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Majorana Zero Modes: investigating implementations of

nanowire/superconductor setups

Malcolm J. A. Jardine, PhD

University of Pittsburgh, 2023

This thesis aims to address some of the open questions surrounding the 1D semiconductor-

nanowire/ superconductor hybrid system for investigating Majorana Zero Modes (MZMs),

with focus on Ab Initio calculation of electronic properties of the semiconductor/superconductor

interface and magnetic field implementation. MZMs are zero-energy states localized near

boundaries of 1D and 2D topological superconductors. They are of interest due to their

potential use as topologically protected qubits for fault-tolerant quantum computing. The

semiconductor/ superconductor system, also called the hybrid system, could act as an ef-

fective p-wave superconductor which would harbor these MZM states. This platform has

many open questions: such as which materials are best to use, requiring tools such as den-

sity functional theory; and how to best implement the magnetic field, possibly done using

micro-scale magnets.

The first topic of this thesis is how Density Functional Theory (DFT) is employed to

investigate the effects of interfacing materials relevant to these hybrid system MZM ex-

periments. DFT is a computational approach used to approximately solve the electronic

structure of condensed phase problems. We consider the materials α-Sn, InSb and CdTe,

among others. We investigate, using the DFT+U method, inserting a CdTe tunnel barrier

as the proximity to the superconductor could adversely affect InSb’s properties. The results

of DFT+U(BO) are validated against ARPES experiments for α-Sn and CdTe. It is found

that 16 monolayers (∼ 3.5 nm) of CdTe provides an effective barrier between the InSb/α-Sn

interface.

Following this we investigate the need of relatively high external magnetic fields, that

also changes direction for T-junction nanowire setups, in the MZM experimental approach.

We propose devices that incorporate micromagnets to address this challenge. Numerical

simulations of stray magnetic fields from micromagnet configurations are performed within
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the micromagnetic simulation software of MuMax3. This is combined with an effective MZM

hybrid model and solved to find Majorana wavefunctions in the system. The devices proposed

start with a four-magnet design to align magnetic field with the nanowire, and then scales

up to nanowire T-junctions, where micromagnets provide the required magnetic field. The

feasibility of the approach is assessed by performing magnetic imaging of prototype patterns.

Keywords: Majorana Zero Mode (MZM), semiconductor-nanowire/ superconductor hy-

brid device, density functional theory (DFT), electronic structure, angle resolved pho-

toemission spectroscopy (ARPES), metal-semiconductor interface, Metal Induced Gap

States (MIGS), tunnel barrier, InSb, CdTe, Sn, micromagnets.

v



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 Majorana: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Majorana Kitaev Chain Model . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Majoranas for quantum computation . . . . . . . . . . . . . . . . . . 9

2.3 Experimental Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Majorana nanowire mode . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.0 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 The Electron Density . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 Kohn-Sham Auxiliary System . . . . . . . . . . . . . . . . . . . . . . 17

3.1.4 The Band Gap and DFT+U . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.5 VASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.0 First Principles Assessment of CdTe as a Tunnel Barrier at the α-

Sn/InSb Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Band Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Interface Model Construction . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 α-Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 CdTe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.3 Bilayer Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



4.3.4 Tri-layer Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.2 suppinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Additional Methodological Details . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.2 ARPES Experimental details . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.3 Interfacing affects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6.1 Pseudo-hydrogen Passivation . . . . . . . . . . . . . . . . . . . . . . . 45

4.6.2 CdTe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.3 Bilayers and trilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.4 Trilayer wavefunction and avoided energy crossing . . . . . . . . . . . 57

4.7 New materials: InAs/CdSe,ZnTe/Al trilayers . . . . . . . . . . . . . . . . . 60

4.7.1 Interface Model Construction . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8.1 Bayesian optimization of CdSe, ZnTe . . . . . . . . . . . . . . . . . . 64

4.8.2 Convergence of CdSe, ZnTe, Al . . . . . . . . . . . . . . . . . . . . . . 66

5.0 Integrating micromagnets and a hybrid nanowire model . . . . . . . . . 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Majorana Model Used . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.2 Interpreting Majorana results . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Magnetic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Conclusions, limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.2 Micromagnetic Simulation Details . . . . . . . . . . . . . . . . . . . . 81

5.4.3 Supplementary Results . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.3.1 Dragonfly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.3.2 Double Dragonfly without extra magnet . . . . . . . . . . . . 85

vii



5.4.3.3 Double Dragonfly with extra Magnet . . . . . . . . . . . . . . 85

5.4.3.4 T-junction magnetic fields . . . . . . . . . . . . . . . . . . . . 86

5.4.3.5 Field uniformity . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.0 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



List of Figures

0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

2.1 (Top) Kitaev model with spinless electrons (black box) on cite i rewritten in

terms of a pair of Majorana operators (red stars). The chemical potential, µ,

pairs Majorana operators that belong to the same electron, hopping, t, and pair

tunneling, ∆, pair Majorana operators belonging to adjacent electrons. (middle)

The Kitaev model in the trivial regime limit with all Majoranas paired. (bottom)

The model in the topological phase with two unpaired Majorana operators which

describe the MZMs at the ends of the system. . . . . . . . . . . . . . . . . . . 7

2.2 The positional dependence of the closest to 0-energy eigenvector in a Kitaev

chain model for a finite system. This has been split into the Majorana basis. . 9

2.3 Spin orientation of a conduction band for a semiconductor-superconductor hybird

model. (a) without spin orbit coupling or magnetic field. (b) with magnetic field

only. (c) with spin orbit coupling only. (d) with spin orbit coupling and magnetic

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 (a) Side view of the CdTe(111) slab (b) Folded band structure of CdTe(111) 25

monolayer slab. (c) Primitive unit cell of CdTe (d) bulk-unfolded band structure

(e) unit cell of CdTe(111) slab used in z-unfolding. (f) Z-unfolded band structure

along k-path M −Γ−M for kz = 0.5, and (g) as a function of kz. (h) FCC bulk

BZ (grey), (111) unit-cell BZ (red) and (111) surface BZ (blue). (i) Intersecting

planes slice through the bulk BZ for kz = 0 (green) and kz = 0.5 (red) with

the SBZ indicated. (j) tessellated bulk BZs showing (111) orientated intersecting

planes for given kz values. Figure taken from [1] . . . . . . . . . . . . . . . . . 27

ix



4.2 Electronic structure of α-Sn: (a) Bulk-unfolded band structure of an α-Sn (001)

slab with 51 atomic layers (light blue) compared with ARPES data for a sample

of the same thickness. The point M is at 0.9298 Å−1. The ARPES data is
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1.0 Introduction

Over the past 50 years the promise of quantum computing has been touted as a way to

revolutionise the way we perform certain classes of computations. Some areas that stand

to benefit are optimization problems such as financial modeling and route optimization;

medical applications such as drug discovery and simulating of protein folding; the protection

and dissemination of data via encryption; and the simulation of quantum systems which help

understand and probe the world we live in [8, 9]. However, simulating a quantum system

on a classical one is an inherently difficult task, and improving our methods is an important

goal for modern technology. Two example applications of quantum systems that could affect

our everyday life are how to improve battery technology and how to make better clocks for

navigation purposes [10, 11]. To tackle such problems a new generation of quantum tools

are required, with a promising route being developing and improving quantum computers.

At its core, a quantum computer uses quantum bits (or qubits) in place of standard

electronic bits, and unitary operations in place of transistor based logic gates. A qubit is

just a two level quantum system, like the spin of an electron which can be up or down, or

the ground and excited states in a superconducting qubit. These quantum bits can encode

the usual binary information of 1’s and 0’s. However, they can also be in a superposition

of a 1 and 0 state. The use of this new logic channel allows quantum computers to arrive

at solutions to certain classes of problems much faster than classical computers. There are

problems that are intractable on classical computers because it would take impossibly long

to solve them, but can be done relatively quickly on a quantum computer. [9]. To this end,

there are currently quantum computers with 100’s of qubits with sufficiently high fidelity to

perform useful calculations, which are approaching the quantum advantage limit [12]. That

is, the point where a programmable quantum device can solve a problem that no classical

computer could solve in any reasonable time period. However, there are still enormous

technological hurdles to overcome in making programmable quantum computers and scaling

up the number of qubits. One of the the most pressing issues is that of decoherence, i.e. a

quantum system’s ability to hold the useful quantum information in it’s state.
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One idea for how to tackle this issue is to use topological qubits, due to their promise

of improving the reliability of quantum computations [13, 14, 15, 16, 17]. A topological

qubit would be immune to small or adiabatic perturbations to the state, and thus protect

the encoded information compared to current qubit implementations. The topology of a

state can be compared to the often used example of a ball and a doughnut, where small

perturbations to a ball will not transform the system into the doughnut. It is only a large

change to the system, i.e. changing its topology, that can transform one into the other.

This leads researchers to search for such topological states that can be used for quantum

computation, and one of the most promising avenues for topological qubits are that of Ma-

jorana Zero Modes (MZMs). MZMs are zero-energy energy quasiparticle states that are

localized near the boundaries and topological defects of one-and two-dimensional topological

superconductors [18, 19, 20, 21]. There are several different platforms that are hypothesized

to harbour these states, and we will be investigating one of the most promising platforms

of the semiconductor-nanowire/superconductor hybrid system [22]. This system combines

the nanowire’s inherently strong spin-orbit coupling with proximity-induced s-wave super-

conductivity, via contact with conventional superconductors, and also an magnetic field, to

allow the system to act an effective p-wave superconductor that could harbour these MZM

states.

The search into the platforms that could harbour such topological states is a very active

area of research with many open questions. One of the most pressing is how can experimental

systems be engineered so these states, such as Majorana Zero Modes, can be observed and

controlled. One important avenue of study is how the implemented materials affect this

system, with experimental and theoretical research required to answer questions such what

is the electron density in relevant materials, how can nanowires be effectively grown, and

what happens when two materials are interfaced? One way to theoretically tackle the last

of these questions is to use Density functional theory calculations.

Density functional theory (DFT) is the workhorse of first principles electronic struc-

ture simulations, and relies on approximate exchange-correlation functionals to describe the

many-body quantum mechanical interactions between electrons. This method is Ab Initio,

or from first principles, such that it does not rely on empirical parameters. It is used to
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investigate the electronic structure, calculating properties such as the band structure and

the density of states, of relatively large quantum mechanical systems (10s to 100s of atoms)

that can represent bulk and finite crystal structures. It does this by considering the elec-

tronic density and therefore only having dimensionality 3 (x,y,z). This is in contrast to using

the wave function to investigate the system, which is an extremely complicated object with

dimensionality equal to 3N, where N is the amount of electrons in the system, and has a

Hilbert space that grows exponentially with the number of electrons. DFT can then per-

form energy minimisation to access all the required properties of the system. This allows

qualitative and quantitative results to compare or even precede experiments, such that the

complete relevant search space doesn’t need to be investigated in experimental setups.

This thesis is laid out as follows. In section 2 it describes what MZMs are, the topological

superconductor model where they were first described, the promising experimental platform

of the hybrid semiconductor/superconductor where MZM could be found and manipulated,

and lastly touch on why these are relevant to quantum computing. Section 3 discusses the

relevant details of density functional theory and describes the Bayesian optimization imple-

mentation to obtain the Hubbard U parameters. Section 4 details the work that implements

DFT to understand the electronic effects of adding a CdTe barrier between semiconduc-

tor/metal interface of InSb/α-Sn. The use of Hubbard U corrections is also discussed, whose

values are machine-learned via Bayesian optimization (BO) and are added to certain atomic

orbitals of the materials as this can improve the accuracy of the relevant electronic properties

while not significantly increasing computational cost. This section also discusses the meth-

ods used and results obtained for comparing the DFT data to experimental ARPES data for

α-Sn and CdTe. Additionally, the ongoing work of implementing ZnTe and CdSe barriers

between the InAs/Al interface is presented. Section 5 is the other part of this thesis’s work,

which is the numerical simulations of stray magnetic fields from different micro-scale mag-

nets in various configurations. The fields are then used to solve for Majorana wavefunctions

in a hybrid semiconductor/superconductor model which is done for straight and T-junction

nanowire setups.
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2.0 Majorana:

2.1 Theory

We have presented Majorana states as a possible qubit, but what are they? A good place

to start is to consider their history. They were first proposed by Ettore Majorana, in the

late 1930s, by modifying the Dirac equation such that it has real solutions [23]. The Dirac

equation is a relativistic wave equation that describes spin half particles, such as electrons,

bringing together quantum mechanics and relativity, explaining phenomena such as the fine

structure of the hydrogen spectrum. Following this, with Majorana obtaining real solutions

from derivative Majorana equation, he introduced a new particle which has been dubbed

the ”Majorana fermion”. These proposed particles are real under complex conjugation, and

therefore describe electrically neutral particles. Since then it has been hypothesized that

neutrinos are Majorana fermions with this still being an active area of research. However,

while they were first encountered in particle physics, of relevance here is their condensed

matter comparison, which were first proposed in condensed matter models around 2000.

For reasons that will be discussed, in condensed matter systems the term that is used to

discuss these states are Majorana bound states, or Majorana zero modes (MZMs). This is

because they are fundamentally different to Ettore Majorana’s proposed fermionic particles,

as Majorana zero modes are quasiparticle states that are non-abelian anyons, not Fermions.

A quasiparticle state is a non-fundamental object that is made of other particles acting

as a collective and can then be mathematically described as particle. Additionally, MZMs

appear in different situations than Majoranas in particle physics, as MZMs appear in low-

dimensional and low-energy systems.

Now, some concrete mathematical descriptions for Majoranas will be presented. First,

we consider the usual Dirac fermion operators that are often used in condensed matter

physics, or, in the language of second quantization, the fermionic annihilation (holes) and

creation operators (electrons). In general, these are described by cα(p) and c†α(p), where

cα(p) destroys a fermion at some position or momentum p and state α (e.g. spin, site), and
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c†α(p) creates a fermion at position or momentum p and state α. These follow the fermionic

anticommutation relation of {
cα (p) , c

†
β (p)

}
= δα,β. (1)

This is a natural way to describe electrons and holes in condensed matters systems, such as

fermions moving around and interacting in a lattice model.

Following this, dropping the label of p and α for clarity, we can define Majorana fermion

operators as

γ1 = c+ c† γ2 = i
(
c− c†

)
, (2)

and it can be seen that these operators are real, i.e. γ†i = γi, and obey the commutation

relation {γi, γj} = 2δi,j to maintain the usual Dirac fermion commutation relations. We can

also express the Dirac fermion operators in terms of the Majorana operators as

c = 1
2
(γ1 − iγ2) c† = 1

2
(γ1 + iγ2) . (3)

Note that so far nothing has fundamentally changed, this is a unitary transformation and

therefore is always allowed. However, taking a look at this equation some insight can already

be gained on what Majoranas are. In a condensed matter system this suggests that the

Majorana fermions are composed of superpositions of electrons and holes, or, on the other

hand, this could interpreted as a single fermion being composed of two Majoranas. This will

become more apparent in the following section where a system with Majoranas that compose

a single fermionic state are spatially separated. The next step is to introduce a system where

these states appear and to show how this transformation offers some useful insight.

2.2 Majorana Kitaev Chain Model

Majoranas were first theoretically investigated in condensed matter systems in 2001 by

Kitaev. He proposed the following model of a one-dimensional, topological p-wave super-

conductor [24]. This is a toy model, particularly as it uses spinless fermions (spin label is
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suppressed) which are not something readily available in nature. The Kitaev chain Hamil-

tonian for an n-site system is

Ĥ = −µ
n∑

i=1

[
c†ici

]
− 1

2

n−1∑
i=1

[
tc†ici+1 −∆eiϕcici+1 +H.c.

]
, (4)

which has ci that destroys a spinless fermion at site i, c†i creates a spinless fermion, µ is

the chemical potential, t > 0 is the site hopping energy and ∆eiϕ is the phase dependent

p-wave superconducting pairing term, which can be set to ϕ = 0 without loss of generality.

The superconducting pairing potential couples electrons on neighboring sites with the same

spin, which departs from s-wave which couples electrons with opposite spin on the same

site. The lack of spin also leads this model to breaks time-reversal symmetry. The model is

depicted in Figure 2.1 (top), where µ can be described as the energy of a fermion occupying

the site, or the energy for having two Majoranas on the same site. Similarly, the hopping

and and nearest neighbour superconducting term can be viewed as the interaction energy of

Majoranas on different sites. Black boxes represent how a Dirac fermion is composed of two

Majorana operators on the same site. The middle panel depicts the trivial regime, where all

Majoranas are paired with each other on the same site,

To find the unpaired zero energy Majoranas modes in this model we take the following

limit of t = ∆ and µ = 0, which is just to make it mathematically straightforward to

explicitly write down the MZMs. The physical meaning of this could mean that no energy is

required for electron occupancy (or equivalently no energy penalty for two Majoranas on the

same site), and the hopping energy and nearest neighbour p-wave interaction to be the same,

or equivalently the interaction of the neighbouring sites Majoranas be the same. However,

this is just a mathematical exercise. In this limit Equation 4 reduces to

Ĥ = −1
2
∆

n−1∑
i=1

[
c†ici+1 + c†i+1ci − cici+1 − c†i+1c

†
i

]

= −1
2
∆

n−1∑
i=1

[
−ci+1c

†
i + c†i+1ci + ci+1ci − c†i+1c

†
i

]

= −1
2
∆

n−1∑
i=1

[(
c†i+1 + ci+1

)(
ci − c†i

)]
.

(5)
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Figure 2.1: (Top) Kitaev model with spinless electrons (black box) on cite i rewritten in

terms of a pair of Majorana operators (red stars). The chemical potential, µ, pairs Majorana

operators that belong to the same electron, hopping, t, and pair tunneling, ∆, pair Majorana

operators belonging to adjacent electrons. (middle) The Kitaev model in the trivial regime

limit with all Majoranas paired. (bottom) The model in the topological phase with two

unpaired Majorana operators which describe the MZMs at the ends of the system.

The last line can now be rewritten using the Majorana operators definition in terms of c and

c†, given in Eq.3, to arrive at

Ĥ =
i∆

2

n−1∑
i=1

γi+1,1γi,2. (6)

This can now be diagonalized using the following transformation of basis, bi =
1
2
(γi+1,1 + iγi,2)

and b†i =
1
2
(γi+1,1 − iγi,2). These new operators represent Dirac fermions that are composed

of Majoranas from neighboring sites, demonstrated by the solid lines connecting Majoranas

in Figure 2.1. In this basis the Hamiltonian is now

Ĥ = ∆
n−1∑
i+1

b†ibi, (7)

which show that the eigen basis for the Kitaev model in this limit is the number of spinless

fermions that exist across the segments that we have defined. Now, this is where Kitaev’s

insight becomes apparent. With this setup two Majorana states do not appear in this

Hamiltonian, γ1,1 and γn,2, i.e. the two Majorana states at the ends of the chain, shown in

2.1 (bottom).
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These Majorana states describe a non-local fermion, given by

bM = 1
2
(γ1,1 + iγN,2)

b†M = 1
2
(γ1,1 − iγN,2) .

(8)

Additionally, with this fermionic state not appearing in the Hamiltonian, it can be created or

destroyed at 0 energy. I.e. it doesn’t add or remove energy to have these in the system. In this

setup these two Majorana modes have been separated, but are correlated by describing one

fermionic state. If we are able to spatially control these Majoranas separately, it is possible

to think about moving them around each other. This procedure is known as braiding and is

how quantum computers would use MZMs to perform gate operations on the MZM qubits .

These Majorana zero modes don’t only appear in the limit of t = ∆ and µ = 0, but under

the condition

|µ| < t, (9)

defined as the topological regime. Within this the unpaired Majorana fermions are left at

the ends of the 1D chain. Outside this is the trivial regime, shown in the middle panel in

2.1 with all the Majoranas paired up on the same site.

A way to visualize MZMs is to diagonalize the Kitaev chain model hamiltonian. If this

is done for some finite n-site system, the eigenvector with eigen value 0 (or closest to in a

finite system) is the MZM, and this eigenvector appears as a state localized at the ends of

the 1D system. This is shown in 2.2, done in the Majorana basis, i.e. shown as γ1 and γ2

to emphasize that it is two separate Majoranas that are localized at the ends of the chain

which belong to one Dirac fermion state. In addition to the Kitaev model there are other

systems, such as in 2D, where the MZMs appear. In 2D systems the MZMs appear in a

different manner, as vortices on the surface. This work will focus on the 1D chain model for

MZMs.
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Figure 2.2: The positional dependence of the closest to 0-energy eigenvector in a Kitaev

chain model for a finite system. This has been split into the Majorana basis.

2.2.1 Majoranas for quantum computation

With the knowledge of what Majorana zero modes are in condensed matter systems, we

can now briefly discuss why there is interest in topological qubits and why MZMs can be

used for them [21]. One of the current complications with building quantum computers is

that small energy fluctuations can change the state being used for the qubit, introducing

errors. For example, if the spin of an electron is used to encode the information the spin

could randomly flip. For MZM, their first benefit is the topological protection offered due

to the non-locality of the MZM state. When a Kitaev chain crosses from the topologically

trivial state to the topological state, i.e. when the topological condition is met, given in Eq.9,

there are two non-local MZMs bound at the end of the 1D chain. The two spatially separated

MZMs describe one Dirac fermion, and this state is protected by the superconducting gap. As

long as there are no perturbations larger than this, and the system remains in the topological

regime, the information stored in the MZM is protected. This means energy fluctuations

smaller than the gap cannot decohere the quantum state.

The second benefit of using MZMs is one can use their non-Abalien properties to encode

quantum gate operations into a braiding procedure of Majorana zero modes, i.e. moving these

states around each other [17]. The non-Abelian nature of MZMs means their commutation

9



rules are neither those of fermions or bosons, which can be seen in Section 2.1. This is

unusual, as often we only deal with the symmetric bosons and anti-symmetric fermions

wave function exchange statistics. The exchange relation of a quantum state is an extremely

importance principle, at the root of the Pauli principle, superfluidity, the metallic state, Bose-

Einstein condensation, and a long list of other phenomena. In the usual 3 spatial and 1 time

dimension, (3+1)D, there are actually only these two types of exchange statistics. However,

due to the low dimensionality and the indistinguishable degenerate ground states (there are

two MZMs at 0 energy) this systems can have non-Abalien properties. Therefore, using a

Majorana braid to encode gate operations is a fault tolerant way to perform computations

due the topological protection of the MZMs.

However, the 1D p-wave topological superconductors that harbour these states have yet

to be realized experimentally. The question is where to look for them, and there have been

several experimentally accessible models proposed and investigated over last 15 years. The

next section will discuss one of the most prominent experimentally feasible proposals, the

hybrid semiconductor-superconductor system.

2.3 Experimental Search

The issue with the Kitaev model is that it uses spinless fermions with a p-wave supercon-

ducting interaction. There is not a readily available analogue to this in the real world. Since

the advent of the Kitaev model, physicists have searched many places for an experimentally

accessible platform that describes, or can effectively describe, a p-wave topological super-

conductor. Some of the proposed platforms are topological insulators and superconductors,

systems that show the fractional quantum hall-effect, magnetic chains on a superconductor,

or hybrid devices that couple a strong spin orbit coupled semiconductor nanowire to a con-

ventional superconductor [20]. The proposal that this work will focus on is the last one, with

this platform gaining a huge amount of attention over the last 10 years.
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2.3.1 Majorana nanowire mode

One of the most promising platforms to find an effective Kitaev chain model with MZMs is

in semiconductor-nanowire, superconductor hybrid systems. This candidate system was first

proposed in the works of [18, 19]. These hybrid systems utilize the nanowire’s inherently

strong spin-orbit coupling; proximity-induced s-wave superconductivity via contact with

conventional superconductors; and an external magnetic field to act as effective p-wave

superconductors. We will discuss how this systems achieves this.

To realize MZMs in the hybrid setup one needs to engineer the single spin superconductiv-

ity, which wasn’t an issue with the Kitaev model as spin was ignored. The superconductivity

in conventional superconductors is spin-singlet, i.e. the two electrons are paired with op-

posite spins. Therefore the required setup has a single band with different spin directions

for positive k and for negative k which will realize the single particle superconducting states

needed for MZMs. The first step is lifting the spin degeneracy of states in a s-wave super-

conductor, the spin degeneracy means one cannot isolate a single electron. This arises due

to the symmetry of the pairing potential ∆, i.e ∆(k) = ∆(−k). However, in the Kitaev

model the p-wave pairing potential phase is k-dependent and therefore breaks time reversal

symmetry, lifting the spin degeneracy. The s-wave degeneracy can be lifted by applying a

magnetic field, shown in Figure 2.3 in panels (a) to (b). However, with a strong enough

magnetic field the superconductivity is destroyed, so the field can not be made arbitrarily

large.

The next step is that a conventional superconductor couples a spin up Dirac fermion at

positive k with spin down one at negative k. To that end, the s-wave superconductor can

be brought in proximity with a semiconductor which has a large spin orbit interaction. The

spin orbit interaction bands are split such that, for example, one has spin left for positive k

and spin right for negative k, while the other band has the opposite. This is shown in Figure

2.3 in panel (c), however this is a cartoon picture as spin is undefined in this system. With

only spin orbit coupling the problem is that there is still a degeneracy point at k=0 where

the bands cross. Combining this with a magnetic field can lift this, but there is not complete

opposite spin for positive and negative k but some opposite component to the spins such
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that the superconductivity can be induced in the semiconductor nanowire.

Figure 2.3: Spin orientation of a conduction band for a semiconductor-superconductor

hybird model. (a) without spin orbit coupling or magnetic field. (b) with magnetic field

only. (c) with spin orbit coupling only. (d) with spin orbit coupling and magnetic field.

With all these ingredients the model Hamiltonian for this system can be written down.

The 1D semiconductor nanowire-superconductor model Hamiltonian is:

ĤNW =
(

p2

2m∗ − µ+ αR (σ × p) · ẑ
)
τz

+Vz (cos θσx + sin θσy) + ∆sτxσy
(10)

which acts on the Nambu spinor basis ψ̂x =
(
c↑x, c↓x, c

†
↑x,−c

†
↓x

)T

. The momentum p points

in the direction of a section of semiconductor-nanowire, ∆s is the s-wave superconducting

pairing term, Vz =
1
2
geffµBB is the Zeeman energy with B the magnetic field, θ is the angle

of the field relative to the positive x-axis, τ and σ are Pauli matrices representing the particle-

hole and spin spaces respectively, and αR is the Rashba spin orbit coupling term. The SOC

term has ·ẑ as this is the direction of the internal electric field which induces the Rashba

SOC, the direction arises because of the crystal asymmetry from the nanowire growing on
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the substrate, and the nanowire coating can affect this as well [25] These parameters are

taken constant because the nanowire is considered to be made of a homogeneous material.

For an infinite system to be in the topological phase the following condition must be met

Vz >
√
µ2 +∆2

s (11)

When this system is deep in the topological phase it is known that this reduces to a p-wave

topological system described by Eq.(4). To simulate the model in a finite one-dimensional

system the continuum model is discretized on a 1D lattice in the electronic state basis, shown

in Eq. (29).

2.3.2 Magnetic field

We make special note of a the effect and application of the magnetic field in this model,

as this is the topic of the project discussed in 5. Too high a magnetic field destroys super-

conductivity as this disrupts the paired electrons in the Cooper pairs. This is because they

have opposite spin and momentum at any moment in time, and, the applied magnetic field

exerts a force that tries to unbalance the electrons momentum, aligning both spins with the

field direction. However, it takes a certain amount of energy to disrupt the Cooper pairs,

so a superconductor can tolerate magnetism up to a point before reverting to a normally

conducting state. Additionally, the effect of the magnetic field on the hybrid model is di-

rection dependent. Often it is assumed that the applied magnetic field is uniform, where

in experimental setups this field is applied from large external magnet. However, one can

envisage the external field being applied by micro to nano-scale magnets, who’s stray field

changes on the scale of the hybrid nanowire system. The local control over the field mag-

nitude and direction offered by this is advantageous, particularly for 2D geometries where

it may be required to position some of the wires at an angle with other wires, such as in

junction set-ups appropriate for braiding. Achieving local field control in braiding, or even

simple set-ups, could offer novel ways to control Majorana-based devices.
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3.0 Density Functional Theory

3.1 Introduction

Density Functional Theory (DFT) is an approximate numerical method to solve the

electronic structure of problems of condensed phases in physics, chemistry, and materials

science. It is an Ab initio, first principles method, meaning this is done without empirical

parameters. It is a theory of of interacting, correlated, many-body systems of electrons.

Using it we can investigate a variety of different systems, such as bulk materials or surfaces,

or finite setups such as interfaces or nanoclusters, and then obtain properties such as the

band structure, density of states, electronic density, forces and adhesion energy, among many

others, principally at the ground state at 0K. DFT operates via the Kohn–Sham equation an

the use of functionals that describe the spatially dependent electron density, and, through

self-consistent minimization of the energy of the system, can access all these system properties

through the Hohenberg and Kohn theorem.

3.1.1 Motivations

The non-relativistic many-body Schrödinger equation is an eigenvalue problem as defined

below:

ĤΨ = EΨ. (12)

Ĥ is the many-body Hamiltonian operator, E represents the energy, and Ψ is the many-body

wave function. This wave function will provide all the information on the systems, such as

how the electrons behave. The wave function is extremely complicated with a dimensionality

equal to 3N, where N is the amount of electrons in the system, and the Hilbert space grows

exponentially with the number of electrons.

We can write the exact form of the Hamiltonian for the system of interest (e.g. atom,

crystal structure), [26]

Ĥ = − h̄2

2me

∑
i

∇2
i −

∑
I

h̄2

2MI

∇2
I +

1

2

∑
i ̸=j

e2

|ri − rj|
+

1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
−
∑
i,I

ZIe
2

|ri −RI |
. (13)
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Where h̄ is the normalized Planck constant, me and MI are the mass of an electron and

nuclei, e is the charge of an electron, and Z is the atomic number of a nuclei. The first term

in Equation (13) represents the kinetic energy of the electrons, the second term represents the

kinetic energy of the nuclei, the third and fourth terms represent the electron-electron and

nuclei-nuclei coulomb interactions, and the final term represents the electron-nuclei coulomb

interactions. This is clearly a many-body, complicated operator which depends on several

interacting terms. However, the approximation by Born and Oppenheimer was used to

simplify the picture [27]. By using the fact that the mass of a proton/neutron is 1700 times

larger than the mass of an electron, they concluded that the motion of the nucleus relative

to the electrons is negligible, therefore accurate results can be obtained even if the nuclei

are considered to be stationary objects. Such a simplification allows for the removal of two

terms from the Hamiltonian, namely, the kinetic energy of the nuclei and the nuclei-nuclei

coulomb interaction, which go to zero and become an additive constant. The Hamiltonian

is now described only by the electrons and how they interact with each other and their

stationary environment:[26]

Ĥ = T̂ + V̂int + V̂ext + EII (14)

Where T̂ represents the kinetic energy operator for the electrons, V̂int is the electron-electron

interaction, V̂ext is the external potential of the nuclei acting on the electrons, and EII is the

constant energy contribution of the nuclei-nuclei interaction and will be ignored from now

on for the sake of simplicity. Using this simplified Hamiltonian the Schrödinger equation can

still only be solved for trivial systems due to the strongly correlations of the electrons, and

therefore the solution is non-separable and scales exponentially as more electrons are added

to the system. This challenge is what motivated physicists to look past the many-body wave

function towards simpler, more attainable solutions.

3.1.2 The Electron Density

To deal with the exponential increase in calculation with the number of electrons, using

the electron density was investigated as a possible solution. Electronic density, n(r), just

gives the charge distribution in space, and it therefore only has dimensionality 3 (x,y,z).
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In the 1920’s Thomas and Fermi proposed their approach to write the total energy as a

functional of the electron density:[28, 29]

ETF[n] = C1

∫
d3r n(r)(5/3) +

∫
d3r Vext(r)n(r) +

1

2

∫
d3r d3r′

n(r)n(r′)

|r− r′|
. (15)

Where the first term is the kinetic energy of the electrons (for a non-interacting homogeneous

electron gas in the Thomas Fermi approximation), the second term is the external potential,

and the third term is the classical electrostatic Hartree potential, all as functionals of the

electron density, where the electron density is given as:

n(r) = ⟨Ψ|n̂(r)|Ψ⟩ = N

∫
dr2 dr3 . . . drN |Ψ(r, r2, . . . , rN)|2. (16)

This functional failed to produce accurate results due to the oversimplified kinetic energy

term and the lack of electron-electron interactions. However, this was an important first

step in showing that the electron density was a useful variable. Then, in 1964, the unique

relationship between the electron density and the wave function was shown in the seminal

paper of Hohenberg and Kohn [30]. This paper laid the foundations for DFT by detailing

two proofs which showed that:

1. There is a unique 1:1 mapping between the external potential of a system and it’s electron

density.

2. If a universal functional for the kinetic energy and electron-electron interactions can be

defined in terms of the electron density, then such a functional can be minimized to find

the exact ground state energy and electron density for any given external potential.

This exact functional can be written as:

EHK[n] = FHK [n] +

∫
d3r Vext(r)n(r) = FHK [n] + Vext[n] (17)

Where FHK[n] is the universal functional, which can be defined as the the summation of

the exact kinetic energy functional, T [n], and the exact electron-electron interaction, Eint[n].

The second term is the density functional of the external potential, which is the same as

defined above in Equation (15). Unfortunately, the theorem provides no information on

what is or how to obtain the universal functional, and would require a search of all possible

densities and all possible external potentials in order for it to be determined. Therefore,

more simplifications must be made in order for this new knowledge to be put into practice.
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3.1.3 Kohn-Sham Auxiliary System

An auxiliary system can be thought of as a simplified and more easily solvable system

that has the same desired properties as the real system (e.g. ground state electron density)

while neglecting the properties that are not of interest (e.g. excited states). To build such

a system, Kohn and Sham asked if an auxiliary system on non-interacting electrons could

arrive at the same ground state electron density as a system of interacting electrons [31]. One

of the most important realizations of the Kohn-Sham auxiliary system was the development

of the exchange correlation functional, which can be derived by adding and subtracting

the single particle kinetic energy functional (Ts[n]) and the classical electrostatic Hartree

potential (EHartree[n]) to the exact functional (EHK):

EHK[n] = FHK [n] + Vext[n] + Ts[n]− Ts[n] + EHartree[n]− EHartree[n] (18)

By rearranging the above equation, the Hohenberg-Kohn functional can be separated into

it’s known an unknown terms:

EHK[n] = (Ts[n] + Vext[n] + EHartree[n]) + (FHK [n]− Ts[n]− EHartree[n]) (19)

The unknown terms can now be grouped into a new term called the exchange correlation

functional, Exc[n]. By further breaking down the universal functional, FHK, into it’s in-

dividual components, it can be seen that the exchange correlation functional is just the

summation of the difference between the true and single particle kinetic energies and the

true electron-electron interaction and the Hartree energy.

Exc[n] = FHK [n]− Ts[n]− EHartree[n] = (T [n]− Ts[n]) + (Eint[n]− EHartree[n]) (20)

The exact functional can now be expressed in terms of the known single particle equations,

also called the Hartree equations, and the exchange-correlation term to account for the

difference between the true interacting system and the auxiliary non-interacting system.

EHK[n] = Ts[n] + Vext[n] + EHartree[n] + Exc[n]. (21)
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Minimizing this energy functional under the constraint of ortho-normalized wave functions,

gives the seminal Kohn-Sham equation [31]. Such an equation can then be solved self-

consistently to arrive at the ground state electron density of the system by summing the

square moduli of the single particle wave functions [31].[
− h̄2

2me
∇2 + Vext(r) + VHartree([n], r) + Vxc([n], r)

]
ψi(r) = ϵiψi(r) n(r) =

∑
i

|ψi(r)|2 (22)

If the exact exchange-correlation functional was known, these equations would lead to the

exact ground state electron density. However, the exact exchange-correlation is not known,

leading to the development of a variety of approximations for this term, such as the local

density approximation[31] (LDA) and the generalized gradient approximation (GGA) [32,

33, 34, 35]. LDA was introduced along with the Kohn-Sham equations by assuming that

the exchange-correlation functional could be approximated by using the exact exchange-

correlation of a uniform electron gas with the same density as the local region [31]. GGA

functionals improved upon this by adding in the local gradient of the electron density in

order to more accurately depict the non-uniformity of the electron density [32, 33, 34, 35].

In current practice, the GGA functional known as PBE (Perdew, Burke, Ernzerhof) is one

of the most commonly used approximations for the exchange-correlation functional [35], due

to its effectiveness at describing certain materials and it being relatively computationally

inexpensive.

3.1.4 The Band Gap and DFT+U

Despite the success of DFT’s over a large range of problems, it has some weaknesses. For

example, LDA functionals often underestimate bond lengths, and, of note here, it underesti-

mates band gaps of semiconducting and insulating materials [36, 37, 38, 39, 40, 41, 42, 43, 44].

One reason for this is due to the so called self interaction error (SIE), which arises from the

classical Hartree potential (VHartree) due to an included energy contribution from an electron

interacting with itself [36, 37, 38, 39, 40, 41, 42, 43, 44]. The SIE would be cancelled if the

exact exchange correlation functional was known, but this is not the case, so other methods

have been proposed to reduce the SIE. Hybrid functionals, such as HSE proposed by [45],
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partially negate the SIE by using a linear combination of Hartree-Fock and GGA exchange.

The Hartree-Fock is included only for the short-range part of the electron-electron inter-

action, significantly reducing the cost of evaluating the non local Hartree-Fock part while

providing the desired accuracy [46]. This functional has been known to make very accurate

band gap predictions for inorganic crystals, especially those with smaller band gaps [47].

The main limitation of hybrid functionals is they are computationally expensive, due to

the calculation of the Hartree-Fock exchange, ultimately limiting it’s applications to smaller

systems.

An alternative approach, known as DFT+U attempts to correct the SIE error by applying

a Hubbard-U correction to specific orbitals [48, 49]. The motivation for this correction stems

from the fact that the SIE is essentially an electron-electron repulsion term, meaning that it

tends to over-delocalize states [50, 51]. To correct for this, states that should be localized,

such as d orbitals in transition metals, can be modeled by the Hubbard model, while the rest

of the states can be described by a standard exchange-correlation functional. Any orbital

that receives a positive U value is then further localized by increasing the intraband repulsive

Coulomb interaction. Since the Hubbard model is effective at describing localized states, it

can be efficiently used to correct for the SIE using the following expression:

EDFT+U = EDFT +
U − J

2

∑
σ

nm,σ − n2
m,σ (23)

where n is the atomic-orbital occupation number, m is the orbital momentum, σ is a

spin index, U represents the on-site Coulomb repulsion, and J represents the exchange inter-

action. A popular implementation of DFT+U by Dudarev et. al. [49] uses a single effective

U-parameter, Ueff = U − J , for each element in a given system and can be determined

using various first-principles approaches. One such approach is the linear response method

proposed by Cococcioni and de Gironcoli [52]. Due to this method requiring an increasing in

size supercell to converge the U value, this can result in a significant computational cost. To

combat the computationally expensive nature of the first-principles method, Yu et. al [53]

proposed a method known as DFT+U(BO) to empirically fit the effective U -values using

Bayesian optimization (BO) to match the band structure and band gap of a more accurate

DFT functional, such as a hybrid functional or higher level theory such as GW.
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DFT+U(BO) has been demonstrated to achieve comparable accuracy to a hybrid func-

tional at the computational cost of a semi-local functional for transition metal monoxides,

europium chalcogenides, and narrow-gap semiconductors. It has enabled conducting un-

precedented simulations of large surface and interface models, involving materials such as

InAs, InSb, α-Sn, CdTe, ZnTe, and CdSe which are not properly described by semi-local

functionals [54, 55, 56].

BO [57] is a global optimization algorithm that can optimize unknown functions by per-

forming iterative updates to an initial assumption (prior) of the function’s form by strate-

gically sampling points within the search space. A common statistical model used for the

BO prior is a Gaussian process [58] because it allows for quantifying the uncertainty with

each prediction. To intelligently select the next point to sample, BO utilizes an acquisition

function [59], which helps minimize the amount of objective-function evaluations (in our

case, DFT calculations). This is achieved by balancing the exploration of regions of high un-

certainty, which have high information content, with the exploitation of the region(s) where

the objective function optimum is predicted to be found.

The choice of the objective function being optimized is essential to the success of BO.

An objective function was developed, f(U⃗), whose maximum corresponds to the Ueff values

that best reproduces the shape of the band structure and band gap, Eg, obtained from HSE:

f(U⃗) = −α1(E
HSE
g − EPBE+U

g )2 − α2(∆Band)2 (24)

Here, U⃗ = [U1, U2,...,Un] is the vector of Ueff values applied to different atomic species.

∆Band is defined similarly to Ref. [60] as the mean squared error of the PBE+U band

structure with respect to HSE:

∆Band =

√√√√ 1

NE

Nk∑
i=1

Nb∑
j=1

(ϵjHSE[ki]− ϵjPBE+U[ki])
2 (25)

NE is the total number of eigenvalues, ϵ is the eigenvalue at a given k-point, Nk is the

number of k-points, and Nb is the number of bands. To make ∆Band independent of the

band gap, the conduction band minimum (CBM) and valence band maximum (VBM) are

shifted to zero for both the HSE and PBE+U calculations, ensuring that ∆Band is only
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comparing qualitative features of the band structures. The coefficients α1 and α2 may be

used to weight the importance of the band gap vs. the band structure, and in cases where

there is no band gap (e.g. α-Sn,) α1 is set to 0. Additionally, it is possible to control a

trade-off between exploration and exploitation via the κ, not given in this equation. With

a larger value of κ, the algorithm favors more exploration of points where the variance is

large, as opposed to exploitation of points that are predicted to be close to the optimum.

A DFT calculation is performed in each iteration to evaluate f(U⃗n). The function estimate

(posterior) is updated and the acquisition function is re-calculated after each iteration until

the maximum number of iterations, N , is reached. The code [53] then outputs the Ueff value,

U⃗ , that maximizes f(U⃗). The total computational cost of this method [53] is relatively low

because all calculations are for a primitive bulk unit cell and thus have a minimal number

of atoms. The HSE calculation is only performed once and the PBE+U calculations are

inexpensive. The number of iterations to convergence is typically low, under 100, thanks to

the efficiency of BO.

We note that we have chosen to use the PBE and HSE functionals, however the method

may be applied in a similar manner using any local or semi-local functional for DFT+U and

any hybrid functional or GW as the reference method.

3.1.5 VASP

The chosen software to perform DFT calculations in this project is the Vienna Ab Ini-

tio Simulation Package (VASP) [61]. This software encompasses the standard selection of

DFT techniques and functional implementations, with the functionals such as LDA, GGAs,

metaGGAs, Hybrid functionals and Green’s functions methods all available. In VASP, cen-

tral quantities, like the one-electron orbitals, the electronic charge density, and the local

potential are expressed in plane wave basis sets. The interactions between the electrons

and ions are described using norm-conserving or ultrasoft pseudopotentials, or the projector-

augmented-wave (PAW) method. The fundamental mathematical problem that VASP solves

is a non-linear eigenvalue problem, which is solved iteratively via self-consistent cycles until

the desired accuracy is achieved. To determine the electronic groundstate, VASP makes use
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of efficient iterative matrix diagonalisation techniques.
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4.0 First Principles Assessment of CdTe as a Tunnel Barrier at the α-Sn/InSb

Interface

4.1 Introduction

The first project to consider is that of simulating a tri-layer system with CdTe as a Tunnel

Barrier at the α-Sn/InSb interface, within DFT. This is motivated by the promising route

toward the realization of fault-tolerant quantum computing schemes is developing materials

systems that can host topologically protected Majorana zero modes (MZMs) [14, 62, 17].

MZMs may appear in one-dimensional topological superconductors [18, 19, 63, 22], which

can be effectively realized by proximity coupling a conventional superconductor and a semi-

conductor nanowire that possesses strong spin-orbit coupling (SOC). Adding in a magnetic

field enables this system to behave as an effective spinless p-wave topological supercon-

ductor, which allows for MZM states. Recently, there have been new developments in

material choices and experimental methods to identify MZMs in semiconductor nanowire-

superconductor systems, designed to overcome challenges identified during the first wave of

experiments [64, 65, 66]. These include trying new combinations of semiconductors and epi-

taxial superconductors, e.g. Pb, Sn, Nb, to maximize the electron mobility and utilize larger

superconducting gaps and higher critical magnetic fields [67, 68, 69, 70, 71]. Additionally,

new proposed architectures include creating nanowire networks and inducing the field via

micromagnets [72, 73].

One of the challenges presented by the superconductor/semiconductor nanowire con-

struct, is that excessive coupling between the superconducting metal and semiconductor

may “metallize” the semiconductor, thus rendering the topological phase out of reach. The-

oretical studies that treated the semiconducting and superconducting properties via the

Poisson-Schrödinger equation, have shown that excessive coupling between the materials

may lead to the semiconductor’s requisite properties, such as the Landeé g-factor and spin-

orbit-coupling (SOC), being renormalized to a value closer to the metal’s. In addition, large

unwanted band shifts may be induced [74, 75, 68, 76, 77, 78, 79, 80, 81]. Having a tunnel
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barrier could modulate the superconductor-semiconductor coupling strength and thus the in-

duced proximity effect, which is critical for controlling experiments. It is currently unknown

what the required width range of a tunnel barrier is.

InSb and Sn are among the materials used to fabricate devices for Majorana search [82].

InSb is the backbone of such systems because it has the highest electron mobility, strongest

spin-orbit coupling (SOC) and a large Landé g-factor in the conduction band compared to

other III-V semiconductors. β−Sn has a bulk critical field of 30 mT and a superconducting

critical temperature of 3.7 K, higher than the 10 mT and 1 K, respectively, of Al. Recently,

β-Sn shells have been grown on InSb nanowires, inducing a hard superconducting gap [68].

The large band gap semiconductor CdTe is a promising candidate to serve as a tunnel

barrier. Thanks to its relative inertness, it may simultaneously act as a passivation layer

protecting the InSb from environmental effects and potentially minimizing disorder [83, 84].

Advantageously, CdTe is lattice matched to InSb [85]. Sn has two allotropes. The β form,

with a BCT crystal structure, is of direct relevance to MZM experiments thanks to its

superconducting properties. However, the semi-metallic α form has a diamond structure,

which is lattice matched to InSb and CdTe, making it an ideal model system for investigating,

both theoretically and experimentally, the electronic structure of Sn/InSb heterostructures.

Much experimental work, such as growth and angle-resolved photoemission spectroscopy

(ARPES) studies, has been undertaken on α-Sn. Previously, α-Sn has been found to possess

a topologically trivial band inversion, with SOC inducing a second band inversion and a

topological surface state (TSS) [86, 87]. The effect of strain on the topological properties of

α-Sn has also been studied [88, 89, 76, 90, 91, 92, 93, 94, 95, 96, 97]. In-plane compressive

strain has been reported to make α-Sn a topological Dirac-semi-metal and induce a second

TSS to appear [86]. Conversely, tensile strain has been reported to induce a transition to

a topological insulator. CdTe [84] and α-Sn [68, 87] have been epitaxially grown on InSb.

Depositing Sn on InSb often leads to growth of epitaxially matched α-Sn, although β-Sn may

appear under some conditions [98]. In addition, α-Sn can transition to β-Sn if the Sn layer is

above a critical thickness or if heat is applied during fabrication processes [99, 100]. Studying

the interface with the lattice matched α-Sn may provide insight, which is also pertinent to

β-Sn as both could be present in hybrid systems. Therefore, these are promising materials
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to investigate for future device construction.

MZM experiments rely on finely tuned proximity coupling between a superconducting

metal and a semiconductor. By adding a tunnel barrier at the interface between the two ma-

terials and varying its width, one could potentially modulate the proximity coupling strength

to achieve precise control over the interface transparency. To the best of our knowledge, this

idea has not yet been tested in experiments and it is presently unknown which material(s)

would be the best choice for a barrier and what would be the optimal thickness. Simulations

of a tri-layer system with a tunnel barrier are therefore needed to inform MZM experiments.

Here, we use density functional theory (DFT) to study a tri-layer system, in which InSb

is separated from α-Sn by a CdTe tunnel barrier. Despite recent progress towards treating

superconductivity within the framework of DFT [101, 102] the description of proximity-

induced superconductivity at an interface with a semiconductor is still outside the reach of

present-day methods. However, DFT can provide useful information on properties, such as

the band alignment at the interface. Conduction band offsets are of particular importance

because the proximity effect in most experiments on InSb primarily concerns the conduction

band. In addition, DFT can provide information on the penetration depth of metal induced

gap states (MIGS) into the semiconductor. [84, 103, 75, 104]

Within DFT, computationally efficient (semi-)local exchange-correlation functionals severely

underestimate the band gap of semiconductors to the extent that some narrow-gap semicon-

ductors, such as InSb, are erroneously predicted to be metallic [105]. This is attributed to

the self-interaction error (SIE), a spurious repulsion of an electron from its own charge den-

sity [106]. Hybrid functionals, which include a fraction of exact (Fock) exchange, mitigate

the SIE and yield band gaps in better agreement with experiment. However, their computa-

tional cost is too high for simulations of large interface systems, such as the α-Sn/CdTe/InSb

tri-layer system studied here. The DFT+U approach, whereby a Hubbard U correction is

added to certain atomic orbitals, provides a good balance between accuracy and computa-

tional cost[105, 46]. Recently, some of us have proposed a method of machine learning the

U parameter for a given material by Bayesian optimization (BO) [107]. The DFT+U(BO)

method has been employed successfully for InSb and CdTe [108].

It has been shown that (semi-)local functionals fail to describe the bulk band structure
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of α-Sn correctly, specifically the band ordering and the orbital composition of the valence

bands at the Γ point. DFT+U, hybrid functionals, or many-body perturbation theory within

the GW approximation are necessary to obtain a correct description of the band structure

[109, 110, 94, 88, 111]. DFT+U simulations have required slab models of more than 30

monolayers of Sn to converge towards a bulk regime, where quantum confinement is no

longer dominant. Quantum confinement is the change of electronic and optical properties

when the system is of sufficiently small size, typically 10 nanometers or less. The band gap

increases as the size of the nanostructure decreases. With a small number of layers α-Sn

may exhibit topological properties [112, 85, 113]. Some DFT studies have considered slab

models of bi-axially strained α-Sn. DFT simulations of strained α-Sn on InSb have been

conducted with a small number of layers of both materials [114, 85]. The DFT+U approach

has reproduced the effects of strain and compared well with experimental data [87, 112, 114].

Here, we perform first principles calculations using DFT+U(BO) for a (110) tri-layer

semiconductor/tunnel barrier/metal interface composed of the materials InSb/CdTe/α-Sn,

owing to their relevance to current Majorana search experiments [84, 68]. To date, DFT

studies of large interface slab models with a vacuum region have not been conducted for

these interfaces. Previously, the results of DFT+U(BO) for InSb(110) have been shown to

be in good agreement with angle-resolved photoemission spectroscopy (ARPES) experiments

[115]. Here, we also compare the results of DFT+U(BO) to ARPES for α-Sn (Section 4.3.1)

and CdTe (Section 4.3.2). Excellent agreement with experiment is obtained. In particular,

for CdTe the z-unfolding scheme (Section 4.2.1) helps resolve the contributions of different

kz values and modelling the 2 × 2 surface reconstruction reproduces the spectral signatures

of surface states. We then proceed to study the bi-layer interfaces of InSb/CdTe, CdTe/α-

Sn, and InSb/α-Sn (Section 4.3.3). Finally, to assess the effectiveness of the tunnel barrier,

we study tri-layer interfaces with 2 to 16 monolayers (0.5 nm to 3.5 nm) of CdTe inserted

between the InSb substrate and the α-Sn (Section 4.3.4). This thickness is within the

thickness range of CdTe shells grown on InSb nanowires. For all interfaces, our simulations

provide information on the band alignment and the presence of MIGS. See Sec.4.5.3 for more

details on MIGS.

We find that 16 layers of CdTe (about 3.5 nm) form an effective tunnel barrier, insulating
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the InSb from the α-Sn. However, this may be detrimental for transport at the interface.

Based on this, we estimate that the relevant thickness regime for tuning the coupling between

InSb and Sn may be in the range of 6-10 layers of CdTe.

4.2 Methods

4.2.1 Band Unfolding

Figure 4.1: (a) Side view of the CdTe(111) slab (b) Folded band structure of CdTe(111)

25 monolayer slab. (c) Primitive unit cell of CdTe (d) bulk-unfolded band structure (e)

unit cell of CdTe(111) slab used in z-unfolding. (f) Z-unfolded band structure along k-path

M −Γ−M for kz = 0.5, and (g) as a function of kz. (h) FCC bulk BZ (grey), (111) unit-cell

BZ (red) and (111) surface BZ (blue). (i) Intersecting planes slice through the bulk BZ for

kz = 0 (green) and kz = 0.5 (red) with the SBZ indicated. (j) tessellated bulk BZs showing

(111) orientated intersecting planes for given kz values. Figure taken from [1]

Simulations of large supercell models produce complex band structures with a large
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number of bands, as shown in Figure 4.1a,b for a CdTe(111) slab with 25 atomic layers,

whose band structure was calculated using PBE+U(BO), as described in the Supporting

Information (SI). Band structure unfolding is a method of projecting the band structure of

a supercell model onto the appropriate smaller cell ([116, 115]. This can help resolve the

contributions of states emerging from of e.g., defects and surface reconstructions vs. the

bulk bands of the material. In addition, it can facilitate the comparison to angle-resolved

photoemission spectroscopy (ARPES) experiments.

The “bulk band unfolding” scheme [115] projects the supercell band structure onto the

primitive unit cell, illustrated in Figure 4.1c. The resulting band structure, shown in Figure

4.1d, appears bulk-like. Bulk-unfolded band structures have been shown to compare well

with ARPES experiments using high photon energies, which are not surface sensitive owing

to the large penetration depth.

The “z-unfolding” scheme [115] projects the band structure of a slab model with a finite

thickness onto the Brillouin zone (BZ) of a single layer of the slab supercell with the same

orientation, illustrated in Figure 4.1e. The resulting band structure, shown in Figure 4.1f,

contains extra bands that are not present in the bulk-unfolded band structure. The extra

bands originate from different kz values in the 3D primitive Brillouin zone projecting onto

the surface Brillouin zone (SBZ), creating overlapping paths. For example, panel Figure 4.1g

shows cross sections through the BZ at values of kz = 0 and kz = 0.5. The bulk-paths of

Γ−L, Γ−K and Γ−X all overlap with the surface k-path Γ−M , possibly with contributions

from additional paths, such as X−U . The plane cuts at different kz values are derived from

the tessellated bulk BZ structure, shown in Figure 4.1h. When z-unfolding is performed,

the value of kz may be treated as a free parameter. The dependence on kz manifests as a

smooth change in the spectral function over the possible range of kz which varies the mixture

of different constituent bulk-paths that overlap the SBZ-path, as shown in Figure 4.1i for

Γ − M . The BZ for z-unfolding is a surface BZ with a finite thickness, shown in red in

Figure 4.1j. The simulation cell for the DFT calculations is set up to be the corresponding

real-space unit cell. The z-unfolded k-paths are parallel to the (111) surface at a constant

value of kz.

In ARPES experiments, the relation of the experimental spectra to kz may be less
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straightforward. First, the dependence of the inelastic mean free path of the electrons

on their kinetic energy is given by the universal curve [117, 118]. Using photon energies

that correspond to a small mean free path is advantageous for probing surface states. How-

ever, it can produce prominent kz broadening due to the Heisenberg uncertainty principle

[119, 120, 121, 122] that implies integration of the ARPES signal over kz through the broad-

ening interval. Second, deviations of the photoemission final states from the free electron

approximation can cause contributions from different values of kz to appear in the ARPES

spectra. The photoelectrons are often treated as free electrons, based on the assumption

that the photoelectron kinetic energy is much larger than the modulations of the crystal

potential. In this case, kz for a given photoelectron kinetic energy, Ek, and the in-plane

momentum, K//, is one single value, which is determined by:

kz =

√
2m0

h̄

√
Ek −

h̄2

2m0

K2
// − V0 (26)

where m0 is the free-electron mass and V0 the inner potential in the crystal. However, a con-

siderable body of evidence has accumulated that the final states even in metals [123, 124] and

to a greater extent in complex materials such as transition metal dichalcogenides [125, 126]

can significantly deviate from the free electron approximation. Such deviations can ap-

pear, first, as non-parabolic dispersions of the final states and, second, as their multiband

composition. The latter means that for given Ek and K// the final-state wavefunction Φf

incorporates a few Bloch waves ϕkz with different kz values, Φf =
∑

kz
Akzϕkz , which give

comparable contributions to the total photocurrent determined by the Akz amplitudes [123].

A detailed theoretical description of the multiband final states, treated as the time-reversed

low-energy electron diffraction (LEED) states [120] within the wavefunction matching ap-

proach, as well as further examples for various materials can be found in Refs. [125, 126]

and the references therein. An insightful analysis of the multiband final states extending

into the soft-X-ray photon energies can be found in Ref. [124]. A rigorous analysis of final

state effects in ARPES is beyond the scope of this work. Here, we will only mention that

all these effects trace back to hybridization of free-electron plane waves through the higher

Fourier components of the crystal potential. In cases where significant kz broadening and/or

final states effects are present, z-unfolding, rather than bulk unfolding, should be used in
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order to resolve the contributions of different kz values to the measured spectrum. This is

demonstrated for CdTe in Section 4.3.2, where the final states appear to incorporate two

Bloch waves with kz = 0 and kz = 0.5.

4.2.2 Interface Model Construction

DFT calculations were conducted with the Vienna Ab Initio Simulation Package (VASP)

[61] using the Perdew, Burke, and Ernzerhof (PBE) [127, 128] functional with Hubbard U

corrections, [129] whose values were machine learned using Bayesian optimization (BO) [107].

These calculations necessitated the use of high performance computing resources at the com-

puting cluster at the University of Pittsburgh (CRC) and the cluster at NERSC. Additional

computational details are provided in the SI. All interface models were constructed using the

experimental InSb lattice constant value of 6.479 Å [130], assuming that the epitaxial films

of CdTe and α-Sn would conform to the substrate. The length of two monolayers of a (110)

slab was 4.5815 Åin the z-direction. A vacuum region of around 40 Å was added to each

slab model in the z-direction to avoid spurious interactions between periodic replicas. The

surfaces of all slab models were passivated by pseudo-hydrogen atoms such that there were

no surface states from dangling bonds [131]. Despite α-Sn being a semi-metal passivation

is required to remove spurious surface states, as shown in the SI. The InSb/CdTe interface

structure has In-Te and Sb-Cd bonds with each In interface atom connected to 3 Sb and 1

Te. The configuration with In-Cd and Sb-Te bonds was also considered but this was found

to be less stable by 1.33 eV. Ideal interfaces were considered with no intermixing and no

relaxation of the interface atoms was performed.

When constructing such slab models, it is necessary to converge the number of layers to

avoid quantum size effects and approach the bulk properties [111]. For InSb it has previously

been shown that 42 monolayers are sufficiently converged [115]. Plots of the band gap vs.

the number of atomic layers for CdTe(110) and α-Sn (110) slabs are provided in the SI. CdTe

was deemed converged with 42 monolayers with a gap value of 1.23 eV, which is only slightly

larger than the bulk PBE+U(BO) value. The z-unfolded band structures of CdTe(111) were

calculated for a 40 monolayer slab. A 26 monolayer slab model was used to simulate the 2
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× 2 reconstruction, due to the higher computational cost of the 2 × 2 supercell. Structural

relaxation was performed for the top two monolayers of the 2 × 2 reconstruction. For the

slab of unstrained (110) α-Sn, 70 monolayers were needed to close the gap at the zero-gap

point of the semi-metal, which corresponds to around 16 nm. The tri-layer slab models

comprised 42 layers of InSb, 70 layers of α-Sn and between 0 and 16 layers of CdTe in

two-layer increments, amounting to a total slab thickness of around 300 nm (not including

vacuum). The (110) bi-layer slab models comprised 42 layers of CdTe and InSb, and 70

layers of α-Sn as these were deemed converged.

4.3 Results and Discussion

4.3.1 α-Sn

Figure 4.2: Electronic structure of α-Sn: (a) Bulk-unfolded band structure of an α-Sn (001)

slab with 51 atomic layers (light blue) compared with ARPES data for a sample of the same

thickness. The point M is at 0.9298 Å−1. The ARPES data is cutoff at 0.9 Å−1 due to

experimental artifacts at the edges. Spin-polarized band structures projected onto (b) the

top surface atoms and (c) the bottom surface atoms, indicated by the green boxes on the

slab structure illustrated in (d). Figure taken from [1]

ARPES experiments were conducted for a 51 monolayer thick α-Sn(001) film, using

a photon energy of 63 eV , as described in the SI. Figure 4.2a shows the bulk unfolded
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PBE+U(BO) band structure for a 51 monolayer thick α-Sn (001) slab, compared to the

ARPES data. The point M is at 0.9298 Å−1. The ARPES data is cutoff at 0.9 Å−1 due

to experimental artifacts at the edges. The PBE+U (BO) band structure is in excellent

agreement with ARPES. The top of the valence band in the ARPES and the simulated band

structure lines up and the bulk bands are reproduced well. The bandwidth of the heavy

hole band, Γ8, is slightly underestimated, consistent with Ref. [115]. This is corrected by

the HSE functional, as shown in the SI for a bulk unit cell of α-Sn with a (001) orientation.

However, it is not feasible to use HSE for the large interface models studied here, owing to

its high computational cost.

The previously reported topological properties of α-Sn slabs are also observed here [86,

87, 88, 89, 94, 95, 90, 114]. The spin-polarized topological surface state (TSS) is shown in

panels (b) and (c) of Figure 4.2 for a (001) 51 monolayer slab along the X − Γ − X k-

path. As expected, the TSS is characterized by a linear dispersion with the top and bottom

surfaces having opposite spin polarization. The associated Rashba-like surface states are

also observed along the K − Γ −K k-path, as shown in the SI. This linear surface state is

also observed in the (110) slabs used to construct the bilayer and tri-layer models. Notably

there is an energy gap between the top and bottom TSSs, which closes at 70 layers, the same

thickness at which the band gap closes. This gap is possibly induced by the hybridization

of the top and bottom surface states in under-converged slabs. We note that the effect of

strain on the electronic structure of α-Sn is not studied here.

4.3.2 CdTe

Figure 4.3 shows a comparison of band structures obtained using PBE+U(BO) to the

ARPES experiments of Ren et al. [2] for CdTe(111). Ren et al. collected ARPES data

at photon energies of 19, 25 and 30 eV . Here, we compare our results with the second-

derivative maps of the ARPES data taken at 25 eV along the k-paths Γ −M (panels (a)

and (b)) and Γ − K −M (panels (c) and (d)). The original data has been converted to

gray scale and reflected around kx = 0. To facilitate the qualitative comparison of the

DFT band structure features with the ARPES experiment, we apply a Fermi energy shift of
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Figure 4.3: Electronic structure of CdTe: Z-unfolded band structures of CdTe(111) compared

with second-derivative map of ARPES data (black and white), adapted with permission from

“Spectroscopic studies of CdTe(111) bulk and surface electronic structure” by J. Ren et al.,

Phys. Rev. B, 91, 235303 (2015); Copyright (2015) by the American Physical Society

[2]. Z-unfolded band structures compared to ARPES data along (a), (b) Γ−M and (c), (d)

Γ−K−M . (a), (c) Dependence of the band structure on kz. (b), (d) Mixture of kz = 0.0 and

kz = 0.5 (cyan) for a model with a 2 × 2 surface reconstruction with the contributions of the

surface atoms shown in pink. The DFT band structures are shifted by -0.25 eV and stretched

by a factor of 1.22 for comparison. (e) Illustration of the 2 × 2 surface reconstruction with

the Cd atom removed indicated by a blue circle. The atoms used for the surface projection

are indicated by a pink dashed box. Figure taken from [1]

0.25 eV to line up the VBM and a stretch factor of 1.22 to compensate for the bandwidth

underestimation of PBE+U(BO), particularly for bands deep below the Fermi energy [132].

Bandwidth underestimation by PBE+U(BO) compared with HSE and ARPES has also been

reported for InAs and InSb in [115, 133]. The original computed band structure without the

shift and stretch is provided in the SI.

Owing to the low mean free path at this photon energy, the spectrum appears integrated

over a certain kz interval and surface contributions are readily visible in the ARPES [117,

118]. To account for the different kz contributions, the z-unfolding method was employed,

as described in Section 4.2.1. Panels (a) and (c) show the z-unfolded band structures as a
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function of kz for slab models without a surface reconstruction (figures with single values of

kz are provided in the SI). This is used determine which kz values are likely present in the

experiment. A mixture of kz = 0 and k = 0.5 provides the best agreement with the ARPES

data. This combination of kz values is used for the DFT data shown in cyan in panels (b)

and (d). This is consistent with the kz broadening with contributions centered around kz = 0

and k = 0.5 often present in ARPES data taken at low mean field path energies in gapped

materials [119, 134, 120].

To account for the presence of surface states, we modeled the CdTe(111)A-(2 × 2) surface

reconstruction [135], illustrated in panel (e). A comparison to the unreconstructed surface

is provided in the SI. The atom-projected band structures of the bottom layer (indicated by

pink dashed box) are plotted in pink in panels (b) and (d). The additional bands arising

from the surface reconstruction are in close agreement with the bands in the ARPES labeled

as surface states by Ren et al., indicated by red arrows. These surface states are unaffected

by the choice of kz. By accounting for the contributions of different kz values and for the

presence of surface states excellent agreement with experiment is achieved, as the DFT band

structures reproduce all the features of the ARPES.

4.3.3 Bilayer Interfaces

We begin by probing the local electronic structure at the the InSb/α-Sn bi-layer interface.

Figure 4.4a shows the DOS as a function of position across the interface, indicated by the

atomic layer number. Figure 4.4b shows the local DOS at select positions. The Fermi level

is positioned at the semi-metal point of the α-Sn and in the gap of the InSb. We note that

the α-Sn appears as if it has a small gap due to an artifact of the 10−4 cutoff applied in the

log plot in panels (a) and (d). The local DOS plots shown in panels (b) and (e) and the band

structure plots shown in panels (c) and (f) clearly show the semi-metal point. No significant

band bending is found for InSb, as expected from branching point theory [136, 137]. See

sec.4.5.3 for more details.

Based on the element-projected band structure, shown in panel (c), the InSb conduction

band minimum (CBM) lies 0.09 eV above the α-Sn semi-metal point and the InSb valence
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Figure 4.4: Electronic structure of bilayer interfaces: Density of states in the (a) InSb/α-Sn,

(d) CdTe/α-Sn and (g) InSb/CdTe interfaces as a function of position. The atomic layers

are numbered based on distance from the interface, which is located at zero. The structure

of each interface is illustrated on top. (b Local density of states for selected layers in the (b)

InSb/α-Sn, (e) CdTe/α-Sn and (h) InSb/CdTe interfaces, indicated by dashed lines in the

same colors in panels (a), (d), and (g), respectively. Element projected band structures of

the (c) InSb/α-Sn, (f) CdTe/α-Sn and (i) InSb/CdTe interfaces, with bands originating from

α-Sn colored in red, bands originating from InSb colored in light blue, and bands originating

from CdTe colored in purple. Figure taken from [1]

band maximum (VBM) lies 0.16 eV below it. A linear TSS is present in the α-Sn. Based

on an atom projected band structure, shown in the SI, the origin of this state is the top

surface of α-Sn, adjacent to the vacuum region. A TSS is no longer present in the α-Sn
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layers at the interface with InSb, possibly owing to hybridization between the α-Sn and InSb

[114]. Metal-induced gap states (MIGS) are an inherent property of a metal/semiconductor

interface, produced by the penetration of exponentially decaying metallic Bloch states into

the gap of the semiconductor [138, 139, 140], see Sec.4.5.3 for more details. The presence of

MIGS manifests in Figure Figure 4.4a as a gradually decaying non-zero DOS in the band gap

of the InSb in the vicinity of the interface. Figure 4.4b shows that the MIGS are prominent

in the first few atomic layers and become negligible beyond 8 layers from the interface.

Figure 4.4d shows the DOS as a function of position across the CdTe/α-Sn interface,

indicated by the atomic layer number. Figure 4.4e shows the local DOS at select positions.

The Fermi level is positioned at the semi-metal point of the α-Sn and in the gap of the CdTe.

Based on the projected band structure, shown in panel (f), the CdTe CBM is positioned 0.18

eV above the Fermi level and the CdTe VBM is located 1.03 eV below the Fermi level. This

agrees with previous reports that interfacing with Sn brings the conduction band of the

CdTe closer to the Fermi energy, with downward band-bending of 0.25 eV [141] and 0.1 eV

[142]. We find a valence band offset of around 1 eV, similar to the (110) and (111) interfaces

reported in [143, 144, 142, 145, 92, 146]. Close to the interface there is a significant density

of MIGS, which decay within about 10 layers (3-4 nm) into the CdTe. This suggests that

this number of CdTe layers may be required for an effective tunnel barrier.

Figure 4.4g shows the DOS as a function of position across the InSb/CdTe interface,

indicated by the atomic layer number. Figure 4.4h shows the local DOS at select positions.

The band alignment is type-I with the CdTe band gap straddling the InSb band-edges. The

Fermi level is close to the InSb VBM and around the middle of the gap of the CdTe. No

band bending is found in either material. Based on the projected band structure, shown in

panel (i), the CdTe CBM lies 0.28 eV above the InSb CBM and the CdTe VBM lies 0.75

eV below the InSb VBM. These values are similar to the band offsets reported in references

[84, 147, 148]. Because the band gap of InSb is significantly smaller than that of CdTe,

states from the InSb penetrate into the gap of the CdTe, similar to MIGS. These states

decay gradually and vanish at a distance greater than 12 layers from the interface.
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4.3.4 Tri-layer Interfaces

Figure 4.5 shows the DOS as a function of position across InSb/CdTe/α-Sn tri-layer

interfaces with varying thickness of the CdTe tunnel barrier. Interfaces with 6, 10, and 16

layers of CdTe are shown here and additional results for interfaces with 2, 4, and 8 layers

are provided in the SI. The position is indicated by the atomic layer number, with the layer

of InSb closest to the CdTe considered as zero. Panels (a) and (b) show that with 6 atomic

layers of CdTe, the MIGS from the α-Sn penetrate through the tunnel barrier into the first

12 layers of the InSb. For a thin layer of CdTe, the band gap is expected to be significantly

larger than the bulk value because of the quantum size effect (see the gap convergence plot in

the SI). However, owing to the presence of MIGS, the gap of the CdTe remains considerably

smaller than its bulk value. With 10 layers of CdTe, shown in panels (c) and (d), there is

still a significant presence of MIGS throughout the CdTe, which decay by 6 layers into the

InSb. Panels (e) and (f) show that with 16 layers of CdTe the InSb is completely insulated

from MIGS coming from the α-Sn. The gap of the CdTe reaches a maximum of around 0.3

eV at a distance of 5 layers from the InSb. This is because MIGS from the α-Sn penetrate

into the CdTe from one side, whereas states from the InSb penetrate from the other side,

such that the band gap of the CdTe never reaches its expected value.

Figure 4.6 summarizes the band alignment at the bilayer and tri-layer interfaces studied

here. For the tri-layer interfaces, the band alignment between the InSb and the α-Sn is

not significantly affected by the presence of CdTe, as shown in the element-projected band

structures in the SI. The α-Sn semi-metal point remains pinned at the Fermi level, as in

the bilayer InSb/α-Sn (see also Figure 4.4c). The InSb VBM remains at 0.17 eV below the

Fermi level, similar to its position in the bilayer interface, regardless of the CdTe thickness.

The InSb CBM position shifts slightly with the thickness of the CdTe from 0.09 eV above

the Fermi level without CdTe, to 0.054 eV with 6 layers of CdTe, 0.04 eV with 10 layers, and

0.037 eV with 16 layers. This may be attributed to the quantum size effect, which causes

a slight narrowing of the InSb gap because of the increase in the overall size of the system.

Based on the element-projected band structures provided in the SI, the band edge positions

of the CdTe are dominated by the interface with the α-Sn, rather than the interface with the
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InSb. The CdTe CBM remains at 0.18 eV above the Fermi level, as in the bilayer CdTe/α-Sn

interface (see also Figure 4.4f), regardless of the number of layers. As the band gap of the

CdTe narrows with increasing thickness, the CdTe VBM shifts from 1.24 eV below the Fermi

level with 6 layers to 1.105 eV with 10 layers, and 1.05 eV with 16 layers, approaching the

bilayer VBM position of 1.03 eV below the Fermi level with 42 layers. Although the band

gap of the CdTe is significantly reduced due to MIGS, a type I band alignment with the

InSb is maintained, similar to the bilayer InSb/CdTe interface (Figure 4.4g,i), as shown in

Figure 4.5 panels (a), (c), and (e).

Figure 4.7 show the LDOS in the second layer of InSb from the interface as a function

of the number of CdTe layers. Without CdTe and with two layers of CdTe, there is no band

gap in the InSb close to the interface, owing to the significant density of MIGS. With 4

layers of CdTe a gap starts to appear. With 6 layers of CdTe the gap of the InSb close to

the interface is still considerably narrower than its bulk value. The band gap in the second

layer of InSb from the interface approaches its bulk value with 10 layers of CdTe and finally

reaches it with 16 layers of CdTe. This suggests that 16 CdTe layers provide an effective

barrier to electronically insulate the InSb from the α-Sn. With present-day methods, we

are unable to calculate the current across the interface from first principles. It is reasonable

to assume that a barrier of 16 layers or more (over 3.5 nm thick) would all but eliminate

transport through the interface into the InSb. We surmise that the barrier thickness range

where there is still some overlap between the wave functions of the α-Sn and the InSb, as

indicated by the presence of MIGS, is the relevant regime to modulate the coupling strength

between the two materials. This calls for experimental studies of the proximity effect at a

semiconductor/ superconductor interface with a tunnel barrier in the range of 6-10 layers,

where MIGS still exist. We note, however, that the interface with β-Sn may have somewhat

different characteristics in terms of the band alignment and the penetration depth of MIGS.
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4.4 Conclusion

In summary, we have used DFT with a Hubbard U correction machine-learned by

Bayesian optimization to study CdTe as a prospective tunnel barrier at the InSb/α-Sn

interface. The results of PBE+U(BO) were validated by comparing the band structures

of slab models of α-Sn(001) and CdTe(111) with ARPES experiments (the PBE+U(BO)

band structure of InSb(110) had been compared to ARPES experiments previously [115]).

Excellent agreement with experiment is obtained for both materials. In particular, for the

low-mean-free-path ARPES of CdTe, the z-unfolding scheme successfully reproduces the con-

tributions of different kz values and modelling the 2 × 2 surface reconstruction successfully

reproduces the contributions of surface states.

We then proceeded to use PBE+U(BO) to calculate the electronic structure of bilayer

InSb/α-Sn, CdTe/α-Sn, and InSb/CdTe, as well as tri-layer InSb/CdTe/α-Sn interfaces with

varying thickness of CdTe. Simulations of these very large interface models were possible

thanks to the balance between accuracy and computational cost provided by PBE+U(BO).

We find that the most stable configuration of the InSb/CdTe interface is with In-Te and

Sb-Cd bonding. MIGS penetrate from the α-Sn into the InSn and CdTe. Similarly, states

from the band edges of InSb penetrate into the larger gap of the CdTe. No interface states

are found in any of the interfaces studied here, in contrast to the EuS/InAs interface, for

example, in which a quantum well interface state emerges [149].

For all interfaces comprising α-Sn, the semi-metal point is pinned at the Fermi level. For

the tri-layer interface, the band alignment between the InSb and the α-Sn remains the same

as in the bilayer interface regardless of the thickness of the CdTe barrier, with the Fermi

level closer to the conduction band edge of the InSb. The band edge positions of the CdTe

are dominated by the interface with the α-Sn rather than the interface with InSb, with the

conduction band edge being closer to the Fermi level. A type-I band alignment is maintained

between CdTe and InSb with the gap of the former straddling the latter. The CBM of the

CdTe is pinned whereas the VBM shifts upwards towards the Fermi level as the gap narrows

with the increase in thickness.

We find that 16 layers of CdTe (about 3.5 nm) serve as an effective barrier, preventing
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the penetration of MIGS from the α-Sn into the InSb. However, in the context of Majorana

experiments, it is possible that a barrier thick enough to completely insulate the semiconduc-

tor from the superconductor would also all but eliminate transport. Therefore, we estimate

that the relevant regime for tuning the coupling at the interface would be in the thickness

range where some MIGS are still present. Thicker CdTe layers could be used to passivate

exposed InSb surfaces. We note that the interface with the superconducting β-Sn, which is

not lattice matched to InSb and CdTe, may have different characteristics than the interface

with α-Sn. Careful experimentation is needed to establish a connection between proximity-

induced superconductivity or other physical factors that affect the emergence of MZMs and

the parameters of the interface, including the band alignment and the presence or absence

of interface states and MIGS. Such experiments could be pursued, for example, by varying

the CdTe barrier thickness within the range indicated by our simulations and measuring the

induced superconducting gap in an InSb nanowire. This would help determine the optimal

interface configuration for MZM devices.

We have thus demonstrated that DFT simulations can provide useful insight into the

electronic properties of semiconductor/tunnel barrier/metal interfaces. This includes the in-

terface bonding configuration, the band alignment, and the presence of MIGS (and, possibly,

of interface states). Such simulations may be conducted for additional interfaces to explore

other prospective material combinations. This may inform the choice of interface systems

and the design of future Majorana experiments. More broadly, similar DFT simulations of

interfaces may be performed to evaluate prospective tunnel barriers e.g., for semiconductor

devices.
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4.5 Additional Methodological Details

4.5.1 Computational Details

DFT calculations were conducted using the Vienna Ab Initio Simulation Package (VASP)

[61] with the projector augmented wave method (PAW) [150, 151]. The generalized gradi-

ent approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) [127] was employed to

describe the exchange-correlation interactions among electrons with a Hubbard U correc-

tion [129]. The U values were machine learned using Bayesian optimization (BO) [107].

Briefly, the BO objective function is formulated to reproduce as closely as possible the band

structure obtained from the Heyd-Scuseria-Ernzerhof (HSE) [152] hybrid functional. The

reference HSE calculations were conducted for bulk CdTe with a lattice parameter of 6.482

Å and α-Sn with a lattice parameter of 6.489 Å and compared to the results with the lattice

constant of InSb, 6.479 Å, which was used for interface models. It was verified that using

the lattice constant of InSb does not have an appreciable effect on the electronic properties

of CdTe and α-Sn, as shown below.

The hyperparameters of our BO implementation are the coefficients α1 and α2, which

assign different weights to the band gap vs. the band structure in the objective function, the

number of valence and conduction bands used for the calculation of the objective function,

Nb, and the parameter κ that controls the balance between exploration and exploitation in

the upper confidence bound acquisition function. For InSb the values of U In,p
eff = −0.2 and

USb,p
eff = −6.1 were used, following Ref. [115, 107]. It has been shown that PBE+U(BO)

produces a band structure in good agreement with ARPES for InSb [115].

Because α-Sn is a semi-metal, only the band shape was considered in the optimization,

i.e. α1 was set to 0 and α2 = 1 [111].The other BO hyperparameters used for Sn were

κ = 7.5 and Nb = (5, 5). This resulted in a value of USn,p
eff = −3.04 eV, slightly different

than in Refs. [113, 88, 94], which used empirical methods to choose a U value that yields a

correct band ordering. As shown in Ref. [111], PBE+U(BO) reproduces the correct band

ordering of α-Sn with the band inversion at the Γ point, in agreement with other studies

using DFT+U [87, 86].
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For CdTe, we applied a U correction to both the Cd-d orbitals and Te-p orbitals, unlike

earlier studies [108, 153]. The hyperparameters used for CdTe were κ = 7.5, Nb = (5, 5),

α1 = 0.5 and α2 = 0.5. The latter two parameters were chosen to assign equal weights to the

band gap and the band shape. This led to U values of UCd,d
eff = 7.381 and UTe,p

eff = −7.912.

The Cd-d U value obtained here is similar to the 7 eV used in Ref. [153] and somewhat

lower than UCd,d
eff = 8.3 eV in Ref. [108]. The gap of 1.21 eV, obtained here by applying the

Hubbard U correction to both the Te-p states and the Cd-d states is closer to experimental

values of around 1.5 eV [154, 147] and the HSE value of 1.31 eV than previous calculations

[108].

Spin-orbit coupling (SOC) was used in all calculations and dipole corrections were applied

to slab models [155]. The tags used for convergence of calculations were BMIX = 3, AMIN

= 0.01, ALGO = Fast, and EDIFF = 1·10−5. The kinetic energy cutoff was set to 400 eV for

all bulk calculations and 350 eV for surface and interface slab models. A 9 × 9 × 9 k-point

mesh was used for bulk calculations and a k-point mesh of 7 × 7 × 1 was used for surface

and interface calculations. All interface density of states (DOS) calculations used a k-point

mesh of 13× 13× 1.

The pseudo-hydrogen fractional charges utilized to passivate each atom were 1.25 for

In and 0.75 for Sb in InSb, 1.5 for Cd and 0.5 for Te in CdTe, and 1 for Sn. Structural

relaxation of the pseudo-hydrogen atoms was performed until the maximal force was below

0.001 eV/Å.

All band structure and density of states plots were generated using the open-source

Python package, VaspVis [111], which is freely available from The Python Package Index

(PyPI) via the command: pip install vaspvis, or on GitHub at: https://github.com/

DerekDardzinski/vaspvis

4.5.2 ARPES Experimental details

Angle resolved photo emission spectroscopy (ARPES) is an experimental technique that

can map the electronic band structure below the Fermi level of crystalline materials, based

on measuring the emitted photoelectrons from materials [117, 119]. It can be applied using a
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range of photon energies, usually 20–100 eV, where the photoelectron mean free path, which

defines the probing depth of the electrons, is of the order of 5 Å. Using this, the effective

electronic density of states is measured, i.e. the spectral function. And, via resolving the

angle which accesses the momentum dependency of the state, this can mapped to properties

such as the band structure

The α-Sn samples were grown by molecular beam epitaxy on an In-terminated c(8 ×

2) InSb(001) surface prepared by atomic hydrogen cleaning. 51 monolayers (16.5 nm) of

α-Sn were deposited as calibrated via Rutherford backscattering spectrometry. Growth was

performed at a substrate temperature of -20 ◦C and a base pressure better than 1·10−10 Torr.

The ARPES measurements were taken at Beamline 10.0.1.2 at the Advanced Light Source

in Berkeley. The base pressure was better than 5·10−11 Torr while the sample temperature

was held at 68 K. The sample was illuminated with 63 eV p-polarized light and spectra were

collected using a Scienta R4000 detector with energy resolution better than 40 meV and

angular resolution better than 0.1◦. The sample was transferred via vacuum suitcase with a

base pressure better than ·10−11 Torr between the growth chamber and beamline. A photon

energy of 63 eV corresponds to a kz approximately 0.15 Å−1 above the Γ002 point.

4.5.3 Interfacing affects

Metal-induced gap states (MIGS) are an inherent property of a metal/semiconductor

interface, produced by the penetration of exponentially decaying metallic Bloch states into

the gap of the semiconductor [138, 139]. The metallic wavefunctions that penetrate into the

semiconductor are imaginary block states with complex k-vector, and therefore they decay

when in the semiconductor. Where the Fermi level is in the semiconductor band gap is also

important. For example, if the Fermi level is close to the bottom of the conduction band,

the wavefunctions of the metal tail into the semiconductor all over the gap. Collectively

they are then negatively charged since, above their charge-neutrality-level, the tailing states

are mainly derived from the conduction band and they are thus of acceptor type [140].

Additionally, MIGS can lead to Fermi level pinning at the interface, where a high-density

of states can pin Fermi level at the charge-neutrality-level [156] The (MIGS) model has also
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been successfully used to explain Schottky barrier heights and their variation with the metal

work function in many different semiconductors and insulators. This states that the Schottky

barrier height is determined by the consistently induced electronic charge accumulated at a

metal-semiconductor interface. One benefit of in DFT is that MIGS can be readily seen as

these calculations are done at T=0 and, usually, for defect free systems. In experimental

defects and finite temperatures affects can often reduce the prevalence of MIGS making it

difficult to measure such quantities.

Band bending is a common affect at the interface of a semiconductor and metal. For

example, if there is downward band bending of the semiconductor, such as at an InAs/Al

interface, this indicates that electrons are transferred from the metal to the semiconductor.

This happens due to the equilibrating chemical potentials (Fermi energies) of two surfaces

that have come into contact, which is done by transferring charge carriers across the interface.

If the semiconductor has a larger work function than the metal then an accumulation layer

could form. This leads to the surface of the semiconductor becoming negative, lowering the

semiconductor band at the interface, i.e. band bending down, due to the lowering of the

potential energy the electrons need to cross the interface into the positively charged metal

surface [157]. In metals, the electric field is quickly screened due to the large concentration

of free charge carriers, leading to virtually no band bending. In semiconductors, due to the

lower charge carrier concentration, leads to a larger screening length of the electric field.

4.6 Additional Results

4.6.1 Pseudo-hydrogen Passivation

To create a surface, such as the ones made in the used finite slab models, bonds must be

broken. In materials exhibiting covalent and ionic bonding, the presence of dangling bonds

can lead to undesired surface states and charge transfer between surfaces, particularly for

polar surfaces [158]. Experimental approaches employ various passivating agents to address

this issue. Group IV semiconductors like Si or Ge are commonly passivated with hydrogen to
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eliminate dangling bonds. Conversely, for more intricate heteropolar surfaces such as III-V

and II-VI semiconductors, large organic ligands are employed [159, 160]. To circumvent the

need for explicit modeling of the passivating agent, Shiraishi [158] proposed the utilization

of pseudo-potentials for fractionally charged hydrogen (αH) to terminate surface dangling

bonds by forming perfect covalent bonds. The value of fractional charge, α, can generally

be determined using the following equations, initially proposed by Wang and Li [161], and

later generalized by [162]. For an anion or uncharged surface atom, α is

α =
8− Z

X
. (27)

Where Z is the number of valence electrons of the surface atom, andX is the coordination

number of the surface atom. If the surface atom is a cation then α is

α =
2X − Z

X
. (28)

For example, for an As-terminated InAs(111) surface, ZAs = 5 and XAs = 4 due to the

tetrahedral bonding in the zinc-blende structure, meaning 0.75H atoms should be used to

passivate the As-terminated surface.

The presence of unpassivated dangling bonds can significantly affect the electronic struc-

ture of the surface.

Figure 4.12 provides a comparison between the band structures of unpassivated and

passivated InSb (111) α-Sn with 41 atomic layers and a 60 Åvacuum. In the band structure

of the unpassivated slab, shown in panel (b) several spurious surface states, originating

from both surfaces, appear in the band gap region. Once the surfaces are passivated with

pseudo-hydrogens, these surface states disappear, shown in panel (a). When working with

interface models that contain a vacuum region, it is essential to passivate the ends of the slab

model that are exposed to the vacuum in order to remove unwanted surface states from the

electronic structure and focus on the interface states, as well as reducing the dipole moment

of the slab.

Note that the surface isn’t passivated when there is interest in the surface states so the

effect of the dangling bonds on the surface can be discerned, as is the case for the 2×2 CdTe,

shown in Figure 4.13. Relaxation of the surface atoms is still undertaken. In experiments
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surface reconstructions form to minimize dangling bond energies. One effect of passivating is

circumnavigating the need for reconstructions because this removes dangling bonds. Addi-

tionally, passivation is comparatively cheaper way to deal with surfaces compared to surface

reconstructions.
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Figure 4.5: Electronic structure of InSb/CdTe/α-Sn tri-layer interfaces: Density of states as

a function of distance from the interface for (a) 6, (c) 10 and (e) 16 CdTe barrier layers. The

atomic layers are numbered based on distance from the interface, which is located at zero.

Interface structures are illustrated on top. (b), (d), (f) Local density of states for selected

layers, indicated by dashed lines in the same colors in panels (a), (c), and (e), respectively.

Figure taken from [1]
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Figure 4.6: Valence and conduction band edge positions for InSb and CdTe in the bilayer

and tri-layer interfaces. The Fermi level is at the semi-metal point of the α-Sn. Figure taken

from [1]

Figure 4.7: Density of states in the second InSb layer from the interface (layer -2 in Figure

4.5) as a function of the number of CdTe barrier layers. Figure taken from [1]
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(a) (b)

Figure 4.8: Comparison of the HSE and PBE+U(BO) band structures of (a) α-Sn and (b)

CdTe. The band width is slightly underestimated by PBE+U(BO). This is the reason for

the stretch factor applied in the comparison to ARPES for CdTe. Figure taken from [1]

(a) (b)

Figure 4.9: Comparison of the HSE band structures of α-Sn obtained with the lattice con-

stant of (a) 6.489 Å of α-Sn and (b) 6.479 Å of InSb. The small difference in the lattice

constant has no appreciable effect on the electronic properties. Figure taken from [1]
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(a) (b)

Figure 4.10: Comparison of the HSE band structures of CdTe obtained with the lattice

constant of (a) 6.482 Å of CdTe and (b) 6.479 Å of InSb. The band gaps are 1.266718 eV

and 1.270622 eV respectively. The small difference in the lattice constant has no appreciable

effect on the electronic properties. Figure taken from [1]
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(a) (b)

Figure 4.11: Topological properties of α-Sn: Band structure along the K − Γ −K k-path

obtained with PBE+U(BO) for an unstrained α-Sn(001) slab with 51 atomic layers. The

spin decomposed output has been projected onto the (a) top and (b) bottom two monolayars

of the slab, highlighting the TSS1 state and the RSS state on the surface of the slab. The

RSS up and down spin polarized surface states are mostly degenerate. Figure taken from [1]
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(a) (b) (c)

Figure 4.12: Surface passivation of α-Sn: Band structures of an α-Sn slab with 41 mono-

layers (a) with surface passivation and (b) without surface passivation, showing the spurious

states due to dangling bonds. (c) Projected band structure with the contributions of the top

two monolayers of a slab with no passivation colored in blue. This shows that the additional

states surface states, which disappear when the dangling bonds are passivated. Figure taken

from [1]
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Figure 4.13: The 2 × 2 surface reconstruction of CdTe(111): Top view of (a) un-

reconstructed surface and (b) reconstructed and relaxed surface with the removed Cd atom

indicated by a blue circle. Figure taken from [1]
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Figure 4.14: Thickness convergence of α-Sn and CdTe: The Γ-point band gap of CdTe(110)

and α-Sn(110) as a function of number of atomic layers. Dashed lines denote the

PBE+U(BO) bulk limit of 1.205 eV for CdTe and 0 eV (zero-gap) for Sn. Oscillatory

behavior is observed for α-Sn(110). Similar behavior has been reported in other materials

with a TSS [3]. This behavior could arise from hybridization of the top and bottom surface

states, which may cause finite size effects such as band gap oscillations with layer number

in topological crystalline insulators [4, 5]. Figure taken from [1]
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4.6.2 CdTe

(a) (b) (c)

Figure 4.15: Dependence on the z-unfolded band structure of CdTe(111) on the choice of kz:

(a) kz = 0 (b) kz = 0.3 and (c) kz = 0.5. Figure taken from [1]

(a) (b) (c)

Figure 4.16: Some bulk paths with contributions to the z-unfolded band structures of

CdTe(111) (shown in Figure 4.15): (a) K − Γ − K, (b) L − Γ − L, and (c) X − Γ − X.

Figure taken from [1]
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Figure 4.17: Electronic structure of CdTe: Z-unfolded PBE+U(BO) band structures of

CdTe(111) compared with second-derivative map of ARPES data (black and white), adapted

with permission from “Spectroscopic studies of CdTe(111) bulk and surface electronic struc-

ture” by J. Ren et al., Phys. Rev. B, 91, 235303 (2015); Copyright (2015) by the American

Physical Society [2]. Z-unfolded band structures compared to ARPES data along (a), (b)

Γ −M and (c), (d) Γ −K −M . The computed band structures are shown for (a), (c) for

kz = 0.0 and (b), (d) kz = 0.5. A shift of -0.25 eV and a stretch factor of 1.22 were applied

to the DFT band structures for comparison. This shows that a mix of both kz values is

needed to best reproduce the experimental data. Figure taken from [1].

4.6.3 Bilayers and trilayers

4.6.4 Trilayer wavefunction and avoided energy crossing

The effect on the InSb conduction band from the α-Sn was investigated via plotting

the the wavefunction of the InSb conduction band as a function of position on the slab for

different numbers of CdTe layers, shown in Figure 4.23. This shows the planar averaged

(XY planes) positional charge density (electron wavefunction) of four k-points from the

conduction around the Γ point . The conduction band was chosen as experimentally MZM

physics utilizes this band, a bias voltage is used to tune Fermi energy to the conduction

band in experiments. With less than 16 tunnel barrier layers the InSb conduction band

wavefunction has significant weight in the Sn section of the slab. This could imply a strong
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Figure 4.18: Original z-unfolded band structures (red) compared with the band structures

shifted by -0.25 eV and stretched by a factor of 1.22 (light blue). This is shown for CdTe(111)

with a mixture of kz = 0.0 and kz = 0.5 for k-paths (a) Γ−M and (b) Γ−K −M . Figure

taken from [1].

Figure 4.19: Bulk unfolded band structure of the bilayer InSb/α-Sn interface. The contri-

butions of the top two surface monolayers of α-Sn, which are not in contact with InSb, are

colored in red. This shows that the TSS originates from the α-Sn surface on the top of the

slab. Figure taken from [1].
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Figure 4.20: Band alignment of the tri-layer InSb/CdTe/α-Sn interface: Element projected

band structures of with (a,b) 6 atomic layers, (c,d) 10 layers, and (e,f) 16 layers of CdTe.

The bands originating from α-Sn, InSb, and CdTe are colored in red, light blue, and purple,

respectively. Panels (b), (d) and (f) only show the CdTe contributions, due to the different

energy scale and to emphasise the CdTe contributions. Figure taken from [1].

electronic interaction or bonding across the interface, similar to [112] where their stanene

conduction band is delocalized throughout the slab.

Additionally, there is a potential induced avoided band crossing (AVB) between the α-

Sn bands and the InSb valence band. This appears around -0.25 eV , however it is on the

small scale of ∼ 1meV . This is shown as function of layers in Figure 4.24. The explicit

band crossing and data acquisition plots are shown in Figure 4.25. While the band crossing

energy range is small, this could be an indication of the coupling strength between the two

materials. However, further research would need to be undertaken to explore the relevance

and validity of this, and this is also true of the wavefunction data.
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Figure 4.21: Band alignment of the tri-layer InSb/CdTe/α-Sn interface: Element projected

band structures of with (a) 2 atomic layers, (b) 4 layers, and (e) 8 layers of CdTe. The

bands originating from α-Sn, InSb, and CdTe are colored in red, light blue, and purple,

respectively. Figure taken from [1].

4.7 New materials: InAs/CdSe,ZnTe/Al trilayers

This presents the introduction and the preliminary results of the ongoing work for next

steps of the trilayer project. The goal is to investigate two different wide band gap semicon-

ductors as barriers in the InAs/Al interface. InAs and Al are among the materials used to

fabricate devices for Majorana search [82], where InAs is used as the the nanowire material

and Al supplies the s-wave superconductivity. Here, we study a tri-layer system, in which

InAs is separated from Al by a ZnTe or CdSe tunnel barrier. DFT can provide useful infor-

mation on properties, such as the band offsets and the penetration depth of metal induced

gap states (MIGS) into the semiconductor. The DFT+U approach, whereby a Hubbard U

correction is added to certain atomic orbitals, provides a good balance between accuracy and

computational cost for these materials. Previously, the results of DFT+U(BO) for InAs(001)

and InAs(111) have been shown to be in good agreement with angle-resolved photoemission

spectroscopy (ARPES) experiments [115].
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Figure 4.22: Electronic structure of InSb/CdTe/α-Sn tri-layer interfaces: Density of states

as a function of distance from the interface for (a) 2, (c) 4 and (e) 8 CdTe barrier layers. The

atomic layers are numbered based on distance from the interface, which is located at zero.

Interface structures are illustrated on top. (b), (d), (f) Local density of states for selected

layers, indicated by dashed lines in the same colors in panels (a), (c), and (e), respectively.

Figure taken from [1].

4.7.1 Interface Model Construction

All semiconductor models were constructed with a (110) orientation using the experi-

mental InAs lattice constant value of 6.0584 Å [163], assuming that the epitaxial films of Al,

ZnTe and CdSe would conform to the substrate. Structural relaxation was performed at the

interface for 4 layers of each of the substrate and film in each semiconductor/metal interface.

Tri-layer slab models have structural relaxation only for the barrier-semiconductor/metal in-

terface materials as it was not required to relax the semiconductor-semiconductor interfaces

with the same lattice constant. The length of two monolayers of a (110) slab was 4.2840
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Figure 4.23: The 1D planar average (XY) along the slab of the band-decomposed positional

charge (electron wavefunction) is shown. This is taken for a number of k-points from the

InSb conduction band for different number of CdTe layers.

Figure 4.24: The magnitude of the avoided band crossing between the InSb valence band

and α-Sn bands.

Å in the z-direction. A vacuum region of around 60 Å was added to each slab model in the

z-direction to avoid spurious interactions between periodic replicas. The surfaces of all slab

models were passivated by pseudo-hydrogen atoms such that there were no surface states

from dangling bonds [131]. Passivation was not required for Al due its metallic properties.
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Figure 4.25: Electronic structure of InSb/CdTe/α-Sn tri-layer interfaces: Band structures

zoomed in on the avoided band crossing with line indicating value. (a) and (b) are InSb/aSn

interface. (c - top left) 2 CdTe layers. (d- bottom left) 6 CdTe layers/ (e) 10 CdTe layers

(f) 16 CdTe layers

The InAs/(ZnTe,CdSe) interface structure has the metal of the III-V semiconductor bonded

with the non-metal of the II-VI semiconductor, leading to In-Te,Se and As-Zn,Cd bonding,

with each In interface atom connected to 3 As and 1 Te, Se.

When constructing such slab models, it is necessary to converge the number of layers to

avoid quantum size effects and approach the bulk properties [111]. For InAs it has previously

been shown that 50 monolayers are sufficiently converged [115]. Plots of the band gap vs.

the number of atomic layers for CdSe(110) and ZnTe(110) slabs are provided. For metals,

such as Al, there is no band gap and convergence can be found by plotting the density of

states as a function of slab size. This is provided for Al.
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4.8 Results and Discussion

4.8.1 Bayesian optimization of CdSe, ZnTe

The U values were machine learned using Bayesian optimization (BO) [107]. The ref-

erence HSE calculations were conducted for bulk ZnTe with a lattice parameter of 6.101 Å

and compared to the results with the lattice constant of InAs, 6.0584 Å, which was used

for interface models. It was verified that using the lattice constant of InAs does not have

an appreciable effect on the electronic properties of ZnTe, as shown in Figure 4.26. The

CdSe lattice constant is close enough to the InAs lattice constant, at 6.05 [164], such that

6.0584 Åwas used for CdSe throughout with no tests necessary. Additionally, no BO tests

were conducted for Al as it is a metal.

(a) (b)

Figure 4.26: Comparison of the HSE band structures of ZnTe obtained with the lattice

constant of (a) 6.101 Å of ZnTe and (b) 6.0584 Å of InAs. The band gaps are 1.86 eV and

1.96 eV respectively. The small difference in the lattice constant has no appreciable effect

on the electronic properties.

The hyperparameters of our BO implementation are the coefficients α1 and α2, which

assign different weights to the band gap vs. the band structure in the objective function, the

number of valence and conduction bands used for the calculation of the objective function,

Nb, and the parameter κ that controls the balance between exploration and exploitation
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in the upper confidence bound acquisition function. For ZnTe and CdSe, a U correction

was only applied to the Zn-d and Cd-d orbital. The hyperparameters used were κ = 5,

Nb = (5, 5), α1 = 0.25 and α2 = 0.75. The latter two parameters were chosen to assign

more weight to the band shape rather than the band gap. This was because of over fitting

when equal weight was given to α1 and α2, leading to the Zn and Cd value being outside

the [-10,10] range. The Te-p and Se-p orbital U value always fell outside the range for any

chosen hyperparameter set, thus no U value was applied to Te or Se. This is likely due to

the large discrepancy of the HSE and PBE band gap for these materials.

For ZnTe this led to a U value of UZn,d
eff = 9.4. The gap of 1.48 eV is closer to experimental

values of around 2.26 eV [164, 147] and the HSE value of 1.86 eV than previous calculations

[147] and the PBE value of 1.07 eV. For CdSe this led to a U value of UCd,d
eff = 8.3. The gap

of 0.95 eV is closer to experimental values of around 1.75 eV [164, 147] and the HSE value of

1.46 eV than previous calculations [147] and the PBE value of 0.51 eV. We note that there

is still large discrepancies in PBE+U band gap values. For InAs the values of U In,p
eff = −0.5

and UAs,p
eff = −7.5 were used, following Ref. [115, 107]. It has been shown that PBE+U(BO)

produces a band structure in good agreement with ARPES for InAs [115].

(a) (b)

Figure 4.27: Comparison of the HSE band structures of ZnTe obtained with the (a) PBE

functional and (b) PBE+U functional. The band gaps of the PBE functionals are 1.07 eV

and 1.48 eV respectively.
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(a) (b)

Figure 4.28: Comparison of the HSE band structures of CdSe obtained with the (a) PBE

functional and (b) PBE+U functional. The band gaps of the PBE functionals are 0.51 eV

and 0.96 eV respectively.

4.8.2 Convergence of CdSe, ZnTe, Al

Plots of the Γ-point band gap vs. the number of monolayers for ZnTe(110) and CdSe(110)

slabs, and density of states vs. the number of atomic layers for Al(110), are provided in

Figs. 4.14 and 4.30 respectively. Following the convergence convention of [115], ZnTe and

CdSe convergence is met for a given set of layers when the band-gap difference between the

current iteration and the previous iteration is within 5 × 10−2 eV. For ZnTe(110), X layers

are required to converge the band gap. For CdSe(110), (between 30 and 40, might need

another calculations) layers are required. A PBE+U functional is used to demonstrate this

convergence. For Al the qualitative shape of the middle layer of the local DOS in a slab

is compared with the bulk DOS. For this, 10 was deemed appropriately converged for use

in the trilayer setups. The bulk oriented structure was used for the unit cell in the bulk

calculation because it’s BZ is equivalent to the slab in the kx and ky directions and a single

layer of the slab. Note that if the same number of layers is used in an interface model the gap

value can change. The quantum size effect increases band gaps in smaller quantum systems

which likely explains why many of the finite slab’s band gaps, while deemed converged, will
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be larger than the bulk system.

Figure 4.29: Slab convergence of ZnTe and CdTe: The Γ-point band gap of ZnTe(110) and

CdTe(110), using the InAs lattice constant, as a function of number of mono-layers. Dashed

lines denote the PBE+U(BO) bulk limit of 1.484 eV for ZnTe and 0.967 eV for CdSe.
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Figure 4.30: Thickness convergence of Al(110): The local density of states for the middle

layer of the slab is given as a function of number of atomic layers. The thick black line

denotes PBE+U(BO) bulk limit density of states. A Gaussian filter with σ = 0.15 was

applied to the data to smooth out the density of states.
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5.0 Integrating micromagnets and a hybrid nanowire model

5.1 Introduction

This project considered integrating micromagnetic simulations of nano to nano-scale

magnets with a finite model of a semiconductor/ superconductor hybrid device model. The

motivation is that one-dimensional topological superconductors host Majorana zero modes

(MZMs) [18, 19]. They are promising for fault-tolerant quantum computing because of

the predicted topological protection that they facilitate [62, 14]). While there has been

considerable effort applied to identify MZMs in semiconductor nanowires [63, 165, 166], the

evidence to date is not conclusive due to plausible alternative explanations such as non-

topological Andreev Bound States [167, 64]. With new developments in materials research

and experimental methods it is reasonable to expect that the present day challenges can

be overcome [22]. We look beyond to explore how generating local magnetic fields using

micromagnets can aid in the design of Majorana devices.

There have been several studies on incorporating magnetic materials to induce MZM in

hybrid systems, though the questions asked were different. One class of ideas has focused on

generating synthetic spin-orbit coupling in weak spin-orbit materials through nanomagnet

patterning [168, 169, 170, 171, 172, 173, 174, 175]. Another class imagines shells of magnetic

insulators on nanowires as a path to topological superconductivity through using exchange

interactions [176, 177]. These results have sparked a debate about the feasibility and true

origin of the observed signals [178, 179, 180, 149].

In this work we propose how stray magnetic fields can be used to realize basic two-

Majorana building blocks, as well as four-Majorana fusion and six-Majorana T-junction

braiding devices. Locally inducing magnetic fields avoids the reliance on a global magnetic

field, and therefore fields can be oriented differently in the nanowire set-up opening up

possibilities in measuring of complicated structures like T-junctions braiding devices and the

ability to address and manipulate individual MZMs. In the basic building block (Dragonfly,

Figure 5.1), four micromagnets are arranged around the nanowire such that field lines flow
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Figure 5.1: The Dragonfly setup with four micromagnets (blue/red) and an overlay of the

magnetic field calculated with MuMax3 (gray arrows). The nanowire runs horizontally with

the spin-orbit axis vertical, indicated by Bso. Figure taken from [6].

along the wire for 700 nm. Positions of the micromagnets are given in the SI. We find

through modular micromagnetics and Schrödinger calculations that it should be possible

to enter the topologically superconducting state and achieve partial Majorana separation.

Higher stray fields, e.g. from stronger or thicker magnets, would make the regime more

robust. We perform magnetic force microscopy on prototype micromagnet patterns and find

that it is possible to realize the building block Dragonfly configurations, though arranging all

micromagnets in a T-junction to the desired orientations will require very accurate control

of switching fields.

The micromagnetic simulation software MuMax3 [181] is used to simulate realistic single

domain-sized micromagnets, including hysteretic magnetization and stray fields. Hysteresis

simulations are performed to obtain the required magnetization state. The parameters for

cobalt were used, details can be found in section 5.4.2. The stray magnetic fields are inte-

grated over an imagined hexagonal nanowire cross-section to obtain a one-dimensional field

profile which can in principle extend to infinity. A hexagonal cross-section is chosen as that

is how nanowires of the relevant materials, such as for InSb wires, grow. The field profile

is used as input into a basic one-dimensional Majorana nanowire model [182] to obtain the

energy spectrum and calculate Majorana wavefunctions γ1 and γ2. For this step a finite

nanowire length is chosen over which the field profile can be utilized for a given set-up.
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Figure 5.2: Magnetic field profile, as a function of position, of the four magnet Dragonfly

setup shown in Fig 5.1. Solid line is field amplitude and dashed line is field angle θ relative to

negative x-axis (inset). The field is averaged over a hexagonal cross-section of the nanowire

with a characteristic dimension of 100 nm. In this Figure only, the reader is invited to

imagine an infinitely long nanowire without ends and consider what field profile would be

created along such a nanowire. The horizontal dashed gray line indicates a uniform field for

entering the topological regime in an infinite nanowire. Figure taken from [6].

5.1.1 Majorana Model Used

The implemented one-dimensional semiconductor-superconductor hybrid model is given

by a discretized Hamiltonian,

Ĥ =
∑

n [(−µn + ε0) |n⟩ ⟨n| τz ⊗ σ0

+t (a) (|n+ 1⟩ ⟨n|+H.c.) τz ⊗ σ0

+iα (a) (|n+ 1⟩ ⟨n| −H.c.) τz ⊗ (σ × x) · ẑ

+τz ⊗ Vz,n (cos θnσx + sin θnσy) |n⟩ ⟨n|

−∆sτx ⊗ σx |n⟩ ⟨n|] ,

(29)
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where

t (a) = h̄2

2m∗a2
α (a) = αR

2a
. (30)

The meaning and values used for the parameters are as follows: n labels the lattice site, a

is the lattice constant and ε0 = cos (ka) with k the crystal momentum and this is an offset

to bring the Fermi energy to the bottom of the band. To deal with nanowires in different

directions x is a unit vector pointing along a particular section of nanowire. The s-wave

superconducting pairing term is ∆s = 0.08 meV, the Rashba spin orbit coupling term αR =

0.2 eVÅ, effective electron mass m∗ = 0.04me, and geff = 50 such as in InSb wires. Lastly,

the Zeeman energy is Vz,n = 1
2
geffµBBn, with the magnetic field, Bn, and relative angle

of the field to the x-axis, θn, being both site dependent and in general have a complicated

structure due to the use of the micromagnets, a notable difference to many other works. The

simulated magnetic field from MuMax3 is inputted into the 1D nanowire-superconductor

model via Vz,n, and the spectrum and eigenstates calculated via exact diagonalization. The

effects of the non-uniform structure of the Zeeman energy were utilized and investigated

by constructing longer devices with many micromagnets, and a T-junction set-up where

perpendicular wires had different field directions.

5.1.2 Interpreting Majorana results

To investigate viability of the proposed devices, the MZMs signatures of state polarization

and zero-energy pinning are required. A single electronic Majorana state, with energy E0, can

be written in terms of the two Majorana wavefunctions via γ1 = c+ c† and γ2 = −i
(
c− c†

)
and, due to the topological nature of MZMs, polarization of the two MZM will be apparent,

seen as the localisation of two Majoranas at opposite ends of a single topological region of

nanowire. In short length systems the MZMs can be overlapping, and also could have a

complicated structure due to the variation of the magnetic field or nanowire length. The

lowest eigenstates of the system are single quantum states that are pairs of MZMs. The

first energy/excited state, denoted E1 if there is a single pair of MZMs present, should have

weight predominately in the bulk, with little overlap with the MZMs. The second signature

is the near-zero energy of the MZM state, with good energy separation from the first energy
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state.

5.2 Numerical Results

The setup presented in Figure 5.1 is our basic configuration. The four micromagnets,

that resemble a dragonfly, induce field lines along the nanowire, coming in at the right end,

and flowing out of the left end. The field does not deviate by more than 30◦ over a 700

nm long nanowire segment, see Figure 5.2, and maintains a relatively uniform amplitude.

Furthermore, for a given hexagonal cross-section the standard deviation is of order 5% of the

mean which justifies the procedure of producing a one-dimensional field profile by averaging

over the cross-section, at least for the central segment of the nanowire length, see Figure

5.17. The nearly parallel field is required for MZMs formation, since such field is mostly

orthogonal to the effective spin-orbit field, Bso [19, 18, 183, 184], hence why we use angle

relative to the nanowire when presenting the stray field profile. Four, rather than two,

magnets are required to cancel y-fields and enhance x-fields, with no external field required.

Micromagnets placed parallel to the nanowire, e.g. as a shell around the nanowire, produce

largely y-fields that are highly non-uniform, concentrated outside the poles of the magnets

(see Figure 5.15 [176]).

The micromagnet widths are different to ensure different switching fields and to aid in the

preparation of a desired mutual magnetization pattern [185], which has the goal of supplying

a strong , uniform field that points in the desired direction to achieve the topological state

in the nanowrie. The magnets are rotated at 45 degrees to aid magnetization through the

hysteresis simulation. Magnets on opposite sides of the nanowire are perpendicular, and

therefore the external field used for magnetization is also perpendicular for the pairs of

magnets. The out of plane direction (z-component) of the simulated field is insignificant due

to the symmetry of the micromagnet arrangement (see supplementary information 5.13).

Given the simulated magnetic field profile along the 700 nm long nanowire, there is

clear Majorana polarization of the two MZMs, γ1 and γ2, shown in Figure 5.3. Though

we assume a relatively low magnetic field for the topological transition, 50 mT. The two
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Figure 5.3: (a) Probability distributions for two Majorana wavefunctions γ1 and γ2. The first

excited state (dashed line) is a bulk nanowire state. (b) Magnetic field profile reproduced

from Figure 5.2 over a smaller range. Hard boundaries are introduced at ±350 nm to

calculate the wavefunctions. There is no applied external field. Figure taken from [6].

Majorana wavefunctions are highly overlapping. The lowest (partially separated Majorana)

and the first excited energy levels have energies E0/∆ = 0.28 and E1/∆ = 0.82, where ∆ is

the superconducting gap. We note that a small global external field can be applied to boost

Zeeman energy.

The next device (inset Figure 5.4) combines two Dragonfly set-ups and an additional

vertical magnet (dashed border), elongating the topological nanowire region. The concept

can be repeated multiple times to further extend Majorana separation or create multiple

pairs of MZM, for instance in Majorana fusion experiments [14]. The right Dragonfly unit is

reflected: this means magnetic fields point opposite in the left and right nanowire segments.

Naively, MZM generated by opposite magnetic fields cannot couple as they possess opposite

spin [186]. Nevertheless, left and right MZM form a pair due to field rotation provided by

the central magnet. Using the same topological criterion we now find a more substantial

MZM polarization of the ground state E0 (red/blue) with more noticeable tailing off of the

wavefunctions. This is because the total length of the device is increased and two MZMs in

the middle (dashed line in Figure 5.4a) hybridize and reduce their overlap with end MZMs.
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Application of an external field (10’s of mT) in the positive y-direction in this case aligns

the total field closer with the nanowire. Supplementary information presents other versions

of the double Dragonfly.

Figure 5.4: (a) Probability distributions of two lowest energy states for double Dragonfly

setup with gate open (shown in inset). MZM (red/blue) with E0/∆ = 5.1× 10−4 . The first

excited state (grey dashed) with E1/∆ = 1.6 × 10−1. External field of 40mT is applied in

positive y-direction. Inset: two dragonfly configurations, with zigzag indicating an electro-

static gate capable of dividing the nanowire in two parts. (b) Magnetic field profile along

the wire, showing amplitude (solid) and angle (dashed). Figure taken from [6].

The T-junction set-up, shown in Figure 5.5, explores how micromagnets could be used

to realize a MZM braiding setup. The horizontal left and right arm sections are made by

chaining together Dragonflies, and a perpendicular leg section in the middle has a micro-

magnetic configuration similar to a single Dragonfly. Adding a second dragonfly to the leg

does not substantially improve MZM separation due to an external field in the y-direction

(see supplementary information). This allows the field to be parallel to the nanowire in

perpendicular sections of the wire, something that is not possible in a uniform external field.

The simulated stray field (supplementary Figure 5.14a), with an additional y-direction

external magnetic field of 40 mT, allowed MZMs to separate or couple across any two sections

of the T-junction nanowire, seen in Figure 5.6, where each arm of the junction has an

electrostatic gate, G1, G2 and G3, to control which sections are connected and disconnected.
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With all three gates pinching-off the nanowire we see that the three lowest energy ground

states are pairs of MZMs (red, green and blue) confined to separate wire segments (Figure

5.6a). Small differences in energy of the MZM state can be attributed to the magnets not

being perfectly magnetized and that the magnet configurations at the ends of the two arms

are not the same to keep the field pointing the same direction along each arm. With gate

G3 cutting off the perpendicular leg section, Figure 5.6b, the lowest energy state (red) is

localized at the ends of the top wire, demonstrating that the micromagnets allow this to act

as a single, long topological superconductor. The second lowest energy state of the entire

system is MZMs isolated in the perpendicular nanowire (blue), and the third lowest state

(green) has weight mostly at the junction, representing two nearby MZM. We note that

the fourth energy state is larger in energy with more weight in the bulk of the nanowire,

suggesting it is not a partially hybridized MZM pair.

By pinching off gates G1 or G2, Figs. 5.6c and 5.6d, we cut off either the left or the right

section of nanowire. MZM states couple and decouple across the T-junction, In panel (d)

the blue wavefunction extends over entire left and leg segments of the T-junction, making

the red wavefunction appear purple. These results suggest that a repeated Dragonfly setup

could be used to realize a braiding setup, in principle, although with relatively complex

micromagnet configurations.

Figure 5.5: T-Junction setup. The top two sections of nanowire are 5000 nm in length in

total and the perpendicular section is 1100 nm. Zigzag lines indicate electrostatic gates

(voltage gates in an experimental setup). Circles indicate desired positions of 6 MZM with

all gates on. Figure taken from [6].
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(a) (b) (c)

(d)

Figure 5.6: Probability distributions (color) of the ground, second and third lowest energy

with (a) all gates (b) gate G3, (b) gate G1, (c) gate G2 activated. Colors chosen so that red

wavefunction always has a weight on the left end. The energies for the pairs of Majorana

states are given in the table below. Figure taken from [6].

Energies of

setup /∆
(a) (b) (c) (d)

E0 1.6× 10−3 1.6× 10−5 3.5× 10−4 7.2× 10−4

E1 2.3× 10−3 9.4× 10−3 1.6× 10−3 2.3× 10−3

E2 9.4× 10−3 4.2× 10−2 4.3× 10−3 3.1× 10−3

E3 (not shown) 1.5× 10−1 1.1× 10−1 1.3× 10−1 1.2× 10−1

5.3 Magnetic Force Microscopy

We take the first step to evaluate these device concepts experimentally, by studying

magnetization patterns of micromagnets. Ferromagnetic micro-strips are fabricated in a

design that represents a simplified version of the braiding T-junction setup (Figure 5.7).

The design features three Dragonflies arranged in a T with the same dimensions as Figure

5.1 but a shorter distance between magnets, and an extra vertical magnet. The strips are

written by electron beam lithography (EBL) and the metal is deposited by electron beam

evaporation from a CoFeB source (atomic ratio 30/55/15 before deposition) to a thickness
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of 20 nm. This is thinner than typical nanowires, and was done to reduce magnetic signal

and permit higher resolution imaging. It is believed that the final strips are mostly CoFe

without boron [187].

Magnetic force microscopy (MFM) and atomic force microscopy (AFM) are performed

on triple Dragonflies (Figure 5.7). An attempt is made to take advantage of hysteretic

magnetization and prepare magnets preferentially in the desired Dragonfly configuration so

that stray magnetic fields are along the imaginary nanowire in between the micromagnets.

The range of field where wide and narrow micromagnets are antiparallel is determined from

separate SQUID measurements to be between 15 and 20 mT, in agreement with Ref. [185],

when reduced CoFe thickness is accounted for.

Twenty-four T-junctions with three Dragonflies each are imaged, and six of 72 total

Dragonflies are magnetized as required for MZM generation. Figure 5.7(b) shows one

such section with the magnetization marked by arrows (supplementary Figure 5.18 shows

all data). The occurrence of four micromagnets in the right orientation is consistent with

random magnetization. While in our MuMax3 simulations it is possible to run through

the hysteretic magnetization cycle and prepare micromagnets in the desired configuration,

experimental variations in switching fields highlight a challenge. Optimized micromagnet

fabrication will yield sharper switching and more reproducible switching fields in the future.

5.4 Conclusions, limitations

We consider device concepts in which micromagnets generate stray field patterns suitable

for the generation of Majorana zero modes. Our approach assumes micromagnets placed

next to semiconductor nanowires that possess strong spin-orbit coupling, and are coated

with superconducting shells. The requirements on the stray magnetic fields are that they

are of sufficient strength to drive a topological transition, and should be oriented as much

as possible along the nanowire. The building block of our magnetic design is a Dragonfly

configuration in which four micromagnets are magnetized such that the magnetic field lines

flow out of one pair of micromagnets, along the nanowire, and into the other pair (Figure
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Figure 5.7: (a) Atomic force microscopy (AFM) of a T-junction setup with three Dragonfly

magnet configurations. Magnetic film thickness is 20 nm. (b) Magnetic force microscopy

(MFM) data on a different T-Junction of the same design. Arrows indicate magnetization

direction, white dashed lines are example of magnet dimensions. Blue dashed line is where

the Majorana nanowire is envisioned. The magnetic history was a magnetizing field from

100 mT to -16 mT to 0 mT applied at 45 degree direction, then 100 mT to -16 mT to 0 mT

at 135 degrees. Figure taken from [6].

5.1). By repeating the Dragonfly pattern along the nanowire, we can extend the length of the

topological segment with addition of coupling magnets. The approach can also be applied to

T-junctions required for Majorana braiding experiments, in which case magnetic field turns

into the T-junction leg that is perpendicular to the junction top.

Among the limitations is the still limited strength of stray fields from micromagnets.

In previous experiments the typical stray fields are in the range of tens of milliTesla [185].

This is in principle sufficient to enter the topological regime in large g-factor semiconductor

such as InSb nanowires, but it limits the parameter space for Majorana separation and

manipulation. Stronger magnetic materials, or thicker micromagnets can help. Additionally,

the Meissner effect from the superconducting layer on top of the nanowires was not taken

into account, however the effect on the magnetic field is assumed to be small as magnetic

fields penetrate through such thin superconducting films. Disorder in real nanowire devices

will put limitations on the achievable MZM separation distance.

A challenge that became apparent from magnetic imaging of prototype structures is how

to prepare all micromagnets in the appropriate relative magnetic orientation. This becomes
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harder when the configurations increase in complexity such as for T-junctions. Though basic

two-Majorana experiments should be possible already now, in the future better control over

coercive fields, further pattern optimization, and direct magnetic writing can be deployed.

Among future ideas, a promising path is using a Y-junction instead of a T-junction

[72], an approach that may require fewer micromagnets as some can be shared between the

branches. Rather than gate-controlled MZM coupling, magnetic field mediated coupling

can be investigated, by flipping micromagnets at the junctions. The implementation of the

Poisson-Schrödinger equation to model MZM in the 3D geometry of a single nanowire could

be integrated with 3D stray field profiles rather than simplified one-dimensional profiles

integrated over the nanowire cross-section, which will provide information on the effect of

the non-uniformity of the field combined with the effect of electrostatic confinement and

disorder.

To summarize, nanoscale control over the field magnitude and direction is advantageous,

particularly for advanced geometries where some nanowire segments may run perpendicular

to others. Micromagnets could offer novel ways to control Majorana-based devices, for

instance by switching magnetization in order to reposition or couple MZMs.
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(a) (b)

Figure 5.8: This compares the a rotated and un-rotated Dragonfly configuration. The solid

line is the rotated set-up and the dashed line is the straight set-up. Rotating the magnets

makes them easier to magnetize through hysteresis. This figure is for a 1000 nm nanowire

segment. Figure taken from [6].

5.4.1 Further Reading

For basic introductory review of Majorana nanowire topic consider reading [21]. A per-

spective giving an explanation on Rashba spin-orbit coupling one can read [25]. Other rele-

vant work on nanowires that deal with areas such as surface effects, effects of the contacts,

electric field considerations, and try to comprehensively implement the model [188, 182].

For work that utilizes the Poisson Schrödinger equation to model MZMs in the 3D geometry

of a single nanowire [182, 188, 80], where the use of 3D field profiles could give a batter

picture of systems in future studies. Further work on implementing micromagnets for use

in Majorana based devices [185]. There are several different proposed braiding schemes us-

ing nanowire-network junction devices [182, 16], with options such as using local chemical

potential changes [72] or flux gates [189].

5.4.2 Micromagnetic Simulation Details

[181] is a GPU-accelerated micromagnetic simulation program that uses finite difference

discretization methods, accurate sized magnetic domains within a single magnet for micro-
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to nano- scale system simulations, and was implemented to obtain the magnetic field used in

the hybrid nanowire model. The micromagnetic structure is first constructed for each set-up

in MuMax3, the requisite magnetization states achieved through hysteresis, if possible, and

then the stray field is averaged over the hexagonal nanowire cross-section (such as for InSb

wires) with diagonal width of 100 nm, typical of experiments. Upon averaging, an effective

one-dimensional magnetic field profile is obtained. Note that the magnetic field can be in

principle calculated for an arbitrary coordinate, meaning that the MuMax calculation does

not need to encode a fixed nanowire length. This one-dimensional field profile is then used

in the Majorana model to calculate several lowest energy energies and wavefunctions. At

this step a finite nanowire length is chosen. The code used for the calculations can be found

on Zenodo [7].

To obtain the required magnetization state through hysteresis the micromagnets start

with many randomly orientated domains and then an external magnetizing field is applied

and the system was relaxed at regular time intervals while ramping up and down the field.

It was found that angling the micromagnets at 45 degrees made obtaining the desired mag-

netization directions easier, as magnets on the opposite side of the nanowires were then

perpendicular to each other. This allows the micromagnets to be closer together, however

angling the magnets reduces the magnetic field, see Figure 5.8, so these effects have to be

balanced to obtain the strongest magnetic field possible. The hysteresis process takes into

account the material of magnets, which include saturation magnetization, anisotropy con-

stants and exchange stiffness. One limitation present is the material of the nanowire, leads

and other components were not taken into account in the simulation, but the main magnetic

effects are presumed to come from the magnets themselves.

of Cobalt are used due to several factors, first is that the constructed micromagnet

devices are thought to be mainly composed of CoFe. Additionally, Cobalt is a common

material used in the fabrication of micromagnets, and it allows for a relatively high saturation

magnetization, and thus a stronger stray field, while also allowing for a reasonable coercive

field due to Cobalt’s exchange stiffness and cubic anisotropy constant. This allows for an

appropriate demagnetization/stray field in the nanowire region, while also reliably obtaining

the magnetization direction required for the setup, and additionally allowing for a small
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(a) (b) (c)

Figure 5.9: Comparing the double Dragonfly with different external fields. (a) 40 mT in the

positive y direction (b) no field and (c) 40 mT in the positive x direction. Figure taken from

[6].

external field to be applied without accidentally flipping the magnets. The parameters

used are a saturation magnetisation of 1.44× 106 A/m, exchange stiffness 3.0× 10−11 J/m,

anisotropy constant K1 4.5 × 105, anisotropy constant K2 1.5 × 105 and a Landau-Lifshitz

damping constant of 0.01.

Micromagnets of two different widths are reliable and sufficient enough for hysteresis and

field production purposes, the dimensions of all magnets in this work are either that of the

thin magnet, with dimensions 130 × 1000 × 100 nm, or the thick magnet with dimensions

250 × 1000 × 100 nm, as the different sized magnets flip at different coercive fields. The

nanowire used in the MuMax simulations has a hexagonal cross-section with a long diagonal

length of 100 nm.

5.4.3 Supplementary Results

5.4.3.1 Dragonfly

For the Dragonfly setup, the positions and dimensions of the set-up are as follows. The

micromagnets used were two different widths, with thin magnet dimensions 130×1000×100

nm or thick magnet with dimensions 250×1000×100 nm, so the different sized magnets flip

at different coercive fields. The magnets are rotated at 45 degrees to aid the reliability of
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magnetization directions. The nanowire has a hexagonal cross-section, with a long diagonal

length of 100 nm, and length of 700 nm so it spanned the region of parallel field from the

magnets. The centers of the micromagnets are displaced from the middle of the nanowire to

the left and right by 250 nm, with magnets of the different widths opposite each other. The y-

displacement of the micromagnets from the nanowire is chosen such that the nearest corner of

each magnet is 40 nm from the nanowire. These positions are one workable configuration, and

changing the positions, dimensions or magnet material parameters will change the magnetic

field profile, but this is the optimal set-up found.

Due to the magnetic field being calculated through simulated hysteresis the magnets are

not perfect single domains, in particular at the edges of the micromagnets the boundary

causes non-uniformities. However, the net effect of this is small, but it explains why some of

the state’s energies and positions are not perfectly symmetric. Lastly, we note the difficulty

to obtain a field larger than ∼ 150 mT in the current set-up, additionally the superconducting

gap is not necessarily fixed experimentally, which will change the field requirements.

Figure 5.10: (a) Probability distributions for two lowest energy states, this system shows

two overlapping and degenerate states with no clear Majorana polarization and no higher

energy state being gapped out. The energies of both states E1/∆ = 3.9× 10−2 and E2/∆ =

4.6×10−2. (b) Field profile along wire. External field is 40mT in positive y-direction. Figure

taken from [6].
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5.4.3.2 Double Dragonfly without extra magnet

This double Dragonfly device (inset Figure 5.10(a)), is different from the one shown

in the main text as it only combines two individual Dragonfly set-ups (without the middle

9th magnet). The magnetic field has a large region of low magnitude field in the middle

section, see bottom panel of Figure 5.10(b), and there is an external field of 40mT applied

in positive y-direction. The eigenstate profiles and energy spectrum suggest there are two

pairs of uncoupled MZM on each side of the wire.

5.4.3.3 Double Dragonfly with extra Magnet

Figure 5.11: The double Dragonfly setup with the magnet in the middle and a potential

gate, dimensions given. Toggling this gate allows the left and right side of the wire to be

coupled or uncoupled. Figure taken from [6].

Full dimensions of the double Dragonfly with the extra magnet are given in Figure 5.11. A

gate is turned on in the middle region of the nanowire (red zig-zag line), uncoupling the ends

of the nanowire and causing two pairs of MZMs to appear. This is implemented as a large

potential barrier spanning around 10 sites, and would be implemented experimentally by

pinching off the nanowire. These two pairs of MZMs live in the parallel region of field, similar

to the single Dragonfly set-up, with energies of E0/∆ = 3.1× 10−2 and E1/∆ = 3.2× 10−2,

and the first excited state at a larger energy of E2/∆ = 8.9× 10−1.

The states in the double Dragonfly device under different external magnetic fields are

shown in 5.9. Panel (a) is the same figure in the main text with an external field in the
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y-direction which aids coupling. Compare to panel (b) without the external field where the

MZM states are less clear with less polarization and larger energies. Panel (c) shows how

applying a Bx field with the double Dragonfly set-up gives preference to one side over the

other. This is what would happen if a double Dragonfly was used in the leg section of the

T-junction.

Figure 5.12: (a) Probability distributions for two lowest energy states for double Dragonfly

setup with the 9th magnet and the gate closed (inset). The probability distributions shows

two separate pairs of MZMs in each section of the wire, the left is shown in the Majorana

basis with energy E1/∆ = 3.1 × 10−2 (red and cyan), the other pair in the right section is

in the electronic state basis with energy E2/∆ = 3.1× 10−2 (black- dashed line). The third

state is well separated at E3/∆ = 8.9× 10−1. (b) Field profile along wire. External field is

40mT in positive y-direction. Figure taken from [6].

5.4.3.4 T-junction magnetic fields

The magnetic field profile input into the nanowire model was made by taking the sim-

ulated central three single Dragonfly set-ups (with the middle magnet) from MuMax3, and

then the top field profile was elongated by attaching two flipped copies of the top field profile

and and connecting these on the ends. This had to done as it wasn’t possible to accurately

simulate all the magnets in the final T-junction set-up, however due to the modular nature

of the Dragonfly set-ups this is reasonable. The magnetic field in the top nanowire rotates
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Figure 5.13: Bz field component along the wire for the double Dragonfly with the middle

ninth magnet. The Bz data for other set-ups available on Zenodo [7]. Figure taken from [6].

(a) (b)

Figure 5.14: (a) Magnetic field of top wire for T-Junction. (b) Magnetic field in the T-

Junction leg (vertical segment of nanowire). There is an external field of 40mT applied in

positive y-direction. Figure taken from [6].

smoothly across the length of the nanowire (see Figure 5.14a), and the whole nanowire is

one, mostly continuous topological region. The magnetic field in the perpendicular section

of nanowire is similar to that of the single Dragonfly set-up, with a parallel region of around

700 nm, note this is very uniformly pointing up (positive y) due to magnets on opposite sides

of the nanowire having the same widths, see Figure 5.14b. The applied external magnetic

field, of 40 mT, was added in the positive y-direction to facilitate maximum coupling.
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5.4.3.5 Field uniformity

To show the uniformity of the field near and inside the nanowire the following is con-

sidered, with all data on Zenodo. The single micromagnet in Figure 5.15 shows the field is

only highly non-uniform very near the micromagnet poles, and drops off rapidly away from

the micromagnet. Note that the field is very weak at the magnet sides, hence why a multiple

magnet design is required to obtain strong enough stray fields. The most inhomogeneous

region is therefore where the magnets come closest to the nanowire Figure 5.16 which shows

the field magnitude in the area between two micromagnets in a 5 nm thick layer. In the

region of the nanowire (marked by red lines) the field variation is significant near the tips of

the magnets, but the field is much more uniform away from the tips on the left. Figure 5.17

plots the standard deviation of the field magnitude over the nanowire cross-section, note

this is for a finer resolution than Fig 5.3. The standard deviation is relatively low compared

to the mean for the nanowire segment in between the four magnets, away from the magnet

tips. Over the majority of the nanowire the standard deviation is less than 5% of the mean.

The provided slices inside the hexagonal nanowire region show the uniformity as well. Full

3D data are available online.
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Figure 5.15: A heat map for magnetic field magnitude for a micromagnet of dimensions

230X1000X100 nm. This is shown for a 2D X-Y plane slice through the middle of the

micromagnet (50nm), the magnet is shown as grey. Note the field is very weak away from

the micromagnet ends. Figure taken from [6].
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Figure 5.16: A X-Y plane heat map for magnetic field magnitude in a small region near the

nanowire, the magnet areas have been set to 0 field (black triangular regions). This is for a

5 nm thick slice in the middle where the nanowire is (marked by red lines). A Mathematica

script is available online to look at all the different X-Y slices at different z-positions. Figure

taken from [6].
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Figure 5.17: Shows the magnetic field magnitude’s standard deviation (dashed) across the

hexagonal cross-section and mean value over the nanowire region for the single Dragonfly

set-up. The insets are field magnitude cross sections of the nanowire at different positions.

Note the mean value is the same data that is plotted in Figure 5.3 (b). A Mathematica

script is available on Zenodo to look at all Y-Z slices along the nanowire. Figure taken from

[6].
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Figure 5.18: Magnetic force microscopy (MFM) data on a 24 T-junction set-ups using

three Dragonfly’s. The magnet dimensions are the same as in Figure 5.1 but the distance

between them differs. Top left: Atomic force microscopy (AFM) of one T-junction setup

with three dragonfly magnet configurations. Magnetic film height 20 nm. Dashed ovals point

out magnetizations favorable for generating MZM. The magnetic history was a magnetizing

field from 100 mT to -16 mT to 0 mT applied at 45 degree direction, then 100 mT to -16

mT to 0 mT at 135 degrees. Figure taken from [6].

92



Figure 5.19: Study design, Volume and Duration of study. The bulk of the this work

was carried out over nine months to find an appropriate micromagnet and nanowire set-up

that demonstrated MZMs in the hybrid model. Approximately 5 different single Dragonfly

configurations were tested and simulated, which was then used to construct the double

Dragonfly and the T-junction. There were around 10 different designs tested for the double

Dragonfly and T-junction. The experimental data was collected on a single chip where 24

devices had AFM and MFM measurements taken after an hysteresis cycle was applied to

magnetize the configurations. Figure taken from [6].
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6.0 Conclusions

This thesis tackled some of the open questions relevant to semiconductor-nanowire/ su-

perconductor hybrid system that are hypothesized to harbour Majorana Zero Modes. It

focused on the two questions of: how effective CdTe is as a barrier between the InSb/α-Sn

interface, done through the use of Ab Initio DFT calculations; and if micro-scale magnets

could be used to supply the magnetic field required for the semiconductor-nanowire/ super-

conductor system. The former project was motivated by the ”metalization” that is thought

to happen to the InSb from the metallic superconductor it is interfaced with. This manifests

as the InSb losing the required semiconducting properties for realizing MZMs. The goal was

to mediate the coupling between the two materials, with the CdTe being a candidate barrier

material. The latter project was motivated by the need of local variation of the magnetic

field supplied to MZM nanowire experiments, as T-junction configurations require a field

parallel to all segments of the nanowire.

The DFT project concluded that a CdTe barrier of 16 layers (∼ 3.5 nm) would provide

an effective barrier for the InSb to the electronic effects of α-Sn. To allow the simulation of

the electronic properties of the large interface models the DFT+U(BO) method was used,

with Hubbard U corrections values machine-learned via a Bayesian optimization (BO) al-

gorithm. The results of DFT+U(BO) were validated against angle resolved photoemission

spectroscopy (ARPES) experiments for α-Sn and CdTe, with the z-unfolding method em-

ployed to understand the surface-sensitive CdTe ARPES data. Metal Induced Gap States

(MIGS) were used to quantify the effect of the barrier.

To test these results an experiment should be done with CdTe shells of varying widths

while measuring the induced superconducting gap in an InSb nanowire. With present-day

methods, it is not possible to calculate the current across the interface from using these first

principle methods. However, it is reasonable to assume that a barrier of 16 layers or more

would all but eliminate transport through the interface into the InSb if MZM experiments

are carried out using these materials. Therefore, the range of 6-10 barrier layers is the region

of interest, as this would allow for some overlap between the wave functions of Sn and the
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InSb, leading to the presence of MIGS, and this allows control of the coupling strength

between the two materials. However, it is important to note that experiments will use β-Sn

due to this phase of Sn being a superconductor. This may differ on important parameters,

such the band alignment and the penetration depth of MIGS. With these methods and

results the next step is to investigate other material combinations that are relevant for

these experiments, with preliminary data already given for the InAs/ZnTe,CdSe/Al trilayer

system. Other combinations can be explored following this, building up the knowledge on

the interface effects of these material to inform the choice of materials and design of future

Majorana experiments. Additionally, the tools and examples here provide understanding for

surface-sensitive ARPES data, which can help scientists understand the materials they are

growing if they compare the ARPES data with DFT data using these methods.

In the second project, micromagnet and nanowire designs were proposed for use in single

wire and T-junction MZM experimental setups. This started with the basic four-magnet

design, the Dragonfly configuration, to align magnetic field along the nanowire. This was

then copied and manipulated to supply the field for the double Dragonfly setup which showed

clearer MZM states at the ends of the nanowire. Following this micromagnets for a nanowire

T-junction were simulated, where the micromagnets provided local variation of the stray

field. Numerical simulations, using MuMax3, were done to obtain the stray magnetic fields

from the different micromagnet configurations. Hysteresis simulations were performed to

understand the feasibility of realizing the required micromagnet configurations, and the

T-junction micromagnet design feasibility was assessed by performing magnetic imaging

of prototype patterns. The stray fields were integrated with the semiconductor-nanowire/

superconductor MZM model and the Majorana wavefunctions and energies were found.

To further this project one could implement a Y-junction or tuning fork nanowire design

instead of a T-junction, which could allow for a better and more attainable configuration

of the micromagnets, such as having shared micromagnets between the branches. Rather

than relying on gate-controlled MZM coupling, an investigation into magnetic field-mediated

coupling could be pursued, which could be achieved by flipping micromagnets at the junc-

tions and using external fields. Additionally, one could implement the Poisson-Schrödinger

equation to model MZM in the 3D geometry of a single nanowire, which could then be in-
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tegrated with 3D stray field data, instead of simplified one-dimensional profiles integrated

over the nanowire cross-section. This could yield insights into the combined effects of the

non-uniformity of the field, electrostatic confinement, and disorder on the system.

In conclusion, the findings presented in this thesis dissertation offer information to fur-

ther the progress of semiconductor-nanowire/superconductor Majorana experiments. The

realization of Majorana zero modes holds promise for topological quantum computation, but

more work needs to be undertaken such that MZM are realized and can be manipulated in

experimental setups. As we move forward, the ideas present in this work can be built upon

to continue exploring new avenues for improving the stability and controllability of such

systems.
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[54] Shuyang Yang, Niels B. M. Schröter, Sergej Schuwalow, Mohana Rajpalk, Keita
Ohtani, Peter KrogstrupGeorg, W. Winkler, Jan Gukelberger, Dominik Gresch,
Gabriel Aeppli, Roman M. Lutchyn, Vladimir N. Strocov, and Noa Marom. Elec-
tronic structure of inas and insb surfaces: density functional theory and angle-resolved
photoemission spectroscopy, 2020.

101



[55] Shuyang Yang, Derek Dardzinski, Andrea Hwang, Dmitry I. Pikulin, Georg W. Win-
kler, and Noa Marom. First principles feasibility assessment of a topological insulator
at the inas/gasb interface, 2021.

[56] Maituo Yu, Saeed Moayedpour, Shuyang Yang, Derek Dardzinski, Chunzhi Wu,
Vlad S. Pribiag, and Noa Marom. Dependence of the electronic structure of the
EuS/InAs interface on the bonding configuration. Phys. Rev. Mater., 5:064606, Jun
2021.

[57] Peter I. Frazier. A tutorial on bayesian optimization. arXiv, jul 2018.

[58] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[59] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization
of machine learning algorithms. In Advances in neural information processing systems,
pages 2951–2959, 2012.

[60] William P Huhn and Volker Blum. One-hundred-three compound band-structure
benchmark of post-self-consistent spin-orbit coupling treatments in density functional
theory. Physical Review Materials, 1(3):033803, 2017.

[61] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev.
B, 47:558–561, Jan 1993.

[62] Sankar Das Sarma, Michael Freedman, and Chetan Nayak. Majorana zero modes and
topological quantum computation. npj Quantum Information, 1(1):15001, 2015.

[63] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and
L. P. Kouwenhoven. Signatures of majorana fermions in hybrid superconductor-
semiconductor nanowire devices. Science, 336(6084):1003–1007, 2012.

[64] P. Yu, J. Chen, M. Gomanko, G. Badawy, E. P. A. M. Bakkers, K. Zuo, V. Mourik, and
S. M. Frolov. Non-majorana states yield nearly quantized conductance in proximatized
nanowires. Nature Physics, 17(4):482–488, 2021.

[65] G. Kells, D. Meidan, and P. W. Brouwer. Near-zero-energy end states in topologi-
cally trivial spin-orbit coupled superconducting nanowires with a smooth confinement.
Phys. Rev. B, 86:100503, Sep 2012.

102



[66] S. M. Frolov, M. J. Manfra, and J. D. Sau. Topological superconductivity in hybrid
devices. Nature Physics, 16(7):718–724, 2020.

[67] Sabbir A. Khan, Charalampos Lampadaris, Ajuan Cui, Lukas Stampfer, Yu Liu,
Sebastian J. Pauka, Martin E. Cachaza, Elisabetta M. Fiordaliso, Jung-Hyun Kang,
Svetlana Korneychuk, Timo Mutas, Joachim E. Sestoft, Filip Krizek, Rawa Tanta,
Maja C. Cassidy, Thomas S. Jespersen, and Peter Krogstrup. Highly transparent
gatable superconducting shadow junctions. ACS Nano, 14(11):14605–14615, 2020.
PMID: 32396328.

[68] M. Pendharkar, B. Zhang, H. Wu, A. Zarassi, P. Zhang, C. P. Dempsey, J. S. Lee,
S. D. Harrington, G. Badawy, S. Gazibegovic, R. L. M. Op het Veld, M. Rossi, J. Jung,
A.-H. Chen, M. A. Verheijen, M. Hocevar, E. P. A. M. Bakkers, C. J. Palmstrøm,
and S. M. Frolov. Parity-preserving and magnetic field-resilient superconductivity in
InSb nanowires with Sn shells. Science, 372(6541):508–511, 2021.

[69] P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht, M. H. Madsen, E. John-
son, J. Nyg̊ard, C. M. Marcus, and T. S. Jespersen. Epitaxy of semiconductor–
superconductor nanowires. Nature Materials, 14(4):400–406, 2015.

[70] Damon J. Carrad, Martin Bjergfelt, Thomas Kanne, Martin Aagesen, Filip Krizek,
Elisabetta M. Fiordaliso, Erik Johnson, Jesper Nyg̊ard, and Thomas Sand Jespersen.
Shadow epitaxy for in situ growth of generic semiconductor/superconductor hybrids.
Advanced Materials, 32(23):1908411, 2020.

[71] Thomas Kanne, Mikelis Marnauza, Dags Olsteins, Damon J. Carrad, Joachim E.
Sestoft, Joeri de Bruijckere, Lunjie Zeng, Erik Johnson, Eva Olsson, Kasper Grove-
Rasmussen, and Jesper Nyg̊ard. Epitaxial pb on inas nanowires for quantum devices.
Nature Nanotechnology, 16(7):776–781, 2021.

[72] Fenner Harper, Aakash Pushp, and Rahul Roy. Majorana braiding in realistic
nanowire y-junctions and tuning forks. Phys. Rev. Research, 1:033207, Dec 2019.

[73] Malcolm J. A. Jardine, John P. T. Stenger, Yifan Jiang, Eline J. de Jong, Wenbo
Wang, Ania C. Bleszynski Jayich, and Sergey M. Frolov. Integrating micromagnets
and hybrid nanowires for topological quantum computing. SciPost Phys., 11:90, 2021.

[74] Christopher Reeg, Daniel Loss, and Jelena Klinovaja. Metallization of a rashba wire
by a superconducting layer in the strong-proximity regime. Phys. Rev. B, 97:165425,
Apr 2018.

103



[75] Andrey E. Antipov, Arno Bargerbos, Georg W. Winkler, Bela Bauer, Enrico Rossi,
and Roman M. Lutchyn. Effects of gate-induced electric fields on semiconductor
majorana nanowires. Phys. Rev. X, 8:031041, Aug 2018.

[76] Owen Vail, Alex Chang, Sean Harrington, Patrick Folkes, Patrick Taylor, Barbara
Nichols, Chris Palmstrøm, and George de Coster. Gated magnetotransport in α-Sn
thin films on CdTe. Journal of Electronic Materials, 50(11):6329–6336, 2021.

[77] Christopher Reeg, Daniel Loss, and Jelena Klinovaja. Finite-size effects in a nanowire
strongly coupled to a thin superconducting shell. Phys. Rev. B, 96:125426, Sep 2017.

[78] Benjamin D. Woods, Sankar Das Sarma, and Tudor D. Stanescu. Subband occupation
in semiconductor-superconductor nanowires. Phys. Rev. B, 101:045405, Jan 2020.

[79] Benjamin D. Woods, Jun Chen, Sergey M. Frolov, and Tudor D. Stanescu. Zero-
energy pinning of topologically trivial bound states in multiband semiconductor-
superconductor nanowires. Phys. Rev. B, 100:125407, Sep 2019.

[80] Benjamin D. Woods, Tudor D. Stanescu, and Sankar Das Sarma. Effective theory ap-
proach to the schrödinger-poisson problem in semiconductor majorana devices. Phys.
Rev. B, 98:035428, Jul 2018.

[81] Diego Rainis and Daniel Loss. Majorana qubit decoherence by quasiparticle poisoning.
Phys. Rev. B, 85:174533, May 2012.

[82] Ghada Badawy, Sasa Gazibegovic, Francesco Borsoi, Sebastian Heedt, Chien-An
Wang, Sebastian Koelling, Marcel A. Verheijen, Leo P. Kouwenhoven, and E. P. A. M.
Bakkers. High mobility stemless InSb nanowires. Nano Letters, 19(6):3575–3582, 06
2019.

[83] William S. Cole, S. Das Sarma, and Tudor D. Stanescu. Effects of large induced
superconducting gap on semiconductor majorana nanowires. Phys. Rev. B, 92:174511,
Nov 2015.

[84] Ghada Badawy, Bomin Zhang, Tomáš Rauch, Jamo Momand, Sebastian Koelling,
Jason Jung, Sasa Gazibegovic, Oussama Moutanabbir, Bart J. Kooi, Silvana Botti,
Marcel A. Verheijen, Sergey M. Frolov, and Erik P. A. M. Bakkers. Electronic struc-
ture and epitaxy of CdTe shells on InSb nanowires. Advanced Science, 9(12):2105722,
2022.

104



[85] Ana Suarez Negreira, William G. Vandenberghe, and Massimo V. Fischetti. Ab ini-
tio study of the electronic properties and thermodynamic stability of supported and
functionalized two-dimensional Sn films. Phys. Rev. B, 91:245103, Jun 2015.
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S. Muff, J. H. Dil, J. Schäfer, and R. Claessen. Topological surface state of α−Sn on
InSb(001) as studied by photoemission. Phys. Rev. B, 97:075101, Feb 2018.

[96] Yoshiyuki Ohtsubo, Patrick Le Fèvre, Fran çois Bertran, and Amina Taleb-Ibrahimi.
Dirac cone with helical spin polarization in ultrathin α-Sn(001) films. Phys. Rev.
Lett., 111:216401, Nov 2013.

[97] Liang Fu and C. L. Kane. Topological insulators with inversion symmetry. Phys. Rev.
B, 76:045302, Jul 2007.

[98] Sabbir A. Khan, Sara Mart́ı-Sánchez, Dags Olsteins, Charalampos Lampadaris, Da-
mon James Carrad, Yu Liu, Judith Quiñones, Maria Chiara Spadaro, Thomas S.
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