWare Ventricular Assist Device [HVAD]; Medtronic, Inc), and centrifugal

full magnetic levitation (HeartMate 3 [HM3]; Abbott Laboratories) [18].
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Thoracic Surgeons (STS) 2022 annual report, from January 2012 to December 2021, 107

received a pulsatile-flow durable LVAD and the majority, 28,597, underwent implantation of

a durable continuous-flow LVAD (CF-LVAD) during the initial LVAD operation [18]. The

annual number of CF-LVAD implants categorized by flow configuration is presented in Fig.

2 [18]. Since the FDA’s approval of the HeartMate 3 (HM3) for long-term support indica-

tions such as BTT and DT in 2018 and 2019, there has been a significant surge in the volume

of HeartMate 3 (Multicenter Study of MagLev) implants, accounting for a remarkable 92.7%

of all CF-LVADs implants in 2021.

The continuous refinement of LVAD technology, improvements in surgical techniques,

and the collaborative efforts of healthcare professionals have contributed to the success of

these therapies. As research and innovation in the field continue, it is expected that the

numbers of LVAD implants will continue to rise, offering hope and improved outcomes for

an increasing number of patients with advanced heart failure [19].

1.1.3 Improved Outcomes of in LVAD Therapy

Recent advancements in device technology, surgical implant techniques, and clinical man-

agement have led to improved patient outcomes and survival in the past decade. Overall

survival rates for patients undergoing LVAD implant between 2017 and 2021 showed signifi-

cant improvement, with 1- and 5-year survival rates of 83.0% vs 81.2% and 51.9% vs 43.0%,

respectively (P < .0001). This achievement is particularly noteworthy as it marks the first

time that the 5-year survival rate for patients with LVAD exceeds 50% [18,20].

However, the success of LVAD therapy is not just about survival; LVADs have also

shown remarkable benefits in enhancing the quality of life for patients with advanced heart

failure [21–26]. Approximately 80% of patients with LVAD were satisfied with their decision

to have VAD therapy during the first 2 years [20]. By improving cardiac output and ensuring

adequate blood flow, LVADs alleviate symptoms such as fatigue, shortness of breath, and

exercise intolerance that significantly impact patients’ daily lives [21, 22, 24–26]. With the

device providing mechanical support to the heart, patients regain their ability to perform

routine activities, engage in physical exercise, and enjoy a more active lifestyle [21,22,24,25].
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Additionally, LVADs offer the potential for a more comprehensive and coordinated ap-

proach to patient care [27–29]. LVAD recipients are closely monitored by a multidisciplinary

team, including cardiologists, cardiac surgeons, nurses, and other healthcare professionals.

This collaborative care model ensures that patients receive comprehensive medical manage-

ment, personalized support, and education to manage their device and maintain their overall

well-being.

In summary, LVAD therapy goes beyond simply prolonging survival. It provides a sub-

stantial improvement in the quality of life for patients with advanced HF. By restoring

functional capacity, reducing symptoms, and offering a BTT, LVADs have transformed the

lives of many patients and opened new avenues for managing this challenging condition.

With ongoing advancements in LVAD technology and patient care, the future holds even

greater promise for enhancing patient outcomes and further improving their quality of life.

1.1.4 Challenges in LVAD Therapy: Adverse Events (AEs)

Despite the improved outcomes observed in patients with LVADs, these devices are not

without their challenges. One of the primary concerns is the occurrence of a wide range of

adverse events (AEs). Major post-LVAD AEs include bleeding, infection, cardiac arrhythmia,

stroke, device malfunction, right heart failure, renal dysfunction, and respiratory failure

[20]. These AEs can have a significant impact on the overall outcome of LVAD therapy

and, in some cases, may even lead to patient mortality [18, 20, 30–33]. While bleeding and

infection are among the most common adverse events associated with LVAD therapy [18], it’s

worth noting that certain adverse events such as stroke and respiratory failure, although less

frequent, can have a significant impact on patient mortality [18, 20, 30–33]. The subsequent

survival of LVAD patients is influenced by the occurrence of major AEs within the first three

months following implantation [20]. These AEs, such as neurological dysfunction, multiple

system organ failure (MSOF), right heart failure (RHF), infection, and device malfunction,

contribute significantly to mortality in post-LVAD patients, as depicted in Fig. 3 [20]. MSOF

and stroke are identified as the primary causes of death during the early months after LVAD

implantation, while stroke remains the leading cause of death between 6 months and 6
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years [20].

Figure 6 Hazard function curves indicating instantaneous risk
of death over time for the major causes/modes of death. LVAD, left
ventricular assist device; BiVAD, biventricular assist device; RHF,
right heart failure; MSOF, multiple system organ failure.

Figure 7 Cumulative hazard function for major causes/modes
of death. LVAD, left ventricular assist device; BiVAD, biven-
tricular assist device; RHF, right heart failure; MSOF, multiple
system organ failure.

Figure 8 Kaplan-Meier survival curves, stratified by INTER-
MACS profile at the time of implant. Depiction is as in Figure 3.
LVAD, left ventricular assist device; BiVAD, biventricular assist
device.

Figure 9 Kaplan-Meier survival curves, stratified by device
strategy and era. Depiction is as in Figure 3. LVAD, left ventricular
assist device; BiVAD, biventricular assist device.

Implants:  June 2006  December 2016

Figure 10 Kaplan-Meier survival curves, stratified by era and
biventricular support (CFBiVAD) vs total artificial heart (TAH).

Figure 11 Freedom from severe right heart failure (RHF)
(Kaplan-Meier), stratified by INTERMACS profile at implant.
RVAD, right ventricular assist device; LVAD, left ventricular
assist device; BiVAD, biventricular assist device.

The Journal of Heart and Lung Transplantation, Vol 36, No 10, October 20171082

Figure 3: The hazard function curves illustrate the risk of death over time for the primary

causes of mortality [20]. RHF (right heart failure) and MSOF (multiple system organ failure).

The occurrence of AEs can also lead to re-hospitalization, further impacting the patient’s

well-being and incurring additional healthcare costs [34, 35]. Re-hospitalization is often

required for the management and treatment of complications related to Gastrointestinal

bleeding and LVAD-related infections [34, 35]. These readmissions can disrupt the patient’s

recovery process, delay their return to normal activities, and add financial burden to the

healthcare system.

The timing of adverse events (AEs) in LVAD patients is a crucial consideration, with

studies indicating that the majority of these events tend to occur within the early period

following LVAD implantation, typically within the first 90 days post-implantation. This early

phase is associated with a higher risk of complications [18, 36]. During this initial period,

patients are still adjusting to the presence of the LVAD, while the surgical site is healing.

Table 1 provides AE rates for different types of AEs in the early (< 90 days) and late (> 90

days) periods, based on data from 13,945 patients who received an LVAD between 2017 and
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2021 [18]. The most common AEs during the early and late periods after LVAD implantation

are infections and bleeding. Certain AEs, such as renal dysfunction and respiratory failure,

are more prevalent in the early period and rare in the late period.

In summary, AEs are a common occurrence in patients undergoing LVAD therapy and

can significantly impact treatment outcomes. These events, such as bleeding, infection,

stroke, and device malfunction, pose challenges that can lead to increased morbidity, mor-

tality, and decreased quality of life. Investigating AEs in LVAD patients is of paramount

importance to understand their underlying mechanisms, risk factors, early detection, and

potential interventions. By conducting thorough research, healthcare professionals can gain

valuable insights into the prevention, early detection, and management of these events, ul-

timately minimizing their negative effects on patient outcomes. This knowledge can inform

improvements in LVAD technology, surgical techniques, patient selection, and post-implant

care, enhancing the safety and effectiveness of LVAD therapy for individuals with advanced

heart failure.

1.1.5 Adverse Events and the Cost of LVAD

The costs of LVAD therapy can be broken into LVAD implantation and post-LVAD care.

The average cost of the LVAD implantation is estimated at $141,287 ± 18,513 [12]. LVAD im-

plantation costs includes the LVAD device, professional payment, hospitalization, operating

room, diagnostics, laboratory tests, blood products, drugs, miscellaneous, and rehabilitation.

The largest costs are related to the LVAD device itself (48%:), professional payment (17%),

and stay in ICU (10%) [12]. The post-LVAD costs include cost of follow-up visits such as

professional payment, readmission costs (rate of 2.64 per person), device replacement (rate

of 0.06 per person), and outpatient costs including professional services, laboratory tests,

and drugs [11]. The post-LVAD costs, especially readmission costs, are significantly affected

by post-LVAD AEs [37,38]. Infection, bleeding, and respiratory failure are the major factors

that decisively affect LVAD costs [37–39]. In addition, AEs affect LVAD cost efficiency by

increasing the mortality and reducing the quality of life of post-LVAD patients, therefore

decreasing the cost effectiveness ratio for LVAD therapy [11,37]. Improvements in LVAD de-
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Table 1: The Society of Thoracic Surgeons (STS) 2022 annual report of Adverse Events

(AEs) in 13,945 Continuous-Flow LVAD Patients (January 1, 2017 - December 31, 2021) [18]

provides information on AE rates, which indicate the number of events per patient-year in

the early (< 90 days) and late (> 90 days) periods.

AE Period AE Count (No.) AE Rate Patients (No.) Patients (%)

Major bleeding Early 3928 1.22 788 20.0

Late 5007 0.25 2639 18.9

Cardiac arrhythmia Early 2873 0.89 2266 16.2

Late 2093 0.11 1384 9.9

Device malfunction Early 463 0.14 243 3.0

Late 1644 0.08 12539 39.0

Major infection Early 4181 1.30 123 22.4

Late 8420 0.43 386 31.5

Hepatic dysfunction Early 273 0.08 267 1.9

Late 248 0.01 2291 1.6

Myocardial infarction Early 26 0.01 260 0.2

Late 36 0.00 235 0.3

Neurologic dysfunction Early 1556 0.48 1393 10.0

Late 2161 0.11 1621 11.6

Renal dysfunction Early 1506 0.47 1404 10.1

Late 806 0.041 657 4.7

Respiratory failure Early 2213 0.69 1830 13.1

Late 773 0.039 646 4.6

Venous thromboembolism Early 217 0.067 206 1.5

Late 71 0.004 67 0.5

Other serious AEs Early 3180 0.99 2106 15.1

Late 2806 0.14 1717 12.3
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vice technology, operation techniques, and post-LVAD management have reduced the LVAD

cost over time and improved the quality of life and LVAD final outcome for patients. Yet, the

cost effectiveness of LVAD therapy for advanced HF has not yet accomplished the accepted

range as an effective new technology. Further reduction in long-term AEs and readmission,

and improvement in post-implant care strategies and LVAD devices would help this therapy

to be cost-effective.

1.2 Direction and Goals

Considering the rapidly increasing rate of LVAD implantation in recent years, accompa-

nied by the high rate of post-LVAD AEs and their impact on both mortality and quality of

life [18], it is evident that early recognition and diagnosis of AEs are of utmost importance.

LVAD patients experience a wide range of AEs, each requiring a unique clinical approach to

diagnosis and care management [40]. Additionally, detecting post-LVAD AEs is inherently

complex, as it involves continuous monitoring of various clinical and device parameters, and

requires collaboration among clinical professionals, nurses, perfusionists, and/or bioengineers

involved in patient and device management. Consequently, this can significantly contribute

to the financial burden associated with an already costly therapy [12]. On the other hand,

deficiencies in post-LVAD follow-up visits may lead to delayed AE detection, resulting in

additional complications and potentially death.

Considering the limitations in early AE diagnosis, the development of a supplementary

prognostic AE tool would be beneficial in alerting healthcare providers and patients about

impending risks, thereby enabling them to take preventive actions. Moreover, analyzing

LVAD AE trajectories across a broad spectrum of LVAD patients would provide valuable

insights to clinicians, educating and informing them about potential treatment approaches.
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1.3 Dissertation Scope

To develop a prognostic model for early diagnosis of AE after LVAD, we must first

fully characterize LVAD patients based on their post-LVAD AE trajectories. While the

risks of developing post-LVAD AEs are clinically well-recognized, the early diagnosis and

management of AEs are not well-characterized due to the complexity of patient population

and variable symptoms and signs [40, 41]. Many studies have investigated the AE profile of

patients after LVAD by focusing on incidence of (or freedom from) various types of AE at

different points of time after LVAD, as well as the associated pre and post- LVAD risk factors

[30,31,42–50]. However, to date there has been no study to investigate temporal relationships

of multiple types of AEs in patients with LVAD. A first step to address this deficit is to

identify and model patterns of transitions between AEs and their related outcomes. A

descriptive temporal learning approach, like sequential pattern mining and clustering, can

extract knowledge about the heterogeneity of temporal AEs patterns after LVAD and can

provide comprehensive and clinically meaningful profiles within post-LVAD patients.

Another crucial area that requires further research is the utilization of an AE prognos-

tic tool to screen LVAD candidates for receiving LVAD therapy. Developing a reliable risk

stratification model based on patients’ pre-LVAD profiles would greatly improve decision-

making for LVAD therapy. Previous studies have developed risk stratification models based

on patients’ pre-LVAD characteristics to predict the final outcome of LVAD (death versus

survival) and major AEs such as bleeding and right heart failure [51–54, 54–56]. However,

the accuracy of these scores at the patient level is limited due to poor-to-modest discrimina-

tion power [56,57]. To address this limitation, the first step in this analysis is to investigate

the improvement in the performance of risk models by addressing issues like systematic

overfitting. The next step in this analysis is to determine if patients’ pre-implant clinical

profile could be associated with patients’ post-LVAD trajectories. This analysis could trans-

fer the pre-LVAD risk stratification for single AE or outcome into levels of risk for various

post-LVAD trajectories (patterns).

Risk prediction models for LVAD patients developed thus far have relied on data collected

at the time of implantation [53, 54, 57–60]. While these models offer valuable insights into
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overall mortality risk for patient selection before implantation, their drawback lies in their

inability to capture changes in patient health status after LVAD implantation. Thus, there

is an opportunity to develop post-LVAD risk models by incorporating follow-up data and

patient AE history to enable real-time prediction of future risk. Considering the potential

significance of various pre- and post-LVAD factors, ranging from demographic information

and lab values to medical therapies and AE history, as predictors of mortality, it is crucial to

investigate these relationships further, particularly by exploring their combinations [61–70].

1.4 Specific Aims

Three aims have been designed for this research, focusing on characterizing the patterns of

transitions between adverse events (AEs) in LVAD patients and improving risk stratification

models for LVAD therapy, with the goal of enhancing the understanding of AE journeys,

improving decision-making for LVAD therapy, and enabling accurate prediction of patient

outcomes.

Aim 1: Characterize and model patterns of transitions between AEs in patients

with LVAD.

• Investigate the temporal aspect and similarity of AE journeys among LVAD patients

by utilizing frequent sequential pattern mining on the multi-center National database of

longitudinal data for post-LVAD AEs.

• Cluster patients into groups with similar AE sequences.

• Model sequential AE pattern of each group resulting from clustering.

• Characterize patients in each group, exploring various factors, to develop comprehensive

patient profiles.

Aim 2: Develop a reliable risk stratification model for LVAD therapy based on

patients’ pre-LVAD profiles.

• Develop a risk stratification model for post-LVAD mortality.

• Develop a risk stratification model for post-LVAD right heart failure.
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• Address the imbalance issue in developing predictive models in the LVAD field and

raise awareness about the limitations of ROC as a common metric for evaluating model

performance.

Aim 3: Develop post-LVAD risk prediction models by incorporating follow-up

data and patient AE history.

• Develop a classifier that predicts risk of early mortality after implant based on the pa-

tient’s AE history, as well as pre- and post-LVAD clinical profiles.

The outcome of Aim 1 can inform personalized care strategies by providing guidance

on critical time points following LVAD implantation and identifying subgroups of patients

whose specific patterns of AEs significantly impact the outcome of LVAD therapy. These

subgroups require attention and assistance in allocating resources and scheduling follow-up

appointments. The outcome of Aim 2 enhances the accuracy of patient selection for LVAD

implantation and enables practitioners to stabilize high-risk patients before the procedure,

ensuring a more favorable outcome. Finally, the outcome of Aim 3 facilitates the antici-

pation of AEs in the early weeks following LVAD implantation. This allows for the timely

implementation of preventive measures or adjustments to treatment plans, promoting better

patient outcomes. It is hoped that the combination of these three aims will dramatically

optimize the outcomes of LVAD implantation for patients with advanced heart failure.

1.5 Dissertation Organization

Chapter 2 explores the background of the evolutionary progress of LVAD technology, the

post-LVAD care management, LVAD-related AE definitions, and advancements and chal-

lenges of applications of machine learning in pre- and post-LVAD therapy. Chapter 3 de-

scribes the main topics addressed for the final dissertation defense and the main approaches.

Chapter 4 provides insights into the analysis of AEs, exploring their timelines and patterns

of similarity using sequential pattern mining. Chapter 5 explores approaches to enhance the

discrimination power and generalizability of risk models for mortality and right heart failure
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after LVAD implantation. Chapter 6 provides a holistic view of the AE landscape in the

LVAD population through clustering analysis, identifying subgroups with specific patterns

of AEs. Chapter 7 integrates pre- and post-implantation data with the history of AEs to

develop models that predict mortality during critical early weeks following LVAD implan-

tation. Chapter 8 summarizes the conclusions of the research presented in this dissertation

and the possible future directions to be investigated as the next steps for this research.
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2.0 Background

2.1 Device

2.1.1 LVAD Generations: Evolutionary Progress

LVADs have evolved over the years, with different generations representing advancements

in technology and design. The first generation of LVADs introduced pulsatile-flow pumps,

such as the HeartMate I (Thoratec, now Abbott Laboratories) as depicted in Fig. 4a, which

aimed to mimic the pulsatile function of the heart. These devices, while effective, had

limitations such as large external pumps, limited mobility for patients, and increased risk of

bleeding and infection [71,72].

The second generation of LVADs brought about a shift to continuous-flow pumps, such

as the HeartMate II (Abbott Laboratories), as illustrated in Fig. 4b, and the HeartWare

Ventricular Assist Device (HVAD) (Medtronic, Inc). These devices featured a smaller size,

simpler implantation technique, and fewer moving parts. These improvements led to longer

durability and reduced risks of thromboembolism, infection, and malfunction [71, 72, 74].

Continuous-flow LVADs became the new standard, offering enhanced efficiency and longer

support.

The third generation of LVADs further refined the technology by incorporating magnetically-

powered continuous-flow pumps. Notable brands in this generation include the HeartMate 3

(Abbott Laboratories) as depicted in Fig. 4c, which utilizes axial or centrifugal motors and

employs noncontact bearings to minimize prothrombotic sites. The HeartMate 3 has shown

improvements in efficiency, durability, and patient outcomes [71,72].

Overall, the successive generations of LVADs, including brands like HeartMate I, Heart-

Mate II, HeartWare HVAD, and HeartMate 3 have demonstrated significant progress in

terms of size, invasiveness, hemocompatibility, and clinical outcomes. These advancements

have expanded the options for patients with advanced heart failure who require mechanical

circulatory support, providing them with improved quality of life and extended survival.
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(a) First generation of
LVADs: pulsatile-flow
pumps. Sketch of PVAD
from Thoratec Corpora-
tion [73].

(b) Second generation of
LVADs: axial continuous-flow
pumps. Sketch of HeartMate
II LVAD from Thoratec Cor-
poration [73].

(c) Third generation
of LVADs: centrifugal
continuous-flow pumps.
Sketch of HeartMate3 LVAD
from Thoratec Corpora-
tion [73].

Figure 4: The three generations of LVAD
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2.2 Clinical

2.2.1 Post-LVAD care management

After LVAD implantation, recovery and follow-up care play crucial roles in optimizing

patient outcomes. The post-LVAD period requires a comprehensive and multidisciplinary ap-

proach involving specialized healthcare professionals such as cardiologists, cardiac surgeons,

nurses, and rehabilitation specialists. The complexity of post-LVAD management and the

need for coordinated care have been topics of extensive research, leading to significant im-

provements over time [27–29, 75]. These advancements aim to enhance patient recovery,

reduce complications, and improve overall quality of life for individuals with LVADs.

The recovery period following LVAD surgery typically involves a hospital stay for a few

weeks, during which the medical team closely monitors the patient’s progress and adjusts

medications and therapies as needed. During this initial recovery phase, patients receive

specialized care in the intensive care unit (ICU) or a dedicated cardiac care unit. This

allows for close monitoring of vital signs, device function, and potential complications. The

medical team focuses on managing pain, optimizing fluid balance, and promoting wound

healing.

Once the patient’s condition stabilizes, they are transitioned to a step-down unit or a

specialized cardiac rehabilitation facility. In these settings, patients undergo a structured

rehabilitation program that includes physical therapy, exercise training, and education on

LVAD management, lifestyle modifications, and self-care. The goal is to gradually improve

strength, mobility, and overall functional capacity.

The follow-up care after LVAD implantation is crucial for ongoing monitoring and ad-

justment of the device settings. Patients typically have frequent outpatient visits with their

LVAD care team, which includes cardiologists, LVAD coordinators, nurses, and other health-

care professionals. During these visits, the team evaluates device function, assesses the pa-

tient’s overall health, and addresses any concerns or complications that may arise. Regular

laboratory tests, imaging studies, and device checks are performed to ensure optimal device

performance and detect any potential issues early on. Medication management, including
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anticoagulation therapy and immunosuppressive medications (in the case of transplant can-

didates), is closely monitored and adjusted as needed.

Furthermore, patient education plays a crucial role in post-implantation care. Patients

and their caregivers receive extensive training on LVAD management, including device care,

driveline maintenance, infection prevention, and emergency procedures. This education em-

powers patients to actively participate in their care and recognize signs of potential compli-

cations.

The follow-up care after LVAD implantation extends beyond the medical aspects. It

includes psychosocial support to address emotional and psychological well-being, as the

transition to life with an LVAD can be challenging for patients and their families. Support

groups, counseling services, and resources for coping with the psychosocial impact of living

with an LVAD are often provided.

Overall, recovery and follow-up care after LVAD implantation involve a multidisciplinary

approach, focusing on physical rehabilitation, device management, monitoring of health pa-

rameters, medication optimization, patient education, and psychosocial support. This com-

prehensive care aims to maximize patient outcomes, enhance quality of life, and ensure

long-term success with the LVAD therapy.

2.2.2 Adverse Events Definitions

Historically, the definition of AEs for LVADs in device clinical trials was determined

through agreements between the FDA and device manufacturers. However, there were in-

consistencies in criteria for patient selection, study endpoints, and AE definitions among

different trials and devices, making it challenging to compare and interpret the data. To ad-

dress this issue, initiatives were taken to standardize AE definitions for evaluating outcomes

in the field.

One significant step towards standardization was the development of registries, such as

the mechanical circulatory support (MCS) database of the International Society for Heart

and Lung Transplantation (ISHLT), which was first published in 2003 [76]. The experience

gained from the ISHLT registry led to the establishment of the Interagency Registry for

18



Mechanically Assisted Circulatory (INTERMACS) in 2005, supported by the National Heart,

Lung, and Blood Institute [77]. INTERMACS, now maintained by The Society of Thoracic

Surgeons (STS), became a pivotal resource for longitudinal studies on MCS in the United

States and introduced standardized AE definitions [78].

However, recent clinical trials sponsored by device manufacturers have deviated from

the established INTERMACS AE definitions [79]. This deviation highlighted the need for a

comprehensive update in AE definitions to achieve international standardization and harmo-

nization. To address this issue, collaboration between clinicians, the FDA, device manufac-

turers, and the Academic Research Consortium (ARC) [80] was initiated. The MCS-ARC

took place between November 2017 and December 2018 and was specifically formed to de-

velop and update AE definitions for various specific areas, involving experts from relevant

disciplines, including surgeons, HF cardiologists, infectious disease specialists, nurses, en-

gineers, and others [79]. The goal was to update AE definitions to reflect the evolving

landscape of LVAD therapy and to improve the accuracy, ease of reporting, and data entry

burden associated with AE reporting [79].

In summary, the definition of AEs for LVADs has evolved over time to address to meet

the changing landscape of LVAD therapy and improve patient outcomes. In this section,

the definition of bleeding and infection are presented to provide representative examples of

AE definitions in INTERMACS. For a comprehensive list of definitions for all types of AEs,

please refer to INTERMACS Appendices.

2.2.2.1 Bleeding Adverse Event

The association of the bleeding event should be classified as follows (1) Patient-related:

(e.g., coagulopathy unrelated to surgical technique such as non-adherence with anticoag-

ulation medication resulting in an inappropriately high level of anti-coagulation, hepatic

failure).(2) Management-related: (e.g., related to surgical technique; hypertension; bleed-

ing in the setting of inappropriate levels of anticoagulation) or to mismanagement of anti-

coagulants.(3) Pump related: (e.g., bleeding from the outflow graft, apical connector, or

other internal components). Below is the definition of types of bleeding AE.
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• Type 1

Bleeding that is not actionable and does not cause the patient to seek unscheduled

performance of studies, hospitalization, or treatment by a healthcare professional; may

include episodes leading to self-discontinuation of medical therapy by the patient without

consulting a healthcare professional. This type is not relevant during a hospitalization.

• Type 2

Any overt, actionable sign of hemorrhage (e.g., more bleeding than would be expected

for a clinical circumstance, including bleeding found by imaging alone) that does not fit

the criteria for Type 3, 4, or 5 but does meet at least one of the following criteria:

– Requiring non-surgical, medical intervention by a healthcare professional

– Leading to hospitalization or increased level of care

– Prompting evaluation

• Type 3

– Type 3a

Overt bleeding accompanied by hemoglobin drop of 3 to < 5g/dl

OR

Any transfusion with overt bleeding

– Type 3b

Overt bleeding plus hemoglobin drop 5g/dl

OR

Cardiac tamponade

OR

Bleeding requiring surgical intervention for control (excluding dental/nasal/skin)

OR

Bleeding requiring intravenous vasoactive agents

• Type 4

VAD implantation-related bleeding (includes concomitant cardiac or non-cardiac surgical

procedures)

– Reoperation after the closure of incision or incisions used to implant the VAD to

control bleeding
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– ≥ 50 kg: ≥ 4U packed red blood cells (PRBC) within any 48 hours during the first

7 days post-implant.

– < 50 kg: ≤ 20 cm3/kg PRBC within any 24 hours during the first 7 days post-

implant.

– Chest tube output > 2 liters within 24 hours.

• Type 5

Fatal bleeding

– Type 5a

Probable fatal bleeding; no autopsy or imaging confirmation but clinically suspicious

– Type 5b

Definite fatal bleeding; overt bleeding or autopsy or imaging confirmation

2.2.2.2 Infection Adverse Event

The association of the infection event should be classified as (1) Patient-related: (e.g.,

non-adherence or poor management of driveline exit site or indwelling catheters, IV drug

abuse, aspiration).(2) Management-related: (e.g., improper tunneling, contamination of the

intraoperative site, prolonged intubation).(3) Device-related: (e.g., Device endocarditis di-

agnosed by radiological examination or detection of pannus within the conduits or device).

MCS Related infections

• Percutaneous lead site infections

– Superficial percutaneous lead infection

A positive culture from the skin surrounding the percutaneous lead when there is

clinical evidence of infection such as pain, fever, drainage, erythema, or leukocytosis

coupled with the need to treat with anti-microbial therapy. The percutaneous lead

exit site may have drainage and/or the surrounding skin may have erythema. The

epithelialization of the percutaneous lead exit site is pre- served. The gram stain

of the skin specimen at the driveline exit site will contain white blood cells (i.e.,

positive sign for inflammation).
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– Deep percutaneous lead infection

A positive culture from the driveline exit site deep to the epithelium, when there is

clinical evidence of infection such as pain, fever, drainage, erythema, or leukocytosis

coupled with the need to treat with anti-microbial therapy. The epithelialization

of the percutaneous lead exit site is disrupted and no longer preserved or intact, or

there is radiographic evidence of findings consistent with infection along the path of

the percutaneous lead outside the mediastinum.

• Infection of external surfaces of an implantable component

A positive culture from the tissue surrounding the external housing of a pump or one of its

components implanted within the body (including device components such as controllers,

batteries, etc.), when there is clinical evidence of infection such as pain, fever, drainage,

erythema, or leukocytosis coupled with the need to treat with anti-microbial therapy.

• Infection of blood-contacting surfaces of an implantable component (device endocarditis)

Infection of blood-contacting internal surfaces of the MCS device including inflow/outflow

grafts: documented by positive blood cultures or radiographic or echocardiographic evi-

dence of vegetation in blood flow path of the pump coupled with the need to treat with

anti-microbial therapy.

Non MCS related infections

• Infective Endocarditis

Non MCS related Positive blood cultures and echocardiography findings for mass or

vegetation only on native valves, ICD, or pacemaker leads.

• Bloodstream Infection.

Positive blood cultures with no other source identified

Bloodstream infection: non VAD site or central venous catheter-related

(definition from the Centers for Disease Control/National Healthcare Safety Network).

Should be coupled with the need to treat with anti-microbial therapy.

• Mediastinitis

– Procedure related mediastinitis
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– Non MCS related mediastinitis

– Superficial mediastinal or thoracotomy wound infection

• Sepsis

– Life threatening organ dysfunction caused by a dysregulated host response to infec-

tion with (1) Evidence of systemic involvement by infection, manifested by need to

treat with anti microbial therapy.(2) Positive blood cultures.

• Localized non-MCS device infection

Infection localized to a site not involving the MCS device or components (e.g., pneumonia,

urinary tract infection, cholecystitis, diverticulitis, dental abscess) coupled with the need

to treat with anti-microbial therapy.

2.3 National Registry Data: INTERMACS

INTERMACS, the Interagency Registry for Mechanically Assisted Circulatory Support,

is a significant initiative in the field of mechanical circulatory support for heart failure pa-

tients. Established in 2005 with the support of the National Heart, Lung, and Blood Institute

(NHLBI), INTERMACS collects comprehensive data on patients receiving mechanical cir-

culatory support devices like LVADs to enhance patient care and outcomes [77]. Initially

maintained by the Interagency Registry for Mechanically Assisted Circulatory Support and

later transitioned to management by The Society of Thoracic Surgeons (STS) [78], this

registry ensures continuous data collection and analysis to drive advancements in the field.

The latest report from STS INTERMACS presents outcomes for a large cohort of patients

who underwent continuous-flow (CF) durable LVAD implantation from 2012 to 2021 [18].

Including data from 27,314 individuals, this report offers valuable insights into clinical out-

comes and trends associated with LVAD therapy over the past decade. With an extensive

network of 170 active centers across the United States and Canada participating in the

INTERMACS registry, a diverse and robust dataset is available for research purposes, en-

hancing our understanding of LVAD therapy.
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The INTERMACS registry collects comprehensive data on patients undergoing mechan-

ical circulatory support, encompassing medical history, demographic information, clinical

measurements, adverse events, and device-related details. Data are primarily obtained from

medical records and routine post-implant clinical visits adhering to standard care practices.

Scheduled clinical visits occur at specific intervals, such as 1 week, 1 month, 3 months, 6

months, and every 6 months post-implantation. These visits include interviews, physical ex-

aminations, functional capacity evaluations, neurocognitive assessments, and Quality of Life

(QoL) assessments using the Kansas City Cardiomyopathy Questionnaire (KCCQ). INTER-

MACS centers diligently follow all patients with implanted mechanical circulatory support

devices (MCSD). For patients with the MCSD removed without transplantation, data col-

lection continues for 1 year post-explantation. In cases of transplantation, data collection is

ceased, and the patient’s follow-up is transferred to a transplant database. In the event of a

patient transitioning to another INTERMACS center, seamless continuity of data collection

and patient management is ensured through deactivation and reactivation procedures.

2.4 Machine Learning Applications in Pre- and Post-LVAD Therapy

In the field of LVADs, machine learning applications have demonstrated significant poten-

tial in improving patient outcomes and decision-making [81–83]. By leveraging the rich and

valuable data available from sources such as the INTERMACS registry, a national database

for patients receiving mechanical circulatory support (Refer to 2.3 for details about INTER-

MACS), machine learning applications can extract insights and generate predictive models

to enhance LVAD management. Machine learning applications can support clinicians in

various aspects of LVAD care. They can assist in the selection of suitable candidates for

LVAD implantation by considering patient characteristics, disease severity, and potential

risks and benefits [30, 51–54, 56, 81–88]. Additionally, machine learning applications enable

continuous monitoring of patient data collected from LVADs, including pump performance,

hemodynamic parameters, and patient-reported outcomes [81–83,89–91]. By analyzing this

data in real-time, machine learning applications can detect anomalies, predict AEs, and

24



provide timely alerts to healthcare providers, facilitating proactive interventions and opti-

mizing patient safety and outcomes. In this section, each potential application of machine

learning in the LVAD field is discussed, including pre-implant risk scores for patient selec-

tion, identification of post-implant AE patterns, and post-implant risk scores for patient

management.

2.4.1 Patient Selection: Pre-implant Risk Scores

LVADs have emerged as a valuable therapeutic option for patients with advanced heart

failure, necessitating careful patient selection, evaluation, and timing to achieve optimal

outcomes. Factors considered in the selection process include heart failure severity, etiology,

comorbidities, age, and patient preferences [92, 93]. Thorough evaluation involves clinical

assessment, imaging studies (such as echocardiography and cardiac MRI), laboratory inves-

tigations, and psychological evaluation, with a particular focus on assessing right ventricular

function to predict the success of LVAD therapy [92, 93]. Timing for referral of patients for

LVAD implantation is a complex decision [57, 93]. It is often determined based on several

factors, including disease progression, severity of symptoms, frequent hospitalizations, in-

adequate response to medical therapy, and deteriorating quality of life [93]. Collaboration

between heart failure specialists, cardiologists, and cardiothoracic surgeons is essential for

making timely and informed decisions regarding LVAD referral. Many patients referred for

LVAD are in advanced stages of heart failure, rendering them ineligible for life-prolonging

therapy due to declining end-organ function and frailty [93, 94]. Nevertheless, achieving a

delicate balance between selecting suitable candidates for LVAD implantation and avoiding

futile interventions remains a challenge [57,93].

Due to the evolution of LVAD technology and the crucial role of patient selection in

determining outcomes, risk scores and predictive models have been developed to provide a

structured approach to medical decision-making. These tools aim to improve the accuracy

of patient selection and aid in the informed consent and shared decision-making process for

patients, families, and the healthcare team. The development of risk scores and predictive

models is an ongoing process driven by the growing clinical experience, technological ad-
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vancements, and the identification of further favorable clinical characteristics. As the field

of heart failure evolves, it becomes imperative for the heart failure community to continually

refine and enhance these instruments.

Many pre-implant risk scores and predictive models have been developed to aid in

decision-making for LVAD implantation by assessing the risk of mortality after LVAD im-

plantation [51–54] and AEs such as bleeding [84–86], infection [30,87,88], stroke [33,50], and

right heart failure (RHF) [56]. These tools enable a more objective assessment of a patient’s

likelihood of success with LVAD therapy, taking into account various clinical, demographic,

and laboratory variables. By incorporating these models into the decision-making process,

healthcare providers can engage in more informed discussions with patients and their fami-

lies, facilitating shared decision-making and improving patient satisfaction.

Examples of predictive models for LVAD outcomes include risk scores such as the Heart-

Mate II Risk Score (HMRS) [51], Destination Therapy Risk Score (DTRS) [52], and the

Penn-Columbia Risk Score [53]. These models commonly rely on a limited set of clinical

variables. However, more recent predictive models, such as the Cardiac Outcome Risk As-

sessment (CORA), consider a wide range of features [54]. These models vary in their utiliza-

tion of specific medication doses, types of devices, extrapolated effects of particular devices,

exact laboratory and cardiopulmonary hemodynamic data, and even outdated LVADs that

are no longer in use. For instance, DTRS assesses the risk of 90-day in-hospital mortality

by considering nine clinical variables, including platelet count, serum albumin, international

normalized ratio (INR), vasodilator therapy, mean pulmonary artery pressures, aspartate

aminotransferase, hematocrit, blood urea nitrogen, and intravenous inotropes [52]. On the

other hand, HMRS assesses the risk of 90-day mortality based on factors such as age, cre-

atinine, INR, albumin, and the volume of the center [51]. Additionally, many models have

been developed to assess the risk of AEs after LVAD implantation, such as post-implant

RHF. Over the last two decades, twenty RHF risk prediction models have been derived and

validated in diverse cohorts of heart failure patients undergoing LVAD therapy [56]. These

models consider various input variables, including demographic factors (e.g., age and obe-

sity), pre-operative status (e.g., pre-operative inotrope dependency and cardiac surgery),

hemodynamic parameters (e.g., pulmonary vascular resistance and heart rate), echocardio-
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graphic findings (e.g., severe right ventricular dysfunction), and laboratory test results (e.g.,

INR and blood urea nitrogen) [56]. The benefits of these risk scores and predictive models

lie in their ability to assist healthcare professionals in evaluating the potential benefits and

risks of LVAD therapy for individual patients.

It is essential to recognize the limitations and potential pitfalls associated with these

models. Many of these risk scores are generated based on data from a single center, thus

raising questions about the generalizability of these risk scores. Furthermore, the selected

population for some of these studies limits their usability. For instance, heart transplant

candidates were not considered in the development of DTRS for predicting mortality after

LVAD, which restricts its application specifically in the modern VAD era [52,57]. Addition-

ally, there is a lack of a global definition for some AEs, such as RHF [56]. As a result, the

diagnostic criteria for AEs were heterogeneous among studies, limiting the ability to compare

risk scores and potentially causing confusion among clinicians when choosing the appropri-

ate risk scores for their patients. Moreover, many of these studies suffer from a systematic

overfitting issue due to the absence of appropriate train and test data splitting [54,56], which

limits the generalizability of the risk scores. Lastly, in the context of LVAD, an important

consideration that is often, if not always, overlooked is the imbalanced distribution of out-

comes. When developing a classifier for desired outcomes such as mortality and various

types of AEs such as RHF, bleeding, and infection, there is a dearth of training data for

the minority class. For instance, 90-day mortality after LVAD is less than 90%. Therefore,

all risk models should have considered appropriate techniques (such as data sampling) to

compensate for the data imbalance [95–97], as well as the choice of an appropriate evalua-

tion metric (such as precision) that emphasizes the performance of the model in predicting

the minority class. Although all of these studies used ROC to evaluate the performance of

their models, studies have shown that ROC can portray an overly optimistic performance of

the model when there is an imbalance issue in the data [98–101]. Therefore, the lack of an

accurate evaluation of these models also contributes to the limitation of the practical usage

of these risk scores in clinical settings.

In conclusion, risk scores and predictive models have emerged as valuable tools in patient

selection and decision-making for LVAD therapy. They play a crucial role in the informed
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consent and shared decision-making process. However, it is important to recognize that these

models have limitations, such as reliance on single-center data, limited generalizability, and

imbalanced outcome distributions. Therefore, ongoing research and refinement are necessary

to address these limitations and ensure the continued relevance and utility of these models

in clinical practice.

2.4.2 Insights into Adverse Events: Post-LVAD Pattern Mining and Clustering

LVADs have emerged as a valuable therapeutic option for patients with advanced heart

failure, significantly improving survival rates [18, 102]. However, the occurrence of adverse

events (AEs) after LVAD implantation poses challenges to clinicians and necessitates a com-

prehensive understanding of their patterns and characteristics [20, 24,102]. Analyzing these

events can provide valuable insights that aid clinicians in making informed decisions and

developing effective clinical decision support systems for post-LVAD care.

The INTERMACS Events database, a comprehensive longitudinal dataset comprising

data from thousands of LVAD patients, provides valuable insights into the occurrence and

outcomes of AEs [18,102]. The Events database, organized chronologically, contains a wealth

of information about AEs and final outcomes of LVAD patients, all associated with precise

time stamps.

One crucial aspect is the temporal analysis of the AE journey of LVAD patients. While

previous studies utilizing this data set have primarily focused on individual AEs such as

right heart failure [103], bleeding [42, 45, 49, 104], and infection [30, 31, 46, 105–107], stroke

[43,47,48,50,108,109] and others, there remains a research gap in investigating the timeline

of the entire AE journey experienced by LVAD patients. Specifically, important aspects

such as the duration between the first and last AE, the time gaps between AEs, and the

most common occurrence time of the initial or final AE have yet to be thoroughly explored.

Understanding the temporal aspect of AEs can provide valuable insights into the progression

and trajectory of AEs and can help clinicians anticipate and manage AEs more effectively.

Traditional statistical methods have been utilized in previous clinical studies to explore

the influence of risk factors, such as demographic information, preoperative status, hemody-
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namics, and lab value, as well as individual AEs on outcomes of LVADs [49,51–53,56,84,103,

109]. However, these studies have certain limitations. They often lack generalizability due

to their reliance on case studies or data from a single hospital with limited patient numbers,

typically a few hundred patients, compared to the larger INTERMACS dataset. Moreover,

these studies predominantly rely on traditional statistical methods like multivariable Cox-

Regression Models to establish hazard ratios, odds ratios, and event rates, without incorpo-

rating modern data mining techniques to model patterns of post-LVAD AEs. Additionally,

some studies are cross-sectional in nature and fail to consider the temporal transitions be-

tween AEs following LVAD implantation, treating each AE type as a separate event and

disregarding their potential interrelation. However, LVAD-associated AEs rarely occur in

isolation, as they are closely related in terms of their underlying causes. For instance, a

gastrointestinal (GI) bleed can lead to subsequent GI bleeds due to factors like von Wille-

brand factor dysfunction and arteriovenous malformations introduced by continuous flow

LVAD [110]. Similarly, bleeding and stroke can occur sequentially in LVAD patients due

to challenges in finding the right balance of anticoagulation [111]. Therefore, it is crucial

to not only explore effect measures such as hazard ratios [61, 112, 113] but also utilize data

mining techniques to uncover the interplay and sequencing of AEs that commonly occur

in LVAD patients, including their combinations of common pairs, triplets, or quadruplets.

Recent studies have acknowledged that AEs themselves can act as risk factors for subsequent

events, indicating the existence of chains of AEs. While some investigations have explored

one-to-one relationships, such as the influence of infection on the risk of thrombosis [112,113],

or one-to-many relations between AEs, such as the association of a primary AE with sub-

sequent AEs [61], there has been limited exploration of complex patterns involving multiple

AEs in a specific order.

Utilizing data mining techniques, particularly frequent sequential pattern mining, enables

the discovery of recurring patterns and the identification of co-occurring AEs [114–119]. The

analysis of the transition between AEs and their interrelation can provide valuable insights

into the underlying causes and potential preventive measures. In addition to sequential

pattern mining, clustering analysis plays a vital role in gaining insights into the AE journeys

of LVAD patients. While sequential pattern mining focuses on discovering patterns in the
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temporal order of AEs, clustering analysis provides a complementary perspective by grouping

similar AE profiles together based on their characteristics [114–119]. These subgroups can

provide valuable information about the underlying mechanisms and potential risk factors

associated with specific sets of AEs. By identifying these distinct subgroups, clinicians can

tailor their treatment strategies and interventions to address the unique needs and challenges

faced by patients within each cluster.

Clustering analysis provides a holistic view of the overall landscape of AEs in the LVAD

population by identifying subgroups with specific patterns of AEs, ranging from small to

large groups of patients. These insights gained from clustering guide clinicians and engineers

in optimizing the outcome of LVADs. For instance, it suggests allocating more effort and

resources to AE patterns that involve a larger group of patients rather than a smaller group.

Additionally, clustering analysis highlights the importance of subgroups whose specific pat-

terns of AEs significantly impact the outcome of LVAD therapy. If a subgroup demonstrates

a high rate of mortality or poor clinical outcomes due to their AE patterns, prioritizing in-

terventions and optimization strategies for this subgroup becomes crucial. By understanding

the specific challenges and risks faced by these patients, clinicians can tailor their approaches

to mitigate adverse outcomes and enhance the overall effectiveness of LVAD therapy.

In summary, gaining insights into the patterns of patient AEs after LVAD implanta-

tion is critical for optimizing therapy and improving patient outcomes. The integration

of clustering analysis alongside sequential pattern mining enhances our understanding of

the complex nature of AEs in patients receiving LVAD therapy. It provides a comprehensive

framework to identify distinct subgroups, explore associations between AEs, and inform clin-

ical decision-making. These data-driven approaches empower clinicians to make timely and

informed decisions regarding targeted strategies for AE prevention and management. Ulti-

mately, leveraging these analyses helps optimize LVAD therapy, improve patient outcomes,

and minimize the burden of AEs in this population.
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2.4.3 Post-LVAD Management: Post-LVAD Risk Scores

To enhance the quality of life for LVAD patients and potentially expand treatment options

for individuals in earlier stages of heart failure, improving patient management has become

imperative. Despite technological advancements, the rate of rehospitalizations remains high,

with 218 rehospitalizations per 100 patients within a twelve-month period [120]. To alleviate

this burden, one potential approach is to proactively identify early signs of deterioration that

can lead to significant consequences and promptly modify patient treatment [121].

There are various sources of data that can aid in this endeavor. Patient monitoring

devices, such as pulmonary artery pressure sensors, left atrial pressure sensors, and pump

controllers, play a vital role in improving LVAD outcomes. These devices enable the se-

lection of optimal LVAD pump speed and the diagnosis of suction events [89–91, 122–124].

Additionally, unstructured data, such as photographic evidence of LVAD driveline wound

infections, can facilitate timely intervention and response to therapy [125–127]. Structured

data obtained from electronic health records, including national registry data from INTER-

MACS, also plays a significant role. By leveraging these diverse data sources, healthcare

professionals can gain comprehensive insights into patients’ conditions, enabling personal-

ized interventions and ultimately improving patient outcomes.

Recent studies have also explored the incorporation of post-implant structured data into

pre-implant models to investigate the improvement in accuracy for assessing the risk of AEs

and mortality. Kouroua et al. developed a risk score that assessed the survival probabilities

within a 12-month period after VAD implantation by incorporating both pre- and post-

implant data [126]. Their model achieved a sensitivity of 87% and specificity of 82% for

1-year mortality prediction. Similarly, Felix et al. developed bleeding risk scores for different

time frames (next 3, 7, and 30 days), with discrimination ranging from 0.78 to 0.79 AUC-

ROC [127]. However, these studies face several limitations. Firstly, they were based on a

single center with a limited number of patients, which raises concerns about generalizability.

Secondly, the high risk of overfitting is evident as the data was not split into training and

test sets, likely due to limited data availability. Although a k-fold cross-validation approach

was used, the authors did not report the standard deviation. These issues highlight the
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need for further validation and external validation studies involving larger, diverse patient

populations. Furthermore, the rarity of mortality or bleeding events per month creates an

imbalance in the data. This imbalance can lead to misleading results when using traditional

evaluation metrics such as ROC analysis, as demonstrated by Movahedi et al. [128]. It is

crucial to evaluate the models using precision-recall curves or F-scores that emphasize the

performance of classifiers for minority classes. Addressing these limitations and refining

the models will contribute to enhancing the accuracy and generalizability of risk prediction

models in LVAD management. By leveraging machine learning techniques and incorporating

both pre- and post-implant data, clinicians can improve patient outcomes, guide personalized

treatment strategies, and optimize the overall care for LVAD patients.

2.5 Clinical Decision Support Systems

Clinical Decision Support Systems (CDSSs) are computer systems designed to provide

personalized knowledge and information to clinicians, patients, and other individuals, aim-

ing to enhance healthcare delivery [129,130]. These systems leverage data and observations

that may be inaccessible or incomprehensible to humans, contributing to improved decision-

making. CDSSs serve multiple purposes, including diagnosis, treatment prediction, recom-

mendation, prognosis, and risk prioritization. By combining human expertise with embedded

knowledge, CDSSs act as a valuable “second set of eyes” for clinicians, promoting patient

safety, improving care quality, and increasing healthcare efficiency [131, 132]. They are par-

ticularly useful in low-resource settings as they can help reduce healthcare costs [132,133].

There are two main types of CDSSs, defined in the literature as knowledge-based and non-

knowledge-based systems [131,134,135]. Knowledge-based CDSSs rely on medical guidelines

and established knowledge, which can be literature-based or practice-related [135, 136]. On

the other hand, non-knowledge-based systems utilize artificial intelligence, machine learning,

or statistical pattern recognition [131, 135]. Non-knowledge-based CDSSs analyze historical

clinical data to identify patterns and develop predictive models. These models can then

provide recommendations to clinicians, enhancing the accuracy of decision-making and min-

32



imizing medical errors through logical processes based solely on input data [131]. However,

it is crucial to understand the logic of these systems and critically appraise the recommen-

dations given by CDSSs [137]. Additionally, the quality and quantity of the data used to

train these models are essential factors, as biased or incomplete data can lead to biased or

incorrect predictions and decisions [137,138].

CDSSs have been developed and applied across a wide range of medical specialties and

conditions. They have been utilized in areas such as rare diseases [139], oncology [140,141],

chronic obstructive pulmonary disease [142], Alzheimer’s disease [143], diabetes care [144–

146], and heart disease [147, 148]. The integration of CDSSs into clinical practice holds the

potential to improve patient outcomes, enhance decision-making accuracy, and streamline

healthcare processes.

In the field of LVADs, a CDSS named SensorART was proposed in 2011 with a focus on

the management and remote treatment of patients with LVAD [149–152]. It offered an inter-

operable and extendable solution, independent of the specific type or brand of LVAD being

used. The platform incorporated various hardware and software components to holistically

enhance the quality of patient treatment and streamline the workflow of specialists. One

key component of SensorART is the Specialist’s CDSS, a web-based tool designed to assist

specialists in designing therapy plans for patients before and after LVAD implantation. The

SDSS analyzes patient data, extracts new knowledge, and aids in making informed decisions.

It encompasses several tools covering different aspects of VAD therapy, including statistics,

association rules, monitoring, treatment, weaning, and speed and suction detection. The

SDSS and its modules have shown promising results through testing on numerous patients.

However, despite its potential for success, SensorART and its CDSS component did not

progress beyond the prototype stage. This could be attributed to its limitations, stemming

from the fact that some CDSS components were trained with rather limited datasets (less

than 100 patients) and experienced overfitting issues in the predictive components of CDSS.

Moreover, they did not propose any plan of action regarding where, when, and how the CDSS

should be utilized in clinical settings, nor did they address the evaluation of the practicality

of their tools.
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3.0 Areas of Investigations

3.1 A Deep Dive Into the INTERMACS Event Database

3.1.1 Motivation and Scope

The survival rate of patients with advanced heart failure receiving LVAD therapy has

steadily increased [102]. However, the occurrence of adverse events (AEs) remains a con-

cern [24,102], leading to a growing focus on clinical studies. The publicly available INTER-

MACS Events database contains longitudinal data from over 18,000 patients, documenting

more than 175,900 recorded AEs following LVAD implantation [20]. This dataset organizes

AEs and final outcomes chronologically, providing a natural ordering and inherent semantic

structure. Previous studies have focused on examining the timing of individual AEs, such

as e.g., right heart failure [103], bleeding [104], infection [105]. However, there has been a

notable gap in investigating the overall timeline of the entire AE journey experienced by

LVAD patients. For instance, understanding the duration of the AE journey (time between

the first and last AE) or identifying the most common occurrence times of the first or last

AE remains unexplored.

Moreover, most previous statistical analyses have focused on exploring the influence of

various risk factors, such as demographic information, preoperative status, hemodynamics,

and lab values, on outcomes and specific AEs, such as right ventricular failure and bleeding

[51–53, 56, 84]. Only recently have researchers started considering AEs themselves as risk

factors for subsequent AEs, i.e., chains of AEs [61,112,113]. However, previous studies have

primarily focused on one-to-one relations, such as the influence of infection on the risk of

thrombosis [112, 113], or one-to-many relations, such as the relationship between a primary

AE and subsequent AEs [61]. There has been limited exploration of chains of AEs, such

as the probability of neurological dysfunction following an episode of infection that occurs

after an episode of bleeding. Additionally, previous studies have predominantly focused on

effect measures, such as hazard ratios [61,112,113], overlooking the identification of common
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combinations of AEs, such as pairs, triplets, or quadruplets. Therefore there remains an

opportunity to explore and discover how many times what types of AEs in what order

and at what time points after implant occurred in the AE journey of patients receiving an

LVAD. This is tantamount to exploring which AEs occur concomitantly; how many patients

experienced the exact same AE journey or share one or more AEs in the same order, etc.

3.1.2 Plan of Actions

This study has two main intentions. Firstly, it aims to provide a comprehensive un-

derstanding of the temporal aspect of the INTERMACS Events dataset by posing specific

descriptive questions about the timing of the first or last AE, the time span of AE journeys,

the time gaps between AEs, and conducting time-to-event analysis. Secondly, the study

intends to assess the similarity and diversity of AE journeys among LVAD patients by utiliz-

ing frequent sequential pattern mining on the multi-center National database of longitudinal

data for post-LVAD AEs. Simple to advanced descriptive data mining methods are applied

to 86,912 recorded AEs of 15,820 patients who received a continuous flow-LVAD between

2008 and 2016, extracted from the publicly accessible INTERMACS registry.

3.2 Pre-LVAD Predictive Risk Models

3.2.1 Motivation and Scope

The continuous evolution of LVAD technology and the pivotal role of patient selection

in determining outcomes have led to the development of risk scores and predictive models,

including risk scores for mortality and adverse events (AEs), specifically those associated

with increased morbidity and mortality, such as right heart failure (RHF) [51–54,56]. These

tools serve to provide a structured approach to medical decision-making, aiming to improve

the accuracy of patient selection, facilitate informed consent, and support shared decision-

making among patients, families, and healthcare teams. However, previous risk scores and

predictive models for LVAD therapy have shown limitations. They are often based on data
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from single centers or limited selected populations, raising concerns about generalizability

[52, 57]. Moreover, the poor overall performance of existing models, primarily due to poor-

to-modest discrimination on validation data resulting from systematic overfitting [54, 56],

further highlights the need for improved risk models for assessing mortality and RHF after

LVAD. Furthermore, the neglect of class imbalance in the development and assessment of

these models underscores the necessity for enhanced risk models that appropriately address

the issue of class imbalance when evaluating mortality and RHF following LVAD.

3.2.2 Plan of Actions

This study aims to explore the possibility of improving the discrimination power and

generalizability of risk models for mortality and RHF after LVAD. To achieve this, the study

takes several approaches, including deriving models from big data using the publicly accessi-

ble INTERMACS national registry, which includes over 20,000 patients from more than 180

hospitals [20]. To avoid overfitting, the data is split into training and validation datasets, and

repeated cross-validation is employed during the training process. Boosting-based methods

such as random forest and XGBoost are utilized to reduce the chance of overfitting and model

variance [153–155]. This study compares the performance of two classifiers for predicting

90-day mortality after LVAD implantation; the well-known HeartMate Risk Score (HMRS)

and a Random Forest (RF) that was derived de novo from a large multi-center registry data.

Additionally, the study highlights the imbalance problem in the context of LVAD classifiers

for mortality and introduces an alternative metric that is sensitive to the data imbalance.

This alternative metric better assesses the model’s performance in predicting the minority

class.
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3.3 Post-LVAD Clustering

3.3.1 Motivation and Scope

The motivation for conducting clustering analyses for post-LVAD AEs stems from the

findings of the previous section, “A Deep Dive Into the INTERMACS Event Database”

(refer to section 4), which revealed the infrequency of identical AE patterns among patients

and emphasized the need to explore alternative approaches. While identical patterns may

be rare, it is still possible to identify similar patterns through different methodologies. One

strategy is to cluster patients into subgroups based on shared trends and timelines of AEs.

By grouping patients with comparable AE patterns, meaningful associations and patterns

can be extracted within each cluster, enabling researchers and clinicians to gain a deeper

understanding of the underlying factors and associations driving specific AE patterns.

3.3.2 Plan of Actions

In this thesis, two clustering analyses were conducted to address the rarity of identical

AE patterns among patients. The first clustering analysis, presented in section 6.1, focused

solely on grouping patients based on the similarity in types of AEs, without considering the

timeline of AE journeys. The aim was to emphasize the grouping of patients solely based

on AE types. The second clustering analysis in this thesis (section 6.2) takes into account

the time intervals between AEs and the combinations of AEs within the same time interval.

Furthermore, the second clustering analysis compares the resulting subgroups obtained from

different choices of time granularity for aggregating AE records. This comparison aims to

evaluate the effect of loose versus compact time granularity on post-LVAD clustering.
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3.4 Post-LVAD Mortality Risk Models

3.4.1 Motivation and Scope

LVADs have demonstrated significant improvements in survival rates and quality of life

for patients. However, they also carry a heightened risk of various adverse events (AEs),

particularly in the early weeks following implantation, which can result in morbidity, mor-

tality, and a diminished quality of life [61–65]. Identifying patients at high risk of mortality

through their AE history enables close clinical supervision and necessary treatment mod-

ifications. While existing risk prediction models for LVAD patient mortality rely mostly

on pre-implantation data [53, 54, 57–60], they fail to account for changes in patients’ health

status over time after LVAD implantation. Notably, one study demonstrated improved

1-year mortality prediction by incorporating only the most recent post-implantation labo-

ratory values alongside pre-implant data [126]. Moreover, a few studies have highlighted

the potential impact of post-LVAD therapies, such as anticoagulation, antiplatelet, and loop

diuretic treatments, on the risk of AEs like bleeding and thromboembolic complications,

which in turn can increase the likelihood of mortality [66–70]. This presents an opportunity

to augment pre-implantation data with follow-up data, including laboratory values, hemo-

dynamics, medication treatments, and patients’ AE history, to enable real-time prediction

of future risk.

3.4.2 Plan of Actions

This study builds upon previous research by integrating the history of adverse events

(AEs) and pre- and post-implantation data to predict mortality within the early weeks

following LVAD implantation, which is considered the most critical period associated with the

highest rates of death and various types of AEs. Three random forest models are developed

specifically for predicting death within distinct time intervals: the second to fourth week

(W2-W4), the third to fourth week (W3-W4), and the fourth postoperative week (W4).

Each model incorporates pre-implantation data collected 48 hours before the implant, data

from the first week of post-implantation follow-up, and the patients’ AE history up until the

38



time of prediction. These models are constructed using data obtained from the extensive

International Registry for Mechanical Circulatory Support (INTERMACS), encompassing

records of over 20,000 patients who underwent LVAD implantation across more than 180

hospitals [20].
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4.0 A Deep Dive Into the INTERMACS Event Database

4.1 Timelines of Adverse Event 1

4.1.1 Objective

The intention of this study is to provide a comprehensive panoramic insight into the

temporal aspect of the INTERMACS Events dataset by posing six descriptive questions

about the timeline of the adverse event (AE) journey in LVAD patients. These questions

include: (1) How many occurrences of each type of AE were recorded in each post-LVAD

month? (2) What are the most common time spans between the first and last AE? (3) What

is the relationship between the time of the first AE and the last AE? (4) How many AEs

did patients experience in different time spans? (5) What are the most common time gaps

between AEs? (6) What are the percentages of patients who survived or were free from AE

over time?

4.1.2 Methods

The descriptive analysis in this study ranges from frequency table and cross-tabulation

to mining sequential patterns and association rules. This section includes the details of

methodology including SPADE algorithm [156] for sequential pattern mining (4.1.2.3) and

Kaplan-Meier approach [157] for survival analysis (4.1.2.2).

4.1.2.1 Study Population

The flow diagram in Fig. 5 outlines the criteria for inclusion of 86,912 recorded AEs of

15,820 patients (mean age of 57; 12,429 male vs. 3,378 female) who received a continuous

flow-LVAD between 2008 to 2016, extracted from the publicly accessible INTERMACS Event

1The majority of this section is taken from our published work: Movahedi, Faezeh, Manreet K. Kanwar,
and James F. Antaki. “Timelines of Adverse Event Journeys of LVAD Patients.” Artificial Organs (2023).
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18,914 Patients
175,941 AEs 
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152,362 AEs 

Filter patients with 
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continuous-flow LVAD

15,826 Patients
96,603 AEs 

Exclude “Rehospitalization” 

15,820 Patients
86,912  AEs 

Exclude AEs after
the first device’s explant

INTERMACS Events
2017 version

Figure 5: INTERMACS Events Data selection steps.

data set via BioLINCC (2017 version). Of the total 26 types of AEs, “Rehospitalization” was

excluded from the study as it is a consequence of an AE rather the AE itself. For patients

with multiple device implants, the AEs after the first LVAD explant are excluded. Patients

with multiple subsequent LVAD devices are treated differently. Final outcomes, such as

death, explant, and transplant, were also included in sequences of AEs as the last element.

For the subset of patients who received a right-ventricular assist device (RVAD), the explant

of that device was named “REXP”. An additional 1,218 patients from the Patient dataset

without AEs, hence not included in the Event data set, were used for the time-to-event

analysis (including survival analysis) in this study.

4.1.2.2 Survival Analysis

The goal of survival analysis or time-to-event analysis is to describe the probability over

time that the event of interest has not yet occurred. In INTERMACS data, the survival time

is time from LVAD implant to death or any other final outcomes such as receiving a heart

transplant. The survival analysis can be used to answer questions like what percentage of
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the patients will survive past a certain time or how do particular characteristics such as age

or gender influence the survival probability. The survival function is a function of time (t)

and can be represented as:

S(t) = Pr(T > t) (4.1)

The survival function takes values in the range between 0 and 1 and is a non-increasing

function of t.

One main concept in survival analysis is censoring. Patients are censored when the

information about their survival time is incomplete. There are different kinds of censoring,

including:right-censoring, interval-censoring, left-censoring. The most frequent one is right-

censoring. For example, lets consider the survival analysis for post-LVAD patients. Some of

the patients survived 10 years after LVAD implant and thus have not experienced the death

event. At the same time, some patients may not come to follow-up visits, they might have

actually died, but no confirmation was ever received. Those patients are considered as right-

censoring, meaning their true survival time is ≥ the observed survival time (10 years after

LVAD implant). Right-censored patients are included in estimates of survival probabilities at

time points preceding their censoring time point; and excluded from the analysis thereafter.

In 1958, Edward L. Kaplan and Paul Meier published a paper about a non-parametric

statistical method of estimating and plotting the survival probability as a function of time

[157]. The Kaplan-Meier approach assumes that (1) the event of interest is well-defined and

unambiguous (2) the survival probability of all observations is the same regradless of the

time they have entered the study (3) censored observations have the same survival prospects

as observations that continue to be followed. It should be mentioned that the Kaplan-

Meier curve has no assumption on the distribution of survival times nor assume a specific

relationship between covariates and the survival time. In reality, the true survival function

is not known . That is why the Kaplan-Meier approximate the true survival function from

the collected data. The estimation is defined as the fraction of patients who survived for a

certain amount of time and is formulated as follow:

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
(4.2)
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where, ti is a time when at least one event happened, di is the number of events that

happened at time ti, ni indicates the number of patients at risk at time ti; patients who have

not died event or not been censored yet. The survival probability at time t is equal to the

product of the percentage chance of surviving at time ≤ t. The Kaplan-Meier curve plots the

estimated survival probabilities against time. The survival line is actually a step-function in

which each vertical drop indicates the occurrence of one or more events. Right censoring of

patients is typically indicated by a vertical mark at the censoring time.

4.1.2.3 Sequential Pattern Mining

Sequence mining is to discover patterns across time in a given temporal or sequential

database. For example, consider INTERMACS dataset where the objects represent patients

and the attributes represent adverse events. Table 2a shows 12 episodes of adverse events

associated with 4 patients in INTERMACS where the “Patient ID” corresponds to the

patients’ medical record number and the “Event ID” corresponds to the time (month) of

episodes of adverse events. The types of recorded adverse event (items) include Bleeding,

Infection, and Hemolysis. The Table 2b presents all the frequent sequences with different

lengths that is common among at least 3 out of 4 patients (a minimum support value of

75%). The goal of sequential pattern mining is to efficiently find all the frequent sequences

as listed in Table 2b. Before entering in the SPADE algorithm description for sequential

pattern mining, some terminology will be briefly reviewed below.

Definition 1 (Sequence database) A sequential database (SD) is a set of sequences

S1, S2, ..., Sn where each sequence Si is a set of events (itemsets) (e1, e2, ..., ep) in which

repetitions of events are allowed and order of events is important. Each event (itemsets) is a

subset of I where I is a set of m unique items I1, I2, ..., Im. In the post-LVAD AE domain,

INTERMACS Event data consists of a set of sequences of AEs; one sequence per patient

like S1 is the corresponding sequence of AEs for the first patient (Patient1) in database.

The items in I can indicate the list of types of AE that patients can experience after LVAD

implant (Bleeding, Infection, Neurological Dysfunction, etc. An AE event (itemset) is an

unordered set of items (AEs) like {Bleeding, Infection} that happened at the same time
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Table 2: An example of sequential pattern mining.

(a) An example of INTERMACS Event database.

Database

Patient ID Event ID Adverse Events (AEs)

1

10 {Infection, Bleeding}

20 Bleeding

30 {Infection, Bleeding}

2

20 {Infection, Hemolysis}

30 {Infection, Bleeding, Hemolysis}

50 Bleeding

3

10 Infection

30 Bleeding

40 Infection

4

30 {Infection, Bleeding}

40 Infection

50 Bleeding

(b) Frequent sequences.

Frequent set with 1 item

(Bleeding) 4

(Infection) 4

Frequent set with 2 items

({Infection, Bleeding}) 3

(Infection) → (Infection) 4

(Infection) → (Bleeding) 4

(Bleeding) → (Infection) 3

(Bleeding) → (Bleeding) 3

Frequent set with 3 items

({Infection Bleeding}) → (Bleeding) 3
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interval. A sequence is a chronological ordered record of AE events (itemsets), for example,

S1 = (Bleeding − {Infection, Cardiac Arrhythmia} − Neurological Dysfunction). S1

indicates that Patient1 experienced 3 AE events including first a Bleeding AE and then later

Infection AE and Cardiac Arrhythmia AE at the same time, and finally had a Neurological

Dysfunction AE. It should be noted that (1) brackets are omitted if an event (itemset)

contains one item only (2) the order of items within an event is not important, it is usually

taken in alphabetical order (3) In a sequence, the concept of the event e1 occurs before e2 is

denoted as e1 ≤ e2 (4) a type of AE (item) can occur only once in an AE event (itemset),

but it can occur several times in different AE events (itemsets) of a sequence.

Definition 2 (Length of a sequence) The length of a sequence Si = (e1, e2, ..., ek) is de-

fined as the total number of events (itemsets) k. For instance, the length of S1 = (Bleeding−

{Infection, Cardiac Arrhythmia} −Neurological Dysfunction) is 3 (len(S1) = 3).

Definition 3 (Subsequence) a sequence of S = (e1, e2, ..., elen(S)) is a subse-

quence of another sequence S′ = (e′1, e′2, ..., e′len(S′ )), denoted as S ⪯ S′, if and

only if there exists a sequence of integers 1 ≤ i1 ≤ i2..... ≤ ilen(S) ≤ len(S′)

such that (e1 = e′i1) ∧ (e2 = e′i2) ∧ ....... ∧ (elen(S) = e′ilen(S)). For exam-

ple, the sequence (Bleeding − {Infection, Cardiac Arrhythmia}) is a sub-

sequence of ({Bleeding,Respiratory Failure} − Hepatic Dysfunction −

{Infection, Cardiac Arrhythmia,Neurological Dysfunction}), since Bleeding ⊆

{Bleeding,RespiratoryFailure} and {Infection, CardiacArrhythmia} ⊆

{Infection, CardiacArrhythmia,NeurologicalDysfunction}, and the order of events

is preserved.

Definition 4 (Support) A sequence S is said to contain another sequence P , if P is a

subsequence of the sequence S; P ⪯ S. The total number of sequences in the database SD

that contain a subsequence of P is the frequency or support value of P . If a sequence’s

support is ≥ a minimum support value defined by the user, it is considered a frequent

sequence. If the frequent sequence is not a subsequence of any other frequent sequence, it is

called maximal.

Definition 4 (Sequential pattern mining)Given a database of SD and minimum support

value, sequential pattern mining is to find the complete list of all frequent sequences in the
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SD with support values ≥ minimumsupport.

Definition 5 (Sequence rules) Rules describe the interesting relationship between different

sequence items and can be generated from the frequent sequences. For example, the sequence

(Bleeding− Infection) occurs in four sequences, while (Cardiac Arrhythmia−Bleeding−

Infection) in three sequences. Therefore, it can be said that if (Bleeding − Infection)

occurs together, then there is a 75% chance that Cardiac Arrhythmia also occurs. In other

words we say that the rule (Bleeding − Infection) ⇒ (Cardiac Arrhythmia−Bleeding −

Infection) has a 75% confidence. The confidence value ranges between 0% to 100%. The

symbol of ⇒ indicates a happens-after relationship between its left side and right side.

Definition 5 (confidence) The confidence of a rule X ⇒ Y , such as Bleeding ⇒

Infection, is the the probability of the subsequent occurrence of Y (Infection) following an

occurrence of X (Bleeding); conditional probability P (Y |X) (P (Infection|Bleeding)).

SPADE Algorithm

Several algorithms have been developed to find the frequent sequences in a sequential

database. These algorithms consist of three main categorizes apriori-based, pattern-growth,

and early-pruning algorithms which compete with each other to (1) minimize the I/O cost

(2) eliminate number of data structures are needed all the time for only computing the

support values. This study applied a benchmark sequential pattern-mining algorithm called

SPADE (Sequential PAttern Discovery using Equivalence classes) which is developed by Zaki

in 2001 [156]. SPADE algorithm uses the vertical layout of database and decomposes the

search space (lattice) into sub-spaces (sub-lattice) that can be processed separately in main

memory. The SPADE algorithm usually requires three scans of the sequence database which

decreases I/O costs.

The SPADE algorithm formulates the sequential pattern mining problem as follow: (1)

mining the sequences of subsets of items, and not just sequences with single item (2) mining

sequences with arbitrary gaps among events (itemsets), and not just the consecutive subse-

quences. For instance, in Table 2b, the sequence ({Infection,Bleeding}) → (Bleeding) is

a subsequence of AE sequence of Patient ID of 4, although there is an event of Infection

between the two events of (Infection,Bleeding) and (Bleeding). The SPADE algorithm
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Original ID-list database Suffix-joins on ID-listsFrequent sequence lattice

I = Infection
B = Bleeding
PID= Patient ID
EID= Event ID

Figure 6: SPADE: a space-efficient temporal ID-list join to compute the support values.

proposes depth-first or breadth-first strategies to search in the search space that is extended

by the ⪯ (subsequence relation), from the most general (single items) to the most the

most specific frequent sequences (maximal sequences) as shown in Fig 6. The maximal

sequences are ({Infection,Bleeding}) → (Bleeding), (Infection) → (Infection), and

(Bleeding) → (Infection). The symbol of → indicates a happens-after relationship be-

tween its left side and right side.

4.1.3 Results

INTERMACS defines 25 different types of AEs, of which six are classified as final out-

comes. Fig. 7 plots the distribution of count of AEs per patient. The 54% of patients

experienced between 1 to 4 AEs, while a small percentage of patients experienced a very

high number of AEs, like 5% of patients experienced 8 AEs. The time-related characteristics

of these data were investigated by posing six descriptive research questions as follow:
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Figure 7: The count of AEs per patient. The pie chart and elements of the legend is ordered

based on their frequencies.

4.1.3.1 How Many Occurrences of Each Type of AEs Were Recorded in Each

Post-LVAD Month?

The stacked bar-plot in Fig. 8a provides an overview of all types of recorded AEs per

month post-LVAD, color coded as shown in the legend. The majority of AEs occur before the

first year, especially in the first month post implant with 24,666 recorded AEs, predominated

by four common types of AEs including Bleeding, Cardiac Arrhythmia, Infection, and Other

serious AE (SAE), each in excess of 3000 events recorded, while others were uncommon.

There were 2,145 recorded AEs at the time of implant (time 0) mostly Bleeding (red). After

the second month, the counts of AEs become much more sparse, and virtually imperceptible

on this plot. This may pose a problem for predicting the timing of AEs. The overall

preponderance of patients with no record of AE (majority class) creates an “imbalance class

problem” for any predictive model that is trained on this data set. This will impose a bias

towards freedom from AEs for most patients (imbalance class problem).

Fig. 46 depicts the distribution of each type of AE separately over the time. Contrasted

to Fig. 8a, the individual counts of individual AEs for the first month are much less dramatic

than for the aggregate count – due to the diversity of types of AEs. Similarly, the sparsity of
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(a) Stacked bar-plot of the total number of recorded AEs in each post-LVAD month; color coded
for each type of AE. The explant of a right-ventricular assist device (RVAD) was named “REXP”.
(SAE - Other Serious Adverse Event.) This refers to any adverse event that is serious but does
not fall into any of the predefined categories of serious adverse events. ’v3’ indicates the version of
the definition of AE in INTERMACS. For complete list of definitions of AEs in INTERMACS see
INTERMACS Appendices

Figure 8: Distribution of AEs over time.
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(b) Individual bar-plots of distribution of each type of AE over the post-LVAD course.

Figure 8: Distribution of AEs over time.
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(c) Density plots of the total number of each type of AE per post-LVAD month, colored based on
the quartiles: Q1, Q2, Q3, Q4.

Figure 8: Distribution of AEs over time.
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AEs in subsequent months is further apparent when split by type. It is also clear from Fig.

46 that the distribution of most AEs is right-skewed, indicating more occurrences of AEs

in months close to the time of implant compared to the later months. In fact several types

of AE (Neurological Dysfunction, Renal Dysfunction, Respiratory Failure, and Right Heart

Failure) occur almost exclusively in the first month - indicated by a small spike in Fig. 46.

The density plots in Fig. 8c, color-coded by quartiles further illustrates the preponder-

ance of AEs in months closer to the time of implant than in later months. For some AEs

like various Explant final outcomes, their density plots are wider (occurrences of AEs are

spread over longer period of the time) while the plots for AEs like RVAD explant (REXP)

and Pericardial Drainage are narrower with a sharp spike in the first post-LVAD month. For

example, almost 100% (up to the end of last quartile, Q4) Pericardial Drainage occurrences

happened before the first year. Conversely, most final outcomes like Explant: Transplant

have a wider bell-shaped density distribution with only 50% (up to the end of second quar-

tile; Q2) of their occurrences before the first year. For all types of AEs, 75% (up to the end

of third quartile; Q3) of occurrences happened before the second year.

4.1.3.2 What Are The Most Common Time Spans Between First and Last AE?

Fig. 9 provides a pie-chart (%) for the wide range of recorded time span (diversity)

over which AEs occurred, computed as the time difference between the last and first AE

entered into the INTERMACS Event database. The most common time span is 0 (27%;

4,219 patients) – corresponding to those patients who only experienced one or more AEs

within one month. The next most common time spans are 1 and 2 months were experienced

by 1,121 (7%) and 832 (5%) patients, respectively. A negligible number of patients (< 1%)

experienced multiple AEs over a period greater than 23 months – indicating sparsity of the

data. The one patient with the longest recorded time span in which they experienced any

AEs was 97 months. In conclusion, the timelines of AEs after LVADs tend to be short in

duration.

It should be mentioned that the time of last AE here means the time of last recorded

AE up to the point of follow-up time for each patient. The follow-up time is not equal for all
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the patients because of their different implant years. For example, a patient who had LVAD

implant in 2010 had 7 years follow-up data (INTERMACS 2017 version is used for this study)

while a patient who had its implant in 2016 had only 1 year follow-up. However, considering

that all patients in this study have at least 1 year follow-up and the most common recorded

time of AE is during the first year and the most common number of AE per patient is 2

across all the time points, the result of this question would not be changed dramatically by

having longer period of follow-up time for patients.

4%
4%

3%

2%

27%

1%

5%
7%

0%

4%

Figure 9: Frequency of time span (difference between the time of last AE and first AE) of

AE journeys in months.

4.1.3.3 What Is the Relationship of the Time of First AE and Last AE?

In previous section, the time span between the last AE and first AE was discussed without

considering the specific recorded time for the first and last AE within the timeline (history)

of AEs. Fig. 10a depicts the relationship of the time of the first AE and the time of last AE.

The size of the bubbles represents the frequency for the corresponding pair of first and last

AE and their color represents the difference (time span). The time of first AE is distributed

over 70 months, with the first month being the most common (n = 1,518) – obscuring 1,769

records of AEs at time 0 (time of implant). The largest bubble is found at the bottom of

each column (time of first AE). The time of the last AE ranges from 0 (for patients with

53



(a) Bubble chart plots the time of first vs last AE. The size of bubbles indicates the frequency;
color implies the length of time span.

(b) Chord diagram connects the time of first AE at the first post-LVAD month (“First AE M1”)
to their corresponding time of last AEs, colored based on the time of last AE. The size of arcs is
proportional to the frequency of each connection.

Figure 10: The relationship of the time of first AE and last AE.
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only one recorded episode of AE at the time of implant) to 98 months after LVAD. Thus, the

wide range of time for the first and last AE illustrates the (diversity) of these data. Likewise

the sparsity of these data is readily apparent by the clustering of larger bubbles within the

first 24 months, and scattered small bubbles elsewhere. There is only 24% (3,237 patients)

of the total 15,820 patients with recorded time of first AE or last AE greater than 24 months.

Further insight can be gained from the chord diagram of Fig. 10b focusing on the widest

column in Fig. 10a, Time of First AE = 1 month. The arcs indicate the connection between

the first AE (at 1 month) (“First AE M1”) to all corresponding recorded times of the last

AE, colored based on the time of last AE. The size of arcs is proportional to the frequency

of each connection. The thickest and darkest arc corresponds to the largest bubble in Fig.

10a. Likewise, as the bubbles taper rapidly in the first column of Fig 10a, the thickness of

arcs reduces rapidly following the first month. The number of patients corresponding to

arcs “M1-M1” to “M1-M6” is greater than 300. The number of patients corresponding to

arcs “M1-M7” to “M1-M12” is between 200 and 300. Thereafter the frequency below 100.

The 1,440 patients with the time of last AE greater than 24th months are aggregated in one

arc.

4.1.3.4 How Many AEs Did Patients Experience In Different Time Spans?

Time span over which AEs occurred for a given patient is not necessarily proportional

of the total number of AEs. For example, there is a meaningful difference between two

patients with the same number and types of AEs in the same order, but one experienced the

sequence of AEs in the time span of 2 months vs. the second patient over 23 months. Fig.

11 illustrates the relation between the count of total number of AEs experienced by patients

and their time spans. The bubbles tend to be large when both the time span and the total

number of AEs are low. For instance, the largest bubbles correspond to 4,219 patients who

experience only 1 AE (time span of 0 month). Then 1,121 patients are associated with 2

total AEs with one month separation. 378 patients are associated with 3 total AEs over the
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span of 2 months. 225 patients experienced 3 AEs over the time span of 3 months, and so

forth. The remaining bubbles for subsequent combinations of time span and total number

of AEs account for less than 500 patients in total - indicative of the (sparsity) of these data.

The longest time span of 97 months belongs to one solitary patient who experienced 5 AEs.

One patient with the greatest number of 26 AEs experienced them over the time span of 45

months.

Figure 11: Bubble chart of the count of total number of AEs each patient experienced vs.

corresponding time span (in month).

4.1.3.5 What Are The Most Common Time Gaps Between AEs?

For patients with greater than one AE, it could be informative to analyze the duration

of freedom from AEs between successive AEs. While time span, above, emphasizes the

total duration in which patients experience AEs, the time gap focuses on how scattered (or

clumped together) the AEs during that time span are. Consider a case of two patients with

the same time span of 40 months and the same number of 4 AEs in the same order but

one had all the 3 AEs in the first month and one AE at month 40, while the other had

1 AE every 10-months. These two patients would be considered clinically different from
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each other because the first patient experienced an unstable initial month after receiving an

LVAD, while the second patient may be considered a “frequent flyer”. There are 34,394 time

gaps recorded for 14,634 patients with greater than 2 AEs (out of 15,820 total patients in

this study). Fig. 12a plots the frequency of each recorded time gap, illustrating the wide

range from 1 month to 86 months - indicative of the (diversity) of these data. 61% of the

time gaps were less than 4 months; 35%, 16%, 10% for time gaps of 1 month, 2 months,

and 3 months, respectively. Any time gap greater than 19 months are negligible (< 1%)

indicating the sparsity of these data. Fig. 12b and 12c plot the frequency of recorded min

and max values of time gap per patient. For those patients with only two AEs, the min and

max gaps are same. The min time gap varies between 1 month and 75 months. The max

time gap varies between 1 month and 86 months. More than half (56%) of the total 14,634

patients had a min time gap of 1 month and 15% have 1 month as their max time gap. More

than half of the patients (52%) have max time gap of less than 7 months including 15% of

patients with max time gap of 1 month.

For patients with recurrence of the same type of AE, it is informative to know how

rapidly the subsequent AE occurs - i.e. the time gap between AEs. This is presented in Fig.

12 for two common types of AE, Bleeding Fig. 12d and Infection Fig. 12e based on 6,200

and 6,822 records, respectively, including all types of Bleeding, including gastrointestinal

bleeding, device and non-device related Infection. Both charts show that the recurrences of

both AEs occurred in a short interval, with one month being the most common. However,

recurrent bleeding within one month was more common than infection (35% vs. 23%). The

maximum time gaps recorded for Bleeding and Infection were 66 and 80 months. Since the

unit of time in this figure is month, it should be noted that any recurrences of AEs less than

one month is not counted in this analysis. For example, if the time interval is changed to

week, the number of occurrences for Bleeding will increase from 6,200 to 7,726 records.
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Figure 12: Frequency of (a) the time gaps (in month) between two consecutive recorded

times of AEs (b) the minimum recorded time gap per patient (c) the maximum recorded

time gap per patient (d,e) time gaps between the recurrences of two consecutive AEs of (d)

Bleeding (n= 6,200) and (e) Infection (n= 6,822).
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4.1.3.6 What Are The Percentages of Patients Who Survived Or Were Free

From AE Over Time?

Fig. 13 shows the time-to-event analysis for Death and any type of AE (free from AE

curve), respectively, for the first 15 months of after LVAD. The curves highlight the contrast

between survival and freedom from AE. While survival gradually declines, freedom from AE

drops rapidly in the first few months post-LVAD. For instance, there’s a 92% probability of

surviving at two months, but a 30% chance of not experiencing an AE by two months.
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Figure 13: Kaplan-Meier survival curve and freedom from AE for patients with continuous-

flow LVAD as the primary durable device therapy.

4.1.4 Discussion

Over the past two decades, several studies have explored the data in the INTERMACS

Events registry, including the annual INTERMACS Reports [18,20,79,102,120]. This study,

to the best knowledge of the authors, is the first to depict a panoramic view of timelines of

AE journeys of LVAD patients. The results of this analysis also revealed the magnitude of
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diversity and sparsity of these data. It was shown that the recorded times of AE extends up

to the 98th month after LVAD implant, but the first few months are most critical as they

have the preponderance of the most common types of AEs. (See question 1; QES.1). The

AE timelines tended to be short in duration (QES.2), even for patients with greater counts

of AEs (QES.4), with the most common starting point at the 1st month (QES.3). The most

common time gaps between AEs ranged from 1 to 4 months (QES.5). Although the survival

probability is high in LVAD patients, the probability of being free from adverse events is low

(QES.6).

The great diversity and sparsity encountered in the data set posed challenges in the

analysis, for example, the choice of post-LVAD time interval, hence granularity; e.g. day vs.

week vs. month affected the perception of post-LVAD AE patterns. Characteristics of the

AE journey, such as the time span and the number of AEs aggregated in each time interval

(day vs week vs month), also affected the complexity of analysis and computational cost.

There were tradeoffs to be considered when choosing the time interval. For INTERMACS

data with 25 types of AEs, we found that aggregating a greater quantity of AEs by longer

time interval (e.g. days to months) could make two similar patients easily dissimilar. On the

other hand, by choosing a shorter time interval (day vs week), AE journey became lengthy,

and less similar. It should be taken into consideration that these analyses are reported based

on the absolute count of AEs, not normalized to the (decreasing) number of patients at risk.

In other words, as AEs diminishes over time, so does the number of patients at risk. (See

Fig. 8) In summary, we found that the choice of granularity of post-LVAD time should be

tailored to the context of the analysis and/or the required sensitivity or specificity. It may

be elucidating to consider a variety of time granularity to explore the data from different

perspectives.

This data mining exercise endeavored to extract value from the INTERMACS Event

database, vis a vis insight about patients’ AEs journeys. However, the analysis suffered

from limitations in the database: some of which cannot be improved, and others that point

to potentially helpful modifications to the data collection protocols. For example, patterns

of AEs that do not occur at an isolated point in time, such as Infection, could be better

identified if the duration of each episode of infection was recorded. If a patient experienced

60



an Infection in the first post-LVAD month and then experienced a Neurological Dysfunction

event, it would be valuable to know if Infection was resolved at the time of Neurological

Dysfunction, or if the two overlapped. The authors also acknowledge that the publicly avail-

able INTERMACS registry used in this study does not fully reflect the most contemporary

data and devices. As pump technology continues to improve, so does the AE profile as was

shown in the recently published MOMENTUM trial data [23]. Future studies would benefit

greatly from access to the most current registry data.

4.1.4.1 Clinical prospective

Researchers, industry professionals, and clinicians can benefit from these findings in the

following ways: (1) Guidance on critical time points following LVAD implantation that re-

quire attention to anticipate AEs and gain a deep understanding of the underlying causes. (2)

Assistance in allocating resources and scheduling follow-up appointments during prevalent

time points with the highest frequency of AEs to address any potential complications effec-

tively. (3) Awareness of the most common time gaps between AEs, facilitating anticipation

of subsequent AEs and enabling the implementation of preventive measures or adjustment of

treatment plans as necessary. (4) Knowing the percentage of patients with long AE journeys

versus short journeys provides hospitals and the industry with a valuable estimate of the

cost of post-LVAD management related to VAD, allowing for better financial planning and

resource allocation.

4.1.5 Conclusion

This study sheds light on the timeline of AE journeys experienced by LVAD patients, as

recorded in the INTERMACS Event database. Valuable insights are gained by examining

the most common duration of AE journeys, the number of AEs within different time spans,

the prevalent time of occurrence for the first and last AEs, the time points with the highest

frequency of recorded AEs, and the most common time gaps between AEs. Researchers, in-

dustry professionals, and clinicians can benefit from these findings to optimize the outcome of

VAD therapy, such as effectively allocating resources and scheduling follow-up appointments

61



during prevalent time points with the highest frequency of AEs or anticipating subsequent

AEs through awareness of the most common time gaps between them.

4.2 In Search of Similarity in Adverse Events 2

4.2.1 Objective

The INTERMACS Event dataset contains an extensive collection of longitudinal evidence

detailing the course of AEs in over 15,000 patients who have undergone LVAD treatment.

Within this vast dataset lies valuable knowledge that can offer a profound understanding of

the characteristics of the ”AE journey.” Therefore, the objective of this chapter is to com-

prehensively analyze the Event data with the following aims to identify novel distributional

information, relationships, and patterns.

4.2.2 Methods

The descriptive analysis conducted in this study encompasses a range of techniques,

including frequency tables, sequential pattern mining, and association rules. For detailed

information on the SPADE algorithm [156] used for sequential pattern mining, please refer to

section 4.1.2.3. The study population for this analysis is identical to the population discussed

in the ”Timelines of Adverse Event” section of this chapter. To review the inclusion criteria

for the 86,912 recorded AEs of 15,820 patients, please see section 4.1.2.1.

4.2.3 Results

INTERMACS defines 25 different types of AEs, of which six are classified as final out-

comes, indicating a wide diversity. The characteristics of patterns of the AE journey of these

2The majority of this section is taken from our published work: Movahedi, Faezeh, Francis D. Pagani,
and James F. Antaki. “In Search of Similarity in Adverse Events Journeys of Left Ventricular Assist Device
Patients.” The Journal of Thoracic and Cardiovascular Surgery (2023).
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data were investigated by posing five descriptive research questions as follows:

4.2.3.1 What Are The Most Common Types of AEs?

The pie chart of Fig. 14a presents the percentage of each type of AE from the total

86,912 recorded AEs. For the visualization of the results, each type of AE were color coded

as shown in the legend. The four most common AEs are Infection (19%), Bleeding (18%),

Other SAE (11%) and Cardiac Arrhythmia(9%) comprise nearly half (57%) of all recorded

AEs. The most common final outcomes are Explant: Transplant and Death, each slightly

more than 5% of the total recorded AEs and 40.6% and 39.3% of the total recorded final

outcomes (see Fig. 14b). Eleven of the AEs occur less than 1% in the INTERMACS database

(see Fig. 14a). Overall, it is clear that the majority of AEs are uncommon, indicative of a

sparse data set.

4.2.3.2 What Are The Most Common Concomitant Post-LVAD AEs?

Post-LVAD AEs do not always occur in isolation, but concomitant with other AEs. The

goal is to find out what types of AE frequently occurred together (at the exact same time)

following LVAD, and specifically AEs coupled with final outcomes such as Death and Ex-

plant. Out of 76,590 recorded times of occurrences of AEs, only 11% (8,638) recorded an

occurrence of more than one AE at the exact same time (concomitant AEs), corresponding

to 5,768 (36%) patients. Collections of concomitant AEs per recorded time of AEs were

assigned to Baskets (See Fig. 15a). Most baskets of AEs (85%) included only two con-

comitant AEs. The maximum number of concomitant AEs for one record of AEs’ time

was 9 (See Fig. 15b). The most frequent types of AEs that were found in baskets of

concomitant AEs were: Other SAE, Infection, and Bleeding. Thus, the most common

combinations of these AEs are shown in Fig. 15c including: {Bleeding,Other SAE},

{Infection,Other SAE}, and {Bleeding, Infection} with support values of 9%, 8%, and

5%, respectively. The most common types of AEs concomitant with a final outcome

were {Death,OtherSAE}, {Device Malfunction and/or Pump Thrombosis, Explant :

Exchange}, and {Death,Neurological Dysfunction} with support values of 3%, 3%, and
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(a) Donut chart depicting the percentage of each type of AE from the total number of 86,912
recorded AEs. AEs in the legend are ordered based on their frequency.

(b) Donut-chart depicting the percentage of each type of final outcome from the total number of
recorded final outcomes in the Event data set. The elements of the legend are ordered based on
their frequency.

Figure 14: Distribution of different types of AEs in INTERMACS Event data.
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2%, respectively.

4.2.3.3 What are the most common sequences of AEs (The Exact Same Types

of AE In The Exact Same Order)?

It may be interesting for clinicians to understand the common patterns of AEs that occur

after LVAD. AEs can occur in various sequences, meaning that patients can experience the

exact same types of AEs in the exact same order. For example, Fig. 16a displays the most

frequent AE sequences in the first post-LVAD month that are common among the 1% of 9,786

patients who had at least one AE in their first post-LVAD month. In this analysis, having no

AE (NAE) or freedom from AE is considered part of the “sequence”. The Fig 16a displays

a horizontal bar plot, in decreasing order from bottom to top. The y-axis is the cumulative

frequency which shows these eleven AE sequences are related to only 20.6% of total 9,786

patients – indicating the diversity in these data. The most frequent AE sequence, common

among 473 patients (4.8%), is (NAE − Cardiac Arrhythmia). The second most common

AE sequence is experiencing Bleeding during implant (Bleeding); 236 patients (2.4%). The

rest of AE sequences include only one type of AE: Bleeding, Infection, Cardiac Arrhythmia,

or Other SAE in one of the post-LVAD weeks.

Observed AE sequences were influenced by the timescale used in the analysis. For ex-

ample, a weekly timescale limits the ability to detect sequences occurring within one week.

Increasing the time increment to year further reduces or obscures information about common

sequences, owing to the sparsity of the data. This is illustrated in Fig. 16b that depicts

the common patterns of AE associated with at least 1% of patients. The plot indicates

that there are only two such patterns, both occurring in the first month: (1) NAE-Cardiac

Arrhythmia, (NAE − Cardiac Arrhythmia) is common among 218 patients (1.47%) (2)

(NAE −Death) is common among 158 patients (1.06%). This is despite the fact that there

are 14,858 patients (out of total 15,737 patients) who experienced at least one AE during

the first post-LVAD year. Due to the diversity of the data, aggregating AEs over the time

interval of month vs. week causes the AE timelines (sequences) to be more dissimilar, as the

chance of experiencing different types of AE over a month is greater than over the week. In
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(c) The top 20 most common concomitant AEs

Figure 15: Common Concomitant Post-LVAD AEs.
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summary, the diversity among AE timelines (sequences) exponentially increases by increas-

ing the follow up time from 1 month to 1 year and changing the time interval from week to

month.

4.2.3.4 How Many Patients Share One or More AEs In The Same Order? (Com-

mon Subsequence of AEs)

Discovery of common patterns of AEs irrespective of specific week of occurrence can be

elucidating. This question is related to the previous question by (1) relaxing the constraint

of matching the entirely of AE sequences versus only doublets or triplets of AEs (i.e. subse-

quences) and (2) ignoring the time spans and time gaps to emphasize the type and order of

AEs. For instance, if the goal is to found out how many patients experienced first Bleeding

and then Infection, both of (Bleeding−NAE−Infection) and (Bleeding−Infection) will

be counted for the subsequence of (Bleeding − Infection).

To accomplish this, the SPADE sequential pattern mining technique [156] was applied to

all AE sequences to extract most common AE subsequences. Please see Appendix A for the

details of SPADE algorithm. Table 3 lists the AE patterns/subsequences that are common

to at least in 10% of the total 15,737 patients ordered by the count values. In this analysis,

the time interval was month and there was no limit of follow-up time. The AE at the time of

implant was not considered in this analysis, and thus 83 patients with only AE at the time

of implant was removed from this analysis leading to total number of 15,737 patients. The

first 8 common AE patterns (subsequences) are the single occurrence of Bleeding, Infection,

Other SAE, etc. among patients. There were 51.3% and 41.4% of patients who had at

least one occurrence of Infection and Bleeding after LVAD, respectively. Pattern mining also

yielded two final outcomes, Explant: Transplant and Death, that were among the top AEs

patterns with 29.7% and 28.6%, respectively. The first two common pairs of AEs (colored in

green) are (Infection− Infection) and (Bleeding−Bleeding) which are common to 21.9%

and 17.9% of the patients. The next sets of AEs are combinations of Infection and Bleeding

in different orders; first Bleeding and then Infection (Bleeding − Infection) or vice versa

(Infection − Bleeding). There are also combinations of Infection and Bleeding with the
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NAECardiac Arrhythmia InfectionBleeding Other SAE

(a) The most frequent AE sequences in the first post-LVAD month that are common among the
1% of 9,786 patients who had at least one AE in their first post-LVAD month. The AE sequences
are displayed bottom-up in decreasing order of their frequencies.

NAECardiac Arrhythmia Death

Month 12Month 1Implant

NAE

Cardiac Arrhythmia 

Death

Month 2

(b) The most frequent AE sequences in the first post-LVAD year that are common among the 1%
of 14,858 patients who had at least one AE in their first post-LVAD year. The AE sequences are
displayed bottom-up in decreasing order of their frequencies.

Figure 16: Most common sequences of AE; time interval of week vs. month
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final outcome of Death (Infection−Death) and (Bleeding−Death) common among 14.5%

and 11.7% of patients, respectively. This analysis also revealed common pairs of AEs that

occurred within a same time interval (colored in apricot) namely ({Infection,Bleeding}),

({Infection,Other SAE}), ({Infection,Respiratory Failure}). There is only one triplet

in the top 10 % of AE subsequences, namely (Infection−Infection−Infection). Compared

to the previous section, it can be appreciated that relaxing the constraints for time span,

time gaps, and the complete AE sequence, resulted in only AE pattern (subsequence) that is

common to at least 50% of patients. This further illustrates the influence of diversity among

AE timelines after LVAD.

4.2.3.5 What Are The Interesting Relations (Association Rules) Between Var-

ious Types Of AEs?

The AE patterns (subsequences) found in the previous section are informative about the

evolution of AEs, such as determining whether an occurrence of Bleeding forecasts a future

occurrence of Infection. However, the counts of common AE subsequences (or percentage) in

Table 3 are not sufficient to confirm a relationship (association rule) between occurrence

of AEs. An association rule like Bleeding ⇒ Infection indicates that Bleeding frequently

preceded Infection. The confidence for such an association rule can be computed as the

probability of the subsequent occurrence of Infection following an occurrence of Bleeding;

P (Infection|Bleeding). The confidence values such association rules range between 0 (0%)

to 1 (100%). The rule with confidence of 1 implies that whenever the AE on the left occurs,

the AE on the right side is guaranteed to follow 100% of the time. Table 4 lists only the

first twenty association rules out of 55 with confidence of ≥ 50% common among at least

1% (about 182 patients) of total 15,737 patients. The first five rules with confidence values

ranging from 58% to 68% are related to patients who experienced multiple Bleeding AEs with

some other types of AE that leads to another Bleeding AE later. The first rule is indicates

that 68% of patients who experienced 6 Bleeding AEs also experienced a 7th Bleeding AE.

The total number of patients who experienced this rule is 1.1% of total 15,737 patients. The

remainder of rules are related to patients experiencing various combinations of Bleeding and
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Table 3: The most common sequential AE patterns (subsequences) after LVAD. The time

interval is month. The count value indicates the number of patients who had the AE pattern.

The % indicates percent from total patients. The pairs of AEs are colored in green and the

pairs of AEs that occurred within a same time interval are colored in apricot.

Rank Common AEs Patterns Count %
1 (Infection) 8074 51.3%
2 (Bleeding) 6522 41.4%
3 (Other SAE) 5045 32.1%
4 (Cardiac Arrhythmia) 4830 30.7%
5 (Explant: Transplant) 4674 29.7%
6 (Death) 4501 28.6%
7 (Device Malfunction and or Pump Thrombosis) 4282 27.2%
8 (Neurological Dysfunction) 3656 23.2%

9 (Infection-Infection) 3452 21.9%

10 (Respiratory Failure) 3168 20.1%

11 (Bleeding-Bleeding) 2811 17.9%

12 (Bleeding-Infection) 2552 16.2%

13 (Infection-Bleeding) 2376 15.1%

14 (Infection-Death) 2279 14.5%

15 (Renal Dysfunction) 2221 14.1%

16 ({Infection, Bleeding}) 2087 13.3%

17 (Other SAE-Infection) 1934 12.3%

18 (Bleeding-Death) 1847 11.7%

19 (Cardiac Arrhythmia-Infection) 1820 11.6%

20 (Infection-Explant: Transplant) 1802 11.5%

21 (Explant: Exchange) 1795 11.4%
22 (Right Heart Failure v30) 1730 11%

23 ({Infection, Other SAE}) 1727 11%

24 (Infection-Other SAE) 1725 11%

25 (Infection-Device Malfunction and or Pump Thrombosis) 1705 10.8%

26 ({Infection, Respiratory Failure}) 1612 10.2%

27 (Infection-Infection-Infection) 1608 10.2%
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Infection in different months or during the same month that lead to another Bleeding AE or

Infection AE. It should be mentioned that decreasing % threshold below 1% will result in

association rules with even greater confidence values (more than 90%). However, doing so

would not provide much practical information clinically.

Whereas the association rules in Table 4 are relatively long, the continuation of the list of

rules with ≤ 50% confidence include shorter rules like Infection ⇒ Infection that are less

common - i.e. experienced by fewer patients, indicative of the diversity among AE patterns.

For example, Table 5 provides a list of association rules, common among at least 1% of the

total patients and having only one Infection AE on the left side of the rule. The rule with

the greatest confidence is 42% but associated with a greater percentage of total patients

compared to the rules in Table 4 with greater confidence. Despite the size of this cohort

15,737 patients it is seen that the confidence values for top association rules does not reach

to even 70% indicating diversity among patients’ AE patterns.

4.2.4 Discussion

This study provides potentially valuable insights about characteristics of “AE journeys”

following LVAD implant that were extracted from the longitudinal data of > 15, 000 patients

by posing five questions. Although these analyses were performed on the publicly available

INTERMACS database, which does include the most contemporary technology, this study

nevertheless exhibits the great opportunity to apply advanced analysis to the AE database,

as well as some related challenges.

The publicly accessible INTERMACS database comprises 25 types of AEs, however four

common types encompass more than half of the recorded AEs. (See question 1; QES.1.)

An obvious improvement in INTERMACS registry would be to provide more granular infor-

mation on “Other SAE” which is one of the most common recorded AEs in INTERMACS.

Although concomitant AEs are rare, the most common were combinations of Bleeding, In-

fection, and Other SAE (QES.2). This analysis revealed that patients rarely experience

identical sequences of AEs as there were only two sequences shared by greater than 1% of

patients in first year post-LVAD implant (QES.3). Similarly, the number of patients who
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Table 4: The first twenty association rules out of 55 with confidence of ≥ 50% common

among at least 1% (about 182 patients) of total 15,737 patients. The time interval is month.

The confidence for an association rule is the probability of the subsequent occurrence of right-

hand side of the rule following an occurrence of left-hand side of the rule. The confidence

value ranges between 0 to 1.

Rank Rule Confidence Per

1 (Bleeding-Bleeding-Bleeding-Bleeding-Bleeding-Bleeding) ⇒ (Bleeding) 68% 1.1%

2 (Bleeding-Bleeding-Bleeding-Bleeding-Bleeding) ⇒ (Bleeding) 62% 1.7%

3 (Other SAE-Bleeding-Bleeding-Bleeding) ⇒ (Bleeding) 61% 1.3%

4 (Infection-Bleeding-Bleeding-Bleeding-Bleeding) ⇒ (Bleeding) 60% 1%

5 (Cardiac Arrhythmia-Bleeding-Bleeding-Bleeding) ⇒ (Bleeding) 58% 1%

6 ({Infection, Bleeding}-{Infection, Bleeding}) ⇒ (Infection) 57% 1.2%

7 (Bleeding-Bleeding-Bleeding-Bleeding) ⇒ (Bleeding) 57% 2.7%

8 ({Infection, Other SAE}-Infection-Infection) ⇒ (Infection) 56% 1.3%

9 ({Other SAE, Bleeding}-Bleeding-Bleeding) ⇒ (Bleeding) 55% 1.1%

10 (Bleeding-Other SAE-Infection-Infection) ⇒ (Infection) 54% 1%

11 (Bleeding-Infection-Infection, Bleeding) ⇒ (Infection) 54% 1.1%

12 (Other SAE-Bleeding-Infection-Infection) ⇒ (Infection) 54% 1%

13 ({Infection, Bleeding}-Infection-Infection) ⇒ (Infection) 54% 1.7%

14 ({Infection, Bleeding}-Bleeding-Bleeding) ⇒ (Bleeding) 54% 1.5%

15 (Infection-Bleeding-Infection-Infection) ⇒ (Infection) 53% 1.7%

16 (Infection-{Infection, Bleeding}-Infection) ⇒ (Infection) 53% 1.3%

17 (Infection-Other SAE-Infection-Infection) ⇒ (Infection) 53% 1.2%

18 ({Infection, Respiratory Failure}-Infection-Infection) ⇒ (Infection) 53% 1.1%

19 (Respiratory Failure-Infection-Bleeding) ⇒ (Infection) 53% 1.3%

20 (Other SAE-Infection-Infection-Infection) ⇒ (Infection) 53% 1.4%
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Table 5: The association rules that are common among at least 1% of the total patients and

having only one Infection AE on the left side of the rule.

Rank Rule Confidence Per

1 (Infection) ⇒ (Infection) 42.8% 21.9%

2 (Infection) ⇒ (Bleeding) 29.4% 15.1%

3 (Infection) ⇒ (Death) 28.2% 14.5%

4 (Infection) ⇒ (Explant: Transplant) 22.3% 11.5%

5 (Infection) ⇒ (Other SAE) 21.4% 11%

6 (Infection) ⇒ (Device Malfunction and or Pump Thrombosis) 21.1% 10.8%

7 (Infection) ⇒ (Neurological Dysfunction) 17.3% 8.9%

8 (Infection) ⇒ (Cardiac Arrhythmia) 14.6% 7.5%

shared only part of their AEs’ journey (subsequences) was minimal compared to the huge

number of patients in this study (QES.4). The most common AE subsequence was shared

by only 50% of patients. Consequently, the maximum confidence values for interesting as-

sociations between occurrences of AEs were below 70% (QES.5). All five questions revealed

great diversity and sparsity in INTERMACS Event data with respect to type and timing

and order of AEs impairing the ability to identify trends despite the large size of this dataset.

Although QES.4 and QES.5 revealed the rarity of identical AE patterns among patients,

it is important to note that similar patterns could still be identified through a different

approach. One possible strategy is to cluster patients into subgroups that share similar

trends and timelines of AEs. By grouping patients with comparable AE patterns, meaningful

patterns and associations can be extracted within each cluster. This clustering process

enables researchers and clinicians to gain a deeper understanding of the underlying factors

and potential associations that drive specific patterns of AEs.

Considering the goal of this study was to provide a big picture of INTERMACS Event

data, it was necessary to manage to wide diversity in risk factors such as baseline patients

characteristics, post-LVAD patient management, and device type. For instance, it is likely
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that the AE journeys will look very different at high volume versus low volume centers

[158, 159]. Therefore, it would be insightful to explore AE patterns within subsets of the

INTERMACS Event data. This may lead to a more definitive, and practical guidelines for

improved device design as well as patient management. In addition, this study ignored the

sub-types of AEs, such as systemic infections vs device-associated infections, to control an

already wide diversity in the data. Future studies may, likewise, segregate the data by sub-

types of major types of AEs, such as infection and bleeding, and ignore some less common

AEs, “AE noise”. Lastly, the publicly available INTERMACS data (2017 version) includes

a small percent of patients with new LVAD technology. Although the new technology still

suffers from the most types of AEs like infection and bleeding but in lower rates, it would

be valuable to mine the contemporary databases such as MOMENTUM3 for “AE journeys”

related to the currently dominant device [18].

4.2.5 Conclusion

The findings of this study shed light on the diverse nature of “AE journeys” in LVAD

patients, highlighting the variation in AE types, combinations, and sequences, thereby con-

tributing to a deeper understanding of the complexities in AE management post-LVAD

implantation. The findings indicate that among the 25 types of AEs in the INTERMACS

database, four common types (infection, bleeding, cardiac arrhythmia, and other serious

AE) account for more than half of the recorded AEs. The analysis reveals that concomitant

AEs are rare, with the most common combinations involving bleeding, infection, and other

serious AE. Additionally, patients rarely experience identical sequences of AEs, with only a

small percentage sharing specific AE sequences in the first year post-LVAD implant. The

study also highlights the minimal occurrence of shared subsequences among patients, despite

the large sample size.
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4.3 Guidelines for INTERMACS Event Database Investigation

In the process of addressing the eleven questions in the sections titled “Timelines of Ad-

verse Event” (section 4.1) and “In Search of Similarity in Adverse Events” (section 4.2), a set

of guidelines for investigating the INTERMACS Event database was compiled to emphasize

the key factors that influence the interrogation of Event data.

4.3.1 Considerations regarding missingness and time gaps

When mining the INTERMACS Event database for sequences of AEs, missing data

translates to a time gap (see “What Are The Most Common Time Gaps Between AEs?”

in section 4.1.3.5) that can be classified as one of three main varieties. (1) Left gap: the

absence of AEs from the time of LVAD implant (up to the the first AE) is a meaningful

missingness as it reflects AE-free survival (NAE). Thus, the missing data could be replaced

by the “NAE” in patients’ AE sequences. (2) Between gap: absence of AEs two consecutive

episodes of AEs indicates the duration of freedom from AE and can be filled by “NAE”.

(3) Right gap: The missingness after last AE up to the follow-up time depends on the last

AE can differ (3.1) If the last AE is a final outcome like “Explant” or “Death” then the

missingness after the final AE is a real missingness and should be left as a gap. (3.2) If

the last AE is not a final outcome, then the missingness can be replaced with “NAE” as

it reflects patient after the last AE is alive up to last follow-up time point. In general, the

decision about the time gaps in patients’ sequences is subjective to the goal and design of a

study. For instance, pattern mining studies may ignore the one or more types of time gaps

were explained above (1) when their emphasise is on the order of AEs’ occurrences rather

the timing of AEs (2) when dealing with huge number of time gaps due to the choice of time

granularity which will be explained in the next part.

4.3.2 Considerations regarding granularity of time

The post-LVAD time can be segmented at different levels of time granularity; daily

interval vs. weekly interval vs. monthly interval The choice of time interval for segmenting

75



PATIENT ID OPERATION ID EVENT TIME (month) TIME (round up)
2222 404 Bleeding 0.22998419 1
2222 404 Renal Dysfunction 0.75566233 1
2222 404 Bleeding 0.85422699 1
2222 404 Respiratory Failure 0.95279164 1
2222 404 Death 1.08421118 2

Patient2222 : (Bleeding, Renal Dysfunction, Bleeding, Respiratory Failure)-Death

1st Month 2nd Month

Figure 17: An example of converting INTERMACS Event data for a patient into a sequence

of chronological ordered AEs.

the AE records (daily vs weekly vs monthly, etc.) will affect the perception of post-LVAD

AE patterns. (See “What are the most common sequences of AEs?” in section 4.2.3.3).

Time stamps in INTERMACS are provided as decimal numbers, measured in months. For

example, Fig. 47 shows an portion of the Event data for a patient (P2222) that includes

recorded AEs spanning the first 1.08 months with five entries. By choosing a monthly

granularity, these five entries become two episodes, or elements of their AE sequence: four

entries in the first month, and one in the second. Fig. 18 contrasts the effect of different

time granularity for the same patient: month vs. week vs. day. The corresponding AE

sequences are provided in Fig. 19 which appear very different from one another in terms of

length, max counts of events per element. Increasing granularity of time interval from month

to Week decreases the number of AEs that are combined in each element and increases the

sequence’s length from 2 to 5 and introduces two time gaps (“NAE”). Further refining the

time granularity to Day extends the length of the sequence to 33 including 28 time gaps

(“NAE”). It is apparent that changing the time interval can vastly alter the sequence for

the same patient.
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TIME 
Month

TIME 
Month

TIME
Week

TIME
Day

0.22998419 1 1 7
0.75566233 1 4 23
0.85422699 1 4 26
0.95279164 1 4 29
1.08421118 2 5 33

Figure 18: Different time granularity for P2222’s timing of AEs.

Time Unit Sequence Sequence  
Length

Max
count of 
events 

per 
element

Month (Bleeding, Renal Dysfunction, Bleeding, Respiratory Failure)-Death 2 4
Week Bleeding-NAE-NAE-(Renal Dysfunction, Bleeding, Respiratory Failure)-Death 5 3

Day
NAE-NAE-NAE-NAE-NAE-NAE-Bleeding-NAE-NAE-NAE-NAE-NAE-NAE-NAE-

NAE-NAE-NAE-NAE-NAE-NAE-NAE-NAE-Renal Dysfunction-NAE-NAE-
Bleeding-NAE-NAE-Respiratory Failure-NAE-NAE-NAE-Death

33 1

Figure 19: Corresponding sequences for P2222 with respect to different time intervals.
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Now, extrapolating this example to all 15,819 patients, it can be appreciated that their

AE sequences can become more similar or dissimilar by changing the time granularity, thus

effect statistical analysis like pattern mining. Characteristics of the AE sequences, such as

the length and the number of AEs aggregated in each element, will also affect the complexity

of analysis and computational cost.

There are tradeoffs to be considered when choosing the time interval. For INTERMACS

data with 25 types of AEs, aggregating a greater quantity of AEs by longer time interval

(e.g. days to months) can make two patients easily dissimilar by having only one AE in one

of the aggregated AEs element in their sequences. On the other hand, by choosing a shorter

time interval (day), AE sequences become lengthy, and thus slightly different timing of AEs

occurrences, like 1 day, can increase the dissimilarity between patients.

In summary, the choice of granularity of post-LVAD time should be tailored to the

context of analysis, the goal of the study, and/or the required sensitivity or specificity. It

may be elucidating to consider a variety of time granularity to explore the data from different

perspectives. (See “What are the most common sequences of AEs?” in section 4.2.3.3).

78



5.0 Pre-LVAD Risk Models

5.1 Pre-LVAD Mortality Risk Model Highlighting the Imbalance of Classes1

5.1.1 Objective

This study develops a random forest classifier to predict 90-day mortality after LVAD

implantation, with the aim of achieving better performance compared to previous risk scores.

The classifier is trained using data from the national registry of INTERMACS, and several

approaches are employed to reduce the chance of overfitting. The performance of the ran-

dom forest classifier is compared to a well-known 90-day mortality risk score in the LVAD

field, referred to as the HeartMate Risk Score (HMRS). Furthermore, this study addresses

the issue of class imbalance that arises during the development of LVAD-related risk scores,

emphasizing how the commonly used evaluation metric, ROC, can lead to an overly op-

timistic assessment of risk scores. To mitigate this issue, the study suggests the use of a

supplementary evaluation metric called the precision-recall curve (PRC), which considers

the imbalance problem when assessing risk scores.

5.1.2 Methods and Background

5.1.2.1 Comparison of Two Classifiers for 90-day Mortality

This study compares the performance of two classifiers for predicting 90-day mortality

after LVAD implantation; the well-known HeartMate Risk Score (HMRS) and a Random

Forest (RF) that was derived de novo from a large multi-center registry data. The HMRS,

a logistic regression, was derived from and validated within 1,122 patients red with %13 90-

day mortality who received a HeartMate II as a bridge to transplant or destination therapy

1The majority of this section is taken from our published work: Movahedi, Faezeh, Rema Padman, and
James F. Antaki. “Limitations of receiver operating characteristic curve on imbalanced data: assist device
mortality risk scores.” The Journal of Thoracic and Cardiovascular Surgery (2021).
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and computes the 90-day risk scores for mortality based on five variables [51]. The RF is

a popular ensemble algorithm constructed by combining multiple decision trees based on

“bootstrap” samples from data with random feature selection [160]. Each tree in RF will

have a “vote” for a patient outcome, then the overall classifier is determined by majority

of votes of the trees. For this study, a RF was derived based on 235 pre-LVAD clinical

variables, such as lab values, demographic information, clinical history, etc., from 11,967

patients with advanced heart failure who received a continuous-flow LVAD recorded in the

Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). The

data were randomly divided into a training (70%) and a test (30%) set. The HMRS score was

computed for a subset of the test data set, censoring patients who received a heart transplant

or had total recovery before 90 days, and for whom the data records did not contain all five

variables required to compute HMRS. The resulting data set for computing HMRS included

800 patients (mean age of 59 years; 146 females vs. 654 males). The majority of these 800

survived to 90 days (SURV class) 92% and only 8% of patients were dead at 90 days (DEAD

class). Thus, there is a high imbalance between the SURV class (majority class) and DEAD

class (minority class) in these data.

5.1.2.2 The Problem of Imbalance (and Overlap)

Without loss of generality, a classifier is a means of assigning the predicted probability

of an outcome to a specific class, also known as a label. For example, if the predicted

probability of a hypothetical patient being dead (PPD) is 70%, then this patient can be

assigned the label “DEAD” by prescribing a cutoff value of, say 50%. By the same token, if

PPD is below the cutoff, say 30%, then the patient would be assigned to the survival class

“SURV.” (See Fig. 20a). Then, to evaluate the performance of the classifier, the predicted

label is compared to the actual outcome and summarized in the form of a confusion matrix,

as shown in Fig. 20a (inset) containing four elements: True DEAD, False DEAD, True

SURV, False SURV. From these four elements, several evaluation metrics can be computed,

including sensitivity, precision, and specificity.

Choosing the best threshold is a challenging task that can highly affect the perception
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Dead 

SURV 

Output of model

PPD = Predicted Probability of Dead 

PL = Predicted Label

Observed

True Dead

False Dead

True SURV

False SURV

If PL = Dead

If PL = SURV

PPD

(1) Threshold PPD (2) Compare PL against observed labels 

Confusion matrix

(Type II Error)

(Type I Error)

(a) Transition of the outcome of a classifier
from Predicted Probabilities of Dead (PPD)
to Predicted Label (PL)- (1) Threshold the
PPDs: If the PPD for a patient is greater than
the threshold then the PL would be Dead oth-
erwise PL would be SURV. (2) Compare gen-
erated PL against the observed class/label and
form the confusion matrix.

Observed 

Output of model 

Predicted Probabilities
of Dead
(PPD)

0% PPD

50% PPD

100% PPD

Predicted 
Label

(b) An example shows the transition of the
outcome of a classifier for three patients
from PPDs to PLs using two slightly differ-
ent thresholds- The PLs generated using the
threshold of 51% (with gray background) are
all correctly classified vs the threshold of 50%
caused one misclassified label

Figure 20: Transition of the outcome of a classifier from predicted probabilities to predicted

labels
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of model’s performance. For example, Fig. 20b shows the predicted probabilities of being

dead for three patients based on two potential thresholds of 50% and 51%. In this example

the labels for the two extreme cases (PPD = 0% and 100%) are unambiguous. However,

the patient in the middle with the 50% predicted probability of being dead (hence 50% of

chance of being alive) can be classified with either label SURV or DEAD by merely altering

the threshold by one percentage point. In this example, the performance of this classifier

is achieved by assigning a threshold of 51% leading to the correct classification of all three

patients. However, optimizing the threshold in real life is not as straightforward as this

example.

When considering a larger population of patients, the distribution of PPD contains an

ambiguous overlap in which an intermediate range of probabilities is associated with both

classes. (See Fig. 21a, plot B). This is in contradistinction to the “perfect” classifier that

does not contain any such overlap. (See Fig. 21a, plot A). Therefore, choosing the threshold

involves a subjective trade off decision: which is worse, incorrectly predicting a patient as

being dead (False DEAD, type I error), vs incorrectly predicting a patient as alive (False

SURV, type II error)?

When the data are highly imbalanced, the unequal distribution of classes will compound

the problem of overlap and make classification even more challenging. (See Fig. 21a, plot

C). The LVAD 90-day mortality study introduced in the previous section is an example. Fig.

21b shows the histograms of HMRS Risk score (left plot) and RF probability of mortality

(right plot) categorized by their actual mortality outcome (DEAD vs SURV). The predicted

probabilities of being dead generated by RF for all 800 patients in this study (total of both

DEAD and SURV) ranges from 0.01 to 0.52 with the mean of 0.15; while HMRS scores

range between -1.80 to 6.50 with the mean of 1.71. The means of both distributions are

closer to the lower part of their ranges because of the preponderance of alive patients (92%)

in the test sample. This is clearly visible in Fig. 21b as the black bars (DEAD class) are

much lower than the orange bars (SURV class.) HMRS has a tall bell-shaped distribution

of scores around the means for both classes. On the other hand, the distribution of the

SURV class in the RF histogram is right-skewed, whereas the distribution of the DEAD

class is relatively flat, with no identifiable maximum. However, RF was more successful in
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(a) Overlapping issue-Right Figure: A theoretical example of a classifier’s output for 250 patients
including: Predicted Probabilities of Dead (PPD) and Predicted Labels (PL). Left Figure: Top
plot shows the outcome of a perfect classifier with no overlapping between the distributions of
PPD of Dead class (colored in black) and SURV class (colored in orange). Bottom plot shows an
imperfect classifier that generates PPDs with ambiguous overlap in which an intermediate range of
probabilities is associated with both (either) class.

HMRS Random Forest (RF) 

Dead 

SURV 

(b) Overlapping issue for the outcomes of 90-Day LVAD mortality classifiers- The underlying dis-
tributions of HMRS risk scores and RF predicted probabilities of DEAD for 800 patients in this
study data are shown histogram plots. The histograms are categorized based on the observed labels
for patients in this study.

Figure 21: Overlapping issue.
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separating the classes for two reasons: first, the SURV class is clustered within a narrow band

(approximately 0.0 to 0.3; median of approximately 10%.) Secondly, the band above 35% is

dominated by the DEAD class. Nevertheless, for both of the plots in Fig. 21b, optimizing a

cutoff point threshed that efficiently separate both classes is not straightforward. By default,

any cutoff point threshold for both plots in Fig. 21b will result in a much greater number of

True SURV and False SURV compared to True DEAD and False DEAD. On account of this

dilemma (imbalance plus overlap), caution is needed when applying metrics of performance

to these classifiers - such as the common ROC.

5.1.2.3 Receiver Operating Characteristic (ROC)

The ROC curve is defined as the LOCUS of True Positive Rate (TPR) and False Positive

Rate (FPR) for all possible choices of cutoff thresholds as shown in Fig. 22a The

color bar to the right of the ROC curve represents the threshold levels. Another term for

TPR is sensitivity or recall. Another term for FPR is 1-Specificity or 1-True Negative Rate

(TNR). The Y-axis (TPR) is the proportion of True Dead over all observed Dead. The x-axis

(FPR) is one minus the proportion of True SURV over the total of observed SURV. In other

words, ROC looks at the performance of a classifier in prediction of both of classes, Dead

and SURV. The overall performance, for all threshold values, can be assessed by computing

the Area Under the Curve of ROC (AUC-ROC).

The shape of the ROC curve depends on the overlap between the distributions of pre-

dicted probabilities of the two classes. A perfect classifier with no overlapping will have

an L-shape ROC curve (dashed line in Fig. 22a) with AUC-ROC equal to one, and will

pass through the point of (FPR=0, TPR=1), as indicated with the gray dot, corresponding

to the threshold where all patients are correctly identified by the classifier. The closer the

ROC curve gets to the diagonal “line of unity” (representing random chance) such as the

solid curve in Fig. 22a the worse the performance of classifier. The purple and red dots

correspond to the upper and lower bounds of the threshold: > 1 and 0, respectively. At

the lower bound (threshold = 0), the classifier identifies all patients as SURV (FPR= 0%

or specificity=100%). At the upper bound, the classifier identifies all patients as DEAD
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(sensitivity= 100%).

5.1.2.4 Precision-Recall Curve (PRC)

The PRC is a plot the LOCUS of Precision and Recall for all possible choices of

cutoff threshold as pictured in Fig. 22b The X-axis in the PRC (recall) is the same as the

Y-axis in the ROC. Other terms for recall are sensitivity and TPR, equal to True DEAD

over all observed Dead. The Y-axis (precision) is also known as positive predictive value

(PPV), equal to True DEAD over all predicted DEAD by the model. The color bar to the

right of the PRC curve represents the threshold levels of the classifier. It is important to

note that the formulas for precision and recall have the same numerator (True DEAD) and

both include True DEAD in their denominator. Their only difference is one element in their

denominators: False DEAD in precision and False SURV in recall. Thus, PRC focuses on

the quantity of True DEAD over various cutoff thresholds considering errors of both classes:

False DEAD and False SURV. Therefore, PRC is beneficial when dealing with imbalanced

data as it focuses on the performance of model in only the minority class (DEAD) and it is

sensitive to skewness in the imbalance data. Similar to ROC, the PRC can be summarized

by computing the Area Under Curve of PRC (AUC-PRC). In PRC, the random classifier

would be a horizontal line with precision equal to proportion of minority class; for instance,

8% for 90-day post-LVAD mortality.

A perfect classifier will have an L-shape PRC curve (dashed line in Fig. 22b) with the

AUC-PRC of 1, and will include the point (recall= 1, precision= 1), as indicated with the

gray dot in the figure, corresponding to the cutoff threshold where all patients are correctly

identified by the classifier. However, when there is overlap between predicted probabilities

of classes, as illustrated in Fig. 21b, the PRC curve approaches the dotted horizontal line

corresponding to a random classifier. The red and purple dots in Fig. 22b corresponds to

the two extreme thresholds. The red dot (threshold = 0.0) indicates the point where recall

= 0, and precision =0/0, indicated by 1.0. The purple dot corresponds to the threshold

1.0 wherein the classifier identified all patients as DEAD; hence the recall = 1.0 (no False

SURV) and the precision = overall proportion of the minority (DEAD) class.
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(a) ROC- The example of ROC curves for a
perfect classifier (L-shape dashed-curve), an
imperfect classifier (solid curve), and a random
classifier (diagonal dotted-line).
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Figure 22: Evaluation metrics: ROC and PRC.
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5.1.3 Result

5.1.3.1 Limitations of ROC due to imbalanced LVAD mortality

Fig. 23a shows the ROC curves for the two classifiers, HMRS and RF, for prediction

of 90-day mortality after LVAD implantation. The color of the curves corresponds to the

values of cutoff thresholds for each classifier shown in their corresponding legends (from 0.01

to 0.52 for RF vs -1.8 to 6.50 for HMRS). The dominant color in the ROC curve for HMRS

is green corresponding to the compact (tall and narrow) distribution of scores around the

mean of 1.71 as shown in Fig. 21b. Therefore, a small change in cutoff threshold above or

below the mean may dramatically change the performance of classifier. On the other hand,

the ROC curve for RF illustrates its performance over a more uniformly distributed range

of thresholds, especially for the lower part of the range (less than 30%), corresponding to

the right-skewed distribution of predicted probabilities shown in RF’s histogram for SURV

class (orange bars) in Fig. 21b. The area under the curve (AUC) for these two ROC curves

are comparable, although RF is slightly greater (0.77) vs. 0.63 for HMRS, indicating better

overall performance of RF in separating DEAD vs. SURV.

The two dark blue points on the curves indicates the optimized threshold points where

the values of sensitivity and specificity are effectively equalized (1.86 and 0.21 for HMRS and

RF, respectively). Although the values of sensitivity for HMRS and RF at the optimized

threshold are similar, 0.60 and 0.66, respectively, the corresponding specificity of RF, 0.77, is

notably greater than for HRMS, 0.62. Translating these optimized thresholds to histograms

of Figure 21b illustrates the efficacy of each classifier in separating classes. (See Fig. 23b)

Comparison of the two types of errors: False SURV (dead patients incorrectly classified

as alive) and False DEAD (alive patients incorrectly classified as dead) reveals that the

proportion of False DEAD is much greater than the proportion of False SURV for both

classifiers. This is due to a combination of the imbalance of the data (about 92% alive

patients) and relatively poor performance of the classifiers. However, the False DEAD is

visibly larger for HMRS compared to RF due to the huge overlap between distributions of

HMRS scores for DEAD and SURV classes.

The stark differences revealed by the histograms in Fig. 23b are not discernible from
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(a) The ROC for HMRS and RF- The dark blue points indicate the optimal cutoff thresholds,
detailed in the inset tables.

HMRS Random Forest (RF) 

False Dead = Orange bars on the right side of the dashed line (threshold) highlighted in gray background  

False SURV = Black bars on the left side of the dashed line (threshold) highlighted in orange background 

DeadSURVDeadSURV

(b) The distributions of false predictions for HMRS and RF classifiers- These histograms are the
same histograms in Fig. 21b. The dashed lines are corresponding to optimized cutoff thresholds
chosen based on ROC curves in Fig 23a. The two types of errors, False Dead and False SURV
associated with this threshold are reflected in black and orange regions with red outline, respectively.

Figure 23: Evaluation of HMRS and RF classifiers.
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comparison of the corresponding ROC curves. For example, a small change of the threshold

in the ROC curves in Fig. 23a corresponds to a small change in both Sensitivity and FPR.

However, Fig. 23b reveals that the shifting the cutoff from the optimal point (left or right)

will result in a much greater change in False DEAD vs False SURV. This is because the

denominator of FPR in the ROC curve plots, the total number of SURV which is a huge

number, thus attenuating the effect of changes in the numerator, False DEAD. In terms of

the confusion matrix, this can be restated as number of False DEAD is overwhelmed by

the much larger number of True SURV – considering that the total observed SURV is the

sum of True SURV and False DEAD. (See Fig. 21a plot C). Consequently, the ROC curves

in Fig. 23a does not reveal a dramatic difference in performance between RF and HMRS,

Fig. 23b clearly shows that RF suffers much less from error of False DEAD than HMRS.

In addition, it can be seen that choosing the threshold only based on the ROC curve may

cause unintentional effects in the perception of model with respect to the minority class.

In conclusion, when the ROC is dominated by the majority class (the large proportion of

patients that survive), it poorly reflects the performance of the model with respect to the

minority class (dead patients), and thus may be a deceptively optimistic evaluation tool in

the case of imbalanced data. Therefore, there is clearly a need for a supplemental evaluation

tool that is sensitive to skewness in the data and emphasizes the performance on the minority

class. One such evaluation tool is the Precision-Recall Curve (PRC) [100,101,161].

5.1.3.2 Solution: PRC for imbalanced LVAD mortality

Fig. 24 shows the PRC curves for the two classifiers of HMRS and RF for prediction of

90-day mortality after LVAD implant. The color legends indicate the same thresholds values

as presented in the ROC curves above (Fig. 23a). Unlike the ROC curve, the distribution of

colors is more uniform, visible by the broader spectrum of colors in in the curves, especially

the blue colors toward the upper range, which are virtually absent in the corresponding ROC

curves in Fig. 23a. This is important because the blue portion of the curve relates to the

upper bound of threshold values (high predicted probabilities of being DEAD) in which the

classifiers have the greatest precision, i.e. when more of the predicted DEAD by the classifier
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are True DEAD. This reveals a striking difference between HMRS and RF inasmuch as the

blue region (high precision) of HMRS is limited within a very narrow band of recall, and

virtually vertical. The PRC reveals that the precision drops precipitously to approximately

10% (close to the random classifier: blue dotted line) as recall (sensitivity) increases from 0%

to about 10%. This corresponds to the severe overlap between the classes in the histogram of

HMRS (Fig. 21b), even for the greatest scores, which leads to the huge proportion of False

DEAD (alive patients incorrectly identified as DEAD). This is contrasted with the PRC of

RF which decreases more gradually in precision with increasing recall. Also, it is noted that

the PRC of RF remains at nearly 1.0 over a wider range of threshold, i.e. between 0.44 (44%)

and 0.51 (51%) corresponding to a range of recall (sensitivity) from 0% to 17%. Overall,

from the perspective of precision-recall, RF outperforms HMRS with AUC-PRC of 0.43 vs.

0.16.

The dark blue dots in Fig. 24 correspond to optimized thresholds chosen based on

the ROC curves in Fig. 23a. It is readily seen that the precision of both classifiers at

these thresholds is very low, although RF has a better precision, 38%, for achieving the

sensitivity of 66% than HMRS with precision less than 10% for sensitivity of 60%. Using

these thresholds, the HMRS classifier will correctly identify only 38 out of 64 dead patients

(60% sensitivity) in the 800-patient test data set, yet will incorrectly label 308 patients (90%

of the 342 patients labeled as DEAD) that are actually alive!

On the other hand, if we assert that precision and recall are equally important, the

corresponding optimal cutoff would be indicated by the red dots on PRC curves in Fig.

24 for which both precision and recall of HMRS and RF is 15% and approximately 38%,

respectively. At these optimized points, the harmonic mean of precision and recall (F1-Score)

equals to both precision and recall. These optimized points are not necessarily the best way

of choosing the threshold since it results in very low levels of recall; however, it illustrates

that the choice of threshold highly depends on the comparative “importance” of sensitivity

and precision; hence acceptance/consequence of errors (False DEAD vs False SURV).
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Figure 24: The PRC for HMRS and RF classifiers- The dark blue point on the PRC curves

are corresponding to optimized thresholds chosen based on the ROC curves in Fig 23a The

red boxes are the corresponding specifications of red dot points on PRC curves presenting

the optimized cutoff thresholds of PRC curves.

91



5.1.4 Discussion

The clinical utility of a risk score or classifier for mortality following LVAD implantation

depends greatly on the degree of separability between predicted probabilities of the two

classes: DEAD vs SURV. (See Fig. 21a). Overlap between the distributions of classes

creates an intermediate range of probabilities that is associated to both classes. This results

in two types of errors: False DEAD (alive patients who are incorrectly labeled as DEAD)

and False SURV (dead patients who are incorrectly labeled as SURV). Therefore, the choice

of a threshold is tantamount to choosing between these two types of error. This dilemma

is accentuated when the data are highly imbalanced, as is the case of 90-day mortality

post-LVAD. (See Fig. 21b). The overwhelmingly large size of the majority class, SURV

class, amplifies the False DEAD error much more than False SURV. Thus, when choosing a

threshold and evaluating the performance of these classifiers, it is very important to focus

on the minority class (both True DEAD and False DEAD).

This study illustrated that the ROC, a well-known evaluation tool used for most LVAD

risk scores, in the case of imbalanced data, leads to an overly-optimistic perception of the

performance of the classifier. This is due to the intuitive but misleading interpretation

of specificity: where the large number of False DEAD error is overwhelmed by the huge

number of All observed SURV in its denominator. Neglecting the full magnitude of False

DEAD generated by a classifier or risk model, i.e precision, could give the clinician false

confidence in the prediction of DEAD by the classifier. Unfortunately, most of published

pre-LVAD risk scores and classifiers have not reported their precision. Therefore, these scores

should be used with extreme caution.

The Precision Recall Curve (PRC) was shown here to be a useful tool to reveal the

performance of a classifier for minority class. The PRC plots the proportion of True DEAD

to both errors: False DEAD and False SURV. This is in contradistinction with the ROC

which has an equal emphasis on both minority and majority classes. PRC is not affected by

the overwhelming number of True SURV (majority class), and thus it does not generate a

misleadingly optimistic perception performance, as does the ROC. The utility of the PRC

was illustrated with two classifiers for 90-day mortality following LVAD implantation that

92



both suffer from imbalanced data: the well-known HMRS, and a de-novo RF classifier derived

from INTERMACS, much larger data.

The preceding is not an indictment of ROC, but a revelation that ROC fails to paint a

complete picture of a classifiers’ performance. Therefore, ROC provides a view of classifiers’

performance with both minority and majority classes while PRC provides a view of classifiers’

performance on minority class which becomes more important and informative when dealing

with imbalanced data.

5.1.4.1 Clinical Perspectives

Using any classifier for mortality following LVAD implantation inevitably involves choos-

ing a threshold. From a clinical perspective this translates to a conscious decision between

risk of inserting an LVAD in a patient who will die due to misplaced faith in the classifier

(False SURV); versus denying a patient from a potentially life-saving LVAD because of a false

presumption of death (False DEAD) by the classifier. This is an ethical dilemma. If the

clinician chooses a conservative threshold, so as to avoid False SURV, he/she will mitigate

the risk of accelerating a patient’s death by inserting and LVAD, however he/she is at a loss

for a classifier to evaluate the alternatives. This situation begs for a more holistic approach

to stratification of patients with severe heart failure, to provide comparison, or ranking of

alternatives, for example the use of a temporary support device as a bridge to VAD. Because

VADs are one of the most expensive therapies in medicine, overly optimistic projections of

survival could adversely affect cost (per quality adjusted life years, QALY), and potentially

return to haunt the field in the future if costs are much higher than had been predicted.

Another consideration that highly affects the tradeoff between False SURV (False Neg-

ative) and False DEAD (False Positive) is the intended role of classifier in the clinical as-

sessment of the pre-LVAD patients. For example, the initial screening test for HIV has a

high sensitivity because of the importance of avoiding False Negative. But among those

with positive initial screening test, there exists patients who do not actually have HIV (False

Positive). Thus, patients with positive initial tests are reassessed with a much more precise

diagnostic test with lower False Positive rate to confirm the HIV diagnosis. Therefore, as a
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screening tool, sensitivity is most important (avoiding False Negative); but as a diagnostic

tool, precision is more important, to avoid False Positives. By analogy to the pre-LVAD clas-

sifier, the choice of threshold might be situation-specific: more conservative as a screening

tool, and less so as a definitive diagnostic tool. In conclusion, there is a need for future stud-

ies to comprehensively investigate the role of pre-LVAD risk assessment in clinical medical

decisions by considering all-inclusive aspects of clinical settings of pre-LVAD.

5.1.4.2 Limitations

The problem of classifier development with imbalanced data is well-known area of re-

search in many disciplines, including medicine [162–165], and was most recently recognized

by Ishwaran in the context of cardiovascular surgery [166–168]. Accordingly, there exists

a variety of approaches to mitigate the effects of imbalance such as resampling methods,

assigning weights to minority samples, one-class classifier, etc. [95–97, 169]. In addition,

there have been studies investigating optimization of threshold choice for imbalance data

such as the quantile-classifier proposed by Ishwaran et al. to optimize the G-mean [170].

This study did not attempt to employ any of these methods; however, it would be benefi-

cial in future studies to explore various strategies to achieve the best performance of LVAD

classifiers. We also acknowledge that there exist other evaluation metrics, such as G-mean,

PRC, and relative PRC, recently recommended by Ishwaran [166] as well as cost curve [169]

and concentrated ROC [171], which were not explored in this study, but worthy of future

consideration.

5.1.5 Conclusion

ROC has become an entrenched evaluation tool for assessing the performance of classifiers

and risk scores in the medical arena. However, when the data is highly imbalanced, ROC

can provide a misleading optimistic view of the performance of the classifiers. In such

circumstances, it is imperative to employ evaluation metric such as precision-recall curve

(PRC) to precisely evaluate the prediction of the minority class. This study showed this

point by developing a predictive model for 90-day mortality in patients with advanced heart
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failure after receiving an LVAD implant trained on the publicly accessible INTERMACS

data registry. While the model exhibited a good value of 0.77 AUC-ROC, the AUC-PRC

was 0.43, suggesting this highly sensitive model could be a useful screening tool for prediction

of mortality at 90-day, but not a diagnostic tool because of its low precision.

5.2 Pre-LVAD Right Heart Failure Risk Model

5.2.1 Objective

The aim of this study is to explore the possibility of improving the discrimination power

and generalizability of an RHF model. This will be achieved by: (1) deriving a model from

big data using the publicly accessible INTERMACS national registry, which includes over

20,000 patients from more than 180 hospitals; (2) avoiding overfitting by splitting the data

into training and validation datasets, utilizing repeated cross-validation during the training

process, and employing a boosting-based method called XGBoost to reduce the chances of

overfitting and model variance. Additionally, this paper employs more appropriate evaluation

metrics that account for the data imbalance and are more sensitive to false positives.

5.2.2 Methods

5.2.2.1 Study population

A cohort of 11,967 patients was derived from INTERMACS data registry (mean age

57; 21% female and 79% male) with primary durable continuous flow-LVAD between 2008

to 2016. The database documents 245 variables including demographic details, history of

medical conditions, prescription drugs, lab results, quality of life questionnaire, etc. In

addition, Body Mass Index (BMI) was computed and included as an input. For patients

with multiple device implants, the RHF after the first LVAD explant were excluded.

The incidence of RHF was only 9% at 1 year (1,079 patients). Thus, these data were

found to be highly imbalanced.
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5.2.2.2 Training predictive model

Data were randomly divided into a training (80%) and a testing (20%) sets. Then, a

decision tree-based method called XGboost (Extreme Gradient Boosting) model was de-

rived and tuned from training data using 5 repeated 10-fold cross-validations, with the data

split differently for each iteration. Boosting methods are machine learning techniques that

improve performance by iteratively correcting wrong predictions [155].

During construction of boosted decision trees an importance score is computed by the

magnitude of improvement in the performance measure by the split point of the feature in

a tree weighted by the number of patients in each node [172]. The overall importance score

is taken as the average of all scores across all the decision trees.

5.2.2.3 Evaluation metric

The trained model was evaluated on a test data set from two perspectives: the discrimi-

nation power and calibration. The former measures how often the probability of having RHF

for a randomly chosen patient with RHF is greater than that of the randomly chosen a pa-

tient who are free from RHF. The latter measures the degree to which a predicted probability

of having RHF agrees with the actual probability of RHF. The ROC and Precision-Recall

Curve (PRC) were reported to evaluate the discrimination power of the model by considering

the imbalance issue in the dataset. (Please refer to sections of 5.1.2.3 and 5.1.2.4 for details

of ROC and PRC). Specific details for calibration plot are provided below.

The calibration plot illustrates the agreement between the predicted probability and true

probability of observations [173]. First, the predicted probabilities of having RHF generated

by the model are discretized to bins. Then, for each bin, the mean or median of the predicted

value is plotted against the true fraction of patients with RHF. If the model is well calibrated

the points will be located along a diagonal line. If the points are below or above the diagonal

line, it means the predicted probabilities generated by the model are too large or too small,

respectively.
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5.2.3 Results

5.2.3.1 Discrimination power

Fig 25 plots the ROC and PRC for the performance of trained XGBoost on test dataset

consisting of 2,392 patients (215 patients with RHF, 2,177 patients free from RHF-FreeRHF).

The color-bars in both plots in Fig 25 show the range of predicted probabilities of RHF. The

ROC in Fig. 25a indicates good performance of the RHF classifier with Area Under Curve

(AUC) of 0.8. This is in contrast with the PRC in Fig 25b with AUC of 0.24 that shows

the precision of the classifier drops rapidly from 1 (100%) to 0.4 (40%) as recall (sensitivity)

increases to 0.05 (5%).

The gray dot in Fig 25a indicates the “optimized” threshold value of 0.13 for predicted

probability of RHF that corresponds to the maximum value of F-score (2 × [(Precision ×

Recall)/(Precision + Recall)]). The F-score emphasizes the performance of the XGBoost

on the minority class (patients with RHF). At this “optimized” threshold, the sensitivity

and specificity are 68% and 73%, respectively. This means that XGBoost correctly classified

68% of patients with RHF (147 out of 215 patients) and 73% of patients that were free

of RHF (1,597 out of 2,177 patients) in the test dataset. This is also illustrated in the

confusion matrix in Fig 26 which is the table of true and false predictions for all the 2,392

patients in the test dataset. In contrast, the corresponding precision of the classifier for

the same sensitivity (68%) is only 20%. (See gray point in Fig 25b). This means that only

20% of predicted RHF by this classifier is correct (147 True RHF in Fig 26). Thus, the

preponderance of patients predicted to experience RHF are incorrectly classified (False RHF

in Fig 26); 580 out of 727(580+147). The substantial predicted False RHF is not captured

by ROC because False RHF in calculation of specificity is overwhelmed by the large number

of observed patients in the denominator who are free from RHF.

5.2.3.2 Calibration plot

A calibration plot for XGBoost that relates observed risk vs predicted risk is provided

in Fig 27. The plot indicates that the model is well-calibrated as the majority of the points
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Figure 25: Discrimination power of XGBoost model in prediction of 1-year RHF for patients

in test dataset evaluated by ROC and PRC.
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Figure 26: Confusion matrix corresponding to optimal threshold based on F-score (gray

points in ROC and PRC in Fig 25.) The green elements are true predictions and the red

elements are false prediction. The sum of the elements in confusion matrices is the total

number of 2,392 patients in the test dataset. The percent of each element from the total

number of patients is presented in parentheses.
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Figure 27: Calibration plot for predicted probabilities of RHF by XGBoost model for test

dataset.

are closely aligned with the diagonal line except the two far-right points corresponding to

predicted probabilities of having RHF more than ≥ 50% for only 6 patients. The furthest-

right point corresponding to only one patient that fall into the range of predicted probabilities

of (0.64%, 0.73%] is above the diagonal indicating that the observed risk is greater than the

predicted risks i.e. 100% vs 68%. On the other hand, the second far-right point that includes

5 patients with predicted predicted probabilities of (46%, 0.55%] are below the diagonal

indicating that the observed risks are less than the predicted risks i.e. 12.5% vs 50%.

5.2.3.3 Feature importance

The relative importance of the top twenty pre-LVAD features are presented in Fig 28.

These values range from 0-100 reflecting the relative influence of a variable in the XGBoost

model. The top seven features with greatest relative importance are mostly related to sec-

ondary diagnoses. These findings are supported by previous studies such as Ochiai et al.

that identified non-ischemic etiology (also referred to as dilated) as a predictor of RHF after

LVAD [174]. Wang et al. considered valvular heart disease as a major concern at the time

of surgery because of development of worsening RV failure after LVAD implantation [175]
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and Celik et al. noted that optimal coronary artery flow may reduce postoperative adverse

events [176].

To further investigate the two top features, Fig. 29 illustrates the proportions of “Sec-

ondary Diagnoses: None” and “Secondary Diagnoses: Coronary Artery Disease” associated

with RHF and freedom of RHF. Both the secondary diagnosis of coronary artery disease

and the absence of secondary diagnosis are more common among patients who are free from

RHF; 29% vs 2% and 10% vs 0.3%, respectively. The results of a chi-squared test of indepen-

dence is indicated in the right plots in Fig. 29. The p-values of < 2.2 e−20 indicate both of

secondary diagnoses are significantly negatively associated with RHF (dark and medium-red

circles in their residual Pearson’s matrices in Fig 29). This indicates that both absence of

a secondary diagnosis and secondary diagnoses of coronary artery disease is associated with

freedom RHF.

5.2.4 Discussion

The main goal of this study was to develop a predictive model of RHF having improved

discrimination power compared with existing models, while mitigating the adverse effect

of overfitting – a deficit of existing models [56]. Specifically, this study considered four

strategies: (1) splitting the data into training and test groups, (2) using repeated cross-

validation for training the model, (3) employing big data that includes approximately 12,000

patients, (4) applying XGBoost which has been effectively used in the healthcare field for

disease diagnosis and risk prediction. [177, 178]. In this study, a well-calibrated XGBoost

model achieved a high AUC-ROC (C statistics) of 0.80 compared to AUC of 0.53-0.65 based

on a recent external validation study for several models reported by Frankfurter et al. [56].

The test dataset in this study is effectively an external test dataset inasmuch as the 2,393

patients were randomly chosen from a large national registry from > 180 hospitals. This

assures sufficient diversity in the profiles of patients and hospitals to account for potential

confounding factors such as post-operative management.

The reported model in this study trained based on 245 variables – based on feature

selection methods – gave the best performance but may not be practical for clinical usage.
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Alanine Aminotransferase/ALT (u/L)
Aspartate Aminotransferase/AST (u/L)

Patient Profile at Time of Implant: Progressive Decline
Total Bilirubin (mg/dL)

Height (cm)
Sensitivity C−Reactive Protein Test: Done

Medication Pre−Implant: Angiotensin Receptor Blocker Drug: Unknown
Weight (kg)

Platelets (x10/uL)
INR

BUN (mg/dL)
ECG Rhythm: Other (Not Common Rhythms)

Creatinine (mg/dL)
Secondary Diagnosis: Dilated Myocardial: Idiopathic

RVEF: Severe
Secondary Diagnosis: Unknown

Secondary Diagnosis: Dilated Myocardial: Ischemic
Secondary Diagnosis: Valvular Heart Disease

Secondary Diagnosis: Coronary Artery Disease
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Figure 28: Plot of the top twenty relative importance of features for prediction of RHF.

101



98%

71%

29%

P-value= 9.321123 e-86

(a) The associations between RHF and “Secondary Diagnoses: None”. Left figure:
stacked bar plot. Right figure: the Pearson residuals of Chi-square test showing the
positive or negative associations.

90%

10%

99.7%

P-value= 3.45878 e-27

(b) The associations between RHF and “Secondary Diagnoses: Coronary Artery Disease”.
Left figure: stacked bar plot. Right figure: the Pearson residuals of Chi-square test
showing the positive or negative associations.

Figure 29: The association between RHF and secondary diagnoses.
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Thus, a search was conducted for a model based on less features having similar performance.

Various combination of top variables ranked by feature selection methods were tested. The

resulting search achieved a model with 8 variables: second diagnosis, blood urea nitrogen

(BUN), hemoglobin, white blood cells count (WBC), platelet count, total bilirubin (BILI),

right ventricular ejection fraction (RVEF), and patient profile at time of implant. This model

achieved virtually equivalent AUC-ROC of 0.8 although with decreased precision (AUC-PRC

of 0.21 vs. 0.24) which was mostly affected by the greatest predicted probabilities of RHF

by the model.

To the best knowledge of the authors, this paper is the first to report performance of a

risk model for RHF in terms of precision to raise the alarm about the perils of imbalanced

data. This study shows that the ROC, a common evaluation metric, can portray an overly-

optimistic performance of a classifier or risk score when applied to imbalanced data – by

neglecting the magnitude of false positives (false RHF) generated by a model. In this study,

the PRC provided an evaluation metric that explicitly focuses on the minority class (RHF).

The PRC indicates that the precision of the model is not acceptable – in contradistinction

with its excellent sensitivity and specificity. The high sensitivity means that the RHF model

reported here can be used as an effective screening tool; thus, it will identify patients with

greatest risk of RHF. But the model cannot be relied upon as diagnostic tool as it suffers

from an overwhelming false positive rate (patients without RHF that are mistakenly labeled

by the model to be at risk of RHF).

Equally as important as choosing the proper evaluation metric when dealing with imbal-

ance datasets, it is advisable to employ techniques to compensate for the imbalance [95–97].

In the current study, the investigators applied several such techniques, including re-sampling

and weighting, but they were not effective in improving the outcome of the risk model. This

may imply the low discrimination power of the data itself – suggesting that a solitary pre-

implant time point may not be adequate for making precise predictions of the post-LVAD

events, such as RHF, due to complex nature of both surgery and post-operative management.

Another confounding factor that hinders development of any RHF risk model is the

heterogeneous definitions of RHF among the studies [56]. In this study, RHF is determined

by the diagnostic criteria in INTERMACS (2017 version), but these criteria are different
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among the clinical centers and also evolving over the time [56, 79, 179]. Another limitation

of this study is that the publicly available INTERMACS registry does not fully reflect the

most contemporary data and devices. Future studies would benefit greatly from access to

the most current registry data.

5.2.5 Conclusion

This study developed a predictive model for 1-year RHF in patients with advanced heart

failure after receiving an LVAD implant trained on the publicly accessible INTERMACS data

registry. To reduce the risk of overfitting, the model employed the XGBoost algorithm. The

model exhibited an AUC-ROC of 0.8 with a well-calibrated prediction of RHF. This study

evaluated the discrimination power of the RHF model from the perspective of precision.

These findings suggest that this highly sensitive model, based on data 48 hours prior to

LVAD implant could be a useful screening tool for prediction of RHF at 1-year, but not a

diagnostic tool because of its low precision.
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6.0 Post-LVAD Clustering

6.1 Clustering Without Considering Timeline of Adverse Events 1

6.1.1 Objective

The findings in Section 4.2.5, titled “In Search of Similarity in Adverse Events,” indicate

the diverse nature of “AE journeys” in LVAD patients. These findings highlight the variation

in AE types, combinations, and sequences, which contribute to a deeper understanding of

the complexities involved in AE management after LVAD implantation. Given the rarity

of identical AE patterns among patients, one possible strategy is to cluster patients into

subgroups that share similar trends and timelines of AEs. By grouping patients with com-

parable AE patterns, it is hypothesized that meaningful patterns and associations can be

extracted within each cluster. Therefore, the main objective of this study is to explore and

model sequential patterns of post-LVAD AEs and specifically differentiate distinct groups of

patients based on their sequences of AEs.

6.1.2 Methods

6.1.2.1 Framework

The overall approach for this study is motivated by the methodology introduced by

Zhang, et al. [180, 181] and has three main steps, as shown in Fig. 2. First, selected data

from INTERMACS were transferred into sequences of AEs for each patient through multiple

preprocessing tasks. Next, patients’ AE sequences were clustered into groups with similar

sequences using hierarchical clustering. Lastly, patterns of chains of transitions between AEs

for each group were extracted using Markov Modeling.

1The majority of this section is taken from our published work: Movahedi, Faezeh, et al. “Sequential
pattern mining of longitudinal adverse events after Left Ventricular Assist Device implant.” IEEE journal of
biomedical and health informatics 24.8 (2019): 2347-2358.
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Figure 30: General work-flow: 1. Data preprocessing: Forming patients’ sequences. 2.

Hierarchical clustering:cluster patients into groups of patients with high similarity between

patients’ sequences. 3. Pattern explorer: Extracting patterns of post-LVAD sequential AEs

in each group using Markov Molding [180].

6.1.2.2 Patient Selection

This study included 58,575 recorded AEs of 13,192 patients (median age of 50-59; 10,333

male vs. 2,859 female;) with advanced heart failure who received a continuous flow LVAD

between 2006 to 2015, extracted from INTERMACS. For patients with multiple device im-

plants, AEs after the first LVAD explant are excluded as patients with multiple subsequent

LVAD devices are clinically treated differently.

Death

Cardiac Arrhythmia

Bleeding

Device Malfunction

Explant

Explant: Transplant

Hemolysis

Hepatic Dysfunction

Hypertension

Infection

Neurological Dysfunction

Renal Dysfunction

Respiratory Failure

REXP

Right Heart Failure

Figure 31: Color code for 15 types of AEs and final outcomes

Final outcomes, such as death, explant, and transplant, were included as the last elements

in the sequences of AEs. For the subset of patients who received a right-ventricular assist
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device (RVAD), the explant of that device was named to “REXP”. For the visualization of

the results, each type of AE and final outcomes were color coded, as shown in Fig. 31.

6.1.2.3 Forming patients’ sequences

The sequence of AEs for each patient was identified and unified as a single record. A

sequence for jth patient (P j) can be presented as follow:

Pj : AE1 → AE2 → ..... → AEi (6.1)

Where:

AE1 : First adverse event

...

AEi : ith adverse event

As INTERMACS provided no information related to the order of concurrent AEs (neg-

ligible percent of AEs), they were alphabetically ordered in patients’ sequences.

A consequence of the large number of event types (15) is the possibility of a large number

of sparse patterns. For example, if we only considered sequences of length = 3, there would

be 2,940 (14 × 14 × 15; “Death” could be considered for only the last element) possible

combinations. To overcome this issue, hierarchical clustering was used to divide the space of

patients’ sequences into more dense sub-spaces that represent patients with relatively similar

sequences which would therefore be more amenable to pattern mining.

6.1.2.4 Hierarchical clustering

The goal of clustering is to identify clinically meaningful groups of patients with relatively

similar sequences of post-LVAD AEs.

Defining the measure of dissimilarity:

A distance matrix, d , comprised of distances between each pair of patient sequences was

defined as:

d(Pn, Pm) = |Pn|+ |Pm| − 2LCS(Pn, Pm) (6.2)
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where, |Pn| and |Pm| are the lengths of the sequences for patients of Pn and Pm, respectively;

LCS(Pn, Pm) is the Longest Common Subsequence between Pn and Pm, as formulated below:

LCS(Pn, Pm) = max{|l| : l ∈ SB(Pn, Pm)} (6.3)

Here, SB(Pn, Pm) is a set of all common subsequences between Pn and Pm and |l| is the

length of common subsequence. A subsequence is a secondary sequence derived from another

(primary) sequence by deleting some or no elements while maintaining the same order of the

remaining elements of the primary sequence. A common subsequence is a subsequence that is

common to both Pn and Pm. As an example, the only common subsequence between the P1

, P2, shown in Fig. 32, is the subsequences of (Bleeding)-(Infection). Thus, in this example,

the LCS is 2 and d(P1,P2) is 3 which means by 3 movements (deletions of respiratory failure

and death from P1’s sequence and insertion a bleeding AE to P1’s sequence) P1’s sequence

becomes similar to P2’s sequence.

Infection
Respiratory 

Failure
DeathBleeding

Bleeding Bleeding

𝐿𝐶𝑆(𝑃1,𝑃2) = 2 

𝑑(𝑃1,𝑃2) = 4+3-2×2= 3

𝑃1

𝑃2 Infection

Figure 32: An example of computing dissimilarity score between two patients’ sequences.

Defining linkage method for hierarchical clustering:

After forming dissimilarity matrix of AE sequences, they were clustered using bottom to

top hierarchical clustering with Ward linkage. Hierarchical clustering merges sequences with

lowest distance, d into a single group, and updates the distance matrix for the newly merged

group and remaining patients. This merging process repeats using Ward’s method in which

groups of patients with lowest post-merging in-group variance (sum of squares) are merged

until all patients are in one group. The Ward linkage distance between clusters is computed
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using Lance–Williams recurrence algorithm [182]. Briefly, considering two clusters of Ci and

Cj, the distance between new cluster Cij (= Ci ∪ Cj) and remaining clusters such as Ck is

formulated as follows [182]:

D(ij,k) = αiD(ik) + αjD(jk) + βD(ij) + γ|D(ik) −D(jk)| (6.4)

Here, D(ij,k) is the distance between new cluster Cij and cluster Ck. Lance–Williams coeffi-

cients α, β, and γ are different for various linkage methods and are defined for Ward linkage

as follows:

αz =
|z|+ |k|

|i|+ |j|+ |k|
, z = i, j

β = − |k|
|i|+ |j|+ |k|

γ = 0

(6.5)

Here, |.| indicates absolute value, and i, j, and k are numbers of patients in each cluster.

Define criteria for choosing a number of clusters:

The clustering algorithm was implemented to maximize similarity between sequences

within a group (internal validation), and minimize similarity between groups (external vali-

dation).

Internal validation (the within-group similarity) was performed by extracting the most

common subsequences and their support values. This is the proportion of sequences in a

group that contain that specific subsequence and ranges from 0 to 1 (0% to 100%). The

most common subsequences were extracted from AE sequences by applying a prefix-tree-

based search algorithm using “TraMineR” package from R [183, 184]. It should be noted

that this algorithm computes the support value for a given subsequence by including all

longer sequences containing that subsequence. For instance, patients with the subsequence

of (Infection)-(Bleeding) are counted among the patients with the subsequence of (Infection).

External validation (the between-groups dissimilarity) was performed by identifying the

subsequences that best differentiate two groups of patients’ sequences using the Pearson

Chi-square test (p-value of ≤ 0.01).

Step-wise evaluation of clustering: The clustering evaluation for choosing the number
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of groups (n) started with evaluating the two-cluster solution (n= 2) and evaluation was

continued for bigger numbers of groups until both internal and external criteria were satisfied

for all the groups. At each step of clustering evaluation, n was increased by 1; only one group

was divided into two new groups (G1 & G2) and their qualities (high internal similarity and

low external similarity) were evaluated. First, external validation was checked between the

G1 and G2. If the external criteria were satisfied, internal validations will be checked for

each of the G1 and G2. If any of G1 or G2 satisfied the internal validation, it was considered

as a qualified group, otherwise it was considered as an unqualified group that needed to be

split into sub-groups with more similar sequences in the later steps of clustering evaluation

(bigger values of n).

Interactive visualization evaluation: To help visualize the composition of AEs within

each group (or sub-group), a histogram was constructed using the same color coding from

Fig. 31. in which the proportions of each category of AE was plotted for each position in

the sequence. Fig. 33 provides the histogram for the aggregate of all the 13,192 sequences

of AEs over their chronological positions in the sequences. The first column of the graph,

AE1, presents the proportions of various types of AE that patients experienced as their first

AEs (the first element of the sequences of AEs), the second column for the second AEs, and

so forth, through the thirty sixth AE. The uniformity of the distribution in the first set of

columns of the histogram (e.g. AE1 through AE20) is contrasted with the heterogeneity of the

subsequent columns. This reflects the increasing diversity of AE’s as there is a decreasing

number of patients with longer sequences. For instance, there is only one patient with a

sequence of 36 AEs - the last AE being death (yellow). This type of visualization is helpful

to get a general quick view of the distribution of AEs in a cluster of patients.

The final clusters were evaluated by our clinical experts to determine the reasonableness

of the clusters.

6.1.2.5 Markov Chain Models of AEs

Following clinical confirmation of the results of hierarchical clustering, patterns of AEs for

each group (cluster) were analyzed using Markov modeling (MM). This has been shown to be
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𝑨𝑬𝟏 𝑨𝑬𝟑𝟔

0%

100%

Figure 33: The proportions of various types of AE in all the 13,192 sequences of AEs in this

study for temporally ordered AEs of patients sequences (see Fig. 31. for color coding).

a useful tool to model repetitive events, where the timing and the order of events are impor-

tant [185]. For instance, the transition of bleeding to infection can be considered different if

bleeding occurred as the 1st AE followed immediately by infection, (Bleeding1)-(Infection2),

versus bleeding occurred as the 2nd AE, and then infection occurred, (Bleeding2)-(Infection3).

Accordingly, the transitions between sequential AEs were assessed for likelihood of transi-

tions as a function of the chronological position in the sequence of AEs. As this is the first

attempt to model the sequential AEs after LVAD implant, it was preferred to start with a

simple solid model such as the first-order Markov chain. MM was defined for a sequence of

AE1, AE2, AE3,... for discrete points of time: 1, ..., n was defined as follows:

P (AEn+1 = ae | AE1 = ae1, AE2 = ae2, ...., AEn = aen)

=

P (AEn+1 = ae | AEn = aen)

(6.6)

where ae was an AE from 15 different types of AE that could occur in various orders in a

sequence of AEs. The above formula assumes that the probability of transitioning to the

next state, AEt+1, depends only on the present state, AEt. Another assumption of MM is

homogeneity, which assumes all patients in the same state have the same risk of transition.
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MM considers each types of AE as unique Markov state, and transitions between states

as events. As an example, a sequence of (Bleeding1)-(Infection2)-(Death3) was represented

as (Bleeding1 → Infection2) ⇒ (Infection2 → Death3) that includes 2 events presenting 2

transitions between 3 states/AEs in the sequence. It also shows the transitivity relation

between 2 events as the target state in the first event, Infection2, is the source state in the

second event. A transition matrix was formed by computing transition probabilities between

each pair of states/AEs from all the sequences of AEs in each group. Then, chains of events

were extracted from the transition matrix by connecting events that have transitivity rela-

tions. Finally, thresholding of the extracted chains was performed, based on the distributions

of transition probabilities and frequency of occurrence to eliminate the “noise” of numerous

infrequent or rare transitions. The thresholds were chosen subjectively as 0.1 for transition

probability and between 30 to 50 for frequency of occurrences, respectively, to achieve a

compromise between reducing noise versus over-simplifying the resulting collection of MMs.

6.1.3 Results

This study was performed with data from INTERMACS for 13,192 patients with ad-

vanced heart failure who underwent continuous flow LVAD implant between 2006 and 2015.

A total number of 58,575 AEs, including 15 various types of AE, were included in this study.

Table. 6 summarizes the 15 types AEs and final outcomes, and indicates that “Bleeding”,

“Infection”, and “Cardiac Arrhythmia” are the most common AEs.

The time of recorded AEs ranged between 0 (at the time of implant) and 87 months

(7.25 years) after LVAD implant with mean of 9.95 months. A great proportion of AEs (81%

of total AEs) occurred within the first 18 months after LVAD with the peak of AEs (27%)

during the first month.

6.1.3.1 Sequences of AEs

The length of AE sequences ranged from 1 to 36, however 94% of the sequences were

less than or equal to 10. The distribution of lengths ≤15 are provided in Fig. 34. (Lengths

16-32 were very rare, <1%, and therefore not shown).
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Table 6: Frequency of various types of events, including AEs and Final outcomes, and their

percentages of the total number of events. The cells in the table that contains the final

outcomes including “Death”, “Explant”, and “Explant: Transplant” are highlighted in light

orange color.

Event Frequency Percent

Bleeding 12,877 22.0

Cardiac Arrhythmia 6,361 10.9

Device Malfunction 3,726 6.3

Hemolysis 797 1.4

Hepatic Dysfunction 850 1.4

Hypertension 701 1.2

Infection 13,399 22.9

Neurological Dysfunction 3,873 6.6

Renal Dysfunction 2,248 3.8

Respiratory Failure 3,614 6.2

REXP (RVAD explant) 92 0.1

Right Heart Failure 747 1.3

Death 3,675 6.3

Explant 1,819 3.1

Explant: Transplant 3,796 6.5

Total recorded events 58,575 100.0
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Figure 34: length of AE sequences from 1 to 15. (Length of 16-32, not shown, were rare <

1%.

6.1.3.2 Hierarchical Clustering

Fig. 35 shows the distribution of dissimilarity scores between AE sequences, which is

left-skewed. The min/max of scores were 0/53 with the mean of 10 and the median of 8.

The numbers of dissimilarity scores less than 2 and greater than 22 were negligible (≈0%).

Figure 35: The dissimilarity scores distribution of all the sequences of AEs

The result of hierarchical clustering is presented as a dendrogram, shown in Fig. 36a,

which depicts the taxonomic relationship between clusters formed at each level of grouping.

The bottom of the dendrogram represents all the patients’ dissimilarity scores, which is a

dense dark area because of the large number of patients. Moving from bottom to top of the

dendrogram, one cluster is formed at each level of hierarchical clustering by grouping two

sub-clusters until, at the top of the dendrogram, all patients are in a single group. The y
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G1 G2

(a) Cutting the dendrogram into the two clus-
ters.

G1 G2

(b) A regression tree plotting distributions of
various types of AE over temporally ordered
AEs in patients’ sequences.
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(c) Internal validation: support numbers for
most common subsequences in two new-formed
clusters.

(d) External validation: the first four
discriminative subsequences between
G1 and G2. +/- determines the sign
of Pearson’s residual.

Figure 36: First step of step-wise cluster evaluation: evaluation of the two-cluster solution
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axis, “Height”, represents the dissimilarity between clusters (groups of patients) at that level

of the tree, which is measured using Ward linkage.

The eventual partitioning of the dendrogram was based on the three criteria: the internal

validation (within-group similarity), external validation (between-groups dissimilarity), and

clinical interpretation. This was performed iteratively by “cutting” the dendrogram horizon-

tally. An example is shown in Fig. 36a in which a horizontal cut results in two groups (G1

and G2). The first group includes 862 patients (7% of total patients), and the second group

that includes 12,330 patients (93%). Their corresponding histograms (similar to Fig. 33) are

provided in Fig. 36b, in which the proportions of various types of AE are temporally ordered.

Visual inspection of the histogram corresponding to G1 reveals an obvious dominance of the

Bleeding AE (red color). This also implies a degree of similarity of patients in this group.

By contrast, the histogram corresponding to G2 does not present any single dominant AE.

This is understandable since this group is comprised of a much larger proportion of the total

number of patients (93%). Thus, the patients in the second group are not similar and require

further stratification.

Fig. 36c represents the support values of the five most common subsequences in these

two groups. In the first group (G1), the unary sequence (Bleeding) and the binary sequence

(Bleeding)-(Bleeding) are the most common, both with support value of 1, indicating that

100% of patients in this group had a minimum of two bleeding AEs in their sequences.

The next most common sequences were found to be (Bleeding)-(Bleeding)-(Bleeding) and

(Bleeding)-(Bleeding)-(Bleeding)-(Bleeding), with support values of 0.98 and 0.73. It was

concluded that the sequences in the first group all shared common subsequences, indicating

high within-group similarity. In contrast, the maximum support value for the second group

(G2) was approximately 50% corresponding to the (Infection) subsequence. This indicated

low similarity within this group, and hence does not pass the internal validation.

As a final test, Fig. 36d shows the external validation in which subsequences which

best discriminate sequences of the two groups via Pearson Chi-square test. The table shows

the first four most discriminative subsequences, in which the plus (+) and minus (-) sign

indicates that the observed frequencies of the subsequences were higher (+) or lower (-

) than equally distributed frequencies. Here, p-values below 0.05 were taken to indicate
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discrimination between groups. The subsequence of (Bleeding)-(Bleeding)-(Bleeding) was

the most discriminating subsequence with p-value of 0.01 and support percentage for G1

greater than 98%. All of the remaining discriminative subsequences consisted of at least two

bleeding AEs, emphasizing that multiple bleeding AEs was responsible for differentiating G1

from G2. Accordingly, it was concluded that the groupings were externally validated.

In summary, the initial two-cluster solution passed the external validation, but only G1

passed the internal validation. However, the second group which includes the remaining

93% of patients required further subdivision. This was accomplished in a similar manner,

by bisecting the dendrogram at a lower level, effectively separating the second group into

two sub-groups of 6,168 and 6,162 patients. This was followed by the same process to

evaluate the external and internal validation. This procedure was repeated until all the

resulting groups passed validation, resulting in a final number of seven groups (summarized

in Table. 7). For convenience, each of the seven groups was given a mnemonic name based

on visual inspection of the histogram including: GRP1: “Recurrent bleeding”, GRP2: “

Trajectory of device malfunction & explant”, GRP3: “ Infection”, GRP4: “Trajectories to

transplant”, GRP5: “ Cardiac arrhythmia”, GRP6: “Trajectory of neurological dysfunction

& death”, and GRP7: “ Trajectory of respiratory failure & renal dysfunction & death”. For

example, this histogram of GRP1 reveals an obvious dominance of the Bleeding AE (red

color), and was therefore given the name “Recurrent Bleeding.” In a similar fashion, G2

revealed a dominance device malfunction (forest green) and explant (lime green.) Since the

two are always related sequentially, this group was named “Trajectory of device malfunction

& explant.”

Fig. 37 demonstrates clustering results through a regression tree. There is histogram

associated with each of the groups; the ordinate of which reflecting the proportion of each

color-coded AE type (from 0% to 100%) and abscissa reflecting the location in the respective

sequences. Since each group has a unique maximum length, this is reflected in the varied

width of these plots. Each of these groups were assigned a descriptive title that reflected the

dominant AE or AEs therein. For instance, the dominant colors in the GRP2 plot are yellow

green (representing device malfunction) and spurious green (representing Explant outcome).

Sequence analysis for GRP2, similar to sequences analysis for GRP1 in Fig. 36c& 36d,
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reveals that 1,097 out of 1,193 patients who experienced device malfunction eventually had

the device explanted, indicating the temporal pattern (subsequence) of (Device Malfunction)-

(Explant). The sequence analysis was performed for each of the seven groups.

Table 7 provides statistics of each patient’s group. GRP3 and GRP4 had the highest

number of patients and AEs by having 26% and 25% of total number of patients, respectively,

and 27% and 17% of total recorded AEs, respectively, in this study. On the other hand, GRP1

had the lowest number of patients, 7% of the total number of patient (862 patients), while

they had 14% of total AEs. In addition, patients in GRP1 had the greatest number of AEs

with average number of 9.73 AEs, and minimum and maximum numbers of 3 and 36 AEs.

The average numbers of AEs in other groups were ≤5 and minimum numbers of AEs were

1. Columns of 6 and 7 of Table. 7 shows information related to the time of AEs occurrences

measured by the months after the LVAD implants. The distributions of post-LVAD time

(month) of AEs occurrences were skewed to the right in all the groups as the means were

greater than the medians. The average time of AEs occurrences were less than 13 months

in all the groups and the median time were less than 7 months. AEs of GRP7 occurred at

the earliest post-LVAD time by average of 6.06 months after LVAD and median of 1 month

after LVAD. The last two columns of Table. 7 presents information related to the time span

of patients’ AEs (time of last AE - time of first AE) measured in month. The distributions

of time span of patients’ AEs were also skewed to right indicating higher number of patients

experienced AEs in a short time span. GRP1 had the longest time span of AEs by average

of 19.48 months between the first AE and last AE, while, the GRP6 and the GRP7 had the

shortest time span by average of approximately 6 months and median of 1 month.

6.1.3.3 Markov Chain Models of AEs

The following sections presents results of Markov modeling (MM) within each of the

groupings of patients presented above. The chains of transitions between AEs are presented

with the graphs in which the size of the circles represent the frequency of AEs at each position

in the chain and the thickness of the arrows reflecting the frequency of each AE that are

followed by the subsequent AE.
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Figure 37: Regression tree showing groups formed at each step of hierarchal clustering.

Groups are split to smaller groups until both internal and external criteria are satisfied.

Groups are numbered based on the steps in which they are formed.
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Table 7: Summary of statistical information related to groups resulted from hierarchical

clustering.

Number of AEs AEs post-LVAD time (month) † AEs time span (month) ††

Number of patients (*) Number of AEs (**) Min/Max Mean Median Mean Median Mean Median

GRP1:Recurrent bleeding

862 (≈7%) 8,388 (≈14%) 3/36 9.73 9 12.55 7 19.48 16

GRP2:Trajectory of device malfunction & explant

1,591 (≈12%) 7,049 (≈12%) 1/21 4.43 4 11.19 6 9.89 4

GRP3:Infection

3,438 (≈26%) 15,771 (≈27%) 1/31 4.59 3 11.31 6 10.25 4

GRP4:Trajectories to heart transplant

3,302 (≈25%) 10,093 (≈17%) 1/22 3.06 3 7.98 5 7.31 4

GRP5:Cardiac arrhythmia

1,275 (≈10%) 5,715 (≈10%) 1/22 4.48 3 8.63 3 9.48 4

GRP6:Neurological dysfunction & death

1,616 (≈12%) 5,911 (≈10%) 1/28 3.66 3 9.55 5 6.42 1

GRP7:Trajectory of respiratory failure & renal dysfunction & death

1,108 (≈8%) 5,648 (≈10%) 1/18 5.10 5 6.06 1 5.78 1

* % of the total 13,192 patients in this study
** % of the total 58,575 recorded AEs in this study

†AEs post-LVAD time is based on the month after LVAD implant (0 post-LVAD month means AE
occurred at the time of LVAD implant)

†† AEs time span = time of the last AE (post-LVAD month) - time of first AE (post-LVAD month)
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Bleeding Infection

Figure 38: MM of GRP1: Recurrent bleeding (n= 862 patients)

• GRP1: Recurrent bleeding

All the 862 patients in GRP1 had at least two bleeding AEs, and among them, 98%

(847 patients) had at least three bleeding AEs. The Markov chain for GRP1, shown

in Fig. 38 is characterized by a long sequence of recurrent bleeding AE’s (red circles),

with a limited amount of branching involving an intermediate infection AE (blue circles).

The frequencies of transitions depicted by the thickness of the arrows is seen to diminish

progressively along the chain over the time. For example, the transition frequency for the

1st through 5th bleeding exceeded 300; but beyond the 5th bleeding event, the frequency

reduced to the range 100-250. This analysis revealed that the probability of recurrent

bleeding exceeded 50% for all instances up to the 13th AE. The transitions probabilities

from infection AEs to bleeding AEs were 50% to 65%, while from bleeding AEs to infection

AEs were 14% to 18%.

• GRP2: Trajectory of device malfunction & explant

75% of 1,591 patients in GRP2 experienced a device malfunction and 94% had Explant as

their final outcome. The Markov chain for GRP2 (Fig. 39) was found to be much more

diverse than the chain for GRP1. Multiple paths involving device malfunction (dark

green) were found, although the terminal event was most commonly (>50%) device ex-

plant (light green). Only a small number of patients in this group (n=111, approximately

7%) experienced device explant as the initial, isolated AE (indicated by the small light

green node at the bottom of the 1st column of Fig. 39). The majority of patients for

which device explant was recorded was preceded by another AE, most commonly bleed-

ing and infection (probability between 20-30%). There were also about 18% and 19%

probabilities of recurrent device malfunction as the 2nd AEs or the 3th AEs, respectively.
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The frequency of transition from Infection as the 2nd AE to Explant was 21%, but with

no reported device malfunction AE (n=211, the spurious green circle in the 1st column).

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ

Bleeding

Infection

Cardiac Arrhythmia
Device Malfunction

Explant

Figure 39: MM of GRP2: Trajectory of device malfunction & explant (n= 1,591 patients)

• GRP3: Infection

The Markov chain for GRP3 (Fig. 40) is characterized by a long sequence of infection AEs

(blue circles), corresponding to a total number of 6,462 recorded infection AEs for 3,438

patients in GRP3, with a limited amount of branching involving an intermediate bleeding

AE (red circles). This analysis revealed that the probability of recurrent infection ranged

from 34% to 49%. The frequencies of recurrent infection AEs depicted by the thickness of

the arrows is seen to diminish progressively along the chain. For example, the transition

frequency for the 1st through 4th infection AEs ranged 300-420; but beyond the 4th

infection event, the frequency reduced to the range of 50-300. The transition probabilities

from bleeding to infection were 39% to 45%, while from infection to bleeding were less

than 18%. There were also 285 patients (8%) who received a heart transplant after

experiencing an infection AE (represented by the dark green circle in the 2nd column in

Fig. 40). There were also transitions from cardiac arrhythmia and respiratory failures as

the 1st AEs to infection as the 2nd AEs.

• GRP4: Trajectories to transplant

The Markov chains for GRP4 (Fig. 41) represents AE trajectories of 3,302 patients

who ended in receiving a heart transplant. The majority of patients who revived heart

transplants was precede by various types of AE, most commonly bleeding, infection, and

cardiac arrhythmia. Only 970 patients (29%) in this group received a heart transplant
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Bleeding InfectionCardiac Arrhythmia Respiratory FailureExplant: Transplant

Figure 40: MM of GRP3: Infection (n= 3,438 patients)

as the initial, isolated event (the dark green circle in the first column of Fig. 41). AE

trajectories to heart transplants from some specific types of AE like bleeding, infection, or

cardiac arrhythmia were more likely than other types of AE like neurological dysfunction

AE or device malfunction AE. For instance, 520 patients who experienced only one AE

and then received a heart transplant were preceded by mostly bleeding or cardiac ar-

rhythmia (cumulative 388 patients), and minimally by neurological dysfunction or device

malfunction (cumulative 132 patients).

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Bleeding

Infection

Device Malfunction
Cardiac Arrhythmia

Explant: Transplant

Neurological Dysfunction

Figure 41: MM of GRP4: Trajectories to transplant (n= 3,302 patients)

• GRP5: Cardiac arrhythmia

Fig. 42 represents a chain of recurrent cardiac arrhythmia AEs (orange circles) in GRP5

(1,275 patients), with a limited amount of branching involving an intermediate infection

AE (blue circles). The frequency of transitions depicted by the thickness of the arrows

is seen to diminish progressively along the chain. As an example, 919 patients in GRP5

(72%) experienced cardiac arrhythmia as 1st AE and only 242 of them experienced cardiac
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1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ 6𝑡ℎ

Bleeding InfectionCardiac Arrhythmia

Figure 42: MM of GRP5: Cardiac arrhythmia (n= 1,275 patients)

arrhythmia as the 2nd AE too; beyond the 2nd AE the frequency gradually decreased to 71

for cardiac arrhythmia as the 6th AE. The probability of transitions for recurrent cardiac

arrhythmia AEs were between 34% to 49% over the time. There were also transitions

between cardiac arrhythmia and infection with probabilities from 16% to 36%.

• GRP6: Trajectory of neurological dysfunction & death

The Markov chain of GRP6 (Fig. 43) shows the trajectory of 1,616 patients who died

(yellow circles) after suffering from neurological dysfunction AEs (purple circles). The

rate of death for patients who suffered from neurological dysfunction AEs as the 1st AE

trough 3th AE ranged from 27% to 39%. The majority of patients for which neurological

dysfunction AE was recorded was preceded by other types of AE, most commonly bleeding

and infection. Only a small number of patients in GRP6 (n=229, approximately 14%)

died with no reported AEs (the yellow circle in the 1st column of Fig. 43). There were also

a small number of patients who died after one or recurrent infection AEs with no recorded

neurological dysfunction AE (thin blue arrows from blue circles to yellow circles).

• GRP7: Trajectory of respiratory failure & renal dysfunction & death

The Markov chain of GRP7 (Fig. 44) illustrates two different AE trajectories to death.

One main trajectory represents 929 patients who died after suffering from respiratory

failure (934 recorded respiratory failure AE) and/or renal dysfunction AEs (712 recorded

renal dysfunction AEs) with transition probabilities between 22% to 44%. It also revealed

that patients with reported respiratory failure and renal dysfunction were preceded by

other types of AE, most commonly by infection AE and bleeding AE. The transition

probabilities from renal dysfunction or infection to respiratory failure ranged from 32%
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Infection
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Figure 43: MM of GRP6: Trajectory of neurological dysfunction & death (n= 1,616 patients)

to 36%. Another trajectory of this group presents 179 patients who died after suffering

from one or recurrent bleeding AEs with transition probabilities from 19% to 24%.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Respiratory Failure

Death
Bleeding

Infection
Renal Dysfunction

Figure 44: MM of GRP7: Trajectory of respiratory failure & renal dysfunction & death (n=

1,108 patients)

6.1.4 Discussion

This is the first study that shed the light to the entire AEs trajectories after LVAD im-

plant in patients with advanced heart failure. In contrast with previous studies which isolated

each AE in their analysis, these trajectories look at the patterns of sequential transitions be-

tween various types of AEs and their relationship with the final outcomes of LVADs. These

patterns gave clinicians its first intimation of the potential inter-relation or bootstrapping

effect between specific types of AEs related to LVAD.

Table. 8 summarized the highlights of each AE pattern and also provided findings from

post-LVAD AEs studies that intuitively back up our findings. For example, clinical findings
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Table 8: Summary of Clinical Insights of the Groups Resulted from Hierarchical Clustering.

GRP1:Recurrent bleeding

Patients who experienced recurrent bleeding AEs after LVAD. Recurrent occurrences of various types of bleeding such
as gastrointestinal bleeding is commonly reported in clinical studies of patients who receive an LVAD [42,45,110]

GRP2:Trajectory of device malfunction & explant

Patients who had device malfunction and commonly had their LVADs removed (explanted). This trajectory was found
to be preceded by the two types of AEs including infection and bleeding. Two others, less common, trajectories within
GRP2 were 1. patients who had an explant without device malfunction and 2. patients who had a device malfunction
without ending in explant. In clinical literature, device malfunction is defined as failure of one or more parts of LVAD
that cause the inability to maintain adequate circulatory support. Device malfunction might be deadly or could be
solved by replacing the device (explant) [186, 187]. It is important to note that within INTERMACS patients there
may be some who had serious pump malfunction such as internal thrombosis, but the patient was not considered a
candidate for pump exchange and the LVAD may have been simply turned off.

GRP3:Infection

Patients who suffered mostly from infection AEs. The most recent INTERMACS annual report indicated infection as
the most frequent AE after bleeding during the first three months and the most common AE thereafter [20].

GRP4:Trajectories to heart transplant

Patients who received a heart transplant and the pump was explanted as part of the procedure. AE trajectories to
heart transplant were mostly consisted of bleeding AE, infection AE, and cardiac arrhythmia AE. In practical terms
these AEs resulted in an upgraded listing for cardiac transplant resulting in a higher likelihood of achieving a heart
transplant. It is not uncommon for LVAD complications to drive more urgent listing status of a candidate and this
analysis conforms that strategy. The most recent INTERMACS annual reports indicated slightly more than 30% of
heart transplant candidates who received continuous-flow LVAD received a heart transplant [20,188].

GRP5:Cardiac arrhythmia

Patients who experienced one or recurrent cardiac arrhythmia AEs after LVAD implant that accompanied mostly
with infection AEs and bleeding AEs. Patients with ventricular arrhythmias tend to have recurrent episodes of these
rhythm disturbances one they begin to manifest them.

GRP6:Neurological dysfunction & death

GRP6 trajectory is supported by clinical literature highlighting the high mortality in LVAD patients with neurological
events especially with hemorrhagic strokes [47,48,108,109]

GRP7:Trajectory of respiratory failure & renal dysfunction & death

GRP7 trajectory is predominated by both respiratory failure AEs and renal dysfunction AEs that ended in death
although some of the trajectories also were accompanied by a bleeding AE and an infection AE. The eighth IN-
TERMACS annual report named renal dysfunction and chronic pulmonary disease among the non-cardiac system
commodities that impact the LVAD survival rate [20].
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showed the high rate of death after neurological dysfunction which supports AE pattern in

GRP6 (Trajectory of neurological dysfunction & death) [47, 48, 108, 109]. Another example

is related to the imbalanced distribution of patients among the groups that resulted from

clustering which implies high incidence of specific AE patterns, GRP3 (Infection) and GRP4

(Trajectories to transplant), among the patients with LVAD which has been supported by

findings from clinical studies indicating infection as the most common AE after bleeding and

the 30% rate of heart transplant after LVAD [20].

This study was also as an illustration for challenges raised when applying well-known

methodologies in large diverse clinical data and creative ways to overcome those challenges.

The greatest challenge encountered in this study was the high diversity between patients AEs

collected from 13,192 patients from over 150 clinical centers. Although, we used the pipeline

described in Zhang et al. [180] that includes clustering and Markov modeling, we found out

that its extension to such a large, diverse data set of this study was not straightforward. For

instance, the choice of criteria to evaluate clustering results and decide about the number of

groups was a challenging task. Zhang et al. [180] used Silhouette values to determine clus-

ter number and support values for internal evaluation of clustering. However, the number

of patients in this study (13,192 patients) was more than 10 times greater compared with

the number of patients in [180] (1,576 patients). Thus, considering only support values was

inadequate. It is obvious that high numbers of groups will result in increasing similarity of

patients within each group; however, the number of groups should be limited to preserve

the clinical utility of the results. This was the motivation to the step-wise clustering evalua-

tion that was implemented that considers both within-group similarity and between-groups

dissimilarity criteria.

Markov models in this study considered the order of occurrences for AE transitions in

patient’s sequences. For instance, the transition from bleeding as the first AE to infection

as the second AE was considered different from transition from bleeding as the fifth AE to

infection as the sixth AE. Thus, the probabilities of transitions were evaluated by considering

where in the patient’s sequence transitions occurred. This temporal constraint is very useful

since AEs have a different effect on LVAD final outcome when they occurred in immediate

succession as compared to a sequence with a different intermediate AE.
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The time of occurrence following implant is very important to the analysis of AEs. It is

highly valuable for physicians to know how many days or months after LVAD implant AEs

are likely to occur or how quickly a series of AEs may occur for a patient. The time analysis of

AE sequential patterns (Table. 7) indicates various timing characteristics among the groups.

For instance, AEs in the GRP7 with respiratory and renal failure occurred in the immediate

months after LVAD implant with median time of 1 month after LVAD implant reflecting

typical post-operative timing of these events. This is in contrast to AEs in the bleeding

group (GRP1) with median time of 9 months after LVAD implant, more typical of onset of

gastrointestinal bleeding. This analysis also revealed differences in time span over which AEs

occurred between groups. For example, AEs for patients with neurological events (GRP6)

occurred over a short period of time (median time span of 1 month) contrasted with GRP5

patients whose AEs spanned a median of 4 months. These different timing characteristics of

AE sequential patterns may have implications in guiding post-LVAD medical interventions

or preventative measures.

Limitations:

One main limitation of this study is related to the voluntary collection and reporting of

INTERMACS data. As an example, some AEs like infection is a longitudinal AE that might

last for a while, but INTERMACS only records the occurrence of AE without recording its

duration. Another issue is that there is no information regarding the order of concurrent

AE (events occurred at the same day). The problem was exacerbated by the fact that this

registry is comprised of contributions of over 100 centers, and hence involves differences in

interpretation of definitions, omissions, and data entry errors. As an example, the ongoing

change in the definition of right heart failure (RHF) causes inconsistency between studies

about analysis of RHF, and therefore, reduces the confidence in results. Consequently, it

would be helpful to pull in expertise from field to learn more about INTERMACS definitions

and workflow of data collection, to avoid bias in the future studies.

The time gaps between sequential AEs were not considered in clustering and Markov

modeling to minimize the diversity of sequences. One solution that was evaluated was to

segment post-LVAD time, based on the critical points based on the AEs distribution and

physicians’ suggestions. This reduced the maximum number of time points in the sequences
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from 36 to 7. However, it was not adequate to prevent enormously increasing diversity.

Further consolidating the timeline into short-term and long-term could be another solution

that requires some iterative process to find an optimum. Adding time gaps will also help

concurrent AEs issue by considering basket of AEs with 0 time gaps as one element in the

sequence [189].

Clinical Translation and Future Work:

The AE patterns found in this study can be used as the basis for personalized medical

management of the LVAD patient. To reach this goal, future studies should investigate the

clinical profile of patients in each AE pattern to explore the clinical scenarios behind these

patterns. In addition, the probabilistic Markov models of these patterns can be used as a

prognostic tool to predict the next AE (AEn+1) by considering previous AEs (AE1 to AEn).

This would be an important contribution, and a valuable tool for physicians to optimize

treatment to minimize the risk of future AEs.

6.1.5 Conclusion

This study, to the best knowledge of the authors, was the first exploratory to discover

sequential chains of AEs following LVAD implant. Mining of the AE sequences of 13,192

patients with advanced heart failure derived from the INTERMACS registry revealed the

existence of seven groups of sequential chains of AEs, each characterized by a dominant AE

or multiple AEs and occurring in a unique order. The discovered chains of AEs disclose

potential interdependence between AEs and provide clinicians a valuable insight into the

patient oriented post-LVAD AEs evidence. It is hoped that this analysis may support post-

LVAD follow-up by alerting medical providers of the likelihood of impending AEs - based on

a combination of independent factors, and patterns of prior AEs.
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6.2 Clustering Considering Timeline of Adverse Events

6.2.1 Objective

The clustering analysis in Section 6.1 disregarded the timeline of patients’ AE journeys

and instead focused more on grouping patients based solely on the similarity of AE types and

their order. In contrast, the main objective of this research is to conduct a cluster analysis of

post-LVAD AEs within the first year after implantation, considering the time gaps between

AEs and combinations of AEs that occur within the same time interval. Another objective of

the research is to determine the optimal time granularity for aggregating AE records in the

cluster analysis. Two different time granularities were compared: a compact granularity and

a relaxed granularity. The compact granularity involves aggregating AEs occurring within

each month into twelve separate records that are evenly spaced in time. On the other hand,

the relaxed granularity involves aggregating AEs occurring in the first month into one record,

and AEs occurring in all subsequent months into a second record. Overall, this study aims to

achieve two main objectives: conducting a cluster analysis of post-LVAD AEs by considering

time gaps and combinations of AEs, and determining the best choice of time granularity for

aggregating AE records in the cluster analysis.

6.2.2 Methods

6.2.2.1 Framework

First, the AE records of each patient were transformed into multiple sequences (channels),

with one sequence for each type of AE. Subsequently, hierarchical clustering was performed

on the AE sequences to group patients with similar AE patterns. Finally, hidden Markov

modeling (HMM) was employed to extract the patterns of transitions between AEs within

each group.
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Exclude “Rehospitalization” 
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the first device’s explant

INTERMACS Events
2017 version

Figure 45: INTERMACS Events data selection for this study.

6.2.2.2 Study population

The flow diagram in Fig. 45 outlines the criteria for inclusion of 86,912 recorded AEs of

15,820 patients (mean age of 57; 12,429 male vs. 3,378 female) who received a continuous-

flow LVAD between 2008 to 2016, extracted from the publicly accessible INTERMACS Event

data set via BioLINCC (2017 version). Fig. 46 [190] depicts the distribution of each type

of AE separately over the time. The majority of AEs occur before the first year, especially

in the first month post implant with 24,666 recorded AEs. Bleeding, Cardiac Arrhythmia,

Infection, and Other SAE were common types of AEs. Out of a total 26 types of AEs,

“Rehospitalization” type was excluded from the study as we deemed it a consequence of an

AE rather the AE itself. For patients with multiple device implants, the AEs after the first

LVAD explant were also excluded.

6.2.2.3 Construction of patients’ multi-channel AE sequences

Fig. 47 shows a small extract of the INTERMACS data for a patient (P3333) that

includes recorded AEs spanning the first 3 months with five entries. By choosing a monthly
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Figure 46: Bar-plots of distribution of each type of AE over the post-LVAD time, separately

[190].
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granularity, these five entries result in four episodes or elements of their AE sequence: one

entry of “NAE” (no AE) for the day of implant (as INTERMACS starts recording AE from

the day of implant), three entries in the first month, one in the second month, and one in

the third month. Another time granularity selected for this study is to consolidate the AEs

into 3 segments as shown in Fig. 47, in which the first two elements, the day of implant and

the first month, are similar to the monthly-segment sequence, and then all AEs after the

first month are aggregated into the last element. The rationale for this choice is based on

the high occurrence of AEs proximate to the LVAD implant.

Each sequence of AEs can be presented in two formats, aka “channels.” A single-channel

includes all AE types, such as bleeding and infection, and their occurrences in a single

sequence, as shown in Fig. 47. Another format, considered in this study is “multi-channel”

that segregates the sequences according to the type of AE, such as bleeding or infection, and

forms multiple sequences (channels) per patient as shown in Fig 48. The time intervals in

which no AE was recorded is labeled NAE. In addition, the first element in each channel

(sequence) corresponds to AEs on the day of implant (day 0).

6.2.2.4 Dissimilarity measurement between patients

A distance matrix comprised of dissimilarity, d , between each pair of patient sequences

was computed as the summation of distances across the channels, c : 1, ....C, as follow

[191,192]:

d(Pn, Pm) =
C∑
c=1

dCHLc(Pn, Pm) (6.7)

Where the distance (dissimilarity) between each pair of sequences of channel c, dCHL,

was defined as follows:

dCHLc(Pn, Pm) = |Pnc|+ |Pmc| − 2LCS(Pnc , Pmc) (6.8)

where, |Pnc | and |Pmc | are the lengths of the sequences for patients Pn and Pm in channel

c, respectively; LCS(Pnc , Pmc) is the Longest Common Subsequence (LCS) between Pn and

Pm in chanle c, as formulated below:
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PATIENT ID OPERATION ID EVENT TIME (month) TIME (round up)
3333 404 Bleeding 0.22998419 1
3333 404 Renal Dysfunction 0.75566233 1
3333 404 Bleeding 0.85422699 1
3333 404 Respiratory Failure 1.08421118 2
3333 404 Death 2.91932093 3

Patient3333 : (NAE)-(Bleeding, Renal Dysfunction, Bleeding)-(Respiratory Failure)-(Death)

1st Month 2nd Month 3rd Month

Patient3333 : (NAE)-(Bleeding, Renal Dysfunction, Bleeding)-(Respiratory Failure, Death)

Day of implant 

1st Month < 1st MonthDay of implant 

Monthly-segment time granularity

3-segment time granularity

Figure 47: An example of converting INTERMACS Event data for a patient into a sequence

of chronologically ordered AEs with two time-granularity choices of monthly-segment and

3-segment.
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CHL1 Arterial Non-CNS Thromboembolism: (NAE)-(NAE)-(NAE)-(NAE)

CHL2 Bleeding: (NAE)-(Bleeding, Bleeding)-(NAE)-(NAE)

CHL3 Cardiac Arrhythmia: (NAE)-(NAE)-(NAE)-(NAE)

CHL4 Death: (NAE)-(NAE)-(NAE)-(Death)

CHL5 Infection: (NAE)-(NAE)-(NAE)-(NAE)

CHL20 Renal Dysfunction: (NAE)-(Renal Dysfunction)–(NAE)-(NAE)

CHL21 Respiratory Failure: (NAE)--(NAE)-(Respiratory Failure)-(NAE)

CHL25 Wound Dehiscence: (NAE)-(NAE)-(NAE)-(NAE)

Patient3333

Figure 48: Multi-channel format of P2222’s AE records.

LCS(Pnc , Pmc) = max{|l| : l ∈ SB(Pnc , Pmc)} (6.9)

Here, SB(Pnc , Pmc) is a set of all common subsequences between Pnc and Pmc and |l| is the

length of common subsequence. A subsequence is a secondary sequence derived from another

(primary) sequence by deleting some (or no elements) while maintaining the same order of the

remaining elements of the primary sequence. A common subsequence is a subsequence that

is common to both Pnc and Pmc . As an example, the only common subsequence between the

P1c:Bleeding
and P2c:Bleeding

, shown in Fig. 49, is the subsequence of (Bleeding)-(NAE). Thus,

in this example, the LCS is 2 and dCHL:Bleeding(P1, P2) is 2 which means that with 2 changes

(deletion of NAE from the sequence of patient P1c:Bleeding
and insertion Bleeding AE, their

sequence becomes similar to P2c:Bleeding
’s sequence. Although the length of the sequences

in this example were equal, this study includes sequences with different lengths as survival

time differs among the patients. Therefore, the distance between each pair of patients was

divided by the geometric mean of the two sequence lengths to normalize the dissimilarity

measurement.
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NAE NAEBleeding

Bleeding Bleeding

𝐿𝐶𝑆(𝑃!,𝑃") = 2 

𝑑(𝑃!,𝑃") = 3+3- (2×2)= 2 

𝑃!

𝑃" NAE

Figure 49: An example of computing dissimilarity score between two patients’ sequences.

6.2.2.5 Defining linkage method for hierarchical clustering

After computing dissimilarity matrix of patients’ AE sequences, they were clustered using

bottom to top hierarchical clustering with Ward linkage. Hierarchical clustering merges

sequences with smallest distance d into a single group, and updates the distance matrix for

the newly merged group and the remaining patients. This merging process is repeated using

Ward’s method in which groups of patients with the smallest post-merge, in-group variance

(sum of squares) are merged until all patients are in one group. The Ward linkage distance

between clusters is computed using Lance–Williams recurrence algorithm [182]. Briefly,

considering two clusters of Ci and Cj, the distance between new cluster Cij (= Ci ∪ Cj) and

remaining clusters such as Ck is formulated as follows [182]:

D(ij,k) = αiD(ik) + αjD(jk) + βD(ij) + γ|D(ik) −D(jk)| (6.10)

Here, D(ij,k) is the distance between new cluster Cij and cluster Ck. Lance–Williams coeffi-

cients α, β, and γ are different for various linkage methods and are defined for Ward linkage

as follows:
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αz =
|z|+ |k|

|i|+ |j|+ |k|
, z = i, j

β = − |k|
|i|+ |j|+ |k|

γ = 0

(6.11)

Here, |.| indicates absolute value, and i, j, and k are numbers of patients in each cluster.

6.2.2.6 Validation of clustering and selection of the number of clusters

The goodness of clustering is often validated using three categories of criteria - internal,

external and relative. Internal validation reflects the compactness of the clusters (intra-

cluster similarity) and the separation between the clusters (inter-cluster dissimilarity). Two

well-known internal validation indices are Silhouette [193] and Dunn [194] that consider both

intra-cluster similarity and inter-cluster dissimilarity. The external validation criteria com-

pare the clusters against some optimal grouping of the data, for example grouped by an

expert (clinicians) or extracted from the literature. Lastly, the relative validation criterion

evaluates the clustering results from repeated clustering of the same data with varying pa-

rameters. In many cases, the number of clusters in the data is unknown, which in fact is

sometimes the main reason why clustering analysis is performed in the first place. Rela-

tive validation is performed by executing a clustering algorithm with different numbers of

clusters, and then selecting those that optimize a desired criterion such as the Silhouette co-

efficient. In this study, internal validation using the average Silhouette width was employed

over a range of clusters from 2 to 20.

A lesser-known measure for validating the clustering results is stability that evaluates

the robustness of clusters to random noise. There are multiple methods for introducing

randomness, including perturbing the variables (features) [195], randomness in the sampling

(e.g. subsampling) [196, 197], bootstrapping [198, 199], and cross-validation [200]. In this

study, stability validation was performed based on clustering robustness against randomness

in the samples using bootstrapping. This was chosen for its efficiency in maintaining the

size of the original data and providing an instability measure that is a function of number

of clusters. The bootstrapping method proposed by Fang and Wang in 2012 [199] was used
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to evaluate the path of instability for the number of clusters from 2 to 20.

Further details of the average silhouette width and the bootstrapping method used as

the internal and instability validations, respectively, in this study are explained below.

• Average silhouette width: The silhouette coefficient is composed of the average dis-

tance of a patient (pi) to all other patients in its own cluster (intra-cluster, a(pi)) and

the average distance of a patient to all patients in other clusters (inter-cluster, b(pi)) as

follows [193]:

s(pi) =
b(pi)− a(pi)

max{a(pi), b(pi)}
(6.12)

When clusters are compact and well-separated from each other, a(pi) is smaller compared

to b(pi) resulting in s(pi) being close to 1. Whereas, when the distance between clusters is

not large, the a(pi) and b(pi) may not be dramatically different from each other resulting

in s(pi) close to 0. If patients are clustered improperly, the a(pi) may be larger than b(pi)

resulting in s(pi) being negative. Whereas s(pi) represents the silhouette coefficient for

a single patient in a data, the overall performance of clustering is computed by average

silhouette width (ASW):

ASW =
1

N

N∑
i=1

s(pi) (6.13)

where N is the number of objects in the data set. The optimal number of clusters is the

number that maximizes the value of average silhouette width.

• Instability: This study employed a measure of stability index formulated by Fang and

Wang in 2012 [199].

Briefly, B independent pairs of bootstraps were constructed from the INTERMACS data

set,
(
Xn∗

b X̃n∗

b

)
with b = 1..., B. Each sample consisted of n observations drawn from

empirical distribution of the data with replacement (assigning a probability of 1/n to

each of the observed values xi. Hierarchical clustering was then applied to each pair for

b = 1..., B to form groupings of ΨXn∗,k
b

and ΨX̃n∗,k
b

. Then, the empirical distance between

each pair of groupings (dgroupings) was calculated as:
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dgroupings

(
Ψ

Xn∗,k
b

,Ψ
X̃n∗,k

b

)
= 1

n2

∑n
i=1

∑n
j=1 | I

{
Ψ

Xn∗,k
b

(xi) = Ψ
Xn∗,k

b
(xj)

}
− I

{
Ψ

X̃n∗,k
b

(xi) = Ψ
X̃n∗,k

b
(xj)

}
|

(6.14)

Finally, the instability index (INS) can be computed as:

INSB =
1

B

B∑
b=1

dgroupings

(
Ψ

Xn∗,k
b

,Ψ
X̃n∗,k

b

)
(6.15)

Finally, the optimal number of clusters, k, minimizes the value of INS.

6.2.2.7 Compare Clustering results: Rand index

In this study, the similarity between two clustering results with the same number of

clusters is measured using the the Rand index (R) which is calculated as follows [201]:

R = (a + b)/

 N

2

 (6.16)

where a is the number of times a pair of patients belongs to the same group across two

clustering results (correct similar pairs), b is the number of times a pair of patients belong

to different groups across two clustering results (correct dissimilar pairs), and N is the total

number of patients. The denominator is the total number of possible pairs in the set of N

patients. The Rand index ranges from 0 to 1. The value of 0 indicates that two clustering

results do not agree on the clustering of any pair of patients, whereas the value of 1 indicates

that two clustering results agree perfectly on the grouping of every pair of patients.

6.2.2.8 Hidden Markov Model

In this study, Hidden Markov Models (HMMs) were employed to analyze the multichannel

sequence data. HMMs are probabilistic models where observations are related to a hidden

process following a Markov chain. The hidden states cannot be directly observed but generate

or “emit” observations with varying probabilities.
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Let us assume we have multichannel sequence data with N individuals, T time points,

C channels, and an HMM with S hidden states. We represent the hidden state sequence for

individual i from time 1 to t as zi = (zi1, zi2, ..., ziT ), and the observation of individual i at

time t in channel c as yitc.

The HMM assumes a first-order Markov assumption, where the probability of transition-

ing to the hidden state at time t depends only on the hidden state at the previous time point

t − 1. Additionally, the same latent structure is assumed to apply to all channels, mean-

ing that the hidden state zit emits observed states yitc in all channels c. The observations

yit1, ..., yitC are assumed to be conditionally independent given the hidden state zit.

A discrete first-order hidden Markov model for multichannel data is characterized by the

following probabilities:

• Initial probability vector π = {πs} of length S, where πs is the probability of starting

from hidden state s: πs = P (zi1 = s) for s ∈ {1, ..., S}.

• Transition probability matrix A = {asr} of size S × S, where asr is the probability of

moving from hidden state s at time t − 1 to hidden state r at time t: asr = P (zit =

r|zi(t−1) = s) for s, r ∈ {1, ..., S}.

• Emission probability matrices Bc = {bs(mc)} of size S ×Mc, where bs(mc) is the prob-

ability of hidden state s emitting observed state mc in channel c, and Mc is the number

of observed states in channel c: bs(mc) = P (yitc = mc|zit = s) for s ∈ {1, ..., S} and

mc ∈ {1, ...,Mc}.

To estimate these probabilities, maximum likelihood estimates are typically calculated

using the Baum-Welch algorithm, which is an expectation-maximization (EM) algorithm for

HMMs. The log-likelihood of the parameters M = {π,A,B1, ..., BC} for the HMM is given

by:

logL =
N∑
i=1

logP (Yi|M) (6.17)

where Yi represents the observed sequences in channels c = 1, ..., C for subject i. The

probability of the observation sequence of subject i given the model parameters is:
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P (Yi|M) =
∑
all z

P (Yi|z,M)P (z|M) (6.18)

=
∑
all z

P (z1|M)P (yi1|z1,M)
T∏
t=2

P (zt|zt−1,M)P (yit|zt,M)

=
∑
all z

πz1bz1(yi11) . . . bz1(yi1C)
T∏
t=2

[
azt−1ztbzt(yit1) . . . bzt(yitC)

]
(6.19)

where z denotes the hidden state sequences that take all possible combinations of values

in the hidden state space {1, ..., S}, and yit represents the observations of subject i at time

t in channels 1, ..., C. Here, πz1 is the initial probability of the hidden state at time t = 1 in

sequence z, azt−1zt is the transition probability from the hidden state at time t − 1 to the

hidden state at t, and bzt(yitc) is the probability that the hidden state of subject i at time t

emits the observed state at time t in channel c.

Inference on Hidden States

Given the HMM model and observed sequences, interesting inferences can be made re-

garding the hidden states. The forward probabilities αit(s) [202] represent the joint proba-

bility of hidden state s at time t and the observation sequences yi1, ..., yit given the model

M , while the backward probabilities βit(s) denote the joint probability of hidden state s at

time t and the observation sequences yi(t+1), ..., yiT given the model M .

From the forward and backward probabilities, we can compute the posterior probabilities

of the states, which provide the probability of being in each hidden state at each time point,

given the observed sequences of subject i. These probabilities are defined as:

P (zit = s|Yi,M) =
αitβit

P (Yi|M)
(6.20)

where P (Yi|M) is the overall probability of the observation sequences for subject i. The

posterior probabilities can be utilized to find the locally most probable hidden state at

each time point, although the resulting sequence may not necessarily be globally optimal.

To obtain the single best hidden state sequence ẑi(Yi) = ẑi1, ẑi2, ..., ẑiT for subject i, we
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maximize P (z|Yi,M) or, equivalently, P (z, Yi|M). The Viterbi algorithm [202] is commonly

employed to solve this problem.

For a more comprehensive presentation on HMMs for multichannel data, refer to Helske

(2018) [203].

6.2.2.9 HMMs Comparison

Models with the same number of parameters can be compared using the log-likelihood.

However, when choosing between models with different numbers of hidden states, we need

to consider the number of parameters involved. To address this, we employ the Bayesian

Information Criterion (BIC) which is defined as:

BIC = −2 log(Ld) + p log

(
N∑
i=1

T∑
t=1

C∑
c=1

I(yitc observed)

)
(6.21)

where Ld is computed using Equation 6.17, p represents the number of estimated param-

eters, I denotes the indicator function, and the summation in the logarithm corresponds to

the size of the data.

6.2.3 Results

6.2.3.1 Clustering validation

As described in the previous section, the quality of the clustering was evaluated to provide

guidance for choosing the number of clusters (k). Two metrics of quality were used: stability,

and average silhouette width, with the optimal number of clusters resulting from the lowest

value of instability and the highest value of average silhouette width.

• Instability: Fig. 50 plots the bootstrap instability measure as a function of number of

clusters (k = 2, 3, ..., 20) derived from the monthly and 3-segment aggregated time clus-

tering. Although both choices of time granularity provide very stable clusters over the

range studied (instability < 0.15), the relationship to cluster count are different. The 3-

segment clustering curve expresses a unimodal relationship with a peak at approximately

7, whereas the monthly-segment curve monotonically decreases from 2 to 9 clusters and
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remains near zero thereafter. Therefore the optimal number of clusters, from the per-

spective of instability, is 2 (2-cluster result) for the 3-segment time granularity, and 5 (or

≥ 9) for the monthly-segment clustering.

0.00

0.05

0.10

0.15

2 4 6 8 10 12 14 16 18 20

Number of clusters (k)

In
st

ab
ili

ty

(a) 3-segment

0.00

0.05

0.10

0.15

2 4 6 8 10 12 14 16 18 20

Number of clusters (k)

In
st

ab
ili

ty

(b) Monthly-segment

Figure 50: Instability measurement for clustering results.
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Figure 51: Average silhouette width for clustering results.

• Average silhouette width: Fig. 51 plots the average silhouette width, which measures

the intra-cluster similarity and inter-cluster dissimilarity. The average silhouette values

for 3-segment range from 0.08 (k = 7) to 0.68 (k = 2). The high average silhouette values

for monthly-segment, ranged from 0.64 (k = 20) to 0.71 (k = 6). These results indicate

that the 2-cluster result (k = 2) is optimal for 3-segment time granularity and any choice
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between 5 to 7 (5 ≤ k ≤ 7) is preferred for monthly-segment time granularity.

Considering both criteria of stability and silhouette values, the 2-cluster result for 3-

segment time granularity and 5-cluster result for monthly-segment time granularity were

chosen. For the sake of comparison, this study also investigated the 5-cluster result for

3-segment time granularity. The corresponding inter-cluster and intra-cluster distances is

provided in Table 9. The average intra-cluster distances of five clusters (called groups),

G1 ... G5, are low and in the same range (Table. 9a). This indicates that the AE

journeys of patients within each cluster are very similar, irrespective of time granularity.

In contrast, comparison of inter-cluster distances in Table. 9b reveals that the monthly-

segment clusters are better separated than the 3-segment time granularity clusters.

The weak separation in 3-segment clusters could be due to high similarity among patients’

AE journeys in 3-segment time granularity that caused overlapping of patients between

groups due to the fact that all AEs after the first month in 3-segment time granularity

are aggregated in the third segment. This is contrasted with the aggregation in monthly-

segment clustering where the timing of AEs are less similar. Nevertheless, the 5-cluster

result for 3-segment has a good intra-cluster similarity, despite its weak inter-cluster

dissimilarity. Therefore, it is worthwhile to compare with 5-cluster result for monthly-

segment clustering.

Table 9: Comparison of 5-cluster result for 3-segment vs monthly-segment time granularity

(a) Within-cluster average distances

G1 G2 G3 G4 G5

Monthly-segment 0.26 0.05 0.19 0.24 0.17

3-segment 0.22 0.11 0.24 0.13 0.17

(b) Average distances to other clusters

G1 G2 G3 G4 G5

Monthly-segment 0.69 0.61 0.43 0.81 0.56

3-segment 0.22 0.23 0.45 0.18 0.19

6.2.3.2 Profiling the clusters

Presented below are the clustering results for the optimal number of clusters for both

granularities of time: the 2-cluster result (k=2) for 3-segment time granularity and 5-cluster
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result (k=5) for monthly-segment time granularity. Additionally, the 5-cluster result (k=5)

for 3-segment time granularity is presented for comparison with the monthly-segment time

granularity.

The result of hierarchical clustering for 3-segment time granularity is presented as a

dendrogram, shown in Fig. 52a, which depicts the taxonomic relationship between clusters

formed at each level of grouping. The bottom of the dendrogram represents all dissimilarity

scores, which is a dense dark area because of the large number of patients. Moving from

bottom to top of the dendrogram, one cluster is formed at each level of hierarchical clustering

by grouping two sub-clusters until, at the top of the dendrogram, all patients are within a

single group. The y axis, Ward distance, represents the dissimilarity between clusters (groups

of patients) as a function of the level of the tree. Cutting the dendrogram horizontally at

the Ward distance of 15 results in two groups, labeled G1 and G2. This partitioning of

the dendrogram into two clusters was based on the two criteria described previously: lowest

instability (see Fig. 50a) and greatest average silhouette width (see Fig. 51a).

The first group, G1, represents the large majority of patients (n=14,769, 93%), with the

total of 56,623 recorded AEs. G2 represents fewer patients (n=1,051, 7%) associated with

a total of 4,757 recorded AEs (see Table in Fig. 52a). While patients in G1 and G2 both

have an average of 4 to 5 AEs per patient, patients in G2 experienced AEs in a much shorter

average time span of 0.4 month vs 5 months in G1. This contrast is also reflected in the

pie charts in Fig. 52b that summarize the timing of AEs. The majority of AEs (90%) in

G2 occurred during the first month and 7% occurred on the day of implant (time of ≈ 0

month). In contrast, the timing of AEs in G1 extends to 12 months with 36% in the first

month. Similarly, the freedom from AE curves in Fig. 52c highlights the difference in the

time course of AEs of both groups. The G2 curve goes to 0% by the first month, meaning

all patients in G2 experienced at least one AE by the first month, while the curve for G1

reduces more gradually over time to the lowest value of 12% at 12th month. Comparing their

survival curves in Fig. 52c, the probability of survival in G2 drops to about < 20% by the

first month compared to G1 with 100% survival probability by the first month and remains

above 80% to the end of the first year.

To investigate the patterns of AEs for each group, Fig. 52d plots the ten most common
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Count of patients 14769 (93%) 1051 (7%)

Count of episodes of AEs 21322 (94%) 1308 (6%)

Total count of AEs 56623 (92%) 4757 (8%)

Mean count of AEs per patient 4 5

Mean of time span (month) per patient 5.1 0.4

(a) Cutting the dendrogram into the two clusters.

(b) Time distribution of AEs in G1 and G2.

Figure 52: 2-cluster result for 3-segment time granularity.
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(c) Survival curves and freedom from AE curves for patients in G1 and G2.

Figure 52: 2-cluster result for 3-segment time granularity.

subsequences of AEs for G1 and G2. The most common subsequences in G1 are the unary

subsequences of (Infection) and (Bleeding) which are common to more than 40% of patients

due to the high diversity among the large number of patients in G1. On the other hand, the

most common subsequence in G2 is (Death): 80% of patients in G2 died in the first year,

which corresponds to the survival curve Fig. 52c. The unary subsequences of (Respiratory

Failure), (Bleeding), and (Renal Dysfunction) are the most common subsequences in G2.

Most of the patients in G2 who experienced Respiratory Failure and Renal Dysfunction died

in the first year; (Death, Respiratory Failure) and (Death, Renal Dysfunction).

To further investigate the dissimilarity of patterns among the patients in G1 and

G2, a Pearson Chi-square test was conducted for the table that cross tabulates the

presence or absence of subsequences and cluster membership. A low Chi-square value

means that the distribution among clusters is independent of the presence or absence of

a subsequence, and thus, the subsequence is not discriminating. Here, p-values < 0.05

were taken to indicate discrimination between groups. The subsequences that most

discriminate between patients in G1 and G2 are shown in Fig. 52e, sorted by their

power of discrimination. The color coding corresponds to the magnitude and sign of
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(d) The most common subsequences in G1 and G2.

Negative 0.01 Negative 0.05 Neutral Positive 0.05 Positive 0.01

G1 G2

(e) The discriminative subsequences between G1 and G2. Ordered according to Chi-square value
(decreasing left to right.) Color coded based on the sign and value of Pearson’s residual.

Figure 52: 2-cluster result for 3-segment time granularity.
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the Pearson residuals, i.e. the contribution of each corresponding subsequence to the

Pearson Chi-squared; (observed − expected)/
√
expected). A negative (positive) Pearson

residual indicates that the observed frequencies of the subsequences are lower (greater)

than equally distributed frequencies. The three most discriminating subsequences between

patients in G1 and G2 are (Death), (Renal Dysfunction), and (Respiratory Failure)

that were common among less than 20% of patients in G1 while 80% of patients in G2

died and about 40% of them experienced either (Renal Dysfunction) or (Respiratory Failure).

The result of hierarchical clustering for monthly-segment time granularity is presented

in the dendrogram of Fig. 53a, which cuts at the Ward distance of 10 resulting in five

groups G1 to G5 (5-cluster results). Similar to the previous analysis, the selected number

of clusters was based on criteria of lowest instability (see Fig. 50b) and greatest average

silhouette width (see Fig. 51b).

The group with the largest number of patients, G2 (n=10,229), comprising 65% of the

total cohort, is associated with 56% of total recorded AEs. The remaining groups each

include between 7% and 12% of total number of patients with 8% to 16% of AEs. Although,

the average count of AEs per patients are similar among the groups (4 to 5 AEs per patient),

the average time span of AE journeys are highly dissimilar. The Table in Fig. 53a reveals

that AE journeys of patients in G1 and G4 occurred in a shorter time span (1.5 and 0.4

month, respectively) than those in G2, G3, and G5 (3 to 6 months).

Referring to the pie graphs presented in Fig. 53b, which illustrates the distribution of

time over which AEs are recorded, it is observed that patients in G1, G4, and G5 experienced

AEs mostly in the early months after implant (0-5 post-LVAD months), while patients in G2

and G3 had records of AEs extending into the later months of the first year; up to 9 or 12

months. The disparity of time span is reflected in the corresponding freedom from AE curves

in Fig. 53c. The curves associated with G1, G3, and G5 exhibit a similar shape, decreasing

to 0% between 3 and 9 months. On the other hand, the probability of freedom from AEs

for G2 with the largest number of patients decreases over the first year to 12%. The most

dramatic freedom from AE curve belongs to patients in G4 with 0% probability of freedom

from AE by the end of the first month. The similarity in the shapes of the freedom from AE
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G2 G5 G3 G4 G1

G1 G2 G3 G4 G5

Count of patients 1428 (9%) 10229 (65%) 1955 (12%) 1051 (7%) 1157 (7%)

Count of episodes of AEs 2872 (8%) 21509 (63%) 5535 (16%) 1322 (4%) 2766 (8%)

Count of AEs 7362 (12%) 34374 (56%) 9521 (16%) 4757 (8%) 5366 (9%)

Mean count of AEs per patient 5 4 5 5 5

Mean of time span (month) per patient 1.53 6.08 5.69 0.41 3.1

(a) Cutting the dendrogram into the five clusters.

(b) Time distribution of AEs in 5-cluster results (G1,..,G5).

Figure 53: 5-cluster result for monthly-segment.150
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Figure 53: 5-cluster result for monthly-segment.
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(d) The most common subsequences in 5-cluster results (G1,..,G5).

Figure 53: 5-cluster result for monthly-segment.
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(e) The discriminative subsequences between groups. Ordered according to Chi-square value (de-
creasing left to right.) Color coded based on the sign and value of Pearson’s residual.

Figure 53: 5-cluster result for monthly-segment.
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curves among G1, G3, and G5 can be also seen in their survival curves (red) that indicate

the probability of survival remains at 100% up to 1st, 5th , and 3rd months, respectively, and

then sharply drops to 37.5% for G1, 50% for both G3 and G5, and remains constant to the

end of the first year. The best survival curve belongs to patients in G2 in which the survival

probability remains nearly 100% until the end of the first year. On the other hand, the worst

survival curve is associated with patients in G4 whose survival probability drops to < 20%

in the first month.

The plots in Fig. 53d indicate that the most common subsequence in each cluster, except

G2, is (Death) or (Explant:Transplant) with proportion of patients in the subsequence

ranging from 40% to 80%. Similarly, the most discriminative subsequences (Fig. 53e) is

(Death) and/or (Explant:Transplant). The remaining 12 discriminative subsequences are

distributed differently among groups.

Hierarchical clustering for 3-segment time granularity is found by cutting the previous

dendrogram presented in Fig. 52a) at a lower value of Ward distance, resulting in the five

groups shown in Fig. 54a. The largest number of patients is found in G2 (n=10,741; 68%)

which shares 8,266 patients in common with G2 from the 5-cluster result of monthly-segment

time granularity. The remaining groups each include between 7% to 10% of the total number

of patients. G3 in this clustering result comprises the same 1,051 patients as G4 in the

previous monthly-segment clustering. The Rand index, which measures agreement between

groupings, ranging from 1.0 (perfect agreement) to 0.0 (no agreement), was computed to

be 0.65 for the 3-segment and monthly-segment clustering. Considering that most of this

agreement is derived from the shared 8,266 patients between G2 in two clustering results

and the 1,051 shared patients in G3 in 3-segment with G4 in monthly segment, it can be

interpreted that the remaining groups have a poor agreement. The detailed characteristics

of these five groups are summarized in Table 10, and figures 54a-54e.
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Table 10: Summary of 5-cluster result for 3-segment clustering.

Freedom from AE curve
(FF-AE)

(See Fig. 54b and 54c)

Survival curve
(SURV)

(See Fig. 54c)

Frequent
subsequence (*)
(See Fig 54d)

Discriminitive
subsequence (**)
(See Fig 54e)

Group 1: Moderate survival rate despite high number of AEs in early months after implant

FF-AE goes to 0%
by the 1st month
56% of all AEs

occurred
within 2nd month

SURV remaining
near 100% up to

1st month
gradually
decreasing

to 60% at 12
months

79% (Respiratory Failure)
68% (Infection)
60% (Bleeding)

(Death)
(Respiratory Failure)

(Neurological
Dysfunction)

(Infection, Respiratory
Failure)

(Renal Dysfunction)

Group 2: High survival and high diversity among AEs journeys

FF-AE goes to
10%

by the 1st year
Timing of AEs

ranges
0 to 12 months
58% of AEs
occurring

by the 4th month

SURV remaining
near

100% up to 1st year

High diversity among AEs
journeys

≈ 40% (Infection) or (Bleeding)

Mostly absence of
discriminative

subsequences in other
groups

&
(Explant: Transplant)

Group 3: Low survival with at least one AE by the first month

FF-AE goes to 0%
by the 1st month
Timing of AEs are

mostly
in the first month

and/or
at the time of

implant

SURV drops to
≈< 20% by the 1st

month

80% (Death)
34% (Respiratory Failure,

Death)
30% (Renal Dysfunction, Death)

(Death)
(Respiratory Failure)

(Neurological
Dysfunction)

(Infection, Respiratory
Failure)

(Renal Dysfunction)

Group 4: High survival with Device Malfunction and/or Pump Thrombosis

FF-AE goes to 0%
by the 1st year

Timing of AEs are
spread over 12

months
57% AEs occurring

by
the 4th month

SURV decreasing
gradually

to 87% by 1st year

96% (Device Malfunction
and/or

Pump Thrombosis)
54% (Device Malfunction

and/or
Pump Thrombosis,
Explant:Exchange)

(Device
Malfunction

and/or
Pump Thrombosis)

Group 5: Low survival with common AEs of Neurological Dysfunction and Respiratory Failure

FF-AE goes to 0%
by the 1st year

Timing of AEs spans
the full 12 months

57% occurring within
the first 4th month

SURV is relatively
low

No deaths in the
1st month

25% by the end of
the 1st year

73% (Death)
61% (Neurological Dysfunction)

54%(Infection)
36%(Respiratory Failure)

33% (Neurological
Dysfunction,Death)
28% (Respiratory
Failure,Death)

(Death)
(Respiratory Failure)

(Neurological
Dysfunction)

(Infection, Respiratory
Failure)

(Renal Dysfunction)

* Selected most common subsequences. See Fig. 54d for the full list of top ten most common
subsequnces in each group.

** Selected most discriminitive subsequences. See Fig. 54e for the full list of discriminitive
subsequnces in each group.
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Count of patients 1179 (7%) 10741 (68%) 1051 (7%) 1266 (8%) 1583 (10%)

Count of episodes of AEs 2310 (10%) 14625 (65%) 1308 (6%) 1936 (9%) 2451 (11%)

Count of AEs 9411 (15%) 32652 (53%) 4757 (8%) 5609 (9%) 8951 (15%)

Mean count of AEs per patient 7.98 3.42 4.53 4.43 5.65

Mean of time span (month) per patient 4.9 5.33 0.41 4.78 4.94

(a) Cutting the dendrogram into the five clusters (G1,...G5).

(b) Time distribution of AEs in 5-cluster results (G1,..,G5).

Figure 54: 5-cluster result for 3-segment time granularity.
156



| | |
| |

|
| | |

| | | | | |
| | | | | | | |

| | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12
Post−LVAD Month

G1 (n=1178) | |% Survived % Free From AE
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || | | | | | | | | | | | | | | | | || || || || | || || | || | || || | || || | | || | | | || || | | || | | | || || | || | || | | || | | | | | | || || || || | | || || || | | | | || || | | | || || || || || || | || || || || | | | | || || | || |

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12
Post−LVAD Month

G2 (n=10741) | |% Survived % Free From AE

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
| | | | |

| | | | | | | | | | | | | | | | | | | | |

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12
Post−LVAD Month

G3 (n=1051) | |% Survived % Free From AE
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || | | | | | | | | | | | | | | | || | | | | | | | | || | | | || | | | | | | | | | |

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12
Post−LVAD Month

G4 (n=1266) | |% Survived % Free From AE

| |

|

|
|

| |
| |

| |
|

|

| |

|
|

| | | |
|

| |

| | | |

|

| |
| | | | | |

| | |
| |

| |
| |

| | | | | | | | || | |

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12
Post−LVAD Month

G5 (n=1583) | |% Survived % Free From AE

(c) Survival curves and freedom from AE curves for patients in 5-cluster results (G1,..,G5).

Figure 54: 5-cluster result for 3-segment time granularity.
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(d) The most common subsequences in 5-cluster results (G1,..,G5).

Figure 54: 5-cluster result for 3-segment time granularity.
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(e) The discriminative subsequences between groups. Ordered according to Chi-square value (de-
creasing left to right.) Color coded based on the sign and value of Pearson’s residual.

Figure 54: 5-cluster result for 3-segment time granularity.

159



6.2.3.3 Modeling the Transition of Adverse Events within Clustered Patient

After identifying clusters of patients who have experienced similar AEs in a consistent

order and timing, the transitions between AEs are now modeled using a hidden Markov

model (HMM). The patients are split into train and test datasets, with the same proportion

of 5 clusters. One HMM is trained for each cluster using the training dataset specific to that

cluster.

Figure 55 illustrates the Bayesian Information Criterion (BIC) values for HMM models

with 2–10 hidden states in each of the five clusters (G1 to G5). The model with the lowest

BIC value is chosen as the best model. The HMM models with 5 hidden states yielded the

lowest BIC values for G1, G3, and G4, while the HMM model with 6 hidden states resulted

in the lowest BIC values for G2 and G5.

Fig. 56 illustrates the HMM structure for each of the 5 clusters with 3-segmentation

time granularity. It shows the HMMs as directed graphs, where the nodes represent hidden

states. The arrows indicate transition probabilities between the hidden states (filtered to

greater or equal to 0.1) , with thicker arrows representing higher probabilities.

Fig. 57 illustrates the most probable hidden state paths for patients in each cluster.

Similar colors are assigned to similar hidden states across clusters.

As an example of how to interpret these figures, let’s examine G4, which is named

“High survival with device malfunction and/or pump thrombosis’ (Table 10). The HMM

for G4 in Fig. 56d reveals that State 1 and State 3 have the highest probabilities of Device

Malfunction, both at 0.9, and exchange of device (Explant:Exchange), with probabilities of

0.7 for State 1 and 0.5 for State 3. Thus, we can refer to States 1 and 3 as the “Device

malfunction and/or Explant: Exchange’ states. The other three states have either zero or

low probabilities of Device Malfunction and Explant: Exchange but transition to States 1

and 3 with high probabilities ranging from 0.7 to 1.0. These states represent different paths

of AEs that lead to Device Malfunction and/or Explant: Exchange.

The initial probabilities of the states indicate that patients begin their journey from State

2 with no AEs (at least those listed in Table 56d). Around 80% of them then transition to

State 4 with high probabilities of Bleeding and Infection, and subsequently, 90% of them
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Figure 55: BIC values of 2-10 number of hidden states for 5-cluster for 3-segment time

granularity.
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transition to State 3, from which all of them proceed to State 1. This pattern of patient

journeys in G4 is also reflected in the most probable path of hidden states shown in Fig.

57. It demonstrates that the most probable state for patients in G4 at the time of implant

is State 2, which has zero probability of any AEs. During the first post-implant month,

the majority of patients are in States 4 and 5. After the first month until the end of the

first year, the most probable states for patients in G4 are States 1 and 3, which have high

probabilities of Device Malfunction and/or Explant: Exchange.

The evaluation of HMMs is based on the likelihood of the test dataset. Figure 58 displays

box plots of log-likelihood values for patients in the test dataset, corresponding to each

trained HMM per cluster. The box plots for HMM2, HMM3, HMM4, and HMM5 indicate

higher log-likelihood values for patients in their respective clusters (1, 3, 4, and 5) compared

to patients in other clusters. However, the box plots for HMM1 show an overlap between

the boxes of patients in clusters 1 and 2.

Patients in the test dataset are assigned to the cluster (predicted cluster) corresponding

to their maximum log-likelihood value among the HMMs of the clusters. Subsequently, the

predicted clusters are compared to the real clusters to which they were assigned during

the cluster analysis, resulting in the formation of a truth table as shown in Table 11. The

majority of patients in the clusters are correctly assigned to their respective clusters, with

an accuracy rate ranging from 90% to 97% for all clusters, except for patients in cluster 2,

where the accuracy is 85%.

6.2.4 Discussion

This study conducted an extensive clustering analysis of AEs in the first year after LVAD

implant for a large cohort of 15,820 patients from the INTERMACS national registry. Two

clustering analyses were conducted to compare the effect of choosing a relaxed (monthly-

segment) vs a compact (3-segment) time granularity. The selection of the number of clusters

and the goodness of clustering were evaluated based on two criteria: (1) stability that mea-

sures the consistency of a clustering result by comparing it with the clusters obtained from

different bootstrap resampling of the full data, and (2) silhouette coefficient that assess the
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Figure 56: The plots of the HMMs for the 5 clusters are accompanied by a table displaying the

emission probabilities for hidden states associated with selected AEs. The initial probabilities

for each hidden state are provided in parentheses next to the states in the plot.
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Figure 56: Plots of the HMMs for 5 clusters, accompanied by a table of emission probabilities
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are provided in parentheses next to the states in the plot.

166



1

0.6
0.3

0.2
0.5

0.3

0.3
0.7

1 1

State 1 (0) State 2 (0) State 3 (1) State 4 (0) State 5 (0) State 6 (0)

Hidden

States
Bleeding

Cardiac

Arrhythmia
Infection

Neurological

Dysfunction

Other

SAE

Renal

Dysfunction

Respiratory

Failure

Right Heart

Failure
Death

State 1 0.4 0.3 0.4 0.1 0.3 0.1 0.3 0.1 0.0

State 2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

State 3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

State 4 0.5 0.3 0.7 0.4 0.4 0.5 0.7 0.3 0.9

State 5 0.2 0.1 0.3 0.5 0.2 0.0 0.2 0.0 1.0

State 6 0.2 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0

(e) HMM for G5

Figure 56: Plots of the HMMs for 5 clusters, accompanied by a table of emission probabilities

for hidden states associated with selected AEs. The initial probabilities for each hidden state

are provided in parentheses next to the states in the plot.
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Figure 57: Most probable hidden state paths of patients in the training dataset are observed

for each cluster.
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Figure 58: The log-likelihood values of patients in test dataset for each trained HMMs per

cluster.

Table 11: The truth table consists of rows representing patients assigned to each cluster

based on clustering analysis (real clusters), and columns representing the predicted cluster

(Pred-CLS) determined by the maximum likelihood of HMMs.

Real Cluster Pred-CLS 1 Pred-CLS 2 Pred-CLS 3 Pred-CLS 4 Pred-CLS 5

Cluster 1 229 5 0 2 16

Cluster 2 133 1822 1 85 91

Cluster 3 0 0 212 0 7

Cluster 4 2 3 0 229 3

Cluster 5 20 6 0 7 291
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compactness and separation of clusters. Based on these criteria, the monthly-segment time

granularity yielded 5-clusters (groups of patients) and the 3-segment time granularity yielded

2-clusters. An additional clustering for 3-segment time granularity, containing 5 clusters, was

also included in this study to compare the effect of time granularity independently of the

number of clusters.

The 2-cluster solution for 3-segment time granularity divided patients mostly based on

the timing of their AEs. The first group (G1) includes the great majority of patients (93%)

whose timing of AEs ranges from 0 (the day of implant) to 12 months, whereas the second

group (G2) includes a minority of patients with poor survival probability and suffered from

AEs, such as Respiratory Failure and Renal Dysfunction, within the first month post-LVAD

implant.

The 5-cluster result for the monthly granularity split patients into groups mostly based on

their timing of AEs, specifically the timing of final outcomes of Death or Explant: Transplant.

However, the influence of timing is attenuated when adopting a 3-segment (vs monthly) time

granularity - because all AEs after the 1st month were aggregated into the third element of

3-segment clustering. The consequence of patients becoming more similar in timing is that

the type of AEs became more discriminating between clusters. As a result, the 5-cluster

result of 3-segment clustering provides more insight about the various AE journeys after

LVAD implant compared to the 5-cluster result of monthly-segment clustering which mostly

emphasizes the timing of AE journeys. However, this similarity of timing of AEs among

the patients in the case of 3-segment time granularity would result in clusters which suffer

more from overlapping (weak separation) compared to monthly-segment clustering which has

patients well-separated based on their diverse timing of AEs as illustrated in the silhouette

plot (Fig. 51). Therefore, clustering analysis of post-LVAD AEs involves a trade-off between

uncovering informative patterns and the quality of the clusters. This trade off is governed,

in turn, by the choice of time granularity.

There were two groups of patients that appeared in all the clustering results regardless

of time granularity and number of clusters. One group comprised a small number of 1,051

patient with low 1-month survival probability who suffered AEs such as Respiratory Failure

and Renal Dysfunction in the first month post-LVAD. In contrast, a larger group in 5-
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cluster results comprising 65% − 68% of patients were associated with high 1-year survival

probability (nearly 100%). This group was distinguished by rather unequally distributed

frequency of final outcomes such as Death and/or Explant: Transplant. Future studies

may investigate clustering analysis of post-LVAD AE journeys without considering the final

outcomes to explore patterns of AE journeys that focus more closely on quality of life than

manner of death. On other hand, if the goal of clustering is primarily to determine similarity

or dissimilarity between two patients, then, future studies can assign a higher weight to a

specific type of AE when measuring dissimilarity between AE journeys.

The results of this study can be compared with the findings of the previously reported

study of Movahedi et al. [62] in which seven groups of patients were identified based on

the order of AE occurrences without considering their timing. Some similarities can be

noted between the groups found in the 5-cluster, 3-segment time granularity outcome. For

example, G4, with AEs due to Device Malfunction and/or Pump Thrombosis and G3 with

low survival due to Respiratory Failure and/or Renal Dysfunction AEs are common to both

studies. Consequently, it can be surmised that timing of AEs do not play an important role

in clustering patients in these groups.

Another difference of this study with previous studies is the treatment of combinations

of AEs within the same time interval. Previous studies which used a “single-channel” for-

mat [62, 204, 205] disregarded combinations of AEs within the same time interval to avoid

complexity of the analysis caused by potentially 225 combinations of 25 different AE types.

The current study addressed this challenge by employing a “multi-channel” format in which

each sequence of AEs was segregated into multiple sequences (channels) per patient accord-

ing to the type of AE. The important difference between these two formats is illustrated by

considering two hypothetical patients, P 1 and P 2, P 1 who experienced Bleeding and Infec-

tion in the first month and P 2 experienced only a Bleeding episode in the first month. With

the “single-channel” format, the combination of Bleeding and Infection would make a unique

element in the P 2’s sequence – different from Bleeding in P 1’s sequence. While in the multi-

channel format in which the dissimilarity between two patients is computed by summation

of dissimilarities of patients for each type of AE, the Bleeding AE that is common to both

patients will be reflected in their dissimilarity measurement – as explained in the example
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in Fig. 49. This permits a large number of AE types to be easily combined according to the

AE type-specific dissimilarities, without losing information on their complexity.

The temporal variability and treatment-specific dependence of the informational yield of

diverse channels of AEs are relevant considerations in this study. Specifically, the relative

informativeness of distinct channels of AEs may vary over time, and across different stages of

post-LVAD treatment. This necessitates a discerning approach whereby, if a particular type

of AE demonstrates superior information content at a given post-LVAD time-point, greater

reliance must be placed on such informative channels. Consequently, future investigations

may be well-served by focusing on the development of a weighting scheme, which could

encompass an evaluation of the costs associated with substitution, while computing the

dissimilarity between channels. Future investigations will also benefit from the availability

of the most current version of the INTERMACS dataset that pertains to the latest technology

of LVAD devices, namely the HeartMate 3 (Abbott) which has exhibited markedly improved

survival and reduced incidence of complications.

6.2.5 Conclusion

In conclusion, the multi-channel approach employed in this study for mining clusters of

adverse event (AE) sequences from a large diverse National registry proved to be an effective

method to extract patterns of AE journeys despite the complexity created by the numerous

types of AEs as well as the irregularity in the timing of AEs. The more compact temporal

segmentation proved to be reasonable choice when the timing of events are skewed and

when the emphasis is more on identifying patterns of types of events versus their timing.

Future research based on the findings of this study could lead to improved understanding and

identification of patterns of AEs in VAD patients that may inform improved clinical decision-

making - potentially leading to tailored interventions at specific time points to prevent or

mitigate future AEs.
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7.0 Post-LVAD Mortality Risk Models

7.1 Objective

This study incorporated AE history and pre- and post-implantation data to predict

mortality in the early weeks following LVAD implantation, which is the most critical period

associated with the highest rate of death and all types of adverse events. Three models were

investigated to predict death within specific time frames during the first post-LVAD month

using data from a large International Registry for Mechanical Circulatory Support (INTER-

MACS), which includes records for over 20,000 patients who underwent LVAD implantation

across more than 180 hospitals. By considering the post-LVAD AE history and data from the

first-week follow-up visit, including lab values, medication treatment, and hemodynamics,

this study aimed to overcome the issues faced by previous studies that did not account for

changes in patients’ health status after implantation when predicting mortality

7.2 Methods

7.2.1 Framework

The framework for this study is illustrated in Fig. 59, in which Model I focuses on

prediction of death during the second to fourth week (W2-W4) based on data obtained

48 hours prior to implant, during first week of follow-up, and history of AEs during the

first week; Model II predicts death during the third to forth week (W3-W4) based on data

prior to implant, during the first week, and history of AEs in the first and second weeks;

and Model III predicts death during the fourth post operative week (W4), based on data

prior to implant, during the first week, and the history of AEs during the first three weeks

post-implant.
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Figure 59: The framework of prediction of mortality in the first few weeks after LVAD

implant.

7.2.2 Study population

The first step of the flow diagram in Fig. 60 presents the inclusion criteria used for

analyzing 86,912 recorded AEs in 15,820 patients who received a continuous flow-LVAD

between 2008 to 2016. These AEs were extracted from the publicly accessible INTERMACS

Event dataset via BioLINCC (2017 version). The mean age of the patients was 57, with

12,429 males and 3,378 females. The study excluded the AE labeled ”Rehospitalization” as

it is considered a consequence of an AE rather than an AE itself and also due to its rarity

during the first post operative month. Additionally, AEs that occurred after the first LVAD

explant for patients with multiple device implants were also excluded from the analysis.

The patients for each model are filtered according to the time frame of interest for pre-

diction. For example, out of 15,820 patients who survived and still had the pump implanted

in the third post-operative week, 15,029 were included in the development and validation of

Model III, which predicts deaths during the fourth post-operative week (W4). The percent of

dead patients in the time frame of interest for prediction were 4% (572 patients) for Module

I, 2% (335 patients) for Module II, and 1% (158 patients) for Module III. The percentage
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Figure 60: Data selection steps. SURV: Survived (alive).
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of dead patients were kept the same after randomly dividing the data for each model into

training (80%) and a testing (20%) sets.

7.2.3 Features

The pre-implant and post-implant data contain 240 and 111 features, respectively, after

filtering out features with zero variance (28 features for pre-implant data and 239 features

for post-implant data) and removing features with more than 30% missingness (171 features

for pre-implant data and 128 features for post-implant data). The missingness was measured

after filling any non-real missing data by concatenating subcategories with categories and

by reviewing the reason for incompleteness in INTERMACS. The remaining missing values

in the data were filled with the mode for categorical features and the mean for numeric

features. The history of AEs included records of 19 types, and the number of records varied

depending on the model. For example, Model III for mortality at week 4 includes bleeding

events at the time of implant, and each of the subsequent three weeks.

7.2.4 Feature selection

This study utilized a feature selection method called Recursive Feature Elimination

(RFE) [206, 207] on the training set of each model to reduce the > 350 features in IN-

TERMACS to a compact set of the most relevant or important features in predicting death

after LVAD implant. The RFE algorithm trains a model on the dataset and removes the

least important feature(s) from the current feature set until a desired number of features is

reached or the model’s performance reaches a certain threshold [208] – in this study the area

under the curve (AUC) of receiver operating characteristic (ROC).

7.2.5 Sampling

The data for all three models shows an imbalance in the proportion of dead patients

(Dead class) containing only 1% of the data for predicting death in the forth week (versus the

SURV class that accounts for 99%.) Therefore, to avoid bias towards predicting the majority
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class (SURV) the ROSE (Random Over-Sampling Examples) method was employed to alter

the class distribution and obtain a more balanced sample. The ROSE method involves

oversampling the minority class by creating synthetic data points that closely resemble the

real ones with respect to a probability distribution centered on the selected sample [209]. The

ROSE method uses smoothed bootstrapping to randomly select examples from the minority

class and create new copies until the number of samples in the minority class matches that

of the majority class.

7.2.6 Training predictive models

The study employed a random forest (RF) algorithm to derive and tune three models

from the training datasets, using 5 repeated 10-fold cross-validations. The RF algorithm is

a widely-used ensemble technique that combines multiple decision trees based on bootstrap

samples from the data with random feature selection [160]. Each decision tree then casts a

vote for a patient and the majority vote determines the classifier’s output.

The boosted decision trees are constructed by computing an importance score for each

feature, which is determined by the magnitude of improvement in the performance that is

measured at the corresponding split point in a tree, weighted by the number of patients in

each node [172]. The overall importance scores for each of the features is then computed as

the average of all scores across all decision trees.

7.2.7 Evaluation of performance of predictive models

Due to the severe imbalance in this datasets, special attention must be given to the minor-

ity (Dead) class when evaluating the performance of predictive models. Standard evaluation

metrics like ROC (Receiver Operating Characteristic) that give equal weight to both ma-

jority and minority classes can lead to an overly-optimistic assessment of performance [128].

Therefore, this study also employed Precision-Recall Curve (PRC) to assess the discrimi-

nation power of the model. Specific details of ROC and PRC are provided previously in

Sections 5.1.2.3 and 5.1.2.4.
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7.3 Results

7.3.1 LVAD patients characteristics

Table 12 summarizes the baseline characteristics of 15,820 patients. The majority of the

patients were male (78.6%), with an average age of 57 years, and of white ethnicity (67.8%).

The predominant device strategies at the time of implant were destination therapy (41.1%)

and possible bridge to transplant (30.9%). The severity of illness at the time of implantation

was assessed using the New York Heart Association (NYHA) and INTERMACS Patient

Profile stratification. Most patients were categorized as ”IV: Severe limitations” (75.5%) by

NYHA and as “2: Progressive decline” and “3: Stable but inotropic dependent” (68%) by

the INTERMACS patient profile.

7.3.2 Survival and adverse events (AEs) of LVAD patients

The overall survival of the entire cohort during the first post-implant period is presented

in red in the Fig. 61. The probability of survival to the end of the first month is 94%, and it

decreased gradually to approximately 80% by the end of the first year. It is important to note

that there is a 4% decrease in survival probability during the first month compared to a 14%

decrease over the subsequent 11 months. Therefore, this study placed particular emphasis

on predicting mortality in the first month. Multisystem organ failure (30%), neurological

dysfunction (15%), withdrawal of support (8%), and right heart failure (7%) were the listed

as the primary causes of the 840 counts of death that occurred during the first month. (See

Fig. 62.)

The freedom from AE curve (green), indicates that 60% of all patients experienced at

least one AE by the end of the first month. Thereafter, the rate incidence rate of AEs

decreased, yet resulted in 90% incidence (10% freedom from) AEs by the end of the first

year. The Fig. 63 also displays bar plots for the most common types of AEs for each week

during the first month. Bleeding and infection were the two most frequent AEs. The first

week was associated with the greatest incidence of all types of AEs, except bleeding which

was evenly distributed across all weeks.
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Table 12: Baseline patient characteristics on continuous-flow LVADs at time of implant

Patient Characteristics All patients (N=15,820)

Demographic

Gender
Female 3,378 (21.4%)
Male 12,442 (78.6%)

Age group

B: 19-29 656 (4.1%)
C: 30-39 1,127 (7.1%)
D: 40-49 2,210 (14.0%)
E: 50-59 4,343 (27.5%)
F: 60-69 5,353 (33.8%)
G: 70-79 2,028 (12.8%)
H: 80+ 103 (0.7%)

Age 57.1 ± 12.7

Race
Black 3,715 (23.5%)
White 10,730 (67.8%)
Other 1,375 (8.7%)

Indication

Device strategy
Bridge to recovery 56 (0.4%)
Bridge to transplant—listed 4,334 (27.4%)
Possible bridge to transplant 4,891 (30.9%)
Destination therapy 6,499 (41.1%)
Rescue therapy 40 (0.3%)

Severity of illness

New York Heart Association (NYHA)
I: No limitation 12 (0.1%)
II: Slight limitations 98 (0.6%)
III: Marked limitations 2,777 (17.6%)
IV: Severe limitations 11,977 (75.7%)
Unknown 956 (6.0%)

Patient profile
1: Critical cardiogenic shock 2,377 (15.0%)
2: Progressive decline 5,838 (36.9%)
3: Stable but inotropic dependent 4,896 (30.9%)
4: Resting symptoms 2,104 (13.3%)
5: Exertion intolerant 371 (2.3%)
6: Exertion limited 152 (1.0%)
7: Advanced NYHA class III 82 (0.5%)
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Figure 61: Survival for LVAD patients during the first post-LVAD year.

Figure 62: The primary cause of death during the first post-LVAD month.
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Figure 63: Bar-plots of distribution of common types of AE per week over the first post-

LVAD month. Other SAE: Other serious AE.
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7.3.3 Feature selection

The number of features fed to RFE for Models I, II, and III, were 376, 394, and 413,

respectively. The RFE results indicated that the maximum AUC-ROC can be achieved

by including all features; however, a limited subset of features can also achieve an AUC-

ROC within 0.1, namely 15, 16, and 16 for developing Models I, II, III, respectively. For

Model I and Model II, the RFE algorithm selected age at the time of implant as the sole

pre-implant feature. However, in the case of Model III, the RFE algorithm also identified

hemoglobin, serum glutamic-oxaloacetic transaminase-aspartate aminotransferase (SGOT-

AST), and blood urea nitrogen as relevant features. Considering the history of AEs, respira-

tory failure, renal dysfunction, and hepatic dysfunctions were selected for all three models.

Neurological dysfunction was an additional feature selected for Model III. Several features

from first post-LVAD followup were selected for each model such as blood urea nitrogen and

platelets that were common among three models. The complete list of features for each

model are presented and discussed in the “feature importance” section, below.

7.3.4 Performance of Three Models

All three models demonstrated promising performance in predicting early post-LVAD

mortality in the test datasets, with ROC-AUCs ranging from 0.82 to 0.84, as depicted in

Fig. 64a. Their ROC curves exhibited steep initial slopes, indicating high sensitivity and

accurate identification of most mortality cases. Additionally, the curves demonstrated a

balance between sensitivity and specificity, achieving a sensitivity of 80% to 81% at specificity

of 71% to 85% (dashed gray line in Fig. 64a). Fig. 64b shows that the AUC-PRCs ranged

from 0.05 to 0.32, with moderate precision of 100% − 60% for Model I and 100% − 30% in

Model II for a small subset of patients with a high predicted probability of mortality (> 80%)

located in the upper left side of the curves. However, the precision drops dramatically for

predicted probabilities of mortality less than 80%. The ROCs and PRCs indicate that the

three models are highly sensitive and specific, but not precise. This means that selecting a

threshold that provides high sensitivity – more accurately predicting true deaths – comes at

the cost of low precision – predicting a large number of false deaths. A specific illustration
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can be provided by comparing the corresponding confusion matrices, which are tables of

true and false predictions for all patients in the test datasets, are shown in Fig. 65 for

a chosen sensitivity of 80% to 81% (gray dashed lines in 8a and 8b), and corresponding

specificity between 71% and 85% and precision between 5% and 9%. The true predictions

(green elements) in the confusion matrix for Model I indicate that 91 out of 114 dead patients

were correctly predicted as dead by Model I (corresponding to in a sensitivity of 80%) and

2,160 out of 2,994 survived patients were correctly predicted (corresponding to a specificity

of 71%.) However, the false predictions in the confusion matrix indicate that 23 out of 114

dead patients and 834 out of 2,994 survived patients in the test dataset were incorrectly

classified, corresponding to a low precision of 9% for the prediction of death.

7.3.5 Feature importance

Fig. 66 shows the ranking of features in each model based on their relative contribution to

the prediction of mortality, as determined by the RF algorithm. Among the top six features

common to all three models are: age at the time of implant, platelet count, and blood urea

nitrogen (BUN) in the first week after implantation (W1). For Models I and II, additional

top features at W1 included total bilirubin, white blood cell count, and SGOT-AST. For

Model III, other top features were BUN, hemoglobin, and SGOT-AST, all measured before

implantation.

To further investigate the top features for each model, descriptive statistics and box

plots are presented in Fig. 67, Fig. 68, and Fig. 69 for the entire dataset (including both

the training and testing sets). The figures categorize the features by the outcome (class of

prediction: Death vs. SURV) and also show the results of the Wilcoxon test, which tests

the null hypothesis that the feature distribution is the same between survived and dead

patients. For all three models, all features were significantly different between survived and

dead patients, save one: pre-implant SGOT-AST and hemoglobin at W1 for Model III,

which also exhibit similar box plots. The box plots of other features for the three models

show varying degrees of difference between dead and survived patients. For instance, the

distributions of total bilirubin in the datasets for Models I and II are highly right-skewed for
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Figure 64: Discrimination power of models in prediction of early death for patients in test

datasets evaluated by ROC and PRC.

184



True SURV

False Death

False SURV

91 834
23 2,160

True Death

N= 3,108
# Dead = 114

Sensitivity= 80%
Specificity= 71%
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(a) Model I
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Figure 65: Confusion matrices corresponding to sensitivity of 80−81% (gray dashed lines in

ROCs and PRCs in Fig. 64). The green elements are true predictions and the red elements

are false predictions. The sum of the elements in confusion matrices are the total number of

patients in the test datasets for three models.

185



W1: REXP

W1: Hepatic dysfunction

W1: Antiplatelets

W1: Renal dysfunction

W1: Loop diuretics

W1: Respiratory failure

W1: Warfarin

W1: DIALYSIS

W1: Intubation

W1: Blood urea nitrogen (mmol/L)

Pre−implant: Age

W1: SGOT_AST

W1: White blood count  (x10^3/uL)

W1: Platelets (x10^3/uL) 

W1: Total bilirubin (µmol/L)

0 25 50 75 100
Importance

Model I: W2−W4

(a) Model I. REXP:explant of right ventric-
ular assist device.

W2: Hepatic dysfunction

W1: Hepatic dysfunction

W2: Renal dysfunction

Pre−implant: Advanced age

W1: Renal dysfunction

W2: Respiratory failure

W1: Antiplatelets

W1: Warfarin

W1: Loop diuretics

W2: Bleeding

W1: Blood urea nitrogen (mmol/L)

Pre−implant: Age

W1: SGOT_AST

W1: Total bilirubin (µmol/L)

W1: White blood count  (x10^3/uL)

W1: Platelets (x10^3/uL) 

0 25 50 75 100
Importance

Model II: W3−W4

(b) Model II

W3: Respiratory failure

W1: Renal dysfunction

W2: Respiratory failure

W1: Antiplatelets

W3: Neurological dysfunction

W1: Warfarin

W3: Renal dysfunction

W1: Loop diuretics

W3: Hepatic dysfunction

W1: Hemoglobin (g/dl)

Pre−implant: Blood urea nitrogen (mg/dL)

Pre−implant: Hemoglobin (mmol/L)

Pre−implant: Age

Pre−implant: SGOT_AST

W1: Blood urea nitrogen (mmol/L)

W1: Platelets (x10^3/uL) 

0 25 50 75 100
Importance

Model III: W4

(c) Model III

Figure 66: Plot of the relative importance of features for prediction of death for each of the

three models.
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dead patients compared to survived patients, with average total bilirubin levels (µmol/L) of

56 vs. 22 and 46 vs. 22 for dead patients vs. survived patients in Model I and II, respectively.

Another example is the average platelet value (× 103/L) of 112-121 vs. 200-203 for dead vs.

survived patients in three models.

7.4 Discussion

This study was conducted to explore the hypothesis that early mortality after LVAD

implantation is affected by both pre-implant risk factors as well as post-implant follow-up

data and adverse events. Three models were developed based on the INTERMACS National

registry that demonstrated good sensitivity (80% − 81%) and specificity (71% − 85%) for

predicting mortality within three time frames: second to fourth week (W2-W4), second to

third week (W2-W3), and fourth week (W4). The corresponding AUC-ROCs were in the

range 0.82-0.84. Consequently these models offer a reliable tool to identify patients at risk of

mortality in the early weeks following LVAD implantation, hence guide timely intervention

and improved patient outcomes.

Contrasted with the high sensitivity of the models, their precision was poor, with AUC-

PRC ranging from 0.05 to 0.32. This outcome is not surprising in light of the highly imbal-

anced dataset. It indicates a significant number of deaths falsely predicted by the model.

Therefore, patients with predicted mortality require further evaluation through medical diag-

nostic tests - as the cost of testing is far less than the cost of erroneously predicting survival.

Nevertheless, the potential cost-effectiveness of these models in clinical management of LVAD

patients during the critical post-operative period is worthy of future investigation.

Overall, the three models confirmed previously identified risk factors for LVAD mortality,

such as age, platelet count, total bilirubin, blood urea nitrogen, SGOT-AST, white blood cell

count, as well as AEs such as renal failure, respiratory failure, liver dysfunction, stroke, and

post-LVAD treatments such as dialysis [51,52,57,59,61–65,210–213]. The top three features

in terms of importance for Models I and II were platelet count, white blood count and

total bilirubin recorded during the first week. The former is consistent with recent studies
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Death SURV Test Statistic

N = 572 N = 14972

BILI TOTAL UMOL LPost 22 56 172 15 22 31 F1,15542=410, P<0.001

PLATELET X10 3 ULPost 71 112 189 148 200 267 F1,15542=422, P<0.001

SGOT ASTPost 38 61 120 30 38 48 F1,15542=296, P<0.001

WBC X10 3 ULPost 11 15 21 9 12 15 F1,15542=163, P<0.001

AGE DEIDENT 55 64 69 50 59 66 F1,15542=79, P<0.001

BUN MMOL LPost 8 13 20 6 9 13 F1,15542=185, P<0.001

Figure 67: Descriptive statistics for top features in Model I predicting death during W2-W4

(N = 15, 544). Table: a b c represent the lower quartile a, the median b, and the upper

quartile c for continuous variables. Test used: Wilcoxon test.
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Death SURV Test Statistic

N = 335 N = 14917

W1: Platelets (x103/uL) 74 116 190 146 200 267 F1,15250=221, P<0.001

W1: White blood count (x103/uL) 10 14 20 9 12 15 F1,15250=74, P<0.001

W1: Total bilirubin (µmol/L) 22 46 155 15 22 31 F1,15250=190, P<0.001

W1: SGOT AST 38 56 107 30 38 49 F1,15250=137, P<0.001

Pre-implant: Age 56 64 70 50 59 66 F1,15250=60, P<0.001

W1: Blood urea nitrogen (mmol/L) 9 13 20 6 9 13 F1,15250=111, P<0.001

Figure 68: Descriptive statistics for top features in Model II predicting death during W3-W4

(N = 15, 252). a b c represent the lower quartile a, the median b, and the upper quartile c

for continuous variables. Test used: Wilcoxon test.
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Death NAE Test Statistic

N = 158 N = 14871

W1: Platelets (x103/uL) 83 121 187 147 203 273 F1,15027=94, P<0.001

W1: Blood urea nitrogen (mmol/L) 9 14 21 6 9 14 F1,15027=56, P<0.001

Pre-implant: SGOT AST 25 34 62 22 32 59 F1,15027=2, P=0.2

Pre-implant: Age 54 64 70 50 60 67 F1,15027=13, P<0.001

Pre-implant: Hemoglobin (mmol/L) 6 7 8 6 7 8 F1,15027=13, P<0.001

Pre-implant: Blood urea nitrogen (mg/dL) 22 32 45 18 26 39 F1,15027=12, P<0.001

W1: Hemoglobin (g/dL) 8 9 10 8 9 10 F1,15027=0.03, P=0.9

Figure 69: Descriptive Statistics for top features in Model III predicting death during W4

(N = 15, 029). a b c represent the lower quartile a, the median b, and the upper quartile c

for continuous variables. Test used: Wilcoxon test.
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suggesting that platelet dysfunction may be a strong predictor of adverse outcomes [214,215].

Additionally, a 2021 study by Shah et al. found that total bilirubin after LVAD was a

predictor of 60-day mortality [216].

Renal failure and respiratory failure were the the only AEs that were common to three

models among the 19 recorded types. This finding is consistent with multi-system organ

failure being the primary cause of death within the first month (as shown in Fig. 62).

The only other AEs that were identified as risk factors were bleeding (in Model II) and

neurological dysfunction (in Model III.)

When considering the timing of risk factors, it is worth noting that all risk factors for

mortality in W2-W4 (Model I) and W3-W4 (Model II) except for age were related to the

first week post-implant data and the patient’s AE history. Additionally, the top features

that influenced the predictions in all three models, especially the first two, were related to

the first-week follow-up data in INTERMACS, rather than the patient’s AE history.

It is worth noting that INTERMACS collects post-implant follow-up data at one week

and then at one month, and there is a missingness rate of over 30% in more than 200

columns of data at one week. The importance of post-LVAD data, specifically lab values, in

the early weeks after implant highlights the significance of monitoring patients closely in the

early post-implant period. Future model developments could benefit from access to more

frequent, and more complete (less missing) data with in the early weeks.

A limitation of this study is that it was restricted to the set of clinical variables that

were present in the INTERMACS registry, which, as previously mentioned, was further

hampered by the high degree of missingness. Future addition of unstructured data, such

as echocardiographic or radiographic data could potentially improve the performance of the

models. A further limitation was that the majority of patients included in the publicly

available version of the INTERMACS registry (2017) were implanted with older generation

LVADs, such as Heartmate II. Therefore, the generalizability of the findings needs to be

examined for new technology, as patients implanted with newer devices, such as Heartmate

3 LVAD, were not well represented in this cohort. However, most of the risk factors in all

three models have been identified in very recent studies with the latest generation of LVADs.
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7.5 Conclusion

This study used machine learning models to predict mortality within three different time

frames in first month after LVAD implantation using data obtained prior to implant, during

the first week of follow-up, and history of AEs from the INTERMACS National registry.

The models performed well in terms of high sensitivity (AUC-ROC of greater than 0.8)

suggesting they have the potential to be valuable screening tools for identifying patients

who may benefit from closer monitoring and interventions during the critical post-operative

period. Age, platelet count, and blood urea nitrogen levels during the first week following

LVAD implantation were among the most relevant features in all three models. This study

confirmed the importance of follow-up data, treatment and adverse events for predicting

mortality in the early weeks after LVAD implantation.
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8.0 Concluding Remarks and Future Work

This study addressed the potential risks associated with left ventricular assist devices

(LVADs), which have been shown to improve survival rates and quality of life while carrying

a high risk of more than twenty various types of adverse events (AEs) such as bleeding,

infection, neurological dysfunction, and respiratory failure. These AEs could lead to mor-

bidity, mortality, and adversely affect the quality of life, ultimately increasing the cost of

LVAD. As a result, there was a pressing need to gain a deep understanding of AE journeys in

LVAD patients, including the assessment of future AE risks during patient selection before

implantation and the early detection of AEs after implantation. This study addressed these

needs, some of them for the first time and others for improvement, by encompassing three

machine learning applications: (1) post-LVAD sequential AE pattern mining (Chapter 4)

and clustering (Chapter 6), (2) pre-LVAD predictive risk modeling (Chapter 5) , and (3)

post-LVAD risk modeling (Chapter 7).

For the first time, this study presented patients’ post-LVAD AEs as a temporal sequence,

where each AE was considered a unique element connected to other elements in a sequence to

identify transitions between AEs. Data from a large number of patients’ histories of temporal

AEs were summarized and visualized as a set of temporal AE sequences. Sequential pattern

mining techniques were applied to extract patterns within the AE sequences, answering

questions such as the types of AEs experienced by patients and the order in which they

occurred. Additionally, this study explored the temporal aspects of the AE journey by

identifying critical time points following LVAD implantation, common time spans, and time

gaps between AEs. The post-LVAD clustering analysis provided a comprehensive overview

of AEs in the LVAD population by identifying subgroups of patients with specific patterns

of AEs. The results of this study has the potential to inform personalized care strategies,

resource allocation, and the scheduling of follow-up appointments.

Furthermore, this study improved pre-implant predictive risk models for post-LVAD

mortality and right heart failure (RHF) and addressed, for the first time, the imbalance

issue and the choice of proper evaluation metrics for model performance. The pre-LVAD risk
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models can enhance patient selection for LVAD implantation, enabling the identification and

stabilization of high-risk patients before the procedure.

Moreover, this study developed a post-LVAD mortality risk model for the early weeks

after LVAD implantation, based on pre- and post-LVAD data as well as the history of AEs.

The post-LVAD risk model enable the anticipation of future AEs, empowering healthcare

providers to implement preventive measures or make necessary adjustments to treatment

plans. This enhancement improved patient outcomes and reduced potential complications.

8.1 Pre- and Post-LVAD Risk Models as Screening Tools

Both pre-LVAD predictive risk models and post-LVAD models have demonstrated high

sensitivity but low precision. The high sensitivity indicates that these risk models can effec-

tively serve as screening tools, aiding clinicians in the early detection of AEs by accurately

identifying a majority of patients with low risk. However, due to the considerable false

positive rate (low precision), they cannot be solely relied upon as diagnostic tools.

Screening tools have proven effective in various diseases, such as breast cancer, detecting

conditions at early stages. Similarly, pre- and post-LVAD risk models can assist in the early

identification of AEs in patients with low risk. Nevertheless, a small percentage of patients

identified as high risk by these models require further diagnostic tests or procedures to

confirm the presence of actual high risk of AEs, as these predictions may be false positives.

Future studies should explore the existence of appropriate clinical tests or procedures to

validate the risk predictions.

Additionally, a thorough investigation into the cost implications of false predictions is

essential. Estimating the costs associated with false high vs. low risk predictions, along with

the consequences of subsequent decisions based on these predictions, would provide valuable

insights. Evaluating the cost-effectiveness from financial, clinical, and emotional perspectives

will aid in determining the overall benefit of the screening tools and their applicability in

specific LVAD populations. This cost analysis could also establish a threshold for acceptable

false predictions, acting as a benchmark for future predictive models.
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Furthermore, optimizing the usage of pre-LVAD models requires considering the entire

patient journey, including the path leading to LVAD implantation. Currently, pre-implant

models rely on data from a single time point shortly before surgery, whereas LVAD candidates

are typically under clinical supervision for an extended period. Incorporating risk models

at earlier stages of patient care, taking into account longitudinal data, may enhance their

effectiveness in guiding therapy selection and decision-making.

8.2 Post-LVAD Clustering

In this research, patients’ AE sequences were initially grouped into clusters based on

similarity, and individual Markov models or hidden Markov models (HMMs) were fitted

for each cluster. However, this approach is sensitive to the original clustering and may

not adequately handle borderline cases. As a suggestion for future studies, an alternative

approach is to fit a single model for the entire dataset and determine clustering during

the modeling process by employing mixture hidden Markov models (MHMMs). MHMMs

assume that the data consists of latent sub-populations with varying patterns, allowing

for the clustering of AE sequences during the modeling process. MHMMs offer several

advantages, including the ability to incorporate covariates to predict cluster memberships

or transition probabilities. This enables a more comprehensive exploration of post-LVAD

journey phenotypes by considering factors such as age, lab values, medication treatment,

and demographic information alongside post-implant AEs.

8.3 Toward A clinical decision support system

The integration of the three modules in this research presents promising opportunities

for laying the groundwork for a comprehensive toolkit or software that aids decision-making

throughout the entire process of LVAD therapy. This toolkit can assist in candidate selection

for VAD implantation, designing personalized care strategies, allocating resources effectively,
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and implementing preventive measures for potential future AEs. By encompassing the full

spectrum of VAD therapy, this integrated toolkit can support clinicians in making informed

decisions and improving patient care at every stage of the treatment journey. However, the

development of a clinical decision support system (CDSS) for LVAD is not without chal-

lenges. Previous studies have shown that CDSSs often fail to improve patient outcomes due

to a lack of user-centered human-computer interaction considerations in their design. Addi-

tionally, there are attitudinal, informational, social, and environmental barriers that impact

the adoption and perceived value of prognostic decision support tools in clinical practice.

These barriers include a perceived lack of need, a lack of trust in intelligent systems, mis-

matched information flow, and restrictions posed by hospital environments. Future research

is needed to address these challenges and develop effective CDSSs that embrace clinical

context, integrate with the decision process, and blend human and machine intelligence to

enhance clinical decision-making in LVAD therapy.

8.4 Beyond LVAD Therapy

This thesis primarily explores the applications of machine learning in optimizing a spe-

cific therapy option for patients with advanced heart failure. However, it is important to

acknowledge that there are alternative treatment options available, including cardiac rehabil-

itation (a.k.a. cardiac recovery.) Future studies in the field of advanced heart failure should

adopt a holistic approach to therapy selection, taking into account not only the efficacy

of the treatments but also societal factors and cost effectiveness. By incorporating a com-

prehensive analysis of cost effectiveness, healthcare professionals can make more informed

decisions about the most suitable therapy for each patient, considering both clinical outcomes

and financial implications. Such research endeavors have the potential to greatly enhance

the management of advanced heart failure and improve patient care in a more holistic and

economically efficient manner.
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H. Schima, “The left ventricular assist device as a patient monitoring system,” Ann.
Thorac. Cardiovasc. Surg., vol. 10, no. 2, p. 221, 2021.

[122] M. Khaledi, M. Dehghani, M. Mohammadi, and R. Abolpour, “Controller design for
left ventricular assist devices in patients with heart failure,” in 27th national and 5th
Int. Iranian conf. Biomed. Eng. IEEE, 2020, pp. 326–332.

[123] M. Maw, C. Gross, T. Schloeglhofer, K. Dimitrov, D. Zimpfer, F. Moscato, and
H. Schima, “Development of suction detection algorithms for a left ventricular as-
sist device from patient data,” Biomed. Signal Process. Control, vol. 69, p. 102910,
2021.

[124] S. Sadatieh, M. Dehghani, M. Mohammadi, and R. Boostani, “Extremum-seeking
control of left ventricular assist device to maximize the cardiac output and prevent
suction,” Chaos, Solitons & Fractals, vol. 148, p. 111013, 2021.

[125] S. Aras, T. Johnson, C. Gniady, R. Skaria, and Z. Khalpey, “Indetector–automatic
detection of infected driveline regions,” Smart Health, vol. 9, pp. 170–178, 2018.

[126] K. Kourou, G. Rigas, K. P. Exarchos, Y. Goletsis, T. P. Exarchos, S. Jacobs, B. Meyns,
M.-G. Trivella, and D. I. Fotiadis, “Prediction of time dependent survival in hf pa-
tients after vad implantation using pre-and post-operative data,” Comput. Biol. Med.,
vol. 70, pp. 99–105, 2016.

[127] S. E. Felix, A. Bagheri, F. R. Ramjankhan, M. R. Spruit, D. Oberski, N. De Jonge,
L. W. Van Laake, W. J. Suyker, and F. W. Asselbergs, “A data mining-based cross-
industry process for predicting major bleeding in mechanical circulatory support,”
Eur. heart J. Digit. health, vol. 2, no. 4, pp. 635–642, 2021.

210



[128] F. Movahedi, R. Padman, and J. F. Antaki, “Limitations of receiver operating char-
acteristic curve on imbalanced data: assist device mortality risk scores,” The Journal
of Thoracic and Cardiovascular Surgery, 2021.

[129] J. A. Osheroff, J. M. Teich, D. Levick, L. Saldana, F. Velasco, D. F. Sittig, K. M.
Rogers, and R. A. Jenders, Improving outcomes with clinical decision support: an
implementer’s guide. CRC Press, 2012.

[130] J. A. Osheroff, J. M. Teich, B. Middleton, E. B. Steen, A. Wright, and D. E. Detmer,
“A roadmap for national action on clinical decision support,” J. Am. Med. Inform.
Assoc., vol. 14, no. 2, pp. 141–145, 2007.

[131] R. T. Sutton, D. Pincock, D. C. Baumgart, D. C. Sadowski, R. N. Fedorak, and
K. I. Kroeker, “An overview of clinical decision support systems: benefits, risks, and
strategies for success,” NPJ Digit. Med., vol. 3, no. 1, p. 17, 2020.

[132] A. M. Antoniadi, Y. Du, Y. Guendouz, L. Wei, C. Mazo, B. A. Becker, and C. Mooney,
“Current challenges and future opportunities for xai in machine learning-based clinical
decision support systems: a systematic review,” Appl. Sci., vol. 11, no. 11, p. 5088,
2021.

[133] A. Belard, T. Buchman, J. Forsberg, B. K. Potter, C. J. Dente, A. Kirk, and E. Elster,
“Precision diagnosis: a view of the clinical decision support systems (cdss) landscape
through the lens of critical care,” J. Clin. Monit. Comput., vol. 31, pp. 261–271, 2017.

[134] M. Abbasi and S. Kashiyarndi, “Clinical decision support systems: A discussion on
different methodologies used in health care,” Marlaedalen University Sweden, 2006.

[135] E. S. Berner, Clinical decision support systems. Springer, 2007, vol. 233.

[136] I. Sim, P. Gorman, R. A. Greenes, R. B. Haynes, B. Kaplan, H. Lehmann, and P. C.
Tang, “Clinical decision support systems for the practice of evidence-based medicine,”
J. Am. Med. Inform. Assoc., vol. 8, no. 6, pp. 527–534, 2001.

[137] R. C. Deo, “Machine learning in medicine,” Circ., vol. 132, no. 20, pp. 1920–1930,
2015.

[138] Z. Obermeyer and E. J. Emanuel, “Predicting the future—big data, machine learning,
and clinical medicine,” N. Engl. J. Med., vol. 375, no. 13, p. 1216, 2016.

211



[139] J. Schaaf, M. Sedlmayr, J. Schaefer, and H. Storf, “Diagnosis of rare diseases: a
scoping review of clinical decision support systems,” Orphanet J. Rare Dis., vol. 15,
no. 1, pp. 1–14, 2020.

[140] S. Walsh, E. E. de Jong, J. E. van Timmeren, A. Ibrahim, I. Compter, J. Peerlings,
S. Sanduleanu, T. Refaee, S. Keek, R. T. Larue et al., “Decision support systems in
oncology,” JCO Clin. Cancer Inform., vol. 3, pp. 1–9, 2019.

[141] C. Mazo, C. Kearns, C. Mooney, and W. M. Gallagher, “Clinical decision support
systems in breast cancer: a systematic review,” Cancers, vol. 12, no. 2, p. 369, 2020.

[142] F. Velickovski, L. Ceccaroni, J. Roca, F. Burgos, J. B. Galdiz, N. Marina, and
M. Lluch-Ariet, “Clinical decision support systems (CDSS) for preventive manage-
ment of COPD patients,” J. Transl. Med., vol. 12, pp. 1–10, 2014.

[143] P. Sherimon, V. Sherimon, S. Preethii, R. V. Nair, and R. Mathew, “A systematic
review of clinical decision support systems in alzheimer’s disease domain,” Int. j.
online biomed., vol. 17, no. 08, p. 75, 2021.

[144] P. Jia, P. Zhao, J. Chen, and M. Zhang, “Evaluation of clinical decision support
systems for diabetes care: an overview of current evidence,” J Eval. Clin. Pract.,
vol. 25, no. 1, pp. 66–77, 2019.

[145] R. Jeffery, E. Iserman, R. Haynes, and C. S. R. Team, “Can computerized clinical
decision support systems improve diabetes management? a systematic review and
meta-analysis,” Diabet. Med., vol. 30, no. 6, pp. 739–745, 2013.

[146] S. M. Ali, R. Giordano, S. Lakhani, and D. M. Walker, “A review of randomized
controlled trials of medical record powered clinical decision support system to improve
quality of diabetes care,” Int. J. Med. Inform., vol. 87, pp. 91–100, 2016.

[147] Y. Lu, E. R. Melnick, and H. M. Krumholz, “Clinical decision support in cardiovas-
cular medicine,” bmj, vol. 377, 2022.

[148] R. Anchala, M. P. Pinto, A. Shroufi, R. Chowdhury, J. Sanderson, L. Johnson,
P. Blanco, D. Prabhakaran, and O. H. Franco, “The role of decision support system
(dss) in prevention of cardiovascular disease: a systematic review and meta-analysis,”
vol. 7, no. 10, p. e47064, 2012.

212



[149] E. Karvounis, M. Tsipouras, A. Tzallas, N. Katertsidis, K. Stefanou, Y. Goletsis,
M. Frigerio, A. Verde, R. Caruso, B. Meyns et al., “A decision support system for
the treatment of patients with ventricular assist device support,” Methods Inf. Med.,
vol. 53, no. 02, pp. 121–136, 2014.

[150] A. T. Tzallas, N. S. Katertsidis, E. C. Karvounis, M. G. Tsipouras, G. Rigas, Y. Go-
letsis, K. Zielinski, L. Fresiello, A. Di Molfetta, G. Ferrari et al., “Modeling and
simulation of speed selection on left ventricular assist devices,” Comput. Biol. Med.,
vol. 51, pp. 128–139, 2014.

[151] M. G. Tsipouras, E. C. Karvounis, A. T. Tzallas, N. S. Katertsidis, Y. Goletsis,
M. Frigerio, A. Verde, M. G. Trivella, and D. I. Fotiadis, “Adverse event prediction
in patients with left ventricular assist devices,” in 35th Proc. Annu. Int. Conf. IEEE
Eng. Med. Biol. IEEE, 2013, pp. 1314–1317.

[152] P. Valdastri, N. Taccini, A. Pinciaroli, M. Nannizzi, and P. Dario, “Wearable and
implanted sensors platform to monitor and control left ventricular assist devices,” in
5th European Conference of the International Federation for Medical and Biological
Engineering: 14–18 September 2011, Budapest, Hungary. Springer, 2012, pp. 964–
967.

[153] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Ann.
Stat., pp. 1189–1232, 2001.

[154] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proc. 22nd
acm sigkdd, 2016, pp. 785–794.

[155] B. Ghojogh and M. Crowley, “The theory behind overfitting, cross validation, regu-
larization, bagging, and boosting: tutorial,” arXiv preprint arXiv:1905.12787, 2019.

[156] M. J. Zaki, “Spade: An efficient algorithm for mining frequent sequences,” Mach.
Learn., vol. 42, no. 1, pp. 31–60, 2001.

[157] E. L. Kaplan and P. Meier, “Nonparametric estimation from incomplete observations,”
JASA, vol. 53, no. 282, pp. 457–481, 1958.

[158] K. Lietz, J. W. Long, A. G. Kfoury, M. S. Slaughter, M. A. Silver, C. A. Milano, J. G.
Rogers, L. W. Miller, M. Deng, Y. Naka et al., “Impact of center volume on outcomes
of left ventricular assist device implantation as destination therapy: analysis of the

213



thoratec heartmate registry, 1998 to 2005,” Circ. Heart Fail., vol. 2, no. 1, pp. 3–10,
2009.

[159] J. A. Cowger, J. M. Stulak, P. Shah, T. F. Dardas, F. D. Pagani, S. M. Dunlay,
S. Maltais, K. D. Aaronson, R. Singh, N. A. Mokadam et al., “Impact of center
left ventricular assist device volume on outcomes after implantation: an intermacs
analysis,” JACC: Heart Fail., vol. 5, no. 10, pp. 691–699, 2017.

[160] L. Breiman, “Random forests,” Mach. learning, vol. 45, no. 1, pp. 5–32, 2001.

[161] J. Cook and V. Ramadas, “When to consult precision-recall curves,” SJ, vol. 20, no. 1,
pp. 131–148, 2020.

[162] M. A. Mazurowski, P. A. Habas, J. M. Zurada et al., “Training neural network classi-
fiers for medical decision making: The effects of imbalanced datasets on classification
performance,” Neural Netw., vol. 21, no. 2-3, pp. 427–436, 2008.

[163] L. Zhang, H. Yang, and Z. Jiang, “Imbalanced biomedical data classification using self-
adaptive multilayer elm combined with dynamic gan,” Biomed. Eng. Online, vol. 17,
no. 1, p. 181, 2018.

[164] T. Gao, Y. Hao, H. Zhang et al., “Predicting pathological response to neoadjuvant
chemotherapy in breast cancer patients based on imbalanced clinical data,” Pers.
Ubiquit. Comput., vol. 22, no. 5-6, pp. 1039–1047, 2018.

[165] S. Fotouhi, S. Asadi, and M. W. Kattan, “A comprehensive data level analysis for
cancer diagnosis on imbalanced data,” J. Biomed. Inform, vol. 90, p. 103089, 2019.

[166] H. Ishwaran and E. H. Blackstone, “Commentary: Dabblers: Beware of hidden dan-
gers in machine-learning comparisons,” 2020.

[167] H. Ishwaran and R. O’Brien, “Editorial commentary: the problem of class imbalance
in biomedical data,” J Thorac Cardiovasc Surg, vol. 1, p. 2, 2020.

[168] ——, “Letter to the editor: the standardization and automation of machine learning
for biomedical data,” J Thorac Cardiovasc Surg, 2020.

214



[169] H. Guo and H. L. Viktor, “Learning from imbalanced data sets with boosting and
data generation: the databoost-im approach,” SIGKDD Explor., vol. 6, no. 1, pp.
30–39, 2004.

[170] R. O’Brien and H. Ishwaran, “A random forests quantile classifier for class imbalanced
data,” Pattern Recognit., vol. 90, pp. 232–249, 2019.

[171] S. J. Swamidass, C.-A. Azencott, K. Daily, and P. Baldi, “A croc stronger than roc:
measuring, visualizing and optimizing early retrieval,” Bioinformatics, vol. 26, no. 10,
pp. 1348–1356, 2010.

[172] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of sta-
tistical learning: data mining, inference, and prediction. Springer, 2009, vol. 2.

[173] J. F. Yates, “External correspondence: Decompositions of the mean probability
score,” Organ. Behav. Hum. Decis. Process., vol. 30, no. 1, pp. 132–156, 1982.

[174] Y. Ochiai, P. M. McCarthy, N. G. Smedira, M. K. Banbury, J. L. Navia, J. Feng,
A. P. Hsu, M. L. Yeager, T. Buda, K. J. Hoercher et al., “Predictors of severe right
ventricular failure after implantable left ventricular assist device insertion: analysis of
245 patients,” Circulation, vol. 106, no. 12 suppl 1, pp. I–198, 2002.

[175] T. S. Wang, A. F. Hernandez, G. M. Felker, C. A. Milano, J. G. Rogers, and C. B. Pa-
tel, “Valvular heart disease in patients supported with left ventricular assist devices,”
Circ. Heart Fail., vol. 7, no. 1, pp. 215–222, 2014.
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