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Towards Personalized Medicine in Cystic Fibrosis: Patient-Specific Modeling of

Mucociliary Clearance Using Physiologically-Based Flow Constraints

Monica E. Shapiro, PhD

University of Pittsburgh, 2023

Healthy humans have a thin layer of mucus lining the airways that protects the lungs

from inhaled particulate or pathogens. Trapped particles are conveyed up the airway tree

and out of the lungs by tiny, hair-like structures called cilia in a process called mucociliary

clearance (MCC). Cystic fibrosis (CF) is a rare, lethal, genetic disease that dehydrates this

mucus layer and disrupts MCC. This causes chronic infection and inflammation, leading to

respiratory failure. Typical treatment for CF takes about 2 hours a day, creating a high

treatment burden and leading to poor compliance. With the development of highly-effective

modulators that target underlying defects of CF has come a push to reduce treatment burden.

One time-consuming therapy that is widely used is aerosolized hypertonic saline (HS). HS

aims to rehydrate airway mucus and improve MCC, however, the efficacy varies greatly

between individuals. This creates a need for new screening tools to predict HS efficacy on a

per-patient basis, which is the focus of this dissertation.

MCC in different sections of the airway tree varies, even within an individual. We thus

developed a physiologically-based dynamic model of MCC that captured local variability

within the lung. The granularity of the model enabled identification of focal defects, but

had poor parameter identifiability. We reduced the number of free parameters to improve

identifiability, while preserving the physiological constraints. The reduced model contained

5 free parameters and only increased the mean absolute error per grid by 8.7% from the

original 114-parameter model. Finally, we fit this model to nuclear imaging data from CF

participants on two separate days: one where they inhaled non-therapeutic isotonic saline

and one where they inhaled HS. We developed a statistical model to estimate the parameter

change after HS treatment for these participants based on clinical and in vitro measurements.

The end result was a tool that can be used to estimate personalized MCC response of CF

individuals to HS treatment.
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1.0 Introduction

Cystic fibrosis (CF) is a rare, life-shortening genetic disorder that primarily impacts the

lungs. There is typically a high treatment burden placed on people with CF and/or their

caregivers, with the average CF individual spending just under 2 hours a day on treatments

[1, 2]. The cost – both monetary and in terms of time – contributes to widespread non-

adherence to medication schedules, which has been linked to worse long-term outcomes [2,

3]. In a 2022 survey, CF participants on average were willing to accept a 4.2 year decrease

in life expectancy for large improvements in quality of life [4]. This has made reducing the

treatment burden while maintaining the same standard of care a key research area in CF [5,

6].

One challenge faced when trying to reduce treatment burden is in determining which of

the many medications CF individuals take are having the greatest or least impact. Addi-

tionally, this varies from person to person. It would therefore be useful to have tools for

predicting efficacy of treatment on an individual basis. In this work, we will focus on de-

veloping a tool for one such treatment (hypertonic saline) and its impact on mucociliary

clearance – a key process in maintaining lung health that is dysfunctional in CF.

1.1 Mucociliary Clearance (MCC) in the Airways

1.1.1 Airway Mucus

Fluid lining the airways is made up of several interacting layers, as shown in Figure

1. The epithelial tissue is made up of several cell types, including primarily ciliated cells,

secretory cells, and basal cells [7]. Ciliated cells have hair-like structures that protrude from

the cells at the apical surface. Secretory cells secrete the mucins necessary to form a gel-like

mucus layer. Basal cells are stem cells that can differentiate into new epithelial cell types.

Covering the epithelium is a fluid layer called the periciliary liquid layer (PCL), which is
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isotonic relative to plasma [8] and contains a number of mucins. Above the PCL is a gel layer

of mucus. Current theory suggests that cilia interact with tethered mucins at the base of the

mucus layer, which subsequently interact with the rest of the mucus layer (gel-on-brush) [7,

9]. Ion channels in the epithelial tissue help regulate the hydration of the PCL and mucus

layers. The cilia beat in a coordinated pattern to sweep the mucus layer up the airways in

a process called mucociliary clearance (MCC).

Figure 1: Simplified depiction of the different layers lining the airway epithelium: Epithelial

tissue containing goblet cells, which secrete mucins, ciliated cells, which beat to push mucus

up the airways, and basal cells, which can differentiate into other cell types as needed, the

periciliary liquid layer (PCL), which provides a barrier between cells and mucus and facili-

tates beating of cilia, the apical membrane containing ion channels that regulate hydration

of PCL, the mucus layer, which traps inhaled particles in a viscous gel

Disruption to one or many parts of these interacting layers, as occurs in many airway

diseases [8, 10–13], can result in tissue damage. Over secretion of mucins could result in a

denser, more viscous mucus layer, which would exert more compressive force on the cilia.
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This in turn could result in less effective MCC. Similarly, dehydration of the PCL and mucus

layers can lead to over compression or even complete collapse of cilia caused by osmotic forces,

also resulting in reduced MCC capacity. Stagnant mucus means that pathogens or other

inhaled debris trapped in the mucus layer remain in the airways for longer. The subsequent

prolonged inflammatory response can cause damage to the tissue.

1.1.2 Airway Structure

The airways have a branched structure, as depicted in Figure 2. Air enters the lungs

through the trachea, which splits into two main bronchi - one leading into each lung. These

split into further bronchi (3 on the right, 2 on the left), leading to each of the lobes of the

lung. From there, the airways continue to branch into narrower airways that are larger in

number. Work from Weibel and Gomez [14] estimates the airways branch an average of

23 times from the trachea before terminating at the alveoli. The alveoli are comprised of

high surface area "sacs", which allow for rapid gas exchange with the capillaries surrounding

them. Here, oxygen is absorbed into the blood stream and carbon dioxide diffuses into the

airways. Air is expired following the reverse path, where air flows from small airways into

fewer larger airways back up the airway tree.

Mucus is secreted along the length of the conducting airway tree (excluding the alveoli).

Mucus is pushed by cilia up the airway tree from many smaller airways into fewer larger

airways, all the way up the tree. The alveoli do not have any ciliated cells, and thus do not

participate in MCC. The density of ciliated cells is higher in the larger airways [15], which

allows MCC to occur much more quickly and thus keep up with the rates flowing in from

smaller airways. In muco-obstructive diseases, such as cystic fibrosis and COPD, chronic

inflammation from decreased MCC in the small airways contribute to the deformation of the

airway walls in a process called bronchiectasis. This, in turn, leads to further accumulation

of mucus in the small airways. In the next section, we will take a closer look at the cause of

this in the case of cystic fibrosis.
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Figure 2: Depiction of the airway structure. The trachea branches into two main bronchi,

leading to each lung. From there, airways continue to branch, getting smaller in size and

larger in quantity until they terminate into alveoli. Airways become less ciliated as they get

smaller. There are no cilia in the alveoli.

1.2 Cystic Fibrosis Background

Cystic fibrosis (CF) is a lethal, autosomal recessive disease that affects over 70,000 people

worldwide [16]. It is caused by over 2,000 known mutations [17] affecting the cystic fibrosis

transmembrane conductance regulator (CFTR) gene, which codes for an anion channel at the

epithelial surface of the same name [16]. Though it impacts all epithelial tissue and affects

multiple organs, the primary cause of death is due to respiratory failure [18]. Predicted

survival rates in the U.S. have increased dramatically over the past decade with a median

expected survival age of 53.1 years for those born between 2017 and 2021. This is due in

part to the approval of highly effective CFTR modulators for 90% of the population over

the age of 11 [18]. Though this is a vast improvement over the predicted age of 38 for those

born between 2007 and 2011, it is still a long way off the median life expectancy in the U.S.

of ∼79 for those born over the same time frame [18, 19].
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1.2.1 Airway Electrophysiology

CFTR is an ATP-binding cassette transporter that functions as an epithelial anion chan-

nel [20, 21]. Mutations to this gene directly affect transport of anions, such as chloride and

bicarbonate, across the membrane causing osmotic imbalances that lead to hyperabsorption

of airway surface liquid and increased acidity of that liquid [21, 22]. They also cause a cascad-

ing dysregulation of other ion channels and water transport. Evidence suggests that sodium

permeability through the epithelial sodium channel (ENaC) is significantly increased in CF

[23, 24] and the permeability of chloride through constitutively active chloride channels (i.e.

not CFTR) is significantly decreased [23, 25, 26]. Additionally, there is evidence of increased

transcellular water permeability, possibly through increased aquaporin 3 activation [23, 27].

Due to the complexity of interactions, there is still much that is poorly understood in terms

of how CF impacts the function of other ion channels and transporters. However, it is clear

that the combination of downstream dysregulation results in hyperabsorption of fluid from

the airway surface.

1.2.2 Mucus Thickening and Accumulation

CF is a muco-obstructive disease, meaning that chronic airway inflammation causes an

accumulation of mucus. This can be attributed to multiple factors. Defective CFTR, as well

as dysregulation of other epithelial ion channels, causes hyperabsorption of liquid from the

mucus and PCL, compressing or collapsing the cilia. Futhermore, evidence suggests that

those with CF produce more of the mucin, MUC5AC, relative to MUC5B than in healthy

controls [28]. MUC5AC is thought to be a "stickier" mucin and thus increases the viscosity

of the mucus layer making it harder to clear. Slow or stagnant mucus can lead to a prolonged

inflammatory response when encountering a pathogen. This immune response can result in

a build-up of DNA and actin from degraded neutrophils [29]. In turn, this increases the

viscosity of the mucus layer, further deacreasing MCC. The inflammation can also cause

tissue damage and thickening of the airway walls, thus reducing overall pulmonary function.

5



1.2.3 Current Treatment Paradigm & Challenges

Treatment of CF is complex and often personalized to an individual. Due to the rarity

of the disease, clinical trials are necessarily small and thus do not have the same statistical

power to detect changes in response to new therapies that large-scale clinical trials typically

do. Further, there is a lot of heterogeneity in the population. Even for those with the same

mutations, disease progression and individual response to treatment varies greatly. Drug

efficacy in these small-scale clinical studies can be confounded by subgroups of responders or

non-responders. This presents a challenge in determining clinical best practices on a broad

scale.

Typical treatment involves a multifaceted approach to the underlying defects as well

as the host of resulting symptoms. CFTR modulator drugs work by directly affecting the

amount and function of CFTR on the epithelial surfaces. Mucolytic drugs and airway clear-

ance techniques help to reduce the accumulation of mucus in the airways. Antibiotics are

often prescribed to treat infection, and pancreatic enzymes help treat gastrointestinal dys-

function that can lead to malnutrition.

Unfortunately, this often translates to a high treatment burden on CF individuals and/or

their caregivers [1, 2], which can lead to decreased quality of life and compliance with pre-

scribed therapies [2, 3]. In particular, inhaled therapies require substantial time to prepare,

administer, and clean equipment. About 90% of CF adults take at least one inhaled ther-

apy, with about 30% of individuals taking three or more [18]. With highly-effective CFTR

modulators available for a large portion of CF individuals, it is likely that quality of life will

play a more important role in future CF treatment than it has previously. Thus, there is a

great need for better tools to understand which therapies will provide the most benefit on

an patient-specific basis.

1.2.3.1 Modulators

CF mutations have historically been broken down into 5 classes as described in Table

1. Some of these classes still have some residual function, while others are more severe.

Modulator therapies aim to restore some or all of this function for specific mutations or
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classes.

Table 1: Classes of CFTR Mutations

Class Mutation Type Description

1 Protein production
Mutation prevents any functional CFTR from being

transcribed; Often severe

2 Protein processing

CFTR is transcribed, but mutations cause misfolding

of the protein; Includes most common CF mutation,

F508del

3 Gating
Prevents CFTR channel from opening upon

activation

4 Conduction
CFTR is formed, but mishaped channel slows chlo-

ride transport; Often retain residual function

5 Insufficient protein
Not enough protein is produced, or it is degraded too

quickly

Currently, there are four CFTR modulators approved in the U.S. for CF individuals with

certain mutations. Ivacaftor is a potentiator, meaning it holds the channel of CFTR open,

allowing for increased transport of chloride into the PCL. This can be used alone for those

with at least one gating mutation, or in combination with one or more corrector – drugs that

help CFTR fold correctly – for certain mutations, including F508del.

For those who are eligible, modulator therapies have become a staple in the treatment of

CF. Prior to the approval of the triple combination therapy of elexacaftor, tezacaftor, and

ivacaftor in 2019, fewer than 11,800 individuals with CF (of the over 30,000 in the CF Foun-

dation Patient Registry) were prescribed a CFTR modulator. Since then, modulator use has

increased to about 22,300 individuals, about 86.3% of whom are on the triple combination

therapy [18]. Early indications suggest this could greatly extend life expectancy and improve

long term lung health, however, it is too soon to gauge the full impact it will have. Addition-

ally, while most people with CF have two alleles that can be affected by CFTR modulators,
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about 10% of CF individuals have mutations that are ineligible for any CFTR modulator

[18]. Those would be individuals with a stop mutation (Class 1 – no CFTR transcribed) and

a second allele that does not produce any functional CFTR (Class 1 or 2).

1.2.3.2 Mucus clearance therapies

Another priority area of treatment is in mucus clearance. Inhaled therapies focus on

decreasing the viscosity of mucus in order to make it easier for cilia to clear. Most CF

individuals (∼88%) are prescribed dornase alfa [18], which is a mucolytic agent that breaks

down DNA polymers within the mucus to decrease the viscosity. Osmotic therapies, such as

hypertonic saline (HS) and mannitol work by creating an osmotic driving force and drawing

water to the airway surface. This rehydrates both the PCL and mucus layers to improve

MCC. HS is widely used in the U.S. with about 70% of CF individuals taking it [18]. One

challenge with both dornase alfa and HS is that it must be delivered as an aerosol via a

nebulizer. This takes a while to prepare, deliver, and clean properly, which can decrease

compliance [1].

Nearly all CF individuals are also recommended to perform airway clearance techniques

(ACT) [18]. Individuals typically do this shortly following inhalation of mucolytics, such

as dornase alfa and HS to create a synergistic effect. Most commonly, patients use a high-

frequency chest wall oscillation vest [18] that mechanically inflates and deflates the chest to

help separate mucus from the airway walls and into larger airways. About half of adults also

use aerobic exercise as a secondary form of airway clearance. In adults over 30, about 20%

of individuals use aerobic exercise as their primary form of ACT [18].

1.2.3.3 Microbiology

Infection is a constant source of concern with CF. Acute infections often require intra-

venous antibiotics to get pulmonary exacerbations under control. Even afterwards, however,

many infections are not completely cleared and result in chronic infection. The most com-

mon microorganisms found are Staphylococcus aureas and Pseudomonas aeruginosa. For

those who develop chronic P. aeruginosa infections, inhaled antibiotics, such as tobramycin
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and aztreonam, or oral azithromycin are commonly prescribed. Some individuals, especially

those with frequent exposure to antibiotics develop antibiotic resistant strains.

1.3 Measuring MCC In Vivo

Quantifying MCC at the organ-scale in vivo is non-trivial. It is typically measured via

planar scintigraphy, in which subjects inhale radiolabeled aerosol and then sequential 2D

images of the activity in the lungs are captured with a gamma camera. A large, gamma

emitting, non-absorbable particle is delivered via a liquid aerosol. Because it cannot be

absorbed, any 2D motion of the particles that deposit in the lungs (some aerosol is swallowed)

must be associated with MCC. Typically, only the right lung is used for analysis to avoid

interference from particles that have been swallowed and are in the stomach. The change in

activity in the whole right lung can then be used as a biomarker for MCC.

There are several challenges that naturally arise with this type of measurement. The

first is that there is limited ability to control where the aerosol deposits. Although different

breathing patterns can be used to target aerosol deposition to particular airway classes, there

is still a lot of variability in the patterns observed between different individuals. This is key

because the larger, more proximal airways have been shown to clear mucus more quickly than

distal airways [15]. Previous work has shown an association between deposition pattern and

measured whole lung MCC [30], which hinders the utility of the measurement for quantifying

nominal vs abnormal behavior.

Attempts have been made to account for deposition-based differences between individu-

als. It is common to break the whole lung area from these nuclear images into two separate

regions of interest (ROIs): a central ROI, which is defined as a rectangle half the height and

width of a bounding box around the whole lung area that is placed at the medial edge, and

a peripheral ROI, which consists of the remaining area in the whole lung [10, 31–33]. An

example of these ROIs is shown in Figure 3. This can then be used to determine if there are

significant differences in deposition between groups. Alternatively, it can be used to adjust

MCC measurements based on the proportion of activity deposited in each ROI relative to
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the population average [34].

While these provide better comparison between individuals, they only provide a coarse

measurement. There is a lot of heterogeneity within each ROI, which leaves a lot of room

for deposition to confound measurements. Additionally, many of those with CF have mucus

plugging, which can result in focal defects. Since these are lumped in with the remainder of

the ROI in which they are located, their impact could easily be missed.

Figure 3: Example of standard regions of interest (ROIs). A whole lung outline is drawn.

The central ROI (indicated C) is defined as a rectangle of half the height and width of a

box bounding the whole lung outline, centered at the medial edge. The peripheral ROI

(indicated P) is defined as the remainder of the whole lung area. Radioactive counts are

measured within each ROI to measure MCC.

Another challenge with the use of planar imaging is that it is a 2D projection of a 3D

system, meaning that there is an inevitable loss of information. Although there are other

nuclear imaging methods that can reconstruct an image of the lung in 3D from a series

of 2D images at different angles (i.e. single photon emission computed tomography), the

time needed to reconstruct a single 3D image (approximately 15 min) is much longer than

10



the time scale of MCC from the proximal airways and thus, is not suited for this purpose.

Without this 3rd dimension, however, it is impossible to know where along the airway tract

particles deposit. For example, activity that overlays the main bronchus in 2D may actually

be in the alveoli. This means that the standard central ROI can include rapidly clearing

large airways, slow clearing small airways, and alveoli, where there is not MCC. Depending

on where the emitting particles actually are along the airway tract, this can confound typical

MCC measurements.

1.4 Existing In Silico Models of MCC

In silico models can provide insight into the physiology underlying MCC changes ob-

served in vivo. The structure of the model is based on physiology, so the fitted parameters

can get at underlying processes, rather than just what can be measured directly. Previously,

our group developed a population level dynamic model of MCC and paracellular airway

surface liquid absorption (ABS) at the lung-scale[35]. The model structure is depicted in

Figure 4, where each arrow corresponds to a first-order kinetic process and parameters were

fit to planar imaging similar to what was described in the previous section. A key differ-

ence in this study, however, was the addition of a second gamma-emitting particle that was

small enough to be absorbed paracellularly. The second particle could then be used as a

biomarker for ABS. These probes were inhaled together and were measured simultaneously

using different radioactive energy windows. The larger, non-absorbable particle that was

used to measure MCC was Technetium-99m sulfur colloid (Tc-SC). Indium-111 diethylene

triamine pentaacetic acid (In-DTPA), was used as the smaller second particle and could be

cleared both by MCC and absorbed paracellularly. ABS was estimated by calculating the

difference in retention between these two probes.

Parameters from the model were fit in two steps: first, the fraction of functional ciliated

area in the central ROI (FFCA) and an MCC rate coefficient from the functional large

airway (kLF ) were fit to Tc-SC retention data, setting ABS rate coefficients (kLB and kDB)

to 0. The MCC parameters were fixed and then the ABS rate coefficients were fit to the
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Figure 4: Compartmental model developed in [35]. Initial conditions are determined from

deposition in each ROI (C0, and P0 for the central and peripheral ROIs, respectively) and

a fitted parameter, fraction of functional ciliated area (FFCA). Technetium-99m sulfur

colloid (Tc-SC) and indium-111 diethylene triamine pentaacetic acid (In-DTPA) both clear

from the functional large airways (LF ) to the trachea following first-order kinetics. In-DTPA

is also absorbed into the bloodstream from each airway compartment following first-order

kinetics.

In-DTPA retention data. For parameter identifiability reasons, MCC from the peripheral

ROI into the central ROI was assumed to be negligible and set to 0. While this model

provided a good description of the dynamics observed at the population level, some of the

model assumptions broke down when applied to individuals.

Specifically, two assumptions were shown to be inaccurate for a number of individuals:

1) negligible clearance from the peripheral ROI into the central ROI, and 2) well-mixed
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activity within the ROIs. As shown in Figure 5, for some subjects, there is substantial MCC

from the peripheral ROI over the study window. Remedying the problem is not as simple

as fitting an MCC rate coefficient from the peripheral to central ROI because the activity is

not evenly distributed, as shown in Figure 3. This means that activity that is more distal

must be transported across the entire peripheral ROI before it can be cleared into the central

ROI. Thus a compartmental model that treats the peripheral ROI as one compartment will

never be able to accurately capture the dynamics observed. Therefore, we sought a more

detailed model that would better capture individualized response and peripheral-to-central

MCC while maintaining parameter identifiability.

Figure 5: Comparison of experimental versus simulated technetium-99m sulfur colloid (Tc-

SC) retention in whole lung, central, and peripheral ROIs for an example healthy control

using the model from [35]. Circles represent experimental values and solid lines represent

simulations of best-fit parameters.
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1.5 Dissertation Overview

Through the course of this dissertation, we will develop an in silico model of MCC

that captures localized differences and use it to characterize patient-specific response to

inhaled HS. In Chapter 2, we develop a physiologically-based model of MCC that describes

the flow of radiolabeled particles in nuclear imaging studies. We solve the multi-objective

optimization problem this poses, allowing us to capture localized differences in MCC across

subjects. This results in a high dimensional parameter space. Due to variability in the

deposition of the radiolabeled particles, some of these parameters lack sufficient data to have

confidence in their values. In Chapter 3, we take steps to rationally reduce the degrees of

freedom in our model by simplifying flow constraints and lumping appropriate parameters.

This enables us to use a stronger signal to inform each of our free parameters. With this

model in hand, we apply it in Chapter 4 to nuclear imaging studies of CF participants

inhaling two different aerosols: i) isotonic saline (IS), which has been shown to be non-

therapeutic, and ii) hypertonic saline (HS), which has been shown to have a therapeutic

effect on MCC of varying degrees. Using this local description of MCC, we can capture

patient-specific response to acute HS treatment. Taking non-invasive measurements from

the same participants, we then build a statistical model to estimate response without the

need for nuclear imaging. Finally, in Chapter 5, we discuss the short- and long-term impacts

of this work on studying MCC in CF and other airway diseases.
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2.0 Development of a Physiologically-Based Model of Airway Mucociliary

Clearance and Paracellular Surface Liquid Absorption

2.1 Introduction

As discussed in the previous chapter, we are interested in developing a more granular

model of MCC in the airways that can capture localized differences between individuals.

While the focus of this work is on applications to CF, focal MCC defects may be important

to other muco-obstructive airway diseases, such as COPD and asthma. In this chapter, we

build a mathematical model describing MCC of radiolabeled isotope in 2D based on the use

of planar images of the measurement technique. To keep the model generic, and thus increase

future applicability to other diseases, we focus in this chapter only on healthy individuals.

This allows us to use average airway anatomy to define mucus flow in a physiologically

meaningful way.

2.1.1 System Definition

In order to make the system more granular, we wanted to break the nuclear images down

into smaller ROIs. Previous work has done static analysis on particle retention on a pixel-

by-pixel basis [36]. This represents one extreme form of granularization, where whole lung

analysis would be the other extreme. Because study participants occasionally shift slightly

over the course of imaging, we felt a pixel-by-pixel analysis would be too susceptible to these

disturbances. As described in Chapter 1, whole lung or even central and peripheral ROIs

are not granular enough to capture localized defects. Instead we chose to define our ROIs,

so they were somewhere between these two extremes. To do that, we divided the right lung

into a 16 × 8 (rows × columns) grid mesh. We selected this grid size, so that we could draw

direct comparisons with traditional ROIs (see Figure 3 in Chapter 1). Specifically, rows 5-12,

columns 1-4 correspond to the traditional central ROI, while the remaining grids within the

lung area correspond to the peripheral ROI. From there, we derived flow constraints based
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on airway geometry to describe flow of mucus into and out of each of these grids.

We chose to use the geometric mean between the posterior and vertically mirrored an-

terior images. While the posterior view is commonly used for MCC studies [35, 37], recent

guidelines from the International Society for Aerosols in Medicine [38] recommend using the

geometric mean, where possible, for determining aerosol deposition. We opted to use it for

MCC analysis as well because it can be shown mathematically that it is less sensitive to

particle motion into and out of the imaging plane.

The intensity measured by the gamma camera (I(r)) is proportional to the inverse of the

squared distance between the camera and particle (r2), as shown in Equation 2.1.

I(r) ∝ 1

r2
(2.1)

We can express the intensity measured by each camera as follows:

Ip (r) =
β

r2
(2.2)

Ia (r) =
β

(R− r)2
(2.3)

Where Ip and Ia are the measured posterior and anterior intensities from a particle, r is the

distance of the particle from the posterior camera, R is the distance between the two camera

heads, and β is a proportionality constant. The geometric mean of the measurements is

thus:

Igm (r) =
√

IpIa =
β

r (R− r)
(2.4)

To understand how these intensities are affected by motion into and out of the imaging

plane, we can compare the derivatives with respect to distance to the posterior camera, r. We

will consider the posterior intensity and the geometric mean of the anterior and posterior

images, however, this easily could be applied to the anterior intensity by simply flipping

which camera is used as a reference (i.e. define r as the distance to the anterior camera
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instead).

dIp
dr

=
d

dr

(
β

r2

)
=
−2β
r3

(2.5)

dIgm
dr

=
d

dr

(
β

r (R− r)

)
=
−β (R− 2r)

r2 (R− r)2
(2.6)

We can then show that |dIp
dr
| > |dIgm

dr
|, indicating that the posterior intensity decreases more

than the geometric mean, as the distance from the posterior camera increases. Note: β > 0

and r > 0. ∣∣∣∣−2βr3

∣∣∣∣ > ∣∣∣∣−β (R− 2r)

r2 (R− r)2

∣∣∣∣ (2.7)

2

r
>

R− 2r

(R− r)2
(2.8)

1 >
r (R− 2r)

2 (R− r)2
(2.9)

We can then re-express this in terms of an anterior distance, ra and a posterior distance, rp.

1 >
1

2

(
rp
ra

)(
ra − rp

ra

)
(2.10)

Considering each set of parentheses, we can see that for all cases, Equation 2.10 is True.

When ra > rp, both sets of parentheses are less than 1, therefore the entire fraction is less

than 1. When ra = rp, the fraction in last parentheses goes to 0, which is less than 1, and

when ra < rp, the last fraction becomes negative and thus less than 1.

2.1.2 Many-Objective Optimization

To track the radiolabeled particles at a more granular level as they clear from smaller

airways towards the trachea, we break the nuclear images into a 2D grid, where mucus (and

thus particulate) flows between neighboring grids over time. This turns what was a single

objective function in Markovetz et al. [35], comparing simulated and experimental whole

lung activity, into a multi-objective problem, where simulated and experimental activity

are compared for each grid in the network. Ideally, we would like to find a solution that

minimizes each of the objectives. Challenges arise, however, when the objectives conflict
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(i.e. an improvement to one objective causes a worse solution for another objective). That

begets the question, of how to best balance trade-offs in objective values between grids.

For multi-objective problems, a solution is considered dominant over another if the so-

lutions are no worse for each individual objective and better for at least one. The set of all

non-dominated solutions form what is called a Pareto front [39]. For small, finite parameter

spaces, the set of solutions that form this front can be found in time O
(
n (logn)d−2

)
for

d = 2 or O
(
n (logn)d−2

)
for d ≥ 3, where n is the number of objectives and d is the num-

ber of parameters [40]. When the parameter space to search is larger, or the variables are

continuous, however, it can quickly be infeasible to precisely calculate this front.

For these cases, the solution method depends greatly on the specific problem. For prob-

lems with continuous variables, but a small number of objective functions, there are nu-

merous evolutionary algorithms that can be implemented based on the ultimate goal of the

multi-objective optimization [41, 42]. When there are more than 3 objectives, however, these

methods tend to fail to converge due to the large number of non-dominated solutions [39,

41]. In these instances, scalarization methods are typically required, in which the objec-

tives are combined or reformulated as constraints. This reformulated, possibly constrained,

single-objective problem can then be solved using traditional optimization tools [39, 41]. In

our case, we have 114 grids within the whole lung area, corresponding to 114 independent

parameters and 114 objective functions. As such, we will explore several different schemes

for scalarization of the objective functions for each grid.

2.1.3 Paracellular Airway Surface Liquid Absorption (ABS)

While we are primarily interested in studying MCC, there is some evidence that the rate

of paracelluar airway surface liquid absorption (ABS) can predict response to inhaled HS in

CF individuals [23], particularly in the peripheral ROI. Thus as a secondary outcome, we

are interested in exploring localized differences in ABS. To do this, we use two radiolabeled

probes: one that can only be cleared by MCC and one that can be cleared by MCC and

absorbed paracellularly. Calculating the difference in retention between the two probes, we

can get a measure of ABS.
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Figure 6: Depiction of two-probe nuclear imaging study. Technetium-99m labeled sulfur col-

loid (Tc-SC) only clears through MCC. Indium-111 labeled diethylene triamine pentaacetic

acid (In-DTPA), which is much smaller, clears through MCC and is absorbed paracellularly.
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2.2 Methods

2.2.1 Two-Probe Nuclear Imaging Study

Study subjects inhaled two radiolabeled probes – Technetium-99m labeled sulfur colloid

(Tc-SC) and Indium-111 labeled diethylene triamine pentaacetic acid (In-DTPA) – prior to

80 minutes of sequential gamma camera imaging. All subjects had a study day where they

inhaled isotonic saline from 10-20 min during the study (images were collected throughout

inhalation). CF subjects came in for an additional study day, where they inhaled hypertonic

saline. The order of interventions was randomized for CF subjects. Demographic information

of this study can be found in Table 2. It should be noted that all CF participants were

enrolled prior to the approval of the ivacaftor/tezacaftor/elexacaftor combination CFTR

modulator. As shown in Figure 6, Tc-SC is too large to be absorbed and is thus used as

a surrogate measure of MCC. In-DTPA is cleared both through MCC and ABS. Using the

normalized difference between Tc-SC and In-DTPA retention, we can estimate a measure of

paracellular fluid absorption (ABS).

2.2.2 Image Processing

The images were initially processed using ImageJ (1.52v). An anatomically-based whole

lung region of interest (ROI) from [43] was stretched and aligned to fit the right lung of a

posterior transmission scan for each subject. This ROI was aligned to the observed activity

in the right lung of the posterior view and the mirror image of the anterior view of the

nuclear images. Scan images were rotated as needed to best fit the ROI to the right lung

outline. The images were clipped to a bounding box around this ROI for all time points,

and the intensities for each pixel were exported as text images (tab-delineated text file of the

intensities). A full protocol for processing these images in ImageJ can be found in Appendix

A.

An automated Python script was written for the remainder of the image processing, and

is available on GitHub (https://github.com/monshap/psanalysis). Background activity

was subtracted from each image. Decay corrections for each of the probes were calculated
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Table 2: Demographics of included study participants with lung clearance index (LCI)

and pulmonary function data (mean±std). For correctors in CF group, I=ivacaftor,

L/I=lumacaftor/ivacaftor, and T/I=tezacaftor/ivacaftor.

Controls (HC) Cystic Fibrosis (CF)

Number of Subjects 11 23

Age (years) 22± 3 30± 14

Female/Male 4/7 13/10

Corrector N/A
I L/I or T/I None

4 7 11

LCI 7.3± 0.89 (n=10) 11± 2.9 (n=20)

IS Day HS Day

Pulmonary

Function Tests

(% predicted)

FEV1 102± 12 69± 25 69± 25

FVC 106± 13 84± 22 80± 25

FEF25-75 88± 20 48± 36 48± 33

within the gamma camera used for imaging. From there, the geometric mean of the posterior

and mirrored anterior images was calculated to mitigate motion along the posterior-anterior

axis. These cropped images were then divided into 16 x 8 (l x w) equal sized grids. This

grid layout was chosen to allow for direct comparison with literature values for central and

peripheral ROIs, where the central ROI would correspond to rows 5-12, columns 1-4. The

activity in each grid was then divided by the total activity initially deposited in the whole

lung to normalize for differences in total deposition between participants. Subjects without

a total initial activity of at least 500 were excluded. Only one participant was excluded for

this reason.

To assess the heterogeneity within the grids, relative to traditional ROIs, the variance

and skew of pixel intensities were calculated across individual grids in each of the ROIs

(central and peripheral) and for the whole ROI. A homogeneous ROI or grid should have a
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low variance and skew close to 0. The more homogeneous the ROI/grid, the more accurate

a model treating that unit as a well-mixed compartment can perform.

2.2.3 2D Model Development

2.2.3.1 Regions with no MCC

Not all of the Tc-SC was cleared by the end of 80 min of imaging. This could be due

to a few different factors. The first is simply that the time-scale over which it could clear

from the lung is longer than the length of the study. This is likely the case for some of the

observed activity in larger airways since there are a large number of smaller airways feeding

into these that clear at slower rates. A second reason is that some of the aerosol deposits in

alveoli, which don’t have cilia and thus cannot clear Tc-SC via MCC. Finally, particularly

for CF participants, some aerosol lands on dehydrated mucus that inhibits MCC and thus

is not cleared over the course of the study.

In the population level model from [35], this was taken into account by fitting a pa-

rameter, fraction of functional ciliated area (FFCA) simultaneously with the clearance rate

coefficients. However, this contributed to the identifiability challenges that led to the as-

sumption of no MCC in the peripheral region. To avoid this, but still account for stagnant

particles, the lower 25% quartile of Tc-SC activity in each grid was assumed to be non-

clearable and subtracted from the overall activity. The dynamic MCC model was then only

fit to the remaining, "clearable" activity.

2.2.3.2 Regions with MCC

Next, we modeled the flow of mucus (and thus Tc-SC) between neighboring grids. This

required constraints on where mucus could flow in 2D and we wanted to base these around

the known physiology. To do this, we used a 2D anterior view of anatomically-averaged

high resolution computed tomography (HRCT) scans from [44]. We mirrored the image and

divided the right lung into the same 16 x 8 grid as our nuclear imaging scans, as shown

in Figure 7. From here, there were 4-5 generations (branch points from the trachea) that
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could be visibly distinguished. We defined a large airway region (LAR) that consisted of any

grid overlaying one or more of these visible airways, as shown in Figure 7. Physiologically,

we know that mucus within the further generations of the large airways progressively feed

into larger and larger airways until it is cleared to the trachea. To mimic this process, we

defined flow constraints within the LAR, such that mucus could flow to neighboring grids

that were closer or equal distance (measured as a city-block distance, allowing diagonals)

from the left edge. Because the airways are too small to distinguish outside this region, we

assume that mucus flows to neighboring grids in the direction of the LAR since we know it

must pass through the LAR to clear from the whole lung. To capture all these constraints in

a simplified way, we define an elevation map for the grid system, as shown in Figure 7. For

each grid, mucus can only flow to equal or lower elevation. We assumed that mucus from a

grid flowed in any permitted direction at equal rates.

With these flow constraints in hand, we can define ordinary differential equations (ODEs)

to describe the change in clearable particulate concentration in each grid over time. We

assume that any response to intervention (i.e. inhaled IS or HS) occurs faster than the time-

scale of imaging and that the effect is constant over the duration of the study. Thus the

MCC rate leaving a grid should be constant from 10 min through the end of the measurement

window. Assuming the clearable particles are well mixed within a 2D grid, the amount of

activity leaving at any point in time should be proportional to the concentration of particles

at the current time. This is mathematically described using a first-order kinetic rate law,

shown in Equation 2.11, where C(t) is the concentration of particulate in the grid at time,

t, and k is the MCC rate leaving the grid. For our purposes, we treat concentration as

radioactive counts/(pixel2) because we are not considering motion into or out of the plane.

Since all the grids for an individual are the same area of pixels, the denominator is constant

with respect to time.

dC

dt
= −kC(t) (2.11)

Performing a mass balance around each grid, we can model the change in concentration

of particles, Ĉi,j over time for any grid (row i, column j) using Equation 2.12, where Ni,j are

the (row, column) coordinates of the neighboring grids that are permitted to flow into grid
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Average HRCT Scan Large Airway Region Elevation Map

Figure 7: Process of generating flow constraints. 2D projection of HRCT scan from [44] was

divided into a 16 x 8 grid (left). Grids containing visible large airways were selected to define

a large airway region (LAR), shown as a black and white mask in the middle panel. Inside

the LAR, elevation was defined as the city-block distance to the trachea, located at the left

edge. Outside the LAR, it was defined based on the city-block distance to the LAR (right).

Flow between grids was constrained, so that mucus could only flow to neighboring grids of

equal or lower elevation.
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(i, j), kn and ki,j are the MCC rates leaving the corresponding grid, and Di,j are the total

number of directions mucus from grid (i, j) can flow in the grid system.

dĈi,j

dt
=

 ∑
n∈Ni,j

knĈn(t)

−Di,jki,jĈi,j(t) (2.12)

The initial concentration in each grid at time, t = 10 min, is estimated as the average

measured concentrations at times, t = 8, 10, 12 min.

2.2.3.3 ABS model

We assume that the deposition pattern of In-DTPA is the same as that of Tc-SC both in

terms of the amount deposited to each grid and how much of that grid is clearable by MCC.

Thus, the difference in activity between the In-DTPA and Tc-SC can be assumed to be a

result of ABS. Similar to the assumptions made for MCC, we assume that ABS is constant

over the span of the study window and thus the change in concentration of In-DTPA due

to ABS will be proportional to the current concentration of In-DTPA. Since ABS occurs we

fit a rate coefficient for each grid and model the concentration of In-DTPA in each grid by

simply adding a first-order term for ABS to the MCC model:

dĈi,j

dt
=

 ∑
n∈Ni,j

knĈn(t)

−Di,jki,jĈi,j(t)− kABS
i,j Ĉi,j(t) (2.13)

2.2.4 Formulation as a Multi-Objective Optimization Problem

We will compare the results of three different formulations of an overall objective function,

which are summarized in Table 3. The first objective function uses the sum (across grids)

of the sum (across time) of squared residuals. The second objective takes the L∞-norm of

each of the individual objectives. Practically, this is implemented by minimizing the value

of a slack variable, which is constrained to be greater than or equal to the objective of every

grid. The third, which we will refer to as a normalized L∞-norm objective, is similar to the

second objective, but will use Chebychev scalarization [39], where an "ideal" objective value

is subtracted from each grid. This ideal value is the value of the optimized objective function
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for just that grid. In other words, if we just optimized for one grid, it would be the value of

that objective function. This may perform better in the face of unexpected disturbances (i.e.

patient shifts or interference from activity flowing down the esophagus) because it would not

sacrifice performance in other grids to try to minimize the error due to these disturbances.

Table 3: Summary of overall objective functions compared

Number Description Mathematical Expression

1 L2-Norm
min
k

16∑
i=1

8∑
j=1

∑
t∈T

(
Ĉi,j (k, t)− Ci,j (t)

)2

T = {10, 12, ..., 80}

2 L∞-Norm

min
k

s (k)

s.t. s (k) ≥ gi,j (k)

∀i ∈ {1, ..., 16} , j ∈ {1, ..., 8}

gi,j (k) =
∑
t∈T

(
Ĉi,j (k, t)− Ci,j (t)

)2

T = {10, 12, ..., 80}

3
Normalized

L∞-Norm

min
k

s (k)

s.t. s (k) ≥ gi,j (k)

∀i ∈ {1, ..., 16} , j ∈ {1, ..., 8}

gi,j (k) =
∑
t∈T

(
Ĉi,j (k, t)− Ci,j (t)

)2

− g∗i,j

T = {10, 12, ..., 80}

We fit the MCC model parameters for all healthy controls by optimizing each of these

objective functions. To provide a holistic view of the quality of fit for each of these objective

functions, we calculate the mean absolute error (MAE) for individual grids, as well as for

the whole lung.
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2.3 Results

One key aspect from traditional methods of analyzing planar scintigraphy that we aimed

to address with this new model was the heterogeneity within each of the compartments

or ROIs. In Figure 8, we compare the variance of pixel intensity, which corresponds to

radioactivity, in traditional central and peripheral ROIs with that of all the grids in our 16 x

8 system. Though we might expect a greater decrease in variance with the smaller areas of

each grid, this also decreases the sample size of pixels used for the estimate of the variance.

The skew of the pixels in the grids, shown in Figure 9, is much lower than that of the central

and peripheral ROIs.

Figure 8: Boxplots of the variance of pixel intensity in the overall central ROI and the mean

for individual grids in that region (left) and for the peripheral ROI (right). Solid black lines

show change in variance between the grid mean and the overall ROI for each individual. Grid

mean vs ROI were compared using a paired Wilcoxon signed-rank test (***: p < 0.001).
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Figure 9: Boxplots of the skew of pixel intensity in the overall central ROI and the the mean

for individual grids in that region (left) and for the peripheral ROI (right). Solid black lines

show change in skew between the grid mean and the overall ROI for each individual. Grid

mean vs ROI were compared using a paired Wilcoxon signed-rank test (***: p < 0.001).
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The median non-clearable activity across healthy subjects is presented in Figure 10.

While the non-clearable activity in the more distal grids is most likely in the alveoli, the non-

clearable activity overlaying the large airways may also include mucus that would eventually

clear – just not over the duration of our study.

Figure 10: Mean non-clearable activity, defined as the lower 25% quartile of concentration

of Tc-SC in each grid across the 80 minute study, for healthy subjects.

Each of the overall objective functions were fit to Tc-SC retention data from the same

11 healthy controls. For each, the MAE was calculated between the model and experimental

data for each individual grid. The mean and maximum grid MAE was calculated for each

individual and these are summarized in the first two columns of Table 4. The MAE was

also calculated between the model simulations of the whole lung and the experimental data,

which are presented in the third column of Table 4.

The normalized L2-norm objective function performs well under each of these metrics,

while the other objective functions perform poorly for at least one of the metrics. For this
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Table 4: Comparison of error metrics (mean±std) for each of the tested objective functions

fit to Tc-SC retention for healthy subjects.

Objective Function
Mean Absolute Error (MAE)

Mean Per Grid Max Grid Error Whole Lung

L2-Norm 0.085± 0.016 0.24± 0.064 1.9± 0.68

L∞-Norm 0.14± 0.027 0.34± 0.21 11± 3.4

Normalized L∞-Norm 0.11± 0.021 0.28± 0.12 7.7± 3.5

reason, the model optimized using the normalized L2-norm objective was selected for use with

the ABS model. To better understand the performance of this model, sample trajectories

from three healthy controls for the whole lung and three selected grids are shown in Figure 11.

Next, the ABS model was fit to the In-DTPA retention data. The fraction of activity in

each grid that is non-clearable through MCC was assumed to be the same as for Tc-SC. This

was a necessary assumption to fit parameters, however, it may be confounded by faster ABS

in the alveoli than in the airways due to the higher relative surface area. The parameters

for MCC rates from the L2-norm objective were used and ABS rate parameters were fit for

each grid. As shown in Figure 12, the fitted model cannot capture the trends nearly as well.

This suggests that one or more of the assumptions made may not hold true.

We hypothesized that this was related to our assumption of identical deposition of both

Tc-SC and In-DTPA. To assess the difference in deposition, we compared initial activity

in each grid between the two isotopes, as shown in Figure 13. While the distribution of

differences across all grids is very tight about 0, there seems to be a trend towards more Tc-

SC deposition in the upper lobe of the lung than In-DTPA, and vice versa in the lower lobe.

Though these differences are small individually, when all 114 grids are combined the overall

change may be substantial. Further, while there is no way to assess the proportion of In-

DTPA that lands in non-clearable spaces independently of Tc-SC, if deposition was identical,

it would be impossible for HC10 to clear more Tc-SC (Figure 11) than In-DTPA (Figure 12).
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a

b

Figure 11: Comparison between fitted model (solid lines) and data (markers) at the whole

lung scale (a) and in three example grids from row 11, columns 3, 5, and 8, which are at

different elevations (b). Colors and markers correspond to three individual healthy subjects

(HC4, 10, and 16)
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a

b

Figure 12: Comparison between fitted model (solid lines) and In-DTPA retention (markers)

at the whole lung scale (a) and in three example grids from row 11, columns 3, 5, and 8 (b).

Colors and markers correspond to three healthy individuals (HC4, 10, and 16).
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Figure 13: Probability density of the difference between Tc-SC and In-DTPA deposition for

each grid (left) and the mean difference across healthy controls (right).

2.4 Discussion

The model developed in this section is able to accurately capture MCC dynamics observed

in planar scintigraphy and improves upon previous methods in several ways. First, it is able

to fit trends observed on an individualized basis, not just at the population level. This is

essential for creating a tool for personalized medicine. Without an accurate way to describe

individual response, we cannot determine how well a person responds to inhaled treatment.

Moreover, it can describe very localized dynamics. Previous models and measurement

techniques lumped large areas of the lung into just two regions [32, 33, 35]. This was limiting

in that both regions had heterogeneous deposition patterns, which muddied the description

of clearance from those zones. With this new model, each compartment is much more

homogeneous, as indicated by Figures 8 and 9. The variance in the central ROI is generally

much greater than that of the peripheral ROI. This is consistent with visual "hot spots"
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localized to large airways that were observed in Bennett et al. [36].

While the variance is only slightly lower in the grids relative to the entire ROIs, it is still

statistically significant. In contrast, the change in skew is quite dramatic. Particularly in

the peripheral ROI, the skew in the whole ROI is more than 4 times that of the individual

grids, indicating a much longer right tail relative to the mean of the distribution. The greater

homogeneity in these grids allows for the description of more precise dynamics. In addition,

by implementing anatomically-based flow patterns, we can fit MCC rates to individual grids

and still recapitulate what is observed at the whole lung scale, as shown in Figure 11.

The ability to accurately capture these dynamics was enabled by the use of an appro-

priate overall objective function. The normalized L∞-norm performed better than the un-

normalized formulation. As alluded to, this is likely due to measurement disturbances, such

as interference from swallowed aerosol, that are irrelevant to the underlying MCC process.

In cases where there is such a disturbance, the unnormalized objective will accept slightly

worse fits for several other grids in order to minimize the large disturbance in one grid. Since

the large error is not related to the physiology the model is based on, this results in poor

agreement between simulated and experimental whole lung activity. Similarly, the L∞-norm

objectives can be insensitive to small errors, especially in the more peripheral regions because

the magnitude of error is higher in the more dynamic LAR.

While this was successful in describing MCC dynamics, it performed somewhat poorly

when applied to ABS dynamics. This is likely due to the assumption of equal deposition

in non-clearable space of Tc-SC and In-DTPA. While there are some participants for which

this is clearly not the case (e.g. HC10, where more Tc-SC is cleared than In-DTPA), there

are others where it is unclear whether or not this holds. Without this assumption, however,

we are unable to determine how much of the inhaled In-DTPA cannot be cleared through

MCC. Because In-DTPA can be absorbed paracellularly, we cannot use the same method

for determining the amount of non-clearable activity as was used for Tc-SC. As a result, we

cannot have any certainty in how much the change in In-DTPA retention is caused by ABS

vs MCC. For this reason, we chose not to proceed with reducing the model of ABS.

This highlights one of the primary shortcomings of planar scintigraphy, which is that it is

a 2D representation of a 3D system. While a single-photon emission computed tomography
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(SPECT) scan would take too long to be useful in measuring the fast MCC dynamics in

the large airways, there may be a suitable middle ground. For example, alternating between

two camera angles could improve our ability to determine where along the airway tract the

radiolabeled particles deposit. In future, such a setup may help distinguish activity that

deposits in the alveoli from activity that just has not had sufficient time to reach the trachea

during the study, thus providing a clearer picture of the underlying system we are modeling.

This in turn might provide a better basis for how much In-DTPA is in the alveoli and thus

cannot clear through MCC.

While this model provides a much clearer picture of how mucus is transported across the

lung, it suffers from high model complexity. In particular, the large number of parameters

fit for each subject makes interpretation of those parameters difficult. Additionally, due to

individual differences in deposition, not all individuals have enough clearable activity in each

grid to accurately inform the parameter values for all grids. Thus, it is prudent to reduce

the overall scale of our model in a rational manner that will preserve the physiological basis.

This will be focus of the next chapter.
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3.0 Rational Model Reduction for Improved Patient-Specific Identifiability

3.1 Introduction

As mentioned previously, not all of the parameters could be uniquely identified with

certainty for the model developed in Chapter 2. While it is structurally identifiable – mean-

ing that with sufficient data, of the right kind, unique solutions could be found for each

parameter, it is not practically identifiable (i.e. there is not enough information given the

actual data we have). Thus, in this chapter, we focus on methods for reducing the com-

plexity of the model. To start, we discuss the development of a new tool in Python called,

plepy, which estimates likelihood-based confidence intervals for path-constrained systems.

Path constraints define dynamic regions that a system must lie within. While not strictly

necessary for our particular model, enabling the use of these constraints allows this tool to

be used for a broader array of problems. Next, we take steps to decrease the number of fitted

parameters while retaining the physiological constraints embedded in the model. After this

rational reduction of parameters, we assess the identifiability of the remaining parameters.

3.1.1 Importance of Parameter Identifiability

While model parameters may provide excellent agreement between model and data, it

is important to understand how much uncertainty there is in the value of these parameters.

For instance, if a parameter can increase by 1,000 fold and the other parameters in the

model can compensate to keep the error between model and data low, then we cannot have

any certainty as to what the true value should be. In that case, we cannot draw any useful

conclusions about the parameters for an individual, defeating the point of modeling the

system in the first place. To be useful therefore, we need to ensure model parameters are

uniquely identifiable for most individuals.

There are several methods of analyzing parameter identifiability for a system. For linear,

time-invariant systems, we can analytically test for structural identifiability by calculating
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the observability matrix [45] from the state-space representation of the dynamic system

(Equation 3.3).

If it is observable (rank(O) = n, where n is the number of unknowns), then given

sufficient data all of the parameters in the model can be uniquely identified. This is often a

first test, where possible, because it is a necessary condition for parameters to be practically

identifiable, meaning that given the actual data unique solutions can be found for each

parameter. If the matrix is not of full rank, the system is structurally non-identifiable,

meaning that regardless of how much data is gathered and how high the quality of that data,

the parameters cannot ever be uniquely identified. In this case, additional assumptions must

be made or steps taken to reduce the model before trying to fit model parameters. This

analysis can only be applied to linear, time-invariant systems, however, which limits its

use. Additionally, even if the system is structurally identifiable, there is no guarantee that

appropriate data can actually be gathered to identify these parameters. In these cases, other

methods must be used.

ẋ = Ax (3.1)

y = Cx (3.2)

O =


CA

CA2

...

CAn−1

 (3.3)

One such method is through likelihood-based confidence intervals. The primary as-

sumption for this method is that the measurement errors are Gaussian in nature and thus

minimizing the sum of squared errors of the residuals is equivalent to maximizing the log-

likelihood of the model given the data [46]. Thus, two model versions – the original model

and an alternate model with a parameter of interest fixed to a value other than the fitted

one – can be compared using a likelihood ratio test. The distribution of this test statistic

asymptotically approaches a χ2 distribution with 1 degree of freedom for large sample sizes

[47]. Thus, it can be used to approximate a threshold value for the sum of squared errors
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for a given Type I error level, above which the alternate model can be rejected. Confidence

limits can then be placed on individual parameters by finding the values above and below the

fitted value that cause this threshold to be crossed. A depiction of these confidence intervals

is shown in Figure 14.

Figure 14: Depiction of a likelihood-based confidence interval. Green circle is the fitted

parameter value, the dashed line represents the 95% confidence threshold, the solid curve

represents the minimized objective value when the parameter is fixed to the corresponding

value, and the X symbols indicate the lower and upper values of the confidence interval.

Several tools have been developed to generate confidence limits using this method [48,

49], however, they would require substantial reformulation of the model from Chapter 2.

Additionally, they lack the ability to implement path constraints. Path constraints are

limits on the value a state can take on over a specific time region. For example, there may

be known physiological limits on a state, such that any model that exceeds these limits is

aphysiological. While this is a common issue that arises in physiologically-based models, it

can also arise due to safety, cost, or other physical constraints. Later in this chapter, we will

present a new profile likelihood tool in Python that also enables the implementation of path

constraints.

38



3.1.2 Measures of Identifiability

When analyzing the identifiability of parameters using likelihood-based confidence in-

tervals, there are several possible outcomes. The best case is that confidence limits can

be placed about the maximum likelihood estimate as in Figure 15A, such that there is a

unique value that minimizes the sum of squared errors. In such instances, it is considered

to be practically identifiable, meaning that given the model structure and data, a unique

parameter can be found with a specified degree of certainty.

Another possible outcome is that there is a unique minimum value, however, beyond a

certain value, the sum of squared error stops increasing, as in Figure 15B. This is a case

of practical non-identifiability, where the parameters are theoretically identifiable, but the

quantity and/or quality of data limits our ability to bound the parameter to a specified

degree of certainty. There are two paths forward in this case: the first is to gather more

data, ideally under different conditions from the original data, and the second is to reduce

the complexity of model, such that model parameters can be uniquely identified from the

existing data. While the former may provide better results in the case that this is possible

(e.g. changing experimental conditions in vitro), we will focus on the second option in this

work since obtaining additional planar scintigraphy data is not possible in the context of the

current study.

Finally, identifiability analysis may demonstrate that certain model parameters can take

on any value without increasing the sum of squared error between the model and data, as

shown in Figure 15C. In this case, the model is also structurally non-identifiable. While this

can be tested for a priori for linear, time-invariant systems, for nonlinear or time-varying

systems, likelihood-based confidence intervals can be used to determine this. In this case,

model reduction techniques can be applied to reduce the complexity of the model, and thus

increase the identifiability of remaining parameters.

3.1.3 Image Processing Tools

While there are many traditional tools that can be used to reduce the scale of an ODE

model based solely on the mathematical properties, we want to retain the physiological
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Figure 15: Depiction of likelihood profiles for a practically identifiable parameter (A), a

practically non-identifiable parameter (B), and structurally non-identifiable parameter (C).
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information that we have embedded in our model through flow constraints. Further, we

expect based on human anatomy that neighboring grids will have similar sized airways.

Rather than use mathematics alone to reduce this model, we will take advantage of the fact

that our data and model are derived from images. This allows us to borrow common image

processing tools and apply them to our parameter space.

There are two classes of tools that we are particularly interested in: 1) image denoising,

and 2) image segmentation. Some of the individual grid parameters for many subjects

are practically non-identifiable because there simply is not enough clearable activity in the

grid to ground the best-fit parameter value. Thus, when we consider the MCC rates for

a grid across all the healthy subjects, we end up with a number of values that are not

meaningful. By applying image denoising techniues, we hope to minimize the impact of

these non-identifiable parameters. Once we have clean data to work with, we are then

interested in finding connected regions that have similar parameter values across healthy

subjects. For this, we can apply image segmenation tools to the parameter values for each

grid.

3.1.3.1 Image Denoising

There are numerous techniques available for denoising images, each carrying their own

assumptions. Many of these techniques try to detect pixels that are very different from their

neighbors via convolution matrices [50, 51]. What this means is that an individual pixel

value in the denoised image actually depends on all of the pixels around it. For images with

a large number of pixels, this can be really effective. With our system, however, we have a

small array of grids and airway size could change drastically from one grid to another. Using

one of these convolution methods would thus hamper the distinction of specific airway size

classes. We do, however, have the benefit of having multiple measurements for each grid

(i.e. the fitted parameters for each of the healthy controls). This allows us to use feature

extraction techniques, such as principal component analysis (PCA).

PCA is an eigendecomposition of the covariance matrix of a data set. When the orthonor-

mal eigenvectors are sorted by their corresponding eigenvalues from largest to smallest, they
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are ordered by the amount of variance in the data that can be described by that vector [50].

In the case that all eigenvectors are used, this equates to a change of basis of the original

data into a different coordinate system. Because the eigenvectors are orthogonal, this has

the added benefit of decoupling correlated data. An example of this is shown in Figure 16.

In many cases, however, the higher order principal components (PCs) are discarded. The

discarded PCs correspond to low variance directions – often due to measurement noise. The

retained eigenvectors can thus capture high variance directions, often correspond to impor-

tant features, without as much noise [51].

Figure 16: Example of how PCA can be used as a change of basis to describe the same

data using linearly independent coordinates. Parameters for two sample subjects are highly

correlated, as shown on left. Principal components (blue and yellow lines) capture directions

of maximum variance. The same data expressed in terms of principal components (right) is

no longer correlated.

A classic example of how PCA has been used for feature extraction was an early facial

recognition method called, "eigenfaces" [52]. In that case, PCA was performed on a set

of equal sized headshots, where the eigenvectors corresponded to pixel arrays (eigenfaces)
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capturing the directions of highest variance across the headshots. Using just the first 7 eigen-

faces, they were able to accurately identify subjects from the training data under different

lighting or head orientation and detect new faces [52].

In an analogous way, we can apply PCA to model parameters from our healthy controls

to identify "eigenlungs" that capture the directions of high variance across our controls. In

our case, we would expect parameter arrays that are highly patient-specific to be captured

in the first few eigenlungs. In contrast, parameters that are frequently non-identifiable and

thus get set to one of the parameter bounds would appear in eigenlungs corresponding to

low variance. Thus, if we use a small subset of eigenlungs to describe the parameters of the

healthy controls, we can effectively mitigate the impact of non-identifiable parameters.

3.1.3.2 Image Segmentation

We can also use tools developed for image segmentation. Image segmentation is an

active area of research within medical imaging for accurately identifying different organs or

tissue regions. Many of the tools for image segmentation use graph clustering techniques

[53–55], meaning that pixels or voxels that are clustered together must be connected. One

of the simplest of these techniques, which has been successfully applied to other medical

images such as diffusion MRI tractography [53], is constrained hierarchical clustering. With

this technique, a similarity metric ranging from 0 (no similarity) to 1 (identical) is defined

between each node. Connectivity constraints are then applied by setting non-adjacent node

similarities to 0. From there, the two most similar nodes can be merged into a cluster. A

new similarity is calculated between that cluster and each other node. Then this process is

repeated until all nodes are combined into one cluster (this assumes the graph is completely

connected). This forms a dendrogram, showing where each node/cluster is combined. For a

selected number of clusters, this can then be used to define which cluster each node belongs

to. While most image segmentation techniques use pixel color or intensity, we can apply the

same technique to grid parameters.
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3.2 Profile Likelihood Estimator in Python

Profile likelihood is a method of analyzing parameter identifiability based on maximum

likelihood. Assuming noise in the system is Gaussian, it can be shown that minimizing the

sum of squared errors (SSE) is equivalent to maximizing the likelihood. Furthermore the

SSE objective function is equal to −2 ∗ log(L). Uncertainty about the maximum likelihood

estimate (MLE) of a parameter can be defined by the chi-squared distribution with single

degree of freedom. Traditional profile likelihood tools work by fixing one parameter to a value

slightly greater than (or less than - depending on which confidence limit you are searching

for) the MLE value. The other parameters are then re-optimized to maximize the likelihood

of the system and the log-likelihood is re-calculated. This is repeated over and over until

the other parameters in the system cannot sufficiently compensate for changes in the fixed

parameter and the log-likelihood drops below a threshold confidence level (defined by the

chi-squared distribution). This is then considered one bound on the confidence limit and the

process is repeated in the opposite direction. In some cases though, the other parameters in

the system can indefinitely compensate for changes in the fixed parameter. In this case, the

system is either practically or structurally non-identifiable.

Several limitations exist to using these traditional tools. Firstly, if the parameter of

interest is non-identifiable, many many calculations are run only to come to the conclusion

that the parameter is non-identifiable. This is often a waste of computational resources with

little added information about the system. Additionally, to the best of our knowledge, the

tools available only allow users to place constraints on parameter values, rather than states in

the system. This requires users to pre-define parameter regions that satisfy path-constraints

on the states of the system. While this is not terribly arduous for linear systems, for non-

linear systems, there are often multiple regions that are feasible for any given parameter,

if the other parameters of the system fall within a certain range. Traditional tools would

therefore require a user to find confidence limits on parameters in each of these regions to

find overall confidence limits.

To resolve these issues, we developed an open-source tool in Python called, Profile Like-

lihood Estimator in Python (plepy). This tool leverages the power of Python Optimization
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Modeling Objects (PYOMO) to implement path constraints by converting the system of

ordinary differential equations into discrete algebraic equations [56]. Using this framework,

users can directly define path-constraints and the overall bounds on the parameters of the

system.

Previous work from our group tried to implement the profile likelihood tool developed

in [57] within this framework, however, it had limited capabilities. Specifically, it failed for

many stiff problems because it would take larger and larger adaptive steps away from the

optimum value in parameter space because there was little decrease in likelihood. Eventually,

it would pass the parameter confidence limit and the likelihood would drop far below the

threshold specified. However, because the step size had gotten so large, there was a huge

window over which the precise confidence limit could have occurred. If the adaptive step

size was removed for stiff problems, tens of thousands of iterations could be taken without

reaching the confidence limit that we knew existed.

To improve the efficiency of the search for confidence limits, rather than taking steps

away from the MLE parameter value, the parameter is first fixed to the bound in either

direction for that parameter and the other parameters are re-optimized. This way, if the

log-likelihood remains above the confidence threshold of interest, there is no need to calculate

additional steps within that region. If it is below the confidence threshold, however, our tool

uses a binary search to find the confidence limit of the parameter to within a user-specified

degree of accuracy. Since it can also be useful to analyze how other parameters adjust to

compensate for the fixed parameter, once the bounds are defined, intermediary values of

the parameter can be estimated using the same process. This process is summarized in the

algorithm shown in Algorithm 1.
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Algorithm 1 Binary search for confidence limit
Initialize:

xin ← xopt

xout ← xbound

xmid ← xbound

yopt ← g(xopt) ▷ g(x) is the minimized objective function

Lt ← ln(yopt) +
1
2
Z(α) ▷ Z(α) is the inverse survival function for χ2

df=1

ymid ← g(xmid)

Ensure: ymid is feasible ▷ If ymid is infeasible, enter binary search for max

feasible solution.
Lmid ← ln(ymid)

if Lmid < Lt then

xCI ←∞

else

while (xout − xin) > δtol do ▷ δtol is a minimum step size

xmid ← 1
2
(xout + xin)

ymid ← g(xmid)

Lmid ← ln(ymid)

if Lmid > Lt then

xout ← xmid

else

xin ← xmid

end if

end while

xCI ← xmid

end if

return xCI
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3.3 Methods

To reduce the flexibility of the model, the first step we took was to consider only allowing

mucus to flow to grids of equal elevation if their own elevation was below some threshold

value. We defined this value as the threshold elevation and varied it from 2-9, re-optimizing

the objective function (sum of squared errors across time and space) at each threshold

elevation. We then compared the objective values at each step with that of the full model

developed in Chapter 2. We looked for a sharp increase in error or "knee" to use as the

threshold elevation for the remainder of the model reduction.

We then sought to apply PCA across the parameters for the healthy controls. PCA can

only be applied to matrices with normally distributed data, so we first needed to process our

parameters. We initially formed our data matrix by flattening the 2D matrix of MCC rate

parameters from each individual into one vector per individual, where the row corresponds

to a specific grid coordinate. Each of these makes up one column of our data matrix. The

initial parameter distribution for a given individual was strictly positive and approximately

log-normal in shape, as shown in Figure 17. Therefore, we took the natural log of the original

parameters and then transformed them using Equation 3.4, where G (µ, σ) is the log of the

initial distribution, which is approximately normally distributed with mean, µ and variance

σ2.

Z (0, 1) ≈ G (µ, σ)− µ

σ
(3.4)

From there, the eigenvalue decomposition was performed on the transformed dataset

across all healthy controls. This was implemented using the scikit learn package in Python

[58]. To reduce the effect of non-identifiable parameters on model reduction, we discarded

PCs that captured 5% or less of the variability in the data across healthy controls. The

remaining PCs were visualized in 2D to create "eigenlungs" corresponding to the directions

of greatest variability. This can provide intuition as to which areas are most important to

capture to be able to describe the MCC dynamics of an individual.

We then performed constrained hierarchical clustering on the grids based on similarity of

the first two eigenlungs. We used the Ward metric for similarity, which minimizes the within
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Figure 17: Original distribution of MCC rate parameters for healthy controls (left) and the

transformed distribution after processing (right).

cluster variance [59]. To implement the connectivity constraints, an adjacency matrix was

calculated. The adjacency matrix is a pairwise matrix for each set of grids that has a value

of 1, if they are neighbors, and 0 otherwise. The adjacency matrix was then applied as a

mask on the similarity matrix, such that only neighboring grids had a value greater than 0.

This was implemented using scikit learn in Python [58].

To identify the minimum number of clusters necessary to adequately capture the MCC

dynamics of an individual, the number of clusters selected from the dendrogram formed by

the constrained hierarchical clustering was increased from 2 to 10. For each set of clusters,

the objective function from Chapter 2 was re-optimized setting all MCC rate coefficients for

a given cluster to the same value. The flow constraints were defined based on the threshold

elevation determined previously. The change in overall objective from the full model was

calculated for each individual for each number of clusters. We then looked for an elbow

in the error, where a decrease in cluster number would greatly increase the error and an

increase would have little effect.

Pearson’s correlation coefficients were calculated between each parameter to evaluate

any linear dependence between them. If there was a significant correlation, one of the
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parameter pair could be estimated from the other using a linear model rather than fitting it

independently.

After selecting an appropriate number of clusters and fitting MCC rate coefficients for

each cluster, 95% confidence intervals were calculated for each parameter for each individual.

The proportion of individuals with identifiable lower and upper confidence limits and the

range of those intervals was calculated for each parameter.

3.4 Results

3.4.1 Threshold Elevation

The change in sum of squared error when different elevations are used as a threshold,

below which mucus can flow to equal elevation grids, is shown in Figure 18. While the

magnitude of change is relatively small using each elevation as a threshold, there is a knee in

the error change at a threshold elevation of 4. We chose this for a threshold elevation going

forward with the remainder of the model reduction.

3.4.2 Eigenlungs

Next, we performed PCA across healthy controls. Only the first two PCs captured more

than 5% of the variance in the data and combined account for 74% of the overall variance in

the data, as presented in Figure 19a. These two PCs are depicted as eigenlungs in Figure 19b.

They roughly correspond to axes of small vs large airway and upper vs lower lobe.

3.4.3 Hierarchical Clustering

Discarding all but the first two eigenlungs of the healthy controls, we then applied con-

strained hierarchical clustering. The dendrogram formed for the entire grid network is shown

in Figure 20a, where each of the rows corresponds to an individual grid and the two columns

of the heatmap are the associated values of the first two eigenlungs. Each branch point (ver-
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Figure 18: Change in total sum of squared error (across all time points and grids) between

model and MCC scan data from original model versus threshold elevation, below which

mucus can flow to equal elevation grids. Each line represents a healthy control

tical lines) on the dendrogram represents the bifurcation of the parent cluster (horizontal

line from the left) into two smaller clusters (horizontal lines on the right).

To select an appropriate number of clusters for the reduced model, the number of clusters

was increased from 2 to 10 (working from left to right on the dendrogram). For each set

of clusters, a single MCC rate parameter was fit for each cluster without changing any of

the flow constraints (i.e. mucus still flowed to lower or equal elevation grids based on the

threshold elevation of 4). The change in total sum of squared error relative to the full model

was calculated for each set of clusters and is compared in Figure 21. There was a knee in

the error at 5 clusters, which corresponds to those shown in Figure 20.
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a b

Figure 19: a) Principal component (PC) analysis of log-normalized clearance rate coefficients

across healthy subjects. PCs are orthogonal and ordered by the amount of variance in the

data they explain. b) The first two PCs, represented spatially. The scale bar indicates the

magnitude and direction of the components from the median. Parameters of all healthy

subjects can be described as a linear combination of these two PCs to within 74% accuracy
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Figure 20: a) Dendrogram and heatmap showing hierarchical clustering of 1st and 2nd

principal components of healthy subject clearance rate coefficients and b) spatial layout of

selected clusters. Each colored row of the heatmap represents a grid in terms of principal

components (columns). Each vertical line on the dendrogram represents the merging of

the next most similar cluster or grid. The dashed line shows where the dendrogram was

truncated to form the selected clusters
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Figure 21: Change in total sum of squared error (across all time points and grids) between

model and MCC scan data from original model versus the number of clusters used in the

reduced models. Each line represents a healthy control
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3.4.4 Parameter-Parameter Correlation

In order to minimize the number of fitted parameters, a linear model could be used to

estimate one parameter from a highly correlated pair. Correlation coefficients were calcu-

lated between each of the fitted cluster parameters, as shown in Figure 22. There were no

significant correlations between the fitted parameters.

Figure 22: Pearson’s correlation coefficients between each of the fitted parameters. Rows and

columns (top to bottom, left to right) correspond to the MCC rate coefficients for healthy

subjects for each cluster (k1-k5). There are no significant correlations.

3.4.5 Model Identifiability

Likelihood based 95% confidence intervals were generated for the fitted parameters for

each healthy individual. For each cluster, at most 2 of the 11 healthy controls had a bound

that was non-identifiable. The range of those confidence intervals was higher in clusters 1

and 2, which roughly overlap the large airways, and smaller in clusters 3, 4, and 5. It should
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be noted that for cluster 2, the large average interval size was due almost entirely to one

individual who had a range of 996 min−1. The median interval for cluster 2 was 4.80 min−1

and if that individual is excluded, cluster 2 has a mean ± std of 14.5± 14.7.

Table 5: Number of participants with identifiable lower and upper 95% confidence limits and

the range of those intervals (mean±std) for each of the 5 clusters of the reduced model.

Cluster Lower Limit Upper Limit Range (min−1)

1 11/11 (100%) 9/11 (81.8%) 15.4± 7.00

2 11/11 (100%) 10/11 (90.9%) 111± 311

3 10/11 (90.9%) 10/11 (90.9%) 1.95± 1.39

4 11/11 (100%) 9/11 (81.8%) 2.02± 0.535

5 11/11 (100%) 11/11 (100%) 1.02± 0.434

3.5 Discussion

By methodically reducing the scale and complexity of the model developed in Chapter 2,

we were able to improve the identifiability and interpretability of the fitted parameters while

preserving the physiological basis embedded by the flow constraints. The total number of

free parameters was reduced from 114 down to 5 with only an 8.7% increase in mean grid

MAE (from 0.085±0.016 to 0.092±0.016). Using likelihood-based confidence intervals, we

were also able to determine that there were unique minima for the parameters of this model

for most individuals.

Interestingly, the 5 clusters identified from the hierarchical clustering, as shown in Fig-

ure 20b, roughly correspond to anatomical features. Clusters 1 and 2 overlay the area in 2D

where we would expect to find the main bronchus and bronchus intermedius, respectively

[44]. Clusters 3 and 4 approximately correspond to where the lower and upper lobes of the

lung would be, respectively. While we might expect there to be 3 clusters – one for each lobe
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of the right lung, there is significant overlap between the lobes when projected onto a 2D

plane. It is likely that any difference in MCC rate between the lower and middle or middle

and upper lobes would be confounded by this overlap. Finally, though it is not a distinct

anatomical region, cluster 5 corresponds to the most distal regions of the lung from a 2D

perspective.

From this, we can identify 5 key regions on planar scintigraphy scans that are most im-

portant for capturing patient-specific clearance. The eigenlungs from the PCA in Figure 19b

really highlight where previous methods were successful and what key regions they were

missing. The first eigenlung primarily separates the grid space into large airway regions and

distal regions from an anatomical perspective. While this supports other evidence that there

is consistently faster MCC in the large airways than in smaller ones, it also indicates that

the magnitude of that difference in MCC rates is highly variable across healthy individuals.

This supports the common practice of dividing the lung into a central and and peripheral

ROI. However, this also suggests that there is more nuance required to adequately describe

the MCC behavior for an individual. The most similar analysis of this is from Alcoforado

et al. [43], where they used the same HRCT scans from Greenblatt et al. [44] to define

anatomically-based central and peripheral ROIs. Although they were only used to measure

endpoint changes in MCC and heterogeneity of aerosol deposition, the anatomically-based

ROIs captured patient-specific regions much more closely than the traditional box-shaped

central ROI. A large aspect that has been missing from standard MCC analysis of planar

scintgraphy scans is the difference between upper and lower lobe areas, which is illustrated

well in Figure 19b. This distinction was shown to be the second most variable feature

between individuals.

While these are key areas, it should be noted that these are not simply new ROIs that

can be treated statically. Recall that within each of these clusters, we are still implementing

flow constraints on a grid-by-grid basis. We still need to model mucus as it flows across

each of these clusters toward the large airways and up to the trachea in order to accurately

describe the system dynamics, however, we can now capture these dynamics with a small

number of parameters.

The clusters identified also highlight the utility of using constrained hierarchical clus-
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tering rather than clustering based on similarity alone. While it is likely that the MCC

dynamics could be captured just as well with another method, the resulting clusters could

include grids that are scattered across the lung. That would make interpretation of the

reduced model much more difficult due to the lack of physiological meaning. By enforcing

connectivity of the clusters, we reduce the formation of spurious clusters. Because there is

a physiological rationale as to why neighboring grids would behave similarly (namely they

contain similar sized airways), they can also provide spatial insight into the MCC behavior

of an individual.

When we consider a patient-specific model, we want to make sure we have confidence in

the unique value of those parameters to be able to draw useful conclusions. To that end,

we have demonstrated that the parameters of the reduced model are uniquely identifiable

for most subjects. One exception, which resulted in most of the non-identifiable confidence

limits in Table 5, is where there is very little aerosol deposited to a certain region. This is

completely unsurprising and to be expected. Practically, no model will be able to uniquely

identify clearance rates without a strong enough signal from a particular region. In the case

that a parameter is non-identifiable due to low signal, the average clearance rate coefficient

for that cluster can be used to describe the MCC dynamics for that individual with minimal

impact on error. When analyzing parameters across a population, these parameters could

then be excluded to avoid confounding any underlying relationships in the parameters that

actually are identifiable.

One limitation to this work is the small sample size of healthy controls. With one

participant excluded from this analysis for low overall activity, we are only working with 11

individuals. Though the high degree of parameter identifiability and small change in overall

error leads us to believe this model will be sufficient to describe MCC dynamics across all

individuals, there is a possibility that with additional data from new participants, these

results could change slightly. Specifically, the eigenlungs associated with a larger population

may have slightly different values and therefore could lead to slight changes in the clusters

selected. Because the drop in variability after the first eigenlung is very pronounced, we would

expect very little change in that with additional participants and thus would expect little,

if any change in clusters 1 and 2. Though the precise boundaries of the other clusters might
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change slightly, we would not expect large changes in the number or location of clusters.

Based on the change in error observed in Figure 21, we would expect to still need at least 5

clusters. There may, however, be enough variability over a larger population to make the use

of 6 clusters more appropriate. Alternatively, the potential increase in variability could lead

to the use of an additional eigenlung, which could influence the boundaries of the clusters.
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4.0 Patient-Specific Modeling of Hypertonic Saline Response in Cystic

Fibrosis

4.1 Introduction

Because CF is a rare disease, most single site clinical trials are performed on very small

sample sizes. Of the 283 completed clinical studies in the US (listed on ClinicalTrials.gov

as of April 2023) that exclusively studied CF participants, the median enrollment was 42.

Low enrollment limits the ability to adjust statistics for co-variates, and often results in low-

quality evidence supporting a therapy or inconclusive results. Those trials that are larger,

are typically multi-site studies. While this can greatly increase the statistical power, they are

often more costly and any deviations in protocol between sites can confound these results.

A number of clinical trials have studied the effect of HS on MCC in CF individuals [31,

35, 60]. While most conclude that there is a therapeutic effect, the magnitude and duration

of the response has been shown to vary greatly between individuals [61]. Depending on the

actual response for an individual, there may or may not be a sufficient response to justify the

lengthy process of administering HS and sanitizing the equipment after. There is no clear

method for determining who will benefit most from HS or how to determine the effect on a

per-patient basis.

We were interested in building a tool to better estimate patient-specific response to HS.

In addition to the nuclear imaging that was used to develop the MCC model, participants in

the study donated human nasal epithelial cells (HNEs), performed pulmonary function tests,

a sweat chloride test, and a multi-breath washout study. Additional in vitro experiments

were performed on the HNEs to assess the electrophysiology of the cells, the volume of the

airway surface liquid (ASL), paracellular absorption, and the diffusion time through the

mucus layer, amongst other things. From these in vivo measurements, an in silico model

of ion and water transport across the epithelial tissue in CF [23] was previously developed

in our group. We used these measurements as features for a statistical model to estimate

the change in MCC rate coefficients and non-clearable activity from Chapter 3. This could
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provide clinicians a tool to aid in decision making about whether or not to include HS as

part of a CF individual’s treatment plan based on their specific expected benefit.

4.1.1 Thin-Film Model

Prior work from our group developed a tissue-scale model of water and ion transport

across the epithelium based on the in vitro measurements from a subset of these study par-

ticipants [23, 62]. The model simulated sodium, chloride, potassium, and water transport

across the cell both transcellularly and paracellularly. The permeability and maximal fluxes

of relevant ion channels and pumps were fit to Ussing chamber experiments and the water

absorption was fit to 48 hours of ASL volume measurments. To distinguish between para-

and transcellular pathways, Tc-DTPA – an in vitro equivalent to In-DTPA – retention was

also measured over the same timeframe. The parameters were fit using a tool called APT-

MCMC, which uses a Markov chain Monte Carlo technique with ensembles of affine-invariant

samplers and parallel temperature swapping to quickly sample uncorrelated regions of pa-

rameter space [63]. A comparison of the best-fit parameter set for CF vs non-CF participants

showed significantly increased permeabilities for transceulluar water channels, the epithelial

sodium channel (ENaC), paracellular Tc-DTPA and significantly decreased permeability of

alternative chloride channels (ACC) [62]. We hypothesized that by including these patient-

specific in silico parameters for those who had them available, we could better estimate

individual response to inhaled HS in the CF group.

4.1.2 Feature Selection

Because the initial set of variables, also called features, considered was larger than the

number of participants, fitting linear model coefficients for all of them would result in gross

overfitting. Reducing the number of features in the models and using cross-fold validation

decreases the risk of overfitting, increasing the likelihood of producing accurate predictions

when applied to new data sets. We use a combination of two methods to select the features

for each statistical model: least absolute shrinkage and selection operator (LASSO) regular-

ization and recursive feature elimination (RFE). LASSO adds an L1 regularization term to
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the typical objective function minimized in linear regression, as expressed in Equation 4.1.

This penalizes large magnitude coefficients, driving coefficients that do not also sufficiently

reduce the L2 term to zero [64].

min
β̂

1

2

∥y −Xβ̂∥22
N

+ α∥β̂∥1 (4.1)

RFE is a backwards elimination wrapper method that recursively removes the least important

feature, as defined by the method it wraps around[65, 66]. In this case, the magnitude of the

coefficients from LASSO regression provide a measure of relative importance [64]. To further

ensure the appropriate features are selected, k-fold cross-validation can be implemented at

each elimination step by using the mean importance across all folds to select a feature to

remove.

4.2 Methods

4.2.1 Apply Reduced Model to CF Participants on IS and HS

First, we fit MCC rate coefficients for each of the clusters of the reduced model from

Chapter 3 for CF participants on both IS and HS study days. We compared the clearance

rates for CF participants on the IS day (CFIS) vs healthy controls (HC) using a two-sample

Kolmogorov-Smirnov non-parametric test to determine which, if any, parameters were sig-

nificantly different in the CF group. Patient-specific response in MCC parameters between

the CF participants on their IS vs HS (CFHS) study days was compared using a paired

Wilcoxon signed-rank test.

4.2.2 Statistical Model

The primary outcome we were interested in studying was whether the change in MCC rate

coefficients and non-clearable activity could be estimated using other more readily available

measurements. To that end, we built multivariable linear regression models to estimate

each of these response variables. We broke our input variables into several groups based
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on how the measurements were gathered to assess how accurate of predictions we could get

using different subsets of available data. These variables were broken into 3 groups: clinical

(Table 6), in vitro (Table 7), and in silico (Table 8).

Table 6: Summary of clinical input variables considered for multivariate linear models (n=23,

except †: n=20)

Variable Abbreviation Units Description

Age — years

Demographics
Height — cm

Weight — kg

Body mass index BMI kg/m2

Forced expiratory
volume in 1 sec

FEV1 % predicted

Pulmonary function test
(PFT)

Forced expiratory
flow between 25%
and 75% of vital

capacity

FEF25-75 % predicted

Forced vital
capacity

FVC % predicted

Change in FEV1

from IS to HS day
∆FEV1 % predicted

PFT change
Change in FEF25-75

from IS to HS day
∆FEF25−75 % predicted

Lung clearance
index† LCI —

Multibreath washout test
measurement; Marker of
lung inhomogeneity

Sweat Chloride Sweat Cl µM
Biomarker of CFTR
function

In the case that measurements were not available for an individual, they were imputed

using a weighted average of the values for the 3 nearest neighbors based on the remainder

of parameter space. We chose to do this due to the small sample size, however it should be
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Table 7: Summary of in vitro input variables considered for multivariate linear models.

IR=Isotonic Ringer’s, HR=Hypertonic Ringer’s

Variable Abbreviation Units Description

Normalized apical
liquid volume

absorption rate
(n=16)

Norm. Vap %/day
Measure of liquid absorption
rate

Absorbed Tc-DTPA
(n=22)

Cell ABS %/day
Marker of paracellular liquid
absorption

Fluorescence
recovery after
photobleaching

(n=10)

FRAP τ/τsaline Marker of mucin concentration

Change in Norm.
Vap from IR to HR

(n=16)
∆(Norm. Vap) %/day

Change in liquid absorption
rate under HR conditions

Change in Cell ABS
from IR to HR

(n=16)
∆(Cell ABS) %/day

Change in paracellular liquid
absorption under HR conditions

noted that this could introduce some bias in our model, particularly for measurements with

missing values for a large number of participants.

4.2.3 Feature Selection

To avoid including redundant variables in our statistical model, we took a few steps to

reduce the number of input variables or features included. All variables were centered to mean

0 and normalized to a standard of deviation of 1 prior to performing the remainder of feature

selection. We calculated Pearson’s correlation coefficients between each of the available

features to determine their linear independence. For those that were highly correlated, only

one of the two parameters was selected for use in the remainder of feature selection. In the
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Table 8: Summary of in silico input variables considered for multivariate linear models (n=9)

Variable Abbr. Units Description

Trans-apical water
permeability

Pwca µm/min Transcellular water transport

Trans-basolateral
water permeability

Pwcb µm/min Transcellular water transport

Paracellular water
permeability

Pwab µm/min Paracellular water transport

ENaC permeability Penac µm/min Transcellular Na+ transport

ACC permeability Pacc µm/min
Non-CFTR transcellular Cl−

transport

BKCa permeability Pbkca µm/min Ca+-activated K+ transport

Basolateral Potassium
permeability

PbK µm/min Transcellular K+ transport

Basolateral Chloride
permeability

PbCl µm/min Transcellular Cl− transport

Paracellular Sodium
permeability

Ppna µm/min Paracellular Na+ transport

Paracellular Chloride
permeability

Ppcl µm/min Paracellular Cl− transport

Paracellular Potassium
permeability

Ppk µm/min Paracellular K+ transport

Paracellular DTPA
permeability

Ppdt µm/min
Paracellular small molecule
transport

Maximum molar flux
through NKCC

Jnkcc mmol/(min·m2)
Co-transport of Na+, K+, and
Cl−

Maximum molar flux
through Na-K-ATPase

Jnakp mmol/(min·m2)
ATP-activated transport of
Na+ and K+
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case that one of the parameters had more available measurements (i.e. fewer missing values),

this was preferentially selected out of the two.

Next, recursive feature selection was performed with 5-fold cross validation using scikit

learn in Python [58] for each of the response variables (MCC rate coefficients and non-

clearable activity change). We repeated the same process using the change in Tc-SC con-

centration at 10 minutes as the output variable to enable the simulation of the predicted

MCC dynamics. During this process, LASSO regression was performed for each fold with the

lowest coefficient getting removed during each iteration of the recursive feature elimination.

The estimated values from these cross validated models were then compared to the fitted

values for each individual to assess the accuracy of the multivariable model.

4.2.4 Validation with Organ-Scale Model

While our primary outcome was to predict the parameter values for the MCC model

from Chapter 3, we can also evaluate the impact errors in these predictions have on the

resulting MCC dynamics. Since the change in non-clearable activity was estimated on a

cluster basis rather than for individual grids, we assumed the change in activity predicted

was proportional for all grids in a cluster. From there, we simulated MCC retention using the

predicted MCC rate coefficients, Tc-SC concentration at 10 min, and non-clearable activity

for each individual and compared the average grid MAE and whole lung MAE to that of the

fitted MCC model.

4.3 Results

4.3.1 Response to HS from Fitted Parameters

The distribution of fitted MCC rate coefficients for each group (HC, CFIS, and CFHS)

are presented in Figure 23. HC and CFIS parameters were compared using non-parametric

two-sample Kolmogorov-Smirnov tests to determine if there were any significant differences

between the values for the groups. Only cluster 3, which approximately overlays the smaller
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airways of the lower lobe, had a significantly different parameter distribution in the CF group

than in HCs. The distribution of MCC rate coefficients between CFIS and CFHS groups

was compared using a paired Wilcoxon signed-rank test. There were significant increases

from CFIS to CFHS for MCC rate coefficients in all clusters. Some of the parameters for

the CFHS group even exceeded the range observed in the HCs.

Figure 23: Clearance rate coefficient distribution by subject subgroup (HC=healthy controls

including inhalation of isotonic saline (IS), CFIS=CF including inhalation of IS, CFHS=CF

including inhalation of hypertonic saline (HS)) and cluster. CFIS and CFHS are paired data

from the same subjects on two different study days. For each violin, the width of the shaded

region shows the estimated probability density of the corresponding parameter values; each

horizontal line corresponds to the fitted parameter value for an individual. HC vs CFIS were

compared using a two-sample Kolmogorov-Smirnov statistical test and CFIS vs CFHS were

compared using a paired Wilcoxon signed-rank test (*: p < 0.05, **: p < 0.01, ***: p <

0.001)

The distribution of non-clearable activity in each cluster was also estimated for each group

and is shown in Figure 24. The same statistical tests were used to compare the distributions

between groups. The only significant difference in non-clearable activity between the HC
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and CFIS group was in cluster 5, which corresponds to the most distal regions in 2D. In

contrast, the distribution of non-clearable activity decreased significantly from the IS to HS

days in all clusters except cluster 5. The overall range of observed values in CF participants

was also much larger than in the HC group.

Figure 24: Distribution of non-clearable activity by subject subgroup (HC=healthy controls

including inhalation of isotonic saline (IS), CFIS=CF including inhalation of IS, CFHS=CF

including inhalation of hypertonic saline (HS)) and cluster. CFIS and CFHS are paired data

from the same subjects on two different study days. For each violin, the width of the shaded

region shows the estimated probability density of the corresponding non-clearable activity;

each horizontal line corresponds to the value for an individual. HC vs CFIS were compared

using a two-sample Kolmogorov-Smirnov statistical test and CFIS vs CFHS were compared

using a paired Wilcoxon signed-rank test (*: p < 0.05, **: p < 0.01, ***: p < 0.001)
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4.3.2 Feature Correlations

The Pearson’s correlation coefficients for all of the initially included input variables was

calculated and any pair with a coefficient magnitude greater than 0.67 had one variable

removed. Height and weight were strongly correlated (r=0.69), as well as weight and BMI

(r=0.94). Because BMI implicitly includes both of these measurements, height and weight

were removed. FEV1 was highly correlated with FVC (r=0.92) and FEF25-75 (r=0.82).

Because FEV1 is more commonly reported as a PFT, we chose FEV1 out of these PFTs.

The change from IS to HS study day in FEF25-75, however, only showed weak correlation

with FEV1 or its change between study days, so it was included. The change in normalized

apical volume absorption rate (∆Norm. Vap) was highly correlated (r=-0.78) with the value

under IR conditions, so only the IR condition was included. Four in silico parameters were

removed because they had strong correlations with in vitro measurements, which contain

less uncertainty: Ppna with FRAP (r=-0.95), Pwca with Norm. Vap (r=-0.68), Pbk with Cell

ABS (r=0.79), and Penac with FRAP (r=-0.90).

4.3.3 Linear Regression Estimates for Organ-Scale Parameters

RFE with 5-fold cross validation was performed, using LASSO regression coefficients to

determine relative feature importance for all of the response variables: change in MCC rate

coefficient, initial deposition, and non-clearable activity for each cluster from IS to HS study

day. The resulting multivariable models when including all non-correlated input variables are

summarized in Tables 9-10. For the selected features and coefficients for the submodels using

only clinical and in vitro features, please refer to Appendix C. The relative importance was

calculated for the features selected in each model as the magnitude of the LASSO regression

coefficients and are presented in Figures 25-26.

Parity plots comparing the estimated change in values with the actual change in values

are presented in Figures 27-29 for the MCC rate coefficients, initial deposition, and non-

clearable activity, respectively. An adjusted coefficient of variation (Adj. R2) was calculated

for each fold during cross-validation and are shown on the corresponding parity plots.
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Table 9: Coefficients and intercept for multivariable linear regression models to estimate

change in MCC rate coefficients from IS to HS days.

Response Variable (min−1)

∆k1 ∆k2 ∆k3 ∆k4 ∆k5

Feature Units Coefficient

FEV1 % of predicted -0.498 -0.133 -0.0208 -0.0120 —

Ppcl µm/min — — -0.382 -0.185 -0.114

Sweat Cl µM — — 0.0174 — 4.44× 10−3

Pbkca µm/min — — 0.463 — —

LCI — -2.58 -0.606 — — -0.0153

∆Cell ABS % cleared/day — — — -0.0281 -0.0207

FRAP τ/τsaline 8.89 1.72 — — —

Jnkcc mmol/(min·m2) — — -0.0248 — —

Pacc µm/min — — -1.39 — —

BMI kg/m2 — — -0.0391 — —

∆FEV1 % of predicted — — — — 0.0211

Age years — — — — 0.0100

∆FEF25-75 % of predicted -0.137 — — —

Norm. Vap %/day — 5.71 — — —

Jnakp mmol/(min·m2) — — — — 8.13× 10−3

Intercept — 34.9 9.03 1.71 1.28 -0.798
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Figure 25: Relative importance of included features in predicting the change in MCC rate

coefficients from IS to HS days in each cluster. Relative importance is determined by the

relative magnitude of LASSO regression coefficients.
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Table 10: Coefficients and intercept for multivariable linear regression models to estimate

change in non-clearable activity from IS to HS days.

Response Variable (% Total Activity)

∆N1 ∆N2 ∆N3 ∆N4 ∆N5

Feature Units Coefficient

FRAP τ/τsaline -2.44 -2.35 1.97 -7.16 -1.94

Pacc µm/min 20.0 12.6 -7.14 14.4 —

BMI kg/m2 0.279 — 0.250 -0.427 -0.223

Age years -0.328 — — -0.248

LCI — 1.08 — — 1.47 -0.165

Pwcb (×10−4) µm/min -4.32 -2.73 — 2.82 —

Cell ABS % cleared/day — -0.126 0.303 -0.0977 —

Ppcl µm/min — — 1.75 — -0.569

FEV1 % of predicted — — 0.0705 — -0.0577

Norm. Vap %/day — — — 21.4 4.03

∆Cell ABS % cleared/day — — 0.310 0.158 —

∆FEV1 % of predicted — — -0.465 — —

Sweat Cl µM -0.0659 — — -0.0867 —

Ppk µm/min 2.13 1.38 — — —

∆FEF25-75 % of predicted — — 0.220 -0.110 —

Pbkca µm/min — — — -3.22 —

71



Figure 26: Relative importance of included features in predicting the change in non-clearable

activity from IS to HS days in each cluster. Relative importance is determined by the relative

magnitude of LASSO regression coefficients.
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Figure 27: Comparison between the estimated (y-axes) and actual (x-axes) change in MCC rate coefficients from IS to HS study

days for each cluster. Each circle corresponds to a CF individual and the dashed line indicates parity between estimated and

actual values.
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Figure 28: Comparison between the estimated (y-axes) and actual (x-axes) change in initial Tc-SC deposition from IS to HS

study days for each cluster. Each circle corresponds to a CF individual and the dashed line indicates parity between estimated

and actual values.
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Figure 29: Comparison between the estimated (y-axes) and actual (x-axes) change in non-clearable activity from IS to HS study

days for each cluster. Each circle corresponds to a CF individual and the dashed line indicates parity between estimated and

actual values.
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4.3.4 Comparison of Model Dynamics

MCC dynamics were simulated using the IS day parameters for each CF individual and

the predicted changes in those parameters, deposition pattern, and non-clearable activity.

The mean grid MAE for the predicted trajectories relative to the measured HS day Tc-

SC were compared for the three different subsets of variables used to generate statistical

models. These are summarized in Table 11. Whole lung trajectories for the model including

all variables are shown in Figure 30 for the participant with the largest and smallest whole

lung MAE to illustrate qualitatively the range of error. Error in the amount of non-clearable

activity appears to have a large impact. When the actual values are used for non-clearable

activity and initial deposition, but the MCC rate coefficients are predicted, the grid MAE

and whole lung MAE drop to 0.12 ± 0.037 and 4.6 ± 2.1, respectively.

Table 11: Model error including different subsets of features

Included Variables Mean Grid MAE Whole Lung MAE

All
(Clinical, In Vitro,

and In Silico)
0.18 ± 0.046 7.6 ± 2.9

Clinical + In Vitro 0.19 ± 0.057 9.0 ± 4.8

Clinical 0.20 ± 0.051 9.7 ± 6.6
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Figure 30: Simulated whole lung MCC trajectories using predicted values for the CF indi-

viduals with the largest (top) and smallest (bottom) MAE between simulation and measured

Tc-SC retention.
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4.3.5 Binary Classification from Regression Models

While the values estimated from the linear regression models for the change in clearance

rate coefficients after inhaled HS were pretty accurate, the estimated change in the non-

clearable activity was less accurate for many clusters. Though this causes large errors for

some subjects in the simulated versus measured MCC dynamics, it may still be useful in

classifying participants as responders or non-responders. To evaluate this potential, we

considered binary classifier models for the change in clearance rate coefficient and non-

clearable activity for each cluster. A response for the change in clearance rate coefficients

was considered to be anything greater than 0, while a response for the change in non-clearable

activity was considered to be anything less than 0. Receiver operating characteristic (ROC)

curves were generated by calculating the true positive rate (TPR) and false positive rate

(FPR) for different threshold values of the estimated response variables to classify responders

(positive) versus non-responders (negative) and are presented in Figures 31 and 32. These

highlight trade-offs between detecting more of the positive results and misclassifying more

of the negative. For these curves, a perfect classifier would have a single point at (0, 1) and

have an area under the curve (AUC) of 1. A classifier with no skill would be linear with slope

0.5 (shown as a dashed line in Figures 31 and 32) and would have an AUC of 0.5. The higher

the AUC is for a classifier, the higher its skill. The average AUCs were 0.83 for classifying

response of rate coefficients and 0.87 for classifying response of non-clearable activity to HS.

ROC curves that cross the no skill line are caused by large gaps in data and small sample

size (i.e. switching one individual from a positive to a negative has a large impact).
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Figure 31: ROC curves for binary classification of response of rate coefficients to HS for each cluster. The solid blue line

represents the binary classifier for different threshold values. The dashed line represents a classifier with no skill.
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Figure 32: ROC curves for binary classification of response of non-clearable activity to HS for each cluster. The solid blue line

represents the binary classifier for different threshold values. The dashed line represents a classifier with no skill.
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4.4 Discussion

4.4.1 Comparison Between CF and Healthy Individuals

We found that of the five characteristic regions identified in Chapter 3, the distribution

of clearance rate coefficients was only significantly different between healthy controls and

CF subjects in one of those regions — the one corresponding to the lower lobe. Previous

work describing this data showed no significant difference in whole lung MCC between CF

and HC, when adjusted for percent central deposition [34]. This points to our model as

possibly a more sensitive tool for detecting localized changes to MCC. While previous studies

have consistently found evidence of worse disease in the right vs left lung, the results are

highly varied as to whether there is any difference in disease severity between lobes [67–70].

Although those studies did not specifically look at MCC as a marker of regional disease

severity, one would expect regions of depressed MCC to accompany those with high degrees

of bronchiectasis, air trapping, inflammatory markers, and bacterial loads. These results

suggest that MCC is slowed most in the middle or lower lobe in CF, which is consistent with

findings of increased air trapping in the middle and lower lobes relative to the upper lobe in

CF [70, 71].

One reason we may not see significantly depressed MCC in other regions may be related

to how we process the non-clearable activity. Since the clearance rate coefficients are only

fit to mucus that clears over the course of the 80 minute study window, it is possible that in

regions with high degrees of mucus plugging, the radiolabeled aerosol simply gets trapped

and never clears. If this were the case, one would expect to see a significant increase in the

amount of non-clearable Tc-SC relative to the healthy controls, which we did not observe

(see Figure 24). It is alternatively possible that due to decreased ventilation, no aerosol

deposits in regions with very severe disease. Since all subjects had some clearable mucus

observed over the course of the experiment in each cluster, however, we think the impact of

this on our results is minimal.
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4.4.2 Response to HS in CF Group

Clearance rate coefficients increased significantly after inhaled HS in every cluster in

the CF group. This is consistent with studies showing increases in whole lung MCC in

CF subjects following inhaled HS [31, 33, 34, 61, 72, 73]. Interestingly, some of these

coefficients exceed the clearance coefficients observed in healthy subjects. While this would

seem to suggest HS could enhance MCC capabilities of CF subjects beyond those of healthy

subjects, it is important to note that these coefficients only capture the speed of mucus

clearance and not the overall amount or the duration of the effect. Thus, although HS may

increase the speed of mucus clearance, it may still be insufficient to clear accumulated mucus

as well as the ongoing rate of mucus production in CF. As for the increased speed, this may

be linked to the concentration of mucins in CF versus healthy subjects. Indeed, previous

work from this study showed a significant correlation between fluorescence recovery after

photobleaching (FRAP) in human nasal epithelial cells – a measure of diffusion time through

mucus – and the same subject’s change in adjusted whole lung MCC after inhaled HS [34];

it indicates that higher concentrations of mucins may be associated with greater response

to HS. This notion is consistent with observations that although CF subjects demonstrated

both acute and prolonged increases in whole lung MCC after inhaled HS [31, 33, 72], healthy

subjects only show an acute response lasting less than 4 hrs [32, 74]. It may be that mucin

concentrations are depleted after HS treatment in healthy controls, but due to the increased

initial concentration and rate of production of mucins, we continue to see an effect in CF

subjects for much longer.

Significant decreases in non-clearable activity were also observed between baseline and

HS study days in all but cluster 5 (the most peripheral region). This suggests that HS can

acutely increase the total amount of mucus that can be cleared in addition to the speed

of clearance. The difference was most pronounced in the regions overlapping the mainstem

bronchus and bronchus intermedius. Since these regions also show the fastest MCC rates,

the combination results in a dramatic increase in the observed acute whole lung MCC.

The increase in clearable activity in clusters 3 and 4 is more moderate, suggesting that

rehydration of mucus may be less effective in these regions. This could be due to differences
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in the proportion of the surface that is ciliated in the large airways, relative to the small

airways [15]. Thus, more of the cluster has the potential to exhibit rehydration from HS.

4.4.3 Outcomes of Statistical Model

Multivariable linear regression models were fit in order to estimate individualized changes

in MCC rate coefficients and non-clearable activity from IS to HS study days using matched

clinical, in vitro, and in silico variables. The accuracy was not excellent (highest adjusted R2

of 0.56 and 0.49 for the rate coefficients and non-clearable activity, respectively), indicating

that nuclear imaging is still the most precise way to measure individual response to HS.

However, they were sufficiently accurate to classify CF participants as "responders" or "non-

responders" for each cluster. While further training on a larger population, as well as out-

of-sample validation, would be necessary to have enough confidence in these classifiers to

implement clinically, this highlights the feasibility of predicting patient-specific response

without the need for nuclear imaging. This is important for the development of a screening

tool since nuclear imaging requires a lot of time, access to nuclear imaging facilities and

personnel, and exposes participants to radioactivity. Although the in vitro and in silico

measurements take longer overall in order for cell lines to grow out, the burden on the part

of a CF participant would be much less; the nasal scraping to harvest the cells only takes a

few minutes and the participant would not be exposed to radioactivity.

Because the L1 term of LASSO regression penalizes non-zero coefficients, we can use

the magnitude of those coefficients to assess the relative importance of different features

in estimating the response variables. These models are not mechanistic in nature, so we

cannot derive any causal relationships. However, by analyzing the collection of features that

are important, we can get an idea of what factors contribute to heterogeneity of individual

response.

For predicting the change in MCC rate coefficients, FEV1 was found to be an important

feature for all but the most peripheral cluster. FEV1 is a common marker for large airway

function [75] and has a negative coefficient for these clusters. It makes sense that a participant

with higher baseline large airway function would see less of a response since there would likely
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be less dehydrated mucus to rescue. The magnitude of the coefficients also decrease the more

peripheral the cluster, which makes sense because FEV1 is more sensitive to changes in large

airway function than small airways.

The change in rate coefficients for clusters 1 and 2, which correspond to the large airways,

were also largely impacted by LCI, with a negative coefficient, and FRAP, with a positive

one. LCI is a marker of ventilation inhomogeneity, is more sensitive to small airway changes,

and has been suggested for use as an early marker of airway disease [76, 77]. The negative

relationship here seems counter intuitive since one might expect higher delivery of HS to the

large airways with decreased small airway ventilation and therefore a larger response for the

large airway coefficients. One reason for this result may be due to the link between higher

LCI and disease severity. Prolonged mucus dehydration may have led to an accumulation of

mucus, such that even with HS, cilia cannot clear the mucus any faster. The effect of FRAP

makes more sense intuitively since it is thought to be related to the concentration of mucins

in the mucus [34, 78, 79]. Drawing water into the mucus through inhalation of HS would

decrease this mucin concentration. For an individual with already low concentrations, this

would have a diminishing benefit, while an individual with high mucin concentration may

become much less viscous.

The change in MCC rate coefficient in cluster 3, which corresponds to the area of the lower

lobe, has a number of important features related to chloride and potassium transport. While

the complexity of tissue-scale ion transport inhibits direct interpretation of these coefficients,

as a collection, they suggest a higher dependence of the response in this region to differences

between individuals in osmotic driving forces. This may be due to thinner layers of mucus in

the smaller airways, such that mucus properties, such as viscosity and mucin concentration,

are less important in establishing a change in MCC speed. Interestingly, this was the same

cluster that was found to be significantly different between the HC and CFIS groups, as

shown in Figure 23. The CFIS distribution is much broader than the HC group, but the

CFHS distribution has the same shape as the HC. This points to osmotic imbalances perhaps

playing a larger role in depressed MCC in this region than in other regions.

In predicting the change of non-clearable activity from IS to HS days, FRAP was an

important feature in every cluster, with the upper lobe and far peripheral clusters exhibiting
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more of a dependence. This makes sense since highly concentrated mucus can cause cilia

to collapse. By rehydrating mucus with HS, cilia function can be restored, thus decreasing

the amount of mucus that is non-clearable. The one cluster where the coefficient has the

opposite sign is cluster 3. Again, this may indicate a response in this cluster primarily

driven by osmotic forces across the membrane, rather than mucus properties. This notion

is further supported by the high relative importance of Cell ABS, Ppcl, and ∆(Cell ABS).

Collectively, these indicate the change in non-clearable activity after HS in this region may

be related more to a rehydrated PCL than to the mucus layer above it. This could also

explain why the response in clearance rate coefficients after HS does not increase beyond

the range observed in HCs. If there is less accumulated mucus in this region, there may

be a decrease in the concentration of mucins after HS, thus limiting how much the speed

of clearance could increase. This is consistent what Bennett et al. [32] proposed as to why

healthy individuals did not exhibit prolonged response to HS.

Finally, we were interested in understanding which variables were necessary for predicting

these variables to better understand which measurements to prioritize in future studies.

We looked at this by considering different subsets of features that were considered for the

models. In particular, we found that there was little increased error when in silico parameters

were not considered in terms of predicting change in MCC rate coefficients or non-clearable

activity. The largest decreases in adjusted R2 were from 0.56 to 0.35 in cluster 3 and and

from 0.39 to 0.21 in cluster 4 for the rate coefficients and non-clearable activity, respectively.

Additionally, binary classifiers based on the predicted response variables had average AUCs

of 0.83 (same as when in silico parameters were included) and 0.80 (a decrease of 0.07)

for the change in MCC rate coefficients and non-clearable activity, respectively. The only

place where removing in silico parameters had a large impact was in predicting the change

in Tc-SC concentration at 10 minutes, which was used to simulate the predicted HS day

MCC dynamics. While all the adjusted R2 values for predicting concentration at 10 minutes

were above 0.25 when including in silico parameters, only two clusters (3 and 5) reached

that level when in silico parameters were removed. Since a screening tool would likely not

include nuclear imaging, concentrations and non-clearable activity for an IS baseline day

would not be available for generating those simulations, regardless.
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5.0 Summary & Future Work

5.1 Contributions

5.1.1 New Methods for Analyzing MCC In Vivo

Prior work has primarily focused on static measurements across large areas of the lung

to assess MCC capabilities of an individual [10, 30–34, 43, 74, 80]. However, these cannot

account for interpatient variability in deposition and lump very heterogenous areas of the

lung together. Attempts at analyzing MCC at a more granular level did not account for

activity transported from more distal regions of the lung to more proximal airways [36].

Conversely, a previous dynamic model of MCC at the population level uses two large regions

of interest (ROIs) that are very heterogeneous when applied to individuals and thus cannot

accurately capture patient-specific MCC [35].

The work in this dissertation lays the groundwork for a much more detailed analysis

of MCC than was previously possible. This was accomplished by breaking nuclear imaging

scans into a grid of much smaller regions of interest than are typically used. Rather than

just look at endpoint measurements in these ROIs, a dynamic model was developed based on

average airway anatomy and known physiology of how mucus clears up the airway tree. This

allowed for the detailed description of MCC across the entire lung. Additionally, the fitted

parameters from this model are not confounded by the deposition pattern of the aerosol as

it is with traditional whole lung MCC analysis. It therefore provides metrics of MCC that

get at underlying mechanisms rather than differences in uncontrollable factors in the study.

Additionally, applying this model to extract patient-specific clearance rate parameters

does not require any changes to typical planar scintigraphy protocols. This is important

because it means that the analysis can be performed retrospectively to gain new insight

from previous imaging studies or added to future studies. It has been largely automated in

Python and the manual steps in ImageJ are similar to standard analysis methods, enabling

end-users who are not well-versed in mathematical modeling to take advantage of the tool.
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This increases the useful information that can be obtained with minimal cost. This provides

a path to re-analyzing data from old studies to greatly expand our existing understanding

of MCC both in health and in various diseases.

5.1.2 Insight Into Key MCC Regimes

We were able to accurately capture MCC dynamics of all study participants with only 5

clearance rate coefficients. This was enabled by first identifying directions of high interpa-

tient variability through PCA and then clustering areas of low intrapatient variability (via

hierarchical clustering of eigenlungs). This provides new insight into nominal variability in

MCC studies and identifies areas of the lung that may vary independently in their rate of

MCC.

For example, the first eigenlung, representing the direction of maximum interpatient

variability across healthy controls, was in the magnitude of difference between the large and

small airway MCC rates. Thus while there is consistently faster MCC in the large airways,

how much faster it is than in the small airways is highly patient-specific. This is important

because while it is commonly acknowledged that differences between participants in central

ROI vs peripheral ROI deposition confound whole lung MCC measurements [30, 34], this

work indicates that the relative speed of clearance between the large and small airways is

also a confounding factor.

Additionally, until now, little work has gone into understanding differences in MCC

between different lobes. The second eigenlung separated the MCC rates between upper and

lower lobes, which indicates that how different the speed of MCC is in these two regions differs

greatly between individuals. Importantly, for some individuals, the difference in speed may

be very large. Traditional ROIs, which lump upper and lower lobes together into the same

ROI, would therefore be confounded in individuals with large differences in speed between

the upper and lower lobes.

Furthermore, all of these independently varying clusters were identified within a group of

healthy controls. Without understanding the sources of variability inherent within healthy in-

dividuals, we cannot determine whether there exist meaningful differences in disease groups.
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Specifically for CF, although there is a physical basis for depressed MCC, measurements

of whole lung MCC were not significantly different between CF participants and healthy

controls [37]. This work highlights a potential cause for this discrepancies. When our model

was applied to healthy controls and CF individuals, we found a significant decrease in MCC

rates in the lower lobe cluster in CF relative to the healthy controls, but not in any other

clusters. If only the whole lung was considered, there would be no significant difference in

MCC [34].

Though the statistical power was small due to the low number of healthy controls studied,

this difference seems to be present when considering the response of CF participants to HS.

Particularly, when analyzing relative feature importance in estimating response to HS, those

identified as important in the lower lobe cluster were very different from other clusters. In

particular, features associated with mucus properties were found to be less important and

those associated with osmotic pressure more important in the lower lobe cluster than in other

clusters. Overall, this suggests that MCC impairment functions differently in the lower lobe

than it does in the upper. These findings would not be possible to identify without assessing

regional differences in MCC.

5.1.3 Statistical Model to Estimate HS Effectiveness for Individuals from Nasal

Epithelial Cells

Statistical models using clinical, in vitro, and thin-film in silico parameters from the

same CF participants from our study as inputs were developed that could recapitulate the

change in organ-scale in silico parameters between IS and HS study days. Because there were

more possible input variables, or features, than study participants, a subset of features were

selected for each statistical model. These were selected using recursive feature elimination

based on LASSO regression coefficients. The magnitude of a LASSO coefficient corresponds

to the relative importance of that feature in estimating the response variable (in our case

the MCC rate coefficients or non-clearable activity in a cluster). While we could not infer

any causality from these coefficients, they were analyzed collectively as covariates.

While the regression models were only moderately accurate (adjusted R2 values between
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0.09 and 0.56), when a threshold value was used to define participants as "responders" or

"non-responders", binary classifiers based on these regression models performed quite well

(area under ROC curves between 0.73 and 1.0). Though additional studies, as outlined in

the next section, must be done before this could truly be used as a screening tool, this serves

as a useful proof-of-concept to identify those most likely to benefit from HS treatment with

non-invasive measurements.

5.2 Future Work

5.2.1 Model Refinement

While the dynamic and statistical models developed in this work are adequate to capture

MCC behavior in healthy controls and CF participants and demonstrate the feasibility of a

screening tool for predicting patient-specific HS efficacy, there are a number of refinements

that have the potential to improve the model accuracy.

5.2.1.1 Grid Selection

One area that could be further optimized is in the grid network used to define flow

constraints. We selected a grid of 16 x 8 equal area rectangles in order to draw direct

comparisons with prior studies. However, there may be better dimensions that could more

accurately capture airway size classes. While dividing the images into a different shape grid

would be trivial (was automated within the Python portion of the image analysis), defining

physiologically meaningful flow constraints would be less so. To do this, the LAR and grids

outside the whole lung area would need to be redefined in the new grid space and a new

elevation map generated. From there, flow constraints could be automatically defined based

on the new elevation map. The remainder of the model reduction steps would also need to

be repeated for this new grid network. While sweeping through all possible grid sizes would

require substantial time both computationally and manually, it may improve the accuracy

sufficiently to make the undertaking worthwhile.
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Additional alterations could include unequal area grids or a different geometry network.

Unequal area grids could allow for finer description of dynamics in regions that are very

heterogeneous while reducing model complexity in areas that are homogeneous. This might

provide better parsimony than the model in this work, however would require substantial

reworking of the model. Similarly, a different geometry network, such as equilateral triangles

or rhombi, might better capture the geometry of the airways. Because the main bronchus

is at about a 35◦ angle from the trachea [81], the large airway branching is not oriented in

the same diretion as the grid network and its edge is not smoothly defined. A geometry

that is oriented in the same direction as the large airways may better capture this edge and

therefore be more accurate in separating large airway and small airway dynamics in these

regions.

5.2.1.2 Separate Non-Clearable Activity Clusters

Because we calculated the non-clearable activity in each grid directly from the nuclear

images, we did not focus on clustering grids based on the similarity of their non-clearable

activity. Based on the error estimating the change from IS to HS day of non-clearable

activity in the statistical models, however, this may be a worthwhile direction to pursue.

Since the MCC rate coefficients are independent of the initial deposition in each grid, it

makes sense that non-clearable activity – a quantity dependent on deposition – would vary

differently in space from these rate coefficients. Thus, the same clustering methods that

were applied to the MCC rate coefficients could be applied to non-clearable activity. This

would create clusters of homogeneous non-clearable activity across individuals. While there

is no guarantee these would be more accurately estimated from the available features, it is

reasonble to think it would. More homogoenous regions of non-clearble activity would likely

lead to less spurious variability in the response of each region to HS.

5.2.1.3 Integrate Additional Camera Angles

One of the primary limitations to this work is the inability to determine the depth of

radiolabeled particles in the imaging plane. While generating a full 3D image using SPECT
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would take too long to capture fast large airway clearance dynamics, an approach somewhere

between a single camera angle and rotating a full 180◦ would provide more information about

particle deposition in 3D while still capturing fast clearing dynamics.

The primary interest would be to classify existing measures of non-clearable activity into

activity that deposited in the alveoli or on non-motile cilia versus activity that is in the large

airways and just has not had sufficient time to clear within the 80 min study window. Since

truly non-clearable activity (i.e. because of where it deposited) would be stationary over the

course of the study taking images at additional angles towards the end of the study would

provide just as much information as if they were taken throughout the study. Thus, by only

taking images at the end of the study, we could glean additional useful information without

reducing the information about fast clearing MCC dynamics from the early time points.

One major challenge this would add, however, is that signal from the left lung would

start to interfere with the signal in the right lung. One possible solution would be to extend

the model to the left lung, using the right lung model as a baseline. A different LAR

would need to be defined since there are only two lobes in the left lungs, but otherwise the

same process could be followed. Because of the physiologically-based flow constraints and

appropriate parameter bounds based on the right lung, we may be able to get away with the

error induced by interference from the stomach. Alternatively, we could attempt to correct

for activity in the left lung based on an estimated area of overlap.

5.2.2 Applications to Other Lung Diseases

Probably the most obvious extension of this work would be to apply the model developed

to nuclear imaging from individuals with other airway diseases. There is evidence of defective

MCC in numerous other groups, such as individuals with asthma [10, 80], COPD [11, 82],

primary ciliary dyskinesia [9], and those infected with SARS-CoV-2 [12]. By applying this

model to nuclear imaging studies from those populations, we could gain better understanding

of how MCC is impaired, as well as provide a tool to measure MCC response to therapies.

Because asthma and COPD are much more prevalent diseases, there is the potential for

much larger studies this model could be applied to and thus greater statistical power to
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detect regional changes, as well as subtypes of disease patterns. For COPD in particular,

recent work has identified two stratified subtypes of disease progression: one where small

airway dysfunction preceded large airway abnormalities (70.4% of participants), and one

with the reverse order (29.6% of participants) [83]. As such, using regional assessment of

MCC, such as our model, will be of greater importance in studying defects and potential

treatments since it could distinguish these two subtypes.

In addition to studying MCC rate coefficient changes in the context of disease, there is

also a need to study more healthy controls to better define nominal MCC behavior. With

a more precise distribution of healthy MCC rate coefficients and non-clearable activity, we

would have more statistical power to determine if individuals lie outside a healthy range.

This would be useful even for rare diseases, like CF or PCD, where subtle changes may be

important but hard to detect in a small sample size.

5.2.3 Tool for Efficacy Screening of Osmotic Therapies

There were a number of factors that limited our ability to develop an effective screening

tool to determine patient-specific response to HS from just a nasal swab, the primary of

which was a small sample size. In spite of this, our results showed promise for a future tool

developed on a larger data set. Should such a study take place, there are a number of items

that would need to be considered.

Firstly, before studying this in CF participants, the dynamic model itself should be

validated on additional healthy controls, ideally across multiple centers. Although this may

seem burdensome, it may be possible, depending on similarity of study design to perform

this analysis on healthy controls from previous studies, thus limiting the additional work

necessary to validate this model. Since the screening tool would ultimately not include

nuclear imaging, this is an important step to ensure model parameters derived from the

images are reproducible.

Next, the CF participants in the study should be separated into two groups: one that

will be used to refine the statistical models (in-sample) and one that will be withheld to use

as a validation set (out-of-sample). Within the in-sample group, we can use the statistical
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models from this work to guide which variables are most important to measure to provide

strong predictions.

While some of the important variables, such as age, BMI, and FEV1, are readily available

from clinical records or are almost always included in study outcomes, some of the features

identified are less common. In particular, fluorescence recovery after photobleaching (FRAP)

was found to be the most important feature for estimating the response of non-clearable ac-

tivity to HS, in addition to being an independent predictor of whole lung MCC [34]. Though

it is less commonly measured, our work indicates it may provide meaningful predictions of

HS response and should be included. Some other features that are not always studied, but

were found to be important across multiple clusters were paracellular liquid absorption (Cell

ABS) and the lung clearance index (LCI). While many of the in silico parameters from

Serrano Castillo et al. [23] were important in the regression models, particularly for non-

clearable activity, removing them only had a minor effect on the binary classifier accuracy.

Due to the specialized knowledge required to obtain these parameters, these would likely not

be worth going after.

The methods used in this work (namely recursive feature elimination using LASSO re-

gression with cross-validation) could be used to refine model coefficients and features included

for each statistical model. Additionally, specific threshold values should be determined in

conjunction with clinicians to define an adequate response to HS to merit including it in

treatment. These can then be implemented within the binary classifiers to provide a single

classification per cluster of "response" or "no response". Finally, the resulting linear models

and binary classifiers should be applied to the validation group to assess the predictive ability

of the models. This is a necessary step to provide confidence to the predictions produced

from these models.

While this may not extend directly to other osmotic therapies, such as mannitol, since

the predictive models are not mechanistic, the collection of important features may still be

able to guide studies on future osmotic therapies as to which factors will likely play a role

in patient-specific response.
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Appendix A Nuclear Image Processing

A.1 ImageJ Processing

A.1.1 Requirements

In order to analyze DICOM files from gamma cameras, you’ll need the following:

• ImageJ (1.52v)

• Base whole lung ROI

• Stack2TextImages.txt macro

• Transmission image

• Experiment images

• Background images

A.1.2 Define ROI for Subject

A.1.2.1 Transmission Scan

1. Open transmission scan with ImageJ

2. Open Brightness/Contrast window (Ctrl + Shift + C or Image > Adjust > Bright-

ness/Contrast and adjust sliders until right lung is distinguishable from the background

3. Open the ROI Manager (Analyze > Tools > ROI Manager), then select More > Open...

4. Select the baseline whole lung ROI you plan to use. It should appear in the ROI Manager

and overlaying the transmission scan.

5. Drag the ROI to best line up with the right lung. Use the Scale interface under Edit >

Selection to match the outline up with the lung. Remember to click Update on the ROI

Manager whenever you make a change to avoid losing your work.

6. When you’re satisfied with the ROI, save it for later use.

7. Crop the image to your selection (Ctrl+Shift+X or Image > Crop) and save your file as

a Text Image (File > Save As > Text Image) named, TransScan.txt
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A.1.3 Align the ROI to Tc-99m Activity Window

The image stacks are broken down in the following way:

• (1-40): Anterior Tc-99m energy window

• (41-80): Posterior Tc-99m energy window

• (81-120): Anterior In-111 lower energy window

• (121-160): Posterior In-111 lower energy window

• (161-200): Anterior In-111 higher energy window

• (201-240): Posterior In-111 higher energy window

We will align the ROI using the Tc-99m energy windows since the activity in those ranges

are higher. We will use both the Posterior and mirrored Anterior images to align the ROI.

1. Open the experiment DICOM (file name should be something like FLOWANT_Tc99m001_DS

().dcm).

2. Select Image > Lookup Tables > 16 Colors then adjust using the Brightness/Contrast

window (Ctrl+Shift+C) until the activity in the lungs is distinguishable from the back-

ground noise.

3. Scroll to the 41st image in the stack (t=2 min, Posterior Tc-99m) and select the ROI

from the ROI Manager.

4. Drag the ROI to best capture all the activity in the right lung in images 41-80. Click

the Update button in the ROI Manager to save these changes.

5. Click outside of the image to unselect the ROI. Then select Image > Transform > Flip

Horizontally.

6. Click on the ROI in the ROI Manager. Then use the keyboard arrows to adjust the

position to make sure it captures all the right lung activity in images 1-40. If major

changes are made, repeat steps 6 7 to make sure the posterior images still line up. Once

you are satisfied with the ROI position, save the ROI.

7. Select Edit > Selection > Create Mask. Click on the new window that appears, select

the ROI from the ROI Manager, then crop the image to this selection (Ctrl+Shift+X).

Save this as a Text Image called WLMask.txt.

8. Once this is complete, close all image windows without saving.
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A.1.4 Crop Anterior and Posterior Images to Right Lung

1. Install Stack2TextImages Macro:

• Select Plugins > Macros > Install...

• Navigate to and select the Stack2TextImages.txt file

2. Re-open the experiment DICOM and select the ROI in the ROI Manager.

3. Crop the stack of images to this ROI (Ctrl+Shift+X).

4. Run the Stack2TextImages macro (Plugins > Macros > Stack2TextImages). When

prompted, create a directory within your folder of scans called, TcScans, and select

it as the destination directory. Leave the default value of Tc_ when prompted for a file

prefix.

5. Close the stack of images without saving.

6. Re-open the experiment DICOM, then flip the images horizontally (Image > Transform

> Flip Horizontally).

7. Select the ROI in the ROI Manager and crop to the ROI.

8. Run the Stack2TextImages macro again. This time, when prompted, create a new direc-

tory called, AntScans, and select it as the destination directory. Again, leave the default

value for the file prefix.

9. Close the stack of images without saving.

A.1.5 Crop Background Scans

Images of the background activity in each energy window are in the same order as the

experiment DICOM, but there is a single image for each camera view & energy window.

1. Open the background images (file like Head1_Tc99m001_DS (#).dcm).

2. Select the ROI in the ROI Manager and crop the images to it.

3. Run the Stack2TextImages macro. When prompted, create and select a new directory

called, BgScans. Change the file prefix to Bg_ when prompted.

4. Close the stack without saving.

5. Re-open the background images and flip them horizontally (Image > Transform > Flip

Horizontally).
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6. Select the ROI in the ROI Manager and crop the images to it.

7. Run the Stack2TextImages macro. When prompted, create and select a new directory

called, AntBgScans. Again, change the file prefix to Bg_ when prompted.

8. Close the stack without saving.

A.1.6 Conclusions

You should now have a directory with the following items:

• AntBgScans directory

• AntScans directory

• BgScans directory

• TcScans directory

• WLMask.txt text file

If so, you have all the files necessary to run the analysis code in Python, as described in the

next section.

A.1.7 Stack2TextImages Macro

dir=getDirectory("Choose Destination Directory");
prefix=getString("Filename Prefix", "Tc_");
for(i=1; i<=nSlices; i++){

setSlice(i);
saveAs("Text Image", dir+prefix+i+".txt");

}

A.2 Python Processing

A.2.1 Requirements

You will need Python 3 and an installed version of the psanalysis package (https://

github.com/monshap/psanalysis). The package itself requires NumPy and SciPy, however,
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if you install the package using pip, it should automatically check for these requirements.

A.2.2 Multi-Subject Tutorial

For the sake of ease, we will walk through one of the test files (https://github.com/

monshap/psanalysis/tree/master/tests), which demonstrates how to process a directory

containing subdirectories for three study days. I will point out places where users may wish

to customize the analysis. The file structure for this tutorial is shown in Figure 33 and can

also be found under the tests subdirectory of this package. We will be walking through the

file test_multisubject.py.

Figure 33: File structure for tutorial

A.2.2.1 Import Relevant Packages

The commented out lines were specifically required due to the script’s location in the

tests subdirectory. You do not need to include them if the package is installed.

import os
# import sys

import numpy as np
from scipy.stats.mstats import gmean

# sys.path.append(os.path.abspath("../"))
import psanalysis.analyze_grids as ag
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A.2.2.2 Configure

The following lines will depend on the specific structure and naming scheme of your files.

In this example, Subject1, Subject2, and Subject3 each contain the files extracted from a

single study day. If your files are setup differently, you will need to modify the wd and

dir_list variables accordingly. dir_list should be a list of strings matching the names of

each study subdirectory. tpts should be an array or list of time points images were taken at

and ny and nx should be the number of rows and columns you want in your grid, respectively.

wd = os.path.dirname(os.path.realpath(__file__))
tpts = np.arange(0, 80, 2)
dir_list = [f"Subject{i}" for i in range(1, 4)]
(ny, nx) = (16, 8)
nt = len(tpts)
nsub = len(dir_list)

A.2.2.3 Initialize a Set of Empty NumPy Arrays

In order, the arrays correspond to the following:

• areas in units of pixels2 of all grids for a subject (all_areas)

• anterior Tc-SC intensity in each grid, time point, and subject (all_aTc)

• posterior Tc-SC intensity in each grid, time point, and subject (all_pTc)

• anterior In-DTPA intensity in each grid, time point, and subject (all_aIn)

• posterior In-DTPA intensity in each grid, time point, and subject (all_pIn)

all_areas = np.zeros((nsub,))
all_aTc = np.zeros((ny, nx, nt, nsub))
all_pTc = np.zeros((ny, nx, nt, nsub))
all_aIn = np.zeros((ny, nx, nt, nsub))
all_pIn = np.zeros((ny, nx, nt, nsub))

99



A.2.2.4 Loop Through Each Subject

This will fill in the arrays with processed values for each subject. If your file structure is

setup differently, make sure the first argument to ag.PlanarStudy is the location of a study

day directory.

for i, sub in enumerate(dir_list):
test_dir = ag.PlanarStudy(os.path.join(wd, "SampleImages", sub), tpts)
test_dir.preprocess_scans(debug=False)
(a, grid_aTc, grid_aIn, grid_pTc, grid_pIn) = test_dir.gridify(ny, nx)
all_areas[i] = a
all_aTc[..., i] = grid_aTc
all_pTc[..., i] = grid_pTc
all_aIn[..., i] = grid_aIn
all_pIn[..., i] = grid_pIn

A.2.2.5 Calculate the Geometric Mean

Returns two arrays of shape (ny, nx, nt, nsub) for the Tc-SC and In-DTPA geometric

means.

Tc_stack = np.clip(np.stack((all_aTc, all_pTc)), 0, None)
In_stack = np.clip(np.stack((all_aIn, all_pIn)), 0, None)
gm_Tc = gmean(Tc_stack, axis=0)
gm_In = gmean(In_stack, axis=0)
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Appendix B Code for Models

B.1 Grid Model Fitting

import os
import sys
from math import log

import numpy as np
import pyomo.dae as pdae
import pyomo.environ as pe
from plepy import PLEpy
from scipy.io import loadmat

def sflag(results):
# Return flag corresponding to solver status
# 0 = converged to optimal solution
# 1 = problem may be infeasible
# 2 = reached maximum number of iterations
# 3 = sometimes there are other weird errors
from pyomo.opt import SolverStatus, TerminationCondition

stat = results.solver.status
tcond = results.solver.termination_condition
if ((stat == SolverStatus.ok) and

(tcond == TerminationCondition.optimal)):
flag = 0

elif (tcond == TerminationCondition.infeasible):
flag = 1

elif (tcond == TerminationCondition.maxIterations):
flag = 2

else:
flag = 3

return flag

def get_bool_maps(el, diags=True, equal_flow=True, eq=None):
"""Function for defining flow constraints

Parameters:
el (ndarray): Elevation map
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Keywords:
diags (bool): Whether or not to allow flow between diagonal grids,

True by default
equal_flow (bool): If true, magnitude of flow is equal in all possible

directions. Else, flow is proportional to difference in elevation.
True by default

eq (bool type ndarray): ND array defining where to allow flow at equal
elevation. 1=can flow to equal elevations, 0=can only flow downhill

Returns:
List of boolean arrays corresponding to whether the grids can flow in each
cardinal direction. Order of directions: N, NE, E, SE, S, SW, W, NW
"""

def get_dir_bool(yslice, xslice):
# flow based on elevation
el_part = el_bool[1:-1, 1:-1] - el_bool[yslice, xslice]
# whether to allow flow at equal elevation
eq_part = np.logical_and(eq_bool[1:-1, 1:-1], eq_bool[yslice, xslice])
eq_part = eq_part.astype("int")
combined = (el_part + eq_part)/(ndir/2)
return combined

# set map properties
ny, nx = np.shape(el)
if not isinstance(eq, np.ndarray):

eq = np.ones_like(el)
eq_bool = np.zeros((ny+2, nx+2))
eq_bool[1:-1, 1:-1] = eq
if diags:

ndir = 8
else:

ndir = 4

# preprocess elevation map
out_lung = el == 0
barrier = int(np.max(el)+1)
el_bool = (barrier+1)*np.ones(((ny+2), (nx+2)))
el[out_lung] = barrier
exit_blocks = np.vstack(

(
np.zeros((1, nx+2), dtype=bool),
np.hstack((el == 1, np.zeros((ny, 2), dtype=bool))),
np.zeros((1, nx+2), dtype=bool)

)
)
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el_bool[exit_blocks] = 0
el_bool[1:-1, 1:-1] = el

# subtract elevation from specified direction
# add 1 if allowing flow between grids of equal elevation
# denominator is used when flow is proportional rather than equal
bool_n = get_dir_bool(slice(0, -2), slice(1, -1))
bool_ne = get_dir_bool(slice(0, -2), slice(2, None))
bool_e = get_dir_bool(slice(1, -1), slice(2, None))
bool_se = get_dir_bool(slice(2, None), slice(2, None))
bool_s = get_dir_bool(slice(2, None), slice(1, -1))
bool_sw = get_dir_bool(slice(2, None), slice(0, -2))
bool_w = get_dir_bool(slice(1, -1), slice(0, -2))
bool_nw = get_dir_bool(slice(0, -2), slice(0, -2))

# remove negative values
bool_n[bool_n <= 0] = 0
bool_ne[bool_ne <= 0] = 0
bool_e[bool_e <= 0] = 0
bool_se[bool_se <= 0] = 0
bool_s[bool_s <= 0] = 0
bool_sw[bool_sw <= 0] = 0
bool_w[bool_w <= 0] = 0
bool_nw[bool_nw <= 0] = 0
if equal_flow:

bool_n = bool_n > 0
bool_ne = bool_ne > 0
bool_e = bool_e > 0
bool_se = bool_se > 0
bool_s = bool_s > 0
bool_sw = bool_sw > 0
bool_w = bool_w > 0
bool_nw = bool_nw > 0

if not diags:
bool_ne = np.zeros((ny, nx))
bool_se = np.zeros((ny, nx))
bool_nw = np.zeros((ny, nx))
bool_sw = np.zeros((ny, nx))

# make numerical
bool_n = bool_n.astype("float")
bool_ne = bool_ne.astype("float")
bool_nw = bool_nw.astype("float")
bool_s = bool_s.astype("float")
bool_se = bool_se.astype("float")
bool_sw = bool_sw.astype("float")
bool_e = bool_e.astype("float")
bool_w = bool_w.astype("float")
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return [bool_n, bool_ne, bool_e, bool_se, bool_s, bool_sw, bool_w, bool_nw]

class GridModel(pe.ConcreteModel):
# Class defining PYOMO model for specified grid model

ts = list(range(0, 80, 2))
ts8 = list(range(8, 80, 2))

def __init__(self, el, clust, fixlow, cdata, eq, wmat=None):
"""Define Concrete PYOMO Model for model & data specified

Parameters:
el (ndarray): Elevation map
clust (ndarray): ND array defining which cluster each grid belongs to.

To fit a parameter for each grid, specify unique cluster values for
each grid in lung

fixlow (ndarray): ND boolean array defining grids to fix the clearance
rate parameter for

cdata (ndarray): Concentration data of shape (ny, nx, nt)
eq (ndarray): ND boolean array defining where to allow flow at equal

elevation. 1=can flow to equal elevations, 0=can only flow downhill

Keywords:
wmat (ndarray): Weight matrix for each grid in overall objective. If

None, equal weights will be used. None by default.

Returns:
Instance of class GridModel

Methods:
solve_grids: Use to solve for ideal solution for each grid (see paper

for details). Must be done *prior* to fitting overall objective.
solve_overall_sse: Minimize overall objective function
solve_cluster_sse: Minimize objective within an individual cluster,

neglecting error in other clusters
"""
pe.ConcreteModel.__init__(self)
# generic attributes
self.ny, self.nx = np.shape(el)
self.ngrid = self.ny*self.nx
self.clust = clust
self.nK = np.max(self.clust)
self.fixlow = fixlow
self.nfix = np.sum(self.fixlow > 0)
self.out_lung = el == 0
self.bool_map = get_bool_maps(el, eq=eq)

104



self.sum_leave = np.clip(np.sum(self.bool_map, axis=0), 1, 8)
self.bool_n = self.bool_map[0]
self.bool_ne = self.bool_map[1]
self.bool_e = self.bool_map[2]
self.bool_se = self.bool_map[3]
self.bool_s = self.bool_map[4]
self.bool_sw = self.bool_map[5]
self.bool_w = self.bool_map[6]
self.bool_nw = self.bool_map[7]

# PYOMO attributes
# indices
self.t = pdae.ContinuousSet(bounds=(8, 80), initialize=self.ts8)
self.i = pe.RangeSet(0, self.ny-1)
self.j = pe.RangeSet(0, self.nx-1)
self.K = pe.RangeSet(0, self.nK)
# fitted parameters
self.k = pe.Var(self.K, initialize=1.0, bounds=(1e-3, 1e3))
self.k[self.nK] = 1e-2
self.k[self.nK].fix()
fixclust = self.clust[self.fixlow > 0]
fixmed = self.fixlow[self.fixlow > 0]
for i in range(self.nfix):

self.k[fixclust[i]] = fixmed[i]
self.k[fixclust[i]].fix()

# states
self.C = pe.Var(self.t, self.i, self.j, within=pe.NonNegativeReals)
# derivatives
self.dCdt = pdae.DerivativeVar(self.C, wrt=self.t)

# data attributes
if wmat is None:

self.wmat = np.ones((self.ny, self.nx))
else:

emsg = f"Weight matrix dimensions should be ({self.ny},{self.nx})."
assert np.shape(wmat) == (self.ny, self.nx), emsg
self.wmat = wmat

self.cdata = cdata
self.C8 = np.clip(np.mean(self.cdata[..., 3:6], axis=2), 1e-3, 100)
for t in self.t:

for i in self.i:
for j in self.j:

self.C[t, i, j] = self.C8[i, j]
self.dCdt[t, i, j] = -1e-2*self.C8[i, j]

def _init_cond(self, m, i, j):
if self.out_lung[i, j]:
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return m.C[8, i, j] == 0.
else:

return m.C[8, i, j] == self.C8[i, j]

def _odes(self, m, t, i, j):
if self.out_lung[i, j]:

return m.dCdt[t, i, j] == 0.
else:

K = self.clust[i, j]
rhs = 0.
rhs = rhs - m.k[K] * m.C[t, i, j]
if i < self.ny-1:

rhs = rhs + (self.bool_n[i+1, j] * m.k[self.clust[i+1, j]]
* m.C[t, i+1, j]) / self.sum_leave[i+1, j]

if (i < self.ny-1) and (j > 0):
rhs = rhs + (self.bool_ne[i+1, j-1] * m.k[self.clust[i+1, j-1]]

* m.C[t, i+1, j-1]) / self.sum_leave[i+1, j-1]
if j > 0:

rhs = rhs + (self.bool_e[i, j-1] * m.k[self.clust[i, j-1]]
* m.C[t, i, j-1]) / self.sum_leave[i, j-1]

if (j > 0) and (i > 0):
rhs = rhs + (self.bool_se[i-1, j-1] * m.k[self.clust[i-1, j-1]]

* m.C[t, i-1, j-1]) / self.sum_leave[i-1, j-1]
if i > 0:

rhs = rhs + (self.bool_s[i-1, j] * m.k[self.clust[i-1, j]]
* m.C[t, i-1, j]) / self.sum_leave[i-1, j]

if (i > 0) and (j < self.nx-1):
rhs = rhs + (self.bool_sw[i-1, j+1] * m.k[self.clust[i-1, j+1]]

* m.C[t, i-1, j+1]) / self.sum_leave[i-1, j+1]
if j < self.nx-1:

rhs = rhs + (self.bool_w[i, j+1] * m.k[self.clust[i, j+1]]
* m.C[t, i, j+1]) / self.sum_leave[i, j+1]

if (j < self.nx-1) and (i < self.ny-1):
rhs = rhs + (self.bool_nw[i+1, j+1] * m.k[self.clust[i+1, j+1]]

* m.C[t, i+1, j+1]) / self.sum_leave[i+1, j+1]
return m.dCdt[t, i, j] == 0.1*rhs

def _grid_obj(self, m):
i, j = self.gid
sse_ij = sum([self.wmat[i, j]*(m.C[self.ts[t], i, j]

- self.cdata[i, j, t])**2
for t in range(4, 40)])

return sse_ij

def _overall_obj_sse(self, m):
sse = 0.
for cl in range(self.nK):
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gids = np.c_[np.where(self.clust == cl)]
for gid in gids:

i, j = gid
sse_ij = sum([(m.C[self.ts[t], i, j] - self.cdata[i, j, t])**2

for t in range(4, 40)])
sse += self.wmat[i,j] * (sse_ij - self.best_sse[i, j])

return sse

def _clust_obj(self, m):
sse = 0.
for gid in self.gids:

i, j = gid
sse_ij = sum([(m.C[self.ts[t], i, j] - self.cdata[i, j, t])**2

for t in range(4, 40)])
sse += self.wmat[i,j] * (sse_ij - self.best_sse[i, j])

return sse

def solve_grids(self, solver=None, find_best=True, find_worst=False):
# Method to find best fit when only considering each grid individually
# (i.e. error in other grids can be humongous and we don't care)
emsg = "Neither best nor worst fit selected."
assert find_best or find_worst, emsg

# activate constraints
self.init_cond = pe.Constraint(self.i, self.j, rule=self._init_cond)
self.odes = pe.Constraint(self.t, self.i, self.j, rule=self._odes)
# define solver
if solver is not None:

self.solver = solver
else:

self.solver = pe.SolverFactory('ipopt')
self.solver.options['linear_solver'] = 'ma97'
self.solver.options['tol'] = 1e-6
self.solver.options['max_iter'] = 600
self.solver.options['acceptable_tol'] = 1e-4

# numerical discretization
tfd = pe.TransformationFactory("dae.finite_difference")
tfd.apply_to(self, nfe=2*len(self.t), wrt=self.t, scheme="BACKWARD")

# find best and/or worst SSE for each grid
if find_best:

self.best_sse = np.zeros((self.ny, self.nx))
if find_worst:

self.worst_sse = np.zeros((self.ny, self.nx))
for cl in range(self.nK):

self.gid = np.c_[np.where(self.clust == cl)][0]
if find_best:
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# minimize objective
self.grid_obj = pe.Objective(rule=self._grid_obj)
results = self.solver.solve(self, keepfiles=False, tee=False,

load_solutions=False)
flag = sflag(results)
if flag == 0:

self.solutions.load_from(results)
best_sse = pe.value(self.grid_obj)
self.best_sse[self.gid[0], self.gid[1]] = best_sse

self.del_component(self.grid_obj)
if find_worst:

# maximize objective
self.grid_obj = pe.Objective(rule=self._grid_obj,

sense=pe.maximize)
results = self.solver.solve(self, keepfiles=False, tee=False,

load_solutions=False)
flag = sflag(results)
if flag == 0:

self.solutions.load_from(results)
worst_sse = pe.value(self.grid_obj)
self.worst_sse[self.gid[0], self.gid[1]] = worst_sse

self.del_component(self.grid_obj)

def solve_overall_sse(self, presolved=False):
# Minimize overall objective function (sum of SSE between model & data
# minus the best possible error for each grid) by varying all grid
# clearance parameters. See paper for mathematical details.
if presolved is False:

# activate constraints
self.init_cond = pe.Constraint(self.i, self.j,

rule=self._init_cond)
self.odes = pe.Constraint(self.t, self.i, self.j, rule=self._odes)
# define solver
if not hasattr(self, "solver"):

self.solver = pe.SolverFactory('ipopt')
self.solver.options['linear_solver'] = 'ma97'
self.solver.options['tol'] = 1e-6
self.solver.options['max_iter'] = 600
self.solver.options['acceptable_tol'] = 1e-4

# numerical discretization
tfd = pe.TransformationFactory("dae.finite_difference")
tfd.apply_to(self, nfe=2*len(self.t), wrt=self.t,

scheme="BACKWARD")
self.overall_obj = pe.Objective(rule=self._overall_obj_sse)
results = self.solver.solve(self, keepfiles=False, tee=True,

load_solutions=False)
flag = sflag(results)
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if flag == 0:
self.solutions.load_from(results)

def solve_cluster_sse(self, presolved=False):
# Minimize error for a specific cluster, without regard to error in
# other clusters. Similar to solve_grids, but for whole cluster.
if presolved is False:

# activate constraints
self.init_cond = pe.Constraint(self.i, self.j,

rule=self._init_cond)
self.odes = pe.Constraint(self.t, self.i, self.j, rule=self._odes)
# define solver
if not hasattr(self, "solver"):

self.solver = pe.SolverFactory('ipopt')
self.solver.options['linear_solver'] = 'ma97'
self.solver.options['tol'] = 1e-6
self.solver.options['max_iter'] = 600
self.solver.options['acceptable_tol'] = 1e-4

# numerical discretization
tfd = pe.TransformationFactory("dae.finite_difference")
tfd.apply_to(self, nfe=2*len(self.t), wrt=self.t,

scheme="BACKWARD")
self.obj = pe.Objective(rule=self._clust_obj)
results = self.solver.solve(self, keepfiles=False, tee=True,

load_solutions=False)
flag = sflag(results)
if flag == 0:

self.solutions.load_from(results)

def get_grid_sse(self):
# Calculate error in each grid from optimized solution
self.solved_error = np.zeros((self.ny, self.nx))
for i in range(ny):

for j in range(nx):
sse_ij = sum([(pe.value(self.C[self.ts[t], i, j])

- self.cdata[i, j, t])**2
for t in range(4, 40)])

self.solved_error[i, j] = sse_ij
return self.solved_error

# define subject labels
hc_labels = [f"UHC{i}" for i in [*range(1, 7), *range(9, 14), 16]]
cr_labels = [f"UP{i}" for i in [*range(1, 10), *range(11, 17)]]
cfis_labels = [f"UCF{i} IS" for i in [1, 3, 4, *range(6, 28)]]
cfhs_labels = [f"UCF{i} HS" for i in [1, 3, 4, *range(6, 28)]]
labels = hc_labels + cr_labels + cfis_labels + cfhs_labels
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nhc = len(hc_labels)
ncr = len(cr_labels)
ncf = len(cfis_labels)
nsub = nhc + ncr + 2*ncf

# conc format: (row, col, t, subject)
raw_gmTc = np.load("GridData_ALL.npz")["gm_Tc"]
gmTc0 = np.sum(raw_gmTc[:,:,0,:], axis=(0,1))
gmTcNorm = np.divide(raw_gmTc, gmTc0, out=np.zeros_like(raw_gmTc),

where=gmTc0!=0)*100
conc = gmTcNorm # total concentration of activity
flr0 = np.percentile(conc, 25, axis=2) # non-clearable activity
no_flr = conc - flr0[:, :, np.newaxis, :] # clearable activity
ny, nx, nt, nsub2 = np.shape(conc)
assert nsub2 == nsub, "Number of subjects don't match!"
ngrid = nx*ny
ts = list(range(0, 80, 2))

# define elevation map
el = np.load("Emap_16x8_diags_HRCT.npz")["arr_0"]
eq_thresh = 4
eq = el < eq_thresh
out_lung = el == 0
(bool_n, bool_ne, bool_e, bool_se,
bool_s, bool_sw, bool_w, bool_nw) = get_bool_maps(el, eq=eq)

sum_leave = np.sum([bool_n, bool_ne, bool_e, bool_se, bool_s, bool_sw,
bool_w, bool_nw], axis=0)

# load cluster map
# server version:
n_clust = int(sys.stdin.read())
# local version:
# n_clust = 5

# for reduced model:
# prefix = "aggcl"
# link = "ward_pca"
# clmap_name = "{:s}_{:g}_link_{:s}".format(prefix, n_clust, link)

# for full-scale model:
clmap_name = "full_model"

clust = np.load(f"{clmap_name}.npz")["arr_0"]
clust = clust.astype("int32")
nout = np.sum(out_lung)
nin = ngrid - nout
# we're not currently fixing clearance parameters for any grids
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fixlow = np.zeros((ny, nx))
nfix = np.sum(fixlow > 0)
nK = np.max(clust)
nclust = nK - nfix

# for each subject, for each grid, find minimum SSE for that grid, letting all
# parameters vary - sets ideal vector, z*, for Chebychev metric
presolve_grids = False

# save outputs to file (False or name of output file)
save_best_sse = False
save_worst_sse = False
save_params = f"{clmap_name}_params.npz"
save_grid_sse = f"{clmap_name}_grid_err.npz"

# load from previous run (False or name of input file)
load_params = False
load_best_sse = "best_full_hc_sse.npz"
load_worst_sse = False
load_grid_sse = False

all_ks = np.zeros((nK, nsub))
all_best_sse = np.zeros((ny, nx, nsub))
all_worst_sse = np.zeros((ny, nx, nsub))
all_grid_sse = np.zeros((ny, nx, nsub))

if isinstance(load_params, str):
all_ks = np.load(load_params)["all_ks"]

if isinstance(load_best_sse, str):
all_best_sse = np.load(load_best_sse)["all_best_sse"]

if isinstance(load_worst_sse, str):
all_worst_sse = np.load(load_worst_sse)["all_worst_sse"]

if isinstance(load_grid_sse, str):
all_grid_sse = np.load(load_grid_sse)["all_grid_sse"]

for pat_num, pat_str in enumerate(hc_labels):
eq = el < eq_thresh
pat_no_flr = no_flr[..., pat_num]
pat_conc = conc[..., pat_num]
print(pat_str)
pat_gm = GridModel(el, clust, fixlow, pat_no_flr, eq)
pat_gm.best_sse = all_best_sse[..., pat_num]
pat_gm.worst_sse = all_worst_sse[..., pat_num]
if presolve_grids:

pat_gm.solve_grids()
if isinstance(save_best_sse, str):

all_best_sse[..., pat_num] = pat_gm.best_sse
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np.savez(save_best_sse, all_best_sse=all_best_sse)
if isinstance(save_worst_sse, str):

all_worst_sse[..., pat_num] = pat_gm.worst_sse
np.savez(save_worst_sse, all_worst_sse=all_worst_sse)

# solve overall objective fn - change to match run
if isinstance(load_params, str):

for K in range(nclust):
pat_gm.k[K] = all_ks[K, pat_num]

pat_gm.solve_overall_sse(presolved=presolve_grids)
grid_err = pat_gm.get_grid_sse()
if isinstance(save_grid_sse, str):

all_grid_sse[..., pat_num] = grid_err
np.savez(save_grid_sse, all_grid_sse=all_grid_sse)

ks = np.array([pe.value(pat_gm.k[K]) for K in range(pat_gm.nK)])
if isinstance(save_params, str):

all_ks[:, pat_num] = ks
np.savez(save_params, all_ks=all_ks)

B.2 Agglomerative Clustering

import numpy as np
import os
from sklearn.cluster import AgglomerativeClustering
from sklearn.decomposition import PCA

from grid_helpers import get_bool_maps

def calc_linkage_matrix(model):
counts = np.zeros(model.children_.shape[0])
n_samples = len(model.labels_)
for i, merge in enumerate(model.children_):

current_count = 0
for child_idx in merge:

if child_idx < n_samples:
current_count += 1 # leaf node

else:
current_count += counts[child_idx - n_samples]

counts[i] = current_count
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linkage_matrix = np.column_stack(
[model.children_, model.distances_, counts]

).astype(float)
return linkage_matrix

# grid properties
(ny, nx) = (16, 8)
ngrid = ny*nx
diags = True

# define elevation map
el = np.load("Emap_16x8_diags_HRCT.npz")["arr_0"]
eq = el < 4
out_lung = el == 0
nout = np.sum(out_lung)
nin = ngrid - nout
bn, bne, be, bse, bs, bsw, bw, bnw = get_bool_maps(el, eq=eq)
sum_leave = np.clip(np.sum([bn, bne, be, bse, bs, bsw, bw, bnw], axis=0), 1, 8)

# cluster map
clust = np.zeros((ngrid,))
clust[out_lung.flatten()] = nin
clust[~out_lung.flatten()] = np.arange(0, nin)
clust = np.reshape(clust, (ny, nx))
clust = clust.astype("int32")

# adjacency matrix
adj = np.zeros((nin, nin))
l = [(a, b) for (a, b) in zip(clust[:, 1:].flatten(), clust[:, :-1].flatten())

if (a < nin) & (b < nin)]
r = [(a, b) for (a, b) in zip(clust[:, :-1].flatten(), clust[:, 1:].flatten())

if (a < nin) & (b < nin)]
u = [(a, b) for (a, b) in zip(clust[1:, :].flatten(), clust[:-1,:].flatten())

if (a < nin) & (b < nin)]
d = [(a, b) for (a, b) in zip(clust[:-1, :].flatten(), clust[1:,:].flatten())

if (a < nin) & (b < nin)]
adj[tuple(zip(*l))] = 1
adj[tuple(zip(*r))] = 1
adj[tuple(zip(*u))] = 1
adj[tuple(zip(*d))] = 1
if diags:

ul = [(a, b) for (a, b) in
zip(clust[1:, 1:].flatten(), clust[:-1, :-1].flatten())
if (a < nin) & (b < nin)]

dl = [(a, b) for (a, b) in
zip(clust[:-1, 1:].flatten(), clust[1:, :-1].flatten())
if (a < nin) & (b < nin)]
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ur = [(a, b) for (a, b) in
zip(clust[1:, :-1].flatten(), clust[:-1, 1:].flatten())
if (a < nin) & (b < nin)]

dr = [(a, b) for (a, b) in
zip(clust[:-1, :-1].flatten(), clust[1:, 1:].flatten())
if (a < nin) & (b < nin)]

adj[tuple(zip(*ul))] = 1
adj[tuple(zip(*dr))] = 1
adj[tuple(zip(*ur))] = 1
adj[tuple(zip(*dl))] = 1

adj = adj + np.eye(nin)

# healthy labels
HClabels = ['UHC'+str(i) for i in [*range(1,7), *range(9,14), 16]]
nHC = len(HClabels)

# load parameters
ks = np.load("full_model_params.npz")["all_ks"]
hc_keff = ks[:, :nHC]

# normalize data
hc_keff = np.delete(hc_keff, 8, axis=1) # remove UHC11 for low deposition
hc_logkeff = np.log(hc_keff)
quarts = np.percentile(hc_logkeff, [25, 50, 75])
iqr = quarts[2] - quarts[0]
upper_lim = quarts[1] + 1.5*iqr
lower_lim = quarts[1] - 1.5*iqr
hc_clipped = np.clip(hc_logkeff, lower_lim, upper_lim)
hc_lognorm = (hc_clipped - np.mean(hc_clipped))/np.std(hc_clipped)

# principal components
pca = PCA()
pca.fit(hc_lognorm)
pc_weights = pca.components_
hc_pcs = pca.transform(hc_lognorm)

# initialize agglomerative clustering model
n_clust = 5
n_pcs = 2
link = "ward"
for n_clust in range(2, 10):

model = AgglomerativeClustering(n_clusters=n_clust, connectivity=adj,
linkage=link, compute_distances=True)

# fit model to parameter data
X = hc_pcs[:, :n_pcs]
model.fit(X)
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link_mat = calc_linkage_matrix(model)

# format as cluster map
ext_labels = np.append(model.labels_, model.n_clusters_)
clust_map = ext_labels[clust]
# np.savez("aggcl_{:g}_link_{:s}_pca.npz".format(n_clust, link), clust_map)

B.3 Statistical Models

import os
from itertools import combinations

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import sklearn.linear_model as lm
from autocolor import color_yaxis
from scipy.stats import beta
from sklearn.feature_selection import RFE, RFECV, f_regression
from sklearn.impute import KNNImputer, SimpleImputer
from sklearn.metrics import (auc, precision_recall_curve, roc_auc_score,

roc_curve)
from sklearn.model_selection import LeaveOneOut, RepeatedKFold, cross_validate
from sklearn.preprocessing import StandardScaler

# Load data frame
is2hs = pd.read_json("is2hs_response.json")
nK = 5

# Set figure directory
home = os.path.expanduser("~")
fig_dir = os.path.join(home, "OneDrive - University of Pittsburgh", "Research",

"Group Presentations", "Figures", "Stat Model Paper")
if not os.path.exists(fig_dir):

os.makedirs(fig_dir)

response_vars = [*[f"delta_k{i}" for i in range(nK)],
*[f"delta_flr{i}" for i in range(nK)],
*[f"delta_C{i}" for i in range(nK)]]
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features = is2hs[[col for col in is2hs.columns if col not in response_vars]]
features = features.drop(["Subject", "Race", "Corrector", "delta_MCC Adj.",

"Gender", "Height (cm)", "Weight (kg)", "FRC"],
axis=1)

clin_var = ["Age", "BMI", "Sweat Cl", "LCI", "FEV1", "FEF25-75", "delta_FEV1",
"delta_FEF25-75"]

invitro_var = ["FRAP (mean)", "Norm. Vap 2-12h", "Cell ABS (mean)",
"delta_Norm. Vap 2-12h", "delta_Cell ABS (mean)"]

insilico_var = ["Pwca", "Pwcb", "Pwab", "Penac", "Pacc", "Pbk", "Pbcl",
"Pbkca", "Jnakp", "Jnkcc", "Ppna", "Ppcl", "Ppk", "Ppdt"]

high_corr = ["Ppna", "Pwca", "delta_Norm. Vap 2-12h", "Pbk", "Penac",
"FEF25-75"]

rem_high_corr = lambda x: x not in high_corr
clin_var = list(filter(rem_high_corr, clin_var))
invitro_var = list(filter(rem_high_corr, invitro_var))
insilico_var = list(filter(rem_high_corr, insilico_var))

# Feature sets
v1 = features[clin_var]
v2 = features[clin_var + invitro_var]
v3 = features[clin_var + invitro_var + insilico_var]

# Imupte & scale data
fprefix = "AllVars_"
ver = v3
knn_imputer = KNNImputer(n_neighbors=3, weights="distance")
X = knn_imputer.fit_transform(ver)
xscaler = StandardScaler()
Xscaled = xscaler.fit_transform(X)

nfeat_total = len(ver.columns)
nfold = 5
nalpha = 100

final_nf = {}
final_lm = {}
final_ypred = {}
final_adjr = {}
final_ci = {}
final_yp_ci = {}
final_feat_in = {}
final_bhat = {}
final_mhat = {}

for rv in response_vars:
yvar = is2hs[rv].dropna()
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yscaler = StandardScaler()
ynew = yscaler.fit_transform(np.array(yvar).reshape(-1, 1)).flatten()
xvar = Xscaled[~is2hs[rv].isna()]
rv_lab = f"$\Delta${rv[6:]}"

# RFE w/ cross-validation to select number of features
lasso = lm.ElasticNet(alpha=0.01, l1_ratio=1.0, max_iter=5000)
feat2score = {}
feat2ci = {}
# determine stopping point
minf = 1
nf = 1
npt = len(ynew)
while (nf < npt-1) & (nf < nfeat_total):

rfecv = RFECV(lasso, cv=nfold, scoring="neg_median_absolute_error",
min_features_to_select=minf)

rfecv.fit(xvar, ynew)
nf = rfecv.n_features_
feat_in = ver.columns[rfecv.support_]
feat_sort = ver.columns[np.argsort(rfecv.ranking_)]
Xnew = rfecv.transform(xvar)

# linear regression w/ reduce feature set, 5-fold cross-validation
lr = lm.LinearRegression()
cval = cross_validate(lr, Xnew, ynew, cv=nfold, return_estimator=True)
total_scores = np.array([L.score(Xnew, ynew)

for L in cval["estimator"]])
mean_score = np.mean(total_scores)
adj_mean = 1 - ((1-mean_score)*(npt-1)/(npt-nf-1))
ci_score = 2.216*np.std(total_scores)
lr.fit(Xnew, ynew)
ypred = lr.predict(Xnew)
yp = yscaler.inverse_transform(ypred.reshape(-1, 1)).flatten()
if nf < npt-1:

feat2score[nf] = adj_mean
feat2ci[nf] = (mean_score - ci_score, mean_score + ci_score)

minf +=1
try:

nf_select = max(feat2score, key=feat2score.get)
except:

nf_select = 1

# perform RFECV with selected stopping point
rfecv = RFECV(lasso, cv=nfold, scoring="neg_median_absolute_error",

min_features_to_select=nf_select)
rfecv.fit(xvar, ynew)
feat_in = ver.columns[rfecv.support_]
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nf = rfecv.n_features_
Xnew = rfecv.transform(xvar)

lr = lm.LinearRegression()
nfold = 5
nout = 2
cval = cross_validate(lr, Xnew, ynew, cv=nfold, return_estimator=True)
total_scores = np.array([L.score(Xnew, ynew) for L in cval["estimator"]])
mean_score = np.mean(total_scores)
adj_mean = 1 - ((1-mean_score)*(npt-nout-1)/(npt-nout-nf-1))
ci_score = 2.086*np.std(total_scores)
lr.fit(Xnew, ynew)
r2 = lr.score(Xnew, ynew)
ypred = lr.predict(Xnew)
# calculate intercept + coefficients for non-transformed variables
sy = yscaler.scale_
my = yscaler.mean_
sx = rfecv.transform(xscaler.scale_.reshape(1,-1)).flatten()
mx = rfecv.transform(xscaler.mean_.reshape(1, -1)).flatten()
bhat = sy*lr.coef_/sx
mhat = my - np.dot(mx, bhat)
Xold = rfecv.transform(X)
yhat = np.dot(Xold, bhat) + mhat

yp = yscaler.inverse_transform(ypred.reshape(-1, 1)).flatten()
yp_ci = 2.074*sy*np.sqrt((1-r2)*(npt-1)/(npt-2))

final_nf[rv] = nf
final_lm[rv] = lr
final_ypred[rv] = yp
final_adjr[rv] = adj_mean
final_ci[rv] = ci_score
final_yp_ci[rv] = yp_ci
final_feat_in[rv] = feat_in
final_bhat[rv] = bhat
final_mhat[rv] = mhat[0]

print("\n")
print(" | ".join(["R.V.".center(10), "Coef. ", "Feature"]))
for f in range(nf):

if f == 0:
print(30*"-")
print(f"{rv:<10} | {bhat[f]:>6.3f} | {feat_in[f]}")

else:
print(10*" " + f" | {bhat[f]:>6.3f} | {feat_in[f]}")

print(10*" " + f" | {mhat[0]:>6.3f} | Intercept")
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# Plots for change in MCC rate coef.
sns.set(context="paper", style="ticks", font_scale=1.5)
fig, axs = plt.subplots(2, 3, figsize=(10, 6))
axs[1, 2].set_visible(False)
# renumber clusters to match new labels
new2old_map = {

1: 3,
2: 4,
3: 0,
4: 1,
5: 2

}
for i in range(1, nK+1):

rv = f"delta_k{new2old_map[i]}"
rv_lab = f"$\Delta$k{i}"
yvar = is2hs[rv].dropna()
yp = final_ypred[rv]
adj_mean = final_adjr[rv]
ci_score = final_ci[rv]
ax0 = axs.flatten()[i-1]
ax0.plot(yvar, yp, ls="None", marker="o")
ymin, ymax = ax0.get_ylim()
ax0.plot([ymin, ymax], [ymin, ymax], ls="--", color="k")
ax0.set_xlabel(f"{rv_lab} Actual")
ax0.set_ylabel(f"{rv_lab} Predicted")
ann = ax0.text(0.25, 0.1,

f"Adj. $R^{2}$ = {adj_mean:3.2f} ($\pm${ci_score:3.2f})",
transform=ax0.transAxes, size="small",
backgroundcolor=(1., 1., 1., 0.6), in_layout=False,
linespacing=1.0, va="center")

ax0.set_title(f"{final_nf[rv]} Features")
plt.tight_layout(pad=0.4, w_pad=0.8, h_pad=1.05)
# plt.show()
figname = fprefix + "Parity_Delta_k.svg"
plt.savefig(os.path.join(fig_dir, figname), facecolor="None",

bbox_inches="tight", dpi=300)
plt.close("all")

# Classifier ROC & PRC
sns.set(context="paper", style="ticks", font_scale=1.5)
roc_fig, roc_axs = plt.subplots(2, 3, figsize=(10, 6), sharex=True,

sharey=True)
roc_axs[1, 2].set_visible(False)
prc_fig, prc_axs = plt.subplots(2, 3, figsize=(10, 6), sharex=True,

sharey=True)
prc_axs[1, 2].set_visible(False)
for i in range(1, nK+1):
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rv = f"delta_k{new2old_map[i]}"
rv_lab = f"$\Delta$k{i}"
yvar = is2hs[rv].dropna()
yp = final_ypred[rv]
y_true = yvar > 0
fpr, tpr, thresh = roc_curve(y_true, yp)
roc_auc = roc_auc_score(y_true, yp)
roc_ax0 = roc_axs.flatten()[i-1]
roc_ax0.plot(fpr, tpr)
roc_ax0.plot([0, 1], [0, 1], ls="--", color="k")
roc_ax0.set_xlabel(f"FPR")
roc_ax0.set_ylabel(f"TPR")
roc_ax0.set_title(f"{rv_lab}")
roc_ax0.text(0.5, 0.15, f"AUC = {roc_auc:3.2f}",

transform=roc_ax0.transAxes)
prec, recall, thresh = precision_recall_curve(y_true, yp)
prc_auc = auc(recall, prec)
prc_ax0 = prc_axs.flatten()[i-1]
prc_ax0.plot(recall, prec)
prc_ax0.plot([0, 1], [0.5, 0.5], ls="--", color="k")
prc_ax0.set_xlabel(f"Recall")
prc_ax0.set_ylabel(f"Precision")
prc_ax0.set_title(f"{rv_lab}")
prc_ax0.text(0.2, 0.15, f"AUC = {prc_auc:3.2f}",

transform=prc_ax0.transAxes)
roc_fig.tight_layout(pad=0.4, w_pad=0.8, h_pad=1.05)
prc_fig.tight_layout(pad=0.4, w_pad=0.8, h_pad=1.05)
# plt.show()
figname = fprefix + "ROC_k.svg"
roc_fig.savefig(os.path.join(fig_dir, figname), facecolor="None",

bbox_inches="tight", dpi=300)
figname = fprefix + "PR_k.svg"
prc_fig.savefig(os.path.join(fig_dir, figname), facecolor="None",

bbox_inches="tight", dpi=300)
plt.close("all")

# Plots for non-clearable activity
fig, axs = plt.subplots(2, 3, figsize=(10, 6))
axs[1, 2].set_visible(False)
for i in range(1, nK+1):

rv = f"delta_flr{new2old_map[i]}"
rv_lab = rv_lab = f"$\Delta$N{i}"
yvar = is2hs[rv].dropna()
yp = final_ypred[rv]
adj_mean = final_adjr[rv]
ci_score = final_ci[rv]
ax0 = axs.flatten()[i-1]
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ax0.plot(yvar, yp, ls="None", marker="o")
ymin, ymax = ax0.get_ylim()
ax0.plot([ymin, ymax], [ymin, ymax], ls="--", color="k")
ax0.set_xlabel(f"{rv_lab} Actual")
ax0.set_ylabel(f"{rv_lab} Predicted")
ax0.text(0.25, 0.1,

f"Adj. $R^{2}$ = {adj_mean:3.2f} ($\pm${ci_score:3.2f})",
transform=ax0.transAxes, size="small",
backgroundcolor=(1., 1., 1., 0.6), in_layout=False,
linespacing=1.0, va="center")

ax0.set_title(f"{final_nf[rv]} Features")
plt.tight_layout(pad=0.4, w_pad=0.8, h_pad=1.05)
# plt.show()
figname = fprefix + "Parity_Delta_flr.svg"
plt.savefig(os.path.join(fig_dir, figname), facecolor="None",

bbox_inches="tight", dpi=300)
plt.close("all")

# Classifier ROC & PRC
sns.set(context="paper", style="ticks", font_scale=1.4)
roc_fig, roc_axs = plt.subplots(2, 3, figsize=(10, 6), sharex=True,

sharey=True)
roc_axs[1, 2].set_visible(False)
prc_fig, prc_axs = plt.subplots(2, 3, figsize=(10, 6), sharex=True,

sharey=True)
prc_axs[1, 2].set_visible(False)
for i in range(1, nK+1):

rv = f"delta_flr{new2old_map[i]}"
rv_lab = f"$\Delta$N{i}"
yvar = is2hs[rv].dropna()
yp = final_ypred[rv]
y_true = yvar < 0
fpr, tpr, thresh = roc_curve(y_true, -yp)
roc_auc = roc_auc_score(y_true, -yp)
roc_ax0 = roc_axs.flatten()[i-1]
roc_ax0.plot(fpr, tpr)
roc_ax0.plot([0, 1], [0, 1], ls="--", color="k")
roc_ax0.set_xlabel(f"FPR")
roc_ax0.set_ylabel(f"TPR")
roc_ax0.set_title(f"{rv_lab}")
roc_ax0.text(0.5, 0.15, f"AUC = {roc_auc:3.2f}",

transform=roc_ax0.transAxes)
prec, recall, thresh = precision_recall_curve(y_true, -yp)
prc_auc = auc(recall, prec)
prc_ax0 = prc_axs.flatten()[i-1]
prc_ax0.plot(recall, prec)
prc_ax0.plot([0, 1], [0.5, 0.5], ls="--", color="k")
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prc_ax0.set_xlabel(f"Recall")
prc_ax0.set_ylabel(f"Precision")
prc_ax0.set_title(f"{rv_lab}")
prc_ax0.text(0.2, 0.15, f"AUC = {prc_auc:3.2f}",

transform=prc_ax0.transAxes)
roc_fig.tight_layout(pad=0.4, w_pad=0.8, h_pad=1.05)
prc_fig.tight_layout(pad=0.4, w_pad=0.8, h_pad=1.05)
# plt.show()
figname = fprefix + "ROC_flr.svg"
roc_fig.savefig(os.path.join(fig_dir, figname), facecolor="None",

bbox_inches="tight", dpi=300)
figname = fprefix + "PR_flr.svg"
prc_fig.savefig(os.path.join(fig_dir, figname), facecolor="None",

bbox_inches="tight", dpi=300)
plt.close("all")

fig, axs = plt.subplots(2, 3, figsize=(10, 6))
axs[1, 2].set_visible(False)
for i in range(1, nK+1):

rv = f"delta_C{new2old_map[i]}"
rv_lab = rv_lab = f"$\Delta$C{i}"
yvar = is2hs[rv].dropna()
yp = final_ypred[rv]
adj_mean = final_adjr[rv]
ci_score = final_ci[rv]
ax0 = axs.flatten()[i-1]
ax0.plot(yvar, yp, ls="None", marker="o")
ymin, ymax = ax0.get_ylim()
ax0.plot([ymin, ymax], [ymin, ymax], ls="--", color="k")
ax0.set_xlabel(f"{rv_lab} Actual")
ax0.set_ylabel(f"{rv_lab} Predicted")
ax0.text(0.25, 0.1,

f"Adj. $R^{2}$ = {adj_mean:3.2f}($\pm${ci_score:3.2f})",
transform=ax0.transAxes, size="small",
backgroundcolor=(1., 1., 1., 0.6), in_layout=False,
linespacing=1.0, va="center")

ax0.set_title(f"{final_nf[rv]} Features")
plt.tight_layout(pad=0.4, w_pad=0.8, h_pad=1.05)
# plt.show()
figname = fprefix + "Parity_Delta_C.svg"
plt.savefig(os.path.join(fig_dir, figname), facecolor="None",

bbox_inches="tight", dpi=300)
plt.close("all")

# Plot feature importance
all_rv = list(final_feat_in.keys())
all_feat = []
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for rv in all_rv:
feat_in = list(final_feat_in[rv])
all_feat = all_feat + feat_in

all_feat = set(all_feat)
feat_imp = pd.DataFrame(index=all_feat, columns=all_rv)
raw_model = pd.DataFrame(index=all_feat.union({"Intercept"}), columns=all_rv)
for rv in all_rv:

for f, feat in enumerate(final_feat_in[rv]):
feat_imp.loc[feat, rv] = abs(final_lm[rv].coef_[f])
raw_model.loc[feat, rv] = final_bhat[rv][f]

raw_model.loc["Intercept", rv] = final_mhat[rv]
col_reorder = [3, 4, 5, 1, 2, 8, 9, 10, 6, 7, 13, 14, 15, 11, 12]
new_cols = [col for (i, col) in sorted(zip(col_reorder,

feat_imp.columns.tolist()))]
feat_imp = feat_imp[new_cols]
raw_model = raw_model[new_cols]
# raw_model.to_json(fprefix + "raw_model.json")

dk = feat_imp[new_cols[0:5]].dropna(axis=0, how="all")
dflr = feat_imp[new_cols[5:10]].dropna(axis=0, how="all")
dC = feat_imp[new_cols[10:]].dropna(axis=0, how="all")
dk_tot_imp = dk.sum(axis=1).sort_values(ascending=False)
dflr_tot_imp = dflr.sum(axis=1).sort_values(ascending=False)
dC_tot_imp = dC.sum(axis=1).sort_values(ascending=False)
dk = dk.loc[dk_tot_imp.index].fillna(0)
dflr = dflr.loc[dflr_tot_imp.index].fillna(0)
dC = dC.loc[dC_tot_imp.index].fillna(0)
dk_cum = dk.cumsum(axis=1)
dflr_cum = dflr.cumsum(axis=1)
dC_cum = dC.cumsum(axis=1)
dk_names = [r"$\Delta$"+f"k{i}" for i in range(1, 6)]
dflr_names = [r"$\Delta$"+f"N{i}" for i in range(1, 6)]
dC_names = [r"$\Delta$"+f"C{i}" for i in range(1, 6)]

sns.set(context="paper", style="ticks", font_scale=1.5)
bar_colors = plt.colormaps["Blues_r"](np.linspace(0.2, 0.8, 5))
# Delta ks
fig, ax = plt.subplots(figsize=(8, 8))
drep = [n.replace("delta_", r"$\Delta$") for n in dk.index]
rownames = [n.replace(" (mean)", "") for n in drep]
ax.invert_yaxis()
ax.set_xticks([])
ax.set_xlabel("Relative Importance")
ax.set_xlim(0, dk_tot_imp.max())
for i, (name, color) in enumerate(zip(dk_names, bar_colors)):

widths = dk.iloc[:, i]
starts = dk_cum.iloc[:, i] - widths
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rects = ax.barh(rownames, widths, left=starts, height=0.75, label=name,
color=color)

ax.legend(ncol=5, bbox_to_anchor=(0.5, 1), loc=8)
plt.tight_layout()
# plt.show()
figname = fprefix + "RelImport_dk.svg"
plt.savefig(os.path.join(fig_dir, figname), facecolor="None",

bbox_inches="tight", dpi=300)
plt.close("all")

# Delta flr
fig, ax = plt.subplots(figsize=(8, 8))
drep = [n.replace("delta_", r"$\Delta$") for n in dflr.index]
rownames = [n.replace(" (mean)", "") for n in drep]
ax.invert_yaxis()
ax.set_xticks([])
ax.set_xlabel("Relative Importance")
ax.set_xlim(0, dflr_tot_imp.max())
for i, (name, color) in enumerate(zip(dflr_names, bar_colors)):

widths = dflr.iloc[:, i]
starts = dflr_cum.iloc[:, i] - widths
rects = ax.barh(rownames, widths, left=starts, height=0.75, label=name,

color=color)
ax.legend(ncol=5, bbox_to_anchor=(0.5, 1), loc=8)
plt.tight_layout()
# plt.show()
figname = fprefix + "RelImport_dflr.svg"
plt.savefig(os.path.join(fig_dir, figname), facecolor="None",

bbox_inches="tight", dpi=300)
plt.close("all")

# Delta C
fig, ax = plt.subplots(figsize=(8, 8))
drep = [n.replace("delta_", r"$\Delta$") for n in dC.index]
rownames = [n.replace(" (mean)", "") for n in drep]
ax.invert_yaxis()
ax.set_xticks([])
ax.set_xlabel("Relative Importance")
ax.set_xlim(0, dC_tot_imp.max())
for i, (name, color) in enumerate(zip(dC_names, bar_colors)):

widths = dC.iloc[:, i]
starts = dC_cum.iloc[:, i] - widths
rects = ax.barh(rownames, widths, left=starts, height=0.75, label=name,

color=color)
ax.legend(ncol=5, bbox_to_anchor=(0.5, 1), loc=8)
plt.tight_layout()
# plt.show()
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figname = fprefix + "RelImport_dC.svg"
plt.savefig(os.path.join(fig_dir, figname), facecolor="None",

bbox_inches="tight", dpi=300)
plt.close("all")
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Appendix C Statistical Submodels

C.1 All Variables Included

Multivariable linear models to estimate the change in MCC rate coefficients and non-

clearable activity from IS to HS days for CF individuals are presented in Chapter 4, Tables 9

and 10. A multivariable linear model to estimate the change in Tc-SC concentration at 10

min is presented in Table 12 below.
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Table 12: Coefficients and intercept for multivariable linear regression models to estimate

change in Tc-SC concentration at 10 min from IS to HS days using all variables.

Response Variable (% Total Activity)

∆C1 ∆C2 ∆C3 ∆C4 ∆C5

Feature Units Coefficient

Sweat Cl µM -0.0772 -0.0709 0.0464 -0.171 0.0426

Cell ABS % cleared/day -0.163 -0.240 0.225 -0.160 —

Norm. Vap %/day -8.34 — — 23.2 6.90

LCI — 0.537 — — 1.48 -0.540

Pwcb (×10−4) µm/min -6.17 -1.89 — 2.65 —

Pbkca µm/min — — — -3.91 0.955

FEV1 % of predicted — — — -0.0653 -0.117

FRAP τ/τsaline — — 2.67 -2.59 -1.27

Age years — — — -0.445 —

Ppcl µm/min — — — 1.63 -1.15

Ppk µm/min 4.55 — — — —

BMI kg/m2 — 0.350 — — -0.136

Pacc µm/min — — — 21.5 —

Jnkcc mmol/(min·m2) -0.220 — — — —

Pbcl µm/min — — 1.32 — —

∆FEF25-75 % of predicted 0.222 — — — —

∆FEV1 % of predicted -0.286 — — — —

Pwab µm/min — — — 9.00× 10−5 —
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C.2 Clinical and In Vitro Variables Included

Multivariable linear models to estimate the change in MCC rate coefficients, non-clearable

activity, and Tc-SC concentration at 10 min from IS to HS days using only clinical and in

vitro variables as inputs are presented in Tables 13, 14, and 15, respectively.

Table 13: Coefficients and intercept for multivariable linear regression models to estimate

change MCC rate coefficients from IS to HS days using clinical and in vitro data.

Response Variable (min−1)

∆k1 ∆k2 ∆k3 ∆k4 ∆k5

Feature Units Coefficient

Sweat Cl µM — 0.0225 — — —

Cell ABS % cleared/day — — 0.0110 — —

Norm. Vap %/day — 3.98 0.631 — —

LCI — -2.58 -0.589 — — -0.0411

FEV1 % of predicted -0.621 -0.139 -8.55 ×10−3 — —

FRAP τ/τsaline 10.6 2.60 — 0.298 —

Age years — — — — 0.0110

BMI kg/m2 — 0.116 -0.0412 0.0506 —

∆FEF25-75 % of predicted -0.589 -0.153 — — —

∆FEV1 % of predicted — 0.645 — 0.0334 0.0119

∆(Cell ABS) % cleared/day — — — -0.0390 -0.0157

Intercept min−1 37.0 2.03 0.989 -2.36 0.0196
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Table 14: Coefficients and intercept for multivariable linear regression models to estimate

change in non-clearable activity from IS to HS days using clinical and in vitro data.

Response Variable (% Total Activity)

∆NC1 ∆NC2 ∆NC3 ∆NC4 ∆NC5

Feature Units Coefficient

Cell ABS % cleared/day — -0.118 0.217 — —

Norm. Vap %/day — — 3.99 — 4.03

LCI — 0.816 0.747 — — -0.381

FEV1 % of predicted — 0.0719 — — -0.0275

FRAP τ/τsaline — -1.44 — -4.46 -1.53

Age years -0.337 -0.137 — — 0.0628

BMI kg/m2 0.467 0.276 — — -0.236

∆FEF25-75 % of predicted — — 0.135 — —

∆FEV1 % of predicted — — -0.366 — —

∆(Cell ABS) % cleared/day 0.132 — 0.213 0.187 —

Intercept % Total Activity -10.6 -8.20 -10.0 15.5 12.7
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Table 15: Coefficients and intercept for multivariable linear regression models to estimate

change in Tc-SC concentration at 10 min from IS to HS days using clinical and in vitro data.

Response Variable (% Total Activity)

∆C1 ∆C2 ∆C3 ∆C4 ∆C5

Feature Units Coefficient

Cell ABS % cleared/day — -0.168 0.242 — —

Norm. Vap %/day — — — 9.71 8.10

LCI — — 0.761 — — -0.667

Sweat Cl µM -0.0696 -0.0794 0.0564 — —

FEV1 % of predicted — — — -0.0952 -0.0953

FRAP τ/τsaline — — 1.47 — -1.25

Age years — -0.154 0.0935 -0.184 —

BMI kg/m2 — 0.454 -0.0957 — -0.194

∆FEF25-75 % of predicted — — 0.147 — —

∆FEV1 % of predicted — — -0.333 — —

∆(Cell ABS) % cleared/day — — 0.193 — 0.0430

Intercept % Total Activity 6.29 0.851 -19.1 8.57 20.2
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C.3 Clinical Variables Only

Multivariable linear models to estimate the change in MCC rate coefficients, non-clearable

activity, and Tc-SC concentration at 10 min from IS to HS days using only clinical variables

as inputs are presented in Tables 16, 17, and 18, respectively.

Table 16: Coefficients and intercept for multivariable linear regression models to estimate

change MCC rate coefficients from IS to HS days using only clinical data.

Response Variable (min−1)

∆k1 ∆k2 ∆k3 ∆k4 ∆k5

Feature Units Coefficient

Sweat Cl µM — 2.32 ×10−3 — — —

LCI — -1.14 -0.598 — — -0.0523

FEV1 % of predicted -0.398 -0.0966 -3.07 ×10−3 -5.60 ×10−3 —

Age years — 0.0497 9.79 ×10−3 — 0.0147

BMI kg/m2 — — -0.0269 0.0563 —

∆FEF25-75 % of predicted -0.298 -0.104 2.65 ×10−3 — —

∆FEV1 % of predicted -0.389 — 4.14 ×10−3 — —

Intercept min−1 45.2 13.7 0.563 -0.389 0.280
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Table 17: Coefficients and intercept for multivariable linear regression models to estimate

change in non-clearable activity from IS to HS days using only clinical data.

Response Variable (% Total Activity)

∆NC1 ∆NC2 ∆NC3 ∆NC4 ∆NC5

Feature Units Coefficient

LCI — 0.701 — — — —

FEV1 % of predicted — — — — -0.0180

Age years -0.303 -0.0820 — -0.132 —

BMI kg/m2 0.351 — — — —

∆FEV1 % of predicted — — -0.166 0.315 —

Intercept % Total Activity -9.83 -1.43 -1.61 0.232 0.637
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Table 18: Coefficients and intercept for multivariable linear regression models to estimate

change in Tc-SC concentration at 10 min from IS to HS days using only clinical data.

Response Variable (% Total Activity)

∆C1 ∆C2 ∆C3 ∆C4 ∆C5

Feature Units Coefficient

LCI — — 1.08 — 0.954 -0.639

Sweat Cl µM -0.0618 -0.0828 — -0.0434 0.0408

FEV1 % of predicted — — — -0.0461 -0.0450

Age years — -0.188 — -0.333 0.0882

BMI kg/m2 0.178 0.371 — 0.444 —

∆FEF25-75 % of predicted — — — — 0.0615

∆FEV1 % of predicted — — -0.153 — —

Intercept % Total Activity 1.35 -7.04 0.183 -2.32 3.87

133



Bibliography

[1] G. S. Sawicki, D. E. Sellers, and W. M. Robinson. “High treatment burden in adults

with cystic fibrosis: Challenges to disease self-management”. Journal of Cystic Fibro-

sis 8.2 (Mar. 2009), pp. 91–96. doi: 10.1016/j.jcf.2008.09.007.

[2] G. Davies, N. J. Rowbotham, S. Smith, et al. “Characterising burden of treatment in

cystic fibrosis to identify priority areas for clinical trials”. Journal of Cystic Fibrosis

19.3 (2020), pp. 499–502. doi: 10.1016/j.jcf.2019.10.025.

[3] M. N. Eakin and K. A. Riekert. “The impact of medication adherence on lung health

outcomes in cystic fibrosis”. Current Opinion in Pulmonary Medicine 19.6 (Nov.

2013), pp. 687–691. doi: 10.1097/MCP.0b013e3283659f45.

[4] R. A. Cameron, D. Office, J. Matthews, et al. “Treatment Preference Among People

With Cystic Fibrosis: The Importance of Reducing Treatment Burden”. Chest 162.6

(2022), pp. 1241–1254. doi: 10.1016/j.chest.2022.07.008.

[5] N. J. Rowbotham, S. Smith, P. A. Leighton, et al. “The top 10 research priorities

in cystic fibrosis developed by a partnership between people with CF and health-

care providers”. Thorax 73.4 (2018), pp. 388–390. doi: 10.1136/thoraxjnl-2017-

210473.

[6] C. F. Foundation. Key Research Priorities for Applicants. 2019. url: https://www.

cff.org/key-research-priorities-applicants.

[7] J. C. Nawroth, A. M. Van Der Does, A. Ryan, et al. “Multiscale mechanics of mu-

cociliary clearance in the lung”. Philosophical Transactions of the Royal Society B:

Biological Sciences 375.1792 (2020), pp. 1–8. doi: 10.1098/rstb.2019.0160.

[8] D. B. Hill, B. Button, M. Rubinstein, et al. “Physiology and Pathophysiology of

Human Airway Mucus”. Physiological Reviews 102.4 (2022), pp. 1757–1836. doi:

10.1152/physrev.00004.2021.

[9] B. Button, L.-H. Cai, C. Ehre, et al. “A Periciliary Brush Promotes the Lung Health

by Separating the Mucus Layer from Airway Epithelia”. Science 337.6097 (Aug.

2012), pp. 937–941. doi: 10.1126/science.1223012. eprint: NIHMS150003.

134

https://doi.org/10.1016/j.jcf.2008.09.007
https://doi.org/10.1016/j.jcf.2019.10.025
https://doi.org/10.1097/MCP.0b013e3283659f45
https://doi.org/10.1016/j.chest.2022.07.008
https://doi.org/10.1136/thoraxjnl-2017-210473
https://doi.org/10.1136/thoraxjnl-2017-210473
https://www.cff.org/key-research-priorities-applicants
https://www.cff.org/key-research-priorities-applicants
https://doi.org/10.1098/rstb.2019.0160
https://doi.org/10.1152/physrev.00004.2021
https://doi.org/10.1126/science.1223012
NIHMS150003


[10] T. E. Corcoran, A. S. Huber, S. L. Hill, et al. “Mucociliary Clearance Differs in Mild

Asthma by Levels of Type 2 Inflammation”. Chest 160.5 (Nov. 2021), pp. 1604–1613.

doi: 10.1016/j.chest.2021.05.013.

[11] J. C. Hogg, P. D. Paré, and T. L. Hackett. “The contribution of small airway ob-

struction to the pathogenesis of chronic obstructive pulmonary disease”. Physiological

Reviews 97.2 (2017), pp. 529–552. doi: 10.1152/physrev.00025.2015.

[12] R. Robinot, M. Hubert, G. D. de Melo, et al. “SARS-CoV-2 infection induces the ded-

ifferentiation of multiciliated cells and impairs mucociliary clearance”. Nature Com-

munications 12.1 (July 2021), p. 4354. doi: 10.1038/s41467-021-24521-x.

[13] A. G. Henderson, C. Ehre, B. Button, et al. “Cystic fibrosis airway secretions ex-

hibit mucin hyperconcentration and increased osmotic pressure”. Journal of Clinical

Investigation 124.7 (2014), pp. 3047–3060. doi: 10.1172/JCI73469.

[14] E. Weibel and D. Gomez. “Architecture of the human lung”. Science 137.3530 (1962),

pp. 577–585.

[15] E. Toskala, S. M. Smiley-Jewell, V. J. Wong, et al. “Temporal and spatial distri-

bution of ciliogenesis in the tracheobronchial airways of mice”. American Journal of

Physiology - Lung Cellular and Molecular Physiology 289.3 33-3 (2005), pp. 454–459.

doi: 10.1152/ajplung.00036.2005.

[16] K. De Boeck, A. Zolin, H. Cuppens, et al. “The relative frequency of CFTR mutation

classes in European patients with cystic fibrosis”. Journal of Cystic Fibrosis 13.4

(2014), pp. 403–409. doi: 10.1016/j.jcf.2013.12.003.

[17] US CF Foundation, Johns Hopkins University, The Hospital for Sick Children. The

Clinical and Functional TRanslation of CFTR (CFTR2). 2011. url: http://cftr2.

org (visited on 12/28/2020).

[18] Cystic Fibrosis Foundation Patient Registry 2021 Annual Data Report. Tech. rep.

Bethesda, MD: Cystic Fibrosis Foundation, 2022.

[19] L. Medina, S. Sabo, and J. Vespa. “Living Longer: Historical and Projected Life

Expectancy in the United States, 1960 to 2060”. U.S. Census Bureau (2020), pp. 1–

27.

135

https://doi.org/10.1016/j.chest.2021.05.013
https://doi.org/10.1152/physrev.00025.2015
https://doi.org/10.1038/s41467-021-24521-x
https://doi.org/10.1172/JCI73469
https://doi.org/10.1152/ajplung.00036.2005
https://doi.org/10.1016/j.jcf.2013.12.003
http://cftr2.org
http://cftr2.org


[20] N. A. O’Leary, M. W. Wright, J. R. Brister, et al. “Reference sequence (RefSeq)

database at NCBI: current status, taxonomic expansion, and functional annotation”.

Nucleic Acids Research 44.D1 (Jan. 2016), pp. D733–D745. doi: 10.1093/nar/

gkv1189.

[21] T. C. Hwang and K. L. Kirk. “The CFTR Ion channel: Gating, regulation, and anion

permeation”. Cold Spring Harbor Perspectives in Medicine 3.1 (2013), pp. 1–15. doi:

10.1101/cshperspect.a009498.

[22] K. Kunzelmann, R. Schreiber, and H. B. Hadorn. “Bicarbonate in cystic fibrosis”.

Journal of Cystic Fibrosis 16.6 (2017), pp. 653–662. doi: 10.1016/j.jcf.2017.06.

005.

[23] F. Serrano Castillo, C. A. Bertrand, M. M. Myerburg, et al. “A physiologically-

motivated model of cystic fibrosis liquid and solute transport dynamics across pri-

mary human nasal epithelia”. Journal of Pharmacokinetics and Pharmacodynamics

0 (2019). doi: 10.1007/s10928-019-09649-0.

[24] D. L. O’Donoghue, V. Dua, G. W. J. Moss, et al. “Increased apical Na + permeability

in cystic fibrosis is supported by a quantitative model of epithelial ion transport”. The

Journal of Physiology 591.15 (Aug. 2013), pp. 3681–3692. doi: 10.1113/jphysiol.

2013.253955.

[25] F. Serrano Castillo, C. A. Bertrand, T. E. Corcoran, et al. “A Dynamic Model of

Cystic Fibrosis Airway Epithelium Electrophysiology”. IFAC-PapersOnLine 51.19

(Jan. 2018), pp. 94–97. doi: 10.1016/J.IFACOL.2018.09.027.

[26] C. A. Bertrand, S. Mitra, S. K. Mishra, et al. “The CFTR trafficking mutation

F508del inhibits the constitutive activity of SLC26A9”. American Journal of Phys-

iology - Lung Cellular and Molecular Physiology 312.6 (2017), pp. L12–L925. doi:

10.1152/ajplung.00178.2016.

[27] P. Jourdain, F. Becq, S. Lengacher, et al. “The human CFTR protein expressed in

CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital

Holographic Microscopy”. Journal of Cell Science (Jan. 2013). doi: 10.1242/jcs.

133629.

136

https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1101/cshperspect.a009498
https://doi.org/10.1016/j.jcf.2017.06.005
https://doi.org/10.1016/j.jcf.2017.06.005
https://doi.org/10.1007/s10928-019-09649-0
https://doi.org/10.1113/jphysiol.2013.253955
https://doi.org/10.1113/jphysiol.2013.253955
https://doi.org/10.1016/J.IFACOL.2018.09.027
https://doi.org/10.1152/ajplung.00178.2016
https://doi.org/10.1242/jcs.133629
https://doi.org/10.1242/jcs.133629


[28] M. O. Henke, G. John, M. Germann, et al. “MUC5AC and MUC5B mucins increase in

cystic fibrosis airway secretions during pulmonary exacerbation”. American Journal

of Respiratory and Critical Care Medicine 175.8 (2007), pp. 816–821. doi: 10.1164/

rccm.200607-1011OC.

[29] R. Suri. “The Use of Human Deoxyribonuclease (rhDNase) in the Management of

Cystic Fibrosis”. BioDrugs 19.3 (2005), pp. 135–144. doi: 10 . 2165 / 00063030 -

200519030-00001.

[30] W. D. Bennett, B. L. Laube, T. Corcoran, et al. “Multisite Comparison of Mucociliary

and Cough Clearance Measures Using Standardized Methods”. Journal of Aerosol

Medicine and Pulmonary Drug Delivery 26.3 (2013). doi: 10.1089/jamp.2011.0909.

[31] A. T. Trimble, A. Whitney Brown, B. L. Laube, et al. “Hypertonic saline has a

prolonged effect on mucociliary clearance in adults with cystic fibrosis”. Journal of

Cystic Fibrosis 17.5 (2018), pp. 650–656. doi: 10.1016/j.jcf.2018.01.001.

[32] W. D. Bennett, J. Wu, F. Fuller, et al. “Duration of action of hypertonic saline

on mucociliary clearance in the normal lung”. Journal of Applied Physiology 118.12

(2015), pp. 1443–1561. doi: 10.1152/japplphysiol.00404.2014.

[33] S. H. Donaldson, W. D. Bennett, K. L. Zeman, et al. “Mucus clearance and lung func-

tion in cystic fibrosis with hypertonic saline.” The New England journal of medicine

354.3 (Jan. 2006), pp. 241–50. doi: 10.1056/NEJMoa043891.

[34] T. E. Corcoran, C. A. Bertrand, M. M. Myerburg, et al. “Nasal epithelial cell culture

FRAP predicts cystic fibrosis therapeutic response”. ERJ Open Research (2022),

pp. 00382–2022. doi: 10.1183/23120541.00382-2022.

[35] M. R. Markovetz, T. E. Corcoran, L. W. Locke, et al. “A physiologically-motivated

compartment-based model of the effect of inhaled hypertonic saline on mucociliary

clearance and liquid transport in cystic fibrosis”. PLoS ONE 9.11 (2014), pp. 1–13.

doi: 10.1371/journal.pone.0111972.

[36] W. D. Bennett, M. Xie, K. Zeman, et al. “Heterogeneity of particle deposition by

pixel analysis of 2D gamma scintigraphy images”. Journal of Aerosol Medicine and

Pulmonary Drug Delivery 28.3 (2015), pp. 211–218. doi: 10.1089/jamp.2013.1095.

137

https://doi.org/10.1164/rccm.200607-1011OC
https://doi.org/10.1164/rccm.200607-1011OC
https://doi.org/10.2165/00063030-200519030-00001
https://doi.org/10.2165/00063030-200519030-00001
https://doi.org/10.1089/jamp.2011.0909
https://doi.org/10.1016/j.jcf.2018.01.001
https://doi.org/10.1152/japplphysiol.00404.2014
https://doi.org/10.1056/NEJMoa043891
https://doi.org/10.1183/23120541.00382-2022
https://doi.org/10.1371/journal.pone.0111972
https://doi.org/10.1089/jamp.2013.1095


[37] T. E. Corcoran, K. M. Thomas, M. M. Myerburg, et al. “Absorptive clearance of

DTPA as an aerosol-based biomarker in the cystic fibrosis airway”. European Respi-

ratory Journal 35.4 (2010), pp. 781–786. doi: 10.1183/09031936.00059009.

[38] S. Newman, W. D. Bennett, M. Biddiscombe, et al. “Standardization of techniques

for using planar (2D) imaging for aerosol deposition assessment of orally inhaled

products”. Journal of Aerosol Medicine and Pulmonary Drug Delivery 25.SUPPL.1

(2012), pp. 10–28. doi: 10.1089/jamp.2012.1Su4.

[39] M. T. Emmerich and A. H. Deutz. “A tutorial on multiobjective optimization: fun-

damentals and evolutionary methods”. Natural Computing 17.3 (2018), pp. 585–609.

doi: 10.1007/s11047-018-9685-y.

[40] H. T. Kung, F. Luccio, and F. P. Preparata. “On Finding the Maxima of a Set of

Vectors”. Journal of the ACM (JACM) 22.4 (1975), pp. 469–476. doi: 10.1145/

321906.321910.

[41] B. Li, J. Li, K. Tang, et al. “Many-objective evolutionary algorithms: A survey”. ACM

Computing Surveys 48.1 (2015). doi: 10.1145/2792984.

[42] J. Handl, D. B. Kell, and J. Knowles. “Multiobjective optimization in bioinformatics

and computational biology”. IEEE/ACM Transactions on Computational Biology and

Bioinformatics 4.2 (2007), pp. 279–291. doi: 10.1109/TCBB.2007.070203.

[43] L. Alcoforado, A. Dornelas de Andrade, J. L. Herraiz, et al. “Anatomically Based

Analysis of Radioaerosol Distribution in Pulmonary Scintigraphy: A Feasibility Study

in Asthmatics”. Journal of Aerosol Medicine and Pulmonary Drug Delivery 31.5 (Oct.

2018), pp. 298–310. doi: 10.1089/jamp.2017.1403.

[44] E. E. Greenblatt, T. Winkler, R. S. Harris, et al. “Analysis of three-dimensional

aerosol deposition in pharmacologically relevant terms: Beyond black or white rois”.

Journal of Aerosol Medicine and Pulmonary Drug Delivery 28.2 (Apr. 2015), pp. 116–

129. doi: 10.1089/jamp.2013.1120.

[45] C. Chen. Linear System Theory and Design. The Oxford Series in Electrical and

Computer Engineering. Oxford University Press, 2014.

138

https://doi.org/10.1183/09031936.00059009
https://doi.org/10.1089/jamp.2012.1Su4
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1145/321906.321910
https://doi.org/10.1145/321906.321910
https://doi.org/10.1145/2792984
https://doi.org/10.1109/TCBB.2007.070203
https://doi.org/10.1089/jamp.2017.1403
https://doi.org/10.1089/jamp.2013.1120


[46] A. Raue, C. Kreutz, T. Maiwald, et al. “Structural and practical identifiability analy-

sis of partially observed dynamical models by exploiting the profile likelihood”. Bioin-

formatics 25.15 (2009), pp. 1923–1929. doi: 10.1093/bioinformatics/btp358.

[47] S. S. Wilks. “The Large-Sample Distribution of the Likelihood Ratio for Testing

Composite Hypotheses”. The Annals of Mathematical Statistics 9.1 (1938), pp. 60–

62. doi: 10.1214/aoms/1177732360.

[48] A. Raue, B. Steiert, M. Schelker, et al. “Data2Dynamics: a modeling environment

tailored to parameter estimation in dynamical systems: Fig. 1.” Bioinformatics 31.21

(Nov. 2015), pp. 3558–3560. doi: 10.1093/bioinformatics/btv405.

[49] P. Royston. “Profile likelihood for estimation and confidence intervals”. Stata Journal

7.3 (2007), pp. 376–387. doi: 10.1177/1536867x0700700305.

[50] L. Zhang, W. Dong, D. Zhang, et al. “Two-stage image denoising by principal compo-

nent analysis with local pixel grouping”. Pattern Recognition 43.4 (2010), pp. 1531–

1549. doi: 10.1016/j.patcog.2009.09.023.

[51] L. Fan, F. Zhang, H. Fan, et al. “Brief review of image denoising techniques”. Visual

Computing for Industry, Biomedicine, and Art 2.1 (Dec. 2019), p. 7. doi: 10.1186/

s42492-019-0016-7.

[52] M. Turk and A. Pentland. “Eigenfaces for Recognition”. Journal of Cognitive Neuro-

science 3.1 (Jan. 1991), pp. 71–86. doi: 10.1162/jocn.1991.3.1.71.

[53] V. Siless, K. Chang, B. Fischl, et al. “AnatomiCuts: Hierarchical clustering of trac-

tography streamlines based on anatomical similarity”. NeuroImage 166.March 2017

(2018), pp. 32–45. doi: 10.1016/j.neuroimage.2017.10.058.

[54] R. Socher, A. Maas, and C. D. Manning. “Spectral Chinese restaurant processes: Non-

parametric clustering based on similarities”. Journal of Machine Learning Research

15 (2011), pp. 698–706.

[55] U. Von Luxburg. “A tutorial on spectral clustering”. Statistics and Computing 17.4

(2007), pp. 395–416. doi: 10.1007/s11222-007-9033-z. arXiv: 0711.0189.

[56] B. Nicholson, J. D. Siirola, J.-P. Watson, et al. “pyomo.dae: a modeling and automatic

discretization framework for optimization with differential and algebraic equations”.

139

https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1093/bioinformatics/btv405
https://doi.org/10.1177/1536867x0700700305
https://doi.org/10.1016/j.patcog.2009.09.023
https://doi.org/10.1186/s42492-019-0016-7
https://doi.org/10.1186/s42492-019-0016-7
https://doi.org/10.1162/jocn.1991.3.1.71
https://doi.org/10.1016/j.neuroimage.2017.10.058
https://doi.org/10.1007/s11222-007-9033-z
https://arxiv.org/abs/0711.0189


Mathematical Programming Computation 10.2 (June 2018), pp. 187–223. doi: 10.

1007/s12532-017-0127-0.

[57] C. Kreutz, A. Raue, and J. Timmer. “Likelihood based observability analysis and

confidence intervals for predictions of dynamic models”. BMC Systems Biology 6

(Sept. 2012). doi: 10.1186/1752-0509-6-120. arXiv: 1107.0013.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. “Scikit-learn: Machine Learning in

Python”. Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[59] F. Murtagh and P. Legendre. “Ward’s Hierarchical Agglomerative Clustering Method:

Which Algorithms Implement Ward’s Criterion?” Journal of Classification 31.3 (Oct.

2014), pp. 274–295. doi: 10.1007/s00357-014-9161-z.

[60] L. W. Locke, M. M. Myerburg, M. R. Markovetz, et al. “Quantitative imaging of

airway liquid absorption in cystic fibrosis”. European Respiratory Journal 44.3 (2014),

pp. 675–684. doi: 10.1183/09031936.00220513.

[61] P. Wark and V. M. Mcdonald. “Nebulised hypertonic saline for cystic fibrosis”.

Cochrane Database of Systematic Reviews 2018.9 (2018). doi: 10.1002/14651858.

CD001506.pub4.

[62] F. Serrano Castillo, C. A. Bertrand, M. M. Myerburg, et al. “A physiologically-

motivated model of cystic fibrosis liquid and solute transport dynamics across pri-

mary human nasal epithelia”. Journal of Pharmacokinetics and Pharmacodynamics

0 (2019). doi: 10.1007/s10928-019-09649-0.

[63] L. A. Zhang, A. Urbano, G. Clermont, et al. “APT-MCMC, a C++/Python imple-

mentation of Markov Chain Monte Carlo for parameter identification”. Computers

and Chemical Engineering 110 (2018), pp. 1–12. doi: 10.1016/j.compchemeng.

2017.11.011.

[64] J. Lever, M. Krzywinski, and N. Altman. “Points of Significance: Regularization”.

Nature Methods 13.10 (2016), pp. 803–804. doi: 10.1038/nmeth.4014.

[65] I. Guyon, J. Weston, S. Barnhill, et al. “Gene Selection for Cancer Classification

using Support Vector Machines”. Machine Learning 46.1 (2002), pp. 389–422. doi:

10.1023/A:1012487302797.

140

https://doi.org/10.1007/s12532-017-0127-0
https://doi.org/10.1007/s12532-017-0127-0
https://doi.org/10.1186/1752-0509-6-120
https://arxiv.org/abs/1107.0013
https://doi.org/10.1007/s00357-014-9161-z
https://doi.org/10.1183/09031936.00220513
https://doi.org/10.1002/14651858.CD001506.pub4
https://doi.org/10.1002/14651858.CD001506.pub4
https://doi.org/10.1007/s10928-019-09649-0
https://doi.org/10.1016/j.compchemeng.2017.11.011
https://doi.org/10.1016/j.compchemeng.2017.11.011
https://doi.org/10.1038/nmeth.4014
https://doi.org/10.1023/A:1012487302797


[66] I. Guyon and A. Elisseeff. “An Introduction to Variable and Feature Selection”. J.

Mach. Learn. Res. 3 (Mar. 2003), pp. 1157–1182. doi: 10.5555/944919.944968.

[67] S. Malhotra, D. Hayes, and D. J. Wozniak. “Mucoid Pseudomonas aeruginosa and

regional inflammation in the cystic fibrosis lung”. Journal of Cystic Fibrosis 18.6

(2019), pp. 796–803. doi: 10.1016/j.jcf.2019.04.009.

[68] Z. Li, D. B. Sanders, M. J. Rock, et al. “Regional differences in the evolution of

lung disease in children with cystic fibrosis”. Pediatric Pulmonology 47.7 (July 2012),

pp. 635–640. doi: 10.1002/ppul.21604.

[69] S. D. Davis, L. A. Fordham, A. S. Brody, et al. “Computed tomography reflects

lower airway inflammation and tracks changes in early cystic fibrosis”. American

Journal of Respiratory and Critical Care Medicine 175.9 (2007), pp. 943–950. doi:

10.1164/rccm.200603-343OC.

[70] T. M. Martínez, C. J. Llapur, T. H. Williams, et al. “High-resolution computed to-

mography imaging of airway disease in infants with cystic fibrosis”. American Jour-

nal of Respiratory and Critical Care Medicine 172.9 (2005), pp. 1133–1138. doi:

10.1164/rccm.200412-1665OC.

[71] A. S. Brody, J. S. Klein, P. L. Molina, et al. “High-resolution computed tomography

in young patients with cystic fibrosis: Distribution of abnormalities and correlation

with pulmonary function tests”. Journal of Pediatrics 145.1 (2004), pp. 32–38. doi:

10.1016/j.jpeds.2004.02.038.

[72] M. R. Elkins, M. Robinson, B. R. Rose, et al. “A Controlled Trial of Long-Term

Inhaled Hypertonic Saline in Patients with Cystic Fibrosis”. New England Journal of

Medicine 354.3 (Jan. 2006), pp. 229–240. doi: 10.1056/NEJMoa043900.

[73] N. Sood, W. D. Bennett, K. Zeman, et al. “Increasing Concentration of Inhaled

Saline with or without Amiloride”. American Journal of Respiratory and Critical

Care Medicine 167.2 (Jan. 2003), pp. 158–163. doi: 10.1164/rccm.200204-293OC.

[74] E. Daviskas, S. D. Anderson, I. Gonda, et al. “Inhalation of hypertonic saline aerosol

enhances mucociliary clearance in asthmatic and healthy subjects”. European Respi-

ratory Journal 9.4 (1996), pp. 725–732. doi: 10.1183/09031936.96.09040725.

141

https://doi.org/10.5555/944919.944968
https://doi.org/10.1016/j.jcf.2019.04.009
https://doi.org/10.1002/ppul.21604
https://doi.org/10.1164/rccm.200603-343OC
https://doi.org/10.1164/rccm.200412-1665OC
https://doi.org/10.1016/j.jpeds.2004.02.038
https://doi.org/10.1056/NEJMoa043900
https://doi.org/10.1164/rccm.200204-293OC
https://doi.org/10.1183/09031936.96.09040725


[75] N. Jakeways, T. McKeever, S. A. Lewis, et al. “Relationship between FEV1 reduction

and respiratory symptoms in the general population”. European Respiratory Journal

21.4 (2003), pp. 658–663. doi: 10.1183/09031936.03.00069603.

[76] J. Davies, H. Sheridan, N. Bell, et al. “Assessment of clinical response to ivacaftor

with lung clearance index in cystic fibrosis patients with a G551D- CFTR mutation

and preserved spirometry: a randomised controlled trial”. The Lancet Respiratory

Medicine 1.8 (Oct. 2013), pp. 630–638. doi: 10.1016/S2213-2600(13)70182-6.

[77] S. Stanojevic, S. D. Davis, G. Retsch-Bogart, et al. “Progression of lung disease in

preschool patients with cystic fibrosis”. American Journal of Respiratory and Critical

Care Medicine 195.9 (2017), pp. 1216–1225. doi: 10.1164/rccm.201610-2158OC.

[78] A. T. Lennox, S. L. Coburn, J. A. Leech, et al. “ATP12A promotes mucus dysfunction

during Type 2 airway inflammation”. Scientific Reports 8.1 (2018), pp. 1–13. doi:

10.1038/s41598-018-20444-8.

[79] D. B. Hill, R. F. Long, W. J. Kissner, et al. “Pathological mucus and impaired mucus

clearance in cystic fibrosis patients result from increased concentration, not altered

pH”. European Respiratory Journal 52.6 (Dec. 2018), p. 1801297. doi: 10.1183/

13993003.01297-2018.

[80] W. D. Bennett, A. Burbank, M. Almond, et al. “Acute and durable effect of inhaled

hypertonic saline on mucociliary clearance in adult asthma”. ERJ Open Research 7.2

(2021), pp. 00062–2021. doi: 10.1183/23120541.00062-2021.

[81] W. Mi, C. Zhang, H. Wang, et al. “Measurement and analysis of the tracheobronchial

tree in Chinese population using computed tomography”. PLoS ONE 10.4 (2015),

pp. 1–14. doi: 10.1371/journal.pone.0123177.

[82] J. S. Fleming, J. Conway, M. J. Bennett, et al. “Quantitative Assessment of Mucocil-

iary Clearance in Smokers with Mild-to-Moderate Chronic Obstructive Pulmonary

Disease and Chronic Bronchitis from Planar Radionuclide Imaging Using the Change

in Penetration Index”. https://home.liebertpub.com/jamp 32.4 (Aug. 2019), pp. 175–

188. doi: 10.1089/JAMP.2017.1441.

142

https://doi.org/10.1183/09031936.03.00069603
https://doi.org/10.1016/S2213-2600(13)70182-6
https://doi.org/10.1164/rccm.201610-2158OC
https://doi.org/10.1038/s41598-018-20444-8
https://doi.org/10.1183/13993003.01297-2018
https://doi.org/10.1183/13993003.01297-2018
https://doi.org/10.1183/23120541.00062-2021
https://doi.org/10.1371/journal.pone.0123177
https://doi.org/10.1089/JAMP.2017.1441


[83] A. L. Young, F. J. Bragman, B. Rangelov, et al. “Disease progression modeling in

chronic obstructive pulmonary disease”. American Journal of Respiratory and Critical

Care Medicine 201.3 (2020), pp. 294–302. doi: 10.1164/rccm.201908-1600OC.

etdbib.bib

143

https://doi.org/10.1164/rccm.201908-1600OC

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Classes of CFTR Mutations
	2. Demographics of included study participants with lung clearance index (LCI) and pulmonary function data (mean±std). For correctors in CF group, I=ivacaftor, L/I=lumacaftor/ivacaftor, and T/I=tezacaftor/ivacaftor.
	3. Summary of overall objective functions compared
	4. Comparison of error metrics (meanstd) for each of the tested objective functions fit to Tc-SC retention for healthy subjects.
	5. Number of participants with identifiable lower and upper 95% confidence limits and the range of those intervals (meanstd) for each of the 5 clusters of the reduced model.
	6. Summary of clinical input variables considered for multivariate linear models (n=23, except †: n=20)
	7. Summary of in vitro input variables considered for multivariate linear models. IR=Isotonic Ringer's, HR=Hypertonic Ringer's
	8. Summary of in silico input variables considered for multivariate linear models (n=9)
	9. Coefficients and intercept for multivariable linear regression models to estimate change in MCC rate coefficients from IS to HS days.
	10. Coefficients and intercept for multivariable linear regression models to estimate change in non-clearable activity from IS to HS days.
	11. Model error including different subsets of features
	12. Coefficients and intercept for multivariable linear regression models to estimate change in Tc-SC concentration at 10 min from IS to HS days using all variables.
	13. Coefficients and intercept for multivariable linear regression models to estimate change MCC rate coefficients from IS to HS days using clinical and in vitro data.
	14. Coefficients and intercept for multivariable linear regression models to estimate change in non-clearable activity from IS to HS days using clinical and in vitro data.
	15. Coefficients and intercept for multivariable linear regression models to estimate change in Tc-SC concentration at 10 min from IS to HS days using clinical and in vitro data.
	16. Coefficients and intercept for multivariable linear regression models to estimate change MCC rate coefficients from IS to HS days using only clinical data.
	17. Coefficients and intercept for multivariable linear regression models to estimate change in non-clearable activity from IS to HS days using only clinical data.
	18. Coefficients and intercept for multivariable linear regression models to estimate change in Tc-SC concentration at 10 min from IS to HS days using only clinical data.

	List of Figures
	1. Simplified depiction of the different layers lining the airway epithelium: Epithelial tissue containing goblet cells, which secrete mucins, ciliated cells, which beat to push mucus up the airways, and basal cells, which can differentiate into other cell types as needed, the periciliary liquid layer (PCL), which provides a barrier between cells and mucus and facilitates beating of cilia, the apical membrane containing ion channels that regulate hydration of PCL, the mucus layer, which traps inhaled particles in a viscous gel
	2. Depiction of the airway structure. The trachea branches into two main bronchi, leading to each lung. From there, airways continue to branch, getting smaller in size and larger in quantity until they terminate into alveoli. Airways become less ciliated as they get smaller. There are no cilia in the alveoli.
	3. Example of standard regions of interest (ROIs). A whole lung outline is drawn. The central ROI (indicated C) is defined as a rectangle of half the height and width of a box bounding the whole lung outline, centered at the medial edge. The peripheral ROI (indicated P) is defined as the remainder of the whole lung area. Radioactive counts are measured within each ROI to measure MCC.
	4. Compartmental model developed in 0Markovetz2014. Initial conditions are determined from deposition in each ROI (C0, and P0 for the central and peripheral ROIs, respectively) and a fitted parameter, fraction of functional ciliated area (FFCA). Technetium-99m sulfur colloid (Tc-SC) and indium-111 diethylene triamine pentaacetic acid (In-DTPA) both clear from the functional large airways (LF) to the trachea following first-order kinetics. In-DTPA is also absorbed into the bloodstream from each airway compartment following first-order kinetics.
	5. Comparison of experimental versus simulated technetium-99m sulfur colloid (Tc-SC) retention in whole lung, central, and peripheral ROIs for an example healthy control using the model from 0Markovetz2014. Circles represent experimental values and solid lines represent simulations of best-fit parameters.
	6. Depiction of two-probe nuclear imaging study. Technetium-99m labeled sulfur colloid (Tc-SC) only clears through MCC. Indium-111 labeled diethylene triamine pentaacetic acid (In-DTPA), which is much smaller, clears through MCC and is absorbed paracellularly.
	7. Process of generating flow constraints. 2D projection of HRCT scan from 0Greenblatt2015 was divided into a 16 x 8 grid (left). Grids containing visible large airways were selected to define a large airway region (LAR), shown as a black and white mask in the middle panel. Inside the LAR, elevation was defined as the city-block distance to the trachea, located at the left edge. Outside the LAR, it was defined based on the city-block distance to the LAR (right). Flow between grids was constrained, so that mucus could only flow to neighboring grids of equal or lower elevation.
	8. Boxplots of the variance of pixel intensity in the overall central ROI and the mean for individual grids in that region (left) and for the peripheral ROI (right). Solid black lines show change in variance between the grid mean and the overall ROI for each individual. Grid mean vs ROI were compared using a paired Wilcoxon signed-rank test (***: p < 0.001).
	9. Boxplots of the skew of pixel intensity in the overall central ROI and the the mean for individual grids in that region (left) and for the peripheral ROI (right). Solid black lines show change in skew between the grid mean and the overall ROI for each individual. Grid mean vs ROI were compared using a paired Wilcoxon signed-rank test (***: p < 0.001).
	10. Mean non-clearable activity, defined as the lower 25% quartile of concentration of Tc-SC in each grid across the 80 minute study, for healthy subjects.
	11. Comparison between fitted model (solid lines) and data (markers) at the whole lung scale (a) and in three example grids from row 11, columns 3, 5, and 8, which are at different elevations (b). Colors and markers correspond to three individual healthy subjects (HC4, 10, and 16)
	12. Comparison between fitted model (solid lines) and In-DTPA retention (markers) at the whole lung scale (a) and in three example grids from row 11, columns 3, 5, and 8 (b). Colors and markers correspond to three healthy individuals (HC4, 10, and 16).
	13. Probability density of the difference between Tc-SC and In-DTPA deposition for each grid (left) and the mean difference across healthy controls (right).
	14. Depiction of a likelihood-based confidence interval. Green circle is the fitted parameter value, the dashed line represents the 95% confidence threshold, the solid curve represents the minimized objective value when the parameter is fixed to the corresponding value, and the X symbols indicate the lower and upper values of the confidence interval.
	15. Depiction of likelihood profiles for a practically identifiable parameter (A), a practically non-identifiable parameter (B), and structurally non-identifiable parameter (C).
	16. Example of how PCA can be used as a change of basis to describe the same data using linearly independent coordinates. Parameters for two sample subjects are highly correlated, as shown on left. Principal components (blue and yellow lines) capture directions of maximum variance. The same data expressed in terms of principal components (right) is no longer correlated.
	17. Original distribution of MCC rate parameters for healthy controls (left) and the transformed distribution after processing (right).
	18. Change in total sum of squared error (across all time points and grids) between model and MCC scan data from original model versus threshold elevation, below which mucus can flow to equal elevation grids. Each line represents a healthy control
	19. a) Principal component (PC) analysis of log-normalized clearance rate coefficients across healthy subjects. PCs are orthogonal and ordered by the amount of variance in the data they explain. b) The first two PCs, represented spatially. The scale bar indicates the magnitude and direction of the components from the median. Parameters of all healthy subjects can be described as a linear combination of these two PCs to within 74% accuracy
	20. a) Dendrogram and heatmap showing hierarchical clustering of 1st and 2nd principal components of healthy subject clearance rate coefficients and b) spatial layout of selected clusters. Each colored row of the heatmap represents a grid in terms of principal components (columns). Each vertical line on the dendrogram represents the merging of the next most similar cluster or grid. The dashed line shows where the dendrogram was truncated to form the selected clusters
	21. Change in total sum of squared error (across all time points and grids) between model and MCC scan data from original model versus the number of clusters used in the reduced models. Each line represents a healthy control
	22. Pearson's correlation coefficients between each of the fitted parameters. Rows and columns (top to bottom, left to right) correspond to the MCC rate coefficients for healthy subjects for each cluster (k1-k5). There are no significant correlations.
	23. Clearance rate coefficient distribution by subject subgroup (HC=healthy controls including inhalation of isotonic saline (IS), CFIS=CF including inhalation of IS, CFHS=CF including inhalation of hypertonic saline (HS)) and cluster. CFIS and CFHS are paired data from the same subjects on two different study days. For each violin, the width of the shaded region shows the estimated probability density of the corresponding parameter values; each horizontal line corresponds to the fitted parameter value for an individual. HC vs CFIS were compared using a two-sample Kolmogorov-Smirnov statistical test and CFIS vs CFHS were compared using a paired Wilcoxon signed-rank test (*: p < 0.05, **: p < 0.01, ***: p < 0.001)
	24. Distribution of non-clearable activity by subject subgroup (HC=healthy controls including inhalation of isotonic saline (IS), CFIS=CF including inhalation of IS, CFHS=CF including inhalation of hypertonic saline (HS)) and cluster. CFIS and CFHS are paired data from the same subjects on two different study days. For each violin, the width of the shaded region shows the estimated probability density of the corresponding non-clearable activity; each horizontal line corresponds to the value for an individual. HC vs CFIS were compared using a two-sample Kolmogorov-Smirnov statistical test and CFIS vs CFHS were compared using a paired Wilcoxon signed-rank test (*: p < 0.05, **: p < 0.01, ***: p < 0.001)
	25. Relative importance of included features in predicting the change in MCC rate coefficients from IS to HS days in each cluster. Relative importance is determined by the relative magnitude of LASSO regression coefficients.
	26. Relative importance of included features in predicting the change in non-clearable activity from IS to HS days in each cluster. Relative importance is determined by the relative magnitude of LASSO regression coefficients.
	27. Comparison between the estimated (y-axes) and actual (x-axes) change in MCC rate coefficients from IS to HS study days for each cluster. Each circle corresponds to a CF individual and the dashed line indicates parity between estimated and actual values.
	28. Comparison between the estimated (y-axes) and actual (x-axes) change in initial Tc-SC deposition from IS to HS study days for each cluster. Each circle corresponds to a CF individual and the dashed line indicates parity between estimated and actual values.
	29. Comparison between the estimated (y-axes) and actual (x-axes) change in non-clearable activity from IS to HS study days for each cluster. Each circle corresponds to a CF individual and the dashed line indicates parity between estimated and actual values.
	30. Simulated whole lung MCC trajectories using predicted values for the CF individuals with the largest (top) and smallest (bottom) MAE between simulation and measured Tc-SC retention.
	31. ROC curves for binary classification of response of rate coefficients to HS for each cluster. The solid blue line represents the binary classifier for different threshold values. The dashed line represents a classifier with no skill.
	32. ROC curves for binary classification of response of non-clearable activity to HS for each cluster. The solid blue line represents the binary classifier for different threshold values. The dashed line represents a classifier with no skill.
	33. File structure for tutorial

	Preface
	1.0 Introduction
	1.1 Mucociliary Clearance (MCC) in the Airways
	1.1.1 Airway Mucus
	1.1.2 Airway Structure

	1.2 Cystic Fibrosis Background
	1.2.1 Airway Electrophysiology
	1.2.2 Mucus Thickening and Accumulation
	1.2.3 Current Treatment Paradigm & Challenges
	1.2.3.1 Modulators
	1.2.3.2 Mucus clearance therapies
	1.2.3.3 Microbiology


	1.3 Measuring MCC In Vivo
	1.4 Existing In Silico Models of MCC
	1.5 Dissertation Overview

	2.0 Development of a Physiologically-Based Model of Airway Mucociliary Clearance and Paracellular Surface Liquid Absorption
	2.1 Introduction
	2.1.1 System Definition
	2.1.2 Many-Objective Optimization
	2.1.3 Paracellular Airway Surface Liquid Absorption (ABS)

	2.2 Methods
	2.2.1 Two-Probe Nuclear Imaging Study
	2.2.2 Image Processing
	2.2.3 2D Model Development
	2.2.3.1 Regions with no MCC
	2.2.3.2 Regions with MCC
	2.2.3.3 ABS model

	2.2.4 Formulation as a Multi-Objective Optimization Problem

	2.3 Results
	2.4 Discussion

	3.0 Rational Model Reduction for Improved Patient-Specific Identifiability
	3.1 Introduction
	3.1.1 Importance of Parameter Identifiability
	3.1.2 Measures of Identifiability
	3.1.3 Image Processing Tools
	3.1.3.1 Image Denoising
	3.1.3.2 Image Segmentation


	3.2 Profile Likelihood Estimator in Python
	3.3 Methods
	3.4 Results
	3.4.1 Threshold Elevation
	3.4.2 Eigenlungs
	3.4.3 Hierarchical Clustering
	3.4.4 Parameter-Parameter Correlation
	3.4.5 Model Identifiability

	3.5 Discussion

	4.0 Patient-Specific Modeling of Hypertonic Saline Response in Cystic Fibrosis
	4.1 Introduction
	4.1.1 Thin-Film Model
	4.1.2 Feature Selection

	4.2 Methods
	4.2.1 Apply Reduced Model to CF Participants on IS and HS
	4.2.2 Statistical Model
	4.2.3 Feature Selection
	4.2.4 Validation with Organ-Scale Model

	4.3 Results
	4.3.1 Response to HS from Fitted Parameters
	4.3.2 Feature Correlations
	4.3.3 Linear Regression Estimates for Organ-Scale Parameters
	4.3.4 Comparison of Model Dynamics
	4.3.5 Binary Classification from Regression Models

	4.4 Discussion
	4.4.1 Comparison Between CF and Healthy Individuals
	4.4.2 Response to HS in CF Group
	4.4.3 Outcomes of Statistical Model


	5.0 Summary & Future Work
	5.1 Contributions
	5.1.1 New Methods for Analyzing MCC In Vivo
	5.1.2 Insight Into Key MCC Regimes
	5.1.3 Statistical Model to Estimate HS Effectiveness for Individuals from Nasal Epithelial Cells

	5.2 Future Work
	5.2.1 Model Refinement
	5.2.1.1 Grid Selection
	5.2.1.2 Separate Non-Clearable Activity Clusters
	5.2.1.3 Integrate Additional Camera Angles

	5.2.2 Applications to Other Lung Diseases
	5.2.3 Tool for Efficacy Screening of Osmotic Therapies


	Appendix A. Nuclear Image Processing
	 A.1 ImageJ Processing
	 A.1.1 Requirements
	 A.1.2 Define ROI for Subject
	 A.1.2.1 Transmission Scan

	 A.1.3 Align the ROI to Tc-99m Activity Window
	 A.1.4 Crop Anterior and Posterior Images to Right Lung
	 A.1.5 Crop Background Scans
	 A.1.6 Conclusions
	 A.1.7 Stack2TextImages Macro

	 A.2 Python Processing
	 A.2.1 Requirements
	 A.2.2 Multi-Subject Tutorial
	 A.2.2.1 Import Relevant Packages
	 A.2.2.2 Configure
	 A.2.2.3 Initialize a Set of Empty NumPy Arrays
	 A.2.2.4 Loop Through Each Subject
	 A.2.2.5 Calculate the Geometric Mean



	Appendix B. Code for Models
	 B.1 Grid Model Fitting
	 B.2 Agglomerative Clustering
	 B.3 Statistical Models

	Appendix C. Statistical Submodels
	 C.1 All Variables Included
	 C.2 Clinical and In Vitro Variables Included
	 C.3 Clinical Variables Only

	Bibliography

