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Trust Evolution in IoT Networks with Multiple Attributes

Nuray Baltaci Akhuseyinoglu, PhD

University of Pittsburgh, 2023

The Internet of Things (IoT) is a communication paradigm comprising millions of de-

vices, a.k.a things or nodes, growing in number. Things are interconnected smart devices

that operate with or without human intervention, such as sensors, actuators, RFID devices,

wearable devices, or more powerful computing systems. The heterogeneity of devices, soft-

ware components, and network infrastructure in IoT leads to increased attack surfaces. One

of the significant security threats for IoT is untrustworthy data and operations that may

arise due to device compromise, vulnerable transmission medium, or faulty sensors. It is

essential to ensure trust in the data and operations in IoT, as it is fundamental for people

to overcome perceptions of uncertainty and risk in using IoT services and applications. The

lack of trust may have dire consequences for IoT. For example, an attacker compromising

an IoT device can generate or report bogus data, boost the reputation of malicious nodes,

and ruin that of benign nodes.

There are security mechanisms to defend against external attacks in IoT, such as cryp-

tographic algorithms. Yet, they cannot identify internal attacks as a benign node could turn

into a malicious node anytime after joining the network because of compromise or malfunc-

tion. Trust management solutions are essential for detecting misbehaving legitimate nodes

in IoT when cryptographic measures are not available or applicable. IoT brings extra chal-

lenges to trust management due to ever-changing network topology, heterogeneity in devices

and network topology, and limited resources of constrained devices. Promising solutions

have been proposed for IoT trust management to address these challenges. Yet, they are

limited in accommodating key trust properties and automated trust computation needs for

IoT environments.

The research in this dissertation focuses on trust evolution in IoT networks, drawing

upon trust research in social sciences. Towards this, we distill significant aspects of trust

evolution in social sciences and capture them in solutions for IoT trust management through
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automated trust computations. Specifically, we propose an automated trust computation

framework based on the Multi-Attribute Decision Making (MADM) approach and Evidence-

based Subjective Logic (EBSL) to account for the multi-dimensionality and uncertainty

aspects of trust. We evaluate the performance of the proposed MADM-EBSL framework

concerning varying levels of network connectivity and trust problem size. Additionally, we

propose to extend the trust model of this framework with trust attributes based on our

review of social sciences trust literature. We compare the two frameworks to investigate

the effect of including additional attributes in trust computations. Finally, we explore trust

repair strategies for IoT and a model to reflect these on automated trust computations. We

present the findings of our evaluation of the proposed trust repair model.
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1.0 Introduction

The Internet of Things (IoT) is a still-developing communication paradigm that com-

prises millions of devices, a.k.a things or nodes, growing in number [64, 40, 11]. Things are

connected to the Internet [112, 11], either directly or through gateways. They are intercon-

nected smart devices [193, 40, 11, 9, 1, 107] that operate with or without human intervention

and include sensors, actuators, RFID devices, wearable devices, or more powerful computing

systems that interact/collaborate to fulfill a common goal [193, 40, 11, 9, 188]. They collect

data from their surroundings, process them, or act back on the physical world [193, 40, 11].

IoT allows interaction among users, devices, applications, and the environment [11, 9], and

provides a platform for context-aware computations [40]. IoT has been having an impact on

several applications/domains, including but not limited to smart cities [56, 4], environmental

monitoring [192, 193, 107], manufacturing [55, 11], smart transportation [56, 193, 11], and

smart healthcare [56, 193, 11].

IoT is characterized by the heterogeneity of devices, software components, and network

infrastructure [193, 40, 108, 4, 11, 9, 1, 107]. The heterogeneity of devices corresponds to

the variety in their capabilities — computing, storage, and power resources—, operating

systems, vendor, functionality, etc. [40, 4, 11, 1, 188]. The heterogeneity of network infras-

tructure corresponds to different networking technologies that could be integrated into IoT

networks, such as sensor networks, wireless local area networks (WLANs), wide area net-

works (WAN), Bluetooth, Zigbee, etc. [193]. The heterogeneity in IoT devices and network

infrastructure poses a challenge to the security of IoT environments as it leads to increased

security threats/attack surfaces [189, 11, 9]. Security threats to IoT include attacks on IoT

devices, such as Man-In-The-Middle (MITM), distributed Denial of Service (DDoS), imper-

sonation, wormholes, and physical node compromise attacks [11]. One of the significant

security challenges for IoT is untrustworthy data and operations [4]. Estimating trust in

data and devices is challenging as the number of things is rising [64]. The data collected by

IoT nodes are transmitted through networks, analyzed in real-time, and used for actuation

[108] and other decisions. Infringement of trust in any of these processes or the data may

1



signal a possible compromise and arise from malfunction leading to redundant data copies,

vulnerable transmission medium, or faulty sensors [108].

Ensuring trust in the data and operations, i.e., trust management, is significant for IoT

due to several reasons. First of all, trust mechanisms are fundamental for people to overcome

perceptions of uncertainty and risk in using IoT services and applications [49]. Also, trust

is essential for reliable IoT services as service subscribers interact with a large amount of

data without being aware of their source [40]. For instance, in a smart traffic scenario,

sensors at intersections may connect to smart cars passing by and send notifications to the

smartphones of blind or deaf pedestrians. The data coming from smart cars and sensors

need to be reliable for preventing false alarms [1]. Finally, the lack of trust may have dire

consequences for IoT. For example, if an attacker compromises/captures an IoT device, it

may be able to command the generation or reporting of bogus data [108]. A malicious node

may interrupt the proper functioning of an IoT network as it may boost the reputation of

malicious nodes and ruin that of benign nodes [1]. The lack of trust may even disrupt the

whole data management process and prevent the proper functioning of IoT devices [4].

1.0.1 Need for Trust Management in IoT

There are security mechanisms to defend against external attacks in IoT, such as cryp-

tographic algorithms to provide confidentiality, integrity, and network design for availability

of devices, communications, and data [154]. Yet, they do not address internal or insider

attacks [154]. A benign IoT node could turn into a malicious one anytime after joining

the network and behaving benign for some period [11]. Traditional cryptographic security

mechanisms cannot identify such behaviors as insider nodes have already joined the network,

successfully exchange cryptographic keys, and establish secure communications [11]. For in-

stance, an internal attack can be launched by a compromised IoT device with a legitimate

cryptographic key by altering the exchanged data or inserting bogus information without

being recognized [188, 154]. Another attack that cannot be identified by traditional security

mechanisms is a wormhole attack. A wormhole attack creates a tunnel between a victim and

remote nodes by an attacker by capturing packets in the network and re-transmitting them
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to distant nodes [11]. This attack does not require any knowledge of cryptographic keys or

network structure [11]. Also, strong security measures cannot be implemented on constrained

IoT nodes [1]. Therefore, trust management solutions are needed for IoT environments [188].

Trust management solutions are essential for detecting misbehaving legitimate nodes [9, 154]

and addressing attacks performed by masquerading nodes in IoT [11] when cryptographic

measures are not available [107] or applicable. A trust management solution performs a

quick check by measuring trust at the device or transaction level, allows data exchange only

between trustworthy nodes, and minimizes the likelihood of data compromise [11].

IoT brings extra challenges to trust management due to its unique features [11, 4, 107].

One unique feature is the heterogeneity of network topology and devices, aforementioned.

Ever-changing network topology is another challenge [108, 11], which arises from constantly

moving or adding/removing IoT nodes [108, 11, 107]. Data redundancy corresponds to

multiple copies of data kept for data availability purposes. It may lead to uncertainty

and untrustworthy data and is another source of challenge for trust management. Limited

resources of constrained IoT devices, i.e., computation, storage, and power resources, also

poses a challenge for trust management [40, 11, 9, 1, 107, 154]. Due to these challenges

in trust management and the unique characteristics of IoT, trust management solutions for

traditional networks do not accommodate the requirements for IoT [40, 11].

1.0.2 Trust Management Schemes

Trust management solutions for IoT have been proposed to address some of the chal-

lenges mentioned above. Existing work on trust management in IoT is further discussed in

Chapter 2. A trust management solution/trust model is targeted to establish trust among

nodes in a network [126, 40, 11] or in different IoT networks [188] by assessing the trustwor-

thiness of nodes [107, 188], by detecting malicious and faulty behaviors [126, 40, 11, 154],

and selecting the most reliable trustee node for a trustor node [126, 40, 11, 1]. Towards

this, trust management schemes typically use a trust metric(s) to output trust levels, which

combines different trust sources (e.g., direct and indirect trust [106]) and different attributes

[176], including contextual attributes, reputation (a.k.a indirect trust opinions [107]), ex-
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perience/behavior history (a.k.a direct trust opinions [107]), and knowledge of IoT nodes

[40, 11, 107, 176]. Trust levels are further assessed [40], such as by comparing them to a

threshold value [107, 188], to make decisions, such as about service selection or actuation

[107]. Yet, existing solutions have some drawbacks. For example, trust management schemes

built on the Social IoT (SIoT) paradigm1 could require human intervention [12] and may

not be suitable for automated trust computation. [5]. Also, trust measurement approaches

based on feedback and service recommendation are prone to the same drawback [5] as the

dynamic nature of IoT and an unpredictable number of devices render feedback management

challenging [129]. The application of decentralized trust measurement approaches may be

limited as they may rely on resource-constrained IoT nodes for the computation and storage

of trust values.

1.0.3 Focus of the Dissertation

In this dissertation, I explore automated trust evolution in IoT networks, i.e., stages

that a trust relationship between two IoT devices goes through. The research comprises the

following parts.

1. First, we have explored in [3] how trust has been studied in a set of social science research

papers to extract the important aspects of trust evolution. For this purpose, we have

distilled social sciences trust literature into a detailed, yet composable framework. Next,

I apply these concepts to IoT as trust computation approaches in an automated way

where possible.

2. We have developed a trust computation framework for IoT in [5], —MADM-EBSL Frame-

work (Multi-Attribute Decision Making (MADM) - Evidence-Based Subjective Logic

(EBSL) Framework) —, based on multiple attributes and examined their effectiveness

in capturing malicious and faulty nodes.

1SIoT is an integration of social networking and IoT concepts [12]. In SIoT, nodes “act as autonomous
agents” [1]. They can establish social relationships like humans and operate based on predefined rules set
by human users. These relationships can be a co-owner relationship (devices of the same owner), friendship
relationship (devices of owners who are friends), co-location relationship (devices in the same location), and
parental relationship (devices produced by the same manufacturer) [12].
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3. I comprehensively evaluate the MADM-EBSL framework concerning a subset of aspects

of trust evolution, drawing upon our research in Step 1. These aspects are network

connectivity and trust problem size (Chapter 5 includes definitions of these concepts).

4. I extend the MADM-EBSL trust framework with trust-related information to be used

in automated trust computations of devices. I investigate the effect of additional trust

attributes through experimental evaluations by comparing the trust scores of nodes as

computed by the MADM-EBSL to those by the extended framework.

5. I explore trust repair actions for IoT devices and propose a trust repair model to reflect

those on trust scores. I present experimental evaluations and discuss the results.

The outline of this dissertation is as follows: Chapter 2 provides a literature review

on IoT trust management. Chapter 3 provides an overview of trust in social sciences and

discusses implications for IoT networks. Chapter 4 introduces our proposed automated trust

computation framework for IoT networks [5], which uses multiple attributes and Subjective

Logic [77]. Chapter 5 presents the results of a comprehensive experimental evaluation of the

MADM-EBSL, focusing on network connectivity and trust problem size. Chapter 6 extends

the MADM-EBSL and compare trust scores computed by the original and the extended

frameworks through experiments. Chapter 7 proposes a trust repair framework for IoT

based on the MADM-EBSL and trust repair concepts we have distilled in our review of trust

in social sciences in [3]. Finally, Chapter 8 concludes the dissertation and outlines future

work.
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2.0 Background and Related Work

In this chapter, I present a review of literature related to trust management in IoT.

As we identified in our review of trust in social sciences [3], trust is multi-dimensional,

context-specific, dynamic, and involves uncertainty. I frame the related work based on these

key characteristics and additional perspectives, namely architecture, trust transitivity, and

automation capability. Table 1 summarizes the IoT trust management solutions discussed in

this chapter from these seven perspectives.

For the convenience in discussing the related work, and for the rest of the dissertation, I

present the definition of two concepts below, which are significant for IoT trust management.

Definition 1 (Trustor node). A node, a.k.a. service requestor node, that typically delegates

a task to another IoT node [1]. It may evaluate the service after completion through node

ratings or other means.

Definition 2 (Trustee node [1]). A node, a.k.a service provider node, that is trusted to

provide the service(s) requested by a trustor node. These services are typically beyond the

direct control of the trustor.

Note that each IoT node can be a trustor, trustee, or both [25].

2.1 Trust Management Solutions based on Key Trust Properties

2.1.1 Multi-Dimensionality

Trust is a complex and multi-faceted, or a multi-dimensional, phenomenon that depends

on numerous factors as indicated in the social sciences literature [3]. This property also

applies to trust in IoT environments. Therefore, multi-dimensionality is crucial for trust

management solutions developed for IoT. At the same time, extracting, storing, and updating

node attributes [1] and combining the values of them to obtain a single trust score [5] are
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Paper
Key trust properties

Multiple
dimensions

Context-
specificity

Dynamism Uncertainty Architecture Trust
transitivity

Automation
capability

Evaluation

[125] no no yes no Distributed None None yes
[126] no no yes no Distributed None None yes
[145] yes yes yes yes Distributed global Semi yes
[11] yes yes yes no Distributed global Semi no
[9] NI no yes no Centralized local Full no
[1] yes yes yes no Hybrid local Semi yes
[107] no yes yes yes Distributed NI Semi yes
[188] yes no yes yes Hybrid local Semi yes
[70] no no yes no Hybrid global Full yes
[94] yes no yes yes Distributed local Full no
[26] no no yes no Hybrid local None yes
[154] yes yes yes no Centralized None None yes

Table 1: Representative Trust Management Solutions for IoT

challenging. In the sequel, I review previous work concerning the multi-dimensionality of

trust computation approaches proposed for IoT.

2.1.1.1 Uni-dimensional Approaches

Mendoza et al. [125] propose an IoT trust management scheme, which computes the

trust of an IoT node based on the provision of a service. In the proposed solution, a node

can provide multiple services and discover services provided by nearby nodes through an-

nouncement packets sent to them. The trust score of a node is incremented if it provides a

service to a requesting node on time, decremented otherwise. The proposed solution has a

uni-dimensional trust computation approach as there is only a single factor affecting trust

scores. Similarly, Mendoza and Kleinschmidt [126] propose a distributed trust management

scheme (DTMS) based on a single attribute, reward (penalty) of providing (not providing)

a service on time.

Li et al. [107] propose a trust model for IoT services based on context information and

reputation. Although multiple context attributes are used for “trust estimation” from given

trust scores of an IoT service and the context attribute values under which a trust score

is computed, the proposed model is uni-dimensional. The reason is that it only uses the

type of trust-related events, i.e., node behaviors such as trusted, distrusted, and uncertain,
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in the computation of trust scores. The Adaptive IoT Trust protocol [26] proposed for

SIoT environments also provides a uni-dimensional solution for trust computations. Only a

single factor, user satisfaction on IoT device/service as a binary variable, is used for trust

computations, making the proposed solution uni-dimensional.

ReTrust [70] is another trust management solution for IoT with a uni-dimensional trust

computation approach, specifically proposed for medical sensor networks. It only uses the

number of successful and failed transactions in direct trust computations as decided by a

master node in a sub-network based on an outlier detection method applied on reported

measurements by sensor nodes, which is a single dimension.

2.1.1.2 Multi-dimensional Approaches

Rafey et al. [145] propose CBSTM, which is a trust model for SIoT. CBSTM is based

on social relationships between nodes (relationships such as co-location, co-work, co-owner,

parental, etc., as proposed by Atzori et al. [12]) and their owners interacting through social

media. In the proposed architecture, nodes and users can form communities based on social

relationships and interest similarities. CBSTM includes multiple attributes in trust compu-

tations, namely the type of social relationship between two IoT nodes1, service feedback of a

trustor node for a trustee node, recommendations provided by other nodes, and confidence

in recommendations by the trustor node.

Asiri and Miri [11] propose a trust and reputation model based on recommender sys-

tem concepts and Probabilistic Neural Networks (PNN) to classify IoT nodes as trustworthy

and malicious. The model utilizes a collaborative filtering technique, a recommender sys-

tem design, to profile IoT nodes based on node characteristics. These characteristics are

considered as factors/attributes contributing to trust computations in the proposed model.

They include the number of packets delivered or dropped, transmission rates, battery life,

CPU power, available memory, and the sensitivity/severity of transmitted data. To address

the cold start problem2, the proposed model uses average service ratings provided for nodes

1Value of this attribute is highest for co-owner relationship and lowest for no social relationship between
two nodes. Also higher value of this attribute indicates higher trust.

2The cold start problem is a well-known issue for recommender systems, which is the challenge of gener-
ating recommendations at the starting phase when there are not enough item ratings by users. The same
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other than the node that does not have any rating.

Another multi-dimensional trust model is proposed by Wu and Li [188], for multi-domain

RFID systems. The proposed trust model focuses on computing the trust of RFID read-

ers and assumes RFID tags are trusted. It enhances the authentication process of RFID

readers by authentication center devices. The trust of RFID readers is computed using

interaction events, i.e., node interaction behaviors obtained using watchdog agents imple-

mented by RFID readers. There are three types of node interaction behaviors (discarding,

tampering with, and replaying or forging data) at three levels (malicious, malfunctioning,

and benign). As the proposed model considers multiple interaction types as factors affecting

trust computations, it is a multi-dimensional model.

Aalibagi et al. [1] propose a trust management mechanism for SIoT, which includes a bi-

partite social network model with two sets of nodes — service provider (trustee) and requestor

(trustor) nodes. Trustor nodes can further establish social relationships among themselves

and form local networks. The proposed solution also includes a social trust model that uses

multiple attributes to estimate trust scores. These attributes are node ratings for completed

services by trustee nodes and similarity of trust pattern between (trusting behavior of)

trustor nodes, and latent features of the trustor and trustee nodes. Trust pattern similarity

is a combination of trustor node similarity and centrality (degree and betweenness centrality).

Node similarity is computed using ratings and different metrics, such as the Hellinger distance

metric and Bayesian similarity metric. For predicting trust scores, a matrix factorization

concept applies to recommendation/service feedback-based trust computations in IoT for nodes newly join-
ing networks [11, 1]. This is also defined as initial trust formation in IoT trust management [3] and applies
to trust computation approaches regardless of node recommendations/service feedback. Initial trust forma-
tion in IoT networks can be captured by two main types of strategies. These are naive strategies and trust
propensity-based strategies [3]. Naive strategies include methods to set the trust of a node to the worst (low-
est), best (highest), or a neutral (medium) possible value in a trust scale [3]. Trust propensity-based strategies
utilize the tendency of an entity to trust others [3] to set an initial trust value. Initial trust formation is a
well-explored research area for IoT networks. For instance, as a naive strategy, setting the initial trust of
an IoT node to the worst (zero) [126] and a neutral (medium) value (0.5 in a [0, 1] scale of trust) [145] have
been proposed. As trust propensity-based strategies, researchers utilize the social networking paradigm in
IoT, a.k.a Social IoT (SIoT, (section 1.0.2, Page 4)). For example, node centrality and social relationships
between IoT nodes (e.g., co-owner relationship, friendship relationship, co-location relationship, and parental
relationship) have been used to set initial trust levels [133]. Latent features of SIoT nodes extracted from
a rating matrix and a matrix factorization approach have been utilized to deal with the cold-start problem
and data sparsity [1]. These attributes reflect the trust propensity of nodes, i.e., generalized trust towards
other nodes based on the properties of node relationships. As another propensity-based strategy, researchers
have proposed to use the average service rating of a trustor node for the nodes it has previously interacted
with to set the initial rating for the first encounter with a node.
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technique is applied, which also addresses the cold-start/sparsity problem2 for the trust

rating matrix. Latent node features are extracted by the matrix factorization model.

Konwar et al. [94] propose a multi-dimensional trust model for wireless mesh networks

based on the Multiple Criteria Decision Making (MCDM) approach, specifically the Tech-

nique for Order Preference by Similarity to Ideal Solution (TOPSIS) model [76]. Selected

criteria are the probability that an agent will perform a particular action (packet forward-

ing and recommendation exchange), the number of packets to be forwarded, the number of

packets successfully forwarded, and the Delivery Ratio Efficiency (DRE) of the agent. One

limitation of this model is that each criterion in MCDM formulation has equal importance

and thus equal weight. The total trust score is computed by simply adding individual and

recommendation trust values without weighing them. This results in a trust value greater

than the allowed limits set in the model.

Saied et al. [154] propose a trust management system for IoT with multi-dimensional

trust computations. They compute the trust level of an IoT node based on recommendations

from nodes that consume services provided by this node. As recommendations are further

evaluated by the trust management system based on multiple contextual variables, the pro-

posed solution has a multi-dimensional trust computation approach. These variables are the

type of service consumed, the time, and the capabilities of the node consuming the service

(resource capacity, memory/battery level, etc.).

2.1.2 Context-Specificity

Context has a fundamental role in assessing trust in social relationships [3] and IoT

environments [189, 107, 8]. Context refers to information describing the situation of an

entity, such as attributes of a trustor, trustee, and their environment [176]. Examples include

location, time, velocity, and device capability for a smart-wildlife application [107]. Trust

is context-specific [109, 107, 106] as a trustor may trust a trustee under a given context

but may decide not to trust under others [109, 107]. For instance, a base station may

provide fixed devices with more reliable service/stable connections than mobile devices [107].

In the sequel, I overview trust management solutions for IoT with a context-based trust
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computation approach.

Saied et al. [154] propose a context-aware trust management system for IoT. Here, the

underlying design principle is that an IoT node provisions multiple services and the trust

level for each of them should be evaluated separately. Thus, the trust towards a node and

recommendations provided by a node are computed based on contextual variables such as

the type of the service consumed, the time and the capabilities (resource capacity, ageing etc)

of the node consuming the service. The CBSTM proposed in [145] is a context-based social

trust model for IoT. CBSTM considers the context of a transaction performed by an IoT

node in trust computations for that node. Context is considered for both direct and indirect

trust, i.e., there are distinct trust values between each device for each specific context. Yet,

there is no further discussion on possible contextual attributes/parameters used in CBSTM.

The IoT trust model proposed by Asiri and Miri [11] can be considered as a context-based

model as it accommodates the data sensitivity of transmitted data. That is, it makes trust

decisions by checking the severity of the data to be exchanged in a transaction between two

IoT nodes. For example, the trust of nodes for the exchange of weather data and patient

records are evaluated differently. If the data is not sensitive and publicly available, it allows

a node transaction by comparing the service ratings of a service provider node to a threshold

value. If the data is sensitive, it facilitates more complex trust computations based on

neural network algorithms. The proposed solution is effective for heterogeneity of devices

by considering different data sensitivity requirements and their type and functionality. Yet,

it is a distributed trust model where each node stores trust rating matrix and applies ML

algorithms on it. Thus, computation and storage overhead brought by ML algorithms may

render it ineffective for resource-constrained nodes.

In the trust management scheme proposed by Aalibagi et al. [1], context is defined as

the characteristics/type of a service provided by a trustor node and a factor that decides

node service feedbacks. That is, a service requestor node could possibly evaluate the service

provider node depending on the characteristics of the provided service. The proposed solution

uses context information such that a separate bi-partite graph of IoT nodes (two node sets:

service requestor (trustor) and provider (trustee)) is constructed for each service type, which

is limited in number.
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Another context-based IoT trust model is proposed by [107]. The proposed model does

not utilize context attributes directly in trust score computations. Yet, it constructs a

context vector with multiple context attributes (e.g., location, time, velocity, capability)

to represent the state of a service provided by an IoT node. This context vector is stored

with the trust score measured for a service provider node. Later, to estimate trust score of

another service provided by this device, a trustor IoT node compares the current context

vector of the trustee node to previous context vectors. Hence, based on the most similar

(using Euclidean distance between context vectors) context, a new trust score is estimated.

2.1.3 Dynamism

Trust is a dynamic concept that evolves over time through interactions [106]. This holds

for both trust in human relationships [3] and trust in IoT [11]. Hence, trust management

frameworks that consider dynamic trust changes in trust computations are needed for IoT

environments [9]. Within the context of IoT, dynamism of a trust computation approach

corresponds to the adaptive adjustment of trust scores concerning the behavior of nodes

[145]. As seen from Table 1, all of the IoT trust management solutions reviewed in this

chapter are dynamic. In the following, I present a subset of these solutions as examples of

how dynamism can be reflected on trust computations in IoT.

The CBSTM proposed by Rafey et al. [145] is a dynamic trust model as it adapts to

changes in behavior of nodes, i.e., trust values are dynamically updated after each trans-

action. The trust model proposed by Asiri et al. [11] is another dynamic model. It is

considered dynamic as it also updates trust score through node ratings and recommenda-

tions upon completion of transactions. Another dynamic trust model is proposed by Aalibagi

et al. [1]. The proposed social trust model is dynamic as it takes into account node ratings

that are provided by service requestor nodes and updated after receiving a service every

time.

The central IoT trust management mechanism in [9] comprises an architecture in which

trust messages are exchanged between IoT nodes in a cluster and the master node of that

cluster. These include receive and send messages that are used by the central node (cluster
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nodes) to request (send) updated trust values. Thus, this architecture sets forth a dynamic

trust computation approach.

The context-based IoT trust model proposed in [107] is also dynamic as it evaluates

trust based on trust-related events, i.e., node behaviors as trusted, distrusted, and uncer-

tain activities. Wu and Li [188] propose a trust model for RFID systems with multiple

management domains. This model is dynamic because it includes node interaction behav-

iors (discarding, tampering with, and replaying or forging data) and feedback records for

completed interactions to compute trust scores. The Adaptive IoT Trust protocol proposed

in [26] is another dynamic trust computation approach. The proposed solution is dynamic

as it updates trust scores of IoT devices through user feedback upon receiving services or

user service recommendations before receiving a service. It also updates direct trust scores

periodically in a predefined time interval using an exponential decay function, even if there

are no transactions.

2.1.4 Uncertainty

Trust becomes more relevant in situations that are characterized by uncertainty [3, 106].

Uncertainties may occur due to risks that cannot be reduced for a given context or cannot

be calculated due to imperfect information about a trustee and its behaviors [3, 106]. Given

that uncertainty is needed for trust to become relevant, it is crucial to consider uncertainty

in trust computations for IoT. There are several approaches to deal with uncertainty in trust

computations [106], including Dempster-Shafer (D-S) Theory [162], Fuzzy Logic [91], and

Subjective Logic [77]. In the following, I overview IoT trust management solutions that

consider the notion of uncertainty in trust computations.

CBSTM proposed in [145] includes the confidence of a trustor node in recommendations

provided by other nodes. The confidence attribute used in this model resembles uncertainty

in trust recommendations, so we can consider that CBSTM captures uncertainty from this

perspective. In the IoT trust management system proposed by Li et al. [107], trust evalua-

tions are performed based on the entropy of trust-related events, i.e., behavior of nodes as

trusted, distrusted, and uncertain activities. Thus, this model is one of the few IoT trust
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models that considers uncertainty in trust scores. Similarly, Konwar et al. [94] propose a

trust model that computes trust scores by entropy and approaches trust as a function of

uncertainty.

The trust model proposed by Wu and Li [188] is another model that truly takes uncer-

tainty into account for trust computations. It addresses trust uncertainty by using Dempster-

Shafer (D-S) evidence theory as D-S theory can express uncertainty. Our previously proposed

IoT trust framework in [5] (see Chapter 4 for details) also accounts for uncertainty in trust

values through Evidence-Based Subjective Logic (EBSL) [167].

2.2 Trust Management Solutions based on Architecture

Trust management solutions for IoT can be characterized based on their architecture,

namely centralized (e.g. [154]), decentralized (e.g. [125, 26, 126, 107]), and hybrid schemes

[189, 40]. Centralized schemes include a central authority for computing, storing, and sharing

trust levels. On the other hand, decentralized schemes do not contain a central trust author-

ity responsible for trust management/trust computations [145, 11, 107]. A distributed trust

management scheme is a special type of a decentralized scheme. In a decentralized scheme,

there can be pre-trusted nodes, which are typically more powerful IoT nodes, that are re-

sponsible for trust management in their virtual cluster of IoT nodes, such as in [145, 11]. In

a distributed scheme, IoT nodes are responsible of maintaining trust data and computing

trust scores on their own [145, 11]. It should be noted that IoT nodes in a distributed trust

management scheme are either capable of computing and storing trust data or not, so there

is no delegation of these tasks to a different entity in the network [145]. Hybrid schemes

have an architecture choice that is in between centralized and decentralized [125].

Each type of architecture has its own advantages and limitations. Centralized trust man-

agement schemes offer an advantage of comprehensive understanding of the whole network

and an improved accuracy of trust computations [107]. Yet, they have the drawback of single

point of failure as they compute and store trust data on a remote central unit [145, 1], which

in turn increases the likelihood of compromising the system [11, 1]. Deploying a central node
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for measuring and managing trust may lead to possible node delays [11] and may restrict the

scalability of trust management for large IoT networks [1]. In contrast, distributed schemes

are not prone to single point of failure, so they provide better availability [11]. Yet, de-

centralized schemes which are not fully decentralized and distribute trust computations on

more powerful pre-trusted nodes, may still be prone to the single point of failure for node

clusters of unavailable pre-trusted nodes. They also may be prone to a malicious pre-trusted

node attack (see Section 2.5). Fully decentralized schemes suffer from trust computation

burden put on lightweight nodes. These nodes are typically resource-constrained and can-

not accommodate complex security solutions due to energy and memory consumption issues

[107]. As discussed above, a node is either capable or not capable of trust computations

in a fully decentralized scheme. This leads to interruptions in trust computations and the

unavailability of trust data.

2.2.1 Centralized IoT Trust Management Solutions

Saied et al. [154] propose a trust management system for IoT with a centralized archi-

tecture. The underlying design principle is that an IoT node provisions multiple services

and the trust level for each of them should be evaluated separately. A central trust man-

ager computes the trust level of an IoT node based on recommendations from nodes which

consume services provided by this node, in the form of evaluation reports on service quality.

The trust manager also evaluates recommendations based on contextual variables (the type

of the service consumed, the time, and the capabilities of the node consuming the service

(resource capacity, memory/battery level, etc.)).

Alshehri and Hussain [9] propose a centralized mechanism for trust management in IoT.

Although not detailing on a technical solution for trust computations, they propose an

architecture and elaborate on the components, i.e., modules, design patterns, and methods

to be used by network elements. In this architecture, there is a central trust management

component named Super Node (SN). Nodes are grouped into clusters (Cluster Nodes (CN)).

In each cluster, there is a local trust manager named Master Node (MN). MNs have a local

trust repository to store trust values of CNs in a cluster. Trust messages are exchanged
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between CNs, MNs, and SNs to communicate trust value of CNs. Trust values are set from

a pre-defined set of discrete values in [0,1], zero representing distrust, 0.5 being neutral

and 1 being complete trust. SN has a central trust repository to store trust values of all

MNs and CNs, and the network topology. It can monitor communications among MNs and

CNs and exchanged trust data. SN is remotely accessible to any IoT application through

an Application Programming Interface (API) so that applications can query and share the

trust value of IoT nodes.

2.2.2 Decentralized IoT Trust Management Solutions

Based on the multi-service paradigm of the trust scheme proposed by Saied et al. [154],

Mendoza et al. [125] propose a distributed trust management solution for IoT. Their pro-

posed scheme relies on direct observations and direct communication among nodes for trust

evaluation. Each node has a trust score incremented (or decremented) if it provides (or does

not provide) a service to its neighbor node which requests the service. DTMS [126] is another

distributed trust management scheme for IoT, which is based on direct observation of nodes

and the evaluation of services provided by them. Similarly, in DTMS, a node is rewarded for

the service provided in time and penalized otherwise. This reward/penalty information is

recorded by the node requesting the service. These trust computation approaches that are

based only on timely service provision have a drawback. The trust value reduces if a node

only does not provide the requested service. A node may misuse this by providing a requested

measurement, but with a bogus value. Also, as trust computations are performed by IoT

nodes and trust scores are recorded by them, resource constraints may be an issue. The trust

management scheme proposed in [94] has also a distributed architecture. Trust computations

are performed by nodes without delegation to any other network entity. Yet, the authors do

not discuss about or propose a solution for the issues related to distributed architecture for

trust management, i.e., overhead of trust computations on resource-constrained nodes.

Wang et al. [185] propose a trust model, LogitTrust, for service-oriented MANETs.

Trust is defined as the probability of a service provider (SP) to provide a satisfactory service

in response to a request from a service requestor. They use logit regression to predict
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this probability with respect to behavior patterns of an SP node while providing a service.

They define behavior pattern factors as energy-sensitivity (# neighbors sharing the channel),

capability-limitation (packet traffic to SP), and profit-awareness (price for the service). They

show the superior performance of LogitTrust to Bayesian inference-based trust model with

belief discounting, in terms of trust accuracy, false positive rate, and resiliency against bad-

mouthing and ballot-stuffing attacks. The limitation of LogitTrust for IoT environments is

that nodes store history of service satisfaction and contextual variables (for each interaction)

and send it to any node upon request. As the time progresses, the size of the historical records

will increase and a limited IoT node may not be able to store them.

CBSTM [145] is a distributed context-based social trust management model for IoT. As

it is distributed, each node computes and stored trust values for other nodes and there is no

central authority. Even though there is a claim that there is no central authority and each

node calculates and maintains and trust values itself “with no reliance on pre-trusted peers”

[145], trust calculation and storage are deferred by more constrained nodes (e.g., RFID

tags) to less constrained nodes (e.g., mobile phones). This still may not alleviate the single

point of failure problem of centralized architectures. Authors propose a storage management

strategy for constrained nodes such that most recent and the higher trust values would be

stored to save space. Yet, this may be misused by malicious nodes by providing higher trust

recommendations for their cooperators and increasing their trust values.

Asiri et al. [11] propose a trust model with a completely distributed architecture, i.e.,

each IoT node is responsible for storing trust data and computing the trust of a node of

interest. These include storing a trust rating matrix that holds ratings from each service

consumer node towards a direct neighbor node providing a service after the completion of a

transaction, and computing trust scores using a ML (PNN) model. Nodes are clustered into

virtual clusters concerning the similarity of node profiles, which comprise node characteristics

such as functionality, type, transmission rates, the sensitivity of the data transmitted among

nodes, etc. These similarity scores are used in a PNN as input parameters for training of the

network. There are pre-trusted alpha nodes in each cluster that are responsible for profiling

the nodes at the startup phase and collecting trust-related data constantly. These nodes are

stronger concerning their storage, computation, and energy resources, such as control hubs
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connected to a power source. Even though claimed as fully-distributed, pre-trusted alpha

nodes play the role of a central component in the architecture. They store copy of trust

rating matrix within each cluster of nodes and update it. Hence, these nodes could still be

a single point of failure for the trust management operations.

Wu and Li [188] propose a hierarchical two-layer trust model for RFID systems with mul-

tiple management domains. The bottom “RFID reader trust layer” manages trust of RFID

readers, whereas the top “authentication center layer” evaluates the trust of authentication

centers (i.e., a pre-selected device responsible for trust computations in a domain) in each

domain. RFID trust layer is distributed such that each RFID reader in a domain records

node interaction behavior of its neighbor nodes and computes “local trust scores” using these

records. Also, there is an authentication center in each network management domain that

computes “global trust score” of an RFID reader by combining “local trust scores” reported

by its neighbors. The authentication center trust layer has a centralized trust evaluation

scheme such that the trust of authentication center device in each domain is evaluated by a

central trust manager device (named administration center in the paper).

The proposed trust management solution in [1] is described as being “locally centralized

and globally distributed”. That is, SIoT nodes are members of local physical groups (e.g.,

nodes of a smart home) that includes both lightweight (e.g., smart lights and smart thermo-

stat) and at least one more powerful node (e.g., smart TV). Within each group, a powerful

node is selected as a central node. This node collects node ratings from other nodes within

a group and from external groups, performs trust computations, and provides trust scores

to requesting nodes.

Li et al. [107] propose a trust model and claim that trust management is distributed

because the model is designed to accommodate requirements of multiple trust domains. Yet,

there is no further discussion in the paper about its architecture/system model.

2.2.3 Hybrid IoT Trust Management Solutions

ReTrust proposed in [70] is an example of trust management schemes with a hybrid

architecture. It is a hybrid scheme because trust computations are performed by a master
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node in each network domain, i.e., a physical grouping of sensor nodes in a medical sensor

network deployed on a patient’s body, rather than by each IoT node. Another hybrid solution

is proposed by Chen et al. [26] for SIoT environments. Despite the authors discussing the

proposed solution as having a distributed architecture, they include “high-end devices”, such

as smartphones and laptops, to store and compute trust scores within each physical group

of sensors belonging an IoT user. Thus, I argue that this is a hybrid architecture with a

centralized trust management within each group of sensors and distributed trust management

across different networks.

Truong et al. [179] propose an architecture of a trust platform as a service (TaaS) for

trust management in SIoT. They use a semi-centralized approach to alleviate the drawbacks

of centralized and distributed architectures. Their trust model imitates human information

processing and incorporates recommendation, reputation, and knowledge as trust metrics.

2.3 Trust Management Solutions based on Trust Transitivity

In this section, first, I briefly explain trust transitivity through closely related concepts,

such as recommendations, direct vs. indirect trust, and functional vs. referral trust. Then,

I overview existing IoT trust management solutions based on trust transtivity.

Direct and indirect trust are the two ways to measure trust that are frequently cited in

the IoT trust literature [40, 107, 106, 145]. The prior corresponds to the trust between two

nodes that are directly connected, whereas the latter is the trust between indirectly connected

nodes [40]. A trustor may combine direct and indirect trust to form trust in a trustee [106].

Direct trust, a.k.a trust in performance [106], is calculated based on direct interactions and

observations by a trustor node of a trustee node [145, 106]. These observations provide

evidence about the characteristics of a trustee to make trust decisions, such as performance,

ability, and morality [106]. When there is no direct interaction, direct trust could be set to

a default initial value or indirect interactions could be utilized [145].

For indirect trust, a trustor resorts to information from third parties rather than direct

interactions with the trustee [106]. In IoT, nodes can obtain indirect trust through recom-
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Figure 1: Indirect trust types (T.I.P: trust in performance, T.I.R: trust in relationship)

mendations provided by other nodes for the trustee node [145]. Indirect trust, a.k.a trust in

relationship [106], can be obtained in following three ways in a trust management system:

i) from a single third-party, ii) from multiple third-parties in series, and iii) from multiple

third-parties in parallel [106]. Fig. 1 illustrates direct and indirect trust types. In all cases,

the arrow from node A (trustor) to node B (trustee) denotes the direct trust of trustor A on

trustee B, and is labelled as T.I.P. (trust in performance). Fig. 1a represents the case that

a trustor resorts to a single third-party (which can be considered as a trust authority [106])

to form the trust in a trustee. The arrow from node A to node C (third-party C) represents

T.I.R. (trust in relationship), i.e., the trust of node A on node C for its direct trust belief on

node B [106]. Indirect trust of node A on node B is derived from the path on which node C

resides.

Fig. 1b represents the case that a trustor resorts to multiple third-parties in series, a.k.a.
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a trust chain [106], to form indirect trust. In this case, indirect trust is the combination of

T.I.R.s and T.I.P. on the path from node A to B through nodes C and D. Fig. 1c represents

the case that a trustor resorts to multiple third-parties in parallel to form trust. In this case,

there are two paths formed by third-parties in parallel. The trustor aggregates opinions from

multiple sources, a.k.a. trust aggregation [106]. Trust aggregation approaches include belief

theory, Subjective Logic [77], and weighted sum [106]. All types of indirect trust involves

trust propagation [106], or trust transitivity, such that trust propagates from one party to

another until reaching to the trustor. As a result, to compute the total indirect trust of a

trustor, trust propagation and aggregation can be utilized [40, 106].

Indirect trust is considered by some researchers (e.g., [145, 11]) to reflect the reputation

of an IoT node in a community. Reputation is “the opinion of an entity about another”

[145]. According to Jøsang et al. [78], there is a distinction between reputation and trust.

They define reputation as what other people say or believe about the characteristics or

standing of a person or entity. From this perspective, a person could be trusted even if

they have a bad reputation, or the reverse. Similarly in IoT context, reputation is a value

derived from the opinion of IoT nodes [11], which form a community, and reflects the indirect

trust/recommendations in trust computations.

As aforementioned, indirect trust includes trust transitivity notion. I categorize trust

computation approaches based on trust transitivity. Trust computation approaches that

take into account indirect trust and trust transitivity are transitive trust computation ap-

proaches. Conversely, if a trust computation approach does not capture indirect trust but

only direct trust, then it is a non-transitive trust computation approach. In a transitive trust

computation approach, trust is allowed to be transferred from one node to another along

paths in a network through recommendations. Recommendations could be subjective or ob-

jective. When nodes share their own view of trust for other nodes, such as through their

owners in a social networking-based IoT paradigm (SIoT), recommendations are considered

subjective, such as in [145, 11, 1]. When recommendations are derived from objective in-

formation or interaction parameters, they are considered as an objective recommendation,

such as in [5].

Transitive trust computation approaches can be further categorized as global and local.
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In a global approach, trust computations are performed by a central trust authority with

the knowledge of the topology of the whole network using all existing links and paths among

trustor and trustee nodes. In a local trust computation approach, typically there is no

dependence on a remote central node [1], but there can still be trust transitivity. As such,

trust ratings/recommendations may be shared among nodes in a local physical group of IoT

nodes and trust can propagate along paths in the local network. Local trust computation

approaches have been developed for addressing the network sparsity challenge that global

approaches suffer from. Network sparsity challenge corresponds to a significant amount of

missing links among nodes in a network as most of the nodes only interact with a small

portion of the nodes. This poses a challenge for trust computations because trust scores

may not be properly predicted due to the lack of data [1]. For instance, Wu and Li [188]

observed that trust prediction accuracy drops in sparse networks. Local trust computation

approaches address this challenge by considering immediate neighbors as most IoT nodes

typically communicate with their neighbor nodes.

Next, I overview transitive and non-transitive trust computation approaches.

2.3.1 Transitive Schemes

He et al.[70] propose ReTrust trust management scheme for medical sensor networks with

direct and indirect trust components. They suggest using the number of “successful” and

“failed” interactions between two nodes to compute direct trust. They consider historical

trust values to compute the current trust of a node, using “sliding window” concept.

CBSTM [145] is a context-based social trust model for IoT. It incorporates direct obser-

vations of a trustor node and indirect recommendations from other nodes to calculate a trust

value of a transaction performed with a trustee node. As CBSTM includes recommendations

as a way of transferring trust values among nodes, it can be considered as a transitive model.

Direct trust is computed using type of social relationship between nodes (just used for setting

the initial trust value, i.e., for t = 0) and subjective feedback of the trustor node for a service

provided by the trustee node. Indirect trust is a weighted combination of recommendations

by all other nodes in the network and confidence of trustor node in these recommendations.
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Another transitive trust model for IoT is proposed in [11]. In this model, a service con-

sumer node provides a rating for a service provider node after the completion of a transaction.

These ratings are provided to a requesting trustor node as recommendations. Recommenda-

tions for a service provider node is weighted across nodes providing rates for this node. The

proposed solution computes indirect trust between nodes that are not immediate neighbors

through paths with multiple hops. Although a trust propagation or aggregation method is

not discussed by authors, there is a proposed trust formula that computes trust between

two nodes based on recommendations for these nodes and recommendation weight of each

node. Recommendation weights are computed based on the quality of a recommendation

(the accuracy of a recommendation based on past ratings of a node) and virtual clustering of

nodes (based on similarity of node profiles generated using device functionalities and types).

Recommendations from the same cluster are weighted more.

ReTrust [70] provides a transitive trust computation solution. In ReTrust, indirect trust

is computed by multiplying the trust recommendation of a node on the path, with the

trust of the node requesting recommendation on the recommender node for making correct

recommendations. ReTrust has global transitivity because trust propagation is considered

for computing indirect trust within the whole network, between two nodes that are not

immediate neighbors and with a distance more than one hop.

The solution proposed in [94] for wireless mesh networks has a transitive and local trust

model. In this model, there are two components; “individual trust” assigned by a node to its

neighbors based on node behavior and “recommendation trust” broadcasted by the neighbors

of a trustee node. As the immediate neighbors are taken into account for recommendations,

trust is only transferred locally in the network. Another local-transitive trust management

solution for IoT is proposed by Chen et al. [26]. The proposed solution has a transitive

trust computation approach because it employs user recommendations towards IoT devices

as a means of indirect trust. The type of transitivity is local because only users and devices

with interactions/common interests/social relationships share recommendations. There is

no global network information nor trust propagation.
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2.3.2 Non-Transitive Schemes

The trust management scheme proposed in [125] (and DTMS [126], which utilizes the

proposed solution in [125]) is a non-transitive trust management scheme proposed for IoT.

Being a non-transitive trust management scheme, DTMS considers only direct observations

for trust computations. More precisely, trust value of a node is computed based on reward-

s/penalties for providing/not providing requested services on time. Initially, when there is

no direct observation for a trustee node, a trustor node sets the trust value for the trustee

node to zero.

The central IoT trust management system proposed in [154] can be considered non-

transitive as trust computations do not include trust transitivity or trust propagation. Nodes

provide recommendations for the nodes that they receive a service in terms of service quality

reports. Yet, these reports are not shared among nodes but are directly sent to a central

trust manager. Thus, trust scores are not discounted as trust does not propagate among

entities along paths on a network. Alshehri et al. [9] also proposed a central non-transitive

trust management solution. In the proposed solution, IoT nodes do not share trust recom-

mendations for other nodes. They only store their own trust values and send it to the master

node in its cluster and the central super node in the architecture.

Wu and Li[188] propose a trust management scheme that is local and non-transitive

as each node has a “local trust value” computed by its immediate neighbors in the same

network management domain without considering trust propagation. Even though there is a

“global trust value” of a node that is computed by aggregating local trust values reported by

its neighbors (using Dempster-Shafer (D-S) evidence theory and Dempster knowledge rule),

the scheme is not global as it does not consider non-neighbor nodes in a network domain.

The trust management mechanism proposed by Aalibagi et al. [1] is local and non-

transitive. SIoT nodes are grouped into local physical clusters, such as smart home group,

with a central node responsible for trust computations. Nodes in a local group can rate each

other but trust is not propagated along paths in these groups. Instead, if there is no direct

interaction between nodes, the central node predicts the missing rating based on a matrix

factorization approach.
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2.4 Trust Management Solutions based on Automation Capability

Providing network services in an automated and programmable way is critical as other-

wise the time required for providing a service would be high [83]. Automation is also essential

for IoT networks, given the ever-growing large scale of them. Considering trust management

as a service for IoT environments, trust computations should be automated, as well. I argue

that the automation capability of trust computation solutions can decided based on trust

recommendation and feedback mechanisms.

Recommendation and feedback have been mechanisms frequently included in trust com-

putation solutions (such as in [145]) for IoT networks in order to compute trust towards IoT

nodes and their services or reported measurements.

Recommendations are requested by a trustor IoT node (or on behalf of it by a central trust

management component in a central architecture) from other nodes for the services/mea-

surements provided by a trustee IoT node. The nodes which have had direct interaction with

the trustee node before in any context send their recommendation to the trustor node [145].

Based on the design of a trust computation solution, recommendations could be requested in

two different cases. They could be requested only in case the trustor node does not have any

direct interaction with a trustee node, but needs to be able to form a trust opinion for the

trustee node. They could also be requested in case the trustee node has direct interaction

before with the trustee node, but wants to complement its own direct trust observations

with indirect evidence coming from other nodes in the network.

Feedback is the performance evaluation of an IoT node after the completion of a trans-

action or the use of a service provided by another node [145]. In other words, it is the

evaluation of each transaction determined by a node itself [145], whereas a recommendation

is the evaluation by other nodes. Hence, feedback is relevant to direct trust as a node keeps it

for itself to compute direct trust and a recommendation is related to indirect trust as a node

sends it to a requesting trustor node for indirect trust computations. A feedback could also

be subjective or objective like a recommendation, as explained in Section 2.3. If the feedback

for a transaction of an IoT node is provided by a human, it can be considered subjective,

whereas it can be considered objective if computed based on objective information from the
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direct interaction between nodes, such as time delay or the deviation of a provided measure

from a range.

Trust computation solutions that rely on recommendation or feedback mechanism may

not have automation capability, i.e., they may require human intervention in the trust com-

putation process. This is because nodes need to provide their recommendation based on

some logic, which may require input from users. For example, in SIoT, devices and their

owners form a social network and establish social relationships [12]. In an SIoT scenario, a

device owner could provide its trust recommendation for a device owned by another user.

On the other hand, a recommendation or feedback mechanism could be designed such that

it does not require human intervention. For example, IoT nodes could send the most recent

direct trust score they computed for the trustee node to the requesting node as their rec-

ommendation, such as in [145]. In this scenario, if direct trust computation also does not

require human involvement, trust computations could be considered to have full automation

capability.

We can relate the categorization of recommendations and feedback based on subjectiv-

ity to the automation capability of a trust computation solution. If a trust computation

solution purely relies on subjective recommendation or feedback mechanism, it can be con-

sidered to have no automation capability. Conversely, if a trust computation solution purely

relies on objective recommendation or feedback mechanism, it can be considered to have

full automation capability. Anything in between, i.e., using partly objective and subjec-

tive recommendation or feedback mechanism, could be considered to have semi-automation

capability.

2.4.1 Trust Management Solutions with No Automation Capability

Saied et al. [154] propose a trust management system for IoT. The proposed solution

includes a trust model that computes trust scores for service provider nodes based on re-

ports (a single number from the set −1, 0, 1) provided for evaluating the quality of provided

services. These reports include subjective evaluation of a received service, i.e., “whether an

assigned task is performed properly or not”. There is no method presented for how service
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quality reports are obtained from IoT nodes. It may be the case that it requires manual

interventions from users during active operation of the system. There is no other component

of trust computations that is based on automatically gathered trust-related information.

Thus, the proposed solution may not have an automation capability.

The trust management schemes proposed by Mendoza et al. [125, 126] may be classified

as solutions with no automation capability. These two proposed solutions use only direct

observations for trust computations, and there is no recommendation mechanism. Direct

observation is the feedback provided by an immediate neighbor of a service provider node

after the service is completed. The authors formulate this as a reward point if the service

is “successfully provided” and a punishment point if it is not successful. As the authors do

not elaborate on how the success rate is decided, it is unclear if obtaining this information

requires human intervention.

Chen et al. [26] propose a trust management protocol for SOA-based SIoT systems. They

assume that IoT users are connected through social networks and relationships, so do the

IoT devices they own. Trust comprises two components; direct trust from user satisfaction

experiences on services provided by IoT devices and recommendations from other users.

As both user feedback and recommendations depend on subjective information that requires

human intervention, the proposed trust computation solution cannot be automated. In other

words, trust scores of IoT devices cannot be computed if no human is involved in the process.

2.4.2 Trust Management Solutions with Semi-Automation Capability

The CBSTM model proposed in [145] could be considered as a semi-automated trust

model. CBSTM computes trust of a node by combining direct observations and indirect rec-

ommendations. Direct observations correspond to one-to-one interaction between a trustor

and trustee node. As a result of these interactions, a trustor node rates complete trans-

actions with a trustee and stores it internally. These ratings are considered as subjective

feedback by Rafey et al. [145]. As there is no further detail about how nodes rate each other

and as CBSTM is proposed for SIoT, it is likely that there is a need for human intervention

to collect feedback (maybe from device owners or users). Yet, recommendations in CBSTM
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are trust values computed by other nodes for the trustee node and sent to the trustor node.

Hence, there is no obvious need for human intervention. Overall, CBSTM combines auto-

mated ways and human user interactions for trust computations, so it is a semi-automated

trust scheme.

We consider the IoT trust model proposed in [11] as a semi-automated. The reason is

that trust computations include node ratings for completed transactions, which could require

human intervention, and node recommendations that could be automated. Similar to CB-

STM [145], there is no further detail about how node ratings are obtained, i.e., they could be

from device owners or users, which will require human intervention. Recommendations are

node ratings sent by direct neighbors of a trustor node. As long as neighbor nodes store/-

compute ratings for a trustee node, they send it to a requesting node, so recommendation

process can be automated.

Wu and Li [188] propose a two-layer trust model for RFID systems, which comprises

RFID reader and authentication center trust layers. This model can be deemed as semi-

automated. The reason is that the part of trust computations in the RFID reader trust

layer cannot be automated. That is, the authors propose two different trust computation

approaches for this layer. The first trust evaluation approach can be automated as it com-

putes trust scores through automated means, i.e., using interaction records collected through

watchdog agents implemented by RFID readers. The second approach is based on the veri-

fication of interaction proofs. This approach is used when it is not possible to obtain node

interaction behaviors through watchdogs due to limited communication range or if individual

network domains (local networks) are sparse (because in the first proposed trust evaluation

method, interactions only with neighbor nodes are used for trust computations). In this sec-

ond type of trust evaluation method, a trustor node (RFID tag) provides a feedback (zero

= not satisfied, 1 = satisfied) for a trustee node (RFID reader) after an interaction is com-

pleted. A feedback is evaluated by a third, intermediate node (RFID reader) to verify and

proof that trustor feedback is not tampered with (using a hash function and certificates)

while being transmitted to a local trust manager. The second trust evaluation approach

may not be automated as feedback mechanism requires subjective evaluations (zero= not

satisfied, 1 = satisfied) and may involve human in the process.
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The proposed social trust model for SIoT in [1] could also be considered semi-automated.

It uses both service ratings and node recommendations. Service ratings, i.e., feedback,

are provided after completed services and reflect the experience of a trustor node with a

trustee node. As the proposed solutions above, these ratings are assumed to be provided

and no further discussion about how they are obtained is presented. Thus, they may require

intervention from device owners. On the other hand, node recommendations do not require

human intervention. They are service ratings sent by neighboring nodes of the trustor to the

central IoT node in each local node cluster. As a result, this trust model can be partially-

automated assuming that service ratings are provided.

Another semi-automated trust management mechanism is proposed in [107]. The pro-

posed mechanism considers direct and indirect trust components in trust computation. Yet,

it only uses indirect trust (recommendations) in case there is not enough direct observations

for decision making. As the authors state that direct observations are subjective, we con-

sider that direct trust computation process cannot be automated. Node recommendations

are objective, i.e., obtained from direct trust scores for a trustee node sent by other nodes,

and do not require human intervention. Overall, the proposed trust management mecha-

nism is semi-automated as it combines subjective direct observations with objective indirect

recommendations.

2.4.3 Trust Management Solutions with Full Automation Capability

ReTrust [70] is a trust management scheme with full automation capability. It can be

fully automated because it does not require subjective feedback nor recommendations from

nodes/users. Indeed, instead of feedback, the success and failure rate of interactions between

two nodes are used to compute direct trust. This is performed by a master node in a local

group of IoT nodes, based on an outlier detection method on readings reported by nodes.

Recommendations used in indirect trust computations are objective as they are direct trust

scores provided by recommender nodes computed for a trustee node. There is no need for

human intervention for this, as well.

The trust management scheme proposed in [94] could be automated fully. The reason is
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two-fold. First, there is no feedback mechanism, so there is no manual intervention needed for

collecting feedback. Second, recommendations are objective and do not require any human

intervention, as well. Similar to the existing solutions discussed above, a recommendation is

a direct trust score provided by a recommender node.

2.5 Attacks on Trust Management Schemes for IoT

As aforementioned, IoT has unique features that make it vulnerable to security threats

and attacks. Attacks to IoT environments are various. For example, nodes can easily join a

network, and malicious nodes can masquerade as benign nodes [11]. Node compromise is a

type of physical attacks on IoT [11]. IoT is also prone to attacks that apply to traditional

networks. For example, an attacker can listen to and analyze network traffic, selectively drop

packets, change their sequence, and disrupt routing in a network [11].

There are specific attacks that pose threats to trust management schemes for IoT. In

this section, I overview trust-related attacks for IoT environments.

Performance-related attacks: Attacks in this category relate to actions by individual

malicious nodes. This group of attacks is typically about the under-performance of malicious

IoT nodes or the actions they take to conceal their behaviors from a trust management

scheme and boost their trust.

• Individual malicious nodes [44, 145]: These are the nodes that intentionally affect the

confidentiality, integrity, and availability of IoT data and operations. They have under-

performance, such as not providing requested service on time or modify the reported

data.

• Opportunistic service attacks [1, 26]: In this attack, a malicious node opportunistically

accumulate high reputation by behaving like a benign node at the beginning. After

having enough reputation, it starts to demonstrate malicious behaviors.

• Malicious pre-trusted nodes [145]: Some trust management schemes, such as [81], deploy

pre-trusted nodes in a network for trust computations and storage. In this attack, pre-

trusted nodes turn into malicious ones over time.
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• On-and-Off attack/camouflage [145, 107, 108, 23, 70]: This is a type of strategic attack

where a node alters its malicious behaviors occasionally. In other words, a malicious

node selectively demonstrates good (benign) and bad (malicious) behaviors to be able

to cause damage and remain undetected. The on state of the attack is referred to as

the attack state, in which the node performs an attack, such as not providing expected

service with accepted quality. The off state of the attack is referred to as the normal

state, in which the node behaves normally.

• Sybil attack [107, 134, 70]: This attack is about the ability of an adversary to generate

multiple fake identities for an IoT node to deceive a trust management system. These

identities may be used for whitewashing bad reputation or for other attacks.

• Whitewashing attack [145, 1, 25, 134]: In this type of attack, a malicious node disconnects

and rejoins a network later with a different identity to disguise its bad reputation and to

reset its history of poor performance in providing services. The attack happens if nodes

can easily change their identity [1]. To prevent this, a trust mechanism should remember

the trust of each identity (such as MAC address [1]) and punish inactivity for long period

[25]. Doing so will prevent the trust data from being lost if a node leaves and rejoins the

network [1]. Also, it is suggested to set the initial trust score of a newly joining node to

a low value ([145]) to defend against this attack.

Recommendation/reputation-related attacks: This group of attacks is about rec-

ommendations provided by malicious IoT nodes. Recommendations by each IoT node need

not be fully trusted [11], just as is the case for the data exchanged by nodes. Malicious nodes

can provide false ratings for interactions between them and other nodes [11, 1, 154], and these

ratings could be sent as false recommendations to other requesting nodes. Attacks in this

category typically affect the reputation of nodes and could be collective (a.k.a collusion/col-

laborative attack), i.e., malicious nodes collectively work on interrupting or circumventing a

trust management scheme [134, 25, 145, 26].

• Self-promoting attack [1, 25, 134, 26]: This attack occurs when a malicious node provides

good recommendations for itself in order to be selected as a service provider. It provides

a malicious service after being selected.
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• Bad-mouthing attack [145, 11, 1, 107, 25, 108, 70, 26]: In this attack, a malicious node

provides bad recommendations against a benign node and ruin the trust of it, which in

turn prevents the benign node from being selected as a service provider.

• Good-mouthing attack [11, 107] (a.k.a Malicious collectives [44, 145]): In this type of

attack, malicious nodes form a collective. They provide maximum trust value as recom-

mendations for other malicious nodes so that malicious nodes can be selected as service

providers. They always have inadequate performance in the services they provide.

• Malicious collectives with camouflage [44, 145]: This is a type of malicious collectives

in which malicious nodes have unstable performance, but still provide best recommen-

dations for other malicious nodes. More precisely, they have adequate performance for

certain percentage of the time and inadequate performance other times for the services

they provide but they always provide dishonest feedback.

• Malicious collectives with spies [44, 145] (a.k.a ballot-stuffing [11, 1, 108, 26] ): In this col-

lective attack, malicious spy nodes always perform adequately when providing a service

so that they boost their own trust. They use their high trust to provide good recommen-

dations for other malicious nodes that they collaborate (which always act malicious and

provide dishonest node ratings) to increase their chance of being selected as a service

provider.

Researchers (e.g., [145]) have empirically shown that using indirect recommendations

could result in lower accuracy to detect collusive attacks.
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3.0 Trust in Social Sciences and Implications for Trust in Internet of Things

In this chapter, I present our work [3] that reviews trust in social sciences. First, I

present the motivation for this research and background information. Following this, I

briefly explain our research methodology. Next, I overview trust measures, which is followed

by a trust taxonomy. Then, I discuss several aspects of trust and challenges in assuring

it, which include trust development over time, trust repair, trust transfer and reputation,

the relationship of trust with context, distrust, risk, and uncertainty. Finally I discuss

implications for IoT networks and present a conceptual trust management framework for

IoT.

3.1 Motivation and Background

Trust is fundamental for interactions at a micro-level for individuals and a macro-level

for societies [59, 52]. It shapes both social and economical exchanges [21, 148, 43, 52, 19, 35],

interactions between people [37, 128, 35, 103, 118, 41, 148, 19, 52, 74], between people and

technology [100, 73, 155], and between technological elements such as software programs

and devices. Trust improves performance [30, 74], efficiency [118, 21, 52], costs [148, 21,

43, 52, 19, 35], and facilitates cooperation, collaboration, strong and close relationships

[103, 74, 52, 19, 37, 41, 35, 128, 118], which in turn contribute to the wealth, health, and well-

being of individuals and communities [50]. The lack of trust leads to undesirable outcomes

as it impediments possible interactions or exchanges. Even worse, it leads to the loss of

reputation and money, and more dire consequences for highly critical scenarios.

Trust has been a focus of research attempts in various disciplines [181, 88, 43], such as

economics [10, 187], psychology [37, 152], sociology [103], business [88], management [181],

marketing [128], and politics [90, 144, 72]. This broad exploration of trust has strengthened

the trust literature [15, 153] as each discipline provided a unique insight into the definition

of trust and how it develops [43]. Yet there are ongoing debates about several trust-related
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issues, including the constituents of trust and how to measure it [30, 88, 122]. The challenges

in defining, investigating, and measuring trust arise from the nature of it, i.e., being complex,

ambiguous, dynamic, and multi-faceted, adds to the difficulty of defining [68, 153, 138, 98].

Also, as I discuss in oncoming sections, there are under-investigated aspects of trust, such as

trust repair and trust dynamics. Therefore, challenging and under-investigated trust aspects

need further investigation, both in social sciences and IoT domains.

In this research, we contribute to the trust literature through a multi-disciplinary lit-

erature review of trust in various social science fields. Our goal is to utilize the existing

body-of-knowledge for trust management and to develop trust measures for the IoT domain.

Trust has been reviewed by researchers earlier, such as by Fulmer and Gelfand [52] in the

organizational sciences literature. To the best of our knowledge, there is no attempt to

date for a multidisciplinary review of trust that comprehensively reviews concepts, issues,

and measures of trust in different social science disciplines. Also, existing reviews of trust

in social science disciplines do not necessarily match trust concerns in IoT networks. We

attempt to fill this gap by answering the following questions:

RQ1. What are the core concepts and key properties of trust that have been discussed in
social sciences literature?
RQ2. How is trust being studied and measured by social scientists?
RQ3. How can we apply core trust concepts, properties, and measures to manage and
measure trust in IoT networks?

To address these research questions, we conduct a content analysis on reviewed articles.

As an outcome of the content analysis, we identify core concepts/themes related to trust.

Specifically, we identified key properties of trust, trust changes over time, distrust, risk and

uncertainty, reputation, trust transfer, and trust repair as significant trust-related concepts.

We also overview definitions of trust, constructs that are closely related to trust, research

methods and measures used by social scientists in a complete paper ([3]). Yet in this chapter,

I present a brief summary of subset of these topics that are highly relevant to the dissertation.

We present a trust taxonomy that classifies different types of trust based on reviewed articles.

We discuss the implications from our review for IoT networks. Specifically, we answer how

those aforementioned significant trust concepts can relate to IoT networks and can be used to

measure trust. Trust measures can be used by practitioners and researchers to monitor and
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evaluate trust within and among network administrative domains for better outcomes, i.e.,

security and reliability of data and operations. Distilling the information from implications

for IoT networks, we propose a conceptual trust framework aimed as a guide to managing

trust in IoT from various aspects. In the following subsections, I first present terminology

relevant to trust in social sciences. Next, I overview trust definitions and key trust properties.

Finally, I discuss trust-related constructs used in social science studies.

3.1.1 Terminology

Here I present the terminology relevant to the discussions in this chapter and used by

trust-related articles in social sciences.

Construct: a.k.a variable, an abstract idea, theme, or subject matter that is measured

using survey questions [99]. A construct can be measured using a single question or multiple

questions, a.k.a items, or dimensions of a construct [99].

Trust antecedent: a.k.a trust predictor, a variable that is used in a theoretical model and

is expected to influence and explain dynamics of trust (“cause of trust” or “condition leading

to trust” [22]) where trust is an outcome variable. Examples of trust antecedents include

leadership style [41], participation in decision making [41], the trustworthiness of a trustee

[30], trust propensity of a trustor (disposition to trust) [30, 89], the perceived reputation of a

brand [143, 89], perceived risk [89], perceived security and privacy [89], perceived information,

service, and design quality [89] of an e-commerce website, social context and social support

in social commerce [66].

3.1.2 Trust Definitions

Researchers have studied trust in various fields, including economics, sociology, and psy-

chology. Trust has been approached from different aspects in these disciplines. For example,

sociology studies have focused on institutional aspects whereas psychology researchers em-

phasized personal aspects of trust [88]. As trust has been studied in a variety of fields, it

has diverse definitions [122, 73, 36]. Even though trust has been defined and measured in

different ways, common elements are used to describe it [166, 84], such as belief, attitudes,
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or expectations towards acceptable outcomes resulting from actions of another individual,

group, or organization [13, 105, 111] or that best interests of an actor will be served [84]. A

conception of trust that has been implicitly accepted by most scholars is that it represents

a psychological state of positive expectations about the motives and actions of another party

[166]. In the following, I present widely adopted trust definitions.

One definition that has been accepted widely and commonly used in the organizational

science domain [79] was proposed by Rousseau et al. [153], which describes trust as “a

psychological state comprising the intention to accept vulnerability based upon positive ex-

pectations of the intentions or behavior of another”. Mayer et al. [118] defined it as “the

willingness of a party to be vulnerable to the actions of another party based on the expec-

tation that the other will perform a particular action important to the trustor, irrespective

of the ability to monitor or control that other party.” Definitions by Rousseau et al. and

Mayer et al. have two common components, which are the intention to accept vulnerability

and positive expectations. Coleman [29] presents a formal definition of trust. Equation (1)

is the formula for the expected payoff of a trustor from a trust relationship (E(R)). Trust

is considered as a monotonically increasing function of E(R) [183]. Let p be the probability

that the trustee will be trustworthy, and G is the gain of the trustor in this case. Similarly,

1 − p is the probability that the trustee will be untrustworthy, and L is the associated loss

of the trustor. If p/(1 − p) > L/G, then the decision would be to trust. Conversely, if

p/(1− p) < L/G, the decision would be not to trust. The case when p/(1− p) = L/G would

yield an indifference situation for the trustor. The expected payoff is hence defined as:

E(R) = p.G+ (1− p).L (1)

In addition to the widely adopted trust definitions above, there are also other definitions

of trust in specific disciplines. In the psychology domain, trust is defined as the “reliance

upon the characteristics of an object, or the occurrence of an event, or the behavior of a

person in order to achieve a desired but uncertain objective in a risky situation” [57]. Giffin

[57] further explains the dimensions of trust as intelligence, good character, and goodwill that

were set forth in Aristotle’s Rhetoric [54] and respectively correspond to ability, integrity, and

benevolence dimensions of trustworthiness in the model that was later proposed by Mayer
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et al. [118, 54] (see Section 3.1.4 for the model proposed by Mayer et al. [118]). Similarly,

Nooteboom [135] describes trust as a concern for the ability and intentions of a partner to

perform concerning agreements, which represents competence and goodwill dimensions. In

marketing literature, trust is approached from two perspectives as a behavioral intention or a

set of beliefs [128, 54] such that trusting beliefs lead to behavioral intentions for trusting [54].

Curral and Judge [35] approach trust from a behavioral intention perspective and describe it

as “an individual’s behavioral reliance on another person under a condition of risk”. Schurr

and Ozanne [158] approach trust from a belief perspective by defining it as “belief that a

party’s word or promise is reliable and that a party will fulfill his/her obligations in an

exchange relationship”. In the politics literature, trust of people in government is defined as

the “rational or effective belief in the benevolent motivation and performance capacity of”

the government [137] and the evaluation of the performance of government compared to the

expectations by people [72]. Consumer behavior literature defines trust in a brand as “the

willingness of the average consumer to rely on the ability of the brand to perform its stated

function” [24].

3.1.3 Key Trust Properties

In this section, I present key features of trust discussed in social sciences literature.

P1. Trust represents the expectation from a trust relationship (E(R) in (1)), so it is different

from perception about the trustworthiness (p in (Equation 1)) [183, 29].

P2. Trust is a complex and “multi-faceted”, or a “multi-dimensional”, phenomenon that

depends on numerous factors [103, 18, 54, 68, 110, 53, 118, 153, 22, 87, 35, 86, 36].

P3. Trust is context-specific [183, 18, 103, 184, 118], which means that it is associated with

different contextual conditions [183, 18], i.e., its dimensions depend on the circumstance

of an interaction [54, 173].

P4. Trust involves uncertainty as the trustor can only estimate the trustworthiness of a

trustee (reflected by p in (1)) [183, 29].

P5. Trust is a dynamic process, which evolves over time [153, 115, 181, 116, 54, 68, 186, 43,

73, 160, 184]. It increases or decreases over time as being revised by the trustor as a
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result of the experience that the trustor gains by engaging in relationship with a trustee

[183, 115] and as people are exposed to information [73].

P6. Trust is reciprocal [36, 22] such that a trustor demonstrates trusting behaviors if s/he

expects trustworthy behaviors from a trustee, who in turn reciprocates it with trust

expectations and trusting behaviors [22].

P7. Trust is easily broken and challenging to repair [102, 160, 168, 86, 42].

Overall, based on the key trust properties above, we define trust as:

A multi-faceted, complex, dynamic, and context-dependent concept that is driven by un-
certainties about undesired outcomes and is the expectation of a trustor from a trusting
relationship based on the probability of positive and negative interactions with associated
losses and gains. Once this expectation turns into a trusting behavior, it may be recipro-
cated by the trustee. Once it is broken, it will not be easily recovered.

3.1.4 Trust-Related Constructs

The trust literature has distinguished between various important trust-related constructs

[30, 183]. These constructs are trust, trustworthiness, trust propensity, trusting beliefs, and

trusting intentions. In what follows, I clarify these constructs.

3.1.4.1 Trust and Trustworthiness

Trustworthiness is distinguished from trust in social science disciplines, such as by Mayer

et al. [118] and Ashraf et al. [10]. Trustworthiness is a crucial concept to understand trust

because a person trusts another person as s/he is trustworthy and beliefs about trustwor-

thiness fosters trust [45, 30, 10]. Mayer et al. [118] proposed that trustworthiness comprises

three facets, i.e., characteristics of a trustee, —ability, benevolence, and integrity—, and is

an antecedent of trust. This model is sometimes referred to as the ABI model [79]. As

the ABI model is a widely cited social trust model [30, 123, 150, 157, 148], I overview its

components below.

Ability: a.k.a competence [118, 36, 87, 38, 166, 22, 84, 57] corresponds to the perceptions of

a trustor about the technical skills and knowledge, general wisdom and interpersonal skills
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of a trustee [87, 132, 30, 86], which are required to perform a job and be successful in an

organization [30, 86].

Benevolence: is about the intention of a trustee for doing good without any profit motives

[30, 178, 118], caring for and acting in the interests of the trustor [122, 132, 118, 58]. It is

usually associated with loyalty, openness, caring, supportiveness [118], and the absence of

opportunism [96].

Integrity: corresponds to the belief about the degree to which the trustee conforms to

ethical principles [30, 122, 58] and principles that are found to be acceptable by the trustor

[118, 87, 58, 178, 86], is honest [122, 132] or is willing to keep promises [88, 122, 132]. Some

synonyms used in lieu of integrity include promising fulfillment [30], fairness [30, 58], justice

[30], honesty [120, 148, 58], credibility [120, 148], and reliability [120, 148].

Even though both benevolence and integrity are ethical traits, benevolence is based on

altruistic motives whereas integrity (which is about keeping promises and being reliable)

may be due to utilitarian reasons [122], i.e., for personal gains. Some researchers consider

benevolence and integrity together as a combined trust construct goodwill (e.g. [147, 36, 97]).

Competence and integrity have been consistently found to be more important determinants

of trustworthiness [86], whereas integrity is sometimes deemed as more significant than com-

petence and vice versa [86].

3.1.4.2 Trusting Beliefs, Intentions, and Behaviors

As proposed by McKnight et al. [123, 121] and followed by other researchers (e.g.

[173, 87, 132, 86, 42]), trust comprises two elements that are trusting beliefs and trust-

ing intentions. Trusting beliefs are about the competence, benevolence, and integrity of

another party [87, 132, 86, 42], which may lead to trusting intentions [87, 86, 42]. Trust-

ing intentions correspond to the willingness to become vulnerable to the actions of another

party under risky circumstances [173, 87, 86, 42, 96]. Trusting intentions are different from

trusting beliefs because an individual may be unwilling to be vulnerable even though having

trusting beliefs towards another individual, such as due to uncontrollable risks inherent to

a situation [118, 173]. Both trusting beliefs and intentions are argued to be affected by the
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trust propensity of an individual [123] (see Section 3.1.4.3).

Based on the ABI model [118], trust is different from trusting behaviors and trustwor-

thiness perceptions about a trustee [178]. Mayer et al. [118] note the fundamental difference

between trust and trusting behaviors, such that the former is about willingness to be vulner-

able and the latter is engaging in an action to take a risk. Trusting behavior is performing

an action based on positive expectations about the trustee, such as the amount of money

passed to a trustee in a trust game experiment [42, 160], or placing an order in an online

shopping platform.

3.1.4.3 Trust Propensity

Trust depends on experience and enough time should pass to make decisions about trust

[84, 30]. Yet, experience is not the only way of making trust decisions. There are dispositional

factors that decide trust such as personality [84]. Trust propensity is one such factor that

is connected to personality [118, 84]. This type of personality-based trust is referred to as

with different names in the literature [30], namely trust propensity [118], generalized trust

[171], dispositional trust [95], disposition to trust [121, 122], and trusting/trust disposition

[110, 54].

Trust propensity is a “dispositional willingness to rely on others” [30], whereas trust is

“the intention to accept vulnerability to a trustee based on positive expectations of his or

her actions” [153]. McKnight et al. [121, 122] describe it as the degree that a person tends

to be willing to depend on others. It can also be defined as the belief about the degree

that people can be trusted in general [123, 96, 110], or a personal trait that reflects the

tendency to trust others [132, 73]. Another definition of trust propensity was propounded

by Rotter [151], which defines it as a general expectation that promises by other people can

be relied on. Hence, trust propensity is not a situation-specific but a general inclination to

trust others [118, 123, 73].

McKnight et al. [123] proposed that trust propensity can be depicted using two sub-

constructs, namely faith in humanity and a trusting stance (i.e., a trusting attitude towards

others). Faith in humanity is the belief that others are usually well-meaning and upright
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[122, 27]. McKnight et al. [123] proposed further subconstructs for faith in humanity,

namely competence, benevolence, and integrity, which are personal attributes of others and

the dimensions in the ABI model. Trusting stance refers to having a general trusting attitude

towards others expecting better outcomes from relationships, regardless of belief in others’

personal attributes [121, 122, 123]. Trusting stance is based on a calculative view of trust

in economics-based trust research [27], i.e., trusting others regardless of being proven to be

trusted and until they prove otherwise [122].

In the following section, I present a brief summary of our research method. More details

are presented in our paper ([3]).

3.2 Research Methodology

We performed a multi-disciplinary literature review to explore trust in social sciences.

Instead of compiling a complete set of studies for an in-depth review, we aimed to review

papers that discuss a variety of trust-related topics in social sciences disciplines broadly.

For this purpose, we followed the three-pass approach proposed by Keshav [85] to identify

relevant articles. The three-pass approach to literature review requires identifying an initial

set of core articles (3-5 articles) that can be considered seeds for a literature review. Core

articles are selected from recent papers in a research area using an academic search engine and

keywords. From core articles, a set of key articles are identified to read further by inspecting

the related work section and reference list of core articles. Next, I present information about

inclusion and exclusion criteria that we use to select core and key articles.
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3.2.1 Selection Criteria

We utilized the Scopus database to select core articles1. We used “trust” as the search

term in the article title field. We limited results to only English articles published in 2019-

2020 for detecting recent core articles. Scopus provides different subject areas, each of which

further branches into sub-topics. Based on the classification provided by Scopus, we repeated

our search for the following sub-topics of Social Sciences subject area: i) arts and humanities,

ii) business, management, and accounting, iii) decision sciences, iv) economics, econometrics,

and finance, v) psychology, and vi) social sciences2. Hence, we performed six different

searches to find core articles in each discipline. An example query term we used is as follows:

SUBJAREA(ARTS) TITLE(trust) AND (LIMIT-TO (PUBYEAR,2020) OR LIMIT-TO ( PUBYEAR

,2019)) AND (LIMIT-TO (LANGUAGE,"English")

For each sub-topic, we selected 3-5 core articles among the retrieved articles that have

full-text available to us. For selecting these core articles, we reviewed the title, abstract,

introduction, conclusion, and subtitles. If the article is about a study for factors affecting

trust, trust changes over time, trust repair, or trust measures, and its topic does not signifi-

cantly overlap with the previously chosen core articles (so that reading list is not focused on

a single topic, e.g., trust in automation systems) we considered it. To select key articles from

core articles, we examined their related work section and reference list. We noted repeated

citations and author names (i.e., highly cited seminal works) in core articles to detect key

papers. We did not impose any limit on publication year for key articles. We applied the

same selection criteria that we considered for core articles.

1Limiting a literature review to a single database may lead to bias such that articles may be retrieved
from a specific set of journals or publishers [98]. Yet, we utilized the Scopus database only for selecting
core articles, which are like seeds for our search of additional key articles and constituted a small number of
articles to be reviewed (3-5 articles in each research field). Thus, we believe that using other or additional
databases should not significantly affect the final set of selected articles.

2Although we could not find information about what this sub-topic includes different than others, we
anticipate that it may include articles that do not belong to other sub-topics or that are relevant to multiple
sub-topics.
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3.2.2 Analysis

We performed a content analysis on the articles in our reading list. Content analysis

is performed by reading articles in full and extracting high-level and significant concepts

arising from the content, which are known as codes or themes (see [22, 96] for more details

about content analysis). This process is also known as coding. We read core and a subset of

key articles3 in our reading list in full to extract themes from them and the content relevant

to each concept. While generating high-level codes from the content of articles, we focused

on definitions and key properties of trust, factors affecting trust formation, theoretical bases,

main contributions, research methods and measures for studying trust, and different trust

types. These concepts are trust definitions, key properties of trust, trust-related constructs,

trust changes over time, distrust, risk and uncertainty, reputation, trust transfer, and trust

repair. I present more detailed information about them in the oncoming sections. In addition

to the content analysis, I presented core articles during periodic meetings for our survey

paper. During these meetings, a subset of committee members posed questions and brain-

stormed important trust concepts and their implications for computer networks. We present

the output of this process as implications for IoT networks in Section 3.12 (and as future

research directions in the original paper).

3.3 Trust Measures Used in Social Science Studies

Our ultimate goal is to utilize the knowledge we gain from reviewing the trust in the social

sciences literature and apply it to IoT networks to devise trust computation methodologies.

For this purpose, we reviewed measures used by social scientists for gauging trust. In this

section, I overview trust measures used in the reviewed studies.

As informed by our review, researchers mainly use quantitative approaches to measure

3Although we initially planned on reading all the key articles in full, we realized that the information
we obtain from 69 articles reached a point of data saturation, i.e., we started to see the same high-level
trust concepts, definitions, and measures. This approach for stopping when data reach to saturation is a
reasonable method suggested for qualitative research [31]. Hence, after that point, we read the remaining
key articles partially as needed to explore and explain concepts.
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trust in their studies, which are questionnaires (surveys) as instruments (a.k.a scale or

trust measure). Typically, these approaches are known as an instrument (a.k.a scale) in

a social science study, or as a trust measure in a trust study. Using a survey instrument

to measure trust has several benefits, including quantifying trust levels, examining changes

or variation over time and across populations, and the ease in incorporation in existing

monitoring procedures [138]. Apart from surveys, other numeric measures can be used for

gauging trust, such as the amount of money given by a trustor and returned by a trustee

in behavioral economics studies [10]. There are also qualitative approaches used in social

science studies to investigate trust relationships, such as interviews. Yet, as they do not have

numeric scales, they are not regarded as trust measures.

A survey consists of single or various concepts, a.k.a constructs or dimensions [35].

A construct represents a conceptual definition of a variable [159]. Typically, a construct

includes multiple relevant questions, a.k.a items, which are answered by study participants,

a.k.a subjects. In the articles we review, trust is measured using uni-dimensional or multi-

dimensional scales. A uni-dimensional scale captures a single trust construct, whereas a

multi-dimensional scale consists of multiple trust constructs [138]. For example, Doney and

Cannon [43] used a uni-dimensional scale as a measure of trust in their survey such that

items are grouped under a single construct that reflects “trust of supplier firm” or “trust

of salesperson”. On the other hand, Gefen and Straub [54] used a four-dimensional scale in

their e-commerce trust study. The dimensions (constructs) that captured trust were belief in

ability, benevolence, integrity, and reliability of a vendor. Each construct consisted of items

relevant to what is measured by it and collectively measured trust in a vendor. In their

review of trust measures in health systems, Ozawa and Sripad [138] found that researchers

used 12 questions on average, ranging from 4 to 59 questions, to develop a trust measure. It is

crucial that constructs and items are rigorously prepared and reviewed before administering

a survey. Constructs are typically determined based on a literature review and items could be

determined based on interviews or adapted from previous surveys (see [35] for an example).

We present a representative set of trust measures in Table 12 of Appendix A to demon-

strate how researchers measure trust and trust-related constructs (see our discussion in Sec-

tion 3.1.4) in their studies. Survey items in the table have been widely adopted by researchers
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in their trust studies to measure trust and related constructs.

3.4 Trust Taxonomy

In this section, I discuss different trust types as identified by social science researchers and

present a trust taxonomy. Previous research has suggested various criteria/factors to identify

trust types. For example, trust has been classified based on the stage of a relationship (early,

medium, mature) [148], the way that trustworthiness is perceived [33], how wide the scope

of a trust type [33], the type of vulnerabilities addressed by trust [33], and the level of trust

and trust analysis [52]. We consider the formation process, communication channel, level of

parties, and the type of trust referent as criteria for categorizing trust. Figure 2 summarizes

our taxonomy. I present the details in the following sections.

3.4.1 Trust based on Formation Process

Trust can be explained concerning its formation process, specifically as a static or dynamic

concept [181]. The static view to trust formation considers the personality traits of a trustor

[123] or characteristics of a trustee as suggested by the ABI model ([118]), namely ability,

benevolence, and integrity. The dynamic view approaches trust as an “evolving experience”

such that trust starts from an initial form or level and develops in time by progressing through

several stages [181]. For example, in inter-organizational relationships, trust starts to develop

at an individual level and then develops into the inter-organizational level through four

stages, which are trustworthiness-related evidence gathering, personal interactions, transfer

of trust, and institutionalization [156].

3.4.2 Trust based on Communication Channel

Another grouping of trust considers the communication channel. In various disciplines

including human-computer interactions, business and commerce literature, trust is classified

as online [110, 68, 33] (a.k.a social ([66]) and offline trust [68, 66, 33]. This distinction
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Figure 2: Classification of trust in social science disciplines
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is based on the communication channel, usually between a customer/consumer and a busi-

ness/vendor. In traditional high street shops, consumers spend time in physical stores and

have actual human contact and sociability, whereas in online stores, there is an anonymous

and impersonal relationship between consumers and a vendor [66]. These differences re-

quire trust to be approached differently as offline and online trust. Online trust corresponds

to trust in online business environments and is defined as the expectation by consumers

about the trustworthiness of online firms and that they will care for consumers with honesty

without abusing characteristics of online environments for their benefits [88].

Online and offline trust are similar in many aspects, but they have differences in some

key aspects [68]. For example, in an offline environment, partners can know each other better

than in an online environment. Consumers may be hesitant to buy from online vendors as

they may have uncertainty about vendors and find it risky to share personal information

online [27]. Also, online vendors have lower barriers to enter and exit the business. This

may arise from another key difference, which is the absence of physical elements in online

businesses. That is, offline vendors invest in physical buildings and personnel and their

customers have the opportunity to evaluate products physically. These are missing in online

businesses, which may affect consumer trust in sellers [68].

3.4.3 Trust based on the Level of Trustor and Trustee

There are two parties in a trust relationship, which are a trustor and a trustee (trust

referent). We have identified that trust can be at different levels concerning the trustor and

the trustee. Das and Teng [36] discuss that trust can be at personal, organizational, inter-

organizational, and even at international levels. Sitkin and Ruth [166] draw attention to the

categorization of trust at interpersonal and institutional levels. Laan et al. [96] approach

trust at interpersonal and inter-organizational levels. Stewart [173] also notes three levels of

trust as a person/individual, a group, and an organization.

Although these researchers discuss trust at different levels, they do not touch upon the

trust based on the level of a trustor and a trusted party separately. Curral and Inkpen [34]

proposed to conceptualize the trust in international joint ventures at three levels of trustors
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and trustees, which are person, group, and firm. Fulmer and Gelfand [52] also shed light

on this issue in their systematic review of trust in organizational sciences. They framed the

previous work based on the trustor and trustee considered by researchers in reviewed articles.

They grouped both trustor and trustee into three as individual, team, and organizational4.

They emphasize the importance of distinguishing levels of a trustee as different trustee levels

will result in different trust antecedents and consequences. For instance, the concerns of an

employee with its coworker would be different than that of its organization.

From the perspective of these researchers ([52, 34, 36]), trust can be i) interpersonal (from

a person to another person), ii) from a person to a group of people (e.g. team members), iii)

organizational (from a person to an organization), iv) from a group of people to a person, v)

from a group to another group, vi) from a group to an organization, vii) from an organization

to a person, viii) from an organization to a group of people, and ix) inter-organizational

(collectively from a group of people in an organization to another group of people in another

organization). For example, in a model of trust between groups (denoted as G→ G in [34]),

the trustor could be a group of managers in a joint venture and the trustee could be another

group of managers in a partner firm [34].

3.4.4 Trust based on the Type of Referent

Another prominent grouping of trust concerns the type of trustee, i.e., trust referent, for

trust classification. At the highest level, this grouping distinguishes personal/interpersonal

trust from institutional/institution-based trust [122, 148, 186, 110, 115, 155, 166]. Personal

trust is described or conceptualized similarly in different research fields, even though it is

named differently, such as trust-in-human [115, 73], trust-in-sellers [110], personal, inter-

personal, or individual trust. Personal trust is about expectations of an individual about

positive outcomes of another person, based on personal experience [166]. In organizational

settings, the type of a referent could be based on the relative position or status of an em-

4Instead of trustor and trustee, they use the terms “trust at a level” and “trust in a referent”. As they
describe, trust at a level corresponds to the source/originator of the trust, so we call it trustor here. For
example, trust levels could be an individual, team, and organization, which respectively refers to the trust
of an individual, aggregated trust shared by team members, and aggregated trust shared by organization
members. Trust referent corresponds to the target of the trust, so we call it trustee here. Similarly, trust
referents could be an individual (e.g., leader, coworker negotiation partner), team, and organization.
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ployee. For instance, trust relationships in organizations may be affected based on if the

trustee is a co-worker or a leader [30, 41]. Personal trust can also be classified by different

trust types, i.e., trust bases, [115]. Some trust bases proposed by researchers are calculative-

, cognitive-, emotional/affective, experience-, knowledge- personality-, and institution-based

trust [115, 68, 122, 10, 148, 33, 105, 119, 153, 187, 59, 178, 95].5

Institution-based trust is named or conceptualized differently in different domains. It

is known as organizational trust in the organizational science literature, trust-in-technology

in the online business [122, 115, 110, 148] and human-automation trust literature [155, 73],

and trust in institutions in civic engagement/politics literature [186]. Interpersonal trust

has been studied more widely compared to institutional trust [166]. In the sequel, we first

discuss institutional trust and its further classification in different disciplines. Next, we

present personal trust-related propositions and classifications.

3.5 Trust Over Time

Most researchers agree [43] that trust in relationships develops and improves over time

[153, 115, 181, 116, 54, 68, 186, 73, 104, 34, 19, 160, 97, 35, 184, 118]. Vanneste et al.

[183] investigate this common premise in their meta-analysis study. Results showed that

there is a small correlation between trust and the duration of a relationship. Thus, they

hypothesized that there are other mechanisms affecting trust changes over time, such as

changes in the value of a relationship, i.e., gains/losses of a trustor. The interplay between

them decides whether the trust will increase, decrease, or stay unchanged. These results lead

us to a relevant question: “Does trust increase over time through interactions by accumulating

evidence rather than just with the increasing duration of a relationship?”

5Calculative trust is about the rational behaviors of trustor and trustee such that both of them cal-
culate their gains and loses in a trust relationship and decide to trust/be trustworthy or not to trust/be
untrustworthy[187, 21, 59]. Cognitive trust is about the willingness of a trustor to depend on the ability and
consistency of a trustee [127]. Thus, cognitive trust is evaluated based on the three dimensions of the ABI
model, which are competence, benevolence, and integrity (see Section 3.1.4 for details) [88, 122, 118, 148].
Emotional trust is characterized by a single social experience [105, 119], an immediate emotional reaction
[148], and a feeling of security and strength of a relationship [88]. For the rest of the trust bases, we refer
the readers to [3].
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In regards to this question, some researchers emphasize that time is sufficient for inter-

personal trust to develop [119, 181]. Other researchers argue that the time alone is not

sufficient and interactions are required for desired outcomes and trust [181, 93, 97]. Thus,

trust builds gradually over extended periods of time through ongoing observations and in-

teractions [54, 110, 186, 148, 43, 124, 87, 19, 97, 118] with other people, organizations, and

the surrounding environment as interactions help a trustor to accumulate knowledge about

a trustee and to form expectations about what they can do [54, 148, 43]. This is explained

by the “prediction process”, which is one of the five cognitive processes identified by Doney

and Cannon [43] that helps to foster trust in business relationships. The prediction process

is about the ability to forecast the behavior of another party and improves over time through

experiences.

Even though it requires time to gather evidence on trustworthiness, trust decisions may

need to be made before enough time has passed [30] in a trusting relationship. The early

phases of a relationship are the most uncertain and tenuous stage, so it is challenging to

develop trust initially [132]. This important challenge touched upon in the trust literature is

known as initial trust [123, 73] that is about how to form trust in an unfamiliar trustee when

there is not enough, meaningful, or credible information about the trustee [15]. Credible

information accumulates over time when parties interact [122]. One of the most widely cited

models that focuses on initial trust [68] was proposed by McKnight et al. [122]. Based on this

model, trust propensity, or dispositional trust, is a factor that contributes to the formation

of initial trust when parties do not have enough experience and unfamiliar actors present

[15, 84]. Trust propensity comprises faith in humanity and a trusting stance (see Section

3.1.4). For example, having faith in clinicians, in general, would help a patient to trust a

clinician at the first meeting [98]. Mechanic and Meyer [124] argue that initial trust may be

based on reputation. For example, medical relationships start based on recommendations

from family members and friends. Another proposition about initial trust is that some

people demonstrate surprisingly high levels of trust at the early stages of relationships even

without sufficient interactions [123, 58]. This is because those individuals assume that trust

is warranted if there is no contrary evidence [123, 136], which is known as the “trustworthy

until proven otherwise” assumption [87]. This assumption is related to the disposition of
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an individual to trust, i.e. personality [87]. There could be other reasons that may cause

high levels of initial trust, such as the reputation of the trustee, stereotypes, institutional

structures such as laws and regulations, etc. [123].

After an initial trust is established between a trustor and a trustee, trust evolves based on

the perceptions/expectations and interactions between partners. Hoff and Bashir [73] coined

the term “dynamic learned trust” to represent trust during this course of interaction. As

interactions take place, a trustee adjusts its trust based on the competence of the trustee (or

performance of an automation system as the trustee [73]). As the performance of a trustee

may vary, trust is most likely to fluctuate [73]. More generally, the evolution of trust depends

on the perceptions about trustee characteristics [184], i.e., dimensions of the ABI model. The

ABI model proposed by Mayer et al. [118] explains trust evolution from the perspective of a

trustor, i.e., unidirectional view, through a feedback loop between trustworthiness dimensions

and risk-taking. As such, a trustor takes a risk with a trustee, observes the outcome, and

reevaluates trust. In case of a positive outcome, the trust will be either maintained or

increase based on prior beliefs about trustworthiness. In case of a negative outcome, the trust

will decrease as a combination of the decrease in trustworthiness dimensions. Among the

three dimensions, benevolence is stable in established relationships and less stable early in a

relationship. According to the view that argues trust is reciprocal, trust develops between two

individuals in a circular and mutually-reinforcing way [22]. More precisely, the process starts

with expectations about the behaviors of another. If the expectation is towards trustworthy

behaviors, one demonstrates trusting behavior, such as disclosing information, accepting

influence, etc. The trustee responds with trusting behaviors upon perceiving the trust. This

cycle continues by reinforcing expectations about trustworthy behavior and building trust.

The contrary happens if the initial expectations point to mistrust such that one party expects

untrustworthy actions and demonstrates this through withholding information, rejecting

influence, etc. Perceiving this, the other party responds with expectations of untrustworthy

behaviors, and so on. This cycle happens if the trust is assumed to be reciprocal [22].
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3.6 Trust Repair

A trustor takes a trusting action not just because s/he trusts the trustee, but because of

realizing gains if the trustee fulfills the expected part of the exchange [148]. This means that

a trusting action causes vulnerability(ies) for a trustor because the result of this action is in

the hands of a trustee [148]. It is not uncommon that positive expectations of the trustor

will be violated [87]. The trustee may not fulfill its duties due to the lack of needed abilities

or the lack of motivation, so may exploit the vulnerability of the trustor [148]. It is known

as trust violation or trust failure when a trustee exploits the vulnerability of a trustor.

Trust repair is about increasing reduced trust in the aftermath of trust violations [87, 86,

42]. Previous research has shown that damaged trust is difficult to repair [160, 168, 42]. Trust

repair is an important practical problem [160] as there are various challenges in repairing

trust, and the process requires different strategies compared to initial trust-building [87, 86,

42]. First, due to the “trustworthy until proven otherwise” assumption [136, 123], trust

levels could be high in the early stages of a relationship [123]. Yet after a trust violation,

this assumption is invalidated, and trust may decrease to a level lower than initial trust.

This makes the magnitude of required trust repair greater than the required initial trust

levels [87]. Second, after trust violations, it is not enough to establish positive expectations,

but negative expectations should be dealt with to repair trust [87, 42]. Overcoming negative

expectations resulting from a failure is crucial because it conveys that actions have been

taken that target direct and indirect contributors to prevent/avoid the same violation in

the future [58]. If violations repeat, it is much more challenging to restore the trust [102].

Third, choosing the proper trust repair action is complicated because a mistrusted party

may have to resolve issues about actions that it did not perform and about people who

did not get direct harm from violations. Finally, different stages of a relationship impose

different challenges for trust repair. Repairing broken trust in newly formed relationships

may be more challenging than established relationships as in the latter, trustors have higher

motivations towards the relationship [86, 42]. For established relationships, trust repair may

be more challenging due to stronger emotions incurred by a trust violation [42].

The broken trust can be repaired to the degree depending on the response by the violator
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[58]. Type of trust repair action is a determinant of the effectiveness of trust repair efforts

[67, 58], namely, verbal and substantive strategies [178, 42, 18, 79] (see details later in this

section). Effectiveness of trust repair efforts can also be determined by trust violation type

[67, 79, 58, 87, 86, 42] that could be competence-based, benevolence-based, or integrity-based

trust violations [79, 87, 86, 58], i.e., whether violation matters concerns of competence,

benevolence, or integrity dimension of trust. Research has shown that violation in one

dimension of the trust may cause a decline in other trust dimensions as well [87, 58], the

concept called as “contamination” effect [58]. The same effect does not apply to trust

repair efforts, i.e., repairing trust in one dimension does not necessarily improve other trust

dimensions [58]. This is explained by the Schematic Model of Dispositional Attribution [146]

that suggests people tend to weigh negative evidence more than positive evidence in general

and for evaluating integrity, but do the reverse for ability [146, 169, 87]. Thus, different

actions should be taken to repair different dimensions of trust [58]. Tomlinson and Mayer

[178] argue that integrity is the most stable among the three dimensions of the ABI model

[118]. Hence, if a trustor ascribes that low integrity is the cause of a negative outcome in a

trusting relationship, then it is the hardest to repair.

Trust repair can be categorized into two as trustor-centric and trustee-centric [18]. Be-

tween these two, trustee-centric trust repair has been investigated more in the literature

[18]. Trustor-centric trust repair concerns the role of the trustor in the process, such

as forgiveness and emotions [18]. Tomlinson and Mayer [178] also emphasize the role of

addressing emotions of a trustor in the trust repair process, such as reducing anger and

fear. Trustee-centric trust repair focuses on the strategies that could be pursued by the

trustee to repair broken trust [18]. The trustee-centric trust repair is further categorized

into verbal and substantive strategies [178, 42, 18, 79]. Verbal strategies comprise apology

[87, 18, 67, 79, 42, 86, 102, 160, 177, 178], denial [87, 178, 18, 79, 42], promises [18, 67, 79, 160],

explanations [18, 79], excuses [178, 42], justification [178, 42], and communication [18]. Ver-

bal strategy, especially apologies, may be discounted as “cheap talk” by a trustor as they

are costless mere words [42]. A substantive strategy is more comprehensive than a verbal

strategy [18], i.e., they are not mere words but involve tangible elements and involve a cost

to the trustee [42]. Examples of substantive strategies include penance (i.e., paying penalty)
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[178, 79, 18, 42], hostage posting (i.e., “providing victims the ability to monitor and sanc-

tion” [42]) [178, 18], organizational reforms after trust violations, such as changing rules and

regulations [42, 18], manufacturing processes [18], organizational culture [18], and “legalistic

remedies” such as policies, procedures, and monitoring [166].

3.7 Trust Transfer

Trust transfer is described as building trust impressions based on the cues provided by

third parties instead of relying on one’s own prior experience with a trustee [147], From a

different angle, trust transfer is forming initial trust in an entity based on trust in other

related entities (still own experience) or based on different contexts than a current encounter

between a trustor and a trusted target, such as a different location [173]. Trust can be

transferred from a better-known trusted entity with whom the trustor has little or no direct

experience [43, 173]. For example, trust can be transferred from a marketplace to the sellers

in that marketplace [110]. A patient who trusts in his/her clinician may trust institutions

or the national health system more [98]. Reusen and Stouthuysen [147] hypothesized that

third-party information has different levels and these levels affect trust differently in a buyer-

supplier relationship. More precisely, third-party information could be neutral or favorable.

Neutral information is knowing only that other buyer firms have done business with the

supplier. Favorable information is the knowledge about the positive outcome of prior expe-

riences by other firms. Neutral and favorable third-party information affect competence and

goodwill dimensions, respectively.

Trust transfer is also known as trust transitivity [65, 61, 6] concept in networks. In net-

work terms, trust transitivity is described such that if a node u trusts node v, which trusts

node w, then node u may trust node w indirectly without having to have direct prior experi-

ence [61]. Trust prediction solutions for networks may rely on the trust transitivity concept

such that trust is propagated on paths (a sequence of nodes linked together) in a network

and aggregated from multiple paths [6]. Transitivity-based trust prediction approaches are

criticized for being subject to uncertainties due to two reasons [6]. First, trust/trust-related
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evidence decays on long paths. In other words, “the strength of trust decreases with each

degree of separation” [65]. Second, aggregation of trust from multiple paths may lead to

contradictions. As a remedy to these two drawbacks, local solutions that consider direct

neighbors of a node in a network for trust prediction, are advised [6]. However, this class of

trust prediction methods may be subject to biases. In other words, if direct neighbors of a

node are dishonest in the majority, they may harm the reputation of a target or bolster its

reputation without deserving if they are collaborating.

3.8 Trust and Reputation

As with trust, reputation is also crucial in interactions and relationships such as in social

and economic exchanges. For instance, it is important for buyer-seller relationships as a

good reputation helps a firm to have higher levels of trust by customers [88]. Reputation is

defined as the belief about the extent to which a trustee is honest and concerned about the

trustor [43]. Reputation can also be described as a characteristic attributed to a person by

another person, such as a reputation for being courteous [93]. Reputation embodies historic

information about attributes of a trustee, including honesty, reliability, and dependability

[120, 33, 148]. This historic information is supposed to have predictive power on, i.e., is

indicative of, the future behavior of the person to whom an attribute is ascribed [93].

A reputation network is a network, in which reputation information disseminates among

a group of connected people or entities. Reputation networks could be traditional or online

[17] based on the medium over which entities communicate and reputation information is

shared. One distinction between traditional and online reputation networks is their emphasis

on the type of reciprocity, which could be direct and indirect. Traditional reputation networks

are based on direct reciprocity such that trustors (buyers in electronic reputation markets

[17]) obtain the reputation information from their interactions with the trustee (traders in

electronic reputation markets [17]). In online reputation networks, trustors cull reputation

information from the experience of others, which corresponds to indirect reciprocity [17].

The effect of reputation information on trust is influenced by several factors [148]. Ex-
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amples of these factors are the topology of a social network [63], the cost of obtaining and

sharing reputation information [148], and the trustworthiness of the reputation information

itself [148]. Also, the degree of uncertainty in the environment that a trusting relation-

ship takes place affects the concern for reputation by parties. As such, a higher degree of

uncertainty leads to greater concern for reputation [93].

Many trust models include reputation [148]. Yet, if the trust is predicted based on only

reputation information, such a model will be vulnerable to strategic misuse by untrustworthy

actors to build a good reputation so that they can exploit the trust of a trustee or not perform

the final transaction [148]. This type of behavior is commonly observed through the end of

trust games, a.k.a end-game effect, played in laboratory experiments conducted in behavioral

economics domain (such as proven by Bohnet and Huck [16] in their trust game experiment),

and in online auction sites [148]. Also, in the computer networks domain, there are strategic

attacks in which an attacker builds a good reputation to stay in the network without being

recognized and perform attacks at later stages. Hence, reputation-based trust frameworks

have the same drawbacks for computer networks.

3.9 Trust and Context

Trust is a context-dependent or context-specific phenomena [183, 18, 103, 173, 118],

as already stated in Section 3.1.3. Context-dependency of trust means that trust and its

dimensions depend on the circumstance of an interaction and parties interacting [54, 124,

173]. Context is the conditions or institutional structures under which an encounter between

a trustor and a trusted target takes place [173]. For instance, Mayer et al. [118] propose

that trust antecedents, i.e., perceptions about ability, benevolence, and integrity, are affected

by contextual factors, such as organizational policies and the perceived similarity between a

trustor and a trustee. Mechanic and Meyer [124] found that the trust of patients in doctors

and healthcare plans is affected by the conditions of patients, such as sophistication and

characteristics of their illness, their needs and access to information, and the degree of risk

perception. The reason for trust to be context-specific is that the gain and loss of a trustor
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from a trust relationship depend on the situation [183], which is captured by payoffs (gain

and loss) in the expected trust formula in (1) [183]. As demonstrated by previous work,

contextual factors for an encounter may affect the trust, such as the location (neighborhood)

and the channel (e.g. Internet) of an encounter [173].

3.10 Trust, Risk, and Uncertainty

Risk is seen as a key factor for the development of trust and trusting behaviors [153].

Some level of risk is needed as a basis for the development of trust [93, 59, 102, 95] or for

the trust to become operational [43]. When the perceived risk is high, trust becomes more

important [66]. Even it has been regarded as a precondition for trust such that without

risk, trust will not evolve, be relevant, or be required [33, 37, 118, 148, 93, 36, 111, 97, 35,

96]. Risk has been defined in different ways. One view defines the risk as the degree of

uncertainty that a decision will lead to potentially significant or undesired outcomes for a

trustor [165, 155, 148, 43, 127, 36, 132, 34, 35]. This definition treats risk and uncertainty as

synonyms [148]. Another view defines the risk as a compound concept that embodies both

perceived probability and magnitude (impact) of adverse outcomes [118, 148, 36]. Thus,

according to this view, trust is required in situations where there is both the possibility of

an undesired outcome and a considerable impact of it [148].

Mayer et al. [118] highlight the distinction between trust and risk-taking such that trust

is the willingness to be vulnerable whereas risk-taking is actually becoming vulnerable [30].

There are propositions that focus on the effect of risk-taking on trust. For example, Stasiulis

et al. [172] showed that risk-taking is a type of work that fosters trust among mental health

care service teams, such as breaking hospital rules by clinic managers. There is another

side of the coin where trust affects risk-taking behaviors or risk perceptions. Mayer et al.

[118] assume that trust fosters risk-taking, i.e. intention to accept vulnerability results in

taking actions to be vulnerable. Besides fostering risk-taking behaviors, trust helps to reduce

[36, 132] or overcome [122] perceptions of risk and uncertainty in trust relations, such as that

of consumers towards online vendors [122] and partners in a strategic alliance [36].
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It is important to note the difference between risk (objective) and perceived risk (sub-

jective). The prior is an inherent risk that can be objectively calculable, such as for lottery

and card games whereas the latter is the belief about [132] or the estimation of objective

risk by an individual [36]. Trust does not affect on objective risk inherent in situations but

reduces the subjective/perceived risk [36]. It is also important to distinguish uncertainty

from the risk [148]. As we discussed earlier, risk is associated with the “known” probability

of adverse events [92, 148]. For uncertainty, adverse events are still possible but without

knowing probabilities [92, 148, 65]. People try to reduce uncertainty to calculable risk [65].

As people usually do not have the time or ability to calculate expected probabilities and as

trust provides short-cut probability calculations [111], people will resort to trust in uncertain

situations [111, 65] to be able to continue cooperation and economic transactions [65]. For

example, not having detailed knowledge about the skills of and motivations for actions by

others results in uncertainty [37] and the need for trusting others.

3.11 Trust and Distrust

Trust and distrust are part of relationships in all social systems [103]. For stable social

structures, they should both exist in a healthy dose [103]. Distrust is a concept that is

distinct from trust [103, 121]. It is crucial to know whom to distrust as much as whom to

trust [6]. Distrust is seen as even more important than trust prediction by some researchers

because predicting distrust helps to mitigate the risk that is involved in trusting someone

[118, 6]. Both trust and distrust are mechanisms for individuals to contain and manage

social complexity and uncertainty in relationships [111]. Yet, they do this in different ways.

Trust eliminates the consideration of an individual that another party will have undesirable

conduct and makes desirable actions to be viewed as certain [111]. Conversely, distrust

simplifies decision making and reduce complexity by allowing undesired conduct to be seen

as more likely [111].

Although trust has been investigated in different domains, distrust has gained attention

recently [6]. Most of the early trust models/trust prediction approaches either ignored dis-
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trust or simply accepted it as the absence of trust or being neutral [194]. However, some

researchers ([28, 69]) argue that in the real world, distrusting is neither being neutral nor

the mere absence of trust [6]. What distinguish it from the absence of trust or neutrality are

characteristics that are specific to distrust. These characteristics include fear, unease, and

pessimism and require precautions to be taken [103]. It is also crucial to note the difference

between distrust and violated trust. As Sitkin and Roth [166] argue, violated trust is about

violations by a trusted party specific to a particular task or context. If a violation spans

across different contexts, i.e. violates fundamental values and undermines trust in different

contexts, then it is regarded as distrust.

Some researchers view trust and distrust as opposite to each other and mutually exclusive

[103]. According to this view, trust is the confidence about desired behaviors of a partner

[38], whereas distrust is the confidence that a partner will display undesired behaviors, based

on the knowledge about the capabilities and intentions of the partner [38]. In other words,

distrust is about the expectation that an individual is not capable and will not behave

responsibly [13]. In addition to expecting that a partner will not act in best interests,

distrust may be associated with the expectation that a partner will engage in potentially

harmful behaviors [62]. Yet, Lewicki and McAllister [103] argue that trust and distrust are

not at the opposite end of a single continuum. Trust is not the opposite of distrust, and low

trust is not the same as high distrust and vice versa [103]. They are distinct mechanisms to

manage social complexity in relationships, but they can coexist [103]. As such, individuals

can both trust and distrust each other for different experiences in their relationships [103].

Different elements affect the growth and decline of trust and distrust, but these elements

develop together in the experiences of an individual [103].

3.12 Implications for IoT Networks

In this section, I discuss how trust-related concepts/propositions that we identified from

our literature review could apply to IoT networks. Specifically, I group our discussions under

the following topics: trust life cycle, factors affecting trust, and trust and risk relationships.
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Next, in light of these, we propose a conceptual trust framework that could be referred to

by network administrative domains as a guideline.

3.12.1 Trust Lifecycle

Just like trust evolution during a trusting relationship is a crucial concept in social

sciences, it is also significant for IoT networks. We term trust evolution in IoT networks as

trust lifecycle, where trust is initialized when the network is first deployed or a device joins

the network for the first time. It increases, decreases, or stays constant based on the actions

by IoT devices and interactions between them. The trust repair concept also applies to the

trust lifecycle. If the trust of an IoT device decreases and a human intervenes, the trust gets

repaired or reset. In the following sections, I discuss ideas in this direction.

3.12.1.1 Initial Trust Formation

Initial trust formation is an important challenge in trust relationships, as I discuss in

Section 3.5. The same challenge applies to IoT networks. How much should we trust a device

just joining a network?

In social sciences, one view is that interaction is a prerequisite for trust formation [101].

This may lead to the conclusion that initially without interaction, there is no trust or trust

information. Based on this argument, we may consider setting the initial trust of an IoT

device to zero if it is a single value. An opposite strategy could be setting the trust of a

device on another device to the highest possible value if they are encountering the first time

and only once. This idea reflects the findings of social science studies in which high levels

of initial trust were observed for temporary teams [74]. This was found for teams that have

not worked before and do not expect to do so in near future for a complex task [95]. We

note that this strategy would be better to apply in computer networks that are not deployed

for highly critical systems, such as military or healthcare. Otherwise, assigning high trust

values by default could lead to high-risk scenarios.

Another view suggests depending on trust propensity (i.e., dispositional trust) for ini-

tial trust formation when there is a lack of interactions, as discussed in Section 3.1.4. We
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believe that dispositional trust could also have a significant role in IoT trust computations.

We base our argument on discussions about human-automation interactions by Hoff and

Bashir [73]. They discuss that individuals have varying levels of a tendency to trust au-

tomation (i.e., dispositional trust). Also, they argue that a human trustor is two-degree

separated from an automation system as a trustee because the human trustor considers the

human designer of a system when putting trust on it (two degrees of separation: human-

automation→ automation-human). Combining these discussions, we can think that there is

a three-degree separation for device-device interactions in an IoT network (human(trustor)-

device(used by trustor) → device(used by trustor)-device(used/designed by a trustee) →
device(used/designed by a trustee)-human(trustee)). Thus, we may think of setting disposi-

tional trust of a device towards other devices directly based on the dispositional trust level

of its owner towards other people or technology. This maybe the same level for all devices in

a network if they are all owned by the same trustor. Mindset type (fixed or growth) is also

proposed as a dispositional factor for trust formation ([143]). Mindset relates to personality

and is relatively a stable factor. It is not affected by interactions in a relationship, so it can

be used for initial trust formation. This concept can be utilized for initial trust formation

in IoT networks. When there is not enough evidence for assigning trust values in a network,

we may use a predetermined mindset of devices and associated trust values for initialization.

The determination of mindset for devices could be based on end-user preference or some

network-based measures, such as node centrality, in/out-degree, etc.

We suggest another set of related strategies for assigning initial trust values for IoT

networks. Bolton et al. [17] found that if the overall trust in an online market is positive,

a buyer having a bad experience could tolerate it owing to the high general market trust.

This can be utilized to assign initial trust values when two networks join for collaborative

purposes. More precisely, we may consider a network as a marketplace and an IoT device as

a buyer. For example, a trustor device in one of the networks could take the average of trust

values of the nodes in another network and use it as the initial trust value for any device

for the first time interaction. We note that the two networks do not have to share the trust

values directly, as it may be a privacy concern. It can be done by a trusted third-party service

such as one deployed in the cloud, assuming these networks are merged under a contract.

61



Alternatively, they can exchange trust-related data to be used to infer trust values, such as

environmental and technical data suggested in [5] for an IoT trust framework. Bolton et

al. [17] also found that some buyers decreased their trust level towards all sellers for future

interactions after their trust has been compromised. Other sellers, whose trust was rewarded,

continued to trust sellers in their future interactions We can utilize a similar strategy for

the integration of multiple network administrative domains. We can consider two types of

devices in a domain as pessimistic and optimistic, and we can assign initial trust values for

devices in other domain according to their trust view, e.g., zero for pessimistic devices and

a value higher than a medium value in a trust scale for optimistic devices (such as 0.7 in a

trust scale of [0, 1]).

3.12.1.2 Trust Development after Initialization

This phase covers the time after a network is deployed and initial trust scores are assigned

to devices. As discussed previously, trust is a dynamic process and evolves, i.e., it increases,

decreases, or stays stable sometime, based on different factors. With the trust development

concept, we refer to trust evolution. In this section, we speculate on ideas concerning it. We

organize them concerning significant concepts for trust development after initialization.

Trust Transfer: I discussed trust development concept earlier in this chapter, in the context

of social sciences. Trust transfer is also crucial for trust computations in IoT. For example,

trust propagated along paths in a network is known as referral trust in Evidence-Based

Subjective Logic and trust transference is termed trust propagation [5] (see Chapter 4).

Stewart [173] proposed a trust transfer model for online business settings. They found that

the perceived interaction and perceived similarity between two websites increase the trust

in a less-known website if the better-known website is trusted. This idea may be applied to

trust transfer in IoT. As such, the similarity of two devices (e.g. contextual and security-

related features) and their interactions (pattern of interactions with other devices in the

network) could be used to transfer trust. This could be done both for transferring trust from

well-known trusted devices and distrust from well-known distrusted devices to less known

devices. Another implication for trust transfer in IoT could be considered based on Reusen
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and Stouthuysen’s [147] trust transfer study. They showed that third-party information,

having two levels as neutral and favorable information towards a trustee, affect competence

and goodwill trust differently. We may think about applying the two levels of third-party

information for computing trust transfer in computer networks. Neutral information could

be only knowing the existence of a link between two devices or the number of times they

interact with each other. Favorable information could be more detailed,such as the result of

their interaction as feedback (satisfied or not) or as the trust of a trustor node is honored or

cheated. Also, again based on Reusen and Stouthuysen’s [147] study, grouping trust-related

attributes as competence- and goodwill-related may be worth exploring for IoT. For example,

the type of the communication link used by devices could be a competence-related attribute

as it affects the reliable transfer of data, whereas the freshness of the cryptographic keys used

to encrypt communicated data may relate to goodwill as an old key may lead to attacks to

the device and imply a compromised device. This grouping may be useful also because the

effectiveness of trust repair efforts is affected by the type of trust violated as discussed in

Section 3.6.

Combining Real-time and Historical Trust Scores: When we talk about trust changes

over time, an important problem to be addressed by trust frameworks for IoT is how to com-

bine, i.e., how to set weights for historical and real-time trust values. Inspired by the findings

of studies and propositions discussed in the articles we reviewed, we speculate on the ideas

as potential solutions to address this problem. First, in their study to investigate the effect

of reputation information flow on trust development in electronic reputation mechanisms,

Bolton et al. [17] found that buyers weigh recent observations higher than older ones for

trust formation. Based on this finding, we can think that recent trust IoT network. For

example, the exponentially weighted average method is used for combining historical and

real-time trust values [5]. Instead of setting coefficients of 0.5 for both types of trust scores,

the coefficient for the real-time trust score could be set to a value higher than 0.5. Second,

people tend to weigh negative information more than positive information [182]. For exam-

ple, when the economy is going bad, people may give more importance to it to discount the

trust of the government [72]. Also, Bolton et al. [17] found that some groups of buyers tend

to give more importance to their negative experiences. Hoff and Bashir [73] also argue that
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positive and negative past experiences may have different influence on trust in automation.

We may consider these propositions and findings for weighting trust scores based on the

outcome of interactions between IoT devices For example, if a device exploited the trust

of another device in one of the past experiences, that record could be weighted more than

other positive records. This decision of weighing negative or positive experiences more can

be made by the user of a trust framework.

Trust Repair: In connection with the discussion of historical and real-time trust values

above, we can consider setting trust values based on trust repair actions. For example, we

can consider reset to a device by a company, firmware upgrade, or any kind of maintenance as

trust repair actions and reset the historical trust value. As trust repair is needed after trust

violations and is related to distrust towards violator(s), focusing on distrust in computer

networks is also crucial. A potential distrust mitigation mechanism in a relationship after

the trust fails is the transformation of distrust into trust. Lewicki and McAllister [103] argue

that distrust relationships can be effectively managed if they are transformed into trust

relationships that allow functional interactions within constraints. They explain this with

a practical example from the White House. Leon Panetta, as the Chief of Staff, turned his

distrusting relationship with Dick Morris, who was the political adviser to President Clinton,

into a trusting relationship by setting out clearly specified parameters and rules such that

Morris could work within these constraints as a trusted and invaluable partner. We can

consider the transformation of distrust relationships into trusting ones by constraining them

for computer network settings. For example, when a node demonstrates untrustworthy

behaviors and is distrusted, we may want to limit its actions in the network (instead of

shutting it down or kicking it out), such as prohibiting the use of certain communication

protocols and downloading files, or enforcing software patches, refreshing keys, etc.

3.12.2 Factors Affecting Trust in IoT

In this section, I discuss factors that may affect trust in IoT drawing upon our review of

trust in social sciences. Recalling that the perceived social presence of a website is positively

associated to trust [88, 101] and interactivity is the main component of social presence [180],
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we may think about social presence as a factor in trust development in IoT networks. The

social presence or absence of devices can be considered as their being active or inactive.

Hence, interactive devices can be rewarded with higher trust. The trust of devices that join

the network and stay inactive for a long time after a series of interactions can be degraded

(see Chapter 6 for more details about it).

Hendriks et al. [71] investigated whether the trustworthiness of a researcher and the

credibility of a study by the researcher is affected by who replicated the original study and if

the replication was successful or not. We may consider an analogy for IoT (see Chapter 6 for

more details). For example, we can think that an IoT device and a measurement reported by

it are analogous to an author and a scientific study, respectively. We can consider replication

study, in IoT context, as a measurement replication that corresponds to multiple reporting

of a measure, such as temperature. It may come from the device itself in a predefined short

time window or from other devices, so replication author here will be replicating device, i.e.,

device itself or other devices. Replication success could be thought of as the deviation from

other reported measures within the predefined time window. For example, if it is below a

threshold, we can say that it is successful, if it is above a threshold, it is a failure. Hence,

for IoT networks, we may think that the trustworthiness of a device and the credibility of a

reported measure are different concepts, and they may be affected by the replicating device

and replication success6.

Within a similar direction, Alarcon et al. [7] showed that the source of a code repair,

i.e., a human programmer vs. an automated code repair software, has an effect on the

trust towards the code repair. We may think about similar concepts for trust in IoT. More

precisely, we may think that different sources of trust repair in a network would affect trust

values differently. For example, we may think of the source of repair as the type of repair, such

as hardware-based trust repair actions (e.g. increasing the processing or storage capability

of a node) or software-based trust repair actions (e.g. rebooting the node or getting over the

air updates, etc.). Then we may model trust changes based on the type of repair action.

6Device trustworthiness and measurement credibility are different concepts because, for example, a device
may be hacked by an attacker (untrustworthy device) but still may report correct measurements (credible
measurement) for hiding its malicious behavior until an attack
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3.12.3 Trust and Risk Relationships

As discussed in Section 3.10, the relationship between trust and risk is an important

topic in social sciences literature. There are arguments for the two sides of this relationship.

One group claims that trust positively impacts risk-taking behavior, whereas the other group

argues risk-taking behaviors positively impact trust. We contend that these arguments may

apply to IoT networks. For example, if we consider that the devices within a network trust

each other, then they share sensitive data as a risk-taking behavior. Another view that

focuses on the other direction claims that risk-taking behaviors promote trust. When we

consider this view for IoT networks, we can think that risk-taking behaviors by devices , such

as using stronger cryptographic measures (risk here could be faster battery consumption for

IoT devices), could lead to higher trust towards them .

Another crucial concept is the calculative view to trust. It considers trust as the calcu-

lation of risk probabilities, gains, and losses from an encounter with a trustee, as discussed

in Section 3.4 and 3.10. According to Coleman [29] and other economics researchers, trust

is the expected payoff of a trustor from a trust relationship. That is, it is the combination

of the perceived probability of an undesired outcome (perceived probability of trustee being

trustworthy or untrustworthy) and the impact of that outcome (gain and loss from trust-

worthy and untrustworthy behaviors) (Equation (1)). This view may have an implication

for computing trust and making trust decisions in IoT. To our knowledge, trust has been

approached typically as a probability with different scales in networks (e.g., values between

[0,1], [-1,1],[0,100], or [-100,100]). For example, Subjective Logic (SL) [77] is one such trust

model. It considers probabilities for trust, distrust, and uncertainty to represent the trust

opinion triplet of a trustor node in a trust network (see Chapter 4 for more details about

SL). Considering only probabilities may not be enough for establishing trust relationships in

IoT networks. Hence, this implies an enhancement or a complementary step on the SL (or

any probability-based trust computation in networks). The SL opinion triplet of a trustor

node can be plugged into Equation 1 as p. We can consider the gain and loss of the trustor

node (G and L in equation (1)) from its relationship with a trustee node and calculate the

expectation of the trustor node (E(R) in Equation (1)).
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3.12.4 A Conceptual Trust Framework

In this section, I present the conceptual trust framework we proposed for multiple IoT

network administrative-domains, based on our literature review in [3] and prior discussions

in this section (Section 3.12). Fig 3 displays the proposed framework. We propose a hierar-

chical relationship between the duties for managing trust relationships among administrative

domains. At the lowest level, there are individual administrative domains that are respon-

sible for their trust management. Above individual domains is the cross-domain layer for

inter-operation between two administrative domains. This layer is about tasks for trust

management and shared responsibility in a pairwise matching of individual domains. At the

top, there are trust management activities that concern all the domains. Next, I elaborate

on these three layers and their areas of responsibility concerning the trust.

3.12.4.1 Areas of Responsibility of Individual Administrative Domains

We propose four main areas of trust-related responsibilities for an individual administra-

tive domain. These are trust objectives, trust management, trust computation, and trust and

risk interplay.

We consider two trust objectives for IoT networks (inspired by discussions in [172] about

objectives of health clinics governing bodies). One objective is trust in operations or trust

in data. Another objective is trust in trust framework, which corresponds to better or more

accurate trust metrics. Concerning this, we can consider the criteria proposed by Akilal et

al. [6], for evaluating trust/distrust prediction solutions in social networks. They emphasize

that a trust/distrust prediction solution should be accurate, fast, and robust. The accuracy

of a solution requires predicting trust values as close as possible to the decision by a user in

social networks. The speed is about time that is required for the prediction of trust by an

algorithm, which should be very quick because users’ actions depend on trust predictions.

We argue that this condition may be even more critical for some IoT networks, such as those

deployed in healthcare scenarios, that require almost continuous operation of devices with

minimal interruption. The robustness means that the accuracy of trust processing/prediction

should not be affected by the sparsity of a network, i.e., missing most of the links between
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Figure 3: A conceptual trust framework for multiple IoT network administrative domains
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users in social networks context.

We argue that trust management could be at two levels as micro vs. macro (inspired by

discussions in [172] about health clinic manager characteristics). For instance, querying trust

levels or trust-related attributes of IoT nodes very frequently could be micromanaging trust

(Low query rates correspond to macro-management of trust, in this case). This might have

a negative impact on energy efficiency for nodes as they need to communicate frequently.

Another view to micro-management of trust could be looking at immediate neighbors of a

target node for reputation information that will be used in trust computations, as proposed

in [6] for social networks. Yet, this approach may have a drawback such that trust values are

biased to reputation information provided by/inferred from neighbors of a node. If neighbors

are not benevolent, the trust of a benevolent target node may be reduced intentionally, or

vice versa for a dishonest target node. Another issue regarding trust management in IoT

is whether autonomy could be considered, such as game-theoretic trust management similar

to trust games in economics studies as in [21, 10, 16] 7. Also, we argue that the decision of

considering the recovery of trust in devices in a network is a type of management-related

activity (see example trust repair actions discussed earlier in Section 3.12.1).

In regards to trust computation, we consider factors affecting trust and trust types, such

as emotional and cognitive trust, which are cited frequently as a basis for personal trust in

social sciences literature [88, 124, 172, 59, 73, 100]. Earlier in Section 3.12.1 and 3.12.2, we

discussed factors that may impact trust values and trust measurement in computer networks,

as implied from social science disciplines. Here we add that service providers/device vendors

may affect the trust values of a device due to their competency (or benevolence and integrity

(ABI model in Section 3.1.4). Change of trust in devices over time, i.e., trust life cycle,

is also in the scope of trust computations. Activities that can be taken by an individual

administrative domain related to trust lifecycle have been discussed earlier in Section 3.12.1.

As a reminder, the trust life cycle consists of initial trust formation and trust development

afterward, which includes trust transfer/transitivity , combining historical and recent trust

values, and trust repair activities.

We have already acknowledged the significance of risk and its relationship to trust in

7More detailed game-theoretic trust discussions are presented in our review paper.
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IoT in Section 3.12.3. For the trust and risk interplay area of responsibility, administrative

domains should specify possible risks and if there is a contradictory or supporting relationship

between those risks and the trust. In other words, they should consider if a risky state/action

fosters or prevents trust development. For example, using stronger cryptographic measures

could include the risk of higher power consumption, but may lead to increased trust.

3.12.4.2 Areas of Responsibility of Cross-domains and All Domains

Considering that multiple network administrative domains collaborate to deliver some

services, we assume they do this through formal contracts, informal agreements, or interac-

tions. For cross-domain areas of trust responsibilities, we imagine that two domains should

mutually agree about issues such as how the trust of devices will be reported, i.e., an ag-

gregate or fine-grained measure. This can be decided based on the type of collaboration

between domains and their privacy concerns, i.e., if they would like to share less or more

trust-related information. We remind that they do not have to share the trust values of

their nodes directly. It can be done by a trusted third-party service such as one deployed

in the cloud and that service can share trust values after applying privacy protection algo-

rithms. A domain can exchange trust-related data that can be utilized by the other domain

to calculate trust values of devices, such as environmental and technical attributes. The

frequency of query and sharing of these data, i.e., trust values or trust-related data, should

also be jointly decided because it may be an issue for service availability for the domain

that provides these data. Finally, deciding if there will be any trust threshold to continue

collaboration is another cross-domain-related issue. It may be the case that devices in an

administrative domain have low trust, but the other domain has no other alternative to get

services and still want to collaborate.

For areas of trust responsibilities that concern all domains in a collaboration, we argue

that the main issues will be about trust computations. A common representation of trust

among domains could be a potential candidate for decisions to be made by domains. For

instance, if distrust and/or uncertainty should be concerned (as in [6, 77]) or just trust levels

will be reported. Another example could be to decide if historical records of trust will be
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stored and shared by domains. If so, if and how historical and real-time values could be

combined (see Section 3.12.1 for ideas).
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4.0 Automated Trust Computation in IoT: Multiple Attributes and Logic

In this chapter, we propose a trust measurement framework for a single IoT network

administrative domain that automatically computes the trust of “things”, which we call

MADM-EBSL Framework (Multi-Attribute Decision Making (MADM) - Evidence-Based

Subjective Logic (EBSL) Framework). In the sequel, I present the challenges of trust com-

putation in IoT environments and the motivation for the proposed framework, followed by

the background information for the MADM and EBSL. Next, I present the proposed trust

measurement framework and discuss evaluation results.

4.1 Motivation and Background

Trust mechanisms are fundamental for people to overcome perceptions of uncertainty

and risk in using IoT services and applications [49]. This uncertainty and risk in IoT envi-

ronments arise from the potential for malicious activity, such as man-in-the-middle of a link,

Distributed Denial of Service (DDoS), physical node compromise, etc. Even when things

behave benignly, they may have inherent environmental limitations and variations in behav-

ior (inexpensive vs. robust to wear and tear) that impact trust in the reported information.

Thus, the trust in the devices, the data they report, and the actions they take should be

measured through a trust measurement framework.

There are several challenges in trust computations in IoT. First of all, there is a vast

increase in the number of IoT nodes and communication among them [64, 40, 11, 5]. Many

transactions occur primarily among things with support from computation and storage in

the cloud [5]. Also, given that human intervention is expensive, trust computations need

to be automatically performed without human intervention. In addition, the trust in the

data delivered by “things” depends on several factors, such as contextual/environmental

conditions and technical/protocol-dependent features (key freshness, communication link

characteristics). If the trust in reported measurements is a single number, it needs to capture
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various conditions as such. Thus, there is a need for a trust measurement method that

considers the communication among for “things”, environmental and security-related factors,

and the network topology.

There are inherent trust issues in the things sensing the environment due to several

limitations. For instance, some sensors may operate correctly under some environmental

conditions, but the trust in the data they sense may degrade under others. The characteristics

of nodes may not, however, be easily quantifiable since the trust may not monotonically

change with the characteristic. There are technical aspects of nodes that influence their trust.

A thing whose keys used for cryptographic protocols have remained unchanged for a long

time is more vulnerable to compromise than a thing that has its keys refreshed frequently. We

consider both of these types as impacting what we call the functional trust (FT) of a thing.

Trust needs to take into account the beliefs of things on each other (especially neighbors) and

the belief of the cloud infrastructure on things based on topology, the delivered data, and

even potential external data sources. We call this referral trust (RT). For example, a thing

may reduce its trust in a neighbor if both sense the same physical phenomenon, e.g. the

temperature, and there are significant differences. The cloud may adjust its trust on a node

sensing temperature if the values are very dissimilar to the coarse-grained values reported

by an external trusted source.

Based on the discussions above, in our research we attempt to answer the following

research question:

RQ. How can we determine a temporal trust in things based on remote knowledge of the
network topology, inherent limitations of sensors, generated data, and potential misuse of
things or their connections, without continual human intervention?

To address these challenges, we propose the MADM-EBSL Framework that automati-

cally computes the trust of “things”. We use Multi-Attribute Decision Making (MADM) to

measure functional and referral trust of an IoT node. We adopted the Evidence-Based Sub-

jective Logic (EBSL) [167] to account for uncertainty in trust values and trust transitivity in

a trust network of “things”. Referring back to the perspectives that I frame the existing trust

measurement solutions in Chapter 2, the MADM-EBSL considers all key characteristics of

trust, i.e., multi-dimensionality, context-specificity, dynamism, and uncertainty. Regarding
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other perspectives, it is a central, transitive-global, and fully-automated trust measurement

scheme. In what follows, I present the preliminaries that the MADM-EBSL is built upon.

4.1.1 Multi-Attribute Decision Making (MADM)

Decision making (DM) is the process of modeling a decision maker’s preference on a set

of competing alternatives (a.k.a options) concerning a set of criteria, which are usually in

conflict. When alternatives are evaluated based on more than one criterion, the problem

is referred to as Multi-Criteria Decision Making (MCDM) [80]. There are two classes of

MCDM methods: MADM and Multi-Objective Decision Making (MODM) [75]. The former

deals with a finite set of alternatives, while the latter is suitable for continuous DM problems

where there is an infinite number of alternatives [80]. In our trust framework, we use the

MADM approach since we have a finite set of alternatives and well-defined attributes. We

present a detailed definition of our DM problem for trust computation in Section 4.2.4.1.

Note that there is no clear distinction between criteria and attributes in MCDM literature,

so we use them interchangeably.

Attributes in MADM can be grouped under three categories based on the utility gained

with respect to the attribute value [190]:

• Benefit: Benefit attributes provide increasing monotonic utility, meaning that the higher

attribute values are preferable.

• Cost: Cost attributes provide decreasing monotonic utility, so lower attribute values are

preferable.

• Non-monotonic: Non-monotonic attributes do not have a monotonic utility change with

respect to their values. The most preferred value of a non-monotonic attribute falls into

a point between the range of the attribute values.

Examples of these attributes are efficiency, cost, and room temperature, respectively [80].

Attributes can also be categorized into two classes as ordinal and cardinal attributes [80].

Ordinal attributes do not have a numerical scale such as ratio or interval, so their values are

compared by their rank orders such as very high, average, low, etc. Cardinal attributes can

have an interval or ratio scale and can be assigned with numerical values.
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Concerning attribute information processing, MADM approaches are classified as com-

pensatory and non-compensatory methods [76]. We adopt a compensatory method in our

DM problem, which, unlike the non-compensatory methods, allows a trade-off between at-

tributes [190]. In particular, we utilize the Simple Additive Weighting (SAW) as a widely

accepted compensatory scoring model [190] in the proposed trust framework, which ranks

alternatives and selects the ones with the highest score. It is one of the simplest models but

produces results that are very close to more sophisticated DM methods [76, 131].

4.1.2 Subjective Logic (SL)

We use Evidence-based Subjective Logic (EBSL) [167] to compute the trust opinion for

a measurement provided by an IoT device in a TN. As the EBSL is built on the pillars

of Subjective Logic (SL) [77], I first overview SL in this section. I present the background

about EBSL in Section 4.1.3.

SL [77] is a framework that is used for logical reasoning with uncertain propositions, i.e.,

it combines concepts of standard binary logic and probability calculus. SL also uses elements

from the Dempster-Shafer belief theory [77]. Thus, SL accounts for the uncertainty in an

opinion towards a proposition. In SL, an opinion is represented as a triplet, —opinion triplet,

ω = {b, d, u}, where b, d, and u respectively represent the belief, disbelief, and uncertainty

of opinion and ∀b, d, u ∈ [0, 1], b+ d+ u = 1.

SL provides two fundamental sets of operators to combine opinions, which are logical and

evidential operators. As our MADM-EBSL framework is based on the EBSL that adapts

evidential operators of SL, the MADM-EBSL uses evidential operators for combining opin-

ions. Logical operators are for combining opinions of an agent about multiple propositions.

They include propositional conjunction, propositional disjunction and negation, which are

the applications of standard binary logic operators AND, OR, and NOT on SL opinions.

Evidential operators are for combining opinions of multiple agents about a single proposition.

They include consensus and discounting operators. Consensus reflects combining evidence

from multiple sources to form an opinion and is calculated using Equation 2. Discounting

reflects the transfer of evidence among entities to form an opinion and is calculated using
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Figure 4: A simple trust network consisting of two nodes

Equation 3. The MADM-EBSL utilizes consensus and discounting for trust propagation and

aggregation in a trust network of “things”, following [167].

x⊕ y =
(xuyb + yuxb, xuyd + yuxd, xuyu)

xu + yu − xuyu
(2)

x⊗ y = (xbyb, xbyd, xd + xu + xbyu) (3)

where x, y are two opinion triplets, xb, xd, xu, yb, yd, yu denote belief, disbelief, and uncertainty

components of opinion x and y, respectively.

4.1.3 Evidence-based Subjective Logic (EBSL)

As discussed earlier, the EBSL adapts evidential operators of SL for combining opinions.

Also, it combines SL with a graph model to compute the trust of nodes in a trust network

(TN). For explaining the basic concepts, we present a toy example of a TN in Figure 4.

In this TN, A and B represent two IoT devices: thing A and thing B. P is a proposition

about which B forms an opinion. In our case, P is “a data item dt that is collected at

time t has the value v(dt)”. In the figure, x represents the opinion that A has about the

trustworthiness of B in providing recommendations, which is known as referral trust (RT)

in EBSL. y represents the opinion that B has about the trustworthiness of the data items it

measures, which corresponds to functional trust (FT) in EBSL.

Opinions on the path from a node to another node form a trust chain. In a valid trust

chain, there must be an FT on the last edge in addition to RTs on previous edges [167].

In a TN, the trust of a target node is computed by aggregating trust opinions of paths

(trust chains) between the target node and a source node. This operation is referred to as

aggregation of trust and performed using consensus operator (⊕). Note that the consensus

operator of the EBSL is the same as the original consensus operator of SL, and calculated

by Equation (2). The trust opinion of a chain is updated every time each node is visited

along the path. This update operation is referred to as the propagation of referral trust
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Notation Meaning

MT = {mt1,mt2, ...,mtp}: a set of measurement types

IMmt, IMAB An initial matrix constructed for mt and for the edge between

node A and B

D A decision matrix obtained from IMmt

Ai =< ID, dIDt ) >
An alternative in D, which is a pair of ID of a “thing” and a data

item dIDt collected by it at time t

Xj, wj An attribute in D and its weight

xij Value of attribute j for alternative i

rij Normalized value of xij

TN Trust network

ns, nd Source and destination nodes in TN

tc A trust chain in TN

< nA, nB > An edge between node A and B

Ttc The trust opinion on a tc

OTdest Overall trust opinion for nd

RFT (dIDt ) Real-time FT score of dIDt

RFD(dIDt ) Real-time functional distrust score for dIDt

DIID Distrust interval of a device with given ID

RFTt, HFTt, HFTt−1

Real-time and historical FT values of a device at time t and t-1,

respectively

ωID
P,RFt

Opinion triplet of a device with given ID on proposition P, repre-

senting RFTt

ωID
P,HFt

, ωID
P,HFt−1

Opinion triplet of a device with given ID on proposition P, repre-

senting HFTt and HFTt−1, respectively

RRTt, HRTt, HRTt−1

Real-time and historical RT value of an edge < nA, nB > at time

t and t-1, respectively

ωA
B,RRt Opinion triplet of node A on node B, representing RRTt

ωA
B,HRt

, ωA
B,HRt−1

Opinion triplet of node A on node B, representing HRTt and

HRTt−1, respectively

Table 2: Notations

77



and performed using the discounting operator (⊗). Opinion discounting represents the flow

of information from one node to another in a TN. Note that the discounting operator of

the EBSL is not the same as the original consensus operator of SL. The EBSL extends SL

with a new opinion discounting operator (4) as Škorić et al. [167] identify a number of

basic problems of the discounting operator in SL. Namely, it has a double-counting problem

which requires converting a TN into a “canonical form”. Adopting the discounting operator

proposed in the EBSL results in a consistent SL algebra as it resolves the double-counting

problem of the original operator. The discounting operator of EBSL (4) is expressed as

follows:

x4y = g(x).y =
(g(x)yb, g(x)yd, yu)

(yb + yd)g(x) + yu
(4)

where x, y are two opinion triplets, yb, yd, yu are belief, disbelief, and uncertainty components

of opinion y, and g(x) ≥ 0 is a scalar which denotes the proportion of evidence that is

transferred from a node to another node. g(x) can be selected arbitrarily, and suggested

options are xb or
√
xb where xb is the belief for opinion x [167]. We use g(x) = xb for our

computations.

4.2 MADM-EBSL Trust Measurement Framework

In this section, we present our proposed trust computation mechanism. Table 2 provides

a list of notations and abbreviations we use. We first explain the overall process of trust

computation (Figure 6). Next, we present an algorithm for computing the OT opinion for

a measurement reported by a target “thing”. In the sequel, we explain how we obtain FT

and RT components of the OT . Finally, we explain how these two are combined using the

EBSL.
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Figure 5: System model of the proposed trust computation mechanism

4.2.1 System Model

The main components of our proposed trust measurement framework are illustrated in

Figure 5 with resource-constrained “things” and more sophisticated devices such as a gate-

way. These components form a TN. The Gateway collects measurements from “things” and

sends them to the cloud server quasi-periodically. The transferred data include measure-

ments of interest, such as humidity, wind, water velocity, etc., and the data used for trust

computations. We elaborate on the data used for trust computation in oncoming sections.

The transmission of the data between IoT devices and from IoT devices to the cloud server

can be realized by using different wireless technologies (see Table 8). Note that secure proto-

cols are used in the proposed system model, so the security of communicated data depends

on the deployed protocols and infrastructure.

When the cloud server receives data from the gateway, it records the data items and

trust-related measures into the database together with a randomly assigned (but known) ID

for each IoT device. Note that IDs are generated by the cloud, so an IoT device cannot

imitate this number during the data collection process. From these periodic measurements,

the cloud server computes a real-time functional trust (RFT) score for a node (referred to as

destination node) and a real-time referral trust (RRT) score for each pair of nodes (or each

edge) in the TN. These real-time scores are then converted into SL opinions by applying a
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transformation that we explain in Section 4.2.4.3. The cloud server keeps historical records

for each IoT device and fuses the RFT of a device with its historical FT (HFT). The result

of this fusion is an SL opinion triplet that we use to represent FT (opinion y in Figure

4). Similarly, the RRT of each edge is fused with its historical RT (HRT) to obtain an RT

opinion triplet. The Overall trust (OT) for a measurement reported by a target IoT device

(destination node) is then computed by combining FT and RT values on the path from a

source device to the target device in the TN 1.

4.2.2 The Overall Process of Trust Computation

I explain the process of computing OTdest at a high-level in this section. I present details

in Sections 4.2.4 and 4.2.5. Figure 6 shows the overall process. The data items and trust-

related attributes are collected to measure both FT (sensors embedded to thing A) and RT

(between thing A and B). We use these attributes and data as input to the MADM method

and obtain trust scores and a distrust interval DIID from them. Steps of MADM include the

construction of a decision matrix D, normalization of the values in it, computing weights that

reflect the relative importance of attributes, and applying SAW on the normalized matrix

using the weights. Then, we convert scores from MADM into a distrust interval DIID that

is then used to get opinion triplets that represent RFT and RRT . We combine RFT s (or

RRT s) using an exponentially weighted moving average (EWMA) method to obtain the

HFT of a measurement as an opinion triplet (or HRT opinion for referral trust). Finally,

we combine the opinion triplets on the paths from a source node to a destination node for

obtaining OTdest in a given TN .

Note that an IoT device can be embedded with multiple sensors, each measuring different

measurement types (mt), such as humidity, water velocity, or precipitation. A measurement,

data item, or observation, refers to a single measurement collected by a single sensor of an

IoT device. In our trust computation algorithm, we assume that the OT of an IoT device

in a TN is queried for a single mt. Hence, we compute OTdest as an opinion triplet for a

single IoT device and a single mt. If we would like to let the user query the trust of an IoT

1The trust computation module may be accessed by end-users through a web application interface to
query the trust of IoT devices in the TN.
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Figure 6: Overall trust computation process

device for all the mts, we can combine each opinion triplet for each mt using the consensus

operator of SL [77]. Similarly, there may be multiple IoT devices measuring the same mt.

In this case, if a user wants to query the trust of an mt, we can combine opinion triplets

from the devices providing observations for the same mt.

4.2.3 Trust Computation Algorithm

We present Algorithm 1 to compute OTdest for a destination node nd. The first step is the

initialization of RFT (dIDt ). Next, the algorithm constructs a table for real-time data items

collected by all the “things” (bigTable in line 2). Then, it finds and groups together dIDt ’s

collected for mt by all “things” measuring mt (line 3) to obtain an initial matrix (IMmt)

as a representation of the decision making problem (DMP). The mt of interest is given as

an input to the algorithm, amongst the ones provided by the destination node nd. Next,

the algorithm constructs D from IMmt (line 4), normalizes attributes in D (lines 5-6), and

computes an RFT score for each dIDt in D (lines 7-10). After this, a DIID is computed from

the list of RFT (dIDt )’s for the nd represented by the ID (line 11). DIID is then converted to

an SL opinion triplet (ωID
P,RFt

) that represents the opinion of nd on the trustworthiness of its

measurements (line 12). Next, real-time and historical opinions for FT are combined using

the EWMA method (line 13).
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Algorithm 1: Compute Trust

Input : TN , ns, nd, mt
Output: OTdest

1 Initialize: RFT (dIDt ) = 0 ;
2 bigTable← generateBigTable();
3 IMmt ← groupDataItems(bigTable, mt);
4 D ← constructD(IMmt);
5 for Xj ∈ D do
6 normalize(Xj);
7 for dIDt ∈ D do
8 for Xj ∈ D do
9 RFT (dIDt )← RFT (dIDt ) + wj × rij;

10 RFTList(ID)← add RFT (dIDt );
11 DIID ← computeDI(RFTList(ID));
12 ωID

P,RFt
← convertToOpinion(DIID);

13 ωID
P,HFt

← α(ωID
P,RFt

) + (1− α)(ωID
P,HFt−1

);
14 for tc in TN do
15 for < nA, nB > on tc do
16 ωA

B,RRt
← computeRT(nA, nB);

17 ωA
B,HRt

← α(ωA
B,RRt

) + (1− α)(ωA
B,HRt−1

);

18 Ttc ← Ttc4(ωA
B,HRt

);
19 if nB = nd then
20 Ttc = Ttc4(ωID

P,HFt
);

21 OTdest ← OTdest ⊕ Ttc;
22 return OTdest;

Lines 14-21 are for TN-related operations. First, every edge on every trust chain from ns

to nd is assigned with an opinion triplet ωA
B,RRt

(line 16). Then, similar to RFT , the EWMA

method is used for combining the real-time and historical RT opinion for each edge (line

17). The next step is the propagation of referral trust (i.e., HRTt) using the discounting

operator proposed in [167] and updating Ttc (line 18). Note that when nd is reached, a last

discounting operation is performed using the FT opinion of nd (lines 19-20). Finally, Ttc

of every trust chain is aggregated using the consensus operator[77] (line 21) and OTdest is

returned (line 22).

4.2.4 Functional Trust

We compute the RFTt of an IoT device based on the MADM approach. We take all

RFT (dIDt ) scores of a device, generate a DIID from them, convert the DIID into an opinion
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ωID
P,RFt

, and obtain the opinion reflectingHFT (i.e., ωID
P,HFt

) by combining ωID
P,RFt

and ωID
P,HFt−1

.

We use ωID
P,HFt

as the FT label on the last edge of the TN . Next, we describe how MADM

is used by considering a “water level sensor” as an example scenario. Note that this is a

representative example to illustrate our approach and not the actual evaluation.

4.2.4.1 MADM Problem Definition for Trust Computations

We model the derivation of trust of the data collected by IoT devices as a DMP. In

our framework, an alternative Ai is a single data item dIDt collected by a “thing”. The

set of alternatives is all of the dIDt s collected by all “things” measuring a specific type of

measurement in a predetermined time window, such as dIDt s from all “water level sensors”

for “water level” mt in 2 hours. Next, we describe the criteria we use in MADM formulation.

Selected Criteria– Table 3 shows the criteria we use in MADM for trust computations.

We use the first two of them for computing RFT scores and the last four for RRT scores.

We explain the first two FT-related criteria here and the remaining RT-related criteria in

Section 4.2.5. Key freshness is inversely proportional to the time elapsed since the last

time a cryptographic key was established. As mentioned earlier, trust in sensed data may

be affected by several environmental factors. We select temperature among these factors

as an example criterion in the MADM formulation of RFT. The indicator is the ambient

temperature under which the data item is collected. Here, we assume that temperature is

a non-monotonic attribute, which means that its utility function does not show a regular

increase or decrease 2.

Initial Representation of the Decision Problem– In Table 4, we present IMmt, a

simplified, yet carefully selected example for a water level sensor as a data source for which

we want to compute the RFT. As shown in the table, the Ai’s are from a single IoT device

(ID=1). There may of course be more than one water level sensor collecting the water

level measure, so Table 4 and the corresponding D may include alternatives from multiple

sensors. However, a single IoT device collecting a specific measure is a special case concerning

normalization as we explain below. For this example, we suppose there are five data items

2For an ultrasonic sensor such as a water level sensor in our scenario, the measurement accuracy shows
a non-linear behavior with the temperature[2]
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Criteria Indicator Unit Type Utility type

Time of key estab-
lishment

Key freshnessa Days Quantitative Benefit

Temperature Ambient tempera-
ture of the “thing”

Fahrenheit Quantitative Non-monotonic

Time of data collec-
tion

Data freshnessa Seconds Quantitative Benefit

Measurement devia-
tion

Absolute measure-
ment deviation b

unit of mt Quantitative Cost

Link type Data reliability due
to link type

- Qualitative Benefit

Location Distance between two
nodes

Meters Quantitative Cost

a Formula respectively for key freshness and data freshness are: 1/(Tkey est + 1) and
1/(Tdata col + 1), where Tkey est and Tdata col are time elapsed since last time a cryptographic
key was established and a data item was collected, respectively.
b Formula for absolute measurement deviation is: |dt(A)− dt(B)|, mtj ∈MT .

Table 3: MADM Criteria Used in MADM-EBSL for Trust Computations

collected in five-minute intervals. The key was established a day before data is collected

(yesterday in the table) and it has been refreshed again (today in the table). The ambient

temperature of the sensor remains stable.

Construction of the Decision Matrix– We present the D corresponding to the IMmt in

Table 5. The task in this step is to transform raw data, i.e., criteria values in IMmt, into trust

indicator values in D. The difference between D and IMmt is that D has trust indicators

of the selected criteria (see Table 3) as column labels and indicator values in cells, rather

than raw data. The columns labeled as “O” are of interest to this step. They represent the

original values of attributes transformed from IMmt. To construct D, we assume that we

are looking at the data in Table 4 today at 12 pm.

Normalization of the Decision Matrix– The next step after constructing D is normal-

Alternative Time of key
establish-

ment

Time of data
collection

Temperature

ID=1 d1 Yesterday 09:05 am 75
ID=1 d2 Yesterday 09:10 am 75
ID=1 d3 Yesterday 09:15 am 75
ID=1 d4 Now 09:20 am 74
ID=1 d5 Today 09:25 am 74

Table 4: IMmt for Water Level Measure
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Alternative Key freshness Temperature RFTO N O N
ID=1 d1 0.5000 0.5000 75 0.9460 0.6115
ID=1 d2 0.5000 0.5000 75 0.9460 0.6115
ID=1 d3 0.5000 0.5000 75 0.9460 0.6115
ID=1 d4 1.0000 1.0000 74 0.9651 0.9913
ID=1 d5 1.0000 1.0000 74 0.9651 0.9913

Glob min 0 0
Glob max 1 100
LPVj - 32
UPVj - 70
O: original value (xij), N: normalized value (rij)

Table 5: Decision Matrix for RFT Score Computation

izing the values in it. The normalization method is important to get a single trust value and

depends on the utility type [163] (see Table 3). We present the normalization methods that

we use in Table 6. We first experimented with normalization methods presented in seminal

works of MADM [76, 190]. We discovered that they may lead to several issues in the trust

computation – zero denominator, zero normalized value, identical normalized value, and zero

variance. These usually occur when D includes identical values for dIDt s from a single IoT

device3. A zero denominator leads to division by zero problems. Zero variance is a similar

issue as the variance of attribute values is a denominator of the non-monotonic normaliza-

tion formula in [76, 190]. A zero normalized value would cause discarding an attribute from

MADM formulation. Identical normalized attribute values occur when the values of dIDt ’s

are identical in two different D’s regardless of the actual attribute values xij.

The zero denominator, zero normalized value, and identical normalized value are related

to linear normalization of monotonic attributes. To address them, we propose to adjust one

of the linear normalization formulae proposed in [76, 190] with the global maximum and

global minimum values for an attribute. The zero variance issue is related to the normal-

ization of non-monotonic attributes. We address this by proposing a new normalization

formula in Table 6 that adjusts the non-monotonic normalization formula in [76, 190]. The

non-monotonic normalization formula in [76, 190] considers a single most favorable value for

an attribute. We argue that using a preferred interval is a better choice as attributes may

3For a detailed explanation of how each issue is relevant to which normalization method and for sample
scenarios that they occur, please refer to: https://github.com/nbaltaci/trust-framework-for-IoT
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Utility Type Attribute type Normalization formula a, b

Monotonic Benefit rij =
xij

x∗
j

x∗j = glob max(xj)

Cost rij = 1− xij

x∗
j

x∗j = glob max(xj)

Non-monotonic Benefit
rij = e(−2z2)

z =
LPVj−xij

LPVj−glob min(xj)
; xij < LPVj

Cost z =
xij−UPVj

glob max(xj)−UPVj
; xij > UPVj

Preferred values z = 0; LPVj ≤ xij ≤ UPVj
aglob max(xj), glob min(xj) : Functions returning predefined global maximum
and global minimum values of the jth attribute
bLPVj, UPVj : Lower and upper preference values of the preference interval PI of
the jth attribute

Table 6: Normalization Methods Used to Normalize Criteria

not always be represented by a single most favorable value. For example, the ambient tem-

perature attribute may have a preferred interval for a water level sensor where the accuracy

is best for sensed data. We can consider the compensated temperature range (see [14]) of a

water level sensor as the preferred interval for the temperature attribute. We represent the

preferred interval of attribute j as PIj = [LPVj, UPVj], where LPVj and UPVj are lower

and upper preference value of PIj, respectively. We treat attribute values less than LPVj as

benefit attributes and attribute values greater than UPVj as cost attributes (like the utility

types in Table 3). Attribute values within PIj are taken as the most favorable value and

their normalized value is 1. This means that a non-monotonic attribute value yields the

highest utility within PIj. Its utility decreases as it moves away from PIj.

For this example, we apply our normalization methods on the original values of D given

in Table 5 and present normalized values in the same table under columns labeled with

“N”. We note the global maximum, global minimum, and preference values that we use for

normalization in the table. We set PIj = [32, 70] for temperature attribute, which is an

acceptable range according to [60, 51].

4.2.4.2 Weight Elicitation and Overall Score Calculation

As noted in Section 4.1.1, we use SAW to calculate the overall trust score of each item for

our scenario. Weights assigned to attributes reflect their relative importance and are used

to calculate the overall score for alternatives in D. Identifying the weights is known as the
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weight elicitation process. There are two ways to obtain attribute weights: recruiting human

decision-makers who can assign a weight for each attribute or using a weight approximation

method. A weight approximation method uses a ranked list of the attributes based on

their relative importance and finds the surrogate weights, which are expected to be close

to the “true” weights to be assigned by decision-makers [149]. In this paper, we adopt a

weight approximation approach. There are three widely used methods, which are Rank

Order Centroid (ROC), Rank Sum (RS), and Rank Reciprocal (RR) [174]. We use ROC

in our trust computations as it has been shown to be superior to other methods (in terms

of deviation from actual weights assigned by real decision-makers) [149]. The formula for

calculating a ROC weight of an attribute Xj is: wj = 1/n
∑n

k=Rj
1/k, where n and Rj are

the total number of attributes and the rank of Xj (the rank of an attribute indicates its

importance), respectively4.

4.2.4.3 Converting Trust Scores into Opinion Triplets

We next convert the scores (RFT (dIDt )) obtained from MADM into opinion triplets that

reflect FT (ωID
P,RFt

). This is performed in two steps. First, for each IoT device, we convert

trust scores into distrust scores and compute a distrust interval (DIID). Next, we convert

DIID into ωID
P,RFt

. We adopt methods presented in [191] for these conversions. In [191], local

distrust values of a data report is converted into a distrust interval. Similarly, we convert

real-time functional distrust scores (RFD(dIDt )) into a DIID = [LDB,UDB], where LDB

and UDB respectively correspond to a lower distrust bound and upper distrust bound and

RFD(dIDt ) = 1−RFT (dIDt ). Then, computations are performed as follows:

LDB = max{0, RFD(dIDt )− SDRFD(dIDt )/2} (5)

UDB = min{1, RFD(dIDt ) + SDRFD(dIDt )/2} (6)

4We compute weights by applying all the three methods and present them in supplemental material:
https://github.com/nbaltaci/trust-framework-for-IoT
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where RFD(dIDt ) and SDRFD(dIDt ) represent the mean and the standard deviation of distrust

scores, respectively. Next, we compute an opinion triplet from DIID as follows:

ωID
P,RFt

= (1− LDB + UDB

2
− UDB − LDB

2
,

LDB + UDB

2
,
UDB − LDB

2
)

(7)

Note that the proposed method in [191] converts a distrust interval into an opinion

triplet for data reliability. Similarly here, we convert a distrust interval into an opinion

that reflects the RFT of an IoT device (ωID
P,RFt

). Using RFT scores in Table 5 and (5)

and (6), we compute DIID = [0.1326, 0.3406]. For this DIID value, we obtain ωID
P,RFt

=

(0.6594, 0.2366, 0.1040) using (7).

4.2.4.4 Historic Reputation of an IoT Device

We combine the RFT of an IoT device with its HFT to take into account the history of

a device (ωID
P,HFt

) in OT computation. This is performed over opinion triplets that repre-

sent RFT (ωID
P,RFt

) and HFT (ωID
P,HFt−1

). ωID
P,HFt−1

is a cumulative value of opinion triplets

generated from DIs of a device at different time points in the past. We use the EWMA

method to combine RFT and HFT. This leads to a case where weights of observations de-

crease exponentially from the recent observations to earlier ones. As a result, recent trust

values have more impact on ωID
P,HFt

. Also, as presented in Algorithm 1, reputation is com-

puted by using the equation below, where α ∈ [0, 1]. Note that ωID
P,HFt=0

= 0, so for t = 1,

ωID
P,HFt=1

= ωID
P,RFt=1

.

ωID
P,HFt

= αωID
P,RFt

+ (1− α)ωID
P,HFt−1

(8)

We can tune α to weigh historical values differently.

4.2.5 Referral Trust

In this section, we explain how we obtain RT (ωA
B,HRt

), as labels on the edges of the

TN . Like the RFT scores, we compute RRT scores using MADM with the same steps. We
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Measurement
deviation

Link type Location Data freshness

IM O N IM O N IM O N IM Oa N
Alternative PD a DD a TE a RRT

ID=B d1 0.000 0.000 1.00 BT Avg 0.556 (x,y) 100 0.8 33.33 881 914.33 0.0011 0.0011 0.7879
ID=B d2 0.000 0.000 1.00 BT Avg 0.556 (x,y) 100 0.8 33.33 709 742.33 0.0013 0.0013 0.7879
ID=B d3 0.002 0.002 0.96 WiFi Low 0.333 (x,y) 100 0.8 33.33 218 251.33 0.0040 0.0040 0.7069
ID=B d4 0.002 0.002 0.96 WiFi Low 0.333 (x,y) 100 0.8 33.33 54 87.33 0.0113 0.0113 0.7069
ID=B d5 0.002 0.002 0.96 WiFi Low 0.333 (x,y) 100 0.8 33.33 796 829.33 0.0012 0.0012 0.7069
Glob min 0 1 0 0
Glob max 0.05 9 500 1
IM:value in IMAB, O: value in decision matrix (xij), N: normalized value (rij)
PD: propagation delay, DD: data delay, TE: time elapsed since the data item was sent
a In units of 10−8s , b In units of 108s−1

Table 7: Decision Matrix for RT Computation

convert RRT scores into DI, obtain opinion triplets from DI, and use historical values with

EWMA. We do not delve into details of these steps again here, but explain points specific

to RRT and present the results of those steps below.

First, the initial matrix IM is constructed for a pair of “things”, e.g., thing A and thing

B, for RRT computation in the cloud server. An edge in a TN is directed between one-hop

neighbor nodes from a source node to a destination node (see Figure 4). We assume that

thing A is the source and the trust it has on thing B is to be computed, so we represent

the matrix as IMAB. We show the initial representation in Table 7 under the columns

labeled as “IM”. We include measurement deviation, link type, location, and data freshness

as criteria (see Table 3) in the MADM formulation of RRT. Here, measurement deviation

corresponds to the deviation between the values of data items reported by two nodes for a

specific mt and a time interval t. If two nodes do not report data items with the same mt,

then the deviation is set to zero. In our sample scenario, we consider that thing A and thing

B both report water level measurements. Hence, the measurement deviation refers to the

deviation in water level reported by the two “things” with a measurement unit of meters.

In the example given in Table 7, measurement deviation changes from 0 to 0.0020 meters

after two data exchanges. The location criterion corresponds to the geographical coordinates

of an IoT device. In Table 7, we arbitrarily represent the location of thing B as (x,y) and

assume no change in it. Link type refers to the communication protocol that can be used to

send data between devices in the IoT network. It covers all types of links among devices,
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Link type Typical Data Reliability Attribute
Coverage due to Link Type value

Zigbee 10-1000 m Very low 1
WiFi 30-250 m Low 3

Bluetooth 1-100 m Average 5
RFID 10 m High 7
NFC 10 cm Very High 9

Table 8: Link Types

between a pair of IoT devices, IoT device and a gateway or a gateway and a cloud server.

The most commonly used communication protocols in IoT are presented in Table 8 (such

as in a flood early warning system [2] or for device pairing in general [46]). We use the list

in Table 8 as a set of possible values for link type criterion in our RRT computations. Data

freshness is the recency of the data sent by an IoT device. The data freshness is a benefit

attribute, since we trust information when data is more recent/fresh and trust decreases as

data become outdated. It is inversely proportional to the time elapsed after a data item has

been collected by a device and until it reaches a destination point. The elapsed time is the

sum of propagation, processing, transmission delay, etc.5

Second, we construct D from IMAB. We show the values of D in Table 7 under the

column labeled as “O”. D is constructed by converting the raw data of IM using the

indicators of attributes presented in Table 3. The measurement deviation attribute in D is

|dBt − dAt |. For the location6 criterion, we use the distance between the IoT nodes. Even

when the distance between two nodes does not change, it is still a distinguishing factor for

RT computation. The link type criterion is represented by a qualitative indicator: data

reliability due to the link type as seen in Table 3. We assume that this indicator is an ordinal

variable and takes fuzzy values in Table 8: very high, high, average, low, and very low. This

criterion reflects how reliable the link is in carrying the data. To convert the link type to

data reliability due to link type, we assume that data reliability is affected by the typical

coverage of a link. For example, in Table 8, NFC has the shortest range so it has very high

5The propagation delay is the time for the data to travel from a device to another device, so it is
distance/propagation speed. For our example, propagation delay is 33.3333 × 10−8s as the propagation
speed for wireless communication is 3× 108m/s.

6We note that it is unlikely that the location of a sensor will change unless it is embedded in a mobile
device.
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reliability. For data freshness criterion, we use a quantitative indicator that is the inverse

proportion of the elapsed time, as we explained earlier. It should be emphasized that other

factors can be used or included in RT calculations in a similar manner.

Third, we need to normalize D. We present the normalized values in Table 7 under

the column “N”. As seen in Table 3, measurement deviation, distance, and data freshness

are monotonic quantitative attributes. Hence, these attributes are normalized by using the

formula presented in Table 6. On the other hand, the link type attribute has a qualitative

indicator. We map the values of a qualitative indicator to numerical values using a 10-

point Bipolar scale [76]. Since data reliability due to link type is a benefit attribute as seen

in Table 3, we map the value of very high to a numerical value of 9. Table 8 shows the

mapping of remaining values for all link types under the column Attribute value. Then,

we normalize attribute values using the linear normalization formula for monotonic benefit

attributes in Table 6. Note that we present the global maximum and minimum values used

in normalization formulae at the bottom of Table 7.

Finally, we use SAW to obtain overall trust scores. Like the FT computation, we compute

approximated weights by using the ROC method. Overall scores are presented in Table 7,

under the column “RRT”. In weight computation, we assume the attributes are ranked from

the left to the right in Table 7 concerning the order of importance in decision making. At the

next step, we apply (5) and (6) on these scores and obtain DI = [0.2385, 0.2829]. We obtain

an opinion triplet ωA
B,RRt

= (0.7171, 0.2607, 0.0222) from the DI by applying (7). Finally,

we combine ωA
B,RRt

with ωA
B,HRt−1

using the EWMA method to obtain ωA
B,HRt

. In the next

section, we explain how to combine opinions ωA
B,HFt

and ωA
B,HRt

to compute OTdest.

4.2.6 Overall Trust Opinion

As we explain in Section 4.2.3, the last step of trust computation for finding OTdest is

traversing through the trust chains (tc’s) between ns and nd in a TN . The trust opinion of

a chain (Ttc) is updated as each node along the chain is visited. This update operation is

performed using the discounting operator (4) of EBSL – see Equation (4) in Section 4.1.3.

After the visit of each tc is completed, OTdest is updated with the recently computed Ttc.

91



This update operation is performed using the consensus operator (⊕) of SL – see Equation

(2) in Section 4.1.2. In our framework, we replace x and y in (2) and (4) with relevant

opinion triplets in a TN of “things”. For example, we replace x with ωA
B,HRt

and y with

ωB
P,HFt

for applying 4 on the sample TN in Figure 4. In the supplemental material4, we

present sample trust computations using a sample trust network.

4.3 Evaluation

In this section, we first examine how MADM attributes affect trust scores. Next, we

validate our proposed trust computation method using real data.

4.3.1 Effect of Attribute Values on Trust Scores

We assume that there are 20 data items measured by a “thing” and synthetically generate

attribute values for each. We change the value of “attribute of interest” while keeping

other attributes constant at their most favorable values. These are global maximum, global

minimum, and preference interval values in Table 5 and 7, respectively for a benefit, cost,

and non-monotonic attribute. We assume the importance of the attributes is as per their

order in Table 5 and 7. We use the normalization methods in Table 6 and use ROC weights

to compute RFT and RRT scores.

Figure 7 shows the effect of change in individual MADM attributes on RFT and RRT

scores for key freshness, data freshness, link type, and temperature. Key and data freshness

attributes fall as (1/time elapsed) – the computed scores show a rapid decrease when the

elapsed time increases. RFT scores for the link type attribute is a step-wise function. The

reason is that we keep the link type constant for each group of 4 data items and then change

it for the next block of 4 data items. The preference interval for temperature impacts the

RFT scores in Figure 7b. In this figure, PI1 = [32, 70] and PI2 = [45, 55]. A narrower

PI has a smaller plateau – a shorter range for preferred temperature values that yield the

highest RFT score.
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Figure 7: Effect of changing MADM attributes on trust scores. Effect of: (a) key freshness (b)
temperature preference interval (c) link type (d) data freshness

4.3.2 Validation of the Proposed Method

We conducted two sets of experiments using synthetic data sampled from real datasets

to validate our trust computation framework. Below, we present datasets we use in the

evaluation, the method of evaluation, and the results we obtain.

4.3.2.1 Dataset and simulation setup

We use two different datasets in our experiments. The first, by Dataport [141], contains

weather data collected from 3 cities in Texas, the USA from June 2012 to November 2012.

We assume that these data represent weather-related data collected and reported by IoT

nodes and call it a local sensor dataset. The second dataset is provided by the National
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Centers for Environmental Information (NCEI) [130], which contains local climatological

data for different cities. We assume that NCEI is an authority such that their reported data

can be used as a coarse-grained check of the reliability of the data collected by IoT nodes and

call it the authority dataset. We match the authority data to the local sensor data reported

within the same time frame. We consider temperature as the measurement type mt of the

measurement reported by sensors.

We assume an IoT network with nodes distributed according to a Poisson point process

in a rectangular area of 10000 m2. The Poisson distribution has parameter λ = 0.001

(intensity)7; hence, there are 16 nodes in the network. We consider Dijkstra’s shortest path

algorithm [39] for routing. We generated 300 data items for each node (explained below). We

randomly selected 10% of nodes to be faulty (corresponds to 2 nodes in our random network)

– they report incorrect observations (temperature values) during the entire simulation. We

also consider possible benign nodes being compromised modeled as follows. A randomly

selected node is assumed to be compromised after the first 200 observations. The last 100

observations are drawn from a distribution that has a different mean (smaller mean value in

the simulation) compared to the mean value of the benign observations.

To apply MADM for FT computation, we used the attributes discussed in Section 4.2.4,

i.e. key freshness and temperature in that order of importance. We generated key freshness

values randomly between 0 and 1. For the temperature attribute, we used statistical dis-

tributions fitting best to the real temperature values in the local sensor and the authority

datasets. Using the parameters of fitted distributions, we generated temperature values as

measurements by each local sensor and the authority. The attributes we use to apply MADM

for RT computation are the same as the attributes we discussed in Section 4.2.5, i.e., mea-

surement deviation, distance, link type, and data freshness. Note, measurement deviation

corresponds to the absolute difference of the temperature value measured by two sensors.

We use the Euclidean distance between nodes. The link type attribute was decided based

on the distance7. For data freshness, we computed propagation time between each pair of

nodes based on their distance as explained earlier and added random delay values from a

7This value is obtained by experimenting with different values, the goal being able to have different types
of links between sensors (nodes within a distance less than 10 cm are connected by NFC and more than 46
meters are connected by Zigbee.
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Gaussian distribution N(5, 1) (sec) to model possible processing delays. We computed data

freshness as the inverse of the sum of the delays.

4.3.2.2 Evaluation Method

For the first set of experiments, we set each node as a destination node in the random

TN we generated and compute trust scores and opinions for each. To do so, we implemented

the steps presented in Algorithm 1. We set initial ωID
P,RFt−1

= (0, 0, 1), ωA
B,HRt−1

= (0, 0, 1),

and α = 0.5. We compute distrust scores for each of 300 data items by applying MADM for

both FT and RT. Then, we assign a DI to each row in the dataset that takes into account

distrust scores starting from the first row until the row of interest. We then convert the DI

for each row into a real-time trust opinion (both for FT and RT) and combine the real-time

opinion with historical opinions. We obtain a series of RFT scores, RFT and HFT opinions,

RRT and HRT opinions for each node in the TN .

For the second set of experiments, we use a randomly selected destination node in the

TN and compute trust scores and opinions for this destination node. In these experiments,

we compare trust values generated by our approach for the destination node to the trust that

the cloud generates from the authority data. We use Algorithm 1 to compute trust scores

and opinions for the destination node. To find the trust based on authority data, we use a

measure that is the absolute difference of the temperature values reported by the destination

node and the authority for the same time instances (we recall that these temperature values

were generated for nodes and the authority based on the best-fit distributions to the real

data for the same time interval – so they will be different). We normalize this measure and

use it as a real-time distrust score for each reported temperature value by the destination

node. The remaining steps are the same as explained above, i.e., converting scores into a DI,

then from DI’s into real-time and historical opinions. In the following sections, I present

the results of our experiments.
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4.3.2.3 Effect of Reported Temperature on Trust Scores and Opinions

Recall that one of the nodes was randomly selected to model node compromise. Here,

node 1 in Figure 8 is a compromised node. It reports temperature values sampled from the

best-fit distribution until node compromise (200th data item) and then temperature values

from a distribution that has significantly lower mean temperature after node compromise; we

gradually decrease the mean temperature, with the lowest being 60 less than the “honest”

mean. Nodes 3 and 7 in Figure 8 are assumed to be faulty from the beginning of the

simulation.

We computed RFT/RRT scores, RFT/HFT and RRT/HRT opinion triplets for each node

by keeping all attributes constant at their best normalized values except for the reported

temperature. In other words, key freshness (FT attribute), distance, link type, data freshness

(RT attributes) were set to 1. Note that the measurement deviation (RT attribute) was

random as it is computed as the difference in reported temperature values between each

pair of nodes. We then took two snapshots of the network and visualize RFT scores and OT

opinions for every node: one network snapshot before the node compromise (200th data item)

and one snapshot afterward (250th data item). Figure 8 shows the two network snapshots

for RFT scores and OT opinions. The table in the figure shows the RFT scores, HRT and

OT opinion values of nodes 1 and 7 for the 200 and 250 data items. As shown in Figures 8a

and 8b, node 1 has a lower RFT score after being compromised and is marked by red. Node

7 also has a lower RFT score for data item=250 whereas node 3 has the same RFT score

in both snapshots. The reason for these two faulty nodes to have different patterns in RFT

scores is that their reported temperature values show some fluctuations around a mean value

and do not necessarily decrease/increase constantly. Recall that the ambient temperature

impacts the measurement accuracy, which is reflected in the functional trust. Here, node 7

has a lower normalized value w.r.t. temperature in the second snapshot, so its RFT score

decreases whereas node 3 has the same normalized temperature value, so its RFT score stays

the same. The same observation applies to the other healthy nodes, i.e., some of them have

higher and some have lower RFT scores depending on the ambient temperature.

Figures 8c and 8d show the overall trust (OT) beliefs in the two snapshots. As expected,
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Figure 8: Effect of temperature values on trust scores and opinions. Network snapshots showing:
(a) FT scores before node compromise (b) FT scores after node compromise (c) OT beliefs before
node compromise (d) OT beliefs after node compromise

there is a decrease in OT (belief) for the compromised node, node 1. Note that faulty nodes

(3 and 7) have lower OT beliefs in Figure 8d as they continue to report false data. It should

be emphasized that neighboring nodes are affected if one of their neighbors is faulty or

compromised, as the referral trust will also be impacted (in this evaluation, this is reflected

in the measure deviation attribute). We note this in the slight decrease in the benign nodes’

belief in the second snapshot (Figure 8d).
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Figure 9: Comparison of our trust computation method to an authority data-based method: (a)
beliefs (b) components of historical opinions for the destination node.

4.3.2.4 Comparing Proposed Solution to Authority Data Approach

In these experiments, we compare the trust computation with a baseline method that

computes trust scores and opinions using the authority dataset as explained in Section 4.3.2.2.

Note that the authority data-based approach only uses a single attribute, which is the mea-

surement deviation, whereas our proposed method considers multiple attributes discussed

earlier. We randomly select a destination node and model node compromise for this desti-

nation node as in the previous experiment.

We compare overall trust opinion for the destination node generated by our trust compu-

tation method to the opinion based on authority data in Figure 9a. In this experiment, we

keep all FT and RT attributes fixed at their maximum value except temperature and mea-

surement deviation attributes. We focus on belief components in opinions. OT-b refers to

the belief component of OT opinion obtained by applying our trust computation. AuthRFT-

b and AuthHFT-b are the belief components of the opinion for functional trust, generated by

considering the authority data. Our method has an immediate and dramatic decrease in its

OT belief on the destination node after node compromise whereas with only the authority

data, this happens, but with a smaller decrease. It is also observed that historical belief

values align with the real-time belief values after a short period. In Figure 9b we present a

more detailed comparison. Here we compare our method to the authority data-based method
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concerning all components of historical opinions. All FT and RT attributes are fixed except

temperature and measurement deviation attributes. We observe that our method has a de-

creasing HRT belief for the destination node as does the authority data-based approach. We

also see that decrease in HFT belief is not as apparent as the decrease in HRT belief. This is

because pairwise measurement deviation between the destination node and all other nodes

in the TN magnifies the effect of node compromise in RT compared to FT.

4.4 Summary and Discussion

In this chapter, we propose an automated trust computation framework for IoT. We

present a method for computing nodes’ trust, which is based on EBSL and MADM. Our

approach combines FT and RT components within a trust network (TN) taking into account

uncertainty in trust evaluations. A significant contribution of our framework is that we

provide a method to quantify trust scores and convert them into opinions to be used in a

TN. The trust scores can account for multiple contextual and technical attributes affecting

both FT and RT using the MADM approach. We validate the proposed trust evaluation

mechanism using sampling from real data. The results show that the trust framework can

effectively capture nodes’ behavior and limitations, where faulty and compromised nodes

can be identified. It is also observed that the trust of nodes would be impacted by their

neighbors in the network.

We note that the attributes we include in MADM are design decisions that can change

depending on the system and/or application. Thus, the investigation of additional attributes

in MADM formulation for trust computation in application-specific IoT networks could be a

candidate future research direction. Yet, our proposed approach can be taken as a guideline

example as it addresses various attribute types. Finally, we used temperature data in our

experiments, which is one of the data in the dataset we obtained. There were other weather-

related data, such as humidity, wind, etc. There was no specific reason to choose temperature.

It can be replaced with any other phenomenon measured by nodes.
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5.0 Trust Transfer in IoT: Network Connectivity and Trust Problem Size

5.1 Motivation and Background

In social sciences trust literature, trust transfer is described as building trust impressions

based on the information provided by third parties instead of relying on own prior experience

with a trustee [147]. In network science, trust transfer, a.k.a trust transitivity [65, 61, 6], is

described such that if a node u trusts node v, which trusts node w, then node u may trust

node w indirectly without having to have direct prior experience. Trust prediction solutions

for networks may rely on the trust transitivity concept such that trust is propagated on paths

(a sequence of nodes linked together) in a network and aggregated from multiple paths [6].

Chapters 2 and 3 present more detailed information about trust transitivity.

Trust transitivity is essential for trust assessments because, in the absence of direct

experience with a trustee, a trustor can utilize experience from other parties [145]. Networks

with less connectivity may confront the inaccurate trust prediction issue as trust will not be

transferred due to missing node connections. Despite its significance, trust transfer in sparse

networks is an under-researched problem [3]. For this research task, I explore how network

connectivity and trust problem size affect trust scores in a transitive trust computation

framework for IoT, which is our previously proposed MADM-EBSL framework [5].

In the following, I first elaborate on network connectivity and trust problem size concepts.

Next, I discuss attack types that apply to the MADM-EBSL trust computation framework.

Following this, I present an experimental evaluation of MADM-EBSL concerning network

connectivity and trust problem size. Finally, I summarize the contributions of the research.

5.1.1 Network Connectivity and Trust Problem Size

I have discussed network sparsity earlier in Section 2.3 of Chapter 2. For the completeness

of explanation here, network connectivity is about how dense the links among nodes in a

network are. Trust may not emerge, or trust computations may not be as accurate in sparse
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networks as in highly connected networks. For instance, Wu and Li [188] observed that

trust prediction accuracy drops in sparse multi-domain RFID networks. Thus, it is still

an open question for further investigation in IoT trust management. Trust problem size

has been defined in social sciences literature for the relationships among humans and other

entities [3]. Specifically, in experimental economics [48], trust problem size is explained as the

probability of a trustee being opportunistic, i.e., abusing trust. More precisely, if there is a

high probability of a trustee being opportunistic, it is a large trust problem size. An example

of a large trust problem size could be asking for a loan to do business in an industry with

unreliable entrepreneurs [48]. Conversely, if the probability of a trustee being opportunistic

is low, i.e., the probability of a trustee honoring trust is high (a friendly trustee), it will be a

small trust problem size. An example of a small trust problem size could be selling ordinary

consumer products in a brick and mortar market [47].

To the best of my knowledge, trust problem size has not been discussed in IoT trust

research literature. For this research task, I consider an analogy between trust problem size

definition in social sciences and a possible definition for IoT environments. I argue that the

ratio of malicious nodes in a network and attack model/attack type are the factors that affect

trust problem size in IoT environments. Conducting experiments with the ratio of malicious

nodes as an experimental parameter is also encouraged by the existing work ([25, 1, 188])

to evaluate the performance of a trust computation solution. Also, there is a gap in the IoT

trust literature for evaluating trust computation solutions against different attack types [1].

Hence, it is crucial to assess a trust computation solution against several applicable attacks.

5.1.2 Attack Model

I have already presented an overview of attacks on trust management systems for IoT

in Chapter 2. There, I grouped them under two categories as performance-related and

recommendation/reputation-related attacks. From these attacks, only a subset of performance-

related attacks applies to our proposed MADM-EBSL trust framework. The reason is that

our proposed solution does not employ ratings/service feedback by IoT nodes or recommen-

dation sharing among them. Thus, it provides an inherent defense against reputation-based
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trust attacks.

Among performance-related attacks, the following three apply to our proposed trust

framework: individual malicious nodes, opportunistic service attack, and on-and-off attack.

I discuss how I address these attacks in Section 4.3.2.2. The rest of the performance-related

attacks discussed in Section 2.5 of Chapter 2 do not apply to our proposed MADM-EBSL

framework, which are malicious pre-trusted nodes, whitewashing, and Sybil attacks. Ma-

licious pre-trusted nodes do not apply to the MADM-EBSL because it does not employ

pre-trusted nodes for trust computations. Also, the MADM-EBSL provides defense against

whitewashing and Sybil attacks because nodes are uniquely identified by a central trust man-

agement/measurement module in the cloud using an identifier (e.g., cryptographic keys can

be used for identification of IoT nodes and to provide defense against white-washing attacks

[1]). Trust scores of IoT nodes and their reported data are stored with their unique ID,

known to the trust module in the cloud. Thus, an IoT device cannot imitate this number

during data collection [5].

5.2 Experimental Evaluation

I conducted experiments using synthetic data sampled from real datasets to investigate

the effect of network connectivity and trust problem size on trust scores computed by the

MADM-EBSL. In the following, I describe datasets used in experiments and the evaluation

method. Finally, I discuss the results of the experimental evaluation.

5.2.1 Dataset and Simulation Setup

I use a dataset provided by Dataport [141] for experimental evaluations. It contains

weather data collected from three cities in Texas, USA, from June 2012 to November 2012.

We assume that these data represent weather-related data collected and reported by IoT

nodes. We consider temperature as the measurement type mt of measurements reported by

sensors. Similar to the simulation settings in Section 4.3.2.1 of Chapter 4, we assume an IoT
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network with nodes distributed according to a Poisson point process in a rectangular area

and the Poisson distribution parameter λ = 0.0011. Differently, the rectangular area defined

in simulations here is wider with a value of 100, 000 m2. Thus, there are 100 nodes in the

network. We, again, consider Dijkstra’s shortest path algorithm [39] for routing.

To model different network connectivity levels, I generate multiple versions of the net-

work described above. The versions differ by the number of nearest neighbors (nn), or node

degree, each node connects. In simulations, we have six different network connectivity levels

nn = 1, 3, 5, 7, 9, 10. To model different trust problem sizes, I generate multiple versions of

a network with a given connectivity level. The versions differ in terms of malicious node

percentage (mnp) and the attack type performed by malicious nodes. We have six differ-

ent levels of malicious node percentages, mnp = 10%, 30%, 50%, 70%, 90%, 100%. Also, I

investigate three different attack types I discussed earlier; individual malicious nodes, oppor-

tunistic service, and on-and-off attacks. I present a detailed explanation of how I address

these attacks and simulate the malicious behaviors related to them in Section 4.3.2.2.

Similar to the experiments in Chapter 4, I generate 300 data items for each node. To

generate data items for each node, I consider the MADM attributes mentioned earlier in

Chapter 4, i.e., key freshness and temperature as FT attributes, and measurement deviation,

distance, link type, and data freshness as RT attributes. Interested readers are referred to

Section 4.3.2.1 of Chapter 4 for details of generating attribute values (data items) for each

node. Noteworthy mentioning is the ranking of attributes in simulations in this chapter. I

rank the attribute of interest first and keep the remaining in the same order of importance

given in the lists above. For example, when I want to investigate the effect of temperature,

I rank the temperature among FT attributes and the measurement deviation among RT

attributes first (because the measurement of interest is temperature). The central trust

management module can change these based on the situation.

1This value is obtained by experimenting with different values, the goal being able to have different types
of links between sensors (nodes within a distance of less than 10 cm are connected by NFC, and more than
46 meters are connected by Zigbee).
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5.2.2 Evaluation Method

In this section, I first elaborate on the overall methodology of experimental evaluation

for the research task in this chapter. Next, I present the details about how I model node

behaviors (trust problem size configurations in experiments), i.e., benign node behaviors,

faulty node behaviors, and malicious behaviors for different attack types. Finally, I discuss

alternative options for representing/including historical trust in overall trust computations.

5.2.2.1 Overall Method

In the experiments in this chapter, I compare patterns in trust opinions generated by

our approach for a destination node in different network settings with varying network con-

nectivity and trust problem size levels. For these experiments, I randomly select a malicious

node in the TN (randomly generated network) as the destination node and compute trust

scores and opinions for this destination node. Note that the malicious destination node is

the same across each network (with different malicious node percentages and connectivity

levels). We set it fixed for allowing trust opinion comparison across networks. If we select

a different destination node for each network, we obtain unexpected patterns in results and

cannot compare their trust scores to understand the effect of nn and mnp.

I implemented the steps of Algorithm 1 to compute trust scores and opinions for the

destination node. Similar to the experiments in Chapter 4, I set the initial ωID
P,RFt−1

= (0, 0, 1),

ωA
B,HRt−1

= (0, 0, 1), and α = 0.5. Similarly, I compute distrust scores for each of the 300

data items by applying MADM for both FT and RT. Then, I assign a DI to each row (a

single data item) in the dataset. DI takes into account distrust scores starting from the

first row until the row of interest. I then convert the DI for each row into a real-time trust

opinion (both for FT and RT) and combine the real-time opinion with historical opinions. As

a result, we obtain a series of RFT scores, RFT and HFT opinions, RRT and HRT opinions

for each node in the TN .
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5.2.2.2 Trust Problem Size/Attack Model Configurations

As mentioned earlier in the chapter, trust problem size relates to malicious node percent-

age and attack model/type. I already discussed malicious node percentage settings used for

simulations. In this section, I focus on attack models and how I simulate them as malicious

behaviors. I evaluate the MADM-EBSL against the individual malicious node, opportunistic

service, and on-and-off attacks (See Section 2.5 for a discussion of the reasons for selecting

these attacks). In addition to malicious node behaviors, I simulate benign and faulty node

behaviors. Below, I discuss the details of how I simulate these node behaviors.

• Benign nodes : As benign nodes always behave honestly, i.e., report measurements cor-

rectly, I model their behavior by finding the best-fitting distribution to the real data,

and sampling values with “honest” mean from the best-fit distribution. After assigning

malicious and behavior nodes, the remaining nodes are assigned to the benign category.

• Faulty nodes : They report incorrect data during the whole simulation, i.e., values sam-

pled with a single standard deviation distance from the mean of best-fit distribution.

After assigning malicious nodes, 10% of the remaining nodes are assigned to the faulty

category.

• Individual malicious nodes : These nodes always act maliciously. In the context of our

proposed MADM-EBSL, an individual malicious node always provides poor service, i.e.,

reports measurements significantly deviating2 from the readings reported by benign nodes

during the whole simulation.

• Opportunistic service attack : In this attack, a node performs benign actions and main-

tains high trust to stay in the network longer. Then, utilizing its high trust score, it

starts demonstrating malicious behaviors. In simulations for this attack, the randomly

selected destination node starts its malicious behaviors after the 200th transaction. Af-

ter this point until the end of the simulation (the last 100 observations), the malicious

2A value drawn from a distribution with a significantly larger or smaller mean value than the mean
value of best-fitting distribution for the attribute of interest, such as temperature. More precisely, malicious
behavior is simulated as reporting measures sampled from a distribution with multitudes of σ distance from
the mean of best-fit distribution. Note that I decide whether to add or subtract multitudes of σ to/from the
mean value of the best-fitting distribution by randomly assigning a value to a binary flag variable.
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node always reports measurements significantly deviating2 from those reported by benign

nodes.

• On-and-off attack : In this attack, a node alternates its benign and malicious behaviors

in order not to be recognized by the trust management system. An on-off attack can

be of two types — patterned and —random [23]. A patterned attack consists of an

exact number of good behaviors (G) followed by an exact number of bad behaviors(B),

represented as nG−mB such as 4G− 1B [23]. A random attack does not follow such a

regular pattern. The attacking node randomly demonstrates Bs and Gs with a certain

percentage, such as 20% Bs and 80% Gs [23]. The higher the G/B ratio, the harder it

is for a trust management system to detect malicious behaviors [23]. In simulations for

this attack, I experiment with both types of on-off attacks with a 4G−1B (and 20% B−
80% G) ratio.

5.2.2.3 Trust History Configurations

We have proposed using all the historical trust records for trust computations in the

MADM-EBSL. We found that a sliding window approach yields better results during our

preliminary analysis for the research task in this chapter. Fig 10 compares trust scores (i.e.,

the belief component of overall trust opinion) produced using the whole history, no history,

and sliding window (windows size (ws) = 10 ) for opportunistic service attack. We generated

similar plots for other attacks which we investigated the effects on the MADM-EBSL. As

they lead to the same results, we only discuss the opportunistic service attack scenario

here. Fig 10 shows that the sliding window approach is favorable because the whole history

case reflects the effect of an attack on trust scores in the longer term. Also, fluctuations

in the no history case make it difficult to compare trust scores among different network

configurations. Furthermore, using the whole history of trust records may not be feasible

for some IoT applications [23], such as wireless sensor networks, that include devices with

limited storage and processing speed. As a result, we selected the ws=10 configuration for

the rest of the experiments. Again, the central trust management entity can choose variation

of these approaches depending on the situation.
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Figure 10: Comparing trust history configurations

The decision to utilize full historical data or modify the window size, whether by reducing

or increasing it, can have significant implications. Understanding when each approach may be

useful is crucial for making informed choices. For example, in scenarios involving a long off-

short on attack, opting for an instantaneous approach may yield better outcomes. However,

in other contexts where a comprehensive understanding of historical patterns is necessary,

employing the full history or adjusting the window size accordingly becomes imperative. By

considering the specific requirements of the situation at hand, trust management authorities

can make well-informed decisions regarding the appropriate utilization of historical data and

window size adjustments.

5.2.3 Results

I present the results of the experimental evaluation in Fig 11. I compare the OT belief

scores for the destination malicious node concerning varying levels of network connectivity

and trust problem size. In the sequel, I discuss findings on the effect of network connectivity
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(a)

(b)

(c)

(d)

Figure 11: Comparison of OT belief across varying network/node connectivity and malicious node
percentage levels for the following attack scenarios: (a) opportunistic service (b) individual mali-
cious node (c) on-off patterned (d) on-off random.

and trust problem size on trust scores.
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5.2.3.1 Effect of Network Connectivity on Trust Scores

The effect of network connectivity on trust scores of the malicious node is not nuanced

by only looking at a given trust problem size, i.e., attack type and mnp. To better sort out

the effect, we need to consider the network connectivity and trust problem size together. For

instance, if we look at the trust scores of a node performing an opportunistic service attack

in Fig 11a and focus on mnp = 10%, we do not observe a significant difference in trust scores

from nn = 1 across nn = 10 except for a slight shift (increase) in average trust belief. This

sounds counter-intuitive. Overall, we would expect a malicious node to have a lower trust

score if it is connected to more nodes in the network because its incorrect report of readings

will be revealed by more nodes. Yet, if we also look at trust scores for other mnp values, we

notice that higher network connectivity levels make the drop in trust scores more pronounced

after the attack starts. Thus, we can interpret these observations for the opportunistic service

attack as follows: “Larger network connectivity levels become critical to detect opportunistic

service attack for larger trust problem sizes, i.e., malicious node percentages in a network.”.

Figure 12 shows the relationship between node connectivity levels and difference in average

trust scores from a hypothetical trust level (0) for opportunistic service attack after attack

starts (after 200th data point). As seen in the figure, for mnp = 10%, the optimal node

connectivity level seems to be 1 because for larger nn values, difference increases. For

mnp = 30%, mnp = 50%, and mnp = 70%, the optimal node connectivity level seems to be

3 as seen from the knee points on the lines. For mnp = 90%, and mnp = 100%, difference in

average trust scores increases first and then starts to decrease. We may say that nn = 5 is

the optimal ode connectivity level because for larger nn values, the decrease in the difference

is not significant.

If we look at Fig 11b, we see no significant difference in average trust scores among

different network connectivity levels when mnp = %10 for an individual malicious node

that always reports incorrect readings. There is only a slight increase in trust belief (from

nn = 1 to nn = 3 only) and a decrease in the variation of trust scores. For higher mnp

values, increasing network connectivity leads to a lower average and a variance in trust scores.

Again, we can interpret these results for the individual malicious node attack similar to those
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Figure 12: Network connectivity level vs. difference in avg. trust scores from a hypothetical ground
truth value

for the opportunistic service attack. “Larger network connectivity levels become critical to

detect individual malicious node attack for larger trust problem sizes, i.e., malicious node

percentages in a network.”.

The trust scores of a node performing a patterned on-off attack in Fig 11c have patterns

similar to those in opportunistic service and individual malicious node attacks for mnp =

10%. In other words, average trust scores increase, and their variance decreases when network

connectivity increases. Yet, for higher mnp values, we do not observe any change for changing

network connectivity. Trust scores of the malicious node stay high, and including trust

opinions of more nodes does not affect this. This finding confirms the observation in the

network trust literature [23, 108, 107]; On-off attacks are challenging to detect by trust

management schemes as malicious nodes alternate their good and bad behaviors not to get

recognized.

Finally, looking at the trust scores of a node performing a random on-off attack in

Fig 11d, results are pretty much similar to those of an on-off patterned attack. The only

difference seems to be the lower variance in trust scores, especially observed more clearly for

mnp = %10.

Putting all these discussions together, we can summarize the effect of network connectiv-

ity on trust scores as follows; Network connectivity has an interaction effect on trust scores.
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More precisely, it affects trust scores differently for low and high mnp values. For higher mnp

values, increasing network connectivity leads to lower trust scores, especially for individual

malicious node and opportunistic service attacks. For smaller mnp values, increasing net-

work connectivity leads to higher and/or less varied trust scores. As a result, higher network

connectivity levels are needed for higher mnp values. Lower network connectivity can be a

better choice for smaller mnp values because nodes cannot conceal their malicious behaviors

when network connectivity is low, given the lower trust scores for lower mnp values.

5.2.3.2 Effect of Trust Problem Size on Trust Scores

Interpreting the effect of trust problem size is less challenging than the effect of the

network connectivity. The plots in Fig 11 point to the obvious finding; Networks with

a larger trust problem size lead to higher trust scores than networks with a smaller trust

problem size.

To remind, we consider that the trust problem size comprises two factors; malicious node

percentage and attack type, based on our definition earlier in the chapter. A higher malicious

node percentage means a larger trust problem size (or a more difficult trust problem for a

network). Thus, as also observed in plots in Fig 11, higher malicious node percentages

lead to higher trust scores, which means less drop in scores after/during attacks and more

concealing of malicious behaviors. On the other hand, it is nontrivial to hypothesize a

monotonic relationship between trust attack types and trust problem size. Looking at plots

in Fig 11, we see that in none of the patterned and random on-off attacks, trust scores do not

drop as much as in opportunistic service or individual malicious nodes. Thus, we can reason

that on-off attacks should be closer to the larger trust problem size. Yet, we cannot rank

individual malicious nodes and opportunistic service attacks easily. Similarly, the nuance is

not apparent between the on-off patterned and random attacks.
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5.3 Summary and Discussion

In this chapter, I explored the effect of network connectivity and trust problem size on

trust scores in our previously proposed MADM-EBSL trust computation framework for IoT.

As the MADM-EBSL is a transitive framework, the results of experiments shed light on our

initial question; How trust scores in an IoT network are affected by trust transitivity through

varying network connectivity and trust problem size? Results show that higher network

connectivity levels lead to a more apparent decrease in trust scores of a malicious node for

larger trust problem sizes (Larger trust problem sizes correspond to higher malicious node

percentages in a network and attacks more challenging to detect, such as on-off attacks.).

The results also show that a larger trust problem size leads to higher trust scores for a

malicious node.

112



6.0 An Extension to the MADM-EBSL Trust Framework for IoT Networks

In this chapter, I propose a trust computation framework for IoT by extending our pre-

viously proposed MADM-EBSL framework in [5]. The extension is based on trust concepts

we derived in our review of trust paradigm in the social sciences literature. More precisely, I

include additional attributes in MADM process for trust computations based on the factors

that may affect trust towards IoT devices and their reported measurements.

In the following, I present background on and motivation for the factors I selected among

those that affect trust in social relationships and reflected in trust computations in the ex-

tended framework. Next, I discuss the details of the extended trust computation framework.

Following this, I present experimental evaluations to compare the extended trust framework

to the MADM-EBSL framework. Finally, I summarize the contributions and discuss the

limitations of/potential future work for the research in this chapter.

6.1 Background and Motivation

For this task, I extend the MADM-EBSL framework by including additional factors

that affect trust computations in IoT networks. These factors correspond to trust-related

information that captures multiple device vendors, the social presence of IoT devices, and the

source of a replicated measurement. In this section, I present a high level overview of them

and motivation behind including them in the proposed framework. I present more details

about their incorporation into the MADM-EBSL framework and discuss some exceptional

cases in Section 6.2.3.

I argue that the device vendor could affect the trust towards a measurement reported

by an IoT device. For instance, the perception about the trustworthiness of a device vendor

within a community of an IoT network domain users/admins or the reputation of a device

vendor within the larger community could impact the trust of IoT devices manufactured by

the vendor. Previous research has also explored similar factors as attributes for computing
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trust of IoT devices, such as device type (e.g., printer, camera, air conditioner, etc.), device

manufacturer, and device model [170]. Another reason to include vendor trust may be digital

sovereignty issues [142, 175], i.e., is a device from a competitor or nation that is adversarial? I

consider including device vendor as one of the MADM attributes for computing the functional

trust of a measurement reported by an IoT device.

For the inclusion of the social presence of IoT devices as a factor in IoT trust computa-

tions, I was inspired by the Social Presence Theory (SPT) [164] that is widely explored for

trust formation in the online commerce field [3]. This is one of the implications we derived

for IoT networks from our review of trust in social sciences literature in Chapter 3. SPT

was originally proposed to assess the degree to which a computer-mediated communication

medium enables perception about personal, sensitive, and sociable human contact as a com-

munication partner, i.e., an experience for communication partners as being psychologically

present [54]. SPT was adopted to reflect the social presence of online business websites in the

e-commerce discipline. A positive association between social presence and trust towards a

website has been observed by several researchers (e.g., [88, 101]). Also, the interactivity of a

website, i.e., users being responsive and interact with each other, is the main component that

affects the social presence of an online platform [101]. As a result, a more interactive user

community of an e-commerce website would result in a higher social presence perception,

which in turn leads to higher trust by users. I propose that we may think about social pres-

ence as a factor in trust development in IoT networks. As such, the social presence/absence

of an IoT device can be measured by the level to which it is being active/inactive. Hence,

interactive devices can be rewarded with higher trust. The trust of devices that join the net-

work and stay inactive for a long time after a series of interactions can be degraded. Using

social presence as a trust attribute may also help provide defense against the white-washing

attack (see Section 2.5) as it will punish inactivity for a long period1.

The idea for including the source of a replicated measure and the success of replication

as trust attributes comes from our survey of trust in social sciences ([3]), as well. Hendriks

et al. [71] investigated if the trustworthiness of a researcher and the credibility of a study

by the researcher is affected by who replicated the original study, —replication source—,

1For details and exceptional cases, see Section 6.2.3
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and if the replication was successful or not, —replication success. They found that both

the credibility of a research study and the trustworthiness of its author(s) are higher for

successful replications, regardless of the replication source (i.e., the authors themselves or

other researchers). I argue that the replication source and replication success should be

included in a trust framework for IoT, as well.2 For IoT networks, we can consider an IoT

device and a measurement reported by it as analogous to a researcher and a scientific study,

respectively. In the IoT context, the counterpart of a replication study can be a measurement

replication that corresponds to multiple reporting of a measure, such as temperature readings

coming from the device itself or from other devices in a predefined short time window.

Replication is needed for measurements reported by IoT nodes to provide improved service

availability. Thus, the replication source in the IoT scenario will be replicating IoT devices,

i.e., the device itself or other devices. Replication success could be thought of as the deviation

of a reported measure from other reported measures within the predefined time window.

In other words, the less deviation in a reported measurement compared to measurements

reported close in time by the device itself or close in proximity by other devices, the more

successful, i.e., accurate, it is.

The reason for including replication success is obvious; to spot inaccurate/deviating mea-

surements reported by a node and decide if a node is malicious or malfunctioning. We cap-

tured the notion of replication success in our previously proposed MADM-EBSL framework

as measurement deviation attribute in referral trust computations (see Chapter 4). Thus,

the trust framework I propose in this section captures replication success because it adds to

the existing set of attributes in the MADM-EBSL. As opposed to the findings by Hendriks

et al. [71] that the replication source does not impact the trustworthiness of a researcher

or the credibility of a study, I propose the replication source may affect the credibility of

a reported measure by an IoT device. It is essential to include the source of a replicated

measurement for trust computations in IoT as there may be a single device reporting a mea-

2For IoT networks, we may think that the trustworthiness of a device and the credibility of a reported
measure are different concepts, and they may be affected by the replicating device and replication success,
similar to that the trustworthiness of a researcher and the credibility of a research study are different concepts.
Device trustworthiness and measurement credibility are different concepts because, for example, a device
may be hacked by an attacker (untrustworthy device) but still may report correct measurements (credible
measurement) for hiding its malicious behavior until an attack, i.e., opportunistic service or camouflage
attack (see Section 2.5 for attacks to trust management).
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surement type. In this case, the MADM-EBSL sets measurement deviation attribute to zero

so discards it from computations. This may lead to an increase in opportunistic service or

camouflage attacks as the framework cannot capture inconsistent service quality by nodes

that know they can report highly deviating measurements as their measurements will not

be compared to any other reference values. As a result, I propose to capture the replication

source by including measurement deviation attribute both in functional and referral trust

computations.

Finally, it is noteworthy to mention that I do not consider including node recommenda-

tions and feedback into my proposed solution, though these are widely adopted mechanisms

used in previously proposed IoT trust computation solutions. The reason is that a service

should be provided in an automated and programmable way to be delivered timely and prac-

tically [83], including trust measurement/management service in IoT. As I also discuss in

Section 2.4, when node recommendations or transaction feedback is included in a trust mea-

surement solution, it is likely that human intervention is needed. Thus, these mechanisms

could render an automated trust computation solution ineffective.

6.2 Extended IoT Trust Framework

6.2.1 Overview of the Framework

As the proposed IoT trust framework in this chapter extends our previously proposed

MADM-EBSL framework, it is based on the same system model. The overall process of

trust computations and the algorithm used for computing trust opinions are the same. The

difference between the two is the set of trust attributes used in the MADM process for

functional trust score computations.

6.2.2 MADM Problem Definition for Trust Computations

The MADM problem definition for trust computations in the extended framework is

mostly the same with that for the MADM-EBSL model, — both for FT and RT compu-
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tations. Here, I do not repeat all the details of this process. Yet to summarize, the steps

are; i)initial representation of the decision matrix (IMmt) using a select set of decision cri-

teria (for FT and RFT separately), ii) normalizing the decision matrix D, and iii) weight

elicitation and overall score calculation. As aforementioned, the difference lies in the set of

selected decision criteria (trust attributes) for FT. In the following, I shed light on the FT

attributes included in the extended framework.

6.2.3 Selected MADM Criteria for FT Computations

In the MADM-EBSL framework, we included the time of key establishment and tem-

perature as criteria in MADM definition for FT computations. We used the key freshness

and the ambient temperature of a node as indicators (a.k.a. FT attributes) to represent

these factors. In addition to these, the extended framework includes device vendor, social

presence, and replication source as the decision making criteria in the MADM process for

FT computations. Table 9 shows all the MADM criteria used in the extended framework for

trust computations.

As Table 9 shows, I propose to measure device vendor trust attribute using data reliability

due to device vendor, which is a qualitative monotonic benefit indicator, similar to link type

attribute in the MADM-EBSL (see Chapter 4 for attribute types). As it is a qualitative

monotonic attribute, we can map its non-numeric values to numeric values using a 10-point

Bipolar scale [76]. Figure 13 represents this mapping. Although it is beyond the scope of

this dissertation, using the common vulnerabilities database [32] may be possible to rank

the vendor trust.

For representing the social presence of an IoT device, we need an indicator (attribute)

that addresses a variety of node types. Note that there maybe some IoT nodes that operate

in receive-only mode or passive by their nature, such as due to resource constraints. For

these nodes, assessing their social presence using a universal interaction level would be mis-

leading. Thus, the baseline level could be set concerning the expectations from devices, such

as by referring to their specifications. I consider device-based duty-cycle as the indicator.

The concept comes from the RFID (Radio Frequency Identification) Systems. It represents
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Criteria Indicator Unit Type Utility type

Time of

key establishment

Key freshnessa Days Quantitative Benefit

Temperature Ambient

temperature

of the “thing”

Fahrenheit Quantitative Non-monotonic

Device vendor Data reliability due

to vendor

- Qualitative Benefit

Social presence Device-based duty

cycle

- Quantitative Non-monotonic

Measurement

self-deviation

Absolute

measurement

self-deviation b

unit of mt Quantitative Cost

Time of

data collection

Data freshnessa Seconds Quantitative Benefit

Measurement

deviation

Absolute

measurement

deviation c

unit of mt Quantitative Cost

Link type Data reliability due

to link type

- Qualitative Benefit

Location Distance between

two nodes

Meters Quantitative Cost

a Formula respectively for key freshness and data freshness are: 1/(Tkey est + 1) and

1/(Tdata col + 1), where Tkey est and Tdata col are time elapsed since last time a cryptographic

key was established and a data item was collected, respectively.

b Formula for absolute measurement self-deviation is: |dt(A)− dt−1(A)|, mtj ∈MT .

c Formula for absolute measurement deviation is: |dt(A)− dt(B)|, mtj ∈MT .

Table 9: Criteria Used in the Extended Framework for Trust Computations
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Figure 13: Bipolar scale for quantification of qualitative indicators

the percentage of the time a reader is transmitting a signal/emitting energy/ communicat-

ing/being “on” [82, 139]. If we generalize this concept to other protocols, we can consider

duty cycle as the proportion of the “on” time to “off” time of an IoT device. As a result

of my research for modeling duty-cycle indicator, I have found two possibilities which I call

protocol-based and device-based duty-cycle values. Protocol-based duty-cycle values corre-

spond to the worst case limits imposed by regulations/standards. Device-based duty-cycle

values come from best practices and most preferred duty-cycle limits. In my framework,

I consider device-based duty-cycle because regulations are not always imposed on duty cy-

cle values. It is challenging to use a preset value/interval for duty cycle based on protocol

requirements. There are countries or communication protocols which do not have any reg-

ulation/limitation on duty cycle. So, manufacturers identify limits based on the need of

device/applications. Also, for many cases, it not uncommon to let the developers/deployer-

s/admins to set the desired duty cycle limits. Following best practices/ the most commonly

used duty cycle limits is another option to keep up with regulations and for energy saving

purposes. For example in [4], 1% is mentioned as the most preferred value of the maximum

duty cycle for Lorawan in different regions. I also argue that neither extremely low nor high

interactivity/social presence is desired for a trustworthy IoT device, as both could signal

malicious or faulty behaviors. Thus, this attribute can be considered as a non-monotonic

attribute that is used for functional trust computations utilizing the MADM (see Chapter

4 for attribute types). In simulations for this research, I consider a water level sensor by
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following the sample scenario in our MADM-EBSL paper [5]. Based on a sample water level

sensor specification [161], I set the LPV = 65% and UPV = 85%3

I propose to represent replication source factor by including measurement deviation at-

tribute both in functional and referral trust computations. That is, the measurement devi-

ation attribute in the functional trust score (herein measurement self-deviation) will reflect

the replicated measurements by a node itself, i.e., how close measurements are reported by

an IoT node within a short time interval. The measurement deviation attribute in the refer-

ral trust score will reflect the replicated measurements by neighboring nodes, i.e., how close

measurements are reported by neighboring nodes of an IoT node within a short time interval.

As is the case for the measurement deviation attribute of referral trust in the MADM-EBSL,

measurement self-deviation attribute of functional trust is a quantitative cost attribute (see

Chapter 4 for attribute types).

6.3 Experimental Evaluation

Experimental evaluation for this research task aims at investigating the effect of including

additional trust attributes into the MADM-EBSL framework. For this purpose, I used

synthetic data sampled from real datasets and compared trust opinions computed by the

MADM-EBSL framework to those computed by the extended framework. Next, I describe

datasets used in experiments and the evaluation method. Finally, I present the evaluation

results.

6.3.1 Dataset and Simulation Setup

In this experimental evaluation, I utilize the same dataset and similar setup I do with

MADM-EBSL in chapters 4 and 5. Readers interested in the details can refer to Section

4.3.2.1 in Chapter 4 and Section 5.2.1 in Chapter 5. To recap, the dataset [141] includes

weather data collected in USA 2012. Nodes are assumed to report temperature as the

3because according to the specification, duty cycle of the water level sensor in water is 75%± 10%.
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measurement type. They are distributed in a rectangular area through Poisson point process

with λ = 0.001 yielding 22 nodes. Similar to the experiments in Chapter 5, I generate

multiple versions of the same network, which have different levels of network connectivity

(nn) and malicious node percentage (mnp).

I followed a similar approach for generating 300 data items for each node. To generate

these data, I consider the MADM attributes mentioned earlier in Chapter 4 and additional

attributes discussed in this chapter. Thus, FT attributes include key freshness, temperature,

data reliability due to vendor, device-based duty cycle, and measurement self-deviation. RT

attributes comprise measurement deviation, distance, link type, and data freshness. Inter-

ested readers are referred to Section 4.3.2.1 of Chapter 4 for details of generating values for

attributes in the original MADM-EBSL. I generated data reliability due to vendor values

randomly using Uniform distribution U(1, 9)4. I draw random values from a Gaussian distri-

bution N(75, 10) to model duty cycle (remember the best practice value explained in Section

6.2.3. For measurement self-deviation, I used the generated node temperature values. I cal-

culated measurement self-deviation values by the absolute difference of temperature values

in two consecutive observations.

Also I investigate three different attack types as in Chapter 5; individual malicious nodes,

opportunistic service, and on-and-off attacks. I consider these attacks for modeling malicious

behaviors as well as benign and faulty node behaviors and generating node reported data

(see Section 4.3.2.2 for details).

6.3.2 Evaluation Method

In the experiments in this chapter, I compare patterns in trust opinions generated by

MADM-EBSL for a destination node to those generated by the extended framework with

additional trust attributes. Similar to experiments in Chapter 5, I randomly select a ma-

licious node in a TN (randomly generated network) as the destination node and compute

trust scores and opinions for this destination node. I implemented the steps of Algorithm

1 to compute trust scores and opinions for the destination node. Likewise as in Chapter 5,

4We do not specifically assign a vendor to a node, or assign such vendors a reliability or trust.
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comparisons are made for different network settings with varying network connectivity and

trust problem size levels. The malicious destination node is the same across each network

sample. Noteworthy mentioning is trust history configurations used in evaluations. As I

found that a sliding window approach is superior to approach that considers the whole trust

history in Chapter 5, I followed the same method for trust computations here.

6.3.3 Results

In this section, I discuss the findings of experimental evaluation. I compare trust opin-

ions generated by the MADM-EBSL framework to the ones by the extended framework to

figure out how including additional trust attributes affect trust opinions. There are two

comparisons discussed in the sequel; OT and HFT belief scores. All comparisons for the

destination malicious node are made concerning varying levels of network connectivity and

trust problem size. In the sequel, I discuss findings on the effect of adding trust attributes

on trust scores.

6.3.3.1 Effect of Additional Trust Attributes on Overall Trust

I have explored several cases for investigating the effect of including additional trust

attributes in the MADM-EBSL on the overall trust. Specifically, I compared the MADM-

EBSL (herein base model) to the extended model where i) only temperature (FT attribute)

and measurement deviation (RT attribute) are random and all other RT attributes and

additional FT attributes are fixed at their max value, ii) temperature and newly added

FT attributes are all random and RT attributes are fixed at their max value except the

measurement deviation, iii) the same configuration with ii, but the ranking of the FT

attributes (so, attribute weights) changes5. All three cases yielded very similar results, so I

only report the results of the first case.

Fig 14 display the overall trust belief scores for the base and extended model for nn ∈
{1, 10} and varying mnp levels. For better readability purposes, I only presented results for

5Thus, the attribute of interest (and the one which is ranked first among other FT attributes) is not only
temperature, but I also changed rankings such that one of the newly added FT attributes is ranked first in
each case
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Figure 14: Overall trust belief scores for a malicious node performing opportunistic service attack
when nn ∈ {1, 10} and varying mnp levels computed by base (top) and extended (bottom) models

two nn levels for only the opportunistic service attack. The results for all node connectivity

levels nn ∈ {1, 3, 5, 7, 9, 10} are shown together for all attack types in Appendix B in Figs

??, ??, ??, and ??. The figures show that there is no significant difference in overall trust

belief scores between the base and the extended model for none of the nn and mnp levels,

and attack types. As scores look almost the same between the base and extended model, I

wanted to take a deeper look at them by visualizing these in a different format as in Fig 156

6The results plotted in this figure are generated by the case where only temperature (FT attribute)
and measurement deviation (RT attribute) are kept random, and all other FT and RT attributes are fixed
at their max value, including the additional FT attributes in the extended model. In these computations,
temperature and measurement deviation are ranked first, so they have the highest importance and the weight
in MADM computations.
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Figure 15: Overall trust belief score comparison between the base and the extended model for
individual malicious node attack and select nn and mnp levels

I randomly picked the individual malicious node attack as a case here because the results

were very similar for other attack types, as well. As observed in the figure, overall trust

belief scores generated by the baseline and the extended model are not exactly same, but

there is a slight difference between the two. This signaled a clue that additional attributes

in deed may have a greater impact, but are just shaded when FT is molded into the overall

trust with RT. This led the additional analysis of FT scores in the next section.

6.3.3.2 Effect of Additional Trust Attributes on Functional Trust

In this section, I present the results of simulations for investigating the effect of additional

trust attributes on HFT belief scores concerning the three cases I described in Section 6.3.3.1.

Fig 16 shows the case number i). There are two common patterns observed for different

attack types;

• Including additional trust attributes with fixed max values in functional trust component

leads to a reduce in the variance of FT scores.

• Including additional trust attributes with fixed max values in functional trust component

leads to an increase on FT scores on average.

The leftmost column in Fig 17 displays the results for the case number ii). The same

patterns above apply to the FT scores here; reduced variance and increased average of FT

trust scores obtained as a result of additional attributes in the FT component, which are
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Figure 16: Historical functional trust belief comparison between the base and extended model for
all attack types and mnp levels (nn is fixed to 1 as other nn levels have similar results) where only
temperature have random values among other FT attributes.
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Figure 17: Historical functional trust belief comparison between the base and extended model for
all attack types and mnp levels (nn is fixed to 1 as other nn levels have similar results) where
temperature and newly added FT attributes have random values.
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kept random.

The remaining four columns in Fig 17 compare the base model to the extended model

by changing the ranking of FT attributes and putting one of the newly added attributes to

the first place at a time. This corresponds to the case number iii) and changes attribute

weights in the MADM process. When we look at the results within each attack type, we do

see a difference in HFT score patterns concerning the attribute rankings/weights. I present

average HFT scores produced under different attack types in Table 10. For instance for

opportunistic attack, HFT scores are averaged around ([before attack, after attack]);

• [0.7, 0.25] for the base model where only key freshness and temperature are included as

FT attributes

• [0.8, 0.4] when temperature is ranked first/have the highest weight among other FT

attributes in the extended framework

• [0.9, 0.6] when measurement self-deviation is ranked first/have the highest weight among

other FT attributes in the extended framework

• [0.9, 0.25] when social presence (i.e., device-based duty cycle) is ranked first/have the

highest weight among other FT attributes in the extended framework

• [0.7, 0.5] when device vendor (i.e., data reliability due to vendor) is ranked first/have the

highest weight among other FT attributes in the extended framework

There are similar patterns for all attack types. For instance, ranking the social presence

attribute first yields similar results to the base model in terms of average HFT scores. The

reason for this is social presence is a non-monotonic attribute like temperature attribute, so

the data are generated for them using the same procedure in the simulations. This leads

to results where it seems adding the social presence attribute does not change HFT scores.

Yet, in the real settings, when social presence attribute takes different series of values than

those generated in simulations for this chapter7, results can be different. Also, ranking the

measurement self-deviation (in reported temperature readings) first leads to higher average

HFT scores compared to ranking the temperature first. This could be because while the

measurement self-deviation of the malicious node could be small (i.e., measurement reported

7In my simulations, social presence is represented through device-based duty-cycle, which I generated
using a truncated Gaussian distribution with ψ = (75, 10, 0, 100).
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Attack
Extended framework FT attribute order

Base model
T first∗ MSD first SP first V first

Opportunistic service

(before attack, after attack)

0.8, 0.4 0.9, 0.6 0.25, 0.9 0.5, 0.7 0.25, 0.7

Individual malicious

(after attack)

0.4 0.6 0.25 0.5 0.25

On-off patterned

(after attack)

0.7 0.8 0.65 0.6 0.5

On-off random

(after attack)

0.7 0.8 0.65 0.6 0.5

T: Temperature, MSD: Measurement self-deviation, SP: social presence, V: vendor

Table 10: Average HFT scores produced by the extended vs. base model for different attacks

by the node in a short time-frame are close to each other and do not deviate drastically)

and does not drop its FT score, temperature attribute may cause to degrade its FT scores

because the reported measures could be far different from the expected values (i.e., LPV

and UPV of temperature as a non-monotonic attribute).

Finally, similar to the findings of experimental evaluation in Chapter 5, both patterned

and random on-off attacks seem to be harder to detect compared to opportunistic service

and individual malicious node attacks as average FT scores are higher under on-off attacks.

6.4 Summary and Discussion

In this chapter, I explored the effect of including additional trust attributes on trust scores

computed by our previously proposed MADM-EBSL [5] framework. I proposed to include

multiple device vendors, the social presence of devices, and the replication success and source

of a reported measurement as additional functional trust attributes in trust computations. I

compared the outcomes of this extended framework to that of the MADM-EBSL concerning
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overall and historical functional trust scores. While an additional set of functional trust

attributes did not yield significant difference in the overall trust beliefs towards a selected

node, it did so for HFT belief scores.

I tried various scenarios in terms of the randomness/stability of attribute values and

the ranking (weights) of included FT attributes. Results showed that including additional

FT attributes with only fixed values at their max leads to an increase in the average and

a decrease in the variance of HFT scores. When these attributes are set random, their

rankings (weights) affect the computed HFT scores differently. For instance, ranking the

device vendor first leads to higher HFT scores on average compared to ranking the social

presence attribute first, for opportunistic service and individual malicious node attacks.
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7.0 Trust Repair Strategies and a Trust Model for IoT

In this chapter, I discuss the importance of trust repair and trust repair strategies for

IoT drawing upon our review of trust in social sciences in [3]. Then, I discuss trust repair

processes as a part of a trust management framework for IoT networks. I propose a trust

repair model that models trust value changes of IoT devices after trust repair actions. Finally,

I evaluate the effectiveness of the proposed trust repair model through simulations.

7.1 Motivation

When a trustor puts trust in a trustee, it makes itself vulnerable because a trustee may

not fulfill its duties due to a lack of skills or motivation [3]. A trust violation occurs if a

trustee exploits the vulnerability of a trustor. Trust repair is restoring the broken trust

partially or completely after a trust violation [3]. Trust is easy to break and challenging

to repair [3]. If violations repeat in a trust relationship, trust repair becomes even more

challenging [102].

Trust repair is indicated as one of the under-investigated and least theorized research

areas in different fields, including organizational science, business, and psychology [3]. It

is also an untouched topic for IoT networks. To the best of my knowledge, trust repair

has not been explored before in the IoT trust literature. A preliminary literature search on

GoogleScholar has yielded no relevant result1. Although some papers discuss legal issues and

propose conceptual frameworks for trust repair in cloud computing (e.g., [114, 113]), there

is a gap in the literature for a computational model of trust repair in IoT networks.

1I used keywords “trust repair” iot in anywhere in the article to find a relevant paper.
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7.2 Trust Repair in IoT

Given the lack of existing research for trust repair in IoT networks, I present terminology

for it and speculate about IoT trust repair strategies/trust repair actions in this dissertation,

drawing upon our review of trust in social sciences in [3]. Trust repair in IoT environments

corresponds to restoring the trust of an IoT device after it commits trust violations, such

as due to malfunctioning or being compromised. This restoration is typical to be realized

by human intervention, so trust gets repaired or reset. In other words, the historical trust

score (see Chapter 4) of an IoT device can be reset to a level after a trust repair action.

For example, we can consider resetting a device by a company, firmware upgrade, or any

maintenance as trust repair actions. Periodic resets may become a feature in IoT if trust

metrics are widely adopted.

In social sciences literature, it has been argued that the effectiveness of trust repair

efforts is determined by trust violation type that could be competence-based, benevolence-

based, or integrity-based trust violations [58], i.e., whether violation occurs due to concerns

of competence, benevolence, or integrity. These three dimensions are characteristics ascribed

to a trustee by a trustor to decide about its trustworthiness, according to the widely cited

ABI (Ability, Benevolence, Integrity) model [118] in social sciences literature. Competence

refers to perceptions that a trustee has enough skills and knowledge to perform a task.

Benevolence means a trustee cares for and acts in the interests of the trustor. Integrity is

the perception that a trustee is honest, credible, and keeps promises. Sometimes benevolence

and integrity are considered together as a combined trust construct goodwill, as both reflect

ethical traits [3]. Tomlinson and Mayer [178] argue that integrity is the most stable among

the three dimensions. Hence, if a trustor decides that low integrity is the cause of a trust

violation, it is the hardest to repair the trust. I argue that trust violations in IoT can also

be grouped as competence-based and goodwill-based. That is, if an IoT device violates trust

due to the lack of capabilities or technical issues, such as network connection or transmission

errors, it will be a competence-based trust violation. If an IoT device violates trust due to

intentional malicious actions, it will be a goodwill-based trust violation (see Section 7.3 for

more detail).
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Different actions should be taken to repair different dimensions of trust [58]. To this

end, researchers have focused on the grouping of trust repair strategies/actions as verbal

and non-verbal strategies in social sciences literature [178]. In other words, verbal and

non-verbal trust repair actions have been shown to impact/restore different dimensions of

trust or have different effectiveness [3]. Similarly, I propose that trust repair actions in IoT

can be grouped as software-based and hardware-based/physical actions, i.e., the source or

type of trust repair. As software-based trust repair actions, we may think of rebooting an

IoT node remotely using a watchdog software in case of a functionality issue (failures in

network connection or processes) or getting over-the-air updates. Another example could

be utilizing challenge-response protocols for trust repair such that if a node successfully

responds to a challenge, then it may be deemed as trustworthy and its trust gets increased2.

As for hardware-based trust repair, we may consider any action that supports an IoT node

physically or with additional hardware resources through human intervention. For instance,

a human may intervene by restarting an IoT device in the case of connection or process

problems. Alternatively, a human operator may place guards to physically secure an IoT

node or install hardware to support its processing or storage capability. I argue that different

types of trust repair may affect trust scores differently. More precisely, a hardware/physical

trust repair action may provide better guarantees than software-based repair actions, as the

former includes a direct intervention of a human with stronger/more reliable solutions. Thus,

we can model trust score changes after a trust violation based on the type of trust repair

actions.

To sum up, I propose that trust repair processes in IoT and changes in trust scores may

be affected by the type of trust violation, —competence-based and goodwill-based, and the

type of trust repair, — software-based and hardware-based.

2The node may involve in a trust violation, but it maybe due to a failure (i.e., competence-based violation)
rather than a malicious action, so its trust could be increased in case of a successful response.
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7.3 The System Model of the Proposed Solution for Trust Repair in IoT

In this section, based on concepts discussed in the previous section, I discuss how trust

repair can be incorporated into a trust framework for IoT. Figure 18 shows an initial system

model. A central, powerful IoT node (a device with better processing and storage capabili-

ties, such as a smart TV or a home assistant/hub as suggested in [1]) is decided as a trust

manager responsible for trust management. Using a trust model, such as the one provided

by the MADM-EBSL framework [5], the trust manager computes trust scores of nodes in

the network and stores them. It also monitors trust scores to observe trust violations. Trust

violations can be detected using an anomaly detection method or a simple heuristic, such as

a trust score declines for recent n observations3. The system also monitors node interaction

behaviors using a watchdog agent/software installed on each IoT node. Each node ob-

serves the following three types of interaction behaviors of its immediate neighbors using the

watchdog agent, inspired from [188]: discarding data/orders, tampering with data/orders,

and replaying data/orders. These interaction behaviors can be at three levels, —normal,

malfunctioning, and malicious as decided by watchdog records. More precisely, if there is

no discarding, tampering, or replaying/forging of data/orders, then the node behavior is

recorded as normal. If there is a discarding, tampering, or replaying/forging of data/orders

and if it happens due to network connection or transmission errors, then node behavior is

marked as malfunctioning. If there is no obvious reason for a risky node behavior detected

by the watchdog agent, then the behavior is marked as malicious.

When the trust manager detects a trust violation by an IoT node, it decides the type

of violation by looking at interaction behavior records for this node. If an interaction is

marked as malfunctioning, then the type of violation is decided as competence. In case it is

malicious, then the trust violation type will be goodwill. If no trust repair action is taken

after the detection of a violation, the trust score of the violator node will stay at the level

as computed by the underlying trust measurement model4. Yet, if a trust repair action is

taken, the trust score of the violator node will be adjusted by the trust manager using the

3This is out of the scope of this dissertation and a future research direction.
4The underlying trust measurement model should reflect trust violation as a drop in the trust score, so

there should be no need for extra intervention to drop the score.

133



Figure 18: System Model

violation type and trust repair action type (software- vs. hardware-based).

In the next section, I elaborate on the trust repair model to be used by the trust manager

for reflecting trust violations and trust repair actions on trust measurements.

7.4 A Trust Repair Model for IoT Environments

Figure 19 presents a schematic representation of the overall trust repair process. As I dis-

cussed earlier, the result of trust repair actions can be reflected in historical trust scores. For

the trust repair model proposed here, the MADM-EBSL[5] is the underlying trust framework

used for trust computations. If we consider that an IoT device violates trust after a trust

opinion is calculated for it at time t and a trust repair action is taken afterward, its overall

trust opinion (OTdest) will be updated. OTdest reflects the historical trust of an IoT device as

it incorporates historical functional trust opinion and historical referral trust opinions from

other nodes in a network.

The update in OTdest = (bdest, ddest, udest) depends on the type of trust violation by a
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Figure 19: Trust repair process

node—V T , the type of trust repair action taken by network administrator—RAT , and the

number of times a node commits a trust violation—nV . Also, the update in trust should be

reflected as an increase in the belief component of overall trust opinion after a trust repair

action. As a result, an increase in the overall belief towards a node—∆bdest will be directly

proportional to numerical values that represent V T and RAT and inversely proportional to

the number of violations. In other words,

∆bdest ∝
V T,RAT

nV

(9)

There are several questions to consider to convert the relationships in (9) into a measur-

able form and integrate them with OTdest.

1. How can we convert qualitative values of V T and RAT , i.e., {competence, goodwill} and

{software− based, hardware− based} into numerical values?

2. How can we formulate ∆bdest or ∆OTdest more generally?

3. What kind of mathematical/logical operator can we use to integrate ∆OTdest and OTdest?
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Rank 2a 3 4 5 6 7 8 9 10

1 0.7500 0.6111 0.5208 0.4567 0.4083 0.3704 0.3397 0.3143 0.2929

2 0.2500 0.2778 0.2708 0.2567 0.2417 0.2276 0.2147 0.2032 0.1929

3 0.1111 0.1458 0.1567 0.1583 0.1561 0.1522 0.1477 0.1429

4 0.0625 0.0900 0.1028 0.1085 0.1106 0.1106 0.1096

a wj = 1/n
∑n

k=Rj
1/k, ∗ Rj: rank of the attribute

Table 11: Attribute Weights Assigned by the ROC Weight Elicitation Method

To answer the first question, we can think in the same direction with the method we

used in MADM-EBSL for the quantification of qualitative attributes. In MADM-EBSL, to

transform a qualitative attribute (data reliability due to link type and device vendor, with

values from very low to very high) into an interval scale, we utilized a 10-point Bipolar scale

(see also Figure 13 in Chapter 6). We can assign a score for trust improvement for each V T

and RAT value considering as if they are cost and benefit attributes used in the MADM,

respectively. Yet, there are only two possible qualitative values to map. Thus, instead of

using a 10-point Bipolar scale with equal intervals as in Figure 13, we can consider attribute

weight approximation approaches for quantifying V T and RT (see ROC, RS, RR in Chapter

4). That is, we can rank V T and RAT values concerning their impact on trust improvement

for an IoT device. Then, we can use, e.g., ROC to find the proportional importance of

different values and convert them to integer values. More precisely, if we look at Table 11 for

attribute weights with two attributes, we see that ROC respectively assigns 0.75 and 0.25

to the first and second attributes, concerning their rank of importance in a decision-making

problem. RAT and V T can be considered analogous to a benefit and cost attribute with two

possible values. The two possible values of RAT are hardware-based and software-based,

respectively concerning their effect on improving the overall trust of an IoT node. The two

possible values of V T are goodwill and competence, in order based on their importance for

affecting the overall trust of an IoT node. Thus, we can consider that the first and second

values of RAT and V T (i.e., concerning their importance) will be numbers proportional to

0.75 and 0.25.
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To answer the second question, we revisit the definition of an opinion triplet in [77, 167].

Opinions are formed based on evidence. Evidence is denoted as a pair e = (p, n), where p and

n are positive finite numbers that respectively represent the amount of evidence supporting

and contradicting a proposition. There is a one-to-one mapping between an opinion x =

(xb, xd, xu) ∈ Ω (opinion space) and its evidence e = (p, n) as follows:

(xb, xd, xu) =
p, n, 2

p+ n+ 2
(10)

I formulate ∆OTdest, i.e., change in the overall trust opinion for an IoT node after a

trust repair action, using (10). The variables p and n correspond to evidence provided by

RAT and V T that respectively supports and contradicts the following proposition: A trust

repair action act ∈ ACT with rat ∈ RAT after a trust violation with vt ∈ V T by a node

dest improves its overall trust OTdest. In connection with the solution I proposed to answer

the first question, I argue that p can be assigned an integer value reflecting the proportion

between the values of RAT , i.e., hardware-based ∝ 0.75 and software-based ∝ 0.25. Similarly,

n can be assigned an integer value reflecting the proportion between the values of V T , i.e.,

goodwill ∝ 0.75 and competence ∝ 0.25.

To answer the third question, we should consider opinion combining operators of SL

[77] as candidates because OTdest is in the form of an SL opinion triplet. SL provides two

fundamental sets of operations, namely logical operators to combine opinions of an agent

about multiple propositions and evidential operators to combine opinions of multiple agents

about a single proposition. Logical operators include propositional conjunction, propositional

disjunction, and negation, which are the applications of standard binary logic operators

AND, OR, and NOT on SL opinions. Evidential operators are consensus and discounting,

which we have utilized in MADM-EBSL for trust propagation and aggregation in a trust

network. A logical operator suits the needs of the research problem here, i.e., to reflect the

improvement on a trust opinion towards an IoT node after a trust repair action, better than

an evidential operator. The reason is that, in trust repair scenario, there is a single source

of evidence, which is the trust manager, and multiple propositions about which it forms an

opinion after a node involves in a trust violation. As explained in Section 7.3, the trust

manager keeps track of trust opinions for nodes. In other words, it records OTdest and knows
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Node is not trusted.

Node is trusted
based on

functionality
and referrals.

Node is trusted
based on

trust repair.

P1 ∨ P2

Figure 20: Propositions to form a trust opinion towards an IoT node by a trust manager

of trust violations and trust repair actions as a central trust authority. It uses the trust

repair model to adjust the trust score of an IoT node. Thus, as a single agent, the trust

manager will be combining its opinion about the following two propositions: i) Node dest

is trustworthy based on its functionality and referrals from other nodes in the network, and

ii) The trust repair action taken after node dest violated trust improves its overall trust.

Among the logical operators, the proposed model uses the propositional disjunction op-

erator (see Equation 11) because a disjunction returns true if at least one of the disjuncts is

true, i.e., unless both of them are false. In a trust repair scenario, the trust of an IoT node

can be denoted as the disjunction of two aforementioned propositions, and the existence of

trust from either case will be enough to compute the trust of a node. Figure 20 illustrates

these trust propositions and their relationship to form an opinion.

x ∨ y = (xbyb, xd + yd − xdyd, xbyu + xuyb + xuyu) (11)
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7.5 Experimental Evaluation

In this section, I present the results of the experimental evaluation of the proposed trust

repair model. The purpose is two folds; i) comparing the trust scores of a node computed

originally by the MADM-EBSL model to those computed by the trust repair model to see

how trust scores are affected in case of an intervention rather than leaving them on their

own course, ii) investigating the impact of RAT and V T on trust repair. In the following,

I discuss how I sampled synthetic data from real datasets to use in experiments. Next, I

elaborate on the evaluation method. Finally, I present the results and discuss findings.

7.5.1 Dataset and Simulation Setup

For the experiments in this chapter, I utilized the same dataset and similar setup as in

chapters 4, 5, and 6. More information on this can be found in Section 4.3.2.1 in Chapter

4, Section 5.2.1 in Chapter 5 and Section 6.3.1 in Chapter 6. To reiterate, the data consists

of temperature measurements reported by 22 nodes distributed in a rectangular area using

a Poisson point process with a λ of 0.001. These reported measurements are sampled from

a dataset of weather data from the USA in 2012 [141].

For consistency with the original MADM-EBSL evaluations, I used a single network

with a fixed level of malicious node percentage (10%) and node connectivity (1) levels. To

focus on the effect of trust repair on trust scores, I used a single attack type for the single

network, unlike in Chapters 5 and 6. Specifically, I used opportunistic service attack to model

malicious behaviors, while also modeling benign and faulty node behaviors to generate node

reported data (see Section 4.3.2.2 for details). Also, I simulated an additional behavior

where a node behaves benignly and commits a trust violation only once (considering this as

a random 299G-1B on-off attack).

I generated 300 data items for each node using an approach similar to that used in

the original MADM-EBSL in Chapter 4, with FT attributes including key freshness and

temperature, and RT attributes comprising measurement deviation, distance, link type, and

data freshness. For further details on generating values for attributes in the original MADM-
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EBSL, interested readers can refer to Section 4.3.2.1 of Chapter 4.

7.5.2 Evaluation Method

The objective of conducting experimental evaluation is to compare the trust opinions

generated by the original MADM-EBSL with the proposed trust repair model outlined in

this chapter for a designated destination node. To accomplish this, I randomly selected a

node from each type, namely malicious, faulty, and benign, to act as the destination in a

network with mnp = 10% and nn=1. I computed trust opinions for the destination node

using Algorithm 1 in the original MADM-EBSL framework. Subsequently, I applied trust

repair logic to these opinions as described in Section 7.4, using Equations 10 and 11. As for

trust history configurations, I considered both using the whole history of trust scores and a

sliding window approach to see the effect of trust repair both in short and long terms (see

Chapter 5 for details on trust history configurations).

7.5.3 Results

In this section, I present the findings of experimental evaluation. I discuss the effect of

trust repair on overall trust opinions (specifically, beliefs) through two main comparisons

for the three aforementioned node types; i) comparisons of OT beliefs computed using the

original MADM-EBSL to trust repair model for the effect of trust repair action type (RAT ),

ii) comparisons of OT beliefs computed using the original MADM-EBSL to trust repair

model for the effect of trust violation type (V T ). Also, I discuss the effect of trust repair on

OT beliefs concerning different trust history configurations.

I present the results of the experimental evaluation for all effects together in plots in

Figures 21, 22, and 23 for a malicious, faulty, and benign node, respectively. The following

sections present plots for those effects separately and discuss implications. From Figures 21,

22, and 23, we can observe that the effects of RAT and V T on OT depend on the node type

(malicious, faulty, and benign), node behavior (opportunistic service attack vs. single bad

behavior), and trust history configuration (using whole history vs. sliding window of trust

scores).
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First, different lines (OT beliefs for different V T and RAT combinations) may overlap

for a malicious and benign node whereas they do not for a faulty node. For instance, for

a malicious node, the line for hardware-based repair + goodwill-type violation combination

overlaps with that for software-based repair + competence-type violation. Also, trust repair

seems to affect OT towards a faulty node slower than towards a malicious node. Yet, beliefs

towards a faulty node continue to improve over time, whereas for a malicious node, they stay

more stable once they increase. Finally, as seen in Figure 23, all different combinations of

RAT and V T lead to overlapping trust scores. Thus, regardless of the type of response action

and trust violation, trust will recover to the fullest extent possible for a benign node. These

results reflect the behaviors modeled differently for malicious, faulty, and benign nodes. As

a malicious node behaves benign and accumulate trust until some point in the simulations,

a trust repair action improves its trust scores faster than a faulty node, which also reports

incorrect measurements. Although the measurements reported by a faulty node deviate from

benign measurements less than those by a malicious node, it consistently reports incorrect

measures. That is the reason why its trust scores improve slower than a malicious node. Yet,

a faulty node has its scores recover gradually after a trust repair action, whereas a malicious

node has its trust scores stable in the short term and decreasing in the long term. If we

modeled different attack types as in Chapters 5 and 6, we could observe different trust repair

effects. For instance, for an individual malicious node, trust repair could work slower than

a faulty node.

Second, for opportunistic service and single bad behavior, trust repair affects scores

differently. If we compare the plots at the top of Figures 21 and 22 to the ones at the

bottom, we observe that the type of trust repair action and trust violation does not affect

trust scores for a single bad behavior as opposed to opportunistic service attack scenario.

This may tell that in case of a single random failure, independent from whether the failure is

a result of competence or goodwill of the node, it does not matter whether we take a software-

based or hardware-based repair action. As a result, the less costly or more convenient option

could be chosen by the network administrator.

Third, when we compare the whole trust history to the sliding window approach to trust

computations, we observe two noticeable patterns. One observation is that OT belief seems
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to decrease for the whole history configuration for the opportunistic service attack scenario

(Figures 21a and 22a. On the contrary, it seems not to decrease (stable after attack and

repair start point in Figure 21b and increasing after attack and repair start point in Figure

22b) for the sliding window configuration for the opportunistic scenario. This means we need

to consider the long-term effect of trust repair to make decisions. Trust may seem to improve

in the short-term, i.e., when we consider only a recent window of trust records in historical

trust computations, but it may not improved to a desired level when all the previous trust

history is included in trust computations. The second observation concerning trust history

configuration is that for a single bad behavior, there is no noticeable difference in OT beliefs

generated by the trust model concerning different RAT and V T combinations between the

whole history and sliding window approaches.

7.5.3.1 Effect of Trust Repair Action Type on Overall Trust

Figure 24 shows the effect of trust repair action type (RAT ) on OT beliefs for a malicious

node. Looking at the top row for opportunistic service attack, we see that hardware-based

trust repair yields higher trust scores than software-based trust repair for both trust violation

types, competence and goodwill. This holds for the two different trust history configurations,

whole history and sliding window approach. When we look at the bottom row for the single

bad behavior scenario, we do not observe a difference between software- and hardware-based

trust repair for none of trust violation types and trust history configurations. As a result,

we can draw the conclusion that the type of trust repair action affects the outcome of trust

repair when a malicious node displays bad behaviors repeatedly.

Figure 25 shows the effect of trust repair action type (RAT ) on OT beliefs for a faulty

node. Similar to a malicious node, hardware-based trust repair yields higher trust scores

than software-based trust repair for opportunistic service attack, for both competence- and

goodwill-type trust violation, and for both trust history configurations; whole history and

sliding window. Different than a malicious node, for the single bad behavior scenario,

hardware-based repair yields higher trust scores than software-based repair in all combi-

nations of trust violation type and trust history configurations (Figures 25e, 25f, 25g, and
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(a) (b)

(c) (d)

Figure 21: Effect of trust repair for a malicious node: (a) opportunistic service + whole history
(b) opportunistic service + sliding window (c) single bad behavior + whole history (d) single bad
behavior + sliding window

25h).

Finally, as Figure 26 shows, the type of trust repair action does not have an effect on trust

scores of a benign node for neither of the opportunistic service attack and single bad behavior

cases. Note that it is not the benign node itself displaying bad behavior and committing the

trust violation, but malicious nodes in the network. Thus, the OT belief of a benign node

drops even though it behaves benignly. Yet, as the figure shows, its trust recovers to the

maximum possible value regardless of the type of trust repair action and trust violation, and

trust history configuration.
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(a) (b)

(c) (d)

Figure 22: Effect of trust repair for a faulty node: (a) opportunistic service + whole history (b)
opportunistic service + sliding window (c) single bad behavior + whole history (d) single bad
behavior + sliding window

7.5.3.2 Effect of Trust Violation Type on Overall Trust

Figures 27,28, and 29 display the effect of V T (trust violation type) on OT belief for

a malicious, faulty, and benign node, respectively. Patterns of OT belief concerning the

effect of trust violation type are very similar to those concerning the effect of trust repair

action type. More precisely, for a malicious node and opportunistic service attack case (top

row at Figure 27), goodwill-type trust violation leads to a less improvement in trust scores

when a trust repair action is taken, regardless of the trust history configuration. On the

contrary, trust violation type does not affect trust repair outcome when malicious nodes

commit to a trust violation for a single time (bottom row at Figure 27). Similarly, a faulty
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(a) (b)

(c) (d)

Figure 23: Effect of trust repair for a benign node: (a) opportunistic service + whole history (b)
opportunistic service + sliding window (c) single bad behavior + whole history (d) single bad
behavior + sliding window

node has higher trust scores as a result of trust repair in case of a competence-based trust

violation, regardless of trust repair action type and trust history configuration, for both

the opportunistic service attack case (top row at Figure 28) and single bad behavior case

(bottom row at Figure 28). Finally, for a benign node, V T does not have an effect on trust

repair for none of the combinations of node behavior, RAT , and trust history configuration,

as seen in Figure 29.
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7.6 Summary and Discussion

In this chapter, I discuss trust repair for IoT and propose a trust repair model inspired

by trust repair concepts in social sciences. The proposed model includes trust violation

type (V T ) and trust repair action type (RAT ) as factors impacting the outcome of the

trust repair process. I conducted experiments to shed light on the effect of these factors

on trust repair. I compared OT beliefs computed by the original MADM-EBSL framework

to those by the proposed trust repair model for different combinations of V T , RAT , trust

history configuration (whole history vs. sliding window), and node behavior (behaviors of

malicious nodes in the network, specifically opportunistic service and single bad behavior)

for malicious, faulty, and benign nodes.

There are multiple indications of the results of the experimental evaluation. Some of

them worth highlighting includes that V T and RAT affect trust repair differently concern-

ing the type of node that the trust of which is to be repaired (malicious, faulty, and benign),

simulated behavior of malicious nodes in the network (opportunistic service attack and single

bad behavior), and trust history configuration. In addition, a hardware-based trust repair

action yields higher trust scores than a software-based trust repair action in opportunistic

service attack case, in general. Moreover, trust repair is more effective when V T is compe-

tence compared to goodwill-type violation for most of the cases. Also, for single bad behavior

case, V T and RAT do not affect trust repair results for malicious and benign nodes. Yet an-

other important observation was that trust scores of a benign node is recovered to its fullest

extent regardless of V T , RAT , malicious nodes’ behavior, and trust history configuration.

Noteworthy is emphasizing the cases where a hardware-based repair may be needed given

that it is rather costly to intervene with a human. Referring to the results in Section 7.5.3.1

and Figures 24, 25, and 26, we notice that one factor is the type of node we want to repair

trust of. For example, if it is a benign node, RAT does not have an effect on trust scores

(see Figure 26), so a software-based repair action could be chosen as the cheaper option.

Another factor is the type of violation that a node commits. For example, if we want to

recover the trust of a faulty node, we may want to consider a hardware-based repair when

V T is decided as competence by the central trust manager. As seen in Figures 25c and
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25d, a hardware-based repair provides a more pronounced improvement in trust scores than

a software-based repair for a competence-type violation for an opportunistic service attack.

On the other hand, for a single bad behavior case, the difference in improvement provided

by the two types of repair is not significant. Therefore again, software-based repair may be

preferred. Finally, the type of the IoT application or the node could be a factor for making

decisions. If it is a critical application, such as a medical IoT network, then even slight

differences make a difference. In that case, hardware-based repair could be an option even

it is much more costly.
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8.0 Conclusion and Future Research

8.1 Conclusion

Trust management is vital in IoT, as trust mechanisms play a vital role in mitigating

uncertainty and perceived risks associated with the usage of IoT services and applications.

The absence of trust can result in severe consequences for the IoT ecosystem. For instance,

a malicious node could potentially disrupt the smooth operation of an IoT network, thereby

elevating the reputation of malicious nodes and degrading that of benign ones [1]. Addition-

ally, a lack of trust could lead to disruptions in the entire data management process, thereby

impeding the proper functioning of IoT devices [4].

Cryptographic algorithms used for safeguarding IoT systems against external attacks do

not provide protection against insider attacks [154], as insider nodes are already part of the

network and have secure communication established through exchanged cryptographic keys

[11]. Also, strong security measures cannot be implemented on constrained IoT nodes [1]. As

a result, trust management solutions are critical for detecting legitimate nodes that exhibit

malicious behavior within IoT environments [9, 154, 188]. Although trust management so-

lutions have been proposed to address these challenges, they have limitations. For example,

trust management schemes based on the Social IoT paradigm, feedback, or service recom-

mendation could require human intervention [12] and may not be suitable for automated

trust computation.

In this dissertation, I have reviewed existing research that proposes trust management

solutions for IoT and discussed their limitations. The main focus is key trust properties as we

have distilled from our review of trust in social sciences and automated trust computation.

More precisely, I highlight multi-dimensionality, context-specificity, dynamism, uncertainty,

and transitivity properties of trust with automation capability.

The central pieces of the automated trust computation solutions I have proposed are

Multi-Attribute Decision Making (MADM) and Evidence-Based Subjective Logic (EBSL).

The key contributions of this dissertation are as follows:
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• I have presented the work [3] that reviews trust in social sciences in Chapter 3. We

have overviewed trust measures used in the social science literature. We have proposed a

trust taxonomy based on our review of trust types identified by social science researchers.

Moreover, we have discussed several aspects of trust and challenges in assuring it, in-

cluding trust development over time, trust repair, trust transfer and reputation, the

relationship of trust with context, distrust, risk, and uncertainty. Finally, we have dis-

cussed the implications for IoT networks and presented a conceptual trust management

framework for IoT.

• We have developed an automated trust computation framework, MADM-EBSL (Multi-

Attribute Decision Making - Evidence-Based Subjective Logic Framework) for IoT, in

Chapter 4. A significant contribution of the MADM-EBSL is that it addresses trust man-

agement challenges in IoT, including the need for automatic trust computations without

human intervention, the complexity of trust measurement due to various contextual/en-

vironmental and technical/protocol-dependent factors, and the difficulty of quantifying

the trustworthiness of nodes. The trust scores can account for multiple contextual and

technical attributes affecting both functional and referral trust of an IoT node using

the MADM approach. We adopted the Evidence-Based Subjective Logic (EBSL) [167]

to account for uncertainty in trust values and trust transitivity in a trust network of

“things”. We implemented the MADM-EBSL framework and evaluated the performance

of it using synthetic data and sampling from real datasets. The results show that the

trust framework can effectively capture node behaviors and limitations and can identify

faulty and compromised nodes. We also observed that the trust of nodes are impacted

by their neighbors in the network.

• I have explored the impact of network connectivity and trust problem size on trust scores

in the MADM-EBSL framework in Chapter 5. The results indicate that higher network

connectivity levels lead to a more significant reduction in trust scores for a malicious node

in larger trust problem sizes. Larger trust problem sizes correspond to higher percentages

of malicious nodes in a network, making attacks more challenging to detect, such as on-

off attacks. Furthermore, the results suggest that a larger trust problem size results in

higher trust scores for a malicious node.
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• Based on the concepts distilled from our review of trust in social sciences, I include

additional functional trust attributes in the MADM-EBSL in Chapter 6. These attributes

are multiple device vendors, the social presence of devices, and the replication success and

source of a reported measurement. I have investigated the effect of extra trust attributes

on trust scores through experimental evaluations. The results showed that including

additional functional trust attributes did not significantly affect the overall trust beliefs

towards a selected node but did affect the HFT belief scores.

• I have described a trust repair model for IoT in Chapter 7, inspired by trust repair

concepts in social sciences. The model takes into account trust violation type (V T , com-

petence vs. goodwill) and trust repair action type (RAT , hardware-based vs. software-

based) as factors that impact the outcome of the trust repair process. I have investigated

the effect of these factors on trust repair through experiments. To do so, I compared

the OT beliefs of malicious, faulty, and benign nodes after repair to those computed

by the original MADM-EBSL framework. The results indicated that trust repair is im-

pacted differently by V T , RAT , and node type (malicious, faulty, or benign). In general,

hardware-based repair yields higher trust scores than software-based repair in oppor-

tunistic service attacks. Trust repair is more effective for competence-type violations.

For single bad behavior cases, V T and RAT do not affect trust repair for malicious and

benign nodes. The results also showed that trust scores for a benign node fully recovered

regardless of V T and RAT .

8.2 Future Research

Below are some possible future research directions for the research in this dissertation:

• We have explored the Subjective Logic [77] to account for uncertainty in trust opinions

and evidence from multiple nodes in an IoT network. Alternatively, we could consider

a Bayesian approach to estimate trust scores while accounting for uncertainty. Bayesian

approaches are based on Bayes’ theorem. They rely on assigning prior probabilities to

model initial beliefs and updating these beliefs using observed data through the likelihood
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function. Both approaches have their strengths and limitations, so it is not easy to

provide a preference for one over another. Yet, it may be worth exploring a Bayesian

approach to IoT trust computations and comparing the results to our framework that is

based on Subjective Logic.

• Potential future work as the continuation of attempts in Chapter 5 includes additional

experimental evaluations that consider malicious nodes performing different attack types

simultaneously. Simulations in Chapter 5 model a network having all malicious nodes

perform the same attack. Although I looked at the effect of various attack models on

trust scores, I investigated them separately. A mix of different malicious behaviors in a

network may affect trust scores differently than homogeneous behaviors.

• Experiments in all chapters used the same methodology to generate a random network

with no specific topology, distributing nodes in a rectangular area using the Poisson point

process. Also worth exploring is the effect of network topology on trust scores, which

may include trees, complete networks, a hierarchical structure, federated systems, etc.

• Another future research direction is related to the evaluation of the MADM-EBSL frame-

work, the framework proposed in Chapter 6, the trust repair model in Chapter 7, and

any trust computation framework/model in general. Although we successfully devised

frameworks to quantify the trust of IoT nodes considering various contextual and tech-

nical factors and the amount of trust to repair after a trust violation, we have not found

a trust threshold as a baseline value to compare our trust scores and compute the model

accuracy. We have not come across a research work in the IoT trust domain that pro-

poses a solid methodology to calculate a trust threshold value to base the output of trust

computations. Despite some researchers using trust thresholds in their experimental

evaluations, such as in [25, 1, 145, 23, 20], there is no foundation for their preference for

trust thresholds. The lack of a solid methodology for setting a trust threshold value is a

challenge to be solved by future work.

• One potential future research direction for the research in Chapter 6 could be to in-

vestigate the effectiveness of the extended MADM-EBSL framework for detecting more

complex attacks, such as coordinated attacks or attacks that combine multiple attacks.

• As the continuation of the research in Chapter 7, it may be worthwhile to investigate
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the use of machine learning techniques to predict the most effective trust repair action

for a given trust violation type and node behavior. Also, investigating additional factors

affecting trust repair could be another future research direction. The proposed model

considers trust violation type and response action type as two key factors impacting the

outcome of the trust repair process. However, other factors can also play a significant

role in trust repair, such as the severity of the trust violation.
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Appendix A Frequently Cited Trust Measures in Social Sciences

Table 12: Trust measures cited frequently in social science disciplines

Construct Variable Study Using
Items

Relevant Survey Items

Trust

Mayer and Davis
(1999)1

If I had my way, I wouldn’t let top man-
agement have any influence over issues
that are important to me.
I would be willing to let top manage-
ment have complete control over my fu-
ture in this company.
I really wish I had a good way to keep
an eye on top management.
I would be comfortable giving top man-
agement a task or problem which was
critical to me, even if I could not moni-
tor their actions.

Kim and Peterson
(2013)

This s-commerce firm is trustworthy.
I trust that this s-commerce firm keeps
my best interests in mind.
This s-commerce firm will keep its
promises.
I believe in the information that this s-
commerce firm provides.
This s-commerce firm wants to be
known as a company that keeps its
promises and commitments.

Gefen et al. [53]

I feel that this online vendor is honest.
I feel that this online vendor is trust-
worthy.
I feel that this online vendor cares about
customers.
I feel that this online vendor would pro-
vide me with good service.
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Trustworthiness
(Mayer and Davis
[117]),
Trusting beliefs
(McKnight et al.
(2002))
Trust (Gefen and
Straub [54])

Ability
(Mayer
and
Davis
[117],
Gefen
and
Straub
[54]),Competence
(McK-
night
et al.
(2002))

Mayer and Davis
(1999)

Top management is very capable of per-
forming its job.
Top management is known to be suc-
cessful at the things it tries to do.
Top management has much knowledge
about the work that needs done.
I feel very confident about top manage-
ment’s skills.
Top management has specialized capa-
bilities that can increase our perfor-
mance.
Top management is well qualified.

McKnight et al.
(2002)

1. The trustee is competent and effec-
tive in providing legal advice.
2. The trustee performs its role of giv-
ing legal advice very well.
3. Overall, the trustee is a capable and
proficient Internet legal advice provider.
4. In general, the trustee is very knowl-
edgeable about the law.

Gefen and Straub
[54]

1. The trustee is competent.

2. The trustee knows about books.
3. The trustee knows how to provide
excellent service.

Benevolence

Mayer and Davis
[117]

Top management is very concerned
about my welfare.
My needs and desires are very impor-
tant to top management.
Top management would not knowingly
do anything to hurt me.
Top management really looks out for
what is important to me.
Top management will go out of its way
to help me.

McKnight et al.
[122]

1. I believe that the trustee would act
in my best interest.
2. If I required help, the trustee would
do its best to help me.
3. The trustee is interested in my well-
being, not just its own.
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Gefen and Straub
[54]

1. I expect I can count on the trustee
to consider how its actions affect me.
2. I expect that trustee’s intentions are
benevolent.
3. I expect that the trustee puts
trustors’ interests before their own.
4. I expect that the trustee is well
meaning.

Integrity

Mayer and Davis
[117]

Top management has a strong sense of
justice.
I never have to wonder whether top
management will stick to its word.
Top management tries hard to be fair
in dealings with others.
Top management’s actions and behav-
iors are not very consistent.
I like top management’s values.
Sound principles seem to guide top
management’s behavior.

McKnight et al.
[122]

1. The trustee is truthful in its dealings
with me.
2. I would characterize the trustee as
honest.
3. The trustee would keep its commit-
ments.
4. The trustee is sincere and genuine.

Gefen and Straub
[54]

1. Promises made by the trustee are
likely to be reliable.
2. I do not doubt the honesty of the
trustee.
3. I expect that the trustee will keep
promises they make.

Trust propensity
(Mayer and Davis
[117])
Disposition to trust
(McKnight et al.
[122])
Trust disposition
(Gefen and Straub
[54]
Propensity to trust
(Pavlou and Gefen
[140]))

Trust propensity Mayer and Davis
(1999)

One should be very cautious with
strangers.
Most experts tell the truth about the
limits of their knowledge.
Most people can be counted on to do
what they say they will do.
These days, you must be alert or some-
one is likely to take advantage of you.
Most sales people are honest in describ-
ing their products.
Most repair people will not overcharge
people who are ignorant of their spe-
cialty.
Most people answer public opinion polls
honestly.
Most adults are competent at their jobs.
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Trusting stance McKnight et al.
(2002)

1. I usually trust people until they give
me a reason not to trust them.
2. I generally give people the benefit of
the doubt when I first meet them.
3. My typical approach is to trust new
acquaintances until they prove I should
not trust
them.

Trusting
disposition

Gefen and Straub
[54]

1. I generally trust other people.
2. I tend to count upon other people.
3. I generally have faith in humanity.
4. I feel that people are generally well
meaning.
5. I feel that people are generally trust-
worthy.
6. I feel that people are generally reli-
able.

Propensity to trust Pavlou and Gefen
[140]

1. Most people are reliable.
2. Most people keep promises and com-
mitments.
3. Most people are honest.
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Appendix B Overall Trust Comparison: Original vs. Extended Framework
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[167] Boris Škorić, Sebastiaan JA de Hoogh, and Nicola Zannone. Flow-based reputation
with uncertainty: evidence-based subjective logic. International Journal of Informa-
tion Security, 15(4):381–402, 2016.

[168] Paul Slovic. Perceived risk, trust, and democracy. Risk analysis, 13(6):675–682, 1993.

[169] Mark Snyder and Arthur A Stukas Jr. Interpersonal processes: The interplay of
cognitive, motivational, and behavioral activities in social interaction. Annual review
of psychology, 50(1):273–303, 1999.

[170] Heesuk Son, Namyong Kang, Bumjin Gwak, and Dongman Lee. An adaptive iot trust
estimation scheme combining interaction history and stereotypical reputation. In 2017
14th IEEE Annual Consumer Communications & Networking Conference (CCNC),
pages 349–352. IEEE, 2017.

[171] LC Stack. Trust. Dimensions of personality, 1978.

[172] Elaine Stasiulis, Barbara E Gibson, Fiona Webster, and Katherine M Boydell. Re-
sisting governance and the production of trust in early psychosis intervention. Social
Science & Medicine, page 112948, 2020.

[173] Katherine J Stewart. Trust transfer on the world wide web. Organization science,
14(1):5–17, 2003.

[174] William G Stillwell, David A Seaver, and Ward Edwards. A comparison of weight
approximation techniques in multiattribute utility decision making. Organizational
behavior and human performance, 28(1):62–77, 1981.

[175] David Tipper and Prashant Krishnamurthy. Digital sovereignty and resilience. Avail-
able at SSRN 4178621, 2022.

182



[176] Santtu Toivonen, Gabriele Lenzini, and Ilkka Uusitalo. Context-aware trust evaluation
functions for dynamic reconfigurable systems. MTW, 190, 2006.

[177] Edward C Tomlinson, Brian R Dineen, and Roy J Lewicki. The road to reconciliation:
Antecedents of victim willingness to reconcile following a broken promise. Journal of
management, 30(2):165–187, 2004.

[178] Edward C Tomlinson and Roger C Mayer. The role of causal attribution dimensions
in trust repair. Academy of Management Review, 34(1):85–104, 2009.

[179] Nguyen B Truong, Tai-Won Um, and Gyu Myoung Lee. A reputation and knowledge
based trust service platform for trustworthy social internet of things. Innovations in
clouds, internet and networks (ICIN), Paris, France, 2016.

[180] Chih-Hsiung Tu. On-line learning migration: from social learning theory to social
presence theory in a cmc environment. Journal of network and computer applications,
23(1):27–37, 2000.

[181] Wen Tu and Yuanyuan Xu. The evolution of interorganizational trust in cross-sector
collaborations: Two comparative cases from china. Nonprofit Management and Lead-
ership, 2020.

[182] Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics and
biases. science, 185(4157):1124–1131, 1974.

[183] Bart S Vanneste, Phanish Puranam, and Tobias Kretschmer. Trust over time in
exchange relationships: Meta-analysis and theory. Strategic Management Journal,
35(12):1891–1902, 2014.
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