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Three Essays on Microeconomic Theory

Yufei Chen, PhD

University of Pittsburgh, 2023

This dissertation consists of three essays on microeconomic theory.

In the first chapter, I model the adjustment process in Chinese graduate school admission

as a two-period decentralized matching game. Four cases are considered and they are different

in the information structure and whether cutoffs are flexible. I find that: all students

applying to the better school first is an equilibrium for all cases; it is the unique equilibrium

when cutoffs are fixed; perfect sorting is the unique equilibrium outcome when students are

uncertain about their abilities. The results suggest that when students have the opportunity

to apply to every school, they can proceed in the order of their preference. However, when

there are more schools than periods, students need to be strategic.

In the second chapter, I analyze censorship using a cheap-talk model. In the model,

there is an external binary signal which can be censored by the sender. I characterize three

partition equilibria - the full-censorship equilibrium, the no-censorship equilibrium, and the

censor-by-lows equilibrium. I compare the ex-ante expected payoffs and find that partial

censorship is always inferior to no censorship for both agents and the welfare comparison

between partial and full censorship depends on the bias. The results suggest that it is in the

government’s (and citizens’) interest to choose full or no censorship, but not something in

between.

In the third chapter, I study a two-period model with a multi-product firm and a sin-

gle consumer. The consumer’s type is unknown to the firm, but her choice reveals some

information about it. Two privacy settings are considered. In one setting, the consumer

cannot hide her purchase history whereas she can in the other setting. I characterize the

firm-optimal equilibria in both settings and show that when the opt-out choice is added,

the ex-ante producer surplus increases while the ex-ante consumer surplus decreases. The

results suggest that sometimes privacy protection tools can harm consumers and help firms,

and the strategic interaction between the two sides need to be considered by the regulator.
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1.0 Decentralized Matching in Chinese Graduate School Admission

Graduate school admission in China has both centralized and decentralized features. In

the initial assignment process, each student applies to one school and takes a nationwide

exam. The score of the exam affects students’ eligibility for school-specific exams. Students

unadmitted after the initial assignment proceed to the adjustment process (tiaoji in Chinese)

where they can apply up to three schools at the same time, and schools independently

make admission decisions. In this study, we model the adjustment process as a two-period

decentralized matching game and analyze the equilibrium strategies and outcomes. We

consider four cases that are different in which side is uncertain about student ability, and

whether cutoffs are fixed for the two periods. We find that 1) all students applying to the

better school first is an equilibrium for all cases; 2) it is the unique equilibrium when cutoffs

are fixed; 3) perfect sorting is the unique equilibrium outcome when students are uncertain

about their abilities. Some comparative statics results are provided, and we relate them to

a supply-demand framework. Finally, we discuss how the equilibrium may change when the

number of schools is larger than the number of periods.

1.1 Introduction

Due to thick labor market, more and more students in China apply to graduate schools -

in 2023, about 4.74 million applied to graduate schools, a 3.7% increase from 2022.1 Graduate

school admission has become increasingly important for students, schools, policy makers, and

the society as a whole. Therefore it is beneficial to understand the admission process and

the behaviors of students and schools.

Graduate school admission starts in December every year and ends in April in the fol-

lowing year, and it evolves important decisions from thousands of schools and millions of

students. Unlike many countries where college graduates directly apply to graduate schools,

1Data source: https://www.eol.cn/e_ky/zt/report/2023/content01.html#sc_1_1
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applicants in China must take the centralized nationwide exam and school-specific exam for

admission. The admission process is divided into two stages:

1. (Initial assignment process) Students apply to one school, and take the nationwide exam.

After the exam, the Ministry of Education sets the national minimum score line for

different majors in the two regions.2 34 of the top schools then set their school minimum

score line (which are always higher than the national line). All applicants whose score

is higher or equal to the national line (or school line, if it is higher) can take the school-

specific exams3. Applicants not admitted after school-specific exams proceed to the

adjustment process (tiaoji in Chinese). Applicants whose score is lower than the national

line are rejected and cannot apply to any other schools.

2. (Adjustment process) Applications and admission decisions are made via an online sys-

tem. In the beginning, schools post the number of vacancies and requirements online.

Students can apply to at most three schools at the same time. Each application will be

temporarily locked in the system for schools to review. Once an application is unlocked,

if it was rejected or not reviewed, the student can withdraw it and apply to another

school. After reviewing the applications, schools invite some students to take the school-

specific exams. After school-specific exams, students are either admitted or rejected and

among the offers received, the applicant can accept at most one.

Apparently, the whole admission process has both centralized and decentralized features.

In particular, the adjustment process is decentralized with an exogenous limit on the number

of applications. Students must decide which schools to apply to and in which order. Schools

consider who to enroll. In this chapter, we study the adjustment process and focus on the

order of application. We construct a two-period model where there are two ranked schools,

and students are restricted to apply to one of them in each period.4 Two scenarios are

considered. The first one is “uncertainty on the student side”. Students face uncertainty

about their ability, and only receive a signal of it. Alternatively, as in Nagypal (2004), we can

2Provinces are grouped into Regions A and B, and the national score line is higher for schools in Region
A (which is composed of more developed provinces).

3School-specific exams usually composed of written tests and interviews
4Allowing multiple applications in each period complicates the analysis. Thus we abstract away from

portfolio choice problems and focus on the order of application.
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interpreted it as uncertainty about their ranking among the applicant pool. Schools observe

applicant ability in this scenario. In the example of Chinese graduate school admission,

scores from the nationwide exam act as signals. After conducting school specific-exams,

schools know every applicant’s ability (or ranking). On the contrary, the second scenario

is “uncertainty on the school side”. When students apply to schools, schools observe only

signals of applicant ability because of noises (or measurement errors) in school-specific exams.

In this scenario, students know their own ability. For both scenarios, we consider the cases

where schools have fixed or flexible cutoffs across the two periods.

The main goal of this paper is equilibrium analysis. What application strategies will

students use? Will they apply in the order of their preference? How will schools set their

cutoffs? Can the outcome in the complete information benchmark be attained in equilibrium?

By analyzing the application game we have the following findings.

First, all students applying to the better school first is an equilibrium for all cases. Since

there are two schools and two periods, every students have the opportunity to apply to both

schools. Therefore, they have the incentive to apply to the better school first. Moreover, it is

the unique equilibrium when cutoffs are fixed. If students apply to the worse school first, they

miss the chance of being admitted by the better school, and the probability of being admitted

by the worse school does not increase. Thus their expected utilities decrease. Second, perfect

sorting is the unique equilibrium outcome when students are uncertain about their abilities.

The driving force behind this result is that schools observe applicants’ abilities, and they

will set their cutoffs accordingly. Some comparative statics results are provided at the end

of the main part, and we relate them to a supply-demand framework.

From above results, the equilibrium strategy is straightforward for students - they can

apply in the order of their preferences. However, the result may not apply in a more general

setting. When there are more schools than application periods, students may be strategic

and apply to a “safer” schools first. We discuss this extension and give an example.

We view this study as a first step to understand the mechanism of the adjustment process

(tiaoji) in the Chinese graduate school admission. Empirical evidences are needed to draw

any conclusion about the efficiency of the process in practice. For example, interviews with

students and school officials (how they say) and students’ application behavior and schools’

3



cutoffs (how they do).

1.1.1 Related Literature

Since the seminal paper by Gale and Shapley (1962), centralized matching in school choice

and college admission has been extensively studied (see Abdulkadiroğlu and Sönmez (2003),

Abdulkadiroğlu, Pathak, and Roth (2005), Ergin and Sönmez (2006)). In centralized college

admissions, there is often a centralized exam and an admission mechanism.5 Literature in

this strand analyzes present mechanisms and proposes better6 mechanisms. On the contrary,

the research on decentralized matching is more recent. In decentralized college admissions,

there is no central clearing house and students send applications to multiple schools (for

example, college application in the US), and schools make admission decisions independently.

Literature in this strand usually uses game theoretical model or general equilibrium model

for the application and admission process. This paper is closely related to Nagypal (2004)

and Chade, Gregory Lewis, and Smith (2014). In both of their models, students rank colleges

in the same way, one side of the market is uncertain about student abilities, and students

face a portfolio choice problem. We abstract away from the portfolio choice problem and in

our model, students apply to one school at a time and choose the order of application. Che

and Koh (2016) study a college admission model where student preferences are uncertain

and schools strategically avoid head-on competitions with others. In Hafalir et al. (2018),

students with different abilities choose effort level and the college to apply to. They show that

students with lower abilities prefer the decentralized admission mechanism and students with

higher abilities prefer the centralized admission mechanism. In all the decentralized models

mentioned above, the setting is static, while in this paper we study a two-period application

game.

School choice and college admission problem in China is relatively less studied theoreti-

cally. Wei (2009) analyzes the then mechanisms of college admission and doctorate program

admission in China, and proposes improvements. Yan Chen and Kesten (2017) study the

5Examples include the National College Entrance Examination in China and the Student Selection and
Placement System in Turkey.

6“Better” is in terms of stability, efficiency, and strategyproofness.

4



transition from “sequential” to “parallel” mechanism in the centralized college admission sys-

tem, and show that the “parallel” the mechanism is less manipulable as defined in Pathak

and Sönmez (2013) and more stable in their own definition, and their results are supported

by empirical evidences (Yan Chen, Jiang, and Kesten (2020), Ha, Kang, and Song (2020)).

Most papers in this literature focus on the Chinese college admission (gaokao). One reason

could be that gaokao is a canonical centralized matching problem, and there have been vari-

ous reforms of the mechanism in recent years. On the contrary, the Chinese graduate school

admission has both centralized and decentralized features and received much less attention

from economists.

The rest of the chapter is organized as follows: Sections 1.2 and 1.3 are for model analysis.

In particular, we analyze the scenario “uncertainty on the student side” in Section 1.2, and

“uncertainty on the school side” in Section 1.3. In both sections, we first study the fixed

cutoff setting and then the flexible cutoff setting. In Section 1.4, some comparative statics

results are provided. We discuss an extension in Section 1.5 and conclude the study in

Section 1.6. Omitted proofs are in the Appendix.

1.2 Model - Uncertainty on the Student Side

1.2.1 Setup and the complete information benchmark

There is a unit mass of students whose ability (or the ranking in the applicants pool,

as in Nagypal (2004)) are distributed according to N(0, σ2
x). There are two schools s1 and

s2 with capacity q1 and q2, respectively. All students prefer s1 to s2, and throughout the

paper, we sometimes refer s1 (s2) as the better (worse) school. I normalize the utility from

remaining unmatched as 0. Denote uj as the utility student gets from being admitted to sj,

and we have u1 > u2 > 0. For either school, enrolling a student with ability x gives it a

value v(x), where the function v : R → R++ satisfies:

1. v(·) is strictly increasing: v(x) > v(x′),∀x > x′;

2. limx→−∞v(x) = 0;

5



3. The payoff a school can get from enrolling students is bounded:
∫∞
−∞ v(x)g( x

σx
)dx ≤ M

for some M > 0, where g(·) is the p.d.f. of standard normal.

Denote Dj as the set of students enrolled by school sj, its payoff is

∫
Dj

v(x)f(x)dx

where f(·) is the p.d.f. of N(0, σ2
x).

We can see that school preferences have two features: (a) they prefer students with higher

abilities; (b) they prefer enrolling a student to keeping the empty seat. Payoff functions for

students and schools remain the same for the following sections. Throughout the paper,

we assume there is no application cost, but students can only send one application in each

period. Furthermore, students and schools only care about their final match, so discount

factor δ = 1 for both sides. To avoid trivialization, we assume q1 + q2 < 1.

Since it is a continuum economy, technically, q1 and q2 are the measure of seats, instead

of the “number of seats”. However, to ease exposition, we use the two words interchangeably.

Remark 1.2.1 (Measure 0). Each student is of measure zero. Therefore, the cutoff or the

remaining capacity is not affected by a single student’s application behavior.

When information is complete, every student’s ability is observed by herself and the

schools she applies to. It is obvious to see that there is a unique outcome: the “top-q1”

students are admitted by s1; the “top-q2” of the remaining students are admitted by s2.

Students perfectly sort in this scenario. We denote the cutoffs in s1 and s2 as c∗1 and c∗2,

respectively. Then they satisfy:

∫ ∞

c∗1

f(x)dx = q1,

∫ c∗1

c∗2

f(x)dx = q2.

That is,

1−G(
c∗1
σx

) = q1,

G(
c∗1
σx

)−G(
c∗2
σx

) = q2,

6



where G(·) is the CDF of the standard normal distribution. Therefore, c∗1 = σxG
−1(1 − q1)

and c∗2 = σxG
−1(1− q1 − q2). We will use c∗1 and c∗2 later in the chapter.

1.2.2 Fixed cutoffs across periods

In this section, students cannot observe their own ability and only receive a signal about

their ability prior to application. For student i, the signal she received is x̂i = xi+ϵ where the

noise term ϵ ∼ N(0, σ2
ϵ ). This distribution is common knowledge. When a student applies

to a school, the school can observe her ability. As in Nagypal (2004), the interpretation

is, students do not know their absolute ranking in the applicants pool, but after reviewing

applicants’ exam scores and conducting interviews, each school is able to rank its applicants.

The timeline of this two-period admission game (denoted as Gfixed) is:

1. At the beginning of the game, each student observes a private signal x̂ about own ability.

2. In period 1, after receiving the signal, each student applies to one school. After receiving

applications, schools set their cutoff abilities cj (j ∈ {1, 2}). School j admits applicants

whose abilities are above or equal to cj.
7 At the end of period 1, admitted students

exit the game and schools announce the number of remaining seats and the cutoff cj

(j ∈ {1, 2}).

3. In period 2, unmatched students apply to the other school if that school still has seats

left. Applicants whose abilities are above or equal to cj (j ∈ {1, 2}) are admitted. After

period 2, the game ends.

In this section, student’s strategy is a function S : R → {s1, s2}, and it specifies which school

to apply to first given the signal. For this game, school j’s strategy is the cutoff it sets, cj.

An equilibrium is defined as follows:

Definition 1.2.1. The triple (S∗(x̂), c∗1, c
∗
2) is an equilibrium in Gfixed if

(a) Given (c∗1, c
∗
2), S

∗(x̂) maximizes student’s payoff, ∀x̂;

(b) Given (S∗(·), c∗3−j), c
∗
j maximizes sj’s payoff (j ∈ {1, 2}) subject to capacity constraint.

7Therefore schools need to consider their capacity constraint when setting cutoffs.

7



Before diving into the equilibrium analysis, let us first look at how a student’s belief

updates.

Belief updating after receiving the signal

The signal is x̂ = x + ϵ where x ∼ N(0, σ2
x) and ϵ ∼ N(0, σ2

ϵ ), so we have densities

f(x) = 1√
2πσ2

x

exp{− x2

2σ2
x
} and f(x̂|x) = 1√

2πσ2
ϵ

exp{− (x̂−x)2

2σ2
ϵ

}.8 The posterior of x conditional

on x̂ is:

f(x|x̂) =f(x̂|x)f(x)
f(x̂)

∝f(x̂|x)f(x)

=
1

2π
√

σ2
xσ

2
ϵ

exp{− x2

2σ2
x

− (x̂− x)2

2σ2
ϵ

}

=
1

2π
√

σ2
xσ

2
ϵ

exp{−
x2 − 2σ2

X

σ2
x+σ2

ϵ
x̂x+ σ2

xx̂
2

σ2
x+σ2

ϵ

2σ2
xσ

2
ϵ

σ2
x+σ2

ϵ

}

∝ 1√
2π σ2

xσ
2
ϵ

σ2
x+σ2

ϵ

exp{−
(x− σ2

x

σ2
x+σ2

ϵ
x̂)2

2 σ2
xσ

2
ϵ

σ2
x+σ2

ϵ

}

Since the density integrates to 1 for x ∈ (−∞,∞), we have x|x̂ ∼ N(x̃, σ̃2) where x̃ = σ2
x

σ2
x+σ2

ϵ
x̂

and σ̃2 = σ2
xσ

2
ϵ

σ2
x+σ2

ϵ
.

Now we check if the unique outcome in the complete information benchmark can be

attained as an equilibrium outcome. Consider the following strategy profile:

S(x̂) = s1,∀x̂ ∈ R

c1 = c∗1,

c2 = c∗2.

8To keep notations simple, when there is no risk of confusion, we denote fX , fX̂|X as f henceforth.
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That is, all students apply to s1 in period 1, and s1 fills all its seats in period 1. s2 fills all

its seats with top students who were rejected by s1. It is clear that both schools are best

responding.

Lemma 1.2.1. For game Gfixed, in equilibrium, all students apply to s1 first.

We prove this lemma by considering different cases. In equilibrium, the cutoff at s1 can

be equal to, higher than, or lower than the cutoff at s2. It can be verified that in all cases,

every student has higher expected utility if she applies to s1 first. The intuition is as follows.

Since the cutoffs are fixed and schools know applicant’s ability, students know that they will

not be rejected because they apply at the “wrong time” or because the evaluation is noisy.

Therefore, if a student applies to s2 first, she forgoes the chance of getting into the preferred

school s1, and it is never optimal.

Since in equilibrium all students apply to s1 first, s1 will set a cutoff so that it fills all

seats with top students in period 1. Expecting this, s2 will set a cutoff to fill all its seats with

the top remaining students in period 2. The unique equilibrium is the one in the complete

information benchmark.

Proposition 1.2.1. For game Gfixed, there exists a unique equilibrium in which all students

apply to s1 in the first period, and schools set cutoffs

c1 = σxG
−1(1− q1), c2 = σxG

−1(1− q1 − q2).

1.2.3 Flexible cutoffs across periods

In the previous analysis, the assumption seems restrictive - schools cannot change their

cutoffs across periods. In the actual adjustment process, as its name suggests, schools con-

stantly adjust their admission standards: If initially, a school receives more applications from

good students than expected, it may increase their standard for later rounds, and vice versa.

Now we relax this assumption. Strategy space for students is the same as before. But

school j (j ∈ {1, 2}) chooses c1j in period 1 and c2j in period 2. The timeline of the game

(denoted as Gflex) is:

1. At the beginning of the game, each student observes a private signal x̂ about own ability.
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2. In period 1, after receiving the signal, each student applies to one school. After receiving

appications, schools set their cutoff abilities c1j (j ∈ {1, 2}). School j admits applicants

whose abilities are above or equal to c1j . At the end of period 1, admitted students exit

the game and schools announce the number of remaining seats the cutoff c1j (j ∈ {1, 2}).

3. In period 2, unmatched students apply to the other school if that school still has seats left.

After receiving appications, schools set their cutoff abilities c2j (j ∈ {1, 2}). Applicants

whose abilities are above or equal to c2j (j ∈ {1, 2}) are admitted. After period 2, the

game ends.

The equilibrium can be defined analogously.

Definition 1.2.2. The quintuple (S∗(x̂), c1∗1 , c1∗2 , c2∗1 , c2∗2 ) is an equilibrium in Gflex if

(a) Given (c1∗1 , c1∗2 , c2∗1 , c2∗2 ), S∗(x̂) maximizes student’s payoff, ∀x̂;

(b) Given (S∗(·), c1∗3−j, c
2∗
3−j), (c

1∗
j , c2∗j ) maximizes sj’s payoff (j ∈ {1, 2}) subject to capacity

constraint.

We can easily check that the unique equilibrium in Gfixed is still an equilibrium here.

Now schools can change their cutoff across periods. After period 1, given the information

in the market, each school can infer who will apply to it in period 2 (if any), and can thus

compute the cutoff needed in period 2 so that all its seats are filled. Since both schools

prefer filling a seat to leaving it empty, in equilibrium all seats are filled, and we have the

following lemma.

Lemma 1.2.2. For game Gflex, in equilibrium, both schools fill up their seats after two

periods.

By Lemma 1.2.2, in equilibrium, the total measure of admitted students is q1+ q2. Then

a natural question arises: are all admitted students of higher ability than those who remain

unmatched? The answer is “yes”. The key is that each school observes its applicant’s ability

and knows the other school’s capacity, hence it does not need to lower the cutoffs too much

to fill all its seats. We formalize the result in the following lemma.

Lemma 1.2.3. For game Gflex, in equilibrium, c11, c
2
1, c

1
2 and c22 are all higher than or equal

to c∗2 = σxG
−1(1− q1 − q2).
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By Lemma 1.2.2 and Lemma 1.2.3, the following corollary follows immediately.

Corollary 1.2.1. For game Gflex, in equilibrium, all students with ability higher than or

equal to c∗2 = σxG
−1(1− q1 − q2) are admitted.

Recall that in the complete information benchmark, cutoffs are c∗1 = σxG
−1(1− q1) and

c∗2 = σxG
−1(1 − q1 − q2). Students sort perfectly between the two schools. It also holds in

this setting.

Proposition 1.2.2. For game Gflex, there exists a unique equilibrium outcome in which

(i) the set of students with ability in [c∗1,∞) that are admitted by s1 has measure q1;

(ii) the set of students with ability in [c∗2, c
∗
1) that are admitted by s2 has measure q2;

(iii) students with ability in (−∞, c∗2) are unadmitted.

We prove this proposition by contradiction. If in equilibrium, a positive measure of

students with higher ability end up in s2, then there is a set of lower-ability students with

the same measure who end up in s1. But then those higher-ability students have an incentive

to change their application order and get into s1.

The driving force behind this result is that although students do not know their true

abilities, they know that schools can observe them. Since both schools share the same ranking

of students and there is no noisy evaluation process, it is weakly undominated for students

to apply to s1 first.

In the next section, we will consider the case where students know their abilities, but the

evaluation process is noisy.

1.3 Model - Uncertainty on the School Side

In this model, students know their own abilities, but schools only receive noisy signals

for each application. We first analyze the game where schools cannot change their cutoffs

and then relax this assumption. The payoff functions of students and schools are the same

as in the previous section. But now student i knows ability xi before application, and each
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time she applies, the target school receives a conditionally independent signal x̂i = xi + ϵ

where ϵ ∼ N(0, σ2
ϵ ). Equilibrium definitions are similar to those in the previous section.

In the previous section, schools know their applicant ability. We can interpret it as the

two schools receiving perfectly correlated “signals”. Hence, in that case, when a student

is rejected by the school with a lower cutoff, she will also be rejected by the school with a

higher cutoff. Whereas in this section, since signals are conditionally independent, when a

student is rejected by a school (with either a lower or higher cutoff), there is still a positive

possibility that she gets into the other school.

1.3.1 Fixed cutoffs across periods

The timeline of the game Ĝfixed where schools cannot change cutoffs are:

1. At the beginning of the game, each student observes their own ability.9

2. In period 1, each student applies to one school, and a signal is realized. After observing

their applicant’s signals, schools set their cutoff signals cj (j ∈ {1, 2}) and admit appli-

cants whose signals are above or equal to cj. At the end of period 1, admitted students

exit the game and schools announce the number of remaining seats and the cutoff cj

(j ∈ {1, 2}).

3. In period 2, unmatched students apply to the other school if that school still has seats

left. For each applicant, a second independent signal is realized. Schools observe signals

and make admission decisions. After period 2, the game ends.

This game has a unique equilibrium.

Proposition 1.3.1. For game Ĝfixed, there exists a unique equilibrium in which all students

apply to s1 first.

Though with fixed cutoffs, applying to the better school first remains an optimal choice

for all students, the intuition is different from the previous section: compared to applying

to s2 first, by applying to s1 first, the probability of being admitted by s1 increases, whereas

the probability of being admitted by s2 decreases, and the change in the two probabilities

9Therefore student’s strategy S(·) : R → {s1, s2} is a function of the ability to school.
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are the same. However, since being admitted by s1 gives students higher payoff (u1 > u2),

applying to s1 first is optimal.

Next, we consider the game with flexible cutoffs.

1.3.2 Flexible cutoffs across periods

We denote the game as Ĝflex. The timeline of Ĝflex is the same as Ĝfixed, except that

now school j set cutoffs c1j and c2j in period 1 and 2, respectively. Using the same reasoning

as in Ĝfixed, we establish the following result:

Proposition 1.3.2. For game Ĝflex, there exists an equilibrium in which all students apply

to s1 first.

This equilibrium can be constructed by letting all students apply to s1 first, and schools

set c11 and c22 as in Proposition 1.3.1. As we emphasized at the beginning of this section,

when a student is rejected by a school (with either a lower or higher cutoff), there is still

a positive possibility that she gets into the other school. So a student may be accepted or

rejected by some school by “good luck” or “bad luck”.

Conjecture 1.3.1. For game Ĝflex, there exists an equilibrium in which some students apply

to s2 first.

For a student with ability x, when deciding which school to apply first, she compares the

following expected utilities. If she applies to s1 first

Pr(x+ ϵ ≥ c11|x)u1 + Pr(c11 > x+ ϵ|x)× Pr(x+ ϵ′ ≥ c22|x)u2

=[1−G(
c11 − x

σϵ

)]u1 +G(
c11 − x

σϵ

)[1−G(
c22 − x

σϵ

)]u2

If she applies to s2 first

Pr(x+ ϵ ≥ c12|x)u2 + Pr(c12 > x+ ϵ|x)× Pr(x+ ϵ′ ≥ c21|x)u1

=[1−G(
c12 − x

σϵ

)]u2 +G(
c12 − x

σϵ

)[1−G(
c21 − x

σϵ

)]u1

where ϵ, ϵ′
iid∼ N(0, σ2

ϵ ).
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Our conjecture is, when c11 is high enough, only students with extremely high ability will

apply to s1 first. And other cutoffs are set so that the two schools fill all the seats after

period 2. Constructing such an equilibrium is difficult because when both schools receive

applications in period 1, their cutoffs depend on the applications, moreover, students have

different signal realizations each period.

Another point worth mentioning is whether perfect sorting arises in equilibrium.

Remark 1.3.1 (No perfect sorting). When the evaluation process is noisy, even in the

equilibrium where all students apply to s1 first, perfect sorting does not happen. This is

because schools enroll applicants based on their signals, not their true abilities.

1.4 Comparative Statics

In this section, we provide some comparative statics results and relate them to a supply-

demand framework. We focus on the equilibrium in Gfixed and Gflex in which all students

apply to s1 first.
10 In particular, we explore how cutoffs change when some of the parameters

change. In this section, when we say “equilibrium cutoffs”, we refer to the equilibrium cutoffs

c1 and c2 in Gfixed or the equilibrium cutoffs c11 and c22 in Gflex. For simplicity, we refer to

them as c1 and c2.

When schools observe applicants’ abilities, we have closed-form solutions for equilibrium

cutoffs:

c1 = σxG
−1(1− q1),

c2 = σxG
−1(1− q1 − q2).

Since G(·) is increasing, G−1(·) is also increasing. We have the following result:

Proposition 1.4.1. In games Gfixed and Gflex,

10We do not study comparative statics for “uncertainty on school side” because equilibrium cutoffs are for
signals, not for abilities. Also, equilibrium cutoffs change as signal realizations change.
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(a) When σx increases, equilibrium cutoffs c1 and c2 both increase.

(b) When q1 increases, equilibrium cutoffs c1 and c2 both decrease.

(c) When q2 increases, equilibrium cutoff c1 remains unchanged, whereas c2 decreases.

For the first part of the proposition, note that when σx increases, the distribution of

student ability is “flatter”, and the proportion of students with extremely high ability is

larger, resulting in higher cutoffs. For parts (b) and (c), we can interpret them in a supply-

demand framework.11 Schools supply seats and students demand seats. The cutoffs act like

“prices”. Thus “price” at school j (cj) is decreasing in its supply (qj). Seats from the two

schools are substitutable, but all students value s1’s seat more. Moreover, in the equilibrium

considered, all students “buy” from s1 first. Therefore, s1’s “price” is insulated from the

change in s2’s supply: when q2 increases, c1 remains unchanged. But s2’s “price” is affected

by the supply of s1: when q1 increases, c2 decreases.

Apart from the previous results, we also have the following result.

Proposition 1.4.2. As long as u1 > u2 > 0 holds, the equilibrium cutoffs do not depend on

u1 or u2.

Essentially, the role of u1 and u2 is to tell which school students prefer. As our goal is

to study the application order in equilibrium, ordinal preferences of students are sufficient.

1.5 Extension and Discussion

Throughout the paper, we study a model with two schools and a unit mass of students.

There is uncertainty on one side of the matching market and school seats are limited. At first

glance, with uncertainty about ability (whether it’s from schools or students) and limited

seats, some students may “play it safe” and apply to a less preferred school in the first

period. That is, some are expected not to apply in the order of their preference. However,

in most cases, all students applying to the better school first is the unique equilibrium. The

coordination among students is reached for the following reason. There are two periods, so

11Many papers in the matching literature use a supply-demand framework. See, for example, Chade,
Gregory Lewis, and Smith (2014) and Azevedo and Leshno (2016).
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every student has the opportunity to apply to both schools. Schools also know that and they

set cutoffs such that seats are “reserved” for students with higher ability. As a result, every

student applies to the better school first.

What if there are more schools than application periods? In this case, students do not

have the opportunity to apply to every school, and must decide which schools to apply to.

Students who are confident in their ability (or who received a good signal) may apply to

better schools and those who are unconfident (or who received a bad signal) may apply to

worse schools.

A complete analysis is complex and beyond the scope of this paper. Instead, we give a

simple example to illustrate the point above.

Example 1.5.1. Assume there are 4 students i1, i2, i3, i4 and 3 schools s1, s2, s3. Similarly to

our main model, there are two periods. All students prefer s1 to s2, prefer s2 to s3, and prefer

being admitted to remaining unmatched. Let us denote the utility of being admitted by sj as

uj, then for all students, u1 > u2 > u3 > 0. Each school has one seat, and they rank students

in the same way by their abilities. Consider a single student i4 who is uncertain about her

ability x4 but knows that x4 > x1 > x2 > x3 with probability p and x1 > x2 > x4 > x3 with

probability 1 − p. Assume i1, i2, i3 apply to s1, s2, s3 in period 1, respectively.12 Then the

expected utility for i4 is

pu1 if she applies to s1 first, and

u3 if she applies to s3 first.

Therefore i4 will apply to s1 first when p ≥ u3

u1
. That is, she will apply to the best school

s1 if she is positive that her ability is high or if the utility of attending s1 is much higher

than the utility of attending the worse school s3.

12Here we can also treat i1, i2, i3 as continuum of students who will apply to s1, s2, s3 in period 1, re-
spectively. Although for each student, her ability is uncertain, when the population of students is large (or
modeled as a continuum), there is no aggregate uncertainty about other students’ ability for her. Hence it
is reasonable to assume that i4 knows x1 > x2 > x3 for this example.
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1.6 Conclusion

In the study, we model the adjustment process in the Chinese graduate admission as a

two-period decentralized matching game and consider different scenarios in terms of whether

schools or students are uncertain about ability, and whether schools can adjust cutoffs across

periods. We find that all students applying to the better school first is an equilibrium for

all cases and it is the unique equilibrium when cutoffs are fixed. Moreover, perfect sorting

is the unique equilibrium outcome when students are uncertain about their abilities.

The results suggest that when there are two schools and two periods, it is in students’

interest to apply to their preferred school first, and they do not need to strategize on their

applications.

In the model we assume students have the same preference for different schools. Another

extension is to make student preferences heterogeneous. For example, if some students

prefer s2 and schools cannot learn applicant preferences throughout the game, there will be

additional uncertainty for schools when they decide who to enroll and in which period.

In a two-school and two-period setup, this paper suggests that the adjustment process

works efficiently because students have the opportunity to apply to every schools they want.

However, as discussed in the extension, equilibrium behavior and equilibrium outcome may

change where there are more schools. To make any conclusion or policy recommendation

on the adjustment process in practice, empirical evidences from students and schools are

needed.
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2.0 Cheap Talk with Censorship

In this chapter, we analyze censorship using a cheap-talk model. In our model, besides

the message by the sender, there is an external binary signal. The sender does not learn

the realization of the signal but can censor it. Apart from the message by the sender, the

receiver learns the signal realization if the sender does not censor it. We focus on two-

interval partition equilibria and characterize three of them - the full-censorship equilibrium,

the censor-by-lows equilibrium, and the no-censorship equilibrium. We compare the ex-

ante expected payoffs and find that 1) partial censorship is always inferior to no censorship

for both agents; 2) the welfare comparison between partial censorship and full censorship

depends on the bias.

2.1 Introduction

In the pioneering work by Crawford and Sobel (1982) (CS henceforth), a better-informed

agent (the sender) communicates with an uninformed receiver who then chooses an action

that affects the payoff for both agents. A natural extension is to endow the receiver with

some private information. For example, a buyer has some information about the product

prior to talking to the seller, or a patient may search online about his illness before visiting a

doctor. Contrary to intuition, this additional information can sometimes make the receiver

worse off (see De Barreda (2010) and Lai (2014), among others).

We go one step further and ask: What would happen if the sender can block the receiver

from external information? This may not fit into the buyer-seller or the patient-doctor

relationships. Here we present two applications, and both are related to censorship decisions

by a government. For the first application, imagine that some event (it could be good or

bad) happens, and the government asks the state media to report the event in a way it

wants. At the same time, the government blocks reports (good or bad) from foreign media.

If it does so, citizens have no information beyond the report by the state media. For the
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second application, imagine that the government announces a new and controversial policy

on social media. Fearing criticism from the public, and to further guide public opinion, the

government account may choose to close the comment section of the post.

In the two examples described above, the government (sender) knows the state of the

world: it knows whether a good or bad event happened and whether the policy is good or

bad. We assume that foreign reports and comments under an official account provide some

external information about the state but they do not observe the state perfectly. Thus, if the

government did not censor them, citizens (receiver) will have additional information. After

receiving some information about the state, citizens take some action1 that will affect their

own payoff and the payoff of the government.

In this study, we intend to answer the following questions: Will the sender (government)

always censor the signal (foreign reports or comments), or does the censorship decision

depend on the state? How will censorship affect the welfare of both sides?

This paper is mostly related to Ying Chen (2009). In our model, the sender, after

observing the state and without knowing the signal realization, can censor the signal. If

the sender decides to censor the signal, then the receiver has no private information. As in

Ying Chen (2009), the signal is affiliated with the state and it has two realizations h (high)

and l (low). For tractability, we assume that the probability of high realization is linear in

the state. We find three two-interval partition equilibria that are different in their level of

censorship. First, the two-interval partition equilibrium in CS is still an equilibrium in our

model. It can be regarded as a full-censorship equilibrium since the receiver has no private

information in any state. There is also a no-censorship equilibrium - no sender-type censors

the signal. Finally, there is an equilibrium in which the sender censors the signal when the

state is below some cutoff. That is, the sender only censors the signal when the state is bad

(or low) enough. We call it censor-by-lows equilibrium.

We measure welfare with the ex-ante expected payoff. It can be shown that given the

bias, the difference between sender welfare and receiver welfare is constant. Thus, equilibria

can be Pareto-ranked. We find that the censor-by-lows equilibrium is always inferior to the

1Examples of such action include revolt and forming a specific public opinion. We abstract from details
of the receiver’s action.
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no-censorship equilibrium in terms of welfare. Comparing the welfare of the no-censorship

equilibrium and the CS (full-censorship) equilibrium, when the bias is large (small), full (no)

censorship is better.

The results above suggest that the government should never use partial censorship, and

whether full or no censorship is better depends on the difference in its and the citizens’

preferences.

2.1.1 Related literature

Since CS, cheap talk games have been extensively studied in various settings and appli-

cations. Most related to our paper is the literature on cheap talk with a privately-informed

receiver. Ying Chen (2009) studies a model where the decision maker (the DM or the receiver)

privately observes a binary signal. She finds that in one-way communication, non-monotone

equilibria may arise, and the DM can only tell whether the state is extreme or intermediate.

We follow the binary signal setting in her model and assume the probability of a high signal

is linear in the state. In the model of De Barreda (2010), the DM privately observes an unbi-

ased and symmetric (around the state) signal, and both the expert and DM have symmetric

(around their bliss points) preferences. She shows that for quadratic-loss preferences, DM’s

private information sometimes reduces the information transmitted by the expert. In some

cases, both agents have lower welfare. In Lai (2014), the DM has a private threshold and

knows whether the state is above or below this threshold. Lai (2014) finds that for some

types of DM, private information makes them worse off. Ishida and Shimizu (2019) departs

from previous papers in that the receiver also faces a higher-order uncertainty - she does

not know whether her private signal reveals the true state or is just randomly drawn. They

find a case where the receiver’s private information makes the sender’s communication more

informative.

Another related strand of literature is censorship. Censorship has been studied by many

political scientists and economists (see Lorentzen (2014), Shadmehr and Bernhardt (2015),

and Ananyev et al. (2019), among others). In these papers (and many others in the litera-

ture), the government censors media reports or online posts by citizens, and citizens decide
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whether to revolt. While in those papers, the government makes censorship decision after

learning the signal realization, the censorship decision in our model is made before or with-

out learning the signal realization.2 Our model also abstracts from details of the receiver’s

action and assumes that the sender can communicate directly with the receiver (i.e., sending

cheap-talk messages).

In Section 2.2 we build the model and characterize the three equilibria. We make the

equilibrium analysis in Section 2.3. At the end of this section, some results of boundary

types are provided. Section 2.4 is for welfare comparison. We conclude the chapter and

discuss some potential extensions in Section 2.5. Omitted proofs are in the Appendix.

2.2 Model

There are two players in the game, the sender (S or she) and the receiver (R or he).

State θ is drawn from Θ = [0, 1] according to a uniform distribution. We denote the CDF

and PDF of uniform(0, 1) as F and f . We also call the state sender’s type. S can send a

cheap talk message m from M = [0, 1]. R’s action x is chosen from X = R.

In our model, R has a private signal π with two realizations Π = {h, l} (high and low).

For θ ∈ Θ, we denote Pr(π = h|θ) = s(θ) where s(θ) = λθ + 1−λ
2
. We assume λ > 0,

thus for θ < θ′, Pr(π = h|θ) < Pr(π = h|θ′). That is, the signal is increasing in the

state. We also assume λ < 1 so that s(θ) ∈ (0, 1) for all θ. Moreover, when θ = 1
2
,

Pr(π = h|θ) = Pr(π = l|θ). That is, when the state is right at the middle, the probability

of high and low realization is equal. S does not know the realization of the signal but can

censor it. If S censors it, R does not know the realization, either.

The timing of the game is as follows:

1. Nature draws the state θ and the realization of signal π.

2. Sender observes the state and chooses the message rule q : Θ → △(M) and the censorship

rule r : Θ → {0, 1} where 1 means to censor and 0 otherwise.

2An example of the former: the government account deletes adversarial comments. An example of the
latter: the government account closes the comment section from the beginning.
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3. Receiver gets the message, and in the case of no-censorship, observes the realization of

π.

4. Receiver updates her belief about θ and chooses an action x.

The sender and the receiver have the standard quadratic utility functions:

US(x, θ, b) := −(x− b− θ)2

where b > 0 is the bias, and

UR(x, θ) := −(x− θ)2.

Given the concavity of UR, in equilibrium, R never mixes between actions, so we focus

on pure strategies for the receiver. Denote R’s action as α : M × {h, l, ϕ} → X where ϕ

means the signal is censored by S.

Upon receiving the message and the private signal (if not censored), R updates his belief

using Bayes Rule:

For all θ ∈ {θ|r(θ) = 1},

µ(θ|m,ϕ) =
f(θ)q(m|θ)∫ 1

0
f(t)q(m|t)dt

.

For all θ ∈ {θ|r(θ) = 0},

µ(θ|m,h) =
f(θ)q(m|θ)s(θ)∫ 1

0
f(t)q(m|t)s(t)dt

after observing a high signal;

µ(θ|m, l) =
f(θ)q(m|θ)(1− s(θ))∫ 1

0
f(t)q(m|t)(1− s(t))dt

after observing a low signal.

The solution concept is perfect Bayesian equilibrium (equilibrium hereafter):

Definition 2.2.1. The strategies (q∗, r∗, α∗) constitute an equilibrium if

1. For π ∈ {h, l, ∅} and for each m received, α∗(m,π) solves

maxα(m,π)∈X

∫ 1

0

UR(α(m,π), θ)µ(θ|m,π)dθ;
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2. For each θ ∈ [0, 1], if m∗ is in the support of q∗(·|θ), then (m∗, r∗(θ)) solves

maxm∈M,r(1− r)[s(θ)US(α∗(m,h), θ, b) + (1− s(θ))US(α∗(m, l), θ, b)]

+ rUS(α∗(m,ϕ), θ, b);

3. The receiver’s belief is consistent with (q∗, r∗, α∗).

In other words, in equilibrium, given the state, S chooses the message and the censorship

decision to maximize her expected utility. Based on his updated belief about the state, R

chooses an action to maximize his expected utility.

Throughout the paper, we focus on pure-strategy equilibria. For trackability, we focus

on two-interval partition equilibria.

2.3 Equilibrium Analysis

In this section, we will characterize three two-interval equilibria, which differ in their

level of censorship.

2.3.1 Benchmark - Two-interval partition equilibrium in CS

In CS, for 0 < b < 1
4
, the two-interval equilibrium exists and the boundary type is

aCS = 1−4b
2

.3 The ex-ante expected utilities are:

For sender: −
∫ aCS

0

(x1(aCS)− θ − b)2dθ −
∫ 1

aCS

(x2(aCS)− θ − b)2dθ

For receiver: −
∫ aCS

0

(x1(aCS)− θ)2dθ −
∫ 1

aCS

(x2(aCS)− θ)2dθ

where x1 : (0, 1) → R and x2 : (0, 1) → R are defined as x1(a) :=
a
2
and x2(a) :=

a+1
2
. In

other words, x1 and x2 are the receiver’s optimal actions when he believes that S is from the

first and the second interval, respectively.

3Note that, when b ∈ [ 1
12 ,

1
4 ), the maximum number of intervals in equilibrium is two, and both S and R

prefer the two-interval equilibrium to other equilibria ex ante.
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It can be verified that the two-interval equilibrium in CS is also an equilibrium in our

model. Framing this equilibrium in our context, it is the equilibrium where all sender types

censor the signal, and we will refer to it as the full-censorship equilibrium throughout the

paper.

Proposition 2.3.1 (Full censorship). For every λ ∈ (0, 1), when b < 1
4
, there exists a

two-interval partition equilibrium with boundary type aCS in which

(a) sender types in [0, aCS) sends m1, and sender types in [aCS, 1] sends m2 for some m1 ̸=

m2;

(b) every sender type censors the signal.

We specify R’s off-path belief as follows: when R observes any off-path deviation on

message or censorship decision, he believes that θ ∈ [0, aCS). We postpone the discussion of

off-path belief and equilibrium selection after all three equilibria are introduced.

Full censorship corresponds to the scenario where citizens never have access to external

information sources (e.g., foreign media), or the scenario where the comment section of an

online post is closed from the beginning. Real-life examples of full censorship include a

country banning foreign media from broadcasting in its territory. In 2022, as a result of the

conflict between Russia and Ukraine, some Russian media were banned by EU countries.4

2.3.2 No-censorship equilibrium

To evaluate the effect of censorship, it is natural to first consider the scenario where no

sender-type censors. We define four functions from (0, 1) to R as

x1h(a) :=

∫ a

0
s(θ)θdθ∫ a

0
s(θ)dθ

,

x1l(a) :=

∫ a

0
(1− s(θ))θdθ∫ a

0
(1− s(θ))dθ

,

x2h(a) :=

∫ 1

a
s(θ)θdθ∫ 1

a
s(θ)dθ

,

4Source: https://www.consilium.europa.eu/en/press/press-releases/2022/03/02/eu-imposes

-sanctions-on-state-owned-outlets-rt-russia-today-and-sputnik-s-broadcasting-in-the-eu/
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x2l(a) :=

∫ 1

a
(1− s(θ))θdθ∫ 1

a
(1− s(θ))dθ

.

Similar to x1(a) and x2(a), the four functions represent R’s optimal actions: x1h(a) (x1l(a))

is R’s optimal action when he observes the high (low) signal and believes the state is in [0, a).

x2h(a) (x2l(a)) is R’s optimal action when he observes the high (low) signal and believes the

state is in [a, 1].

Given an interval, we expect R’s optimal action to be higher when he observes the high

signal than that of the low signal, and the optimal action without any signal is in between.

Moreover, x1(a) (x2(a)) is a convex combination of x1l(a) and x1h(a) (x2l(a) and x2h(a)).

The following lemma formalizes the results.

Lemma 2.3.1. ∀λ ∈ (0, 1), ∀a ∈ (0, 1), the following hold:

(a) [
∫ a

0
(1− s(θ))dθ]x1l(a) + [

∫ a

0
s(θ)dθ]x1h(a) = [

∫ a

0
1dθ]x1(a);

(b) x1l(a) < x1(a) < x1h(a);

(c) [
∫ 1

a
(1− s(θ))dθ]x2l(a) + [

∫ 1

a
s(θ)dθ]x2h(a) = [

∫ 1

a
1dθ]x2(a);

(d) x2l(a) < x2(a) < x2h(a).

In the proposed two-interval partition equilibrium in which no sender type censors, the

boundary type a ∈ (0, 1) satisfies the following arbitrage condition (A):

−s(a)(x1h(a)− a− b)2 − (1− s(a))(x1l(a)− a− b)2 =

−s(a)(x2h(a)− a− b)2 − (1− s(a))(x2l(a)− a− b)2.

This condition means that in equilibrium, the boundary sender type is indifferent between

sending the message in the first and the second interval.

Condition (A) can be rewritten as

(λa+
1− λ

2
)(x1h(a) + x2h(a)− 2a− 2b)(x2h(a)− x1h(a))

+(−λa+
1 + λ

2
)(x1l(a) + x2l(a)− 2a− 2b)(x2l(a)− x1l(a)) = 0.
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Define g : (0, 1) → R as

g(a) =(λa+
1− λ

2
)(x1h(a) + x2h(a)− 2a− 2b)(x2h(a)− x1h(a))

+ (−λa+
1 + λ

2
)(x1l(a) + x2l(a)− 2a− 2b)(x2l(a)− x1l(a)).

Then g(a) is the difference in payoffs for type-a sender when she follows the message rule in

the first interval and the second interval. Furthermore, g(a) = 0 if and only if (A) holds for

a. This function g will be useful in subsequent proofs.

It is clear that condition (A) is necessary for the existence of the proposed no-censorship

equilibrium. Next, we prove that when the bias is small enough, such boundary type exists

and is unique.

Proposition 2.3.2. For every λ ∈ (0, 1), when b < 3−λ
12

, there exists a unique a ∈ (0, 1)

such that the arbitrage condition (A) holds.

The proof of Proposition 2.3.2 proceeds in two steps. We first use the Intermediate Value

Theorem to prove the existence of a solution, and then prove uniqueness by contradiction.

In CS, a similar arbitrage condition is necessary and sufficient for the sender’s message

rule to be optimal. When the receiver has private information, in general, such a condition

may not be sufficient.5 However, with our linear signal structure, the arbitrage condition

(A) is both necessary and sufficient, and therefore a no-censorship equilibrium exists.

Proposition 2.3.3 (No censorship). For every λ ∈ (0, 1), when b < 3−λ
12

, there exists a

two-interval partition equilibrium with boundary type aNC in which

(a) sender types in [0, aNC) sends m1, and sender types in [aNC , 1] sends m2 for some

m1 ̸= m2;

(b) no sender type censors the signal.

This equilibrium can be supported by the following off-path belief of R: whenever R

observes any off-path deviation, he believes that θ ∈ [0, aNC). Then to prove Proposition

2.3.3, it is sufficient to prove that no sender type wants to mimic sender types in the other

interval.

5See Proposition 1 in Ying Chen (2009) for an example.
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This equilibrium corresponds to the following scenarios. The first scenario is that the

government uses state media to report some events but also allows citizens access to for-

eign media. The second scenario is that an official account posts a thread, and allows all

comments.

2.3.3 Equilibrium where low sender types censor the signal

Now we know that there exist a full-censorship equilibrium and a no-censorship equilib-

rium. One might postulate the existence of an equilibrium in which only the sender types

below some threshold censor the signal. In such an equilibrium candidate, the arbitrage

condition (A’) is

−(x1(a)− a− b)2 =

−s(a)(x2h(a)− a− b)2 − (1− s(a))(x2l(a)− a− b)2.

Condition (A’) can be rewritten as

(λa+
1− λ

2
)(x1(a) + x2h(a)− 2a− 2b)(x2h(a)− x1(a))

+(−λa+
1 + λ

2
)(x1(a) + x2l(a)− 2a− 2b)(x2l(a)− x1(a)) = 0.

Similarly to g, we define h : (0, 1) → R as

h(a) =(λa+
1− λ

2
)(x1(a) + x2h(a)− 2a− 2b)(x2h(a)− x1(a))

+ (−λa+
1 + λ

2
)(x1(a) + x2l(a)− 2a− 2b)(x2l(a)− x1(a)).

h(a) is the difference in payoffs for the boundary type sender (type a) when she follows the

message rule in the first interval and the second interval. And h(a) = 0 if and only if (A’)

holds for a. Same as g, h(a) = 0 has a unique solution.

Proposition 2.3.4. For every λ ∈ (0, 1), when b < 3−λ
12

, there exists a unique a ∈ (0, 1)

such that the arbitrage condition (A’) holds.
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The proof of Proposition 2.3.4 is similar to that of Proposition 2.3.2.

Similarly, condition (A’) is also sufficient for equilibrium existence:

Proposition 2.3.5 (Censorship by low types). For every λ ∈ (0, 1), when b < 3−λ
12

, there

exists a two-interval partition equilibrium with boundary type aCL in which

(a) sender types in [0, aCL) sends m1, sender types in [aCL, 1] sends m2 for some m1 ̸= m2;

(b) the sender censors the signal if the state is in [0, aCL).

We will call this equilibrium the censor-by-lows equilibrium henceforth. It can be sup-

ported by the following off-path belief of R: whenever R observes any off-path deviation, he

believes that θ ∈ [0, aCL).

This equilibrium corresponds to the following scenarios. The first scenario is that the

government uses state media to propaganda and allows citizens access to foreign media only

when the state is good. The second scenario is that an official account post online, and close

the comment section if it is known that the state is bad.

It is a kind of partial censorship. That is, the government’s censorship decision depends

on the state of the world. For example, Uganda blocks all social media platforms and

messaging apps ahead of presidential election.6 Here the government regards the potential

opposition as a low state.

Before discussing boundary types in the next subsection, we would like to make some

remarks on equilibria.

Remark 2.3.1 (The condition on bias). For propositions in this and the previous subsec-

tions, we restrict b < 3−λ
12

. This is sufficient and not necessary. For example, when λ = 1
2

and b = 0.21, this condition is violated, but we can find a no-censorship equilibrium and a

censor-by-lows equilibrium.

Remark 2.3.2 (Off-path beliefs and equilibrium selection). For all three equilibria, we spec-

ify R’s off-path belief to be the following: when he observes off-path deviations, he believes

the sender type is in the first interval. Readers may wonder if the off-path beliefs survive

standard equilibrium-selection criteria. Our answer to this question is twofold. First, the

6Source: https://www.reuters.com/world/uganda-bans-social-media-ahead-presidential-ele

ction-2021-01-12/
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focus of the paper is to compare the welfare of both players to CS and to see whether the

right to censorship always reduces the receiver’s ex-ante expected utility. Our objective is

not equilibrium selection here. Second, as pointed out in the literature, standard refinement

tools (e.g., Intuitive Criterion and D1) have no power in restricting equilibria in cheap talk

games. The reason is that any equilibrium outcome can be supported with an equilibrium

in which there is no unused message.7 We thus choose the NITS (no incentive to separate)

condition proposed by Ying Chen, Kartik, and Sobel (2008).8 It can be verified that the three

equilibria (full-censorship, no-censorship, and censor-by-lows) satisfy the NITS condition in

some cases. (see Appendix A.2.8 for details)

2.3.4 About boundary types

Before presenting the welfare results, we analyze the boundary types.

Recall that in CS, the boundary type of the two-interval equilibrium is aCS(b) =
1−4b
2

.

Fix b, we can compare aCS with the boundary type in the no-censorship equilibrium (aNC)

and in the censor-by-lows equilibrium (aCL).

Proposition 2.3.6 (Boundary types). For every 0 < b < 3−λ
12

, the boundary types satisfy

0 < aCL < aNC < aCS < 1
2
.

In previous analysis, we have shown that given b, aCL and aNC are determined by func-

tions h and g, respectively. Then aCL < aNC can be proved by showing (g − h)(a) > 0

for a ∈ (0, 1). Since aCS has a simple closed form, aNC < aCS can be proved by showing

g(aCS) < 0.

Since for every 0 < b < 3−λ
12

, there exists a unique aNC such that (A) holds, and there

exists a unique aCL such that (A’) holds. With slight abuse of notation, we define boundary

types in the no-censorship equilibrium and the censor-by-lows equilibrium as functions as

bias: aNC(b) and aCL(b). Since aCS(b) =
1−4b
2

, we know that as bias increases, the boundary

7See Farrell (1993) and Ying Chen, Kartik, and Sobel (2008) for detailed discussions. This problem also
leads them to propose new refinement tools.

8As discussed in Ying Chen, Kartik, and Sobel (2008), the neologism-proof refinement by Farrell (1993)
rules out all equilibria in the quadratic example in CS. Announcement-proofness by Matthews, Okuno-
Fujiwara, and Postlewaite (1991) also eliminate all equilibria in the quadratic example while credible ratio-
nalizability by Rabin (1990) eliminate none.
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type in CS moves to the left. Similar results hold for aNC and aCL.

Lemma 2.3.2. For 0 < b < 3−λ
12

, aCS(b), aNC(b), and aCL(b) are strictly decreasing in b.

To prove this lemma, we can write b as a function of aNC (or aCL) from condition (A) (or

(A’)). Thus aNC(b) and aCL(b) must be monotone, and then ruling out the case of increasing

in b is straightforward.

Why the boundary types are decreasing in the bias? Let’s first consider the extreme case

where b = 0. In this case, the interests of S and R are perfectly aligned. When censorship

decisions of the two intervals are the same, the boundary type is exactly at the middle point

of [0, 1]. That is, if b = 0, then aCS = aNC = 1
2
. When censorship decisions of the two

intervals are different, the boundary type is close (but not at) the middle point. Hence we

have aCL < 1
2
when b = 0.

As the bias increases, previous boundary types strictly prefer sending the message from

the second interval, and as a result, new boundary types move to the left. The result above

can be clearly seen in Figure 1.9

2.4 Welfare

From the previous section, we prove the existence of equilibria where all types, no type,

or some types censor the signal. A natural question is, does the power of censorship benefit

or hurt the sender and the receiver? The short answer is, it depends. Next, we will answer

this question in more details.

For our study, we use the ex-ante expected utility to measure welfare. Then the welfare

of the sender and the receiver are:

In the CS (full-censorship) equilibrium,

EUS
CS = −

∫ aCS

0

(x1(aCS)− θ − b)2dθ −
∫ 1

aCS

(x2(aCS)− θ − b)2dθ,

9We plot the figure for λ = 0.99, figures of other λ have similar patterns.
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Figure 1: Boundary types in the three equilibria when λ = 0.99

EUR
CS = −

∫ aCS

0

(x1(aCS)− θ)2dθ −
∫ 1

aCS

(x2(aCS)− θ)2dθ.

In the no-censorship equilibrium,

EUS
NC =−

∫ aNC

0

s(θ)(x1h(aNC)− θ − b)2dθ −
∫ aNC

0

(1− s(θ))(x1l(aNC)− θ − b)2dθ

−
∫ 1

aNC

s(θ)(x2h(aNC)− θ − b)2dθ −
∫ 1

aNC

(1− s(θ))(x2l(aNC)− θ − b)2dθ,

EUR
NC =−

∫ aNC

0

s(θ)(x1h(aNC)− θ)2dθ −
∫ aNC

0

(1− s(θ))(x1l(aNC)− θ)2dθ

−
∫ 1

aNC

s(θ)(x2h(aNC)− θ)2dθ −
∫ 1

aNC

(1− s(θ))(x2l(aNC)− θ)2dθ.
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In the censor-by-lows equilibrium,

EUS
CL =−

∫ aCL

0

(x1(aCL)− θ − b)2dθ

−
∫ 1

aCL

s(θ)(x2h(aCL)− θ − b)2dθ −
∫ 1

aCL

(1− s(θ))(x2l(aCL)− θ − b)2dθ,

EUR
CL =−

∫ aCL

0

(x1(aCL)− θ)2dθ

−
∫ 1

aCL

s(θ)(x2h(aCL)− θ)2dθ −
∫ 1

aCL

(1− s(θ))(x2l(aCL)− θ)2dθ.

It can be verified that for all three equilibria, EUS = EUR − b2, so equilibria can be

Pareto ranked. In other words, if the sender’s welfare is higher in one equilibrium than the

other, then the receiver’s welfare is also higher in the former equilibrium than the latter.

Figure 2: Sender welfare in the three equilibria when λ = 0.99

We plot the welfare of the sender and receiver in Figure 2 and Figure 3 for λ = 0.99.10

To the right of the blue vertical line (i.e., b ≥ 1
12
), in the original CS paper, the maximum

10Figures of other λ have similar patterns.
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Figure 3: Receiver welfare in the three equilibria when λ = 0.99

number of intervals in equilibrium is two, and the welfare of both S and R are maximized in

the two-interval equilibrium. Hence we compare welfare in that region.

Several observations can be made from the figures. First, for all of the three equilibria,

sender and receiver welfare are decreasing in bias. Second, given the bias, sender and receiver

welfare in the censor-by-lows equilibrium are lower than in the no-censorship equilibrium.

Third, when the bias is large enough, the CS equilibrium is the best of the three in terms of

welfare.

In fact, these observations can be generalized.

Proposition 2.4.1. For the three equilibria, the ex-ante expected payoffs of the sender and

receiver are strictly decreasing in bias.

When preferences of S and R are more aligned, the boundary type is closer to 1
2
, and

more information is transmitted. Therefore, both sides are better off.

Proposition 2.4.2. For every b < 3−λ
12

, the censor-by-lows equilibrium is inferior to the
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no-censorship equilibrium in terms of the welfare of the sender and the receiver.

Now let us discuss the proof and the economic intuition for this result. In the proof, we

define WCL : (0, 1) → R and WNC : (0, 1) → R as

WCL(a) =−
∫ a

0

(x1(a)− θ − b)2dθ

−
∫ 1

a

s(θ)(x2h(a)− θ − b)2dθ −
∫ 1

a

(1− s(θ))(x2l(a)− θ − b)2dθ,

WNC(a) =−
∫ a

0

s(θ)(x1h(a)− θ − b)2dθ −
∫ a

0

(1− s(θ))(x1l(a)− θ − b)2dθ

−
∫ 1

a

s(θ)(x2h(a)− θ − b)2dθ −
∫ 1

a

(1− s(θ))(x2l(a)− θ − b)2dθ.

Fix b, we have Wi(ai(b)) = EUS
i (b) for i ∈ {CL,NC}. That is, the function values are equal

to the sender welfare at corresponding boundary types.

The difference of sender welfare in the two equilibrium can be decomposed into two parts:

WCL(aCL)−WNC(aNC) =(WCL(aCL)−WNC(aCL))

+ (WNC(aCL)−WNC(aNC)).

We prove Proposition 2.4.2 by showing that the two parts (WCL(aCL) − WNC(aCL)) and

(WNC(aCL)−WNC(aNC)) are negative. In particular, for a ∈ (0, 1),

WCL(a)−WNC(a) =

∫ a

0

s(θ)(x1h(a)− θ − b)2dθ +

∫ a

0

(1− s(θ))(x1l(a)− θ − b)2dθ

−
∫ a

0

(x1(a)− θ − b)2dθ

<0.

Given an interval, with additional information (i.e., the private signal), the average

quadratic distance from receiver’s optimal action to sender’s bliss point is smaller, therefore

WCL(aCL)−WNC(aCL) < 0.
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Moreover, since 0 < aCL < aNC < 1
2
, the intervals in the no-censorship equilibrium

are more evenly distributed than in the censor-by-lows equilibrium and more information is

transmitted in the former. As a result, WNC(aCL)−WNC(aNC) < 0.

For the comparison between the no-censorship equilibrium and the CS (full-censorship)

equilibrium, it depends on the bias and can go either way. We give the following two

examples.

Example 2.4.1 (No censorship is better). Suppose λ = 0.99 and b = 0.111. In this case,

aCS = 0.3, aNC = 0.24847, and aCL = 0.24217. The ex-ante expected utilities are:

EUS
CS = −0.0408333, EUS

NC = −0.0396450, EUS
CL = −0.0402321.

EUR
CS = −0.0308333, EUR

NC = −0.0296450, EUR
CL = −0.0302321.

In Example 2.4.1, the no-censorship equilibrium is better than the CS (full-censorship)

equilibrium. In the following example, we increase the bias from 0.1 to 0.15, and the relation

is reversed.

Example 2.4.2 (Full censorship is better). Suppose λ = 0.99 and b = 0.15. In this case,

aCS = 0.2, aNC = 0.09703, and aCL = 0.09573. The ex-ante expected utilities are:

EUS
CS = −0.0658333, EUS

NC = −0.0674327, EUS
CL = −0.0675813.

EUR
CS = −0.0433333, EUR

NC = −0.0449327, EUR
CL = −0.0450813.

Though we are unable to prove a general result, we provide some intuitions below. Similar

to the proof of Proposition 2.4.2, now we define WCS : (0, 1) → R as

WCS(a) =−
∫ a

0

(x1(a)− θ − b)2dθ −
∫ 1

a

(x2(a)− θ − b)2dθ

11Note that for the values of b in Example 2.4.1 and 2.4.2, the maximum number of intervals in the CS
equilibrium is 2, hence the comparison is meaningful.
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Fix b, we have Wi(ai(b)) = EUS
i (b) for i ∈ {NC,CS}. That is, the function values are

equal to the sender welfare at corresponding boundary types. Comparing WCS and WNC ,

we have the following results.

Claim 2.4.1. For a ∈ (0, 1), WCS(a)−WNC(a) < 0.

In other words, when the CS “equilibrium” and the no-censorship “equilibrium” have

the same “boundary types”12, the sender welfare is lower in the CS equilibrium. The driving

force is similar to that of WCL(a)−WNC(a) < 0.

Claim 2.4.2. For a < 1
2
, W ′

CS(a) > 0.

Since 0 < aNC < aCS < 1
2
, the intervals in the CS (full-censorship) equilibrium are more

evenly distributed than in the no-censorship equilibrium, more information is transmitted in

the former, and WCS(aCS)−WCS(aNC) > 0.

Again, the difference in sender welfare can be decomposed as

WCS(aCS)−WNC(aNC) =(WCS(aNC)−WNC(aNC))

+ (WCS(aCS)−WCS(aNC)).

By Claim 2.4.1, WCS(aNC) −WNC(aNC) < 0. From Proposition 2.3.6, we have aNC <

aCS < 1
2
. Then by Claim 2.4.2, we have WCS(aCS)−WCS(aNC) > 0. Therefore, the sign of

WCS(aCS)−WNC(aNC) depends on the magnitude of the two parts.

From Figure 1, we can see that when b is small, aCS and aNC are close, and (WCS(aCS)−

WCS(aNC)) is close to 0. As a result, the first part (WCS(aNC)−WNC(aNC)) dominates, and

WCS(aCS)−WNC(aNC) is negative. As b increases, aCS and aNC move farther apart. After

some point, the second part (WCS(aCS)−WCS(aNC)) dominates and WCS(aCS)−WNC(aNC)

becomes positive.

To summarize this section, in our model with a binary signal, given the bias, the difference

between sender welfare and receiver welfare is constant in all three equilibria, and both

agents always have higher welfare in the no-censorship equilibrium than the censor-by-lows

equilibrium. For moderate biases, the welfare in the no-censorship equilibrium is also higher

12Strictly speaking, they are not equilibria or boundary types.
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than in the CS (full-censorship) equilibrium. On the contrary, when the bias is large enough,

full censorship dominates the other two.

To interpret the results in real-life examples, censorship only in bad/low states are never

the best option for the government. Whether to censor external information sources at all

depends on the bias between the government and the citizens: it is better for the government

(and for the citizens as well) to censor external information sources only when the bias in

their preferences is large enough.

2.5 Conclusion

We study censorship using a cheap talk model. In our model, there is an external binary

signal affiliated with the state. The sender does not observe the realization of the signal but

can censor it. If the signal is censored, the only information for the receiver is the message

transmitted by the sender. If the signal is not censored, the receiver will learn its realization.

We characterize two-interval equilibria where there is no censorship, partial censorship, or

full censorship. We compare sender and receiver welfare across the three equilibria and have

two main findings. First, partial censorship is always inferior to no censorship for both

agents. Second, the welfare comparison between no censorship and full censorship depends

on the bias. We provide two examples and conjecture that when bias is large enough, full

censorship is the best for both agents.

Regarding real-life applications, our results suggest that it is not in the interest of the

government to base censorship decisions on the state of the world. Whether to censor external

information depends on the difference in the government’s and citizens’ preferences.

Our study focuses on two-interval partition equilibria and hence the structure of equilibria

is limited. In particular, in the censor-by-lows equilibrium, messages essentially play no

role in changing the receiver’s belief - he can update belief solely based on the censorship

decision. Generalizing to equilibria with more than two intervals will lead to more interesting

structures, though the analysis would be much more complicated.

In our model, the sender makes censorship decisions before learning the signal realization.
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This corresponds to the type of censorship where the government bans foreign media from

broadcasting in the country or reporting a certain event. Hence the government do not

know how the foreign report would be. An interesting direction of future work is to explore

censorship decisions after learning the signal realization and to compare the two cases. The

latter corresponds to the type of censorship where the government notices the foreign report

and removes it.

Another extension regards the timing of learning the state. In the paper, we assume

the sender (government) learns the state before taking actions on message and censorship.

Alternatively, we can assume the sender (government) does not know the state but has to

act. This would better fit into the following scenario: Some emergent public event happens

(e.g., disease outbreak), and the government does not know how severe it will be. But it

needs to report the event to the citizens and decide whether coverage from foreign media is

allowed.
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3.0 Privacy and Personalization in a Dynamic Model

In this chapter, we study a two-period model with a monopoly firm and a consumer. The

multi-product firm offers two contracts (product-price pairs) in the first period and offers

one contract in the second period. The single consumer’s type is unknown to the firm, and

she chooses at most one contract each period. Two privacy settings are considered. In one

setting, the consumer cannot hide her purchase history (i.e., cannot opt out) whereas she

can in the other setting. We characterize the firm-optimal equilibria in both settings and

show that when the opt-out choice is added, the ex-ante producer surplus increases while

the ex-ante consumer surplus decreases. How the interim consumer surplus changes depends

on how close the type is to the middle point of the type space. Our results suggest that

sometimes privacy protection tools can harm consumers and help firms, and the strategic

interaction between the two sides need to be considered by the regulator.

3.1 Introduction

With the development of information technology, people nowadays rely heavily on the

internet to shop, entertain, and socialize with friends. Activities like buying a coffeemaker on

Amazon, searching for movies on Netflix, and liking a post on Instagram all carry important

information for internet firms. On the one hand, those consumer information can be used for

personalization, e.g. recommendations and targeted ads. Such personalization may provide

consumers with more relevant products and content. On the other hand, the consumer

may have privacy concerns and firms sometimes use those information to practice price

discrimination.1

Researchers in different disciplines have their own definition of privacy, and the one used

by Acquisti, C. Taylor, and Wagman (2016) are widely adopted by economists: “protecting

1See Hannak et al. (2014), Stucke and Ezrachi (2018), and Gautier, Ittoo, and Van Cleynenbreugel (2020)
for empirical evidences.
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or sharing of personal data”. Specifically, in the consumer and online retailer scenario,

privacy means the consumer’s ability to opt out of being tracked by the retailer.

In response to privacy concerns, several data privacy laws were enacted across the world

in recent years. The General Data Protection Regulation (GDPR) came into effect in the

European Union in 2018, and China introduced the Personal Information Protection Law

(PIPL) in 2021. There is no single comprehensive data privacy law in the US, but there

are sector-specific laws (e.g., Health Insurance Portability and Accountability Act (HIPAA))

and some states have or will have state privacy laws (e.g., California).2 These data privacy

laws are aimed to make consumers aware of the use of their data and give them control over

it.

Some firms also provide consumers with the choice to opt out. For example, under

“Interest-based ad preferences” on Amazon, the consumer can choose to “Show me interest-

based ads provided by Amazon” or “Do not show me interest-based ads provided by Ama-

zon”. Consumers themselves have alternative ways to “hide” from firms including deleting

cookies, using different accounts, and guest checkout. Particularly in the online retail set-

ting, when a consumer determines whether to opt out of personalization, the trade-off is the

benefit of better-matched products and the cost of potential price discrimination.

In this paper, we study this trade-off by a two-period model with a multi-product firm

and a consumer. The consumer type (i.e., her favorite product) is unknown to the firm and

does not change between periods. In the first period, the firm offers two contracts (product-

price pairs) to the consumer, and it offers one contract in the second period. Our model

features the following scenario. When an online retailer and a consumer meet for the first

time, little is known by the retailer, and thus it provides a range of products hoping to get

some information from the consumer’s choice. After some interactions, the retailer then can

target a particular product to consumers via emailed offers or recommendations.

Our model is based on Hidir and Vellodi (2021), and some of their results in the static

setting are used. In particular, when the firm and the consumer interact only once, there

exist the optimal pair and the optimal triple of contracts. We first study the case where

2See a commentary from Reuters for an introduction of the current US data privacy laws and the com-
parison with GDPR: https://www.reuters.com/legal/legalindustry/us-data-privacy-laws-enter
-new-era-2023-2023-01-12/
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the consumer cannot hide her purchase history (i.e., no opt-out choice is available), and

characterize the firm-optimal equilibrium. Intuitively, in the firm-optimal equilibrium, the

firm offers the optimal pair in the first period, and conditioning on the purchase history, the

firm offers one of the contracts from the optimal pair in the second period. Then we consider

the case where the consumer can choose to opt out at the beginning of the second period.

We find an equilibrium that increases the firm’s ex-ante expected surplus and prove that

it is firm-optimal in this setting. Comparing the two firm-optimal equilibria, the consumer

is worse off ex ante when the opt-out choice is available. The reason is as follows. When

there is an opt-out choice and some consumer-types use it, the firm can segment the whole

market into more submarkets and increase prices. For the interim consumer surplus, whether

opt-out benefits the consumer depends on her type.

Our paper suggests that tools that seemingly help with consumer privacy protection

can actually have negative effects on them. One possible reason is that the choice of opt-

out itself reveals some information to the firm. Therefore, when evaluating the effect of a

specific privacy protection tool, regulators need to ponder the interactions between firms and

consumers in a dynamic and strategic environment.

3.1.1 Related literature

Price discrimination is a classical economic question dating back to Pigou (1920). Re-

cently, Bergemann, Brooks, and Morris (2015) study the limit of price discrimination where a

monopolist sells a single good to a continuum of consumers. In particular, they characterize

the “surplus triangle” for all possible segmentations of the market. In the same vein, but

for a multi-product seller setting, Haghpanah and Siegel (2022) study the achievability of

first-best consumer surplus and Haghpanah and Siegel (2023) focus on Pareto improvement.

Consumer privacy has received increasing attention from researchers. In an early study

of C. R. Taylor (2004), consumers interact sequentially with two firms, and depending on

the privacy setting, the first firm may or may not sell consumer information to the second

firm. It is shown that when consumers anticipate the sale of their information, the firm

actually prefers to commit to keeping consumer information private. Acquisti and Varian

41



(2005) consider a two-period model where consumers have privacy protection options. They

provide conditions under which conditioning prices on purchase history are profitable for the

seller. In the two-period model of Conitzer, C. R. Taylor, and Wagman (2012), increasing

the cost of anonymity can sometimes benefit consumers. But when the firm or a third party

controls the cost of anonymity, consumers are usually harmed. In the papers discussed above,

consumers only have limited ability to protect their privacy: they can only choose to hide

their purchase history. On the contrary, the consumer in Ali, Greg Lewis, and Vasserman

(2023) is more proactive: she can disclose hard information about her value for the product.

The authors find that whether consumer’s control over their data improves welfare depends

on what they can disclose and whether there is a competitor firm in the market.

Recent studies also focus on multi-product sellers. Apart from Haghpanah and Siegel

(2022) and Haghpanah and Siegel (2023), Ichihashi (2020) models consumer information

disclosure in a Bayesian persuasion framework. The main finding is that the seller prefers

to commit to not using consumer information for price discrimination and the consumer

is harmed by this commitment. The paper that is closest to ours is Hidir and Vellodi

(2021). They introduce the notion of incentive-compatible market segmentation (IC-MS),

and characterize the buyer-optimal IC-MS. Our paper extends their model to a two-period

setting and examines the effect of “opt-out” on the welfare of the firm and the consumer.

In Section 3.2, we present the model. In Section 3.3, we characterize the optimal contract,

the optimal pair, and the optimal triple in the static setting. Some results in Hidir and Vellodi

(2021) are used. We analyze the two-period model in Sections 3.3 and 3.4. Particularly, we

construct the firm-optimal equilibrium without opt-out in Section 3.3 and the firm-optimal

equilibrium with opt-out in Section 3.4. Welfare comparisons of the two equilibria are also

done in Section 3.4. We conclude the chapter in Section 3.5. Omitted proofs are in the

Appendix.
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3.2 Model

There are two periods, t1 and t2. The firm is a multi-product monopoly with a range of

products v ∈ V ≜ [0, 1]. We assume there is no production cost, and the firm maximizes

expected revenue from the two periods. There is a single consumer whose type θ follows a

uniform distribution on [0, 1], and we denote the type space as Θ ≜ [0, 1]. The consumer’s

utility of buying product v at price p is

u(v, θ, p) ≜ ū− a(v − θ)2 − p.

Here a > 0 measures the degree of “substitutability” of products - a larger a means that the

products are less substitutable. The consumer prefers products closer to her type. Assume

that there is a common discount factor δ ∈ (0, 1], and both agents maximize the discounted

expected utility from the two periods. Following the notation of Hidir and Vellodi (2021),

any x ∈ X ≜ ∆(Θ) is a market. In this paper, we will work with markets of the form [c, d]

for some 0 ≤ c ≤ d ≤ 1, i.e., the market where type is uniformally distributed on [c, d].

A contract (v, p) ∈ [0, 1] × R+ is a product-price pair. In period 1, the firm offers

two contracts (vl, pl) and (vr, pr) where vl ≤ vr, and the consumer can choose at most one

contract. Depending on the setting studied, at the beginning of period 2, the consumer

may be able to hide her purchase history by a “opt-out” choice. Then, after observing the

consumer’s purchase history (or possibly the opt-out choice), the firm offers one contract

(v2, p2).

Below is the timeline of the game with the opt-out choice, and the timeline without

opt-out is similar:

1. At the beginning of the game, the consumer observes her type θ;

2. In period 1, the firm offers two product-price contracts (vl, pl) and (vr, pr);

3. The consumer accepts one or rejects all contracts;

4. At the beginning of period 2, the consumer chooses to opt in or opt out. In case she

chooses to opt out, the firm cannot observe her purchase history from period 1 but can

observe the opt-out choice itself;

5. Then the firm offer one contract (v2, p2);
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6. The consumer accepts or rejects it and the game ends.

The model is constructed to capture the trade-off of better-matched products and the

possibility of price discrimination. In practice, when a new customer visits an online retailer’s

website for the first time, the retailer knows little about her preference, thus it provides a

range of products hoping to learn the customer’s taste from her choice. This is modeled

as the first period of the game. When the customer already has some interactions with the

online retailer, some information is revealed by the customer’s browsing activity and purchase

history. Now the retailer can target a particular product to the customer via interest-based

ads, recommendations, or personalized offers in an email. This is modeled as the second

period. The customer can circumvent such personalizations in a variety of ways such as

guest checkout and using different accounts. We refer to them as “opt-out” in our model.

Notice that from the firm’s perspective, a consumer with an opt-out choice is different from

a consumer who didn’t buy anything in period 1 and chose to opt in.3

Denote Θ(v, p) ≜ {θ ∈ Θ|u(v, θ) ≥ p}. In Hidir and Vellodi (2021), Θ(v, p) is the

set of consumer types that would buy product v at price p. However, in our dynamic

environment (and particularly in period 1), types in Θ(v, p) may not buy the product while

types outside Θ(v, p) may buy the product. This is because when the consumer makes a

purchase decision in the first period, she takes into account the effect on the second-period

contract. Throughout the paper, we refer to Θ(v, p) as the set of types served or covered by

(v, p).

In this paper, we focus on perfect Bayesian equilibria where in each period, consumer

types with the same purchase (or opt-out) behavior constitute an interval.

3.3 Optimal contracts for the firm in a static setting

In this section, we consider the firm’s optimal contract(s) in a static setting. Specifically,

we show the optimal contract, the optimal pair, and the optimal triple of contracts for the

3This is different from Acquisti and Varian (2005) and Conitzer, C. R. Taylor, and Wagman (2012). In
their papers, the seller cannot distinguish the consumer who didn’t purchase the product and the consumer
who anonymized.
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firm if it interacts with the consumer for only one period. Some results from Hidir and

Vellodi (2021) are also presented.

3.3.1 Optimal contract

First, we study the firm’s optimal contract when facing a consumer whose type θ ∈

[θ, θ̄] ⊆ [0, 1]. From Proposition 1 of Hidir and Vellodi (2021), a market [θ,θ̄] is clearing if

and only if |θ̄ − θ| ≤ 2
√

ū
3a
, and clearing means that any optimal offer rule results in all

types in the market accepting the contract. Moreover, for such a market, the optimal offer

rule is unique.

We rephrase their result in our notations below.

Lemma 3.3.1. (From Hidir and Vellodi (2021)) When consumer type θ ∈ [θ, θ̄] and

the firm and the consumer only interact for one period, there in an optimal contract ( θ+θ̄
2
, p∗)

where

(a) if ū ≥ 3a
4
(θ̄ − θ)2, all consumer types accept the offer, and p∗ = ū − a

4
(θ̄ − θ)2. The

firm’s expected revenue is ū(θ̄ − θ)− a
4
(θ̄ − θ)3;

(b) if ū < 3a
4
(θ̄ − θ)2, not all consumer types accept the offer, and p∗ = 2

3
ū. The firm’s

expected revenue is 4ū
3

√
ū
3a
.

When products are more substitutable (ū ≥ 3a
4
(θ̄−θ)2), it’s optimal for the firm to include

all consumer types and the price is determined by leaving zero surplus for the boundary types

of the market (θ̄ and θ). When products are less substitutable (ū < 3a
4
(θ̄− θ)2), it’s optimal

for the firm to only serve some of the consumer types and the monopoly price is charged.

3.3.2 Optimal pair

Now we look at the scenario in which the firm can provide two contracts. In the Online

Appendix of Hidir and Vellodi (2021), they consider menus of offers. That is, the seller

can offer menus of k goods in each segment. They show that the seller’s optimal offer is

balanced, i.e., the optimal offer partitions each segment into groups with equal width. In the
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remainder of this section, we will prove similar results using different methods and different

interpretations.

We denote the two contracts as (vl, pl) and (vr, pr) with vl ≤ vr. They serve [θl, θ̄l] and

[θr, θ̄r], respectively. Thus (vl, pl) and (vr, pr) satisfy

ū− a(vl − θl)
2 − pl = 0,

ū− a(vl − θ̄l)
2 − pl = 0,

ū− a(vr − θr)
2 − pr = 0,

ū− a(vr − θ̄r)
2 − pr = 0.

First note that in any optimal pair, [θl, θ̄l] and [θr, θ̄r] are subsets of [0, 1]. Otherwise, the

firm can relocate the products, increase prices, and have higher expected revenue. Therefore,

0 ≤ θl ≤ θr and θ̄l, θ̄r ≤ 1. Second, a longer covered interval corresponds to a lower price.

To solve for the optimal pair, let’s first prove the following lemma.

Lemma 3.3.2. Suppose the firm and the consumer interact for one period, then for any

optimal pair of contracts (vl, pl) and (vr, pr), the intersection of the intervals covered is

empty or a singleton, that is, θ̄l ≤ θr.

In other words, the submarkets served by any optimal two contracts do not overlap.

Otherwise, the firm can shift one product slightly away from the other, increase its price,

and extracts higher revenue.

With the previous lemma, we now solve for the optimal pair. By offering a pair (vl, pl)

and (vr, pr), consumer types in [θl, θ̄l] and [θr, θ̄r] buy vl and vr, respectively. The firm’s

expected revenue is

[ū− a(θl −
θl + θ̄l

2
)2](θ̄l − θl)

+[ū− a(θr −
θr + θ̄r

2
)2](θ̄r − θr).
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Maximizing the expected revenue is equivalent to maximizing

[ū− a(θl −
θl + θ̄l

2
)2](θ̄l − θl)

and

[ū− a(θr −
θr + θ̄r

2
)2](θ̄r − θr)

separately. And in any optimal pair, (vl, pl) and (vr, pr) will cover the same width of intervals

at the same price.

Dropping the subscripts (l and r), the problem can be rewritten as

max
θ̄,θ

ū(θ̄ − θ)− a(θ̄ − θ)3

4
.

We ignore the boundaries of type space for now. The expected revenue is solely deter-

mined by the width of the covered interval. Denote the width |θ̄ − θ| as w.

The problem is now

max
w

ūw − a

4
w3.

The maximizer is w∗ =
√

4ū
3a
. When w∗ < 1

2
, the optimal pair only covers a subset of

consumer types. When w∗ ≥ 1
2
, all consumer types are covered, and the price is determined

by making boundary types indifferent between buying and not buying the designed product.

Formalizing the above result, we have the following lemma.

Lemma 3.3.3 (Optimal pair). Suppose the firm and the consumer interact for one period,

(a) if ū ≥ 3a
16
, there exists a unique optimal pair: (1

4
, ū− a

16
) and (3

4
, ū− a

16
);

(b) if ū < 3a
16
, any pair (vl,

2
3
ū) and (vr,

2
3
ū) (vl < vr) is optimal for the firm if they satisfy

the following conditions

vl ≥
w∗

2
,

1− vr ≥
w∗

2
,

vr − vl ≥ w∗,

where w∗ =
√

4ū
3a
.
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Similarly to the optimal contract, when a is small, the degree of “substitutability” be-

tween products is small, and for each consumer type, the difference in utility obtained from

the products are small. In this case, it is in the firm’s interest to serve the whole market.

When a is large, the degree of “substitutability” is large, and it is better to only serve part

of the market. The conditions in the second case are that the intervals covered don’t overlap

and they don’t extend beyond the boundaries of the market (0 and 1).

3.3.3 Optimal three contracts

Though in our model, the firm cannot offer three contracts in any period, it does not

mean that the firm cannot segment the markets into three parts. In later sections, we will

show it is possible. For now, let us answer the following question: when the firm is able to

provide three contracts, what will the optimal triple look like? For the case of optimal two

contracts, we have proved that the contracts do not overlap. Moreover, whether the optimal

pair of contracts cover the whole market depends on parameters ū and a. We have similar

results for the optimal three contracts.

We denote the triple as (vl, pl), (vm, vm) and (vr, pr) with vl ≤ vm ≤ vr, and they cover

[θl, θ̄l], [θm, θ̄m] and [θr, θ̄r], respectively. For i ∈ {l,m, r},

ū− a(vi − θi)
2 − pi = 0,

ū− a(vi − θ̄i)
2 − pi = 0.

Similarly, for any optimal triple, [θl, θ̄l], [θm, θ̄m] and [θr, θ̄r] are subsets of [0, 1]. Thus

0 ≤ θl ≤ θm ≤ θr and θ̄l, θ̄m, θ̄r ≤ 1. We have the following result.

Lemma 3.3.4. Suppose the firm and the consumer interact for one period, then for any

optimal triple (vl, pl), (vm, pm), and (vr, pr), the intersection of any two of the intervals

covered is empty or a singleton, that is, θ̄l ≤ θm and θ̄m ≤ θr.
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Intuitively, the submarkets served by any optimal three contracts do not overlap. We

can now solve for the optimal triple. By offering (vl, pl), (vm, pm), and (vr, pr), the firm’s

expected revenue is

[ū− a(θl −
θl + θ̄l

2
)2](θ̄l − θl)

+[ū− a(θm − θm + θ̄m
2

)2](θ̄m − θm)

+[ū− a(θr −
θr + θ̄r

2
)2](θ̄r − θr).

Again, when we ignore the boundaries of type space, the problem is reduced to

max
w

ūw − a

4
w3

and w∗ =
√

4ū
3a

is the maximizer.

We have the optimal three contracts in different cases depending on the values of ū and

a.

Lemma 3.3.5 (Optimal triple). Suppose the firm and the consumer interact for one period,

(a) if ū ≥ a
12
, there exists a unique optimal triple: (1

6
, ū− a

36
), (1

2
, ū− a

36
), and (5

6
, ū− a

36
);

(b) if ū < a
12
, any triple (vl,

2
3
ū), (vm,

2
3
ū), and (vr,

2
3
ū) (vl < vm < vr) is optimal for the

firm if they satisfy the following conditions

vl ≥
w∗

2
,

1− vr ≥
w∗

2
,

vm − vl ≥ w∗,

vr − vm ≥ w∗,

where w∗ =
√

4ū
3a
.
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Similarly, when a is small, the optimal triple covers the entire market, and when a is

large, only parts of the market are covered.

Before moving to the two-period game, we would like to highlight some differences be-

tween the current paper and Hidir and Vellodi (2021).

First, the setting in Hidir and Vellodi (2021) is static. They are interested in incentive-

compatible market segmentation, and segmentations can be implemented using a cheap talk

game. On the contrary, this paper studies the repeated interaction of the firm and the con-

sumer. Specifically, we are interested in the effect of the “opt-out” option. Second, although

Hidir and Vellodi (2021) also characterize the seller-optimal segmentation, their focus is on

the buyer-optimal segmentation. Our paper explores the seller-optimal equilibrium with and

without “opt-out” for the following reason. Currently, many privacy protection tools are pro-

vided by online retailers themselves. For example, they decide whether to allow customers

to use guest checkout or to turn off personalized recommendations. We believe studying

the welfare effect in different seller-optimal equilibria improves our understanding of those

privacy protection tools.

3.4 Firm and consumer interact for two periods

Throughout the paper, we assume that ū ≥ 3a
4
. Within this range, when the firm and

the consumer interact only once, the optimal contract, the optimal pair, and the optimal

triple all cover the whole market and they are unique. We make this assumption for clearer

exposition.

In this section, we first define and characterize the firm-optimal equilibrium when there

is no opt-out choice. Then we explore the welfare effect after adding the opt-out choice.

3.4.1 Firm-optimal equilibrium where there is no opt-out choice

When there is no opt-out choice, at the beginning of period 2, the firm observes the con-

sumer’s purchase history from period 1. In the first period, the firm provides two products.
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Let us call them the left product (vl) and the right product (vr). There are three possible

purchase histories for the consumer: she bought vl, she bought vr, or she bought nothing

in the first period. Observing different purchase histories, the firm gets some information

about the consumer type, and it can base the second product offer on its updated belief.

One equilibrium is straightforward: in period 1, the firm offers the optimal pair; in period

2, the firm offers the same contract if the consumer chose some contract in t1 , and offers

(1
2
, ū) if nothing was bought in the first period.4 In this equilibrium, all consumer types buy

some product in both periods.

Proposition 3.4.1. In the two-period game without opt-out choice, there exists an equilib-

rium as follows:

(i) In the first period, the firm offers (1
4
, ū− a

16
) and (3

4
, ū− a

16
);

(ii) In the second period, observing a purchase history of 1
4
(or 3

4
), the firm offers (1

4
, ū− a

16
)

(or (3
4
, ū − a

16
)). If the firm observes that there is no purchase in the first period, it

offers (1
2
, ū);

(iii) In the first period, the consumer chooses the contract which gives her highest surplus

in that period as long as it is non-negative;

(iv) In the second period, the consumer accepts the contract as long as it gives her a non-

negative surplus in that period.

In the equilibrium described above, the firm is essentially providing the optimal pair

twice. Given the constraint on the number of contracts in each period, one may wonder

whether this is the best the firm can do. The answer is “yes”. Before presenting this result,

let us introduce the welfare criterion and formally define firm-optimal equilibrium.

Consider an equilibrium where the firm offers (vl, pl) and (vr, pr) in the first period, and

offers (v2, p2) in the second period. For i ∈ {l, r, 2}, let Θ̂(vi, pi) denote the set of types who

accept (vi, pi) in this equilibrium. Denote vectors of products and prices offered as v and p

respectively, then the ex-ante surplus for the firm is:

PS(v,p) =

∫
Θ̂(vl,pl)

pldθ +

∫
Θ̂(vr,pr)

prdθ + δ

∫
Θ̂(v2,p2)

p2dθ.

4Off the equilibrium path, when the firm offers product 1
2 for non-buying types, it assigns probability 1

to θ = 1
2 .
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Definition 3.4.1 (Firm-optimal equilibrium). A Perfect Bayesian Equilibrium is firm-

optimal if it gives the firm the highest ex-ante surplus among all equilibria.

Throughout the paper, we also refer to the ex-ante PS as welfare for the firm.

Recall that for the equilibrium in Proposition 3.4.1, in period 1 the the firm provides

the optimal pair and all types buy some products. In particular, Θ̂(1
4
, ū − a

16
) = [0, 1

2
] and

Θ̂(3
4
, ū− a

16
) = [1

2
, 1]. In period 2, if the firm observes a purchase history of product 1

4
(or 3

4
),

it offers (1
4
, ū− a

16
) (or (3

4
, ū− a

16
)), and in both cases, the consumer will accept the contract.

Therefore, the welfare of the firm in this equilibrium is

PS = ū− a

16
+ δ(ū− a

16
)

= (1 + δ)(ū− a

16
).

We now show it is the maximum welfare the firm can get in equilibrium.

Proposition 3.4.2. When there is no opt-out choice, the equilibrium in Proposition 3.4.1

is firm-optimal.

Intuitively, when ū ≥ 3a
4
, the products are close substitutes (or different consumer types

have similar preferences), so it is in the interest of the firm to sell to all types in period

1, instead of excluding some types. Thus offering the optimal pair twice gives the firm the

highest surplus.

3.4.2 An improvement for the firm when the opt-out choice is available

Let us refer to the equilibrium in Proposition 3.4.1 as the firm-optimal equilibrium without

opt-out. In this equilibrium, the firm segments the whole market into two groups - the left

and the right half of [0, 1]. In Hidir and Vellodi (2021) where the seller can segment the

market as finely as possible, full segmentation is optimal for the seller. In general, more

segments are better for the seller as it can charge higher prices in each segment. In our

model, the firm is restricted to two contracts in period 1 and one contract in period 2. When

all types buy some product in period 1, the best the firm can do is to segment the market
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into two. However, when the opt-out choice is available, there exists an equilibrium in which

the market is segmented into three sub-markets in period 2. Moreover, the ex-ante PS is

higher in this equilibrium.

Proposition 3.4.3. In the two-period game with opt-in/out choice, there exists an equilib-

rium as follows:

(i) In the first period, the firm offers (1
4
, ū− a

16
) and (3

4
, ū− a

16
);

(ii) In the second period, observing a purchase history of 1
4
(or 3

4
), the firm offers (1

6
, ū− a

36
)

(or (5
6
, ū− a

36
)). If the firm observes that there is no purchase in the first period, it offers

(1
2
, ū); if the firm observes that the consumer chose to opt out, it offers (1

2
, ū− a

36
);

(iii) In the first period, the consumer chooses the contract which gives her highest surplus

in that period as long as it is non-negative;

(iv) In the second period, the consumer chooses to opt out if her type is in [1
3
, 2
3
]. The

consumer accepts the contract as long as it gives her a non-negative surplus in that

period.

In the proof of Proposition 3.4.3, we list the purchase decisions and opt-out choices for

different consumer types. In particular, all types buy some product at the same price in each

period. Thus the ex-ante PS is

(ū− a

16
) + δ(ū− a

36
).

The first term is the firm’s expected revenue from period 1 and the second term is the

expected revenue from period 2. Recall that the ex-ante PS in the firm-optimal equilibrium

without opt-out is (1+δ)(ū− a
36
), so the firm’s surplus is improved. Firm-optimal equilibrium

when opt-out is available can be defined in a similar way as in the previous subsection. Now

we show that the equilibrium in Proposition 3.4.3 is firm-optimal.

Proposition 3.4.4. When there is an opt-in/out choice, the equilibrium in Proposition 3.4.3

is firm-optimal.

We refer to the equilibrium in Proposition 3.4.3 as the firm-optimal equilibrium with opt-

out. For the firm, the key to welfare improvement lies in the second period. Now with the

opt-out choice, the firm can segment the market more finely and charge higher prices. In

53



general, when the consumer chooses whether to opt out, she reveals additional information

which is used to the advantage of the firm. In particular, in the firm-optimal equilibrium

with opt-out, consumer types in [1
3
, 2
3
] choose to opt out. Observing such a choice, the firm

expects the consumer to be types in the middle of the interval [0, 1] and provide the product

in the middle.

Comparing the two equilibria, the firm is better off with the opt-out choice. What about

the consumer? At first glance, in the equilibrium with opt-out, all types pay higher prices

in period 2 but some types get products closer to her ideal product, so the answer is not

obvious. In the next subsection we will compare the ex-ante and interim consumer surpluses

across the two equilibria.

3.4.3 Comparing consumer surpluses

Similar to previous subsections, the ex-ante surplus for the consumer is defined as:

CS(v,p) =

∫
Θ̂(vl,pl)

[ū− a(vl − θ)2 − pl]dθ +

∫
Θ̂(vr,pr)

[ū− a(vr − θ)2 − pr]dθ

+δ

∫
Θ̂(v2,p2)

[ū− a(v2 − θ)2 − p2]dθ.

For any particular type θ, if she chooses (vi, pi) (i ∈ {l, r}) and (v2, p2), her interim CS

is:

CS(v,p; θ) = ū− a(vi − θ)2 − pi + δ[ū− a(v2 − θ)2 − p2].

First, we compare the ex-ante CS. All calculations are relegated to the Appendix.

Proposition 3.4.5 (Ex-ante CS). The ex-ante CS in the firm-optimal equilibrium without

opt-out is higher than in the firm-optimal equilibrium with opt-out.

From an ex-ante view, the consumer is worse off when the opt-out choice is available.

Our interpretation is that the expected cost of higher prices exceeds the expected benefit

of better-matched products. When we calculate the ex-ante CS, we aggregate the effect of
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opt-out on each type, it is interesting to see how the welfare of each consumer type changes

after adding the opt-out choice.

Now we compare the welfare after the consumer learns her type.

Proposition 3.4.6 (Interim CS). For θ ∈ (0, 4
9
)∪ (5

9
, 1), the interim CS in the firm-optimal

equilibrium without opt-out is higher. For θ ∈ (4
9
, 5
9
), the interim CS in the firm-optimal

equilibrium with opt-out is higher. For boundary types θ ∈ {0, 4
9
, 5
9
, 1}, the interim CS is the

same in the two equilibria.

We illustrate the result above in Figure 4. In the firm-optimal equilibrium with opt-out,

the whole market is represented by the interval [0, 1], and the three submarkets [0, 1
3
), [1

3
, 2
3
],

and (2
3
, 1] are represented in different colors.

Figure 4: Interim CS comparison

Generally, the shorter the covered sub-market is, the higher the price for that sub-market

will be. In any particular sub-market, as the firm offers the product at the middle, consumer

types closer to the middle are better off compared to types farther away from the middle.

Therefore, for the entire market, only types close to 1
2
benefit from the opt-out choice: they

buy product 1
4
or 3

4
in the equilibrium without opt-out and buy product 1

2
when opt-out is

available. Given the contracts offered, the consumer cannot commit not to opt out if her

type is in the middle.
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3.5 Conclusion

This paper studies a two-period with a multi-product monopoly firm and a consumer.

The consumer’s type is unknown to the firm but her choice reveals some information. In the

first period, the firm is able to offer two contracts (product-price pairs) and in the second

period, it is only able to offer one contract. We study the setting where the consumer

cannot hide her purchase history (i.e., cannot opt out) and the setting where she can. Our

model is constructed to study the following scenario: when a new customer visits an online

retailer’s website, little is known about her preference, and thus the retailer provides a range

of products, hoping to learn from the customer’s choice. After the initial interaction, some

information is revealed, and now the retailer targets one product to the customer. Our

main research question is, what is the welfare implication when the consumer can opt out of

personalization?

We first characterize the firm-optimal equilibrium without opt-out and calculate the

surpluses for the firm and the consumer, and then do the same thing after adding the opt-

out choice. We find that from an ex-ante view, with the opt-out choice, the firm is better

off while the consumer is worse off. The main reason is that with the opt-out choice, the

firm can segment the market more finely and increase prices in each segment. Though some

types now have products closer to their ideal point, this benefit is smaller than the cost of

higher prices when we consider all types together. But from an interim view, those types

closer to the middle point of the type space are better off when they can choose to opt out.

As consumers have more privacy concerns, regulators and internet companies give them

more control over their data. For example, consumers can now opt out of personalization on

many websites and apps. However, this option comes at a cost, and sometimes consumers

are worse off. The mere choice to hide one’s purchase history, browsing history, or other

activities online can reveal valuable information to the internet companies and the latter

may use that information to increase revenue at the expense of consumers. Our seemingly

counter-intuitive results suggest that regulators need to consider the privacy protection tools

in a dynamic and strategic setting.
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Appendix A Omitted Proofs

A.1 Omitted Proofs in Chapter 1

A.1.1 Proof of Lemma 1.2.1

Proof. Denote the equilibrium cutoffs as c1 and c2. There are three cases to consider.

Case 1: c1 = c2.

For a student with signal x̂, her expected utility

if she applies to s1 first: Pr(x ≥ c1|x̂)u1

if she applies to s2 first: Pr(x ≥ c2|x̂)u2

Since Pr(x ≥ c1|x̂)u1 > Pr(x ≥ c2|x̂)u2 for all x̂, all students apply to s1 first in this

case.

Case 2: c1 > c2.

For a student with signal x̂, her expected utility

if she applies to s1 first: Pr(x ≥ c1|x̂)u1 + Pr(c1 > x ≥ c2|x̂)u2

if she applies to s2 first: Pr(x ≥ c2|x̂)u2

Since for all x̂,

Pr(x ≥ c1|x̂)u1 + Pr(c1 > x ≥ c2|x̂)u2 > Pr(x ≥ c1|x̂)u2 + Pr(c1 > x ≥ c2|x̂)u2

= Pr(x ≥ c2|x̂)u2,

all students apply to s1 first in this case.

Case 3: c1 < c2.
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For a student with signal x̂, her expected utility

if she applies to s1 first: Pr(x ≥ c1|x̂)u1

if she applies to s2 first: Pr(x ≥ c2|x̂)u2 + Pr(c2 > x ≥ c1|x̂)u1

Since for all x̂,

Pr(x ≥ c1|x̂)u1 = Pr(x ≥ c2|x̂)u1 + Pr(c2 > x ≥ c1|x̂)u1

> Pr(x ≥ c2|x̂)u2 + Pr(c2 > x ≥ c1|x̂)u1,

all students apply to s1 first in this case.

Thus proof is complete.

A.1.2 Proof of Lemma 1.2.2

Proof. Suppose not. Then there is an equilibrium such that some school sk still has seats

left after period 2.

First, we prove that sk rejected some applicants in some period. Suppose sk reject no

applicant in either period. Denote the measure of students who apply to sk first as m. Then

the measure of students who apply to the other school (denote as sj) first is 1−m. In period

1, sj admitted as most qj students, so at least max{0, 1 −m − qj} students apply to sk in

period 2. Since sk rejected no students, it admitted at least m + (1 − m − qj) = 1 − qj

students. But 1− qj > qk, contradicting the fact that sk still has seat left after period 2.

Since sk rejected some applicants at some period, it has an incentive to lower its cutoff

at that period (and it will not affect the students enrolled by sk in the other period). But

this contradicts the fact it is an equilibrium.

A.1.3 Proof of Lemma 1.2.3

Proof. The total measure of students whose ability is no less than c∗2 is q1 + q2. Schools

know that they can fill all the seats with those students, so in equilibrium no school will set

a cutoff lower than c∗2.
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A.1.4 Proof of Proposition 1.2.2

Proof. Part (iii) follows from Corollary 1.2.1. Now we prove (i) and (ii) by contradiction.

Part (i): Suppose in equilibrium there is a set of students A = {i|xi ≥ c∗1} with a

positive measure that is admitted by s2. Then by Lemma 1.2.2, there is a set of students

B = {i|c∗2 ≤ xi < c∗1} with the same measure that is admitted by s1. Students in A have the

incentive to follow the same application order as students in B and will be admitted by s1.

This is a contradiction to the equilibrium.

Part (ii): Suppose in equilibrium there is a set of students C = {i|c∗2 ≤ xi < c∗1} with a

positive measure that is admitted by s1. Then by Lemma 1.2.2, there is a set of students

D = {i|xi ≥ c∗1} with the same measure that is admitted by s2. Students in D have the

incentive to follow the same application order as students in C and will be admitted by s1.

This is a contradiction to the equilibrium.

A.1.5 Proof of Proposition 1.3.1

Proof. We first show that in equilibrium, all students apply to s1 first.

Denote the equilibrium cutoffs as ĉ1 and ĉ2.

For a student with ability x, if she applies to s1 first, her expected utility is

Pr(x+ ϵ ≥ ĉ1|x)u1 + Pr(ĉ1 > x+ ϵ|x)× Pr(x+ ϵ′ ≥ ĉ2|x)u2

=[1−G(
ĉ1 − x

σϵ

)]u1 +G(
ĉ1 − x

σϵ

)[1−G(
ĉ2 − x

σϵ

)]u2

where ϵ, ϵ′
iid∼ N(0, σ2

ϵ ).

If she applies to s2 first, her expected utility is

Pr(x+ ϵ ≥ ĉ2|x)u2 + Pr(ĉ2 > x+ ϵ|x)× Pr(x+ ϵ′ ≥ ĉ1|x)u1

=[1−G(
ĉ2 − x

σϵ

)]u2 +G(
ĉ2 − x

σϵ

)[1−G(
ĉ1 − x

σϵ

)]u1.

Subtracting the latter from the former, we get the difference:

[1−G(
ĉ1 − x

σϵ

)][1−G(
ĉ2 − x

σϵ

)](u1 − u2) > 0 for all x
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Hence in equilibrium, all students apply to s1 in period 1, and s1 sets a cutoff such that

the top-q1 are admitted. In period 2, rejected students apply to s2, and the cutoff is set such

that top-q2 of those students are admitted.

A.2 Omitted Proofs in Chapter 2

A.2.1 Proof of Proposition 2.3.1

Proof. Given that all sender types censor the signal, when we check potential deviations for

the receiver, we are back to the case of CS and indeed there is no profitable deviation.

We specify R’s off-path belief as follows: when observing no censorship or any off-path

message, he believes the sender’s type is from the first interval [0, aCS). Then the sender has

no profitable deviation.

A.2.2 Useful results for other proofs

We first present some results that will be used in other proofs.

In the main part, we define R’s optimal actions, and they are functions of boundary

type a: x1h(a) = 4λa3+3(1−λ)a2

6λa2+6(1−λ)a
, x1l(a) = −4λa3+3(1+λ)a2

−6λa2+6(1+λ)a
, x2h(a) = 3+λ−4λa3−3(1−λ)a2

6−6λa2−6(1−λ)a
, and

x2l(a) =
3−λ+4λa3−3(1+λ)a2

6+6λa2−6(1+λ)a
. Taking derivatives, we have the following fact.

Fact A.2.1. For a ∈ (0, 1),

∂x1h

∂a
=

2

3
− (1− λ)2

6(λa+ 1− λ)2
∈ (

1

2
,
2

3
− (1− λ)2

6
) ⊂ (

1

2
,
2

3
),

∂x1l

∂a
=

2

3
− (1 + λ)2

6(−λa+ 1 + λ)2
∈ (

2

3
− (1 + λ)2

6
,
1

2
) ⊂ (0,

1

2
),

∂x2h

∂a
=

2

3
− (1 + λ)2

6(λa+ 1)2
∈ (

2

3
− (1 + λ)2

6
,
1

2
) ⊂ (0,

1

2
),

∂x2l

∂a
=

2

3
− (1− λ)2

6(1− λa)2
∈ (

1

2
,
2

3
− (1− λ)2

6
) ⊂ (

1

2
,
2

3
).
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Lemma A.2.1. x2h(a)− x1h(a) > x2l(a)− x1l(a) for a ∈ (0, 1
2
), x2h(a)− x1h(a) < x2l(a)−

x1l(a) for a ∈ (1
2
, 1), and x2h(

1
2
)− x1h(

1
2
) = x2l(

1
2
)− x1l(

1
2
).

Proof. With some calculations,

x2h(a)− x2l(a) =
λ(1− a)2

3− 3λ2a2
,

x1h(a)− x1l(a) =
λa2

3− 3λ2(1− a)2
.

Define β : (0, 1) → R as β(t) = λ(1−t)2

3−3λ2t2
. Differentiating we get β′(t) = 6λ(1−t)(λ2t−1)

(3−3λ2t2)2
< 0.

Note that x2h(a) − x2l(a) = β(a) and x1h(a) − x1l(a) = β(1 − a). Therefore, a < 1
2
⇔

a < 1 − a ⇒ β(a) > β(1 − a) ⇔ x2h(a) − x2l(a) > x1h(a) − x1l(a). Similarly we have

a > 1
2
⇒ x2h(a)− x2l(a) < x1h(a)− x1l(a) and x2h(

1
2
)− x2l(

1
2
) = x1h(

1
2
)− x1l(

1
2
).

Rearrange the terms and the proof is complete.

Claim A.2.1. For a ∈ (0, 1
2
), 2x2l(a) > x1h(a) + x2h(a).

Proof. From Fact A.2.1, ∂(x2l−x1h)
∂a

= (1−λ)2

6(λa+1−λ)2
− (1−λ)2

6(1−λa)2
> 0 and ∂(x2l−x2h)

∂a
> 0. Therefore,

2x2l(a)− x1h(a)− x2h(a) ≥ lim
a→0

[2x2l(a)− x1h(a)− x2h(a)]

=
3− λ

3
− 3 + λ

6

=
1− λ

2
> 0.

Claim A.2.2. For a ∈ (1
2
, 1), 2x1h(a) < x1l(a) + x2l(a).

Proof. From Fact A.2.1, ∂(x1h−x1l)
∂a

> 0, and ∂(x1h−x2l)
∂a

= (1−λ)2

6(1−λa)2
− (1−λ)2

6(λa+1−λ)2
> 0.

Then

2x1h(a)− x1l(a)− x2l(a) ≤ lim
a→1

[2x1h(a)− x1l(a)− x2l(a)]

=
3 + λ

3
− 3− λ

6
− 1

=
λ− 1

2
< 0.

The above results are useful in the proof of Proposition 2.3.2.
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A.2.3 Proof of Lemma 2.3.1

Proof. Since

x1(a) =
a

2
=

∫ a

0
θdθ∫ a

0
1dθ

,

x1h(a) =

∫ a

0
s(θ)θdθ∫ a

0
s(θ)dθ

,

x1l(a) =

∫ a

0
(1− s(θ))θdθ∫ a

0
(1− s(θ))dθ

,

part (a) is straightforward.

For part (b), with some calculations, we have

x1h(a) =
4λa3 + 3(1− λ)a2

6λa2 + 6(1− λ)a
,

x1l(a) =
−4λa3 + 3(1 + λ)a2

−6λa2 + 6(1 + λ)a
.

Thus

x1h(a)− x1(a) =
λa2

6(λa− λ+ 1)
> 0,

x1l(a)− x1(a) =
λa2

6(λa− λ− 1)
< 0.

Similarly,

x2(a) =
a+ 1

2
=

∫ 1

a
θdθ∫ 1

a
1dθ

,

x2h(a) =

∫ 1

a
s(θ)θdθ∫ 1

a
s(θ)dθ

,

x2l(a) =

∫ 1

a
(1− s(θ))θdθ∫ 1

a
(1− s(θ))dθ

,

and part (c) is apparent.

For part (d), we have

x2h(a) =
3 + λ− 4λa3 − 3(1− λ)a2

6− 6λa2 − 6(1− λ)a
,
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x2l(a) =
3− λ+ 4λa3 − 3(1 + λ)a2

6 + 6λa2 − 6(1 + λ)a
.

Thus

x2h(a)− x2(a) =
λ(a− 1)2

6(λa+ 1)
> 0,

x2l(a)− x2(a) =
λ(a− 1)2

6(λa− 1)
< 0.

A.2.4 Proof of Proposition 2.3.2

Proof. Part 1: We prove that for b < 3−λ
12

, the arbitrage condition holds for some a ∈ (0, 1
2
).

We want to show g(a) = 0 for some a ∈ (0, 1
2
).

With some calculations, we get x1h(a) =
4λa3+3(1−λ)a2

6λa2+6(1−λ)a
, x1l(a) =

−4λa3+3(1+λ)a2

−6λa2+6(1+λ)a
, x2h(a) =

3+λ−4λa3−3(1−λ)a2

6−6λa2−6(1−λ)a
, and x2l(a) =

3−λ+4λa3−3(1+λ)a2

6+6λa2−6(1+λ)a
. Note that

lima→0x1h(a) = lima→0x1l(a) = 0 and lima→1x2h(a) = lima→1x2l(a) = 1 by the L’Hospital’s

Rule.

Define x1h(0) = x1l(0) = 0 and x2h(1) = x2l(1) = 1. We have extended g to a continuous

function on [0, 1].

g(0) =
1− λ

2
(
3 + λ

6
− 2b)

3 + λ

6
+

1 + λ

2
(
3− λ

6
− 2b)

3− λ

6

=
−5λ2 + 9

36
− 3− λ2

3
b

Thus g(0) > 0 iff b < 9−5λ2

12(3−λ2)
. It can be verified that for 0 < λ < 1, 3−λ

12
< 9−5λ2

12(3−λ2)
, so

g(0) > 0.

g(
1

2
) =

1

2
(
3− λ

12− 6λ
+

9 + 5λ

12 + 6λ
− 1− 2b)(

9 + 5λ

12 + 6λ
− 3− λ

12− 6λ
)

+
1

2
(
3 + λ

12 + 6λ
+

9− 5λ

12− 6λ
− 1− 2b)(

9− 5λ

12− 6λ
− 3 + λ

12 + 6λ
)

=− b(
9 + 5λ

12 + 6λ
− 3− λ

12− 6λ
)− b(

9− 5λ

12− 6λ
− 3 + λ

12 + 6λ
)

< 0
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By the Intermediate Value Theorem, there is a a ∈ (0, 1
2
) such that (A) holds.

Part 2: We prove that the solution is unique in [0, 1
2
].

Clearly, 0 and 1
2
are not solutions to (A). Suppose there are at least two solutions in

(0, 1
2
). Since g(0) > 0, g(1

2
) < 0, and g is differentiable on (0, 1), there is some a∗ ∈ (0, 1

2
)

such that

g(a∗) = 0 and g′(a∗) ≥ 0.

We have

g(a∗) =s(a∗)(x1h(a
∗) + x2h(a

∗)− 2a∗ − 2b)(x2h(a
∗)− x1h(a

∗))

+ (1− s(a∗))(x1l(a
∗) + x2l(a

∗)− 2a∗ − 2b)(x2l(a
∗)− x1l(a

∗))

=0.

Since s(a∗), x2h(a
∗)−x1h(a

∗), 1−s(a∗), and x2l(a
∗)−x1l(a

∗) are all positive, and x1h(a
∗)+

x2h(a
∗)− 2a∗ − 2b > x1l(a

∗) + x2l(a
∗)− 2a∗ − 2b, we must have

x1h(a
∗) + x2h(a

∗)− 2a∗ − 2b > 0

and

x1l(a
∗) + x2l(a

∗)− 2a∗ − 2b < 0.

g′(a) =λ(x1h(a) + x2h(a)− 2a− 2b)(x2h(a)− x1h(a))

+ s(a)(
∂x1h

∂a
+

∂x2h

∂a
− 2)(x2h(a)− x1h(a))

+ s(a)(x1h(a) + x2h(a)− 2a− 2b)(
∂x2h

∂a
− ∂x1h

∂a
)

− λ(x1l(a) + x2l(a)− 2a− 2b)(x2l(a)− x1l(a))

+ (1− s(a))(
∂x1l

∂a
+

∂x2l

∂a
− 2)(x2l(a)− x1l(a))

+ (1− s(a))(x1l(a) + x2l(a)− 2a− 2b)(
∂x2l

∂a
− ∂x1l

∂a
)

From Lemma A.2.1, we know that for a ∈ (0, 1
2
), x2h(a)−x1h(a) > x2l(a)−x1l(a). From

Fact A.2.1, ∂x1h

∂a
∈ (1

2
, 2
3
), ∂x2h

∂a
∈ (0, 1

2
), ∂x1l

∂a
∈ (0, 1

2
), and ∂x2l

∂a
∈ (1

2
, 2
3
).
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Thus,

g′(a∗) <λ(x2h(a
∗)− x1h(a

∗))(x1h(a
∗) + x2h(a

∗)− x1l(a
∗)− x2l(a

∗))

+ s(a∗)(
∂x1h

∂a
(a∗) +

∂x2h

∂a
(a∗)− 2)(x2h(a

∗)− x1h(a
∗))

+ (1− s(a∗))(
∂x1l

∂a
(a∗) +

∂x2l

∂a
(a∗)− 2)(x2l(a

∗)− x1l(a
∗))

<λ(x2h(a
∗)− x1h(a

∗))(x1h(a
∗) + x2h(a

∗)− x1l(a
∗)− x2l(a

∗))

− 5

6
s(a∗)(x2h(a

∗)− x1h(a
∗))

− 5

6
(1− s(a∗))(x2l(a

∗)− x1l(a
∗))

<λ(x2h(a
∗)− x1h(a

∗))(x1h(a
∗) + x2h(a

∗)− x1l(a
∗)− x2l(a

∗))

− 5

6
(x2l(a

∗)− x1l(a
∗)).

Then from Claim A.2.1,

g′(a∗) <λ(x2h(a
∗)− x1h(a

∗))(x2l(a
∗)− x1l(a

∗))

− 5

6
(x2l(a

∗)− x1l(a
∗))

=[λ(x2h(a
∗)− x1h(a

∗))− 5

6
](x2l(a

∗)− x1l(a
∗)).

Since ∂(x2h−x1h)
∂a

< 0, x2h(a
∗) − x1h(a

∗) ≤ lima→0[x2h(a) − x1h(a)] =
3+λ
6
. Then g′(a∗) <

(3λ+λ2

6
− 5

6
)(x2l(a

∗)− x1l(a
∗)) < 0, which contradicts g′(a∗) ≥ 0.

Part 3: We prove that there is no solution in (1
2
, 1].

Suppose g(a) = 0 has a solution in (1
2
, 1].

g(1) =
1 + λ

2
(
3 + λ

6
+ 1− 2− 2b)(1− 3 + λ

6
)

+
1− λ

2
(
3− λ

6
+ 1− 2− 2b)(1− 3− λ

6
)

=
1 + λ

2
(
λ− 3

6
− 2b)

3− λ

6
+

1− λ

2
(
−λ− 3

6
− 2b)

3 + λ

6

<0
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Then since g(1
2
) < 0, there is some â ∈ (1

2
, 1) such that

g(â) = 0 and g′(â) ≥ 0.

Again, by the same reasoning, we must have

x1h(â) + x2h(â)− 2â− 2b > 0

and

x1l(â) + x2l(â)− 2â− 2b < 0.

From Lemma A.2.1, for a ∈ (1
2
, 1), x2h(a)− x1h(a) < x2l(a)− x1l(a). Thus,

g′(â) <λ(x2l(â)− x1l(â))(x1h(â) + x2h(â)− x1l(â)− x2l(â))

+ s(â)(
∂x1h

∂a
(â) +

∂x2h

∂a
(â)− 2)(x2h(â)− x1h(â))

+ (1− s(â))(
∂x1l

∂a
(â) +

∂x2l

∂a
(â)− 2)(x2l(â)− x1l(â))

<λ(x2l(â)− x1l(â))(x1h(â) + x2h(â)− x1l(â)− x2l(â))

− 5

6
s(â)(x2h(â)− x1h(â))

− 5

6
(1− s(â))(x2l(â)− x1l(â))

≤λ(x2l(â)− x1l(â))(x1h(â) + x2h(â)− x1l(â)− x2l(â))

− 5

6
(x2h(â)− x1h(â)).

From Claim A.2.2,

g′(â) <λ(x2l(â)− x1l(â))(x2h(â)− x1h(â))

− 5

6
(x2h(â)− x1h(â))

=[λ(x2l(â)− x1l(â))−
5

6
](x2h(â)− x1h(â)).

Since ∂(x2l−x1l)
∂a

> 0, x2l(â) − x1l(â) ≤ lima→1[x2l(a) − x1l(a)] = 3+λ
6
. Then g′(â) <

(3λ+λ2

6
− 5

6
)(x2h(â)− x1h(â)) < 0, which contradicts g′(â) ≥ 0.

Thus proof is complete.
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A.2.5 Proof of Proposition 2.3.3

Proof. Let a ∈ (0, 1
2
) denote the unique solution to g = 0. For this particular a, define

L(θ) := −s(θ)(x1h(a)− θ − b)2 − (1− s(θ))(x1l(a)− θ − b)2

R(θ) := −s(θ)(x2h(a)− θ − b)2 − (1− s(θ))(x2l(a)− θ − b)2

Since a is fixed, for simplicity, we omit the dependence of x’s on a. Clearly, L(a)−R(a) =

0.

L(θ) (R(θ)) is the ex-ante expected payoff for sender when the state is θ and the receiver

believes that the state is in [0, a) ([a, 1]). For every θ ∈ [0, 1], denote L(θ)−R(θ) as (L−R)θ,

L′(θ)−R′(θ) as (L−R)′θ, and L′′(θ)−R′′(θ) as (L−R)′′θ . Then

(L−R)θ =(λθ +
1− λ

2
)(x1h + x2h − 2θ − 2b)(x2h − x1h)

+ (−λθ +
1 + λ

2
)(x1l + x2l − 2θ − 2b)(x2l − x1l)

(L−R)′θ =λ(x1h + x2h − 2θ − 2b)(x2h − x1h)

− 2(λθ +
1− λ

2
)(x2h − x1h)

− λ(x1l + x2l − 2θ − 2b)(x2l − x1l)

− 2(−λθ +
1 + λ

2
)(x2l − x1l)

(L−R)′′θ = −4λ[(x2h − x1h)− (x2l − x1l)]

By Lemma A.2.1, since a < 1
2
, (L − R)′′θ < 0, that is, L − R is concave. Then if

(L − R)0 > 0, by concavity, (L − R)θ > 0 for θ ∈ [0, a) and (L − R)θ < 0 for θ ∈ (a, 1].

Therefore, it is sufficient to prove (L−R)0 > 0.
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(L−R)0 =
1− λ

2
(x1h + x2h − 2b)(x2h − x1h) +

1 + λ

2
(x1l + x2l − 2b)(x2l − x1l) > 0

⇐⇒ b <
(1− λ)(x2h + x1h)(x2h − x1h) + (1 + λ)(x2l + x1l)(x2l − x1l)

2(1− λ)(x2h − x1h) + 2(1 + λ)(x2l − x1l)

Now we prove that for each λ, 3−λ
12

< (1−λ)(x2h+x1h)(x2h−x1h)+(1+λ)(x2l+x1l)(x2l−x1l)
2(1−λ)(x2h−x1h)+2(1+λ)(x2l−x1l)

. Denote

△ = (1−λ)(x2h+x1h)(x2h−x1h)+(1+λ)(x2l+x1l)(x2l−x1l)
2(1−λ)(x2h−x1h)+2(1+λ)(x2l−x1l)

.

First, note that

△− x2l + x1l

2

=
(1− λ)(x2h + x1h)(x2h − x1h)− (1− λ)(x2l + x1l)(x2h − x1h)

2(1− λ)(x2h − x1h) + 2(1 + λ)(x2l − x1l)
> 0.

Denote x1l =
C1
E1

= −4λa3+3(1+λ)a2

−6λa2+6(1+λ)a
and x2l =

C2
E2

= 3−λ+4λa3−3(1+λ)a2

6+6λa2−6(1+λ)a
,

x2l + x1l

2
≥ min{C1 + C2

2× E1
,
C1 + C2

2× E2
}

Simplifying we get

x2l + x1l

2
≥ min{ 3− λ

2[−6λa2 + 6(1 + λ)a]
,

3− λ

2[6 + 6λa2 − 6(1 + λ)a]
}.

For a ∈ (0, 1
2
), −6λa2 + 6(1 + λ)a ∈ (0, 3 + 3λ

2
) and 6+ 6λa2 − 6(1 + λ)a ∈ (3− 3λ

2
, 6), so

△ > x2l+x1l

2
> 3−λ

12
.

Therefore, when b < 3−λ
12

, we have (L−R)0 > 0. It implies that (L−R)θ > 0 for θ ∈ [0, a)

and (L−R)θ < 0 for θ ∈ (a, 1].

To constitute an equilibrium, we specify that when R observes off-path strategy, he

believes the state is in [0, a).

Thus proof is complete.

Claim A.2.3. For a ∈ (0, 1), x2h(a)− x2l(a) < x2l(a)− x1(a).
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Proof. From Fact 1, ∂(x2h−x2l)
∂a

< 0 and ∂(x2l−x1)
∂a

> 0.

Then

x2h(a)− x2l(a)− (x2l(a)− x1(a)) ≤x2h(0)− 2x2l(0) + x1(0)

=
3 + λ

6
− 3− λ

3

=
λ− 1

2
< 0.

A.2.6 Proof of Proposition 2.3.4

Proof. The method of proof is the same as that of Proposition 2.3.2.

Part 1: We prove that for b < 3−λ
12

, the arbitrage condition holds for some a ∈ (0, 1
2
).

We want to show h(a) = 0 for some a ∈ (0, 1
2
).

Define x2h(1) = x2l(1) = 1. We have extended h to a continuous function on [0, 1].

h(0) =
1− λ

2
(
3 + λ

6
− 2b)

3 + λ

6
+

1 + λ

2
(
3− λ

6
− 2b)

3− λ

6

=
−5λ2 + 9

36
− 3− λ2

3
b

Note that g(0) = h(0), so for b < 3−λ
12

, h(0) > 0.

h(
1

2
) =

1

2
(
1

4
+

9 + 5λ

12 + 6λ
− 1− 2b)(

9 + 5λ

12 + 6λ
− 1

4
)

+
1

2
(
1

4
+

9− 5λ

12− 6λ
− 1− 2b)(

9− 5λ

12− 6λ
− 1

4
)

=
λ2(7λ2 − 20)

144(λ2 − 4)2

− b(
9 + 5λ

12 + 6λ
− 1

4
)− b(

9− 5λ

12− 6λ
− 1

4
)

<0

By the Intermediate Value Theorem, there is a a ∈ (0, 1
2
) such that (A’) holds.

Part 2: We prove that the solution is unique in [0, 1
2
].
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Clearly, 0 and 1
2
are not solutions to (A). Suppose there are at least two solutions in

(0, 1
2
). Since h(0) > 0, h(1

2
) < 0, and h is differentiable on (0, 1), there is some a∗ ∈ (0, 1

2
)

such that

h(a∗) = 0 and h′(a∗) ≥ 0.

We have

h(a∗) =s(a∗)(x1(a
∗) + x2h(a

∗)− 2a∗ − 2b)(x2h(a
∗)− x1(a

∗))

+ (1− s(a∗))(x1(a
∗) + x2l(a

∗)− 2a∗ − 2b)(x2l(a
∗)− x1(a

∗))

=0.

Since s(a∗), x2h(a
∗)−x1(a

∗), 1− s(a∗), and x2l(a
∗)−x1(a

∗) are all positive, and x1(a
∗)+

x2h(a
∗)− 2a∗ − 2b > x1(a

∗) + x2l(a
∗)− 2a∗ − 2b, we must have

x1(a
∗) + x2h(a

∗)− 2a∗ − 2b > 0

and

x1(a
∗) + x2l(a

∗)− 2a∗ − 2b < 0.

h′(a) =λ(x1(a) + x2h(a)− 2a− 2b)(x2h(a)− x1(a))

+ s(a)(
∂x2h

∂a
− 3

2
)(x2h(a)− x1(a))

+ s(a)(x1(a) + x2h(a)− 2a− 2b)(
∂x2h

∂a
− 1

2
)

− λ(x1(a) + x2l(a)− 2a− 2b)(x2l(a)− x1(a))

+ (1− s(a))(
∂x2l

∂a
− 3

2
)(x2l(a)− x1(a))

+ (1− s(a))(x1(a) + x2l(a)− 2a− 2b)(
∂x2l

∂a
− 1

2
)
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Since x2h(a) − x1(a) > x2l(a) − x1(a) and from Fact A.2.1, ∂x1h

∂a
∈ (1

2
, 2
3
), ∂x2h

∂a
∈

(0, 1
2
), ∂x1l

∂a
∈ (0, 1

2
), and ∂x2l

∂a
∈ (1

2
, 2
3
)

h′(a∗) <λ(x2h(a
∗)− x1(a

∗))(x2h(a
∗)− x2l(a

∗))

+ s(a∗)(
∂x2h

∂a
(a∗)− 3

2
)(x2h(a

∗)− x1(a
∗))

+ (1− s(a∗))(
∂x2l

∂a
(a∗)− 3

2
)(x2l(a

∗)− x1(a
∗))

<λ(x2h(a
∗)− x1(a

∗))(x2h(a
∗)− x2l(a

∗))

− s(a∗)(x2h(a
∗)− x1(a

∗))

− 5

6
(1− s(a∗))(x2l(a

∗)− x1(a
∗))

<λ(x2h(a
∗)− x1(a

∗))(x2h(a
∗)− x2l(a

∗))

− 5

6
(x2l(a

∗)− x1(a
∗))

Then from Claim A.2.3,

h′(a∗) <λ(x2h(a
∗)− x1(a

∗))(x2l(a
∗)− x1(a

∗))

− 5

6
(x2l(a

∗)− x1(a
∗))

=[λ(x2h(a
∗)− x1(a

∗))− 5

6
](x2l(a

∗)− x1(a
∗)).

Since ∂(x2h−x1)
∂a

< 0, x2h(a
∗) − x1(a

∗) ≤ x2h(0) − x1(0) =
3+λ
6
. Then h′(a∗) < (3λ+λ2

6
−

5
6
)(x2l(a

∗)− x1(a
∗)) < 0, which contradicts h′(a∗) ≥ 0.

Part 3: We prove that there is no solution in (1
2
, 1].

Suppose h(a) = 0 has a solution in (1
2
, 1].

h(1) =
1 + λ

2
(
1

2
+ 1− 2− 2b)(1− 1

2
)

+
1− λ

2
(
1

2
+ 1− 2− 2b)(1− 1

2
)

=
1

2
(−1

2
− 2b)

<0
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Then since h(1
2
) < 0, there is some â ∈ (1

2
, 1) such that

h(â) = 0 and h′(â) ≥ 0.

Again, by the same reasoning, we must have

x1(â) + x2h(â)− 2â− 2b > 0

and

x1(â) + x2l(â)− 2â− 2b < 0.

Thus,

h′(â) <λ(x2h(â)− x1(â))(x2h(â)− x2l(â))

+ s(â)(
∂x2h

∂a
(â)− 3

2
)(x2h(â)− x1(â))

+ (1− s(â))(
∂x2l

∂a
(â)− 3

2
)(x2l(â)− x1(â))

<λ(x2h(â)− x1(â))(x2h(â)− x2l(â))

− s(â)(x2h(â)− x1(â))

− 5

6
(1− s(â))(x2l(â)− x1(â))

<λ(x2h(â)− x1(â))(x2h(â)− x2l(â))

− 5

6
(x2l(â)− x1(â)).

From Claim A.2.3,

h′(â) <λ(x2h(â)− x1(â))(x2l(â)− x1(â))

− 5

6
(x2l(â)− x1(â))

=[λ(x2h(â)− x1(â))−
5

6
](x2l(â)− x1(â))

<0.

This contradicts h′(â) ≥ 0.

Thus proof is complete.
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A.2.7 Proof of Proposition 2.3.5

Proof. Let a ∈ (0, 1
2
) be the unique solution to h = 0. For this particular a, we define

l(θ) := −(x1(a)− θ − b)2

r(θ) := −s(θ)(x2h(a)− θ − b)2 − (1− s(θ))(x2l(a)− θ − b)2

Since a is fixed, for simplicity, we omit the dependence of x’s on a. Clearly, l(a)−r(a) = 0.

l(θ) (r(θ)) is the ex-ante expected payoff for sender when the state is θ and the receiver

believes that the state is in [0, a) ([a, 1]). For every θ ∈ [0, 1], denote l(θ)− r(θ) as (l − r)θ,

l′(θ)− r′(θ) as (l − r)′θ, and l′′(θ)− r′′(θ) as (l − r)′′θ . Then

(l − r)θ =(λθ +
1− λ

2
)(x1 + x2h − 2θ − 2b)(x2h − x1)

+ (−λθ +
1 + λ

2
)(x1 + x2l − 2θ − 2b)(x2l − x1)

(l − r)′θ =λ(x1 + x2h − 2θ − 2b)(x2h − x1)

− 2(λθ +
1− λ

2
)(x2h − x1)

− λ(x1 + x2l − 2θ − 2b)(x2l − x1)

− 2(−λθ +
1 + λ

2
)(x2l − x1)

(l − r)′′θ = −4λ(x2h − x2l) < 0

Then if (l−r)0 > 0, by concavity, (l−r)θ > 0 for θ ∈ [0, a) and (l−r)θ < 0 for θ ∈ (a, 1].

Therefore, it is sufficient to prove (l − r)0 > 0.

(l − r)0 =
1− λ

2
(x1 + x2h − 2b)(x2h − x1) +

1 + λ

2
(x1 + x2l − 2b)(x2l − x1) > 0
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⇐⇒ b <
(1− λ)(x2h + x1)(x2h − x1) + (1 + λ)(x2l + x1)(x2l − x1)

2(1− λ)(x2h − x1) + 2(1 + λ)(x2l − x1)

Now we prove that for each λ, 3−λ
12

< (1−λ)(x2h+x1)(x2h−x1)+(1+λ)(x2l+x1)(x2l−x1)
2(1−λ)(x2h−x1)+2(1+λ)(x2l−x1)

. Denote

▽ = (1−λ)(x2h+x1)(x2h−x1)+(1+λ)(x2l+x1)(x2l−x1)
2(1−λ)(x2h−x1)+2(1+λ)(x2l−x1)

.

First, note that

▽− x1 + x2l

2

=
(1− λ)(x2h + x1)(x2h − x1)− (1− λ)(x2l + x1)(x2h − x1)

2(1− λ)(x2h − x1) + 2(1 + λ)(x2l − x1)
> 0.

Since d(x1+x2l)
da

> 0, for each λ ∈ (0, 1), ▽ > x1+x2l

2
> x1(0)+x2l(0)

2
= 3−λ

12
.

Therefore, when b < 3−λ
12

, we have (l − r)0 > 0. It implies that (l − r)θ > 0 for θ ∈ [0, a)

and (l − r)θ < 0 for θ ∈ (a, 1].

To constitute an equilibrium, we specify that when R observes off-path strategy, he

believes the state is in [0, a).

Thus proof is complete.

A.2.8 Checking for the NITS condition

In our setting, the NITS condition by Ying Chen, Kartik, and Sobel (2008) has the

following definition.

Definition A.2.1. An equilibrium (q∗, r∗, α∗) satisfies the no incentive to separate (NITS)

condition if

(a) s(0)US(α∗(q∗(0), h), 0, b) + (1− s(0))US(α∗(q∗(0), l), 0, b) ≥ US(0, 0, b) if r∗(0) = 0 or

(b) US(α∗(q∗(0), ϕ), 0, b) ≥ US(0, 0, b) if r∗(0) = 1.

That is, an equilibrium satisfies the NITS condition if the lowest type of sender (type-0

sender) has a weakly higher payoff in equilibrium than the payoff if she can credibly reveal

her type. Note that US(0, 0, b) = −b2.

Now we check the NITS condition for the three equilibria.

CS equilibrium:
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Equilibrium payoff for the type-0 sender:

−(x1(aCS)− 0− b)2 = −(
aCS

2
− b)2

= −(
1− 4b

4
− b)2

= −(
1

4
− 2b)2

The NITS condition is satisfied when b ≥ 1
12
.

No-censorship equilibrium:

Equilibrium payoff for the type-0 sender:

− s(0)(x1h(aNC)− 0− b)2 − (1− s(0))(x1l(aNC)− 0− b)2

=− s(0)(x2
1h(aNC)− 2bx1h(aNC))− (1− s(0))(x2

1h(aNC)− 2bx1h(aNC))− b2

Thus the NITS condition is satisfied if

b ≥ (1− λ)x2
1h(aNC) + (1 + λ)x2

1h(aNC)

2[(1− λ)x1h(aNC) + (1 + λ)x1l(aNC)]

It can be verified that when b is sufficiently large, the above inequality holds.

Censor-by-lows equilibrium:

Equilibrium payoff for the type-0 sender:

−(x1(aCL)− 0− b)2 = −(
aCL

2
− b)2

The NITS condition is satisfied when b ≥ aCL

4
. It can be verified that the inequality

holds when b is sufficiently large.
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A.2.9 Proof of Proposition 2.3.6

Proof. Part 1: We prove that 0 < aCL < aNC < 1
2
.

Recall that condition (A) holds if and only if g(a) = 0 and condition (A’) if and only if

h(a) = 0.

We have

(g − h)(a) = (x1(a)− a− b)2 − s(a)(x1h(a)− a− b)2 − (1− s(a))(x1l(a)− a− b)2.

Substituting x1(a) =
a
2
and rewrite:

(g − h)(a) =
a2

4
− s(a)(x1h(a)− a)2 − (1− s(a))(x1l(a)− a)2

+ b[2s(a)x1h(a) + 2(1− s(a))x1l(a)− a]

Since

x1h(a)

∫ a

0

s(θ)dθ + x1l(a)

∫ a

0

(1− s(θ))dθ = x1(a)

∫ a

0

1dθ

and

x1h(a) > x1l(a),

we have

s(a)x1h(a) + (1− s(a))x1l(a) > x1(a) =
a

2
.

Thus b[2s(a)x1h + 2(1− s(a))x1l − a] > 0.

Denote A(a) = a2

4
− s(a)(x1h(a)− a)2 − (1− s(a))(x1l(a)− a)2. With some calculations,

we have

A(a) =
λ2a4[(−3a2 + 8a− 5)λ2 + 5]

36[(a− 1)2λ2 − 1]2
.

It can be verified that A(a) > 0 for a ∈ (0, 1), λ ∈ (0, 1).

Therefore (g − h)(a) > 0 for all a ∈ (0, 1), λ ∈ (0, 1). Note that g(0) = h(0) > 0. Given

that the unique solution of g(a) = 0 and the unique solution of h(a) = 0 exist in (0, 1
2
), we

thus have 0 < aCL < aNC < 1
2
.

Part 2: We prove that 0 < aNC < aCS < 1
2
.
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Since g(a) = 0 has a unique solution in (0, 1), g(0) > 0, and g(1) < 0, we have g(a) > 0

for a ∈ [0, aNC) and g(a) < 0 for a ∈ (aNC , 1].

So we prove aNC < aCS by proving g(aCS) < 0. Substitute b = 1−2aCS

4
into g(aCS) (omit

x’s dependence on aCS),

g(aCS) =s(aCS)[(x2h − aCS − 1− 2aCS

4
)2 − (x1h − aCS − 1− 2aCS

4
)2]

+ (1− s(aCS))[(x2l − aCS − 1− 2aCS

4
)2 − (x1l − aCS − 1− 2aCS

4
)2]

=s(aCS)(x1h + x2h − aCS − 1

2
)(x2h − x1h)

+ (1− s(aCS))(x1l + x2l − aCS − 1

2
)(x2l − x1l)

Note that x1h(aCS)+x2h(aCS)−aCS− 1
2
= x1h(aCS)+x2h(aCS)−(x1(aCS)+x2(aCS)) > 0.

Also note that for a ∈ (0, 1
2
),

s(a)(x2h(a)− x1h(a))− (1− s(a))(x2l(a)− x1l(a))

= − (2a− 1)λ[λ2((a− 1)a(λ2 + 3) + 2)− 2]

6[(a− 1)λ− 1][(a− 1)λ+ 1](aλ− 1)(aλ+ 1)
< 0

Therefore, (omit x’s dependence on aCS)

g(aCS) <(1− s(aCS))(x2l − x1l)(x1l + x2l + x1h + x2h − 2aCS − 1)

=(1− s(aCS))(x2l − x1l)×
(a− 1)a(2a− 1)λ2[((a− 1)a+ 1)λ2 − 1]

3[(a− 1)λ− 1][(a− 1)λ+ 1](aλ− 1)(aλ+ 1)

<0.

Thus 0 < aCL < aNC < aCS < 1
2
.
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A.2.10 Proof of Lemma 2.3.2

Proof. Since aCS(b) =
1−4b
2

, it’s straightforward for aCS. We now prove the result for aNC

and aCL.

Part 1: We first prove the result for aNC(b).

Note that aNC(b) is implicitly defined as (omitting the subscript of a)

s(a)(x2h(a)− a− b)2 + (1− s(a))(x2l(a)− a− b)2

−s(a)(x1h(a)− a− b)2 − (1− s(a))(x1l(a)− a− b)2 = 0

Rewriting:

b =
NUM1(a)

DEN1(a)

where

NUM1(a) =s(a)(x1h(a)− a)2 + (1− s(a))(x1l(a)− a)2

− s(a)(x2h(a)− a)2 − (1− s(a))(x2l(a)− a)2

and

DEN1(a) =2[s(a)(x1h(a)− a) + (1− s(a))(x1l(a)− a)]

− 2[s(a)(x2h(a)− a) + (1− s(a))(x2l(a)− a)].

Since aNC is a function of b and b is a function of aNC , we claim that aNC(b) is strictly

monotone. Suppose not, then there exists b < b′ such that aNC(b) = aNC(b
′). But this

implies b = b′ which is a contradiction.

Now we prove aNC(b) is strictly decreasing. Suppose not, then aNC(b) is strictly increas-

ing. Note that aNC(
1
6
) < aCS(

1
6
) = 1

6
. Define aNC(0

+) as limb→0+ aNC(b), then aNC(0
+) < 1

6

and NUM1(aNC(0
+)) = 0.

Rewriting NUM1 we have (omitting x’s dependence on aNC(0
+))
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s(aNC(0
+))(x1h + x2h − 2aNC(0

+))(x1h − x2h)

+[1− s(aNC(0
+))](x1l + x2l − 2aNC(0

+))(x1l − x2l) = 0

It implies that

x1l(aNC(0
+)) + x2l(aNC(0

+))− 2aNC(0
+) < 0.

Since ∂(x1l(a)+x2l(a)−2a)
∂a

< 0, we have

x1l(aNC(0
+)) + x2l(aNC(0

+))− 2aNC(0
+)

>x1l(
1

6
) + x2l(

1

6
)− 2× 1

6

=
1

30(5λ+ 6)
+

25

6(λ− 6)
+

46

45

>0

which contradicts x1l(aNC(0
+)) + x2l(aNC(0

+)) − 2aNC(0
+) < 0. Therefore aNC(b) is

strictly decreasing.

Part 2: Now we prove aCL(b) is strictly decreasing. It follows the same logic as in Part

1.

aCL(b) is implicitly defined as (omitting the subscript of a)

s(a)(x2h(a)− a− b)2 + (1− s(a))(x2l(a)− a− b)2 − (x1(a)− a− b)2 = 0

Rewriting:

b =
NUM2(a)

DEN2(a)

where

NUM2(a) = (x1(a)− a)2 − s(a)(x2h(a)− a)2 − (1− s(a))(x2l(a)− a)2

and

DEN2(a) =2[(x1(a)− a)− s(a)(x2h(a)− a)− (1− s(a))(x2l(a)− a)].
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By the same argument, we know that aCL(b) is strictly monotone. Suppose aNC(b) is

strictly increasing. Similarly, we have aCL(
1
6
) < aCS(

1
6
) = 1

6
. Define aCL(0

+) as limb→0+ aCL(b),

then aCL(0
+) < 1

6
and NUM2(aCL(0

+)) = 0.

Rewriting NUM2 we have (omitting x’s dependence on aCL(0
+))

s(aCL(0
+))(x1 + x2h − 2aCL(0

+))(x1 − x2h)

+[1− s(aCL(0
+))](x1 + x2l − 2aCL(0

+))(x1 − x2l) = 0

It implies that

x1(aCL(0
+)) + x2l(aCL(0

+))− 2aCL(0
+) < 0.

Since ∂(x1(a)+x2l(a)−2a)
∂a

< 0, we have

x1(aCL(0
+)) + x2l(aCL(0

+))− 2aCL(0
+)

>x1(
1

6
) + x2l(

1

6
)− 2× 1

6

=
37λ− 72

36(λ− 6)

>0

which contradicts x1(aCL(0
+))+x2l(aCL(0

+))−2aCL(0
+) < 0. Therefore aCL(b) is strictly

decreasing.

A.2.11 Proof of Proposition 2.4.1

Before proving Proposition 2.4.1, we first define two functions and prove a lemma.

For each b ∈ (0, 3−λ
12

), define γ : (0, 1) → R and ρ : (0, 1) → R as

γ(a) = −
∫ a

0

s(θ)(x1h(a)− θ − b)2dθ −
∫ 1

a

s(θ)(x2h(a)− θ − b)2dθ

ρ(a) = −
∫ a

0

(1− s(θ))(x1l(a)− θ − b)2dθ −
∫ 1

a

(1− s(θ))(x2l(a)− θ − b)2dθ

Lemma A.2.2. Given b ∈ (0, 3−λ
12

), γ + ρ is strictly increasing in [aCL(b), aNC(b)].
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Proof. Fix b ∈ (0, 3−λ
12

), we omit the dependence of aCL and aNC on b. Rewrite γ we have:

γ(a) =−
∫ a

0

s(θ)(x1h(a)− θ)2dθ −
∫ 1

a

s(θ)(x2h(a)− θ)2dθ

+ 2b

∫ a

0

s(θ)(x1h(a)− θ)dθ + 2b

∫ 1

a

s(θ)(x2h(a)− θ)dθ

− b2
∫ 1

0

s(θ)dθ

=−
∫ a

0

s(θ)(x1h(a)− θ)2dθ −
∫ 1

a

s(θ)(x2h(a)− θ)2dθ

− b2
∫ 1

0

s(θ)dθ

Applying the Leibniz integral rule:

γ′(a) =− s(a)(x1h(a)− a)2 − 2

∫ a

0

s(θ)(x1h(a)− θ)
∂x1h

∂a
dθ

+ s(a)(x2h(a)− a)2 − 2

∫ 1

a

s(θ)(x2h(a)− θ)
∂x2h

∂a
dθ

=− s(a)(x1h(a)− a)2 + s(a)(x2h(a)− a)2

Similarly we rewrite ρ:

ρ(a) = −
∫ a

0

(1− s(θ))(x1l(a)− θ)2dθ −
∫ 1

a

(1− s(θ))(x2l(a)− θ)2dθ − b2
∫ 1

0

(1− s(θ))dθ.

Applying the Leibniz integral rule:

ρ′(a) =− (1− s(a))(x1l(a)− a)2 − 2

∫ a

0

(1− s(θ))(x1l(a)− θ)
∂x1l

∂a
dθ

+ (1− s(a))(x2l(a)− a)2 − 2

∫ 1

a

(1− s(θ))(x2l(a)− θ)
∂x2l

∂a
dθ

=− (1− s(a))(x1l(a)− a)2 + (1− s(a))(x2l(a)− a)2

We can infer from the proof of Proposition 2.3.2 that g(a) ≥ 0 for a ∈ [aCL, aNC ]. That

is,

−s(a)(x1h(a)− a− b)2 − (1− s(a))(x1l(a)− a− b)2 ≥
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−s(a)(x2h(a)− a− b)2 − (1− s(a))(x2l(a)− a− b)2

Rewriting the above inequality (omit the dependence of x’s on a):

−s(a)(x1h − a)2 − (1− s(a))(x1l − a)2 + 2s(a)b(x1h − a) + 2(1− s(a))b(x1l − a) ≥

−s(a)(x2h − a)2 − (1− s(a))(x2l − a)2 + 2s(a)b(x2h − a) + 2(1− s(a))b(x2l − a)

Since x1l < x1h < a < x2l < x2h, we have

−s(a)(x1h − a)2 − (1− s(a))(x1l − a)2 >

−s(a)(x2h − a)2 − (1− s(a))(x2l − a)2

which is equivalent to γ′ + ρ′ > 0.

Now we proceed to prove Proposition 2.4.1.

Proof. We first prove the result for the CS equilibrium.

Since aCS(b) =
1−4b
2

, the expected payoffs for both agents can be written as functions of

b:

EUS
CS(b) = −

∫ aCS(b)

0

(x1(aCS(b))− θ − b)2dθ −
∫ 1

aCS(b)

(x2(aCS(b))− θ − b)2dθ,

EUR
CS(b) = −

∫ aCS(b)

0

(x1(aCS(b))− θ)2dθ −
∫ 1

aCS(b)

(x2(aCS(b))− θ)2dθ.

Simplify:

EUS
CS(b) =

1

3
[(−aCS(b)

2
− b)3 − (

aCS(b)

2
− b)3]

+
1

3
[(
aCS(b)− 1

2
− b)3 − (

1− aCS(b)

2
− b)3]

Take derivative and simplify:

(EUS
CS)

′ = −4b

Since EUS
CS(b) = EUR

CS(b)− b2, we have (EUR
CS)

′ = −4b+ 2b = −2b.
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From Lemma 2.3.2, for b ∈ (0, 3−λ
12

), aNC and aCL are functions of b. From the proof of

Lemma 2.3.2, b can be written as a function of aNC and aCL, respectively, and moreover,

the two functions are differentiable and the derivatives are negative. Therefore, a′NC(b) and

a′CL(b) exists and are negative.

We then prove the result for the no-censorship equilibrium.

The ex-ante expected payoff for the sender is a function of b:

EUS
NC(b) =−

∫ aNC(b)

0

s(θ)(x1h(aNC(b))− θ − b)2dθ

−
∫ aNC(b)

0

(1− s(θ))(x1l(aNC(b))− θ − b)2dθ

−
∫ 1

aNC(b)

s(θ)(x2h(aNC(b))− θ − b)2dθ

−
∫ 1

aNC(b)

(1− s(θ))(x2l(aNC(b))− θ − b)2dθ

Similarly for the receiver:

EUR
NC(b) =−

∫ aNC(b)

0

s(θ)(x1h(aNC(b))− θ)2dθ

−
∫ aNC(b)

0

(1− s(θ))(x1l(aNC(b))− θ)2dθ

−
∫ 1

aNC(b)

s(θ)(x2h(aNC(b))− θ)2dθ

−
∫ 1

aNC(b)

(1− s(θ))(x2l(aNC(b))− θ)2dθ

In particular, EUS
NC(b) = EUR

NC(b)− b2.

Note that the derivatives exists and (EUS
NC)

′ = (EUR
NC)

′ − 2b. Applying the Leibniz

integral rule and simplifying:
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(EUR
NC)

′ =a′NC(b)s(aNC(b))(x2h(aNC(b))− aNC(b))
2

− a′NC(b)s(aNC(b))(x1h(aNC(b))− aNC(b))
2

+ a′NC(b)(1− s(aNC(b)))(x2l(aNC(b))− aNC(b))
2

− a′NC(b)(1− s(aNC(b)))(x1l(aNC(b))− aNC(b))
2

=a′NC(b)(γ
′(aNC(b)) + ρ′(aNC(b)))

From Lemma A.2.2, γ′(aNC(b)) + ρ′(aNC(b)) > 0. Thus (EUR
NC)

′ < 0 and (EUS
NC)

′ =

(EUR
NC)

′ − 2b < 0.

Finally we prove the result for the censor-by-lows equilibrium.

Similarly, we have:

EUS
CL(b) =−

∫ aCL(b)

0

(x1(aCL(b))− θ − b)2dθ

−
∫ 1

aCL(b)

s(θ)(x2h(aCL(b))− θ − b)2dθ

−
∫ 1

aCL(b)

(1− s(θ))(x2l(aCL(b))− θ − b)2dθ

EUR
CL(b) =−

∫ aCL(b)

0

(x1(aCL(b))− θ)2dθ

−
∫ 1

aCL(b)

s(θ)(x2h(aCL(b))− θ)2dθ

−
∫ 1

aCL(b)

(1− s(θ))(x2l(aCL(b))− θ)2dθ

Also, EUS
CL(b) = EUR

CL(b)− b2 and (EUS
CL)

′ = (EUR
CL)

′ − 2b.

Applying the Leibniz integral rule and simplifying:

(EUR
CL)

′ =a′CL(b)s(aCL(b))(x2h(aCL(b))− aCL(b))
2

− a′CL(b)s(aCL(b))(x1(aCL(b))− aCL(b))
2

+ a′CL(b)(1− s(aCL(b)))(x2l(aCL(b))− aCL(b))
2

− a′CL(b)(1− s(aCL(b)))(x1(aCL(b))− aCL(b))
2
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Note that condition (A’) implies (omitting the dependence of aCL on b)

(x1(aCL)− aCL − b)2 =s(aCL)(x2h(aCL)− aCL − b)2

+ (1− s(aCL))(x2l(aCL)− aCL − b)2

Rewriting:

(x1(aCL)− aCL)
2 − 2b(x1(aCL)− aCL)

=s(aCL)(x2h(aCL)− aCL)
2

− 2bs(aCL)(x2h(aCL)− aCL)

+ (1− s(aCL))(x2l(aCL)− aCL)
2

− 2b(1− s(aCL))(x2l(aCL)− aCL)

which is equivalent to

(x1(aCL)− aCL)
2 − s(aCL)(x2h(aCL)− aCL)

2

− (1− s(aCL))(x2l(aCL)− aCL)
2

=2b[x1(aCL)− s(aCL)x2h(aCL)− (1− s(aCL))x2l(aCL)]

Since x1(aCL) < aCL < x2l(aCL) < x2h(aCL), we have

(x1(aCL)− aCL)
2 <s(aCL)(x2h(aCL)− aCL)

2

+ (1− s(aCL))(x2l(aCL)− aCL)
2

Since a′CL(b) < 0, we have (EUR
CL)

′ < 0, and (EUS
CL)

′ = (EUR
CL)

′ − 2b < 0.
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A.2.12 Proof of Proposition 2.4.2

Proof. We proceed in two steps. In step 1 we show that if the censor-by-lows “equilibrium”

and the no-censorship “equilibrium” (technically, they are not equilibria) have the same

boundary type, then S and R’s welfare is higher in the no-censorship “equilibrium”.

In step 2, we show that as amoves from aCL to aNC , S and R’s welfare in the no-censorship

“equilibrium” increases.

Step 1: Define WCL : (0, 1) → R and WNC : (0, 1) → R as

WCL(a) =−
∫ a

0

(x1(a)− θ − b)2dθ

−
∫ 1

a

s(θ)(x2h(a)− θ − b)2dθ −
∫ 1

a

(1− s(θ))(x2l(a)− θ − b)2dθ

WNC(a) =−
∫ a

0

s(θ)(x1h(a)− θ − b)2dθ −
∫ a

0

(1− s(θ))(x1l(a)− θ − b)2dθ

−
∫ 1

a

s(θ)(x2h(a)− θ − b)2dθ −
∫ 1

a

(1− s(θ))(x2l(a)− θ − b)2dθ

Particularly, WCL(aCL) and WNC(aNC) are the sender’s welfare in the censor-by-lows

equilibrium and the no-censorship equilibrium, respectively.

WCL(a)−WNC(a)

=

∫ a

0

s(θ)(x1h(a)− θ − b)2dθ +

∫ a

0

(1− s(θ))(x1l(a)− θ − b)2dθ

−
∫ a

0

(x1(a)− θ − b)2dθ

=

∫ a

0

s(θ)[(x1h(a)− θ)2 − 2b(x1h(a)− θ)]dθ

+

∫ a

0

(1− s(θ))[(x1l(a)− θ)2 − 2b(x1l(a)− θ)]dθ

−
∫ a

0

[(x1(a)− θ)2 − 2b(x1(a)− θ)]dθ

=

∫ a

0

s(θ)(x1h(a)− θ)2dθ +

∫ a

0

(1− s(θ))(x1l(a)− θ)2dθ −
∫ a

0

(x1(a)− θ)2dθ

=− x1h(a)

∫ a

0

s(θ)θdθ − x1l(a)

∫ a

0

(1− s(θ))θdθ + x1(a)

∫ a

0

θdθ

86



Note that by Lemma 2.3.1, x1(a) can be expressed as a convex combination of x1h(a)

and x1l(a):

x1h(a)

∫ a

0

s(θ)dθ + x1l(a)

∫ a

0

(1− s(θ))dθ = x1(a)

∫ a

0

1dθ.

Also, note that ∫ a

0
s(θ)dθ∫ a

0
1dθ

÷
∫ a

0
s(θ)θdθ∫ a

0
θdθ

=
x1(a)

x1h(a)
< 1

and ∫ a

0
(1− s(θ))dθ∫ a

0
1dθ

÷
∫ a

0
(1− s(θ))θdθ∫ a

0
θdθ

=
x1(a)

x1l(a)
> 1.

Hence for all a ∈ (0, 1),

WCL(a)−WNC(a)

=− x1h(a)

∫ a

0

s(θ)θdθ − x1l(a)

∫ a

0

(1− s(θ))θdθ + x1(a)

∫ a

0

θdθ

=[x1(a)

∫ a

0

1dθ − x1h(a)

∫ a

0

s(θ)θdθ ·
∫ a

0
1dθ∫ a

0
θdθ

− x1l(a)

∫ a

0

(1− s(θ))θdθ ·
∫ a

0
1dθ∫ a

0
θdθ

]

∫ a

0
θdθ∫ a

0
1dθ

<[x1(a)

∫ a

0

1dθ − x1h(a)

∫ a

0

s(θ)dθ − x1l(a)

∫ a

0

(1− s(θ))dθ]

∫ a

0
θdθ∫ a

0
1dθ

=0.

The inequality above is because the “weight” of the larger number decreases (i.e.,
∫ a

0
s(θ)θdθ·∫ a

0 1dθ∫ a
0 θdθ

>
∫ a

0
s(θ)dθ) and the “weight” of the smaller number increases (i.e.,

∫ a

0
(1− s(θ))θdθ ·∫ a

0 1dθ∫ a
0 θdθ

<
∫ a

0
(1− s(θ))dθ).

Step 2: We want to show: For every a and a′ such that aCL ≤ a < a′ ≤ aNC , WNC(a) <

WNC(a
′).

Note that WNC(a) = γ(a)+ρ(a). From Lemma A.2.2, we have γ+ρ is strictly increasing

in [aCL, aNC ].

Therefore, as a increases from aCL to aNC , WNC(a) increases.

Thus WNC(aNC) > WNC(aCL) > WCL(aCL). Since EUS
CL = EUR

CL − b2 and EUS
NC =

EUR
NC − b2, the proof is complete.
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A.2.13 Proof of Claim 2.4.1

Proof. For simple notation, sometimes we omit the dependence of x on a.

WCS(a)−WNC(a)

=

∫ a

0

s(θ)(x1h − θ − b)2dθ +

∫ a

0

(1− s(θ))(x1l − θ − b)2dθ

+

∫ 1

a

s(θ)(x2h − θ − b)2dθ +

∫ 1

a

(1− s(θ))(x2l − θ − b)2dθ

−
∫ a

0

(x1 − θ − b)2dθ −
∫ 1

a

(x2 − θ − b)2dθ

=

∫ a

0

s(θ)(x1h − θ)2dθ +

∫ a

0

(1− s(θ))(x1l − θ)2dθ

+

∫ 1

a

s(θ)(x2h − θ)2dθ +

∫ 1

a

(1− s(θ))(x2l − θ)2dθ

−
∫ a

0

(x1 − θ)2dθ −
∫ 1

a

(x2 − θ)2dθ

=− x1h(a)

∫ a

0

s(θ)θdθ − x1l(a)

∫ a

0

(1− s(θ))θdθ + x1(a)

∫ a

0

θdθ (1)

− x2h(a)

∫ 1

a

s(θ)θdθ − x2l(a)

∫ 1

a

(1− s(θ))θdθ + x2(a)

∫ 1

a

θdθ (2)

In the proof of Proposition 2.4.2, we already proved that the part on line (1) is negative.

Using the same reasoning, we can prove that the part on line (2) is negative.

Thus WCS(a)−WNC(a) < 0.

A.2.14 Proof of Claim 2.4.2

Proof. With some calculation

WCS(a) =
1

3
[(−a

2
− b)3 − (

a

2
− b)3]

+
1

3
[(
a− 1

2
− b)3 − (

1− a

2
− b)3],

hence

W ′
CS(a) =− 1

2
(−a

2
− b)2 − 1

2
(
a

2
− b)2

+
1

2
(
a− 1

2
− b)2 +

1

2
(
1− a

2
− b)2

=
1

2
(
1

2
− a)
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which is positive for a < 1
2
.

A.3 Omitted Proofs in Chapter 3

A.3.1 Proof of Lemma 3.3.1

Proof. First ignoring the upper and lower bounds (θ̄ and θ). Without loss of generality, we

solve the monopoly pricing problem with a product located at θ+θ̄
2
.

In a one-period setting, the buyer will accept the offer (v, p) if and only if ū−a(v−θ)2−p ≥

0. Rewriting:

v −
√

ū− p

a
≤ θ ≤ v +

√
ū− p

a
.

Therefore the firm’s problem is

max
p

2p

√
ū− p

a

Define Π(p) = 2p
√

ū−p
a
.

Taking derivative:

Π′(p) = −1

a
(
ū− p

a
)−

1
2p+ 2(

ū− p

a
)
1
2

Second-order derivative:

Π′′(p) = −2

a
(
ū− p

a
)−

1
2 − 1

2a2
(
ū− p

a
)−

3
2p < 0

The first order condition is satisfied at p = 2
3
ū.

This is the solution to the original problem when the interval of accepting consumer

types doesn’t exceed [θ, θ̄]:

2

√
ū− 2

3
ū

a
< θ̄ − θ

⇔ ū <
3a

4
(θ̄ − θ)2
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In this case, not all types in [θ, θ̄] accepts the offer, and the firm’s expected revenue is

Π(2
3
ū) =4ū

3

√
ū
3a
.

If ū ≥ 3a
4
(θ̄ − θ)2, the contract ( θ+θ̄

2
, 2
3
ū) will be accepted by all types. The firm can

actually increase the price as long as the surplus of type θ and θ̄ is not negative. We have a

corner solution in this case, and the price satisfies

ū− a(
θ+θ̄

2
− θ)2 − p = 0

⇔ p = ū− a

4
(θ̄ − θ)2.

The expected revenue in this case is ū(θ̄ − θ)− a
4
(θ̄ − θ)3.

A.3.2 Proof of Lemma 3.3.2

Proof. Suppose not, then we have some optimal pair (vl, pl) and (vr, pr) with θ̄l > θr.

We now show that there exists a new pair that gives the firm a higher expected revenue.

Case 1: θ̄l ≥ θ̄r.

In this case pl ≤ pr. Note that in the original pair (vl, pl) and (vr, pr), consumer types

in [θl, θr) and (θ̄r, θ̄l] choose (vl, pl), and types in [θr, θ̄r] choose whichever gives them higher

payoff.

Since pr ≥ pl, the revenue is bounded above by (widthl − widthr)pl + widthr · pr where

widthl = θ̄l − θl and widthr = θ̄r − θr. Consider a new pair (v′l, p
′
l) and (v′r, pr) such that 1)

(v′r, pr) covers [θ
′
r, θ̄l] which has the same width as [θr, θ̄r]; 2) (v

′
l, p

′
l) covers [θl, θ

′
r]. Then the

revenue with the new pair is

(widthl − widthr)p
′
l + widthr · pr

>(widthl − widthr)pl + widthr · pr

where the inequality is because (v′l, p
′
l) covers a smaller range of types than (vl, pl).

Case 2: θ̄l < θ̄r.

In the original pair (vl, pl) and (vr, pr), consumer types in [θl, θr) choose (vl, pl), types in

(θ̄l, θ̄r] choose (vr, pr), and types in [θr, θ̄l] choose whichever gives them a higher payoff.
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Again, define widthl and widthr in the same way as in Case 1. Define Olap as θ̄l − θr.

That is, Olap is the width of the overlapping sub-interval. Then the revenue is bounded

above by

max{widthl · pl + (widthr −Olap) · pr, (3)

(widthl −Olap) · pl + widthr · pr} (4)

When pl ≤ pr, the term in Line (2) is larger. Consider a new pair (v̂l, p̂l) and (vr, pr)

such that (v̂l, p̂l) covers [θl, θr]. Since it covers a smaller interval, p̂l > pl. This new pair

gives a revenue of (widthl − Olap) · p̂l + widthr · pr, which is higher than the upper bound

of the original revenue.

When pl > pr, the term in Line (1) is larger. Similarly, consider a new pair (vl, pl) and

(v̂r, p̂r) such that (v̂r, p̂r) covers [θ̄l, θ̄r]. Again, we have p̂r > pr. This new pair gives a

revenue of widthl · pl + (widthr − Olap) · p̂r, which is higher than the upper bound of the

original revenue.

Therefore, in any optimal pair (vl, pl) and (vr, pr), we have θ̄l ≤ θr.

A.3.3 Proof of Lemma 3.3.3

Proof. Note that ū ≥ 3a
16

is equivalent to w∗ ≥ 1
2
. In this case, all types are covered, and

the firm offers product 1
4
and 3

4
. The price of the two products satisfy

ū− a(0− 1

4
)2 = p

⇒ p = ū− a

16
.

ū < 3a
16

is equivalent to w∗ < 1
2
. In this case, only a subset of types are covered by some

contract, and the width of each interval of types is w∗. Suppose product vl covers [θl, θ̄l] and

vr covers [θr, θ̄r].

By Lemma 3.3.2, 0 ≤ θl < θ̄l ≤ θr < θ̄r ≤ 1, which are exactly the conditions listed in

the lemma.
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In this case,

ū− a(θl −
θ̄l − θl

2
)2 = p

⇒ū− aw∗2

4
= p

⇒p =
2

3
ū.

A.3.4 Proof of Lemma 3.3.4

Proof. Similar to that of Lemma 3.3.2, and is done by contradiction.

A.3.5 Proof of Lemma 3.3.5

Proof. The proof is similar to that of Lemma 3.3.3. ū ≥ a
12

corresponds to the case that all

consumer types are covered whereas ū < a
12

is the case where some types are left out.

A.3.6 Proof of Proposition 3.4.1

Proof. Given the consumer’s strategy, it is clear that the firm has no profitable deviation as

it’s already providing the optimal pair. Given the firm’s strategy, if the consumer deviates in

the first period, the highest surplus she can get in period 2 is zero. She also has no incentive

to deviate in t2 as it’s the last period.

A.3.7 Proof of Proposition 3.4.2

Proof. It’s straightforward to see that in any equilibria where all types buy some product

in t1, the equilibrium in Proposition3.4.1 indeed gives the firm the highest ex-ante surplus.

The reason is as follows. In all such equilibria, consumer types are pooled into two groups

in t2: those who bought vl and those who bought vr. In this case, the best the firm can do

is to provide the optimal pair in both periods.
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On the contrary, in equilibria where some types don’t buy any product in t1, consumer

types are pooled into three segments in t2: those who bought vl, those who bought vr, and

those who didn’t buy anything. Recall that Θ(v, p) is the set of types served by (v, p). We

denote Θ(vl, pl) ≡ [A,B] and Θ(vr, pr) ≡ [C,D] for some 0 ≤ A < B < C < D ≤ 1. Notice

that if this equilibrium is firm-optimal, then A = 0 and D = 1. This is because, if A > 0

or D < 1, then those types who didn’t buy anything does not constitute an interval, and

thus the expected revenue from those types can be increased by shifting [A,B] towards 0 or

shifting [C,D] towards 1.

Formally, consider the following kind of equilibrium. In t1, the firm provides (vl, pl) and

(vr, pr) with Θ(vl, pl) = [0, B] and Θ(vr, pr) = [C, 1]. B and C can be expressed in terms of

vi (i ∈ {l, r}):

B = 2vl, C = 2vr − 1.

Prices can also expressed in terms of vi (i ∈ {l, r}):

ū− a(0− vl)
2 − pl = 0,

ū− a(1− vr)
2 − pr = 0.

That is, pl = ū− av2l and pr = ū− a(1− vr)
2. To maximize its expected revenue among

all equilibria of this kind, in t2, the firm offers (vl, ū − av2l ) (or (vr, ū − a(1 − vr)
2)) if the

consumer bought vl (or vr) in t1.

If the consumer didn’t buy anything, the firm offers (vl+vr− 1
2
, pm) such that ū−a[2vl−

(vl + vr − 1
2
)]2 − pm = 0. Therefore, pm = ū − a(vl − vr +

1
2
)2. In other words, if the firm

observes that the consumer didn’t buy any product, it believes that the consumer type is

between 2vl and 2vr−1, and offers the optimal contract for that interval. It’s easy to confirm

that no type wants to mimic any type outside her group.

Thus the firm’s ex-ante surplus is

2vl(ū− av2l )(1 + δ) + (2vr − 1− 2vl)[ū− a(vl − vr +
1

2
)2]δ + (2− 2vr)[ū− a(1− vr)

2](1 + δ),
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which can be rewritten as

widl(ū− a

4
wid2l )(1 + δ) + widm(ū− a

4
wid2m)δ + widr(ū− a

4
wid2r)(1 + δ) (5)

where widl, widm, and widr are the width of the left interval, the middle interval, and

the right interval, respectively.

We want to find the maximum value of (3) and then compare it to (1 + δ)(ū− a
16
).

To this end, we first prove the following claim.

Claim A.3.1. For each given width of the middle interval widm, the value of (3) is maxi-

mized when widl = widr.

Proof. Denote widm = 1 − △. Then widl + widr = △. Maximizing (3) is equivalent to

maximizing

widl(ū− a

4
wid2l ) + (△− widl)[ū− a

4
(△− widl)

2].

The first-order derivative w.r.p. to widl is −3a
4
wid2l +

3a
4
(△−widl)

2, which is equal to 0

when widl = △− widl. The second-order derivative −3a
2
widl − 3a

2
(△− widl) is negative.

Now we want to find the maximum value of:

widl(ū− a

4
wid2l )(1 + δ) + (1− 2widl)[ū− a

4
(1− 2widl)

2]δ + widl(ū− a

4
wid2l )(1 + δ) (6)

The first-order derivative w.r.p. to widl is 2ū + 3a
2
δ(1 − 2widl)

2 − 3a
2
(1 + δ)wid2l . Since

ū ≥ 3a
4
, 0 < δ ≤ 1, and widl ≤ 1

2
, the derivative is no less than 2× 3a

4
− 3a

2
× 2× 1

4
= 3a

4
> 0.

The second-order derivative is negative.

Thus for widl ∈ (0, 1
2
), (4) is bounded above by 1

2
(ū− a

4
× 1

4
)(1+δ)+ 1

2
(ū− a

4
× 1

4
)(1+δ) =

(1 + δ)(ū− a
16
).

Therefore, the equilibrium is firm-optimal.
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A.3.8 Proof of Proposition 3.4.3

Proof. In the proposed equilibrium, given the consumer’s strategy, the firm offers the opti-

mal pair in period 1 and the optimal triple in period 2. Thus the firm has no incentive to

deviate in either period.

For the consumer, depending on the product purchased and the opt-out choice, her type

space can be partitioned into 4 intervals:

(a) When θ ∈ [0, 1
3
), the consumer accepts (1

4
, ū− a

16
) in period 1 and accepts (1

6
, ū− a

36
)

in period 2;

(b) When θ ∈ [1
3
, 1
2
], the consumer accepts (1

4
, ū − a

16
) in period 1, chooses to opt out,

and accepts (1
2
, ū− a

36
) in period 2;

(c) When θ ∈ (1
2
, 2
3
], the consumer accepts (3

4
, ū − a

16
) in period 1, chooses to opt out,

and accepts (1
2
, ū− a

36
) in period 2;

(d) When θ ∈ (2
3
, 1], the consumer accepts (3

4
, ū− a

16
) in period 1 and accepts (5

6
, ū− a

36
)

in period 2.

Given the firm’s strategy, if the consumer deviates from her opt-in/out choice, her ex-

pected payoff in period 2 will decrease. If she deviates from her period-1 purchase decision,

her expected payoffs will decrease in both periods. Moreover, since period 2 is the last

period, she has no incentive to deviate from the purchase decision in that period.

Therefore, it is indeed an equilibrium.

A.3.9 Proof of Proposition 3.4.4

Proof. First, consider equilibria where all types buy some product in period 1. In such

equilibria, at the beginning of period 2, the firm can segment the market into at most three

sub-markets - those who bought vl, those who bought vr, and those who chose to opt out.

In period 1, the firm can segment the market into at most two sub-market since all types

buy some product. Therefore, the expected revenue from period 1 is bounded above by the

revenue of offering the optimal pair (which gives ū− a
16
). The expected revenue from period

2 is bounded above by the revenue of offering the optimal triple (which gives ū− a
36
). Thus

for any equilibria where all types buy some product in period 1, the ex-ante PS is bounded
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above by ū− a
16

+ δ(ū− a
36
).

Next, we consider equilibria where some types don’t buy anything in period 1. For

equilibria of this kind, the potential firm-optimal equilibria induce three segments in t1 (buy

vl, buy vr, and don’t buy anything) and four segments in t2 (bought vl, bought vr, didn’t

buy anything, and opted out). We first rule out some candidate equilibria by the following

claim.

Claim A.3.2. Equilibria where a positive measure of types reject both contracts in t1 and

opt out in t2 are not firm-optimal.

Proof. Denote the set of types who don’t buy anything in t1 as Θ1∅. In t2, Θ1∅ can be

partitioned into two (possibly empty) sets - Θin
1∅ and Θout

1∅ . The two sets correspond to types

in Θ1∅ who choose opt-in and opt-out, respectively.

If Θin
1∅ = ∅, then consumer types are pooled into three segments in t2 - those bought

vl,those bought vr, and those who opted out. The equilibrium is not firm-optimal since

equilibria with four segments in t2 is superior.

If Θin
1∅ ̸= ∅, the consumer types are pooled into four segments in t2. Consider the sub-

market [0, 1]\Θin
1∅. In this sub-market, at least types in Θ1∅\Θin

1∅ reject both contracts in t1.

We can construct a new pair of period-1 contracts to increase the firm’s revenue in period

1 while keeping its period-2 revenue unchanged. Therefore the candidate equilibrium is not

firm-optimal.

Now we consider equilibria where every type who didn’t buy anything in t1 chooses opt-

in. Θ1∅ is an interval and we denote its width as wid∅. We fixed wid∅ and calculate the

maximum ex-ante PS, and then argue that the highest of those maximum values are attained

at wid∅ = 0.

Note that when wid∅ is fixed, the sub-market [0, 1]\Θ1∅ can be treated as a market where

all types bought some product in t1. According to the first case of this proof, in the firm-

optimal “equilibrium” of the sub-market, the firm offers the optimal pair of contracts on

[0, 1−wid∅] in t1 and offers the optimal triple on [0, 1−wid∅] in t2. Therefore the maximum

ex-ante PS with given wid∅ is
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ū(1− wid∅)−
a

16
(1− wid∅)

3 + δ[ū(1− wid∅)−
a

36
(1− wid∅)

3]

+δ(ū · wid∅ −
a

4
· wid3∅).

The above expression is a function of wid∅. Taking derivative we get

−ū+
3a

16
(1− wid∅)

2 + δ
a

12
(1− wid∅)

2 − δ
3a

4
wid2∅.

Since ū ≥ 3a
4
, we have

− ū+
3a

16
(1− wid∅)

2 + δ
a

12
(1− wid∅)

2 − δ
3a

4
wid2∅

≤− 3a

4
+

3a

16
(1− wid∅)

2 + δ
a

12
(1− wid∅)

2 − δ
3a

4
wid2∅

<− 3a

4
+

3a

16
+

a

12

=− 23

48
a < 0.

Thus highest of the maximum values are attained at wid∅ = 0, which corresponds to the

equilibrium in Proposition 3.4.4. Therefore this equilibrium is firm-optimal.

A.3.10 Proof of Proposition 3.4.5

Proof. In the equilibrium without opt-out, the type space is divided into two intervals.

For θ ∈ [0, 1
2
], the expected utility is

(1 + δ)[ū− a(θ − 1

4
)2 − (ū− a

16
)]

=a(1 + δ)(−θ2 +
θ

2
).

For θ ∈ (1
2
, 1], the expected utility is

(1 + δ)[ū− a(θ − 3

4
)2 − (ū− a

16
)]

=a(1 + δ)(−θ2 +
3

2
θ − 1

2
).
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Thus the ex-ante CS is∫ 1
2

0

a(1 + δ)(−θ2 +
θ

2
)dθ +

∫ 1

1
2

a(1 + δ)(−θ2 +
3

2
θ − 1

2
)dθ

=a(1 + δ)[−1

3
θ3|10 +

1

4
θ2|

1
2
0 + (

3

4
θ2 − 1

2
θ)|11

2
]

=
a

24
(1 + δ).

In the equilibrium with opt-out, as previously shown, the type space is divided into four

intervals.

For θ ∈ [0, 1
3
), the expected utility is

ū− a(θ − 1

4
)2 − (ū− a

16
)

+ δ[ū− a(θ − 1

6
)2 − (ū− a

36
)]

=a(−θ2 +
θ

2
) + aδ(−θ2 +

θ

3
).

For θ ∈ [1
3
, 1
2
],the expected utility is

ū− a(θ − 1

4
)2 − (ū− a

16
)

+ δ[ū− a(θ − 1

2
)2 − (ū− a

36
)]

=a(−θ2 +
θ

2
) + aδ(−θ2 + θ − 2

9
).

For θ ∈ (1
2
, 2
3
], the expected utility is

ū− a(θ − 3

4
)2 − (ū− a

16
)

+ δ[ū− a(θ − 1

2
)2 − (ū− a

36
)]

=a(−θ2 +
3

2
θ − 1

2
) + aδ(−θ2 + θ − 2

9
).

For θ ∈ (2
3
, 1], the expected utility is

ū− a(θ − 3

4
)2 − (ū− a

16
)

+ δ[ū− a(θ − 5

6
)2 − (ū− a

36
)]

=a(−θ2 +
3

2
θ − 1

2
) + aδ(−θ2 +

5

3
θ − 2

3
).
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Thus the ex-ante CS is∫ 1
3

0

[a(−θ2 +
θ

2
) + aδ(−θ2 +

θ

3
)]dθ

+

∫ 1
2

1
3

[a(−θ2 +
θ

2
) + aδ(−θ2 + θ − 2

9
)]dθ

+

∫ 2
3

1
2

[a(−θ2 +
3

2
θ − 1

2
) + aδ(−θ2 + θ − 2

9
)]dθ

+

∫ 1

2
3

[a(−θ2 +
3

2
θ − 1

2
) + aδ(−θ2 +

5

3
θ − 2

3
)]dθ

=
a

24
+

aδ

54

<
a

24
(1 + δ).

A.3.11 Proof of Proposition 3.4.6

Proof. For all types, the difference is in the second period. We calculate the difference in

expected utilities below (with - without).

For θ ∈ [0, 1
3
), the difference is

aδ(−θ2 +
θ

3
)− aδ(−θ2 +

θ

2
)

=− θ

6
aδ.

For θ ∈ [1
3
, 1
2
],the difference is

aδ(−θ2 + θ − 2

9
)− aδ(−θ2 +

θ

2
)

=(
θ

2
− 2

9
)aδ.

For θ ∈ (1
2
, 2
3
], the difference is

aδ(−θ2 + θ − 2

9
)− aδ(−θ2 +

3

2
θ − 1

2
)

=(−θ

2
+

5

18
)aδ.
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For θ ∈ (2
3
, 1], the difference is

aδ(−θ2 +
5

3
θ − 2

3
)− aδ(−θ2 +

3

2
θ − 1

2
)

=(
θ

6
− 1

6
)aδ.

Clearly, the difference is positive for θ ∈ (4
9
, 5
9
), negative for θ ∈ (0, 4

9
) ∪ (5

9
, 1), and zero

for θ ∈ {0, 4
9
, 5
9
, 1}.
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