
Optimizing Operators for Temporal and Spatiotemporal Data

by

Rakan A. Alseghayer

B.Sc., King Saud University, 2008

M.Sc., University of Pittsburgh, 2013

Submitted to the Graduate Faculty of the

Dietrich School of Arts and Sciences in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2023

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Rakan A. Alseghayer

It was defended on

August 3, 2023

and approved by

Panos K. Chrysanthis, Department of Computer Science

Alexandros Labrinidis, Department of Computer Science

Kirk Pruhs, Department of Computer Science

Mohamed Sharaf, Department of CS & SE, United Arab Emirates University

Constantinos Costa, Department of CS, University of Cyprus & Rinnoco Ltd, Cyprus

ii

Copyright © by Rakan A. Alseghayer

2023

iii

Optimizing Operators for Temporal and Spatiotemporal Data

Rakan A. Alseghayer, PhD

University of Pittsburgh, 2023

Mobile devices and IoT technologies have become highly available, which led to the

development of smart solutions and applications. A common characteristic of these solutions

is operating on temporal and/or spatiotemporal data that is often in the form of data streams.

Motivated by two important classes of applications, health monitoring and contact tracing,

this dissertation optimizes the spatiotemporal operators in the core of these applications.

The former requires efficient data streams and/or timeseries correlations for monitoring

temporal events, and the latter optimizes temporal aggregation joins for spatiotemporal data

(trajectories). The broader contributions of this dissertation are two novel frameworks that

offer effective implementations of such applications, demonstrated experimentally with real

and synthetic data.

In the context of health monitoring (e.g., server farms), we develop the Detection of

Correlated Data Streams (DCS) framework. It is a real-time monitoring framework of large

volumes of data streams that are produced at high velocity. Typically, pairs of most recent

data streams need to be correlated within a specified delay target in order for their analysis to

lead to actionable results. We address this need by: (i) segmenting data streams into micro-

batches ; and (ii) leveraging incremental sliding window computation, priority scheduling,

and caching techniques, to avoid unnecessary re-computations and I/O. Furthermore, we

devise and evaluate exploration strategies that effectively steer the processing of data stream

correlations based on the monitoring objective.

In the context of contact tracing (CT), we propose the Privately Detecting Indoors

Exposure Risk (PriDIER) distributed framework for detecting indoor contacts between two

individuals and measuring the individual risk of infection for respiratory transmitted diseases

(e.g., COVID-19). PriDIER carries out the CT queries locally on the individual users’ devices

to protect their privacy and utilizes a data movement protocol to achieve scalability and

reduce energy consumption at the users’ devices. In realizing PriDIER we develop e-Racoon,

iv

a novel in-memory structure to optimize temporal aggregation joins for trajectories. The e-

Raccon structure enables efficient trajectory joins with the duration of contacts cumulatively

between an individual and a single other individual, while considering the exposure across

other users.

v

Table of Contents

Preface . xiv

1.0 Introduction . 1

1.1 Motivation . 1

1.1.1 Correlations of Temporal Ordered Data 2

1.1.2 Aggregate Spatiotemporal Joins of Trajectory Data 3

1.2 Hypotheses, Objective & Approach . 4

1.3 Summary of Contributions . 6

1.4 Road Map . 7

2.0 Detection of Correlated Data Streams . 8

2.1 The DCS Framework . 8

2.2 The DCS Algorithms . 10

2.2.1 iBRAID Algorithm . 10

2.2.2 PriCe Algorithm . 12

2.3 Evaluation . 15

2.3.1 Testbed . 15

2.3.2 Experiments . 17

2.3.2.1 Experiment 1 (Figs. 1–3) 17

2.3.2.2 Experiment 2 (Figs. 4–8) 20

2.3.2.3 Experiment 3 (Figs. 9–10) 25

2.3.2.4 Experiment 4 (Table 2) 27

2.3.2.5 Discussion . 29

2.4 Related Work . 30

2.5 Summary . 32

3.0 Privately Detecting Indoors Exposure Risk 33

3.1 Preliminary . 33

3.2 Contact Tracing Framework . 39

vi

3.2.1 Contact Tracing . 39

3.2.2 Threat Model . 42

3.2.3 Communication Protocols . 42

3.2.3.1 Push-based Protocol . 42

3.2.3.2 Pull-based Protocol . 43

3.2.3.3 Discussion . 44

3.2.4 MO components . 45

3.2.5 CA Components . 48

3.3 Temporal Aggregation Join Query . 50

3.3.1 TAJ Query Processing . 51

3.3.2 The e-Racoon Access Structure . 51

3.3.3 Optimizations . 53

3.3.4 Complexity Analysis . 55

3.4 Evaluation . 59

3.4.1 Testbed . 59

3.4.2 Experiments . 62

3.4.2.1 Experiment 1 (DS_13, DS_14, DS_15) 67

3.4.2.2 Experiment 2 (DS_1, DS_2 and DS_3) 72

3.4.2.3 Experiment 3 (DS_7, DS_8 and DS_9) 77

3.4.2.4 Experiment 4 (DS_4 - DS_6, DS_10 - DS_12, and DS_16

- DS_18) . 91

3.4.2.5 Experiment 5 (BJ_S) . 93

3.4.2.6 Experiment 6 (BJ_L) . 95

3.4.2.7 Discussion . 95

3.5 Related Work . 95

3.6 Summary . 97

4.0 Conclusions . 99

4.1 Summary of Contributions . 99

4.2 Future Work . 100

4.3 Broad Impact . 101

vii

Bibliography . 103

viii

List of Tables

1 Experimental Parameters . 17

2 DCS Strategies Effectiveness of Detecting Correlated Pairs 28

3 Notations . 34

4 Push-based and Pull-based protocols usage trade-offs. 45

5 e-Racoon operations’ time complexity. 55

6 Characteristics of the synthetic datasets. 60

ix

List of Figures

1 The cost in number of operations for 4 consecutive micro-batches (A = 112). . . 18

2 The cost in number of operations for 4 consecutive micro-batches (A = 225). . . 19

3 The cost in number of operations for 4 consecutive micro-batches (A = 450). . . 20

4 The % of correlated pairs of streams detected by all algorithms at 25% of the

interval I (A = 112). 21

5 The % of correlated pairs of streams detected by all algorithms at 25% of the

interval I (A = 225). 22

6 The % of correlated pairs of streams detected by all algorithms at 25% of the

interval I (A = 450). 23

7 The % of correlated pairs of streams detected by all algorithms at 50% of the

interval I (A = 225). 24

8 The % of correlated pairs of streams detected by all algorithms at 75% of the

interval I (A = 450). 25

9 The % of correlated pairs of streams detected by all policies at 25% of the interval

I (A = 112). 26

10 The % of correlated pairs of streams detected by all policies at 50% of the interval

I (A = 112). 27

11 An example of a static segmentation of a floor into zones, where each office is a

zone and the hallways are all a single zone. 35

12 Example of three different MOs interacting in a space where each zones has an

area of ϵ2. 37

13 Two different MOs with different average sensors inaccuracies radius (θ), where

a MO is located at the center of a zone and surrounded by enveloping zones. . . 37

14 CA and MOs interacting to achieve exposure measurement and close contact

detection. 38

15 Example of direct and indirect contacts. 41

x

16 PriDIER at the MO side. 46

17 Global Infected Trajectory component in the CA. 48

18 e-Racoon access structure for MO i that has occupied zones 1, 2, and 4 on

a Monday (M) and zone 3 on Monday (M) and Tuesday (T). Note the data

exchange protocol between MO and CA via the messages S○ (Send), P○ (Pull),

and R○ (Response). 50

19 Illustration of a pair of trajectories of length n, with α contact segments, γ points

to be stabbed, and a total of β contact points across segments. 57

20 Memory footprint in bytes for datasets DS_13. 62

21 Average point insertion latency for datasets DS_13. 63

22 Query processing latency for datasets DS_13. 63

23 Memory footprint in bytes for datasets DS_14. 64

24 Average point insertion latency for datasets DS_14. 64

25 Query processing latency for datasets DS_14. 65

26 Memory footprint in bytes for datasets DS_15. 65

27 Average point insertion latency for datasets DS_15. 66

28 Query processing latency for datasets DS_15. 66

29 Memory footprint in bytes for datasets DS_1. 67

30 Average point insertion latency for datasets DS_1. 68

31 Query processing latency for datasets DS_1. 68

32 Memory footprint in bytes for datasets DS_2. 69

33 Average point insertion latency for datasets DS_2. 69

34 Query processing latency for datasets DS_2. 70

35 Memory footprint in bytes for datasets DS_3. 70

36 Average point insertion latency for datasets DS_3. 71

37 Query processing latency for datasets DS_3. 71

38 Memory footprint in bytes for datasets DS_7. 72

39 Average point insertion latency for datasets DS_7. 73

40 Query processing latency for datasets DS_7. 73

41 Memory footprint in bytes for datasets DS_8. 74

xi

42 Average point insertion latency for datasets DS_8. 74

43 Query processing latency for datasets DS_8. 75

44 Memory footprint in bytes for datasets DS_9. 75

45 Average point insertion latency for datasets DS_9. 76

46 Query processing latency for datasets DS_9. 76

47 Memory footprint in bytes for datasets DS_4. 77

48 Average point insertion latency for datasets DS_4. 78

49 Query processing latency for datasets DS_4. 78

50 Memory footprint in bytes for datasets DS_5. 79

51 Average point insertion latency for datasets DS_5. 79

52 Query processing latency for datasets DS_5. 80

53 Memory footprint in bytes for datasets DS_6. 80

54 Average point insertion latency for datasets DS_6. 81

55 Query processing latency for datasets DS_6. 81

56 Memory footprint in bytes for datasets DS_10. 82

57 Average point insertion latency for datasets DS_10. 82

58 Query processing latency for datasets DS_10. 83

59 Memory footprint in bytes for datasets DS_11. 83

60 Average point insertion latency for datasets DS_11. 84

61 Query processing latency for datasets DS_11. 84

62 Memory footprint in bytes for datasets DS_12. 85

63 Average point insertion latency for datasets DS_12. 85

64 Query processing latency for datasets DS_12. 86

65 Memory footprint in bytes for datasets DS_16. 86

66 Average point insertion latency for datasets DS_16. 87

67 Query processing latency for datasets DS_16. 87

68 Memory footprint in bytes for datasets DS_17. 88

69 Average point insertion latency for datasets DS_17. 88

70 Query processing latency for datasets DS_17. 89

71 Memory footprint in bytes for datasets DS_18. 89

xii

72 Average point insertion latency for datasets DS_18. 90

73 Query processing latency for datasets DS_18. 90

74 Memory footprint in bytes for datasets BJ_S. 91

75 Average point insertion latency for datasets BJ_S. 92

76 Query processing latency for datasets BJ_S. 92

77 Memory footprint in bytes for datasets BJ_L. 93

78 Average point insertion latency for datasets BJ_L. 94

79 Query processing latency for datasets BJ_L. 94

xiii

Preface

I dedicate this dissertation to my family - my mother Modhi Abalkhail, my father Ab-

dullah Alseghayer, and my brother Azzam Alseghayer. Without their support I would not

have been able to finish this eventful and rewarding journey. Your belief in me, support,

humor, and positiveness kept me going through the path until the end. This dissertation is

dedicated for you.

Above all, I would like to thank my academic advisor Panos K. Chrysanthis for his

admirable guidance and support during my PhD years. His incremental step-wise research

style, holistic view of research problems, and story telling talent have shaped me to be the

scientific researcher I am. I also would like to thank Constantinos Costa for his technical

support, dedication to shape this work, and high availability for feedback. I would like to

thank the rest of the committee members for their valuable feedback and support.

I would like also to thank my colleagues and co-authors of several papers Daniel Mossé

and Daniel Petrov. Working with you has been a pleasure and a very rewarding experience.

Moreover, I would like to extend my gratitude to the rest of the Advanced Data Management

Technologies Lab members and my colleagues and friends at PITT that I have known during

this journey, for you have been available for feedback and personal support when I needed

it — (in no particular order) Luís Oliveira, Matt Barbosa, Anatoli Shein, Ekaterina Dim-

itrova, Brian Nixon, Salim Malakouti, Mohammad Mofrad, Kenrik Fernandis, Nathan Ong,

Vineet Raghu, Nikos Katsipoulakis, Judicael Briand Djoko, Xiaoyu Ge, Xiaozhong Zhang,

Amanda Crawford, Evangelos Karageorgos, Vasilis Sarris, Kenrick Fernandez, Alireza Sama-

dian, Mahbaneh Eshaghzadeh, Zuha Agha, and Constance Clive.

To my special friends who made my journey smoother, and were there with all kinds

of support, I am thankful for your presence in my life — (in no particular order) Abdullah

Albarrak, Wail Alkowaileet, Yazid Al-Ismail, Mohammed Alotaibi, Luai Hasnawi, Tariq

Alturkistani, Mohammed Altamimi, Amir Malki, Joon Cheol Bai, Leah Patgorski, Alexis

Huet, Michel Baratin, Leila Harvard, Dave Cherry, Eleonor Ong, Stephanie Rose, David

Brumble, Peter Veldkamp, James Conway, and the amazing members of the Pittsburgh

xiv

Squash Federation that has kept me motivated to stay healthy and fit during my studies.

It has been a pleasure meeting many friends from all over the world who made Pittsburgh

a home for me — (in no particular order) Ally Ricarte, Jason Sichi, Christina Scenna, George

Mizak, Eric Ruka, Marcela Gomez, Pedro Bustamante, Ravi Kelaiya, Raksha Koirala, Rocky

Medure, Kitty Correal, Tania Clover, David Lampenfeld, Liam Lampenfeld, Chris Kramer,

and Dave Cohen.

Last but not least, I would like to thank all the undergraduate and graduate students

that I have taught during my journey at PITT. You have been the inspiration and motivation

to keep learning, exploring, and loving my field. Your questions, curiosity, and dedication to

gain knowledge has inspired me to be a better educator. I have learned from you as much

as you have learned from me (and more).

“People don’t care how much you know until they know how much

you care” — Theodore Roosevelt

“It is impossible for a man to learn what he thinks he already

knows” — Epictetus

xv

1.0 Introduction

1.1 Motivation

The consumption (purchase and use) of sensor and smart devices has been increasing

in the last decade, and the trend shows that it will keep increasing [51]. Technologies and

solutions that leverage those types of devices exhibit the same pattern of increasing usage.

One factor is the decrease in hardware components’ prices that those devices consist of.

Another factor is the high value (e.g., higher profits and convenience) that such solutions

provide to individuals and organizations.

Organizations (e.g., commercial, health, and government) that utilize such kinds of so-

lutions currently base their operational and business decisions on data analytics in order

to stay in competition. Towards this, they deploy a variety of dashboards, monitoring,

and tracking applications to explore and analyze large volumes of data streams looking for

valuable insights and interesting events. Data streams that are produced at high velocity

typically represent timeseries of raw measures or spatiotemporal data of moving objects

(i.e., trajectories). Timeseries and spatiotemporal data share an inherent temporal ordering,

while spatiotemporal data has an additional spatial ordering. This difference, i.e., the spatial

dimension, leads to different challenges in managing and optimizing it.

In the context of only temporally ordered data, a common method for getting a better

understanding of the observed behavior conveyed in a set of data streams is to find correla-

tions between pairs of data streams [29, 9]. The correlation operator can also be used as a

source for finding similarity measures faster [38], running threshold queries [55], or reducing

the size of the data, but preserving some of its characteristics [30].

In the context of trajectories, similarity and intersections are commonly used in under-

standing mobility behavior and mobile analytics [47, 56, 49]. Similarity and intersection

operators can support the trajectory join query that finds all the pairs of points belonging to

two trajectories which are similar to each other based on space distance and time distance.

1

1.1.1 Correlations of Temporal Ordered Data

Finding correlations in data streams (considered as timeseries) is a challenging task.

This is due to the trade-off between precision and computational cost. Current methodolo-

gies approach this challenge by employing some prediction techniques [46], Discrete Fourier

Transform approximations [58, 10], or using clustering and Markov chain modeling [26]. All

those approaches have their limitations, whether due to lack of absolute precision as a result

of using approximations or predictions, or due to the usage of computationally expensive

operations. Other approaches address this challenge by indexing the data series focusing on

alleviating the computational cost [59, 24, 18]. Predominantly the users are looking for pairs

of (positively or negatively) correlated data streams over a short period of time. The high

number of data streams implies an even bigger number of pairs. To illustrate this challenge,

consider the following monitoring application.

Example 1: Consider a data center, operating 10,000 computers, which hosts an order

of magnitude more virtual servers. A monitoring system keeps track of 20 different counters

per computer (for CPU core temperature, power supply voltage, memory and network utiliza-

tion, etc.). Each computer reports its counters to the monitoring system every 60 seconds.

Each batch of reported data contains 12 consecutive measurements (taken 5 seconds apart).

The Operations team can detect problematic servers in a timely manner and identify higher

order dependencies by finding deviations from the average load per computer and negatively

correlated pairs of windows of data streams as the data arrives.

The total number of counters (i.e., data streams), which the IT specialists should analyze

is 10,000 × 20 = 200,000. As every computer reports its counters once every 60 seconds, a

time frame of 5 minutes will contain 60 measurements per counter. This means that there

will be a total of 60 × 200,000 = 12,000,000 numbers generated every five minutes of data

center uptime. This gives us almost 20 billion pairs of different data streams.

Clearly, traversing the data and calculating the correlation with full precisions is compu-

tationally expensive and induces significant delay in the production of results. The time to

2

fully explore completely all pairs may be prohibitively long, and the challenge is exacerbated

when the demand is for answers is in real-time and for a large set of live data streams.

1.1.2 Aggregate Spatiotemporal Joins of Trajectory Data

A complete spatiotemporal database systems that provide efficient execution of spatial

and temporal processing of operators and analytics is still lacking [35]. Hence, few spa-

tiotemporal systems and many access structures were proposed [1, 42, 23] to process and

optimize specific spatial and temporal operators and queries used in critical applications. As

mentioned above, the spatiotemporal join query is essential in mobility analytics, where two

sets of trajectories are being checked for intersection in spatial and/or temporal dimension

for trajectory data. The processing of such query is computationally challenging when the

number of trajectories in each set is higher, since this implies higher number of pairs to be

checked. To demonstrate this challenge, consider the following contact tracing application.

Example 2: Consider the contact tracing application for COVID-19 disease, where the

period of contact tracing is four previous days from the time symptoms appear, and contacts

are within 6 feet with no masks. Assume the system traces 10,000 users equipped with mobile

devices that stream their trajectory points on a second basis to a centralized node, where all

trajectories are stored. That central node stores the users’ trajectories in a relational database

where the trajectory of each individual useri is stored in a table with the schema USER_i

(timestamp, x, y), and finds the total duration of contact between two users (e.g., USER_1

and USER_2) by executing the SQL query:

SELECT COUNT(*) AS duration

FROM USER_1 JOIN USER_2 ON (USER_1.timestamp=USER_2.timestamp AND

SQRT(SQUARE(USER_1.x - USER_2.x) + SQUARE(USER_1.y - USER_2.y)) <= 6);

The timestamp attribute resembles the second at which a user occupied the location (x, y)

in the Euclidean 2D space with the unit in the axises being in feet. The COUNT() aggregate

function can help finding the number of seconds both users have intersected in time and space.

The 10,000 users result in 49,995,000 pairs of trajectories. The spatiotemporal intersec-

tion include comparing the attributes timestamp, x and y. Assuming the cardinality of each

3

table is the number of seconds in the trajectory, storing a trajectory over the duration of four

days will have 345,600 rows. The naïve approach in comparing the rows for spatiotemporal

intersection is to compare each row in a trajectory with every other row in the other trajectory

as in the Nested Loop Join. Each pair of trajectories will result in having 119,439,360,000

row comparisons. This gives us about 5.97 × 1018 (49,995,000 × 119,439,360,000) number

of comparisons to fully process the 10,000 trajectories spatiotemporal intersections.

Clearly, processing a large number of trajectory pairs for calculating the duration of the

multiple contacts, and the cumulative viral exposure by different contacts from different

sources is prohibitively costly. Even if a traditional indexing of one dimension (spatial or

temporal) is employed to optimize computations, processing the other dimension basically

without indexing is still costly. Partitioning the trajectory data to be processed in parallel

by multiple CPU cores or locally on mobile devices may alleviate the computational cost

further, but streaming users’ data from their mobile devices poses a potential risk of violating

their privacy. Preserving user privacy exacerbates the challenging task of computing the

cumulative durations of contacts of all pairs of trajectories from multiple sources.

1.2 Hypotheses, Objective & Approach

Motivated by the two important classes of applications that are described above, namely

health monitoring and contact tracing, this dissertation optimizes the spatiotemporal oper-

ators/queries in the core of these applications. Specifically, the objective is to optimize and

scale the correlations of temporal ordered data (Aim 1), and aggregate spatiotemporal joins

of trajectory data (Aim 2).

Aim 1: Our observation is that analyzing and correlating pairs of temporally ordered data

streams is a computationally challenging task due to the prohibitively long time required

to fully explore them. The high volume of pairs of streams and the high velocity of each

stream render the traversal and correlation of streams high in computational cost. Moreover,

4

the real-time and high response time requirements for processing such pairs of data streams

further exacerbate the challenge. In addition to the high processing cost of such exploration

tasks, there is a need to minimize the delay induced from I/O due to fetching data and

processing it locally by intelligent data orchestration and storage management.

Hypothesis 1: Our hypothesis is that efficient and intelligent grouping and processing of
pairs of data streams is required in a way that reduces the delay of producing results, and
increases the task throughput according to the task goal.

To this end, we propose a solution that groups data streams in micro-batches. Those

micro-batches group data streams in synchronized consistent layouts that yield a more ef-

fective exploration task. Moreover, we explore those micro-batches by employing a sliding

window approach in order to control the temporal duration over which the correlation needs

to be detected. To achieve that, we propose algorithms that quickly identify windows of

correlated pairs of data streams according to the Pearson Correlation Coefficient [44]. In-

spired by scheduling in systems, those algorithms employ scheduling techniques in order to

prioritize the order of correlating the pairs in an attempt to first correlate the promising

pairs that have a high likelihood of containing correlated windows. Furthermore, we utilize

incremental computations in order to avoid re-computations [48]. This is achieved by having

our proposed novel algorithm based on a utility function that incorporates the knowledge

of incremental computations, scheduling, and caching information to correlate two synchro-

nized windows of pairs of data streams. Finally, we consider cases where the exploration

task does consider the detection of correlated pairs across micro-batches. For example, in

some tasks, the goal is to detect as many unique pairs of correlated data streams as possible

across two consecutive micro-batches, while in others, the goal is to assure the perpetual

correlation between them. This is in an effort to alleviate the delay induced by exploring

other pairs that are not of interest to the goal of exploration.

Aim 2: Our observation is that computing the spatiotemporal aggregation join query that

considers the total durations of trajectories intersections in a single centralized node for

all users in the system is computationally costly and a potential threat to users’ privacy.

As alluded above, optimizing the spatiotemporal aggregation join in one dimension (e.g.,

spatial) and processing the other one (e.g., temporal) may partially reduce its processing

5

cost. Even if data partition is utilized to further reduce the processing cost there is still a

need to compute the aggregate spatiotemporal join query in a privacy preserving fashion.

While preserving the privacy of users, this query need to efficiently and effectively process

the total durations of trajectory intersections that considers the cumulative viral exposure

from different sources. Thus,

Hypothesis 2: Our hypothesis is that an aggregate spatiotemporal join query, such as in
contact tracing, needs to be processed locally on users’ mobile devices for maximizing their
privacy while optimizing its processing through partitioning and indexing.

To this end, we propose a new temporal aggregation join query that calculates the total

duration from multiple sources, which is required to detect respiratory viral exposure risk

of individuals locally on their mobile devices while preserving users’ privacy. We propose to

optimize the processing of this new temporal aggregation join query by devising a novel in-

memory structure that is formed by spatial indexing in conjunction with interval trees [39, 11,

45] that encodes locations and times of contacts. In addition, we propose an energy efficient

data movement protocol among users’ devices that minimizes trajectory data exchanges and

reduces power consumption on users’ mobile devices based on their privacy requirements.

1.3 Summary of Contributions

The broader contributions of this dissertation are two novel frameworks that offer effec-

tive implementations of health monitoring and contact tracing applications, demonstrated

experimentally with real and synthetic data.

In particular, we make the following contributions.

• Towards our Aim 1, we develop our DCS (Detection of Correlated Data Streams) frame-

work that intelligently schedule correlating pairs of data streams within a micro-batch

and across micro-batches [4, 5]. Within DCS, we:

– Develop two primary baseline algorithms that are utilized by our DCS framework,

the first is iBRAID-DCS, which explores the pairs in round robin fashion, and the

6

second is PriCe-DCS, which uses a priority function based on historical success

rate, cost and PCC to schedule the pairs correlation task [41, 5].

– Devise nine different policies that our novel PriCe-DCS algorithm can employ

when analyzing consecutive micro-batches. These policies can increase the efficiency

when detecting correlated live data streams and/or address different exploration

requirements. By appropriately tuning the parameters of the utility function, the

different policies exhibit different detection-recall, overlapping-recall, and diversity

results [3, 5].

• Towards our Aim 2, we develop a distributed framework for processing contact tracing,

called PriDIER (Privately Detecting Indoors Exposure Risk), that measures exposure

risk across users in an effective and privacy-preserving manner. Within PriDIER, we

– Introduce two communication protocols, a Push-based and a Pull-based for trajectory

dissemination within the PriDIER framework, that minimize the exchanged data

and reduce the power consumption based on privacy requirements at users’ mobile

devices; and

– Develop and evaluate analytically and experimentally e-Racoon, a novel in-memory

access structure that weaves spatial and temporal indexing to efficiently processes

temporal aggregation join queries at a users’ mobile devices.

1.4 Road Map

This dissertation is structured around two optimization goals. Chapter 2 covers the tem-

poral correlation optimization solution that tackles Aim 1, where we discuss the preliminary

concepts, demonstrate the proposed algorithms, evaluate our proposed solution, and discuss

the related work. Chapter 3 covers the spatiotemporal optimization solution that tackles

Aim 2, where we discuss the preliminary concepts, demonstrate the contact tracing frame-

work and its components, evaluate our proposed solution, and discuss related work. Chapter

4 contains the conclusions of the dissertation and the proposed future work.

7

2.0 Detection of Correlated Data Streams

In this chapter, we present our DCS (Detection of Correlated Data Streams) framework,

presented in [4], its optimization objective, and our novel algorithms iBRAID-DCS and

PriCe-DCS that implement the framework’s objective to optimize temporal correlations.

In the next section, we present the DCS framework, and in Section 2.2 we discuss our

novel algorithms that the DCS utilizes. We show the evaluation of the discussed work in

this chapter in Section 2.3. In Section 2.4 we discuss the related work to this part of the

thesis and conclude in Section 2.5.

2.1 The DCS Framework

Without loss of generality, we consider a (monitoring) system that receives data from n

data streams. Each data point in a data stream is a tuple t consisting of a timestamp ts and

a numeric value val (t = (ts, val)). The timestamp captures the moment in time when the

tuple was produced.

The data is produced at high velocity. The different streams produce the consecutive

tuples at the same rate, and they are all synchronized. However, there are techniques to

determine missing values [20, 43, 50] and to synchronize data which arrives at different rates

[7, 16, 31], but they are beyond the scope of this dissertation.

The real-time analytical processing is performed in micro-batches.

Definition 1. Micro-batch: A micro-batch is a group of synchronized tuple subsequences

over a set of data streams defined by a timestamp interval I.

Each micro-batch, whether of the same or different data streams, is of the same size, i.e.,

contains the same number of tuples with consecutive timestamps within the interval. The

inter-arrival time of two consecutive micro-batches specifies the maximum computational

time for processing a micro-batch.

8

Definition 2. Inter-arrival Time: Starting at time δ, the inter-arrival time is the delay

target or deadline d plus δ by which the last result can be produced while analyzing a micro-

batch.

In real-time processing, ideally, the deadline d is equal to the interval plus δ (d = I + δ)

so that there is no delay gap in processing between two consecutive micro-batches. However,

it is expected to be a bit longer due to various overheads in the system, including any

pre-processing of micro-batches.

The framework focuses on analytical processing that finds correlated data streams in

real-time using the Pearson Correlation Coefficient (PCC) as a correlation metric for pairs

of sliding windows of data streams.

Definition 3. Pearson Correlation Coefficient (PCC): Given two numeric data streams x

and y of equal length m, the PCC is calculated with the following formula:

corr(x, y) =
m∑
i=1

(xi − µx)(yi − µy)

σxσy

(1)

where µx is the average (or mean) of the values of x, µy is the mean of the values of y, σx

and σy are the standard deviations of the values of x and y, respectively.

Definition 4. Two sliding windows of the same range w with a slide of 1 are correlated

when the PCC is more than a given threshold τ (PCC ≥ τ).

Definition 5. A pair of data streams in a micro-batch is correlated when it contains at least

‘A’ correlated sliding windows with threshold τ .

The windows, which meet the criterion, may be consecutive or stratified over the interval

defining a micro-batch.

The formalization of the algorithmic problem that the DCS framework solves is as follows:

Problem: Given a micro-batch B of a set of data streams DS that arrives at time δ with an

arrival interval I, perfectly synchronized and with no missing tuples, and a deadline d = I+δ,

detect the number of correlated pairs of data streams, each of which has A correlated sliding

windows, not necessarily consecutive, with a PCC threshold of τ , by the deadline I + δ.

9

The optimum solution will be when the number of identified correlated pairs in a micro-

batch are equal to the actual total number of correlated pairs. Hence, the optimization goal

in DCS is to maximize the number of identified pairs by a deadline. Formally, the ratio of

the number of detected correlated pairs to the total number of correlated pairs is close to 1

and the metric is defined as:

Detection-Recall =
identified correlated pairs

Actual # correlated pairs
(2)

2.2 The DCS Algorithms

In this section, we discuss the two primary baseline algorithms that are utilized by our

DCS framework.

2.2.1 iBRAID Algorithm

The first algorithm is what we call iBRAID-DCS and it is an enhancement over the work

BRAID [44], where the PCC can be calculated by computing five sufficient statistics—sum

of the values of tuples in each window, the sum of the squares of the values in the tuples

of each window, and the inner cross-product of the values in tuples of the two windows, for

which the correlation is calculated.

Sufficient Statistics The sum (sumx) and the sum of the square of the tuples (sumxx)

of a window of length m of a data stream x, and corresponding inner product (sumprodxy)

are denoted as

sumx =
m∑
i=1

xi sumxx =
m∑
i=1

x2
i sumprodxy =

m∑
i=1

xiyi

The covariance of the two data streams x and y is

cov = sumprodxy − sumx× sumy

m

10

and the variance of the window can be calculated as according to the following formula

varx = sumxx− (sumx)2

m

Similarly, the variance for data stream y will be denoted vary. Then PCC can be

calculated, applying the following formula

corr(x, y) =
cov√

varx× vary

The sufficient statistics can be computed either from scratch or incrementally each time

a pair of data streams is explored by a new tuple. In the case of incremental calculation, the

sums stored in memory are incremented by the new values and decremented by the values

that are not part of the windows anymore. The same operations are performed for the sums

of the squares and the inner cross products, using the respective tuples.

Algorithm With that in mind, iBRAID-DCS is a round-robin scanning algorithm that uses

the incremental computation of PCC. It analyzes the pairs of data streams in a micro-batch

sequentially, starting from the first tuple for all data streams. It calculates the sufficient

statistics that are needed to calculate the PCC efficiently (i.e., single pass over tuples).

Next, it calculates the PCC for the first tuple for all pairs of windows. Once this is done,

the windows are slid further by one tuple, the sufficient statistics are updated incrementally—

the first tuple is expired/subtracted from them, and the new tuple is added. The PCC is

calculated again for all pairs. Then, it keeps analyzing all data streams by a single tuple,

augmenting the sufficient statistics incrementally, and recalculating the PCC. This is done

until the whole micro-batch is analyzed.

iBRAID-DCS has four key advantages: (1) Accurate, (2) easy to implement, (3) does

not cause “starvation” among the pairs, and (4) reduces the computations by half due to the

usage of the sufficient statistics. iBRAID-DCS is experimentally shown to perform well for

data streams whose data is uniformly distributed and for low correlation thresholds (τ < 0.5).

11

2.2.2 PriCe Algorithm

Algorithm Our second algorithm, called PriCe-DCS, is a scanning algorithm that uses a

utility function to analyze the pairs of windows while reusing partial PCC computations.

It analyzes the most promising pair first, which is the one with the highest utility function

value:

Pr = PCC ∗ (M/totalExp)/C (3)

where PCC is the most recently calculated Pearson Correlation Coefficient for a pair of

sliding windows that belong to the same pair of data streams, M is the number of correlated

sliding windows found in the corresponding pair of data streams so far, totalExp is the

total number of analyzed pairs of sliding windows, and C is the cost of analyzing a pair of

sliding windows in terms of number of computations (i.e., the number of operations needed

to calculate the sufficient statistics for a pair of sliding windows). The default values are

PCC = 1, M = 0, totalExp = 1, and C = 1.

Early termination happens when the A criterion of the number of correlated windows is

reached for a pair, and pruning happens according to the following condition:

(A− correlatedWindows) > (I − slidingWindowPosition)

where correlatedWindows are the total number of windows that are correlated in a pair of

streams according to PCC τ , and slidingWindowPosition is the pair’s analysis location in

the interval. Recall, I is the interval of the data streams.

Policies When the very first micro-batch arrives at the system, the system has no prior

knowledge about any correlated pairs of streams. However, this is not the case after the

analysis of any micro-batch that produces a set of correlated pairs of data streams. This

raises the question of how to exploit the results of past micro-batch analyses, such as, picking

the first pair in a new micro-batch to analyze. This question has a major impact on PriCe-

DCS ’s behavior in supporting exploration, exploitation or fairness, and its answer determines

the initialization of the parameters of PriCe-DCS ’s utility function.

12

We have come up with nine policies that dictates how the PriCe-DCS utility function is

initialized, those are:

Fresh Start : When the analysis of a micro-batch starts with no prior knowledge of correlated

pairs of streams, Fresh Start policy initializes PriCe-DCS ’s utility function to its default

values (as discussed earlier in this section). It is to be noted, however, that the very first

micro-batch analysis in all approaches follows the Fresh Start approach

Informed : The utility function is initialized based on the results of the latest micro-batch

analysis. In Informed starting phase, PriCe-DCS ’s utility function is initialized to the same

parameter values of the correlated pairs used by the immediately previous micro-batch. The

rationale behind this policy is to keep analyzing closely those pairs that already exhibited

high correlation in the previous micro-batch, potentially indicating an insight of interest.

Untouched : The focus is on the pairs that were not processed at all in the previous micro-

batch due to the lack of any correlated windows (i.e., not chosen for analysis due to their

low values of Pearson Correlation Coefficient) at the beginning of PriCe-DCS ’s execution.

Specifically, such pairs are jumpstarted by altering their previous number of correlated win-

dows (i.e., the parameter that reflects this information) to have the value A. This increases

their priority, preventing their starvation and giving them another chance to be analyzed in

the new micro-batch. The rationale behind this policy is to allow such pairs another chance,

potentially identifying different behavior, which remained undetected in the previous micro-

batch.

Alternating : This policy gives the pairs that were not correlated in the previous micro-batch

a chance to be explored through a hybrid round-robin fashion. In Alternating starting phase,

alternately, a pair from those that are not correlated in the previous micro-batch, is picked

and explored using PriCe-DCS followed by a pair from those which were correlated. When

the starting phase concludes (i.e., touched all the pairs at least once), the pairs are processed

with PriCe-DCS according to the utility function. By doing this, we hope to reduce the

effect of starvation for those that were not correlated in the previous micro-batch.

13

X% Non-Correlated : This policy tries to achieve fairness of exploration through jumpstarting

the lowest X% pairs in priority. The pair with the highest priority among those lowest X% is

picked and explored. This continues until all those X% pairs are jumpstarted. Subsequently,

PriCe-DCS carries out the exploration process as it usually does.

Decaying History : This policy regards the significance of the whole historical correlation in-

formation of a pair differently from recent micro-batches information. In the utility function,

it alters the parameter M, which reflects the number of correlated sliding windows found for

a corresponding pair, such that it becomes weighted. It gives the historical correlation infor-

mation (i.e., data from micro-batches earlier than the most recent one) a weight, and then

gives a higher weight to the most recent correlation information. Then, the total of both

becomes the new parameter M. The goal behind this policy is to consider the most recent

information with a higher weight along the exploration process as opposed to older ones.

Shared Stream: Its focus is on the group of pairs, that were not correlated in the previous

micro-batch but share a data stream that was part of a correlated one in the preceding

micro-batch. The idea in this policy is that a data stream that is correlated with another

one, might be correlated with a third different stream as well. Thus, this policy picks a pair

from this group of non-correlated pairs according to PriCe-DCS and explores it. Shared

Streams starts all those pairs, and then, carries on using PriCe-DCS.

X% Probing : This policy explores the first few windows for all the pairs in a round-robin

fashion. This is done to set the utility function with actual current values instead of arti-

ficial hand-crafted ones. After those few windows, PriCe-DCS kicks in and continues the

exploration process using the utility function that had its parameters filled with actual data

through the probing process. The rational behind this policy is to take advantage of the

good properties of iBRAID-DCS during the starting phase. In some respect, this policy is

a hybrid of iBRAID-DCS and PriCe-DCS.

P-Alternating : This policy mimics multilevel queue scheduling, whereby the pairs are ex-

plored in a round-robin fashion between two groups. Those are the previously correlated

pairs and the non-correlated ones. This is to give the pairs that were not correlated in

14

the previous micro-batch a chance to be persistently processed. It picks a pair from the

non-correlated ones and processes it using PriCe-DCS, then, it picks a pair from those that

were correlated. It does that until the end of the micro batch (i.e., not only the starting

phase), and carries on in this fashion by picking the pair from each group of pairs according

to the utility function. By doing this, the hope is to alleviate the effect of starvation for

those pairs, that were not correlated in the previous micro-batch in a persistent way, for they

might exhibit some correlation beyond the starting phase.

2.3 Evaluation

In this section we present the evaluation of the DCS framework and its algorithms.

Furthermore, we evaluate the nine different policies with PriCe-DCS, and how each policy

addresses different exploration requirements.

2.3.1 Testbed

Infrastructure We implemented all the discussed strategies in C++11. We ran the exper-

iments on a computer with 2 Intel CPUs, running at 2.66GHz, and 96GB of RAM memory.

The operating system used was CentOS 6.5 and the compiler was GCC version 4.8.2.

Dataset Yahoo Finance Historical Data [25]: The dataset we have used in our experiments

consists of 318 data streams. Those reflect the trading of 53 companies on the NYSE for the

last 28 years. This gives us a total of 50,403 different pairs to analyze. The data granularity

is a day, which includes the price of the stock of the company at opening, the price at the end

of the day (closing), the highest price for the day, the lowest price for the day, the amount

of shares traded that day, and the adjusted close (calculated according to the standards of

the CRSP, Center for Research in Security Prices). The length of each data stream is about

7,100 tuples. Those tuples are divided into micro-batches.

Algorithms We compared a baseline algorithm Random against our two algorithms iBRAID

and PriCe, along with their DCS variants Random-DCS, iBRAID-DCS, and PriCe-DCS.

15

Also, we studied the nine different policies that modify PriCe-DCS default behavior.

Metrics We evaluated the performance of the strategies in terms of detection-recall, overlapping-

recall, and diversity. We also measure the cost, which is used to determine the deadlines in

our experiments.

Detection-Recall : This is our detection optimization criterion (Eq. 2). It reflects how

capable the strategy is in detecting correlated pairs out of the total actual correlated pairs.

Thus, it is a ratio of the number of detected correlated pairs to the total number of correlated

pairs.

Overlapping-Recall : We call pairs that were detected in a given micro-batch and also

were detected in the preceding micro-batch as an overlapping pair. In this metric, we find

the ratio of the detected overlapping pairs to the total number of overlapping pairs in a

micro-batch. Note that this metric does not apply to the very first micro-batch.

Diversity : We measure how many new pairs (i.e., not seen as a result in the most

recent micro-batch) are detected in each micro-batch. This is our exploration vs exploitation

criterion.

Cost : This is our efficiency metric. We measured the deadline latency as the number

of operations performed to detect correlated pairs of data streams. We used the number

of operations as it provides the asymptotic efficiency of the strategies compared to one

another. This does not depend on factors such as the hardware characteristics and the

operating system of the computer, on which the experiments are run, nor the efficiency of

the compiler. We examined how the strategies meet deadlines and how many correlated

pairs they could detect under such a requirement.

16

Table 1: Experimental Parameters

Parameter Value(s) Parameter Value(s)

PCC τ [0.75, 0.90] w 8

A [112, 225, 450] # data streams 72

I 900 (180 seconds) # micro-batches 4

2.3.2 Experiments

We ran four experiments in total. The first two evaluate our base algorithms, and the

latter two assess the ability of our proposed policies to detect and diversify the correlated

pairs of data streams using PriCe-DCS. We conducted the experiments for two PCC thresh-

old τ ’s, 75% and 90%, and for three different values of A, 112, 225 and 450. The values of

A correspond to the 1/8, 1/4 and 1/2 of the micro-batch interval. The micro-batch interval

is set to 900 tuples to simulate an inter-arrival time of 180 seconds, where each tuple is

produced each 200 milliseconds. Finally, we experimented with three deadlines correspond-

ing to 25%, 50%, and 75% of the total operations needed to determined all the correlated

pairs in a micro-batch, i.e., achieve total detection-recall. The experimental parameters are

summarized in Table 1.

In all experiments, we have divided the dataset into four mutually exclusive groups,

and we ran our experiments on all of them, we found that the results are similar. Thus,

we reported the results of one of those groups. Moreover, we did pick 10% for the X%

Non-Correlated as a middle point between the policies Untouched and Alternating.

2.3.2.1 Experiment 1 (Figs. 1–3)

In our first experiment, we measured the execution cost or latency in number of operations

of each algorithm to detect the specified number A of correlated pairs of sliding windows in

four consecutive micro-batches.

17

0

5

10

15

20

25

30

35

40

All	t t=0.75 t=0.90

#	
of
	o
pe

ra
tio

ns
	in
	m

ill
io
n

Random iBRAID PriCe Random	DCS iBRAID	DCS PriCe	DCS

Figure 1: The cost in number of operations for 4 consecutive micro-batches (A = 112).

As expected, Random, iBRAID, and PriCe have the same number of operations due

to exhaustive processing of the pairs. These do not use A for either early termination nor

pruning. Thus, with fixed number of data streams, intervals, and window range, the number

of operations induced by the three algorithms is identical. They always consume the same

amount of operations regardless of the other parameters (i.e., PCC τ and A). The impact

of DCS mode on all three algorithms is clearly visible in all figures.

In Figure 1, we notice that the higher the PCC τ , the more operations are executed

by the algorithms. This is due to the fewer number of windows that are highly correlated

according to the PCC τ . This results in higher latency in detecting them by the algorithms.

On the other hand, in case of low PCC τ , we see that DCS terminates the analysis process

early, as soon as it reaches the A criterion of number of correlated sliding windows. We also

observe that iBRAID-DCS consistently underperforms the other DCS algorithms in latency.

This is a consequence of the iBRAID scheduling scheme which leads to having a pair pruned

at a late stage of the analysis.

18

0

5

10

15

20

25

30

35

40

All	t t=0.75 t=0.90

#	
of
	o
pe

ra
tio

ns
	in
	m

ill
io
n

Random iBRAID PriCe Random	DCS iBRAID	DCS PriCe	DCS

Figure 2: The cost in number of operations for 4 consecutive micro-batches (A = 225).

In Figure 2, we notice that iBRAID-DCS exhibited higher latency in the cases where

PCC τ = 0.75. This is counter intuitive. To clearly state the reason, we observe that the

lower the A criterion, the later the pruning will occur in case of no high correlated windows

were processed. With that in mind, we say that the pairs of data streams in Figure 2 in the

case of PCC τ = 0.75 has produced high amount of correlated windows, enough to delay

the pruning towards the end, but not enough to terminate the analysis early. Therefore, the

performance of iBRAID-DCS was lower with low PCC τ .

19

0

5

10

15

20

25

30

35

40

All	t t=0.75 t=0.90

#	
of
	o
pe

ra
tio

ns
	in
	m

ill
io
n

Random iBRAID PriCe Random	DCS iBRAID	DCS PriCe	DCS

Figure 3: The cost in number of operations for 4 consecutive micro-batches (A = 450).

Our last explanation is also supported by our experimental results in Figure 3, which

show clearly that with high A, the DCS mode is able to reach a better performance than

low A. The reason is that with A = 450, if a pair encounters no correlated windows yet, it

can be pruned by midway of the analysis process.

Finally, DCS mode of operation was able to enhance the performance of the algorithms

up to 1.8 times (Fig. 3).

2.3.2.2 Experiment 2 (Figs. 4–8)

In this experiment, we studied the Detection-Recall of each algorithm with respect to a

given deadline. We set the deadline to be 25%, 50%, and 75% of the processing duration of

each interval and measured the percentage of the number of correlated pairs each algorithm

was able to detect. The results are shown in Figures 4–6 for the deadline 25%, in Figure 7

for the deadline 50%, and in Figure 8 for the deadline 75%.

In general, we notice that DCS mode of operation in all cases for all algorithms out-

performs the original algorithms. This is attributed to the pruning and early termination

features of DCS, which allow the algorithms to analyze other pairs and detect more correlated

20

data streams.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1st 2nd 3rd 4th 1st 2nd 3rd 4th

τ	=	0.75 τ	=	0.9

%
	o
f	D

et
ec
te
d	
Co

rr
el
at
ed

	P
ai
rs

Micro-batches

Random iBRAID PriCe Random-DCS iBRAID-DCS PriCe-DCS

Figure 4: The % of correlated pairs of streams detected by all algorithms at 25% of the

interval I (A = 112).

In Figure 4, we notice that iBRAID and iBRAID-DCS detected lower percentage of

correlated pairs of data streams than PriCe and PriCe-DCS, while PriCe and PriCe-DCS

have comparable performance. We attribute this to the fact that with a low value of A, we

are expecting the required A number of correlated pairs to be detected quickly by PriCe and

PriCe-DCS, while the round-robin scheduling of iBRAID and iBRAID-DCS, which process

all the pairs one pair at a time, is not affected by the value of A. We also notice that Random

performed slightly better than Random-DCS in the 2nd micro-batch, and this is due to the

random scheduler nature that picks a pair in a random fashion. In addition, we observe that

the average detection percentages for Random with A=112 for all PCC τ at the deadline

25% is 18% comparing to 52% for PriCe.

21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1st 2nd 3rd 4th 1st 2nd 3rd 4th

τ	=	0.75 τ	=	0.9

%
	o
f	D

et
ec
te
d	
Co

rr
el
at
ed

	P
ai
rs

Micro-batches

Random iBRAID PriCe Random-DCS iBRAID-DCS PriCe-DCS

Figure 5: The % of correlated pairs of streams detected by all algorithms at 25% of the

interval I (A = 225).

In Figure 5, we see that PriCe scheduling demonstrated the effectiveness of its priority

function in capturing more correlated pairs at an early deadline, especially when PCC τ

is high. That means, it elects the pairs to explore more intelligently than the other two

algorithms. We also notice that with high value of A and early deadline, iBRAID-DCS fails

to detect any correlated pair of data streams. With respect to Random and Random-DCS, we

observe the same as in Figure 4, where Random performed slightly better than Random-DCS

due to the random scheduler nature. We also note that the average detection percentage for

Random-DCS with A=225 for all PCC τ at the deadline 25% is 12% compared to 57% for

PriCe.

22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1st 2nd 3rd 4th 1st 2nd 3rd 4th

τ	=	0.75 τ	=	0.9

%
	o
f	D

et
ec
te
d	
Co

rr
el
at
ed

	P
ai
rs

Micro-batches

Random iBRAID PriCe Random-DCS iBRAID-DCS PriCe-DCS

Figure 6: The % of correlated pairs of streams detected by all algorithms at 25% of the

interval I (A = 450).

In Figure 6, the observations are as similar as they are in Figure 5, however, we realize

that PriCe-DCS has detected more than 87% the correlated pairs of data streams, and

this is due to the priority scheduling of PriCe and the aggressive pruning at high A. The

Random-DCS fails to meet that, since it picks pairs in an unpredictable way, and this delays

the analysis duration for each pair, hence, delaying its pruning.

23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1st 2nd 3rd 4th 1st 2nd 3rd 4th

τ	=	0.75 τ	=	0.9

%
	o
f	D

et
ec
te
d	
Co

rr
el
at
ed

	P
ai
rs

Micro-batches

Random iBRAID PriCe Random-DCS iBRAID-DCS PriCe-DCS

Figure 7: The % of correlated pairs of streams detected by all algorithms at 50% of the

interval I (A = 225).

In Figure 7, we note that PriCe-DCS outperforms all the other algorithms. This is

for the obvious reason of having more processing time to advance the sliding windows and

capture more correlated windows between a pair of data streams. As a result, it reaches the

criterion A (= 225) of declaring the pair as a correlated one quickly. For A = 112 and A =

450, our observations are similar as in Figure 7.

24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1st 2nd 3rd 4th 1st 2nd 3rd 4th

τ	=	0.75 τ	=	0.9

%
	o
f	D

et
ec
te
d	
Co

rr
el
at
ed

	P
ai
rs

Micro-batches

Random iBRAID PriCe Random-DCS iBRAID-DCS PriCe-DCS

Figure 8: The % of correlated pairs of streams detected by all algorithms at 75% of the

interval I (A = 450).

Finally, towards the end of the micro-batch analysis process, we see clearly in Figure

8 that all the algorithms are detecting pairs with an overall relatively higher percentage

than the earlier deadlines, and this is expected with more time to analyze the pairs of data

streams. We also observe the effect of pruning clearly on all algorithms under DCS mode.

This is a result of the A criterion being very high, which leads to early pruning for non

promising pairs of data streams. Thus, all the correlated pairs of data streams were detected

earlier than the 75% deadline. The same holds for A = 112 and A = 225.

2.3.2.3 Experiment 3 (Figs. 9–10)

Our previous two experiments show that PriCe-DCS exhibits the best performance over-

all. In our third experiment, we studied the detection-recall of each policy with respect to

a given deadline. We set the deadline to be 25%, 50%, and 75% of the processing duration

of each interval and measured the percentage of the number of correlated pairs each policy

was able to detect. We experimented with the values of PCC τ and A, shown in Table 1.

All experiments produced similar results; thus, we report the results for the deadline 25%

25

and 50% only.

0
10
20
30
40
50
60
70
80
90
100

1st 2nd 3rd 4th 1st 2nd 3rd 4th

τ	=	0.75 τ	=	0.90

%
	o
f	D

et
ec
te
d	
Co

rr
el
at
ed

	P
ai
rs

Micro	Batches

Blind Informed Untouched Alternating

10%	Non-Correlated Decaying	History Shared	Stream 1%	Probing

5%	Probing 10%	Probing 15%	Probing P-Alternating

Figure 9: The % of correlated pairs of streams detected by all policies at 25% of the interval

I (A = 112).

Figure 9 shows the detection-recall for the 25% deadline with A=112. We notice that

PriCe-DCS with policy P-Alternating outperforms the rest with PCC τ = 0.90. On the

other hand, the 1% Probing outperforms the rest when PCC τ = 0.75. This is attributed to

the fact that with higher PCC τ values it is highly likely to have fewer correlated windows

in a given pair, and vice versa. Having that in mind, with lower PCC τ , exploring the initial

1% of a pair, can lead to an indication of whether the pair is correlated or not. On the

other hand, when the pair has scarce correlated windows, it is expected that with persistent

exploration of non-correlated pairs, to find new correlation discoveries. Note that the first

micro-batch always starts with a Blind policy, as there are no historical information about

the data streams.

26

0
10
20
30
40
50
60
70
80
90
100

1st 2nd 3rd 4th 1st 2nd 3rd 4th

τ	=	0.75 τ	=	0.90

%
	o
f	D

et
ec
te
d	
Co

rr
el
at
ed

	P
ai
rs

Micro	Batches

Blind Informed Untouched Alternating

10%	Non-Correlated Decaying	History Shared	Stream 1%	Probing

5%	Probing 10%	Probing 15%	Probing P-Alternating

Figure 10: The % of correlated pairs of streams detected by all policies at 50% of the interval

I (A = 112).

Figure 10 shows the detection-recall for the 50% deadline with A=112. It is clear that

they exhibit similar behavior overall, except for the 2nd micro-batch, where the policy P-

Alternating won by a negligible margin over the X% Probing policies.

2.3.2.4 Experiment 4 (Table 2)

In this experiment, we studied the impact of historical information on the effectiveness of

detecting correlated pairs. This includes the trade-off between exploration and exploitation in

the approach for detecting correlated pairs. We use the metrics detection-recall, overlapping-

recall, and diversity to illustrate that impact.

In Table 2, we show the results for the algorithm PriCe-DCS with Blind policy as a

baseline. In addition, we show the results of PriCe-DCS with Informed and Untouched

as the most exploitative starting phase varieties. This means that they keep detecting the

same pairs of data streams that they already have detected. We also show the winners from

Experiment 3 (i.e., 1% Probing, 5% Probing, and P-Alternating).

27

Table 2: DCS Strategies Effectiveness of Detecting Correlated Pairs

25% Deadline 50% Deadline

Batches 1st 2nd 3rd 4th Avg. 1st 2nd 3rd 4th Avg.

Full Correlated 429 580 236 234 – 429 580 236 234 –

Full Overlapped — 364 215 181 – — 364 215 181 –

PriCe Fresh Start

Correlated 163 184 103 88 – 231 298 135 130 –

Overlapped — 70 67 54 – — 140 98 84 –

Unseen Before 163 114 36 34 – 231 158 37 46 –

Detection-Recall 0.380 0.317 0.436 0.376 0.377 0.538 0.514 0.572 0.556 0.545

Overlap-Recall — 0.192 0.312 0.298 0.267 — 0.385 0.456 0.464 0.435

Diversity 1 0.620 0.350 0.386 0.589 1 0.530 0.274 0.354 0.540

PriCe Informed

Correlated 163 126 111 99 – 231 232 144 141 –

Overlapped — 81 99 87 – — 144 136 118 –

Unseen Before 163 45 12 12 – 231 88 8 23 –

Detection-Recall 0.380 0.217 0.470 0.423 0.373 0.538 0.400 0.610 0.603 0.538

Overlap-Recall — 0.223 0.460 0.481 0.388 — 0.396 0.633 0.652 0.560

Diversity 1 0.357 0.108 0.121 0.397 1 0.379 0.056 0.163 0.399

PriCe Untouched

Correlated 163 126 111 99 – 231 232 144 141 –

Overlapped — 81 99 87 – — 144 136 118 –

Unseen Before 163 45 12 12 – 231 88 8 23 –

Detection-Recall 0.380 0.217 0.470 0.423 0.373 0.538 0.400 0.610 0.603 0.538

Overlap-Recall — 0.223 0.460 0.481 0.388 — 0.396 0.633 0.652 0.560

Diversity 1 0.357 0.108 0.121 0.397 1 0.379 0.056 0.163 0.399

PriCe 1% Probing

Correlated 179 203 124 135 – 295 323 178 156 –

Overlapped — 123 101 90 – — 178 129 111 –

Unseen Before 179 80 23 45 – 295 145 49 45 –

Detection-Recall 0.417 0.350 0.525 0.577 0.467 0.688 0.557 0.754 0.667 0.666

Overlap-Recall — 0.338 0.470 0.497 0.435 — 0.489 0.600 0.613 0.567

Diversity 1 0.394 0.185 0.333 0.478 1 0.449 0.275 0.288 0.503

PriCe 5% Probing

Correlated 121 143 114 124 – 281 278 173 182 —

Overlapped — 110 100 96 – — 184 145 134 —

Unseen Before 121 33 14 28 – 281 94 28 48 —

Detection-Recall 0.282 0.247 0.483 0.530 0.385 0.655 0.479 0.733 0.778 0.661

Overlap-Recall — 0.302 0.465 0.530 0.433 — 0.505 0.674 0.740 0.640

Diversity 1 0.231 0.123 0.226 0.395 1 0.338 0.162 0.264 0.441

PriCe P-Alternating

Correlated 163 224 131 182 – 231 375 202 191 —

Overlapped — 108 124 130 – — 209 187 173 —

Unseen Before 163 116 7 52 – 231 166 15 18 —

Detection-Recall 0.380 0.386 0.555 0.778 0.525 0.538 0.647 0.856 0.816 0.714

Overlap-Recall — 0.297 0.577 0.718 0.531 — 0.574 0.870 0.956 0.800

Diversity 1 0.518 0.053 0.286 0.464 1 0.443 0.074 0.094 0.403

28

One can notice that the P-Alternating PriCe-DCS achieved the highest detection-recall

on average for both deadlines. This is expected due to the persistent processing of the non-

correlated and correlated pairs in a round-robin fashion. In addition, although Informed

PriCe-DCS achieved high overlapping-recall on average, P-Alternating has the highest of all

for both deadlines. This is to be expected because Informed PriCe-DCS does not alter the

parameters of the utility function, instead, it carries all the information of pairs from previous

micro-batches as they are, and in the case of P-Alternating, the persistent processing of the

already correlated pairs manifests itself in the highest overlapping-recall.

Finally, the explorative policies (i.e., Blind) achieved the highest diversity in detecting

correlated pairs than the exploitative ones (i.e., Informed, Untouched, and P-Alternating),

in fact, they have achieved the lowest diversity on average. This can be explained because

the exploitative policies have some kind of informative approach on how to analyze the data

streams, whether this is from previous micro-batches or some other source. Thus, they will

keep exploring the pairs that were already correlated in previous micro-batches.

2.3.2.5 Discussion

In our first two experiments, we found that PriCe-DCS outperformed all other algo-

rithms. In the third, we found that PriCe-DCS with X% Probing is the best policy for

detecting correlated live data streams for low values of PCC τ . On the contrary, PriCe-DCS

with P-Alternating is the best policy for detecting correlated live data streams for high values

of PCC τ . In the last experiment, we found that P-Alternating, Informed and Untouched

policies are more suitable for exploiting the space of exploration, and for finding correlated

pairs regardless of diversity. However, Blind policy does detect more diverse pairs across

micro-batches along the exploration process.

29

2.4 Related Work

The processing of data and fast discovery of correlated data streams is tackled in two

scenarios with respect to the production of data: 1) static, when the data is collected upfront

and it forms the search space for finding the correlated subsequences [28, 44, 34], and 2)

dynamic, when the data is processed as it is produced [46, 58, 10, 26, 33]. The former is

beyond the scope of our work. In this section, we focus on the latter, and in particular the

state-of-the-art of computationally cheap identification of correlated data streams.

RainMon [46] proposes a 3-stage technique to mine bursty data streams. The received

signals are first decomposed, in order to obtain a smooth representation of the data. In

the next stage, called summarization, the received data goes through incremental principal

component analysis in an effort to outline the long-term trends in the streams and to identify

anomalies, if there are any. In the last stage, named Prediction, the system forecasts trends,

relying on the output from the summarization stage. In our work, we do not make predictions

and use the data as it is delivered to identify correlated data streams.

A framework for identification of highly correlated pairs of data streams is also presented

in StatStream [58]. One of the assumptions of the work is that only an approximation of

the PCC is sufficient to identify the pairs of highly correlated data streams. Based on these

assumptions, the authors proposed a twofold approach to efficiently identify the pairs of

interest. They employed a computationally cheap Discrete Fourier Transformation (DFT)

technique to calculate an approximation of the PCC. Furthermore, they proposed an n-

dimensional grid structure, which stores the DFT statistics and PCC approximations of each

stream, whereby neighboring cells reflect highly correlated streams. This is the springboard

for identification of the highly correlated pairs of data streams. However, DFT is known for

its poor performance on data streams, which mimic white noise, thereby the required number

of DFT coefficients to precisely represent the data streams is high, which induces a significant

amount of computations. Our work differs in the calculation of PCC. Furthermore, we

calculate PCC incrementally over sliding windows, and our framework calculates it precisely

for each pair, over each sliding window. Our studies showed that once a pair of data streams

is selected as being highly correlated due to a high value of the approximated PCC, a precise

30

calculation of the PCC is required to prove the hypothesis. This operation requires two

passes on the data. Similarly to StatStream, our framework supports sliding windows on

data streams. We evaluate the possibilities to extend our framework to support landmark

windows and damped windows in the future.

StatStream was further improved to handle “uncooperative” data streams in [10], but it

still calculates an approximation of PCC only. The proposed technique employs structured

random vectors. The experimental results show that the proposed technique outperforms

linear scan and the Discrete Fourier Transformations, proposed in StatStream [58]. Our

framework, similarly to this work, updates the required statistics in a fixed amount of time.

However, it differs in PCC calculations, whereby DCS calculates PCC of the pairs of data

streams precisely for each sliding window once a pair is selected as being “promising” and

avoids the need to be calculated later and at a higher cost.

Detecting similarities between data streams can be achieved through correlation iden-

tification techniques. Four different distance measures for similarity of data streams were

proposed in [33]: “Autocorrelation Distance (ACD),” “Markovian Distance (MD),” “Local

Distance Distribution” and “Probabilistic Local Nearest Neighbor.” ACD is the version of

similarity metric used in our work (PCC), but used for self-correlation, i.e., when a data

stream is correlated to itself, whereby one of the windows starts with a lag from the other

one. All discussed methods are used to find only the first nearest neighbor (1NN) of a given

data stream. Our approach, however, identifies all pairs of correlated data streams and is

not limited to 1NN only.

Anomaly detection over data streams can also be used as a correlation identification

method. A solution presented in [26] uses the MD approach, listed above. Specifically, the

presented solution relies on a twofold approach, whereby data streams clustering is com-

bined with Markov chain modeling. The former identifies groups (or clusters) of similar

data streams. The latter conveys a possibility for the system to identify anomalies in the

data streams in each cluster. In the context of the system, anomalies are considered to be

transitions in the Markov chains, which have probability below a certain predefined thresh-

old. Our work may not only be adjusted to identify anomalies, whereby an anomaly is a

pair of windows with PCC below a certain threshold, but it also provides analysts with in-

31

sights about the data. This is done by employing cheap incremental computations, avoiding

computationally expensive operations such as building Markovian transition matrices.

2.5 Summary

In this chapter, we presented the DCS framework which offers effective solutions for

detecting the correlation of data streams within a micro-batch of a fixed time interval for

specific analysis requirements.

Specifically, we first discussed our simple and fair iBRAID-DCS algorithm that explores

pairs of data streams in round-robin fashion and prevents pairs starvation during the ex-

ploration task. Then, we discussed PriCe-DCS algorithm, which combines (1) incremental

sliding-window computation of aggregates and (2) intelligent scheduling, driven by a utility

function. At last, we discussed how the DCS framework facilitates the implementation of dif-

ferent policies that tune the utility function in order to meet the exploration and exploitation

requirements of analysis tasks.

We implemented and evaluated nine policies that initialize/tune the utility function of

PriCe-DCS. Other policies could potentially be specified. As opposed to the policies that

address explorative objectives, such as Fresh Start and X% Probing, the policies that address

an exploitative objective, such as P-Alternating, Informative, and Untouched, use the result

of the preceding micro-batch analyses as part of the initialization of the analysis of the

current micro-batch.

Our experimental evaluation using real world dataset showed that the policies that ad-

dress explorative objectives (i.e., Fresh Start and X% Probing) detected more unique cor-

related data streams. It also revealed that for low PCC τ , PriCe-DCS with X% Probing

outperformed the rest of the policies in terms of detection-recall, and for high PCC τ values,

PriCe-DCS with P-Alternating performed the best.

32

3.0 Privately Detecting Indoors Exposure Risk

In this chapter we present our PriDIER (Privately Detecting Indoors Exposure Risk)

contact tracing framework, its component, and our novel in-memory structure e-Racoon

that implement the framework’s query processor for optimizing the temporal aggregation

joins.

In the next section, we present the essential definitions and preliminary concepts related

to the PriDIER framework. In Section 3.2, we introduces the concept of contacts in contact

tracing, the contact tracing (CT) framework PriDIER, and its components. In Section 3.3,

we formally define the temporal aggregation join query and discuss how its processed and

optimized using e-Racoon our novel in-memory access structure. We discuss our experimental

testbed and our experimental evaluation in Section 3.4. We discuss the related work and

state-of-the-art solutions in Section 3.5 and conclude the chapter in Section 3.6.

3.1 Preliminary

In this section we define some preliminary concepts, and in Table 3 we provide the

notations used in this work.

Definition 1. Trajectory: A trajectory T = {p1, p2, ...pn} is a finite chronologically ordered

set of points that belongs to a single person using a mobile device. A trajectory point pi =

(xi, yi, ti), where xi and yi are Euclidean coordinates and ti is the timestamp at which the

point pi was sampled by the mobile device.

33

Table 3: Notations

Notation Definition

MO Moving object

CA Trusted central authority

S MO sampling rate

Tl Locally stored trajectory at the MO

Tq Externally received query trajectory

pi ith point in a trajectory

xi ith point x coordinate

yi ith point y coordinate

tsi ith point sampling timestamp

Zi ith point spatial zone

Wt A time window in seconds

σ Disease transmission window prior symptoms

ϵ Close contact spatial constraint

δ Close contact temporal constraint

α # contact segments in a pair of trajectories

β Total number of points over contact segments

γ # stabbed contact points (always equal to α)

34

Figure 11: An example of a static segmentation of a floor into zones, where each office is a

zone and the hallways are all a single zone.

Definition 2. Zone: A zone Zi is a static area that is defined over the Euclidean space.

Zones could be equally sized cells in a grid or could be different in size based on the physical

layout (e.g., offices, rooms). A zone has neighboring zones, a collection of zones form a floor

(Figure 11), and a group of floors are contained in a building.

It should be noted that each point pi in a trajectory is contained within a specific zone

Zi, i.e., {(Zi, tsi)}.

Definition 3. Close Contact: Close contact occurs when two people are spatially collocated

within ϵ distance (e.g., 6 feet, or ≈1.8 meters in case of COVID-19), at any time starting

σ days before the respiratory transmitted disease symptoms began (e.g., two days in case of

COVID-19), and for at least δ seconds (e.g., 15 minutes, or 900 seconds in case of COVID-

19) cumulatively within a window Wt (e.g., 24 hours in case of COVID-19).

35

Definition 4. Temporal Enveloping: Temporal enveloping is the act of extending a specific

timestamp to a time interval [tl, th], where tl is the lower timestamp and th is the higher

timestamp. Extending time is for the purpose of accounting for residual particles in air after

a person leaves the area (indirect contact). In other words, if a person existed in a specific

zone for a duration of time (an interval) [tl, th], then enveloping (extending) that interval

with x duration results in the temporally enveloped interval [tl − x, th + x].

The correctness of our temporal enveloping scheme can be proved as follows:

Proof. Assuming that after x time of infected MO leaving a certain location, and assuming

that after enveloping a specific time stamp and converting it into an interval, there will be

infectious particles in the air. If the enveloping duration is y, and an infected MO existed

for the duration of [t, t + x], then the space will be temporally considered occupied for the

enveloped interval [t − y, t + x + y]. This implies that any MO who existed in the same

space y time before it was occupied, and y time after it was occupied are safe from infectious

particles. This leads to a contradiction.

Definition 5. Spatial Enveloping: Spatial enveloping is the act of considering the surround-

ing areas of a specific exact point in space to account for inaccuracies. We achieve enveloping

in this work by having zones accounting for areas that are large enough (at least ϵ square

feet) to be self-contained (e.g., meeting area, elevator).

Figure 12 shows an example of the effect of spatial enveloping. Notice that MO1 enters

the floor and leaves without being in contact with any other MOs. However, even though

MO2 does not cross path directly with MOinfected, they cross path at the enveloped space

of MOinfected, which we consider as a contact.

36

!

!"!"#$%&$'

!"(
!")

Figure 12: Example of three different MOs interacting in a space where each zones has an

area of ϵ2.

!
!

!

Figure 13: Two different MOs with different average sensors inaccuracies radius (θ), where

a MO is located at the center of a zone and surrounded by enveloping zones.

Assuming that the average moving object’s location sensor error is θ, we pick that average

error to be the radius of the circle centered at the moving object’s sampling location (Figure

12). We define θ in terms of ϵ as θ = xϵ. To ensure inclusive enveloping, we need to include

all the zones (cells in the figure) that overlaps with the circle centered at the MO. In Figure

13, we show two examples with different inaccuracy values for different localization devices

(θ values).

37

Infected
MO1

County
Health

Department

MO2

MO3

Figure 14: CA and MOs interacting to achieve exposure measurement and close contact

detection.

The correctness of our spatial enveloping scheme can be proved as follows:

Proof. Assuming that the radius of localization devices error is θ, which equals xϵ. This

implies that 1) the sensed point is contained within the circle centered at the moving object

and has the radius is xϵ. 2) The square zone (or group of square zones) that perfectly contains

the circle (circle fit within and tangent to four sides of the square) is larger in area than the

contained circle. That is, minimum the square with the area (2xϵ)2 that is centered at the

moving object. Now, assuming that the sampled point error renders the point outside the

containing square with the area (2xϵ)2, that is centered at the moving object, also knowing

that θ = xϵ, leads to a contradiction.

Definition 6. Moving Object (MO) is a user who is possessing a localization device (e.g.,

cellphone with a GPS sensor), and has the ability to change their location at any time (i.e.,

move around in the system’s spatial map). MOs sample locations and store them locally in

a trajectory data format: {.., (Zi, tsi), (Zj, tsj), ...}

Definition 7. Trusted Central Authority (CA) is a trusted agent (e.g., a county health

department) that all MOs trust to stream their trajectory data to, and request infected tra-

38

jectories from, in an anonymized and encrypted fashion (Figure 14). The role of CA is to

keep track of infected MOs and informing all MOs in the system with newly infected MOs in

order to conduct the contact tracing tasks and/or the exposure measuring task.

3.2 Contact Tracing Framework

Our framework, called PriDIER (Privately Detecting Indoors Exposure Risk), is an in-

frastructure of participatory users (MOs) storing their trajectories locally at their end and

a CA that manages infected trajectories. Once an MO becomes infected, it notifies and

submits its (infected) trajectories to the CA—an infected MO is a user who had a close con-

tact with an infected user, has an exposure risk, or medically tests positive for a respiratory

transmitted disease. The CA informs the MOs of infected trajectories, enabling them to

carry out contact tracing locally to protect their privacy.

Upon receiving an infected trajectory, an MO executes a temporal aggregation join on the

received trajectory and its own to determine if any close contact has occurred and the total

risk exposure duration. The total duration of exposure could be applied to the HealthDist

Quanta Calculator [14], and users can determine their potential risk of exposure.

The formalization of the problem that PriDIER framework solves is as follows:

Problem: Given a set of infected users trajectories Ti and non-infected users trajectories

T , detect the close contacts between each non-infected trajectory and all infected ones, and

measure the exposure risk from multiple infected sources, while preserving the privacy of the

users.

3.2.1 Contact Tracing

Contact tracing (CT) [17] is a category of analytics that determines whether two objects

have come within close distance of (i.e., intersects with) one another for a certain period

of time. In the context of the COVID-19 pandemic, the US Centers for Disease Control

and Prevention (CDC) has broadly defined the following three criteria for two people to

39

be declared in close contact indoors or outdoors: (i) they both were within 6 feet (≈1.8

meters) of one another without wearing masks; (ii) one of the two persons is infected, which

is considered up to two days before the infected person has developed symptoms; and (iii)

the cumulative total time of contact is 15 minutes or more [19].

Clearly, the first requirement is spatiotemporal, where the individuals have to be within

the same space at the same time, while imposing a constraint on the spatial dimension (i.e.,

6 feet). The second criterion captures the exposure to the virus, which is mandatory for the

infection to take place. The third criterion is the duration of contact(s), which captures the

duration of exposure to the virus in a cumulative fashion. The total durations of exposure

is based on estimation of the viral load and a relative metric called “quanta”, which can

be translated to the probability estimates of viral infection1 [14]. In other viral respiratory

infections contexts, the CDC criteria for close contacts can be applied for the purpose of

contact tracing with possible differences in the exact temporal duration and spatial distance

requirements.

There are two forms of spatial intersection that must be considered when performing

contact tracing: (i) direct contact, and (ii) indirect contact. Direct contact occurs when

an infected and susceptible person share the same location at the same time, while indirect

contact occurs when the two individuals share the same location at different times within

a given interval. Based on the CDC criteria discussed above, there is a need to calculate

an individual’s total risk of viral exposure by considering the cumulative durations of all

contacts both direct and/or indirect.

To demonstrate the challenges of contact tracing, that requires the implementation of

an aggregate spatiotemporal join query, consider the following scenario shown in Figure 15

[36].

Example 3: Consider three trajectories {A,B,C} representing three different people

walking in a building. Each consists of multiple points (i.e., A = {a1, . . . , a11}, B =

{b1, . . . , b11}, C = {c1, . . . , c11}). One person is infected with COVID-19 and the infected

trajectory is B (i.e., the green dotted line), and A has 3-second stops (i.e., a point with 3

seconds duration), and C has 1-second stops.
1CovidReduce: https://db.cs.pitt.edu/covidreduce

40

A

C

B

a1

a2

a3 a4

a5

a6 a7

a8

a9

a10

a11

c1

c2

c3
c5c4

c6 c7

c8

c9

c10

c11

Indoors
Floor

Temporal
Window

Trajectory
Points

Contact
Points

Spatial
Window

Figure 15: Example of direct and indirect contacts.

By visually examining the trajectories, we can easily identify the direct contacts, which are

{a5, c9} and the indirect contacts, which are {a2, a6, c1, c5, c8, c10}, but not the total duration

of all the contacts. The accumulated duration of the contacts define the degree of exposure,

and according to the CDC guidelines, to find the contacts we need to consider a spatial window

(i.e., the green dashed circles) and a temporal window denoted with the two non-filled points

with a dashed outline and connected with a dashed line.

Thus, A has the highest risk of exposure with accumulated duration of contact of 9 sec-

onds, compared to C, which has 5 seconds.

In PriDIER, we consider both forms of contacts. The segmentation of the spatial layout

into zones assures that indirect contacts will be considered. In addition, the employment of

spatial enveloping (def. 5) and temporal enveloping (def. 4) in our framework will insure

the consideration of indirect exposure to residual particles in the air after an infected user

leaves a specific zone.

41

3.2.2 Threat Model

In a fully privacy protected system, under no circumstances any private information of

an individual user is exposed to any other user and non-trusted actor. This information in

PriDIER includes users’ identities, and their current and past locations.

In the PriDIER framework, two actors interact in order to carry out the CT task, the

Moving Objects (MOs) and the Trusted Central Authority (CA). Each actor stores and

exchanges portion of the data needed for contact tracing.

• MOs store their own trajectory locally. This way the privacy of users is not jeopardized

through moving their location data out of their device. The only case in which users’

trajectories are moved out of their devices is in case of positive detection of infection.

Then, MOs stream their own trajectories to the CA as required by law.

• The CA keeps a list of MOs anonymized identifiers in the system for authentication/identification

and communication purposes. Also, CA stores locally the infected trajectories only that

MOs voluntarily have streamed to it in an anonymized fashion. Lastly, The CA sends

the anonymized identification of an individual user and their trajectory to another user

only if the individual is positively infected.

In the context of CT, similar to an infected MO that sends to CA its trajectory, CA

releasing the trajectories of infected MOs to non-infected MOs is not considered a privacy

violation. Hence, neither MOs nor CA leak any private information.

3.2.3 Communication Protocols

In a mobile client-server environment, there are two ways data is transmitted between

the server and mobile devices: Push-based and Pull-based.

3.2.3.1 Push-based Protocol

In an optimized Push-based protocol, the CA broadcasts the infected trajectories to all

the MOs in the system. It is performed in three phases.

42

Phase 1: The CA sends out all the zones that the infected trajectories occupied (i.e.,

{Z1, ..., Zn}) to each participating MO in the system. Then each MO responds to the CA

with the zones that overlap with the ones received from the CA in the first round.

Phase 2: For each MO, based on the received zones at the CA in Phase 1, the CA sends

the timestamps along with all the zones Zi that overlap with each particular MO’s zones in

the format

{..., (Zi, tsi, ci), ...}

where ci is the count of how many infected MOs have shared the same zone Zi at the same

timestamp tsi overall.

Phase 3: Lastly, each MO conducts contact detection by executing a temporal aggregation

join of its own trajectory and the received infected trajectory from the CA.

In case a close contact is detected, the MO sends back to the CA their own trajectory.

3.2.3.2 Pull-based Protocol

In an optimized Pull-based protocol MOs request the infected trajectories from the CA.

It is performed in two phases.

Phase 1: Participating MOs send out a pull request message to the CA with the zones

that they have occupied (i.e., {Z1, ..., Zn}). Then the CA sends response messages to MOs

containing the timestamps along with all the zones Zi that overlap with each MO zones

sent in the pull request in the format {..., (Zi, tsi, ci), ...} where ci is the count of how many

infected MOs have shared the same zone Zi at the same timestamp tsi overall.

Phase 2: Each MO conducts contact detection by executing a temporal aggregation join of

its own trajectory and the received infected trajectory from the CA. In case a close contact

is detected, the MO sends back to the CA their own trajectory.

43

3.2.3.3 Discussion

There is a trade-off between an optimized communication between the CA and MOs

and location privacy preservation. Specifically, MOs need to reveal their past locations to

the CA for the the CA to filter out locations that a given individual (MO) has not visited.

Following is an analysis of the optimized and non-optimized communication protocols in

terms of performance and privacy preservation (see Table 4).

Performance: In terms of performance, the analysis focuses on: the number of rounds

(exchanged messages), and the frequency of pulling (or pushing) trajectories.

The number of exchanged messages in the Push-based protocol is higher than its in

the Pull-based. In the Push-based protocol, the number of messages is four compared to

three messages in the Pull-based. This results in more processing and potential energy

consumption at the MOs devices due to sending/receiving messages.

In the Push-based protocol, the frequency with which the CA sends (pushes) the infected

trajectories to the MOs can be reduced to whenever new infected trajectories are available

to be pushed. On the other hand, in the Pull-based protocol, MOs are oblivious to the

availability of new infected trajectories. This results in potential pulling requests from MOs

for infected trajectories even if there are no new ones to process.

Privacy Threat: Considering the threat model discussed in Section 3.2.2, when MOs share

their locations (zones) without timestamps during the communication with CA, they do

reveal their locations that they have occupied, even though they are not declared infected

yet. This results in less costly processing at the MOs sides, since the amount of zones received

from the CA will be reduced significantly to the only relevant ones.

The non-optimized pull-based and push-based protocols do not include the step where

zones are sent by MOs to the CA. This results in each MO receiving the complete set of

all infected trajectories from the CA for processing the temporal aggregation join which

implies more trajectories to process, in addition to higher energy consumption due to longer

transmissions of receiving longer longer messages from the CA.

44

Table 4: Push-based and Pull-based protocols usage trade-offs.

Optimized

Push-based

Optimized

Pull-based
Push-based Pull-based

Performance

- Four rounds

- Only when new

data is available

- Relevant subset of

infected trajectories

- Three rounds

- Potential

unnecessary requests

- Relevant subset of

infected trajectories

- Three rounds

- Only when new

data is available

- Complete set of

infected trajectories

- Two rounds

- Potential

unnecessary requests

- Complete set of

infected trajectories

Privacy

Threat
Revealing zones Revealing zones None None

3.2.4 MO components

The MO side of PriDIER consists of three components (Figure 16).

Query Processor In this component, the actual processing of the contact tracing operations

takes place. There are multiple ways to execute the temporal aggregation join of the local

trajectory and the received infected trajectory from the CA to determine close contact, each

utilizing different optimizations and performance characteristics. The input is the infected

trajectory one point at a time (1○ in Figure 16), and the final output is the input infected MO

points at which the two MOs were in contact in a specific location at a certain time, and the

total cumulative duration of contacts (5○ and 6○ respectively in Figure 16). The duration

output, and the max timestamp are fed to the next component, namely the “Exposure

Aggregator” (4○ in Figure 16).

45

Query Processor

Trajectory
Aggregator

Exposure
Aggregator

1

2

Query
Answers

3

4

5

7

+ / - Total
Duration

MaxTS

Duration

headtail

. . .

. . .

6

Figure 16: PriDIER at the MO side.

Exposure Aggregator The key observation underlying this component is that viral load

is not attributed to a single close contact with a specific infected MO. A specific MO can be

exposed to significant viral load through contacting many different MOs while not having

any close contact with any of them. For example, having a contact of 10 seconds with 90

different infected people within two days can lead to high viral exposure. In the case of

COVID-19, according to [14], σ = 2 (i.e., two days is the time window at which we keep

accumulating the viral load).

The Exposure Aggregator keeps track of all the exposures in seconds for the past σ days

and calculates the viral load across MOs cumulatively—not only cumulatively within a single

infected MO, but cumulatively across multiple MOs.

The Exposure Aggregator can be implemented using a linked list with head and tail

pointers (Figure 16) and a short integer variable. For each temporal aggregation join con-

ducted with infected trajectories (output of the Query Processor), the aggregated duration

along with the latest timestamp of contact are appended to the tail, and the short integer

variable is incremented with that duration. Each time a node is appended at the tail (tem-

poral aggregation and maximum timestamp), the head is checked. If the timestamp is more

46

than two days earlier than the current time, the head node is removed and the node’s du-

ration is subtracted from the short integer that records the total duration of viral exposure

across MOs. For each input to the component, it determines and outputs whether there is

a risk of contracting the virus or it is safe by passing the total duration to the HealthDist

Quanta Calculator [14] (7○ in Figure 16).

Trajectory Aggregator This component provides an efficient buffering mechanism for the

received infected trajectories that helps eliminating repeated processing of trajectory points

while processing aggregated temporal joins. When the MO is busy processing points that

belong to a certain infected MO trajectory, there is a possibility of having more infected

trajectories arriving at the MO from the CA (2○ in Figure 16). This potentially occurs

in case there are multiple CAs in different environments, where participating MOs send

multiple Pull-based requests to CAs and then receive responses from multiple CAs. Another

context at which this occurs is if the communication protocol employed is a Push-based

where the CA broadcasts the infected trajectory on regular basis regardless of the number of

CAs (Section 3.2.3). Typically, infected trajectories are processed sequentially in the order

with which they were received. The issue with this approach is the potential processing of

points multiple times. This could happen if the received trajectories belong to MOs that

already were in contact. This is inevitable since the trajectories at risk that are sent to the

CA are the ones that contacted other infected (or at risk) ones.

Thus, the Trajectory Aggregator combines and accumulates the arriving trajectories such

that it feeds the Query Processor only unique points, shared by multiple trajectories (3○ in

Figure 16). In effect, it performs a union operation, which can be implemented using a

simple unordered hash table that keeps counting the number of times a specific point (zone

and timestamp) trajectory belongs to an infected trajectory. This way, each point in this

hash table is processed (fed to the Query Processor) once, while accounting for the duration

to be the total times the point has been received.

47

1

TS

Zones
Counter

. . .

. . .

h()

null

-1

Zone Counter

1

13

2

3 1

......

Zone Counter

4

28

2

......

Zone Counter

3

7

1

......

Figure 17: Global Infected Trajectory component in the CA.

3.2.5 CA Components

The CA side of PriDIER consists of two components.

Global Infected Trajectory Figure 17 shows this component that accumulates and com-

bines all the infected trajectories, received from MOs, into a large single infected trajectory,

namely Global Infected Trajectory. This global trajectory stores the information of all in-

fected trajectories in the past Wt seconds, where Wt is the time window that is relevant for

contact tracing. For each second in Wt, no known infected MOs ever existed in any zone in

the system, multiple MOs existed in a single specific zone (e.g., a meeting room), or multiple

MOs simultaneously existed in different zones at the same timestamp. This results in having

for each timestamp (second) no zones, single zone, or multiple zones. To account for the

exposure measure, we count the number of infected MOs that existed in the same zone at

the same timestamp.

48

This component can be implemented using two circular buffers of fixed size arrays. The

size of the two arrays is the number of seconds (timestamps) in the time window Wt. The

first array stores the actual timestamps, and the second stores a pointer to a hash table

that stores zones with counters. The zones are the ones at which MOs occupied in the

system while they were infected (or at risk), and the counter is number of times the zone

was received as part of a trajectory at that corresponding timestamp.

Each time an infected trajectory is received, the timestamp is hashed into an element

in the circular buffer (1○ in Figure 17), the timestamp (TS) (2○ in Figure 17) and the hash

table of that array element is updated for that specific zone. If an entry exists for that zone,

then the counter is incremented. Otherwise, the zone is stored in the hash table with a

counter value of 1 (3○ in Figure 17).

Checkpoint Keeper This component prevents re-sending the same infected trajectory

points to MOs. By keeping track of the latest sent timestamp for each MO, subsequent

responses to MOs will not contain the parts of the Global Infected Trajectory that were

already sent to a given MO.

Specifically, this component is a look up table that keeps the latest timestamp that each

participating MO has received so far from the CA and can be implemented simply by having

a single hash table. In a steady state, the structure is updated for a specific MO whenever

the CA sends the Global Infected Trajectory to that MO. That entry is not affected by the

arrival of new infected trajectories at CA as long as each timestamp in this structure is older

than the oldest timestamp in the recently arrived trajectory. If the latter is not the case, the

structure is rest by updating all the timestamps in all entries to match the oldest timestamp

in the newly received infected trajectory. This ensures that subsequent responses to MOs

with the Global Infected Trajectory include the newly received infected trajectory.

49

2
3

1

4

.

.

.

M

M

M

M

.

.

.

MEMORY

head

tail
Interval
tree

!!, #$"! , #$#! , !!$%, #$"!"#, #$#!"# , …

4,[105, ∞]

3,[102,103]

3,[104,105]

2,[103,104]

2,[101,102]

1,[100,101]

3,[202,203]

T

S

P

PR

R

R

S

P

R

!! , {!!$%}, {!!$&},	…

!!, #$!,)! , !!$%, #$!$%,)!$% , …

Typical
pointer
Temporal
pointer

P

Infected
MO

Trusted Central
Authority (CA)

MO 1

MO n

MO i

..

.

..

.

Figure 18: e-Racoon access structure for MO i that has occupied zones 1, 2, and 4 on a

Monday (M) and zone 3 on Monday (M) and Tuesday (T). Note the data exchange protocol

between MO and CA via the messages S○ (Send), P○ (Pull), and R○ (Response).

3.3 Temporal Aggregation Join Query

The temporal aggregation join query captures the aspects of contacts (including close

contacts) for respiratory diseases. That is, it answers whether two people were in contact,

and how long they remained in contact over multiple instances (i.e., cumulatively). Formally:

Definition 8. Temporal Aggregation Join (TAJ) Query: Given two trajectories Tl (size n)

and Tq (size m), find the cumulative temporal durations of contacts between Tl and Tq within

the previous Wt seconds window, considering a spatial window of ϵ meters.

Recall, Tl is the MO local trajectory and Tq is the query trajectory sent by CA. In case

the cumulative temporal duration of contact = 0, then no contact has occurred. In case the

cumulative temporal duration of contact ≥ δ, then a close contact has occurred.

50

3.3.1 TAJ Query Processing

While executing TAJ query for CT and exposure risk, an MO needs to consider local-

ization inaccuracies and indirect contacts due to residual air particles (or exposed surfaces)

after an infected person leaves a zone. We employ spatial and temporal enveloping (Def.

5 and Def. 4) to account for both. Figure 12 shows an example of the effect of spatial

enveloping. Even though MO2 does not cross path directly with MOinfected, they cross path

at the enveloped space of MOinfected (red and grey zones), which we consider as a contact.

A TAJ query could be processed by different approaches. The naïve approach is to store

the local trajectory in a raw format, and use a nested loop join on both spatial and temporal

dimensions (i.e., zone and timestamp) followed by aggregation (i.e., sum).

An optimized approach utilizes in-memory indexing to store the local trajectory to speed-

up the join operation. One way is to employ a typical spatial index (e.g., Kd-tree), and then

process temporal data as is with no optimizations. Another alternative is using a temporal

index to index timestamps (e.g., Interval trees) and then process the spatial data as is.

Clearly, using a temporal index will be less efficient since the data is temporally dense. That

is, a MO will always occupy a specific place at each second, but it will not exist at more

than one place at the same time (timestamp). However, a MO could occupy the same zone

at different times.

Both approaches optimize the join in one dimension and require a further processing step

in the other dimension. This observation led us to develop e-Racoon, an access structure

that optimizes both dimensions and is tailored to TAJ query processing.

3.3.2 The e-Racoon Access Structure

In this section we present our novel access structure, dubbed e-Racoon, that efficiently

processes the TAJ query (Def. 8), discussed briefly in [36], and inspired by the Racoon access

method [2].

Overview e-Racoon is a multi-level in-memory access structure (Figure 18) that stores

zones and intervals. The first level is a spatial grid that stores zones that MOs occupy. Each

51

spatial bucket in the grid stores a second temporal level. The granularity of this temporal

level (e.g., day, half day, or hours) varies based on the application/data. In our case of CT,

we pick days. The temporal bucket stores a single pointer to a data structure that stores

time intervals during which MOs occupy a particular zone on a particular day (the spatial

and temporal buckets). We choose Interval trees [39] as an augmented data structure to

store intervals, and Red-black trees [11] as the underlying implementation because of their

self-balancing feature that keeps the cost of their traversal predictable.

Each node of an Interval tree stores a zone, a time interval, and three pointers. The

intervals are needed for answering exposure measuring queries and two pointers are used for

the left and right children nodes of the Red-black tree. The third pointer points to the node

which contains the interval that temporally proceeds the current (stored) one (thick, red

arrows in Figure 18). As discussed in Section 3.3.3, these temporal pointers could potentially

point to a node that exists in a different tree, since a MO has to change their location to

mark the time of departure of a certain zone.

e-Racoon stores intervals in the form: [tarr, tdep], where tarr is time of arrival and tdep is

the timestamps of departure from a particular zone. As location is being sampled by a MO,

points sampled consecutively at the same zone are not inserted in the structure, and the MO

is considered in the same location until the MO leaves that zone (i.e., the sampled location

is of a different zone). This reduces the memory footprint, and alleviate the computational

processing at the MO side.

e-Racoon keeps a global tail pointer that points at the very last node stored in the whole

structure (latest interval in the local trajectory). The most recent node will have an interval

that has its tdep marked as ‘∞’, which implies that the user is still at the same zone. This

happens when a subsequent node is ready to be inserted (i.e., MO left the current zone).

Insertion When a MO changes zones, a new Interval tree node is inserted with a new zone,

and mark the beginning of the interval to be the time of arriving at the zone (i.e., tarr) and

the end of the interval to be ∞. After that, we look up the tail of e-Racoon (most recently

inserted node in the structure) and update the end of the interval from being ‘∞’ to tarr − 1

and update the temporal pointer to point at the newly created node.

52

Inserting the node is done by looking up the bucket of the new zone, then retrieving the

temporal bucket that represents the day at which we insert the node. In case no bucket

exists that resembles the day, a new one is created, a new empty Interval tree is initialized,

then a typical Interval tree insertion is performed.

Deletion and Update e-Racoon does not update or delete nodes in Interval trees, because

of the nature of trajectory data (i.e., no change of time or location in the past). Instead, we

expire (i.e., delete) a whole tree that is stored in the bucket that resembles a day. Data is

kept in the e-Racoon structures for certain number of days depending on the contact tracing

time window. For instance, in case of COVID-19, we need only to keep the data for a week.

For safety, an extra week could be stored. Deletion is performed by traversing the tree and

freeing the memory back to the system. Thus, no delete or update re-balancing.

Search The search operation implements the join of two trajectories and maps looking up if

a point in the infected trajectory results in contact with the local trajectory to the stabbing

problem [45]. First, the zone of the received point is looked up. If the spatial bucket for that

zone is not found, it is declared a no contact. Otherwise, the temporal bucket is looked up

from the point’s timestamp. If it exists, the timestamp is searched in the Interval tree via

stabbing. In case the timestamp stabs an interval, a contact is declared, and the duration is

computed as part of the result of the query.

3.3.3 Optimizations

We discuss two e-Racoon and one PriDIER optimizations.

e-Racoon Temporal Pointers Temporal pointers to support temporal aggregation (i.e.,

sum of intervals) to compute durations of CT are inspired by three observations:

1) Spatial and temporal locality aspects of human trajectory contacts. If two MOs are

in contact at a certain time and location, it is highly likely that contact will last for some

period of time. To reduce the access to the structure through the spatial and temporal

buckets layers, and stabbing for each point, we access the temporal pointer in the last node

(with stabbed interval) and compare the next points in the received trajectory linearly.

53

2) String searching. Computing the duration of the join of two trajectories resembles the

longest common substring in string searching. This will result in processing the temporal

aggregation join query similar to comparing two trajectories using string searching. However,

the structure is accessed again (stabbing Interval trees) whenever a mismatch is encountered

in the linear search, providing a means to efficiently jump to the next point of contact.

Lastly, 3) Range query support in the B+-tree. Linking the nodes of the access structure

across trees and buckets is inspired by the B+-tree leave nodes level linked list. In the

B+-tree, the leave nodes level is linked forming a linked list that sorts the keys in the leave

nodes. In e-Racoon, the order of linking is temporal.

Therefore, linking the nodes in e-Racoon results in turning the time complexity of pro-

cessing the query from linearithmic time (accessing the structure and stabbing for all received

points) to logarithmic and linear (accessing the structure through the two layers once and

then linearly traversing the rest of the nodes) assuming that both trajectories are in full

contact. The full complexity analysis is in Section 3.3.4.

Moreover, having the global ‘head’ pointer to the very first node inserted and a global

‘tail’ to the very last node inserted, facilitates efficient linear traversal of the structure in

temporal order to reconstruct and stream the local MO trajectory to the CA (message S○

in Figure 18). This is achieved by accessing the global ‘head’ node, linearly and temporally

ordered traversing of the nodes, and terminating at the global ‘tail’ node. The trade-off is

that e-Racoon requires the Query Processor component in the MO side of PriDIER (Section

3.2.4) to have the input trajectory points temporally ordered.

e-Racoon CT Data Exchange e-Racoon optimizes the contact tracing protocol discussed

in Section 3.2.3, since the MO local trajectory will be stored in the format:

{..., (Zi, [tsli , tshi
]), ...}

This results in a reduction of points sent by using intervals instead of timestamps. An

example with the messages P○, and R○, and S○ is shown in Figure 18.

CT Early Termination Inspired by [41, 3], we reduce the cost of processing the temporal

aggregation join query by stopping the processing once reaching a duration that meets the

54

Table 5: e-Racoon operations’ time complexity.

e-Racoon Operation Time Complexity

Point Searching O(log(m))

Contact Searching O(log(m)(n− β + γ) + β − γ)

Point Insertion O(log(m))

Tree (size m) Deletion O(m)

contact tracing criteria (i.e., ≥ δ). For example, in the case of COVID-19, reaching the

cumulative contact duration of 15 minutes (900 seconds) across all contact incidents fulfills

the close contact criteria. Thus, the query processing is terminated, and the local MO

trajectory is sent to the CA for further contact tracing querying.

3.3.4 Complexity Analysis

Here we discuss the time complexity of the e-Racoon structure. The summary of the

time complexity analysis is shown in Table 5.

Point Searching Since humans are not able to occupy different locations at the same

timestamp (second) while walking indoors, in e-Racoon there will be at max a single interval

that a point potentially stabs in the structure. This means that the complexity of finding

whether a point results in a contact involves four steps.

First, the spatial hashing bucket look up is of O(1). Second, in case the spatial bucket

exists, the temporal bucket within the spatial bucket look up is of O(1). Third, in case the

temporal bucket exists, it will contain a pointer to the root of the target Interval tree to

perform the stab operation. This is a search in a Red-black tree, which is known to have a

complexity of O(log (m)) [11], where m is the number of nodes in the Red-Black tree. Since

each Interval tree in the e-Racoon structure stores the intervals of a specific day, m is the

number of intervals stored in the Interval tree for a specific zone during a specific day. Thus,

m can be different for each zone on different days. For simplicity, we assume all Interval

55

trees in the structure to have m nodes. This results in an e-Racoon search complexity of

O(1 + 1 + log(m)). We simplify this to be O(log(m)).

Other approaches have different complexities. Starting with the spatial indexing typically

using a Kd-tree, the tree will contain a single node for each unique spatial zone in the

trajectory. That is, if we have z number of unique zones, then the tree will contain z nodes,

and each node will store linearly all the timestamps at which the zones were occupied. This

results in a complexity of O(log(z) + t), where t is the number of timestamps in each node.

It is clear that the value of t will be different for each node, but for simplicity, we assume

that t is the same, and we notice that t is the dominant term, which makes point searching

using a Kd-tree of a linear complexity.

In case of the typical Interval tree indexing, the tree will have a node for each point in

the trajectory. That means a node for each unique timestamp. This results in having a large

and dense tree to store. Thus, in case of a trajectory of size n, the time complexity to search

for a point will be O(log(n)).

Contact Searching Without loss of generality, we provide the e-Racoon time complexity

analysis by defining some variables. In a pair of trajectories, we have α segments that form

continuous points of contacts. The total number of contact points across segments is β

points. Out of the β points, γ points will be stabbed. Those are the first points in each

continuous contact segment (See Figure 19. Note that γ will always be equal to α, since

each continuous contact segment will contain exactly a single point to be stabbed (the very

first point of the segment).

For example, having a pair that has all its points as a contact means the whole pair is a

single segment of continuous contacts that has α = γ = 1 and β = n, where n is the total

number of points in the pair (i.e., length of each trajectory), and having a pair that has no

contact at all means having α = γ = β = 0. Note that a single point of contact in a pair is

considered a continuous contact segment on itself, and it will be part of the β total points,

part of the α number of continuous contact segments, and part of the γ points to be stabbed

for that pair.

56

!	contact segments of total # points

. . .

. . .
A pair of

trajectories
of length $

% first points of each continuous contact segment that will be stabbed
. . .

Figure 19: Illustration of a pair of trajectories of length n, with α contact segments, γ points

to be stabbed, and a total of β contact points across segments.

For the non-contact points, it is clear that each one of them (n−β) will be stabbed. This is

of a complexity O((n− β) log(m)). For the contact points (β), the first point at each segment

(γ) will be stabbed, and then the rest of the points in each continuous contact segment is

processed linearly (β − γ) using the temporal pointer. This results in O(γ log(m) + β − γ),

where the γ log(m) is a result of stabbing the first point in the α continuous contact segments,

and β − γ is the remaining points in the continuous contact that is processed linearly.

Therefore, we have the complexity O(γ log(m) + β − γ + (n− β) log(m)). The result in a

more summarized form is

O(log(m)(n− β + γ) + β − γ) (4)

The best-case scenario is when all points are in contact. This means that α = 1, γ = 1,

and β = n. That means the whole pair is a single continuous contact segment, there is

only a single point to stab, and all points are contact points. Substituting the numbers for

Equation 4 results in a complexity of O(log(m) + (n− 1)) or O(n+ log(m)), which reflects

stabbing the very first point in the trajectory, and then linearly processing the remaining

points. On the other hand, the worst-case scenario is when all points are a non-contact. That

is α = γ = β = 0. Substituting the numbers for the same equation results in a complexity

of O(n log(m)), which reflects stabbing all the points in the trajectory.

57

In case of a typical Kd-tree, recall that z is the number of unique zones in the trajectory,

and t is the number of timestamps in each node (we assume it is the same for simplicity). This

results in a linearithmic complexity of O(n(log(z) + t)) regardless of the contact information.

Similarly, In case of the typical Interval tree indexing, the time complexity to search for

contacts will be O(n log(n)), which is linearithmic.

Point Insertion Inserting a point in e-Racoon, implies that the MO has changed zones.

This is done in two main steps. First, the interval that belongs to the recently changed zone

(the global ‘tail’) is updated by replacing ∞ with the new point timestamp - 1. This is the

time of leaving the previous occupied zone. This is of a constant complexity, since a pointer

to that global tail is kept. Second, a search of the new point is performed on the e-Racoon

structure as discussed above. However, instead of searching the Interval tree, an insertion

is performed. Since Interval trees are based on Red-black trees, the insertion complexity is

O(log(m)) [11], so we have a point insertion complexity of O(log(m)).

In case of a typical Kd-tree, inserting a new point is of a complexity O(log(z)) regardless

of the number of time stamps in the node, since the insertion will be always at the tail.

Similarly, In case of the typical Interval tree indexing, the time complexity to insert a

point is O(log(n)).

Therefore, inserting n points into the e-Racoon structure, Kd-tree, and Interval tree re-

sults in an overall worst-case insertion complexity of O(n log(m)), O(n log(z)), and O(n log(n)),

respectively.

Deletion and Update As discussed in Section 3.3.2, there is no deletion or update of nodes

in e-Racoon’s tree structures. A whole tree is deleted when it expires (i.e., outside Wt) by

traversing it linearly and free the dynamically allocated memory. Thus, we iterate through

the spatial and temporal buckets, and for each Interval tree we free the memory allocated

for each node. Thus, the deletion complexity is O(m).

On the other hand, In case of typical spatial or temporal indexing (Kd-tree or Interval

tree), the deletion operation is costly. This is due to the lack of a handle to the nodes

desired to be deleted. Therefore, the complexity is O(zt) and O(n log(n)) for the Kd-tree

and Interval tree respectively. Recall that z is the number of unique zones in the trajectory,

58

t is the number of timestamps in each node in the Kd-tree, and n is the size of the trajectory.

It is clear that e-Racoon is more efficient in deleting only the nodes needs to be deleted since

m ≪ n and m ≪ z.

3.4 Evaluation

In this section, we present our testbed and discuss the experiments that compare the

different approaches in realizing the PriDIER framework and evaluating e-Racoon’s effec-

tiveness.

3.4.1 Testbed

Infrastructure We implemented the MO’s Query Processor that executes the TAJ query

using the different approaches in our evaluation. All the approaches were coded in C++11.

We ran the experiments on a machine with Intel i7 CPU with 8 virtual cores, running at

4 GHz, and 32 GB of RAM memory. The operating system used is macOS 11.7, and the

compiler is Apple Clang version 12.0.0.

Datasets We use both synthetic and real-world datasets in our experiments.

Synthetic Dataset : We crafted our own synthetic datasets following the same format

used in [13, 12]. We synthesize the datasets to show how different approaches perform under

different real-world characteristics. Those characteristics are based on: (i) the length of the

trajectories (number of points); (ii) the number of unique zones in a trajectory; and (iii) the

duration of contacts in pairs of trajectories (i.e. α and β). The datasets are a total of 18

that are split into full contact and no contact datasets. For each split, we vary the number

of unique zones (single zone, mixed, and all unique zones). We also vary the trajectory sizes

(half working day, one working day, and two working days) to mimic a realistic 8am to 5pm

working day hours. The sampling rate for the synthetic datasets is a single point per second.

That is 14,400 points for a half working day, 32,400 for a full working day, and 64,800 for two

working days. The detailed characteristics of all synthetic datasets are presented in Table 6.

59

Table 6: Characteristics of the synthetic datasets.

Dataset Trajectory Size # of Unique Zones α β

DS_1 14,400 14,400 1 14,400

DS_2 32,400 32,400 1 32,400

DS_3 64,800 64,800 1 64,800

DS_7 14,400 3,601 1 14,400

DS_8 32,400 10,802 1 32,400

DS_9 64,800 21,604 1 64,800

DS_13 14,400 1 1 14,400

DS_14 32,400 1 1 32,400

DS_15 64,800 1 1 64,800

DS_4 14,400 14,400 0 0

DS_5 32,400 32,4000 0 0

DS_6 64,800 64,800 0 0

DS_10 14,400 3,601 0 0

DS_11 32,400 10,802 0 0

DS_12 64,800 21,604 0 0

DS_16 14,400 1 0 0

DS_17 32,400 1 0 0

DS_18 64,800 1 0 0

60

Real-world Dataset : We experiment with [53, 54], which is a collection of taxi trajectories

in the city of Beijing. Ee segment the city of Beijing into zones of 2Km2 and we regard taxi

trajectories as indoor human trajectories. We pick two pairs of trajectories of the lengths

82 points and 4004 points, and we name them BJ_S (for short) and BJ_L (for large),

respectively.

Approaches We compare our proposed approach against other baseline approaches to im-

plement TAJ queries, as well as the state-of-the-art approach. We discuss those approaches

briefly next.

Naïve (NLJ): In this approach, trajectories are stored in raw format as temporally or-

dered points. Each point contains the zone and the timestamp at which the point was

sampled by the localization device. We process the TAJ using a Nested Loop Join approach,

where we compare each point from the received trajectory with the points in the raw local

trajectory.

Temporal Index : We implement a single Interval tree that stores points as intervals. Note

that there is no repetition of locations per second, since humans are not able to exist in more

than one location at a certain second. We use the stabbing approach [45] of each point in

the received trajectory to check if a contact exists.

Spatial Index : We implement a single typical Kd-tree that stores spatial points in nodes,

and then stores timestamps at which MOs occupied that space linearly in a list. Contrary

to time, humans are able to occupy the same space at different times. We use the zone’s 2D

dimensions as the Kd-tree dimensions in our implementation.

CHLZZ : This is the current state-of-the-art approach presented in [8]. We implement

their approach in our framework, which is a spatial grid with a single Interval tree in each

spatial bucket.

e-Racoon: We experiment with three variations of the e-Racoon structure. The original

e-Racoon discussed in Section 3.3.2, and two variations with no temporal pointers, namely

Racoon BST and Racoon RBT. Where BST means that the underlying implementation is a

basic Binary Search tree, and RBT means that the underlying implementation is a Red-black

tree.

61

Metrics We measure latency (response time) and storage (memory footprint) as metrics to

evaluate our proposed approach.

Latency : We measure the wall-clock time consumed to fully process a TAJ query by an

approach in milliseconds, and we measure the wall-clock time consumed to insert points into

the access method of an approach in nanoseconds.

Memory footprint : We measure in bytes the amount of memory consumed by each ap-

proach during its life-cycle.

3.4.2 Experiments

We carried out six experiments using both the synthetic dsataset (DS_1 - DS_18) and

the Beijing dataset (BJ_S and BJ_L). All the results are averaged from 10 runs, executing

the TAJ queries serially. Note that the Naïve (NLJ) approach has no memory footprint and

no point insertion latency since it has no in-memory data structures.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 20: Memory footprint in bytes for datasets DS_13.

62

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 21: Average point insertion latency for datasets DS_13.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 22: Query processing latency for datasets DS_13.

63

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s
Naïve (NLJ)

Temporal Index
Spatial Index

CHLZZ
Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 23: Memory footprint in bytes for datasets DS_14.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 24: Average point insertion latency for datasets DS_14.

64

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 25: Query processing latency for datasets DS_14.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 26: Memory footprint in bytes for datasets DS_15.

65

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 27: Average point insertion latency for datasets DS_15.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 28: Query processing latency for datasets DS_15.

66

3.4.2.1 Experiment 1 (DS_13, DS_14, DS_15)

DS_13 exhibit an extreme case where MOs are fixated at a single zone. Note that the

memory footprint is comparable for all approaches since all tree structures stores a single

node of a single zone that is occupied for four hours (single interval), except the Spatial

Index, where timestamps stored linearly (no intervals). CHLZZ has a single spatial bucket

with a single node Interval tree. The same for the e-Racoon and its variations, but with

an extra temporal layer of buckets. This results in Spatial Index processing latency close

to the Naïve (NLJ) approach due to linear scanning of timestamps. The Temporal Index’s

processing time outperforms all the other approaches (3.15ms), since there are no hashing

buckets and extra layers as in CHLZZ, and e-Racoon and its variations. e-Racoon performed

slightly under its variations and CHLZZ (CHLZZ 22ms, Racoon RBT 22.12ms, and e-Racoon

26.39ms), due to the extra check for the temporal pointer for each stabbed point in hope for

a contact occurrence. The point insertion latency is similar for all approaches. DS_14 and

DS_15 exhibit similar results.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 29: Memory footprint in bytes for datasets DS_1.

67

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 30: Average point insertion latency for datasets DS_1.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 31: Query processing latency for datasets DS_1.

68

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s
Naïve (NLJ)

Temporal Index
Spatial Index

CHLZZ
Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 32: Memory footprint in bytes for datasets DS_2.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 33: Average point insertion latency for datasets DS_2.

69

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 34: Query processing latency for datasets DS_2.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 35: Memory footprint in bytes for datasets DS_3.

70

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 36: Average point insertion latency for datasets DS_3.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 37: Query processing latency for datasets DS_3.

71

3.4.2.2 Experiment 2 (DS_1, DS_2 and DS_3)

DS_1 dataset is another extreme where MOs are constantly walking and occupying

unique zones. The Spatial and Temporal Indexes consumed higher memory than the other

approaches which have comparable results. The Spatial Index stores a single node for each

point (14,400 nodes), each containing a single timestamp, and the Temporal Index stores a

single node for each point (one second interval). The other approaches have 14,400 spatial

buckets (with an extra temporal layer in e-Racoon and its variations). Each bucket will be

associated with a tree of a single node (one second interval). This results in comparable

memory footprint consumption across all approaches with the Spatial Index having slightly

less consumption due to storing a single timestamp instead of an interval in nodes. The

highest latency (processing and insertion) is by the Spatial Index and then Temporal Index

respectively due to the larger tree sizes. CHLZZ, e-Racoon, and its variations have similar

results to the Experiment 3.4.2.1. DS_2 and DS_3 exhibit similar results.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 38: Memory footprint in bytes for datasets DS_7.

72

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 39: Average point insertion latency for datasets DS_7.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 40: Query processing latency for datasets DS_7.

73

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s
Naïve (NLJ)

Temporal Index
Spatial Index

CHLZZ
Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 41: Memory footprint in bytes for datasets DS_8.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 42: Average point insertion latency for datasets DS_8.

74

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 43: Query processing latency for datasets DS_8.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 44: Memory footprint in bytes for datasets DS_9.

75

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 45: Average point insertion latency for datasets DS_9.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 46: Query processing latency for datasets DS_9.

76

3.4.2.3 Experiment 3 (DS_7, DS_8 and DS_9)

DS_7 dataset is realistic, where MOs repeat some of the zones they occupy. The memory

consumption is comparable across all approaches except the Spatial Index where timestamps

are stored as is (no intervals). In processing latency, e-Racoon outperforms CHLZZ by a gain

of more than 56% (CHLZZ 24.99ms and e-Racoon 10.86ms). This is a result of the temporal

pointer optimization. It also outperforms CHLZZ by 300ns and the Spatial Index by orders

of magnitude, since the Spatial Index will have oversize nodes of repeated zones with linear

storage of timestamps. DS_8 and DS_9 exhibit similar results.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 47: Memory footprint in bytes for datasets DS_4.

77

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 48: Average point insertion latency for datasets DS_4.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 49: Query processing latency for datasets DS_4.

78

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s
Naïve (NLJ)

Temporal Index
Spatial Index

CHLZZ
Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 50: Memory footprint in bytes for datasets DS_5.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 51: Average point insertion latency for datasets DS_5.

79

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 52: Query processing latency for datasets DS_5.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 53: Memory footprint in bytes for datasets DS_6.

80

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 54: Average point insertion latency for datasets DS_6.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 55: Query processing latency for datasets DS_6.

81

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s
Naïve (NLJ)

Temporal Index
Spatial Index

CHLZZ
Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 56: Memory footprint in bytes for datasets DS_10.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 57: Average point insertion latency for datasets DS_10.

82

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 58: Query processing latency for datasets DS_10.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 59: Memory footprint in bytes for datasets DS_11.

83

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 60: Average point insertion latency for datasets DS_11.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 61: Query processing latency for datasets DS_11.

84

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s
Naïve (NLJ)

Temporal Index
Spatial Index

CHLZZ
Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 62: Memory footprint in bytes for datasets DS_12.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 63: Average point insertion latency for datasets DS_12.

85

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 64: Query processing latency for datasets DS_12.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 65: Memory footprint in bytes for datasets DS_16.

86

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 66: Average point insertion latency for datasets DS_16.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 67: Query processing latency for datasets DS_16.

87

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s
Naïve (NLJ)

Temporal Index
Spatial Index

CHLZZ
Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 68: Memory footprint in bytes for datasets DS_17.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 69: Average point insertion latency for datasets DS_17.

88

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 70: Query processing latency for datasets DS_17.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 71: Memory footprint in bytes for datasets DS_18.

89

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 72: Average point insertion latency for datasets DS_18.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 73: Query processing latency for datasets DS_18.

90

3.4.2.4 Experiment 4 (DS_4 - DS_6, DS_10 - DS_12, and DS_16 - DS_18)

These datasets exhibited similar results to the results of Experiment 3.4.2.3 in memory

footprint and insertion time. However, they differ from Experiment 3.4.2.3 by having no

contacts. This results in e-Racoon slightly under-performing compared to CHLZZ and e-

Racoon variations, because in addition to stabbing to find contacts, the temporal pointer is

accessed in anticipation that the next point in the trajectory will result in a contact.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 74: Memory footprint in bytes for datasets BJ_S.

91

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 75: Average point insertion latency for datasets BJ_S.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 76: Query processing latency for datasets BJ_S.

92

3.4.2.5 Experiment 5 (BJ_S)

The dataset has an average characteristic, and we observe that e-Racoon outperformed

all the other approaches, and outperformed CHLZZ by 37.5% (CHLZZ 0.48ms and e-Racoon

0.30ms). The point insertion is comparable for all approaches. The trade-off is the slightly

higher memory footprint for storing the temporal pointer.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

S
iz

e
 i
n

 b
y
te

s

Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Memory Footprint

Figure 77: Memory footprint in bytes for datasets BJ_L.

93

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 n
a
n

o
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Average Point Insertion Latency

Figure 78: Average point insertion latency for datasets BJ_L.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

Approaches

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s Naïve (NLJ)
Temporal Index

Spatial Index
CHLZZ

Racoon BST
Racoon RBT

e−Racoon

Query Processing Latency

Figure 79: Query processing latency for datasets BJ_L.

94

3.4.2.6 Experiment 6 (BJ_L)

The dataset has an average characteristic as in BJ_S with longer trajectories. e-Racoon

outperformed all the other approaches in processing latency, and specifically outperformed

CHLZZ by more than 75% (CHLZZ 20.07ms and e-Racoon 4.84ms). The point insertion is

comparable for all approaches, and the memory footprint is comparable for all approaches

except the Spatial Index. We attribute this to the repetition of some zones which results

in linear storage of timestamps. This is also clear in the processing latency for the Spatial

Index.

3.4.2.7 Discussion

The experimental results show that e-Racoon outperforms the state-of-the-art approach

(CHLZZ) [8] by more than 56% in realistic synthetic datasets and by up to 75% in real-world

datasets at the cost of slightly higher memory footprint due to storing an extra temporal

pointer per node in the tree structure.

The performance gain in the realistic synthetic datasets with full contacts (α = 1 and

β = n) is consistent with the complexity analysis discussion in Section 3.3.4, where the

time complexity of e-Racoon is linear (O(n+ log (m))). In addition, the synthetic datasets

with no contacts (α = β = 0) show that e-Racoon, its variations, and the the state-of-

the-art approach (CHLZZ) exhibited comparable performance of linearithmic complexity

(O(n log (m))) that is consistent with our complexity analysis discussion in Section 3.3.4.

Finally, e-Racoon should be the choice for processing TAJ queries in realizing our Pri-

DIER and similar frameworks.

3.5 Related Work

Spatiotemporal joins are in the core of contact tracing (CT) and [27] concluded that

specialized spatiotemporal joins perform better than spatial join followed by a temporal join

and vice versa. Thus, we focus on specialized spatiotemporal joins related to CT.

95

P. Chao et al. [8] formulate a trajectory contact search query that aims at finding trajec-

tories that are in contact directly and indirectly. They propose an iteration-based solution

to answer their formulated query. They traverse the trajectory space in a chronological order

looking for direct contacts using BFS or DFS. They also provide two optimizations to im-

prove the time and space efficiency. First, they propose an algorithm that prunes the space

of trajectories that need to be examined. Second, similar to us they use a spatial grid and

interval indexing to build their own Interval Grid Index, that is different than ours. Their

approach is also different than ours since they are not answering an aggregate query, and do

not consider durations of contacts. Also, the solution is centralized where the trajectory of

all users is stored in a single node.

In [57], X. Zhang et al. study the problem of finding contact similarity in uncertain

trajectories. They coin their own contact similarity query and propose an index structure

based on M-trees that stores approximate segments of trajectories and uses k nearest neighbor

query to search for certain contact. In their approach they do not study contact tracing

specifically, and their query is not an aggregate query that considers durations of contacts.

Also, their approach is spatially neutral, while the focus in our work is for indoor trajectories

for contact tracing purpose.

Similarly to [57], in [32], Liu et al. proposes a solution for contact tracing over uncertain

trajectories in indoor environments. They define their own Indoor Contact Query (ICQ)

that finds contact instances between moving objects based on a certain probability threshold.

From those contacts that exceed a certain probability threshold, they calculate the duration

of contact. The approach of their proposed solution is based in its core on a graph model

along with B-tree indexing of all stored raw trajectories. We differ from [32] in our problem

formulation and our approach. We do not use a probabilistic method, do not store raw

trajectories in a centralized environment, and preserve the privacy of users.

REACT is a contact tracing system that is presented in [52]. The authors employ Geo-

Indistinguishability which is based on differential privacy. Also, they give the choice to users

to control the privacy levels. The authors employ R-trees as spatiotemporal index in their

system as opposed to our combination of grid spatial index and interval trees. Our approach

also differs from REACT in the privacy preserving technique by processing data locally.

96

To conclude, to the best of our knowledge, existing contact tracing work ignores the

cumulative duration of multiple contacts and is hence unable to assess the exposure risk in

higher resolution (e.g., [6, 15, 52, 8, 32]). Particularly, these works focus on discrete contacts

with duration constraints on each individual contact incident instead of having a holistic

view of the quanta accumulated over a period of time (e.g., two weeks) [14]. In contrast, our

work formulates a specialized aggregate spatiotemporal join that can take into consideration

the cumulative duration of the contacts for the purpose of viral risk assessment in a privacy

preserving fashion.

3.6 Summary

In this chapter, we discussed PriDIER, our contact tracing framework for privately

detecting indoor close contact and exposure risk across multiple users and from multiple

sources. PriDIER processes the contact tracing query locally at the users devices to pre-

serve their privacy.

In particular, we discussed the difference between the Pull-based and the Push-based

protocols for contact tracing between the CA and MOs. Then we discussed the different

components of the MO and the CA in details. Subsequently, we discussed the temporal

aggregation join query which is at the core of processing the contact tracing queries at

the PriDIER framework and presented e-Racoon, a novel in-memory access structure which

optimizes processing the temporal aggregation joins.

e-Racoon combines spatial grid to stores zones that individual MOs occupy and Inter-

val trees with nodes connected in a linked list that efficiently process trajectory joins and

computes the duration of contacts cumulatively.

We evaluated e-Racoon’s efficiency both analytically and experimentally, and our ex-

perimental results show that e-Racoon outperforms the baselines and the state-of-the-art

approaches used for contact tracing by more than 100% using synthetic datasets and by up

to 75% using a real-world dataset.

Currently, the PriDIER solution considers users interacting in zones regardless of whether

97

users wear masks or not. It is possible to enhance the Exposure Aggregator in MOs (sec.

3.2.4) with a function that quantifies the risk in a more accurate way via considering the

mask factor (e.g., [37]).

98

4.0 Conclusions

In this chapter, we summarize our contributions, shed light on the future extensions and

directions of the work presented, and we discuss the broader impact of this dissertation.

4.1 Summary of Contributions

In this dissertation we aim at optimizing temporally ordered data correlations and spa-

tiotemporal data (i.e., trajectories) aggregate joins. These are often used in two categories

of essential applications, namely health monitoring and contact tracing systems.

In health monitoring systems, live data streams that recently arrive need to be correlated

with full precision. This is a computationally challenging task due to the significant delays

encountered in the production of results. To this end, our first hypothesis is that efficient and

intelligent grouping and processing of pairs of data streams is required in a way that reduces

the delay of producing results, and increases the task throughput according to the task goal.

In contact tracing systems, processing large number of trajectory pairs for calculating

the duration of the multiple contacts, and the cumulative viral exposure by different direct

and indirect contacts from different sources is a computationally challenging and potentially

privacy invasive task. To tackle that challenge, our second hypothesis is that an aggregate

spatiotemporal join query for contact tracing needs to be processed locally on users’ mobile

devices for maximizing their privacy while optimizing its processing.

We addressed the above hypotheses by developing two frameworks:

• Detection of Correlated Data Streams (DCS) framework (Chapter 2): The framework

intelligently schedules correlating pairs of data streams within a micro-batch and across

micro-batches. Furthermore, we developed two novel algorithms that are utilized by the

DCS framework. The first is iBRAID-DCS, which explores the pairs in round robin

fashion, and the second is PriCe-DCS, which uses a priority function based on historical

success rate, cost and PCC to schedule the pairs correlation task [41, 5]. Lastly, we coin

99

nine different policies that our novel PriCe-DCS algorithm can employ when analyzing

consecutive micro-batches. These policies can increase the efficiency when detecting

correlated live data streams and/or address different exploration requirements.

• Privately Detecting Indoors Exposure Risk (PriDIER) framework (Chapter 3): PriDIER

is a distributed framework for processing contact tracing that measures exposure risk

across users in an effective and privacy-preserving manner. We developed two commu-

nication protocols, a push-based and a pull-based for trajectory transmission between

the framework components. Those protocols minimize the exchanged data and reduce

the power consumption at users’ mobile devices at the cost of partial privacy violation

of revealing MOs past locations. Furthermore, we develop and evaluate analytically and

experimentally e-Racoon, a novel in-memory access structure that weaves spatial and

temporal indexing to efficiently process temporal aggregation join queries at a users’

mobile devices.

4.2 Future Work

The work in this dissertation can be extended in many directions, we mention few here:

• Policy Self-tuning DCS - In our current work, we choose the policy manually before

the exploration task is started. One possibility is that after choosing the goal of the

exploration task (i.e., exploration or exploitation), an active learning ML model employ

the most efficient policy within the exploration category to maximize the accuracy and

throughput and minimize the latency.

• PriDIER Data Compression - Given the PriDIER framework nature of processing data

at the users mobile devices and the battery limitations of such devices, it is worth ex-

ploring and evaluating data compression techniques to further reduce the amount of data

exchanged in the contact tracing protocol.

• PriDIER Contact Tracing Protocol - Extending the current Pull-based and Push-based

protocols via studying the period at which a Trusted Central Authority (CA) is pushing

100

data or a Moving object (MO) pull data can facilitate detecting infections and exposure

risks at higher rate.

• Scalable PriDIER - The current framework employs a single CA. This can be computa-

tionally challenging in case of large number of users. A scalabel distributed CA solution

can enhance the user experience and increase the system efficiency.

• Energy Evaluation PriDIER - Due to battery restrictions at the MO devices, measuring

and evaluating the energy efficiency is valuable. This can be achieved by either by

simulation or by developing a prototype and measuring the the energy consumption of

usage and communication.

• Accuracy Aware PriDIER - Developing techniques (e.g., considering mask wearing and

distance) and incorporating existing tools (e.g., [37]) can help reducing inaccuracies and

false positives detection of exposure risk and close contacts further.

• PriDIER Complete System Implementation - Implementing a complete contact tracing

system based on the PriDIER framework would facilitate enhanced understanding of the

environment at which the contact tracing is employed through inferring statistical and

analytical data from the current framework components.

4.3 Broad Impact

This dissertation was motivated by two classes of spatiotemporal-based applications of

great economic and social impact.

The first is health monitoring applications which are used widely in scientific and biomed-

ical research and general business analytics, such as genome sequencing analysis, banking

and e-commerce systems, and bridges monitoring systems. Typically these applications in-

volve a tremendous amount of processing nodes that frequently face failures and down-time.

Those failures and down-times result in significant financial losses.

The work in this dissertation optimizes the operations behind the analytics of monitoring

the health of such processing nodes. The ability to detect signs of failures through correlating

101

the behavior of such nodes to each other and being able to employ contingency plans on time

before the failure occurrence can minimize such losses.

The second is contact tracing applications that are used in many analytics applications,

such as infection detection systems, traffic control systems, crime control systems, ride shar-

ing optimization systems. Those systems rely on detecting contacts among traced objects

in the environment. For example, the COVID-19 pandemic has made a massive impact on

humanity in many fronts, such as human health and world economy. The breakout of a

new pandemic of respiratory diseases is currently a possible threat. Effectively detecting

the early cases of a new breakout disease will significantly prevent normal day-to-day life

disruptions. Achieving this will prevent economical and health losses. Thus, employing a

dynamic, privacy centered, and effective solution for contact tracing and infection detection

helps reducing the losses on all fronts.

The work in this dissertation can be employed by governments (e.g., [21, 22, 40]) and

health organizations to enhance current contact tracing of respiratory diseases to effectively

and accurately detect infections in an organizational and societal levels while acknowledging

the participants data privacy rights.

102

Bibliography

[1] Walid G. Aref Ahmed R. Mahmood, Sri Punni. Spatio-temporal access methods: a
survey (2010 - 2017). GeoInformatica, 23:1–36, 2019.

[2] Rakan Alseghayer. Racoon: Rapid contact tracing of moving objects using smart
indexes. In IEEE MDM, 2021.

[3] Rakan Alseghayer, Daniel Petrov, and Panos K. Chrysanthis. Strategies for detection
of correlated data streams. In Proceedings of the 5th International Workshop on
Exploratory Search in Databases and the Web, 2018.

[4] Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis, Mohamed Sharaf, and
Alexandros Labrinidis. Detection of highly correlated live data streams. In Proceed-
ings of the International Workshop on Real-Time Business Intelligence and Analytics,
2017.

[5] Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis, Mohamed Sharaf, and
Alexandros Labrinidis. Dcs: A policy framework for the detection of correlated data
streams. In Real-Time Business Intelligence and Analytics, pages 191–210, 2019.

[6] Thamer Altuwaiyan, Mohammad Hadian, and Xiaohui Liang. Epic: Efficient privacy-
preserving contact tracing for infection detection. In IEEE ICC, 2018.

[7] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. Exploiting k-constraints
to reduce memory overhead in continuous queries over data streams. ACM Trans.
Database Syst., 29(3):545–580, 2004.

[8] Pingfu Chao, Dan He, Lei Li, Mengxuan Zhang, and Xiaofang Zhou. Efficient trajec-
tory contact query processing. In Christian S. Jensen, Ee-Peng Lim, De-Nian Yang,
Wang-Chien Lee, Vincent S. Tseng, Vana Kalogeraki, Jen-Wei Huang, and Chih-Ya
Shen, editors, Database Systems for Advanced Applications, pages 658–666, Cham,
2021. Springer International Publishing.

[9] Adam Charane, Matteo Ceccarello, Anton Dignös, and Johann Gamper. Efficient
computation of all-window length correlations. In Digital Business and Intelligent
Systems, pages 251–266, 2022.

103

[10] Richard Cole, Dennis Shasha, and Xiaojian Zhao. Fast window correlations over
uncooperative time series. In ACM SIGKDD, pages 743–749, 2005.

[11] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to Algorithms. 4th edition, 2022.

[12] Constantinos Costa, Xiaoyu Ge, and Panos K. Chrysanthis. Caprio: Context aware
path recommendation exploiting indoor and outdoor information. In 2019 20th IEEE
International Conference on Mobile Data Management (MDM), pages 431–436, 2019.

[13] Constantinos Costa, Xiaoyu Ge, and Panos K. Chrysanthis. Caprio: Graph-based
integration of indoor and outdoor data for path discovery. In Proceedings of the 45th
International Conference on Very Large Data Bases, pages 1878–1881, 2019.

[14] Constantinos Costa, Brian T. Nixon, Sayantani Bhattacharjee, Benjamin Graybill,
Demetrios Zeinalipour-Yazti, Walter Schneider, and Panos K. Chrysanthis. A context,
location and preference-aware system for safe pedestrian mobility. In 2021 22nd IEEE
International Conference on Mobile Data Management (MDM), pages 217–224, 2021.

[15] Michael O. Cruz, Hendrik Macedo, and Adolfo Guimarães. Grouping similar trajec-
tories for carpooling purposes. In BRACIS, 2015.

[16] Luping Ding, Nishant Mehta, Elke A. Rundensteiner, and George T. Heineman. Join-
ing punctuated streams. In Elisa Bertino, Stavros Christodoulakis, Dimitris Plex-
ousakis, Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, and Elena Fer-
rari, editors, Advances in Database Technology, pages 587–604, 2004.

[17] Paul C. Erwin and Ross C. Brownson. Principles of Public Health Practice. Cengage
Learning, 2016.

[18] Kaiyu Feng, Gao Cong, Sourav S. Bhowmick, Wen-Chih Peng, and Chunyan Miao.
Towards best region search for data exploration. ACM SIGMOD, pages 1055–1070,
2016.

[19] The US Centers for Disease Control and Prevention. Covid-19 close
contact. https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/
determine-close-contacts.html.

[20] Thriyambakam Krishnan Geoffrey J. McLachlan. The EM Algorithm and Extensions.
John Wiley and Sons, 2008.

104

https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/determine-close-contacts.html
https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/determine-close-contacts.html

[21] Australia Gov. Covidsafe app. https://www.health.gov.au/resources/
apps-and-tools/covidsafe-app.

[22] Singapore Gov. Tracetogether. https://www.gov.sg/article/
help-speed-up-contact-tracing-with-tracetogether.

[23] Zhenwen He, Chonglong Wu, Gang Liu, Zufang Zheng, and Yiping Tian. Decom-
position tree: A spatio-temporal indexing method for movement big data. Cluster
Computing, 18:1481–1492, 2015.

[24] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of data ex-
ploration techniques. ACM SIGMOD, pages 277–281, 2015.

[25] Yahoo Inc. Yahoo finance historical data, 2016.

[26] Dimitrije Jankov, Sourav Sikdar, Rohan Mukherjee, Kia Teymourian, and Chris Jer-
maine. Real-time high performance anomaly detection over data streams: Grand
challenge. ACM DEBS, pages 292–297, 2017.

[27] Seung-Hyun Jeong, Norman W. Paton, Alvaro A. A. Fernandes, and Tony Griffiths.
An experimental performance evaluation of spatio-temporal join strategies. Transac-
tions in GIS, 9(2):129–156, 2005.

[28] Alexander Kalinin, Ugur Cetintemel, and Stan Zdonik. Interactive data exploration
using semantic windows. ACM SIGMOD, pages 505–516, 2014.

[29] Alexander Kalinin, Ugur Cetintemel, and Stan Zdonik. Searchlight: Enabling in-
tegrated search and exploration over large multidimensional data. PVLDB, pages
1094–1105, 2015.

[30] Dongeun Lee, Alex Sim, Jaesik Choi, and Kesheng Wu. Novel data reduction based
on statistical similarity. ACM SSDBM, pages 21:1–21:12, 2016.

[31] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Seman-
tics and evaluation techniques for window aggregates in data streams. In Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data, page
311–322, 2005.

105

https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
https://www.gov.sg/article/help-speed-up-contact-tracing-with-tracetogether
https://www.gov.sg/article/help-speed-up-contact-tracing-with-tracetogether

[32] Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, and Harry Kai-Ho Chan.
Contact tracing over uncertain indoor positioning data. IEEE TKDE, pages 1–14,
2023.

[33] Katsiaryna Mirylenka, Michele Dallachiesa, and Themis Palpanas. Data series simi-
larity using correlation-aware measures. ACM SSDBM, pages 11:1–11:12, 2017.

[34] Abdullah Mueen, Suman Nath, and Jie Liu. Fast approximate correlation for massive
time-series data. ACM SIGMOD, pages 171–182, 2010.

[35] Mashaal Musleh, Mohamed F. Mokbel, and Sofiane Abbar. Let’s speak trajectories.
In SIGSPATIAL, 2022.

[36] Brian Nixon, Rakan Alseghayer, Constantinos Costa, Benjamin Graybill, Xiaozhong
Zhang, and Panos K. Chrysanthis. Efficient detection of covid-19 exposure. In IEEE
MDM, 2022.

[37] Brian T Nixon, Sayantani Bhattacharjee, Benjamin Graybill, Constantinos Costa,
Sudhir Pathak, Walter Schneider, and Panos K Chrysanthis. Healthdist: a context,
location and preference-aware system for safe navigation. In 2021 22nd IEEE In-
ternational Conference on Mobile Data Management (MDM), pages 250–253. IEEE,
2021.

[38] Mahsa Orang and Nematollaah Shiri. Improving performance of similarity measures
for uncertain time series using preprocessing techniques. ACM SSDBM, pages 31:1–
31:12, 2015.

[39] M. H. Overmars. The design of dynamic data structures, volume 3204 of Lecture notes
in Computer Assisted Diagnosis. Springer, Berlin, Heidelberg, 1983.

[40] Y. Park, Y. Choe, O. Park, and et al. Contact tracing during coronavirus disease
outbreak, south korea, 2020. Emerging Infectious Diseases, 26:2465–2468, 2020.

[41] Daniel Petrov, Rakan Alseghayer, Mohamed Sharaf, Panos K. Chrysanthis, and
Alexandros Labrinidis. Interactive exploration of correlated time series. In Proceedings
of the ExploreDB’17, 2017.

[42] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel approaches in query
processing for moving object trajectories. In Proceedings of the 26th International
Conference on Very Large Data Bases, page 395–406, 2000.

106

[43] Donald B. Rubin. Multiple imputation after 18+ years. Journal of the American
Statistical Association, 91(434):473–489, 1996.

[44] Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. Braid: Stream mining
through group lag correlations. ACM SIGMOD, pages 599–610, 2005.

[45] Jens M. Schmidt. Interval stabbing problems in small integer ranges. In Algorithms
and Computation, pages 163–172, 2009.

[46] Ilari Shafer, Kai Ren, Vishnu Naresh Boddeti, Yoshihisa Abe, Gregory R. Ganger, and
Christos Faloutsos. Rainmon: An integrated approach to mining bursty timeseries
monitoring data. ACM SIGKDD, pages 1158–1166, 2012.

[47] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. DITA: distributed in-memory trajectory
analytics. In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD Conference, pages 725–740, 2018.

[48] Anatoli U Shein and Panos K Chrysanthis. Multi-query optimization of incrementally
evaluated sliding-window aggregations. IEEE Transactions on Knowledge and Data
Engineering, 34(8):3899–3911, 2020.

[49] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A survey
of trajectory distance measures and performance evaluation. VLDB J., 29(1):3–32,
2020.

[50] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert
Tibshirani, David Botstein, and Russ B. Altman. Missing value estimation methods
for dna microarrays. Bioinformatics, 17(6):520–525, 06 2001.

[51] Lionel Sujay Vailshery. Forecast end-user spending on iot solutions worldwide from
2017 to 2025.

[52] Li Xiong, Cyrus Shahabi, Yanan Da, Ritesh Ahuja, Vicki Hertzberg, Lance Waller,
Xiaoqian Jiang, and Amy Franklin. React: Real-time contact tracing and risk mon-
itoring using privacy-enhanced mobile tracking. SIGSPATIAL Special, 12(2):3–14,
October 2020.

[53] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge from
the physical world. In ACM SIGKDD, page 316–324, 2011.

107

[54] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. T-drive: Enhancing driving
directions with taxi drivers’ intelligence. IEEE TKDE, 25(1):220–232, 2013.

[55] Eleni Tzirita Zacharatou, Farhan Tauheedz, Thomas Heinis, and Anastasia Ailamaki.
Rubik: Efficient threshold queries on massive time series. ACM SSDBM, pages 18:1–
18:12, 2015.

[56] Demetrios Zeinalipour-Yazti, Christos Laoudias, Constantinos Costa, Michail Vla-
chos, Maria I. Andreou, and Dimitrios Gunopulos. Crowdsourced trace similarity
with smartphones. IEEE Trans. Knowl. Data Eng., 25(6), 2013.

[57] Xichen Zhang, Suprio Ray, Farzaneh Shoeleh, and Rongxing Lu. Efficient contact sim-
ilarity query over uncertain trajectories. In Yannis Velegrakis, Demetris Zeinalipour-
Yazti, Panos K. Chrysanthis, and Francesco Guerra, editors, Proceedings of the 24th
International Conference on Extending Database Technology, EDBT 2021, Nicosia,
Cyprus, March 23 - 26, 2021, pages 403–408. OpenProceedings.org, 2021.

[58] Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of
data streams in real time. In Proceedings of the 28th International Conference on
Very Large Data Bases, PVLDB, pages 358–369, 2002.

[59] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. Indexing for interactive
exploration of big data series. ACM SIGMOD, pages 1555–1566, 2014.

108

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Experimental Parameters
	2. DCS Strategies Effectiveness of Detecting Correlated Pairs
	3. Notations
	4. Push-based and Pull-based protocols usage trade-offs.
	5. e-Racoon operations' time complexity.
	6. Characteristics of the synthetic datasets.

	List of Figures
	1. The cost in number of operations for 4 consecutive micro-batches (A = 112).
	2. The cost in number of operations for 4 consecutive micro-batches (A = 225).
	3. The cost in number of operations for 4 consecutive micro-batches (A = 450).
	4. The % of correlated pairs of streams detected by all algorithms at 25% of the interval I (A = 112).
	5. The % of correlated pairs of streams detected by all algorithms at 25% of the interval I (A = 225).
	6. The % of correlated pairs of streams detected by all algorithms at 25% of the interval I (A = 450).
	7. The % of correlated pairs of streams detected by all algorithms at 50% of the interval I (A = 225).
	8. The % of correlated pairs of streams detected by all algorithms at 75% of the interval I (A = 450).
	9. The % of correlated pairs of streams detected by all policies at 25% of the interval I (A = 112).
	10. The % of correlated pairs of streams detected by all policies at 50% of the interval I (A = 112).
	11. An example of a static segmentation of a floor into zones, where each office is a zone and the hallways are all a single zone.
	12. Example of three different MOs interacting in a space where each zones has an area of 2.
	13. Two different MOs with different average sensors inaccuracies radius (), where a MO is located at the center of a zone and surrounded by enveloping zones.
	14. CA and MOs interacting to achieve exposure measurement and close contact detection.
	15. Example of direct and indirect contacts.
	16. PriDIER at the MO side.
	17. Global Infected Trajectory component in the CA.
	18. e-Racoon access structure for MO i that has occupied zones 1, 2, and 4 on a Monday (M) and zone 3 on Monday (M) and Tuesday (T). Note the data exchange protocol between MO and CA via the messages Ⓢ (Send), Ⓟ (Pull), and Ⓡ (Response).
	19. Illustration of a pair of trajectories of length n, with contact segments, points to be stabbed, and a total of contact points across segments.
	20. Memory footprint in bytes for datasets DS_13.
	21. Average point insertion latency for datasets DS_13.
	22. Query processing latency for datasets DS_13.
	23. Memory footprint in bytes for datasets DS_14.
	24. Average point insertion latency for datasets DS_14.
	25. Query processing latency for datasets DS_14.
	26. Memory footprint in bytes for datasets DS_15.
	27. Average point insertion latency for datasets DS_15.
	28. Query processing latency for datasets DS_15.
	29. Memory footprint in bytes for datasets DS_1.
	30. Average point insertion latency for datasets DS_1.
	31. Query processing latency for datasets DS_1.
	32. Memory footprint in bytes for datasets DS_2.
	33. Average point insertion latency for datasets DS_2.
	34. Query processing latency for datasets DS_2.
	35. Memory footprint in bytes for datasets DS_3.
	36. Average point insertion latency for datasets DS_3.
	37. Query processing latency for datasets DS_3.
	38. Memory footprint in bytes for datasets DS_7.
	39. Average point insertion latency for datasets DS_7.
	40. Query processing latency for datasets DS_7.
	41. Memory footprint in bytes for datasets DS_8.
	42. Average point insertion latency for datasets DS_8.
	43. Query processing latency for datasets DS_8.
	44. Memory footprint in bytes for datasets DS_9.
	45. Average point insertion latency for datasets DS_9.
	46. Query processing latency for datasets DS_9.
	47. Memory footprint in bytes for datasets DS_4.
	48. Average point insertion latency for datasets DS_4.
	49. Query processing latency for datasets DS_4.
	50. Memory footprint in bytes for datasets DS_5.
	51. Average point insertion latency for datasets DS_5.
	52. Query processing latency for datasets DS_5.
	53. Memory footprint in bytes for datasets DS_6.
	54. Average point insertion latency for datasets DS_6.
	55. Query processing latency for datasets DS_6.
	56. Memory footprint in bytes for datasets DS_10.
	57. Average point insertion latency for datasets DS_10.
	58. Query processing latency for datasets DS_10.
	59. Memory footprint in bytes for datasets DS_11.
	60. Average point insertion latency for datasets DS_11.
	61. Query processing latency for datasets DS_11.
	62. Memory footprint in bytes for datasets DS_12.
	63. Average point insertion latency for datasets DS_12.
	64. Query processing latency for datasets DS_12.
	65. Memory footprint in bytes for datasets DS_16.
	66. Average point insertion latency for datasets DS_16.
	67. Query processing latency for datasets DS_16.
	68. Memory footprint in bytes for datasets DS_17.
	69. Average point insertion latency for datasets DS_17.
	70. Query processing latency for datasets DS_17.
	71. Memory footprint in bytes for datasets DS_18.
	72. Average point insertion latency for datasets DS_18.
	73. Query processing latency for datasets DS_18.
	74. Memory footprint in bytes for datasets BJ_S.
	75. Average point insertion latency for datasets BJ_S.
	76. Query processing latency for datasets BJ_S.
	77. Memory footprint in bytes for datasets BJ_L.
	78. Average point insertion latency for datasets BJ_L.
	79. Query processing latency for datasets BJ_L.

	Preface
	1.0 Introduction
	1.1 Motivation
	1.1.1 Correlations of Temporal Ordered Data
	1.1.2 Aggregate Spatiotemporal Joins of Trajectory Data

	1.2 Hypotheses, Objective & Approach
	1.3 Summary of Contributions
	1.4 Road Map

	2.0 Detection of Correlated Data Streams
	2.1 The DCS Framework
	2.2 The DCS Algorithms
	2.2.1 iBRAID Algorithm
	2.2.2 PriCe Algorithm

	2.3 Evaluation
	2.3.1 Testbed
	2.3.2 Experiments
	2.3.2.1 Experiment 1 (Figs. 1–3)
	2.3.2.2 Experiment 2 (Figs. 4–8)
	2.3.2.3 Experiment 3 (Figs. 9–10)
	2.3.2.4 Experiment 4 (Table 2)
	2.3.2.5 Discussion

	2.4 Related Work
	2.5 Summary

	3.0 Privately Detecting Indoors Exposure Risk
	3.1 Preliminary
	3.2 Contact Tracing Framework
	3.2.1 Contact Tracing
	3.2.2 Threat Model
	3.2.3 Communication Protocols
	3.2.3.1 Push-based Protocol
	3.2.3.2 Pull-based Protocol
	3.2.3.3 Discussion

	3.2.4 MO components
	3.2.5 CA Components

	3.3 Temporal Aggregation Join Query
	3.3.1 TAJ Query Processing
	3.3.2 The e-Racoon Access Structure
	3.3.3 Optimizations
	3.3.4 Complexity Analysis

	3.4 Evaluation
	3.4.1 Testbed
	3.4.2 Experiments
	3.4.2.1 Experiment 1 (DS_13, DS_14, DS_15)
	3.4.2.2 Experiment 2 (DS_1, DS_2 and DS_3)
	3.4.2.3 Experiment 3 (DS_7, DS_8 and DS_9)
	3.4.2.4 Experiment 4 (DS_4 - DS_6, DS_10 - DS_12, and DS_16 - DS_18)
	3.4.2.5 Experiment 5 (BJ_S)
	3.4.2.6 Experiment 6 (BJ_L)
	3.4.2.7 Discussion

	3.5 Related Work
	3.6 Summary

	4.0 Conclusions
	4.1 Summary of Contributions
	4.2 Future Work
	4.3 Broad Impact

	Bibliography

