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Abstract 

Enhancing Landslide Susceptibility Analysis through Citizen Science, Geospatial Analysis, 
and Precipitation Thresholds in Urbanizing Environments 

Tyler Rohan, PhD 

University of Pittsburgh, 2023 

Landslides pose a significant threat to human life and critical infrastructure, with increasing 
occurrences and severity attributed to climatic and anthropogenic factors, particularly 
urbanization. This doctoral thesis introduces an approach to landslide susceptibility analysis that 
combines citizen science, geospatial analysis, and precipitation thresholds to create a framework 
for landslide risk assessment in urban environments. The research explores the potential of using 
citizen science data to develop reliable landslide susceptibility models, addressing the pressing 
challenge of scarce landslide location data, and offering an alternative to conventional field and 
remote sensing work. The research also investigates the utility of citizen science data for 
identifying precipitation conditions that trigger landslides, emphasizing the importance of accurate 
information about landslide timing and preceding precipitation conditions. Despite the inherent 
uncertainty in citizen science data, the research demonstrates its value for approximating triggering 
precipitation conditions, as it aligns with local and global thresholds based on field-validated data. 
Furthermore, the research examines the long-term effects of urbanization on landslide 
susceptibility, using digitized United States Geological Survey (USGS) maps of pre-historic and 
active landslides in southwest Pennsylvania. This research confirms that urbanization has a lasting 
impact on geophysical and hydrological conditions, increasing an area's landslide susceptibility. 
The study provides valuable insights into the temporal dynamics of landslide risk, which are 
critical for effective risk assessment and land-use planning.  By addressing the potential 
advantages and challenges of integrating non-expert data, this approach enhances the 
understanding of urbanization's complex interactions with landslide susceptibility. It also provides 
decision-makers with a tool for implementing targeted risk reduction measures, ultimately 
contributing to more effective risk management and land-use planning. This doctoral thesis thus 
paves the way for future research on the integration of citizen science data in natural hazard 
assessment and highlights the importance of interdisciplinary approaches for addressing the 
increasing challenges posed by natural hazards in a rapidly urbanizing world. 
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1.0  Introduction 

This Ph.D. thesis, titled " Enhancing Landslide Susceptibility Analysis through Citizen 

Science, Geospatial Analysis, and Precipitation Thresholds in Urbanizing Environments," utilizes 

citizen science, geospatial analysis, and precipitation thresholds to assess landslide susceptibility 

in urban regions. Landslides, being a prominent natural hazard, pose considerable threats to human 

life and infrastructure, and can be influenced by climate change and anthropogenic activities, with 

urbanization potentially acting as a key exacerbating factor. Considering the ongoing expansion 

of urban areas, an accurate estimation and prediction of landslide susceptibility is critical for 

protecting life and property. The thesis consists of three chapters, each focused on a different facet 

of landslide susceptibility analysis. 

              Chapter 1, "Landslide Susceptibility Analysis Based on Citizen Reports," explores the 

potential of utilizing crowdsourced data to enhance landslide susceptibility models. Addressing 

the acute need for extensive landslide inventory data, this chapter explores the utility of landslides 

reported by citizens for conducting susceptibility estimates, an alternative to conventional 

fieldwork and remote sensing. The study explores landslides reported by citizens through a 311-

phone and online system, a nationwide system that updates real-time and records reported 

landslide’s location and timing. Main findings show that: (a) approximately 70% of the 311-

reported landslides are associated with an identifiable landslide in the field; (b) the spatial 

uncertainty of the 311-reported landslides is 104 ± 25 m; (c) 311-reported landslides differ from 

other inventories in that they are primarily associated with proximity to roads, however, field-

correction of 311-reported landslide locations rectifies this anomaly; (d) a spatial filter, 
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scaled by the uncertainty in location as determined from a subset of the 311-data, can increase the 

consistency between the 311-reported inventory and field validated inventories. Potential benefits 

and inherent limitations of incorporating citizen data into landslide research are explored and 

discussed. 

Chapter 2, " Using Citizen Science Data to Explore the Influence of Precipitation on 

Landslide Occurrence," probes into the utility of citizen science data for identifying precipitation 

conditions that induce landslides. Emphasizing the critical role of precise landslide timing and 

preceding precipitation conditions, this chapter explores empirical precipitation thresholds and 

underlines the challenges in determining landslide timing. By employing a landslide inventory 

rooted in citizen science data obtained from a 311-municipal system, the chapter demonstrates that 

citizen-reported precipitation thresholds generally align with physical expectations and with a 

threshold based on an independent landslide inventory based on field validated data. This 

establishes the value of citizen-reported data for estimating precipitation conditions that trigger 

landslides. 

Chapter 3, "Urbanization and Its Prolonged Influence on Landslide Susceptibility," 

concentrates on the long-lasting impact of urbanization on landslide susceptibility. Using digitized 

USGS maps of pre-historic and active landslides in southwest Pennsylvania, this chapter reveals 

that urbanization has persistently altered the geophysical and hydrological conditions, thereby 

increasing an area's proneness to landslides for decades after peak urbanization. Through 

examination of the interplay between urbanization and landslide susceptibility over time, this 

chapter brings forth insights into the temporal dynamics of landslide risk, a crucial factor for 

effective risk management and land-use planning. 
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This doctoral thesis explores different approaches for landslide susceptibility analysis in 

urban environments. The subsequent chapters delve into the practical application of crowdsourced 

data for constructing trustworthy landslide susceptibility models, understanding precipitation 

thresholds through a citizen science perspective, and investigating the enduring effects of 

urbanization on landslide susceptibility. By shedding light on the prospective advantages and 

addressing the challenges tied to the integration of non-expert data, this approach aims to both add 

to the understanding of the complex interaction between urbanization and landslide susceptibility 

and provide useful information for policymakers that aids in designing effective risk mitigation 

strategies. 
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2.0 Landslide Susceptibility Analysis Based on Citizen Reports 

2.1 Introduction 

Landslide inventories of high quality can improve landslide susceptibility maps and 

understanding of landslide mechanisms and thus advance the implementation of safe land-use 

planning and prioritization of preventative efforts (Fell et al., 2008; Leventhal et al., 2008). 

Landslides typically occur over steep terrain where gravitational forces translate soil and rock 

downslope along weak planes of low frictional resistance (Vardoulakis, 2000; Miao et al., 2001). 

Their occurrence depends on factors such as the magnitude of topographic slope, soil and rock 

properties, the inclination of layered rock units, reinforcement due to roots, and hydrologic factors 

that may reduce the frictional-resistance of soil and rock by increasing pore-pressure (Iverson, 

2000; Wang et al., 2003; Pfeil-McCullough et al., 2015; Bogaard et al., 2016). Such factors may 

covary in linear and non-linear ways that influence the magnitude and likelihood of landslide 

occurrence and make the production of reliable landslides susceptibility maps a challenging task 

(Guzzetti, 2000; Marjanovic, 2011).  

Landslide susceptibility maps typically utilize landslide inventories that require extensive 

field mapping efforts and/or analysis of high-resolution remote sensing data. These inventories 

help identify factors that are associated with landslide susceptibility (Guzzetti, 2000; Yilmaz, 

2010; Harp et al., 2011). Landslides are often influenced by temporally variable factors (e.g., 

precipitation, urban expansion, deforestation, fires) (Meusburger et al., 2008; Crozier, 2010; 

Huggel et al., 2012) and repeated mapping efforts are thus needed to study the impact of temporal 

changes in these factors on landslide occurrence.  However, the extensive cost and effort associated 
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with such repeated mapping impede the progressive quantification of landslide susceptibility under 

changing environmental conditions.  

Citizen science enables the public to participate in data collection to help provide solutions 

to scientific problems and has become increasingly popular over the last two decades (Franzoni, 

2014; Can et al., 2019; Cieslik et al., 2019; Paul et al., 2019).  Citizen science allows for 

inexpensive collection of large amounts of data at a rapid rate.  However, to obtain data of 

sufficient quantity and quality, citizen science data must be of both interest to the public and have 

a standard procedure for which the data is collected (Can et al., 2019; Juang et al., 2019; Kocaman 

and Gokceoglu, 2019; Paul et al., 2019). Landslide related citizen science has been applied through 

university and government led programs (Juang et al., 2019; Kocaman and Gokceoglu, 2019; 

Mirus et al., 2020) and indicated that the primary improvements needed to this approach are 

increased citizen participation and validation of their reports (Cieslik et al., 2019; Kocaman and 

Gokceoglu, 2019).  With such improvements, citizen science may be an optimal path for improving 

local landslide susceptibility estimates as well as augmenting global landslide catalogs (Juang et 

al., 2019). 

A new and publicly available citizen science data source that is based on a 311-municipal 

service citizens’ reports system, has the potential to provide a low-cost and progressively updated 

landslide inventory, that will enable progressive evaluation of landslide susceptibility.  The 311 

data combines a non-emergency phone and online reporting system where citizens report issues 

that warrant a response from county officials. The dataset is updated hourly and is accessible in 

over 300 cities in the United States and Canada (Schellong et al., 2007; Schwester, 2009; O'Brien, 

2016; Choi et al., 2018). The 311 system reports a multitude of different categories and includes 

landslide locations and the time of their reporting. This data is thus gathered with a minimal cost 
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and effort and has the potential to create a progressively updated landslide inventory. This 

inventory has not yet been utilized to study landslide occurrence and can potentially improve 

landslide susceptibility estimates at the national level.  

 Data-driven approaches for mapping landslide susceptibility typically rely on landslide 

inventory data (e.g., location, size, timing, degree of activity), as well as maps of factors that are 

related to landslide occurrence (hereafter termed landslide-related factors) such as topography, 

geology, soil, vegetation, hydrologic properties, etc. (Kamp et al., 2008; Bălteanu et al., 2010; 

Santoso et al., 2011; Arabameri et al., 2019; Zhao and Chen, 2020).  These approaches are 

divided into (Yilmaz, 2009; Huang and Zhao, 2018; Reichenbach et al., 2018): (a) Heuristic 

methods, where expert opinion determines the weighting of different factors on the relative 

likelihood (i.e., susceptibility) of landslide occurrence; (b) Physical methods that compute the 

relative magnitude of the physical forces that drive and resist landslides, and identify locations 

where the conditions for landslide occurrence are likely attained; and (c) Statistical methods rely 

on a large dataset and utilize the covariance between landslide-related factors and the occurrence 

of landslides to weight these factors and predict the relative likelihood of landslides. Heuristic 

methods are highly subjective and difficult to reproduce, and physical methods are accurate and 

reproducible, but require detailed information about soil and hydrologic properties that can rarely 

be attained over large areas (Francipane et al., 2014). Statistical methods, such as conditional 

probability and machine learning approaches (Yilmaz, 2010; Pourghasemi et al., 2012; Do et al., 

2018), often produce consistent results over large areas at a high spatial resolution (Komac, 

2006). In general, conditional probability enables simpler interpretation compared to machine 

learning methods and produces landslide susceptibility maps of comparable quality (Pradhan et 

al., 2010; Yilmaz, 2010; Goetz et al., 2015).   
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This research combines field work, statistical analyses, and comparison between different 

landslide inventories to explore the accuracy and applicability of the 311-dataset for landslide 

susceptibility estimates. More specifically, we use landslide inventories from Pittsburgh, PA, 

where landslide risk is among the highest in the nation (Highland, 2006; Gray, 2011), to: (a) 

Quantify the spatial accuracy of landslides reported via the 311 system;  (b) Compare landslide 

susceptibility estimates based on a 311-based landslide inventory to those based on field validated 

landslide inventories; and (c) Use these comparisons to explore procedures for producing reliable 

landslide susceptibility maps from a 311-based landslide inventory. We first present the field area 

and datasets used in this study, and the method used to produce landslide susceptibility maps and 

ranking of landslide-related factors. We then use the spatial uncertainty associated with 311-based 

landslide reports to design a simple filter and test if it increases the consistency between 311-based 

susceptibility maps and those produced from established, field-based landslide inventories.  Our 

results suggest that 311-based landslide inventories can guide landslide mapping at a low cost and 

effort and thus can improve landslide susceptibility estimates. 

2.2 Study Area and Data 

Given the large datasets required to study landslide susceptibility we focus on the city of 

Pittsburgh in Allegheny County, PA (Figure 2.1), where multiple landslides are recorded in various 

datasets. The area has a history of landslide occurrence and is located next to the Allegheny, Ohio, 

and Monongahela rivers (Monongahela means "falling banks", in a native language (Staats, 1942), 

which likely refers to the geological instability of the surrounding slopes). In this area, the 

lithologic, climatic, and topographic characteristics, as well as anthropogenic modifications, cause 
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a generally high susceptibility for landslides and increases the risks associated with their effects 

(Pomeroy, 1982). The high susceptibility and social awareness for landslide risk makes Pittsburgh 

a data rich location for studying landslide occurrence and reporting. 

Figure 2.1: (A) Location of 311 reported landslides overlain on a DEM of the City of Pittsburgh. 

(B-C) Field Photos of validated 311 reported landslides. Inset map shows study area over map of 

the United States. 
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There are two established landslide inventories of high spatial accuracy in Pittsburgh, 

(Table 2.1); (1) Maps produced by the United States Geological Survey (USGS) where landslides 

are mapped as polygons based on field mapping efforts conducted in the 1970s-1980s (Pomeroy, 

1977; Bridges et al., 1975; Pomeroy, 1982, Southwestern Pennsylvania Commission, 2017). (2) A 

landslide map produced by Allegheny County Emergency Services (ACES) for locations that are 

being monitored by the county’s department of public works (Allegheny County Landslide Task 

Force, 2019). In addition to these established datasets, Pittsburgh has a publicly available 311-

based dataset, where a relatively large number of landslides is being reported. However, the 

uncertainty associated with this data is yet to be determined, and thus it remains unclear whether 

it can be utilized to progressively improve landslide susceptibility estimates.  Because landslides 

are mapped and digitized as polygons in the USGS dataset, and as point locations in the ACES 

and 311-based inventories, we converted polygons to point locations so that the datasets are 

consistent. This conversion selects the highest point within a landslide polygon as the 

representative location of this landslide, assuming that it most closely represents the location of 

slope failure. 

To produce and compare landslide susceptibility maps based on different landslide 

inventories we analyzed landslide locations in each inventory in the context of nine topographic 

and environmental factors at these locations. We computed topographic factors (slope, curvature, 

drainage area, relative location on hillslope, distance from nearest channel, and aspect) from a 10-

meter resolution Digital Elevation Model (DEM) from the National Elevation Database (NED), 

and the environmental factors (distance from nearest road, land-use, and stratigraphic group) from 

Pennsylvania Spatial Data Access (PASDA). Slope was calculated from the DEM as the 

magnitude of the gradient vector and expressed in degrees. Profile curvature was calculated as the 
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second numerical derivative of the DEM through the MATLAB based software TopoToolBox 

(Schmidt et al., 2003; Schwanghart and Kuhn, 2010). The relative location of the landslide on the 

hillslope is the fraction of the landslide elevation relative to the hillslope relief, as estimated from 

local relief value over a circular disk with a 200-meter radius (i.e., similar to the length scale of 

local hillslopes). Lithological information for Pittsburgh was acquired from a categorical digital 

dataset that is based on the map of Berg, 1980, and includes five different lithologic groups 

(Dunkard, Monongahela, Casselman, Glenshaw, and Allegheny). 

 

Table 2.1: Inventories of landslides and the dates of collection that are located in Pittsburgh, PA, 

USA provided by, the United States Geological Survey (USGS), and Allegheny County 

Emergency Services (ACES). 
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2.3 Methods 

2.3.1 Field Validation of Reported 311 Landslide Locations 

             To quantify uncertainty in the location and reliability of the 311-landslide inventory, we 

validated 311 reported landslides (Figure 2.1) in May-August 2019. At each site, we recorded the 

coordinates of the landslide in the field (if such a landslide was identified) and compared them to 

the reported coordinates to define the spatial uncertainty in landslide locations. To cast this spatial 

uncertainty in the context of landslide dimensions, we also recorded the spatial dimensions of each 

landslide. We then compiled the field validated landslides into a new inventory and used these 

datasets to produce and compare susceptibility maps based on the: (1) original, non-field validated 

landslide locations, (2) field corrected landslide locations, and (3) USGS and ACES inventories 

(Table 2.1).   

2.3.2 Conditional Probability Analysis 

We used a conditional probability approach to produce landslide susceptibility maps and 

rank the influence of the different landslide-related factors (e.g., topography, land-use, lithology) 

on landslide occurrence (e.g., Chung, 2006; Ozdemir, 2009; Yilmaz et al., 2010; Regmi et al., 

2014; Costanzo & Irigaray, 2020). To do so, we divided each of the m landslide-related factor to 

n classes that span the range of values for this factor in the maps of the study area. For each of the 

resulting nm factor-class combinations, we then computed the conditional probability Cp: 

Cp-j=Nl-j/Np-j , (1)
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Where subscript j is the index of the factor-class combination, and Nl-j and Np-j are the 

number of landslides locations and map pixels within this combination, respectively. A factor-

class combination that produces a relatively high Cp indicates that spatial locations that are 

characterized by this combination tend to generate a relatively large number of landslides. To 

create a landslide susceptibility map, we assigned the computed values of Cp for each factor-class 

combination to all the map pixels associated with this combination. Percentile maps were produced 

by normalizing each Cp value by the range of Cp values and multiplying by 100 (e.g., Figures 2.2, 

2.3).  

The analysis requires a small number of factor class combinations relative to the number 

of landslides so that the number of landslides in each such combination suffices to minimize the 

effect of outliers. We determine the number of factors (m=5), and of classes in each factor (n=5) 

based on prior studies with similarly sized datasets (Chung, 2006; Pradhan et al., 2010; 

Pourghasemi et al., 2012).   

To define the 5 classes in each factor while accounting  for the distribution of values in 

each continuous factor (i.e., non-categorical factors such as slope, curvature, drainage area), the 

lower class for each factor is defined between the minimum to the 5th percentile of the factor map 

values for which landslides occur, and the upper class between the maxima and the 95th percentile 

of the  factor map values for which landslides occur. The factor values between the 5th and 95th 

percentiles were divided into three equally spaced classes, thus resulting in a total of five classes 

for a factor. We classified categorical factors (i.e., lithology, land-use) according to their mapped 

categories. To standardize the comparison between landslide inventories this classification is based 

on landslide locations from all the aforementioned inventories (Table 2.1).  
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Figure 2.2: Landslide susceptibility maps (10-meter resolution) for Pittsburgh, PA: (A) Map based 

on 55 field corrected 311 landslide locations. (B) Map-based on 77 originally reported 311 

landslide locations. Color bar based on the percentile of computed conditional probability values. 

Black rectangles mark the location of inset maps that show more details. Note that this figure has 

a different color-scheme than other maps to help identify differences between these maps. 



14

Figure 2.3: 10-meter resolution nonfiltered landslide susceptibility maps created from: (A) ACES-

USGS inventories (N=134) (B) The entire 311 landslide inventory (N=720) (C) Total combined 

landslide inventories (N=834).  
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To identify the five-primary landslide-related factors (m=5) out of the nine total factors 

used, we calculated Weighted Contrast (Wc) values (Supplementary Information) for each class 

in each factor (Schicker 2012; Guo 2015).   

𝑊 ,              (2) 

𝑊 ,        (3) 

𝑊 𝑊 𝑊      (4) 

Where Wp = Weighted Positives, Wn = Weighted Negatives, A1 = Number of Landslides that fell 

inside a class, A2 = Number of Landslides that fall outside a class, A3 = Number of map pixels that 

fell inside a class, and A4 = Number of map pixels that fell outside of a class. Weighted contrast 

values between 0.5-1, 1-2, and >2 is indicative of moderate, good, and extreme predictability, 

respectively. Negative values indicate the inverse predication of a factor class. We used the 

maximal weighted contrast for each landslide-related factor to rank the top five factors to be used 

in the conditional probability analysis. To test if this ranking is dependent on ranking methodology, 

we also ranked the factors with an alternate method that is based on a probabilistic parameter called 

frequency-ratio (Lee et al., 2005; Pradhan, 2010; Yilmaz, 2010). This produced similar ranking to 

that produced with the weighted contrast approach.   

To quantify the predictive power of the conditional probability (Cp) - based 

landslide susceptibility maps, we computed receiver operating characteristic curves (ROC, 

Fawcett, 2006, Gorsevski et al., 2006). These curves evaluate the performance of a binary classifier 

system, (i.e., yes/no landslide occurrence), such as the conditional probability method, by 

analyzing true-positive and false positive rates for different discrimination thresholds (i.e. Cp 

values).  In this context, a map pixel is considered a true positive if it contains a mapped landslide 
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and is also predicted to contain a landslide for a given Cp threshold. A pixel is considered a false 

positive when it does not contain a landslide but is predicted to contain one for a given Cp threshold. 

Similarly, a true negative occurs when a pixel that does not contain a landslide is predicted not to 

contain one, and a false negative occurs when a pixel that contains a landslide is predicted not to 

contain one.   

ROC analysis is used to evaluate model performance through calculation of the area 

under the ROC curve (AUC) (Gorsevski, 2006; Cantarino et al., 2019; Pham 2020). ROC-AUC 

analysis can be used to rank landslide-related factors by their influence on model performance, 

and thus point at commonalities and differences between landslide inventories and guide further 

analyses (Pham et al., 2020). For each landslide inventory, we explored the relative influence of 

each landslide-related factor on a model prediction by excluding one factor at a time from the 

ROC-AUC analysis (Gorsevski, 2006; Marjanović, 2013; Cantarino et al., 2019; Pham 2020) and 

calculating the relative difference (dAUC= 100*(AUCa-AUCe)/AUCa ) between the AUCs for a 

model with excluded factor (AUCe) and that with all five factors (AUCa). We then rank the 

factors based on their relative influence on the AUC. To quantify the uncertainty associated with 

this procedure, we run a bootstrap analysis (n = 1000) where in each iteration we run the 

aforementioned procedure while excluding a random subset of 25% of the landslide locations. 

We use the 5 and 95 percentiles from these iterations to define the uncertainty in the AUC 

difference (Figure 2.4). 
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Figure 2.4: Ranking of landslide-related factors by their influence on the AUC for: (A) the field 

corrected 311-based inventory (N=55), and (B) the original 311-reported landslide locations 

(N=77). Nearest Road (NR), Slope (S), Aspect (Asp), Profile Curvature (C), and Nearest Stream 

(NS). 
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2.3.3 Filtration of Factor Maps 

The spatial uncertainty in 311-reported landslide location can cause erroneous association 

between landslide-related factors and landslide occurrence that may cause inaccuracies in landslide 

susceptibility maps. To ameliorate this problem, we use a two-dimensional circular average filter. 

The radius of this filter defines a spatial scale over which each landslide-related factor is averaged 

to compute a representative value that accounts for the uncertainty in landslide location.  We use 

the filtered factor maps in the conditional probability procedure to test if filtering increases the 

similarity (measured through two-dimensional correlation) between the landslide susceptibility 

maps that are produced from the original 77 landslides reported through the 311 system, and the 

55 field corrected locations of these landslides (Figures 2.5, 2.6). We then use a similar procedure 

to explore the influence of filtering on the similarity between the entire inventory that is based on 

the 311-reports (N=720, non-field corrected) and the field-based inventory produced by combining 

the USGS and ACES inventories (N=134). We further explore this approach by applying a range 

of filter radii to identify the scale that maximizes the similarity between maps from field-validated 

and non-field-validated landslide inventories. Factor classes were generated based on the 

distribution of the combined landslide datasets used in each correlation experiment.  

To explore the generality of the filtration approach given the uncertainty in landslide 

location, we generated 100 different quasi-random landslide inventories and used filtration to 

explore the correlation between the susceptibility maps they produce. The quasi-random landslide 

locations (N=55) were selected within a ring, centered at pixels that contain landslides, whose 

dimensions are based on the distribution of measured distances between the 311-reported and field 

corrected landslide locations (approximately 60 to 120 meters).  Each of the 100 landslide 

inventories is then filtered using the filtration procedure described above to generate 100 landslide 
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susceptibility maps at each filter diameter. These susceptibility maps are then compared spatially 

through correlation with the susceptibility map that is based on the 311-field corrected landslide 

inventory, and the mean and standard deviation of these 100 correlations are recorded.  For 

consistency, factor classes were generated based on the distribution of the combined landslide 

datasets for each experiment (i.e., the 311-field corrected and the randomly generated landslide 

locations). We conducted this experiment with both 6 and 5 classes per factor to further explore 

the sensitivity of these results to the number of classes.  
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Figure 2.5: 2D Correlation Values between maps produced with filter radii from 20-240 in steps 

of 20 meters: (A) 2D Correlation between susceptibility maps based on entire 311 (N=720) and 

combined (USGS and ACES, N=134) landslide inventories. (B) 2D Correlation between 

susceptibility maps based on the original (N=77), and field-corrected (N=55) landslide inventories. 
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Figure 2.6: Landslide susceptibility maps based on the total 311 landslide inventory (N=720) 

demonstrate the effect of filtration with different filter radius: (A) Non-Filtered, (B) 80m, (C) 

140m, (D) 200m. The color bar is based on the percentile of computed conditional probability 

values. 
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2.4 Results 

2.4.1 Field Validation of 311 Landslide Locations 

Field validation of 311-based citizen reports of landslide locations quantifies the 

uncertainty in the reported location of landslides. Out of 77 field validated locations, 55 were 

associated with an identifiable landslide in the proximity of the reported location. Out of the 22 

locations discarded, 7 are duplicate reports of the same landslides.  The mean distance between the 

reported and field validated locations is 104±25 meters (uncertainty is one standard deviation, most 

landslides occur between 60 to 120 meters away from the reported landslide location), and the 

typical size of a field validated landslide is approximately 5x13 meters (Supplementary 

Information). 

2.4.2 Conditional Probability Analysis 

The five highest ranked factors calculated for both the original and field-adjusted 311 data 

were similar for both inventories, and include nearest road, slope, profile curvature, distance to 

nearest stream, and aspect. Landslide susceptibility analysis based on the original locations of the 

77 311- reported landslide differ from that based on the 55 field corrected landslide locations. The 

differences between the field corrected and original inventories are reflected in the spatial pattern 

of landslide susceptibility (Figure 2.2, Figure 2.3) and the ranking of landslide-related factors 

(Figure 2.4). The two-dimensional correlation between the susceptibility maps (0.3775, Figures 

2.2, 2.5A) reflects the different susceptibility estimates from these two datasets. The two 

inventories also differ in the factor class combination that produces the highest conditional 
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probability (Cp).  The highest Cp based on the field corrected 311 inventory, occurs at the 

following factor-class combination: slope (25 – 35°), nearest road (0 – 9 meters), profile curvature 

(0.016 - 0.1 meters-1) nearest stream (144 – 277 meters), and aspect (10 – 123°). In contrast, the 

highest Cp for the original, non-field corrected inventory occurs at the following factor-class 

combination: slope (14 – 25°), profile curvature (-0.011 - -0.002 meters-1), nearest stream (10 – 

144 meters), and similar aspect and nearest road to that of the field corrected inventory. Similarly, 

the original and field-corrected inventories also differ in the magnitude and ranking of the 

landslide-related factors (Figure 2.4).  

This is particularly apparent in the magnitude and ranking of the distance to the nearest 

road factor (NR, Figure 2.4), whose influence on the AUC is meaningfully larger for the original 

311-reported locations compared to the field corrected ones (Figure 2.4A vs. 2.4B).  This influence

of roads on susceptibility estimates is apparent in Figure 2.22B compared to 2.22A. The range of 

AUC values for our analyses was 0.82 to 0.94 (Supplementary Information) 

2.4.3 Filtering of Digital Elevation and Factor Maps 

The correlation between the susceptibility maps produced from the field corrected and 

original inventories is sensitive to the scale of the averaging filter applied to the maps of landslide-

related factors. Conditional probability analysis based on different filter radii (0 to 240 meters, in 

intervals of 20 m, Figure 2.5), shows that the spatial correlation between the susceptibility maps 

produced from the field corrected and original landslide inventories increases with filter radius 

(Figure 2.5B) up to a maxima at a radius of 140 meters, which is slightly larger than the uncertainty 

in landslide locations (104±25 meters). This trend repeats when comparing the landslide 

susceptibility map produced from the entire 311 inventory (N=720 non-field-validated landslides, 
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Table 2.1, Figure 2.1) to that produced from a combination of the ACES and USGS inventories 

(N=134 field-validated landslides, Figures 2.5A, 2.6).  For these inventories, the maximal 

correlation is attained at a filter radius of 100 meters (Figure 2.7). Likewise, the filtering also 

increases the similarity in ranking of landslide-related factors (Figure 2.8). Compared to these 

inventories, the randomly generated landslide inventories (Figure 2.5B vs. Figure 2.9) produces a 

peak correlation at a similar filter radius as well as a similar decline in correlation for larger filter 

radii. Experiments with six factor classes rather than five show more ambiguous relations between 

filter radii and correlation between susceptibility maps (Supplementary Information). 

Figure 2.7: Landslide susceptibility maps that have been filtered using a 100-meter filter radius 

that produced a maximal spatial correlation. (A) Map based on the entire 311 landslide inventory 

and (B) Map based on combined (ACES/USGS) inventory. Lower susceptibility in ACES/USGS 

map due to less landslide coverage in the study area. 
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Figure 2.8: Ranking of landslide-related based on the total 311 landslide inventory (N=720) at 

filtering steps: (A) 20 m, (B) 80 m, (C) 140 m, (D) 200 m, (E) Influential factors of USGS/ACES 

inventory with no filtering. Note that higher filter radii for this non-filed validated 311-based 

landslide inventory (panels a-d), increases the similarity in factor ranking with the non-filtered 
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field based USGS/ACES inventory. Nearest Road (NR), Profile Curvature (C), Aspect (Asp), 

Lithology (Lith), and Nearest Stream (NS). 

Figure 2.9: Correlation values between susceptibility maps produced from quasi- random 

landslide inventories versus the field corrected 311 landslide location. Error bars represent the 95th 

and 5th percentiles. 
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2.5 Discussion 

2.5.1 Uncertainty in the reported locations of 311 landslides 

The field validation quantifies the uncertainty in the reported 311-landslide locations. This 

uncertainty either reflects inaccurate locations taken by citizens or inaccuracies in how the 311 

system interprets and outputs reported locations. Given that the spatial inaccuracy (104 ± 25 m) is 

meaningfully larger than the typical landslide size (5 m × 13 m), as well as the DEM resolution 

used for the susceptibility analysis, this inaccuracy may cause erroneous evaluation of landslide-

related factors and susceptibility estimates (Guzzetti et al., 2000; Steger et al., 2016). Thus, 

validation with field or remote sensing products is essential for properly utilizing a 311-based 

landslide inventory in such settings. The validation of 55 out of 77,311-reported landslides (71%) 

suggests that 311-based reports can efficiently guide landslide mapping efforts that rely on field 

or remote sensing techniques, and that this dataset can help produce a progressively updating 

landslide inventory at a relatively low effort and cost. 

2.5.2 Comparison to previous landslide studies 

Our analyses of a 311-based landslide inventory in Pittsburgh are generally comparable to 

a previous study (Pomeroy, 1982) of landslides in Pittsburgh and surrounding counties. For 

example, Pomeroy (1982) found that 90% of landslides in the Pittsburgh West quadrangle map 

(Pomeroy, 1977) occur on slopes greater than 14°, similar to our results, where landslides are most 

likely to occur over slopes of 25° to 35° and 14° to 25°, for the field-corrected and original 311 

inventories, respectively. Similarly, our results suggest that landslides are most like to occur on 
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slopes that primarily face to the northeast, similar to the findings of Pomeroy (1982). This likely 

stems from higher soil saturation and pore pressure on these slopes. North-facing slopes are 

exposed to comparably less sunlight and east-facing slopes experience sunlight in the early 

mornings, when temperatures are low so that overall, the drying effect from evapotranspiration is 

minimized on northeast-facing slopes (Pomeroy, 1982). Depending on climate, slope aspect can 

also influence vegetation density and the associated root strength of a hillslope (McGuire et al., 

2016). Landslides analyzed by Pomeroy (1977, 1982) are more likely to occur on locations of 

concave upward profile curvature which is consistent with our analysis of the entire 311 inventory 

(i.e., non-field corrected, N = 720). This likely stems from convergence of water into these concave 

portions of the landscape, resulting in increased pore pressure. In contrast, analysis of the field-

corrected 311 and the combined ACES and USGS landslide inventories, indicate that landslides 

are more likely in areas of concave downward profile curvature (Appendix Tables A.1–A.4). For 

the USGS inventory, this difference may be associated with the conversion from landslide-

polygons to the point of highest elevation within each polygon. For the 311 inventory, where 

landslides often occur adjacent to roads, this may reflect the influence of roads on the profile 

curvature. The lithologies that are most likely to be associated with landslides are different between 

the two studies: the Dunkard Group in Pomeroy's study and the Monongahela Group in our study. 

This difference is likely due to the Dunkard Group being exposed mostly outside of Pittsburgh, in 

neighboring counties that were included in the USGS landslide inventory but not included in our 

study. This is supported by the similarity in ranking of landslide related factors when comparing 

the 311 vs. the ACES and USGS inventories (i.e., as mentioned earlier, the USGS inventory is a 

digitized version of the map produced by Pomeroy [1977]), where the USGS data is clipped to the 
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city limits (Figure 2.8). Overall, the similarities between our findings and the results of prior work 

(Pomeroy, 1977, 1982) support the value of the 311-based landslide inventory. 

Comparisons between the analysis of the 311-landslide inventory to studies that use similar 

statistical methods in areas with different environmental characteristics (Clerici et al., 2002; Dahal 

et al., 2008; Pradhan & Lee, 2010; Yilmaz, 2010) reveal both similarities and differences. Unlike 

our study, where 311-reported landslides are mapped as point-locations, these studies rely on field 

verified landslides that are mapped as polygon. The studies are similar in that slope, curvature, and 

lithology are among the most influential landslide related factors. Studies that do examine distance 

to the nearest road (Pradhan & Lee, 2010; Yilmaz, 2010) also indicate that it is an important factor; 

however, the distance from road at which landslides are most likely is larger (i.e., 100+ m) than 

that computed for the total and field-corrected 311 landslide inventories (0–9 m). This difference 

is likely due to the higher road density in Pittsburgh compared to the other study areas and a 

potential bias in reporting to the 311 system where landslides next to roads are more likely to be 

observed and reported. Roads can be associated with modification of topography, changes to near 

surface hydrology, and formation of groundwater dams, and thus influence slope stability (Mirus 

et al., 2007). Aspect was another meaningful landslide-related factor in all studies, but whereas 

Pradhan et al. (2010) indicate that landslides were most likely on north and north-eastern 

hillslopes, similar to our findings, other studies (Dahal et al., 2008; Yilmaz, 2010) indicate that 

landslide likelihood is higher on south-eastern hillslopes. These differences may reflect variations 

in lithology, land use, or climate between study areas as well as the influence of faults and 

seismicity (i.e., Yilmaz, 2010). The AUC values of all studies range from 0.85 to 0.95, pointing at 

the high predictability of the conditional probability model. The similarities between these studies 
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generally supports the usability of a 311-based landslide inventory for landslide susceptibility 

mapping. 

2.5.3 Filtering of factor maps to overcome uncertainty 

Our experiment with a two-dimensional averaging filter generally suggests that the 

uncertainty in landslide location, as computed through field validation, can help improve 

susceptibility maps that are based on the 311 data. The two-dimensional correlation between the 

landslide susceptibility maps that rely on the original (N = 77) and field validated (N = 55) 311-

based inventories, peaks at a filter radius of 140 m (Figure 2.5B), which is somewhat larger than 

the scale of the spatial uncertainty in landslide locations (104 ± 25 m). This filter radius also 

produces a similar ranking of landslide-related factors between these two 311-based landslide 

inventories (Figure 8). This improvement is similar to that shown in Figure 2.5A, where a filter 

radius of 100 m maximizes the two-dimensional correlation between the susceptibility map that is 

based on the entire 311-based inventory (N = 720) and the map based on the combined ACES and 

USGS inventories (N = 134) (Figure 5A). This suggests that the magnitude of spatial uncertainty 

in landslide locations, as measured from a subset of the 311-based inventory, may help scale a 

filter that reduce the influence of this uncertainty on susceptibility estimates from the entire dataset. 

Our experiment with the quasi-random landslide inventory (Figure 2.9) further demonstrates that 

high correlation values are attained at filter radii that are similar to the uncertainty in landslide 

locations. Whereas larger filter radii can also produce relatively high correlation values between 

these maps (Figure 2.9), they also reduce the effective map resolution (i.e., they increase the spatial 

extent of areas with the same landslide susceptibility, Figure 2.6), and are thus less preferable. 
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The filtration results are sensitive to the number of factor classes. Our experiments with 

six rather than five factor-classes (Supporting Information, Figures A1-A2), show ambiguous 

relation between filter radius and correlation between susceptibility maps. This may reflect a larger 

influence of outliers on susceptibility estimates, that becomes more pronounced as the number of 

factor classes increases. 

2.5.4 Methodological limitations 

 The results we present are influenced by the limitations of the data sources and 

methodology. For example, in the USGS inventory, landslides are mapped as polygons whereas 

the 311 data is provided as a point location. Although we overcome this mismatch in landslide 

localization by converting the USGS data to point data (by using the pixel of highest elevation in 

the polygon), this conversion is somewhat arbitrary and may influence results. Additionally, 

lithology and soil characteristics play an important role in landslide susceptibility (Hamel, 1972), 

The analysis relies on geologic maps at the group and formation level (Berg, 1980), a coarse 

stratigraphic resolution that cannot resolve individual stratigraphic layers and/or soil cover that are 

particularly prone to landslides. This may influence the ranking of lithologic factor and decrease 

the accuracy of the susceptibility maps. There are also temporal and spatial difference between 

inventories, with the 311 and USGS inventories being collected 40–50 years apart, and the USGS 

data having larger landslides (at the scale of 10s–100s of meters) compared to the size of the typical 

landslides reported by the 311-based inventory (at the scale of 10 m). Also, limitations associated 

with the conditional probability model (Yilmaz, 2010), where the results are sensitive to the 

number of factor classes being used. In general, the more factors and/or classes that are added to 

the analysis, the lesser the statistical significance of the conditional probability estimates. Previous 
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work has shown (Li & Chen, 2020; Pham et al., 2018; Yilmaz, 2010) that the usage of machine 

learning methods may overcome this obstacle, however, the robustness of such results for datasets 

of that scale is yet to be evaluated and the interpretation of the results is not as straight forward 

compared to conditional probability. 

2.5.5 Potential use of 311 data in the future study of landslides 

Changes in weather, in particular precipitation, can meaningfully influence landslide 

occurrence (Hsu et al., 2018; Kumar et al., 2019; Ray & Jacobs, 2007). Whereas this is not 

addressed in this study. The temporal information in 311-based landslide inventories may be 

suitable for examining the influence of precipitation on landslide occurrence. Similarly, the 

association between distance to roads (NR, Figures 2.4 and 2.7) and landslide occurrence points 

at the potential influence of urban development on landslides. The progressive updates to the 311 

data can therefore be used to compare between landslide occurrence and precipitation data over 

various timescales, as well as between landslide occurrence and urban development. Overall, the 

public availability of progressively updated 311-data enables such explorations in different cities, 

climates, and environmental conditions across the United States and Canada. 

2.6 Conclusion 

Our analysis of landslide inventories in Pittsburgh, PA, USA, suggests that a landslide 

inventory that relies on citizen reports to the 311 system can be used to create landslide 
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susceptibility maps that are consistent with field-validated inventories. Whereas the 311-based 

inventory is associated with a substantial spatial uncertainty, it can guide targeted field-validation 

efforts. Our comparison with field-validated landslide inventories suggests that the spatial 

uncertainty computed from a field-validated subset of the 311-inventory can help scale a simple 

two-dimensional filter that can reduce the influence of this uncertainty on susceptibility estimates. 

Future work can likely utilize the progressive updates to the 311-dataset to explore the temporal 

covariance between landslide, precipitation, and urban development, as well as differences in 

landslide patterns across climatic, lithologic, and topographic gradients in the United States and 

Canada. 
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3.0 Exploring the Influence of Precipitation on Landslide Occurrence  

3.1 Introduction 

Landslides are a natural hazard that occurs frequently and have a significant impact on 

social and economic well-being worldwide (Froude and Petley, 2018). Precipitation is widely 

recognized as the most common trigger of landslide occurrence, and significant efforts have been 

devoted to characterizing the precipitation conditions that cause landslides (Ashland, 2021; Segoni 

et al., 2018; Brunetti et al., 2010; Guzzetti et al., 2007; Wieczorek and Glade, 2005; Aleotii, 2004; 

Crosta and Frattini, 2001; Corominas, 2000; Caine, 1980). Precipitation can affect slope stability 

through three main mechanisms (Terzaghi,1950, Wilson, 1989): (1) by weakening the bonds 

between soil particles through mineral dissolution or washout, (2) by increasing pore pressure 

along potential sliding planes, reducing the soil's resistance to shear and making it more susceptible 

to failure, and (3) by eroding the base of the slope (Tucker and Whipple, 2002). Regions that have 

experienced landslides can be vulnerable to future landslides during heavy rainfall, especially in 

areas where the soil is shallow or unconsolidated (Handwerger et al., 2019). For most precipitation-

triggered landslides, various climatic, surface, and subsurface factors also contribute to 

predisposing the slope to failure by increasing the effects of downgradient forces and/or reducing 

the strength of the underlying substance (Sidle and Ochiai, 2006; Terzaghi, 1950). Given the 

complexity of these factors and their interactions, empirical data are typically used to identify the 

precipitation conditions that trigger landslides. 

To mitigate the damage caused by rainfall induced landslides, empirical models have been 

proposed that define threshold precipitation conditions for landslide induction (Crosta and Frattini, 
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2001; Innes, 1983; Caine, 1980).  Such thresholds can guide early warning systems that reduce 

potential landslide damage (Guzzetti et al., 2007; Wieczorek and Glade, 2005). Typically, such 

threshold conditions are defined based on statistical analysis of multiple landslides in the context 

of the duration [T] and intensity [L/T] of the rainfall events that predate them (Caine, 1980), as 

both duration and intensity can affect soil saturation and erosion that trigger landslides (Posner 

and Georgakakos, 2015). Hence, reliable information about the timing of landslide occurrence and 

the precipitation condition prior to this time is vital for computing empirical precipitation 

thresholds.  

Difficulties in determining the time of landslide occurrence hamper attempts to robustly 

define threshold precipitation conditions for different areas (Kirschbaum et al., 2010, Benz and 

Blum, 2009). The need for reliable up-to-date information on the timing of landslide occurrence 

is further heightened by the potential effects of climate change and landscape modification (e.g., 

urban expansion, Rohan et al., 2023), as changing conditions may modify landslide susceptibility. 

Ideally, the timing of landslide occurrence can be determined using remotely sensed data acquired 

at high temporal frequency (Dussaillant and Hovius, 2016). However, the spatial resolution of high 

frequency airborne remotely sensed data, as well as masking by vegetation canopy or clouds, may 

obstruct detection of small or slow-moving landslides. Citizen-science, where the public 

participates in data collection (Paul et al., 2019; Cieslik et al., 2019; Can et al., 2019; Franzoni, 

2014), has the potential to address this gap as it allows for inexpensive collection of large amounts 

of data at real time. Such large datasets can potentially help define location-specific precipitation 

thresholds for areas with unique environmental characteristics (e.g., soil, vegetation, lithology, 

topography, climate). However, to obtain data of sufficient quantity and quality, citizen science 

data must be of interest to the public and have a standard, unbiased, and reliable procedure for data 
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collection (Can et al., 2019; Juang et al., 2019; Kocaman and Gokceoglu, 2019; Paul et al., 2019).  

Because of these limitations the scientific value of citizen-produced data is questionable, and its 

validation has been shown to be crucial for robust landslide research (Rohan et al., 2021; Can et 

al., 2019). 

A publicly available source of citizen science data is based on a 311-municipal system that 

includes citizens’ reports about landslide location and time of reporting. The 311 data combines a 

non-emergency phone and online reporting system for issues that warrant a response from 

municipal officials. The dataset is updated hourly and is accessible in over 300 cities in the United 

States and Canada (Choi et al., 2018; O'Brien, 2016; Schwester, 2009; Schellong et al., 2007). 

311-based landslide reports have been previously field-validated in Pittsburgh PA, revealing that 

approximately 70% of the reported landslides coincide with landslides observed in the field (Rohan 

et al., 2021). However, the temporal accuracy of 311-based landslide reports, and their potential 

for identifying precipitation conditions that trigger landslides was never evaluated.  

In this study, we explored whether a landslide inventory based on citizen science-data can be used 

to approximate precipitation conditions that trigger landslides. To do so, we analyzed the 

association between the intensity and duration of precipitation and the occurrence of landslides 

reported through a 311 system in Pittsburgh, PA, where landslide risk is among the highest in the 

USA (USGS, 2020).   We examined whether the general trend of these relations is consistent with 

the trend expected based on prior studies and physical rationale, and whether the threshold 

precipitation produced by the 311-based dataset aligns with a local threshold based on an 

independent dataset of field validated landslides. We also examined whether the 311-based 

landslide dataset is consistent with expectations for the association between precipitation 

conditions and other landslide characteristics (reactivation of pre-existing landslides, topographic 
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slope, and vegetation cover). Overall, our results show that 311-based landslide inventories 

produce patterns that are consistent with expectations and with field validated landslides and 

suggest that they can be used to approximate precipitation conditions that trigger landslides.  
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Figure 3.1: Map of the study area with locations of 311 landslide reports (2015-2022) and inset 

map showing location of PennDOT District 10 and city of Pittsburgh within the state of 

Pennsylvania. The 77 reports validated in Spring 2019 are marked by red squares (false reports) 

and green circles (true reports). Brown triangles mark all other reports. 
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3.2 Methods 

3.2.1 Study Area 

The study focuses on citizen reports to the 311-system in Pittsburgh, Pennsylvania (Figure 

3.1). Pittsburgh is highly susceptible to landslides due to a combination of hilly topography, humid 

climate, clay-rich lithology, and anthropogenic disturbances to the landscape (Ashland, 2021; 

Rohan et al., 2021; Mirus et al., 2020; Pomeroy, 1982). The study area is primarily drained by the 

Allegheny and Monongahela rivers, which merge in Pittsburgh to form the Ohio River. The 

surficial deposits of the area are primarily composed of sand, shale, colluvium, alluvium, and 

gravel. Stream and river valleys are typically flanked by steep hillslopes, with a local relief of tens 

to a few hundred meters. A large number of prehistoric slope failures formed landslide deposits 

that are commonly reactivated throughout the study area (Pomeroy, 1982). The range of annual 

precipitation for Pittsburgh between 2015-2022 was 89 - 146 cm (National Oceanic and 

Atmospheric Administration, 2023), and high intensity rainstorms, which often trigger landslides, 

typically occur between the months of June to October (Ashland, 2021). Urbanization decreased 

vegetation cover and increased impervious cover across the area, with potential implications for 

landslide occurrence (Rohan et al., 2023; Hussain et al., 2017; Guzzetti et al., 2008). 

3.2.2 Data 

The landslide inventory used in this study is based on online and phone-based landslide 

reports to the 311 non-emergency system between 2015-2022 (Figure 1, N=1,033). Rohan et al. 

(2021) field validated 77 landslides reported in the spring of 2019 and found that 55 of them (71%) 
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were associated with an actual landslide (hereafter true reports), whereas the remaining reports 

were false or duplicate (hereafter false reports, Figure 1). The average area of these landslides was 

65 m2, and the average distance between the landslide observed in the field and the 311-reported 

location was 105 ± 21 m. To examine which of the 311-reported landslides occurred over 

previously existing landslides (i.e., reactivation) we used an inventory of prehistoric landslides 

that were mapped in the 1970s by the United States Geological Survey (Pomeroy, 1982). For 

comparison with a 311 based rainfall intensity-duration threshold, an inventory of landslides 

(N=138) collected by District 10 of the Pennsylvania Department of Transportation (PennDOT), 

approximately 33 km north of Pittsburgh (Figure 3.1), was used for the creation of an additional 

rainfall intensity-duration threshold. This dataset was selected because of its close proximity to 

Pittsburgh, similarity in environmental characteristics, and abundant information on the timing of 

landslide reporting. The timing of landslides in the dataset of District 10 is based on the date when 

landslides were reported to PennDOT. Unlike the 311 data, all the landslides in District 10 have 

been identified in the field.     

3.2.3 Data Processing 

We used rainfall intensity-duration (ID) analysis (Segoni et al., 2018; Brunetti et al., 2010; 

Guzzetti et al., 2007; Wieczorek and Glade, 2005; Aleotii, 2004; Caine, 1980) in conjunction with 

the 311-based reporting time to explore the association between precipitation and landslide 

occurrence. Rainfall duration is defined as the period between the time of landslide reporting to 

the 311 system and the beginning of the rainfall event that predated it. The beginning of the rainfall 

was determined at the end of the closest period prior to the landslide report with 24 hours or more 

of zero precipitation. The weighted cumulative rainfall (Pt) is computed using a dimensionless 
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decay factor (k = 0.84, Melillo et al., 2018; Crozier, 1999) that accounts for the effects of soil 

saturation and evapotranspiration: 

𝑃 ∑ 𝑘 𝐸 𝑖  . (1) 

The index i marks the number of days (i.e., 24-hour periods) before the landslide report, so that 

the value of ki decreases non-linearly with time (for k<1), the parameter EL (i) is the cumulative 

rainfall in the i’th day and N is the duration of the rainfall event in days. To calculate rainfall 

intensity [mm hr-1], the weighted cumulated rainfall (Pt) is divided by the duration of the rainfall 

event. To account for the uncertainty that stems from potential deviation between the timing of 

landslide occurrence and that of 311 reporting, a 48-hour threshold was also explored 

(supplementary information). 

An intensity-duration exceedance threshold identifies the intensity-duration conditions 

above which landslides become more likely (Guzzetti et al., 2007) and is typically expressed as: 

𝐼 α ⋅ 𝐷 ,                                                                                                                       (2) 

Where I is the rainfall intensity (mm hr-1), D is the duration of the rainfall event (hr), α is a 

dimensionless scaling constant, and γ is a dimensionless exponent. To constrain the variables α 

and γ (Equation 2) we used the Frequentist approach (Ashland, 2021; Brunetti et al., 2010; Guzzetti 

et al., 2007) which relies on the frequency of rainfall conditions associated with reported landslides 

(Silverman, 2018; Scott, 2015; Venables and Ripley, 2013). These parameters are computed 

through least square regression over log transformed intensity and duration values (Brunetti et al., 

2010), such that the value of γ is the slope of the regression line. The distribution of regression 

residuals was used to compute a precipitation intensity threshold corresponding to 5% exceedance 

probability (T5) which was used to compute the value of α (Equation 2) (Brunetti et al., 2015; 

Guzzetti et al. 2008; Iverson, 2000).  
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Mean values of α and γ and their associated uncertainties Δα and Δγ, were estimated using 

a bootstrap statistical technique. Bootstrapping is a non-parametric technique for assessing the 

mean sample distribution of a population from an empirical data set (Peruccacci et al., 2011; Efron 

and Tibshirani, 1994). The technique generates k sets of m randomly selected events from an 

empirical data set of n events. Analysis of the k sets allows calculating the representative (mean) 

value of α and γ (Equation 1) at the 5% exceedance level.  The uncertainties Δα and Δγ (Figure 2) 

are computed from the standard deviation of the distribution of α and γ values in the k sets.  we 

used k=5000, with m=403 and m=104 (75% of each dataset) with repetitions for the 311 and 

District 10 data sets, respectively.  

To account for the uncertainty associated with false 311 landslide reports (i.e., citizen 

reports that do not correspond with an actual landslide at the reported location) we relied on the 

rainfall intensity associated with false 311-landslide reports identified by Rohan et al., (2021) 

through field validation (Figure 1).  We used the precipitation intensity associated with the 80th 

percentile of these false reports (0.21 mm hr-1) to exclude from the analysis landslides associated 

with precipitation intensity that is lower than this threshold.  

To explore the relationship between precipitation, landslide occurrence, and the 

aforementioned landslide related factors (i.e., reactivation, slope, and vegetation cover), we 

computed threshold curves for 311-reported landslide associated with different categories of these 

variables. Reactivated landslides were identified as those within prehistoric landslides mapped by 

the USGS (Pomeroy, 1982). Other factors were interpolated from the reported point location of 

the 311-landslide report.  
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3.3 Results 

3.3.1 Rainfall Intensity Duration Curve 

Out of all 1032 311-reported landslides between 2015-2023, only 537 (52%) were 

associated with precipitation within the 24 hours prior to the landslide report. The mean intensity 

and duration of precipitation events associated with a 311 reported landslide were 2.3 mm hr-1 

and 19.1 hours, respectively. The upper limit of rainfall intensity that was associated with a 

landslide was 22.5 mm hr-1. A significant portion of rainfall events associated with a reported 

landslide (36%) occurred in 2018 - 2019, with 88% of all landslides related precipitation events 

with intensities greater than 19 mm hr-1 occurring during this period.  

The analysis (Figure 3.2) shows that 311-based landslide reports generally produce a 

similar pattern to that of published data, with a negative correlation between precipitating intensity 

and duration (Brunetti et al., 2010; Guzzetti et al., 2007), and that the 311-data show some unique 

patterns. First, whereas in prior studies the entire landslide data follows a negative intensity-

duration correlation, the 311 data displays such trend mainly for the lower bound of the main 

cluster of landslides. Second, a small cluster of landslides is associated with very low intensity 

and/or duration (Figure 3.2). Analysis of this cluster in conjunction with a field validation effort 

(Figure 1 and 2, Rohan et al., 2021) shows that it is characterized by a relatively high occurrence 

of false reports (82% of the false reports detected by Rohan et al., 2021, occur within this cluster). 

The threshold curve calculated from the 311-data, 𝐼 22.43 0.51  𝐷 . . , is similar 

within error (Figure 2) to the curve produced from the PennDOT District 10 data, , 𝐼 23.27

1.91  𝐷 . . . 
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3.3.2 Factor Analysis 

             Comparing precipitation intensity and duration with different landslide-related factors 

revealed associations with reactivation, slope, and vegetation cover (Figure 3.3A-C). The 

threshold curve for reactivated landslides (N=66) is associated with lower precipitation intensity 

and duration compared to 311-reported landslides that are not located over old landslides (Figure 

3.3A).  Plotting for three topographic slope categories (0-15°, 15-30°, 30-45°) suggests that 

landslides that occur over lower topographic slopes are typically associated with storms of higher 

intensity and/or duration (Figure 3.3B). Landslides in areas with slope >45° are also associated 

with a higher intensity-duration rainfall compared to areas with slopes of 30-45°. Heavily 

vegetated areas are associated with the highest rainfall intensity-duration for landslide occurrence 

during low duration storm and areas of bare earth for high duration storm events. Loosely 

vegetated and impermeable areas are associated with lower rainfall intensity/duration (Figure 

3.3C) that closely overlap and have similar slopes. The slope of the threshold curve for landslides 

in bare earth areas is lower than that of other areas, implying lower sensitivity to precipitation. 

Other factors, such as curvature, lithology, and distance to nearest stream and road showed little 

to no distinctive rainfall intensity-duration patterns (supplementary information). 
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Figure 3.2: (A) Rainfall Intensity Duration for a 311 based landslide inventory. Each datapoint 

represents a 311-reported landslide and the intensity and duration of the rainfall that preceded it.  

Green circles and red squares mark true and false reports, respectively, following field validation 

of 77 311-based landslide reports in 2019 by Rohan et al., (2021). Lines mark intensity-duration 

threshold curves based on the 311-data (this study), as well as the curve by PennDOT District 10. 

Uncertainty in the 311 and District 10 threshold curves is marked by the shaded area around the 

line. Note that the threshold curve for the 311-data is based on landslides associated with rainfall 
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intensity > 0.21 mm hr-1, such that it excludes the cluster of landslides at low intensity values that 

likely represents false reports.  

 

 

Figure 3.3: Rainfall Intensity Duration plots for different categories: (A) landslide reactivation, 

(B), topographic slope, and (C), vegetation cover. The colors of threshold curves match the 

category-based coloring of the datapoints used to compute each curve with uncertainties 

represented by shaded areas. The lower cluster (intensity < 0.21 mm hr-1) is excluded from 

threshold calculation.   
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3.4 Discussion 

3.4.1 Rainfall Intensity Duration Pattern and Threshold 

The general pattern of rainfall intensity duration for 311-reported landslides is consistent 

with that observed in multiple studies of field validated landslides (Segoni et al., 2018; Brunetti et 

al., 2010; Guzzetti et al., 2007). This pattern, where the rainfall intensity required to generate 

landslides decreases as the duration of rainfall increases (i.e., negative correlation), is consistent 

with expectations based on the role of rainfall induced saturation and erosion in generating 

landslides (Caine, 1980). One exception to this consistency is the cluster of 311 reported landslides 

at low rainfall intensity duration conditions (Figure 3.1). However, the observation that this cluster 

coincides with most (82 %) of the false reports identified through the field validation conducted in 

2019 (Rohan et al., 2021), suggests that this entire cluster reflects false reports rather than true 

conditions for landslide generation. The distinction between this cluster and most of the data 

enables its exclusion from the analysis to minimize the effect of false reports. A second exception 

is that the negative correlation between intensity and duration is reflected primarily by the lower 

bound of the data (Figure 3.2), whereas the upper bound is defined by the extent of the intensity 

values.  This pattern may reflect the time represented by the 311 inventory’s (2015-2022), that 

includes two years of record precipitation (2018, 2019) for the Pittsburgh area.  Seventy-six 

percent of landslides associated with >13 mm hr-1 rainfall intensity were reported in either 2018 

or 2019 and removal of these events significantly reduces the number of points (62% decrease) in 

the upper right portion of Figure 2.  Despite the outliers related to the high amount of precipitation 

in 2018-2019 the overall trend is dominated by landslides that follow a negative association 

between intensity and duration (Brunetti et al., 2010; Guzzetti et al., 2007). 
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The specific threshold values computed based on the 311-reported landslides are similar 

(yet not identical) to those computed based on landslides reported to PennDOT District 10 (Figure 

2). The small differences between the threshold curves may reflect the difference in locations and 

extent of urbanization between District 10 and Pittsburgh (Figure 3.1), a difference in landslide 

size (the 311-reported landslides are relatively small (65 m2, Rohan et al, 2021), or statistical 

effects of the difference in dataset size (N=1,033, N=138, for the 311 and District 10 datasets, 

respectively). Despite these small differences, the similarity between the 311 and District 10 

threshold curves, suggests that 311-data can be used to approximate precipitation conditions that 

trigger landslides at the local scale. 

  

3.4.2 Association of Landslide Characteristics with Rain Intensity Duration 

Reactivated landslides (i.e., located within areas mapped as prehistoric landslides, 

Pomeroy, 1982) are characterized by a lower intensity-duration threshold compared to that for all 

other 311-reported landslides (Figure 3.3A). Past landslides can indeed form soil and rock debris 

of modified hydrology and reduced cohesion, which can make a slope more susceptible to further 

landslide occurrences (Floris and Bozzano, 2008; Rochetti, 2007, Doglioni et al., 2012) and lower 

the rainfall intensity-duration conditions that trigger landslides. 

Our analysis suggests that higher rainfall intensity and duration are needed to generate 311-

reported landslides over lower topographic slopes (Figure 3.3B, for the 3 slope categories between 

0 to 45°). From a physical perspective, higher topographic slope increases the gravitationally 

induced shear force that drives landslide compared to the forces that resist it (cohesion, friction) 

(Pourghasemi et al., 2018). The resisting forces can be also reduced by increased saturation and 



49

pore pressure and thus when the rainfall intensity-duration is sufficiently high, landslides may 

occur even on low topographic slopes (Fall et al., 2006, Lee and Talib, 2005).  Interestingly, our 

results also show that the intensity-duration threshold decreases for slopes higher than 45°. The 

confidence in this result is relatively low because of the small number of landslides on slopes 

greater than 45° (16 landslides, compared to 195, 255, and 101 in the 0-15°, 15-30°, 30-45° slope 

categories, respectively), yet the higher threshold for slopes >45° may reflect  that steep slopes are 

primarily composed of bedrock, which has higher strength compared to soil.   

The analysis also suggests that heavily vegetated areas require comparably higher rainfall 

intensity and duration to generate 311-reported landslides (Figure 3C), which is consistent with 

expectations. Heavy vegetation can stabilize hillslopes through soil reinforcement by roots 

(McGuire et al., 2016), decreased soil saturation due to increased evapotranspiration (Gonzalez-

Ollauri and Mickovski, 2017), and decreased infiltration due to canopy and leaf cover. 

Additionally, vegetation can slow down surface runoff and reduce the erosive power of water 

runoff (Gonzalez-Ollauri and Mickovski, 2017). Therefore, landslide triggering over densely 

vegetated slopes is expected to require higher rainfall intensity and duration compared to sparsely 

vegetated slopes. The relatively low rainfall threshold for impermeable areas is surprising, given 

that such areas are expected to be less affected by rainfall induced infiltration and erosion. 

However, examination of landslide locations in these areas shows that they mostly occur next to 

roads, where “cut and fill” road construction, as well as drainage from impermeable road surface 

to nearby areas, may induce landslides. The relatively low coefficient (α, intercept in Figure 3) for 

bare earth areas is consistent with the expectation that such areas will require a lower rainfall 

threshold compared to vegetated areas. However, the low exponent (γ, slope in figure 3), suggest 

that, somewhat unexpectedly, landslides in bare earth areas are relatively less sensitive to changes 
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in precipitation.  Examination of landslide locations in the bare earth areas (N=17) indicates that 

81% were associated with sites of new land development, mostly in the suburbs of Pittsburgh.  

This suggests that these slides were primarily triggered by anthropogenic landscape modifications 

and that their association with precipitation may be coincidental, resulting in low sensitivity to 

precipitation. This may align with the observation that only 52% of 311 landslide reports in 

Pittsburgh are associated with a rainfall event, which hints at the important role of other landslide 

triggers. 

3.4.3 Implications and Limitations 

Our analysis suggests that landslide reports by citizens can help identify precipitation 

conditions that trigger landslides, and hence help mitigate landslide damage. The abundance and 

availability of information on the location and timing of landslides at a local scale through the 311-

system enable evaluation of local, rather than regional or global precipitation threshold for 

landslide occurrence.  Such threshold reflects local environmental factors and can therefore be 

used by local authorities to implement effective mitigation strategies. Highlighting the benefits of 

citizen reports and their outcomes through outreach efforts can increase public awareness and 

community engagement in data collection (Haque et al., 2019). Overall, our results suggest that 

landslide research can meaningfully benefit from a citizen science approach that engages a large 

group of individuals to collect data at a high pace and a lower cost compared to traditional 

centralized data collection approaches. 

Our analysis also reveals that despite its advantages, citizen-science landslide data 

collected through the 311-system has some inherent flaws and biases that should be considered 

when analyzing this data. The occurrence of false reports, as well as the spatial uncertainty in 
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landslide location (Rohan et al., 2021), should be considered, potentially through validation of a 

subset of the reported data or cross-validation with other sources and/or remote sensing products 

(Ponti et al., 2018). The lag between the time of landslide occurrence and time of reporting to the 

311-system can directly influence rainfall intensity-duration analysis, and therefore a validation

study that focuses on this lag time is needed. However, a similar problem exists for the District 10 

reports as well as for other data collection methods such as remote sensing or news reports 

(Hardmann et al., 2019). We also note that the landslides reported through the 311-system may 

represent a biased subset of all landslides (e.g., those that disturb residents through damaging 

driveways and property). This bias is disadvantageous in that findings cannot be generalized 

broadly; however, it is advantageous in that resulting analyses can be directly applied to mitigation 

of damage that disturbs residents. 

3.5 Conclusion 

This study explored the potential of landslide data reported by citizens to identify 

precipitation-threshold for landslide occurrence. We used data on the timing and location of 

landslides, from a 311-municipal service system in Pittsburgh, Pennsylvania, where landslide risk 

is among the highest in the USA. Analysis of 311-reported landslides produce a precipitation 

threshold whose trend is consistent with physical expectations, and whose slope and intercept are 

generally similar to those computed from an independent dataset of field-validated landslides in 

this area.  Precipitation threshold computed for landslides that occur on different topographic 

slopes, vegetation cover, and within areas of old landslides, are consistent with physical 

expectations. These results suggest that citizen science data, obtained at a relatively low cost and 
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effort, can be used to compute reliable precipitation thresholds. Although field validation of 

citizen-science landslide data is crucial to ensure its accuracy, the time-progressive reporting by 

citizens may make this data particularly useful in accounting for the effect of climate change and 

anthropogenic landscape modifications on landslide occurrence.   
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4.0 Prolonged Influence of Urbanization on Landslide Susceptibility 

4.1 Introduction 

The risk of landslide damage to life and infrastructure makes landslide susceptibility and 

hazard zoning crucial for proper land-use planning in urbanized areas. Urbanization, defined as 

increasing the density of population through urban settlement, is associated with deforestation and 

construction that typically reduce vegetation cover and modify hydrology and topography (Tubbs, 

1974; Zêzere et al., 1999; Glade, 2003; Cascini et al., 2005; Van Den Eeckhaut et al., 2007; 

Papathoma-Koehle and Glade, 2013). These modifications can alter topography, as well as surface 

and subsurface flow paths, which influence landslide susceptibility (e.g., Mirus et al., 2007; 

BeVille et al., 2010). Thus, quantifying the influence of urbanization on landslide occurrence can 

help guide the design of more sustainable infrastructure (Tarolli and Sofia, 2016). 

Landslide occurrence is governed by gravitational forces that transport earth materials 

downslope (Cruden and Varnes, 1996). The location of a landslide depends on a multitude of 

landslide-related factors such as the magnitude of topographic slope, soil/rock properties and 

thicknesses, the inclination of layered rock units, reinforcement due to vegetation, and hydrologic 

factors that may reduce the frictional-resistance of soil and rock by increasing pore-pressure 

(Iverson, 2000; Wang et al., 2013; Pfeil-McCullough et al., 2015; Bogaard and Greco, 2016). 

These landslide-related factors may covary in linear and non-linear ways that influence the 

magnitude and likelihood of landslide occurrence. Because urbanization modifies some or all these 

factors, it also affects landslide susceptibility (Johnston et al., 2021).  
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Landslide susceptibility estimates can be quantitative or qualitative. Qualitative estimates 

use descriptive terms to categorize landslide susceptibility levels, whereas quantitative methods 

rely on statistical analyses to estimate probabilities of occurrence for landslides (Reichenbach et 

al., 2018). Statistical methods, such as conditional probability and machine learning approaches, 

can account for such non-linearities and produce accurate landslide susceptibility estimates over 

large areas at a high spatial resolution (Pourghasemi et al., 2012; Merghadi et al., 2020; Wang et 

al., 2021). These methods typically rely on a large dataset of landslide locations and utilize the 

covariance between landslide-related factors and the occurrence of landslides to weigh these 

factors and calculate the relative likelihood of landslide occurrence. The estimated likelihoods can 

be used to spatially map landslide susceptibility and guide future development and mitigation 

efforts (Zhang et al., 2017; Kim et al., 2018).   

Studies that focus on the influence of different factors on landslide susceptibility (e.g., Dai 

and Lee, 2002; Rohan et al., 2021; Zhou et al. 2020) often explore what geologic, topographic, 

and land-use factors affect landslide susceptibility (Glade, 2003; Van Beek et al., 2004; Wasowski 

et al., 2010; Chen and Huang, 2013; Reichenbach et al., 2014; Pisano et al., 2014; Soma et al., 

2017; Chen et al., 2019; Senanayake et al., 2020; Bernardie et al., 2021). Although land-use 

changes do influence landslide susceptibility, this influence depends on the local topographic, 

lithologic, and hydrologic conditions as well as on the rate of land-use changes (Soma and Kubota, 

2017; Chen et al., 2019). Previous studies (Braun et al., 2019; Simon et al., 2015) indicated that 

changes in landslide susceptibility may increase with the rate of urban expansion and depend on 

population and road density. Although landslide susceptibility has been shown to generally 

increase with the degree and rate of urbanization, studies have previously used only landslide 

inventories that were mapped in areas and times of urban expansion and thus primarily explored 
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the immediate effect of urbanization on landslide susceptibility (Alexander, 1986; Smyth and 

Royle, 2000; Sassa et al., 2004; Cascini et al., 2005; Dragicevic et al., 2015; Frodella et al., 2018; 

Lee et al., 2018). Hence, the legacy influence of urbanization that occurred decades ago on 

landslide susceptibility remains largely unquantified.  

A recent review of various national-scale landslide susceptibility maps reveals that 

southwestern Pennsylvania is consistently among the most susceptible areas in the conterminous 

United States (Mirus et al., 2020). The city of Pittsburgh, located at the heart of this region, is 

particularly susceptible to landslides (Pomeroy, 1982; Ashland, 2021). The history of southwestern 

Pennsylvania contains both periods of extreme population rise and fall. The study area 

encompasses four counties (Allegheny, Beaver, Washington, and Westmoreland), which all saw 

substantial population growth during 1890-1950 due to the flourishing local steel and coal-based 

economy. The population stabilized or dropped in each of the counties with the decline of the steel 

industry after 1950 (Giarratani and Houston, 1989). Although the peak population generally 

occurred in the late 1950s, ~80% of the population growth occurred before 1940. Pittsburgh, the 

largest urban area in southwestern Pennsylvania, currently has a population that is 55.6% smaller 

than its size in 1950 (Winant, 2021). The pulse of urban expansion in southwestern Pennsylvania 

between the 1890s and 1950s, and the lack of meaningful urban expansion since, presents a unique 

opportunity to explore the decades-long effect of urbanization on landslide susceptibility. 

This research examines the prolonged influence of urbanization on landslide susceptibility 

by using pre- and post-urbanization landslide inventories from southwestern Pennsylvania, with 

road density as a proxy for the spatial and temporal pattern of urbanization. The pre-urbanization 

inventory is used as a control for potential biases in landslide mapping and analyses because it is 

not expected to differ between urbanized and non-urbanized areas. The post-urbanization 
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inventory is used to quantify the difference in both landslide susceptibility estimates and in 

landslide-related factors between urbanized and non-urbanized areas (classified via road density). 

4.2 Methods and Study Area 

4.2.1 Study Area 

This study is focused on a large portion of southwestern Pennsylvania that includes 

Allegheny, Beaver, Washington, and Westmoreland Counties, with a combined area of 7993 km2 

(Figure 4.1A). The area is primarily drained by two major rivers, the Allegheny and Monongahela, 

that merge to form the Ohio River at the center of the study area in the city of Pittsburgh. Much of 

the study area is located within the Allegheny Plateau section of the Appalachian Plateaus 

province. Bedrock units exposed in the study area are composed of horizontally bedded or slightly 

dipping sedimentary rocks. The surficial deposits of the area are primarily composed of sand, 

shale, alluvium, and gravel. Western Pennsylvanian strata are composed of cyclic sequences of 

sandstone, shale, claystone, coal, and limestone. Clay- and silt-rich soils overlie the bedrock and 

can be up to 30 m thick at the base of slopes. Stream and river valleys are often steep, with a local 

relief of tens to few hundred meters including steep soil-mantled slopes, rock/cliff faces, and steep 

riverbanks (a table of the range of local topographic factors is provided in supplementary 

information: Table C2). A large number of prehistoric slope failures formed landslide deposits that 

are common throughout the study area (Pomeroy, 1982). 

Southwestern Pennsylvania’s high susceptibility to landslides is due to a 

combination of topographic, climatic, lithologic, and anthropogenic factors. Precipitation (both 
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rain and snow) is distributed throughout the year with a mean annual precipitation of 1006 mm 

(from 1900-2020; NOAA, 2021). The majority of high intensity rainstorms associated with the 

triggering landslides occur between the months of June to October (Ashland, 2021). Lithologic 

units referred to locally as the Pittsburgh “red beds” consist of shales and clay that are particularly 

susceptible for landslides. The urbanization and industrialization of the study area was associated 

with construction of roads, pipelines, railroad, extensive coal mining, and commercial and 

residential properties. This modification of the landscape results in decreased vegetation and 

increased impervious cover. 

4.2.2 Road Density 

Road density, a widely used proxy for urbanization (Zope et al., 2016; Theodorou et al., 

2021), was used to estimate the extent of urbanization and compare landslide susceptibility 

between urbanized and non-urbanized areas. The road density map calculated for this study area 

was generated by computing road density (total road length divided by area) over a circular kernel 

of 300-m diameter (~3 city blocks). The road density map was divided into urbanized and non-

urbanized areas by using Gini impurity, a statistical metric commonly used in data classification 

(Archer, 2010), to find a road density threshold that best classifies the values in the map into two 

groups that we associate with urbanized and non-urbanized areas (Figure 4.1B). The road-density 

threshold produced through this method (3.3 km/km2) is within the typical range (2.5-6.1 km/km2) 

used in the literature to distinguish between urbanized and non-urbanized areas (McAdoo et al., 

2018). These urbanized and non-urbanized areas can then be analyzed individually to quantify and 

compare landslide susceptibility as well as rank the importance of landslide-related factors 

between them. 
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The road density map is based on a digital road map produced by the Pennsylvania Division 

of Computer Services Geographic Information Systems Group (PASDA, 2007). Given that 

urbanization generally halted since the era of its peak development (~late 1950s; Rappaport, 2003), 

we assume that the current road map is generally similar to the road map at the time of this peak 

development. To evaluate this assumption, historical road maps ranging from 1947-1977 compiled 

by the Pennsylvania Department of Transportation (PennDOT) were visually compared with the 

digital road map from 2015. This inspection revealed that although some road construction 

occurred in southwestern Pennsylvania since the time of peak development, the majority of the 

construction has been associated with densification of previously urbanized areas or conversion of 

commercial/industrial zones into residential areas. 

4.2.3 Digital Elevation Data 

The Digital Elevation Model (DEM) used in this study was clipped 100 m away from the 

extent of the outermost landslide locations in a landslide inventory produced by the U.S. Geologic 

Survey (USGS) and used in this study. The resolution of the DEM used for this study (1/3 arc-

second, approximately 10 m) captures the scale of the mapped landslides (typically tens to 

hundreds of meters) and landslide-related factors at a resolution that can be efficiently analyzed. 

The DEM, obtained from the National Elevation Dataset (USGS, 1999) is a seamless mosaic of 

best-available bare earth elevation data for the conterminous United States. 
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Figure 4.1: (A) Elevation map of the study area overlain by county lines, major rivers, cities, and 

active landslides. (B) Map of urban (red) and non-urban (yellow) areas as separated by road density 

(threshold 3.3 km/km2).  (C) An example zoomed in map of a subset of the study area showing 

major rivers and mapped landslides 
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4.2.4 Landslide Inventory  

The landslide inventory used in this study is based on landslide maps produced by the 

USGS between the 1970s and 1980s (Briggs et al., 1975; Pomeroy, 1982). These landslides were 

mapped as polygons via field reconnaissance combined with interpretation of aerial photographs 

from 1973-1975 (scale 1:24,000) (Pomeroy, 1977; Figure 4.1C). The landslides are defined as 

either active or old landslides. Active landslides are characterized by recent evidence of a landslide 

motion at the time of mapping and thus likely post-date the urbanization of the study area 

(Pomeroy, 1977; Briggs et al., 1975; Pomeroy, 1982). The active landslides are classified as 

shallow translational landslides that are typically less than 3-m thick as well as slumps of fill 

material generally associated with construction along hillslopes (Pomeroy, 1982). The average 

area of a mapped active landslide in the inventory is 0.004 km2 with maximum and minimum 

areas of 0.178 km2 and 0.0001 km2, respectively. Given that peak urbanization in the study area 

occurred during the late 1950s and that 80% of this urbanization had occurred by the 1940s, these 

active landslides formed or sustained more than a decade since urbanization reached its peak and 

approximately 3 decades since 80% of this peak urbanization had already taken place.  Old 

landslides are inactive and defined based on hummocky landscape and deposits characteristics. 

They have formed since the Wisconsin Glaciation (Pomeroy, 1982, and citation therein refer to 

landslide ages of 8.5-10 ka BP in the upper Ohio Valley based on 14C ages) and likely predate the 

urbanization of the study area. The area of old landslides is larger than that of active ones (average, 

maximum and minimum of 0.192, 1.56 and 0.094 km2 , respectively) and may represent the 

cumulative area of multiple small landslides that occurred over time in proximity to each other. A 

digitized dataset of the active landslides is available through the Pennsylvania Spatial Data Access 

(PASDA, 2017). Old landslides were digitized as a part of this study from the aforementioned 
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USGS landslide maps. To explore the association between urbanization and landslide occurrence, 

the inventory was divided into four classes: (1) Active landslides in urbanized areas (i.e., areas of 

high road density, hereafter Active-Urbanized) (N=1,762), (2) Active landslides in non-urbanized 

areas (i.e., areas of low road density, hereafter Active-Non-Urbanized) (N=581), (3) Old landslides 

in urbanized areas (hereafter Old-Urbanized) (N=319), and (4) Old landslides in non-urbanized 

areas (hereafter Old-Non-Urbanized) (N=348). 

4.2.5 Landslide Related Factors 

To produce and compare landslide susceptibility estimates based on the four different 

landslide inventory classes, the landslides in each inventory were analyzed in the context of 11 

topographic and environmental factors that may be associated with landslide occurrence (i.e., 

landslide-related factors). Seven topographic factors (slope, profile curvature, drainage area, 

relative location on hillslope, distance from nearest channel, elevation, and aspect) were computed 

from the aforementioned DEM. Slope was calculated from the DEM using an 8-connected 

neighborhood as the magnitude of the gradient vector and expressed in degrees. Profile curvature 

(1/meter) was calculated as the along-profile divergence of topographic slope using TopoToolBox 

(Schwanghart and Scherler, 2014). Relative location on hillslope (between 0 and 1) was computed 

as the fraction of elevation relative to the hillslope relief, as estimated from the local relief value 

over a circular disk with a 200-m radius (a typical hillslope length in the study area). Aspect is 

calculated using the surface normal to the bicubic interpolation of the digital elevation data to 

identify the downslope direction of a pixel and is measured clockwise in azimuth degrees, where 

0 and 360 are due north. All the topographic factors mentioned above are computed from the 

aforementioned National Elevation Dataset DEM at a 10-m resolution. 
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Non-topographic factors (distance to nearest road, stratigraphic formation, vegetation 

cover, land use) relied on various data sources and were resampled to the resolution of the DEM. 

Distance to roads was obtained from the same street centerlines used in the road density calculation 

that were mapped by Pennsylvania Division of Computer Services Geographic Information 

Systems Group. Distance to roads was computed as the cartesian distance to the nearest road 

section. Distance to nearest stream was similarly computed using the Cartesian distance to the 

nearest stream, where streams are defined as DEM pixels having cumulative upstream drainage 

area larger than 10 km2. Ten different lithologic units were derived from digital geologic maps 

(Miles et al., 2001). Vegetation cover, the percent of vegetation covering the area of a raster cell, 

was extracted from PASDA based on information collected in 2000. Land-use categories rely on 

photogrammetrically compiled information collected in 2015 (Yang et al., 2018) and are divided 

to the following nine classes: open water, forest, developed low intensity, developed medium 

intensity, developed high intensity, developed open space, shrub, barren, and pasture. The 

cumulative area of impermeable cover that drains to each DEM pixel was calculated using the 

land-use data in conjunction with flow accumulation, and was computed using TopoToolBox 

(Schwanghart and Scherler, 2014). See supplementary information (Table S2) showing the range 

and mean of all landslide-related factors. Given that urbanization generally halted since the era of 

its peak development (~1950), we assume that current vegetation and landcover attributes are 

generally similar to those at the time of landslide mapping (1970s). To facilitate the susceptibility 

analysis, the maps of factors whose resolution differs from the 10-m resolution of the DEM 

(stratigraphic formation 125-m, vegetation cover 30-m, and land-use 50-m) were resampled to a 

10-m resolution.    
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The association between landslides and the topographic and non-topographic factors is 

based on the areal extent of mapped landslide polygons.  To do so, a binary map of landslide 

positions was produced by assigning a value of 1 for pixels within landslide polygons or that 

overlap with polygon boundaries and a value of 0 for pixels outside of such polygons. The values 

of topographic and non-topographic factors from all pixels contained within landslides are then 

used in our analysis.   

4.2.6 Random Forest and ROC Validation 

We used random forest and conditional probability to map landslide susceptibility and to 

explore the association of landslides with the aforementioned 11 factors. Random forest analysis 

(Hastie et al., 2009) is based on an assembly of decision trees and can be used to make probabilistic 

predictions and to rank the importance of factors that are associated with landslide occurrence 

(Maxwell et al., 2018). Each decision tree divides the data into more homogenous subsets based 

on a recursive procedure that identifies the factors (and associated thresholds) that best divide a 

target variable data (Catani et al., 2013). In the random forest model, every tree is trained using a 

subset of training samples and factors. The randomness introduced by subsampling observations 

and restricting the factors available at each node leads to less accurate individual trees that are less 

correlated with each other, reducing the variance of the ensemble forest (Culter et al., 2007; He et 

al., 2017), and can be used to quantify the probabilistic prediction of each factor. We used the 

randomForest package in R-CRAN with a bagging ensemble method (Liaw and Wiener, 2002). 

The length of the input dataset is the number of DEM pixels (N=23,262,133 and N=33,473,337 

for urbanized and non-urbanized areas, respectively), the target variable is landslide occurrence 

(i.e., binary, based on the USGS dataset), and the input variables are the previously mentioned 11 
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landslide-related factors. The factors used in the analysis randomly vary in each decision tree, with 

six factors used for each node. To handle the imbalance in the input data, each tree was structured 

to subsample 75% of the overall pixels for training, while the remaining 25% (i.e., the out of bag 

samples) were used for validation. The model was trained using 500 trees.  

To produce a landslide susceptibility map, the model computes landslide susceptibility in 

each pixel. Each trained tree in the random forest model uses the landslide-related factors 

associated with each pixel to make a binary prediction regarding whether the pixel is associated 

with landslide occurrence. The susceptibility of the pixel to landslides is computed as the fraction 

of positive decisions (i.e., landslide occurrence) that a pixel receives from all trees. The 

susceptibility values can be converted into percentiles based on the range of all the computed 

susceptibility values in the map; hence, pixels of higher percentile signify a relatively higher risk 

of landslide occurrence. 

We used partial dependence analysis to further explore the influence of high-

ranking continuous landslide-related factors on landslide susceptibility. Partial dependence plots 

show the marginal effect of landslide-related factors on the predicted outcome of the 

model (Friedman, 2001) and thus can display the relations between landslide susceptibility and 

related factors. The partial dependence at a particular factor value is computed by forcing all 

data points (i.e., map pixels) to assume that factor value while holding the other factors at their 

original value for each pixel and computing the mean susceptibility prediction from all trees. 

This reveals the relations between different factor values and landslide susceptibility, and thus 

provides valuable insights into the random forest model predictions.  

The performance of the random forest model was evaluated through a Receiver Operating 

Characteristic (ROC) curve and calculation of the area under the ROC curve (AUC) (Gorsevski et 
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al., 2006; Cantarino et al., 2019; Pham et al., 2020). An ROC curve shows the true positive rate 

against the false positive rate at various thresholds. For a given susceptibility threshold, a true 

positive is defined as when the model correctly predicts landslide occurrence for a location with a 

landslide, and a false positive is where the model predicts landslide occurrence at a location 

without a landslide. Because landslides are relatively isolated phenomena, determination of the 

rate of true and false positives for the ROC curves, rather than their absolute values, helps provide 

a more balanced assessment of the model’s capability to correctly distinguish between areas of 

high and low landslide susceptibility. The larger the area under this curve (AUC), the better the 

model is at distinguishing between areas of high and low landslide susceptibility. Values over 0.8 

generally indicate good model prediction (Robin et al., 2011); values between 0.7 and 0.8 are 

considered fair; values <0.7 are considered poor predictions; and values of 0.5 would be the result 

of random guessing (Zhu et al., 2010).  

Landslide-related factors were ranked using ROC-AUC analysis by excluding one factor 

at a time from the random forest analysis and computing the relative difference in AUC between 

a model with excluded factor and that with all factors (Gorsevski et al., 2006; Marjanović, 2013; 

Cantarino et al., 2019; Pham et al., 2020). Important factors are expected to be associated with a 

larger difference. For robustness, to explore whether the results are sensitive to the analysis 

method, we also used a conditional probability approach and an out of bag permutation approach 

(Supplementary information: Figures C1-C2) with identical input data to produce landslide 

susceptibility maps and factor ranking (e.g., Davis et al., 2006; Ozdemir, 2009; Yilmaz, 2010; 

Regmi et al., 2014; Costanzo and Irigaray, 2020; Rohan et al., 2021). 
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4.2.7 Landslide Susceptibility Map Comparison 

To statistically quantify the effect of urbanization on modeled landslide susceptibility 

estimates, we calculated median susceptibility for the total, urbanized, and non-urbanized area in 

each of the modeled susceptibility maps. The susceptibility difference between maps was 

calculated from the percentage difference between these median values (i.e., 100×(|a-b|)/((a+b)/2) 

, where a and b are the median susceptibilities for the areas of interest in each of the modeled 

susceptibility maps). To test whether the differences in median susceptibility estimates are 

statistically significant (α=0.01), we used the non-parametric Wilcoxon rank sum test that 

compares susceptibility values between matched-paired pixels and modeled susceptibility maps 

over an area of interest (Gibbons and Chakraborti, 2014). 

To quantify spatial similarities or differences in the distribution of landslide susceptibility 

estimates generated from different landslide inventories, we calculated cross correlation between 

the modeled susceptibility maps (e.g., Shelef and Hilley, 2014, Rohan et al., 2021). End member 

values of 1, -1, and 0 are indicative of perfect, inverse, and no correlation, respectively. This 

analysis focuses on correlation between large scale susceptibility patterns by smoothing each map, 

before computing the correlation, with a circular filter with a radius of 35 m (based on the radius 

of a circle whose area is the same as the average area of all the active landslides in the inventory). 

To further evaluate the difference between models, we also compared AUC values when applying 

a model based on an urbanized landslide inventory to that based on non-urbanized inventory when 

applied on the same area. 
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4.3 Results 

4.3.1 Ranking of Landslide-Related Factors 

The ranking of landslide-related factors had differences between the models trained on the 

four different landslide inventory classes: (1) Active-urbanized, (2) Active-non-urbanized, (3) 

Old-urbanized, and (4) Old-non-urbanized. The rankings computed through the AUC approach 

(Figure 4.2) are similar for random forest, out of bag permutation, and conditional probability 

computations (Supplementary Information: Figure C1). Aside from slope, which is ranked as the 

factor that is most strongly associated with landslides, the rankings of the top five factors, as well 

as factors of lower ranking, had variations between models based on the different inventories. 

Comparison between models based on the two inventory classes of active landslides (i.e., in urban 

and non-urban areas), whose occurrence likely postdate urbanization, shows that in the urbanized 

(high road density) areas, active landslides are strongly associated with distance from roads and 

aspect. In models based on the non-urbanized inventory, active landslides are strongly associated 

with stratigraphic formation, distance to streams, and vegetation cover. In contrast, the ranking of 

factors is generally similar for the models based on the two inventory classes of old landslides (i.e., 

in urbanized and non-urbanized areas) that likely predate urbanization (Slope, Profile Curvature, 

Aspect, and Position on Hillslope being ranked as the most important factors). 
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Figure 4.2: Ranking of landslide-related factors by a random forest-based AUC differential 

method for models based on landslide inventories of (A) Active-Urbanized Landslides, (B) Old-

Urbanized Landslides, (C) Active-Non-Urbanized Landslides, and (D) Old-Non-Urbanized 

Landslides.  Factors: Slope, Nearest Road (NR), Profile Curvature (PC), Aspect, Stratigraphic 

Formation (SF), Nearest Stream (NS), Land Cover (LC), Vegetation Cover (VC), Drainage Area 

(DA), Impervious Cover (IC), and Position on Hillslope (PoH) 

 

 



69

4.3.2 Landslide Susceptibility Maps 

To explore the effect of urbanization on modeled susceptibility estimates, we compared the 

susceptibility maps produced by each landslide inventory for the entire study area (supplementary 

information: Figure C3). Figure 4.3 contrasts such maps for an urbanized section of the map both 

in terms of the spatial pattern and magnitude of susceptibility. The contrasting maps produced by 

models based on the active-urbanized (Figure 4.3A) and active-non-urbanized (Figure 4.3B) 

inventories show that the susceptibility model that is based on the active-non-urbanized inventory 

produces a smoother susceptibility pattern and a relatively high susceptibility at the upper portion 

of the hillslopes compared to the model based on the active-urbanized inventory. To explore the 

effect of time on modeled susceptibility estimates, we also compare modeled susceptibility maps 

based on inventories of old landslides in urbanized (Figure 4.3C) and non-urbanized (Figure 4.3D) 

areas. The modeled susceptibility based on these inventories is characterized by a noisy pattern 

that reflects fluctuation in susceptibility over short spatial distances. In these models (Figures 4.3C 

and 4.3D), the association between high susceptibility to topographic slope is less distinct 

compared to models based on inventories of active landslides (Figures 4.3A and 4.3B).  

Statistical analysis of susceptibility values reveals differences between 

susceptibility maps modeled based on different landslide inventories. Comparison of median 

landslide susceptibility values between maps based on urbanized and non-urbanized inventories 

of active landslides can help quantify the effect of urbanization on landslide susceptibility. 

Comparison shows that the median susceptibility value modeled over urbanized areas with the 

model based on the active-urbanized inventory is 16% larger than the median susceptibility 

calculated by the model based on the active-non-urbanized inventory for the same area. For non-

urbanized areas, the active-non-urbanized model median susceptibility is 8% larger than that 
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modeled by the active-urbanized inventory. Comparison between susceptibility values modeled 

with the active-non-urbanized model to those produced by the old-urbanized and old-non-

urbanized models can help quantify whether active-non-urbanized landslide susceptibility patterns 

differ from pre-urbanization patterns. The difference in median susceptibility value for such 

comparisons shows a somewhat higher (<5%) susceptibility in both urbanized and non-urbanized 

areas for the models based on the old landslide inventories. Comparison between susceptibility 

values produced with the old-non-urbanized model to those produced with the old-urbanized 

model can help quantify whether areas that are now urbanized were more susceptible to landslides 

even prior to urbanization. Such comparison shows that the median susceptibility produced by the 

model based on the old-urbanized landslide inventory areas is 4% higher in urbanized areas 

compared to that produced by the old-non-urbanized landslide inventory. For each of the 

comparisons of medians mentioned above, a Wilcoxon rank sum test rejects the null hypothesis 

(⍺=0.01) that the compared susceptibility estimates come from continuous distributions with equal 

medians, indicating that the differences between these susceptibility maps are statistically 

significant. 

Differences in susceptibility mapping are also apparent in the correlations between the 

smoothed susceptibility maps for the entire study area (Table 4.1). The correlation is 0.2991 

between the two susceptibility maps produced from the inventories of active landslides in 

urbanized and non-urbanized areas (a subsection of these maps is shown Figure 4.3A and 4.3B, 

respectively). This value is substantially lower than the correlation value of 0.6552 between the 

two susceptibility maps based on the inventories of old landslides in urbanized and non-urbanized 

areas. 
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Figure 4.3: Landslide susceptibility maps of the same (urbanized) area, produced with a random 

forest models based on: (A) Active landslides in urban areas, B) Active landslides in non-urban 

areas, C) Old landslides in urban areas, and D) Old landslides in non-urban areas. Note the 

difference in susceptibility patterns between these models. 
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Table 4.1: Table of cross correlation values between smoothed susceptibility maps for the entire 

study area, as produced from random-forest models based on each of the landslide inventories used 

in this study.  

4.3.3 Partial Dependence Analysis 

To examine the marginal effect of a specific landslide-related factor on landslide 

susceptibility, we used a partial dependence analysis based on random forest. Results (Figure 4.4) 

show that the models based on the old landslides inventory classes for (a) urbanized and (b) non-

urbanized areas produced generally similar partial dependence relations (apart from the distance 

to nearest road factor). In contrast, the models trained with the two active landslide inventory 

classes for (a) urbanized and (b) non-urbanized areas produced different partial dependence 

relations for the slope, profile curvature, distance to nearest road, and nearest stream factors 

(Figure 4.4), and similar values for the aspect factor. 
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Figure 4.4: Partial dependence plots based on model results for the active and old landslide 

inventories in urban (green/red) and non-urban (blue/light blue) areas for key factors. 
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4.3.4 Model Validation 

The results from the ROC-AUC validation point at differences in landslide susceptibility 

between urbanized and non-urbanized areas. Applying the model based on inventory of active 

landslides in urbanized areas to estimate landslide susceptibility in urbanized areas produces the 

highest AUC (0.7942). In contrast, applying this model to estimate landslide susceptibility in non-

urbanized areas produces a much lower AUC (0.6103). Similarly, the model based on inventory 

of non-urban-active landslides produces AUC values of 0.7942 for non-urbanized areas and 0.6966 

for urbanized areas. For models based on the old landslide inventories, the AUC values for 

urbanized and non-urbanized areas are all within a narrower range of 0.6142-0.6973 

(supplementary information: Table C1). 

4.4 Discussion 

4.4.1 Differences between Models based on Different Inventories 

Comparison of factor ranking, susceptibility maps, and partial dependence relations 

between models that are based on different landslide inventories quantifies the prolonged effect of 

urbanization on landslide susceptibility. The influence of urbanization on landslide occurrence is 

illustrated by the differences between the two landslide susceptibility models based on inventories 

of active landslides (i.e., post-urbanization) from urbanized and non-urbanized areas. These 

differences are quantified by (a) the relatively low spatial correlation between the smoothed 

landslide susceptibility maps based on these two models (correlation of 0.2991, Table C1), (b) the 
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large (16%) and statistically significant difference in median susceptibility value between the 

models based on these inventories , (c) the difference in factor ranking between the two models 

(Figure 4.2), and (d) differences in partial dependence relation for some factors (e.g., slope, Figure 

44.4). The prolonged effect of urbanization on landslides is further supported by the models based 

on the inventories of old landslides (i.e., pre-urbanization) that produce relatively similar 

susceptibility maps (i.e., correlation of 0.6552, Table C1), factor ranking (Figure 4.2), partial 

dependence relations (Figure 4.4) for urban and non-urban areas, and a relatively small difference 

in median susceptibility (4%) between these areas. These similarities indicate that prior to 

urbanization, landslide susceptibility patterns over the entire study area were more similar 

compared to the patterns portrayed by the inventories of active landslides, and therefore indicate 

that the differences in landslide susceptibility between urban and non-urban areas reflect the 

influence of urbanization.   

Although topographic slope is widely recognized as a primary driver of slope failure, 

regardless of setting, the difference in factor ranking between models of active landsides in 

urbanized and non-urbanized areas hints at the contrasting influences on landslide susceptibility 

in these areas. Whereas in non-urbanized areas stratigraphic formation, distance to nearest stream, 

and vegetation cover are ranked as important factors, in urbanized areas the distance to nearest 

road, profile curvature, and aspect were more influential. The influence of distance to streams 

(dominant in non-urbanized areas) and roads (dominant in urbanized areas) on landslide 

occurrence may be akin in that both can induce landslides in their proximity by steepening the 

lower part of hillslopes through stream erosion and the construction of road cuts, respectively. 

Roads can also disrupt subsurface and surface hydrology and induce landslides by changing 

surface and subsurface flow pathways and increasing pore pressure (Mirus et al., 2007). Although 
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foundation soils and embankments provide adequate support for the initial construction of roads, 

overstressing the embankment or foundation soil with additional fill can also result in rotational 

displacement and hillslope failure (Fell et al., 2005). The influence of vegetation cover on landslide 

occurrence likely reflects the effect of root reinforcement (Istanbulluoglu and Bras, 2005). In 

urbanized settings, areas of removed vegetation are often covered by impermeable surfaces that 

may reduce infiltration and pore pressure in the underlying soil, and thus mitigate the loss of root 

reinforcement (Lee and Kim, 2016) compared to areas of removed vegetation in non-urbanized 

settings (Glade, 2003). This may explain the relative dominance of the vegetation cover factor in 

non-urbanized areas. The difference in the influence of stratigraphic formation may be linked to 

the prevalence of a sedimentary unit with numerous “red beds” that is particularly prone to 

landslides (Hamel and Flint, 1972; Pomeroy,1982; Okagbue,1986) in non-urbanized areas (31%) 

compared to urbanized areas (8%). However, stratigraphic formation is ranked relatively high 

(fifth most important factor) even in the active and old urbanized landslide inventories, indicating 

that its influence is meaningful even in urbanized settings. Together with topographic slope, profile 

curvature is the only factor that is ranked within the four most influential factors in all four 

inventories, which is aligned with the findings of Pomeroy (1982) who noted that the majority 

(~60%) of active landslides mapped in the USGS inventory occur on concave slopes. Slope aspect 

is dominant in models based on both urbanized and non-urbanized inventories, likely because 

north-facing slopes are exposed to comparably less sunlight (Pomeroy, 1982). Thus, north-facing 

slopes may sustain higher soil saturation and pore pressure that can increase the likelihood of 

landslide occurrence in both urbanized and non-urbanized areas. 

The differences between the calculated susceptibility maps (e.g., Figure 4.3) are generally 

aligned with the ranking of factor. A visual comparison of Figure 4.3A to Figure 4.3B together 
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with inspection of the digital geologic map used in the analysis shows a strong association between 

susceptibility and stratigraphic formation in the susceptibility map based on the active-non-

urbanized model (Figure 4.3B), where higher susceptibility values occur within the “red bed” clay 

formation that has previously been highlighted as highly susceptible to landslide (Briggs et al., 

1975; Gray et al., 2011). After heavy rains, the soil above these “red beds” becomes heavy and 

saturated with water causing the softened clay layer to break apart and slide (Pomeroy, 1982). The 

localized fluctuations in susceptibility values in the maps modeled based on the old landslide 

inventories (i.e., the rough patterns in Figure 4.3C and Figure 4.3D) likely reflect the influence of 

profile curvature, which indeed varies over short length scales. The strip of low susceptibility 

values in Figure 4.3D aligns with the combined effect of large distance to streams, stratigraphic 

formation, and southeastern and eastern aspects, all factors that rank highly in the corresponding 

susceptibility model (Figure 4.2D). 

The results indicate that urbanization may also influence the absolute susceptibility for 

landslides. Overall, the model based on the active-urbanized landslide inventory produced higher 

median landslide susceptibility estimates than the model based on the active-non-urbanized 

inventory (16% difference). The similarity in median landslide susceptibility values (<5%) 

calculated by models based on the active-non-urbanized, old-non-urbanized, and old-urbanized 

landslide inventories indicates that, while the urbanized areas experienced increased susceptibility 

over time, the susceptibility remained similar in the non-urban area. These differences may reflect 

an increased susceptibility that stems from landscape change associated with urbanization. Given 

the time span between urbanization and landslide mapping, this indicates that landslide inventories 

from non-urbanized areas may underestimate landslide susceptibility in urbanized areas even 



78

decades after urbanization. This inference has major implications for using such inventories to 

plan new urban developments in terrain previously considered “moderate” susceptibility.  

The low cross correlation between maps of similar median susceptibility (e.g., <5% 

difference between median susceptibility values calculated by models based on the active-non-

urbanized, old-non-urbanized, and old-urbanized landslide inventories) and rejection of the null 

hypothesis of the Wilcoxon rank sum test for comparisons between these maps indicate that 

although the median susceptibility may be similar, the susceptibility patterns differ between 

models. The higher median susceptibility values in urbanized compared to non-urbanized areas 

when susceptibility is calculated using the old-urbanized landslide inventory is an interesting result 

because it indicates that urbanization preferentially occurred in areas that are more susceptible to 

landslides. Although this can be a true pattern that reflects preferential urbanization of high slopes 

surrounding the industrial hubs along major river valleys, it can also reflect the bias in landslide 

mapping or road construction (see section 4.3 for more discussion). 

Roads may introduce a bias in landslide susceptibility mapping. In general, the high 

modeled susceptibility in urbanized areas is influenced by the higher number of landslide pixels 

in the active landslide inventory in urbanized areas (2.5%) compared to that in non-urbanized areas 

(0.7%). Although this may reflect a true pattern, it may be biased to some extent by the high density 

of roads in urbanized areas, where roads produce accessibility and expose outcrops that can 

increase the number of mapped landslides. The analysis of the old landslide inventory indeed hints 

at such a bias, as it shows a clear association between landslide susceptibility and distance to roads 

(Figure 4.4), although the old landslides occurred prior to road construction.  

The USGS landslide inventory may also be biased by exclusion of small landslides that 

occurred during peak urbanization (1930-1950). Comparing Pomeroy’s old and active landslide 



79

polygons with landslide locations and volumes reported by Ackenheil (1955), based on landslides 

that occurred between 1920-1954, we find that the largest landslides reported by Ackenheil (≥ 

1530 cubic meters) fall within active landslide polygons mapped by Pomeroy (1977). Smaller 

reported landslides (< 1530 cubic meters) either fall outside of the USGS landslide polygons or 

within polygons of old landslides. This difference likely reflects the resolution of the USGS 

mapping effort, as well as the slower healing (i.e., topographic smoothing and cover via vegetation 

growth and sediment transport) of large landslides scarps and deposits compared to small ones, 

such that only large landslides occurring between 1920-1954 were still detectable at the time of 

their mapping in the 1970s. 

4.4.2 Comparison to Previous Landslide Studies 

Comparison of our results to studies that examined the influence of recent urbanization on 

landslide susceptibility reveals both similarities and differences. Studies that focused on recent 

urbanization (Dragicevic et al., 2015; Simon et al., 2015; Frodella et al., 2018; Braun et al., 2019) 

report similar results to ours in that landslide estimates between urbanized and non-urbanized areas 

have low spatial correlation. Our results indicate that, in both urbanized and non-urbanized areas 

within our study area, the influence of aspect and stratigraphic formation are higher compared to 

other study areas. These differences do not necessarily reflect a difference between prolonged 

versus immediate influences of urbanization on landslides, and they may stem from differences in 

the analysis methodology or from regional differences in climate and stratigraphic formation that 

distinguished southwestern Pennsylvania from the warmer tropical climates of previous studies. A 

major difference between this study and previous studies is the low ranking of the land cover factor 

in all four models, whereas in prior studies landcover is typically highly ranked (Kumar and 
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Bhagavanulu, 2008; Kafy et al., 2017; Pisano et al., 2017; Avila et al., 2021). This may reflect the 

difference between the effect of decades-old urbanization (this study) versus recent urbanization 

(Dragicevic et al., 2015; Simon et al., 2015; Frodella et al., 2018; Braun et al., 2019) and indicates 

that the relative influence of land cover on landslide susceptibility may decrease through time. 

However, this may also reflect differences in environmental and/or climatic conditions and in land-

cover categories between this and previous studies. 

4.4.3 Relations between Factors and Landslide Susceptibility  

The partial dependence plots provide insights into the relations between landslide-related 

factors and landslide susceptibility. In all four models, the susceptibility decreases gradually with 

increased distance to nearest road (Figure 4.4). This likely reflects the effect of road construction 

on slope undercutting, soil weight, fill-induced loading, and changes to the natural drainage system 

(Sidle et al., 2006). This correlation may also reflect the abundance of roads along narrow river 

valleys, where nearby slopes are highly susceptible to landslides. As discussed in section 4.1, the 

association between susceptibility and distance to roads in the model based on the inventory of old 

landslides (Figure 4.4) is somewhat unexpected because these old landslides likely predate road 

construction. This may be due to a preference for road construction over slopes covered with 

unconsolidated landslide deposits compared to bedrock. This association may also stem from a 

landslide mapping bias, where landslides and their deposits are more likely to be mapped along 

road cuts due to ease of access and good exposure. It is also possible that another factor that was 

not investigated in this study, but correlates with distance to road, influences the occurrence and/or 

mapping of old landslides. Increased distance to the nearest stream is also associated with a gradual 

decrease in susceptibility and increased similarity for the models based on the inventories of active 
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landslide (Figure 4.4). However, inversely to distance to nearest roads, streams are more strongly 

associated with landslide occurrence in the non-urbanized model. Given the low density of roads 

in these non-urbanized areas, streams likely play a more dominant role in undercutting the 

hillslopes compared to urbanized areas where undercutting is caused by construction activities. In 

contrast, in the models based on the inventories of old landslides, there is no association between 

landslide susceptibility and distance to stream (Figure 4.4). This may reflect the difference between 

the mapped pattern of old versus active landslides, where old landslides are often mapped as broad 

features that cover entire hillslopes (so their locations are not influenced by proximity to streams), 

and active landslides are mapped as small-scale, locally defined features whose location is 

influenced by such proximity. Partial dependence plots also reflect the association of aspect with 

landslide susceptibility. The models based on the inventories of active landslides show that 

susceptibility values increase in north-facing slopes in both urbanized and non-urbanized areas 

(Figure 4.4). This likely reflects the influence of comparably lower solar radiation on north-facing 

slopes (Pomeroy, 1982), which may sustain higher soil saturation, and pore pressure that overall 

can increase the likelihood of landslide occurrence in both urbanized and non-urbanized areas 

(Running et al., 1987; McGuire et al., 2016). In Colorado, landslide mapping demonstrated an 

entirely different relation, where landslides occurred preferentially on south-facing slopes (Ebel et 

al., 2015), which can be attributed to the higher level of root-reinforcement on north-facing slopes 

(McGuire et al., 2016).  

The partial dependence plots for slope, based on the inventories of active landslides (Figure 

4.4), show that the slope values associated with the highest landslide susceptibility are ~15 and 

~30 degrees in urbanized and non-urbanized areas, respectively. This difference is consistent with 

a recent study by Johnston et al. (2021), showing that landslides in urbanized areas occur over 
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lower slope and precipitation conditions, likely due to modification of the natural drainage system, 

loss of vegetation, and increased impermeable cover. This is supported by models based on the 

inventory of old landslides (i.e., pre-urbanization), where the slope – landslide susceptibility 

relations are similar between urbanized and non-urbanized areas. For profile curvature, the partial 

dependence plots based on the inventories of active landslides show (Figure 4.4) an increased 

susceptibility in areas of both concave (positive) and convex (negative) curvatures and a lower 

susceptibility in flat areas (i.e., where concavity is approximately zero). The highest susceptibility 

values are associated with the largest concave values. This result is aligned with the 

aforementioned findings of Pomeroy (1982) who noted that the majority (~60%) of active 

landslides mapped in the USGS inventory occur on concave slopes. It also agrees with other studies 

that have found that landslide occurrence is less common where the slope is convex (Waltz, 1971; 

Lessing et al., 1976) and likely reflect water convergence toward concave slopes that result in 

increased pore pressure and erosion, which may trigger landslides (Vieira and Fernandes, 2004; 

Xu et al., 2012). The rise in susceptibility for localities of convex profile is most pronounced for 

the active-urbanized inventory and may reflect an association between urbanization and increased 

instability of convex profiles. 

4.4.4 Data Limitations 

Although this study systematically quantifies the prolonged effects of urbanization on 

landslide occurrence, its findings are limited by the datasets and methods used. Our findings relied 

on a relatively small area in the Appalachian Plateau using limited landslide inventories that span 

one major urbanization phase. Larger multi-temporal landslide inventories with more detailed 

information on landslide occurrence during multiple distinct phases of urbanization may help 
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better quantify the role of urbanization on landslide susceptibility. Further, the landslides explored 

in this study were mapped in the 1970s, several decades after the major urbanization phase in the 

study area. Due to the age of old landslide deposits, weathering, sediment transport and vegetation 

growth may smooth and obscure their features, thus hampering identification and mapping of old 

landslides through field and remote sensing techniques (Pomeroy, 1982). Mapped old landslide 

polygons likely reflect an amalgamation of smaller landslides through time leading to 

overestimation of the size of individual old landslides in our inventory. Systematic mapping of 

recent landslides in this area may produce an updated inventory that can quantify additional 

temporal patterns. The spatial and temporal resolution of the inventories and datasets used in this 

study also precludes investigation of landslide responses to local construction efforts within a 

previously urbanized area (e.g., road improvement, new neighborhoods, best-practices in landslide 

mitigation). Landslide inventories of higher spatial and temporal resolutions may enable 

exploration of such responses. Also, higher resolution maps of factors that were available at a 

relatively low resolution (e.g., stratigraphic formation, land use, and vegetation cover) may 

improve the robustness of the statistical models. We note that the patterns we report may be unique 

to the conditions of this specific study area (e.g., climate, stratigraphic formation, topography, 

construction practices), and studies that explore similar questions in different conditions may 

reveal different patterns. There is also an apparent bias of the distance to nearest roads factor, 

particularly in the old landslide susceptibility calculations, where landslide events occurred prior 

to road construction, are associated with distance to nearest roads (Figure 4.4). Such a bias may 

stem from the exposure and access enabled by roads, that may have resulted in preferred mapping 

of old landslides next to roads. Alternatively, it may reflect preferred road construction within the 

deposits of old landslides.  Accounting for this bias may help improve susceptibility maps.  
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Another important limitation is the scale of available lithologic data. The analysis we 

present relies on geologic maps at the group and formation level (Miles et al., 2001), and therefore 

cannot explore association between landslides and specific lithologic horizons within a group or 

formation. It is therefore possible that the effect of lithology compared to other factors is larger 

than that implied by our analysis. Further, the geologic maps we use describe the underlying 

bedrock, and do not include soil composition and properties, such as cohesion, porosity, and 

permeability, that may directly affect landslide susceptibility (Hamel, 1972).  

 Finally, our analysis does not directly account for the effect of precipitation on landslide 

occurrence (Wasowski, 1998; Wasowski and Pisano, 2020; Ashland, 2021). Although 

precipitation is recognized as an important trigger for landslides in southwestern Pennsylvania 

(Pomeroy, 1982; Gray et al., 2011; Ashland, 2021), its association with the occurrence of 

landslides reported in the USGS inventories we investigate here cannot be explored due to lack 

information about the timing of landslide occurrence. However, other data sources such as 

information reported by citizens to the 311 system do include such temporal data (Rohan et al., 

2021), and future studies using these inventories may provide new insights into the role of 

precipitation in landslide occurrence in southwestern Pennsylvania. Despite these limitations, our 

results point at systematic and persistent differences in landslide patterns between urbanized and 

non-urbanized areas, even decades after urbanization, and indicate that distinguishing between 

these two environments would be beneficial for landslide susceptibility estimates. 
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4.5 Conclusion 

Analysis of the prolonged effect of urbanization on landslide susceptibility estimates 

indicates long-term effects of urbanization on landslide susceptibility. This relies on susceptibility 

estimates based on inventories of active landslides in urbanized and non-urbanized areas, which 

show differences in ranking of landslide-related factors between these areas, as well as low spatial 

correlation of mapped susceptibility values between them. This is corroborated by analysis of old, 

pre-urbanization landslide inventories, used as a control dataset, which shows a general similarity 

between urbanized and non-urbanized areas in the ranking of landslide-related factors, as well as 

a relatively high correlation between mapped susceptibility patterns, hence indicating that the 

analysis of active landslide inventories indeed captures the influence of urbanization on landslide 

susceptibility. Analysis of inventories of active landslides further shows that compared to non-

urbanized areas, urbanized areas are associated with higher susceptibility values, stronger 

association between landslide occurrence and proximity to roads, and more likely occurrence of 

landslides over lower slopes compared to non-urbanized areas. Our analysis of old, pre-

urbanization landslides indicates that the mapping of landslides might be biased by proximity to 

roads and that accounting for this bias in landslide susceptibility studies would be beneficial. 

Despite this bias, the consistent differences in susceptibility patterns between urbanized and non-

urbanized areas indicate that urbanization has a decades-lasting effect on landslide susceptibility 

and that landslide susceptibility estimates should be made separately for these two different 

environments. 
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5.0 Conclusions and Future Directions 

           This doctoral thesis contributed to the understanding of landslide susceptibility and hazard 

assessment. And focused on leveraging citizen-reported landslide data through the 311 system in 

Pittsburgh, PA, USA, and on the effect of urbanization of landslide occurrence.  

The thesis demonstrated the potential of utilizing citizen-reported data to create landslide 

susceptibility maps and to identify precipitation thresholds for landslide occurrence. It showed that 

while the 311-based inventory has inherent spatial uncertainty, it can be effectively used to guide 

targeted field-validation efforts and scale a two-dimensional filter to improve susceptibility 

estimates. Furthermore, the study showed that citizen science data can be used to compute reliable 

precipitation thresholds, emphasizing the importance of field validation to ensure accuracy. 

The thesis also revealed the prolonged effects of urbanization on landslide susceptibility 

estimates. By comparing urbanized and non-urbanized areas, as well as pre and post urbanization 

landslides, it showed that urbanization has a lasting impact on landslide susceptibility, resulting in 

differences in the ranking of landslide-related factors and in susceptibility values. This indicates 

that separate susceptibility estimates should be made for urbanized and non-urbanized 

environments. The consistent differences in susceptibility patterns between these two types of 

environments further highlight the importance of understanding the complex interplay between 

urbanization and landslide susceptibility. 

Future work can benefit from focusing on utilizing the progressive updates to the 311-

dataset to investigate temporal changes in the covariance between landslides, precipitation, and 

urban development. This could lead to a better understanding of the relationships between these 

factors, and how they may change over time. Additionally, examining differences in landslide 
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patterns across climatic, lithologic, and topographic gradients in the United States and Canada 

could provide valuable insights. Such research could reveal regional variations in landslide 

susceptibility and help inform more targeted and effective mitigation strategies. Further research 

can also explore the potential biases in landslide mapping due to proximity to roads and investigate 

methods to account for these biases in landslide susceptibility studies. This will ultimately lead to 

more accurate and reliable landslide susceptibility assessments. 

The time-progressive reporting by citizens can also be leveraged to account for the effect 

of climate change on landslide occurrence. As the frequency and intensity of precipitation events 

are expected to change, understanding how these changes may impact landslide hazards is essential 

for effective disaster risk management. Citizen science data can play a crucial role in this regard 

by providing valuable information on landslide occurrences and their relationship with 

precipitation patterns.  

By harnessing the power of citizen science data and incorporating field validation, this 

research has provided new insights into the complex relationships between landslides, 

precipitation, urban development, and other factors that influence landslide occurrence. The results 

of this study offer promising avenues for future research, with the potential to improve our ability 

to predict and mitigate landslide hazards in a rapidly changing world. 
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Appendix A Landslide Susceptibility Analysis Based on Citizen Reports 

Appendix Table A.1: Calculated weighted contrast values and frequency ratios for each factor of 

the total 311 (N=720) landslide inventory. 
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Appendix Table A.2: Calculated weighted contrast values and frequency ratios for each factor of 

the ACES/USGS (N=134) landslide inventory. 

Landslide Inventory Factor Bin Edge 1 Bin Edge 2 Weighted Contrast Frequency Ratio

ACES/USGS (N = 134) Slope (Degrees) 0 1.5 -0.954910754 0.05265471

1.5 11.28 -0.468893488 0.311181957

11.28 21.05 3.526633159 1.995913298

21.05 30.83 7.019137321 3.708499278

30.83 77.49 7.259039801 3.915030513

Aspect (Degrees) 0 7.82 3.023889177 1.905816958

7.82 122.24 1.627346192 1.157449606

122.24 236.66 1.007567339 0.879262124

236.66 351.08 1.148195734 0.950431748

351.08 360 0.916176141 0.911012442

Profile Curvature (Meters
-1

) -0.16423841 -0.016018 0.471135155 0.702416986

-0.01601837 -0.006342 1.609596825 1.218396827

-0.006341523 0.0033353 0.523002736 0.64801742

0.003335325 0.0130122 2.986396396 1.783421683

0.013012173 0.0988957 7.039623174 3.803660937

NearRoad (Meters) 0 1.96 -0.478649299 0.252981316

1.96 25.21 0.43755206 0.630384983

25.21 48.47 2.428468536 1.548324895

48.47 71.72 2.140824974 1.46448885

71.72 758 2.858982607 1.756583094

NearStream (Meters) 0 10 -1.02453574 0

10 128.67 1.577143461 1.08807565

128.67 247.35 1.606051007 1.126274096

247.35 366.02 0.956401723 0.900807646

366.02 1049.57 0.62519107 0.771573395

Drainage Area (Square Meters) 0 100 -2.02222736 0.109762874

100 4146.667 1.397282106 1.04281594

4146.667 8193.334 2.09280236 1.318445017

8193.334 12240 0.536593544 0.725944302

12240 24287900 -0.665957323 0.166850565

Position on Hillslope 0 0.077 -1.020732322 0

0.077 0.33 -0.101865381 0.435834535

0.33 0.59 2.172992033 1.355201902

0.59 0.84 1.805541492 1.222535819

0.84 1 1.025208627 0.947905454

Lithology Glenshaw Fromation -0.770204722 0.146171073

Casselman Formation 1.834848919 1.348651392

Monongehela Group 2.445040631 1.216652206

Land Cover Water -0.152766123 0.407133412

Transportation 1.627822073 0.428266608

Forest 2.238661896 1.528840488

Agriculture 0.762877296 0.810623523

Low-Density Residential -0.263299442 0.362841034

Medium-Density Residential -0.502607998 0.261319765

High-Density Residential -1.001499046 0

Identified Malls -0.739054246 0.134415669

Commercial -1.008350026 0

Light Industrial -1.011685707 0

Heavy Industrial -1.001346424 0

Strip Mine 2.21771009 1.402751428
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Appendix Table A.3: Calculated weighted contrast values and frequency ratios for each factor of 

original 311 (N=77) landslide inventory. 

Landslide Inventory Factor Bin Edge 1 Bin Edge 2 Weighted Contrast Frequency Ratio

311 Original (N = 77) Slope (Degrees) 0 1 0.116128335 0.53008611

1.84 14.22 0.707900792 0.725020105

14.22 24.69 3.853167175 2.160001029

24.69 35.16 2.234419378 1.523145393

35.16 77.49 2.631275964 1.734961324

Aspect (Degrees) 0 10.06 3.597703499 2.177811035

10.06 122.98 1.365490028 1.047685025

122.98 237.44 1.25957501 0.978861242

237.44 352.45 0.829622248 0.819089425

352.45 360 2.949722794 1.873255342

Profile Curvature (Meters
-1

) -0.16423841 -0.011234 2.995627762 1.742648591

-0.011234201 -0.00228 2.588133932 1.5929236

-0.002279647 0.0066749 0.936869873 0.789979283

0.006674907 0.0156295 0.635041639 0.770956267

0.015629459 0.0988957 0.516130391 0.72414408

NearRoad (Meters) 0 8.65 5.355243263 3.001804084

8.65 27.36 2.866083835 1.475763048

27.36 48.47 -0.382562142 0.310458577

48.47 71.72 -1.03719107 0

71.72 758 -1.078081219 0

NearStream (Meters) 0 10 1.008705565 0.943100781

10 143.66 2.015320961 1.246947571

143.66 277.31 0.195259889 0.557961874

277.31 366.02 1.342100034 1.081240504

366.02 1049.57 3.237228805 2.005699469

Drainage Area (Square Meters) 0 100 -2.182877162 0.080427752

100 2043.3334 0.084032226 0.514413081

2043.3334 3986.6667 2.954146794 1.648484598

3986.6667 5930 0.989284449 0.927492842

5930 24287900 1.000663095 0.942553503

Position on Hillslope 0 0.077 1.338871237 1.094874055

0.077 0.33 1.107087908 0.95033503

0.33 0.59 2.275854671 1.410552805

0.59 0.84 0.588427411 0.724599587

0.84 1 0.222543415 0.579913802

Lithology Glenshaw Fromation -0.372675978 0.317969542

Casselman Formation 0.227289343 0.58675093

Monongehela Group 2.366893391 1.193076591

Land Cover Water 0.487639066 0.708517886

Transportation 1.043838434 1.33989244

Forest 0.239286098 0.5912399

Agriculture 2.607056005 1.612223407

Low-Density Residential 1.597471468 1.183945582

Medium-Density Residential -0.355982212 0.324831619

High-Density Residential 2.688014352 4.156285291

Identified Malls -1.02732199 0

Commercial 0.573058414 0.751265026

Light Industrial 0.12579882 0.538592518

Heavy Industrial -1.001346424 0

Strip Mine -1.003258399 0
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Appendix Table A.4: Calculated weighted contrast values and frequency ratios for each factor of 

field corrected 311 (N=55) landslide inventory. 
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Appendix Table A.5: Calculated weighted contrast values and frequency ratios for each factor of 

field corrected 311 (N=55) landslide inventory. 
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Appendix Table A.6: AUC values for all conditional probability analyses that were used to 

generate landslide susceptibility maps, 311 total (N=720), ACES/USGS (N=134), 311 Original 

(N=77), and 311 Field Corrected (N=55). Total is the combination of all landslide inventories for 

Pittsburgh, PA. 
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Appendix Figure A.1: Cross-Correlation Plots for the filtered maps with six factor class bins for 

(A) the original (N=77) and field corrected 311 (N=55) locations and (B) the combined (N=134)

USGS/ACES inventory and the total (N =720) 311 inventory. 
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Appendix Figure A.2: Correlation value between susceptibility maps produced from quasi- 

random landslide inventories versus the field corrected 311 landslide location. This experiment 

based on conditional probability with six classes per factor rather than five. Error bars represent 

the 95th and 5th percentiles. 
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Appendix B Using Citizen Science to Explore the Influence of Precipitation 

Appendix Figure B.1: Rainfall Intensity Duration plot for 48-hour threshold using 311 citizen 

science data. 
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Appendix Figure B.2: Rainfall Intensity Duration plots with overlain landslide-related factors: 

reactivation of old landslides (A), Profile Curvature (B), Aspect (C) Lithology, (D) Distance to 

Nearest Stream, (E) Position on Hillslope, and (F) Distance to Nearest Road.  Threshold lines 

calculated for each binned category. 
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Appendix Figure B.3: Rainfall Intensity Duration plot with overlain threshold for PennDOT 

district 10 data. 
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Appendix C Prolonged Influence of Urbanization on Landslide Susceptibility  

Appendix C.1 Conditional Probability 

To corroborate the random forest analysis, we used a conditional probability approach to 

produce landslide susceptibility maps and rank the influence of the different landslide-related 

factors (e.g., topography, land use, lithology) on landslide occurrence (e.g., Chung, 2006; 

Ozdemir, 2009; Yilmaz, 2010; Regmi et al., 2014; Costanzo and Irigaray, 2020). To do so, we 

divided each of the 11 landslide-related factor to five classes that span the range of values for this 

factor in the maps of the study area. For each of the resulting factor-class combinations, we then 

computed the conditional probability Cp: 

Cp-j=Nl-j/Np-j,                                                                                                (1) 

where subscript j is the index of the factor-class combination, and Nl-j and Np-j are the number of 

landslides locations and map pixels within this combination, respectively. A factor-class 

combination that produces a relatively high Cp indicates that spatial locations characterized by this 

combination tend to generate a relatively large number of landslides.  

Appendix C.2 AUC Factor Rankings 

For each landslide inventory, we also explored the relative influence of each landslide-

related factor on a model prediction by excluding one factor at a time from a Receiver Operating 

Characteristic (ROC)-area under the ROC curve (AUC) analysis (Gorsevski et al., 2006; 

Marjanović, 2013; Cantarino et al., 2019; Pham et al., 2020) and calculating the relative difference 

(dAUC= 100*(AUCa-AUCe)/AUCa) between the AUC values for a model with excluded factor 

(AUCe) and that with all 11 factors (AUCa). We then rank the factors based on their relative 

influence on the AUC. 
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Appendix C.3 Out of Bag Permutation Factor Ranking 

Landslide related factors were also ranked using a permutation out-of-bag method (Taalab 

et al., 2018). The method randomly permutes the data for each factor at a time for the out of bag 

samples of each tree and generates predictions based on the permuted values. It then evaluates the 

quality of this new prediction (εn) compared to that based on the non-permuted data (εj). The 

difference in prediction quality (Δε = εn – εi: D’Amato et al., 2021) is used to rank the importance 

of the factors, where highly ranked factors are those associated with high Δε, and random 

permutation of a factor meaningfully degrades the prediction. 
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Appendix Figure C.1: Ranking of landslide-related factors by the conditional probability AUC-

Differential approach. (A) Active-Urbanized, (B) Active-Non-Urbanized, (C) Old-Urbanized, and 

(D) Old-Non-Urbanized. Factors: Slope, Nearest Road (NR), Profile Curvature (PC), Aspect, 

Stratigraphic Formation (SF), Nearest Stream (NS), Land Cover (LC), Vegetation Cover (VC), 

Drainage Area (DA), Impervious Cover (IC), and Position on Hillslope (PoH). 
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Appendix Figure C.2: Ranking of landslide-related factors by the random forest out of bag 

permutation approach. (A) Active-Urbanized, (B) Active-Non-Urbanized, (C) Old-Urbanized, and 

(D) Old-Non-Urbanized. Factors: Slope, Nearest Road (NR), Profile Curvature (PC), Aspect, 

Stratigraphic Formation (SF), Nearest Stream (NS), Land Cover (LC), Vegetation Cover (VC), 

Drainage Area (DA), Impervious Cover (IC), and Position on Hillslope (PoH). 
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Appendix Figure C.3: Landslide susceptibility maps for the entire study area based on landslide 

inventories from: (A) Active-Urbanized, (B) Active-Non-Urbanized, (C) Old-Urbanized, and (D) 

Old-Non-Urbanized. 
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Appendix Table C.1: Table of AUC values for all models in Urban, Non-Urban, and the total 

study area. 

Landslide Inventory Modeled AUC Values Urban Areas Non-Urban Areas   

Urban (Active) 0.7942 0.6861 

Non-Urban (Active) 0.6103 0.7854 

Urban (Old) 0.6793 0.6222 

Non-Urban (Old) 0.6142 0.6966 
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Appendix Table C.2: Table of topographic landslide related factors and their range, mean, and 

median values. 

Landslide Related Factors Range Mean Median 

Slope (degrees) 0-88.91 8.1 7.5 

Aspect (degrees) 0-360 94 84 

Profile Curvature (1/meters) -198.87-350.25 -0.132 -0.124

Distance to Nearest Road (meters) 0-4990 143 213 

Distance to Nearest Stream (meters) 0-4673 344 387 

Elevation (meters) 202-909 416 488 
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