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Non-coding Elements with Comparative Genomics

Elysia Saputra, PhD

University of Pittsburgh, 2023

Unveiling the genetic encodings of complex phenotypes is a fundamental goal of biology.

With the increasing availability of sequenced genomes, it has become possible to elucidate

molecular adaptations that engender species diversity with evolutionary-based methods. Al-

though morphological differences arise from changes in transcriptional regulation, regulatory

non-coding elements are still insufficiently characterized, and there is a lack of phylogenetic

tools that account for their evolutionary properties. This dissertation addresses this gap

by developing new tools to perform unbiased genome-wide predictions of regulatory element

adaptations that underlie convergent phenotypes. This dissertation introduces three new

tools, discussed in the following chapters.

In Chapter 1, we introduce empirical strategies for calibrating phylogenetic signals against

statistical biases that arise from phylogenetic, technical, and biological sources. We develop

phylogenetically-constrained trait permutation strategies for binary and continuous traits,

and benchmark them systematically on various methods and convergent phenotypes. This

study demonstrates the effectiveness of phylogeny-aware permutation strategies for improv-

ing the statistical behavior and prediction specificity from phylogenetic analysis.

In Chapter 2, we build a maximum likelihood-based phylogenetic method tailored to

characterizing the adaptation of conserved regulatory elements associated with phenotypic

convergence. We benchmark the method using the classical case of convergent evolution of

mammalian lineages to subterranean habitats and demonstrate the ability of the method to

modularly identify phenotype-relevant local segments of regulatory elements. In Chapter 3,

we apply the method to study the regulatory changes underlying the convergent adaptation

of mammals to life at altitude. We release the tool as a software package that can be used

by the research community.

In Chapter 4, we develop an alignment-free phylogenetic method for characterizing reg-
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ulatory motif adaptations that underlie phenotypic convergence from orthologous, but not

necessarily alignable sequences. Using a reference-free alignment dataset, we benchmark

the method against competing alignment-based and alignment-free methods using the con-

vergence case of vision loss in mammals and demonstrate the superior performance of the

method. We finally apply the method to investigate the regulatory motif adaptation under-

lying the convergent evolution of longevity and increased body size in mammals. We make

the tool publicly available to use for scalable computations of motif-level convergence signals.
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1.0 Introduction

A fundamental pursuit of modern biology is to uncover the genetic encodings of phe-

notypic variations. With the advancement of high throughput sequencing technologies, the

last decades have seen the flourishing of studies on genotype-to-phenotype mappings, which

have demonstrated success in various areas [124, 175, 215, 217, 269]. The diversity of traits

in the natural world also encompasses various depths of evolutionary timescales. For trait

variations that evolve over shallow timescales, such as variations in a population, traditional

population genetics approaches such as genome-wide association studies (GWAS) [246] can

usually be used for identifying genetic changes that are associated with the trait. However,

the utility of traditional genetics approaches decreases as we move to deeper evolutionary

timescales. Fortunately, recent years have seen a dramatic increase in the number of species

genomes that have been sequenced, such as the 240-way mammalian alignment produced by

the Zoonomia Project [5], the 1,107-way phylogeny of Ascomycota fungi [226], and others.

With this wealth of clade-level genomic data and the advancement of modern evolutionary

theories, it becomes possible to design statistical comparative algorithms to infer genotype-

to-phenotype mappings that are uniquely encoded through deep evolutionary time.

To uncover the genetic basis of an extreme trait, one could sequence the genome of

the species with the extreme trait and identify the loci that have diverged in association

with the trait. However, there can be millions of nucleotide differences between a species

and its closest relatives, and it would still be difficult to disentangle trait-associated loci

from lineage-specific nucleotide changes that are not relevant to the trait. One strategy

to overcome this challenge is to leverage on convergent traits, which are traits that have

independently evolved across multiple lineages in response to similar selection pressures.

In the realization of convergent traits, certain genomic changes repeatedly occurred across

independent clades over millions of years. These repeated occurrences thus provide “natural

biological replicates” of the evolution of trait, giving us the statistical power to detect the

convergent molecular signals associated with it.

This concept have given rise to numerous evolutionary-based comparative strategies for
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characterizing the genetic underpinnings of convergent phenotypes. Some of these approaches

detect divergence at specific amino acid or nucleotide positions [48, 53, 75], while other

strategies use evolutionary rate deviations of genomic regions from neutrality as a proxy

for selection [110, 128, 172, 188, 190]. Despite differences in approaches, a commonality

among these strategies is that they are built on the assumption that sequence conservation

is reflective of functional importance. For example, genes that contribute to the fitness of a

species in a new environment may evolve under increased selection constraint and exhibit a

strong sequence conservation, because mutations in the sequence can possibly be deleterious.

On the other hand, genes that provide a reduced contribution to the fitness of the species in

the new environment may evolve under relaxed constraint and accumulate more mutations.

This is a reasonable assumption for amino acid sequences or protein-coding regions for which

structural conservation is critical. The application of evolutionary-based methods to analyze

protein-coding sequences have indeed been largely successful [103, 128, 166, 187, 256].

However, other than the protein-coding regions themselves, other critical determinants

of gene expression differences that give rise to phenotypic diversity are the regulatory non-

coding elements that control transcription, such as enhancers and promoters. In fact, about

90% of single nucleotide polymorphisms (SNPs) identified by GWAS to be phenotype-

associated are located in non-coding regions [61, 84, 107, 167]. Despite their importance,

regulatory non-coding elements remain insufficiently characterized. The direct application of

conservation-based comparative genomics algorithms to regulatory elements can be difficult

because their working assumption of correlating conservation with function is often incom-

patible with the underlying grammar of regulatory elements. Typically, each enhancer or

promoter unit is modularly composed of numerous transcription factor (TF) binding motifs.

Each of these TFs may contribute differently to the activity of the element, which can also

facilitate pleitropic functions [134]. The modular structure and function of TF motifs allow

them to turn over rapidly [55, 171], possibly as a result of functional redundancies [267] or

compensatory mechanisms [171]. Effectively, regulatory elements tend to have low sequence

conservation [56, 220, 249] and homologous functional activity can still arise despite vast

differences in TF binding patterns [186, 258]. There are indeed some types of regulatory

elements that are perfectly conserved across species, such as ultraconserved enhancers [232].
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Even so, mutagenesis experiments showed that these elements were able to retain their func-

tion at high levels of sequence mutations [232]. All these observations suggest that different

segments of a regulatory element may have different phenotypic relevance, and therefore

experience different evolutionary pressures. Overall, the structural, functional, and evolu-

tionary properties of regulatory elements motivate an alternative perspective to the sequence

conservation-based design of conventional comparative genomic methods.

The increase in sequenced genomes greatly improves our statistical power to perform phy-

logenetic inference, but it also introduces new sets of challenges. A larger number of species

brings about a trade-off between high phylogenetic resolution and large variations in genome

data quality [105, 230]. There are stochastic variations in sequence yields across sample

libraries and true chromosomal changes such as insertions, deletions, invertions, or duplica-

tions that can introduce missing data in the resulting phylogenomic alignments. Missingness

can introduce systematic errors that can lead to false conclusions [105, 230], and there is a

lack of available methods for addressing this technical bias in a phylogenetic context.

Importantly, there is also a phylogenetic reasoning that motivates a rigorous handling

of biases in phylogenomic analysis. The evolutionary history of species evolution across a

phylogeny inherently contains a bias that is encoded by common ancestry. Species that share

a longer evolutionary history will tend to have more similar characteristics than species that

are more distantly related. As such, signals from phylogenomic analysis naturally contain a

complex pattern of phylogenetic non-independence. While there are parametric statistical

strategies that have been developed to address this phylogenetic bias [39, 73, 85, 88, 94,

106, 150], these strategies usually make strong assumptions about statistical distributions

and the generative evolutionary models of the datasets. In cases where the assumptions do

not match the true evolutionary process that produced the observed data, the application

of such correction strategies can further propagate systematic errors.

Finally, additional biases can arise from variations in base compositions – particularly

GC bias – be it among different genomes or across the chromosomes of a single genome

[207]. One of the reasons for GC bias is GC-biased gene conversion, an evolutionary process

in which the biochemical properties of nucleotides favor the conversion of A/T to G/C bases

in a non-adaptive way. Effectively, this mechanism often increases the substitution rate at
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the affected genomic regions such as recombination hotspots, which can often be confounded

for signals of positive selection [127, 207]. The finding that GC-biased substitution patterns

also affected some annotated human accelerated regions (HARs) suggests that this problem

also likely affects conserved non-coding elements [191]. All in all, the aforementioned sources

of biases would likely have an inflated effect on regulatory elements, especially due to their

short lengths (7-30bp) and their high tolerance for sequence variations.

This thesis seeks to address these issues by developing new statistically robust approaches

to elucidate mappings between regulatory elements and convergent phenotypes. We start

by introducing phylogenetic permulation, a set of novel statistical strategies for performing

empirical corrections of signals from phylogenomic analysis against biases from phyloge-

netic, technical, and biological origins. These calibration strategies subsequently become

the foundations to the development of two phylogenetic methods that modularly character-

ize TF-scale changes associated with the evolution of convergent traits. The first method,

phyloConverge, is an “alignment-based” method that uses generative nucleotide substitution

modeling to compute local convergent shifts in evolutionary rates of TF-scale nucleotide seg-

ments in conserved regulatory elements. The second method, AFconverge, is an “alignment-

free” method that detects trait-associated motif gains and losses in the flexible sequence

space of weakly conserved orthologs. In this dissertation, we will discuss the development

and application of these methods on various convergence cases, and illustrate new angles for

interrogating the adaptation patterns of regulatory elements to selection.
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2.0 Phylogenetic Permulations: a statistically rigorous approach to measure

confidence in associations in a phylogenetic context

2.1 Attribution statement

All of the work in this chapter was performed by myself, with the following exceptions:

• Development of permulations for continuous phenotypes, pathway permulations, and the

related analyses were done by Amanda Kowalczyk, Ph.D.

• Benchmarking analysis with Forward Genomics was performed by Luisa Cusick.

2.2 Introduction

Despite the availability of complete genomes for many species, identifying the genetic

elements responsible for a phenotype of interest is difficult because there are millions of ge-

netic differences between almost every pair of species. One strategy to link genotypes and

phenotypes is to take advantage of convergent evolutionary events in which multiple unre-

lated species have evolved similar characteristics. Such events represent natural biological

replicates of evolution during which species may have experienced similar genetic changes

driving similar phenotypic changes. When lineages independently evolve or lose a shared

phenotype, convergent molecular signals can be used to identify specific genetic elements

associated with the phenotypic shift.

Diverse analytic approaches have been developed to use convergent phenotypes to identify

specific genetic elements underlying a trait. The methods include analyzing convergent amino

acid substitutions [75] and convergent shifts in evolutionary rates [103, 110, 128, 195, 256],

as well as investigating convergent gene loss [103, 166]. Methods that analyze convergent

shifts in evolutionary rates (rather than convergence to any specific sequence) have been

particularly successful. We have previously developed one such method called RERconverge

[128, 188] to link genetic elements to convergently evolving phenotypes based on evolution
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across a sequence of interest. Our method has been successfully used to identify the genetic

basis of adaptation to a marine habitat [40], regression of ocular structures in a subterranean

habitat [187], and evolution of extreme lifespan and body size phenotypes [129] in mammals.

Other groups have developed similar methods for identifying convergent shifts in evolutionary

pressure. The Forward Genomics algorithm, which correlates percent sequence change along

a phylogeny with phenotypic changes [103, 195], has been used to identify genetic elements

underlying low levels of biliary phospholipid levels in horses and guinea pigs, the loss of

ability to synthesize vitamin C in some primates, bats, and guinea pigs, as well as the loss

of ocular structures in two independent subterranean mammals. Both RERconverge and

Forward Genomics involve a phylogenetic inference step and a subsequent test for phenotype

association. More sophisticated but computationally intensive methods that consider the

phenotype at the phylogenetic inference step have also been developed, notably PhyloAcc

[110], although these methods are difficult to scale to genome-wide analyses. A related

but distinct approach is to assess the association between gene loss (the limiting case of

relaxed evolutionary pressure) and convergent phenotypes. A recent study used phylogenetic

generalized least squares (PGLS) [88] to compute associations between gene losses and diverse

traits and found a large number of significant associations [195].

Importantly, these methods are often applied in a genome-wide discovery context. As

such, the general approach can be summarized as using a statistical test to calculate the

association between convergent phenotypes and some measure of molecular evolution (evo-

lutionary rate or gene loss) across a large number of genomic regions, followed by multiple

hypothesis testing corrections. If an enrichment of small p-values is observed, then it is pre-

sumed that some genes (or other genetic elements) are truly associated with the phenotype.

This conclusion rests on the assumption that under the null hypothesis of no association,

each data point is sampled independently from a common null distribution, in which case

uniform p-values would be observed. However, when applied to genome-scale datasets, phy-

logenetic methods often show atypical statistical behavior in which the expected uniform

distribution of p-values is not observed when using null phenotypes (Figure 2.1). For ex-

ample, the standard RERconverge analysis is anti-conservative when applied to the marine

phenotype but conservative when applied to the long-lived large-bodied phenotype. Forward
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Figure 2.1: Parametric p-values from phylogenetic analyses deviate from the expected uni-

form distribution when assessed on null phenotypes. Histograms comparing p-values ob-

tained using an observed phenotype (red) compared to p-values obtained from 500 (or more)

null phenotypes from permulations. We evaluate a binary phenotype (marine) and a continu-

ous phenotype (long-lived large-bodied) through RERconverge, a binary phenotype (marine)

through Forward Genomics, and a binary phenotype (marine) and a continuous phenotype

(long-lived and large-bodied) through PGLS with gene stop codon counts and noncoding

element STAT2 TFBS counts. In all cases, the empirical null from permulations (shown

in blue) is non-uniform. Since null p-value distributions are often non-uniform (shown in

blue), observed parametric p-values from standard statistical tests (shown in red) cannot be

interpreted using traditional strategies.

Genomics likewise produces large deviations from the expected null. This issue exists for

even the widely used PGLS method, which produces a near-uniform null when applied to

gene loss in long-lived large-bodied mammals, but an extremely skewed distribution when

applied to loss of transcription factor binding sites in the same phenotype.

The fact that a non-uniform null is observed for even the simple PGLS method demon-
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strates that deviations from the expected null cannot be explained by the phylogenetic

structure of the data alone, but can also result from other sources of dependence that arise

in the context of large multiple alignment datasets. Differences in genome quality [105],

nucleotide frequencies [207], a mis-specified phylogeny, or other unknown systematic effects

all create systematic biases which accumulate when the method is applied to thousands of

genomic regions. As such, even if the tests can be proven to be theoretically valid under some

assumptions (such as the well-understood PGLS model), they are not guaranteed to produce

the expected uniform distribution when applied repeatedly to data from the same multiple

sequence alignment. This deviation from the null expectation can result in overestimated

statistical confidence and produce spurious genotype-phenotype associations.

The problem is further compounded when results from genetic elements are aggregated at

the pathway level. Beyond the existing biases that arise from the nature of multiple sequence

alignments, geneset analyses suffer additional non-independence induced by the evolutionary

process itself. It is well established that genes that are functionally related experience corre-

lated evolutionary pressure and thus evolve in a dependent fashion [42, 43, 118]. One extreme

example of such coevolution is “reductive evolution”, where losing a member of interacting

proteins decreases the selection pressure for preserving its interacting partners [179]. As a

result of coevolution, many functionally related genes “travel in packs” in association with a

phenotype, meaning that if one gene in a group appears to be associated with a phenotype,

the other genes in the group will as well because they do not evolve independently. The re-

sult is that a function could appear as associated with the phenotype due to random chance

instead of actual involvement, causing an erroneous inference of enrichment.

The implication of coevolution is apparent when we apply standard pathway enrich-

ment analysis to gain insight into which groups of functionally related genes are overrepre-

sented among convergently evolving genes, as implemented in standard tools such as Go-

rilla, GO::TermFinder, and RERconverge enrichment functions [25, 58, 59, 128]. Figure 2.2

demonstrates how correlated evolutionary rates can cause problems in pathway enrichment

analyses. When genes are ranked based on gene-phenotype associations, coevolving genes

tend to have clustered ranks. Such clusters make it easier to observe enrichment of extreme

ranks, or coevolving genes that all have either high or low ranks, due to chance alone, and

8



Figure 2.2: Pathway enrichment statistics from RERconverge long-lived large-bodied anal-

yses demonstrate artificially inflated significance because genes in many pathways are non-

independent. Accordingly, null phenotypes from permulations often show false signals of

enrichment.

therefore the typical null expectation does not hold. Even when using a null phenotype,

genes appear to cluster at the extremes of the ranked list. The clustering, and resulting

enrichment, is caused by the genes “traveling in packs”, in which case simple enrichment

tests assign undue confidence to an essentially spurious enrichment.

Rigorous statistical handling needs to be employed to address these sources of bias.

Systematic solutions have been devised to correct issues with non-independence, both in

the contexts of quantitative genetics [2] and phylogenetics [236]. However, these system-

atic approaches often make assumptions on the evolutionary process or other distributional

assumptions, which may not accurately represent the data. We argue that an empirical ap-
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proach that is grounded in the observed data can provide better calibration against sources

of bias. In the context of gene expression, this problem is typically handled by performing

label permutations [152, 205, 240] and in certain cases parametric adjustments [261]. How-

ever, simple label permutations are not applicable to associations involving a phylogeny as

they would not preserve the underlying phylogenetic relationships, thereby producing false

positives.

Here, we develop a novel strategy that combines permutations and phylogenetic simula-

tions to generate null phenotypes, termed “permulations”. The strategy addresses statisti-

cal non-independence empirically by generating phenotype permutations from phylogenetic

simulations. In this way, the strategy preserves the underlying phylogenetic dependence by

sampling permutations from the correct covariance structure. It also more accurately mimics

the null expectation for a given phenotype by exactly matching the distribution of observed

phenotype values for continuous phenotypes and exactly matching the number and structure

of foreground branches (branches on which the phenotype changes) for binary phenotypes.

We use these “permulated” phenotypes to calculate empirical p-values for gene-phenotype

associations and pathway enrichment related to a phenotype. In doing so, we have cre-

ated a statistical pipeline that accurately reports confidence in relationships between genetic

elements and phenotypes at the level of both individual elements and pathways.

2.3 Materials and Methods

2.3.1 Permulations: A Hybrid Approach of Using Permutations and Phyloge-

netic Simulations to Generate Null Statistics

The goal of permulations is to empirically calibrate p-values from phylogenetic methods

by producing permutations of the phenotype tree that account for the structure in the data.

The permulation method requires a master species tree and a species phenotype (either

continuous or binary). The method then returns a set of phenotypes that are random but

preserve the phylogenetic dependence of the input phenotype. We typically generate 1,000
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such permulated phenotypes, which are then used in the framework of a certain phylogenetic

method (e.g., RERconverge) to compute gene-trait associations, resulting in 1,000 empirical

null statistics for each gene. Similarly, we can also run enrichment analyses using the permu-

lated phenotypes to produce 1,000 empirical null statistics for each pathway. Finally, for each

gene or pathway, we calculate the empirical p-value as the proportion of empirical null statis-

tics that are as extreme or more extreme than the observed parametric statistic for that gene

or pathway. Since empirical null statistics capture the true null distributions for genes and

pathways, the empirical p-values represent the confidence we have to reject the null hypothe-

ses of no association, correlation, or enrichment given the underlying structure of our data.

Note that permulations do not eliminate the need for multiple hypothesis correction; even

with a corrected null model, the likelihood that false discoveries are made from performing

multiple statistical inferences simultaneously still exists. Our permulation methods for binary

and continuous phenotypes have been included in the publicly available RERconverge pack-

age for R [128] (published on github at https://github.com/nclark-lab/RERconverge),

with a supplementary walkthrough also available as a vignette included in the RERconverge

package.

2.3.1.1 Phylogenetic Permulation for Continuous Phenotypes

For continuous traits, generating permulated phenotypes is a two-step process. First,

null phenotype values are simulated. Second, real phenotype values are assigned based on

the simulated values. In step one, given the master tree with branch lengths representing

average evolutionary rates and phenotype values for each species, we simulate a random

phenotype using the Brownian motion model of evolution. The Brownian motion model

takes a “random walk” down the master tree phylogeny to assign phenotype values. Since

more closely related species are a shorter “walk” from each other, they are more likely to

have more similar phenotype values than more distantly related species. In step two, real

phenotype values are assigned to species based on ranks of the simulated values. The species

with the highest simulated value is assigned the highest observed value, the species with

the second-highest simulated value is assigned the second highest observed value, and so on.
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Figure 2.3: Permulated phenotypes were generated by simulating phenotypes and then as-

signing observed phenotype values based on the rank of simulated values. Simulations were

performed using Brownian motion phylogenetic simulations and a phylogeny containing all

mammals with branch lengths representing the average evolutionary rate along that branch

genome-wide. For binary phenotypes, foreground branches for permulated phenotypes are

assigned based on the highest-ranked simulated values while preserving the phylogenetic re-

lationships between foregrounds. For continuous phenotypes, observed numeric values were

assigned directly to species based on ranks of simulated values.

By doing so, observed phenotypes are shuffled among species with respect to the underlying

phylogenetic relationships among the species. Since simulated values are more similar among

more closely related species compare to distantly related species, the newly reassigned real

values follow the same pattern (Figure 2.3).
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2.3.1.2 Phylogenetic Permulation for Binary Phenotypes

For binary traits, the critical feature is the number of foreground species and their

exact phylogenetic relationship, and hence the inferred number of phenotype-positive internal

nodes or equivalently phenotypic transitions. The two-step process proposed above does not

guarantee to perfectly preserve this structure. Instead, we employ a rejection sampling

strategy where the simulation is used to propose phenotypes which are accepted only if

they match the stricter requirements. Specifically, species are ranked based on simulated

values, and a set of top-ranked species chosen to match the number of foreground species

in the observed phenotype are proposed as a null phenotype. The proposed phenotype is

only accepted if it preserves the phylogenetic relationships among chosen foregrounds, as

observed in the actual foregrounds (Figure 2.3, Binary Phenotype). Using the simulation as

the proposed distribution ensures that phylogenetically dependent phenotypes are generated

and thus speeds up the construction of null phenotypes over what can be achieved from

random selection.

We present two binary permulation strategies: the complete case (CC) method and the

species subset match (SSM) method. The SSM method accounts for the fact that not all

genes have orthologs in all species while the CC method ignores species presence/absence

for simplicity. The strategies encompass the trade-off between computational feasibility and

statistical exactitude—in some cases, it may not be possible to perform the SSM method,

in which case the CC method is a viable alternative. The CC method is the first and

simpler strategy. The CC method performs permulations using the master tree in which

all species are present and therefore generates permulated trees that contain the complete

set of species. Since not all species will have sequences available for all genes and the CC

method produces one set of permulated phenotypes for all the genes, the exact number

of foreground and background species per genetic element may not be preserved because

of species presence/absence in those alignments (Figure 2.4). Thus, the CC method is an

imperfect but fast method to generate null phenotypes, but we recommend use of the SSM

method whenever feasible.

In contrast, the SSM method accounts for the presence/absence of species in different
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Figure 2.4: “Complete Case” and ”Species Subset Match” binary permulations. Examples

of toy binary phenotypes permulated using the complete case (CC) method or the species

subset match (SSM) method. For the CC method, top-ranked simulated values are assigned

as foreground branches regardless of gene-specific species absence. For the SSM method,

top-ranked simulated values are assigned as foreground branches after considering gene-

specific species absence so the number of foreground and background species for each gene

is consistent across every permulated phenotype. Note that in the case of genes with all

species present (e.g., Gene 1), CC and SSM methods are identical.
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gene trees. For each permulation, the SSM method generates separate null phenotypes for

each tree in the set of genetic elements. Since genetic element-specific trees contain exactly

the species that have that genetic element, the null phenotypes exactly match the observed

phenotypes for that genetic element in terms of number of foreground and background species

(Figure 2.4). Additionally, unlike the CC method, null phenotypes for a single permulation

iteration are distinct, and potentially unique, from each other because they are generated

on a genetic element-by-genetic element basis. Although the SSM method is statistically

more ideal than the CC method, it is much more computationally intensive and may not be

feasible for very large datasets. For example, the CC method took 7 seconds to produce 50

permulated traits for 200 genes, whereas the SSM method took 15.5 minutes.

2.3.2 Implementation of Permulation Methods

As shown in Figure 2.3, each permulated phenotype is generated by first performing a

phylogenetic simulation using an established phylogenetic topology. To generate the master

tree, whose branch lengths represent the average evolutionary rates of all genetic elements in

the dataset for each species, the function readTrees in RERconverge can be used. Next, the

master tree and the trait values (binary or continuous) are used to compute the expected

variance of the phenotype per unit time, and subsequently perform a Brownian motion

simulation to simulate branch lengths; the R package GEIGER [96] is used to perform both

operations. Simulated values are then used in different ways for binary and continuous

phenotypes to generate permulated phenotypes.

In RERconverge, CC and SSM permulations are performed using the getPermsBinary

function, by setting the argument “permmode” to “cc” or “ssm”, respectively. The function

requires the user to supply information on the original foreground species and their rela-

tionships by specifying 1) the names of the extant (tip) foreground species and 2) an R list

object containing pair(s) of sister species whose common ancestor(s) is to be included in the

foreground set as well. Using these inputs, the function infers the original phenotype tree and

assigns the phenotype values to the correct branches (1 for foreground, 0 for background),

which is subsequently used as constraints for the permulation. Phylogenetic simulations are
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then run using the master tree to assign simulated branch lengths to the tree branches.

For the CC permulation, the n tip branches with the highest trait values from the simula-

tion, where n is the number of observed tip foregrounds, are selected as the new foregrounds.

The function then calls the foreground2Tree function in RERconverge with “clade” set to

“all” to construct a binary tree with a foreground set that includes all branches (tip and

internal) in the foreground clades. A valid permulation has the same number of internal and

tip foreground branches as the original phenotype. Thus, permulated phenotypes with an

incorrect foreground configuration are rejected and phenotype generation is repeated until

the correct number of permulations is achieved. Note that the CC method uses the same

permulated phenotype for every genomic element, so statistics for some genes will not be

calculated for some permulations because of species presence/absence across genes. In other

words, some genes will have fewer total permulations because of the way permulated phe-

notypes are constructed. The exact number of foreground and background species may also

differ across each permulated phenotype for the same gene.

The SSM permulation matches the tree topology of the permulated phenotypes to the

tree of individual genes. To do this, the SSM permulation follows the same steps as described

above, with an additional step of trimming off branches that are missing in the gene tree. In

this case, the m longest tip branches (where m is the number of observed tip foregrounds in

the gene tree) are chosen as new tip foregrounds to run foreground2Tree. Thus, in the SSM

method, genes with different tree topologies will have different sets of permulations. However,

for each unique topology, the number and phylogenetic relationships of the foregrounds are

preserved. Figure 2.4 shows examples of CC- and SSM-permulated trees for 4 genes with

distinct topologies.

For the continuous phenotype, the function simpermvec generates a permulated pheno-

type given the original phenotype vector and the underlying phylogeny with appropriate

branch lengths. The master tree from the RERconverge readTrees function is appropriate

to use for simulations. In most cases, the user will not have to use the simpermvec function

directly—instead, the getPermsContinuous function that calculates null empirical p-values

for gene correlations and pathway enrichments will call simpermvec internally.

After calculating empirical null statistics and p-values, empirical p-values per gene are
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calculated by finding the proportion of null statistics from permulated phenotypes that are

as extreme or more extreme than the statistic calculated using the real phenotype. This

proportion represents the proportion of times that random chance produces a concordance

between gene and phenotype evolution that is as strong as the observed statistic, given

the underlying structure of the data. In RERconverge, the permpvalcor function calculates

the empirical p-values for a given set of permulation association statistics. Note that since

empirical p-values are a proportion of total permulations, the precision of empirical p-values is

based on the total number of permulations performed. For example, with 1,000 permulations,

the lowest reportable p-value is 0.001 and empirical p-values calculated as 0 must be reported

as <0.001 because we only have precision to report p-values to the thousandths place.

Finally, to determine the number of permulations that can provide sufficient correction

for systematic bias, the function plotPositivesFromPermulations can be used to plot how the

number of significantly accelerated or conserved genetic elements changes with increasing

number of permulations. From the generated plot, users can determine the minimum number

of permulations by evaluating when the number of positives start to stabilize.

2.3.3 Empirical p-values for Pathway Enrichment

Empirical null statistics and p-values for pathways are calculated using the empirical

null statistics and p-values for individual genes. For each set of empirical null statistics gen-

erated from a particular permulated phenotype, genes are assigned the log of the empirical

null p-value times the sign of the empirical null statistic for that permulation. Empirical null

pathway statistics are calculated for each permulation using those values with the RERcon-

verge function fastWilcoxGMTall that performs a Wilcoxon Rank-Sum test comparing values

from genes in a pathway to values in background genes. The function getEnrichPerms cal-

culates null enrichment statistics given a set of null correlation statistics, or, alternatively,

getPermsBinary and getPermsContinuous calculate both null correlation and null pathway

enrichment statistics simultaneously by default for the binary and continuous phenotypes, re-

spectively. Empirical p-values for pathway enrichment are then calculated as the proportion

of empirical null statistics that are as extreme or more extreme than the observed enrich-

17



ment statistic using the permpvalenrich function. Pathways that show significant parametric

p-values and non-significant empirical p-values are likely cases of genes “moving in packs”

and are not truly significantly enriched.

2.3.4 Phylogenetic Methods for Benchmarking

2.3.4.1 RERconverge

RERconverge finds associations between genetic elements and phenotypes by detecting

convergent evolutionary rate shifts in species with convergent phenotypes. The method op-

erates on any type of genetic element and has been used successfully for both protein-coding

and noncoding regions. Prior to running RERconverge, phylogenetic trees for each genetic

element are generated using the Phylogenetic Analysis by Maximum Likelihood (PAML)

program [268] or related method, with branch lengths that represent the number of sub-

stitutions that occurred between a species and its ancestor. Raw evolutionary rates are

converted to relative evolutionary rates (RERs) using RERconverge functions readTrees and

getAllResiduals, which normalize branches for average evolutionary rate along that branch

genome-wide and correct for the mean-variance relationship among branch lengths [188].

RERs and phenotype information are then supplied to correlateWithBinaryPhenotype or

correlateWithContinuousPhenotype functions to calculate element-phenotype associations.

Kendall’s τ associations are calculated for binary phenotypes, and Pearson correlation val-

ues are calculated for continuous phenotypes, both by default.

After calculating association statistics, signed log p-values for associations are used to

calculate pathway enrichment using the rank-based Wilcoxon Rank-Sum test. The fast-

WilcoxGMTAll function in RERconverge calculates pathway enrichment statistics over a list

of pathway annotations using all genes in a particular annotation set as the background.

2.3.4.2 Phylogenetic Generalized Least Squares (PGLS)

PGLS analyses were conducted through R as implemented in the “nlme” package using

the gls function. Within-group correlation structure was defined using the corBrownian
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function from the “ape” package and a master tree with branch lengths representing genome-

wide evolutionary rates per species.

2.3.5 Datasets for Method Evaluation

We evaluated the performance of our permulation methods by using RERconverge to

find genetic elements that demonstrated convergent acceleration of evolutionary rates in

association with convergent phenotypic adaptations that are well-characterized, namely the

evolution of the marine mammal phenotype [40, 166], the subterranean mammal phenotype

[187], and the long-lived large-bodied mammal phenotype [129]. For the remaining part of

this article, we will refer to these phenotypes as the marine phenotype, the subterranean

phenotype, and the long-lived large-bodied phenotype, respectively. We used the set of

protein-coding gene trees across 63 mammalian species previously computed by Partha et

al. [188]. These trees have the “Meredith+” tree topology [129] (Figure 2.5), a modification

of the tree topologies published by Meredith et al. [165] and Bininda-Emonds et al. [22],

resolved for their differences across various studies as originally reported by Meyer et al.

[166].

For the binary marine phenotype, we set three independent lineages as foreground species

that possessed the marine trait (blue branches in Figure 2.5, Binary Phenotype): pinnipeds

(Weddell seal, walrus), cetaceans (bottlenose dolphin, killer whale, the cetacean ancestor),

and sirenians (West Indian manatee) [40]. For the subterranean phenotype, we set as fore-

grounds three independent subterranean species for which high quality genomes were avail-

able in our dataset: naked mole-rat, star-nosed mole, and cape golden mole (red branches

in Figure 2.5, Binary Phenotype).

Finally, for the continuous long-lived large-bodied phenotype, we used the ”3L” trait as

defined in previous work [129]. The numerical phenotype was constructed by calculating the

first principal component (PC1) between body size and maximum lifespan across 61 mammal

species (Figure 2.5, Continuous Phenotype). PC1 therefore represents the agreement between

body size and lifespan—species like whales with long lifespans and large sizes have large

phenotype values and species like rodents with short lifespans and small sizes have small
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Figure 2.5: Meredith+ tree topology and the binary and continuous phenotypes evaluated.

Binary phenotypes include the marine mammal phenotype and the subterranean mammal

phenotype (foreground branches are indicated in blue and red, respectively). The continuous

phenotype evaluated is the long-lived large-bodied phenotype as constructed based on the

first principal component between species body size and maximum longevity.
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phenotype values. For example, killer whale, elephant, and rhino have the highest values

(2.63, 2.40, and 1.95) because they are both large and long-lived, whereas shrew, star-nosed

mole, and mouse have the smallest values (-2.62, -2.46, and -2.27) because they are small and

short-lived. Human, while longest-lived among the mammals included, has the fifth largest

value (1.87) because humans are relatively small compared to the other mammals. Likewise,

large grazing animals like cow also have smaller PC1 values (1.08, the 15th largest value)

because although cows are large, they are not very long-lived given their body size.

Noncoding regions were identified based on evolutionary convergence from phastCons

scores across the 63 mammal species as described here: https://github.com/nclark-lab/

RERconverge/blob/master/NoncodingRegionWorkflow. Stop codon calls per gene were

obtained from Meyer et al. [166] and were based on genome-wide calls across species.

TFBS calls were obtained using the HOCOMOCO STAT2 binding site motif based on

position weight matrix scores. Calls for 29,880 noncoding regions corresponding to human

chromosome 1 were used for analyses. Of those regions, 560 had a sufficient number of calls

and variation in calls across species to calculate PGLS statistics.

2.4 Results

2.4.1 Permulation of Binary Phenotypes Improved Power and Type I Error

Control

To evaluate the performance of the permulation methods compared to the parametric

method for binary phenotypes, we first used RERconverge to find genetic elements with

convergently accelerated evolutionary rates in species with the marine phenotype. We con-

sidered three p-value calculation methods: parametric, complete case (CC) permulations,

and species subset match (SSM) permulations. The resulting p-values were corrected for

multiple hypothesis testing using Storey’s correction [237]. We see in Figure 2.1 that the

parametric p-values for the association of genes with the observed marine phenotype (red

histogram) were enriched for small p-values. According to the standard parametric approach,
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which assumes a simple null hypothesis with uniformly distributed p-values, the enrichment

of low p-values indicated the possible presence of genes with evolutionary rate shifts that

were significantly correlated with marine adaptation. However, when we constructed the

empirical null p-value distribution using 1,000 permulations of the marine phenotype, the

null distribution of parametric p-values was not uniform. In fact, the enrichment of low

p-values was also present in the null distribution (blue histogram), albeit a lesser enrichment

than the observed, meaning that observing low p-values by chance was more likely than

expected. Thus, if we used standard multiple testing procedures directly on the parametric

p-values, we would identify more positive genes than the true number of positives, in other

words causing an undercorrection of p-values.

To demonstrate that our permulation strategy effectively corrected for the background

p-value distribution, we plotted similar histograms of the empirical p-values for the marine

phenotype versus 1,000 permulated phenotypes, generated from both CC and SSM permula-

tions. With permulations, we can see that while some enrichment of small empirical p-values

was observed for the marine phenotype, the empirical p-values for the null phenotypes were

almost perfectly uniform, meaning that our permulation methods were able to construct

the correct null distribution (Figure 2.6). When we overlaid the p-value histograms of the

parametric and empirical p-values for the marine phenotype, we can see that compared to

the parametric method, the histograms for the CC and SSM permulations had steeper slopes

at low p-values, indicating that the permulation methods had better Type I error control

(Figure 2.7A). Furthermore, the histograms for the permulation methods plateaued at higher

π0 than the parametric method, consistent with the postulation that the parametric method

would identify more (possibly false) positives. These findings were also observed when we

defined genes with significant evolutionary acceleration in marine mammals (i.e., “marine-

accelerated” genes) by setting a rejection threshold of Storey’s false discovery rate (FDR)

≤ 0.4 (the high threshold was set considering the high minimum FDR from the parametric

method), as shown in Figure 2.7B. For the permulation methods, as the number of permula-

tions increased, the number of identified marine-accelerated genes increased and eventually

stabilized after ∼400 permulations. The asymptotic numbers of marine-accelerated genes

identified by permulations (∼350 genes for CC permulation and ∼450 genes for SSM per-
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Figure 2.6: Histograms of empirical p-values computed for the marine phenotype (red) and

1,000 null phenotypes (blue) produced using (A) the Complete Case (CC) permulation and

(B) the Species Subset Match (SSM) permulation methods.

mulation) were much smaller than the ∼700 genes identified through parametric statistics,

demonstrating improved Type I error control.

Surprisingly, while the permulation methods identified fewer significantly accelerated re-

gions, we could have greater confidence in their significance. Figure 2.7C shows the minimum

FDRs achieved by the permulation methods with increasing number of permulations. The

figure shows that the permulation methods provided better control of FDRs compared to

the parametric method with only a few permulations (above ∼125 permulations). With

increasing permulations, the minimum FDR continued to drop to reach levels below 0.1 at

1000 permulations, while the minimum FDR from parametric statistics was higher at above

0.3. Use of the permulation null substantially improved the statistical power of the method

and provided much higher confidence in detecting true correlations between evolutionary

rate shifts and the convergent phenotype of interest.

Lastly, we found that permulation methods could identify marine-accelerated genes that

were missing in many species, i.e., genes with phylogenetic trees containing few species. In

contrast, the parametric method failed to identify any such gene (Figure 2.7D).
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Figure 2.7: Permulation of binary phenotypes corrects for inflation of statistical significance

in finding evolutionarily accelerated genes in marine mammals. (A) Histogram of paramet-

ric and permulation p-values for the marine phenotype from the parametric, the complete

case (CC) permulation, and the species subset match (SSM) permulation methods. (B)

Permulation methods identify fewer accelerated genes in marine mammals compared to the

parametric method, correcting for the inflation of significance. The rejection region of the

multiple hypothesis testing is set to be Storey’s FDR ≤ 0.4, considering the weak power

of the parametric method. (C) Binary permulation methods have greater statistical power

compared to the parametric method, as shown by the minimum false discovery rate (FDR)

calculated using Storey’s method. (D) Permulation methods can identify accelerated genes

that are missing in many species (gene tree size ≤ 30), whereas the parametric method fails

to do so.
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2.4.2 Binary Permulation Methods Improved Gene-level Detection of Func-

tional Enrichment

We have demonstrated that the permulation methods showed favorable statistical prop-

erties based on the distribution of p-values. We expected that this approach also improved

the biological signal of rate convergence analysis. To address this question, we asked if

the marine-accelerated genes identified by binary permulations were enriched for functions

that were consistent with the marine phenotype. Our group previously identified marine-

specific pseudogenes that should be undergoing accelerated evolution in marine mammals

due to relaxation of evolutionary constraint [166]. Putative pseudogenes associated with

marine mammals were identified using Bayes Traits software [184] to find signals of coevo-

lution between marine status and pseudogenization. In addition, our group also previously

found that marine-accelerated genes that evolved under relaxed constraint were enriched for

genes responsible for the loss of olfactory and gustatory functions [40]. Thus, to represent the

“ground truth”, we selected a collection of gene sets relevant to olfactory and gustatory func-

tions from the Mouse Genome Informatics (MGI) database and top-ranking marine-specific

pseudogenes with Bayes Traits FDR values less than 0.25.

We then performed the one-tailed Fisher’s exact test to measure the enrichment of the

functions in the marine-accelerated genes from the parametric and permulation methods.

The Fisher’s exact test odds ratios indeed showed that the CC and SSM permulation methods

generally magnified or maintained the effect sizes of enrichment across the gene sets compared

to the parametric method (Figure 2.8A). At worst, the permulation methods matched the

performance of the parametric method (e.g., “taste/olfaction phenotype” gene set). The

improved performance of the permulation methods was also demonstrated in the example

precision-recall curves for the marine-associated pseudogenes in Figure 2.8B.

To see if this observation generalized to other phenotypes, we repeated the whole anal-

ysis to find genes that were accelerated in species with the subterranean phenotype. As

subterranean-accelerated genes have been found to be enriched in ocular functions [187, 188,

195], we picked gene sets relevant to vision-related functions as the “ground truth”. In

general, the signals we obtained from RERconverge for the subterranean phenotype were
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Figure 2.8: Binary permulation methods have matching or improved power compared to the

parametric method in detecting enrichments of functions consistent with known phenotypes.

(A) Fisher’s exact test odds ratios showing that marine-accelerated genes identified by the

permulation methods have greater enrichment of gustatory genes, olfactory genes, and ma-

rine pseudogenes, compared to the parametric method. (B) Precision-recall curves for the

enrichment of the marine pseudogenes in the identified marine-accelerated genes. Greater

area under the curve (curves that have higher values on the left side of the plot) have greater

enrichment. (C) Fisher’s exact test odds ratios showing that subterranean-accelerated genes

identified by the permulation methods have greater or comparable enrichment of ocular

genes, compared to the parametric method. (D) Precision-recall curves for the enrichment

of the visual perception genes in the identified subterranean-accelerated genes.
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much weaker than in the marine phenotype case, but the enrichment was still captured in

the rankings of the genes. Similar to the marine phenotype, permulation methods generally

improved or matched the performance of the parametric method (Figures 2.8C-D).

2.4.3 Binary Permulation Method Corrects for False Positives in Related Ap-

proaches

In addition to performing permulations using RERconverge, we tested our methods us-

ing Forward Genomics and PGLS. Other methods, such as PhyloAcc, would require tens

of millions of computational hours to generate 500 permulations (from the analysis with

RERconverge, the number of identified accelerated genes plateaued after 400-500 permula-

tions were used (Figure 2.7B)), and thus permulations were not scalable to those analyses.

Forward Genomics [103, 195], like RERconverge, tests for an accelerated evolutionary rate

in a set of foreground species by correlating a normalized substitution rate with phenotypes

using Pearson correlation. It works only for binary phenotypes and has demonstrated success

in coding and non-coding elements. Forward Genomics ’ “global method” uses substitution

rate with respect to each tree’s root to correlate with trait loss and identify convergent relaxed

selection; therefore, it does not correct for evolutionary relatedness. The “local branch

method”, an improvement on the original approach, uses substitution rate with respect to

the most recent ancestor to identify relaxed selection, which substantially improves its power

[195]. We used the most recent version of both the global and the local methods to test for

associations between gene evolutionary rates and the binary marine phenotype.

Both global and local Forward Genomics methods had unusual p-value distributions. The

local method identified high proportion of positives with significant p-values (Figure 2.1),

while p-values from the global method were highly concentrated around 0.5 (global p-values

not shown). Adjusting for multiple testing further exaggerated this issue. For the global

method, due to the number of genes with very low p-values, the lowest possible Benjamini-

Hochberg (BH) corrected parametric p-value was 0.531, and for the local method, the lowest

possible corrected p-value was 0.465. For the local method, out of 18,797 genes, more than

half of the genes (12,438) had the lowest possible corrected parametric p-value. As such, it
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was impossible to designate a significance cut-off, because it would either include no genes

or include most of the genes. Applying the permulation strategy to Forward Genomics

output, we found that of the same set, 889 had corrected empirical p-values that were less

than or equal to 0.465 (the minimum observed corrected parametric p-value), allowing for a

more reasonable selection of a rejection threshold. Thus, permulation can improve statistical

performance even for a statistic with known flaws.

We further investigated our results from Forward Genomics at the pathway level in ad-

dition to analyzing results at the individual gene level. We used the marine pseudogenes

as a “ground truth” set of genes that should be undergoing accelerated evolution in ma-

rine species, to test our ability to detect pathway enrichment of these genes. As shown in

Figure 2.9A, the global and local parametric test statistics showed slight enrichment for ele-

ments that were pseudogenized in marine mammals, and the difference was improved when

empirical p-values were computed. Figure 2.9B shows the same data as precision-recall plots,

clearly demonstrating that the permulation correction improved the predictive power of both

methods.

Next, we tested the effect of permulations on PGLS results. PGLS tests for association

between two traits across species while adjusting for the phylogenetic relationships among

those species. In doing so, it numerically corrects for non-independence due to phylogenetic

relatedness. Note that unlike RERconverge and Forward Genomics, PGLS does not require

evolutionary rate information and is therefore a more generalized phylogenetic analysis.

We tested PGLS using both the binary marine and the continuous long-lived large-bodied

phenotype for coevolution with stop codon counts across genes. We additionally tested the

continuous phenotype for coevolution with STAT2 transcription factor binding site counts

across noncoding regions.

Like other methods, PGLS demonstrated unexpected null behavior that varied across

genomic datasets and phenotypes (Figure 2.1). Although the null distribution of p-values

for associations between the long-lived large-bodied phenotype and the stop codon counts

showed only a slight inflation of low p-values (5.2% of null p-values below 0.05) and oth-

erwise nearly uniform distribution, tests using the marine phenotype and the transcription

factor binding site counts showed much different behavior. Permulations for associations
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Figure 2.9: Binary permulation methods improve Forward Genomics ’ positive-predictive

value and power. (A) Distributions of Forward Genomics statistics and corresponding per-

mulation p-values for local and global methods. Both global and local statistics show slight

shifts (to the left for global statistics and to the right for local statistics) indicating enrich-

ment of marine mammal pseudogenes under accelerated evolution (global AUC=0.6235; local

AUC=0.6196). Permulation p-values show a more dramatic shift toward significant values for

marine pseudogenes under accelerated evolution for the global method (AUC=0.6653) and

about the same shift for the local method (AUC=0.6086) compared to parametric statis-

tics. (B) Precision-recall curves for the enrichment of pseudogenes in marine-accelerated

genes using parametric statistics and permulation p-values for both local and global meth-

ods. Permulated values represent a unique ranking in which ties in permulation p-values for

genes are broken based on parametric statistics. Permulation methods perform at least as

well as both global and local methods, indicated by curves that are higher at the left side of

the plot.
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between the marine phenotype and stop codon counts revealed that, although there might

appear to be a meaningful enrichment of low observed p-values, such enrichment was ob-

served even when analyzing permulated phenotypes. Conversely, although the enrichment of

low observed p-values appeared relatively less for associations between the long-lived large-

bodied phenotype and transcription factor binding site counts in non-coding regions, such

enrichment was indeed meaningful because it was greater than observed when analyzing per-

mulated phenotypes. Together, these observations indicate that PGLS may exhibit aberrant

statistical behaviors that the exact nature of the behaviors may vary greatly across datasets,

and that permulations are a valid strategy to identify and correct those behaviors.

2.4.4 Permulations Improve Power to Detect Genes Correlated with a Contin-

uous Phenotype

When we used RERconverge to evaluate the long-lived large-bodied mammal phenotype,

a continuous phenotype, we observed that the Type I error rate was in fact too low. We

demonstrated this by performing one thousand permulations to generate 1,000 null statistics

and p-values for each gene, calculating empirical p-values as the proportion of null statistics

that were as extreme or more extreme than the observed statistic per gene. As shown in

Figure 2.1, the parametric null p-value distribution for genes associated with the long-lived

large-bodied phenotype was non-uniform, and in fact sloped down at low p-values. This in-

dicates that observing small p-values due to chance alone happened less often in our dataset

than we would typically expect compared to the standard uniform expectation. In prac-

tice, the result of the non-uniform null was an overcorrection of parametric p-values using a

standard multiple hypothesis testing correction. In other words, for this dataset, corrected

parametric p-values were larger than they should be when using multiple hypothesis testing

correction (such as a Benjamini-Hochberg correction) that assumed a uniform null. The

null distribution of empirical p-values, however, did follow a standard uniform null by con-

struction, so Benjamini-Hochberg corrected empirical p-values represented our true, higher

confidence in a correlation between gene evolutionary rate and phenotypic evolution. We

observed this increased confidence in our data—after multiple hypothesis testing correction,
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only 24 parametric p-values remained significant at an α threshold of 0.15, while 305 em-

pirical p-values remained significant. Regardless of the increase in power, empirical p-values

provide a more accurate representation of confidence in rejecting the null hypothesis, and

thus are a more valid metric than parametric p-values.

2.4.5 Permulations Correct Pathway Enrichments for Genes with Correlated

Evolutionary Rates

After generating null p-values and statistics from permulations for either binary or con-

tinuous traits, those values can be used to calculate null pathway enrichment statistics.

Empirical p-values for pathways are then calculated as the proportion of null pathway en-

richment statistics as extreme or more extreme than the observed statistic. This procedure

corrects for gene sets with correlated evolutionary rates, that is genes whose rates will “travel

in packs” regardless of any relation to the phenotype (e.g., Figure 2.2). Such groups of genes

will tend to show enrichment more often than would be observed if the genes’ rates were in-

dependent after conditioning on phenotype, resulting in false signals of pathway enrichment.

Permulations account for the non-independence problem by explicitly incorporating it

into the null distribution used to calculate empirical p-values. In the demonstrated case of

the Coenzyme Q Complex, only one permulation out of the ten depicted shows enrichment

due to random chance (indicated by an asterisk * below the vertical bar in Figure 2.2), which

would correspond to an empirical p-value of 0.1 in this toy example. This interpretation is

identical to the standard p-value interpretation—-the proportion of times we expect to see

a statistic as extreme or more extreme than observed assuming that the null expectation is

true. In the case of permulations, we simply explicitly calculate the null expectation rather

than using a predefined distribution (t-distribution, F -distribution, etc.). In the case of

enrichment for a pathway with independent genes, the significance of the empirical p-value

will agree with the significance of the parametric p-value because the null expectation from

permulations agrees with the typical null expectation.

In the case of a pathway with genes with non-independent evolutionary rates, the em-

pirical p-value will be larger than the parametric p-value because the empirical p-value will
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Table 2.1: Top-enriched pathways with quickly evolving genes in association with the long-

lived large-bodied phenotype according to parametric p-values. Note that due to the number

of pathways, the lowest possible Benjamini-Hochberg corrected permulation p-value is 0.0913.

Bolded values show significance at α = 0.25. Note that many accelerated pathways that

appear to be enriched based on parametric p-values are not enriched based on permulation

p-values.

Pathway Statistic p-adjusted Perm p-adjusted

Olfactory Signaling 0.217 9.25e-43 0.199

GPCR Signaling 0.0606 8.34e-7 0.596

Biological Oxidations 0.150 1.10e-6 0.276

Valine and Isoleucine

Degradation

0.219 3.32e-5 0.354

Fatty Acid Metabolism 0.215 8.26e-5 0.352

penalize for non-independence. An example with “Structural Maintenance of Chromosomes”

genes shows that, although there is an apparent enrichment based on the observed pheno-

type, half (5 out of 10) of permulated phenotypes show at least as strong enrichment for an

empirical p-value of 0.5. Therefore, although the pathway does appear to be enriched from

parametric statistics, its enrichment is actually not exceptional given the null expectation

for that set of genes.

Empirical p-values are calculated for every pathway individually. Tables 2.1 and 2.2

shows top enriched pathways under accelerated evolution and decelerated evolution in asso-

ciation with the long-lived large-bodied phenotype. While most significantly enriched path-

ways under decelerated evolution based on parametric p-values also demonstrate significant

empirical p-values, many pathways under significant acceleration show non-significant empir-

ical p-values. Thus, this phenotype shows little evidence for accelerated pathway evolution

associated with phenotypic evolution.
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Table 2.2: Top-enriched pathways with slowly evolving genes in association with the long-

lived large-bodied phenotype according to parametric p-values. Note that due to the number

of pathways, the lowest possible Benjamini-Hochberg corrected permulation p-value is 0.0913.

Bolded values show significance at α = 0.25. Note that many accelerated pathways that

appear to be enriched based on parametric p-values are not enriched based on permulation

p-values.

Pathway Statistic p-adjusted Perm p-adjusted

Cytokine-Cytokine Recep-

tor Interaction

-0.181 3.40e-20 0.0913

Mitotic Cell Cycle -0.132 6.03e-12 0.213

Immune System -0.0600 1.54e-6 0.0913

DNA Replication -0.122 2.81e-6 0.352

Fanconi Anemia -0.212 4.45e-5 0.221

2.4.6 Comparison of Phylogenetic Simulations, Permutations, and Permula-

tions

Alternatives to permulations include either permutations or simulations alone. Permu-

tations involve randomly assigning phenotype values to species regardless of the underlying

phylogenetic relationships among those species. Meanwhile, simulations refer to the first

step of permulations—phenotype values are generated based on predicted phenotype evolu-

tion along the phylogenetic tree. However, unlike permulations, simulations do not include

reassigning the observed values based on simulated values, and thus do not preserve the

distribution of the original phenotype values.

At the pathway level, permulations result in p-values that are about equally as con-

servative as phylogenetic simulations alone and more conservative than permutations alone

(Figure 2.10). Both permulations and simulations are preferred to permutations because null

phenotypes generated from permulations or simulations reflect the underlying phylogenetic
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relationships among species, while null phenotypes from permutations do not. Therefore,

the empirical null generated from permulations or simulations more closely represents the

true null expectation for phenotype evolution. Although permulations and simulations show

similar performance, we prefer permulations because permulated phenotypes exactly match

the distribution of observed phenotypes, and thus create null phenotypes uniquely tailored to

a particular continuous phenotype of interest. Such matching eliminates statistical anoma-

lies that can arise due to discrepancies in range and distribution of permulated phenotypes

compared to observed phenotypes.

2.5 Discussion

We present permulations, a set of novel empirical methods to address problems of non-

independence and bias in phylogenetic analysis. The methods use phylogenetic relationships

among species alongside known values of an observed phenotype to inform Brownian motion

simulations from which permuted phenotypes are then generated. By doing so, the methods

empirically construct the possibly composite null distribution and account for this complex-

ity in multiple hypothesis testing. For permulation of binary phenotypes, the phylogenetic

characteristics preserved are the number of foreground branches and the underlying rela-

tionships among foreground branches. For continuous phenotypes, the exact distribution of

phenotype values is preserved in addition to the underlying phylogenetic relationships among

species.

From testing the strategy on binary and continuous phenotypes, we find that our per-

mulation strategy is an effective approach for overcoming challenges in multiple testing with

composite nulls in comparative phylogenetic studies. We discuss with examples how our

binary and continuous permulation methods fix issues of both undercorrection and over-

correction of p-values for specified phenotypes, and subsequently improve the quality and

confidence of prediction. Note that although our examples demonstrate the usefulness of

permulations, they are not necessarily representative of how empirical null distributions will

deviate from the typical null for all phenotypes over all phylogenies for all sets of genetic
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Figure 2.10: Permulations p-values are more conservative than permutation p-values and

about equally as conservative as simulation p-values. All plots demonstrate enrichment

for canonical pathways associated with the long-lived large-bodied phenotype. (A) Density

plots representing the empirical p-value distributions for the three methods to generate

null p-values. Permulation and simulation curves are very similar, while the permutation

curve demonstrates a stronger enrichment of low p-values and therefore less conservative p-

values. (B) Q-Q plots comparing empirical p-values from permulations to empirical p-values

from simulations and permutations also demonstrate that permulation p-values are more

conservative than permutation p-values and about equally as conservative as simulation p-

values.
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elements. In fact, we expect permulations to behave differently as those variables change,

and thus the best way to determine how permulations will affect a particular data set is to

run the permulation analyses.

Devising a systematic solution for such problems is difficult because the causes of complex

null distributions in phylogenetic studies can be confounding. The necessity for incorporating

phylogenetic information to correct for phylogenetic effects is well understood [73, 210, 236],

and some systematic solutions have been designed to tackle the problem, including Phylo-

genetic Independent Contrast (PIC) [73], Phylogenetic Generalized Least Squares (PGLS)

[88], phylogenetic autoregression [39, 85], and phylogenetic mixed models [94, 106, 150].

However, systematic solutions usually make phylogenetic or distributional assumptions that

can lead to inaccuracies if the assumptions do not accurately represent the data. For exam-

ple, PIC makes an assumption that the observed phenotype evolved by Brownian motion,

and it can lead to overcorrection when the selection giving rise to the observed data did

not actually cause strong phylogenetic effects [156]. In addition, phylogenetic mixed models

usually assume that evolution along the phylogeny follows a Brownian motion process and

that the resulting phenotype values are normally distributed. Without fully understanding

the underlying evolutionary mechanism, incorrect assumptions can lead to overcorrection or

undercorrection of statistical confidence. Empirically correcting p-values using permulation

methods allows us to circumvent the need to artificially deconstruct this unknown correlation

structure in the data. Importantly, while our permulation methods are based on Brownian

motion simulations, the simulated trait values themselves are not incorporated in the null

phenotypes, and instead are only used as a way to incorporate phylogenetic dependencies

in informing how trait values should be permuted across the phylogeny. In this sense, the

choice of simulation model is not important.

For binary phenotypes, our permulation methods choose permuted foreground sets by

matching the number of foregrounds and their underlying relationships to those observed in

the actual phenotype. This approach of defining null phenotypes can be justified by phy-

logenetic non-independence, a notion that arises from the implications of shared ancestry

[73]. At the time of divergence, closely related species diverging from a common ancestor are

likely to experience similar selective pressures as the ancestor as well as similar genetic pre-
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dispositions to respond to the selection pressures. With progressing evolutionary time, the

daughter species will evolve independently in response to their respective environments. Such

similarities in environmental pressures and genetic predispositions diminish with increasing

evolutionary distance between species, meaning that the variance in phenotype values will

increase with increasing divergence in evolutionary time. Considering this phylogenetic non-

independence and that adaptations to selection pressures are often assumed to be reflected

in evolutionary rates, it is reasonable to preserve the pattern of divergence between fore-

ground species to construct hypothetical null phenotypes, in finding correlations between

evolutionary rates and phenotypes. It is impossible to pick a new set of foreground branches

with perfectly matching divergence times, but matching divergence patterns can serve as a

justifiable workaround because the general implications of shared ancestry on phylogenetic

non-independence among the new set of foregrounds would apply in a similar way.

We developed two versions of permulation methods for binary phenotypes. The complete

case (CC) algorithm produces one permuted phenotype from the master tree to apply for

all genes simultaneously, while the species subset match (SSM) algorithm produces distinct

permuted trees for each gene, accounting for the differences in species membership in different

gene trees. This makes the CC method statistically imperfect. For example, a gene that is

missing in some species will have a phylogenetic tree that is missing some branches. Because

the CC method produces permuted trees from the master tree that contains all species, it

may not conserve the number and relationships of foregrounds across the permulations of

the example gene (e.g., genes 3 and 4 in Figure 2.4). In contrast, the SSM method accounts

for differences in numbers and patterns of foregrounds among different genes and addresses

each gene independently. This means that the SSM method is the ideal implementation

of our concept of binary permulations. However, the CC method is both computationally

much faster and accounts for the fact that existing comparative genomics methods take in

phenotype inputs in different forms. For example, Forward Genomics requires one phenotype

tree to apply for all genes, while HyPhy RELAX requires multiple phenotype trees with

matching topology to each gene. Regardless of the statistical flaw, our results demonstrate

that applying the CC method on Forward Genomics is beneficial for improving prediction

(Figure 2.9). The CC method is significantly faster than the SSM method because it only
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produces one permuted tree for each permulation, instead of a heterogeneous set of permuted

trees applying to different genes. Therefore, in the case of limited computational resources

or very large datasets in which using the SSM method is infeasible, the CC method can serve

as a good alternative.

Our results also demonstrate that binary permulations improve the sensitivity of RERcon-

verge to identify significantly accelerated genes that are missing in many species (Fig-

ure 2.7D), i.e., genes with small trees. Because of lower species numbers, genes with small

trees suffer from lower statistical power compared to genes with large trees (for example, the

number of ways to permute a small tree is much fewer compared to a large tree). As such,

pooling all the p-values together to perform multiple testing correction unfairly penalizes

genes with small trees. Calculating empirical p-values from multiple empirical permulations

is a way to correct for this imbalance in power by indirectly incorporating important co-

variates, which accounts for the number of foregrounds, backgrounds, and the ratio and

phylogenetic relationship between them. Indeed, the pooled null empirical p-values have

a uniform distribution (Figure 2.6), establishing the validity of applying standard multiple

testing methods to identify significant divergence in evolutionary rates. Future work can

evaluate if such benefits are similarly observed when applied to other comparative genomics

methods.

Permulations grant increased power to detect genes associated with a continuous pheno-

type as suggested by the shape of the empirical null distribution (Figure 2.1). When p-values

from permulations are compared with permutations or simulations of trait values, we find

that permulation p-values are more conservative than p-values from permutations alone, and

equally as conservative as p-values from simulations alone. This suggests that permulations

offer a valid alternative to phylogenetic simulations. Importantly, permulations preserve

the exact distribution and range of phenotype values, a critical characteristic related to the

power of the correlation calculated between gene evolution and phenotype evolution. Thus,

permulations more accurately match the power between observed and permulated statistics

compared to observed and simulated statistics.

Although many of our tests of the permulation strategy were performed using RERcon-

verge, permulations are applicable to any similar methods. When using permulations to cal-

38



culate empirical p-values using Forward Genomics, an alternative evolutionary rates-based

method, we show that we can quantify a realistic confidence level at which we believe a

gene is under accelerated evolution in a subset of species. Even when using the Forward

Genomics global method, a deprecated method that does not account for phylogenetic rela-

tionships among species, permulations improved the ability to detect accelerated evolution in

marine pseudogenes (Figure 2.9). The improvement is likely due to permulations indirectly

capturing phylogenetic information through their construction. For the Forward Genomics

local method, permulations captured realistic confidence levels without losing the ability to

detect accelerated evolution in marine pseudogenes. Theoretical p-values directly from the

Forward Genomics method (Figure 2.1) show over half of the genome under significantly

accelerated evolution related to the marine phenotype (12,438 out of 18,797 genes with the

lowest possible Benjamini Hochberg corrected p-value), which is biologically highly unlikely

[66, 67, 68, 130]. Permulations reduce the number of genes under significantly accelerated

evolutionary rates to a more modest number (889 genes if using the same confidence level

cut-off) to more accurately reflect both the biology of the system and our confidence in

identifying genes with significant evolutionary rate shifts.

Our permulations also reveal aberrant statistical behavior in PGLS. Designed to correct

for phylogenetic relatedness when testing for coevolution of traits, PGLS indeed demon-

strates a near-uniform empirical p-value distribution for one set of tests for coevolution of

the long-lived large-bodied phenotype and gene stop codon counts. However, the method’s

behavior is dramatically different when testing for coevolution of gene stop codon counts

with the binary marine phenotype. It likewise shows undesirable behavior when testing for

coevolution of STAT2 transcription factor binding site counts across non-coding regions.

In addition to revealing a non-uniform null, the exact identity of non-coding regions with

significant observed and permulation p-values is different, completely altering analysis re-

sults. These findings suggest that phylogenetic methods may behave in unexpected ways,

and permulations are a valid strategy to investigate those behaviors and perform appropriate

statistical corrections.

Finally, permulations demonstrate a crucial correction to pathway enrichment statistics

that corrects for coevolution among genes in a pathway of interest. Since pathways often con-
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tain functionally related genes that evolve at similar rates, performing pathway enrichment

treating each gene as an independent observation is statistically incorrect and will result

in erroneous conclusions. Performing permulations at the pathway level identifies pathways

that are falsely shown to be enriched and correctly quantifies the confidence at which we may

state that a pathway is enriched. We argue that a strategy like permulations is essential in

virtually all cases of pathway enrichment calculations to account for gene non-independence

driven by correlated evolutionary trends.

Overall, permulations are an important statistical consideration that should be under-

taken to accurately report results from evolutionary rates-based analyses as presented here.

Regardless of whether permulation allows for greater or fewer null hypothesis rejections at

a given threshold, they are an accurate depiction of statistical power given a data struc-

ture. In the absence of a known parametric null that accurately represents a data set, a

permulation-style approach is an important tool to calculate statistical confidence.
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3.0 phyloConverge: Prediction of local convergent shifts in evolutionary rates

underlying convergent phenotypes

3.1 Attribution statement

A pre-print of this chapter was posted on bioRxiv on May 4, 2022. All of the work in

this chapter was performed by myself, with the following exception:

• Identification of conserved transcription factor motif coordinates was performed byWeiguang

Mao, Ph.D.

3.2 Introduction

Decoding the genetic basis of complex phenotypes is a central goal of biology, and one

strategy for learning genotype-to-phenotype associations is by studying the genetic basis of

morphological adaptation. When species transition to a new environment, accompanying

shifts in selection pressures can cause numerous molecular changes that give rise to pheno-

typic alterations at the organismal level. Morphological and physiological adaptations are

enabled by changes in both protein-coding elements and regulatory elements that play key

roles in determining gene expression patterns in different contexts [33, 260].

With the wealth of sequenced species genomes that has been produced by high-throughput

sequencing, it is possible to identify the functional associations of genetic elements by com-

paring the sequences of species with an extreme phenotype with orthologous sequences in

other species. Convergent evolution is a useful phenomenon that allows us to distinguish

phenotype-associated evolutionary processes from lineage- or species-specific changes that

cannot be attributed to specific selection pressure. When independent lineages convergently

adapt to a common selection pressure, genetic elements that control the selected pheno-

types are likely to undergo similar selective shifts. Some genetic elements that experience

stronger selective constraints would shift to a slower evolutionary rate, while other genetic
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elements, such as those supporting functionality no longer needed in the new environment,

may experience relaxed constraints and accumulate more divergence. This relationship be-

tween selection and sequence conservation has given rise to parameter models for detect-

ing lineage-specific rate shifts [119, 228], as a successive step toward convergent rate shifts

across disjoint clades. The relationship between convergent phenotypes and convergent rate

shifts can be exploited to associate genetic elements with high-level phenotypic adapta-

tions. The utility of this comparative framework has been successfully demonstrated in

numerous studies [110, 129, 166, 187, 195, 208] and engendered several computational algo-

rithms [103, 110, 128, 155, 195]. Of the existing methods, Forward Genomics [103, 195] and

RERconverge [128, 188] stand out as having been applied at genome-wide scale to a variety

of different phenotypes.

The methods have demonstrated success in identifying genome-wide phenotypic associa-

tions for both protein-coding and non-coding elements, but their application to non-coding

regions is limited because such methods require a defined unit of non-coding sequence to op-

erate on. The typical strategy for defining non-coding units is to use PhastCons [227], which

segments the alignment into conserved regions. This approach produces a set of conserved

non-coding elements (CNEs) that represent putative regulatory elements (REs) and have a

size range of 50-500bp, much larger than a single transcription factor binding site (TFBS).

This disconnect between the CNE unit and the TFBS, which is the atomic unit of sequence

activity, poses specific challenges for evolutionary analysis.

REs typically contain multiple TFBS for different TFs (though often with some repeti-

tion) [145]. Detailed experiments on dissection of well-characterized REs have revealed that

the relationship between individual TFBS and the functional output of the RE is complex.

Ablating TFBSs may eliminate activity, change it, or have no effect [116, 176, 189, 223, 232].

Moreover, RE activity is itself multifactorial as many REs are pleiotropic and can drive

expression in seemingly unrelated contexts. These pleiotropic effects can occur via identical

TFs binding to identical sites, different TFs binding to identical sites, and different site

usage. All three scenarios have been observed [235]. From the perspective of genome-wide

evolutionary analysis of CNEs (which are computationally identified putative REs), indi-

vidual TFBSs may have different and possibly context-specific contributions to regulatory
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activity and thus have different evolutionary pressure and histories. It is thus quite likely

that phenotype-driven changes in evolutionary rate may be more localized than the typical

CNE length. As such, the information content across a given CNE may not be uniform,

making it necessary to interrogate genetic elements at a higher resolution. There is a need

for a computational strategy that allows us to scan a multiple sequence alignment (MSA)

and identify functional units of REs without prior definition of non-coding element units.

The common approach that is used by most alignment-based comparative genomics meth-

ods for identifying genomic elements underlying phenotypic convergence is to correlate phe-

notype values with metrics that quantify changes in substitution rates from neutrality. The

Forward Genomics branch method captures substitution rate shifts by computing sequence

divergence between each pair of parent-daughter nodes in the phylogeny and uses Pearson

correlation to measure association with phenotype changes at each branch [195]. RERcon-

verge [128, 188] and the phyloP framework in PHAST [190] both use maximum likelihood

estimation of evolutionary rates across the phylogeny and detect convergent rate shifts by

comparing element-specific trees against a null model, with different approaches. In phyloP,

a single neutral evolution model is used as a reference point for a likelihood ratio test (LRT)

performed to compare two maximum likelihood-estimated models, one that allows conver-

gent rate shifts in a subset of branches and one that assumes no convergent rate shifts exist.

Meanwhile, RERconverge estimates evolutionary tree models for each individual element

and quantifies rate shifts as the residuals from regressing out the tree against the null tree

averaged from all the elements. Unlike both of these methods that use a single reference null

model, PhyloAcc allows the estimation of variations in shift patterns by using a hierarchical

Bayesian modeling approach [110].

However, each of these methods comes with limitations. Apart from phyloP, most meth-

ods are not implemented in ways that make them computationally efficient to compute

local segments of an input element. For example, to score every nucleotide in a CNE, the

other methods would require constructing a multiple sequence alignment for each nucleotide,

followed by all the downstream computations for estimating the convergence signal of the

nucleotide. Therefore, these methods have limited capacity to make scalable and unsuper-

vised predictions of functional segments of CNEs. While the phyloP framework serves as a
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good foundation for building a scalable tool for performing large-scale scanning of regula-

tory elements, there is still a necessity to improve the robustness of the statistical predictions

of the method. A case in point is the fact that phyloP ’s LRT is not expected to produce

well-behaved p-values for the simple reason that the single parameter scaling model is an

oversimplification. In reality, there is considerable variation in evolutionary rates across

the genome. Thus, when scaling with respect to a single neutral tree, the most accurate

model would give each branch its own scaling parameter to account for local variation.

Consequently, increasing the number of parameters from one to two will often produce a

significantly better fit even in the absence of a specific foreground signal. Previous findings

also highlighted that phyloP is unable to differentiate strong signals produced by a single

branch versus strong signals from the convergence of multiple weaker branches [110], and

that it is not sufficiently powerful for analyzing short segments [190].

In addition, it has been previously noted that phylogenetic inference methods can produce

highly skewed statistics when testing the same hypothesis across a large collection of genetic

elements. This phenomenon is not specific to particular inference methods, and indeed even

occurs in the context of phylogenetic generalized least squares (PGLS), but is a general

problem that arises from the hypothesis having shared bias structure [94, 129, 210, 212,

236]. Such biases can arise from failing to completely account for phylogenetic dependence

[73] or systematic variation across genomes either of biological [64, 207, 245] or technical

[105] origin. When testing a single hypothesis genome-wide, these subtle effects induce

test dependency that results in highly skewed p-value distributions. Forward Genomics and

PhyloAcc have incorporated strategies to account for phylogenetic biases; Forward Genomics

removes phylogenetic non-independence by computing branch-specific sequence identities,

whereas PhyloAcc uses a Markov chain to estimate branch-specific changes in conservation

state such that the conservation state of a branch is only dependent on its parent branch.

However, a parametric approach can still fail at producing a healthy distribution of statistics

if the assumptions of the approach do not fit the true generative evolutionary process that

produces the observed data [212].

To address these challenges, we present phyloConverge, a fast comparative genomics

method that performs fine-grained local convergence analysis to identify genomic regions

44



associated with phenotypic convergence. Our method combines explicit parameterization

of evolutionary rate shifts and a phylogeny-aware trait permutation strategy to produce

unbiased convergent rate shift scores calibrated to the local context of the chromosomal

region. We show from benchmarking experiments using the convergence case of mammalian

adaptation to subterranean habitats that phyloConverge produces convergence predictions

with superior statistical robustness. We demonstrate that by computing local convergence

signals at TFBS motif-level, we learn functional signals in greater detail, capturing variations

in convergent rate shifts across fragments of a CNE in support of their possible involvement

in regulating different functions.

3.3 Materials and Methods

3.3.1 Design of phyloConverge

We propose a method called phyloConverge that combines the generative nucleotide sub-

stitution modeling capability of phyloP with an empirical strategy for correcting statistical

biases that have not been effectively captured by the two-parameter model, given a MSA

of a region (or a nucleotide position) of interest, a phylogenetic model of neutral nucleotide

substitution, and a defined set of convergent species (i.e., “foregrounds”). In phyloP, a con-

vergent rate shift is inferred by performing maximum likelihood estimation of two branch

scaling factors (Figure 3.1A). The first scaling factor ρ, which measures the phylogeny-wide

rate shift relative to the provided neutral tree, is analogous to the parameter used to compute

the widely used phyloP conservation track. An additional λ parameter measures evolution-

ary rate shifts that occur exclusively among the foregrounds relative to the entire phylogeny.

Given these definitions, evidence for rate convergence is quantified by a LRT comparing the

null hypothesis of constant scaling across both foreground and background (i.e., all branches

are uniformly scaled by ρo) against the alternative hypothesis that the foreground branches

are scaled by λ, in addition to the background scaling ρ1. After estimating these parame-

ters and performing hypothesis testing, the conservation/acceleration score is finally defined
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Figure 3.1: Workflow of phyloConverge. (A) Given input variables that include the set

of species with convergent phenotype (“foregrounds”), the neutral model of evolution, and

the multiple sequence alignment, phyloConverge combines generative nucleotide substitution

modeling and phylogeny-aware trait permutation to compute convergent rate shift scores that

are empirically corrected for statistical biases.(B) phyloConverge uses phylogenetic permu-

lation to produce null phenotypes that preserve the covariates in the observed phenotype,

namely the number of foregrounds and the foreground phylogenetic dependence.

by computing the negative log-likelihood of the LRT p-value, noting the magnitude of λ

(conservation if λ < 1, acceleration if λ > 1).

To correct for biases, we previously developed a phylogenetic trait permutation method

called permulation, a portmanteau of permutation and simulation [212]. Permulation is a

rejection sampling approach that uses Brownian motion simulations to produce multiple

46



“fake” (null) traits by selecting new sets of foreground species that are matched to the true

observed trait in terms of number of species and phylogenetic dependence (Figure 3.1B).

With these null traits, we can perform the equivalent of permutation tests to correct the test

statistics. We incorporate this trait permulation strategy into phyloConverge to produce n

null traits and use phyloP to compute the convergence scores for both the observed convergent

trait and the set of n null traits. Finally, we measure the corrected significance of rate shift by

computing an empirical p-value pcorr, defined as the proportion of the null phyloP scores that

are as extreme or more extreme than the phyloP score of the true phenotype. The corrected

convergent rate shift score scorr is then defined as the negative logarithm of pcorr, signed

by the direction of rate shift (deceleration or acceleration). Specifically, scorr > 0 denotes

stronger foreground conservation, whereas scorr < 0 denotes foreground acceleration.

While such a permutation test is important for accurately calibrating our confidence in

the identified genotype-phenotype associations, the main drawback is that it necessitates

a large number of computations to achieve a high p-value resolution, which increases run-

ning time significantly. To overcome this drawback, we adopted an adaptive permutation

strategy previously applied in expression quantitative trait loci (eQTL) analysis [253], which

balances p-value resolution against running time by pruning the number of permutations if

a certain significance threshold has been crossed and computing an adaptive p-value. This

adaptive approach indeed reduces the computational overhead greatly, without incurring a

loss in accuracy within the controlled significance level (Figure 3.2). phyloConverge also

measures the robustness of the convergence signals using a leave-one-out approach, in which

the parametric scoring with phyloP is repeated by removing one foreground species for each

repetition. Convergence signals are determined to be robust if the removal of one foreground

species does not immediately erase the signals or flip their direction.

3.3.2 Implementation details of phyloConverge

The input of phyloConverge includes a multiple sequence alignment (MSA), a phyloge-

netic model of neutral nucleotide substitution (which can be estimated from sites that are

expected to undergo neutral evolution, e.g., fourfold-degenerate sites), and the list of species
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Figure 3.2: Correlation between empirical p-values computed with adaptive permulations

versus the complete permulations, with maximum permulations and controlling for signifi-

cance level α of 0.05.

with the convergent phenotype. To quantify the uncorrected association score between the

evolutionary rate of a genetic element and the convergent phenotype, phyloConverge uses

the phyloP function in the RPHAST package [190, 111], specifying the “LRT” option as

the hypothesis testing method and the “CONACC” setting for the scoring method (positive

scores denote conservation, negative scores denote acceleration).

To empirically calibrate for statistical biases, phyloConverge performs permulations [212]

to produce numerous null or “fake” phenotypes that are phylogenetically constrained to the

generative model of the true phenotype (Figure 3.1B). We previously developed two permula-

tion strategies for binary phenotypes: the ‘complete case’ (CC) method, which produces null

phenotype trees from the complete topology, and the ‘species subset match’ (SSM) method,

which accounts for missing sequences in a particular MSA. While the SSM method is more

stable and accurate, the CC method is significantly faster, with comparable if slightly less

accuracy. For tractability, phyloConverge currently makes use of the CC method. After

numerous valid null phenotypes are obtained, phyloP is used to compute scores for each of
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the null phenotypes, such that a null distribution of phyloP scores for the given MSA is

obtained.

In such a permutation test, the significance of deviations from the expected value is

typically measured by computing empirical p-values that are defined as the proportion of

the null statistics that are as extreme or more extreme than the observed test statistic.

In a two-tailed test, these extreme values make up the area under the curve beyond the

observed statistic and the negative of the observed statistic. As phyloP defines acceleration

as a negative score and conservation as a positive score following the “CONACC” scoring

mode, the two tails of the null score distribution signify opposing directions of rate shift,

where the lower tail denotes acceleration and the upper tail denotes deceleration. Because

of this directionality and because the null distribution is not necessarily trivial or symmetric

(e.g., histogram in Figure 3.1A), we calculated the two-tailed empirical p-value pcorr using

the two-sided conditional p-value approach described by Kulinskaya [133], which transforms

one-sided p-values into equivalent, weighted two-sided p-values for symmetric or asymmetric

distributions. Suppose the distribution of null phyloP scores follows a strictly increasing

continuous cumulative distribution function F. Then, pcorr is computed as follows:

pcorr =
F (suncorr)

F (A)
1(suncorr ≤ 0)1(suncorr ≤ A)+

1− F (suncorr)

1− F (A)
1(suncorr ≥ 0)1(suncorr ≥ A).

(1)

where suncorr is the uncorrected score (computed by phyloP) for the observed phenotype

and A is the value that the null distribution is centered on. For our purposes, A was chosen

as the median of the null scores, such that the weights at both the left and right sides of A

were equal. Note that according to Equation 1, pcorr is only computed if there is agreement

between the placements suncorr relative to A and zero, respectively. Subsequently, the bias-

corrected conservation/acceleration score scorr is computed as the negative logarithm of pcorr,

signed by the relative position of suncorr with respect to A, as follows:

scorr = − log10 pcorrsign(suncorr). (2)
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Finally, to improve the computational tractability of permulations, we incorporated a

simple strategy to adaptively terminate permulations when a target significance threshold

had been reached. For example, suppose we would like to control for significance threshold

α = 0.05 with a maximum of 1000 permutations. For a genetic element to be significantly

associated with the convergent trait, there can only be a maximum of 50 null scores that

are as extreme or more extreme than the observed uncorrected score. Formally, suppose

we want to control the test for a significance level of α, and we set a maximum of N

permulations. Denoting S
′
as the set of computed null statistics, for a hypothesis to be

statistically significant at α significance level, the maximum number of null statistics that

are as extreme or more extreme than the true statistic, suncorr, is therefore αN , defined as

the “pruning” threshold. At every permulation iteration i, we track whether the pruning

threshold has been reached, given the value of the median of the null distribution at iteration

i, Ai. If the threshold has been reached, the adaptive pcorr is computed by modifying

Equation 1 as follows:

pcorr =
min

(
αN + 1,

∑
s′∈S′ 1(s′ ≤ suncorr)P + 1(s′ ≥ suncorr)Q+ 1

)
min

(
N + 1,

∑
s′∈S′ 1(s′ ≤ Ai)P + 1(s′ ≥ Ai)Q+ 1

) ,

where P = 1(suncorr ≤ Ai)1(suncorr ≤ 0)

Q = 1(suncorr ≥ Ai)1(suncorr ≥ 0)

(3)

The addition of “+1” to each term is done to correct the tail ends of the distribution. The

approach indeed offers remarkable improvements in speed – parallelizing over 60 cores on one

compute node with 95GB memory, the scoring of ∼36,000 CNEs with 500 permulations can

be completed in ∼1.5 hours. Using ∼5,000 randomly selected subset of the CNEs dataset and

the subterranean foregrounds, the empirical p-values calculated from all 500 permulations

(ptotal) and the adaptive empirical p-values (pcorr) computed to control significance levels α

of 0.05 correlate very well (Pearson’s R = 0.978, p-value < 2.22e−16), with negligible loss in

resolution within the significance level that is controlled (Figure 3.2). However, we note the

necessity for weighing the trade-off between the maximum number of permulations and the

α level to control for. For example, with a maximum of 500 permulations, setting α = 0.01

means that only a maximum of 5 extreme null scores are allowed such that the computations
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may be prematurely terminated. In such cases, the performance of adaptive permulation may

suffer, because stochasticity can cause premature termination of the permulations. The R

implementation of phyloConverge is available on GitHub (https://github.com/ECSaputra/

phyloConverge).

3.3.3 Dataset construction

To benchmark our method, we used a dataset previously produced by Roscito et al. [208],

which contains a multiple genome alignment for 24 species. The 24-way phylogeny contains 4

subterranean mammal lineages: naked mole rat, cape golden mole, star-nosed mole, and the

blind mole rat (Figure 3.3). Roscito et al. identified 491,576 conserved non-coding elements

(CNEs) by using the PhastCons [227] tool to identify conserved elements that aligned well

among at least 15 species. We extracted the MSA of each CNE from the multiple genome

alignment using the sub.msa function in the RPHAST package. Additionally, to construct

MSAs of genes from the alignment, we obtained the CDS coordinates of the genes in the

mm10 NCBI RefSeq annotations. The sub.msa function was similarly used to extract the

alignments corresponding to the CDS coordinates, and the CDS alignments of each gene

were concatenated using the concat.msa function in RPHAST.

To prepare CNE-specific trees for benchmarking with the RERconverge software, we used

phangorn [218] to estimate the maximum likelihood tree for each CNE. The readTrees func-

tion in RERconverge was then used to read the CNE-specific trees into a multiPhylo object

and compute a master tree with branch lengths that were averaged from the corresponding

branches across all CNE trees.

3.3.4 Transcription factor binding site (TFBS) motif calling

Genome-wide scanning for possible TFBS motifs was performed using PWMScan [3].

The parameters for PWMScan include the genome assembly of interest, the position weight

matrix (PWM) of the motif of interest, and a threshold cutoff for calling the TFBS motif. We

obtained the PWMs of 771 TFBS motifs from the HOCOMOCO database (version 11) [132].

We then used motifDiverge [126] to compute the background frequency of each nucleotide
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Figure 3.3: Phylogeny of benchmarking dataset.
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based on the probability matrix of a given TFBS and infer the PWM matrix of each TFBS

and the TFBS calling cutoff to use (set to control Type I error rate below 10−5). Using these

input parameters, we previously made the genome-wide TFBS calls for other uses with the

human hg19 coordinate from the UCSC Genome Browser [121]. These genome-wide calls

were then lifted over to the mouse mm10 coordinate using the liftOver tool from UCSC

[131]. Finally, the set of conserved TFBS motifs were identified by intersecting the TFBS

coordinates with the CNE coordinates using BEDTools [199].

3.3.5 Identification of tissue-specific “marker” open chromatin regions (OCRs)

To evaluate the functional enrichments of top-ranking subterranean-accelerated CNEs,

we computed the correlations between the CNEs with tissue-specific, “marker” open chro-

matin regions (OCRs) in mouse tissues. For mouse embryonic tissues, we compiled publicly

available ATAC-seq datasets (see Table 3.1 for identifiers). The marker OCRs for the whole

eye, retina, and lens were taken directly from Supplementary Data 16 of Roscito et al [208].

For the remaining tissues, the datasets with multiple replicates were first pre-processed by

identifying consensus regions (regions that were present across at least 2 replicates) using

the GenomicRanges package in R [137]. Subsequently, the marker OCRs of each given tissue

were obtained by subtracting regions that were open in any other tissue from the tissue of

interest using BEDTools.

We also used the chromatin accessibility atlas across adult mouse tissues [144]. Given

that the dataset was presented in the format of consensus peaks, we first identified the OCRs

in each tissue by setting the 80th percentile of the read count distribution as a threshold.

Then, we identified the marker OCRs of each given tissue by subtracting regions that were

open in at least 80% of the other tissues. Finally, the regions were lifted over from the mm9

to the mm10 coordinates.

3.3.6 Benchmarking phyloConverge against existing methods

We first used phyloConverge, phyloP, and RERconverge+permulation to compute the

convergence scores of the set of CNEs produced by Roscito et al. For phyloConverge and
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Table 3.1: List of publicly available datasets used for validation.

Dataset Source

Mouse embryonic ATAC-seq, whole eye E11.5 Roscito et al. [208]

Mouse embryonic ATAC-seq, retina E14.5 Roscito et al. [208]

Mouse embryonic ATAC-seq, lens E14.5 Roscito et al. [208]

Mouse embryonic ATAC-seq, midbrain E11.5 Roscito et al. [208]

Mouse embryonic ATAC-seq, limb E11.5 Roscito et al. [208]

Mouse embryonic ATAC-seq, kidney E14.5 Roscito et al. [208]

Mouse embryonic ATAC-seq, liver E14.5 Roscito et al. [208]

Mouse embryonic ATAC-seq, heart E14.5 Roscito et al. [208]

Adult mouse ATAC-seq Liu et al. [144], Count

matrix obtained from:

https://doi.org/10.6084/

m9.figshare.c.4436264.v1

Mouse retinal single nuclei ATAC-seq Norrie et al. [177], scATAC-

seq GEO Accession number:

GSM4995565, scRNA-seq GEO

Accession number: GSE164044

Retinal tissue marker genes Macosko et al. [151] (Table S4)
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RERconverge+permulation, 500 null phenotypes were used. For each method, the top

∼9,400 CNEs were identified by selecting the appropriate threshold that would result in

a set with a comparable size to the set produced by Roscito et al., specifically 9,428 CNEs

with p-value ≤ 0.032 for phyloConverge, 9,455 CNEs with p-value ≤ 0.05 for RERconverge,

and 9,325 CNEs with suncorr ≤ -5.1 for phyloP. For the coding region analysis with phylo-

Converge, the same threshold of p-value ≤ 0.032 was used to select the top-ranking coding

regions.

We applied the random subsampling strategy previously used by Roscito et al. to com-

pute correlations between subterranean-accelerated CNEs with marker OCRs. Before com-

puting correlations, we merged nearby subterranean-accelerated CNEs that were within 50bp

apart to correct for inflation of significance resulting from multiple CNEs that were very close

together. Afterwards, for each tissue, we used BEDTools to find the number of intersections

between the marker OCRs of the tissue and the subterranean-accelerated CNEs. We then

subsampled 1,000 matched-sized sets of randomly selected CNEs from the total set of CNEs

and similarly found the number of intersections with the marker OCRs to obtain the null

distribution. The strength of correlation between the subterranean-accelerated CNEs and

the marker OCRs were quantified as the Z-score computed with respect to the null distribu-

tion. This analysis was performed for the top-ranking subterranean-accelerated CNEs from

the four methods tested.

To quantify the agreement between two sets of top-ranking subterranean-accelerated

CNEs identified by two different comparative methods, we first noted the number of over-

lapping CNEs between the two sets using BEDTools. Then, we subsampled two sets of

randomly selected CNEs from the total set, containing matching numbers of CNEs as the

two actual sets, and similarly noted the number of overlapping CNEs. We performed the

random subsampling 1,000 times to obtain a null distribution of the number of overlapping

CNEs between two randomly selected sets of CNEs with the given sizes. The actual number

of overlaps was then converted to a Z-score with respect to the null distribution.
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3.3.7 Functional enrichment analysis

To associate subterranean-accelerated CNEs with genes, we used the Genomic Regions

Enrichment of Annotations Tool (GREAT ) [162], specifically with the R package rGREAT

[90]. GREAT associates genes with proximal or distal CNEs using a default association

rule called “basal-with-extension”. GREAT first determines a “basal regulatory region”

around each gene, defined as the window within 1kb downstream and 5kb upstream of

the transcription start site (TSS) regardless of overlaps with neighboring genes. Then, the

regulatory domain of the gene is extended until it overlaps the basal regulatory region of

neighboring genes, up to 1Mb both upstream and downstream. Afterwards, using the set

of subterranean-accelerated CNEs as the ‘foreground regions’ and the total CNEs as the

‘background regions’, GREAT performs hypergeometric tests to compute the enrichments for

foreground regions in each gene’s regulatory domain, relative to the superset of background

regions. We used GREAT to evaluate the enrichments for 21,395 Ensembl genes and set the

significance cutoff as Benjamini-Hochberg adjusted p-value ≤ 0.05.

After identifying genes that were significantly enriched for subterranean-accelerated CNEs,

we performed enrichment analysis on 1,330 genesets in the canonical pathways using the gene-

CNE associations. First, for each given geneset, we determined the number of foreground

CNEs and background CNEs that were associated with members of the geneset. Then, as in

GREAT, we used Fisher’s exact test to compute the probability of observing the number of

geneset-associated foregrounds and geneset-associated backgrounds given the total number

of foreground and background CNEs. We set p-value ≤ 0.05 as a significance cutoff and used

Storey’s q-value method [237], with the qvalue package in R, to compute the corresponding

false discovery rate.

We also performed enrichment analysis on the canonical pathways for the coding regions.

Fisher’s exact test was used to compute the probability of observing the number of acceler-

ated coding regions and background coding regions that overlapped members of a geneset

given the total number of accelerated coding regions. Empirical correction was performed

by permuting the foreground coding regions 1,000 times and performing Fisher’s exact test.

Similar to the CNEs, the significance cutoff was set as permutation p-value ≤ 0.05.
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3.3.8 Enrichment analysis on retinal cell-type-specific marker genes and marker

OCRs

We performed enrichment analysis on the top-ranking genes that were subterranean-

accelerated in the coding regions using the retinal tissue-specific marker genes produced in

Macosko et al. [151] as validation datasets. To perform enrichment analysis on the top-

ranking subterranean-accelerated CNEs, we used a dataset of single cell ATAC-seq regions

across different retinal tissues [177]. Clustering of single cells was performed using Seurat

[95] and Signac [239] for the single cell RNA-seq and single cell ATAC-seq data, respectively,

and tissue type assignments were made by integrating the multimodal datasets and transfer-

ring the single cell RNA-seq cluster labels to the corresponding single cell ATAC-seq clusters

[238]. Cell type-specific marker OCRs were finally defined by finding the differentially ac-

cessible ATAC-seq peaks for the five resulting clusters (rods, cones, bipolar cells, amacrine

cells, Müller glia). For both the coding and non-coding analysis, enrichment analysis was

performed using the hypergeometric test. The cutoff for significant enrichment was set as

Benjamini-Hochberg adjusted hypergeometric p-value ≤ 0.05.

3.3.9 TFBS motif-level convergence analysis

We used phyloConverge to compute convergence scores for individual conserved TFBS

motifs that overlapped CNEs. Setting permulation p-value threshold ≤ 0.05 and with leave-

one-out filtering, we identified 42,477 significantly accelerated motifs and 81,101 significantly

decelerated motifs. To identify CNEs that underwent significant changes in motif content

due to selection pressures (“motif-enriched”), we performed enrichment analysis to iden-

tify 3 categories of CNEs: (1) CNEs that were significantly enriched for accelerated motifs

(“motif-accelerated CNEs”), (2) CNEs that were significantly enriched for decelerated mo-

tifs (“motif-decelerated CNEs”), and (3) CNEs that were significantly accelerated for both

accelerated and decelerated motifs (“mixed-motif CNEs”). Enrichment analysis was per-

formed using Fisher’s exact test. Specifically, if we define the foreground motifs to be (1)

the significantly accelerated motifs for the motif-accelerated category, (2) the significantly

decelerated motifs for the motif-decelerated category, and (3) the significantly accelerated
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and decelerated motifs for the mixed-motif category, we tested the probability of observing m

foreground motifs out of the n motifs in a CNE, given the total number of foreground motifs

and the total number of conserved motifs. The significance threshold was set as Fisher’s

p-value ≤ 0.05. After the sets of motif-enriched CNEs were identified, functional enrichment

analysis for each CNE set was performed using the GREAT tool. For this analysis, we used

the Gene Ontology Biological Process, Cell Component, and Molecular Functions annota-

tions, and significantly enriched annotations were identified by setting FDR ≤ 0.1 for both

the binomial test and the hypergeometric test performed by GREAT.

To identify TFs whose binding motifs exhibit global convergence signals, we used Fisher’s

exact test to compute the enrichment for a given TF in the set of 42,477 significantly acceler-

ated motifs and the set of 81,101 significantly decelerated motifs, respectively. For example,

to compute the enrichment for TFBS A in the set of all significantly accelerated motifs,

we computed the probability of observing nA significantly accelerated motif A out of the

42,477 significantly accelerated motifs, given that there were a total of NA TFBS calls for

motif A and NT total TFBS calls genome-wide. Motifs with global convergence signals were

identified by setting Fisher’s p-value ≤ 0.05. Pathway enrichment analysis of the motifs

with global acceleration/deceleration signal was performed using GREAT, specifically using

the Reactome pathway annotations. Significantly enriched annotations were identified by

setting FDR ≤ 0.05 for both the binomial test and the hypergeometric test.

Finally, motif-specific functional enrichment analysis was also performed using GREAT

with the Reactome pathway annotations, with FDR ≤ 0.05 for both the binomial and hy-

pergeometric tests. Correlations between significantly enriched annotations were identified

by empirically computing the probability of observing n number of overlapping genes be-

tween a pair of annotations, relative to the null distribution of overlaps between a randomly

selected pair of gene sets with matching sizes to the annotations of interest. The significance

threshold for the correlations was set as empirical p-value ≤ 0.05.
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3.3.10 Unsupervised prediction of TFBS-scale segments with convergent rate

shift

We use the scanWithPhyloConverge function in the phyloConverge software to scan each

CNE with a sliding window of ±5bp and compute the convergence signal of each window. In

other words, each nucleotide is scored using an 11bp window surrounding it, to approximate

the size of a TFBS motif. To define significantly accelerated or decelerated segments, we first

identified the nucleotides that have permulation p-values ≤ 0.05 and are robust based on

leave-one-out filtering. Then, each unit of a contiguous segment is identified by combining

consecutive nucleotide positions that passes these filters, and then extending the segment by

±5bp.

Of the identified segments, the sets of known and new accelerated/decelerated segments

were identified by using the intersect function of BEDTools. De novo motif discovery on the

new accelerated/decelerated segments was performed using the STREME tool in the MEME

suite [13]. The training stage was conducted using the default approach of using a p-value

threshold of 0.05, while the “patience” parameter was set at 5000, meaning that the discovery

process was terminated if 5000 consecutive motifs had p-values > 0.05. Significantly enriched

motifs were identified by setting an E-value threshold of 0.5. Finally, the TomTom motif

comparison tool [92] was used to evaluate whether the enriched motifs significantly matched

known consensus motifs.

3.4 Results

3.4.1 Benchmarking phyloConverge on the convergent adaptation of subter-

ranean mammals

Because it is not well understood how convergent adaptations interact with other factors

to engender the sequence patterns observed in REs, it is not possible to construct simulated

datasets that can reliably represent real sequences. Thus, we benchmark phyloConverge using

a well-characterized convergent trait, the subterranean mammal habitat. We use a dataset
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that was previously analyzed by Roscito et al. [208], which contains a MSA of 24 species

including 4 subterranean mammal lineages: the naked mole rat, the cape golden mole, the

star-nosed mole, and the blind mole rat (Figure 3.3). Using the PhastCons tool [227], Roscito

et al. had previously computed 491,576 conserved non-coding elements (CNEs) that align

well among at least 15 species in the phylogeny and used the Forward Genomics “branch”

method [195] to identify 9,364 “subterranean-accelerated” CNEs. Using this dataset, we

benchmark the performance of phyloConverge against three competing methods: phyloP ‘s

“branch” method, RERconverge with permulation, and Forward Genomics branch method.

Because some of the other methods cannot score a given sequence in segments, in this

benchmarking experiment, phyloConverge scores are computed by fitting the entire CNE

sequence to ensure fair comparison.

We score the 491,576 CNEs for acceleration using phyloConverge, phyloP, and RERcon-

verge. To benchmark the CNE rankings produced by the different methods, we identify

the top ∼9,400 subterranean-accelerated CNEs computed by each method to approximately

match the size identified by Roscito et al. Comparing the four size-matched sets of top-

ranking CNEs identified by the four methods, only 609 CNEs (∼6.5% of each set) are com-

monly identified by all four methods (Figure 3.4A). Notably, phyloConverge and RERcon-

verge identify 5,240 (∼55.5%) common CNEs, which is considerably higher than any other

pair (17.6% -28%). phyloConverge and RERconverge are quite different in their model spec-

ifications, while the statistical testing procedures with RERconverge and Forward Genomics

are more conceptually similar. The main point of similarity between RERconverge and phy-

loConverge in this analysis is that both rely on maximum likelihood estimates of evolutionary

rates and both use the permulation bias correction, suggesting that these features drive the

observed overlap. We highlight that given the large sample space of 491,576 CNEs, the over-

laps between the sets are statistically significant compared to random chance (Figure 3.4B).

Additionally, we note that among these top-ranking CNEs, the permulation p-values of phy-

loConverge hits are smaller than the RERconverge hits (Figure 3.4C). Given that the same

set of permulated phenotypes are used in both the phyloConverge and RERconverge analysis,

this means that the chance of wrongly rejecting the null hypothesis of no phenotype associa-

tion is smaller for top phyloConverge hits than RERconverge, suggesting that phyloConverge
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Figure 3.4: Benchmarking phyloConverge’s statistical performance. (A) Venn dia-

gram showing overlaps among the top ∼9,400 subterranean-accelerated conserved non-

coding elements (CNEs) identified by phyloConverge, phyloP ’s “branch” method, RERcon-

verge+permulation, and Forward Genomics ’s “branch” method. (B) Overlaps between top-

ranking subterranean-accelerated CNEs identified by the four methods show very strong

statistical significance. (C) Boxplots showing the distribution of permulation p-values of the

top ∼9,400 CNEs from phyloConverge and RERconverge. (D) Convergence signals predicted

by phyloConverge are more robust than phyloP “branch” method.

provides better Type I error control compared to RERconverge. We also compare the ro-

bustness of convergence signals of the top accelerated CNEs identified by phyloConverge and

phyloP. We find robust convergence signals for 99.4% of the accelerated CNEs identified by

phyloConverge, and for 84.5% of that identified by phyloP (Figure 3.4D).

Next, we benchmark the methods for their specificity against confounders. One of the

challenges of using comparative genomics to identify regions associated with a specific phe-
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notype is that the phenotype-unaware conservation signal is already highly associated with

functional data. Thus, we evaluate the correlation between the global scaling factor ρo

(equivalent to computing the phylogeny-wide conservation score) and the absolute magni-

tude of convergent rate shift scores from the different methods (Figure 3.5A). phyloP, which

uses no bias correction, indeed shows a negative correlation between ρo and the magnitude

of convergence scores (Figure 3.5A for top-ranking CNE set, Figure 3.5B for the entire CNE

set). This suggests that without statistical calibration, stronger convergence signals are

given to elements that are more strongly conserved. Some bias is observed to a lesser ex-

tent for Forward Genomics, which controls for phylogenetic non-independence by computing

branch-specific sequence identity values, thus making them independent [195]. In compar-

ison, the empirical correction approach utilized by phyloConverge and RERconverge seems

to completely remove this bias.

Repeating this experiment with CNE length as another covariate, we find a similar trend

with longer regions being more likely to produce strong convergence scores for phyloP and

Forward Genomics (Figure 3.5C). RERconverge signals do not show positive correlation

with region length (although some non-uniformity is observed at extreme values), while

phyloConverge shows a completely uniform distribution of scores across elements of different

lengths. All in all, these observations suggest that phyloConverge has leading performance

in statistical behaviors compared to the competing methods.

To quantify how these statistical properties affect biological inference, we evaluate the

associations of the top subterranean-accelerated CNEs with tissue-specific open chromatin

regions (OCRs), hereby termed “marker OCRs”, across several mouse embryonic and adult

tissues. Among the common traits shared by subterranean mammals is that reduced reliance

on vision results in degenerated visual structures. These species have small eyes and are ei-

ther effectively blind or have minimal vision capacity [34, 101, 211, 242]. We expect that

eye-related regulatory regions would experience relaxed selection and exhibit greater diver-

gence. By computing the number of intersections between subterranean-accelerated CNEs

and marker OCRs, we observe that all methods produced sets of accelerated CNEs with

strong enrichments (permutation p-value ≤ 0.05 or Z > 1.96) for the marker OCRs of the

embryonic whole-eye, retina, and lens, relative to 1,000 randomly selected size-matched null
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Figure 3.5: phyloConverge corrects association statistics from confounders. (A) Correlations

between conservation (smaller ρo) and the absolute values of rate shift scores (grouped by

equidistant score binning) among the top ∼9,400 CNEs, and (B) among all CNEs. (C)

Correlations between CNE lengths (in bp) and the absolute values of rate shift scores among

the top ∼9,400 CNEs, and (D) among all CNEs. Missing boxplots arise from different

method’s discretizing extreme values.
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Figure 3.6: Functional enrichments for mouse tissue-specific open chromatin regions in top-

ranking subterranean-accelerated CNEs, plotted as Z-scores relative to 1,000 null CNE sets.

sets of CNEs (Figure 3.6), which agrees with our expectation. For these eye tissues, phylo-

Converge produces strong signals that almost match RERconverge, and are much stronger

than Forward Genomics. We also observe that not correcting for biases (i.e., phyloP) greatly

magnifies these signals and also produces very strong associations with tissues for which ex-

cessive relaxation of genetic elements is not expected, such as embryonic limb, midbrain,

and adult cerebellum. Meanwhile, the remaining three methods show no enrichment for the

marker OCRs of the control non-ocular tissues for which an enrichment is not expected.

Interestingly, phyloConverge, phyloP, and RERconverge produce moderate to strong cor-

relation with embryonic midbrain marker OCRs, which is not detected by Forward Genomics.

The presence of correlation is consistent with the observation that specific midbrain struc-

tures that receive direct optical input (superior colliculus and lateral geniculate nucleus)

are highly atrophied in subterranean mammals, although the sizes of most structures in the

midbrain are comparable to mice [44, 45]. A similar effect is observed in the cave-dwelling

Pachón ecotype of the Mexican tetra fish, which possesses degenerated visual structures [170].

In addition, among the adult tissues, the marker OCRs of the adult cerebellum moderately

correlates with phyloConverge and RERconverge, and strongly correlates with phyloP. The

cerebellum is a major structure in the hindbrain that regulates motor coordination [203],

cognitive and emotional processing [219], as well as ocular motor control [122]. In naked
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mole rats, the cerebellar region involved in visual signal processing is indeed degenerated,

coinciding with the expansion of the region for the somatosensory system [157] that facili-

tates the processing of tactile cues for navigation [214]. These observations lend support to

the hypothesis that eye degeneration is concomitant with complementary changes in brain

structures that is detectable as reduced constraint on some brain-specific regulatory regions.

We note that accelerated regions are enriched for parts of the brain that are relatively con-

strained in connectivity and function, such as the midbrain and cerebellum, and strongly

depleted for cerebrum, which is plastic. Overall, these results demonstrate that phyloCon-

verge can predict phenotypic associations with high specificity.

3.4.2 Subterranean-accelerated elements are enriched for distinct functions from

accelerated coding regions

To evaluate the functional associations of the top subterranean-accelerated CNEs iden-

tified by phyloConverge in detail, we use the Genomic Regions Enrichment of Annotations

Tool (GREAT ) to associate the ∼9,400 top-ranking CNEs with genes based on distance, and

compute CNE enrichments for each gene. We find that 76 out of 21,395 genes in the Ensembl

database are significantly enriched for the subterranean-accelerated CNEs (hypergeometric

test FDR ≤ 0.05) (Table 3.2). We then use the information on these enriched genes and

gene-CNE associations to evaluate the enrichment for canonical pathways in the accelerated

CNEs. Out of 1,330 canonical pathways, we identify 10 significantly enriched pathways (en-

richment p-value ≤ 0.05, corresponding to Storey’s FDR ≤ 0.13) (Figure 3.7A). Notably,

some of the top-ranking pathways form a cluster of interrelated processes that regulate ocular

and/or neuronal functions. The top-enriched pathway, the calcium/calmodulin-dependent

(Ca-CaM) protein kinase activation pathway, plays a role in photoreceptor-regulated light

adaptation and maintains the circadian rhythmicity of the mammalian retina [125]. One

of the genes in the Ca-CaM pathway around which significant distribution of subterranean-

accelerated CNEs are found, CAMK2D, has indeed been found to regulate choroidal and

retinal neovascularization in mice [9]. The second-ranked hit, the paired-like homeodomain

transcription factor 2 (Pitx2) pathway, is a downstream effector of the Wnt/nuclear β-
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Table 3.2: Ensembl genes that are significantly enriched for subterranean accelerated CNEs.

SLC7A6OS BRCC3 PRL2C5 SLC7A6 GPR137B

ZFP687 KLHL4 DACH2 PPA2 G0S2

NEUROG2 SAP30L SPHKAP CD226 IKBKE

SRGAP2 SYNE1 DSCAM PACRG PID1

H2AFB3 AGAP1 QK CAMK2D TMEM261

PTPRD CD34 PLXNA2 PITX2 CAMK1G

DGKK EMCN GRIA1 NMUR2 COL25A1

LEF1 PABPC6 GLRA2 PROX1 SLC24A2

RAB28 F9 5730508B09RIK RPS6KC1 IL1RAPL1

VRK1 3110018I06RIK MLLT3 SGCD 5730480H06RIK

CNKSR2 ADAMTSL1 BNC2 DIAPH2 CCDC171

PI4KB AGO2 PCP4 GBX2 ANK2

PDHA2 ETNPPL APOB GPATCH2 VBP1

SGMS2 TET2 SERTAD4 GM10097 CXXC4

GEMIN8 MYC SLIT2 IRX1 MCTP2

8030423J24RIK

catenin pathway [26] that is critical for eye morphogenesis, and mutations in PITX2 can

cause eye defects and neurodegeneration [37]. The peroxisome proliferator-activated receptor

γ coactivator-1 α (PGC1α) pathway regulates energy metabolism in photoreceptors and sim-

ilarly manages light susceptibility [62], retinal angiogenesis [209], and circadian clock [143].

These pathways are correlated with neuronal pathways including AMPA receptor trafficking

and ERBB signaling, the latter of which plays a role in neural development, myelination, and

synaptic plasticity [164]. Other enriched hits include pathways related to the extracellular

matrix and the immune system.

We then use phyloConverge to score the acceleration of 19,816 protein-coding regions

genome-wide and examine the contrast between pathway enrichment in genes accelerated in
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Figure 3.7: Protein-coding region versus CNE acceleration occurs across distinct biological

functions. (A) The top-ranking canonical pathways enriched for subterranean-accelerated

protein-coding regions (blue) or CNEs (red). (B) Genes that are strongly accelerated in

the coding regions show the strongest enrichment for cone and rod photoreceptor marker

genes. (C) Strong enrichments for subterranean-accelerated CNEs are found in retinal cells

in the inner nuclear layer, namely the amacrine and bipolar cells. Tissues in (B) and (C)

for which the Benjamini-Hochberg adjusted enrichment p-value > 0.05 are colored in white,

while tissues for which genetic or genomic annotations are not available are colored in grey.

(D) Genes that are enriched with accelerated CNEs (blue and pink dots) can have varying

evolutionary rate acceleration in the protein-coding regions, while some genes can have

strongly accelerated coding regions without enrichment for accelerated CNEs (grey dots).

Negative score (scorr) denotes stronger acceleration.
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coding regions and genes accelerated in CNEs (Figure 3.7A). We find that the top-ranking

pathways with the strongest enrichment for accelerated coding regions (denoted in blue)

are specific to phototransduction. Importantly, the neuronal and developmental pathways

enriched for accelerated CNEs are not enriched for accelerated coding regions. We provide

detailed network views of the top pathways enriched for both acceleration types in Figures 3.8

and 3.9.

A similar trend emerges when we examine enrichment for retinal cell-type-specific marker

genes and marker OCRs from single cell sequencing experiments. Using a curated dataset

of tissue-specific marker genes across different retinal cell types [151], we observe that genes

with accelerated coding regions are significantly enriched for all retinal cell types, but the

cone and rod photoreceptors show drastically stronger fold-enrichment than other tissues

(Figure 3.7B). In contrast, using genomic annotations of marker OCRs in five retinal cell

types [177], we find that the photoreceptor layer and the Müller glia exhibit no enrichment,

while cells in the inner nuclear layer of the retina (the amacrine and bipolar cells) show

strong, statistically significant enrichment (Figure 3.7C). While photoreceptors, amacrine,

and bipolar cells are all neuronal cell-types, the photoreceptors are highly specialized for pho-

totransduction, while amacrine and bipolar cells are specialized inter-neurons that perform

signal transduction and signal processing function. Bipolar cells are solely responsible for

relaying information from the photoreceptors to the inner layers of the retina and performing

specific transformation of neuronal signals [65], while amacrine cells relay signals from the

bipolar cells to the ganglion cells and control the temporal regulation of visual signals [244].

The observation of weak enrichment for accelerated coding regions and strong enrichment

for accelerated CNEs in the amacrine and bipolar cells lends further evidence to the argu-

ment that subterranean adaptation is accompanied by transformation of neuronal functions,

which are driven by changes in transcriptional control rather than the genes themselves.

On the individual gene level, there is a subset of genes that are significantly enriched

with accelerated CNEs but are not strongly accelerated in the coding regions (Figure 3.7D).

The lack of concordance between protein-coding acceleration and enrichment for acceler-

ated CNEs for this set of genes may reflect the role of CNEs in regulating the expression

of pleiotropic genes that experience relaxed selection on certain functions but are other-
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Figure 3.8: Evolutionary rate shifts in protein coding regions and CNEs in an example

top-ranking pathway enriched for protein-coding regions acceleration. While none of the

individual genes are significantly enriched for accelerated CNEs, they are accelerated in the

coding regions (except for a small handful that are neutral). This observation suggests that

for pathways that are highly specific to vision, selection pressures tend to act mainly on the

coding regions.
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Figure 3.9: Evolutionary rate shifts in protein coding regions and CNEs in an example top-

ranking pathway enriched for CNE acceleration. The pathway contains a mix of genes with

accelerated or decelerated coding regions that are variably enriched for accelerated CNEs.

This observation suggests that for pathways with pleiotropic functions (e.g., general neuronal

functions), selection can occur in both the coding and non-coding regions.
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wise still critical for survival. Thus, their protein-coding portions did not accelerate and

remain under constraint, but their regulatory elements specific to the vision functions could

be under relaxed constraint. The top-enriched genes in this set include genes that encode

for amino acid transporters (SLC7A6 ), probable nuclear localization of RNA polymerase II

(SLC7A6OS ), regulators of DNA damage response (BRCC3 and G0S2 ), and a chaperone

protein for the Von Hippel-Lindau tumor suppressor gene product (VBP1 ). These func-

tions are general cellular processes that are involved across many tissues, and thus strong

conservation of their protein sequences (but not necessarily regulatory elements) would be

expected. Examples of eye-related pleiotropy in the set include DIAPH2, which has been

associated with both age-related macular degeneration and ovarian development [250], and

PROX1, which is involved in the development of not only the lens and the central nervous

system, but also the liver, pancreas, and heart [30, 136, 181, 234, 257]. For these pleiotropic

genes, changes that drive the convergent phenotype may have occurred in the regulatory

elements that control their expression.

In summary, using pathway and marker enrichment analyses, we find that coding region

and CNE acceleration is concentrated in distinct biological functions. While coding region

acceleration is observed in genes whose functions are specific to visual signal transduction,

non-coding acceleration is enriched for a broader set of developmental and neuronal processes.

These observations support the hypothesis that relaxation of selection in the coding regions

is concentrated in highly specialized genes, while pleiotropic genes that contribute to the

development and function of the visual system but have additional non-vision related roles

experience mostly non-coding relaxation.

3.4.3 Transcription factor motif-scale convergence signals reveal the modular

evolution of regulatory elements

The general framework of phyloConverge has the capacity to fit the convergent rate

shifts model at arbitrarily small, even base-pair, resolution, which allows for a deeper in-

quiry into the information content of different parts of a given CNE. To understand how

convergent shifts are reflected in the transcription factor binding site (TFBS) profiles, we
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Figure 3.10: Local convergence signals of transcription factor binding site (TFBS) motifs in

a CNE highlight modularity of CNE function. (A) CNE072577 is enriched for significantly

accelerated motifs. (B) CNE103232 is enriched for significantly decelerated motifs. (C)

CNE487355 is enriched for significantly accelerated and decelerated motifs.

identify 1,761,185 TFBS matches within the 491,576 CNEs and compute their motif-level

convergence scores (Figures 3.10A-C shows the TFBS convergence profiles of three example

CNEs). Using an empirical p-value threshold of 0.05 and filtering for signal robustness, we

identified 42,477 significantly accelerated motifs and 81,101 significantly decelerated motifs

(2.4% and 4.6% of the total number of conserved motifs, respectively).

To identify CNEs that undergo significant changes in motif content in response to se-

lection, we compute the enrichment for non-redundant, significantly accelerated or deceler-

ated motifs in each CNE. We identify 3 categories of CNEs: 1,579 CNEs that are enriched

for significantly accelerated motifs (e.g., Figures 3.10A), 2,288 CNEs that are enriched for

significantly decelerated motifs (e.g., Figures 3.10B), and 381 CNEs that are enriched for
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Figure 3.11: Gene Ontology enrichments for “motif-accelerated” CNEs, “motif-decelerated”

CNEs, and “mixed-motif” CNEs. (A) Gene Ontology terms that are associated with CNEs

enriched for significantly accelerated motifs, (B) significantly decelerated motifs, and (C)

both significantly accelerated and decelerated motifs.

both significantly accelerated and decelerated (“mixed”) motifs (e.g., Figures 3.10C). Fig-

ures 3.11A, B, and C show the Gene Ontology (GO) terms that are significantly enriched

for the motif-accelerated CNEs, motif-decelerated CNEs, and mixed-motif CNEs, respec-

tively (Benjamini-Hochberg FDR ≤ 0.1 for both binomial test and hypergeometric test from

the GREAT tool). While the enriched GO terms for the motif-accelerated and mixed-

motif CNEs are specific to a limited number of systems, the enriched annotations for the

decelerated-motif CNEs comprise a wider range of functions.

We first take CNE072577 as an example motif-accelerated CNE that is located in the

intron of GLRA1 (Figures 3.10A). GLRA1 encodes for glycine receptor α1, which facili-
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tates the transmission of postsynaptic currents specifically in OFF-cone bipolar cells and

A-type retinal ganglion cells of the mammalian retina [251]. Meanwhile, from motif-level

convergence scores in CNE072577, we can see that significant acceleration of the CNE oc-

curs locally in 3 segments that correspond to known binding motifs for BHLHE22, ZNF341,

and MSX2. Interestingly, BHLHE22 has also been suggested to be an expression marker of

the OFF-cone bipolar cells [225]. MSX22, on the other hand, plays a role in affecting the

cell fate commitment and differentiation of retinal ganglion cells [115]. Not only is the ac-

celeration of motifs that regulate retinal development consistent with the degradation of eye

structures in subterranean mammals, but the agreement between the annotated functions

and transcriptional activities of glycine receptor α1, BHLHE22, and MSX22 suggests that

local phyloConverge scores can provide some insight about the phenotypic associations and

possible tissue specificities of specific segments of a CNE.

Next, one of the genes annotated in the “Regulation of keratinocyte differentiation”

GO term is ZFP36L1, which is located close to CNE103232 (Figures 3.10B). ZFP36L1, or

Butyrate Response Factor 1 (BRF1), is known to be involved in the developmental pro-

cesses of several tissues, including keratinocytes [6, 93] and the paracrine system [153]. The

local segments that undergo significant convergent rate deceleration in CNE103232 corre-

spond to binding sites for SOX2, ZNF214, and DDIT3. DDIT3 (Chop) is a downstream

effector of the unfolded protein response (UPR), a mechanism that is activated to rescue

cells from endoplasmic reticulum (ER) stress arising from hostile environmental stressors,

such as hypoxia [52]. Indeed, epidermal keratinocyte differentiation is also mediated by the

UPR pathway, and changes in Chop levels during keratinocyte differentiation have been

observed [24, 159, 241]. Convergent changes in keratinocyte differentiation mechanisms are

possibly related to the fact that subterranean mammals have adapted to the burrowing de-

mands of life underground by developing thick footpads. Meanwhile, the association between

SOX2 and ZFP36L1 are likely due to their role in mediating paracrine signaling. SOX2 -

positive mouse pituitary stem cells that express BRF1 have been found to exhibit paracrine

functions, which mediates the commitment and differentiation of progenitors to pituitary

cell types [154]. Curiously, paracrine signaling, SOX2, and BRF1 have all been suggested

to play a role in regulating circadian rhythmicity [38, 120, 160]. More specifically, SOX2
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and paracrine signaling have been found to control circadian pacemaking in the suprachi-

asmatic nucleus (SCN) neurons, the central clock of biological circadian rhythms [38, 160].

These findings suggest the possible involvement of ZFP36L1 and the SOX2 binding site of

CNE103232 in facilitating changes in the circadian machinery of subterranean mammals.

Although subterranean mammals live in the dark and have regressed ocular structures, their

circadian machineries have been found to be conserved, although their regulation patterns

have changed compared to mouse [10, 82].

Finally, Figures 3.10C shows the association between CNE487355 with PHEX, a gene

in the “Cellular response to parathyroid hormone stimulus” GO annotation. Changes in

parathyroid signaling in subterranean mammals are likely driven by the fact that their habi-

tats lack solar exposure and thus are naturally deficient of vitamin D. Several subterranean

mammals have indeed been found to be naturally vitamin D-deficient [168, 222]. When

vitamin D levels are low, the body compensates by secreting higher levels of parathyroid

hormones [97], which causes changes to systems affected by calcium metabolism, includ-

ing bone metabolism. Changes in the physiology and mineralization of bone and teeth in

subterranean mammals have been reported [168]. PHEX is predominantly expressed in

odontoblasts, osteoblasts, and osteocytes, and is regulated by PTHrP(1-34), a parathyroid

hormone-related protein that is active in osteoblasts during development [247]. Interest-

ingly, one of the segments undergoing significant deceleration in CNE487355 correspond to

the binding site for SHOX2, which controls stylopod development in mice specifically by

regulating chondrocyte maturation and endochondral ossification [270].

Thus, local convergence analysis with phyloConverge shows that regulatory elements

likely evolve in modular units, resulting in non-uniform convergence signals across the ele-

ment. Segmenting an element into modules allows us to have a more nuanced perspective on

how pleiotropic elements respond to selection pressures. The identified phenotype-associated

segments serve as testable hypotheses that can be further tested in experimental settings.

Additionally, the identified phenotype associations also signify that phyloConverge can detect

TFBS motif-scale convergence signals with high fidelity.
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3.4.4 Global patterns of motif adaptation highlight regulatory rewiring associ-

ated with subterranean adaptation

Next, we investigate the functional signals that explain the patterns of motif-level adapta-

tion genome-wide. We first ask if there are specific motifs that experience global convergence

shifts in correlation with subterranean adaptation. We find a significant enrichment for 43

motifs in the set of 42,477 significantly accelerated motifs, and for 117 motifs in the set of

81,101 significantly decelerated motifs, with 11 motifs experiencing both global acceleration

and deceleration. Among these motifs are motifs that are known for their involvement in

eye and nervous system development, including SOX2, ALX1, BHLHE22, ARX, and TBR1.

Next, we use the GREAT tool to evaluate the functional enrichment of the 42,477 sig-

nificantly accelerated motifs and the 81,101 significantly decelerated motifs for annotations

in the Reactome pathway database. We find that the accelerated and decelerated motifs

are enriched for functions that are strongly interrelated, shown in clusters in Figure 3.12A.

One cluster reflects the regulatory changes that drive the adaptation of neuronal functions,

with some functions enriched for only the accelerated motifs, only the decelerated motifs, or

both, in the case of the “Neurexins and neuroligins” and the “Neurotransmitter receptors and

postsynaptic signal transmission” annotations. This finding suggests that the adaptation of

critical and pleiotropic functions in subterranean mammals is largely driven by regulatory

rewiring that involves gains and losses of different motifs across CNEs, in contrast with

ocular-specific functions that are mainly driven by coding region. Another enriched cluster

reflects changes in SUMOylation and TFAP2 TF family. The enrichment of these func-

tions may represent the regulatory adaptation to the hypoxic environment of subterranean

habitats. SUMOylation, in which the Small Ubiquitin-related MOdifier (SUMO) attaches

covalently to proteins, plays a role in regulating the hypoxic response, and the deSUMOyla-

tion of TFAP2A has been found to increase the transcriptional activity of Hypoxia-Inducible

Factor 1 (HIF-1) under hypoxia [36]. Additionally, SUMOylation and TFAP2 are involved

in regulating physiological circadian rhythm [109, 138], which is known to undergo changes

in subterranean mammals [16].

Finally, given the functional promiscuity of TFs, we ask if motif-level convergence signals
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Figure 3.12: Convergent motif-level changes highlight regulatory rewiring associated with

subterranean adaptation. (A) Reactome pathway annotations enriched for accelerated and

decelerated motifs genome-wide. (B) Motif-specific functional enrichment analysis reveals

functions associated with acceleration or deceleration of specific motifs that have global

convergence signals.
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could highlight the specific functional changes that occur with the acceleration or deceleration

of specific motifs. We use GREAT to perform motif-specific functional enrichment analysis

for the acceleration and deceleration of individual motifs that were identified as having global

convergence signals, given the genome-wide distribution of each motif. With FDR ≤ 0.05,

we identify the enrichment for 43 unique and interrelated pathways across 22 motifs. To

illustrate the interpretation of these results using the RFX3 motif; while the genome-wide

distribution of the motif is associated with various phenotypes including neuronal functions,

cardiac functions, and ion homeostasis, our results show that the convergent acceleration of

RFX3 motifs in subterranean mammals is strongly specific to neuronal functions only. This

suggests that when selection pressures act only on specific functions of pleiotropic transcrip-

tion factors, changes in transcription factor activities can be mediated by convergent rate

shifts occurring in specific locations that are associated with the functions. Clustering the

enriched annotations based on pathway correlations, we find that motif-specific regulatory

changes in subterranean adaptation mainly occurs in 5 functional categories, namely “Wnt

signalling and cell cycle regulation”, “neuronal functions”, “metabolism of glucose, vitamins

and cofactors”, “Slit-ROBO signaling and RAC pathway”, “plasma lipoprotein remodeling”

(Figure 3.12B). Consistent with the previous results, most of the motif changes associated

with neuronal functions and Wnt signaling are in the accelerated direction.

3.4.5 Unsupervised scanning of conserved elements predicts segments with po-

tential association with subterranean phenotype

Having established that phyloConverge signals can capture TFBS-scale convergence, we

ask if phyloConverge can be used to make predictions of phenotype-relevant TFBS-scale

segments without requiring users to supply prior definition of known TFBS coordinates to

score. We use phyloConverge to scan each nucleotide in the CNEs and compute the score

from a window of ±5bp around the nucleotide, considering that ∼10bp is the approximate

scale of TFBS motifs. We find that the scanning output can highlight strongly accelerated

and decelerated segments that correspond to known TFBS motifs. The top of Figure 3.13A

shows the example scanning output for CNE327067, which is located close to SLC24A2,
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a cation/calcium ion exchanger that maintains the homeostasis of sodium, potassium, and

calcium ion levels in the brain, retinal ganglion cells, and the retinal cone photoreceptors

[224]. We can see that the segment with the strongest acceleration signal correspond to

a known TFBS for POU4F2, a canonical retinal marker whose expression together with

ISL1 has been found to be sufficient for specifying the retinal ganglion cell fate [262]. We

also observe that there are other strongly accelerated or decelerated segments that do not

correspond to known TFBS motifs.

After performing the scanning on all the CNEs, we identified nucleotide segments that

exhibit significant acceleration or deceleration signals. Out of the identified segments, only

about 5.4% of them overlap with known TFBS coordinates that we previously called (Fig-

ure 3.13B). We then perform de novo motif discovery analysis for the newly identified seg-

ments, using the STREME tool [13]. Setting an E-value threshold of 0.5, we found enrich-

ment for 5 motifs in the new accelerated segments (Figure 3.13C), and 10 motifs in the new

decelerated segments (Figure 3.13D). We used the TomTom motif comparison tool [92] to

test whether the enriched motifs are similar to known consensus motifs. Using an E-value

threshold of 1 for the TomTom test, we characterize the known motifs that are significantly

similar to the enriched motifs (Tables 3.3 and 3.4). Interestingly, there are 4 motifs that

are enriched in both the accelerated and decelerated new segments. Some of these hits are

associated with hypoxia response; FOXD2 (motif 5 in the decelerated set and motif 2 in the

accelerated set) have been previously found to be enriched in the binding sites of HIF-2α

(Hypoxia Inducible Factor 2 alpha) in HepG2 cells [231], SP1/2 (motif 4 in the decelerated

set and motif 5 in the accelerated set) are found in the binding sites of HIF-1α in RCC4 and

HKC-8 cells [231], and STAT4 (motif 3 in the decelerated set and motif 1 in the acceler-

ated set) are upregulated in the primary human macrophages under hypoxia [71]. Another

motif that is also enriched in both the accelerated and decelerated sets is SOX10, which is

highly expressed in the brain. During development, SOX10 is expressed exclusively in oligo-

dendrocyte precursor cells and is critical for controlling the maturation of oligodendrocytes

[192]. These findings further characterize the regulatory changes in neuronal development

and hypoxia response that occur with subterranean adaptation.
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Figure 3.13: Unsupervised scanning of CNEs proposes potential motifs undergoing significant

convergent changes in subterranean adaptation. (A) The scanning output of an example

CNE, CNE327067, where a sliding window of 11bp is used to compute the convergence

signals at every nucleotide position. The bottom plot shows the corresponding scores for

known TFBS motif coordinates. (B) The number of identified segments with significant

convergent rate shifts from scanning. (C) De novo motif discovery analysis on accelerated

segments that are newly identified without prior knowledge of motif coordinates, and (D)

the same analysis for newly identified decelerated segments.
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Table 3.3: De novo motif discovery analysis results for segments predicted to be convergently

accelerated

Motif

name

STREME

E-value

TomTom

match

E-value Database

Motif 1 0.034 STAT4 0.65 JASPAR2022 core verte-

brates non-redundant v2

Motif 2 0.087 FOXD2 0.707 Jolma2013

Motif 3 0.12 SOX10 0.207 JASPAR2022 core verte-

brates non-redundant v2

Motif 4 0.29 MEF2A,

MEF2B,

MEF2C,

MEF2D

0.0386 to

0.488

JASPAR2022 core verte-

brates non-redundant v2

Motif 5 0.36 KLF, SP,

PATZ

2.65e−5 to

0.447

JASPAR2022 core verte-

brates non-redundant v2
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Table 3.4: De novo motif discovery analysis results for segments predicted to be convergently

decelerated

Motif

name

STREME

E-value

TomTom

match

E-value Database

Motif 1 3.2e− 13 SOX10,

FOXL1,

SOX15

0.185 to

0.803

JASPAR2022 core verte-

brates non-redundant v2,

Uniprobe

Motif 2 9.2e− 10 SOX14,

SOX21,

SRY

0.181 to

0.333

Uniprobe

Motif 3 1.6e− 6 STAT4 0.746 JASPAR2022 core verte-

brates non-redundant v2

Motif 4 4.9e− 4 KLF, SP,

PATZ

4.1e − 5 to

0.358

JASPAR2022 core verte-

brates non-redundant v2

Motif 5 0.0025 FOXD2 0.979 Jolma2013

Motif 6 0.015 ONECUT,

CUX,

SOX3

0.0148 to

0.565

JASPAR2022 core verte-

brates non-redundant v2,

Jolma 2013

Motif 7 0.28 - - -

Motif 8 0.32 MSX,

BARX1

0.348 to

0.508

Jolma2013 and Uniprobe

Motif 9 0.34 - - -

Motif 10 0.4 GLI, SP,

KLF

0.11 to

0.931

JASPAR2022 core verte-

brates non-redundant v2,

Jolma2013
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3.5 Discussion

We introduce phyloConverge, a new comparative genomics method that combines ex-

plicit estimation of nucleotide substitution rates and adaptive calibration of test statistics to

identify the phenotypic associations of genetic elements. For a phenotype of interest, phylo-

Converge quantifies the amount of local rate convergence signal via a maximum likelihood

estimation of a two-parameter neutral tree scaling model. The MLE statistics are calibrated

with an empirical p-value, which dramatically reduces multiple sources of bias.

Benchmarking our method using an empirical dataset that was previously analyzed for

rate convergence in subterranean mammals [208], we find that phyloConverge identifies CNEs

that exhibit strong associations with ocular functions–which satisfies our expectations for

the phenotype–and discover that the regression of ocular functions may be accompanied by

changes in neuronal functions and development. We also demonstrate that phyloConverge

can analyze a given CNE in segments and provide insights about its pleiotropic activity

in the specific phenotypic context. Importantly, phyloConverge produces unbiased signals

because it corrects for biological and technical confounders.

phyloConverge offers a scalability to perform rapid, calibrated scoring at flexible reso-

lution. We have demonstrated this flexibility by applying phyloConverge in three comple-

mentary ways: scoring entire CNEs for aggregate CNE-level acceleration, scoring TFBS for

TFBS-level convergent rate shifts, and dissecting aggregate acceleration signals with high

resolution scoring. This highly flexible framework allows for rapid convergent acceleration

scanning with less computational overhead than competing methods. For example, to score 1

million elements, RERconverge would require the pre-estimation of 1 million element-specific

trees, and Forward Genomics would require computations of the neutral tree model as well

as local (branch-specific) or global (relative to the root) percent identity values per branch

per element. For the same analysis, phyloConverge would only require the estimation of one

neutral tree model, while the scoring of the 1 million elements would be performed through

a small number of parameter estimations and hypothesis testing. While adding the per-

mulation step incurs additional computational cost, we have demonstrated previously the

advantage of calibrating the resulting statistics via permutations is not method-dependent.
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phyloConverge can be tractably extended to perform convergence scans genome-wide,

generating convergent rate tracks similar to the phyloP conservation score. This provides the

option of scanning entire genome alignments to detect coordinates with significant convergent

shifts in evolutionary rates without needing prior knowledge about the coordinates and

definitions of the functional regulatory units of the elements. We propose a possible strategy

for performing unsupervised predictions of regions with convergence signals and the possible

associated motifs (Figure 3.13), but the optimal approach for such unsupervised genome-wide

scanning remains to be determined because we still lack a thorough understanding of non-

coding regions to inform our interpretation of significant rate shifts in non-coding elements.

For example, there are types of non-coding elements whose conservation patterns are less

well-understood, including long non-coding RNAs, which tend to have a highly conserved

promoter region but a less conserved transcribed region [117], and microRNAs, which can

also have varying conservation patterns [193]. Investigation into understanding conservation

in non-coding elements and how it can inform the design of unsupervised genome-wide

scanning for convergent rate shifts can be pursued in future work.

It is important to note that predictions generated by sequence alignment-based methods

such as phyloConverge should be interpreted with some caveats. It is increasingly understood

that some enhancers can have homologous functional activity across distantly related species

despite lacking enhancer-wide sequence conservation. For example, characterization of the

putative Islet-Spacer enhancers in sponge, fish, mouse, and human revealed that functionally

homologous enhancers can have high variability in compositions, orientations, numbers, and

alignments of a common set of TFBS [258]. The quality of predictions also hinges upon the

global alignability of sequences, which can deteriorate with increasing evolutionary distance.

For such enhancers, sequence alignment-based methods would likely fail. In this instance,

“alignment-free” methods that compare sequences in some functional readout space may

be appropriate. Nonetheless, sequence alignment-based methods would be sufficiently pow-

erful to analyze promoter regions and strongly conserved enhancers that are often critical

for developmental processes. We also note that the statistical power of permutation-based

methods such as permulation would only increase with the number of permutations used.

Depending on the compute power available to the user and the size of the dataset, user
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may be limited to use a relatively small number of permulated phenotypes (e.g., our study

uses 500 permulations). Consequently, the resulting p-values may not have a sufficiently

high resolution for traditional multiple testing approaches. However, permutation tests have

been widely used as a strategy for correcting for multiple testing, not by taking a family-

wise correction approach, but by calibrating each individual statistic through constructing

the null distribution while preserving irregularities that may exist in the data. As a result,

permutation tests would produce well-calibrated rankings of top hits, while avoiding the

issue of over-correction or under-correction of statistics that is inevitable with family-wise

approaches.

85



4.0 Convergent evolution of protein-coding and regulatory non-coding regions

underlying mammalian adaptation to high altitudes

4.1 Attribution statement

All of the work in this chapter was performed by myself, with the following exception:

• Curation of gene hits from high altitude-related population genetics studies and analysis

on amino acid convergence was performed by Allie Graham, Ph.D.

4.2 Introduction

Oxygen is a critical fuel of eukaryotic life. Since the atmospheric oxygen concentration

increased ∼450 million years ago to approximately the current level [140], land-living eukary-

otes adapted to the newly oxic environment and developed energy metabolism machineries

that can exploit oxygen as an efficient energy source. With oxygen as the final electron ac-

ceptor in the mitochondrial respiration of mammals, the yield of ATP per glucose molecule

is 7.5 times greater than that from the anaerobic respiration via fermentation [173, 204].

The dramatic increase in energy production from aerobic respiration provided cells with the

ability to perform 1,000-fold biochemical reactions compared to anaerobic respiration [202],

which eventually enabled cells to achieve higher levels of complexity like compartmentaliza-

tion and multicellularity. It is therefore not surprising that low oxygen environments, known

as hypoxia, can cause aberrations to biological functions. In fact, hypoxia is pathologi-

cal in many human diseases, including ischaemia reperfusion injury, cancer, pre-eclampsia,

endometriosis, heart diseases, stroke, and more.

However, some species have evolved to survive in hypoxic conditions. Species that have

adapted to high altitude environments, for instance, are able to thrive in hypobaric hypoxia

– a condition where the partial pressure of oxygen in the atmosphere is greatly decreased –

in addition to other stressors including high ultraviolet exposure, extreme cold, and dryness.
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Uncovering the genetic basis of adaptation to chronic hypoxia at high altitudes could possibly

offer insights on the mechanisms of oxygen transport and metabolism that engender hypoxia

tolerance, which could be informative for designing treatments for hypoxic diseases.

Numerous population genetics studies have been conducted to look into this question,

many of which highlighted the hypoxia-inducible factor (HIF) pathway as the master con-

troller of hypoxia response at high altitude [18, 21, 169, 229]. At high oxygen levels, HIF-1α is

hydroxylated in an oxygen-dependent manner, resulting in its degradation. Under hypoxia,

this degradation is halted, which results in the stabilization of HIF-1α levels. The dimer-

ization of HIF-1α and HIF-1β then activates downstream pathways that control response to

hypoxia, including reducing mitochondrial biogenesis, regulating red blood cell production,

and others [20]. Given the central role of the HIF pathway in regulating hypoxia response,

it is reasonable to see consistent signals of selection for this pathway across different high

altitude populations. However, beyond the HIF pathway, previous reports have documented

that altitude-associated loci from different populations can have few or no overlaps [19] and

heritability patterns of altitude-associated loci can differ across populations [17], suggesting

that the convergent physiological adaptation to high altitudes in these populations occurred

through independent mechanisms. While there can be local selection pressures that uniquely

act on each population, more needs to be done to characterize loci that show robust signals

of selection for high altitude adaptation.

Fortunately, as we zoom out from a population level to a macroevolutionary level, ac-

climatization of lowland species to high altitudes have occurred repeatedly across indepen-

dent clades [79, 123, 174, 194, 197]. This gives us the statistical power to perform a com-

parative analysis to characterize the genetic and epigenetic sequence adaptations that have

repeatedly been selected over millions of years to give rise to high altitude phenotypes. Thus,

this work aims to decode the genetic basis of high altitude adaptation using convergence

analysis, with evolutionary rate as a proxy for selection. We first conduct a meta-analysis of

population genetics studies on mammalian high altitude adaptation to establish our under-

standing on the expected functions and pathways that undergo changes during adaptation

to high altitudes. Then, we perform phylogenetic analyses to identify proteins and regu-

latory elements that experience decelerated or accelerated evolutionary rates in association
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with convergent adaptation to high altitude. By grounding our phylogenetic predictions on

the meta-analysis results, we distinguish pathways and mechanisms that have likely evolved

under purifying or positive selection during adaptation to high altitude.

4.3 Materials and Methods

4.3.1 Construction of amino acid and conserved non-coding region alignments

for a 120-way mammalian phylogeny

We used a multiple genome alignment dataset for 120 mammals recently produced by

Hecker and Hiller [98] (Figure 4.1). We introduced a minor correction to the phylogenetic

tree to consolidate the relative placements of the clades according to the common structure

of the mammalian phylogeny. This topology was used for all tree estimations performed for

all genes and conserved non-coding elements (CNEs). To compute the neutral substitution

model for the updated tree topology, we first identified the fourfold-degenerate (4D) sites

across the entire genome. Then, the phyloFit function from PHAST [111] was used to

estimate the nucleotide substitution model from the concatenation of all the identified 4D

sites.

To construct the amino acid alignment dataset from the 120-way mammalian genome

alignment, we first obtained the coding region coordinates for a total of 19,610 genes in the

NCBI RefSeq gene annotations for the hg38 assembly, and extracted the multiple sequence

alignments (MSAs) for the coding regions of the genes using RPHAST [111]. We then used

a custom codon model to convert the nucleotide sequence of each gene orthologs to the

corresponding amino acid sequence, and the amino acid orthologs were then aligned using

MUSCLE. The resulting MSAs were used to compute gene-specific evolutionary trees using

phangorn [218], and the readTrees function in RERconverge was used to compute a master

gene tree with branch lengths that were averaged from the corresponding branches across

all gene trees.

To define conserved non-coding elements (CNEs), we took the conserved elements previ-
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Figure 4.1: 120-way updated mammalian phylogeny used for convergent high altitude anal-

ysis. High altitude species (red tip branches) are defined as species that live exclusively at

altitudes ≥1,000 meters.
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ously identified from the 120-way mammalian alignment using GERP++ [49] and removed

the subset that overlapped exons and were less than 30bp in length, resulting in a total of

1,050,080 CNEs. The MSAs of the CNEs were then used to compute CNE-specific nucleotide

trees using phangorn, with the “Generalized Time Reversible” model as the nucleotide sub-

stitution model for the estimation. Finally, the readTrees function in RERconverge was used

to read the CNE-specific trees into a multiPhylo object and compute a master CNE tree with

branch lengths that were averaged from the corresponding branches across all CNE trees.

4.3.2 Annotation of high altitude species in the 120-way mammalian alignment

To define the set of “foreground” species that have adapted to high altitude environments,

we first curated information on the range of altitudes occupied by all the species in the phy-

logeny from various sources. We then assigned species that were known to exclusively occupy

altitudes no lower than 1,000 meters to be high altitude species (red branches in Figure 4.1).

This criterion designated 17 species as high altitude species, including pika (Ochotona prin-

ceps), naked mole rat (Heterocephalus glaber), guinea pig (Cavia porcellus), chinchilla (Chin-

chilla lanigera), Alpine marmot (Marmota marmota), Angolan colobus (Colobus angolen-

sis palliatus), Ugandan red colobus (Piliocolobus tephrosceles), black snub-nosed monkey

(Rhinopithecus bieti), golden snub-nosed monkey (Rhinopithecus roxellana), Tibetan ante-

lope (Pantholops hodgsonii), wild yak (Bos grunniens mutus), sheep (Ovis aries), bighorn

sheep (Ovis canadensis), Bactrian camel (Camelus bactrianus), alpaca (Vicugna pacos),

lesser panda (Ailurus fulgens styani), and panda (Ailuropoda melanoleuca).

4.3.3 Meta-analysis of genes associated with high altitude adaptation from pop-

ulation genetics studies

To perform a meta-analysis of altitude-associated gene hits from population genetics

studies, we compiled the results from a total of 23 studies, comprising findings from popula-

tions of humans [63, 86, 112, 216, 264, 266], primates [41], dogs [87, 142], pika [80], ungulates

[57, 80, 100, 233], pigs [1, 141], and marmots [12]. We identified significant genes from each

study and counted the number of instances that each gene was identified as significant. Genes

90



that were significant in at least three instances were collated and evaluated for functional

enrichment.

4.3.4 Detection of altitude-associated convergent rate shifts in amino acids and

conserved non-coding elements (CNEs)

Convergence analyses on amino acids and CNEs were performed using the RERconverge

package [128, 188]. RERconverge detects the convergent rate shift of a genomic elements by

computing the correlation between a convergent phenotype of interest and the relative evolu-

tionary rates (RERs) of the orthologs of the element across species in the phylogeny. RERs

are defined as the relative substitution rate along each branch of an element-specific tree

normalized against the “neutral” branch length averaged genome-wide. In the RERconverge

framework, RERs are quantified by computing the residuals from regressing the element-

specific tree against the neutral tree, and then correcting them for heteroscedasticity.

The specific steps performed in RERconverge were as follows. First, we used the getAll-

Residuals function to compute the RERs of the gene orthologs from the gene-specific trees

and the pre-computed master gene tree. Then, the correlateWithBinaryPhenotype function

was used to compute the associations between the RERs with the high altitude phenotype.

To correct for statistical and phylogenetic biases, we used permulation [212] to produce null

phenotypes that were sampled from a generative model inferred from the observed high

altitude phenotype. The null phenotypes were then used to compute null correlation statis-

tics, which were subsequently used to compute empirical/permulaton p-values of phenotype

associations. The permulation p-value of a gene was defined as the proportion of the null

statistics that were equal to or more extreme than the observed statistics. The same steps

were also used to compute the convergence scores of the CNEs.

To identify the set of significantly accelerated or decelerated proteins or CNEs, we set a

permulation p-value threshold of ≤ 0.05. We also conducted a “leave-one-out” robustness

filter in which the computation was repeated by excluding one foreground species each time.

A convergence signal was only considered robust if removing one species did not eliminate

or reverse the convergence signal.
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4.3.5 Transciption factor motif-scale convergence analysis

We also performed convergence analysis by scoring conserved transcription factor (TF)

motifs that overlapped the CNEs. We previously made motif calls for 771 TF motifs from

the HOCOMOCO database (version 11) [132] for the human hg19 coordinate. First, we

obtained the position weight matrices (PWMs) for all of the motifs. Then, we computed the

background nucleotide frequencies for each PWM using motifDiverge [126]. The background

frequencies were then used to infer the PWM score cutoff to control Type I error rate of the

motif calling at below 10−5. Given the inferred score thresholds and the PWMs, we used

PWMScan to perform motif calling on the hg19 assembly. The motif calls were then lifted

over to the hg38 coordinates with the liftOver tool from UCSC [131], and the coordinates

of the conserved motifs were identified by intersecting the motif coordinates with the CNE

coordinates using BEDTools [199]. Finally, the convergence signals of the conserved motifs

were computed using phyloConverge [213], which also performed leave-one-out robustness

tests. Significantly decelerated or accelerated motifs were identified by setting permulation

p-value ≤ 0.05 and using the robustness filter.

4.3.6 Functional enrichment analysis

For the amino acid hits and the meta-analysis of population genetics gene hits, func-

tional enrichment analysis was performed using Fisher’s exact test with permutation tests

for bias correction. We constructed the null distribution of Fisher’s exact test odds ratio

from sampling 500 sets of randomly selected hits with a matching set size as the observed

hits. Then, we computed the empirical p-values of enrichment by calculating the fraction

of the null odds ratio that were as extreme or more extreme than the observed odds ratio.

The fold enrichment value was quantified using the observed odds ratio. To control for the

strictest false discovery rate (FDR) threshold in this resolution, we set a permutation p-value

threshold of ≤ 0.002, which is the resolution of the permutation test. This corresponded to

a Benjamini-Hochberg FDR of 0.16, 0.12, and 0.38 for the population genetic gene hits, the

decelerated amino acids, and the accelerated amino acids, respectively.

Functional enrichment analysis for the CNEs and the TF motifs were performed using
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the Genomic Regions Enrichment of Annotation Tool (GREAT ) [162], specifically using the

rGREAT wrapper package in R [90]. We used GREAT ’s “twoClosest” option for associating

the regions (CNEs or motifs) with the two genes that they were the closest to. Defining the

significantly accelerated or decelerated regions as “foreground” regions and the entire pooled

regions as “background” regions, GREAT used the gene-region association information to

perform hypergeometric tests and binomial tests to compute the functional enrichment of

gene set annotations. We set a Benjamini-Hochberg false discovery rate (FDR) threshold

of 0.05 for both the binomial and hypergeometric tests to identify significantly enriched

annotations. All enrichment analysis were performed on the Gene Ontology, the Reactome

pathway, and the Cell Markers Augmented (2021) annotations.

4.3.7 Organizing enriched annotations

The correlation between each pair of annotations were computed by tracking the number

of overlaps between foreground gene hits that were members of the annotations. The corre-

lation p-value was then computed empirically using thousands of randomly sampled genes

matching the numbers of gene hits in each annotation. Correlated enriched annotations

were represented in an undirected graph, where significantly correlated annotations were

connected by edges.

For larger graphs that were overly dense, clusters of correlated annotations were identified

by accounting for the number of shortest paths between each pair of annotations. We use the

Relative Forest Accessibility (RFA) index to quantify the “global proximity” of each pair of

annotations in the correlation graph that was pre-computed as previously described above.

Let L denote the graph Laplacian of the correlation graph. The RFA matrix P of the graph

was computed as follows:

P = (I + L)−1, (4)

where P ∈ [0, 1]. Each entry of matrix P , prc, is a metric of correlation between anno-

tations r and c as it could be interpreted as the probability that a spanning forest of the

correlation graph would include a tree rooted at r that would have a path to c. A probability
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threshold for the entries in P could then be set to tune the density of the correlation matrix

P . The resulting sparse matrix P was used as an adjacency matrix to construct a graph,

and clusters of related annotations were identified using community clustering algorithms

(e.g., Louvain community clustering).

4.4 Results

4.4.1 Meta-analysis of population genetics studies on high altitude adaptation

Many studies that reported genotype changes associated with high altitude adaptation

looked at short evolutionary timescales at the level of populations. As such, we still lack

a thorough undertanding of genotype-phenotype mappings that robustly explain species

adaptation to high altitude across independent clades. We start this study by performing a

meta-analysis of gene hits from collated population genetics studies on high altitude adapta-

tion. We collect gene hits from 23 population genetics studies on high altitude and identify

307 genes that are highlighted in at least three studies. We then performed functional en-

richment analysis on these genes to learn the estimated functional categories and pathways

that likely experience a gain-of-function in high altitude adaptation.

Figure 4.2 shows the Gene Ontology annotations that are significantly enriched for the

307 genes. Using a graphical clustering approach, we identify that the enriched annotations

are generally categorizable to several classes, including phosphodiesterase activity, neuronal

functions, thyroid functions, kinase and transferase activity, and two giant clusters con-

taining terms related to immune response, cell migration, development and morphogenesis.

Meanwhile, Figure 4.3 shows the significantly enriched Reactome pathway annotations. The

enriched pathways contain a lot of kinases, including hypoxia-modulated MET and MAPK,

as well as Erythropoietin, a glycoprotein hormone that promotes the production of red blood

cells [221]. In the next section, we will use the findings from this meta-analysis as an anchor

to evaluate the outcomes of the phylogenetic convergence analysis.
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Figure 4.2: Gene Ontology enrichment for population genetics gene hits associated with high

altitude.
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Figure 4.3: Reactome pathway enrichment for population genetics gene hits associated with

high altitude.
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4.4.2 Correlations among findings from convergence analysis and meta-analysis

of population genetics studies on high altitude adaptation

After establishing the functional enrichment from the meta-analysis of high altitude-

related population genetics studies, we evaluate the agreement between the population ge-

netics findings and the conclusions from our convergence analyses of proteins and regulatory

elements associated with high altitude adaptation. We compute the convergence signals of

proteins and non-exonic conserved non-coding elements (CNEs) that are at least 30bp in

length. Setting a significance threshold of permulation p-value ≤ 0.05, we identify that high

altitude adaptation is associated with 443 significantly decelerated and 586 significantly ac-

celerated proteins out of a total of 19,137 proteins, and 25,041 significantly decelerated and

59,975 significantly accelerated CNEs out of a total of 1,050,080 CNEs. We also evaluate the

convergence of regulatory elements at the level of transcription factor (TF) motifs by iden-

tifying conserved TF motif coordinates in CNEs and computing their convergence signals.

Setting permulation p-value ≤ 0.05, we identify 131,501 significantly decelerated motifs and

95,867 significantly accelerated motifs, out of a total of 2,933,078 conserved motifs.

We perform enrichment analyses on the sets of decelerated and accelerated proteins,

CNEs, and motifs using the Gene Ontology, Reactome pathway, and Cell Marker annota-

tions, and evaluate how well the enriched terms from these analysis agree with the findings

from the population genetics meta-analysis (Figure 4.4). We find that the enriched terms

from population genetics have significant positive correlations with the enriched terms from

convergently decelerated and accelerated proteins, CNEs, and motifs (all with Benjamini-

Hochberg adjusted Fisher’s exact p-values ≤ 0.01). A rate deceleration may suggest that

the element evolves under an increased constraint from purifying selection, whereas a rate

acceleration may signify positive selection that gives rise to innovative adaptation, or a re-

laxation of constraint. The agreement between the population genetics findings and the

convergent protein signals provides strong evidence that the enriched functions are critical

for high altitude adaptation. Interestingly, we observe a much stronger correlations between

the population genetics findings and convergence signals at the TF motif-level in both the

accelerated and decelerated directions. This observation suggests that the functional adap-
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Figure 4.4: Correlations among enriched annotations population genetics hits and conver-

gence analyses on high altitude adaptation. Significantly enriched annotations from each

analysis was first identified, and correlations between enriched annotations of each pair of

analysis were computed using Fisher’s exact test. Plotted dots represent significant correla-

tions with Benjamini-Hochberg adjusted p-values ≤ 0.01. Correlations are measured using

Fisher’s exact odds ratio.

tations to high altitude also involve regulatory remodeling that is strongly driven by changes

in TF binding on regulatory elements.

Figure 4.5 shows the terms that are enriched in the population genetics hits and are also

enriched among the convergently decelerated proteins, CNEs, or motifs. We observe varia-

tions in functions that undergo decelerated evolution in proteins only, in regulatory elements

only, or in both proteins and regulatory elements. The deceleration of evolutionary rates in

proteins and genomic elements involved in these functions suggest that they evolved under

increased selection constraint that disfavors alterations in their sequence. In other words,
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Figure 4.5: Correlations between significantly enriched annotations from population genetics,

decelerated proteins, and decelerated regulatory elements. Non-significant terms are shown

in grey. Because the enrichment analysis methods are different for different types of analysis,

fold enrichment values are normalized using the maximum enrichment value in each analysis.

they likely evolved under purifying selection. Functions that are enriched for decelerated

proteins are predominantly related to the immune system, with additional terms including

regulation of hemopoiesis, response to oxygen-containing compounds, circulatory system de-

velopment, and regulation of multicellular organismal process. These are key mechanisms

that are critical to fitness and survival at hypoxic conditions. Indeed, changes in the immune

system and red blood cell count and physiology have been observed in populations adapting

to high altitude [11].
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Figure 4.6: Correlations between significantly enriched annotations from population genetics,

accelerated proteins, and accelerated regulatory elements. Non-significant terms are shown

in grey. Because the enrichment analysis methods are different for different types of analysis,

fold enrichment values are normalized using the maximum enrichment value in each analysis.

Meanwhile, there are functions that do not undergo purifying selection in the protein-

coding regions, but show deceleration in the regulatory elements. These functions include

the MAPK pathway and other kinase activities, growth and development, cell adhesion,

and cellular response to stress. This category encompasses general functions that are more

pleiotropic in nature. Because of this pleiotropy, the increased selection constraint likely acts

not on the protein-coding regions themselves, but on binding sites of TFs that regulate the

specific function under selection.

We then evaluate the correlations between the enrichments from population genetics and

100



the accelerated proteins and regulatory elements (Figure 4.6). Because the population genet-

ics hits represent single nucleotide polymorphisms that gave rise to a gain-of-function in high

altitude adaptation, the convergent acceleration of these set of functions may reflect a posi-

tive selection in which a faster evolution occurred in favor of promoting the beneficial allele.

Many of the functions in this category are similar to those that evolve under purifying selec-

tion of regulatory elements only, including kinase activities, cell adhesion, cellular response

to stress, and development. However, this set also includes additional terms related to cell

motion and migration, cell projection, neuron differentiation, embryo development, and tis-

sue morphogenesis. A likely commonality among these functions is the critical involvement

of the actin cytoskeleton in facilitating their mechanism.

The small set of terms that are enriched for both the population genetics hits and the

accelerated proteins are mostly related to embryonic development and morphogenesis. This

observation is interesting because chronic hypoxia at high altitude is known to cause pre-

eclapsia and intrauterine growth restriction [169]. It is possible that high altitude species

have evolved advantageous variants that are positively selected to boost their reproductive

system under hypoxia.

Interestingly, from Figures 4.5 and 4.6, there is only one function that shows significant

correlations with the population genetics outcome in both the acceleration and deceleration

direction, which is the “Response to oxygen-containing compound” annotation. It is clearly

expected that the machinery for oxygen metabolism would be a core mechanism that undergo

substantial convergent changes in facilitating adaptation to hypoxia.

4.4.3 Divergence of conserved non-coding elements (CNEs) underlie altitude-

associated changes in the renin-angiotensin-aldosterone system

From the convergence analysis at the CNE-level, we find strong enrichment for low p-

values in the phenotype association p-value distribution for accelerated CNEs associated

with high altitude, whereas that of decelerated CNEs shows no enrichment (Figure 4.7A).

This observation suggests that at the entire CNE unit-level, regulatory adaptations to high

altitude are mainly driven by CNE divergence. Using the Reactome pathway annotations to
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evaluate the pathway enrichments of the accelerated CNEs, we find significant enrichment

for 6 pathways, 3 of which are related to collagen metabolism (Figure 4.7B). Meanwhile,

results from the Gene Ontology (GO) annotations show the most pervasive enrichment for

terms related to neuronal functions, vascularization, kidney development, the extracellular

matrix (ECM), and receptor tyrosine kinase activity (Figure 4.7C). The observed functional

enrichment hints at a regulatory rewiring of the renin-angiotensin-aldosterone axis as an

adaptive mechanism to hypobaric hypoxia at high altitude.

Given the prominence of collagen-related annotations in the pathway enrichment analysis

results, we investigate the functions that collagen metabolism may facilitate in underlying

adaptation to high altitude. We identify CNE-enriched GO annotations that are significantly

correlated with the collagen-related Reactome annotations, namely “collagen formation”,

“collagen chain trimerization”, and “collagen biosynthesis and modifying enzymes”. Fig-

ure 4.8 illustrates the correlations among the Reactome and GO terms, where neighboring

nodes that are connected by an edge are significantly correlated (empirical p-value ≤ 0.002).

We find that immediate “first neighbors” of the collagen-related pathways are GO terms

that are related to the ECM. To identify the systems that are affected by ECM changes in

high altitude species, we evaluate the first neighbors of the ECM-related GO terms and find

that they are predominantly terms related to vascularization, especially in the kidney.

The importance of collagen-related pathways in high altitude adaptation have previously

been highlighted by Qi et al. [196], in which they performed comparative transcriptomics

analysis on multiple tissues of yaks living at different altitudes, as well as a lowland control.

They found that collagen genes COL1A2, COL3A1, COL5A2, COL14A1, and COL15A1

were differentially expressed in at least 5 (out of 7) different tissues in response to hypoxia

at high altitude. They also highlighted the enrichment for ECM- and collagen-related path-

way and GO annotations among genes that are positively correlated with high altitude,

particularly in lung and heart tissues. Additionally, the role of ECM in vascularization is

also well-documented [200]. Besides providing a structural framework for blood vessel walls,

ECM can also control the migration, growth, and healing of vascular cells. Meanwhile, the

kidney is a highly vascularized structure that also has a large demand for oxygen, mak-

ing it very fragile to hypoxia [77]. A moderate-term mouse experiment at high altitude
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Figure 4.7: Altitude-associated convergent divergence of conserved non-coding elements

(CNEs) are enriched for functions related to the renin-angiotensin-aldosterone axis. (A)

Empirical p-value distribution for association between CNEs and high altitude phenotype.

(B) Reactome pathway annotations that are enriched for CNEs that are significantly diverged

in high altitude species, and (C) the same plot for Gene Ontology annotations (Benjamini-

Hochberg adjusted p-value ≤ 0.05).

103



Figure 4.8: Altitude-associated adaptation of collagen metabolism is related to vasculariza-

tion. Graph shows correlations among the collagen-specific Reactome pathway annotations

and Gene Ontology annotations that are all enriched for convergently diverged CNEs in high

altitude mammals.
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demonstrated that the renin-angiotensin-aldosterone system facilitated a protective mecha-

nism against hypoxic conditions, in which efferent arterioral vasoconstriction was activated

to increase glomerular filtration rate [99].

4.4.4 Transcription factor motif-scale analysis highlight the involvement of G

protein-coupled receptor signaling in high altitude adaptation

Finally, we perform convergence analysis on individual TF motifs that intersect CNEs

(Figure 4.9A). Unlike at the CNE-scale, we find strong enrichments of low p-values for both

decelerate and accelerated motifs (Figure 4.9B). We then use the Gene Ontology annotations

and the Reactome pathway annotations to find the functions that are enriched for the ac-

celerated and decelerated motifs (Figure 4.9C). We find that the enriched functions in both

directions are highly interrelated. For the accelerated motifs, most of the enriched func-

tions are consistent with the CNE-level results, with the addition of the hypoxia-modulated

platelet-derived growth factor (PDGF) signaling pathway and the MAPK pathway. The

PDGF pathway plays a role in mediating the remodeling of pulmonary vasculatures under

hypoxia [76].

Meanwhile, the decelerated motifs are enriched for pathways related to G protein-coupled

receptors (GPCR). Different types of GPCRs have indeed been found to be involved in

facilitating hypoxia response. For example ligands like β-adrenoreceptor agonists, ET-1,

and lysophosphatidic acid can activate GPCRs that will then increase and stabilize HIF-1

activity [31, 108, 139]. Additionally, the hypoxia-induced mitogenic factor (HIMF) facilitates

pulmonary circulation vasoconstruction by a mechanism that involves Gαq [69].

4.5 Discussion

In this work, we perform convergence analysis on the protein-coding and regulatory non-

coding adaptations that are associated with the convergent evolution of mammalian lineages

to high altitude. We compare the conclusions of the convergence analysis with that of a
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Figure 4.9: Transcription factor (TF) motif changes highlight the involvement of G protein-

coupled receptors in high altitude adaptation. (A) Individual TF coordinates in CNEs are

scored for convergence. (B) Motif-level phenotype association p-value distributions. (C)

Reactome pathway annotations that are enriched for accelerated and decelerated motifs.
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meta-analysis on high altitude population genetics studies and find that they are largely in

agreement. By anchoring our analysis on the meta-analysis, we identify several functional

categories that likely evolve in different modes in response to high altitude stressors.

In the first category, core functions that are absolutely critical for survival at altitude

evolve under strong purifying selection that acts on the protein-coding regions. These func-

tions include regulation of oxygen metabolism, hemopoiesis, the immune system, and cir-

culatory system development. In the second category of functions, rate acceleration or

deceleration only occur in the non-coding elements, while the protein-coding regions evolve

neutrally. This category includes mechanisms that are ubiquitously active in different sys-

tems, including kinase activity, growth and development, stress response, and cell adhesion.

The third category is characterized only by rate acceleration of non-coding regions. This

mechanism possibly signifies a positive selection that acts on sequence motifs to innovate

new transcription factor (TF) binding patterns that can engender new important functions.

The final category includes functions that are accelerated in the coding region, possibly as

a sign of positive selection. This category mainly includes functions related to embryonic

development.

In interpreting the results of the meta-analysis, we note that there is an inherent bias

that stems from variations in the methodology of study and reporting that was used by

different studies. For instance, some studies only reported the top n gene hits, whereas

others gave a full accounting for their analysis. Some studies also focused their analysis on

certain pathways of interest, such as the HIF pathway. In addition, as the meta-analysis is

conducted across species, there may be differences of genes that are present across species,

and different gene background sets would have been used as well in each study. As such,

conclusions from the meta-analysis should not be taken at face value, and instead should be

treated as a rough estimate.
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5.0 AFconverge: alignment-free phylogenetic method for predicting

convergent evolution of regulatory elements

5.1 Attribution statement

All of the work in this chapter was performed by myself, with the following exception:

• The function for performing motif convolution was developed by Ali Tugrul Balci.

5.2 Introduction

One of the major pursuits of modern biology is to understand how complex phenotypes

arise from genetic differences. It is thought that phenotypic diversity stems from differences

in gene expression patterns, which are increasingly attributed more to changes in non-coding

regulatory elements (REs) than protein sequences. One strategy to characterize REs that

underlie a phenotype is to identify REs that evolve in association with the evolution of

the phenotype. In particular, comparative genomics algorithms that predict the associations

between DNA (or amino acid) sequence evolution and the convergent evolution of phenotypes

have become widely used and largely demonstrated success (e.g., [110, 128, 135, 155]).

However, there is a lack of algorithms that are suitable for addressing the evolutionary

mechanisms of REs. Many of the existing phylogenetic methods take a “top-down” ap-

proach of computing element-level signals that are often computed from multiple sequence

alignments of RE orthologs. This dependence on sequence alignment is incongruous with

the structural and functional properties of REs. REs are composed of multiple transcription

factor (TF) binding sites that work modularly and in combination with one another, creating

an exponential number of possible motif combinations with varying levels of cooperativity

and redundancy. Additionally, many TFs are pleiotropic, and specific motifs that underlie

a phenotype under selection may experience stronger selection pressures than other motifs

in a given element. Recent studies have also described that REs such as enhancers are not
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under strict sequence conservation [249] and could even retain functional homology across

deep evolutionary time regardless of extensive variations in motif frequency, composition,

and ordering [258]. As such, to understand how selection acts on regulatory machineries,

it is necessary to go beyond studying patterns at the aggregate level of an entire RE and

examine the correlation patterns of motif selection, a challenge that is still largely unsolved

by current approaches.

One existing algorithm that takes an alignment-free approach in evaluating the pheno-

typic association of REs is Regulatory Element forward genomics (REforge) [135]. REforge

uses a user-defined set of TFs expected to be associated with a phenotype of interest to

assign each sequence with a “collective binding” score of the TFs on the sequence, computes

the difference of scores between each parent-child node pairs (“branch scores”), and finds

the association between these branch scores and trait loss/preservation. Although REforge

scores individual motifs, by design, REforge is unable to provide a TF-level convergence

signal. It is also limited to detecting RE divergence, and thus would not be able to predict

analogous RE or TF turnovers that occur independently (e.g., [54]). Additionally, REforge

requires prior knowledge of phenotype-associated TFs, which is difficult to determine for

complex phenotypes that are not well-characterized.

Another approach for alignment-free comparative genomics has also been introduced by

Kaplow et al. [113] in their TACIT (Tissue-Aware Conservation Inference Toolkit) model.

In TACIT, functional genomics datasets are used to train a convolutional neural network

(CNN) to predict tissue-specific open chromatin regions (OCRs) from sequences. The model

can then be used to predict OCR signals across many species for which functional data is

not available, and correlate the signals with phenotype. While CNNs are highly effective

for learning complex sequence features, the challenges with TACIT lie with the fact that

validating the integrity of cross-species model prediction is difficult in the absence of ground

truth data, and that prior knowledge on expected tissues that are affected by the phenotype

is needed.

Here, we introduce AFconverge (alignment-free converge), a “bottom-up”, TF-centric

phylogenetic method that predicts the patterns of regulatory motif adaptations underlying

phenotypic evolution. Unlike REforge and TACIT that use hypothesis-driven approaches,
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AFconverge takes a hypothesis-free approach, with inference of functional signals performed

in downstream analyses. We first benchmark our method using the classical case of the

convergent loss of vision in mammalian lineages. Then, we apply AFconverge to study the

promoter adaptations that occur with a less well-characterized phenotype, the evolution

of extended lifespan and large body size in mammalian lineages, and demonstrated the

flexibility of the application of AFconverge for deciphering the complexity of regulatory

adaptations at multiple scales. To our knowledge, AFconverge is the first algorithm that

computes TF motif-level convergence signals in an alignment-free manner.

5.3 Materials and Methods

5.3.1 Introduction to the AFconverge framework

Figure 5.1 illustrates the overall schematics of the AFconverge workflow. Given a set of

comparable (but not necessarily alignable) orthologous sequences of a DNA region, AFcon-

verge first performs 1D-convolution on one-hot-encoded sequences to scan for the strongest

evidence for TF binding sites, using the position weight matrices (PWMs) of a set of motif

features as convolutional filters. A “motif score” of a feature in a sequence is defined as the

max-pooled value of the convolution output. AFconverge also performs motif calling using

PWMScan [3] to filter out signals from features for which no strong evidence of TF binding

is observed in at least n of the orthologs. If the analysis is performed on multiple regions,

the output of this motif convolution step would be a sparse, three-way tensor of motif scores,

with the number of regions, features, and genomes as the three dimensions.

Then, the “phenotype association score” of each feature in each region is calculated.

Specifically, if X is the motif score tensor, phenotype association of feature m in region r is

quantified by firstly taking the tensor fiber x rm along the genome axis, and then correlating

its elements with the corresponding convergent phenotype values using Spearman’s rank cor-

relation test. Importantly, AFconverge employs a phylogeny-aware bias correction strategy

called permulation, which uses Brownian motion phylogenetic simulations to produce null
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phenotypes that preserve the phylogenetic dependence and value distribution of the true

phenotype [212]. These null phenotypes are then used to compute empirical p-values, de-

fined as the proportion of the null statistics that are as extreme or more extreme than the

true phenotype statistic. Finally, the phenotype association score of the feature is defined as

the negative logarithm of the empirical p-value, multipled by the sign of the raw correlation

statistic (negative for feature loss and positive for feature gain). Because the distribution

of null statistics are often asymmetric and non-trivial, we use the conditional p-value calcu-

lation strategy proposed by [133] to compute two-sided p-values that are equivalent to the

corresponding one-sided test, while maintaining a healthy p-value distribution.

Thus, AFconverge takes a motif-centric approach to score the phenotype associations of

motif features in a modular way, and can be employed with either binary or quantitative

phenotypes. Figure 5.2 depicts how motif-level convergence scores computed by AFconverge

can be interpreted. In this illustration, two TF motifs (blue and red) in orthologs of a

certain enhancer are evaluated for their respective associations with mammalian lifespan as

the phenotype of interest. From the illustration, increasing binding affinity of the blue motif

is positively correlated with increasing lifespan, which we define as a phenotype-associated

“motif gain”. In contrast, decreasing binding affinity of the red motif is correlated with

increasing lifespan, which we define as a phenotype-associated “motif loss”.

In computing motif-level convergence signals, we have to ensure that the statistical signif-

icance of a “motif gain” actually detects the convergent appearance of the motif according to

a certain significance threshold, instead of merely representing a numeric correlation that is

not reflected in the actual appearance of the motif. Likewise, a detected “motif loss” should

reflect the convergent disappearance of motifs that were actually present in ancestral species

according to a certain significance threshold. AFconverge controls this issue by performing

motif calling to filter out motif convergence scores that do not pass these criteria. Specifi-

cally, suppose we want to evaluate whether there is a convergent gain/loss of motif m in the

orthologs of element A. AFconverge first uses PWMscan to call motif m in each ortholog

of A, according to pre-defined p-value threshold (default 10−5). Then, the total number of

motif m called across the orthologs of A is counted, denoted by nT
m. If the phenotype is

continuous, the only filter user needs to specify is a minimum threshold for nT
m to make sure
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Figure 5.1: Workflow of AFconverge. AFconverge performs motif calling and 1D-convolution

on comparable orthologous sequences across species genomes using transcription factor (TF)

position weight matrices as filters, resulting in a three-way tensor of motif scores quantifying

TF binding. Correlation between TF binding strength per element and the phenotype values

is then computed, using Spearman’s rank correlation test that is corrected for biases with a

phylogeny-aware trait permutation method.
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that the convergence signal of the motif is detected from a sufficient number of species.

If the phenotype is binary, the filtering is conditioned on whether the convergence signal

is positive (motif gain) or negative (motif loss). Let N c denote the total number of orthologs

of element A of the convergent species only, and nc
m denote the number of motif m called

among the orthologs of A of the convergent species only. If the motif convergence score

for motif m in element A has a positive sign (motif gain), user will need to set minimum

threshold for nc
m in addition to nT

m (e.g., setting nc
m ≥ 2 means that a convergent motif gain

requires that a statistically significant appearance of the motif is observed in the orthologs

of at least 2 convergent species). If the motif convergence score is negative (motif loss), user

will need to set a minimum threshold of N c in addition to nT
m (e.g., setting N c ≥ 2 means

that at least two of the orthologs of the convergent species must exist, to avoid detecting

a “motif loss” due to the absence of the entire orthologs in the convergent species). Motif

convergence scores that do not pass these conditions for binary or continuous phenotypes

are filtered out. For the analysis in this work, we set nc
m ≥ 2, N c ≥ 2, and nT

m ≥ 10.

5.3.2 Constructing a dataset of reference-free promoter orthologs from the

Zoonomia mammalian phylogeny

We constructed a dataset of orthologous DNA sequences for 19,565 promoters from the

241-way reference-free mammalian alignment produced by the Zoonomia Consortium [81].

Specifically, we defined “reference-free promoter orthologs” as windows that were similarly

proximal to the transcription start sites (TSS) of genes across genomes, obtained by extend-

ing a window of ±250bp from the TSS. The first step in constructing the promoter dataset

was to identify “anchor” positions of each gene promoter that can be “lifted over” across

species genomes with high fidelity. For the human hg38 assembly, the anchors were defined

as the TSS of the genes. Then, we defined a ±50bp window around each TSS in the human

assembly, and then lifted the window over to other assemblies using halLiftover [102]. We

also lifted over the TSS position coordinate specifically. Using the lifted-over coordinates of

the TSS and the 50bp window, we reconstructed the orthologs of the 101bp hg38 -window in

all other species using HALPER [274] and defined the successfully transferred orthologs as
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Figure 5.2: Interpretation of motif-level phenotype association scores computed by AFcon-

verge. Each bar represents the binding affinity score of a motif. Gain of the blue TF motif

is positively associated with the phenotype (e.g., lifespan), whereas loss of the red motif is

negatively associated.
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regions that were contiguous and within 50bp-1000bp long, with a 25bp “protection” buffer

around the summit in either direction. The orthologous anchors were determined to be

the summit coordinates of the successfully transferred orthologous windows. For promoters

whose 101bp window were successfully lifted over but whose TSS was not, the orthologous

anchor coordinates were determined to be the lifted-over coordinate whose original coordi-

nate in the hg38 assembly was the closest to the TSS in hg38. All other promoters that

did not pass these two criteria were discarded. Finally, promoter regions were obtained

by extending 250bp upstream and downstream from the anchors. We specifically used the

NCBI RefSeq transcript dataset for hg38, from which we identified 56,698 sets of promoter

orthologs.

5.3.3 Motif dataset for convolutional filters

As convolutional filters, we used a repository of 693 non-redundant TF motif archetypes

in the human genome that were clustered from >4,000 motifs [248]. Specifically, we used

version 2.0-beta, which can be found on the following website: https://resources.altius.

org/~jvierstra/projects/motif-clustering-v2.0beta/. Additionally, we also computed

the GC ratio of the sequences, as well as CG and GC patterns (the average-pooled value

from convolving the sequence with “CG” and “GC” patterns, respectively).

5.3.4 Identification of outlier species

To identify outliers species in the dataset, we first took ∼5000 randomly selected sets of

promoter orthologs, and performed 1D-convolution on these orthologs using the PWMs of

the TF motifs. This step produced a genome-by-motif matrix of motif scores (or TF binding

scores) for each set of promoter orthologs. Then, we removed phylogenetic bias in each matrix

by de-correlating the motif scores with a standard statistical whitening transformation, using

the covariance matrix computed from the neutral phylogenetic tree model. Outliers in each

promoter’s matrix were identified by computing the Mahalanobis distance of each species

from the center of the multivariate distribution in the principal component space of the de-

correlated matrix, setting a threshold of Benjamini-Hochberg χ2 FDR ≤ 0.01. Pooling all
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the ∼5000 promoters together, the final set of outlier species were defined as the species that

were assigned as outliers in at least 10% of the promoters. This process assigned 23 species

as outliers that were then removed from the analysis.

5.3.5 Phenotypes for evaluation

As there are many non-trivial factors that introduce biases to real sequences, it is not

plausible to simulate sequences that could reliably represent the ground truth. Thus, to

benchmark our method, we used the classical example of convergent vision loss in mammals

(Figure 5.3A). The set of extant “foreground” species (i.e., species with the convergent pheno-

type) in the Zoonomia dataset include several species of moles and mole rats (Heterocephalus

glaber, Fukomys damarensis, Ellobius talpinus, Ellobius lutescens, Nannospalax galili, Sorex

araneus, Condylura cristata, Scalopus aquaticus, Chrysochloris asiatica), echolocating bats

(Noctilio leporinus, Myotis davidii), and Rhinolophus sinicus. To enable permulation, we

simplified the large echolocating bat clade by pruning the remaining species other than Noc-

tilio leporinus and Myotis davidii. In addition to removing 23 outlier species, this results in

200 total species. The ancestors of Heterocephalus glaber and Fukomys damarensis, Ellobius

talpinus and Ellobius lutescens, and Noctilio leporinus and Myotis davidii were included as

foregrounds for permulation.

Subsequently, we applied AFconverge to investigate the regulatory adaptations under-

lying extended lifespan in mammals. Our group had previously defined the ‘long-lived,

large-bodied’ (3L) phenotype as the evolution of long lifespan that correlates positively with

body size, quantified by taking the first principal component between the log-transformed

maximum lifespan and the log-transformed adult weight of the species [129] (Figure 5.3B).

We took a subset of 167 species for which the phenotype annotations are available in the

Animal Aging and Longevity Database (AnAge) [243] and removed the outliers, resulting in

144 total species.
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Figure 5.3: Phenotypes for evaluation. (A) We benchmark AFconverge with the conver-

gent case of vision loss among independent mammalian lineages. In a 200-way mammalian

phylogeny, 12 extant species (red branches) have independently lost their visual structures,

including several species of bats, moles, mole rats, and the shrew. (B) We apply AFconverge

to analyze the convergent evolution of mammalian longevity and increased body size, quan-

tified as the first principal component between the log-transformed maximum lifespans and

the log-transformed body sizes of the mammals.

5.3.6 Alternative methods for benchmarking analysis

We compared the performance of AFconverge against two alternative methods: RERcon-

verge, an alignment-based algorithm [128, 188], and REforge, an alignment-free algorithm

[135]. RERconverge measures the associations between convergent phenotypes and con-

vergent shifts in relative evolutionary rates (RERs). RERs are quantified by computing

the residuals from regressing the length of each branch in an element-specific tree against

the average length of corresponding branch genome-wide, followed by correction for het-

eroscedasticity. The RERs are then correlated with binary phenotypes using Kendall’s τ

test. Meanwhile, REforge uses a set of pre-defined motifs for TFs that are expected to be

associated with the phenotype of interest. The motifs are used to quantify binding scores on

each sequence, from which a “collective binding” score is computed for the sequence. Finally,

changes in collective binding scores per branch are computed and correlated with trait loss

or preservation per branch.
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5.3.7 Data preparation for alternative methods used in benchmarking analysis

To prepare the input dataset for RERconverge, we first used the MUSCLE (MUltiple

Sequence Comparison by Log-Expecation) tool [60] to create a multiple sequence alignment

(MSA) for each set of promoter orthologs. Afterwards, the promoter MSAs were used to

infer promoter-specific evolutionary trees using phangorn [218], using the ”General Time

Reversible” nucleotide substitution model. Finally, the readTrees function in RERconverge

was used to store the promoter-specific trees into a multiPhylo R object and compute the

“average” tree, with branch lengths that were averaged from all the promoter-specific trees.

To prepare the input datasets for REforge, we used PRANK [146] to perform phyloge-

netic reconstruction of ancestral sequences for each set of promoter orthologs and estimate

promoter-specific evolutionary trees. As motif priors for the scoring with REforge, we used

the list of eye-related transcription factor motifs used by Langer et al. [135] in the orig-

inal REforge publication. Out of the 28 motifs that Langer et al. used, we identified 25

motifs which we could find the motifs for in the JASPAR, Uniprobe, and cisBP databases

(Table 5.1).

5.3.8 Detecting element-level phenotype-associated divergence

To measure convergent divergence of an entire element unit from AFconverge’s motif-level

scores, we used Wilcoxon rank-sum test to detect whether there was a significant deviation

in the number of convergent motif losses in the element, relative to the null distribution of

motif-level convergence scores. Specifically, we defined the vector of motif-level convergence

scores of the element of interest as the test group, and the pooled motif-level convergence

scores of the remaining elements as the control group for Wilcoxon rank-sum test. Negative

values of the test statistic signified convergent divergence of the element.

5.3.9 Functional enrichment analysis

Functional enrichment analysis was conducted using Fisher’s exact test, corrected for

biases from variations in gene set sizes using permutation tests. Specifically, the null distri-
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Table 5.1: Ocular transcription factor motifs used as priors for REforge in benchmarking

experiments

Motif

name

Label Source Motif

name

Label Source

Dmbx1 MA0883.1 JASPAR Pax2 MA0067.2 JASPAR

Emx1 MA0612.2 JASPAR Pax5 MA0014.3 JASPAR

Esx1 MA0644.2 JASPAR Pax6 MA0069.1 JASPAR

Hes1 MA1099.2 JASPAR Six1 MA1118.1 JASPAR

Nrl MA0842.2 JASPAR Mitf MA0620.3 JASPAR

Prox1 MA0794.1 JASPAR Mitf MA1899.1 JASPAR

Sox21 MA0866.1 JASPAR Sox1 MA0870.1 JASPAR

Vsx1 MA0725.1 JASPAR Bhlhb2 Bhlhb2 1274

015681.bml

Uniprobe

Nanog NANOG+

M6357 1.02+D

cisBP Lhx2 MA0700.2 JASPAR

Crx MA0467.2 JASPAR Pitx2 MA1547.2 JASPAR

Gbx2 MA0890.1 JASPAR Hsf1 MA0486.2 JASPAR

Hoxa6 MA1497.1 JASPAR Hsf1 MA0319.1 JASPAR

Hoxc5 Hoxc5 2639.2 Uniprobe
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bution of Fisher’s exact test odds ratio was obtained by performing the test on 500 match-

sized sets of randomly sampled elements. The empirical p-values were then computed by

calculating the fraction of the null odds ratio values that were greater than or equal to the

odds ratio of the true phenotype. Functional annotations that were used for analysis in this

study include the CellMarker Augmented (2021) annotations [273], the Reactome pathway

annotations, and the Gene Ontology annotations as stated.

5.3.10 Computing enrichment of gained and lost motif features

We first set a Type I error threshold of 0.01 to identify gained and lost motif features that

were strongly correlated with the convergent phenotype. Then, to compute the enrichment

of feature A in the set of gained (or lost) features, we used Fisher’s exact test to calculate

the probability of identifying n number of feature A in the set of gained (or lost) features,

given the total number of feature A. To correct for statistical biases due to variations in

the total number of calls across features, we performed permutation tests to construct the

null distribution of odds ratio by randomly selecting null sets of motif calls, where each set

contained the same number of calls as the total number of calls for feature A. The empirical

p-value of the enrichment for feature A was then computed as the fraction of null odds ratios

that were greater than or equal to the true odds ratio of feature A. Correction for multiple

testing was finally performed using Benjamini-Hochberg FDR to adjust the empirical p-

values, and fold-enrichment was quantified using the true odds ratio.

5.3.11 Learning latent correlations in motif selection

We used Empirical Bayes Matrix Factorization (EBMF) [254] to decompose the pheno-

type association matrix into latent variables (LVs). EBMF estimates the optimal number

of LVs and amount of sparsity in the learned representation by learning prior distributions

from the data directly. To encourage interpretability, we constrained the prior distributions

of the LV loadings to follow a mixed non-negative uniform distribution. EBMF was per-

formed with the flashr package in R, using a greedy forward and backward fitting algorithm.

The top-ranking promoters represented by each LV were determined by reconstructing the
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distribution of loading values from the fit model, and identifying the promoters with loading

values above the 95th percentile of the distribution. The feature gains and losses repre-

sented by each LV were obtained by reconstructing the distribution of factor values from

the fit model, and then identifying the features whose factor values lay outside of the 95%

confidence interval of the distribution.

5.4 Results

5.4.1 AFconverge outperforms competing methods in predicting convergent

divergence of ocular-related promoters in blind mammals

We first benchmarked AFconverge against two competing methods – REforge, which

was an alignment-free comparative method, and RERconverge, which was alignment-based

– using the convergence case of loss of vision in mammalian lineages as the benchmarking

phenotype (Figure 5.3A). Given the degradation of ocular structures in these species, we

expect that promoters related to ocular functions would be convergently diverged because

they would be evolving under decreased selection constraints. Because the two alternative

methods were only able to compute convergence scores at an entire element-level, we used

AFconverge’s motif-level convergence scores to compute element-level convergence scores,

specifically by using Wilcoxon rank-sum test to identify promoters that have convergently

lost a significantly large number of motif features due to relaxation of constraint. Figure 5.4A

shows the phenotype association p-value distributions produced by the three methods. From

the p-value distributions, it is evident that AFconverge was able to produce a strong enrich-

ment of low p-values, meaning that it was able to identify promoters that were convergently

diverged in association with the loss of visual structures in the foreground species. Mean-

while, both REforge and RERconverge produced substantially weaker enrichment of low

p-values compared to AFconverge.

We then evaluated whether the top-ranking promoters identified by the three methods as

convergently diverged in blind mammals were indeed associated with eye-specific functional
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Figure 5.4: Benchmarking analysis on the convergent loss of vision in mammals. (A) His-

tograms showing the distributions of phenotype association p-values computed by AFcon-

verge, RERconverge (alignment-based), and REforge (alignment-free). (B) Enrichment anal-

ysis showing the correlation between top-ranking convergently diverged promoters predicted

by the three methods with ocular-specific terms in the CellMarker Augmented (2021) anno-

tations.

annotations. To make a fair comparison across the methods, we first selected approximately

equal numbers of top-ranking promoters with the strongest signals for convergent divergence,

specifically 1,636 promoters for AFconverge (permulation p-value ≤ 0.01), 1,618 promoters

for REforge (Pearson’s p-value ≤ 0.068), and 1,625 promoters for RERconverge (Kendall’s

p-value ≤ 0.046). Then, we evaluated whether the three sets of promoters were enriched

for cell type-specific markers of ocular tissues curated by the CellMarker Augmented (2021)

annotation [273]. Setting a threshold for enrichment p-value ≤ 0.05 for all three analysis,

we found that the promoters identified by AFconverge as having the greatest convergent

alterations in their global TF profile were indeed significantly enriched for markers of multi-

ple eye tissues (Figure 5.4B). Moreover, the functional enrichment produced by AFconverge

was substantially larger than that of alternative approaches. REforge, which was also an

alignment-free method, was able to pick up enrichment for two annotations. Interestingly, al-

though AFconverge’s convergence analysis was conducted in a hypothesis-free manner, it was

able to outperform REforge’s hypothesis-driven analysis, in which a pre-defined set of known
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eye-related TFs were specified to compute eye-specific promoter divergence. Meanwhile, the

alignment-based method, RERconverge, failed to identify enrichment for any eye-related

terms in this analysis.

5.4.2 AFconverge highlights that convergently diverged promoters in blind

mammals are most enriched for neuronal and ocular functions

After benchmarking on eye-specific annotations, we evaluated the enrichment for all Cell-

Marker Augmented annotations among the promoters predicted as significantly diverged by

AFconverge. Out of 1,079 annotations, the top-ranking convergently diverged promoters

were significantly enriched for 78 annotations (empirical p-value ≤ 0.05) (Figure 5.5). No-

tably, a large proportion of these hits were associated with neuronal or ocular tissues (∼36%

of the top-ranking hits shown in Figure 5.5). In fact, most of the neuronal hits heavily occupy

the top of the list when ranked according to fold enrichment. This is consistent with the fact

that vision loss in blind species is often accompanied by the remodeling or degradation of

neuronal cell types. In subterranean mammals, the superior colliculus and lateral geniculate

nucleus, which are the components of the midbrain that receives optical signals from the

eye, are degenerated compared to mice [44, 45]. Additionally, the cerebellum of naked mole

rats have been reported to undergo a remodeling in which the region for the somatosensory

system for processing tactile cues for navigation is expanded, while the region for visual

system is degraded [157].

We note that the 78 significantly enriched hits reflect developmental processes across

different systems. This is consistent with previous reports that morphological convergence

can arise from molecular convergence of development regulatory mechanisms that can involve

pleiotropic TFs [259]. When we accounted for significant overlaps among annotations, we

indeed found that the enriched annotations were significantly interrelated (Figure 5.6). In

the graph representation in Figure 5.6, the densest region represent stem and precursor cells

in different developmental tissues.
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Figure 5.5: Top-ranking CellMarker Augmented (2021) annotations that are significantly

enriched (p-value ≤ 0.05) for promoters that are predicted by AFconverge to be significantly

diverged in blind mammals. The plotted annotations are the ones with fold enrichment ≥ 2.
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Figure 5.6: Enriched cell marker annotations represent significantly interrelated developmen-

tal tissues. Significantly correlated annotations are connected with edges (empirical p-value

≤ 0.001).
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5.4.3 AFconverge predicts global convergent losses of transcription factor mo-

tifs relevant to ocular phenotype

Switching from a promoter-level to a motif -level perspective, we ask whether AFcon-

verge’s motif-level convergence signals could highlight specific TFs whose binding sites un-

derwent significant convergent changes across all promoters due to selection. Setting a per-

mulation p-value threshold of ≤ 0.01, we first identified 119,330 “promoter-motifs” that were

convergently lost across promoters, out of 1,712,466 total scored promoter-motifs. We found

that this set of lost promoter-motifs were significantly enriched for the 34 motif features with

Benjamini-Hochberg FDR ≤ 0.01, out of the total of 696 features evaluated (Figure 5.7).

Notably, among this set of features that experienced widespread convergent losses were a

number of known regulators of eye development, neuronal development, and circadian rhyth-

micity, including binding sites for PAX6, a master regulator of eye development [89]; MECP2,

a neuronal TF that caused a deterioration in visual acuity when knocked out in mice [272],

and circadian rhythm regulators CLOCK, HEY, HES1, and MAX. Convergent losses of

binding motifs for circadian regulators suggest a remodeling of circadian control machinery,

which has indeed been reported in subterranean mammals relative to mouse [10, 82]. We

also note the loss of three unique motifs for ZBTB14, suggesting its importance in the phe-

notype. ZBTB14 has been found to be a biomarker for vitreous seeding retinoblastoma [78]

and plays a role in retinal differentiation [27]. Meanwhile, there were 33,031 convergently

gained promoter-motifs, but they were not significantly enriched for any individual motif

feature.

5.4.4 AFconverge identifies widespread gains and losses of motif features asso-

ciated with the evolution of longevity

After benchmarking the method, we then used AFconverge to investigate the regulatory

adaptations underlying the convergent evolution of a complex phenotype that is less well-

understood, which is the evolution of extended lifespan in mammals. Our group previously

distinguished two extended lifespan traits – the ‘long-lived, large-bodied’ (3L) phenotype

describes the evolution of long lifespan that correlates positively with body size, while the
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Figure 5.7: Motif features that are globally lost across promoters in association with conver-

gent vision loss.
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‘exceptionally long-lived given body size’ (ELL) phenotype describes extended longevity that

is corrected for body size [129]. This work focuses on the 3L phenotype (Figure 5.3B).

After computing the association scores for all promoter-motif features, we observed a

strong enrichment for motif gains, and a weaker signal for motif losses (Figure 5.8A). Setting

a permulation p-value threshold of ≤ 0.01, we identified 31,683 gained features and 13,488

lost features that were strongly correlated with the evolution of the 3L phenotype, out

of a total of 2,762,582 promoter-motifs (1.15% and 0.49% of the total, respectively). We

then evaluated whether there were significant widespread gains of motifs across promoters

in association with the evolution of the 3L phenotype. We indeed discovered significant

enrichment of 103 motif features in the set of 3L-associated motif gains, with Benjamini-

Hochberg FDR ≤ 0.01 (Figure 5.8B). Many of the features that were enriched in the set of

motif gains were binding sites for TFs that have been documented for their involvement in

regulating longevity, or in mechanisms known to be associated with longevity. Importantly,

AFconverge identified widespread gains of motifs for Forkhead O (FOXO) TFs (motif cluster

AC0036), which were known to be master regulators of longevity and modulate lifespan via

the insulin/insulin-like growth factor pathway [23]. We also identified widespread gains of

motifs for tumor suppressors SMAD4 (AC0597) and PRDM4 (AC0287). This observation

supports the hypothesis that a tighter cancer control machinery is the underlying explanation

for Peto’s paradox, in which increasing body size does not correlate with increased cancer

risk [35]. Indeed, the expansion of SMAD4 activity has been observed in long-living turtles

relative to other vertebrates [198].

Another interesting finding was the identification of significant widespread gains of motifs

for pluripotency regulators, including SOX2 (AC0659), NANOG (AC0636), and ZSCAN4

(AC0530). This observation is consistent with recent findings from comparative transcrip-

tomics that reported that genes whose expression positively correlated with maximum lifes-

pan in mammals were controlled by pluripotency regulators, including SOX2 and NANOG

[147]. Finally, we also identified motifs for TFs that are involved in regulating mechanisms

related to longevity, including regulation of T-cell activity and development (NFAT TFs),

innate immune system (IRF3), and cell cycle (MYBL1, MYBL2).

Switching gears to motif losses, there were 6 motif features that were significantly en-
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Figure 5.8: Motif features with global convergence signals in association with longevity. (A)

Motif-level phenotype association p-value distributions. (B) Features with global longevity-

associated gains across promoters (plotted hits have fold enrichment ≥ 2). (C) Features with

global longevity-associated losses across promoters.
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riched in the set of 3L-associated motif losses globally (Benjamini-Hochberg FDR ≤ 0.1)

(Figure 5.8C). Among these hits were motifs for TFs whose aberration has been previously

characterized to increase mammalian lifespan, including SIX5 and ETS1. The introduction

of SIX4 and SIX5 knockout alleles have been found to prolong lifespan and enhance the

regeneration of skeletal muscles in mouse models of Duchenne Muscular Dystrophy [265].

Meanwhile, ETS1 has been suggested to control the down-regulation of the ribosome path-

way in long-living humans, and ETS1 knockdown causes the reduction of cellular senescence

in embryonic lung fibroblast and human dermal fibroblast cells [263].

5.4.5 Correlations in motif adaptation highlight immunity, germline develop-

ment, and cancer control as core mechanisms underlying longevity

Finally, we hypothesized that the evolution of the 3L phenotype was driven by a handful

of core mechanisms that were facilitated by specific sets of TFs. We therefore asked whether

the convergent shift in these core mechanisms could be observed in, and therefore inferred

from, the correlation patterns of motif convergence signals genome-wide. To learn the cor-

relation patterns, we used Empirical Based Matrix Factorization (EBMF) to decompose

the phenotype association matrix into loading and factor matrices, resulting in 200 latent

variables (LVs) with good reconstruction quality (Pearson’s R = 0.85, p-value < 2.2e− 16)

(Figure 5.9A). Out of the 200 LVs, we focused on 2 pairs of strongly anticorrelated LVs that

captured a major proportion of variance explained (Figure 5.9B). LV1 and LV2, which were

significantly anticorrelated (Pearson’s R -0.79, pval < 2.2e − 16) (Figure 5.9C), captured

11.8 and 12.3 times, respectively, the proportion of variance explained by each LV on aver-

age. Meanwhile, LV3 and LV4, which were significantly anticorrelated (Pearson’s R -0.70,

pval < 2.2e− 16) (Figure 5.9D), captured 4.5 and 4.8 times, respectively, the proportion of

variance explained by each LV on average (note that the proportions of variance explained

computed by EBMF do not add up to 100% as the LVs are not orthogonal).

Although LV1 and LV2 represented distinct sets of promoters, their strongly anti-correlated

latent factor values mean that gains and losses of many motifs in promoters represented by

the two LVs could be interpreted to occur in opposite ways. Because we set a non-negative
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Figure 5.9: Latent factorization highlights major drivers of longevity. (A) Reconstructed

data significantly correlates with true data. (B) Latent variables (LV) 1-4 capture a sub-

stantial proportion of variance explained. (C) Motif features commonly represented by LV1

and LV2. (D) Motif features commonly represented by LV3 and LV4.
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constraint on the loading matrix, positive (negative) factor values could be interpreted as

feature gains (losses). Looking at the set of represented features that were shared by LV1

and LV2 (Figure 5.9C), it is evident that the strongest drivers of these LVs were features

related to GC content. Specifically, promoters represented by LV1 experienced convergent

GC gains, whereas promoters represented by LV2 experienced GC losses. Many studies have

indeed linked CpG density in promoters with lifespan and ageing, particularly because CpG

sites are targets of methylation with which epigenetic regulation is facilitated [158, 161].

These studies have outlined that CpG densities in specific sets of promoters were predictive

of lifespan in vertebrates.

We then performed functional enrichment analysis on the combined set of 3,874 pro-

moters represented by LV1 and LV2, using Cell Marker annotations and Reactome pathway

annotations. We found that the significantly enriched Cell Marker annotations (Type I er-

ror ≤ 0.01) include terms related to adaptive immunity, germline development, placental

development, and intestinal tissues (Figure 5.10). The enrichment for adaptive immunity

supports the popular hypothesis that adaptive immunity co-evolved with longevity to equip

species with the ability to fight off pathogens over a long lifespan [180]. Immunity and

longevity also share many common regulatory mechanisms that need to be tightly controlled

to balance the benefits of adaptive immunity against its metabolic costs in trade-off with

sustaining longevity [182]. Meanwhile, many studies have documented a tight coupling be-

tween germline development and longevity regulation in multiple species, the mechanisms of

which are still poorly understood [7]. For example, in C. elegans and Drosophila, the loss

of germline cells or germline stem cells promoted longevity [8, 74], but transplanting adult

mice with young ovaries prolonged lifespan, postulated to be the result of unknown “life

enhancing factors” produced by mammalian gonads [32].

Figure 5.10 also illustrates significant correlations between the enriched Cell Marker and

Reactome pathway annotations. We observe that the Cell Marker annotation for “retinoic

acid signaling-responsive fetal germ cell (Fetal Gonad)” is significantly associated with the

Reactome pathway annotations “MAP2K & MAPK activation” and “interleukin-37 signal-

ing”. It is known that the MAPK pathway has a conserved role in regulating the development

of male and female germ cells [47, 149], but the mechanistic role of interleukin-37 (IL-37) in
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Figure 5.10: Cell Marker and Reactome pathway annotations enriched for promoters repre-

sented by Latent Variables 1 and 2 (empirical p-value ≤ 0.01). Significantly correlated terms

are connected by edges.
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the reproductive system is less well-documented. IL-37 is an anti-inflammatory member of

the commonly pro-inflammatory IL-1 family, and different isoforms of IL-37 are expressed in

different tissues including the uterus. IL-37 has been found to have anti-inflammatory and

anti-cancer effects in endometrial and cervical cancers [114, 183, 252], and it also suppressed

inflammation mediated by polycystic ovary syndrome (PCOS) [70]. Interestingly, the anti-

inflammatory activity of human IL-37 expressed in mice has also been documented to give

rise to anti-aging effects, protecting against metabolic diseases [15], colitis [163], hepatitis

[29], and neuronal injury [4]. Additionally, in a human population genetics study, the ra-

tio between IL-37 and pro-inflammatory markers was positively correlated with indicators

of healthspan [28]. Referring back to the connection between the reproductive system and

longevity, our findings suggest the possibility that the pro-longevity adaptation occurring in

the germline is mediated by changes in interleukin-37 signaling pathway.

Switching to LV3 and LV4, Figure 5.9D shows that the strongest drivers of the latent

variables were motif clusters that corresponded to several regulators of mesenchymal stem

cells (MSCs), including SNAI1, SNAI2, ZEB1, ASCL1, and TCF4. Many of these TFs inter-

act with longevity regulator FOXO3 in their mechanism of action in both cooperative and

inhibitory ways [91, 104, 255]. Looking at the functional enrichment of the 3,636 promoters

represented by LV3 and LV4 (Figure 5.11), the significantly enriched Cell Marker annota-

tions were highly specific to immune cells, including T cells, dendritic cells, and Natural

Killer (NK) cells. The relationship between MSCs and immune cells is often discussed in the

context of the role of MSCs in the tumor microenvironment. MSCs are attractive as a cancer

therapy strategy because they can have anti-cancer effects, partially through the modulation

of the immune system [206]. For example, T cells have immunomodulatory effects on the

anti-inflammatory activity of MSCs, specifically by releasing interferon γ cytokines [206].

MSCs have also been found to modulate the activity of innate immune cell types in cancer,

including dendritic cells and NK cells [83, 148, 271]. Interestingly, some of the enriched Reac-

tome pathway annotations that were associated with the immune-related Cell Marker terms

were related to purinergic signaling (Figure 5.11). Consistent with immune modulation of

cancer control, purines such as adenosine triphosphates (ATP) and adenosines (ADO) are

present in large amounts in the tumor microenvironment [51]. The concentrations of ATP
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Figure 5.11: Cell Marker and Reactome pathway annotations enriched for promoters repre-

sented by Latent Variables 3 and 4 (empirical p-value ≤ 0.01). Significantly correlated terms

are connected by edges.

and ADO in the tumor microenvironment control the extent of anti-tumor versus pro-cancer

immune response, while in turn, the endonucleotidases released by immune cells (among

others) modulate the levels of ATP and ADO [50]. These findings suggest the involvement

of the immune-mediated cancer control machinery in giving rise to the longevity phenotype.

5.5 Discussion

In this work, we introduce AFconverge, a novel alignment-free comparative genomics

method that predicts convergent regulatory adaptations associated with phenotypic conver-
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gence. AFconverge performs motif calling and convolution to measure the binding affinity

of TFs on orthologous sequences of regulatory elements (REs), and computes the corre-

lation between these motif scores and phenotype values. We benchmarked our method

with a well-characterized convergent phenotype, vision loss in mammals, and demonstrated

that AFconverge outperformed competing alignment-free and alignment-based approaches

at correctly predicting divergence of promoters that were associated with ocular functions.

Besides detecting element-level signals, AFconverge was also able to predict widespread con-

vergent losses of TF motifs involved in eye development, neuronal development, and circadian

rhythm, consistent with expectations that the ocular degradation in blind mammals are often

accompanied by extensive rewiring in neuronal functions and circadian rhythm. We then

applied our method to elucidate patterns of regulatory adaptations underlying the evolu-

tion of mammalian longevity, highlighting pluripotency regulation, cancer control, germline

development, and immunity as key axes of extended lifespan.

AFconverge is a new addition to the set of comparative genomics methods that are de-

signed to predict functional homology from a flexible sequence space, which also includes RE-

forge and TACIT. However, to our knowledge, AFconverge is the first comparative method

that quantifies convergence signals at the motif level in an alignment-free manner. As op-

posed to the element-focused perspective of other methods, our motif-focused perspective

explicitly measures the unique evolutionary pressures experienced by different TF binding

sites in different elements. Our approach does not make prior assumptions that specific

TF motifs would exhibit global shifts in response to selection pressures, but instead allows

for context-specific modularity. We demonstrated that this motif-centric strategy offers the

flexibility of analyzing regulatory adaptations at multiple scales, ranging from predicting

phenotype-relevant TFs with global convergence signals, detecting divergence of entire ele-

ments, to inferring correlations among co-evolving motifs.

Both the existing alignment-free comparative genomics methods, REforge and TACIT,

are hypothesis-driven in which certain prior expectations have to be encoded to base the

convergence analysis on. Specifically, REforge requires the specification of a set of TFs pre-

sumed to be associated with the phenotype of interest, whereas TACIT requires chromatin

accessibility datasets from tissues of interest expected to be implicated in the phenotype.

136



These requirements limit our ability to evaluate complex phenotypes that are not very well-

characterized, and are prone to errors when false priors are given. In contrast, AFconverge

takes a hypothesis-free approach in which convergence signals are detected purely from se-

quence changes, while functional inference is only made in downstream analysis. This unbi-

ased approach allows us to characterize functional adaptations that may not be as obvious,

or may be more subtle and systemic in nature. For example, our analysis of the vision loss

phenotype was able to capture the regulatory adaptation to hypoxia, likely to be driven by

the predominantly subterranean convergent species defined as foregrounds. In addition, our

latent factor analysis on the longevity phenotype was able to identify the core mechanisms

that are likely to be the major drivers of long lifespan, in agreement with hypotheses from

other works.

There are several avenues that future extensions of AFconverge can develop. Although

AFconverge makes no prior assumptions on phenotype-relevant TFs, in its current imple-

mentation, AFconverge featurizes sequences using a set of pre-defined consensus motifs. In

reality, there can be many functionally important sequence features that are still unknown.

Future work can explore new strategies for featurizing sequence motifs de novo. There

are several recent works that utilize deep learning models to learn new sequence features

with emphasis on interpretability. The tiSFM (“totally interpretable sequence to function

model”) model, which combines motif convolution and attention layers to predict chromatin

accessibility signals, uses pre-defined position weight matrices (PWMs) as motif priors, but

allows tuning of the PWMs to relax these constraints and possibly learn new features [14].

Another example is the ExplaiNN model, which applies the “neural additive model” strategy

combining convolutional neural networks and an interpretable linear model to learn de novo

motif features affecting TF binding and chromatin accessibility [178]. Given functional read-

outs across tissues and possibly species, there is an opportunity to develop similar machine

learning-based methods for conducting tissue-agnostic, motif-centric convergence analysis.

Finally, AFconverge uses max-pooling to represent the maximum evidence of TF binding

on a sequence. However, in reality, we may not expect the relationship between the strength

of TF binding and the regulated gene expression to always be monotonic. For example,

the degree of TF cooperativity and competition in a given promoter, which affects the
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number of overlapping binding sites, can introduce noise in gene expression levels [185]. In

fact, regulatory elements of developmental genes have been found to contain an optimal

distribution of strong and weak binding sites, which can be a result of TF cooperativity

[46, 72, 201]. This is another area in which a machine learning-based sequence featurization

that is grounded on functional readouts can be immensely helpful to learn the regulatory

syntax for specific contexts. All in all, AFconverge lays the groundwork for a motif-centric

approach to study regulatory sequence adaptations underlying phenotypic convergence.
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6.0 Conclusions

Evolutionary-based strategies provide an opportunity to understand genotype-phenotype

mappings that are not easily accessible with traditional genetics. This thesis contributes

new approaches for applying phylogenetic strategies to understand the functional mappings

of regulatory non-coding elements, an area that is still insufficiently addressed by existing

comparative genomics algorithms. In chapter 1, we propose phylogenetic permulations,

a set of phylogenetically-constrained calibration methods that empirically correct signals

from phylogenomic analysis against sources of biases. We illustrate the pervasive issue of

statistical non-independence in phylogenomic analysis and the insufficiency of parametric

calibration strategies in correcting it. We demonstrate (in this and other chapters) that

our proposed empirical strategies are effective at improving the statistical robustness and

specificity of predictions, in a manner that is not method-dependent. Our empirical approach

also addresses an implicit issue in the current state of comparative datasets, which is that

with the increasing number of sequenced genomes comes a substantial bias that arises from

large variations in genome data quality. As data quality catches up, we believe that our

empirical methods can be useful to the community as a strategy to establish confidence in

the accuracy of genotype-phenotype mapping predictions from these datasets. When working

with binary traits in which the foreground species set contains very large and complex clades,

we find that binary permulation strategies can find it difficult to converge and produce null

phenotypes with matching dependency structures. Future work can evaluate ways that the

rejection sampling conditions can be relaxed without compromising the phylogenetic signal

in the shared ancestry patterns.

In the remaining chapters, we describe the development and application of scalable

methods for studying motif-level adaptations underlying convergent traits. In chapter 2,

we present phyloConverge, a maximum likelihood-based algorithm that combines genera-

tive modeling of nucleotide substitutions and permulation-based calibration to detect local

convergence shifts in evolutionary rates of conserved regulatory elements. We demonstrate

the ability of our method to detect transcription factor motif-level convergence signals with
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high fidelity, which allows us to segmentize a given conserved enhancer into functional units,

decode how pleiotropic enhancers respond to selection pressures, and perform genome-scale

scanning for and de novo discovery of phenotype-relevant non-coding segments. phyloCon-

verge offers a new perspective for understanding the evolutionary process of regulatory ele-

ments, zooming in from a high-level element-centric perspective to a low-level motif-centric

perspective. Future expansions of phyloConverge can include adapting it to work with quan-

titative, ordinal, or categorical phenotypes. Additionally, chapter 3 demonstrates the pre-

liminary application of phyloConverge in combination with other methods to investigate the

protein and genomic adaptations associated with mammalian colonization of high altitude

environments. Grounded on meta-analysis findings from population genetics studies on high

altitude adaptation, we illustrate the improvement in predictive power offered by motif-

centric analysis compared to element-centric analysis. By evaluating correlations between

protein adaptation and motif adaptation, we describe the different evolutionary mechanisms

in which regulatory changes can support pathway-level changes. Future developments of

this work may explore a deeper investigation into how motif adaptation occurs in relation

to purifying selection, positive selection, or relaxed selection at the pathway level.

Finally, in chapter 4, we introduce AFconverge, an alignment-free comparative algo-

rithm that predicts the phenotype association of sequence features in regulatory elements.

We perform analyses of promoter adaptations underlying a binary trait and a continuous

trait – mammalian vision loss and longevity, respectively – and illustrate how motif-level

convergence signals can be used to infer different forms of regulatory convergent shifts, in-

cluding degeneration of entire promoters, global gains and/or losses of specific motifs, and

co-evolutions of correlated motifs. Contrary to phyloConverge that is limited to conserved

elements, AFconverge contributes an approach for studying regulatory elements for which

functional homology can arise without sequence conservation. It can therefore be used to

work with the increasing availability of novel, reference-free hierarchical alignments that can

comprehensively account for structural rearrangements of genomic regions. However, the

most substantial challenge with alignment-free comparative analysis lies in the implications

of reference-free genome alignments themselves, and how they inform our interpretations of

the convergence signals. For instance, reference-free alignments can encode duplications of
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certain genomic regions, which can result in overlaps among mapped orthologs of different el-

ements. In our interaction with the promoter regions from Zoonomia mammalian alignment,

out of the total number of promoters per species, we identify ∼8% to ∼18% redundancies.

It is unclear whether these redundancies represent true replication events in which a cer-

tain gene or genomic element undergoes expansion in certain species (and therefore can be

legitimate signals), or whether they should be discarded as confounders. Additionally, ex-

panding the application of AFconverge to weakly conserved enhancers would require a better

understanding on how orthologous enhancers can be reasonably identified in the absence of

sequence conservation.
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Appendix A

Figure A1: Molecular Biology and Evolution license/copyright permission to reuse content

for Chapter 1 based on the paper Saputra et al. (2021).
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William J. Murphy, Arcadi Navarro, Martin Nweeia, Sylvia Ortmann, Austin Os-
manski, Benedict Paten, Nicole S. Paulat, Andreas R. Pfenning, BaDoi N. Phan,
Katherine S. Pollard, Henry E. Pratt, David A. Ray, Steven K. Reilly, Jeb R. Rosen,
Irina Ruf, Louise Ryan, Oliver A. Ryder, Pardis C. Sabeti, Daniel E. Schäffer, Aitor
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vasan, Heather H. Sestili, Morgan E. Wirthlin, BaDoi N. Phan, Kavya Prasad,
Ashley R. Brown, Xiaomeng Zhang, Kathleen Foley, Diane P. Genereux, Zoono-
mia Consortium∗∗, Elinor K. Karlsson, Kerstin Lindblad-Toh, Wynn K. Meyer, An-
dreas R. Pfenning, Gregory Andrews, Joel C. Armstrong, Matteo Bianchi, Bruce W.
Birren, Kevin R. Bredemeyer, Ana M. Breit, Matthew J. Christmas, Hiram Clawson,
Joana Damas, Federica Di Palma, Mark Diekhans, Michael X. Dong, Eduardo Eizirik,
Kaili Fan, Cornelia Fanter, Nicole M. Foley, Karin Forsberg-Nilsson, Carlos J. Garcia,
John Gatesy, Steven Gazal, Diane P. Genereux, Linda Goodman, Jenna Grimshaw,
Michaela K. Halsey, Andrew J. Harris, Glenn Hickey, Michael Hiller, Allyson G. Hin-
dle, Robert M. Hubley, Graham M. Hughes, Jeremy Johnson, David Juan, Irene M.
Kaplow, Elinor K. Karlsson, Kathleen C. Keough, Bogdan Kirilenko, Klaus-Peter
Koepfli, Jennifer M. Korstian, Amanda Kowalczyk, Sergey V. Kozyrev, Alyssa J.
Lawler, Colleen Lawless, Thomas Lehmann, Danielle L. Levesque, Harris A. Lewin,
Xue Li, Abigail Lind, Kerstin Lindblad-Toh, Ava Mackay-Smith, Voichita D. Mari-
nescu, Tomas Marques-Bonet, Victor C. Mason, Jennifer R. S. Meadows, Wynn K.
Meyer, Jill E. Moore, Lucas R. Moreira, Diana D. Moreno-Santillan, Kathleen M.

156
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[146] Ari Löytynoja. Phylogeny-aware alignment with PRANK. InMultiple Sequence Align-
ment Methods, pages 155–170. Humana Press, 2014.

160



[147] J. Yuyang Lu, Matthew Simon, Yang Zhao, Julia Ablaeva, Nancy Corson, Yong-
wook Choi, KayLene Y.H. Yamada, Nicholas J. Schork, Wendy R. Hood, Geoffrey E.
Hill, Richard A. Miller, Andrei Seluanov, and Vera Gorbunova. Comparative tran-
scriptomics reveals circadian and pluripotency networks as two pillars of longevity
regulation. Cell Metabolism, 34(6):836–856.e5, 2022.

[148] Ying Lu, Jin Liu, Yang Liu, Yaru Qin, Qun Luo, Quanli Wang, and Haifeng Duan.
TLR4 plays a crucial role in MSC-induced inhibition of NK cell function. Biochem.
Biophys. Res. Commun., 464(2):541–547, August 2015.

[149] Dandan Luo, Zhao He, Chunxiao Yu, and Qingbo Guan. Role of p38 MAPK Signalling
in Testis Development and Male Fertility. Oxid. Med. Cell. Longevity, 2022, 2022.

[150] Michael Lynch. Methods for the Analysis of Comparative Data in Evolutionary Biol-
ogy on JSTOR. Evolution, 45(5):1065–1080, August 1991.

[151] Evan Z. Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar,
Melissa Goldman, Itay Tirosh, Allison R. Bialas, Nolan Kamitaki, Emily M. Marter-
steck, John J. Trombetta, David A. Weitz, Joshua R. Sanes, Alex K. Shalek, Aviv
Regev, and Steven A. McCarroll. Highly Parallel Genome-wide Expression Profiling
of Individual Cells Using Nanoliter Droplets. Cell, 161(5):1202–1214, May 2015.

[152] Ian J. Majewski, Matthew E. Ritchie, Belinda Phipson, Jason Corbin, Miha Pakusch,
Anja Ebert, Meinrad Busslinger, Haruhiko Koseki, Yifang Hu, Gordon K. Smyth,
Warren S. Alexander, Douglas J. Hilton, and Marnie E. Blewitt. Opposing roles of
polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood,
116(5):731–739, August 2010.

[153] Saba Manshaei, Thea Willis, Dominic Withers, Jesus Gil, Cynthia Lilian Andoniadou,
and Juan Pedro Martinez-Barbera. Paracrine Signalling From SOX2-Expressing Pitu-
itary Embryonic Cells Is Required for Terminal Differentiation of Hormone-Producing
Cells. J. Endocr. Soc., 5(Supplement 1):A547–A548, May 2021.

[154] Saba Manshaei, Thea L. Willis, Virinder Reen, Husayn Pallikonda, Jodie Birch, Do-
minic J. Withers, Jesus Gil, Cynthia L. Andoniadou, and Juan Pedro Martinez-
Barbera. RF13 | PMON143 BRF1-Mediated Paracrine Signalling by a Subset of
SOX2-Expressing Stem Cells is Required for Normal Development of the Stem Cell
Compartment and Terminal Differentiation of Pituitary Committed Progenitors. J.
Endocr. Soc., 6(Supplement 1):A580–A581, December 2022.

161



[155] Amir Marcovitz, Robin Jia, and Gill Bejerano. “Reverse Genomics” Predicts Function
of Human Conserved Noncoding Elements. Mol. Biol. Evol., 33(5):1358–1369, May
2016.

[156] El Martins. Adaptation and the comparative method. Trends Ecol. Evol., 15(7):296–
299, July 2000.

[157] Hassan Marzban, Nathan Hoy, Tooka Aavani, Diana K. Sarko, Kenneth C. Catania,
and Richard Hawkes. Compartmentation of the cerebellar cortex in the naked mole-rat
(Heterocephalus glaber). Cerebellum, 10(3):435–448, September 2011.

[158] Benjamin Mayne, Oliver Berry, Campbell Davies, Jessica Farley, and Simon Jarman.
A genomic predictor of lifespan in vertebrates. Sci. Rep., 9(17866):1–10, December
2019.

[159] E. V. Maytin and J. F. Habener. Transcription factors C/EBP alpha, C/EBP beta,
and CHOP (Gadd153) expressed during the differentiation program of keratinocytes
in vitro and in vivo. J. Invest. Dermatol., 110(3):238–246, March 1998.

[160] Elizabeth S. Maywood, Johanna E. Chesham, John A. O’Brien, and Michael H. Hast-
ings. A diversity of paracrine signals sustains molecular circadian cycling in suprachi-
asmatic nucleus circuits. Proc. Natl. Acad. Sci. U.S.A., 108(34):14306–14311, August
2011.

[161] Adam T. McLain and Christopher Faulk. The evolution of CpG density and lifespan
in conserved primate and mammalian promoters. Aging (Albany NY), 10(4):561, April
2018.

[162] Cory Y. McLean, Dave Bristor, Michael Hiller, Shoa L. Clarke, Bruce T. Schaar,
Craig B. Lowe, Aaron M. Wenger, and Gill Bejerano. GREAT improves functional
interpretation of cis-regulatory regions. Nat. Biotechnol., 28:495–501, May 2010.
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Valle, Maŕıa Pascual-Torner, Benjamin R. Evans, Danielle L. Edwards, Ryan C. Gar-
rick, Michael A. Russello, Nikos Poulakakis, Stephen J. Gaughran, Danny O. Rueda,
Gabriel Bretones, Tomàs Marquès-Bonet, Kevin P. White, Adalgisa Caccone, and
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