
Cusped hyperbolic 3-manifolds with a compact totally geodesic boundary

by

Hasitha Anuradha Ekanayake

Bachelor of the Science of Engineering, University of Moratuwa , 2015

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2023



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Hasitha Anuradha Ekanayake

It was defended on

July 26th 2023

and approved by

Jason DeBlois, University of Pittsburgh

Bruno Martelli, University of Pisa

Paul Gartside, University of Pittsburgh

Carl Wang-Erickson, University of Pittsburgh

ii



Copyright c© by Hasitha Anuradha Ekanayake

2023

iii



Cusped hyperbolic 3-manifolds with a compact totally geodesic boundary

Hasitha Anuradha Ekanayake, PhD

University of Pittsburgh, 2023

This thesis is a study on the volumes of cusped hyperbolic 3-manifolds with a compact totally

geodesic boundary. The class of such manifolds is denoted by Nc,c. The main goal of the

thesis is to identify the smallest member in this class. Author outlines a process that zeroes

in on a manifold which was preidentified as a candidate for the smallest manifold in Nc,c.

Most of the computations are parameterized in terms of x1 ; a quantity closely associated

with the volumes of manifolds with geodesic boundary. Chapter 3 describes the construction

of a lower bound for the volumes of manifolds in Nc,c in terms of their x1 values. In chapter 4,

the relation between the geometry of a manifold in Nc,c is leveraged to obtain a lower bound

for its x1 value. Results in those two chapters yield an interval of possible x1 values for the

smallest manifold in Nc,c. The remainder of the thesis investigate this interval extensively.
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1.0 Introduction

Determining the lowest volume examples in various classes of manifolds is an extensive

project in the field of topology and geometry of hyperbolic manifolds with its roots dating

at least to Thurston’s notes written in 1979[1]. Thurston observed that the volume is a good

measurement of topological complexity. (Chapter 6, [1])

Since then, various developments were made in the class of multi-cusped hyperbolic 3-

manifolds. Note that a hyperbolic 3-manifold with a finite volume but non compact can

be decomposed as the union of a compact part and finite collections of ‘cusps’ each of

which is homeomorphic to T × [0,∞) where T is a 2-dimensional torus. Cao and Meyerhoff

identified the smallest orientable hyperbolic manifolds with one cusp and the subsequent

work of Gabai, Meyerhoff and Milley identified the Weeks manifold with volume ≈ 0.94 to

be the smallest compact 3-manifold.

We turn our attention to the class of orientable hyperbolic 3-manifold with compact totally

geodesic boundary. Kojima and Miyamoto identified the the smallest compact manifold in

this class [2]. We feel a natural extension of this project would be to determine the smallest

cusped manifold in this class. To phrase it precisely, our goal is to identify the lowest volume

manifold in Nc,c where by Nc,c we denote the set of orientable hyperbolic 3-manifolds with

non empty compact totally geodesic boundary and one cusp. Through out this thesis N

denotes a manifold that belongs to Nc,c.

Our candidate manifold can be found in a census of 3-manifolds with non empty totally

geodesic boundary, built by Figerio, Martelli and Petronio [3]. The census contain 3-

manifolds with totally geodesic boundary that admits an ideal triangulation up to 4 tetrahe-

dra. The candidate that belongs to Nc,c has a volume ≈ 7.798 and admits a triangulation of

3 truncated tetrahedra; 1 compact and 2 non-compact. We denote this candidate manifold

by N0.
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In this introductory chapter we briefly outline our strategy. In chapter 2 we review the

basics of hyperbolic space and its isometry group and introduce hyperbolic manifolds with

totally geodesic boundary. In 2.4 we introduce some of the commonly used terminology asso-

ciated with these manifolds. Most of these were first introduced by Kojima and Miyamoto in

[2]. A notion of particular importance is return paths. A return path is a geodesic arc in the

manifold that is perpendicular to the geodesic boundary at both end points. The volume of

a manifold with totally geodesic boundary is closely associated with its length of the shortest

return path l1. Most of our computations in succeeding chapters are parameterized in terms

of cosh(l1) which is denoted by x1. We also record few existing results in this chapter that

set us up to begin the task of identifying the smallest manifold in Nc,c.

Our work is divided into the next 5 chapters of this thesis. In chapter 3 we construct a

lower volume bound for the manifolds in Nc,c in terms of their x1 values. Our approach

for this chapter is based on the work of Kojima and Miyamota in [2]. A main contribution

for the volumes of compact manifolds they investigated is a collar of the boundary. As one

increase the depth of such a collar, at some point it becomes non embedded inside the mani-

fold. In [2] this self intersection of the collar of the boundary is handled by a solid of rotation

around the shortest return path. Kojima and Miyamoto named this solid as a Muffin. This

muffin around the shortest return path and the part of the collar of the boundary outside the

muffin together bounds the volume of a compact hyperbolic manifold with compact totally

geodesic boundary.

While their volume bound can also be applied for the manifolds in Nc,c, its far from be-

ing sharp enough for our purposes. In order to construct an improved volume bound for

manifolds in Nc,c, another source of volume needs to be considered. This comes in the form

of a cusp neighbourhood. We handle the intersections between these different sources of

volumes by another solid of rotation around an arc that runs from the boundary to the cusp.

We call this solid of rotation as a Half ideal muffin. Its construction is described in 3.3. We

then estimate volumes of all the volume sources and muffins mentioned above by functions

2



of x1. By taking their sum we obtain a lower bound for the volume of manifold. This process

is outlined in 3.4.

Another class of objects that prominently features in our computations is right angled

hexagons in the universal cover of a manifold. These hexagons have lifts of return paths

as alternating sides. If such a hexagon consists of the lifts of ith, jth and kth shortest return

paths, we call it as an (i, j, k) hexagon. Three alternating sides that are lifts of return paths

as called as internal edges of this hexagon while other three edges (which lie on ∂Ñ) are

called as external. We get a first taste of these hexagons when estimating the volume of the

cusp neighbourhood. We conclude chapter 3 by proving the following result which follows

from the volume bound we constructed. A more precise statement can be found in theorem 1.

Theorem 1. The smallest manifold in Nc,c has an x1 value less than 1.2158 and a (1, j, k)

hexagon visible from the cusp for some j, k ≥ 1.

In chapter 4 we consider manifolds with x1 values less than 1.2158. Now the question is how

small x1 of these manifolds can be ? It was proved in [2], compact manifolds with compact

totally geodesic boundary has their x1 values bounded below by 1.183. This is also valid for

the manifolds inNc,c. The main goal of chapter 4 is to further improve this lower bound of x1.

Our work in this chapter leverages the relation between the geometry of the manifold and the

geometry of its boundary. In particular, our arguments build upon the dependence between

the lengths of two geodesic arcs on the boundary of the manifold and how they relate to x1.

Let

d11 =The length of the shortest non constant geodesic arc in ∂N with each end

point at a foot of the shortest return path

d01 =The length of the shortest geodesic arc in ∂N between the foot of shortest

arc out of the cusp and a foot of the shortest return path on the boundary
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First we have a simple explicit relationship between d11 and x1 when the manifold has a

(1, 1, 1) hexagon in its universal cover. It was proved in [4] such a right angled hexagon

exists when x1 of the manifold is less than 1.215. (This will be increased to 1.23 in a forth-

coming preprint of DeBlois and Shalen. [5]) A description of (1, 1, 1) hexagons and this

explicit relation between x1 and d11 is given in 4.1.

Then we look to understand how d01 is related to x1 value of the manifold. Hyperbolic

trigonometry results proved in [6] provide a lower bound for d01 in terms of x1. The majority

of our work in this chapter is on finding an upper bound for the same distance d01 in terms

of x1.

Given a hyperbolic surface and a finite set of points on it, the machinery of Centered Dual

Decomposition introduced in [7] by DeBlois describes a method of decomposing the surface

such that the given set of points are the vertices of the decomposition. We apply this ma-

chinery to our context where the surface will be the boundary of our manifold and the finite

set of points will be the feet of the shortest return path. Centered Dual Decomposition is

described in section 4.2. Two cells in these decompositions are unions of cyclic polygons.

In section 4.3 we provide a brief review of cyclic polygons and record some of the pertinent

results proved in [7].

The remainder of the chapter 4 is focused on understanding the circumcircle radius of these

2−cells. At first, our computations will be in terms of d11. We first classify the possible

2−cells in Centered Dual Decomposition based on the d11 value of the manifold. These are

recorded in corollary 4.5.4. The different possibilities of 2−cells listed in 4.5.4 is then anal-

ysed separately in sections 4.6, 4.7 and 4.8. For each such possibility we compute an upper

bound for the circumcircle radii of 2−cells in the decomposition. These bounds - which are

initially functions of d11 - are then converted to functions of x1 using the relation between d11

and x1 provided by (1, 1, 1) hexagons. These functions are in fact the upper bounds of d01 we

were seeking, because an upper bound for all the circumcircle radii also bounds d01 by above.
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Finally we compare these upper bounds of d01 with the lower bound of d01 provided by

trigonometry in [6]. We observe that for all the x1 values listed in corollary 4.5.4, the lower

bound of d01 actually exceeds upper bound we computed using the centered dual decompo-

sition. Hence no manifold in Nc,c can have an x1 value in that range and in Theorem 2 we

obtain the following lower bound for x1 of a manifold in Nc,c.

Theorem 2. No manifold in Nc,c has an x1 value less than 1.2081.

Combining the Theorem 1 and 2, we see that the smallest manifold in Nc,c must have its x1

value in the interval [1.208, 1.2158]. Furthermore its universal cover Ñ should have a (1, j, k)

hexagon visible from the cusp. Let’s denote by N ′c,c, the set of all manifolds in Nc,c that has

its x1 value in the above interval and contain a (1, j, k) hexagon visible from the cusp in its

universal cover. It’s important to note that our candidate manifold N0 has an x1 value of

1.213 and Ñ0 has a (1, 1, 1) hexagon visible from the cusp. Hence N0 belongs to N ′c,c

The main goal of chapter 5 is to determine the values j and k that does not make the

volume of the manifold too big. We do so by reconstructing a volume estimation specifically

for the manifolds in N ′c,c. The key elements from our previous volume estimation from chap-

ter 3 will remain the same here except for one change : The volume of the embedded cusp

neighbourhood is now estimated using the (1, j, k) hexagon in the universal cover. This new

estimate restricts the range j and k can take without making the volume of the manifold

bigger than that of N0.

In Proposition 5.6 and 5.7 we apply the new estimation to the cases j = 2, k = 2 and

j = 1, k = 2. In Propositions 5.8 and 5.9 and we prove its enough to consider only those two

combinations of j and k. These four propositions together yield the main result of chapter

5, recorded in Corollary 5.4.2. We restate it below.
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Theorem 3. Let N be a manifold in N ′c,c. If the volume of N does not exceed the volume

of N0 then one of the following is true.

1. Ñ has a (1, 1, 1) hexagon visible from the cusp.

2. Ñ has a (1, 1, k) hexagon visible from the cusp for some k > 1. x1 of N is between 1.208

and 1.2091 and the volume of N is greater than 7.782

Chapter 6 and 7 are devoted to analyse the first case of the above theorem. Consider a mani-

fold N in Nc,c which also has a (1, 1, 1) hexagon visible from the cusp. Projection of external

edges of this hexagon on to the boundary of the manifold forms a graph on the boundary

with two vertices ; feet of the shortest return path. We denote this graph by G. We start

chapter 6 with a discussion on complementary regions of this graph G on the boundary. In

6.1 and 6.2 we show there are only two different combinations of complementary regions of

G. We list them below.

1. Two complementary regions both of which are hexagons

2. Three complementary regions ; a hexagon , an annulus and a rectangle.

The remainder of the thesis focus on analysing the first case listed above. Note that our can-

didate manifold N0 also has two hexagonal complementary regions on its boundary, matching

the description of case 1. The second case remains to be analysed at this point. We expect

the method we used to analyse the first case to also work for the second, at least to some

extent.

For a manifold N in N ′c,c that has two hexagonal complementary regions of G on its bound-

ary, we identify a 2−complex of N with a simple combinatorial description. We show that

the manifold X obtained by thickening up this 2−complex has a hyperbolic structure and

N − X is a disjoint union of the cusp of N and a solid torus. Put another way, N can

be obtained from the interior of X by a Dehn filling. This is a well-studied operation in
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the context of three-manifolds in which a solid torus is identified to a torus boundary com-

ponent T of another three-manifold along its boundary which has the effect of ”closing T off”.

The manifold X constructed above has a totally geodesic boundary and two cusps. We

recognise it to be another manifold in the Frigerio, Martelli and Petronio census [3], [8]. It is

the unique member in their census that has two cusps and a genus 2−surface as its boundary

and admits a triangulation of four partially truncated tetrahedra. This is stated in theorem 3.

Theorem 4. Let N be a manifold in N ′c,c that contains a (1, 1, 1) hexagon visible from the

cusp in its universal cover. If ∂N has two hexagonal complementary regions in G then N

can be obtained by a Dehn filling of X, where X is the unique member of M2,2 where Mg,k

is the class of k− cusped hyperbolic 3− manifolds with totally geodesic boundary of genus g

and admits a triangulation of g + k partially truncated tetrahedra.

With the above result, we shift our focus to the Dehn fillings of X. A Dehn filling of a

manifold reduce its volume. The amount of the volume reduction depends on the length of

the slope, along which the manifold was Dehn filled. The basic idea is when the length of the

slope is large enough, volume of the manifold produced by the Dehn filling is going to exceed

a certain threshold. We first used [9] to determine the minimum slope length required to

guarantee a Dehn filling of X which has a volume greater than that of N0. Then we classified

all the slopes of a cusp in X that has a length smaller than this minimum slope length. We

counted 89 such slopes and list them in the table 2.

If a Dehn filling of X produces a manifold which has a volume smaller than or equal to

the volume of N0 then it has to be filled along one of the slopes in table 2. Hence we need to

determine whether Dehn filling along a given slope in table 2 produces a hyperbolic manifold

and if so, what its volume is.

The 3−manifold software SnapPy [10] can be used to obtain this kind of information when
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it comes to hyperbolic manifolds without a boundary. The issue here is X has a geodesic

boundary and SnapPy can not take such a manifold as an input. To counter this, we con-

struct a hyperbolic manifold without boundary; DX - The double of X along its boundary.

Note that DX has a self isometry that is the reflection along the boundary of X. Let’s

denote this isometry by Ψ and the cusp of X we fill by T1. Then the volume the Dehn filling

of X along a slope γ in T1 is equal to one half of the volume of the Dehn filling of DX along

slopes γ in T1 and Ψ(γ) in Ψ(T1).

Chapter 7 explain the process of obtaining an ideal triangulation of DX that SnapPy can

read. With this triangulation we can access the information of Dehn fillings of DX. In

particular we can obtain the volume of a Dehn filling along a given slope. We then use this

information to compute volumes of Dehn fillings of X along each slope given in table 2.

Final analysis yield following results.

• 6 of the Dehn fillings in the table 2 are non hyperbolic.

• 6 of the Dehn fillings have the same volume as N0

• All the remaining slopes in table 2 yield Dehn fillings with volumes bigger than the

volume of N0

The complete list of volumes for all the slopes listed in table 2 is given in table 5 The obser-

vations above, yield the final major result of this thesis ; Theorem 4.

Theorem 5. Let N be a manifold in N ′c,c which satisfy the following conditions.

1) N has a (1, 1, 1) hexagon visible from the cusp

2) ∂N has two complementary components in G

where G is the graph on ∂N which has the feet of λ1 as vertices and projections of external

edges of the two (1, 1, 1) hexagons as edges.

Then volume of N ≥ volume of N0

Furthermore if the volume of N is equal to the volume of N0 then N = N0
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We summarise all of our results in chapters 3 - 7 in theorem 5.

Theorem 6. If N is the least volume manifold in Nc,c then one of the following must be

true.

• N = N0

• Ñ has no (1, 1, 1) hexagons visible from the cusp but has a (1, 1, k) hexagon visible from

the cusp for some k > 1. Furthermore the volume of N is greater than 7.782 and x1 of

N is between 1.208 and 1.2091

• Ñ has (1, 1, 1) hexagons. N has two complementary components of G in ∂N
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2.0 Background

2.1 Hyperbolic space

Hyperbolic n− space is the unique n−dimensional complete, simply connected Riemannian

manifold with sectional curvature −1. There are several models that can be used to define

the hyperbolic n− space. Most of our computations will be done in the Upper Half-Space

model which is defined as

Hn = { (x1, . . . , xn) ∈ Rn | xn > 0}

equipped with the Riemannian metric tensor < v,w >p=
v1w1+...vnwn

x2n

for p = (x1, . . . , xn) ∈ Hn and v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ TpHn.

∂Hn , the boundary of Hn is defined to be (Rn−1 × {0}) ∪ ∞. Points in ∂∂Hn are also

called as ’ideal points’ of ∂Hn. It is given the topologized and is homeomorphic to Sn−1.

The compactification of Hn is then Hn = Hn ∪ ∂Hn.

A k−dimensional hyperbolic subspaces of Hn are intersections of Euclidean k− planes and

Euclidean k− spheres that are orthogonal to Rn−1 × {0} with Hn. A 1−dimensional hyper-

bolic subspace is called as a geodesic line of Hn. An n− 1 dimensional hyperbolic subspace

is called as a geodesic hyperplane of Hn. A geodesic hyperplane H split Hn into two parts

each of which is a component of Hn −H. Let C be one such component. Then C = C ∪H

is called as a half space bounded by H

In 3 dimensions, geodesic lines and hyperplanes of H3 are semicircles and semispheres that
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are orthogonal to R2 × {0}.

2.2 Isometries of the hyperbolic space

Non trivial isometries of Hn can be classfied into 3 types depending on their fixed points.

An isometry is called as elliptic if it fixes a point in Hn. A parabolic isometry fixes no points

in Hn and has a unique fixed point in ∂Hn. hyperbolic. An isometry that fixes no points in

Hn and has exactly two fixed point in ∂Hn is called as hyperbolic. Any non trivial isometry

of Hn belongs to one of these three types.

The group of orientation preserving isometries of H3 is isomorphic to PSL(2,C). By iden-

tifying Rn−1 × {0} with C, we can write ∂H3 as C ∪ ∞. Then PSL(2,C) acts on ∂H3

by a b

c d

 · z =
az + b

cz + d

Any orientation preserving isometry of H3 is given by an extension of this action on ∂H3 by

an element of PSL(2,C).

2.3 Hyperbolic manifolds

A hyperbolic n−manifold (without a boundary) is an n− dimensional Riemannian mani-

fold that is locally isometric to an open set of Hn. As mentioned above, Hn is the unique

complete and simply connected hyperbolic n−manifold up to isometry. Any complete hyper-

bolic n−manifold is isometric to Hn/Γ for some subgroup Γ of isometries of Hn that is acting

freely and properly discontinuously. Equivalently Γ is discrete and contains only parabolic
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and hyperbolic isometries.

When Γ contains only parabolic transformations acting properly discontinuous and fixes

∞ ∈ ∂Hn , Hn/Γ is a very simple type of hyperbolic manifold called as a cusp. Any such

a parabolic translation Φ is an extension of a Euclidean isometry φ on Rn−1 acting freely

and extended by Φ(x, t) = (φ(x), t). Consider a group Γ′ of Euclidean isometries acting

freely on Rn−1 and the of group of parabolic isometries Γ consists of their extensions. If

Rn−1/Γ′ = M then Hn/Γ is homeomorphic to M × (0,∞). A subset M × [a,∞) of a cusp is

called as a truncated cusp. Orientation preserving Euclidean isometries acting freely on R2

are translations and hence a 3− dimensional cusp is homeomorphic to T × (0,∞) where T

is a 2− dimensional Euclidean torus. Then a truncated cusp takes the form T × [a,∞).

In this thesis our focus will be on hyperbolic manifolds with totally geodesic boundary.

A hyperbolic n− manifold with totally geodesic boundary is a Riemannian n− manfiold

and is locally isometric to an open set in a half space of Hn. To be precise, each point x

in a hyperbolic manifold with totally geodesic boundary has a neighbourhood U of x and

an isometry φ from U to an open set of a half spaceH in Hn such that φ(U∩∂N) = φ(U)∩∂H.

Universal cover of a complete hyperbolic manifold with totally geodesic boundary is a convex

subset of Hn which is the intersection of countably many half spaces which are bounded by

disjoint geodesic hyperplanes.

2.4 Basic terminology and existing results

Some of the terminology introduced in [2] will be heavily used throughout this write-up and

are stated below.

Definition 2.4.1. A return path of N is a geodesic arc in N such that its end points are
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in ∂N and is perpendicular to ∂N at it’s end points.

Kojima showed there are only finitely many return paths of bounded lengths which means

return paths of N can be enumerated by λ1, λ2, . . . such that their lengths are increasing.

We use the following notations.

Definition 2.4.2.

• li = length of λi

• xi = cosh(li)

• dij = length of the shortest geodesic arc in ∂N joining an endpoint of λi to an endpoint

of λj.

In particular , the length of the shortest return path is denoted by l1 and cosh(l1) is denoted

by x1.

Definition 2.4.3. We denote by λ0 , the shortest arc out of the cusp measurable with

respect to a fixed cusp neighbourhood. By d0j we denote the length of the shortest geodesic

arc in ∂N joining the endpoint of λ0 to the endpoint of λj on ∂N .

We start off the search for the smallest manifold in Nc,c by recording two propositions. First

one is due to the work of Miyamoto in [11] and the latter was proved in [2].

Proposition 2.4.4. Volume of a manifold N ∈ Nc,c exceeds the volume of N0 if χ(∂N) <

−2.

Proposition 2.4.5. If χ(∂N) = −2 then it’s x1 value has the the following lower bound.

x1 ≥
3 +
√

3

4
≈ 1.183

.
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3.0 Volume Estimation

Let N be a manifold in Nc,c. As stated in Proposition 2.4 we can assume χ(∂N) = −2. The

goal of this chapter is to find a lower bound for the volume of N as a function of x1.

There are two main sources that contribute to the volume of N .

• A collar of ∂N

• A cusp neighbourhood of N

To encompass more volume , we would like to make these components as large as possible.

But after some point they will not be embedded in N (for an example if the height of the

collar of ∂N exceeds l1
2

) or intersect each other. Figure 1 depicts these scenarios as viewed

in Ñ , the universal cover of N .

Figure 1: Volume sources may be non embedded or intersect each other
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3.1 Muffins

The device used to handle these regions of overlaps is called as ”Muffins”. Kojima and

Miyamoto showed in [2] a muffin like object - a hyperbolic solid of rotation can be embedded

in N along the shortest return path λ1. This allows the collar of remaining part of ∂N to

have a greater height. Denote this muffin by Ml1 .

Figure 2: Muffin around the shortest return path

Below we give a brief description of Ml1 . Consider a right angled hexagon with alternating

sides l1 (see figure 3). Ml1 is obtained by rotating the shaded pentagon with four right angles

about the side with length l1.

Figure 3: Construction of Ml1

Using right angled hexagon R1 can be written as a function of x1.

R1 =

√
2x1 − 1

2(x1 − 1)
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Side altitude A1 satisfies

cosh(2A1) =
4x1 + 1

3

The intersection of Ml1 with the boundary is two disks with radius R1 around each feet of

λ1. Now we consider a collar of the ∂N− these two disks. The height of this new collar

can be increased further than l1/2 because the shortest return path is now entirely outside

the collar now. The question is how much further the height can be increased before it run

into itself again. Ml1 and this new collar is tangent to each other along the side altitude

of Ml1 . Hence the height of the new collar can not exceed A1 or else it will self overlap.

But it may even not be possible to have a height of A1. While the shortest return path

does not intersect with this collar, it may entirely contain other return paths. The length

such a return path can have is greater than or equal to l2. So if we keep the height of the

collar of the remaining part of ∂N to be min{A1,
l2
2
} then its guaranteed to avoid self overlap.

But the length of the second shortest return path l2 is not a function of l1. Kojima and

Miyamoto [2]) showed there exist two functions E and F such that l2 ≥ min{E1, F1} where

E1 = E(x1) and F1 = F (x1).

Then take the collar of the remaining part of ∂N to be

H1 = max

{
min

{
E1

2
,
F1

2
, A1

}
,
l1
2

}

Below, we described the process used in [2] to find these two functions E1 and F1 that bounds

l2 by below.

3.2 Bounding l2 by below - Functions E1 and F1

Suppose d12 ; the shortest distance between the end points of λ1 and λ2 on ∂N is attained
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on a component Π0 of ∂Ñ . Let Π1 and Π2 be the components of ∂Ñ that contains the other

end points of the corresponding lifts of λ1 and λ2. Finally, let the length of the common

perpendicular between Π1 and Π2 be lk. It is a lift of a return path λk for some k ≥ 1. Hence

we have a right angled hexagon in Ñ with alternating sides of l1, l2 and lk as shown in figure

4. By applying the right angled hexagon rule we obtain

cosh(d12) =
cosh(l1)cosh(l2) + cosh(lk)

sinh(l1)sinh(l2)

≥ cosh(l1)cosh(l2) + cosh(l1)

sinh(l1)sinh(l2)

=
cosh(l1)(cosh(l2) + 1)

sinh(l1)sinh(l2)

= tanh(l1)

√
1 +

2

cosh(l2)− 1

Figure 4: Relating d12 to l2

Hence we have

cosh(l2) ≥ 1 +
2

cosh2(d12)tanh2(l1)− 1
(1)

Similarly we can find another inequality relating l2 to d22. In this case we have a right
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angled hexagon with alternating sides l2, l2 and lk for some k ≥ 1. By applying the right

angled hexagon rule to this case we obtain

cosh(d22) =
cosh(l2)cosh(l2) + cosh(lk)

sinh(l2)sinh(l2)

≥ cosh2(l2) + cosh(l1)

sinh2(l2)

Hence we have

cosh(l2) ≥

√
1 +

cosh(l1) + 1

cosh(d22)− 1
(2)

Recall that the Ml1 ∩ ∂N is two disks with radius R1. Let’s denote these two disks by U1

and U2. First define a new quantity R′1 as

cosh(R′1) = 3− cosh(R)

We claim that R′1 is the maximum radius of two disks that can be embedded in ∂N \(U1∪U2).

Suppose there are two disks with radius r > R′1 embedded in ∂N \ (U1 ∪ U2). Sum of the

areas of these two disks and U1 and U2 are then equal to

2 ∗ 2π(cosh(R1)− 1) + 2 ∗ 2π(cosh(r)− 1)

>4π(cosh(R1)− 1) + 4π(cosh(R′1)− 1)

=4π

But the area of ∂N is 4π as χ(∂N) = −2. Hence the last inequality is a contradiction as the

sum of the areas of the four embedded disks can not exceed the area of the boundary.

Now consider two disks embedded in ∂N \ (U1 ∪ U2) that are centered at the feet of λ2.

Let’s denote them by V1 and V2. Let r′ be the maximum radius these two disks can take

while remain embedded in ∂N \ (U1 ∪ U2). Hence r′ is less than R′1.

Since r′ is the maximum radius V1 and V2 can take while remain embedded in ∂N−(U1∪U2),

one of the following must be true.

18



• One of V1 or V2 touch its own boundary

• Boundary of V1 touches the boundary of V2

• Boundary of a Vi touches the boundary of a Ui

In the first or second scenario we have d22 ≤ 2r′ ≤ 2R′1.

In the third scenario we have d12 ≤ R1 + r′ ≤ R1 + R′1. We know one of these two things

should be true. If R1 +R′1 ≥ d12 is true then we can use 1 to obtain

cosh(l2) ≥

√
1 +

cosh(l1) + 1

cosh(R1 +R′1)− 1

If 2R′1 ≥ d22 is true then we can use 2 to obtain

cosh(l2) ≥

√
1 +

cosh(l1) + 1

cosh(2R′1)− 1

Now we define the following.

cosh(E1) =

√
1 +

cosh(l1) + 1

cosh(R1 +R′1)− 1

cosh(F1) =

√
1 +

cosh(l1) + 1

cosh(2R′1)− 1

These are exactly the right hand sides of last two inequalities and also depend entirely on x1.

Hence there are two functions E1 and F1 of x1 such that one of the following must always

be true.

• l2 ≥ E1

• l2 ≥ F1
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Recall that when selecting a height H1 for the collar of ∂N \ (U1∪U2), we need to have H ≤

min

{
A1, l2/2

}
. With what was proved in this section, we can takeH1 = min

{
A1, E1/2, F1/2

}
. This height for H1 makes sure the collar we consider will not run into itself. But the bounds

E1 and F1 are far from being sharp. In fact for large x1 values, they turn out to be smaller

than even l1. Hence the choice for H1 is slightly modified as below.

H1 = max

{
min

{
E1

2
,
F1

2
, A1

}
,
l1
2

}

3.3 Half ideal muffin

To handle the region of intersection between the collar and the cusp neighbourhood , we

use another hyperbolic solid of rotation, about λ0. We call this object as the ”Half ideal

muffin”.(see figure 5)

Figure 5: Lifts of Ml1 and the half ideal muffin

To figure out correct dimensions for the half ideal muffin so that it’s embedded and does not
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intersect Ml1 first we need to understand the shortest distance between the foot of λ0 and

feet of λ0 on ∂N ; d01. Using the trigonometry proved in [6] we have the following lower

bound of d01.

cosh(d01) ≥ cosh(l1) + 1

sinh(l1)
=

√
x1 + 1

x1 − 1
(3)

acosh
(√

x1 + 1/x1 − 1
)

is hence a lower bound for d01. Let’s denote it by (d01)min.

Now we are ready to define dimensions of the half ideal muffin properly. There are two

parameters that completely determine a half ideal muffin ; base radius and side altitude. We

chose them as follows.

• Base radius = (d01)min −R1

• Side altitude = A1

Figure 6: Dimensions of the half ideal muffin

Now the part of the cusp neighbourhood outside the half ideal muffin can be dropped further

to encompass more volume. The complete arrangement as scene in ∂Ñ is shown in figure 7
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Figure 7: Complete arrangement seen in ∂Ñ

3.4 Volumes

In this section we compute volumes of solids mentioned earlier.

3.4.1 Volume of the muffin around shortest return path

Ml1 is a solid of a rotation and it’s volume is given by [2]

VMl1
(x1) = 2π

(
A1cosh(R1)− l1

2

)
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3.4.2 Volume of the half ideal muffin

We divide the half ideal muffin into two parts.(see figure 8)

• A compact part which is the solid of rotation of a Lambert quadrilateral. Sides of this

Lambert quadrilateral are (d01)min, A1, ρ and K ′ in terms of the notation in figure 8.

• A non compact part.

Figure 8: Two parts of the half ideal muffin

Lemma 3.4.1. All the measurements in figure 8 entirely depend on x1. They are given by

tanh(K ′) =
tanh(A)

cosh((d01)min)

sech2(ρ) =
tanh2(d01)min

1− sech2(A1)
sinh2((d01)min)+sech2(A1)

K = K ′ − log(cosh(ρ)

ρ′ = sinh(ρ)
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Proof. Consider the Lambert quadrilateral shown in figure 9. Such a quadrilateral satisfies

the rule tanh(c) = cosh(b)tanh(a)[2].

Now we apply this rule to the Lambert quadrilateral in figure 8, rotation of which forms

the compact part of the half ideal muffin. By taking a = K ′, b = (d01)min, c = A1 we obtain

tanh(A1) = cosh((d01)min)tanh(K ′)

We now reflect this quadrilateral along the diagonal through the acute angle and apply the

same quadrilateral rule again. This time we have a = (d01)min, b = K ′, c = ρ and hence

tanh(ρ) = cosh(K ′)tanh((d01)min)

By solving these two equations, we can obtain K ′ and ρ as given in the statement.

Now consider a lift of λ0 that is a vertical line segment that goes to ∞ in the universal

cover and the lift of the half ideal muffin around that vertical line. To compute K and ρ′,

without loss of generality we assume radius of the Euclidean hemisphere that bounds the

non compact part of the lift of half ideal muffin below is 1 and centered at (0, 0) on ∂H3 (see

figure 11).Let h be as shown in the same figure.

The curve from (0, 0, 1) to (
√

1− h2, 0, h) can be parameterized by

r(t) =< sin(t), 0, cos(t) > for 0 ≤ t ≤ cos−1(h). Since the hyperbolic length of this arc is ρ

we have

ρ =

∫ cos−1(h)

0

|r′(t)|
cos(t)

dt

=log(sec(t) + tant(t))
∣∣∣cos−1(h)

0

=log

(
1 +
√

1− h2

h

)

By solving this equation for h, we obtain h = sech(ρ). The vertical line segment from (0, 0, h)
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to (0, 0, 1) can be parameterized by < 0, 0, t > for h ≤ t ≤ 1. Hence its hyperbolic length is

equal to ∫ 1

h

1

t
dt = −log(h) = log(cosh(ρ)

Therefore K = K ′ − log(cosh(ρ)

Finally, ρ′ is an arc that lie in a horosphere of ∞ (a horizontal Euclidean plane). It can

be parameterized by < t, 0, h > for 0 ≤ t ≤
√

1− h2. So its length ρ′ is equal to∫ √1−h2

h

1

h
dt =

√
1− h2

h
= sinh(ρ)

Figure 9: A Lambert quadrilateral

Some of the quantities in the previous lemma will be needed to compute the volume of the

half ideal muffin while others will be needed later to estimate the volume of the cusp neigh-

bourhood.
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Figure 10: Computations in H3

Lemma 3.4.2. The volume of the compact part of the half ideal muffin is

π(A1cosh((d01)min − R1) − K ′) where K ′ and ρ are functions of x1 given in the previous

lemma

Proof. We just have to use the volume formula for the solid obtained by rotating a Lambert

quadrilateral proved in [12] (Same formula used in [2] to find the volume of Ml1).

Lemma 3.4.3. Volume of the non compact part of the half ideal muffin is given by πlog(cosh(ρ))

Proof. Here we use the same set up used to compute K and ρ′ in lemma 3.1. We consider a

lift of λ0 that is a vertical line segment that goes to ∞ in the universal cover and the lift of

the half ideal muffin around that vertical line and assume radius of the Euclidean hemisphere

that bounds the non compact part of the lift of half ideal muffin below is 1 and centered at

(0, 0) on ∂H3 ; i.e its the Euclidean hemisphere z =
√

1− x2 − y2.

Hence the projection of the non compact part onto ∂H3 is a Euclidean disk with radius
√

1− h2 and centered at the origin. Denote this disk by D. Hence the volume of the non
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compact part is given by

Volume of the non compact part =

∫∫
D

∫ ∞
√

1−x2−y2

1

z3
dzdxdy

= −1

2
.2π

∫ √1−h2

0

rdr

1− r2

= −1

2
.π.log(h2)

= πlog(1/h)

Since h = sech(ρ) , the volume of the non compact part of the half ideal muffin is πlog(cosh(ρ)).

Figure 11: Computing the volume of the non compact part of the half ideal muffin

Hence we have the volume of the half ideal muffin is given by

VHIM(x1) = π(A1cosh((d01)min −R1)−K ′) + πlog(cosh(ρ))
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3.4.3 Volume of the collar of the remaining part of ∂N

Intersection of Ml1 with ∂N is the union of two disks with radius R1. Each of these disks

has an area of 2π(cosh(R1)− 1). Intersection of the half ideal muffin with ∂N is a disk with

radius (d01)min −R1 and it has an area of 2π(cosh((d01)min −R1)− 1).

Hence the area of the part of ∂N that does not intersect the two muffins is 4π−4π(cosh(R1)−

1)− 2π(cosh((d01)min −R1)− 1).

We take a collar of this part with height H1. In the product metric space , it’s volume

is given by

Vcol(x1) =

(
4π − 4π(cosh(R1)− 1)− 2π

(
cosh((d01)min −R1)− 1

))(2H1 + sinh(2H1)

4

)
.

3.4.4 Volume of the remaining part of the cusp neighbourhood

The cusp neighbourhood we consider is distance K away from ∂N . Boroczky’s theorem

theorem provides a way to estimate the volume of this cusp neighbourhood if we know the

maximal radius of a disk that can be embedded in its boundary.

Let q be the point of intersection between λ0 and the boundary of this cusp neighbour-

hood. So we would like to understand how large of a disk can be embedded in the cusp cross

section centered at q. Suppose the radius of the largest such a disk is θ/2.

If ∞ is a lift of the cusp point in Ñ then a lift of the boundary of the cusp neighbourhood
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would be a horosphere of ∞ which is a horizontal Euclidean plane. Denote this Euclidean

plane by Λ. It contains some of the lifts of q. Then the length of the horocyclic arc on Λ

between any two lifts of q should be at least θ.

Suppose q1 and q2 be two lifts of q that attains this distance. Let λ̃′0 and λ̃”0 be lifts of

λ0 that contains those two points and Π1 and Π2 be the components of ∂Ñ that contain the

initial points of these two lifts. (See figure 12)

Figure 12: Common perpendicular to two components in ∂Ñ contain two lifts of λ0 is a lift

of λi

If the common perpendicular to Π1 and Π2 is a lift of λi then θ depends on li. Using

hyperbolic trigonometry results in [6] we can write θ explicitly in terms of li as below.

θ =

√
2(cosh(li) + 1)

eK
(4)

Using the Boroczky’s theorem , we can bound the area of this cusp cross section as fol-

lows.

Area of the cusp cross section at height K ≥ 2
√

3

π

(
π

(
θ

2

)2)
=

√
3θ2

2
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But within this cross section a disk of radius ρ′ will be covered by the half ideal muffin. Hence

the area of the remaining part of the cusp cross section is bounded below by
√

3θ2

2
− π(ρ′)2

Note that the volume of a cusp neighbourhood is one half of the area of its boundary

(Proposition 4.1.7 [13]). Hence the volume of the remaining part of the cusp cross section is

bounded below by
1

2

(√
3θ2

2
− π(ρ′)2

)
(5)

3.5 Final Estimations

In the arrangement shown in figure 7, we have 4 sources contributing to the volume of N .

• Ml1

• Half ideal muffin

• Collar of the remaining part of ∂N

• Remaining part of the cusp neighbourhood

In the previous section we computed volumes of the first three explicitly as functions of x1.

We also obtained a lower bound for the volume of the fourth which was recorded in (5). This

lower bound depend on both x1 and θ.

Recall that if two components of ∂Ñ that contain lifts of λ0 going to ∞ has a lift of λi

as their common perpendicular (see figure 12) then θ depends on li. The explicit relation

between θ and li is recorded in (4). We have to consider two cases.
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Case 1 : i = 1

First using the trigonometric results proved in [6] , we showed d01 = (d01)min in this case.

This forces θ/2 to be same as ρ′. Hence the bound in equation (5) can be rewritten as

1

2

(
2
√

3

π
(π(ρ′)2)− π(ρ′)2

)
=

1

2

(
2
√

3

π
− 1

)
(π(ρ′)2

)

Denote this function as Vcusp(x1).

Now define

V (x1) = VMl1
(x1) + VHIM(x1) + Vcol(x1) + Vcusp(x1)

Then V bound the volume of N by below ; V ol(N) ≥ V (x1) . Graph of V (x1) is shown in

figure 13 and value of V at x1 = 1.2158 exceeds 7.8. In particular for a manifold N that falls

into the category of case 1, we have V ol(N) > V ol(N0) if x1 > 1.2158.

Case 2 : i ≥ 2

In this case θ is not a function of x1. Since li ≥ l2 we have the following.

θ ≥
√

2(cosh(l2) + 1)

eK

Since l2 ≥ min{E1, F1}, we take Vcusp(x1) to be

Vcusp(x1) =
1

2

[[2√3

π

(
π(θ′/2)2

)]
− π(ρ′)2

]

where θ′ =

√
2(cosh(min{E1,F1})+1)

eK

This Vcusp(x1) bounds the volume of the remaining part of the cusp neighbourhood by below

in case 2.
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Similar to case 1, we define

V (x1) = VMl1
(x1) + VHIM(x1) + Vcol(x1) + Vcusp(x1)

Graph of V (x1) for this case is also shown in figure 13. Value of V at x1 = 1.208 exceeds

7.8. In particular for a manifold N that falls into the category of case 2 V ol(N) > V ol(N0)

if x1 > 1.208.(Note that this holds true even for some x1 values less than that in this case.

But this bound is suffice for now as x1 values less than 1.208 will be separately addressed in

the next chapter.)

This completes the main result of this chapter which is

Figure 13: Plots of V (x1)
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Theorem 1. If the smallest manifold in Nc,c belongs to the type described in case 1 then it’s

x1 value is less than 1.2158. If it belongs to case 2 then it’s x1 value is less than 1.208.

In the next chapter we will show that no manifold in Nc,c can have an x1 value less than

1.208 eliminating the possibility of the latter case in 1. In chapters 5,6 and 7 we explain our

approach to tackle the former case.

33



4.0 Centered Dual Decomposition

The main goal of this chapter is to find a lower bound for the x1 value of the smallest man-

ifold in Nc,c. In proposition 2.4.5 we recorded the lower bound computed by Kojima and

Miyamoto for the x1 of any hyperbolic manifold. This value is 1.183. In this chapter, we will

prove this lower bound can be pushed higher when the manifold is cusped. Recall that in

chapter 3 we proved an upper bound for the x1 value of the smallest manifold in Nc,c which

turns out to be 1.2158.

Throughout this chapter N will be a manifold in Nc,c with χ(∂N) = −2 and an x1 value

between 1.183 and 1.2158. Most of our work in this chapter will be on the bound-

ary of N . We study its geometry using the machinery of ”Centered Dual Decomposition”

introduced in [7] by DeBlois to understand the geometry of ∂N . Then we relate the geom-

etry of ∂N to the geometry of N using the trigonometry of right angled hyperbolic hexagons.

4.1 (i, j, k) hexagons

Let’s first record the hexagon rule for the right angled hexagons. Let a be the hyperbolic

length of a side of such a hexagon. Suppose b and c are the side lengths of adjacent sides of

a and d is the length of the side opposite to a. Right angled hexagon rule (Theorem 3.5.14,

[14] )says sides a, b and c determines the entire hexagon and

cosh(a) =
cosh(b)cosh(c) + cosh(d)

sinh(b)sinh(c)

Let Π1,Π2 and Π3 be distinct components of ∂Ñ . Suppose the common perpendiculars to

these are lifts of λi, λj and λk. Then these lifts are contained in a geodesic plane of H3.
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The right angled hexagon which has the above lifts as alternating sides in contained in Ñ

[4]. Other three sides of the hexagon are geodesic arcs in ∂Ñ . Such a hexagon is called

as an (i, j,k) hexagon. Sides of the hexagon which are lifts of return paths are called as

internal edges and the sides which are geodesic arcs in ∂Ñ are called as external edges of

the hexagon.

Figure 14: An (i, j, k) hexagon in Ñ seen from above

Recall that d11 is the distance between the feet of λ (shortest return path) on the boundary.

Suppose λ′1 and λ”1 are two lifts of λ1 such that both of them has an end point in the same

boundary component Π of ∂Ñ and d11 is the distance of the geodesic arc between these two

points on Π. This geodesic arc on Π together with λ′1 and λ”1 determines a right angled

hexagon in Ñ . If the third internal side of the hexagon is a lift of k−th shortest return path

then this is a (1, 1, k) hexagon. By applying the right angled hexagonal rule we have the

following.

cosh(d11) =
cosh2(l1) + cosh(lk)

sinh2(l1)

≥ cosh2(l1) + cosh(l1)

sinh2(l1)

=
cosh(l1)(cosh(l1) + 1)

cosh2(l1)− 1

= 1 +
1

cosh(l1)− 1
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The inequality in the second line follows from lk ≥ l1. Hence this inequality becomes and

equation if and only if the third internal side is also a lift of λ1 ( or in other words if and

only if Ñ has a (1, 1, 1) hexagon.)

DeBlois and Shalen [4] showed manifolds with x1 < 1.215 contain a (1, 1, 1) hexagon in

it’s universal cover. This is further improved to x1 < 1.23 in [5]. Since the x1 values of the

manifolds we consider in this chapter are also in this range, we have following relation which

describe d11 explicitly in terms of x1.

cosh(d11) = 1 +
1

cosh(l1)− 1
= 1 +

1

x1 − 1
(6)

Using this relation between x1 and d11 we can rewrite (d01)min from chapter 3 (3) in terms

of d11.

cosh((d01)min) =
√

2cosh(d11)− 1

We also have the following which will be more useful later in this chapter.

sinh((d01)min) =
√

2(cosh(d11)− 1) (7)

4.2 Centered Dual Decomposition

Below we provide a brief summary on the centered dual decomposition (sections 1 and 2,

[15]). Let S ⊂ H2 be a locally finite set. We start with the Voronoi tessellation of H2

with respect to S. For each s ∈ S , there is a unique corresponding Voronoi 2 -cell in the
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tessellation given by

Vs =
{
x | d(x, s) ≤ d(x, s′) ∀s′ ∈ S

}

Each 1-cell of the tessellation is given by the intersection of two Voronoi 2-cells and each

vertex is the intersection of three or more Voronoi 2-cells.

Consider a k-cell V =
⋂
s∈S0 Vs of the Voronoi tessellation where S0 ⊂ S. Then it’s ge-

ometric dual is the closed convex hull of S0 in H2 which has the dimension 2− k. We denote

this by CV . Collection of geometric duals of Voronoi cells form the Geometric Dual Com-

plex of S.

An edge e in the Voronoi tessellation is said to be non centered if it’s geometric dual

edge does not intersect int(e). Collection of non centered Voronoi edges is called as the non

centered Voronoi subgraph .

Then the Centered Dual Decomposition can be thought as a coarsened version of the

geometric dual complex where some of the 2-cells in the latter is grouped in a way to give

a larger 2-cells , one corresponding to each component of the non centered Voronoi subgraph.

To be precise, if T is a component of the non centered Voronoi subgraph then we define a 2−

cell of the centered dual decomposition by CT =
⋃
v∈T 0 Cv where T 0 is the set of vertices of T .

Now consider an orientable complete hyperbolic surface H and a finite set S ⊂ H. Let

π : H2 → H be the universal cover. We can consider the centered dual decomposition of

H2 with respect to π−1(S). Corollary 5.6 of [15] says, this centered dual decomposition is

invariant under deck transformations and π embeds the interior of each cell in H. The pro-

jection of these cells under the covering map forms the centered dual decomposition of

H with respect to S.

For a manifold N in Nc,c we consider the Centred Dual Decomposition of ∂N with re-
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spect to feet of λ1 on ∂N ; i.e vertices of the Centered Dual Decomposition decomposition

are feet of λ1. Then d11 is the minimum length of edges in the decomposition.

Each 2-cell in this decomposition is a union of geometric duals. Note that vertices of any

geometric dual are equidistant from the corresponding Voronoi vertex; hence lie on a metric

circle centered at that Voronoi vertex. We call such polygons as cyclic polygons. These were

studied heavily in [16] and we devote the next section to record some of the pertinent results

proved there.

4.3 Cyclic polygons

Definition 4.3.1. Consider a hyperbolic polygon P with n vertices. If all the vertices of

P lie on a metric circle , we call it as a cyclic polygon. This metric circle is called as the

circumcircle of P .

For an example any 2−cell in a geometric dual described earlier is a cyclic polygon. Calculus

of cyclic polygons are of utmost importance for us in the remainder of this chapter. Below

we record some of the results proved in [7] and [16] which we use regularly.

Let P be a cyclic polygon and v0, v1, . . . , vn−1 be it’s vertices ordered cyclically. Denote

the edge lengths of P by q0 = dist(v0, vn−1) and qi = dist(vi−1, vi). Edge lengths of a cyclic

polygon satisfy

sinh(qi/2) <
∑
j 6=i

sinh(qj/2) ∀i ∈ {0, . . . , n− 1}

This tuple (q0, . . . qn−1) of positive numbers upto a cyclic permutation uniquely determine

P upto an orientation preserving isometry. Hence we define the set of cyclic hyperbolic
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polygons with n sides by

ACn =

{
(q0, . . . qn−1) ⊂ Rn | sinh(qi/2) <

∑
j 6=i

sinh(qj/2) ∀i ∈ {0, . . . , n− 1}
}

Proposition 4.3.2. (Proposition 3.3 ,[7]) There exist smooth functions

D0 : ACn → R+ and J : ACn → R+ that assigns a cyclic polygon it’s area and the radius of

it’s circumcircle respectively.

Definition 4.3.3. A cyclic polygon P is centered if the center of it’s circumcircle is con-

tained in the interior of P . We denote the set of centered polygons with n sides by Cn ⊂ ACn.

P is semicyclic if the center of the circumcircle lie on an edge of P . Set of semicyclic poly-

gons with n sides is denoted by BCn ⊂ ACn

Proposition 4.3.4. (Proposition 3.7 ,[7]) There exist a smooth function

b0 : Rn−1
+ → R+ such that (b0(q̄), q̄) ∈ BCn for any q̄ ∈ Rn−1

+ .

If P is the semicyclic polygon determined by (b0(q̄), q̄) then b0(q̄) is it’s largest edge and

J(P ) = b0(q̄)/2. Furthermore if pi ≤ qi for all i then b0(p1, . . . pn−1) ≤ b0(q1, . . . qn−1)

Below we record circumcircle radii and area formulas for hyperbolic triangles and quadrilat-

erals. Formulas for circumcircle radii follows from general results in hyperbolic trigonometry.

Area formulas were proved in [17] and [17] for triangles and quadrilaterals respectively.

Proposition 4.3.5. Consider a hyperbolic triangle with sides a, b and c. Let A = sinh(a/2), B =

sinh(b/2) and C = sinh(c/2). Then the circumcircle radius J(a, b, c) of this triangle is given

by

sinh(J(a, b, c)) =
2ABC√

(A+B + C)(A+B − C)(A−B + C)(−A+B + C)
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and the area D0(a, b, c) of this triangle is given by

cos

(
D0(a, b, c)

2

)
=

A2 +B2 + C2 + 2

2cosh(a/2)cosh(b/2)cosh(c/2)

Proposition 4.3.6. Consider a hyperbolic quadrilateral with sides a, b, c and d. Let A =

sinh(a/2) and so on. Then the circumcircle radius J(a, b, c, d) of this quadrilateral is given

by

sinh(J(a, b, c, d)) = 2

√
(AB + CD)(AC +BD)(AD +BC)

(A+B + C −D)(A+B − C +D)(A−B + C +D)(−A+B + C +D)

and the area D0(a, b, c, d) of this quadrilateral is given by

cos

(
D0(a, b, c, d)

2

)
=

A2 +B2 + C2 +D2 − 2ABCD + 2

2cosh(a/2)cosh(b/2)cosh(c/2)cosh(d/2)

Behaviours of the functions J and D0 defined above vary on Cn and it’s complement in ACn.

Next two propositions were proved in [16] and will play a very important role later in this

chapter.

Proposition 4.3.7. (Proposition 1.20, [16]) For q̄ = (qo, . . . , qn−1) ∈ ACn
0 < ∂J

∂qi
(q̄) < 1

2
if q̄ ∈ Cn and i ∈ {0, 1, . . . . , n− 1}

∂J
∂qi

(q̄) > 1
2

if q̄ ∈ ACn − (Cn ∪ BCn) and qi = max{q0, . . . , qn−1}

∂J
∂qi

(q̄) < 0 if q̄ ∈ ACn − (Cn ∪ BCn) and qi 6= max{q0, . . . , qn−1}

Furthermore if qi < qj then
∣∣ ∂J
∂qi

(q̄)
∣∣ < ∣∣ ∂J

∂qj
(q̄)
∣∣
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Proposition 4.3.8. (Proposition 2.3 ,[16]) For q̄ = (qo, . . . , qn−1) ∈ ACn

∂D0

∂qi
(q̄) =


−
√

1
cosh2(qi/2)

− 1
cosh2(J(q̄)

if q̄ ∈ ACn − (Cn ∪ BCn) and qi = max{q0, . . . , qn−1}

√
1

cosh2(qi/2)
− 1

cosh2(J(q̄)
otherwise

Corollary 4.3.9. If p̄ = (po, . . . , pn−1), q̄ = (qo, . . . , qn−1) ∈ Cn and pi < qi after a cyclic

permutation then D0(p̄) < D0(q̄) and J(p̄) < J(q̄)
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4.4 Centered Dual Decomposition of ∂N with respect to the feet of shortest

return path

For manifolds in Nc,c we already have a lower bound for d01 in terms of x1 given in (3). Now

our goal is to obtain an upper bound for d01 in terms of x1. Recall that manifolds N we

consider in this chapter has x1 values in the interval [1.183, 1.2158] and for such N , d11 can

be given explicitly in terms of x1 by (6). Hence we will first obtain the upper bound of d01

we seek in terms of d11 and then use (6) to rewrite them in terms of x1.

First fix a d11 value. For a manifold N with this d11 value, we define Qd11 to be the space of

all the possible centered dual decompositions of ∂N with respect to the feet of its shortest

return path. For any such decomposition F in Qd11 , edge lengths are bounded below by d11.

Areas of 2−cells of F should also add up to 4π ; the area of a genus 2 surface.

The types of polygons that can appear as 2−cells of a decomposition F in Qd11 depend

on the value of d11. In section 4.5 we classify the ranges of d11 values according to the

polygons that can appear as 2−cells of the decompositions in Qd11 .

Definition 4.4.1. For a fixed d11 value and a decomposition F ∈ Qd11 define

JF = max{ J(∆i) | ∆i is a 2-cell of F }

and then Jd11 is defined to be

Jd11 = max{ JF | F ∈ Qd11 }

.

In sections 4.6, 4.7 and 4.8 we investigate Jd11 for the ranges of d11 values classified in section

4.3. We either compute Jd11 explicitly as a function of d11 or derived functions of d11 that

bound Jd11 by above when explicit computations are tedious to carry out.
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Note that for a manifold N with a given d11 value, Jd11 defined above is the maximum

distance between any point in ∂N and the feet of shortest return path on ∂N . In particular,

it bounds d01 by above. Hence the explicit functions or upper bounds we compute in sections

4.6, 4.7 and 4.8 bound d01 by above.

4.5 d11 value of a manifold and 2-cells of the centered dual decomposition of

its boundary

Area bounds for 2−cells in a centered dual decomposition were proved in [7] and [15]. In this

section, we use these bounds to classify ranges of d11 values based on the polygons appearing

as 2−cells in the decompositions in Qd11 .

Lemma 4.5.1. If all 2-cells in the centered dual decomposition are triangles then d11 ≤ dα ≈

arccosh(6.464) where dα satisfy

8D0(dα, dα, dα) = 4π

Proof. If all 2−cells are triangles then an Euler characteristic computation show there are

8 faces , say ∆i for i = 0, . . . 7. All these 2-cells are centered and lengths of all the edges in

the decomposition are bounded below by d11. If d11 > dα then by corollary 4.3.9 we have

4π =
7∑
i=0

∆i ≥ 8D0(d11, d11, d11) > 8D0(dα, dα, dα) = 4π

which is a contradiction. Hence d11 ≤ dα.
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Lemma 4.5.2. If one of the 2−cells in the centered dual decomposition is a rectangle then

d11 ≤ dβ ≈ arccosh(6.299) where dβ satisfy

6D0(dβ, dβ, dβ) + 2Am(dβ) = 4π

Here Am(dβ) is the area of a semi cyclic triangle with two sides of dβ.

Proof. Let ∆0 be the rectangular 2−cell. As proved in [7] , area of such a 2−cell is bounded

below by 2Am(d11). There are 6 other 2−cells in the decomposition, all of which are centered

triangles.(say ∆i for i = 1, . . . 6). If d11 > dβ then using corollary 4.3.9 we have

4π =
6∑
i=0

∆i ≥ 2Am(d11) + 6D0(d11, d11, d11) > 2Am(dβ) + 6D0(dβ, dβ, dβ) = 4π

which is a contradiction. Hence d11 ≤ dβ in this case.

In general , area of a centered dual 2− cell with n sides is bounded below by (n−2)Am(d11)[7].

But improved area bounds for n > 4 were proved in [15]. Using these improved bounds and

arguments similar to the ones used in previous two lemmas, we can find upper bounds for

d11 when pentagons and hexagons appear in the centered dual decomposition. We record

these bounds below.

Lemma 4.5.3. If one of the 2−cells in the centered dual decomposition is a pentagon then

d11 ≤ dθ ≈ arccosh(6.059). If one of the 2−cells in the centered dual decomposition is a

hexagon then d11 ≤ dδ ≈ arccosh(5.801).

These three lemmas determine the possibilities for 2−cells in centered dual decomposition

for a fixed d11 value in a certain intervals. We summarise them below.

Corollary 4.5.4. Suppose cosh(d11) ∈ [5.801, 6, 464]

• If d11 ∈ [dβ, dα] (⇔ cosh(d11) ∈ [6.299, 6.464]⇔ x1 ∈ [1.183, 1.189]) then CDD can have

only triangles

• If d11 ∈ [dθ, dβ] (⇔ cosh(d11) ∈ [6.059, 6.299] ⇔ x1 ∈ [1.189, 1.197]) then CDD can only

have triangles or rectangles.
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• If d11 ∈ [dδ, dθ] (⇔ cosh(d11) ∈ [5.801, 6.059] ⇔ x1 ∈ [1.197, 1.208]) then CDD can have

only triangles ,rectangles or pentagons.

4.6 When d11 ∈ [dβ, dα]

Consider a fixed d11 in this interval. By corollary 4.5.4 , a centered dual decomposition of

∂N with respect to feet of shortest return parth of a manifold N with this d11 can only have

triangles. This means all these triangles are centered and these are also the 2− cells in the

geometric dual ; i.e CDD coincides with the geometric dual.

First we want to parameterize Qd11 , the space of all the possible centered dual decom-

positions for this fixed d11.

As mentioned in lemma 4.5.1, such a decomposition have 8 centered triangles. Following

the notation used there, we denote them by ∆j for j = 0, . . . , 7.

Denote edges of ∆j by γ3j, γ3j+1, γ3j+2 and their lengths by q3j, q3j+1, q3j+2.

Each γi is glued exactly to another edge which we denote by γι(i). Hence qi = qι(i).

Hence we parameterize Qd11 as all the tuples (q0, q1, . . . q23) in R24
+ that satisfy following

conditions.

• d11 ≤ min{ qi | 0 ≤ i ≤ 23 }

• 4π =
∑7

j=0D0(q3j, q3j+1, q3j+2)

• ∆j = (q3j, q3j+1, q3j+2) ∈ Cn for each j ∈ {0, . . . , 7}

• ∃ an involution ι ∈ S24 such that qi = qι(i) for 0 ≤ i ≤ 23
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Recall that for a decomposition F ∈ Qd11 we have JF = max{ J(∆i) | 0 ≤ i ≤ 7 } and

Jd11 = max{F | F ∈ Qd11 , }. Now we want to identify the decomposition F ∈ Qd11 such

that JF = Jd11 .

Lemma 4.6.1. For any d11 ∈ [dβ, dα] there is a unique s(d11) ∈ [d11, b0(d11)] such that

6D0(d11, d11, d11) + 2D0(s(d11), d11, d11) = 4π

Proof. By definition , we can take s(dα) = dα and s(dβ) = b0(dβ). Now suppose d11 ∈

(dβ, dα). Define f(x) = 6D0(d11, d11, d11) + 2D0(x), d11, d11). We need to prove f attains 4π

in the interval (d11, b0(d11)).

By corollary 4.3.9 we have the following.

f(d11) = 8D0(d11, d11, d11) < 8D0(dα, dα, dα) = 4π and

f(b0(d11)) = 6D0(d11, d11, d11) + 2Am(d11) > 6D0(dβ, dβ, dβ) + 2Am(dβ) = 4π.

It follows from the same corollary, f(x) is an increasing function when x ∈ [d11, b0(d11)].

Hence the result follows.

Note that the lemma above provides an element F0 ∈ Qd11 which can be represented by

a tuple in R24 with exactly two entries of s(d11) and all the remaining entries of d11. i.e

F0 =
(
s(d11), d11, d11, s(d11), d11, d11, . . . , d11

)
(see figure 15)

Lemma 4.6.2. Suppose F ∈ Qd11 Length of any edge in F can not exceed s(d11).
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Figure 15: Two-cells of F0

Proof. W.l.o.g suppose an edge in ∆0 has length greater than s(d11) and it is glued to an

edge in ∆1. Lengths of all edges in the decomposition are bounded below by d11.

Hence D0(∆0), D0(∆1) > D0(s(d11), d11, d11) and D0(∆i) ≥ D0(d11, d11, d11) for i = 2, . . . , 7.

Then we have 4π =
∑7

i=0 D0(∆i) > 2D0(s(d11), d11, d11) + D0(d11, d11, d11) = 4π which is

contradiction.

Theorem 4.6.3. (Lemma 8.14 ,[18]) Jd11 = JF0 = J(s(d11), d11, d11) where F0 is the de-

composition given in lemma 4.6.1.

Proof. We start with any F ∈ Qd11 . Let {∆j | 0 ≤ j ≤ 7 } be it’s 2 -cells and edge lengths

of ∆j be q3j, q3j+1, q3j+2. Then we have the following.

d11 ≤ min{ qi | 0 ≤ i ≤ 23 }
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7∑
j=0

D0(∆j) = 4π

Without loss of generality assume following.

• J(F) = J(∆0) = max{ J(∆i) | 0 ≤ i ≤ 7 }

• q0 is the longest edge of ∆0 and it’s glued to an edge in ∆1

By lemma 4.6.1 q0 ≤ s(d11). Suppose q0 < s(d11). Then there should be an edge qi different

from q0 and ι(q0) with length greater than d11. If not all the edges except for a pair with

length q0 will have the length d11 leading to the contradiction

4π =
7∑
j=0

D0(∆j) < 6D0(d11, d11, d11) + 2D0(s(d11), d11, d11) = 4π

Let ∆j0 and ∆j1 be the triangles that has qi and ι(qi) as edges.

Now we deform (q0, . . . , q23) as follows.

• Increase q0 ; take q0(t) = q0 + t

• Do not change lengths of any other glued edge pair except for qi

• Change qi such that area sum of all 2-cells remains a constant (= 4π)

We claim this deformation increase J(∆0) while preserving the inclusion of F in Qd11 . For

the simplicity , we denote this deformation by T . We have to consider 3 cases.

Case 1:{∆0,∆1} = {∆j0 ,∆j1}

In this case both ∆0 and ∆1 has one edge each with with lengths q0 and qi. Let q̃ and ˜̃q be

lengths of the remaining edge in ∆0 and ∆1 respectively.
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Figure 16: Edge gluings for case 1

The deformation T increase q0 while keeping

D0(∆0) +D0(∆1) = D0(q0(t), qi(t), q̃) +D0(q0(t), qi(t), ˜̃q)

a constant.

By differentiating this with respect to t we obtain

∂(D0(∆0)

∂q0

+
∂(D0(∆0)

∂qi

dqi(t)

dt
+
∂(D0(∆1)

∂q0

+
∂(D0(∆1)

∂qi

dqi(t)

dt
= 0

All the partial derivatives above can be computed using proposition 4.3. Hence we have

dqi(t)

dt
= −

(√
1

cosh2(q0(t)/2)
− 1

cosh2(J(∆0)
+
√

1
cosh2(q0(t)/2)

− 1
cosh2(J(∆1)

)
√

1
cosh2(qi(t)/2)

− 1
cosh2(J(∆0)

+
√

1
cosh2(qi(t)/2)

− 1
cosh2(J(∆1)

As q0 > qi by assumption at least for t > 0, we observe the absolute value of the left

hand side of above equation is less than 1. Hence −1 < dqi
dt
< 0 .

On the other hand we have dJ(∆0)
dt

= ∂J(∆0)
∂q0

+ ∂J(∆0)
∂qi

dqi
dt

.

By proposition 4.3.7 ∂J(∆0)
∂q0

> ∂J(∆0)
∂qi

. This together with the fact −1 < dqi/dt < 0 implies

dJ(∆0)
dt

> is positive , hence the deformation T increase J(∆0) .
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Case 2: ∆j0 ,∆j1 6= ∆0

In this case , only edge in ∆0 that changes under T is q0. Hence this case is trivial as

dJ(∆0)
dt

= dJ(∆0)
dq0

is positive from proposition 4.3.7 .

Case 3: ∆0 = ∆j0 and ∆1 6= ∆j1

In this case ∆0 and ∆1 share an edge each with lengths q0 and ∆0 and ∆j1 share an edge

each with length qi. We can assume all other edges of ∆1 and ∆j1 has lengths equal to d11.(If

not we can apply case 1 or 2 and decrease them to d11). So 2−cells we are interested in are

as follows.

• ∆0 = (q0(t), qi(t), q̃)

• ∆1 = (q0(t), d11, d11)

• ∆j1 = (qi(t), d11, d11)

Figure 17: Edge gluings for case 3

Deformation T keep D0(∆0) + D0(∆j1) + D0(∆1) a constant. By differentiating this with

respect to t we obtain

dqi(t)

dt
= −

(√
1

cosh2(q0(t)/2)
− 1

cosh2(J(∆0)
−
√

1
cosh2(q0(t)/2)

− 1
cosh2(J(∆j1

)

)
√

1
cosh2(qi(t)/2)

− 1
cosh2(J(∆0)

+
√

1
cosh2(qi(t)/2)

− 1
cosh2(J(∆1)
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First term in the numerator is less than the first term in the denominator.

To show it’s the same for second terms in the numerator and the denominator, we define a

function f(x) = 1
cosh2(x)

− 1
J(x,d11.d11

. From 8.14.1 in [18] f(x) is a decreasing function of x.

Hence the second term in the numerator =
√
f(q0(t)) is less than the second term in the

denominator =
√
f(qi(t)). Hence similar to case 1, we have −1 < dqi

dt
< 0 and it follows

dJ(∆0)/dt is positive.

In all 3 cases , we proved the deformation of (q0, . . . q23) described above increase J(∆0).

These 3 cases exhaust all the possible edge gluings of q0 and qi. Hence we can continue the

deformation T and increase JF till the length of every edge pair except for qo is equal to d11

at which instance JF is a maximum. But by lemma 4.6.1 q0 will be equal to s(d11) when all

remaining pairs of edges have the length d11. Hence we can identify the decomposition that

has the maximum JF among all the decompositions in Qd11 be F0.

Theorem 4.6.4. No manifold in Nc,c has a d11 ∈ [dβ, dα]

Proof. In Theorem above we showed Jd11 = JF0 = J(s(d11), d11, d11).

Using 4.3.5 sinh value of this circumcircle radius can be computed to

sinh(JF0) =
2sinh2(d11

2
)√

4sinh2(d11/2− sinh2(s(d11)/2

We know s(d11) ≤ b0(d11, d11) because all the triangles are centered.

Also sinh( b0(d11,d11)
2

) =
√

2sinh(d11/2) [16]
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Hence we have the following upper bound for sinh(JF0).

sinh(JF0) ≤
2sinh2(d11

2
)√

2sinh2(d11
2

)
=
√

2sinh

(
d11

2

)

Denote this upper bound of sinh(JF0) by sinh(JF0)
ub. We compare its plot with that of

sinh(d01)min given in 7.(see figure 18). We observe (JF0)
ub < (d01)min when d11 ∈ [dβ, dα]

which is a contradiction. Hence the theorem is proved.

Figure 18: Comparing upper and lower bounds of (d01)min when d11 ∈ [dβ, dα]
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4.7 When d11 ∈ [dθ, dβ]

Consider a fixed d11 in this interval. By corollary 4.5.4, centered dual decomposition of ∂N

of a manifold with this d11 can have triangles or quadrilaterals as 2−cells.

We will first introduce two possible decompositions F1 and F2 in Qd11 . We will then ei-

ther explicitly compute or estimate JF1 and JF1 and compare it with (d01)min. We will see

both JF1 and JF2 are less than (d01)min in this range of d11 values. Finally we will show any

centered dual decomposition for F ∈ Qd11 , JF is less than one of JF1 of JF2 , leading to a

contradiction. This means we will be able to conclude that no manifold in Nc,c has a d11

value in this range.

Below we describe F1 and F2 them below and compute or estimate JFi for each case.

Decmposition 1 ; F1

There are 7 two-cells in F1 ; 1 rectangle and 6 triangles.

• ∆0 = (u(d11), d11, u(d11), d11) ∈ C4. Two sides of length u(d11) are glued to each other.

• ∆i = (d11, d11, d11) ∈ C3 for i = 1, 2, , . . . , 6

Then we have

JF1 = J(∆0) = J(u(d11), d11, u(d11), d11)

and it satisfies sinh(J(∆0)) =
√
sinh2(u(d11)

2
) + sinh2(d11

2
) by prop 4.3.5

Now consider the area sum equation

4π = D0(u(d11), d11, u(d11), d11) + 6D0(d11, d11, d11)
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Each term in the right hand side can be computed using proposition 4.3.6. By solving this

equation for u(d11) in terms of d11 we obtain the following

sinh2

(
u(d11)

2

)
=

cosh2
(
d11/2

)
(g(d11)− 1)

2− cosh2
(
d11/2

)
(g(d11) + 1)

where (g(d11)− 1) = cos

(
6cos−1

(
3sinh2(d11/2)+2

2cosh3(d11/2)

))

Then plug in this solution to the previous equation of sinh(J(∆0)) and obtain sinh(J(∆0))

as a function of d11 explicitly.

Decomposition 2 ; F2

Again there are 7 two-cells in F2 ; 1 rectangle and 6 triangles.

• ∆0 = (v(d11), d11, d11, d11) ∈ C4

• ∆1 = (v(d11), d11, d11) ∈ C3

• ∆i = (d11, d11, d11) ∈ C3 for i = 2, , . . . , 6

Then we have

JF2 = J(∆0) = J(v(d11), d11, d11, d11)

and it satisfies sinh(J(∆0)) = 2
√

sinh3(d11/2)
3sinh(d11/2)−sinh(v(d11))

by proposition 4.3.5

Obtaining v(d11) as a function of d11 explicitly require the tedious task of solving the area

sum equation

4π = D0(v(d11), d11, d11, d11) +D0(v(d11), d11, d11) + 5D0((d11, d11, d11)
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for v(d11). Instead we differentiate the area sum with respect to d11.

∂D0(∆0)

∂v(d11)
v′(d11) + 3

∂D0(∆0)

∂d11

+
∂D0(∆1)

∂v(d11)
v′(d11) + 2

∂D0(∆1)

∂d11

+ 15
∂D0(d11, d11, d11)

∂d11

= 0

All the partial derivatives in the above equation are positive by prop 4.3. Hence v′(d11)

is negative. Hence v(d11) ≤ v(dθ) for any d11 ∈ [dθ, dβ].

Therefore we have sinh(JF2) = sinh(J(∆0)) ≤ 2
√

sinh3(d11/2)
3sinh(d11/2)−sinh(v(dθ))

Denote this upper bound of sinh(JF2) by sinh(JF2)
ub. A comparison of plots of sinh(JF1)

and sinh(JF2)
ub with sinh((d01)min) as given in 7 is shown below (figure 19).

Figure 19: Comparing upper and lower bounds of (d01)min when d11 ∈ [dθ, dβ]

If we can show that for a d11 in this interval and for any decomposition F ∈ Qd11 that

JF is bounded above by one of JF1 or JF (or in other words Jd11 is one of those two) then

the above plot would raise a contradiction. The next subsection is devoted to this purpose.
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4.7.1 Jd11 is either JF1 or JF

In this range of d11 values, its possible for the centered dual to have triangles or quadrilat-

erals as 2− cells. Main goal of this subsection is to show any F in Qd11 can be deformed

through a series of operations, all of which continue to increase JF , till F is deformed into

one of F1 or F2.

While this is exactly the process we followed in the previous sections when centered dual only

has triangles, in this section(and also in the next) there are significantly higher number of

cases we have to go through. Hence below we describe the process and some of the notations

we will be using to keep things concise.

Basic steps : We start with a F in Qd11 . We look at its 2-cell that has the largest

circumcircle radius. We denote this 2-cell by ∆0. Hence JF = J(∆0). Then we send F

through an operation with the goal of increasing J(∆0).

A typical operation that can do this looks as below. We increase a length of an edge of

∆0 (say l) and change the length of only one other selected edge (say q) in the centered dual

such that sum of the areas of all the 2-cells remain constant at 4π. We simply denote this

operation as follows.

Deformation : Increase l and change q

Note that we do not explicitly mention area sum remain constant but it is always the case

and the notation above implicitly assumes it.

If we denote increment of l by l(t) = l + t then we can compute q′(t) by differentiating

the area sum using proposition 4.3. When differentiating the area sum, we need to differen-

tiate the function D0 with respect to some edge lengths. Hence we will frequently see the
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terms such as √
1

cosh2(u/2)
− 1

cosh2(J(∆))

where u is a length of an edge of a 2-cell ∆. For the convenience, we will denote this

kind of a term simply by f(u,∆).

By differentiating the area sum, we can write q′(t) as a quotient which is a combination

of several terms of the form f(u,∆). We can not find the exact value of q′(t) but we can

determine an interval of values it can take by using properties of f(u,∆). We list these

properties in the lemma below.

Lemma 4.7.1. Let f(u,∆) be as above.

• f(u,∆) > f(u′,∆) for a 2-cell ∆ with u and u′ its edges if u < u′

• f(x,∆1) > f(y,∆2) if ∆1 = (x, d, d) ∈ C3, ∆2 = (y, d, d) ∈ C3 and x < y

• f(y,∆1) > f(x,∆2) if ∆1 = (x, d, d) ∈ AC3 − C3, ∆2 = (y, d, d) ∈ AC3 − C3 and x < y

Proof. The first one is obvious. Second and third one are followed from claim 8.14.1 in

[18]

Then we show J ′(∆0) > 0 by using proposition 4.3.7 and q′(t) if necessary.

It shows this operation increases J(∆0). Finally we mention till when we can continue this

operation. Typically there are multiple cases that can force us to terminate this kind of an

operation. q decreased to d11 is one of them.

Then for terminating case, we send the decomposition through another operation that fur-

ther increase J(∆) . Whenever an operation is forced to terminate, we continue to analyse

those terminating cases through a sequence of operations till we reach one of F1 or F2. Now

we are ready to begin our analysis.
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When F has a quadrilateral as a 2-cell

We’ll start with a 2−cell that is a quadrilateral which is formed by gluing a centered triangle

∆0 to a non centered triangle ∆1 and all other 2-cells in the centered dual are centered

triangles. In this case non centered tree has a single edge and J(∆0) > J(∆1).

Let l be the length of the side shared by ∆0 and ∆1. We have to consider two main cases.

• Case A : No other edge of ∆0 is glued to and edge of ∆1

• Case B : One more edge of ∆0 is glued to an edge of ∆1

Case A : We now address case A. First we check to see if there are edges that are not

glued to either of ∆0 and ∆1 and has length greater than d11. Suppose there is such an edge

with length q > d11. Then exists perform the following deformation. If no such edge exists,

proceed to case A.2.

Deformation : Increase l and change only q

By differentiating the area sum with respect to t , by proposition 4.3 we obtain

q′(t) = −

(
f(l,∆0)− f(l,∆1)

f(s,∆i) + f(s,∆j)

)

where ∆i and ∆j be the triangles that share edge q. We observe s′ is negative as long as

f(l,∆0) > f(l,∆1) or equivalently J(∆0) > J(∆1) and hence s is decreasing. On the other

hand J(∆0) is increasing as ∆0 is centered and the deformation increase length of one of its

edges without changing other edges. To be precise we have

J ′(∆0) =
∂J(∆0)

∂l
∈ (0, 1/2) (by 4.3.7)
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We also have the following

J ′(∆1) =
∂J(∆1)

∂l
> 1/2 (by 4.3.7)

So both J(∆0) and J(∆1) are increasing but J(∆1) increases at a higher rate. We can

continue this deformation till one of the following two things happen.

• Case A.1 : J(∆0) = J(∆1)

• Case A.2 : q is decreased to d11

Case A.1 WhenJ(∆0) = J(∆1), two triangles ∆0 and ∆1 will together form a single cen-

tered rectangle. Let’s denote this rectangle by ∆. None of the edges of ∆ is glued to another

edge of the rectangle.(follows from the assumption of case A.) Now let s be the length of the

longest edge in ∆ and ∆′ be the other 2− cell (which is a centered triangle) it’s glued to.

Again take a side with length q that is not glued to any other edge of the ∆.

Deformation : Increase s and change q

We have

q′(t) = −

(
f(s,∆) + f(s,∆′)

f(s,∆i) + f(s,∆j)

)
We observe q is decreasing and similar to the previous case J(∆) is increasing. Note that ∆′

can not become non centered as that would form a pentagon in the centered dual which is

not permissible in this interval of d11 values. Hence we can continue to increase J(∆) till q

is decreased to d11.

Now we can assume all the edges that are not glued to ∆ has lengths d11. Now let u

be the length of another edge of ∆ and ∆′′ = (u, d11, d11) be the triangle its glued to.

Increase s and change u
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By differentiating the area sum and using lemma 4.7.1 we obtain

u′(t) = −

(
f(s,∆) + f(s,∆′)

f(s,∆) + f(s,∆′′)

)
∈ (−1, 0)

Hence we have

J ′(∆) =
∂J(∆)

∂s
+
∂J(∆)

∂u
u′ > 0

This follows from the fact ∂J(∆)
∂s

> ∂J(∆)
∂u

as s > u by proposition 4.3.7. So we can continue

this operation and increase J(∆) till u is decreased to d11. Hence J(∆) is the maximum

when every single edge of the centered dual decomposition except the longest edge of the

rectangle (with length s) is equal to d11. This is decomposition F2.

Case A.2 In this case we can assume all the edges that are not glued to ∆0 or ∆1 has

length d11. Now take q to be the length of an edge of ∆1 other than l and ∆′ = (q, d11.d11)

be the triangle its glued to.

Deformation : Increase l and change q

By differentiating the area sum we have

q′(t) = −

(
f(l,∆0)− f(l,∆1)

f(q,∆1) + f(s,∆′)

)

and J(∆0) is increasing because its centered and the only transformation on it was the

increment of one of its sides. We can continue this till one of the following two things

happen

• Case A.2.1 : q is decreased to d11

• Case A.2.1 : J(∆0) = J(∆1)
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Case A.2.1 Now we can assume all the edges in the centered dual except for the ones belong

to ∆0 has length d11. Suppose the other two lengths of ∆0 are s and u (wlog s > u). Let

∆′ = (s, d11, d11) and ∆′′ = (u, d11, d11) be the other triangles s and u glued to respectively.

Deformation : Increase s and change u

u′(t) = −

(
f(s,∆0) + f(s,∆′)

f(s,∆0) + f(s,∆′′)

)
∈ (−1, 0)

Hence from proposition 4.3.7 we have

J ′(∆0) =
∂J(∆0)

∂s
+
∂J(∆)

∂u
u′ > 0

We continue this deformation till u is decreased to d11. Once that happens , only two edges

in the entire centered dual has a length greater than d11. These are the edges in ∆0 with

lengths l (shared with ∆1) and s. Finally we increase l and change s. Under this deformation

we have

s′(t) = −f(s,∆0)− f(s,∆1)

f(s,∆0) + f(s,∆′)
∈ (−1, 0)

We can continue this deformation till either J(∆0) = J(∆1) or till s is decreased to d11.

If J(∆0) = J(∆1) then the union of ∆0 and ∆1 forms a single centered quadrilateral. This

is same as Case 1.1.

If s is decreased to d11 then ∆0 = (l, d11, d11) has same edge lengths as ∆1. Since ∆1 is

non centered , ∆1 should also be. But this is not possible as two non centered triangles

glued together then form a 2− cell with five edges in the centered dual which is not possible

in the range of d11 we consider. Hence we conclude s can not be decreased to d11.

Case A.2.2 In this case we have a centered quadrilateral formed by the union of ∆0 and

∆1. This is again same as case A.1

Case B : Now we address Case B where another edge of ∆0 is glued to ∆1. Denote
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the length of this edge by s. Just like in Case A first we want to reduce the lengths of edges

that are not glued to either of ∆0 or ∆)1 to d11. If q is the length of any such edge, we

increase l and change only q. When we do that, similar to Case A, one of the two things

will happen.

• Case B.1 : J(∆0) = J(∆1)

• Case B.2 : q is decreased to d11

Case B.1 When J(∆0) = J(∆1) , union of ∆0 and ∆1 will form a single centered quadri-

lateral. Let’s denote it by ∆. Two sides with length s in ∆ are glued to each other.

We know there are still edges that are not glued to ∆ with lengths greater than d11. We

want to continue decreasing them to d11. Again we take q to be a length of such edge.

Deformation : Increase s and change q

Similar to Case A.1, this deformation increase J(∆) and decrease q and we can continue

it till q is d11.

Now we can assume all the edges that are not glued to ∆ has lengths d11. Now let u

be the length of another edge of ∆ and ∆′′ = (u, d11, d11) be the centered triangle its glued

to.

Deformation : Increase s and change u

By differentiating the area sum and using lemma 4.7.1 we get

u′(t) = − 2f(s,∆)

f(u,∆) + f(u,∆′′)
∈ (−2, 0)

Hence by proposition 4.3.7 we have

J ′(∆) = 2
∂J(∆)

∂s
+
∂J(∆)

∂u
u′ > 0
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So we can continue this operation and increase J(∆) till u is decreased to d11. J(∆) is a

maximum when every single edge of the centered dual decomposition except the two edges

in ∆ (with length s) that are glued to each other has lengths d11. This is the decomposition F1

Case B.2 Similar to A.2 we can assume all the edges that are not glued to ∆0 or ∆1

has lengths d11. Now take q to be the length of the edge in ∆1 that is not glued to ∆0. Let

∆′ = (q, d11, d11) be the centered triangle its glued to.

Deformation : Increase l and change q

By differentiating the area sum and using lemma 4.7.1 we have

q′(t) = −

(
f(l,∆0)− f(l,∆1)

f(q,∆1) + f(q,∆′)

)
So q is decreasing. This deformation will increase J(∆0) because it increases length of

one edge without changing other edges of the centered triangle ∆0. We can continue this

transformation till one of the following two things happen.

• Case B.2.1 : q is decreased to d11

• Case B.2.2 : J(∆0) = J(∆1)

Case B.2.1 : Now we can assume all the edges in the centered dual except for the ones in

∆0 has edge lengths d11. Suppose u be the length of the edge of ∆0 that is not glued to ∆1.

Let ∆′′ = (u, d11, d11) be the other centered triangle its glued to.

Deformation : Increase l and change u

By differentiating the area sum and using lemma 4.7.1 we have

u′(t) = −

(
f(l,∆0)− f(l,∆1

f(u,∆0) + f(q,∆′′)

)
∈ (−1, 0)
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Hence by proposition 4.3.7 we have

J ′(∆) =
∂J(∆)

∂l
+
∂J(∆)

∂u
u′ > 0

So we can continue the deformation till either J(∆0) = J(∆1) or u is decreased to d11. If

J(∆0) = J(∆1) , then the union of ∆0 and ∆1 forms a centered quadrilateral. This belongs

to Case B.1 and we will end up with decomposition F1 in this case.

If u is decreased to d11 then ∆0 = (l, s, d11) has same edge lengths as the non centered

triangle ∆1. So it should also be non centered, making a pentagonal 2− cell in the centered

dual which is not possible in this range of d11. Hence we conclude u can not be decreased to

d11.

Case B.2.2 In this case the union of ∆0 and ∆1 forms a centered quadrilateral. Again

this belongs to Case B.1 and we will end up with decomposition F1.

Above subcases of Case A and B exhaust all the possibilities when the centered dual has a

quadrilateral formed by a centered triangle and a non centered triangle.

If the centered dual has a 2-cell that is a centered quadrilateral then it is same as Case

A.1 If the centered dual has only centered triangles, then we can start in a way similar to the

previous section but before the length of the largest edge reach s(d11) , one of the triangles

will be non centered meaning we will be at the beginning of Case A OR Case B and continue

from there.

Following two figures summarise the sequences of operations we followed in Case A and

Case B.
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Figure 20: Quadrilaterals : Case A
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Figure 21: Quadrilaterals : Case B
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4.8 When d11 ∈ [dδ, dθ]

Consider a fixed d11 in this interval. By corollary 4.5.4, centered dual decomposition of ∂N

of a manifold with this d11 can have triangles, quadrilaterals or pentagons as 2−cells.

Similar to the case with quadrilaterals, we will first introduce few possible decompositions

in Qd11 . We will then describe find upper bounds for JF for each of these decompositions

in terms of d11 and compare it with (d01)min. We will again see JF of these decompositions

are less than (d01)min in this range of d11 values too. Finally we will show any centered

dual decomposition for F ′ ∈ Qd11 , JF ′ is less than one of JFs we discussed , leading to a

contradiction. This means we will again be able to conclude that no manifold in Nc,c has a

d11 value in this range.

Below we describe several decompositions that belong to Qd11 when d11 ∈ [dδ, dθ] and then

bound their circumcircle radii by a function of d11

Decomposition 1 ; F1

There are 6 two-cells in F1 ; 1 pentagon and 5 triangles.

• ∆0 = (p(d11), d11, d11, d11, d11) ∈ C5.

• ∆1 = (p(d11), d11, d11) ∈ C3 with edge length p(d11) glued to the edge in the pentagon

with same length.

• ∆i = (d11, d11, d11) ∈ C3 for i = 2, . . . , 5

Consider the area sum equation

4π = D0(p(d11), d11, d11, d11, d11) +D0(p(d11), d11, d11) + 4D0((d11, d11, d11)
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By differentiating this with respect to d11 we obtain.

∂D0(∆0)

∂p(d11)
p′(d11) + 4

∂D0(∆0)

∂d11

+
∂D0(∆1)

∂p(d11)
p′(d11) + 2

∂D0(∆1)

∂d11

+ 12
∂D0(d11, d11, d11)

∂d11

= 0

We can compute each of the partial derivatives above using proposition 4.3. We then solve

the equation for p′(d11).

p′(d11) =−

(
4f(d11,∆0) + 2f(d11,∆1) + 12f(d11,∆2)

4f(p(d11),∆0) + f(p(d11),∆1)

)

− 4

(
f(d11,∆0) + 1

2
f(d11,∆1) + 3f(d11,∆2)

4f(p(d11),∆0) + f(p(d11),∆1)

)

Using the properties of the quantity f from lemma 4.7.1, we have the following.

• f(d11,∆0) > f(p(d11),∆0)

• f(d11,∆1) > f(p(d11),∆1)

• f(d11,∆2) > f(p(d11),∆2) > 1
6
f(p(d11),∆1)

Then we have

f(d11,∆0) +
1

2
f(d11,∆1) + 3f(p(d11),∆2) > f(p(d11),∆0) +

1

2
f(p(d11),∆1) +

1

2
f(p(d11),∆1)

= f(p(d11),∆0) + f(p(d11),∆1)

This proves p′(d11) < −4.

We also have J ′(∆0) = ∂J(∆0)
∂p

p′ + 4∂J(∆0)
∂d11

.

From proposition 4.3.7 we know ∂J(∆0)
∂p

> ∂J(∆0)
∂d11

. Since p′(d11) < −4 we conclude J ′(∆0) < 0.

Hence JF1 is decreasing in d11.
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This means for any d11 value in the interval [dδ, dθ] , F1 ∈ Qd11 has its JF1 bounded above

by the J value of F1 ∈ Qdδ . In other words we have

JF1 < J(p(dδ), dδ, dδ, dδ, dδ) (8)

Computing p(dδ)

We first divide the centered pentagon into a square and a triangle as shown in figure 22.

Both of those should have the same circumcircle radius. We compute them using 4.3.5 and

set them equal.

Figure 22: Computing the value of p(dδ)

D2

√
4D2 − L2

=
D2(D2 + PL)

4D2 − (L− P )2

where D = sinh(dδ/2), L = sinh(l/2) and P = sinh(p(dδ)/2). The above equation can be

reduced to the cubic equation

L3 − 2D2L−D2S = 0

We also have the area sum equation

D0(p(dδ), dδ, dδ, dδ, dδ) +D0(p(dδ), dδ, dδ) + 4D0(dδ, dδ, dδ)
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We can compute each term in the above equation in terms of dδ, p(dδ) and l using proposition

4.3.5.

We first solve the cubic equation for L which allows us to write l in terms of p(dδ). Then we

plug that expression into the area sum equation. This makes p(dδ) the only variable in the

area sum equation. By solving it we obtain p(dδ) ≈ 2.8598

Decomposition 2 ; F2

There are 6 two-cells in F1 ; 1 pentagon and 5 triangles.

• ∆0 = (q(d11), r(d11), d11, d11, r(d11)) ∈ C5. q(d11) is the longest edge. Two edges with

length r(d11) are glued to each other

• ∆1 = (q(d11), d11, d11) ∈ C3 with edge length q(d11) glued to the edge in the pentagon

with same length.

• ∆i = (d11, d11, d11) ∈ C3 for i = 2, . . . , 5

First we would like to understand how r varies with q. Again we consider the area sum

equation

4π = D0(q(d11), r(d11), d11, d11, r(d11)) +D0(q(d11), d11, d11) + 4D0((d11, d11, d11)

We keep d11 fixed and differentiate the area sum equation with respect to q while considering

r as a function of q.

2
∂D0(∆0)

∂r(q)
r′(q) +

∂D0(∆0)

∂q
+
∂D0(∆1)

∂q
= 0

All the partial derivatives above are positive because 2-cells are centered. (Prop 4.3). So r
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decreases if we increase q. Hence q can attain a maximum when r is at its minimum which

is d11. But when r = d11, we have exactly the decomposition F1 described above. Hence the

maximum value q can take is equal to p(d11). So both q and r are less than p(d11).

Now compare ∆0 with a centered pentagon ∆ given by

∆ =

(
p(d11), p(d11), d11, d11, p(d11)

)
.

Since q, r < p(d11) we have the following from corollary 4.3.9.

J(∆0) < J(∆)

So JF2 = J(∆0) is bounded above by J(∆). But its not easy to compute J(∆) explicitly.

Hence we will find an upper bound for it as shown below. We differentiate the circumcircle

radius of ∆ = (p(d11), p(d11), d11, d11, p(d11)) with respect to d11 now. We have

J ′(∆) = 3
∂J(∆)

∂p(d11)
p′(d11) + 2

∂J(∆)

∂d11

From proposition 4.3.7 we know ∂J(∆)
∂p(d11)

> ∂J(∆)
∂d11

. Earlier we showed the derivative of p(d11)

with respect to d11 is less than −4. Hence J ′(∆) < 0. So the circumcircle radius of ∆

decreases with d11. Hence we have

J(∆) < J(p(dδ), p(dδ), dδ, dδ, p(dδ))

We have already shown JF2 < J(∆). So we have

JF2 < J(p(dδ), p(dδ), dδ, dδ, p(dδ)) (9)

Recall that earlier we bounded JF1 by the circumcircle radius of a centered pentagon with a
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side of p(dδ) and four sides of dδ. (8). By corollary 4.3.9 that circumcircle radius is less than

the circumcircle radius in the right hand side of equation 9. Hence JF1 and JF2 can both be

bounded above by the circumcircle radius in the right hand side of equation 9.

JF1 , JF2 < J(p(dδ), p(dδ), dδ, dδ, p(dδ)) (10)

Decomposition 3 ; F3

There are 6 two-cells in F1 ; 1 pentagon and 5 triangles.

• ∆0 = (m(d11), d11,m(d11), d11, d11) ∈ C5. q(d11). Two edges with length m(d11) are glued

to each other

• ∆i = (d11, d11, d11) ∈ C3 for i = 1, 2, . . . , 5

By differentiating the area sum equation with respect to d11 we obtain the following.

m′(d11) =−

(
3f(d11,∆0) + 15f(d11,∆1)

2f(m(d11),∆0)

)

− 3

(
f(d11,∆0) + 5f(d11,∆1)

2f(m(d11),∆0)

)

Since f(d11,∆0) > f(m(d11),∆0) we have m′(d11) < −3/2.

We also have J ′(∆0) = 2∂J(∆0)
∂m

m′ + 3∂J(∆0)
∂d11

.

From proposition 4.3.7 we know ∂J(∆0)
∂m

> ∂J(∆0)
∂d11

. Since m′(d11) < −3/2 we conclude

J ′(∆0) < 0. Hence JF3 = J(∆0) is decreasing in d11.
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This means for any d11 value in the interval [dδ, dθ] , F3 ∈ Qd11 has JF3 bounded above

by the J value of F3 ∈ Qdδ . In other words we have

JF3 < J(m(dδ), dδ,m(dδ), dδ, dδ) (11)

While, we have an upper bound for JF3 as above, its not easy to directly compute the

circumcircle radius in the right hand side of 11 using the formulas given in 4.3.5. Instead we

will show below m(dδ) < p(dδ) and use it to find an upper bound for JF3

Lemma 4.8.1. m(dδ) < p(dδ)

Proof. First we split the pentagon (m(dδ), dδ,m(dδ), dδ, dδ) into a quadrilateral and a tri-

Figure 23: Comparing m(dδ) with p(dδ)

angle as shown in figure 23. They both have the same circumcircle radius. Hence we have

D2

√
4D2 − L2

=

√
(M2 +DL)(S2

4S2 − (L−D)2

where D = sinh(dδ/2),M = sinh(m(dδ)/2) and L = sin(l/2). This can be again reduced to

a cubic equation

DM2L3 + (M4 −D4)L2 + (2D5 − 4D3M2)L− 4D2M2(M2 −D2) = 0
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We define a function C1(x, y) by

C1(x, y) = DX2Y 3 + (X4 −D4)Y 2 + (2D5 − 4D3X2)Y − 4D2X2(x2 −D2)

where X = sinh(x/2) and Y = sinh(y/2).

We also have the area sum equation

D0(m(dδ), dδ,m(dδ), l) +D0(l, dδ, dδ) + 5D0(dδ, dδ, dδ) = 4π

We define another function

C2(x, y) = D0(x, dδ, x, y) +D0(y, dδ, dδ) + 5D0(dδ, dδ, dδ)− 4π

So we have C1(m(dδ), l) = 0 and C2(m(dδ), l) = 0

By plotting the graph of C1 in the interval x ∈ [2.85,∞) we observe the following.

• For x > 2.85 , y values that makes C1(x, y) = 0 are always greater than 3.307

• For x > 2.85 , y values that makes C1(x, y) = 0 are either less than 2.901 or greater than

3.853

Also note that since dδ, dδ and l are sides of a hyperbolic triangle we have sinh2(l/2) <

2sinh2(dδ/2) which implies l < 3.698. This fact together with above observations means

m(dδ) has to be less than 2.85. In particular it is less than p(dδ).
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We just proved m(dδ) < p(dδ). Hence the circumcircle radius of the centered pentagon with

two sides of m(dδ) and three sides of dδ (pentagon in the right hand side of equation 11)

should be less than that of the centered pentagon with three sides of p(dδ) and two sides of

dδ (pentagon in the right hand side of equation 9) . Hence we conclude JF3 is also bounded

above by J(p(dδ), p(dδ), dδ, dδp(dδ)). We update equation 12 by also adding JF3 .

JF1 , JF2 , JF3 < J(p(dδ), p(dδ), dδ, dδp(dδ) (12)

Computing J(p(dδ), p(dδ), dδ, dδp(dδ)

Let’s denote the pentagon by P . Again we divide it into a quadrilateral and a triangle

Figure 24: Computing J(P )

and then set their circumcircle radii equal as in figure 24 We have

D2

√
4D2 − L2

=

√
P 3

3P − L

which can be reduced to P 3L2−D4L+3PD4−4P 3D2 = 0. Here D,P, L has usual meanings

; D = sinh(dδ/2) and so on. Using the values of dδ = acosh(5.8) and p(dδ) = 2.8598 ,

we compute L to be 2.6764. Then we have J(p(dθ), p(dθ), dθ, dθ, p(dθ)) = J(l, dθ, dθ, dθ) =

asinh(1.5374). Finally we compare this value with (d01)min. (See figure 25)
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Figure 25: Plots of sinh(J(P )) and sinh((d01)min)

Decomposition 4 ; F4

There are 7 two-cells in F4 ; 1 quadrilateral and 6 triangles.

• ∆0 = (w(d11), d11, d11, d11) ∈ C4.

• ∆1 = (w(d11), d11, d11) ∈ AC3 \ C3

• ∆i = (d11, d11, d11) ∈ C3 for i = 2, . . . , 6

Consider a centered quadrilateral with sides x, d11, d11 and d11. If we increase d11 while

keeping x constant, then the area of this quadrilateral will be increased. Same is true for

a non centered triangle with sides x, d11 and d11. Area of a centered triangle with all three

sides of d11 also increase its area with d11. We define the following function

C(x, d11) = D0(x, d11, d11, d11) +D0(x, d11, d11) + 5D0(d11, d11, d11)− 4π

for d11 ∈ [dδ, dθ] and x > d11. As described above C is increasing in d11.
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By plotting the graphs of C(x, d11) for fixed d11 values, we observe that there is x > d11

such that C(x, d11) = 0 for d11 = cosh−1(6.023). Furthermore when d11 < cosh−1(6.023)

C(x, d11) < 0 for all x > d11. Hence for d11 ∈ [dδ, cosh
−1(6.023)) there is no w(d11) such that

D0(w(d11), d11, d11, d11) +D0(w(d11), d11, d11) + 4D0(d11, d11, d11) = 4π. This is the area sum

equation for F4. We conclude the decomposition F4 described above is possible only if when

d11 ∈ [cosh−1(6.023), dθ]

Now for d11 ∈ [cosh−1(6.023), dθ] we differentiate the above area sum equation with respect

to d11

∂D0(∆0)

∂w
w′ + 3

∂D0(∆0)

∂d11

+
∂D0(∆1)

∂w
w′ + 2

∂D0(∆0)

∂d11

+ 15
∂D0(∆2)

∂d11

= 0

Hence we have

w′(d11) =

(
3f(d11,∆0) + 2f(d11,∆1) + 15f(d11,∆2)

f(w(d11),∆0)− f(w(d11),∆1)

)
> −3

Then it follows

J ′(∆0) =
∂J(∆0)

∂w
w′ + 3

∂J(∆0)

∂d11

< 0

Hence we have an upper bound for JF4 = J(∆0) as below

JF4 < J(w(dδ′), dδ′ , dδ′ , dδ′) (13)

where dδ′ = acosh(6.023). Finally we compare the circumcircle radius J(w(dδ′), dδ′ , dδ′) with

(d01)min in the interval d11 ∈ [dδ′ , dθ]. See figure 26.

In this section we described four decompositions F1,F2,F3,F4 in Qd11 for d11 ∈ [dδ, dθ] and

showed each JFi is less than (d01)min. If we can show that for any F ∈ Qd11 in this range of

d11 values, JF < JFi for some i ∈ {1, 2, 3, 4} then we will have JF < (d01)min which will be

a contradiction . Our next section is devoted for this.
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Figure 26: Comparing the upper bound of JF 4 with (d01)min

4.8.1 Jd11 = JFi for some i

Similar to the case in the quadrilaterals , we start with an F ∈ Qd11 and usually denote

its 2− cell with largest circumcircle as ∆0. We will then send F through a sequence of

deformations , each of which increase J(∆0) till its not possible to do so further. When we

reach such a terminating case we will show its always one of the four decompositions we

described earlier. Similar to the quadrilaterals we can always first perform deformations to

reduce lengths of edges that are not glued to ∆0 while increasing J(∆0). Hence without loss

of generality we will assume all such edges have lengths d11.

Our first task is to show if ∆0 is a centered pentagon, then it can be deformed into one

of F1, F2 or F3 while increasing its circumcircle radius. There are four separate cases need

to be considered depending on the edge gluings of ∆0. We show them in next four figures.
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Figure 27: Centered pentagon case 1

Figure 28: Centered pentagon case 2
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Figure 29: Centered pentagon case 3

Figure 30: Centered pentagon case 4
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Now we consider F which has a pentagonal 2−cell that is formed by the union of two non
centered triangle and a centered triangle. Depending on their edge gluings, there are 8 cases
to consider. We label them by case A, case B and so on. The next 8 figures show that in
each of these case, we can increase J(∆) through a series of deformations till we reach one
of the four decompositions described earlier.

Figure 31: Pentagons : Case A
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Figure 32: Pentagons : Case B
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Figure 33: Pentagons : Case C
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Figure 34: Pentagons : Case D
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Figure 35: Pentagons : Case E

Figure 36: Pentagons : Case F
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Figure 37: Pentagons : Case G
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Figure 38: Pentagons : Case H

Above cases exhaust all the possible decompositions in Qd11 for d11 ∈ [dδ, dθ]. This leads us

to the contradiction

Theorem 4.8.2. No manifold in Nc,c has a d11 value in the interval [dδ, dθ]

In the preceding subsections we analysed the three intervals of d11 values listed in the corol-

lary 4.5.4. In each interval we compared the upper bound of d01 we obtained using the

Centered Dual Decomposition with the lower bound of d01 which is (d01)min. In each inter-

val it turns out the supposed upper bound is smaller than (d01)min. Hence we conclude no

manifold in Nc,c has a d11 value in any of the three intervals listed in 4.5.4

Theorem 2. No manifold in Nc,c has a d11 value in the interval [dδ, dα] or equivalently an

x1 value in the interval [1.183, 1.208]
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5.0 Small Dehn Fillings

Main results in the previous two chapters (Theorem 1 and Theorem 2) imply the smallest

element in Nc,c should satisfy the following.

• It should have an x1 value in the interval [1.208, 1.256]

• It should be of the form of case 1 mentioned in chapter 3 or equivalently d01 =
(
d01

)
min

We denote the subset of manifolds of Nc,c that satisfy these conditions by N ′c,c.

Definition 5.0.1. N ′c,c =
{
N ∈ Nc,c | x1 ∈ [1.208, 1.256], d01 =

(
d01

)
min

}

5.1 Hexagons visible from the cusp

Let N be a manifold in N ′c,c. Figure 39 shows key components in our volume estimation from

chapter 3 for such a manifold. Consider the horosphere of ∞ in Ñ which is away from ∂Ñ

by a distance of K. Let’s denote this horosphere by Λ. It’s a Euclidean horizontal plane. A

lift of λ0 which has an ideal end point at ∞ in Ñ goes through this horosphere Λ. Any such

a lift would be a vertical line segment emanating from a boundary component of Ñ and has

∞ as the other end point. Intersection of such a lift with Λ is a point on Λ.

Now consider all such lifts of λ0 that runs to∞ and their intersections with Λ which is a set

of discrete points. This set of discrete points create a lattice on Λ. Our focus in this chapter

is on understanding this lattice. Let’s start by defining these formally.

Λ = { (x, y, h) | x, y ∈ R} where h is as in 11

L = {Lifts of λ0 in Ñ which has an ideal end point at ∞}

S = {Λ ∩ λ̃0 | λ̃0 ∈ L}

C = {Π | Π is a component of ∂Ñ and contains an intial point of some λ̃0 in L}
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Figure 39: Volume estimation for case 1 in chapter 3

Figure 40: Lattice on Λ
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Using the proposition 0.1 in [6] we can relate the horocyclic arc length between two points

in the lattice on Λ to return paths.

Lemma 5.1.1. Let q1 = Λ ∩ λ̃′0 and q2 = Λ ∩ λ̃′′0 be two points in S and Π1 and Π2 be

the components of ∂Ñ in C that contain the initial points of λ̃′0 and λ̃′′0. If the common

perpendicular to Π1 and Π2 is a lift of λi then the length of the horocyclic arc between q1 and

q2 in Λ is given by

θi =

√
2(cosh(li) + 1)

eK

Figure 41: Horocyclic arc length between two lattice points on Λ

Now take any arbitrary triple Π1,Π2 and Π3 of boundary components in C. Suppose the

common perpendicular to these are lifts of λi, λj and λk. The (i, j, k) hexagon which has

these lifts as alternating sides is then called as an (i, j, k) hexagon visible from

the cusp. If q1, q2 and q3 are the corresponding points in L then the lengths of horocyclic

arcs on Λ between them are θi, θj and θk.

Recall that N belongs to N ′c,c means it satisfies the condition for case 1 mentioned in chapter

3. That is Ñ contains a pair of boundary components Π1 and Π2 that belongs C and has a

lift of the shortest return path as their common perpendicular. This means Ñ has a (1, j, k)

hexagon visible from the cusp for some 1 ≤ j ≤ k.
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Figure 42: An (i,j,k) hexagon visible from the cusp(left) and the corresponding lattice points

on Λ (right) viewed from infinity

The main goal of this chapter is to show that the only possible way for N to have a volume

less than or equal to the volume of N0 is by containing a (1, 1, k) hexagon visible from the

cusp in its universal cover Ñ for k ≥ 1. We do so by producing a volume estimation that

is very similar to the one we produced in chapter 3. Key components contributed to that

estimation will remain the same here. The only modification will be made to the estimation

of the cusp neighbourhood volume. Instead of the Boröczky’s theorem, here we will use the

information from the lattice on Λ by L to estimate the volume of the cusp neighbourhood.

We begin with following two lemmas.

Lemma 5.1.2. Let A,B,C and D be vertices of a parallelogram P in R2 such that vertices

A,B and C lie on a Eucledian circle. If the interior angle of the parallelogram at the vertex

opposite to D is greater than 90◦ then D lies inside the circle.

Proof. We need to consider two cases ; depending on whether the center of the circle is

inside P or not. We will start with the former case. (See figure 43 left.) Let O and r be

the center and the radius of the circle respectively. Let l be the distance from O to D. Now

assume the pair of interior angles α + β is greater than 90◦. Then the other pair should be
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less than 90◦ ; θ + α = β + γ < 90◦. In particular θ, β < 90◦.

Since the sum of the interior angles 2(α+ β) + (α+ θ) + (β + γ) = 360◦ and θ + α = β + γ

we have θ = 180◦ − 2α − β. Therefore θ − β = 180◦ − 2α − 2β < 0 as α + β > 90◦ by

assumption. So we have θ < β and hence cos(θ) > cos(β) as these are acute angles.

By applying the cosine rule to triangles OBC and ODA we have l2 = (AD)2 + r2 −

2arcos(θ) = (BC)2 + r2 − 2arcos(θ) < (BC)2 + r2 − 2arcos(β) = r2. Hence l < r.

In case 2 (figure 43 right) by arguing similarly we have θ + α = β < 90◦ if α + β > 90◦.

Hence we have θ, β < 90◦ and θ < β. By applying the cosine rule to triangles OBC and

ODA we can similarly obtain l < r.

Now we consider the Delaunay tessellation of the lattice on Λ. Vertices of the tessellation

Figure 43: Two cases in lemma 5.1.2

are lattice points and 2−cells are cyclic polygons. The special property that characterize

the Delaunay tessellation is the fact that no vertices of the tessellation lie in the interior of

a circumcircle corresponding to a 2−cell.

Lemma 5.1.3. Delaunay tessellation of Λ determined by this lattice has triangles or rect-

angles as 2-cells.

92



Proof. Let P be a 2-cell in the Delaunay tessellation and p be one of it’s vertices. Let v1

and v2 be the vertices in this polygon that are adjacent to p. Then ∃ generators g1, g2 of

Λ such that g1(p) = v1 and g2(p) = v2. Then g1g2(p) is also a vertex in the tessellation.

Now consider the parallelogram with vertices v1, p, v2 and g1g2(p) .First three of its vertices

lie on the circumcircle of P . The fourth vertex g1g2(p) cannot lie inside the circumcircle

of P because by the definition of Dalauney tessellation, none of its vertices can lie inside a

circumcircle. Hence By 5.1.2 the interior angle of P at p cannot exceed 90◦. But there is

nothing special about this vertex p of P and the same argument can be applied to any of

its other vertices. So no interior angle of P exceed 90◦. If number of sides of P is n then we

have the following.

Sum of interior angles = (n− 2)180 ≤ 90n⇒ n ≤ 4

5.2 Volume Estimation - slightly modified

Recall from chapter 3 we bounded the volume of a manifold N in Nc,c by a function of x1.

Key elements that contributed to this estimation were

• Ml1 ; Muffin around λ1

• Half ideal muffin ; Muffin around λ0

• Collar of the remaining part of the boundary of N

• An embedded cusp neighbourhood of N

Now we are going to modify the volume estimation slightly. While we keep our estimations

for first three, we estimate the volume of the last component of the above list ; the embedded

cusp neighbourhood of N by a different method using what we have proved so far in this

chapter.

We just proved the Delaunay tessellation of Λ determined by the feet of lifts of λ0 is ei-
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ther a triangulation or contains rectangles. Below we estimate the volume of an embedded

cusp neighbourhood of N which has Λ as its boundary for these two cases separately. It’s

important to note that the manifolds we consider in this chapter belongs to case 1 from

chapter 3. That means two components of ∂Ñ that contain lifts of λ0 going to ∞ has

a lift of λ1 as their common perpendicular. Hence such manifolds must contain a (1, j, k)

hexagon visible from the cusp and there is an edge in the Delaunay tessellation with length θ1.

5.3 When the Delaunay tessellation of R2 determined by the feet of lifts of λ0

is a triangulation

Lemma 5.3.1. If the Delaunay tessellation of R2 determined by the feet of lifts of λ0 is a

triangulation then all triangles are centered.

Proof. First we start with two adjacent triangles ∆0 and ∆1 of the Delaunay tessellation.

Deck transformation of the cusp acts as Euclidean translation on horospheres. Hence there

is no deck transformation that translates ∆0 to ∆1 or vice versa. Hence they belong to

different orbits under the cusp group action. Since the universal cover is normal, cusp trans-

lations acts transitively on the lattice points of Λ. Hence there are translations in the cusp

group that takes ∆0 to triangles ∆′0 and ∆′′0 which are also adjacent to ∆1. Hence lengths

of both triangles ∆0 and ∆1 are equal and their union (which is a parallelogram) forms a

fundamental domain of Λ under the cusp group action. As explained earlier there is a side

on this tessellation with length θ1. Hence we can take side lengths of these two triangles to

θ1, θj and θk. We can assume that the edge shared by the two triangles θk has the largest

side length. (If not just replace ∆0 by one of its translations ∆′0 or ∆′′0 such that the edge

shared by both triangles has the largest side length.)
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Now assume ∆0 is non-centered. Then we can see that the interior angle at the vertex

opposite to θk is greater than 90◦ by a simple application of the cosine rule. Since the union

of ∆0 and ∆1 is a parallelogram , by applying the lemma 5.1.2 we conclude the vertex of ∆1

opposite to θk should lie inside the circumcircle of ∆0 which is a contradiction. Hence ∆0

should be centered and hence ∆1 is also centered.

Note that a Euclidean triangle with side lengths a ≤ b ≤ c is centered iff a2 +b2 > c2. Hence

Figure 44: A fundamental domain for Λ

the condition for triangles ∆0 and ∆1 which has horocyclic arc lengths θ1, θj and θK to be

centered is

θ2
1 + θ2

j > θ2
k (14)

In the proof of 5.3.1 we showed there are two triangles ∆0 and ∆1 on the horosphere Λ

satisfying the following.

• Both triangles have same side lengths with horocyclic arcs of lenght θ1, θj and θk for

some integers j and k such that 1 ≤ j ≤ k.

• They are glued along the edge with the longest side length θk

• Their union is a parallelogram and forms a fundamental domain for Λ under the cusp

group action.
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By Heron’s formula, we can compute the Euclidean area of this parallelogram to be

1

2

√
(θ1 + θj + θk)(θ1 − θj + θk)(θ1 + θj − θk)(−θ1 + θj + θk)

=
1

2

√
((θ1 + θj)2 − θ2

k)(θ
2
k − (θ1 + θj)2) (15)

Going back to the volume estimation from chapter 1, we had a disk of radius θ1/2 in Λ em-

bedded inside the half ideal muffin. Hence the volume of the part of the cusp neighbourhood

which is outside the half ideal muffin is

1

2

√
((θ1 + θj)2 − θ2

k)(θ
2
k − (θ1 + θj)2)− π

(
θ1

2

)2

Note that Λ is a lift of the boundary of the cusp neighbourhood we consider. Hence the area

of the boundary of the cusp neighbourhood is equal to the area of a fundamental domain

which is given in 15. Volume of a cusp neighbourhood is equal to one half of the area of its

boundary. Hence the volume of the part of the cusp neighbourhood outside the half ideal

muffin is
1

2

(
1

2

√
((θ1 + θj)2 − θ2

k)(θ
2
k − (θ1 + θj)2)− π

(
θ1

2

)2
)

(16)

Partial derivative of the expression (θ1 + θj)
2 − θ2

k)(θ
2
k − (θ1 + θj)

2) with respect to θk is

2θ2
k(θ

2
1 + θ2

j − θ2
k) which is positive by 14. Similarly the partial derivative of the same expres-

sion with respect θj is 2θ2
j (θ

2
1 + θ2

k − θ2
j ) and is also positive. Hence the volume of the cusp

neighbourhood we consider increases as a function of θj and a function of θk. In other words

when there is a (1, j, k) hexagon visible from the cusp, volume of the cusp neighbourhood is

bigger than when there is an (1, j′, k′) hexagon visible from the cusp if j′ ≤ j and k′ ≤ k.

As stated at earlier in this chapter, our goal is to show that a manifold N in N ′c,c has a

volume exceeding that of N0 unless it has a (1, 1, 1) hexagon visible from the cusp. In the

next two propositions, we will show that if a manifold in N ′c,c has a (1, 2, 2) or a (1, 1, 2)

hexagon visible from the cusp then its volume is greater than that of N0. The observation at
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the end of the last paragraph means it is enough to consider only these two types of hexagons

to rule out all other possible types of (1, j, k) hexagons visible from the cusp except (1, 1, 1)

hexagons.

Proposition 5.3.2. Let N be a manifold in N ′c,c. Assume that the Delaunay tessellation

of Λ determined by the lifts of λ0 is a triangulation. If the side lengths of the triangles that

forms the fundamental domain are θ1, theta2 and θ2 (or equivalently N has a (1, 2, 2) hexagon

visible from the cusp) then the volume of N is greater than the volume of N0.

Proof. Horocyclic arc lengths of the triangles are θ1, θ2 and θ2. By taking j = k = 2 in 16

we can write the volume of the cusp neighbourhood outside the half ideal mas below.

1

2

(
θ1

√
2(θ2)2 − (θ1)2

2
− π

(
θ1

2

)2
)

By 5.1.1 we have θ1 as a function of x1.

θ1 =

√
2(cosh(l1) + 1)

eK
=

√
2(x1 + 1)

eK

θ2 can also be computed using 5.1.1. While it’s not a function of x1 , it can be bounded

below by a function of x1 as below and we denote it by (θ2)min.

θ2 =

√
2(cosh(l2) + 1)

eK

≥
√

2(cosh(min{E,F}) + 1)

eK
= (θ2)min

The inequality above follows because l2 ≥ min{E,F}. Hence we have

Volume of the cusp neighbourhood ≥ 1

2

(
θ1

√
2(θ2)2

min − (θ1)2

2
− π

(
θ1

2

)2)
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Right hand side of the above inequality is a function of x1. Let’s denote it by V
(1,2,2)

cusp (x1).

Now define

V1(x1) = VMl1
(x1) + VHIM(x1) + Vcol(x1) + V (1,2,2)

cusp (x1)

where first three functions in the right hand side have the same meaning as in the volume

estimation in chapter 1. They are volumes of the muffin around λ1, half ideal muffin and the

collar of the remaining part of the boundary of N respectively. V1 defined as above bounds

the volume of N by below. Graph of V1 in the interval [1.208, 1.216] is shown in figure 45. In

that interval V1 is always greater than 7.8. Hence we conclude volume of N is greater than

that of N0 in the presence of a (1, 2, 2) hexagon visible from the cusp.

Figure 45: Volume estimation when there is a (1, 2, 2) hexagon visible from the cusp

Similarly we can analysis the presence of (1, 1, 2) hexagons.

Proposition 5.3.3. Let N be a manifold in N ′c,c. Assume that the Delaunay tessellation

of Λ determined by the lifts of λ0 is a triangulation. If the side lengths of the triangles that
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forms the fundamental domain are θ1, θ1 and θ2 (or equivalently N has a (1, 1, 2) hexagon

visible from the cusp) then the volume of N is greater than the volume of N0.

Proof. In this case we need to take j = 1 and k = 2 in 16. Then the volume of the cusp

neighbourhood outside the half ideal is.

1

2

(
θ2

√
4(θ1)2 − (θ2)2

2
− π

(
θ1

2

)2
)

The partial derivative of the square of the quantity (θ2

√
4(θ1)2 − (θ2)2) with respect to θ2 is

4θ2(2(θ1)2 − (θ2)2 which is positive by 14. Hence the right hand side of the above equation

increases with θ2. By replacing θ2 with its minimum value (θ2)min we can bound the volume

of cusp by a function of x1 as below.

Volume of the remaining part of the cusp ≥ 1

2

(
(θ2)min

√
4(θ1)2 − (θ2)2

min

2
− π

(
θ1

2

)2
)

Since (θ2)min is a function of x1 the entire right hand side above also is a function of x1.

Let’s denote it by V
(1,1,2)

cusp (x1). Now define

V2(x1) = VMl1
(x1) + VHIM(x1) + Vcol(x1) + V (1,1,2)

cusp (x1)

Again first three functions in the right hand side above have same meanings as earlier and V2

defined as above bounds the volume of N by below. Graph of V2 in the interval [1.208, 1.216]

is shown in figure 46. In that interval V2 is always greater than 7.8. Hence we conclude

volume of N is greater than that of N0 in the presence of a (1, 1, 2) hexagon visible from the

cusp.

Now we are ready for the main result of this section that address the general case of (1, j, k)

hexagons visible from the cusp.
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Figure 46: Volume estimation when there is a (1, 1, 2) hexagon visible from the cusp

Proposition 5.3.4. Let N be a manifold in N ′c,c. Assume that the Delaunay tessellation of

Λ determined by the lifts of λ0 is a triangulation. If the volume of N does not exceed the

volume of N0 then one of the following is true.

1. Ñ has a (1, 1, 1) hexagon visible from the cusp.

2. Ñ has a (1, 1, k) hexagon visible from the cusp for some k ≥ 1 and x1 of N is between

1.208 and 1.2091.

Proof. We know Ñ has a (1, j, k) hexagon visible from the cusp (1 ≤ j ≤ k). Horocyclic

arc lengths of the triangles ∆0 and ∆1 that forms the fundamental domain of Λ are then

θ1, θj and θk. Using 16 we can write the volume of the part of the cusp outside the half ideal

muffin as below.

1

2

(√
(θ1 + θj + θk)(θ1 − θj + θk)(θ1 + θj − θk)(−θ1 + θj + θk)

2
− π

(
θ1

2

)2
)
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This is a function of θ1(hence of x1), θj and θk. For simplicity let’s denote it by W (x1, θj, θk).

Note that W is not a function of x1 entirely as θj and θk are not functions of x1. As discussed

earlier partial derivatives of W with respect to θj and θk are positive. Hence W (x1, θj, θk)

increases with respect to both θj and θk

First assume 1 < j ≤ k. Then θ2 ≤ θj ≤ θk. Hence W (x1, θj, θk) > W (x1, θ2, θ2). Note that

W (x1, θ2, θ2) =
1

2

(
θ1

√
2(θ2)2 − (θ1)2

2
− π

(
θ1

2

)2
)
> V (1,2,2)

cusp (x1)

where V
(1,2,2

cusp (x1) is the function in proposition 5.3.

Therefore we can bound the volume of N as below.

Volume of N ≥ VMl1
(x1) + VHIM(x1) + Vcol(x1) +W (x1, θj, θk)

≥ VMl1
(x1) + VHIM(x1) + Vcol(x1) + V (1,2,2)

cusp (x1) = V1(x1)

We already know V1(x1) is always greater than 7.8 in the interval [1.208, 1.216]. Hence the

volume of N exceeds the volume of N0 if it has an (1, j, k) hexagon visible from the cusp

where 1 < j ≤ k.

If 1 = j < k then θ1 = θj < θk. Since W is increasing in θk we have W (x1, θj, θk) =

W (x1, θ1, θk) > W (x1, θ1, θ2). Note that

W (x1, θ1, θ2) =
1

2

(
θ2

√
4(θ1)2 − (θ2)2

2
− π

(
θ1

2

)2
)
> V (1,1,2)

cusp (x1)

where V2cusp(1,2,2(x1) is the function in proposition 5.3.3.

Therefore we can bound the volume of N as below.

Volume of N = VMl1
(x1) + VHIM(x1) + Vcol(x1) +W (x1, θ1, θk)

≥ VMl1
(x1) + VHIM(x1) + Vcol(x1) + V (1,1,2)

cusp (x1) = V2(x1)
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We know V2(x1) is greater than 7.8 in the interval [1.2091, 1.216]. Hence for a manifold with

an x1 value in this interval has a volume greater than that of N0 if it has an (1, 1, k) hexagon

visible from the cusp for any 1 < k.

Hence the only two possible scenarios where N has a volume less than that of N0 are the

ones listed in the statement.

5.4 When the Delaunay tessellation of R2 determined by the feet of lifts of λ0

contains a rectangle

The presence of rectangles in the tessellation of Λ can also be addressed using a similar

volume bound. In fact, since the area of a rectangle involve only two pair of side lengths,

computing a volume bound for the cusp neighbourhood as a function of x1 is relatively easier.

Proposition 5.4.1. Let N be a manifold in N ′c,c. Assume that the Delaunay tessellation of

Λ determined by the lifts of λ0 has a rectangle as a 2−cell. Then the volume of N is greater

than the volume of N0

Proof. Let ∆ be a 2 − cell in the Delaunay triangulation of Λ which is a rectangle. Deck

transformations of the cusp act as Euclidean translations on Λ and transitively on the lattice

points. Hence for each edge e of ∆ there is a translation g in the cusp group such that ∆∩g(∆)

is e. Hence ∆ forms a fundamental domain of Λ under the cusp group action. (Basically ∆

plays the role ∆0 ∪∆1 in the previous case where tessellation is a triangulation.) Again one

pair of sides of ∆ should have length θ1. Let’s take the side length of other pair to be θj
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where 1 ≤ j. Then the area of the fundamental domain is θ1 · θj. Hence the volume of the

part of the cusp neighbourhood outside the half ideal muffin is

1

2

(
θ1 · θj − π

(
θ1

2

)2
)

Since θj ≥ θ1 we have the following.

Volume of the remaining part of the cusp neighbourhood ≥ 1

2

(
θ2

1 − π
(
θ1

2

)2
)

Right hand side of the above inequality is a function of x1 and let’s denote it by V rec
cusp. Finally

define

V3(x1) = VMl1
(x1) + VHIM(x1) + Vcol(x1) + V rec

cusp(x1)

where first three functions in the right hand side have the same meaning as earlier and V3

defined as above bounds the volume of N by below. Graph of V3 in the interval [1.208, 1.216]

is shown in figure 47. In this interval V3 is always greater than 7.8. Hence we conclude volume

of N is greater than that of N0 in the presence of rectangles in the Delaunay tessellation of

Λ.

We conclude this section by recording the following corollary which summarise our work

so far in this chapter.

Corollary 5.4.2. Let N be a manifold in N ′c,c. If the volume of N does not exceed the

volume of N0 then one of the following is true.

1. Ñ has a (1, 1, 1) hexagon visible from the cusp.

2. Ñ has a (1, 1, k) hexagon visible from the cusp for some k ≥ 1 and x1 of N is between

1.208 and 1.2091.
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Proof. By lemma 5.1.3, Delaunay tessellation of Λ in Ñ can only have triangles or rectangles.

By 5.4 if it has rectangles then the volume of N is greater than the volume of N0. If the

tessellation is a triangulation then 5.3.4 says the volume of N exceeds the volume of N unless

one of the two listed possibilities in the statement is true for N .

Figure 47: Volume estimation when there is a rectangular 2− cell in the lattice of Λ

In chapter 6 and 7 we will explain our work in dealing with a manifold N in N ′c,c which

has a (1, 1, 1) hexagon visible from the cusp. (case (1) in corollary 5.4.2)
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6.0 With (1, 1, 1) hexagons visible from the cusp

From now we assume N to be a manifold in N ′c,c such that Ñ has a (1, 1, 1) hexagon vis-

ible from the cusp. Let H0 be a one such (1, 1, 1) hexagon in Ñ . Then the corresponding

Euclidean triangle on the lattice of Λ is equilateral and all three sides of it has horocyclic

arc lengths θ1. Let ∆0 be this triangle. Then as explained in lemma 14 there is another

equilateral triangle with same side lengths in the lattice that shares an edge with ∆0. Let

∆1 be this triangle. Since the horocyclic side lengths of ∆1 is also θ1 there is another (1, 1, 1)

hexagon visible from the cusp which lies underneath ∆1. Let H1 be this second (1, 1, 1)

hexagon. It shares an internal edge with H0. (See figure 48)

Figure 48: Two (1, 1, 1) hexagons visible from the cusp

Let’s label the external edges of H1 and H2 by e1, e2, . . . e6 as shown in figure 48. It turns

out the collection of exterior edges of H0 and H1 project under the covering map to form a

graph on ∂N with two vertices and a complementary region which is a hexagon. To see this

we will first need the following lemma.
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Lemma 6.0.1. The collection of interiors of external edges of H1 and H2 project homeo-

morphically onto ∂N .

Proof. If two (1, 1, 1) hexagons have external edges on the same boundary component in Ñ

then their intersection is either empty or an interior edge.(Lemma 6.4, [4])

Suppose ei and ej be two distinct edges in the collection of exterior edges of H0 and H1

and the projection of their interiors under covering map has non empty intersection. Then

there is a deck transformation g of Ñ such that int(g(ei)) ∩ int(ej) 6= ∅. Without loss gen-

erality assume e1 ⊂ H0. Then g(ei) is an exterior edge of the (1, 1, 1) hexagon g(H0).

If ej is also another external edge of H0 then g(H0) ∩H0 6= ∅. Then it follows g(H0) = H0

by the property of (1, 1, 1) hexagons mentioned at the beginning of the proof. Then g takes

the corresponding Euclidean triangle ∆0 to itself.

If ej is an external edge of H1 we have g(H0) = H1 as a consequence of the same prop-

erty. Hence g takes ∆0 to ∆1.

Recall that ∆0 ∪ ∆1 is a fundamental domain of Λ. Hence there is no non trivial deck

transformation that takes ∆0 takes itself or to ∆1. Hence g has to be the identity. But this

is a contradiction as ei and ej are distinct.

We just proved that interiors of external edges of H1 and H2 project homeomorphically onto

∂N . These projections are geodesic arcs that connect the end points of λ0 or loops at an end

point of λ0 and forms a graph on ∂N . This graph will play a prominent role in subsequent

sections. We denote it by G.

Definition 6.0.2. G = Graph on ∂N which has end points of λ0 as vertices and projections

of external edges of the two (1, 1, 1) hexagons as edges.

106



Consider the region on a component of ∂Ñ bounded by these external edges and/or their

deck transformations. (Blue hexagon in figure 48). Then the projection of this hexagon is

a complementary region on ∂N . Our next task is to understand the other comple-

mentary region(s) that combined with the projection of the blue hexagon to form the

boundary of N which is a genus 2 surface. We start by orienting H1 and H2 as described

below.

First by slight abusing the notation, we give the same label to all the deck transforma-

tions of an external or an internal edge of H0 or H1. We also use the same label B1 to denote

a hexagon on a component of ∂Ñ bounded by external edges of H1 and H2 and its projection

onto ∂N which is a complementary region. We orient both H1 and H2 counterclockwise as

seen from above. If λ̃1, λ̃′1 and λ̃′′1 are the interior edges of H0 as shown in figure 49 then

we orient λ0 in N such that projections of λ̃1 and λ̃′1 are orientation preserving homeomor-

phisms. Our approach varies depending on whether λ̃′′1 ; the remaining interior edge of H0

is projected orientation preserving or reversing.

Figure 49: Orienting H0 and H1
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6.1 Projection of λ̃′′1 an orientation preserving homeomorphism

Denote the feet of λ0 on ∂N and their lifts on ∂Ñ by e and a. If interior edges λ̃1

and λ̃′1 of H0 are from e to a, then we orient λ0 in the same direction so that projections

of λ̃1 and λ̃′1 are orientation preserving. If the projection of the remaining interior edge of

H0 , λ̃′′1 is also OP then λ̃′′1 should also be directed from e to a as shown in figure 50.

Figure 50: When λ̃′′1 is projected as an OP homeomorphism

With this orientation of H0 and H1, their exterior edges (and their projections) are di-

rected from one feet of λ0 to the other and creates a theta graph on ∂N with two vertices.

Now let’s look at B1 which is of the complementary regions of the graph G in ∂N (See

figure 51). B1 is a hexagon and its boundary edges are same as the edges of the graph G

on ∂N , hence directed from one feet of λ0 to the other. In particular none of the edges of

B1 are loops. Now let’s try to understand other complementary regions of ∂N . We know

none of the edges of the hexagon B1 are glued to another edge in B1 (because the collection
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of exterior edges were projected homeomorphically). So B1 is simply connected and all of

its edges must be glued together with edges of other complementary regions to form ∂N .

These other complementary regions may not be simply connected. Our strategy is to add

new edges to the graph we have till all complementary regions become simply connected.

By doing so we obtain a cell decomposition of ∂N with two vertices such that these simply

connected regions as its faces.

Figure 51: Complementary region of G in ∂N bounded by external edges of (1, 1, 1) hexagons

There are certain edge gluings that needs to be avoided in a cell decomposition. These are

depicted in figure 52. The one in the left yields an isolated vertex while the one in the right

yields a non orientable quotient. Note that B1 does not have any such gluing. The point is

none of the complementary regions in the cell decomposition we are going to build can have

these gluing patterns.

Figure 52: Edge gluings that are forbidden

All the remaining complementary regions are already simply connected with-

out any additional edges :
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In this case every boundary edge of B1 is glued to an edge of a different complementary

region and there are no other edges. Hence a cell decomposition of ∂N is given by 2 ver-

tices and 6 edge classes. If f is the number of faces of the cell decomposition then we have

2− 6 + f = −2 as χ(∂N) is −2. So f = 2 which means there is one complementary region

other than B1. Let’s denote it by B2. Since there are only 6 edge classes, B2 must also be a

hexagon and each of B1 should be glued to an edge of B2.

One additional edge is required to make all complementary regions simply connected :

In this case there are 7 edge classes. If f is the number of faces in the cell decomposi-

tion then we obtain f = 3 by doing the same Euler characteristic computation. Hence there

are two complementary regions other than B1. Let’s denote them by B2 and B3. Total num-

ber of edges of B2 and B3 should add up to 8. 6 of those will be glued to edges of B1 and

the other 2 should be glued to each other to form the additional edge class we needed in this

case to make all complementary regions simply connected. We have following possibilities.

• Both B2 and B3 are rectangles

• B2 is a triangle and B3 is a pentagon

Now let’s investigate the possible edge gluings in each case. In the diagrams below we color

an edge of a complementary component by black if it is glued to an edge of B1. We color it

by purple if it belongs to the additional edge class we needed.

If both B1 and B2 are rectangles, then there are only two possible ways of pairing edges.

These are shown in the top row of figure 53. In the top left case once the purple edges are

glued, union of B1 and B2 will be simply connected. But this contradicts with the assump-

tion that purple edges are needed to make complementary regions simply connected. Top

right case is also not possible because if the purple edges are glued that way, B2 will not be

simply connected.

110



Figure 53: One added edge class

Now let’s consider the second case when B2 is a triangle and B3 is a pentagon. If one

of the complementary regions is a triangle then at least one of its edges is a loop. Since

none of B1’s edges is a loop this means its not possible to pair all edges of the triangular

region with edges of B1. Hence one edge of the triangle should belongs to the additional

edge class and must be glued to an edge of the pentagon. (Figure 53 bottom). This again

yields a contradiction as B2 and B3 glued along the additional (purple) edge makes their

union simply connected rendering the addition of a new edge class unnecessary.

Two additional edge are required to make all complementary regions simply

connected :

In this case there are 8 edge classes. If f is the number of faces in the cell decomposi-

tion then we obtain f = 4 by doing the same Euler characteristic computation. Hence there

are three complementary regions other than B1 and let’s denote them by B2, B3 and B4.

Total number of edges of these 3 regions must be 10 and 6 of those should again be glued to

edges of B1. Other other 4 must be paired to form the two additional edge class we needed

to make all complementary regions simply connected. The only possibility is to have two

triangles (say B2 and B3) and a rectangle. (B4)
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Let’s try to understand the possible edge pairings for this arrangement. Let e7 and e8

be the two additional edge classes. As mentioned earlier, not all edges of a triangular region

can be glued to edges of B1. Hence in both B2 and B3 at least one edge must belong a new

edge class. Suppose both triangles has an edge that belongs to the class e7. If both edges

of the class e8 belong to B4 then it would not be simply connected. (Figure 54 top left ).

If one edge of the class e8 belongs to B4 and the other belong to one of the triangles (top

right)then the union of B2, B3 and B4 glued along e7 and e8 will be simply connected. This

contradicts with the assumption, e7 and e8 is needed to make complementary components

simply connected. If both edges of e8 also belong to triangles (bottom left) then the remain-

ing edge of both these triangles that should be paired with edges of B1 will be loops. But

no edge of B1 is a loop. Finally if no edge of B2 is paired with an edge of B3 (bottom right)

then their edges that belongs to additional edge classes must be paired with edges of B4.

But this again makes the union of B2, B3 and B4 glued along e7 and e8 simply connected.

Figure 54: Two added edge classes

Three additional edge are required to make all complementary regions simply

connected :

In this case there are 9 edge classes. If f is the number of faces in the cell decomposi-

tion then we obtain f = 5 by the Euler characteristic computation. Hence there are four

complementary regions other than B1. Denote them by B2, B3, B4 and B5. Total number
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of edges of these 4 regions must be 12. 6 of those should again be glued to edges of B1.

Other other 6 must be paired to form the three additional edge class we needed to make all

complementary regions simply connected. The only way this could happen is when all four

of B2, B3, B4 and B5 are triangles.

Let e7, e8 and e9 be the three additional edge classes. Recall that not all edges of a tri-

angular region can be glued to edges of B1. Hence each of the four triangular regions have

at least one edge that belongs to one of e7, e8 or e9. Furthermore there should be at least

one pair of triangles that are glued along one of these edges.

Without loss of generality assume B2 and B3 are glued along e7. Now if one of these

two triangles have an edge belong to e8 or e9 then the other can not have an edge that pairs

with it. Otherwise it would create two loops that must be glued to B1 (similar to the two

triangles in bottom left of figure 54) or would force the remaining edges of B2 and B3 to

be also paired by the remaining edge class between e8 and e9. Both these scenarios are not

possible hence the claim that if one of B2 or B3 have an edge belong to e8 or e9 then the

other can not have an edge that pairs with it is correct. Without loss of generality assume

B2 has an edge belong to e8 and B3 does not. Also assume B4 is glued to B2 along e8.

Hence one edge of B5 must belong to class e9 and glued to an edge in the union of B2, B3

and B4 which are already glued along e7 and e8. Irrespective of with which edge its paired,

the union of all four triangles will be simply connected once the pairing is done. This is the

usual contradiction we obtained in previous cases. If both B2 and B3 have no edges belong to

classes e8 and e9 then all four edges that belongs to these two classes will belongs to B4 and

B5. This will also yield a contradiction as it creates loops that should be glued to edges of B1.

Note that it’s not possible to add more than three new edges to create the cell decom-

position of ∂N . To see this first note that he Euler characteristic computation shows that

each added edge class increase the number of complementary regions by one. Also each

added edge class contributes to only two new edges belong to complementary regions other

than B1. This means after some point there will not be enough edges to form all the com-
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plementary regions. For an example with 4 added edges there will be five complementary

regions other than B1 but there are only 14 edges to make all of them which is not possible.

The discussion above was built around the main assumption interior edge λ̃′′1 of H0 preserve

orientation under the covering map. The discussion addressed the possible complementary

regions of ∂N and it follows all the addressed cases except one yields contradictions. The

only possibility that did not yield a contradiction is the first one ; no additional edges are

required to make complementary regions simply connected. In this case there is only one

other complementary region. We denoted it by B2. Recall that B2 is also a hexagon and

each edge of B2 is paired with an edge of B1 to form ∂N .

6.2 Projection of λ̃′′1 an orientation reversing homeomorphism

If the projection of the remaining interior edge of H0 , λ̃′′1 is OR then λ̃′′1 should be directed

from a to e as shown in figure 55.

The complementary component B1 in ∂N for this case is shown in figure 56 To figure out

the possibilities for other complementary component(s) in this case, Euler characteristic ar-

guments used in the previous section can also be used to some extent. The only difference is

three edges in the graph G are loops now where as in the previous case when λ̃′1 is projected

OP, there were none. Recall that when when λ̃′1 is projected OP, the only possibility for

other complementary components in addition to B1 was a single hexagon. But in this case,

due to the presence of loops in G, we have one more possibility. These are listed below.

• No additional edges needed to make all complementary regions simply connected. There

is only one complementary component in addition to B1 and it’s a hexagon.

• Two additional edge classes is needed to make all complementary regions simply con-

nected. There are three more complementary components in addition to B1 ; two trian-
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Figure 55: When λ̃′′1 is projected as an OR homeomorphism

Figure 56: B1 when λ̃′′1 is projected OR
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gles and a rectangle. Two triangles are glued together to make an annulus.

6.3 When ∂N has two complementary regions

We know the interior edges of H0 and H1 bounds a hexagonal region in ∂Ñ which projects

into a complementary region in ∂N . We denoted it by B1. We oriented hexagons H0 and

H1 which in turn induced an orientation on B1. Figure 57 left shows B1 with this induced

orientation when λ̃′′1 is projected OP. Right hand side of the same figure is when λ̃′′1 is pro-

jected OR.

Figure 57: Edge labels of the complementary region B1 when λ̃′′2 is projected OP(left) and

OR(right)

In the last two sections we discussed other possible complementary regions for both of these

cases. It follows from those discussions that there are only possibilities for other comple-

mentary regions.

• One more simply connected complementary region that is a hexagon. (Possible for both

λ̃′′1 is projected OP and OR)

• Three more simply connected complementary regions ; Two triangles and a rectangle.

(Possible only when λ̃′′1 is projected OR)
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Throughout the remainder of this chapter and also in the next chapter we will describe

our work analysing the first possibility ; when there are two complementary regions of G in

∂N both if which are hexagons. The latter case when there are three more complementary

regions is remained to be analysed.

From now on we assume ∂N has two complementary regions in G. Then both regions

are hexagons. We have already denoted one such a region by B1. We denote the other

complementary region by by B2. Each edge of B2 is paired with an edge of B1 to form ∂N .

In this subsection, we try to classify all the possible edge labellings of B2. To be precise, an

edge labelling of B2 should be so that the resulting quotient is a

• A surface

• Oriented

• Has two vertex quotients which are e and a

In fact if there are only two vertex quotients matching vertex quotients which are e and

a then the it ensure a link of each vertex class is a topological circle making the resultant

quotient to be a surface. So we only need the edge labellings that satisfy last two conditions

listed above. In figure 58 we include all the possible labellings that satisfy those two condi-

tions.

The first three pairings belong to the case when λ̃′′2 is projected OP and the last one belongs

to the case when λ̃′′2 is projected OR. While all of these labellings satisfy the conditions

listed earlier hence produce a surface, it turns out not all of them produce a surface that are

”compatible” with the projections of our (1, 1, 1) hexagons. We will next properly explain

what we meant by ”compatibility” and show two of the edge labellings in figure 58 fail to

be ”compatible”.

We will start with the first edge labelling in figure 58. Figure 59 shows how exterior edges

are attached to the end points of λ0. Now let’s consider a small strip along λ̃′1 that lies in
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Figure 58: Edge labellings of B1 and B2 that can yield an oriented surface with two vertices
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Figure 59: Edge labelling 1 : How external edges are attached to end points of λ1

H0 (figure 60 top). Then its projection will be attached along λ1, e1 near e and e2 near a

as shown in the bottom of the same figure.

Similarly we can consider strips along other 5 interior edges of H0 and H1 and their pro-

jections should be attached along λ1 and corresponding exterior edges near e and a. In

figure 61 we show three such strips.

Now let’s consider an arbitrary lift λ1 of λ1. Then each of the six strips mentioned above

determine a unique (1, 1, 1) hexagon that intersect along λ1. In particular three strips shown

in the bottom of figure 61 lifts to be contained in three different (1, 1, 1) hexagons each

of which now share λ1 as an interior edge. See figure 62. When we attach these (1, 1, 1)

hexagons to λ1, it should be done in a way so that adjacency is preserved. In particular if

two (1, 1, 1) hexagons are adjacent near one end point of λ1 then they must also be adjacent

near the other end point. In the figure 38 blue and yellow strips (hence the hexagons that

contain them) are adjacent near e but they are separated by two exterior edges e2 and e5

near a. So in order for the yellow strip to be adjacent to the blue strip near near a , the

hexagon containing the yellow strip should go through the hexagons containing e2 and e5.

This can not happen as (1, 1, 1) hexagons can only intersect along an interior edge. Hence
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Figure 60: A strip along an internal edge
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Figure 61: Small ’strips’ inside H0 and H1 and their projections
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the first edge labelling in figure 58 does not produce a surface to which we can attach our

two (1, 1, 1) hexagons along the labelled exterior edges in the proper order.

Figure 62: Strips of edge labelling 1 do not align properly along λ1

We then performed the same analysis on other three labellings. Second and third labellings

passes this test of adjacency. But the fourth edge labelling fails it as shown in figure 63

122



Figure 63: Same issue with the strips of edge labelling 4
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Hence we are left with only two pairs of possible edge labellings (second and third labellings

in figure 58) such that their resultant quotient produce ∂N . Next we will show both of them

are actually the ”same” meaning one can be obtained by a simple relabelling of the other.

We show this by using a cellular map from one labelling to the other which we define below.

Notation : We denote B1 and B2 in the second edge labelling by B′1 and B′2 and B1

and B2 in the third edge labelling by B′′1 and B′′2 .

To define a cellular map from from the second labelling to the third labelling, it’s enough

to specify how a single edge of B′1 or B′2 is mapped to an edge of B′′1 or B′′2 . We start by

mapping e1 in B′1 to e1 in B′′1 orientation reversingly. This determines how remaining edges

of B′1 should be mapped into edges of B′′1 . By traversing in along B1 in the direction its

oriented, we see edges of B′1 should be mapped as below.

• e1 ∈ B′1 ⇒ e1 ∈ B′′1 OR

• e4 ∈ B′1 ⇒ e5 ∈ B′′1 OR

• e3 ∈ B′1 ⇒ e2 ∈ B′′1 OR

• e6 ∈ B′1 ⇒ e6 ∈ B′′1 OR

• e2 ∈ B′1 ⇒ e3 ∈ B′′1 OR

• e5 ∈ B′1 ⇒ e4 ∈ B′′1 OR

We know e1 ∈ B′1 is glued to e1 ∈ B′2 in the second edge labelling. We also know e1 ∈ B′1
is mapped to e1 ∈ B′′1 orientation reversingly under the cellular map we are constructing.

Furthermore e1 ∈ B′′1 is glued to e1 ∈ B′′2 in the third edge labelling. Hence e1 ∈ B′2 should

be mapped to e1 ∈ B′′2 . Now there are two ways to define the map on remaining edges of B′2.

Method 1 : We can continue in the same way. This means if ei ∈ B′1 is mapped to

ej ∈ B′′2 then we map ei ∈ B′2 to ej ∈ B′′2 . This yield the following map on the edges of B′2.

• e1 ∈ B′2 ⇒ e1 ∈ B′′2 OR

• e2 ∈ B′2 ⇒ e3 ∈ B′′2 OR

• e3 ∈ B′2 ⇒ e2 ∈ B′′2 OR
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• e4 ∈ B′2 ⇒ e5 ∈ B′′2 OR

• e5 ∈ B′2 ⇒ e4 ∈ B′′2 OR

• e6 ∈ B′2 ⇒ e6 ∈ B′′2 OR

Method 2 : Since we know how one edge of B′2 is mapped by traversing along B′1 in the

direction it’s oriented, we can define the cellular map on the remaining edges of B′2. This

method yields the following map.

• e1 ∈ B′2 ⇒ e1 ∈ B′′2 OR

• e4 ∈ B′2 ⇒ e5 ∈ B′′2 OR

• e2 ∈ B′2 ⇒ e3 ∈ B′′2 OR

• e5 ∈ B′2 ⇒ e4 ∈ B′′2 OR

• e3 ∈ B′2 ⇒ e2 ∈ B′′2 OR

• e6 ∈ B′2 ⇒ e5 ∈ B′′2 OR

Both methods yields the same map, hence the map determined by sending e1 ∈ B′1 to e1 ∈ B′′1
orientation reversingly is well defined. Hence the cell decomposition in the second edge pair-

ing is simply an orientation reversing relabelling of the cell decomposition in the third edge

pairing. Hence we will only analyse the cell decomposition in the third edge pairing going

forward.

6.4 Thickening up of the two-complex

In the preceding sections, we analysed complementary regions of ∂N and possible ways of

labelling their edges. To summarise the discussion so far : We assumed there are only two

complementary regions in ∂N , both of which are hexagons. There were four possible ways

of labelling the edges of these hexagons (figure 58) initially. We further reduced this to only

two by showing the other two labellings are not ”compatible” with the (1, 1, 1) hexagons.

Finally we showed remaining two edge labellings are actually the ”same”. Hence we only
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have to analyse one of them which is shown in figure 64.

Figure 64: Edge labellings of B1 and B2 that can yield an oriented surface with two vertices

Now consider the 2− complex lying inside our manifold N which consists of the following.

• Union of cell decompositions B1 and B2 as shown in figure 64

• Shortest return path λ1

• Projections of H0 and H1 under the covering map (which we also denote by H0 and H1

by slightly abusing the notation)

Our next task is to analyse the manifold obtained by thickening up this 2− complex. This

thickened up 2− complex consists of the following.

• (B1 × I) ∪ (B2 × I)

• λ1 ×D2

• H∗0 × I ∪H∗1 × I

where I = [0, 1] and D2 is the unit disk. H∗i are obtained by removing a neighbourhood of

λ0 in Hi. We then attach H∗i × I along the tube λ1×D2. We denote this thickened complex

by XN .

6.4.1 Boundary of XN

B1 ∪ B2 is a boundary component of this thickened complex XN . We want to understand

the other boundary components of XN .
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Figure 65: Thickened up 2− complex XN
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First we orient I such that H∗i × 1 face the cusp of N . Figure 66 shows H∗i × 1s seen

from the ∞ in the universal cover.

Figure 66: H∗i × {1} seen from ∞

We orient H∗i × 1 using the orientation of Hi. Three edges in an H∗i × 1 are running parallel

to exterior edges of Hi. If an edge of H∗i × 1 is parallel to ej then we label that edge of

H∗i × 1 by e∗j . We give the same labelling to the end points of e∗j as end points of ej . Figure

67 shows orientations of H∗i × 1s with these labels.

H∗i × 1s are also part of the boundary of XN . But the question is what are the other

parts of the boundary component of X that contain them. To identify these remaining

parts, we need to look at how H∗i × 1s are attached to the tube λ1 × D2 closely. For the

moment let’s specifically focus on attaching H∗0×1 and H∗1×1 to the tube neare and in the

region between e3 and e6 as shown in figure 68. e3 is running into e while e6 is running out

ofe. Note that the region between these two edges on ∂N belongs to B1. There is a strip on

the boundary λ1×S1 of the tube λ1×D2 (colored in purple) that connects H∗0×1 to H∗1×1.
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Figure 67: H∗i × {1} oriented

Figure 68: Strips on the tube that are a part of a boundary component of XN
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This strip runs along the λ1 × S1 to the other end point of λ1 ;a. Note that the inte-

rior edge in H0 that connects to e3 at e connects to e1 at a. The interior edge in H1 that

connects to e6 e connects to e5 at a. Hence we should see the other end of this strip near

a in the region between e1 and e5 as shown in figure 69. As shown in figure 68 and 69, two

Figure 69: Strips that are part of the other boundary component of XN

edges of this strip are glued to ”interior” edges of H∗i × 1. Other two edges bound B1\ an

open neighbourhood of its edges.

There are two more similar strips on λ1 × S1 that connects H∗0 × 1 to H∗1 × 1. Similar

to the strip in figure 68 and 69, these two strips also has two of their edges glued to ”in-

terior” edges of H∗i × 1 and bound B1\ an open neighbourhood of its edges by remaining

two edges. So the boundary component of XN that contains H∗1 × 1s can be describe as the

union of following things glued along their edges.

• H∗i × 1

• Three strips of λ1 × S1

• B1\ an open neighbourhood of its edges

The gluing pattern of this boundary component is shown in figure 70. This boundary com-

ponent has 12 vertices ( 6 es and 6 as) , 12 edges and 6 faces. So its Euler characteristic
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Figure 70: The boundary component of XN that can be seen from cusp of N
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is 0. Hence this boundary component is a torus and it cuts off the cusp of N . Let’s call this

boundary component by T0

Now we focus on the other end of H∗i × I ; H∗0 × 0 and H∗1 × 0. Because of the way

we oriented I earlier, these can not be seen from cusp at ∞ in Ñ . Similar to H∗i × 1s, we

orient H∗i × 0 using the orientation of Hi. We also label their edges parallel to eis and their

vertices similarly. Right hand side of figure 71 showsH∗i ×0 with these orientations and labels.

Again there are three different strips on λ1 × S1 that connects H∗0 × 0 to H∗1 × 0. So

two edges of each of these strips are glued to interior edges of H∗i × 1s. Other two edges

bound B2\ an open neighbourhood of its edges. So we have another boundary component

of XN which is consisted of the following.

• H∗i × 0

• Three (different from earlier) strips of λ1 × S1

• B2\ an open neighbourhood of its edges

The gluing pattern of this boundary component is shown in figure 71. This boundary com-

ponent also has 12 vertices , 12 edges and 6 faces yielding an Euler characteristic of 0. Hence

this boundary component is also a torus. Let’s call it T1

Hence the manifold XN obtained by thickening up the two complex inside N has 3 boundary

components which are listed below.

• B1 ∪B2 which is ∂N

• A torus T0 that cuts off the cusp of N

• Another torus T1 that does not cut off the cusp of N
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Figure 71: Boundary component of XN that is hidden from cusp of N
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6.5 Topological realization of XN

In this section we construct a triangulation for the manifold XN using partially truncated

tetrahedra. Consider a partially truncated tetrahedron with one ideal vertex. (We can think

of it as a tetrahedron with small open neighbourhoods of 3 vertices and the remaining vertex

removed). Boundary of the removed open neighbourhoods are called as truncated faces and

the remaining faces are called as internal faces. 3 of the interior faces of this partially trun-

cated tetrahedra are non compact while the other interior face is a compact hexagon. All 3

truncated triangles are also compact. An edge of a truncated face is called as an external

edge. Other edges are called as internal. (see figure 72).

Figure 72: A partially truncated tetrahedron with one ideal vertex

Now let’s take two copies of such a partially truncated tetrahedron. We will first glue

non compact faces A,B and C of these two tetrahedra in the way specified in figure 73 top.

If we look from the ideal vertex of these two tetrahedra we will see a torus. Two edges

of each truncated triangle of these tetrahedra are also edges in non compact internal faces.

Hence the identification of non compact faces as above, force each truncated triangle to be

glued to two other truncated triangles along these pairs of external edges. Remaining edge

of each truncated triangle is currently not glued to anything. We label them by e1 . . . e6 and
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orient them in the direction specified in the same figure. We label compact faces of these

two tetrahedra by H0 and H1. For now we also leave them without gluing to anything. Note

that e1, e2, e3 and e4, e5, e6 are alternating edges of these two compact hexagons.

Figure 73: Identification of interior faces

Now we take another two copies of our partially truncated tetrahedron. We again glue

their non compact faces D,E and F as specified in 73. By looking from the ideal vertex of

these two tetrahedra we can see another torus. Similar to the first pair of tetrahedra, these

135



gluings of non compact internal faces determines a gluing of truncated triangles. We again

label compact faces of these two tetrahedra by H0 and H1. We also label their external edges

by e1 . . . e6 and orient them as shown.

Finally we glue the pair of compact faces labelled as H0 by matching labels of e1, e2 and

e3 and their orientations. We do the same for the other pair of compact faces which we

labelled as H1.

This completes the face identification of the four partially truncated tetrahedra. Each inter-

nal face of each partially truncated tetrahedra is glued to another internal face. This face

gluings yield 3 different edge classes of internal edges.

• Edge class 1 = {All 6 non compact internal edges of first two tetrahedra}

• Edge class 2 = {All 6 non compact internal edges of last two tetrahedra}

• Edge class 3 = {All 12 compact internal edges of the four tetrahedra}

We claim that the resultant quotient of the face identifications yield a complex homeomor-

phic to XN . First we will see how we can recover the boundary components of XN through

this quotient. As mentioned earlier, by looking through ideal vertices we already see two

torus components. Face identifications force interior edges in compact faces to be identified

to a single edge class. We denote the end points of this edge class by e and a. Now let’s

look at the gluing of truncated triangles by the identification of interior faces. These are

shown in figure 74. The hexagon in right is consists of all 6 truncated triangles of the first

two partially truncated tetrahedra and the one in left is made of the 6 truncated triangles

of the other two. We can now compare these two hexagons made from truncated triangles

with complementary regions B1 and B2 pf ∂N . We observe they are actually the same.

Furthermore, the edge class of all the interior edges of compact faces can be identified to λ1

of N and the compact faces labelled by Hi s are in fact the projections of their namesake

(1, 1, 1) hexagons in Ñ .
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Figure 74: Gluing of truncated triangles (above) yields the complementary components of

B1 and B2 of ∂N (below)

To see why the resultant quotient is in fact homeomorphic to XN , we first consider the

collection of all the compact faces of the four partially truncated tetrahedra. A collar neigh-

bourhood C of these faces (after face identifications) is then homeomorphic to the thickened

up 2− complex XN . On the other hand the resultant quotient of the four partially truncated

tetrahedra can also be deformation retracted to C\ its frontier. The deformation retraction

can be constructed by first fixing a sub collar S of C and then rescaling each line from S

to an ideal vertex to a line from S to frontier of C. Figure 75 shows how this deformation

retract acts on a non compact face of a partially truncated tetrahedra.
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Figure 75: Topological realization of XN

6.6 Geometric realization of XN

Now that we have realised the thickened up 2− complex XN topologically as a quotient of

partially truncated tetrahedra with internal faces identified, the next step is to see if we

can give this quotient a geometric structure. We will show that these tetrahedra can be

embedded in H3 in a way that gives XN a hyperbolic structure under which it becomes a

two cusped manifold with totally geodesic boundary of genus 2

First we want to embed the four partially truncated tetrahedra in H3 so that their ideal

vertices are ideal points in H3, their truncated triangles and internal faces are geodesic poly-

gons in H3 and are perpendicular to each other whenever they share an external edge.

In order to embed such a partially truncated tetrahedron in H3, all we need to do is to

assign dihedral angles to each of its internal edge satisfying the following.

• Sum of dihedral angle at an ideal vertex is π

• Sum of dihedral angle at any other vertex is less than π
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We assign a dihedral angle of π/3 to non compact internal edges and a dihedral angle of π/6

to compact internal edges to each of the four partially truncated tetrahedra. This assign-

ment of dihedral angles satisfies the above condition hence embedding our partially truncated

tetrahedra in H3. We then glue their internal faces using the same face identification used

in the topological realization. The assignment of dihedral angles as above also makes sure

the following.

• Any two edges glued together under face identifications has same hyperbolic length

• Sum of dihedral angles of all 3 edge classes 2π

The last point follows because edge classes 1 and 2 have 6 edges each with a dihedral angle

of π/3 and the edge class 3 has 12 edges each with a dihedral angle of π/6.

These two are sufficient conditions to provide the quotient obtained by face identifications

a hyperbolic structure with a totally geodesic boundary of genus 2 and two cusps. Let’s

denote this manifold by X. Truncated triangles will be glued to form the genus 2 boundary

surface of XN . X can be realized geometrically by simply truncating the two cusps of X.

Now that we have realized XN geometrically, a standard argument in hyperbolic 3− mani-

folds can be used to relate it back to N

Proposition 6.6.1. N can be obtained by a Dehn filling of X.

Proof. We know X has two torus boundary components ; T0 that cuts off the cusp of N

and T1 that does not. Let U1 be the component of N \ X that has T1 as the frontier and

V1 = U1 ∪ T1. It’s enough to show V1 is a solid torus.

T1 is compressible in N . Hence there is a disk D embedded in N such that D ∩ T1 = ∂D

and ∂D does not bound a disk in T1. On the other hand T1 is a cusp cross section of X and
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hence incompressible in X. Hence D ∩X = ∂N and D ⊂ V1.

∃ a collar neighbourhood η(D)1 of D which is homeomorphic to D × I. Let’s denote

D×{0}∪D{1} by ∂hor and ∂D×I by ∂ver. So ∂η(D) = ∂hor∪∂ver. Note that η(D)∪T1 = ∂ver.

Then S =
(
T1 \ ∂ver

)
∪ ∂hor is homeomorphic to S2.

Every hyperbolic 3−manifold is irreducible ; every S2 contains a ball B3 such that ∂B3 = S2.

Let B subsetN be the ball contained in S. Then intB ∪ (η(D) \ ∂ver is a complementary

component of T1 in N . It has to be U1 because the other complementary component of T1

in N contains ∂N . Hence V1 = B ∪ η(D).

If η(D) ∪B = ∂hor then V1 = B ∪ η(D) will be a solid torus. Note that (XN 1) ∪ η(D) \ ∂hor

is connected and hence contained in a single component of N \ S. Therefore intB ∩ η = ∅.

Hence η(D) ∪B is indeed equal to ∂hor and it follows V1 is a solid torus.

Figure 76: N can be obtained by a Dehn filling of X

6.7 Dehn fillings of X

We showed that N can be obtained by a Dehn filling of a 2− cusped hyperbolic manifold with
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a totally geodesic boundary. We named this manifold as X and described a triangulation of it

by 4 partially truncated tetrahedra. Our next step is to understand the possible Dehn fillings

of X that can yield N . A basic first step in that regard is to compute the volume of X. For

this we use the volume formula proved by Ushijima for generalized hyperbolic tetrahedra.[19]

Consider a generalized hyperbolic tetrahedra T with dihedral angles as shown in 77.De-

fine the following.

Figure 77: Dihedral angles of a generalised tetrahedra

G=


1 −cos(A) −cos(B) −cos(F )

−cos(A) 1 −cos(C) −cos(E)

−cos(B) −cos(C) 1 −cos(D)

−cos(F ) −cos(E) −cos(D) 1



a = eiA, b = eiB, c = eiC , d = eiD, e = eiE, f = eiF
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U(z, T ) =
1

2

{
Li2(z) + Li2(abdez) + Li2(acdfz) + Li2(bcefz)

− Li2(−abcz)− Li2(−aefz)− Li2(−bdfz)− Li2(−cdezz)
}

where Li2(x) = −
∫ x

0
log(1−t)

t
dt

z± = −2
sin(A)sin(D) + sin(B)sin(E) + sin(C)sin(F )±

√
det(G)

ad+ be+ cf + abf + ace+ bcd+ def + abcdef

Lemma 6.7.1. (Theorem 1.1 , [19]) The volume of the generalize hyperbolic tetrahedra with

dihedral angles shown in figure 77 is given by

1

2
Im((U(z+, T )− U(z−, T ))

where U , z+ and z− are defined as above.

Lemma 6.7.2. Volume of X is 9.13447

Proof. Take one of the partially truncated tetrahedra in the triangulation of X. We can

take dihedral angles as A = B = C = Π/3 and D = E = F = π/6. Then we computed the

following.

det(G) = −9/2 z+ = 1 z− = e
2πi
3

Im(U(z+, T )) = 3Λ(π/2)− 3Λ(−π/6)

Im(U(z−, T )) = −3Λ(5π/6)− Λ(π/6)

where Λ(x) is the Lobachevsky function given by Λ(x) = 2
∫ x

0
log(|2sin(t)|)dt.

Λ at following values are computed to
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• Λ(π/2) = 0

• Λ(−π/6) = −0.507471

• Λ(5π/6) = −0.507471

• Λ(π/6) = 0.507471

Hence we compute the volume of one of the partially truncated tetrahedra to be 9
2
∗0.507471 =

2.2836. Each of the four partially truncated tetrahedra has this volume. Hence the volume

of X which is four times the volume of a single tetrahedra is 9.13447

A slope of a torus boundary component of a manifold is an isotopy class of a simple closed

curves. A length of a slope is defined to be the length of its representative on the largest

horoball cusp cross section. Dehn fillings of a manifold can be parameterized by slopes. We

know the manifold X has two tours boundary components T0 and T1. What we want to do

is to analyse Dehn fillings of X on T1. Let γ be a slope on T1. Then we define by X(γ),

the manifold obtained by filling T1 with a solid torus along the slope γ. A Dehn filling of

X reduce the volume by a fraction depending on the length of the slope along which T1

was filled. The following result in [9] provides us with the lengths of the slopes that could

possibly yield N .

Lemma 6.7.3. (Theorem 1.1 [9])

Vol(X(γ)) ≥

(
1−

(
2π
l

)2
)3/2

V ol(X)where l is the length of the slope γ.

If V ol(X(γ) > vol(N0) then we obtain l < 2π√
1−
(
V ol(N0)
V ol(X)

)2/3 = 19.8576.

Hence the Dehn fillings that could possibly yield a manifold that does not exceed the volume

of N0 are the ones along slopes with at most this length. There are only finitely many slopes

with such lengths. Our final task is to find a way to list them and to compute volumes of

the manifolds obtained by Dehn fillings of X along them.

As mentioned above, length of a slope is defined using its representative on at the largest
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horoball cross section. We now describe such a cross section of X for the cusp corresponding

to T1.

Lemma 6.7.4. The Euclidean horizontal plane z =
√

2 considered as a subset of H3 is a lift

of the largest horoball cross section of T1 in Ñ . There are slopes α and β which generates

π1(T1) each with hyperbolic length 3/
√

2.

Proof. Again we start with one of the partially truncated tetrahedra T in the triangula-

tion of X and assume ∞ is the ideal point of T . Let P be the geodesic plane in H3 that

contains the compact face of T and P1, P2 and P3 be the geodesic planes containing trun-

cated triangles of T . These geodesic planes are hemispheres perpendicular to R2. Without

loss of generality take the radius of P to be 1 and radii of Pis to be r. We would like to

know whether a cross section of T1 first touches the boundary triangles or the compact face of

T ; i.e., whether r > 1. Let A be the center of P on R2 and B,C and D be the centers of Pi s.

Note that the lengths of all compact internal edges of T are the same and the lengths

of external edges of T are also the same. Hence the triangle BCD on R2 is equilateral and

BAE∠ is π/3. Since external and internal faces are perpendicular, the hemispheres P and P1

intersect perpendicularly. Hence the Euclidean length between their centers on R2 is
√

1 + r2

and AE = 1
2

√
1 + r2. On the other hand the dihedral angle between non compact internal

faces and the compact internal face is π/6. Hence we have sin(π/3) = AE
1
⇒ r =

√
2. So

the radii of Pis are bigger than the radius of P and the maximal cusp cross section of T1 is

at a Euclidean height of
√

2 from R2.

Sides of the equilateral triangles on the cusp cross section are simple closed curves inter-

secting only once and they generate π1(T1). (see figure 79) Let’s label their isotopy classes

by α and β. Euclidean side lengths of these curves are same as the distance between centers

of Pis which is equal to 2 ∗ sin(π/3) ∗
√

1 + r2 = 3. At height
√

2, these sides have lengths

of 3/
√

2 under the inherited Euclidean metric.
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Figure 78: Computing the height of the largest horoball cusp cross section
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Figure 79: Slopes that generate π1(T1)

Then for any slope γ on T1 there exists coprime integers p and q such that γ = pα+ qβ. We

represent the slope γ in Q ∪ {∞} by p/q. We draw the lattice on the largest horoball cusp

neighbourhood discussed in the last lemma (figure 80 )with each lattice point represent a

slope on T1 by a rational number p/q where p and q are coprime. Each triangle in the lattice

has hyperbolic side length 3/
√

2 which are the lengths of α and β. We can compute the

length of any slope on T1 using this lattice. In particular we can list the ones with a length

than 19.8576. These are the ones corresponding to Dehn fillings that could possibly yield N .

For an example, the Euclidean length of the line segment from the origin to the lattice point

2 is
√

(3
√

3)2 + 62 =
√

63. Hence the slope given by 2α has the length
√

63/
√

2 = 5.6125.

In the table 2 we list all the slopes with length less than 19.8576. There are 89 such slopes

in total.
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Figure 80: Lattice on the largest horoball cusp cross section. Each lattice point represent a

slope
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6.8 Computing the volumes of Dehn fillings of X using its double

The software package SnapPy is a one of the most frequently used programs to study the

hyperbolic structures of 3−manifolds. In particular it can provide various information about

Dehn fillings of a given finite volume hyperbolic manifolds (without a boundary). SnapPy

takes a description of such a manifold as the input and compute this information.

While what we wanted to compute is volumes of Dehn fillings of a manifold with a totally

geodesic boundary, a description of such a manifold can not be fed into SnapPy. On the

other hand, the double of X along its boundary which is defined below is a finite hyperbolic

manifold without a boundary.

DX = X × {0, 1}/ ∼

where the quotient ∼ is the identification of points x × {0} and x × {1} for x ∈ ∂X. DX

defined as above is a hyperbolic 3−manifold with 4 cusps and no boundary. The boundary

of X is embedded inside DX as a genus 2 surface.

DX has an obvious orientation reversing isometry which is the reflection across the boundary

of X. Let’s call this isometry by Ψ. It acts on DX as follows.

Ψ(x, i) = (x, 1− i)

for i = 0, 1. Now let γ be a slope on the torus component T1 of X. Then Ψ takes γ to a slope

Ψ(γ) on the torus component Ψ(T1) of DX. Let DX(γ, T1,Ψ(γ),Ψ(T1)) be the manifold

obtained by filling T1 and Ψ(T1) along γ and Ψ(γ) respectively. Then we have

DX(γ, T1,Ψ(γ),Ψ(T1)) = D
(
X(γ)

)
where D

(
X(γ)

)
is the double of the Dehn filling X(γ) of X. Hence the volume of X(γ) is

one half of the volume of DX(γ, T1,Ψ(γ),Ψ(T1)).

If we can compute a triangulation or some other form of description of DX that can be
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fed into SnapPy then we can obtain the volumes of its Dehn fillings, in particular volumes

of the Dehn fillings of form DX(γ, ψ(γ)) and hence the volumes of X(γ) for any slope γ on

T1. Therefore our next goal is to construct a description of DX that can be read by SnapPy.

6.9 Frigerio, Martelli, Petronio census

In [3] Frigerio, Martelli and Petronio classified all the hyperbolic 3−manifolds with nonempty

compact totally geodesic boundary that admits a triangulation with at most four tetrahedra.

They defined Mg,k to be all such manifolds with k cusps and a geodesic boundary of genus

g and admits a triangulation of g + k tetrahedra.

The unique member in M2,1 in their classification is our candidate N0 for the minimal

volume manifold of Nc,c. Furthermore the classM2,2 in their census also has a unique mem-

ber. We showed that X has a hyperbolic structure and admits a triangulation of 4 partially

truncated tetrahedra and hence must also belong toM2,2. So it has to be the unique member

in M2,2. Hence we can restate the proposition 6.6.1 as below.

Theorem 3. Let N be a manifold in N ′c,c and contain a (1, 1, 1) hexagon visible from the

cusp in its universal cover. If ∂N has two hexagonal complementary regions in G then N

can be obtained by a Dehn filling of X where X is the unique two cusped manifold with a

totally geodesic boundary of genus 2.

Going forward, we will adapt their notation for the face gluings of partially truncated tetra-

hedra that produce X. We describe it below.

First denote the vertices of a tetrahedron by 0, 1, 2 and 3. Some of the vertices may be

ideal or truncated. Then label the face of the tetrahedron by i if it is opposite to the vertex
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i. So face 0 consists of vertices 1, 2 and 3 and face 1 consists of vertices 0, 2 and 3 and so

on. We label the four tetrahedra in the triangulation of X by Tet 0, Tet 1 , Tet 2 and Tet

3. The gluing data of their faces to produce X is given in table 3.
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Table 1: Only slopes, along which a Dehn filling could possibly yield N

Slope Length Slope Length

0 2.1213 ∞ 2.1213

(1,1) 3.6742 (1,2) 5.6124

(1,3) 7.64852 (1,4) 9.7211

(1,5) 11.8110 (1,6) 13.9104

(1,7) 16.0156 (1,8) 18.1245

(2,1) 5.6124 (2,3) 9.2466

(2,5) 13.2476 (2,7) 17.3637

(3,1) 7.6485 (3,2) 9.2466

(3,4) 12.9034 (3,5) 14.8492

(3,7) 18.8547 (4,1) 9.7211

(4,3) 12.9034 (4,5) 16.5680

(5,1) 11.8110 (5,2) 13.2476

(5,3) 14.8492 (5,4) 16.5680

(6,1) 13.9104 (7,1) 16.0156

(7,2) 17.3637 (7,3) 18.8547

(8,1) 18.1245 (-1,1) 2.1213

(-1,2) 3.6742 (-1,3) 5.6124

(-1,4) 7.6485 (-1,5) 9.7211

(-1,6) 11.8110 (-1,7) 13.9104

(-1,8) 16.0156 (-1,9) 18.1245

(-2,1) 3.6742 (-2,3) 5.6124

(-2,5) 9.2466 (-2,7) 13.2476

(-2,9) 17.3637 (-3,1) 5.6124

(-3,2) 5.6124 (-3,4) 7.6485
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Table 2: Only slopes, along which a Dehn filling could possibly yield N contd..

Slope Length Slope Length

(-3,5) 9.2466 (-3,7) 12.9034

(-3,8) 14.8492 (-4,1) 7.6485

(-4,3) 7.6485 (-4,5) 9.7211

(-4,7) 12.9034 (-4,9) 16.5680

(-5,1) 9.7211 (-5,2) 9.2466

(-5,3) 9.2466 (-5,4) 9.7211

(-5,6) 11.8110 (-5,7) 13.2476

(-5,8) 14.8492 (-5,9) 16.5680

(-6,1) 11.8110 (-6,5) 11.8110

(-6,7) 13.9104 (-7,1) 13.9104

(-7,2) 13.2476 (-7,3) 12.9034

(-7,4) 12.9034 (-7,5) 7.6485

(-7,6) 14.8492 (-7,8) 16.0156

(-7,9) 17.3637 (-7,10) 18.8547

(-8,1) 16.0156 (-8,3) 14.8492

(-8,5) 14.8492 (-8,7) 16.0156

(-8,9) 18.1245 (-9,1) 18.1245

(-9,2) 17.3637 (-9,4) 16.5680

(-9,5) 16.5680 (-9,7) 7.6485

(-9,8) 18.1245 (-10,3) 18.8547

(-10,7) 18.8547
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Table 3: Face gluings of X in the notation used in Frigerio, Martelli, Petronio census

Face 0 (123) Face 1 (023) Face 2 (013) Face 3 (012)

Tet 0 1 1 1 2

213 203 103 123

Tet 1 0 0 0 1

213 203 103 312

Tet 2 0 3 3 3

012 032 031 021

Tet 3 1 2 2 2

120 032 031 021

We conclude this chapter with the following version of the theorem 1.6 from [8] adapted to

our situation.

Proposition 6.9.1. (Theorem 1.6 , [8]) There are at least six slopes on T1, along which X

can be Dehn filled to obtain N0
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7.0 Construction of an ideal triangulation for DX

Under the notaion in table3, Tet 0 and Tet 1 has their ideal points at vertex 3 and Tet 2

and Tet 3 has their ideal points at vertex 0.

All of the compact edges in the four tetrahedra are identified to a single edge class un-

der face gluings. The end points of this edge class is denoted bye ande. (See figure 81.)

Figure 81: Vertex classes of X
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7.1 An inventory of edges

We now define several classes of geodesic lines along the four partially truncated tetrahedra.

Type 1

An edge from the ideal point of the tetrahedron to the center of its compact face.

There is a one such edge for each tetrahedra. Compact faces of Tet 0 and Tet 2 are glued,

hence the type 1 edge of Tet 0 is connected to the type 1 edge of Tet 2 at the center of the

compact face, creating a line segment between their ideal points. Same is true for the type

1 edges of Tet 1 and Tet 3. Type 1 edges of all 4 tetrahedra are shown in figure 82 top.

Color code : Blue (for Tet 0 and Tet 2) and Purple (for Tet 1, 3)

(rounded ends are the centers of compact faces)

Type 2

An edge lying on a non compact internal face of a tetrahedra that connects its ideal point

to the center of one of its compact internal edges.

Each tetrahedron has 3 type 2 edges, one along each non compact internal face. Each

type 2 edge is glued to a type 2 edge of a different tetrahedra respecting face gluings. In fact

type 2 edges of Tet 0 are glued to edges of the same type in Tet 1 because all non compact

internal faces of Tet 0 are glued to those of Tet 1. Type 2 edges of Tet 2 are glued to edges

of the same type in Tet 3 for the same reason. Type 2 edges of Tet 2 are shown in figure 82

middle left.

Color code : Orange
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Type 3

An edge connecting the center of the compact face of a tetrahedron to the center of the one

of the compact internal edges. Each tetrahedra has 3 type 3 edges.

Type 3 edges of Tet 0 are glued to edges of the same type in Tet 2 as the their com-

pact faces are glued. Type 3 edges of Tet 1 are glued to edges of the same type in Tet 3 for

the same reason. Type 3 edges Tet 2 are shown in figure 82 middle right.

Color code : Green

Type 4

An edge connecting the center of the compact face of a tetrahedron to the center of an

external edge that lie on the same compact face.

Each tetrahedra has 3 type 4 edges. Type 4 edges of Tet 0 are glued to edges of the

same type in Tet 2 and type 3 edges of Tet 1 are glued to edges of the same type in Tet 3.

Type 4 edges Tet 2 are shown in figure 82 bottom.

Color code : Red

Spinal hexagons

Consider a triangle inside a partially truncated tetrahedra that is bounded by one of each

type 1, type 2 and type 3 edges. We call such a triangle by a spinal triangle. A spinal

triangle can be viewed from two sides ; from e and from e. For an example, the spinal

triangle of Tet 2 showed in figure 83 can be seen from e at vertex 1 and from e at vertex

2.

If a spinal triangle in Tet i can be seen from e at vertex j we assign it the label ij. If the

same triangle can be seen from e at vertex k, then we give it a second label by ik. Hence

the two labels assigned to the spinal triangle seen in figure 83 are 21 and 22. There are 12

spinal triangles in total. The pair of labels assigned to each of them is listed below.
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Figure 82: Inventory of edges
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Figure 83: Spinal triangles
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7.2 Labelling of spinal triangles

Spinal triangles in Tet 0 are

1. 00 = 01

2. 01 = 02

3. 02 = 00

Spinal triangles in Tet 0 are

1. 10 = 12

2. 11 = 00

3. 12 = 11

Spinal triangles in Tet 0 are

1. 21 = 22

2. 22 = 23

3. 23 = 21

Spinal triangles in Tet 0 are

1. 31 = 33

2. 32 = 31

3. 33 = 32

Then we glue these spinal triangles along their type 2 and type 3 edges. Again, looking at

the spinal triangle 21, its type 2 edge is glued to the type 2 edge of 32. Type 3 edge of 21 is

glued to the type 3 edge of 00. (figure 83 bottom left). The gluings can also be viewed from

e in which case 22 is glued to 31 along the type 2 edge and to 01 along type 3 edge. (figure

83 bottom right).

By completing these gluings we can obtain two hexagons as shown in figure 84 ; one is

when spinal triangles are viewed from e and other when they are viewed from e. We call
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these hexagons as spinal hexagons of X. The spinal triangles that form these two hexagons

are identified by the labelling given in 7.2. As sketched in figure 84 this identification can

also be done by simply reflecting one of the hexagons along the dotted line.

Figure 84: Two spinal hexagons of X ; viewed from e (left) and e (right)

Similarly X also has two spinal hexagons. If the partially truncated tetrahedra that forms

X are labelled by Tet 0 , Tet 1, Tet 2 and Tet 3 then the triangles that form the two spinal

hexagons of X has labellings of the form ij and ik.

7.3 Vertical quadrilaterals

Consider the region inside a tetrahedron bounded by the following.

• A non compact interior edge

• A line in a truncated triangle that connects the edge above to the center of the opposite

external edge.

• A type 4 edge that connects the center of the compact face to the center of the same

external edge
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• Type 1 edge of the tetrahedron

We call this region as ”a quarter of a vertical quadrilateral”. If such a region that lies in the

tetrahedra i has an edge goes through the truncated triangle at vertex j we label it as ij .

The quarter of a vertical quadrilateral 22 is shown in figure 86.

Figure 85: Vertical quadrilaterals

The reason we call these regions as quarters is we can glue four such regions and form

what we call as a vertical quadrilateral. First we glue two ”quarters” along their type 4

edge. For the quarter 22 the one that glued to its type 4 edge would be 01. Next we consider

the mirror images of the partially truncated tetrahedra that forms X. These four tetrahedra

can be glued to the original four tetrahedra along truncated triangles. We labelled these
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tetrahedra by Tet i. Hence each ”quarter” in Tet i can be glued to a ”quarter” in Tet i along

its edge that lies on the truncated triangle. For an example, 22 in figure 86 can be glued

to 22 along the edge lying on the truncated triangle. Similarly 01 can be glued to 01. The

four ”quarters” glued this way is then form a ”vertical quadrilateral”. There are 6 vertical

quadrilaterals as shown in figure 38

Figure 86: Six vertical quadrilaterals in X and X

7.4 Gluing of spinal triangles to vertical quadrilaterals

Note that type 1 edges form boundaries of spinal hexagons. Each vertical quadrilateral also

has a pair of edges of type 1. We glue vertical quadrilaterals to spinal hexagons along these

edges.

For an example when we view the quarter of the vertical quad 22 from e, we see the

quarter is glued to spinal triangle 22. So this quarter should be glued to 22 in the spinal

hexagon corresponding to e. On the other hand when we view the quarter of the vertical
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quad 22 from e, we see the quarter is glued to spinal triangle 22. Hence 22 should be glued

to 22 in the spinal hexagon corresponding to e (See figure 87)

Figure 87: Gluing of vertical quads to spinal triangles as seen from e(left) and e (right)

This creates two ’drums’, each of which connects a spinal hexagon in X to a spinal hexagon

in X via vertical quadrilaterals as shown in figure 88.

Note that these two drums are ideal polyhedra as their vertices are ideal end points of

type 1 edges. Surface of each drum consists two spinal hexagons and six vertical quadri-

laterals. Triangles that made spinal hexagons are identified as shown in figure 84. Vertical

quads in the two ’drums are identified if they simply have the same labelling. The quotient

of the two drums under these identifications is then isometric to DX. Hence we have a

decomposition of DX by two ideal polyhedra.
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Figure 88: DX can be decomposed into two ideal polyhedra (’drums’)
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7.5 Division of drums in to ideal tetrahedra

The next step is to divide these two polyhedra into smaller ideal tetrahedra. There are

several ways to do that. Below we describe the method we used.

Step 1

Consider the two pairs of spinal hexagons of X. Place them in the way shown in figure 84.

This means their identification can be done by simply reflecting across the dotted line in

that figure. Now we forget about the labels of the spinal triangles that make these hexagons.

Instead we label the ideal vertices of these hexagon by a, b, c, p, q, r as shown in figure 89.

This labelling still preserve the identification of the spinal hexagons, meaning two hexagons

will be glued by identifying the vertices with the same label. Now do the same for the spinal

hexagons of X as shown in the bottom of the same figure. We label the ideal vertices of

those hexagons by d, e, f, s, t, u.

Figure 89: Triangulation of drums : Step 1
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Step 2

Now divide each spinal hexagon into four triangles as shown in figure 90. These triangles

still preserve the identifications of the spinal hexagons, meaning a triangle on one spinal

hexagon of X (or X) will be mapped to the triangle with same labelling of vertices on the

other spinal hexagon of X (or X). For an example the triangle apr in the spinal hexagon of

X in the left will be identified to the triangle apr in the spinal hexagon of X in the right.

Figure 90: Triangulation of drums : Step 2

Step 3

Now create the following six tetrahedra inside the first drum by adding new edges inside the

drum as necessary.

aprs , rqcu , pbqt, dstp , etuq , fsur

Do the same for the second drum ; create six more tetrahedra inside the second drum

which has the same vertices.

Now each of these tetrahedra has a face that is a triangle from step 2. In the face pairing,

we will identify them as explained there. Also another face of each of these 12 tetrahedra
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Figure 91: Dividing a drum into 6 tetrahedra leaving an octahedron in the middle

cut a vertical quads diagonally. Such a face must also be identified with a face in the other

drum that also cuts a vertical quad diagonally in a way it respects the pairing of vertical

quads.

Step 4

The creating of six tetrahedra in the last step leaves an octahedron inside each drum. Six of

the faces of each of these octahedra are shared with tetrahedrons created in step 3. Other

two faces of the octahedra are the triangles pqr and stu. We finally divide each of this oc-

tahedra into 4 tetrahedra by adding one more additional edge (in red) as shown in figure 92.

This division of drums into tetrahedra creates no new vertices, hence all the tetrahedra

are also ideal. Each drum is divided into 10 tetrahedra and we have a triangulation of DX

by 20 ideal tetrahedra. Faces of these tetrahedra that lie on the surface of drums are iden-

tified as explained in step 2 and step 3.
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Figure 92: Triangulation of drums : Step 4 - Dividing the remaining octahedron into 4

tetrahedra

7.6 Computations using software packages

The ideal triangulation of DX by 20 tetrahedra we constructed in the previous section is

described by how their faces should be glued together in pairs. This description can be fed

into the low dimensional topology software package Regina.[20]

Regina can determine whether a given triangulation represent a manifold with hyperbolic

structure and if so it can compute information about the manifold such as its hyperbolic

volume. It determined the triangulation of DX described earlier represent a hyperbolic

manifold with a volume of 18.2689. This was expected as we computed the volume of X to

be 9.13447 earlier.

Given a triangulation, Regina can also compute its isomorphism signature ; a string of

characters that identifies the triangulation up to a relabelling the tetrahedra in the triangu-
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lation and their vertices. The isomorphism signature for the triangulation we described in

7.5 is

tLwvLLLwAMPQQkbbhhjilkmmmsporqqrsspuappuoowsfpabuuvvbb

This isomorphism signature can be used as the input to SnapPy.[10]

In : DX=Manifold(’tLwvLLLwAMPQQkbbhhjilkmmmsporqqrsspuappuoowsfpabuuvvbb’)

SnapPy can compute the group of self isometries of a manifold.

In : DX.symmetry group

Out : Z/2×D6

where D6 is the dihedra grpup of order 12. Hence DX has 24 self isometries. They are

listed below with their action on cusps.

In : S=DX.symmetry group()

In : isoms=S.isometries()

The array isoms contains all the self isometries of DX . An element of isoms is a descrip-

tion of cusp transformations under the isometry. It specifies destinations of the meridian

and longitude of each cusp under the isometry. Let’s consider an example.

In : isoms[19]

Out :

0 → 3 1 → 2 2→ 1 3 → 0

[0 --1] [0 --1] [1 -1] [1 -1]

[-1 -1] [-1 -1] [-1 0] [-1 0]

First row describes the destination of each cusp. isoms[19] takes cusp 0 to 3 , 1 to 2 ,

2 to 1 and 3 to 0. First columns of each matrix describe the image of the meridian of each

cusp and the second column does the same for the longitude of the cusp. If α0, β0 and α3, β3
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are the meridians and longitudes of cusp 0 and cusp 3 respectively then isoms[19] takes α0

to −β3 and β0 to −α3 − β3.

Recall that Ψ, the reflection along the boundary of X is also a self isometry of DX. and

satisfies following properties.

• is an involution that exchanges cusps in pairs

• orientation reversing

• is in the center of the self isometry group

The SnapPy command multiply elements(i, j) produce the composition of ith and jth ele-

ment of the group isoms. We use this command to identify all the elements in isoms that

satisfy the properties above. There are two self isometries of DX that satisfy all three of

them. The first self isometry is isoms[19]. Its description was given earlier. The second self

isometry that satisfies above three properties is isoms[22]. Its SnapPy description is given

below.

In : isoms[22]

Out :

0 → 1 1 → 0 2→ 3 3 → 2

[-1 0] [-1 0] [0 -1] [0 -1]

[1- 1] [1- 1] [1 -0] [1- 0]

One of these two self isometries should be Ψ , the reflection along the boundary of X.

For simplicity let’s label isoms[19] by Ψ1 and isoms[22] by Ψ2. We need to identify which

of these two is actually the isometry Ψ and which two of the four cusps are T1 and Ψ(T1).

We have four possibilities.

• Ψ = Ψ1 and {T1,Ψ(T1)} = {C0, C3}

• Ψ = Ψ1 and {T1,Ψ(T1)} = {C1, C2}

• Ψ = Ψ2 and {T1,Ψ(T1)} = {C0, C1}

• Ψ = Ψ2 and {T1,Ψ(T1)} = {C2, C3}

170



The property of Ψ that we can use to distinguish Ψ1 and Ψ2 comes from proposition 6.9.1.

It says there are 6 slopes of T1 Dehn fillings along which can yield N0. These slopes should

be among the ones in the table 2 as Dehn filling along any other slope can not produce a

manifold with volume less than or equal to the volume of N0. Let γ be any of those six slopes.

Then the manifold DX(γ,Ψ(γ)) obtained by filling T1 and Ψ(T1) should be the double of

N0 along its boundary and hence should have two times the volume of N0.

The SnapPy command P.dehn fill((a,b),i) fill the ith cusp of P along the slope (a, b). Using

this command multiple times, we can fill different cusps of P along slopes we want. The

volume of the manifold produced by the Dehn fillings we specified can then be computed

using the command P.volume(). An example is given belo.w

In : P.dehn fill((2,3),2)

In : P.dehn fill((3,2),3)

In :P.volume()

Out : 15.5952737606

Hence the volume of the manifold obtained by filling C2 of P along the slope (2, 3) and

C3 along the slope (3, 2) is equal to 15.5952737606.

Now we compute the volumes of all the Dehn fillings of DX of the form

DX(γ, Ci,Ψk(γ),Ψj(Cj)) where

• γ is a slope in table 2

• The triple (Ψk, Ci, Cj) represent one of the four possibilities above.

The triples (Ψ1, C0, C3) and (Ψ1, C1, C2) yield no manifolds with twice the volume of N0. On

the hand (Ψ2, C0, C1) and (Ψ2, C2, C3) yield exactly six manifolds with that volume. Hence

we conclude Ψ = Ψ2. The table 5 lists all the volumes of Dehn fillings of DX of the form

DX(γ, C2,Ψ2(γ), C3) for all the slopes γ in table 2
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Volumes in the second (fourth) columns of table 5 are the volumes of Dehn fillings of DX

obtained by filling C2 along the slope γ in column one (three) and C3 along the slope

Ψ(γ). We observe that six of the slopes yield non hyperbolic manifolds. These slopes are

0, 1,∞,−1, 1/2 and 2.

Smallest volume in the table 2 is 15.5952 which is twice the volume of N0. Exactly six

slopes yield this volume. They are −2,−1/2, 1/3, 2/3, 3/2 and 3. Comparing this obser-

vation with proposition 6.9.1 we conclude that the manifold obtained by X from filling T1

along these six slopes is N0.

All the remaining volumes in table 5 are greater than twice the volume of N0. Hence no

slope in table 5 except for the 12 mentioned above can produce a manifold with a smaller

volume than N0. With these observations we can finally conclude

Theorem 4. Let N be a manifold in N ′c,c which satisfy the following conditions.

1) N has a (1, 1, 1) hexagon visible from the cusp

2) ∂N has two complementary components in G

where G is the graph on ∂N which has the feet of λ1 as vertices and projections of external

edges of the two (1, 1, 1) hexagons as edges.

Then volume of N ≥ volume of N0

Furthermore if the volume of N is equal to the volume of N0 then N = N0

Proof. Only the last statement is remained to be proved. From proposition 6.9.1, we know

there at least 6 slopes that yield N0. From table 5 we see there are only 6 slopes that yield

manifolds with same volumes as N0. Hence the manifolds yield by these 6 slopes should be

N0.
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We summarise all of our results in chapters 3 -7 below.

Theorem 5. If N is the smallest volume manifold in Nc,c then one of the following must be

true.

• N = N0

• Ñ has no (1, 1, 1) hexagons visible from the cusp but has a (1, 1, k) hexagon visible from

the cusp for some k > 1. Furthermore volume of N is greater than 7.78 and x1 of N is

between 1.208 and 1.2091

• Ñ has (1, 1, 1) hexagons. N has two complementary components of G in ∂N
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Table 4: Volumes of Dehn fillings of DX

Slope V olume Slope Volume

0 Non hyperbolic ∞ Non hyperbolic

(1,1) Non hyperbolic (1,2) Non hyperbolic

(1,3) 15.5952 (1,4) 16.8933

(1,5) 17.4325 (1,6) 17.5992

(1,7) 17.8662 (1,8) 17.9661

(2,1) Non hyperbolic (2,3) 15.5952

(2,5) 17.3415 (2,7) 17.8242

(3,1) 15.5952 (3,2) 15.595

(3,4) 16.8933 (3,5) 17.3415

(3,7) 17.7998 (4,1) 16.8933

(4,3) 16.8933 (4,5) 17.4325

(5,1) 17.4325 (5,2) 17.3415

(5,3) 17.3415 (5,4) 17.4325

(6,1) 17.7074 (7,1) 17.8662

(7,2) 17.8242 (7,3) 17.7998

(8,1) 18.1245 (-1,1) Non hyperbolic

(-1,2) 15.5952 (-1,3) 16.8933

(-1,4) 17.4325 (-1,5) 17.7074

(-1,6) 17.8662 (-1,7) 17.966

(-1,8) 18.0329 (-1,9) 18.0799

(-2,1) 15.5952 (-2,3) 17.3415

(-2,5) 17.8242 (-2,7) 18.0116

(-2,9) 18.1020 (-3,1) 16.8933

(-3,2) 17.3415 (-3,4) 17.7998
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Table 5: Volumes of Dehn fillings of DX contd..

Slope V olume Slope Volume

(-3,5) 17.9160 (-3,7) 18.0510

(-3,8) 18.0917 (-4,1) 17.4325

(-4,3) 17.7998 (-4,5) 17.9861

(-4,7) 18.0840 (-4,9) 18.1398

(-5,1) 17.7074 (-5,2) 17.8242

(-5,3) 17.9160 (-5,4) 17.9861

(-5,6) 18.0799 (-5,7) 18.1113

(-5,8) 18.1358 (-5,9) 18.1553

(-6,1) 17.8662 (-6,5) 18.0799

(-6,7) 18.1337 (-7,1) 7.9661

(-7,2) 18.0116 (-7,3) 18.0510

(-7,4) 18.0840 (-7,5) 18.1113

(-7,6) 18.1337 (-7,8) 18.1674

(-7,9) 18.1801 (-7,10) 18.1906

(-8,1) 18.0329 (-8,3) 18.0917

(-8,5) 18.1358 (-8,7) 18.1675

(-8,9) 18.1245 (-9,1) 18.0800

(-9,2) 18.1021 (-9,4) 18.1399

(-9,5) 18.1553 (-9,7) 18.1801

(-9,8) 18.1900 (-10,3) 18.1455

(-10,7) 18.1907
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