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Segmentation
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University of Pittsburgh, 2023

Deep convolutional neural networks (DCNNs) are a popular deep learning technique that

has been widely used in segmentation tasks and has received positive feedback. However,

DCNN-based frameworks are known to be inadequate in dealing with global relations within

imaging features when it comes to segmentation tasks. While several techniques have been

proposed to enhance the global reasoning of DCNN, these models are either unable to achieve

satisfactory performance compared to traditional fully-convolutional structures or unable

to utilize the fundamental advantages of CNN-based networks, namely the ability of local

reasoning. In this study, we designed a novel attention mechanism for 3D computation and

used it to fully extract the self-attention ability. We proposed a new segmentation framework

(called 3DTU) for three-dimensional medical image segmentation tasks, which processes

images in an end-to-end manner and performs 3D computation on both the encoder side (with

a 3D transformer) and the decoder side (based on a 3D DCNN). In comparison to existing

attempts to combine FCNs and global reasoning methods, our framework outperforms several

state-of-the-art segmentation methods on two independent datasets consisting of 3D MRI

and CT images, as evidenced by experimental results.
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1.0 Introduction

In the past few years, deep convolutional neural networks (DCNNs)[23, 38, 16, 33, 1, 18]

have achieved considerable progress in medical image segmentation [4, 30, 31, 32, 40, 48].

However, limited to the local receptive field of the convolutional filter, DCNN-based frame-

works are incapable of capturing long-range dependencies from global features for semantic

segmentation. To tackle this, several strategies can be considered. First is to use the dilated

convolution operation to enlarge the size of the receptive field of the convolutional filter

[46, 49, 45, 29]. However, this enlarged local receptive field is still limited by the size of dila-

tion. Another solution is to model the feature map as graph structures and investigate the

long-range dependencies through the message-passing mechanism of different graph learning

models (e.g., graph convolution networks) [26, 6, 25, 21]. Although these graph learning

models have shown great potential in enhancing the global reasoning ability of DCNNs, they

have very high requirements for computation and memory due to the constructed large-size

graphs.

The attention mechanism [42, 17] is a computation scheme that tries to generate repre-

sentations via different types of global features at each step. Since attention can be regarded

as the conversion and transformation among the query(q), key (k), and value (v) triplet,

attention computation is to generate the q based on the combination of the k-v pair. As it

is natural to integrate a cycling computation in recurrent cells, traditional attention mecha-

nisms are integrated within recurrent neural networks (e.g.,[17, 7]), which inevitably impairs

the efficiency of recurrent networks compared with linear/residual networks [42]. To cope

with this, [42] proposed Transformer, a structure consisting of a series of identical encoder

blocks connected with a series of identical decoder blocks, which all have no convolutional

layer and are connected in a residual way. The original Transformer supported by self-

attention works exceptionally well on some tasks like machine translation but not in visual

tasks [3]. This is mainly due to the lack of convolution layers which makes the model struggle

to detect local features.

For the aforementioned reasons, convolutional-based frameworks are still preferred for
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segmentation tasks. Although several other models [5, 13] have been proven feasible, DCNNs

remain to be one of the most effective methods. Multiple variants of DCNNs have been

proposed to make the segmentation process more effective, one of the most crucial ones is

the UNet [37], which is a symmetric structure consisting of convolutional blocks with skip-

connections. These convolutional blocks have descending dimensions on the encoder side and

ascending dimensions on the decoder side. However, due to the intrinsic fully-convolution

structure, UNet is suboptimal to relate local features to global representations with more

variant distribution [3]. To cope with the drawbacks of UNet, many methods have been

proposed [28, 51, 18, 10]. However, these methods are either very time-consuming or require

heavy computations which makes it impossible to be applied to 3D objects.

Under such circumstances, the self-attention mechanism seems to be a nearly optimal

solution. It is highly modulized and can stretch the number of self-attention cells according

to the training environment. It can also train on vast datasets since the training nature of

attention. Therefore, researchers combined the Transformer with convolutional layers for

medical image segmentation [24]. On one hand, the Transformer encodes tokenized image

patches from a CNN feature map as the input sequence for extracting global contexts. On

the other hand, the decoder upsamples the encoded features which are then combined with

high-resolution CNN feature maps to enable precise localization.

However, this approach still has some obstacles, especially in the segmentation of 3D ob-

jects. This is partially due to Transformers[42] require the input features to have temporal

information. Since self-attention does not compute with a clear direction, features have to be

preprocessed with temporal info (e.g., cosine function) as input embeddings before training.

Although this learning process can be seen as natural (scanning the features linearly and with

order), it will restrict the performance of high-dimensional data. For example, many existing

Transformer approaches [3, 34, 18] will cut the 3D object into 2D slice sequences to meet the

temporal encoding requirement, the segmentation performance, however, is actually worse,

which may be due to the 2D slice cutting will destroy the smoothness of the object in 3D

space. Bi-directional Transformer [9] is a powerful upgrade version of Transformer. It is a

structure with no decoder and processes the inputs all at once with masks to create tempo-

ral/spatial continuity. However, we will show in the experiment section that bi-directional
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Transformers can serve as a strong encoder but still struggles to get better results on 3D

segmentation. To compensate for the loss of feature resolution brought by Transformers,

we propose 3D Transformer UNet (3DTU), which employs a hybrid CNN-Transformer ar-

chitecture to leverage both detailed high-resolution spatial information from CNN features

and the global context encoded by our new 3D bi-directional Transformer module. We show

that such a design allows our framework to preserve the advantages of self-attention mecha-

nisms and also get considerably improved results on 3D image segmentation compared with

previous U-Net-based or Transformer-based methods. To sum up, our contributions in this

paper can be summarized as follows:

• We proposed a new 3D bi-directional framework to learn deep 3D features for medical

image semantic segmentation.

• We designed a novel attention mechanism specifically suitable for network training and

self-attention computation for 3D objects.

• We verified our new framework on multiple datasets, consisting of different imaging

modalities (MRI and CT images) and different organs (placenta and lungs infected with

COVID) and got state-of-the-art (SOTA) results. Our method beat baselines in perfor-

mances on multiple metrics.

3



2.0 Related Work

2.1 Fully Convolutional Network in Medical Image Segmentation

Many studies have attempted to adopt convolutional networks to medical image seg-

mentation. For example, [28] presented a hybrid network consisting of both 3D CNN and

2D CNN in brain image segmentation for Alzheimer’s Disease (AD) studies. [37] presented

Unet, one of the most iconic encoder-decoder-based methods for medical image segmenta-

tion. Their method consists of convolutional blocks that have a U-shaped dimension vari-

ation. Specifically, from the input layer of the encoder to the input layer of the decoder,

each block’s dimension is descending. And the decoder has an ascending dimension that is

matched to the encoder blocks. Such a design makes sure that the learning ability of the

framework is powerful enough to find the abstract of the locality and output a global rep-

resentation map. Several adjustments (e.g., [51, 18]) have been made to the original UNet

model. For example, U-Net3+ [18] and its variations, although proved effective, still suffer

from the locality-heavy learning scheme. Some researchers tried to boost the local reasoning

of convolutional layers through the residual structure. For example, ResUNet[10] proposed a

residual block between every two convolutional blocks in both the encoder side and decoder

side as well as skip-connection between residual blocks with the same dimension between

the encoder and decoder. [19] argued that the understanding of the datasets needed in

training is more important than the network itself since most UNet-based moderations have

achieved little progress. They proposed nnUNet, a robust network that is designed based

on the combination of 2D and 3D UNet. They also made different training configurations

(normalization tricks, cropping, activation functions, etc.) based on the datasets.
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2.2 Transformers

Transformers [42] were initially proposed for general NLP tasks and quickly gain widespread

attention by beating previous most state-of-the-art results by a large margin. [9] converted

the original Transformer model into BERT introduced so-called bi-directional Transformers

and is proven effective again. Naturally, multiple efforts have been made to adjust the learn-

ing ability of Transformers in the computer vision domain. Several variants of Transformers

have emerged recently. [34] is one of the early works to adjust vanilla Transformers by incor-

porating visual information. This model pre-processes each pixel of one image through a 1×1

convolution layer. Then the embeddings are computed with positional embeddings before

feeding into Transformers for super-resolution tasks. In another attempt for visual tasks,

[11] proposed Vision Transformer (ViT), which presented a novel way of input embedding

on visual information. It achieved state-of-the-art on ImageNet classification by directly ap-

plying Transformers with global self-attention to full-sized images. Specifically, ViT flattens

an image to fixed-sized pixels which then be linearly added to positional embeddings before

feeding to Transformer encoders. [41] presented gated axial attention that creates a gated

scheme to improve learning ability on the local scale.

2.3 Combination of UNet and Transformer in Medical Image Segmentation

Multiple attempts have been made to combine the UNet with Transformer in both frame-

work structure and inner encoder/decoder computation. TransUNet [3] consists of a series

of Transformer units as the encoder and the right half of the UNet as the decoder to gener-

ate predictions in medical image segmentation. Both the encoder and the decoder in [3] are

computed in a 2D scenario. [47] introduced SpecTr, a framework that takes spectral nor-

malization into the computation between convolution and attention blocks. Their methods

achieved better results than the baseline when training on hyperspectral medical images. [43]

presented TransBTS which utilizes 3D CNN to extract input representations. UNet Trans-

former, presented by [35], replaces self-attention modules in Transformer encoder/decoder
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cells by convolutional blocks and batch normalization computations. Another attempt is

Swin-UNet [2], which instead replaces convolution blocks in the UNet-Structure network

with self-attention modules. Several works follow the similar manners including UNETR [15],

SWIN UNETR [14], CoTr [44], nnFormer [50], DS-TransUNet [27], UTNet [12] and PNS-

Net [20], etc. In UNETR, the authors presented a novel 3D Transformer encoder and a

voxel-wise loss for model training. For the positional embedding, they adopted a strategy

from the Visual Transformer which divides the 3D images into 3D patches. The decoder

in their work consists of several convolutional blocks in different dimensions and skip con-

nections to the encoder. The SWIN UNETR is proposed for 3D multi-modal MRI brain

image studies, which is different from the SWIN UNET that is proposed for 2D images.

The CoTr utilized a DeTrans-encoder with a novel attention mechanism and a CNN-based

decoder. The nnFormer utilizes CNN as part of the encoder, which leverages the ability of

local feature extraction of CNN structures. Moreover, it utilizes transformer structures as

its decoder and the second part of its encoder. There are two differences between our 3DTU

and the nnFormer. First, we utilize a CNN-based structure (i.e., the right part of 3DUNet)

as our decoder. And we design an attention mechanism that computes the attention scores

from different directions.

The aforementioned methods adjust the Transformers in visual tasks by introducing

their own positional embedding rules. Although these rules are to an extent useful, their

performance all suffers from the slicing of 3D data to adjust the positional embeddings. In

our paper, positional embeddings are not needed technically, even for 3D data. We modify

the multi-head attention from its original form to a refined computation scheme that fully

utilizes the potentials of Transformer and UNet. More importantly, our encoder is a refined

bi-directional Transformer, which learns the feature from three (i.e., along x, y, and z)

directions simultaneously 1.

1We use the term ‘bi-directional’ by following previous studies. However, our 3DTU learns the features
from three directions instead.
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3.0 Methods

We propose a 3D Unet-based framework with bi-directional transformers (named 3DTU)

in this work. The self-attention mechanism in the proposed bi-directional transformers can

improve the ability to generalization of the framework encoder. We will delve into the

technical details in this section.

As shown in Figure 1, our proposed 3DTU is an encoder-decoder framework, where the

encoder consists of two modules including a feature extraction module (see Part I in Figure

1) and a bi-directional transformer module (see Part II in Figure 1). Given a 3D image

I ∈ Rh×w×d×c, where h, w and d is the shape of the image and c is the image channel

number, the feature extraction module projects the 3D image I as a latent representation

X via basic convolutional neural networks (CNNs). Then the 3D bi-directional transformer

cells take the latent representation X as input and yield the masked latent representation XM

by using Masked-LM (MLM) [9] step by step. Finally, the decoder part utilizes the masked

latent representations to reconstruct the segmentation predictions for loss computation.

3.1 Encoder with 3D Bi-directional Transformer

As aforementioned, the encoder of the 3DTU consists of two parts. The first part of

the encoder is a CNN-based feature extraction module. We aim to convert the original 3D

image (I) into an iso-dimensional latent cube representation (X ∈ R1×p×p×p) via this module

as assistance to capture the image locality for transformer modules, since the transformer

module may not have enough ability to capture the image local features. We will show

this point in the ablation studies. Particularly, the feature extraction module includes two

convolutional layers followed by a fully-connected (FC) layer, and a max-pooling layer in

between the two convolutional layers. The FC layer is used to adapt the feature dimension.

The bi-directional transformer module takes the latent cube representation X as input

and computes multi-head attentions with the MLM strategy [9]. Details of the bi-directional
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transformer module are shown in Figure 2. In general, each cell in the bi-directional trans-

former module generates the latent feature map X1 by the following steps:

X
′

= Att(Norm(X)) + X, (3-1)

X
′′

= FF (Norm(X
′
)), (3-2)

X1 = X
′
+ X

′′
, (3-3)

where Att(·) is the multi-head self-attention operation, Norm(·) is a 3D normalization op-

eration, and FF (·) is the feed forward layer (i.e., FC layer). + denotes a pixel-wise add

operation. Particularly, the multi-head attention is computed by:

Att headx,y,zi = SDP (Q,K, V ) ×W, (3-4)

MultiHead(Q,K, V ) = Concat(headxi , head
y
i , head

z
i ), (3-5)

where SDP (·) is the Scaled Dot-Product Attention, W is the trainable parameters for linear

projections (i.e., Lq, Lk, Lv in Figure 2) and Concat(·) denotes a concatenation operation.

Q,K and V are the query-key-value triplets defined by the transformer cell. Note that our

proposed attention mechanism can yield the attention score by scanning the query-key-value

triplets in 3 different directions (i.e., along x, y, and z axis, respectively), which gains plentiful

discriminative and anisotropic semantic information for 3D image segmentation.

3.2 UNet-based Decoder

As shown in Figure 1, we utilize convolutional blocks with ascensional dimensions in the

decoder part. A residual connection is adopted between the encoder side and the decoder

side. Particularly, a cascaded of multi-channel feature map (FM) blocks are integrated into

the decoder part, each of which contains two 3×3×3 convolutional layers and an upsampling

layer. The channel number of feature maps reduces by half after each FM block. In the last

FM block, instead of upsampling layer, a 1 × 1 × 1 convolutional layer is used to generate

final segmentation predictions.
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3.3 Loss Function and Supervision Manner

Since the MLM strategy is used in the encoder part, where a portion of image features

are masked (i.e., set to 0 values) and the other portions remain the same. Hence, our goal is

to use the uncovered portions to predict the masked portions [9], which results in that the

loss is only estimated based on the masked regions. Particularly, the loss function can be

formulated as:

L = α× ℓdice(ŷmask, ymask) + (1 − α) × ℓBCE(ŷmask, ymask), (3-6)

where ŷmask and ymask are the masked regions of segmentation prediction and ground truth,

respectively. α ∈ [0, 1] is the loss weight.
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4.0 Experiments

4.1 Datasets

We used three datasets obtained from different modalities for this study, including Pla-

centa MRI (Placenta) dataset, and COVID-19 CT lung and infection segmentation (Covid20)

dataset, as well as Multi-Atlas Labeling Beyond the Cranial Vault (Synapse) dataset. Details

of data description and preprocessing are shown below.

Placenta MRI Dataset was collected from the Washington University in Saint Louis

(WUSTL) [39], where all data were de-identified before processing. The data collection and

related studies were approved by the Institutional Review Board at the WUSTL. 81 MRI

scans were collected from 46 pregnant patients (mean age = 23.91 ± 3.02 yo, mean BMI

= 25 ± 3.66 at recruitment) with normal singleton pregnancy underwent MRI during the

third trimester, by a Siemens 3T VIDA scanner. 21 of 46 patients had the single scan and

25 patients had multiple longitudinal scans. The average gestational ages (GA) during MRI

scans were 34.12± 1.07 weeks (Min GA 28 wk 3 days, max GA 38 wk 6 days). T2-weighted

MRI of the entire uterus was acquired with a 2D EPI sequence in the left lateral position.

The MRI data has a fixed acquisition matrix of 128 × 128 × 115, and variable voxel sizes

from 3 × 3 × 3 mm to 3.5 × 3.5 × 3.5 mm, up to the patients’ size. Manual segmentation of

the placenta regions was conducted by experienced radiologists for all MRI images.

COVID19-CT-Seg20 Dataset (Covid20) contains 20 COVID-19 3D CT images,

where lungs and infections were annotated by two radiologists and verified by an experienced

radiologist 1 [22]. We only focused on the segmentation of the COVID-19 infections in this

study, since it is more challenging and important.

Multi-Atlas Labeling Beyond the Cranial Vault (Synapse) Dataset. 2 We

use the 30 abdominal CT scans from the MICCAI 2015 Multi-Atlas Abdomen Labeling

Challenge. These scans were captured during portal venous contrast phase with variable

1https://zenodo.org/record/3757476#.Y1NGmy1h1B1
2https://www.synapse.org#!Synapse:syn3193805/wiki/217789
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volume sizes (512 x 512 x 85 - 512 x 512 x 198) and field of views (approx. 280 x 280 x

280 mm3 - 500 x 500 x 650 mm3). The in-plane resolution varies from 0.54 x 0.54 mm2 to

0.98 x 0.98 mm2, while the slice thickness ranges from 2.5 mm to 5.0 mm. we report the

average experimental results on 8 abdominal organs (aorta, gallbladder, spleen, left kidney,

right kidney, liver, pancreas, spleen, stomach) with five-fold validation.

4.2 Implementation Details

In the pre-processing step, we simply normalized the intensities of each 3D image to zero

mean and unit variance. In the training phase, we applied data augmentation techniques

to reduce potential overfitting, including random rotation the image by 90◦ along three

dimensions, and adjusting the brightness of the top 3% pixels. The training iterations

were set to 105. We trained the model using the Adam optimizer with a batch size of 1 and

synchronized batch normalization. The initial learning rate was set to 1e−2 and was decayed

by (1− current epoch
max epoch

)0.9. We also regularized the training with dropout in the transformer cells.

All experiments are conducted using a five-fold cross-validation, based on Pytorch 1.7.1 on

a workstation with 2 NVIDIA TITAN RTX GPUs. The data division on the public Covid20

dataset is adopted by following the division strategy in [36].

As aforementioned, our encoder consists of two parts. In the feature extraction module,

we used a CNN network with two conv layers, one max-pooling layer, and one 1−D fully-

connected layer with the direction of x−y plane to z coordinate to convert the representations

with the original dimension to a cube. The first cov layer, with a kernel size of 3×3×3, embeds

the input 3−D image into local representation maps, while the second conv layer project

the local representation maps for the second part of the encoder via a linear transformation.

The output dimension of the feature extraction module is converted (i.e., reshape) to X ∈

R1×256×256×256. In the bi-directional transformer module, we utilize multiple transformer

cells with the bi-directional self-attention mechanism. Specifically, the input embedding

strategy that we adopted is Masked LM (MLM) [9]. The Masked LM has been proved to

be useful within the previous BERT paper [42], where the image portion masked in the
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encoder is matched to that in the loss computation stage. Moreover, since we do not embed

the data with the positional encoding in our framework, we require a way to learn the 3D

representations through a certain sequence. MLM can well meet this requirement. We set

the number of transformer cells as 12, 6, and 6 for Placenta, Covid20, and Synapse datasets,

respectively. The number of heads within each transformer cell is 15, where each direction

(i.e., x − y, x − z and y − z plane) contains 5 heads to compute self-attention scores. The

length of each mask is set to 16, 32 and 32 for the Placenta, Covid20, and Synapse dataset,

respectively. Each cube representation is divided into 16 parts in the training phase.

4.3 Baseline Settings and Evaluation Metrics

To evaluate our 3DTU’s performance, we choose the following frameworks as baselines:

2DU-Net[37], 3D U-Net[8], UNet++[51], TransUNet[3] as well as ViT (visual transformer)[11],

nnFormer[50], nnUNet[19]. Both 2D and 3D UNet are FCN-based encoder-decoder struc-

tures with convolutional blocks and skip-connections between the encoder and decoder. The

UNet++ is a nested-connected encoder-decoder structure, where each convolutional block

is connected to all other blocks. The TransUNet is an encoder-decoder network, where the

encoder of UNet is replaced by a 2D transformer including a positional embedding scheme

followed by Visual Transformer (ViT). The nnFormer is a 3D UNet-type framework which

replaces the conv blocks by three different novel attention mechanisms.

The metrics we used to evaluate our 3DTU include mIoU, DICE score and Hausdorff

Distance (HD). IoU is the area of overlap between the predicted segmentation and the ground

truth divided by the area of union between them. For binary (two classes) or multi-class

segmentation, the mean IoU (mIoU) of the image is calculated by taking the IoU of each

class and averaging them. DICE score is the harmonic mean of precision and recall of the

segmentation results. mIOU and DICE scores are two overlap-based metrics measuring the

similarity between the ground truths and segmentation predictions. The range of mIOU and

DICE scores is from 0 to 1 and the larger value indicates better segmentation performance.

The directed average Hausdorff distance (HD) from point set X to Y is computed by the sum
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of all minimum distances from all points from point set X to Y divided by the number of

points in X. HD is a shape distance-based metric, which measures the dissimilarity between

the surfaces of the segmentation results and the related ground truths. A lower value of HD

indicates better performance.

4.4 Comparative Experiments

Table 1 provides the performance of our proposed 3DTU and the six competing baselines,

including 2D UNet [37], 3D UNet[37], UNet++ [51], TransUNet [3] and visual transformer

(ViT) [11], and nnFormer [50] on the Placenta and Covid20 datasets. It shows that our

3DTU outperforms all competing baseline methods consistently in terms of mIOU and DICE

scores on both datasets, while beating most of the methods in the baseline in Synapse dataset,

indicating that the segmentation results of our models match well with the ground-truth. For

example, our proposed 3DTU outperforms baselines with at least 0.48% and 0.44% increases

in DICE scores on Placenta and Covid20 datasets, respectively. This may attribute to the

attention mechanism proposed in the 3DTU which can compute the attention scores from

three different directions to yield discriminative and anisotropic semantic features for 3D

images. In general, the transformer-based methods (e.g., TransUNet, ViT etc.) perform

better than the other baseline methods. In addition, we visualized the segmentation results

of our 3DTU and the best baseline method (i.e., nnUNet) on three datasets in Figure 4,

Figure 5 and Figure 6, respectively.

4.5 Ablation Study

We conducted an ablation study on both datasets (i.e., Placenta and Covid20) to eval-

uate the effectiveness of each part in our 3DTU framework. Our 3DTU is an encoder-

decoder-based framework, where the encoder consists of a CNN-networks part as well as

a bi-directional transformer (BiT) part, where the decoder is in the UNet decoder setting.
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Hence, we designed the following four experiments in our ablation study.

• We removed the CNN networks in the encoder and directly fed the input images to the

BiT part.

• We removed the BiT part in the encoder and directly connected the CNN networks to

the UNet decoder.

• We removed the UNet decoder part and consider the BiT as both (part of) encoder and

decoder 3.

• We designed a comparative experiment where we train 3DTU with positional encoded

representations. We encoded the representations at the input of the Transformer encoder.

The results in Table 2 show the effectiveness and necessity of all the sub-parts in our

3DTU. The results in Table 3 indicate that the positional encoding is not necessary for our

framework since our attention mechanism can process the 3D data as a whole. Comparing

with the 3DTU w/o positional encoding, the segmentation dice scores yielded by 3DTU

with positional encoding are not changed or even decreased. When we removed the CNN-

networks and only utilized BiT as the encoder (see results of BiT+Unet Decoder in Table 2),

the segmentation performance decrease on both datasets (e.g., DICE decrease from 84.0%

to 66.9% and from 92.0% to 72.8% on Placenta and Covid datasets, respectively). This

indicates an essential role of CNN-based conv layers in the encoder, without which the self-

attention transformer layers may not localize the raw image pixels precisely. Meanwhile, the

segmentation performance increase when we use BiT instead of UNet as decoder (see results

of CNN + UNet Decoder and CNN + BiT). This manifests that, compared with UNet-based

methods, the (bi-directional) transformers are more powerful in boosting the segmentation

results.

4.6 Parameter Analysis

We analyze the impact of two parameters, including the loss weights α and the number

of transformer cells, on the segmentation performance of our proposed 3DTU across two

3It shows in [9] that the bi-directional transformer can serve as both encoder and decoder.
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datasets in Figure 3. In general, Figure 3 indicates that the segmentation results performed

by our 3DTU are consistent. Figure 3 (A) shows that the dice results increase and then

decrease with the increase of α from 0 to 1. The best dice scores are achieved when α =

0.2 on both Placenta and Covid20 datasets. Figure 3 (B) shows that the segmentation

performance improves when increasing the number of transformer cells from 3 to 6. However,

the performance will keep stable (on Placenta dataset) or even slightly decrease (on Covid20

dataset) when the framework goes deeper. The reason of the slight decrease of performance

on Covid dataset may result from the small size of dataset. Only 20 3D images are included

in Covid20 dataset, which may not facilitate the training process when the network goes

deeply. Moreover, our 3DTU has a total of 70M parameters (when training on Covid20

dataset and Synapse dataset), which is more than 2D UNet (7M) and 3D UNet (17M) but

beats the other transformer-based or hybrid framework in the baseline (the TransUNet has

80M parameters and nnFormer has 158M parameters).
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Table 1: Quantitative segmentation results of different methods on two datasets, where

mIOU and DICE are in %. The best results are shown in red and the second best results

are shown in blue.

.

Placenta Dataset Covid20 Dataset Synapse Dataset

mIOU DICE HD95 mIOU DICE HD95 mIOU DICE HD95

2D UNet 67.6 72.3 12.0 73.6 78.3 112.5 56.3 60.6 45.7

3D UNet 72.5 78.6 10.7 78.1 84.0 97.6 59.4 62.2 42.2

UNet++ 74.5 77.1 8.2 80.3 84.6 63.0 67.1 73.7 34.0

TransUNet 73.6 80.0 7.4 83.1 89.2 45.8 70.2 77.5 31.7

ViT 72.9 79.7 8.5 84.2 89.0 70.3 65.3 67.9 36.1

nnFormer 78.3 82.1 10.2 81.0 89.9 66.2 81.8 86.6 10.6

nnUNet 78.9 83.6 8.7 90.3 91.6 59.9 84.2 89.8 16.6

3DTU (Ours) 79.8 84.0 7.2 90.5 92.0 59.4 85.0 87.3 18.4

Table 2: Dice scores (in %) of our 3DTU on three datasets. The best results are shown in

bold.

DICE Score Placenta Dataset Covid20 Dataset Synapse Dataset

CNN + UNet Decoder 68.6 74.3 59.5

BiT + UNet Decoder 66.9 72.8 70.2

CNN + BiT 80.0 89.2 65.1

3DTU 84.0 92.0 87.3
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Table 3: Dice scores (in %) of our 3DTU running on data that has been preprocessed

with/without positional encoding.

Placenta Dataset Covid20 Dataset Synapse Dataset

3DTU w/o Positional Encoding 84.0 92.0 87.3

3DTU with Positional Encoding 82.7 92.1 86.8
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5.0 Conclusion

In this paper, we propose a novel 3D Transformer UNet (3DTU) framework to capture

global contextual information for 3D medical image segmentation. A new attention mech-

anism is proposed with our 3DTU framework, which is especially suitable for computing

self-attentions for 3D objects. The experimental results on two 3D medical image datasets

demonstrate that our method can outperform several state-of-the-art segmentation baselines.

In the future, we plan to explore how to reduce the computation loads in transformer layers,

which may improve the efficiency of most current transformer-based methods.
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Appendix

A.1 Figures
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Figure 1: The diagram of the 3DTU framework in an encoder-decoder setting. The encoder

consists of two parts including feature extraction and a bi-directional transformer.

24



Figure 2: Encoder Part II: bi-directional transformer with a multi-head attention mechanism.
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Figure 3: Impacts of α and number of transformer cells on segmentation performance. (A).

Dice of 3DTU v.s. α. (B). Dice of 3DTU v.s. the number of transformer cells.
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Figure 4: Visualization of the segmentation results on the Placenta dataset produced by our

3DTU and nnUNet. Column (A), (B) and (C) show the x-y plane, y-z plane, and x-z plane

of 3D segmentation predictions, respectively. The true-positive regions are highlighted in

pink. The false-negative regions are highlighted in red (e.g., the green circle regions in the

last row). Better view with colors and zooming in.
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Figure 5: Visualization of the infection segmentation results on the Covid20 dataset produced

by our 3DTU and nnUNet. Columns (A), (B), and (C) show the x-y plane, y-z plane and x-z

plane of 3D segmentation predictions, respectively. The true-positive regions are highlighted

in pink. The false-negative regions are highlighted in red (e.g., the green circle regions in

the last row). Better view with colors and zooming in.
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Figure 6: Visualization of the segmentation results on the Synapse dataset produced by our

3DTU and nnUNet. Columns (A), (B), and (C) show the x-y plane, y-z plane, and x-z

plane of 3D segmentation predictions, respectively. The green circle indicates part of the

false-negative regions. It better view with colors and zooming in.
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