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DYNAMICAL SYSTEMS ANALYSIS OF PATTERNING AND

ROBUSTNESS OF BURSTS IN NEURONAL MODELS

Sushmita Rose John, PhD

University of Pittsburgh, 2023

Neurons in the brain are known to exhibit diverse bursting patterns. In this work, which

combines three projects, we develop and analyze computational models to study various

bursting activity displayed by respiratory neurons within the mammalian brainstem. In the

first project, we examine minimal mathematical models that exhibit square wave bursting

(SW) and analyze the transition of SW to other activity patterns due to parameter modifica-

tions. In particular, using these models, we analyze the robustness of SW with respect to the

timescale associated with the conductance of a fast inward current. In the next project, we

develop models that exhibit the ”ramping” bursting pattern observed in the activity traces of

neurons within the pre-Bötzinger Complex. Furthermore, we propose two mechanisms that

help control the amplitude and frequency of spikes within the burst to obtain the desired

ramping dynamics. In the final project, we explore the dynamics of Kölliker-Fuse nucleus

(KF) which plays a role in the development of breathing abnormalities associated with Rett

syndrome (RTT). We present reduced computational models of the respiratory core neurons

along with the KF unit that simulate normal as well as RTT-like breathing patterns. These

models provide a general framework for understanding KF dynamics and potential network

interactions.
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1.0 Introduction

1.1 Overview

Bursting is an activity pattern exhibited by neurons, including respiratory neurons, where

discrete groups of spikes are fired with periods of silence in between. Mathematical models for

respiratory neurons, which exhibit bursting and other spiking patterns, include components

that change at different timescales. For instance, in the Hodgkin-Huxley model [41] that

describes the spike generation in the squid giant axon, the transient sodium current activates

rapidly and inactivates relatively slowly, while the persistent potassium current also activates

slowly. Another example is the Butera model, introduced in [18], which exhibits bursting.

In this model, the inactivation variable associated with persistent sodium current evolves at

a significantly slower timescale compared to the other variables in the model. These models

are referred to as multiple-timescale systems. This thesis is a combination of three projects

based on multiple-timescale models for bursting respiratory neurons.

Most of the analysis done in this work is based on geometric singular perturbation the-

ory (GSPT). In the next section, GSPT is explained briefly. The neurons that make up

the respiratory core - Post-inspiratory (post-I), Pre-inspiratory (pre-I), augmenting expira-

tory (aug-E) and early-inspiratory (early-I) neurons and their network interactions are also

described in this chapter.

In second chapter, we study square-wave bursting which is an activity pattern common

to a variety of neuronal and endocrine cell models that has been linked to central pattern

generation for respiration and other physiological functions [18, 85]. We introduce four

popular reduced mathematical models for square wave bursting (SW) and analyze the effect

of adding a slow inactivation gate to the fast inward current on the robustness of the bursting

pattern. The second chapter and some parts of the introduction and conclusion is based on

the published work : John, S. R., Krauskopf, B., Osinga, H. M., & Rubin, J. E. (2023). Slow

negative feedback enhances robustness of square-wave bursting. Journal of computational

neuroscience, 51(2), 239–261. https://doi.org/10.1007/s10827-023-00846-y
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In the third chapter, we extend our previous work to ramping burst pattern observed in

neurons in the pre-Bötzinger Complex (pre-BötC) in the brain stem. The ramping bursting

pattern, which starts as slow oscillations, gradually increases in both spike frequency and

amplitude as the burst progresses. Most of the current mathematical models for pre-BötC

neurons do not exhibit the ramping dynamics. In this project, we explore the concept

that either changing the spike height or adjusting the strength of hyperpolarization across

successive spikes in the burst can help shape the burst and exhibit ramping dynamics. We

present two phenomenological models developed by Dr. Ryan Phillips, Seattle Children’s

Research Institute, to analyze these concepts. Furthermore, we modify an exiting bursting

model with an additional slow inactivation gate associated with fast inward sodium current

and show that it produces ramping dynamics.

Kölliker-Fuse nucleus (KF), a part of the parabrachial complex, is involved in regulating

normal breathing and controlling active abdominal expiration during increased ventilation

[2, 20, 45]. In the fourth chapter, we utilize computational models for the respiratory core

neurons along with KF unit to explore different dynamical regimes of KF activity and their

compatibility with experimental observations. By analyzing different model configurations,

the study identifies inhibitory inputs to the KF that lead to respiratory patterns associated

with Rett syndrome (RTT) in which the expiratory phase duration is longer than normal and

proposes potential KF local circuit organizations. Two models with different baseline KF

activity are presented that simulate both normal breathing and RTT-like breathing patterns.

These models provide plausible hypotheses and specific predictions for future experimental

investigations, offering a general framework for understanding KF dynamics and potential

network interactions. The fourth chapter and some parts of the introduction and conclu-

sion is based on the work submitted to The Journal of Physiology : John, S., Barnett,

W., Abdala, A., Zoccal, D., Rubin, J., & Molkov, Y. (2023). The role of Kölliker-Fuse nu-

cleus in breathing variability. bioRxiv : the preprint server for biology, 2023.06.15.545086.

https://doi.org/10.1101/2023.06.15.545086
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1.2 Multi-timescale Systems

In its simplest form, geometric singular perturbation theory (GSPT) [46, 94] assumes

that a general model is defined in terms of an explicit fast-slow decomposition of the form x′ = f(x, y, ϵ),

y′ = ϵ g(x, y, ϵ),
(1)

where 0 < ϵ ≪ 1 is a small parameter, so that the fast variable is x ∈ Rm and the slow

variable is y ∈ Rn. In the limit ϵ → 0, system (1) reduces to a lower-dimensional, so-called

fast subsystem  x′ = f(x, y, 0)

y′ = 0
(2)

where the slow variable y plays the role of a constant parameter vector. This system helps

us analyze the fast timescale dynamics.

The equilibria of the fast subsystem (2) form a manifold C in (x, y)-space,

C = {(x, y) ∈ Rm × Rn | f(x, y, 0) = 0},

which is called the critical manifold of system (1).

Re-scaling the system (1) to the slower timescale by setting τ = ϵt, gives the following

model :

 ϵẋ = f(x, y, ϵ),

ẏ = g(x, y, ϵ),
(3)

where ẋ and ẏ denotes differentiation with respect to slower timescale τ . This model is

equivalent to (1). However, in the limit ϵ → 0, system (3) reduces to a lower-dimensional,

so-called slow subsystem  0 = f(x, y, 0),

ẏ = g(x, y, 0),
(4)

The fast and slow subsystems together describes the singular limit ϵ → 0 solutions of

(1). The fast subsystem (2) describes the fast timescale dynamics of x and how the solution

3



moves from one stable branch of C to another while y remains constant. Assuming C is

either Z-shaped or S-shaped with respect to x, parameterized by y, every branch of C can

be expressed as x = x(y). This simplifies (4) to 0 = f(x, y, 0),

ẏ = g(x(y), y, 0),
(5)

and gives the flow of y on the stable branch of C. Hence, the slow subsystem (5) describes

the slow dynamics of y, once the solution is at a stable branch of the critical manifold C with

g(x, y, 0) = 0.

Once we understand the solution of the fast (2) and slow subsystems (4), Fenichel theory

[46, 94, 31] helps us to understand the solution of (1). If the eigenvalues of the derivative of

f evaluated at C (or an invariant subset of C) have non-zero real parts, then Fenichel theory

tells us that the critical manifold C perturbs to a locally invariant manifold Cϵ for ϵ small.

Also, the flow along Cϵ is an ϵ perturbation of flow along the critical manifold C. More details

can be found at [46, 94, 31].

In the following chapters, we use GSPT [46, 94] to analyze different bursting patterns.

We assume that C is either Z-shaped or S-shaped with respect to the component of x that

represents voltage v. This means that C has (at least) three co-existing equilibrium branches,

parameterized by y. Ordered with respect to their corresponding v-components, we refer

to these branches as the lower (silent) branch, the middle branch, and the upper (active)

branch of C. Bursting patterns are classified depending on the bifurcations that initiate and

terminate the oscillatory or active phase of the burst [69]. We study two particular bursting

patterns in chapter 2. The first one is called square wave bursting (SW) or fold-homoclinic

bursting (Figure 3A) since the oscillations begin once the trajectory reaches a fold bifurcation

of the fast subsystem (2) with respect to the slow variable y, and the oscillations terminate

after hitting the homoclinic curve. The second bursting pattern we work with is called the

pseudo plateau bursting (PP) or fold-subHopf bursting. The oscillations, in this case, ends

after the trajectory hits a subcritical Andronov–Hopf bifurcation. Since the Hopf bifurcation

is subcritcal, there are no stable periodic orbits along the active branch of the v-nullcline.

Instead, we have a branch of stable focus which cause the trajectory to spiral leading to small

4



amplitude spikes in the burst pattern. The trajectory also spirals outwards after hitting the

subcritical Andronov–Hopf bifurcation leading to a small delay before it jumps down to the

silent branch leading to the PP bursting pattern shown in chapter 2 (Figure 3B).

If a model exhibits SW or PP bursting, certain features must be present: firstly, that

system (2) has a (lower) saddle-node bifurcation at some critical parameter value yLSN, at

which the lower and middle branches of C meet; and secondly, that system (2) has an

Andronov–Hopf bifurcation along the upper branch of C, which gives rise to a family P of

periodic orbits of (2) parameterized by y. Note that this second requirement implies m ≥ 2;

that is, the fast variable x must be at least two-dimensional.

Crucially, this Andronov–Hopf bifurcation is subcritical in the PP case, which means

that the orbits of P are unstable and, hence, system (2) does not produce stable spiking

activity for initial conditions along the upper (active) branch of C. For SW bursting, on

the other hand, there exists a stable family of periodic orbits, together with a mechanism

that induces a transition from the active phase to the silent phase. The originally described

and most commonly considered form of SW bursting involves a supercritical Andronov–Hopf

bifurcation for (2) on the upper (active) branch of C and a homoclinic bifurcation at which

the family P of stable periodic orbits collides with a saddle equilibrium on the middle branch

of C [69].

While the presence and order of specific bifurcations in the fast subsystem (2) help to

predict the burst pattern exhibited by the full model, the burst pattern also depends on

the relative location of the nullcline associated with the slow variable. In order for models

to exhibit SW bursting, for example, it is necessary, although not sufficient, for the slow

nullcline to intersect the middle branch of C at an equilibrium point below the homoclinic

bifurcation; in particular, the full system must have a steady state that is of saddle type.

We make sure this is the case over a sufficiently large range of parameters for all models

considered in the second chapter.

The dynamic spike height model presented in third chapter that exhibits bursting pattern

in which the spike frequency as well as the strength of hyperpolarization between spikes

increases during the burst. We show that this model has components varying at three

different timescales. To analyze the further, we modify the standard GSPT method described
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in this section to adapt to three timescales. We divide the model into fast, intermediate and

slow subsystems. We can now use the standard GSPT theory to analyze the fast-intermediate

system fixing the slow variable at different values. The slow subsystem dynamics can be

further analyzed using methods such averaging theory and bifurcation analysis.

1.3 Respiratory rhythm generation

Eupnea, or normal, unlabored breathing in mammals, can be considered to be a rhythmic

sequence of three phases : inspiration, early expiration and late expiration is generated by

the respiratory central pattern generator (CPG) located in the brainstem. The core of the

CPG consists of interconnected neurons within the pre-Bötzinger Complex (pre-BötC) and

the Bötzinger Complex (BötC). The pre-inspiratory (pre-I) and early-inspiratory (early-I)

neurons in the pre-BötC and the post-inspiratory (post-I) and augmenting expiratory (aug-E)

neuronal populations in the BötC form the respiratory core in the brain. These populations

can be distinguished by their firing pattern as well as the respiratory phase when they become

active [78, 19, 47, 72].

The inspiratory phase of the rhythm is controlled by the pre-I and early-I neurons in pre-

BötC while the expiratory phase is controlled primarily by the post-I and aug-E neuronal

populations in BötC. The pre-I population starts firing before the start of inspiration and

continues to fire throughout the inspiratory phase. The activity of this neuronal population

peaks near the start of inspiratory phase. The early-I population starts firing at the onset

of inspiration at high frequency and reduces throughout inspiration. The aug-E and post-I

neuronal populations are active during the expiratory phase. More precisely, post-I units

feature a surge of activity at the onset of expiration, followed by a gradual tailing off of

activity. In contrast, aug-E units gradually ramp up their activity, in an augmenting pattern,

over the course of expiration [47].

[79] developed a mathematical model to reproduce the respiratory rhythm showing the

interconnections between all the different neuronal populations, located in different regions of

the brainstem, involved in respiration. All the different neuronal population dynamics were
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modeled by Hodgkin Huxley type equations. This model was reduced to the dynamics of

the main four respiratory core populations in [72]. Later work [71] added the late-expiratory

(late-E) neuronal population of the lateral parafacial region (pFL), which remains inactive

during resting breathing ([16]) but becomes active during active expiration. The models

for respiratory neurons presented in the fourth chapter are adapted from previous models

([72, 71, 95]). These models include the four respiratory core neuronal populations as well

as a late-expiratory (late-E) population.

Figure 1: Normal respiratory rhythm. The integrated pre-I, early-I, aug-E and post-I output

from the model introduced in [72]. The pre-I and early-I units are active during the inspi-

ratory phase, while aug-E and post-I units are active during the expiratory phase. Notice

that in this simplified model, the pre-I unit lacks the pre-inspiratory ramp, and therefore, it

only activates at the onset of inspiration.
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2.0 Slow negative feedback enhances robustness of square-wave bursting 1

2.1 Introduction

In neuroscience, bursting refers to activity patterns in which a cell’s membrane potential

alternates repeatedly between two phases: an active phase featuring a succession of spikes

separated by relatively short inter-spike intervals and/or a sustained depolarization, and a

silent or quiescent phase of little or no spiking. It has long been recognized that bursting

patterns are closely connected with bifurcations in an underlying dynamical system [69].

The original classification and analysis of bursting types relied on a fast-slow decomposition

approach that falls within the realm of geometric singular perturbation theory [46, 23, 94].

Later work generalized the key idea of characterizing burst structure based on bifurcations

associated with the transitions between active and silent phases [42] and classifying bursting

patterns in terms of unfoldings of higher-codimension bifurcation points [13, 39, 48, 89]. In

fact, these analyses embed bursting within a larger class of activity types that includes pat-

terns such as relaxation oscillations (ROs; Figure 2A), which also feature abrupt transitions

between phases yet lack the spikes that occur during the active phases of bursts [69, 14].

In this chapter, we focus on two specific bursting activity patterns often observed in

neural and endocrine cell recordings: square-wave (SW) and pseudo-plateau (PP) burst-

ing (Figure 2B,C), which are mathematically classified as fold-homoclinic and fold-sub-Hopf

bursting, respectively [42]. These two bursting patterns stem from similar underlying bi-

furcation structures [88, 89]; however, in contrast to SW bursting, PP bursting does not

produce reliable spiking activity, and often resembles an RO pattern (Figure 2A,C).

Even though certain models are often referred to as models for one activity pattern or

another, the same model can exhibit many different activity patterns, including multiple

types of bursting, as parameters are varied, as the unfolding approach to burst analysis

recognizes. Indeed, some minimal models for SW bursting yield a transition to PP (and

1This chapter is based on published work :John, S. R., Krauskopf, B., Osinga, H. M., & Rubin, J. E.
(2023). Slow negative feedback enhances robustness of square-wave bursting. Journal of computational
neuroscience, 51(2), 239–261. https://doi.org/10.1007/s10827-023-00846-y
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Figure 2: Non-spiking activity patterns.The voltages traces shown here are from the minimal

Chay–Keizer model (10)–(11) with default parameter values. (A) Relaxation oscillations

(RO) for gca = 1.2.(B) Square-wave (SW) bursting for gca = 1.8.(C) Pseudo-plateau (PP)

bursting for gca = 3.2. Note that although each active phase features an initial spike and a

terminal spike, no other significant spiking occurs. (D) Depolarization block resulting from

a stable critical point at elevated voltage for gca = 3.5.
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vice versa) under small changes in parameter values [84, 86, 85, 88, 89]. From a functional

perspective, however, this effect may represent the emergence of a dysfunctional regime for

a cell: the loss of spikes in the active phase associated with a transition from SW to PP

bursting may result in a failure to release neurotransmitters or other signaling substances.

Since some cells are observed specifically to exhibit SW bursting, while others have been

seen to produce both SW and PP patterns, we wondered if these differences could result

from differences in the actual biophysical mechanisms expressed in these cells, rather than

simply from observation of the dynamics within different parameter regimes. Indeed, spike

production carries a significant energy cost [80, 76], which suggests that when the firing

of spikes is observed, this behavior is likely to be of functional importance and we might

expect mechanisms to be present that enhance the robustness of spiking across parameter

modulations. Similarly, some bursting cells feature fast inward sodium currents while others

express fast inward calcium currents; although these are often considered interchangeable

from a dynamics perspective (e.g., [43]), which current is present may have implications for

the robustness of bursting and spiking patterns that cells exhibit. The main motivation for

this study is to understand what features promote the robustness of SW bursting – both to

help explain the mechanisms underlying differences in observed activity across neuron types

and to guide the development of future models designed to capture such data.

In this work, we investigate the utility of a specific biophysical mechanism that we have

recognized as enhancing the robustness of SW bursting in computational models. Bursting

models feature a voltage-dependent fast inward current that helps to sustain the active phase,

because it provides a fast positive feedback to the membrane potential [43]. We explore the

effect on the robustness of SW bursting of adding a slow, voltage-dependent negative feedback

associated with this inward current, which is a feature of fast sodium currents in neurons of

certain types [22, 57] and may also arise in fast calcium currents in some cases [26, 96].

To carry out this analysis, we consider four classical, low-dimensional SW bursting mod-

els in their original forms, as well as with adjustments either to include a slow inactivation

gate as part of the fast inward current, or to modify the kinetics of an already-present inac-

tivation gate. This collection of models was selected to allow for consideration of fast inward

sodium and calcium currents with a variety of mathematical formulations. We show that,
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over an appropriate range of the time constant for the respective inactivation gate, its inclu-

sion broadens the range of maximal conductances gca or gna of the fast inward current for

which SW bursting — or a different form of spiking activity that can serve similar functional

purposes in the context of a CPG (central pattern generator) circuit with inhibitory connec-

tions between populations [17, 73] — occurs. We also show that, outside of this optimal range

of inactivation timescales, SW bursting loses robustness, and the models easily transition

from SW to PP bursting and other non-spiking patterns, including ROs and depolarization

block (Figure 2A,D), for which neurotransmitter release would be compromised.

The remainder of the chapter is organized as follows. We introduce the four different

bursting models in Section 2.2.1 and show how GSPT is used to understand the various burst

patterns exhibited by these models when gca or gna is varied. In Section 2.2.2, we explain

how we modify the models for our robustness analysis. The analysis of the robustness of

SW bursting gained by including a slow, voltage-dependent negative feedback associated

with the inward current follows in Section 2.3. The chapter concludes with a discussion in

Section 2.4.

2.2 Preliminary Analysis

The geometric singular perturbation theory is briefly explained in section 1.2.

2.2.1 Models and Parameter-Dependence of Bursting Dynamics

As mentioned in the introduction, we select and study four different, low-dimensional

SW bursting models with distinct formulations of the fast inward current. Each is presented

in its original form and we discuss the parameter range for the maximal conductance of the

fast inward current, gca or gna, over which SW bursting occurs.
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2.2.1.1 Generic Endocrine Model

[88] introduced a generic endocrine model in the literature that exhibits both SW and PP

bursting over physiologically relevant parameter ranges. The model is a system of differential

equations for the membrane potential v, the gating variable n of the K+ channel, and the

calcium concentration c in the cytosol. The equations take the form

cmv
′ = −ICa(v)− IK(v, n)

−IK(Ca)(v, c),

n′ = (n∞(v)− n)/τn,

c′ = −fc (α ICa(v) + kp c),

(6)

for constants cm, τn, fc, α, and kp. The expressions for the currents and steady state

activation functions are given by:

ICa(v) = gca m
2
∞(v) (v − eca),

IK(v, n) = gk n (v − ek),

IK(Ca)(v, c) = gkca

(
c4

c4 + k4
s

)
(v − ek),

m∞(v) = (1 + e(vm−v)/sm)−1,

n∞(v) = (1 + e(vn−v)/sn)−1.

(7)

ICa(v) in (7) is an approximation of a more complicated nonlinear expression related to

the Goldman-Hodgkin-Katz equation [29]. We choose default parameter values as given in

Table 1, for which the model exhibits the SW bursting pattern shown in Figure 3A. Indeed,

non-dimensionalization (see the Appendix) shows that the three-dimensional system (6)–(7)

readily separates into fast and slow equations, because v changes at a rate Rv ≈ 716 that

is faster than the rate Rn ≈ 33 for n, which in turn, is significantly faster than the rate

Rc ≈ 1.7 for c. We consider v and n as two fast variables and c as one slow variable,

so that system (6)–(7) has the lowest possible dimensions for SW bursting. This model

can also be studied as a three-timescale system, with v having a fast timescale, n evolving

at an intermediate timescale, and c being the slow variable. The model exhibits stable

relaxation oscillations in the fast-intermediate subsystem for fixed c values, and the analysis
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Table 1: Generic Endocrine Model (6)–(7): default parameter values.

cm 0.00314159 nF gca 0.81 nS

gk 2.25 nS gkca 0.2 nS

ek −65.0 mV eca 0.0 mV

vm −22.5 mV vn 0.0 mV

sm 12.0 mV sn 8.0 mV

τn 0.03 s ks 1.25 µM

fc 0.003 kp 5.0 s−1

α 14.0 µM/pC

will follow the same approach as the model with two fast variables and one slow variable.

The alternative pairing of one fast and two slow variables would be relevant for studying

canard dynamics [91], but we do not consider this here. More details about the model can

also be found in [88].

The fast subsystem, consisting of the (v, n)-equations in (6)–(7), and its attractors can

be studied by considering the slow variable c as a bifurcation parameter. The corresponding

bifurcation diagram, shown in Figure 3B, forms a scaffold for understanding the burst pattern

that the full model produces. Specifically, based on this fast-slow decomposition, we can

assume that any general initial position with slow variable c = c0 lies on a trajectory that

predominantly evolves under the fast dynamics to one of the attractors that exists in the

fast subsystem for c = c0. Subsequently, the sign of c′ will determine whether the trajectory

drifts to the left or right along the corresponding attractor branch until either this branch

terminates and a transition to a new attractor occurs, the trajectory goes off to infinity,

or a stable state for the full system is reached. In Figure 3B, for (6)–(7) with default

parameter values, the c-nullcline (dashed curve) cuts through the middle branch of the

critical manifold C, just below HC in the bifurcation diagram. According to the equation
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Figure 3: Fast-slow decomposition for the generic endocrine model (6)–(7). (A) SW bursting

for default parameter values given in Table 1. (B) Bifurcation diagram of the model’s fast

subsystem with respect to the slow variable c, with bifurcation points labeled and the burst

trajectory, which evolves clockwise, overlaid in grey. Oscillations start after the trajectory

jumps up from the lower left saddle node (LSN) and stop when it reaches the homoclinic

(HC). (C) The model exhibits PP bursting when gca is increased to 1.5; note that the ranges

of c in (A) and (C) are different. (D) Bifurcation diagram as in (C) but with gca = 1.5;

the PP burst trajectory, which also evolves clockwise, is again overlaid in grey. The labels

SupAH (B) and SubAH (D) refer to supercritical and subcritical Andronov–Hopf bifurcations,

respectively.
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for c in (6)–(7), we have c′ < 0 below this nullcline. Hence, c is decreasing during the silent

phase and, as suggested by the bifurcation diagram of the fast subsystem, the active phase

of the SW burst starts due to a jump up in potential v from the c-value at which the fast

subsystem undergoes a saddle-node bifurcation (LSN). For this c-value, the attractor of the

fast subsystem at elevated voltage is a periodic orbit, part of a family of such orbits that

originates in a supercritical Andronov–Hopf bifurcation (SupAH). Thus, oscillations result,

and they continue as c increases, according to its equation in (6)–(7), until a homoclinic

bifurcation (HC) occurs. At that bifurcation, the trajectory returns to the silent phase,

where it is attracted to the stable equilibria on the lower (silent) branch of C.

When gca is increased from its default value of 0.81 to gca = 1.5, the model exhibits a

qualitatively different PP bursting pattern (Figure 3C). The bifurcation diagram of the fast

subsystem with respect to the variable c has changed correspondingly (Figure 3D). In partic-

ular, we see that the Andronov–Hopf bifurcation point has now moved to a larger c-value and

has changed criticality to become subcritical (SubAH). Therefore, the fast subsystem now

has a family of unstable periodic orbits. Hence, after the jump up from LSN, the trajectory

is attracted to the upper branch of the critical manifold C, which comprises stable equilibria

of the fast subsystem. Since these equilibria are foci, the trajectory spirals around the upper

branch of C while slowly moving to the right with respect to c. This behavior generates a

voltage plateau in the active phase, accompanied by rapidly decaying oscillations in lieu of

spikes (Figure 3C). The upper branch of C loses stability at SubAH, and after a small delay

associated with the slow passage through an Andronov–Hopf bifurcation [62, 63, 6, 7], the

trajectory jumps down to the silent phase where it flows back to LSN to complete a burst

cycle.

The bifurcation diagrams in Figure 3 display SW and PP bursting patterns produced

by the generic endocrine model (6)–(7) for two fixed values of gca. The robustness of these

patterns and the transition between them can be studied more systematically by consider-

ing a two-parameter bifurcation diagram. Specifically, we can follow the codimension-one

bifurcations labeled LSN, USN, SupAH, SubAH and HC in Figure 3B,D as curves in the

two-parameter (c, gca)-plane. The resulting bifurcation diagram is displayed in Figure 4A.

The two-parameter bifurcation diagram shows how the bifurcation points change, and
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GH

BT
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Figure 4: Dependence on gca of bifurcation curves for the fast subsystem of the generic

endocrine model (6)–(7). (A) Two-parameter bifurcation diagram in the (c, gca)-plane. The

locus AH of Andronov–Hopf bifurcation (blue) is comprised of the two curves SupAH and

SubAH that meet at the generalized Hopf point labeled GH (left black star); SupAH and

the curve HC of homoclinic bifurcations merge and end at a Bogdanov–Takens point (BT;

right black star) on the curve USN of saddle-node bifurcations (red). The SW and PP

bursting regions are shaded red and blue, respectively.The black dashed lines correspond to

the examples of SW bursting for gca = 0.81 and PP bursting for gca = 1.5 shown in Figure 3.

SW bursting is lost when the curve SNPO of saddle node of periodic orbits (black) crosses

the SN curve. (B) Lyapunov coefficent along the curve AH. The Andronov–Hopf bifurcation

is supercritical until this coefficient increases through 0 for gca just below 1, corresponding

to the point GH, and subcritical for gca-values above that.
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in some cases meet and disappear, when gca varies away from its default value of 0.81

(bottom dashed line). In particular, the curves SupAH (light blue) and HC (green) of su-

percritical Andronov–Hopf and homoclinc bifurcations, respectively, end on the curve USN

of saddle-node bifucation (red) at the codimension-two Bogdanov–Takens point BT (black

star). Furthermore, the curve SupAH transitions to SubAH by changing criticality at the

generalized Hopf point GH (black star just below gca = 1 on the curve AH in the diagram),

which occurs when the first Lyapunov coefficient associated with the Andronov–Hopf bifur-

cation changes sign (Figure 4B); this first Lyapunov coefficient was computed numerically

with Matcont [21]. The curve subAH (dark blue) of subcritical Andronov–Hopf bifurca-

tions then moves into the V-shaped region between the two curves LSN and USN. At the

point GH, a curve of saddle-node bifurcation of periodic orbits (SNPO) originates and pro-

gresses to larger c-values as gca continues to increase, until it ends just above gca = 1.5 on

the curve HC. In the remainder of the chapter, we will denote as AH the locus or curve of

Andronov-Hopf bifurcation comprised of the components SupAH and SubAH.

The lower black dashed line in Figure 4A corresponds to the bifurcation diagram for

gca = 0.81 in Figure 3B that gives rise to SW bursting. In the direction of increasing c,

we successively encounter the supercritical Andronov–Hopf bifurcation SupAH (light blue),

the saddle-node bifurcation LSN (red), the homoclinic bifurcation HC (green), and the other

saddle-node bifurcation USN (red). If we use cX to denote the c-value at which a bifurcation

of type X occurs, then the order of bifurcations for fixed gca = 0.81 is cSupAH < cLSN < cHC <

cUSN. This order of bifurcations is maintained for lower values of gca, until HC disappears,

just below the point BT. Hence, since cSupAH < cLSN, the active phase is characterized by

stable periodic orbits, and persists until c ≈ cHC; we conclude that these gca-values all give

rise to SW bursting. Similarly, for larger gca-values, even though SubAH and LSN cross,

the change in criticality at GH implies that the active phase is still characterized by stable

periodic orbits until the saddle-node bifurcation of periodic orbits SNPO occurs after LSN;

that is, for SW bursting, we require cSNPO < cLSN.

The order of the bifurcations along the black dashed line for gca = 1.5 in Figure 4A, which

corresponds to PP bursting shown in Figure 3D, is cLSN < cSNPO < cHC < cSubAH < cUSN; it

is important that cSNPO is only just smaller than cHC, which means that this order generates
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a PP pattern that is qualitatively similar to that for gca-values above the point where SNPO

ends, which feature the bifurcation sequence cLSN < cHC < cSubAH < cUSN. While we did not

check all gca-values, this order of bifurcations is maintained until at least gca = 2.

The red and blue shaded regions in Figure 4A show the ranges of gca-values over which the

generic endocrine model (6)–(7) can potentially exhibit SW and PP bursting, respectively.

Choosing parameters in one of these regions is, in fact, not sufficient to ensure that the

corresponding burst pattern occurs, since the actual burst pattern also depends on the

position of the c-nullcline — which changes with gca due to the presence of ICa in the c-

equation in (6)–(7) — and the speed at which c evolves. We conclude from this diagram,

however, that SW bursting can at most be maintained for 0.65 < gca < 1.1.

Figure 5 compares the burst patterns of the generic endocrine model (6)–(7) for different

values of gca. At gca = 0.75, the model exhibits SW bursting (Figure 5A) that is very similar

to that for the default value gca = 0.81 (Figure 3A). When gca is increased to 1.0, the model

still exhibits SW bursting (Figure 5B), but the increase in gca strengthens ICa, which results

in a more elevated v at peaks of the bursts. At this elevated v, the current IK activates more

strongly compared to the previous case, resulting in stronger hyperpolarizations between

spikes and fewer spikes in the burst. When gca is increased still further to 1.6, the activity

pattern transitions to PP bursting (Figure 5C). This case yields the strongest ICa activation

of the three; indeed, despite the induced elevation of v and corresponding strong activation

of IK , the latter current cannot overcome ICa and cause repolarization. Thus, the equilibria

on the upper branch of the critical manifold C stabilize and spike oscillations during the

active phase are prevented.

2.2.1.2 Sodium-Potassium Minimal Model

The sodium-potassium minimal model introduced in [43] is an example of an SW burster

comprised of only the basic essentials needed to burst. This model consists of the following

differential equations:
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Figure 5: Burst patterns exhibited by the generic endocrine model (6)–(7) for different values

of gca, along with associated currents. (A) SW bursting at gca = 0.75. (B) SW bursting at

gca = 1.0 with larger amplitude spikes than in (A). (C) PP bursting for gca = 1.6.

19





cm v′ = −IL(v)− INa(v)− IK(v, n)

−IS(v, s) + I,

n′ = (n∞(v)− n)/τn,

s′ = (s∞(v)− s)/τs.

(8)

The expressions for the currents and steady state activation functions for the model are

given by:

IL(v) = gl (v − el),

INa(v) = gnam∞(v) (v − ena),

IK(v, n) = gk n (v − ek),

IS(v, s) = gkm s (v − ek),

m∞(v) = (1 + e(vm−v)/sm)−1,

n∞(v) = (1 + e(vn−v)/sn)−1,

s∞(v) = (1 + e(vs−v)/ss)−1.

(9)

Note that IS denotes a potassium current with gating that evolves much slower than

that for IK . Again, we choose default parameter values, given in Table 2, for which the

model exhibits SW bursting as shown in Figure 6A. The bifurcation diagram of the model’s

fast subsystem for default parameter values is shown in Figure 6B. Notice that the order of

bifurcations, in the direction of increasing s, is the same as in Figure 3B, that is, sSupAH <

sLSN < sHC < sUSN. By comparing timescales after non-dimensionalization of this model

(see the Appendix), we find that the timescale constants of v, n and s are approximately

Rv ≈ 20, Rn ≈ 6.57 and Rs ≈ 0.005, respectively. The rate Rv ≈ 20 varies linearly with gna

as long as gna > 9 = gk; if gna is decreased below this value, Rv ≈ 9 is determined by gk

instead and any further decrease in gna would not affect Rv. Hence, the variables v and n

are considerably faster than s, irrespective of the value for gna.

Even though the sodium-potassium minimal model (8)–(9) is designed to exhibit SW

bursting, it is capable of other activity patterns. For example, Supplemental Figure 46 shows

the non-spiking pattern generated for gna = 35 in which all solutions are attracted to a stable

steady state at an elevated voltage level, which corresponds to a state of depolarization block.
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Table 2: Sodium-Potassium Minimal Model (8)–(9): default parameters values.

cm 1. pF I 5. pA

gl 8. nS gna 20. nS

gk 9. nS gs 5. nS

el −80. mV ena 60. mV

ek −90. mV vm −20. mV

vn −25. mV vs −20. mV

sm 15. mV sn 5.mV

ss 5. mV τn 0.15 ms

τs 200. ms

For this large value of gna, the nullcline of the slow variable s intersects the upper branch of

the critical manifold, which gives rise to a stable steady state of the full system. However, SW

bursting is already lost for smaller gna-values. Figure 6C shows the two-parameter bifurcation

diagram of the fast subsystem in the (s, gna)-plane. As in Section 2.2.1.1, the ordering of

bifurcation curves suggests that system (8)–(9) can potentially exhibit SW bursting for gna-

values between 20 and 25, if the slow dynamics is tuned appropriately; this region is again

shaded red. We computed the first Lyapunov coefficient associated with the Andronov-Hopf

bifurcation (Figure 6D) and found that it is negative for the default gna and remains so up

until a much larger value, gna ≈ 65. Hence, this system does not transition to PP bursting, at

least not for s ∈ (0, 1), the physically relevant range. Instead, for gna > 32 or so, system (8)–

(9) moves into a state of depolarization block, which is the region shaded light blue in Figure

6B.
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Figure 6: Dynamics and bifurcation structure for the sodium-potassium minimal model (8)–

(9). (A) SW bursting for the default parameters given in Table 2. (B) Bifurcation diagram of

the model’s fast subsystem with respect to the slow variable s for default parameter values,

with the SW burst overlaid in grey. (C) Two-parameter bifurcation diagram of the fast

subsystem in the (s, gna)-plane; colors are as in Figure 4A and the SW bursting region is

shaded red. For realistic values (s < 1), this model does not transition to PP. The light-

blue shaded region corresponds to gna-values for which the full system has a stable steady

state at elevated v. (D) Lyapunov coefficient along the curve SupAH. The Andronov–Hopf

bifurcation is supercritical until around gna = 65, which lies outside the range shown in

panel (C).
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2.2.1.3 Minimal Chay-Keizer Model

Next, we consider the minimal Chay–Keizer model described in [70, 69]. This model

takes the form :



cm v′ = −IL(v)− ICa(v)− IK(v, n)

−IK(Ca)(v, c)),

n′ = (n∞(v)− n)/τn(v),

c′ = −fc (α Ica(v) + kp c).

(10)

The currents and steady state activation functions for the model are given by:

IL(v) = gl (v − el), (11)

ICa(v) = gcam
3
∞(v)h∞(v) (v − eca),

IK(v, n) = gk n (v − ek),

IK(Ca)(v, c) = gkca
c

1 + c
(v − ek),

am(v) =
0.1 (v + 25)

1− e−0.1(v+25)
,

bm(v) = 4 e−(v+50)/18,

m∞(v) =
am(v)

am(v) + bm(v)
,

an(v) =
0.01 (v + 20)

1− e−0.1(v+20)
,

bn(v) = 0.125 e−(v+30)/80,

n∞(v) =
an(v)

an(v) + bn(v)
,

τn(v) =
3.33

an(v) + bn(v)
,

ah(v) = 0.07 e−(v+50)/20,

bh(v) =
1

e−0.1∗(v+20) + 1
,

h∞(v) =
ah(v)

ah(v) + bh(v)
.
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Table 3: Minimal Chay–Keizer Model (10)–(11): default parameters values.

cm 1.µF/cm2 gl 0.006985 mS/cm2

gca 1.79934 mS/cm2 gk 1.69765 mS/cm2

gkca 0.0104998 mS/cm2 ek −75.mV

eca 100.mV el −40.mV

kp 0.00513 ms−1 fc 0.0058

α 0.02591 µM/nC

We choose the default parameter values given in Table 3, for which the model exhibits

SW bursting as displayed in Figure 7A.

Non-dimensionalization (see the Appendix) shows that the timescale constants of v and

c in this model are Rv ≈ 1.8, Rc ≈ 0.004 respectively, while the time constant Rn for n

depends on v and varies between 0.05 to 0.1 over the relevant range of v values. In this

model, both Rv and Rc depend on gca. We choose an upper bound of 4 on gca, which is

double the default value. At this maximal value, we have Rv ≈ 4 and Rc ≈ 0.008, or roughly

twice the default values. Even with these timescale constants, v and n can be considered

fast compared to c.

The minimal Chay–Keizer model (10)–(11) exhibits SW bursting for the default param-

eter values given in Table 3 and PP busting when gca increases to 3.2; see Figure 7A,C. The

corresponding bifurcation diagrams of the model’s fast subsystem with respect to the slow

variable are shown in Figure 7B,D. The two-parameter bifurcation diagram in the (ca, gca)-

plane shown in Figure 8A illustrates how the bifurcations of the fast subsystem depend on

gca. Based on the relative order of the bifurcation curves, we conclude that the minimal

Chay–Keizer model (10)–(11) can potentially exhibit SW bursting for 1.5 < gca < 2.8 (red

shaded region) and PP bursting for gca near 3.2 (narrow blue shaded region). When gca is

further increased, the Andronov–Hopf bifurcation moves to larger values of c, such that the
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nullcline of the slow variable c intersects the upper branch of the critical manifold at a stable

equilibrium point. In doing so, the full system now has a stable steady state and, hence, for

sufficiently large gca-values, the system exhibits depolarization block with voltage suspended

at an elevated level (light-blue shaded region).

2.2.1.4 Butera Model

The Butera model is a seminal minimal model used to study rhythm generation in res-

piratory neurons [18]. This model consists of the following differential equations:



cm v′ = −IL(v)− INa(v, n)− IK(v, n)

−INaP (v, p)− Iton(v),

n′ = (n∞(v)− n)/τn,

p′ = (p∞(v)− p)/τp(v),

(12)

where INaP denotes a persistent sodium current. The expressions for the currents and steady

state activation functions are as follows:

IL(v) = gl (v − el),

INa(v, n) = gnam
3
∞(v) (1− n) (v − ena),

IK(v, n) = gk n
4 (v − ek),

INaP (v, p) = gnap mp∞(v) p (v − ena),

Iton(v) = gton (v − esyn),

m∞(v) = (1 + e(vm−v)/sm)−1,

n∞(v) = (1 + e(vn−v)/sn)−1,

mp∞(v) = (1 + e(vmp−v)/smp)−1,

p∞(v) = (1 + e(vp−v)/sp)−1,

τn(v) = τn (cosh((v − vn)/(2sn)))
−1,

τp(v) = τp (cosh((v − vp)/(2sp)))
−1.

(13)
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LSN

SupAH

LSN

HC

SubAH

HC

SNPO

Figure 7: Dynamics and bifurcation structure for the minimal Chay–Keizer model (10)–

(11). (A) SW bursting for the default parameters given in Table 3. (B) Bifurcation diagram

of the model’s fast subsystem with respect to the slow variable c for default gca value. The

SW burst trajectory is overlaid in grey. (C) The model exhibits PP bursting for gca = 3.2;

note the difference in c-range between (A) and (C). (D) The bifurcation diagram as in (B)

but with gca = 3.2.
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BT

GH
GH

Figure 8: (A) Two-parameter bifurcation diagram of the fast subsystem of the minimal

Chay–Keizer model (10)–(11) in the (c, gca)-plane; colors are as in Figure 4A and the SW

bursting region is shaded red, the narrow PP region is shaded blue, and the light-blue shaded

region just above that corresponds to a state of depolarization block. (B) Lyapunov coeffi-

cient along the curve AH, comprised of SupAH and SubAH. The Andronov–Hopf bifurcation

is supercritical for gca below the axis crossing close to gca = 2.5 and subcritical for larger gca.

Note that the curve ends at the horizontal gca-asymptote.
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Table 4: Butera Model (12)–(13): default parameters values.

cm 21. pF gl 2.8 nS

gna 28. nS gk 11.2 nS

gnap 2.8 nS gton 0.3 nS

gsyn 0. nS el −65. mV

ena 50. mV ek −85. mV

esyn 0. mV vn −29. mV

vm −34. mV vmp −40. mV

vp −48. mV sm −5. mV

sn −4. mV sp 6. mV

smp −6. mV τn 10. ms

τp 10000. ms
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We choose default parameters as given in Table 4, such that the model exhibits SW bursting

shown in Figure 9A. Non-dimensionalization (see the Appendix) shows that the timescale

constants of v, n and p are Rv ≈ 1.33, Rn ≈ 0.17 and Rp ∈ [0.0001, 0.003], respectively.

Decreasing gna decreases Rv, but Rp remains much smaller than Rv and Rn. Hence, we can

again consider v and n as fast variables, with p the slow variable for this model.

Figure 9B shows the bifurcation diagram of the fast subsystem for the default parameter

values. Observe that, even though the Andronov–Hopf bifurcation is subcritical, a family

of stable periodic orbits (blue) originates from a saddle-node bifurcation of periodic orbits

(SNPO). The SW burst trajectory (grey) is overlaid in Figure 9B and evolves counterclock-

wise.

Figure 9C shows the two-parameter bifurcation diagram for the fast subsystem in the

(p, gna)-plane. Notice that, in this figure, the order for the curves LSN and USN is reversed

compared to the other models; compare also with Figure 9B, where USN occurs at a negative

value of p and is, hence, not visible in the view that is shown. For the Butera model (12)–

(13), the SW bursting region (shaded red) persists as gna increases, because there always

exists a family of stable periodic orbits of the fast subsystem in the region bounded by the

curves HC and LSN. Indeed, even though the Andronov–Hopf bifurcation (blue) changes

criticality at GH and is subcritical for gna > 7.3 (Figure 9D), the curve SNPO of saddle-

node bifurcation of periodic orbits that emanates from GH persists and stays to the right of

the LSN (leftmost red curve). Hence, the fast subsystem always features a family of stable

oscillations, which originate from SNPO and end (as p decreases) at HC (green). These stable

oscillations support spiking in the active phase.

2.2.2 Model Modifications to Include Slow Negative Feedback

The biophysical mechanisms behind spiking for the canonical Hodgkin–Huxley model [41]

include (i) a fast activating, more slowly inactivating inward sodium current that results in

the upstroke of the spike and (ii) an outward, negative feedback potassium current, which

activates on a timescale similar to that of the sodium inactivation, responsible for the down-

stroke of the spike [83]. Typical bursting models feature (i) and (ii) and also add in a
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SNPO

SubAH

HC

BT GH

GH

Figure 9: Dynamics and bifurcation structure for the Butera model (12)–(13). (A) SW

bursting for the default parameters given in Table 4. (B) Bifurcation diagram of the model’s

fast subsystem with respect to the slow variable p, together with the SW burst trajectory

for the default parameters given in Table 4 overlaid in grey (evolution is counterclockwise).

(C) Two-parameter bifurcation diagram of the fast subsystem in the (p, gna)-plane; colors

are as in Figure 4A and the SW bursting region is shaded red. (D) Lyapunov coefficent

along the curve AH, comprised of SupAH and SubAH. The Andronov–Hopf bifurcation is

supercritical only for gna < 7.3, but a saddle-node of periodic orbits SNPO occurs at GH

that generates a family of stable periodic orbits necessary for SW bursting. The inset is an

enlargement of the indicated region near BT and GH.
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third, slowest current or variable that helps to modulate the burst between its active and

silent phases [43]. These components arise, in particular, in the neural and endocrine models

presented in Section 2.2.1, which exhibit SW bursting in some region of parameter space. In

the case of the generic endocrine model (6)–(7), for example, the calcium current ICa is an

inward current with fast activation and, hence, provides fast positive feedback to v, while

the potassium current IK is an outward current with a slower activation gate n that provides

the slow negative feedback; moreover, the slowest variable c, corresponding to the calcium

concentration in the cell, modulates the burst.

Compared to the other models presented in Section 2.2.1, the Butera model (12)–(13)

maintains SW bursting over a broad range of parameter values, as can be seen in Figure 9C

(red shaded region). The fast current in the Butera model is a sodium current, which is

different from the fast calcium currents in the generic endocrine and minimal Chay–Keizer

models, as well as the sodium current in the sodium-potassium minimal model, because INa

has a slow inactivation gate in this model. Past work has highlighted the roles of positive

and negative feedback terms in tuning the features of neural spiking [34] and the potential

importance of slow positive feedback in enhancing the robustness of bursting [33].

In this vein, we hypothesized that the robustness of SW bursting in the Butera model

could relate to the fact that the additional negative feedback present in the model is slow

relative to the fast activation. To test this idea, we modified each of the other three models to

include a slow, voltage-dependent inactivation gate as part of the fast inward current, which

allowed us to study how the inclusion of such a component alters each model’s dynamics.

The modified calcium current ICa for the generic endocrine model (6)–(7) is given by

ICa(v) = gcam
2
∞(v)h (v − eca), (14)

and the modified sodium current INa for the sodium-potassium minimal model (8)–(9) takes

the form

INa(v) = gnam∞(v)h (v − ena), (15)

where h in equations (14) and (15) is the voltage-dependent inactivation gating variable

governed by the equation

h′ = (h∞(v)− h)/τh (16)
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with

h∞(v) = (1 + e(vh−v)/sh)−1.

In its original form, the minimal Chay–Keizer model (10)–(11) has a fast inactivation term

h = h∞(v) associated with ICa. So to study this model, we changed the inactivation to a

slow one by modifying the calcium current to take the form

ICa(v) = gcam
3
∞(v)h (v − eca), (17)

where h again evolves according to equation (16).

Since h is a dimensionless variable that takes values between 0 and 1, the coupling of

the h-dynamics via equations (14), (15) or (17) does not affect the timescale constants of

the other variables in the models. The timescale constant for (16) is Rh ≈ Qt/τh = 1/τh,

which can be derived similarly to the timescale of n (see the Appendix). For each model, we

will explore how the dynamics and bifurcation structure change as τh is varied over a range

of values. In each case, we choose this range to be roughly comparable with the model’s

respective τn-value, such that h and n evolve on similar timescales.

For the modified generic endocrine model (6)–(7), (14) and (16), the half-inactivation

value vh was selected to be −30, which is approximately in the middle of the range of v-values

corresponding to the spiking phase of SW bursting in Figure 3A. For simplicity, sh was kept

constant at −1. In the Butera model (12)–(13), the inactivation of INa is approximated

as 1 − n where n is the activation variable of IK . Following this idea, vh and sh of the

modified sodium-potassium minimal model (8)–(9) and (15)–(16) were chosen as −25 and

−5, respectively, to match the values associated with corresponding terms for IK in that

model. For the modified minimal Chay–Keizer model (10)–(11) and (16)–(17) we retained

the default definitions and parameter values for h∞(v) given in Table 3.

2.3 Results

In this section we investigate the robustness of SW bursting to variation of the fast

inward current conductance for each of the three modified models. We first analyze how
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this robustness depends on the the timescale constant τh. For the values that we include,

all of the modified models can be considered as fast-slow systems with fast variables v, n,

and h and a single slow variable. Hence, we can apply a similar fast-slow analysis to these

modified models to that employed in Section 1.2. We also consider the effect of varying the

conductance gk associated with the potassium current that is present in all four models and

complete our results with a two-parameter analysis with respect to gk and the inverse τ−1
h

of the timescale constant.

2.3.1 Bifurcation Diagrams of Modified Models

Figures 10, 11 shows two-parameter bifurcation diagrams of the respective fast subsys-

tem for each of the three modified models for a fixed τh value; here, we plot the slow variable

(c or s) on the horizontal and the conductance of fast inward current (gca or gna) on the

vertical axis. These bifurcation diagrams should be compared to Figures 4, 6, and 8, respec-

tively. Notice that in all of these diagrams, the curve AH of Andonov–Hopf bifurcations is

pushed out far to the left of the leftmost saddle-node curve LSN as gca or gna increases. This

arrangement of bifurcations ensures the existence of a family of stable periodic orbits in the

fast subsystem over a larger range of gca or gna, which prevents a transition to PP bursting.

Instead, the pattern exhibited in each case is either SW bursting or slow spiking, depending

on the position of the curve HC of homoclinic bifurcations. Specifically, if the curve HC does

not reach the curve LSN and the Andronov–Hopf bifurcation is supercritical (or subcritical

with a curve SNPO of saddle-node bifurcation of periodic orbits located even farther away

from LSN), then SW bursting results. On the other hand, if the homoclinic curve reaches

LSN, which induces a so-called SNIC regime (saddle-node bifurcation on invariant cycle) [27],

then the model exhibits slow spiking. In all of the two-parameter diagrams shown in Figures

10, 11, the SW and slow spiking regions are shaded red and purple, respectively.

The bifurcation diagram for the modified generic endocrine model (6)–(7), (14) and (16)

in the (c, gca)-plane with τh = 0.033 (Figure 10A) shows a clear expansion in the range of gca-

values for which the model exhibits SW bursting relative to the original model (cf. Figure 4).

Indeed, when the Andronov–Hopf bifurcation switches from supercritical to subcritical for

33



GHGH

BT
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Figure 10: (A) Two-parameter bifurcation diagram of the fast subsystem for Modified

generic endocrine model (6)–(7), (14) and (16) with respect to the corresponding slow vari-

able c and conductance gca. (B) Lyapunov coefficent associated with the curve AH (comprised

of SupAH and SubAH) in (A), plotted versus gca with τh = 0.033 . (C)Two-parameter bi-

furcation diagram of the fast subsystem Modified sodium-potassium minimal model (8)–(9)

and (15)–(16) with respect to the corresponding slow variable s and conductance gna for

τh = 0.125. (D) Lyapunov coefficent associated with the curve SupAH in (C), plotted versus

gna. The modified models show broader parameter ranges over which they exhibit SW burst-

ing (shaded red) compared to those in Figures 4 and 6 for the unmodified models. Moreover,

unlike the originals, the modified models does not yield transitions to PP bursting or depo-

larization block.
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Figure 11: (E) Two-parameter bifurcation diagram of the fast subsystem for Modified

minimal Chay–Keizer model (10)–(11) and (16)–(17) with respect to the corresponding slow

variable c and conductance gca for τh = 1.111. (F) Lyapunov coefficent associated with the

curve AH in (E), plotted versus gca. The modified model show broader parameter ranges

over which they exhibit SW bursting (shaded red) compared to 8 for the unmodified model.

Moreover, the original, the modified model does not yield transitions to PP bursting or

depolarization block.
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gca just above 1 (Figure 10B), a saddle-node bifurcation of periodic orbits (SNPO) occurs to

the left of the curve AH and therefore stable oscillations persist, extending in the direction

of increasing c until the curve HC is reached. Consequently, a transition to PP bursting is

now prevented. Instead, when SW bursting is lost for gca just below 2, due to the transition

from the HC to the SNIC, the modified model generates slow spiking.

In the case of the modified sodium-potassium minimal model (8)–(9) and (15)–(16),

the two-parameter bifurcation diagram in the (s, gna)-plane with τh = 0.125 (Figure 10C)

features a slightly expanded SW bursting range. Recall that SW bursting for the original

sodium-potassium minimal model (Figure 6B) is not especially robust to parameter changes.

Even though SW bursting never transitions to PP bursting for the original form of this model,

when gna is increased above the SW range, the original model exhibits some intermediate

patterns and then transitions to a full-system stable steady state at elevated voltage. In the

modified model, on the other hand, when SW bursting is lost, the system switches to slow

spiking through the transition to a SNIC (Figure 10C). There is also no longer a change in

criticality of the Andronov–Hopf bifurcation (Figure 10D) in this modified model, at least

not over the range of gna-values considered.

The modified minimal Chay–Keizer model (10)–(11) and (16)–(17) with τh = 1.111

shows an expansion in its SW region in the (c, gca)-plane relative to the original version of the

model (compare Figure 8 with Figure 11A) and, similarly to the other modified models, it no

longer supports PP bursting. Instead, the SW regime features a curve SubAH of subcritical

Andronov-Hopf bifurcation (Figure 11B), with an associated family of stable periodic orbits

originating at the curve SNPO. Although these bifurcation curves lie at non-physiological,

negative c-values, the stable periodic orbits extend to positive c and terminate at the curve

HC in the SW bursting regime. The modified model transitions directly from SW bursting

to spiking as gca is increased, organized by the switch to the SNIC mechanism.

Figure 12 compares the burst patterns of the modified generic endocrine model (6)–(7),

(14) and (16) for progressively increasing values of gca. The first two panels are very similar

to those of Figure 5 for the unmodified model. With the modification, h can decay on each

spike, but that has little qualitative impact on burst features for these gca-values. Once gca

becomes large enough that PP bursting would have occurred in the original model, however, a
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Figure 12: Burst patterns exhibited by the modified generic endocrine model (6)–(7), (14)

and (16) for different values of gca, along with associated currents. (A) SW bursting at

gca = 0.81. (B) SW bursting at gca = 1.2. (C) Spiking for gca = 2.0. Note that, as gca

increases, the amplitude of the initial spike increases.
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more significant difference emerges (Figure 12C). In this case, the large gca and corresponding

ICa yield a strong voltage elevation and IK activation as previously. Now, when the strong IK

activation is combined with h inactivation that weakens ICa, the outward current overwhelms

the inward current, as can be seen from the positive value of IK + ICa on the tail end of the

spike. Hence, v is pushed down to a hyperpolarized state, and bursting is replaced by the

generation of an isolated spike.

2.3.2 Effects of Varying τh

As we and many others have discussed [43, 29], bursting in neuronal and endocrine models

relies on a balance of voltage-dependent positive and negative feedback contributions to the

voltage equation, acting on appropriate timescales. More specifically, consider SW bursting

in a model for which the fast inward current does not inactivate. If the conductance of this

inward current is increased sufficiently then the strengthened positive feedback disrupts the

balance of currents in the system. As a consequence, the slower negative feedback current

cannot overcome the fast positive current to induce the downstroke needed for a spike, so the

model ceases to exhibit spiking during its active phase and, instead, transitions to a state of

depolarization block or a PP burst. Therefore, we hypothesize that the enhancement of SW

bursting, and the prevention of PP bursting and depolarization block, can be achieved by

modifications to a model in such a way that the balance of currents is maintained as certain

parameters vary. We achieved this by adding a slow inactivation gate to a positive current,

such that this inward current gradually weakens, even when its maximal conductance gca or

gna is high. In this section, we report on achieving an optimal balance by choosing the most

suitable value for τh, the time constant for the slow inactivation gate.

Figure 13 shows the burst patterns of the original generic endocrine model (6)–(7) as

well as of its modification with (14) and (16) for gca = 1.1 and different values of τh. When

gca = 1.1, the original model, without inactivation of the Ca2+-channel, exhibits SW bursting

(Figure 13A); this corresponds to setting τh = ∞, with h ≡ 1 constant, in the modified

generic endocrine model. Note that the value gca = 1.1 is at the top end of the gca-range

at which the original model can potentially produce SW bursting (cf. Figure 4). We now
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Figure 13: Activity patterns exhibited by the modified generic endocrine model (6)–(7),

(14) and (16) at gca = 1.1 with τh varying. (A) SW bursting for the original model, which

is equivalent to the modified model with τh = ∞ and h ≡ 1. (B) Slow spiking for τh = 0.2.

(C) SW bursting for the default value τh = 0.03. (D) PP bursting for τh = 0.01.

impose dynamics on the inactivation gate to the calcium channel and show how the balance

of voltage-dependent positive and negative feedback is controlled by the timescale constant

τh associated with this inactivation gate.

When τh = 0.2 (Figure 13B), the dynamics of h is not fast enough during the first spike to

cause any spike attenuation. Hence, v reaches a level at which the outward current IK turns

on to full strength. As the spike terminates, the combination of the small decrease in h and

corresponding decrease in ICa together with the strong IK result in a net outward current flow

that pulls the voltage back down out of the active phase into a full after-hyperpolarization.

Thus, when the inactivation is slow, SW bursting is replaced by slow spiking.

Decreasing τh to the default value τh = 0.03 for the modified model (as used in Figure

10A) corresponds to a faster, although still slow, rate of change of h. In this case, h reduces

fast enough that the amplitude of the first spike is lowered, as seen in Figure 13C; indeed,

notice that the spikes max out at a lower voltage than in Figure 13A,B. The reduced max-

imal voltage leads to a weaker IK activation, which cannot induce a full hyperpolarization
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Figure 14: Activity patterns exhibited by the modified generic endocrine model (6)–(7),

(14) and (16) at gca = 1.5 with τh varying. (A) PP bursting for the original model, which

is equivalent to τh = ∞ and h ≡ 1. (B) Slow spiking for τh = 0.2. (C) SW bursting for

τh = 0.02. (D) PP bursting for τh = 0.015.

or return to the silent phase. Hence, additional spikes occur, even though h is gradually

decreasing, resulting in a spiking active phase and restoration of a SW bursting pattern.

Decreasing τh further, however, accelerates the ICa inactivation rate, which means that

the amplitude of the first voltage peak is lowered even more and, consequently, IK activation

is significantly weakened. Eventually, the outward IK current is not strong enough to pull

down the voltage and form a spike. This effect corresponds to convergence to the depolarized

(upper) branch of the critical manifold. Hence, voltage jumps up to the branch of C with

stable equilibria of the fast subsystem, which leads to transient depolarization block and

the emergence of PP bursting patterns (e.g., Figure 13D for τh = 0.01), or else sustained

depolarization block.

If we now increase gca to gca = 1.5 then the original generic endocrine model (6)–(7)

exhibits PP bursting (cf. Figure 4); the burst pattern is shown in Figure 14A, with the other

panels illustrating burst patterns for the modified generic endocrine model (6)–(7), (14)

and (16) with gca = 1.5 and different values of τh. We select τh = 0.2 (Figure 14B), τh = 0.02
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(Figure 14C), and τh = 0.015 (Figure 14D), which produce a sequence of patterns that

suggest a similar transition from spiking via SW bursting to PP bursting (cf. Figure 13),

even though the original model exhibits only PP bursting at this higher gca-value. The

explanation is entirely analogous to that detailed for Figure 13; for example, when τh = 0.2,

the inactivation gate is very slow and h does not change enough during the first spike to

cause any reduction in peak spike amplitude. With the slow inactivation of ICa, however, the

resulting increase in IK is strong enough to pull the voltage back to full hyperpolarization

after the first spike.

We observe the same effect when varying τh for different choices of gna in the modified

sodium-potassium minimal model and for different choices of gca in the modified Chay-Keizer

model. In other words, for all three modified models, there exists an intermediate range of

τh-values for which the SW burst regime is significantly extended into higher values for gca

or gna and PP bursting is prevented. Figure 15 illustrates this enlarged robustness with

two-parameter bifurcation diagrams of all three modified models that show the regimes for

different activity patterns with respect to the conductance of the fast inward current, gca or

gna, and 1/τh. We use the inverse 1/τh rather than τh itself so that the activity patterns

of the original generic endocrine model (6)–(7) and the original sodium-potassium minimal

model (8)–(9) appear on the line 1/τh = 0. For the minimal Chay–Keizer model (10)–(11),

the inclusion of h∞(v) in ICa corresponds to an instantaneous negative feedback component

of this current. Therefore, this model is represented as 1/τh = ∞ (“inf”) in Figure 15C.

For each fixed value of τh, the activity patterns exhibited by the modified models were

analyzed by considering two-parameter bifurcation diagrams with respect to the fast inward

current conductance parameter and the slow variable, as in earlier figures (e.g., Figure 4).

In each panel, the grey shaded region corresponds to SW bursting or fast spiking patterns,

both of which would yield synaptic transmission. Fast spiking is exhibited by the modified

sodium-potassium minimal model (8)–(9), (15)–(16) for τh values above 11 and sufficiently

large gna. In this case, the full model has a stable periodic orbit with s ≈ 1; for example,

see Supplemental Figure 47. Observe that, for all three modified models, the largest interval

of conductances that spans this region occurs at the cross-section for an intermediate value

of 1/τh (and, thus, of τh). Indeed, for Figures 10, 11, we selected τh values near the
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Figure 15: Two-parameter bifurcation diagrams of the modified models with respect to gca

or gna and 1/τh. (A) Modified generic endocrine model (6)–(7), (14) and (16). (B) Modified

sodium-potassium minimal model (8)–(9) and (15)–(16). (C) Modified minimal Chay–Keizer

model (10)–(11) and (16)–(17). Notice that in all the three modified models, SW is most

robust over an intermediate range of 1/τh-values (and, hence, of τh-values).

42



optimum for each model. When τh is sufficiently small, all three modified models exhibit

relaxation oscillations that transition to PP bursting as the fast inward current conductance

is increased. From there, as τh is made larger, an interval of conductances that support SW

bursting emerges and grows (Figure 15A–C) and PP bursting, over a large range of τh, is

prevented.

We remark that the analysis of the corresponding bursting patterns for most of the range

of τh-values considered can be done by assuming that the model has three fast and one slow

variables. However, at sufficiently large values of τh, the timescale of h becomes comparable

to that of the slow variable, which means that the models should be analyzed as systems with

two fast and two slow variables. Our numerical explorations for each of the three modified

models suggest that on the intermediate range of τh that extends the SW regime, τh does

not yet become comparable to the timescale of the slow variable. We leave a more detailed

multi-timescale analysis of the regime of large τh for future work.

2.3.3 Varying gk

Varying the parameter gk changes the timescale of v but leaves the timescales of the other

variables unchanged (see the Appendix). Hence, the modified models can be analyzed for

varying gk by considering a fast-slow decomposition with three fast and one slow variables,

as long as v remains fast, and also τh for each modified model is chosen such that the h-

kinetics evolves at a significantly faster timescale than that of the slowest variable in the

corresponding original model.

For a general SW bursting model, a reduction of gk leads to a transition from SW bursting

to a PP pattern; qualitatively, it has the same impact as increasing gna or gca [86]. Therefore,

we expect that the robustness of SW bursting with respect to changes in gk is maximal for the

modified models if τh is chosen from an intermediate range. This is confirmed in Figure 16,

where we show two-parameter bifurcation diagrams in the (gk, 1/τh)-plane for each of the

modified models.

Supplementary Figure 49 shows the two-parameter bifurcation diagram of the butera

model (12)-(13) with respect to gk. Notice that the model exhibits SW bursting for a large
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Figure 16: Two-parameter bifurcation diagrams of the modified models with respect to

gk and 1/τh. (A) Modified generic endocrine model (6)–(7), (14) and (16). (B) Modified

sodium-potassium minimal model (8)–(9) and (15)–(16). (C) Modified minimal Chay–Keizer

model (10)–(11) and (16)–(17).
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range of gk values. Figure 16A corresponds to the modified generic endocrine model (6)–(7),

(14) and (16). Notice that in the original model, without inactivation (i.e., 1/τh = 0), the

burst pattern transitions to PP (blue dots) as gk decreases below gk ≈ 1.7. Over a range of

1/τh-values that are neither too large nor too small, this transition is completely prevented.

The modified sodium-potassium minimal model (8)–(9) and (15)–(16) in Figure 16B yields a

qualitatively similar result. Recall that the original minimal Chay–Keizer model (10)–(11),

with its instantaneous ICa inactivation gate, corresponds to 1/τh = ∞ (“inf”) in Figure 16C;

the burst pattern transitions to depolarization block (light blue) as gk decreases, via only a

very small interval of PP activity. The modified minimal Chay–Keizer model with additional

equations (16)–(17) maintains this property for large 1/τh-values, but the transition via PP

to depolarization block is prevented over a much larger range of gk for an intermediate

interval of 1/τh-values.

2.3.4 Effect of slow negative feedback on the location of AH

The additional inactivation gate and associated h-dynamics affect the location of the

critical manifold for the fast subsystem (2), but this location change does not fully explain

the increased robustness seen at intermediate values of the timescale constant τh. For ex-

ample, consider the modified generic endocrine model (6)–(7), (14) and (16) for the default

parameters as given in Tables 1, with various choices of τh. Provided that τh remains small

enough, e.g., 1
τh

> 10, the modified model has three fast variables (v, n and h) and one slow

variable (c). Then the critical manifold is defined implicitly by the equation:

ICa(v, h∞(v)) + IK(v, n∞(v))

+IK(Ca)(v, c) = 0,
(18)

with n = n∞(v) and h = h∞(v). Hence, the critical manifold does not depend on τh at

all. Similarly, the saddle-node bifurcations LSN and USN, which are determined by the local

minima and maxima of (18), respectively, when viewed as a curve in the (v, c)-plane, do not

depend on τh. However, the Jacobian matrix of the full four-dimensional system, evaluated

along the critical manifold, does depend on τh; this means, in particular, that the location

of the Andronov–Hopf bifurcation (AH) is potentially affected by variations in τh.
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For example, consider an equilibrium of the fast subsystem that lies on the upper, high-

voltage branch CA of the critical manifold on the part that coexists with CM and (part of)

CS; hence, its c-coordinate satisfies cLSN ≤ c ≤ cUSN. Figure 17 shows how the real parts

of a pair of complex-conjugate eigenvalues for this equilibrium point change with 1/τh for

fixed gca = 0.81. As can be seen from the figure, for relatively small τh values (i.e., for large

1/τh), the equilibrium is stable. That is, the Andronov–Hopf bifurcation, denoted AH here,

that stabilizes points on CA occurs at a c-value above the c-coordinate of this equilibrium

point. On the other hand, as τh becomes larger, corresponding to a slower negative feedback,

the equilibrium becomes unstable. In this case, the Andronov–Hopf bifurcation point AH

must occur at a lower c value than that of this equilibrium point. For a model to exhibit

PP bursting or depolarization block (DB), the point AH must lie at c > cLSN. Increasing

τh pushes this bifurcation to c values below cLSN; that is, the calcium inactivation must be

sufficiently slow to move the Andronov–Hopf bifurcation AH to a location where PP bursting

and DB are prevented for this value of gCa.

2.4 Discussion

In this work, we compared bursting patterns across four well-established, relatively low-

dimensional mathematical neuron models of Hodgkin–Huxley type, namely, a generic en-

docrine model (6)–(7) [88], a sodium-potassium minimal model (8)–(9) [43], a minimal

Chay–Keizer model (10)–(11) [70, 69], and the Butera model (12)–(13) [18]. Observing

the distinctive robustness of SW bursting in the Butera model, which features a slow in-

activation component in the fast inward current that drives spiking, we modified the three

other models, which exhibit less robust SW bursting in their original forms. Specifically,

we included slow inactivation dynamics in their fast inward currents, and examined the ef-

fects on the robustness of their SW bursting dynamics. Previous literature has studied the

transition between SW and PP bursting patterns with changes in fast inward current con-

ductances [84, 86, 85, 88, 89]. To our knowledge, however, this is the first time that the effect

of slow negative feedback has been studied in relation to the robustness of SW bursting. The
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AH

Figure 17: Dependence on τh of two complex-conjugate eigenvalues associated with an

equilibrium of the fast subsystem with c > cLSN on the branch CA of the critical manifold

for the modified generic endocrine model (6)–(7), (14) and (16) with gca = 0.81. Shown are

their real parts versus 1/τh. The stability changes at an Andronov–Hopf bifurcation (AH)

for an intermediate value of 1/τh. Hence, below this value, the system will not exhibit DB

or PP bursting.
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point of this analysis is not to propose an adjustment to these bursting models; rather, we

use the comparison of the original and modified models as a tool to explore the role of the

slow inactivation of the inward current. Our results provide insight into why some neurons

in biological systems might have slowly inactivating inward currents — despite these seem-

ingly being redundant, because of the presence of outward currents that activate on similar

timescales.

We employed standard dynamical systems methods of fast-slow decomposition and bi-

furcation analysis for this investigation. Our analysis shows that the addition of slow inac-

tivation dynamics expands the ranges of parameter values over which the modified models

exhibit SW bursting, while eliminating or curtailing PP bursting, depolarization block, and

relaxation oscillations. This finding led us to the novel hypothesis that inward currents fea-

turing slow inactivation should be prevalent for neurons that rely on bursts with spikes for

synaptic transmission and the activation of associated calcium currents (e.g., [66]).

The bifurcation techniques and fast-slow analysis used in this work depend heavily on the

timescale separation of the variables in these models. We showed that the modified models

exhibit optimally robust SW bursting if the timescale constant associated with the inward

current inactivation lies in a range that is similar to that of the activation variable for a

primary outward current (e.g., IK). When the slow inactivation is too fast in these relative

terms, we observed that the inward current can become too weak to recruit the outward

current and induce the corresponding hyperpolarization needed to sustain repeated spiking,

in which case patterns such as PP bursting are more likely (e.g., Figure 15A, large 1/τh). This

finding is analogous to the result that a fast-activating negative feedback provided by a BK

potassium current promotes PP bursting in pituitary cells [92]. When the slow inactivation

is too slow, the inward current can become too strong, so that even with full outward current

activation, the cell does not repolarize. Thus, there is a “Goldilocks zone” for tuning the

timescale of the inward current inactivation where it is most effective at sustaining spiking

and associated synaptic transmission.

We linked these ideas with specific mathematical properties of the models by studying

how this inactivation rate affects the stability of equilibria in the fast subsystem at elevated

voltage and the location in parameter space of the Andronov–Hopf bifurcation points at
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which these equilibria change stability. Here we made use of the fact that there is generally

a single slow variable for the considered values or ranges of the relevant system parameters.

It remains an interesting subject of future mathematical work to calculate bounds on the

optimal range of inactivation timescales for maximal robustness of SW. This will likely re-

quire the consideration of parameter ranges where one finds two slow variables, in addition

to ranges where there is just one. Another direction for future analysis would be to con-

sider effects on robustness due to variation of other model parameters that are affected by

neuromodulation or are relevant to pathologies involving alterations to neural bursting; for

example, see [38, 54, 50, 81]).

The values for the half-inactivation parameters vh and sh in (16) for the models that

we studied were chosen to match analogous values used in other models with inactivation

gates for the inward current [18, 70, 69]. Changing these values yields a quantitatively

different optimal timescale range over which SW bursting is most robust, but our numerical

explorations suggest that this does not change the phenomenon that we revealed (e.g., see

Supplemental Figure 50). We considered only four models that were known to exhibit SW

bursting, two with a fast inward sodium current and two with a fast inward calcium current.

Despite our focus on a small selection of models, the mechanistic aspects of the results that

we have explained strongly suggest that our results will naturally generalize beyond these

specific examples.

We note that, depending on the location of the slow nullcline, the same fast subsystem

bifurcation structure that supports SW bursting can also yield sustained, fast, tonic spiking,

depending on the position of the slow nullcline (e.g., Supplemental Figures 47, 48). However,

we found that the occurrence of this type of spiking is quite rare in the models that we

studied, although it does show up in one case (Fig. 15 B, orange dots). In other models

that include a slow negative feedback on the fast inward current, SW bursting could be lost

to this fast spiking more commonly under parameter variation. In a CPG circuit, however,

this activity could serve a similar function as SW bursting. To see this, suppose that two

or more intrinsically spiking neurons are coupled by synaptic inhibition and one is actively

spiking, leading to the inhibition of the others. If one of these other neurons becomes active,

such as through recovery from adaptation, and starts spiking, then it could inhibit and shut
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off the formerly spiking neuron. When this process occurs repeatedly, it results in bursting

spike patterns (cf. [73]). Interestingly, CPG circuits with reciprocal inhibition can exhibit

phase transitions based on a release mechanism, controlled by neurons in the active phase,

or an escape mechanism, controlled by neurons in the silent phase. In the former case, the

synaptic threshold is likely to be elevated, such that spiking is important for circuit oscillation

properties, whereas in the latter case, the synaptic threshold is likely to be lower, such that

the presence of spikes within each phase of depolarized membrane potential becomes less

important [74]; hence, our work suggests that the presence of inward currents with slow

inactivation might be an indicator that a circuit operates in release mode.

Ideally, in future work, a more general theory can be developed that will cast our results

in terms of assumptions on a general Hodgkin–Huxley type model. For the time being, we

can at least observe that the results of this study are consistent with past work on neuronal

bursting [43] in that we also find that, for a neuron with slow inward current inactivation, it

is not important whether sodium or calcium ions are carried in this current. Interestingly,

however, a key prediction emerges: fast currents with slow inactivation, which are usually

sodium currents, will represent the dominant, fast inward current in rhythmic neurons for

which spiking is important; non-inactivating sodium currents and calcium currents or the

presence of fast negative feedback [92], on the other hand, will tend to be associated with

neurons for which spiking is less important than simple depolarization. Correspondingly, in

neurons for which function is unknown, the characterization of the dominant, fast inward

current gives us a prediction about the importance of spiking for these cells.
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3.0 Ramping dynamics in neurons of the pre-Bötzinger Complex 1

3.1 Introduction

Respiration is a rhythmic activity that has three phases: inspiration, post-inspiration,

and late-expiration. Among these phases, the inspiratory output is primarily determined by

the activity of the pre-Bötzinger complex (pre-BötC) located in the brain stem [78, 19, 47].

Experimental results show that the neurons in pre-BötC often exhibit bursting patterns

characterized by an increase in spike frequency during the active phase, accompanied by a

gradual rise in the underlying plateau potential (See Figure 18A). The burst begins with

slow tonic oscillations during the pre-inspiratory phase. As the burst progresses into the

inspiratory phase, the spike frequency increases while the hyperpolarization between spikes

weakens [3]. However, many existing respiratory mathematical models fail to capture this

”ramping effect” observed in bursting neurons. (See Figure 18B)

[3] shows that modifying existing pre-BötC model with potassium ion concentration dy-

namics produces ramping effect. However, in this model, the ramping dynamics occur within

a narrow region of the parameter space. We aim to show the ramping effect by incorporating

a second slow inactivation component associated with the inward sodium current. In this

project, we develop two phenomenological models that exhibit ramping bursts. Through

these models, we present two mechanisms that help control burst shape and spike frequency

- (1) a slow potassium current that controls the strength of hyperpolarization after each

spike and (2) a slow sodium current that controls the spike height in burst. Based on the

observations from these models, we develop and analyze a more biologically relevant model

that exhibits bursts with the ramping pattern. We show that adding an additional slow inac-

tivation gate to the sodium current of existing pre-BötC neuronal model produces ramping

dynamics. We use dynamical systems methods such as bifurcation analysis and phase plane

analysis to study the various activity patterns exhibited by the model when parameter val-

ues change. Using these methods, we explain the mechanisms that give rise to the observed

1Collaborator : Dr. Ryan Phillips, Seattle Children’s Research Institute
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(A) (B)

Figure 18: (A) Ramping burst pattern exhibited by the inspiratory pacemaker neu-

rons for external potassium concentration [K+]o = 8mM. This figure was reprinted

from Tryba, A. K., Peña, F., & Ramirez, J. M. (2003). Stabilization of bursting

in respiratory pacemaker neurons. The Journal of Neuroscience, 23(8), 3538–3546.

https://doi.org/10.1523/JNEUROSCI.23-08-03538.2003 [87]. Copyright [2003] Society for

Neuroscience. (B) The bursting pattern exhibited by the model for inspiratory neurons pre-

sented in [4].
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Figure 19: Ramping burst pattern exhibited by the AHP model (19)-(21) for default param-

eter values given in Table 6

ramping bursting pattern.

3.2 AHP model

We modified the model presented in [4] by introducing an additional slowly inactivating

potassium current, denoted as IAHP , to the model. This current decreases during the burst,

thereby reducing the strength of the hyperpolarization after each spike, while simultaneously

increasing the spike frequency, generating the ramping bursting pattern illustrated in the

Figure 19.

The model dynamics are defined by the following equations :
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cv′ = −(INa(v, hNa,mNa) + IK(v, n) + INaP (v, hNaP ,mNaP )

+ IAHP (v, hAHP ,mAHP ) + IL(v) + Isyn(v)),

h′
Na = (hNa∞(v)− hNa)/τhNa

(v),

m′
Na = (mNa∞(v)−mNa)/τmNa

(v),

h′
AHP = (hAHP∞(v)− hAHP )/τhAHP

(v),

m′
AHP = (mAHP∞(v)−mAHP )/tmAHP

(v),

h′
NaP = (hNaP∞(v)− hNaP )/τhNaP

(v),

m′
NaP = (mNaP∞(v)−mNaP )/τmNaP

(v),

n′ = (n∞(v)− n)/τn(v)

(19)

where INa is the fast sodium current with activation variable mNa and inactivation

variable hNa, INaP is the persistent sodium current with activation variable mNaP and in-

activation variable hNaP , IK is the delayed rectifier potassium current with activation gate

variable n, IL denotes the leak current and Isyn is the synaptic current. The constructed

IAHP , or after-hyperpolarization current has activation variable mAHP and slow inactivation

variable hAHP .

The expressions for the currents in (19) are given by:

INa(v, hNa,mNa) = gNa m
3
Na hNa (v − eNa),

IK(v, n) = gk n
4 (v − eK),

INaP (v, hNaP ,mNaP ) = gNaP hNaP mNaP (v − eNa),

IAHP (v, hAHP ,mAHP ) = gAHP mAHP hAHP (v − eK),

IL(v) = gL (v − eL),

Isyn(v) = gsyn (v − esyn),

(20)

The steady state activation functions in (19) are given by:
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hNa∞(v) = (1 + e−(vhNa
+v)/shNa )−1,

τhNa
(v) = thNa

cosh((khNa
+ v)/phNa

)−1,

mNa∞(v) = (1 + e−(vmNa
+v)/smNa )−1,

τmNa
(v) = tmNa

cosh((kmNa
+ v)/pmNa

)−1,

hAHP∞(v) = (1 + e−(vhAHP
+v)/shAHP )−1,

τhAHP
(v) = thAHP

cosh((khAHP
+ v)/phAHP

)−1,

mAHP∞(v) = (1 + e−(vmAHP
+v)/smAHP )−1,

hNaP∞(v) = (1 + e−(vhNaP
+v)/shNaP )−1,

τhNaP
(v) = thNaP

cosh((khNaP
+ v)/phNaP

)−1,

mNaP∞(v) = (1 + e−(vmNaP
+v)/smNaP )−1,

τmNaP
(v) = tmNaP

cosh((kmNaP
+ v)/pmNaP

)−1,

k1(v) = (0.011 ∗ (44.0 + v))(1− e(−44.0−v)/5.0)−1,

k2(v) = 0.17 ∗ e(−v−49.0)/40.0,

n∞(v) = k1(v)(k1(v) + k2(v))
−1,

τn(v) = (k1(v) + k2(v))
−1

(21)

The default parameter values used in the AHP model (19)-(21) are given in Table 6.

Non-dimensionalization shows that variables hNaP and hAHP change at a significantly

slower timescale compared to the other variables in the model. Hence, this model can be

analyzed with hNaP and hAHP being considered as slow variables (slow subsystem), while all

the other variables can be regarded as fast variables (fast subsystem). We can use fast-slow

systems methods, such as bifurcation analysis, to study this model.

It is seen in Figure 19 that hAHP slowly reduces during the burst. As first step towards

understanding the ramping dynamics, we begin by analyzing the activity patterns exhibited

by the AHP model at various hAHP levels (See Figure 20). When hAHP is fixed at 1, the

model exhibits tonic spiking. However, when hAHP reduces, the strength of the outward

current IAHP also reduces and it is not strong enough to fully hyperpolarize the voltage.

This leads to more spikes and tonic spiking transitions to bursting. When hAHP is reduced

further, IAHP decreases even more, resulting in weaker hyperpolarizations between spikes
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Table 5: Default parameter values for AHP model (19)-(21) :

gNa 150.0 nS gNaP 3.0 nS gK 220.0 nS

gsyn 0.285 nS eNa 55.188 mV eK −69.829 mV

esyn −10.0 mV c 36.0 pF vhNa
67.5 mV

khNa
67.5 mV phNa

−12.8 mV vhNaP
60.0 mV

khNaP
60.0 mV phNaP

9.0 mV vhAHP
27.5 mV

khAHP
60.0 mV phAHP

8.43 mV vmNa
43.8 mV

kmNa
43.8 mV pmNa

14.0 mV vmNaP
47.1 mV

kmNaP
47.1 mV pmNaP

6.2 mV vmAHP
27.5 mV

thNa
8.46 mS thNaP

5000.0 mS tmNa
0.25 mS

gL 4.0 nS eL −62.587 mV shNa
−11.8 mV

shNaP
−9.0 mV shAHP

−1.0 mV smNa
6.0 mV

smNaP
3.1 mV smAHP

1.0 mV tmNaP
1.0 mS

thAHP
1000.0 mS tmAHP

5.0 mS
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Figure 20: The activity patterns exhibited by the AHP model (19)-(21) for different fixed

hAHP values.

and an increase in the number of spikes within the burst. These transitions are shown in

Figure 20.

Next, we study the fast subsystem and analyze how the activity patterns change for

changing hAHP using hNaP as the bifurcation parameter. Shown in Figure 21A, B, C are the

one parameter bifurcation diagrams of the fast subsystem with respect to hNaP for different

values of hAHP . The spiking trajectory is overlaid in each figure, depicted in grey. The

attractors of the fast subsystem are the stable equilibrium points, colored red, and the stable

periodic orbits, colored green, respectively. Since, hNaP evolves at a slower rate compared

to the fast variables, the trajectory will always move rapidly towards the fast subsystem

attractors. Once on these attractors, it will follow the slow variable nullcline. Hence, hNaP

drifts to the right if it is below the nullcline (dashed black curve) and drifts to the left if it is

above the nullcline. When hAHP=1 in Figure 21A, we have a SNIC bifurcation and the stable

oscillations end at the saddle node. The trajectory in this case stabilizes to the periodic orbit

at the SNIC. This is because there is zero net drift in hNaP along this orbit. However, when

hAHP reduces (Figure 21B,C, first notice that the homoclinic point (hNaP=hHC) shifts more
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to the left of the saddle node (hNaP=hSN)and there are stable oscillations for hNaP < hSN .

Second, the reduction in hAHP also reduced the amplitude of oscillations and the stable

oscillations are mostly above the hNaP nullcline. Hence, hNaP drifts to the right on the lower

stable branch of the v-nullcline since its below the hNaP nullcline. Once it hits the saddle

node, its quickly attracted to top branch of the v-nullcline with stable periodic orbits where

overall drift of hNaP is to the left. The oscillations end at the homoclinic point and falls

back to the lower stable branch of the v-nullcline giving a burst.

The one parameter bifurcation diagrams shown in Figure 21A, B, C are summarized

in the two-parameter bifurcation diagram of the fast subsystem with respect to hNaP and

hAHP ( Figure 21D). The ramping burst trajectory is overlaid in grey. The burst starts with

slow tonic spiking corresponding to high hAHP value (black asterisks). When hAHP reduces,

it transitions to a fast spikes on the top branch of the v-nullcline. It eventually hits the

homoclinic curve (red asterisks) and fall to the lower branch of the v-nullcline. It traverses

this branch till it hits the saddle node (black asterisks again), loses stability and jumps to

the upper branch to start oscillations again.

3.3 SPK model

In the model presented in this section, we use a contrasting concept in comparison to the

AHP model. Here, we modify the bursting model in [4] with an additional slowly inactivating

sodium current, which we call ISPK .

The equations of the model are :



cv′ = −(INa(v, hNa,mNa) + IK(v, n) + INaP (v, hNaP ,mNaP )

+ ISPK(v, hSPK , h2SPK ,mSPK) + IL(v) + Isyn(v)),

h′
SPK = (hSPK∞(v)− hSPK)/thSPK

,

h′
2SPK = (h2SPK∞(v)− h2SPK)/τh2SPK

(v),

m′
SPK = (mSPK∞(v)−mSPK)/tmSPK

,

(22)
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Figure 21: (A)-(C) Bifurcation diagrams of fast subsystem of the AHP model (19)-(21) with

respect to hNaP for different values of hAHP . (A) hAHP=1 (B) hAHP = 0.66 (C) hAHP = 0.33

(D) The two-parameter bifurcation diagram of fast subsystem of the AHP model (19)-(21)

with respect to hNaP and hAHP .
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(B)

Figure 22: (A) Ramping burst pattern exhibited by the SPK model (22), (23) for default

parameter values given in Table 5 (B) The activity patterns exhibited by the SPK model for

different fixed hSPK values.
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where the ISPK , or the spike current has an activation variable mSPK as well as two

inactivation variables hSPK , which evolves at a fast timescale, and h2SPK , which inactivates

at a slower rate. The fast inactivation of sodium current is needed to terminate the spikes

and to produce bursting pattern while h2SPK is an additional slow inactivation gate we added

to help shape the burst pattern. The equations for hNa,mNa, hNaP ,mNaP and n are same

as the AHP model.

The expressions for the currents and activation functions in (22) are given by:

ISPK(v, hSPK , h2SPK ,mSPK) = gSPK mSPK hSPK h2SPK (v − eK),

hSPK∞(v) = (1 + e−(vhSPK
+v)/shSPK )−1,

h2SPK∞(v) = (1 + e−(vh2SPK
+v)/sh2SPK )−1,

τh2SPK
(v) = th2SPK

cosh((kh2SPK
+ v)/ph2SPK

)−1,

mSPK∞(v) = (1 + e−(vmSPK
+v)/smSPK )−1,

(23)

All the other currents and activation functions are the same as the AHP model. The

default parameter values are given in Table 5 for which the SPK model (22),(23) exhibits

the ramping pattern shown in Figure 22A.

In the SPK model we added a slowly inactivating sodium current ISPK . The h2SPK

variable reduces slowly during the burst as seen in Figure 22A. When h2SPK is near 1, the

model exhibits slow tonic spiking (Figure 22B). When h2SPK decreases, it weakens the inward

current ISPK , thereby reducing the voltage peak, vmax, of the spike. Since vmax is lower,

the outward current turns on with less strength. The results in weaker hyperpolarization

and more spikes transitioning to a burst. When h2SPK is reduced further, we see that the

spike height reduces more, leading to the weaker hyperpolarization between spikes and an

increase in the number spikes in the burst. Hence, when dynamic h2SPK reduces during the

burst, it starts off as slow tonic spiking and then progresses to a full burst with decreased

hyperpolarization between spikes producing the ramping bursting pattern. The bifurcation

analysis of the model, which is identical to the AHP model is shown in the Appendix (Figure

51).
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Table 6: Default parameter values for SPK model (22),(23):

gNa 150.0 nS gNaP 3.0 nS gK 220.0 nS

gsyn 0.285 nS eNa 55.188 mV eK −69.829 mV

esyn −10.0 mV c 36.0 pF vhNa
67.5 mV

khNa
67.5 mV phNa

−12.8 mV vhNaP
60.0 mV

khNaP
60.0 mV phNaP

9.0 mV vhSPK
27.5 mV

vh2SPK
27.5 mV sh2SPK

−1.0 mV kh2SPK
60.0 mV

vmSPK
27.5 mV smSPK

−1.0 mV vmNa
43.8 mV

kmNa
43.8 mV pmNa

14.0 mV vmNaP
47.1 mV

kmNaP
47.1 mV pmNaP

6.2 mV thNa
8.46 mS

tmNa
0.25 mS tmNaP

1.0 mS thSPK
5.0 mS

tmSPK
0.5 mS gL 4.0 nS eL −62.587 mV

shNa
−11.8 mV shNaP

−9.0 mV shSPK
−1.0 mV

ph2SPK
8.5119 mV smNa

6.0 mV smNaP
3.1 mV

thNaP
5000.0 mS th2SPK

1000.0 mS
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3.4 Dynamic spike height model (DSPK)

The biologically relevant model associated with the AHP model is already presented

in [3]. The potassium ion concentration dynamics help control the strength of hyperpolar-

ization between spikes in the burst in [3]. In this section, we present an relevant model

associated with the SPK model concept. We modify the model presented in [4] by adding

an additional inactivation gate associated with the sodium current INa [56, 57, 68]. The

differential equations for the model dynamics are given by:


cv′ = −(INa(v, hNa, h2Na,mNa) + IK(v, n) + INaP (v, hNaP ,mNaP )

+ IL(v) + Isyn(v)),

h′
2Na = (h2Na∞(v)− h2Na)/τh2Na

(v),

(24)

Notice that we added an additional inactivation gate h2Na to the sodium current INa in (24).

The equations for the other variables, hNa,mNa, hNaP ,mNaP and n are same as in.

The expressions for the INa current and steady state activation functions for h2Na in (24)

are given by:

INa(v, hNa, h2Na,mNa) = gNa mNa
3 hNa h2Na (v − eNa),

h2Na∞(v) = (1 + e−(vh2Na
+v)/sh2Na )−1,

τh2Na
(v) = th2Na

cosh((kh2Na
+ v)/ph2Na

)−1,

(25)

All the other currents and activation functions are same as in .

The default parameter values are given in Table 7 for which the model exhibits a ramping

bursting pattern shown in Figure 23. The parameter values in Table 7 were obtained from

an optimization routine in MATLAB and we can vary them away from these values without

significantly affecting the ramping pattern. Notice that the burst starts as relatively slow

oscillations and then continues to a full burst.
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Table 7: Default parameter values for DSPK model (24)-(25) :

gNa 108.271 nS gNaP 3.7666 nS gK 250.148 nS

gsyn 0.3921 nS eNa 55.0 mV eK −73.0 mV

esyn −10.0 mV c 36.0 pF vhNa
68.0 mV

khNa
67.5 mV phNa

−12.8 mV vhNaP
60.8242 mV

khNaP
63.5594 mV phNaP

9.41933 mV vh2Na
44.3497 mV

kh2Na
−49.2889 mV ph2Na

4.5524 mV vmNa
43.8 mV

kmNa
43.8 mV pmNa

14.0 mV vmNaP
47.1 mV

kmNaP
47.1 mV pmNaP

6.2 mV thNa
8.46 mS

tmNa
0.25 mS tmNaP

1.0 mS th2Na
1010.0 mS

eL −62.5 mV shNa
−11.9 mV shNaP

−9.3338 mV

sh2Na
−1.92387 mV smNa

6.0 mV smNaP
3.1 mV

thNaP
5250.0 mS gL 4.0 nS
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Figure 23: Ramping burst pattern exhibited by the DSPK model (24)-(25) for default pa-

rameter values given in Table 7

3.5 Robustness of DSPK model

To study the robustness of the ramping burst pattern to parameter changes, we examine

the activity patterns exhibited by the model across a range of gL and gNaP values, as shown

in Figure 24A. Figure 24B shows the bifurcation diagram of the full model (24)-(25) with

respect to gL. As gL increases, we see that the model undergoes a Hopf bifurcation, resulting

in stable oscillations which terminates at a SNIC bifurcation. For a fixed hNaP value, the

activity pattern transitions from depolarized stable equilibrium point to spike/burst and

eventually settles to a stable equilibrium as gL increases. In Figure 24A, the spiking region is

shown in black, while the bursting region is shown in blue. The red shaded region corresponds

to ramping bursts. We see that the ramping effect of bursts is observed only within small

region of parameter space.

A comparison of the inter-spike intervals within the bursting patterns exhibited by the

models : Model presented in [4], AHP model (19)-(21), SPK model (22), (23) and DSPK

model (24), (25) is shown in Figure 25. Notice that in the original unmodified model shown

in (A), ISI is increasing, and spike frequency is decreasing, whereas the opposite is true for
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(A)

Figure 24: (A) The different activity patterns exhibited by model (24), (25) for different

gNaP and gL values. (B) Bifurcation diagram of the full model (24), (25) with respect to gL.
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the modified models in shown (B)-(D).

To analyze the model further, we look at the different activity patterns exhibited by

the model (24)-(25) for gNaP = 3.7666 and varying gL. In Figure 24A, its shown that the

activity pattern changes from spiking for low gL values to bursting for gL around 4, and then

turns to spiking again for higher gL values. In fact, numerical simulations show that before

transitioning to spiking, the model also exhibits amplitude modulated fast spiking for a very

small range of gL values near 3.54. Therefore, in the rest of this section we analyze in detail

the four patterns exhibited by the model for gNaP = 3.7666.

When gL is increased, the membrane potential is more hyperpolarized and requires higher

range of values of mNa and mNaP to start oscillations. This, in turn, causes the vmax of

the spike/burst to be higher. Similarly, when gL increases, the model does not require

the inactivation variables hNa, h2Na and hNaP to reduce much to again hyperpolarize the

voltage. Hence, when gL increases, the hNap, h2Na, and hNa also have higher range of values.

Since vmax is higher, IK turns on more strongly causing the voltage to hyperpolarize more.

This, in turn, causes vmin to the lowered. Hence, to conclude, when gL is increased, the

amplitude of oscillations increases. Since the rate of change of h2Na depends on v in (24),

the increase in range of v results in increase in the timescale of h2Na (See Appendix for

non-dimensionalization process).

Non-dimensionalization of the DSPK model for different values of gL is shown in the

Appendix. hNaP has a slow timescale for all values of gL. For gL = 3.5, its clear that h2Na

can also be considered as slow. However, when gL is increase to 4 and then to 4.6, the

timescale of h2Na is less clear. We analyze h2Na as having an intermediate timescale for

gL = 4 and having fast timescale for gL = 4.6. This is after considering timescale difference

between h2Na and hNaP as well as h2Na and the other fast variables in the model (primarily,

n which is the slowest variable in the fast subsystem). Supplementary Figure 52 shows the

absolute values of the derivatives of hNaP , h2Na and n in DSPK model (24), (25) along the

activity pattern for different values of gL. We indeed see that the rate of change of h2Na is

closer to hNaP for gL = 3.5 and closer to n for gL = 4.6.

We now analyze the activity pattern for different gL values below.
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Figure 25: ISI of different models (A) Model presented in [4] (B) AHP model (19)-(21) (C)

SPK model (22), (23) (D) DSPK model (24), (25).
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3.5.1 gL = 3.5

In this case, when gL=3.5, the model generates fast spiking. See Figure 26A. From non-

dimensionalization process, we see that in this case, both hNaP and h2Na can be considered

to be slow variables. Therefore, the model for gL=3.5 can be studied as a 5-fast and 2-slow

system.

During the spike, we notice that hNaP ≈ 0.163 throughout the spike. Since h2Na is

also much slower than the other fast variables in the model, we can look at the bifurcation

diagram of the fast subsystem with respect to h2Na with hNaP fixed at 0.163. This is shown

in Figure 26B with the spiking trajectory at gL = 3.5 superimposed in grey. Notice that the

spiking trajectory corresponds to a stable periodic orbit in the fast subsystem. This implies

that there is zero net drift of h2Na at h2Na ≈ 0.45 with hNaP ≈ 0.163. It looks like spiking

trajectory corresponds to a fixed point in the slow system.

To verify our observations in Figure 26B and to further analyze the slow subsystem, we

plot the two parameter bifurcation diagram of the fast subsystem with repesct to h2Na and

hNaP (Figure 26C). We also calculate the slow averaged nullclines for the slow subsystem

averaged over the fast subsystem oscillations. When averaging over the fast spikes, the slow

averaged system of equations are given by :

h′
NaP = 1

T (hNaP ,h2Na)

∫ T (hNaP ,h2Na)

0
(hNaP∞(v(hNaP , h2Na))− hNaP )/τhNaP

(v(hNaP , h2Na))

h′
2Na = 1

T (hNaP ,h2Na)

∫ T (hNaP ,h2Na)

0
(h2Na∞(v(hNaP , h2Na))− hNaP )/τh2Na

(v(hNaP , h2Na))

(26)

where v(hNaP , h2Na) is the stable periodic orbit of the fast-subsystem for fixed hNaP and

h2Na having period T (hNaP , h2Na).

The equations (26) are valid over the range of h2Na - hNaP values where there are stable

oscillations in the fast subsystem. In fact, in Figure 26C, this correspond to the parameter

range to the right side of the HC curve (shown in green) and to the left side of AH curve

(shown in blue). We see in Figure 26C that the slow averaged nullclines intersect at a fixed

point very near h2Na ≈ 0.45 with hNaP ≈ 0.163. Averaging theory tells us that this fixed

point corresponds to a stable periodic orbit in the full system. However, there is an ϵ error
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Figure 26: (A) Spiking pattern exhibited by the DSPK model (24), (25) for gL = 3.5. (B)

Bifurcation diagram of the fast subsystem with respect to h2Na for hNaP = 0.163 (C) The

two-parameter bifurcation diagram of the fast subsystem with respect to h2Na and hNaP .

The slow averaged nullclines of h2Na and hNaP are shown in blue and black respectively. In

both (B) and (C), the spiking trajectory is overlaid in grey. Notice that the spiking trajectory

is very close to the fixed point of the slow averaged system shown in red asterisks.
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in the fixed point and averaged nullcline calculation since they are calculated assuming hNaP

and h2Na to be fixed. Hence, combining figures we now have the full analysis of the fast

spiking trajectory for gL=3.5.

3.5.2 gL = 3.54

When gL is increased to 3.54, the model exhibits amplitude modulated spiking (AM)

shown in Figure 27A. The timescale of h2Na does not vary much from the previous case since

the increase in gL is very small. Hence, in this case, the model can again be analyzed as a

5-fast and 2-slow model.

Fixing hNaP= 0.168, we first look at the 1-parameter bifurcation diagram with respect

to h2Na(See Figure 27B). Note that, compared to the previous case, we no longer have a

stable oscillation in the full system. The trajectory, depicted in grey, initially drifts to the

right through the stable periodic orbits of the fast subsystem and subsequently reverses its

direction, drifting to the left. From this its clear that there is a drift in hNaP as well since

the trajectory reverses its direction. To analyze this further we look at the two parameter

bifurcation diagram (See Figure 27C) with respect h2Na and hNaP .

Since we are assuming both h2Na and hNaP to be slow, the slow averaged equations

given in (26) are valid for this case as well. The two parameter bifurcation diagram (See

Figure 27C) superimposed with the slow nullcline for h2Na and hNaP , shows that even though

the slow averaged nullclines intersects at a fixed point, it’s unstable with a stable periodic

orbit around it. Hence, when increasing gL from 3.5 for 3.54, the stable fixed point in

the slow averaged system destabilizes and we have a stable periodic orbit instead. In fact,

numerical simulations show that at a gL value close to 3.54, the full system undergoes a torus

bifurcation.

3.5.3 gL = 4

The bursting pattern exhibited by the model (24), (25) for gL = 4 is shown in Figure

23. Non-dimensionalization shows that for gL = 4, the timescale constant of h2Na is higher

than that of the previous cases (See Appendix and Supplementary Figure 52). In this case,
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Figure 27: (A) Amplitude modulated (AM) spiking pattern exhibited by the DSPK model

(24), (25) for gL = 3.54. (B) Bifurcation diagram of the fast subsystem with respect to h2Na

for hNaP = 0.168 (C) The two-parameter bifurcation diagram of the fast subsystem with

respect to h2Na and hNaP . The slow averaged nullclines of h2Na and hNaP are shown in blue

and black respectively. The fixed point in the slow averaged system is shown in red asterisks.

In both (B) and (C), the AM spiking trajectory is overlaid in grey.
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we analyze h2Na as having an intermediate timescale with hNap being slow and the other

variables being fast.

Let us analyze the case with gL = 4 in parts. We divide the bursting region in four parts

as shown in Figure 28A and analyze each region separately. The bifurcation diagrams of the

fast subsystem with respect to h2Na for different hNaP corresponding to the different regions

are shown in 28B,C,D.

Since h2Na and hNap are still slower than the other variables in the system, we plot the

two-parameter bifurcation diagram (See Figure 29). However, keep in mind that all curves

have epsilon error to them since we keep hNap and h2Na fixed while calculating it. Similarly,

since h2Na has an intermediate timescale between the slow hNap and other fast variables in

the model, we can calculate the slow averaged nullcline for h2Na with hNap fixed. This is

shown in blue in Figure 29. This nullcline is valid (up to an epsilon error) for the all the

analysis below.

Since h2Na is assumed to be faster than hNaP , we cannot compute the averaged slow

equation for hNap with h2Na fixed, as we have done in previous cases. We can however,

calculate it, if h2Na values are close to its slow nullcline and average flow in h2Na is almost

zero. The other option is for us to average over the fast-intermediate system. This is again

only possible for those hNap values where there are stable oscillations in the fast-intermediate

system.

Let us now analyze each of the different regions:

Region I : The burst starts at the cyan diamond marker. The bifurcation diagram of

the fast subsystem with respect to h2Na for hNaP = 0.22 is shown in Figure 28B. Note that

within this region, the fast-intermediate subsystem exhibits stable oscillations. Hence, we

can calculate the average slow drift of hNap using the equation :

h′
NaP =

1

T (hNaP )

∫ T (hNaP )

0

(hNaP∞(v(hNaP ))− hNaP )/τhNaP
(v(hNaP )) (27)

where v(hNaP ) is the stable periodic cycle of the fast-intermediate system for fixed hNaP

with period T (hNaP ).

For each fixed hNaP value in this region, we can successively fix h2Na at various values,

average over the fast subsystem oscillation for each (hNaP , h2Na) pair, and determine the
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location of the h2Na averaged nullcline. We find that the burst is to the right of the h2Na slow

averaged nullcline, and hence h2Na shows a net decrease on average during each oscillation

that occurs within this region.

Next, we average over the fast-intermediate oscillation for each fixed hNaP , using equation

(27). The right hand side of this equation is positive, and hence, hNaP increases slowly in

this region. Therefore, in region I, we observe slow tonic oscillations with h2Na exhibiting an

intermediate timescale and decreasing trend, while hNap has a slow, increasing drift. This

continues until we hit the red diamond.

Region II : In this region, with increase in hNaP , we lose the homoclinic curve, and

consequently lose the stable oscillations in the fast-intermediate subsystem. Instead, in this

case, we have a stable oscillations in the fast subsystem. Since h2Na is faster than hNaP ,

h2Na is gradually attracted to its nullcline (on intermediate timescale) while the fast variables

engage in fast periodic cycles and hNaP remains roughly constant. Therefore, in this case,

we get fast oscillations with h2Na having decreasing trend and hNaP almost constant. This

continues till the black diamond marker. The bifurcation diagram with respect to h2Na for

hNaP ≈ 0.245 is shown in 28C.

Region III: After the black diamond, h2Na is close to its nullcline (average drift is ap-

proximately zero in every cycle) making its timescale comparable to that of hNaP . Hence,

in this region we can calculate the average slow drift of hNaP using the equation

h′
NaP =

1

T (hNaP , h2Na)

∫ T (hNaP ,h2Na)

0

(hNaP∞(v(hNaP , h2Na))− hNaP )/τhNaP
(v(hNaP , h2Na))

(28)

where v(hNaP , h2Na) is the stable periodic orbit of the fast-subsystem for fixed hNaP and

h2Na having period T (hNaP , h2Na). The equation (28) is valid since the average drift of h2Na

in this region is approximately zero, that is,

h′
2Na =

1

T (hNaP , h2Na)

∫ T (hNaP ,h2Na)

0

(h2Na∞(v(hNaP , h2Na))−hNaP )/τh2Na
(v(hNaP , h2Na)) ≈ 0

.

We see that the right hand side of (28) is negative. Therefore, in this case, hNaP and

h2Na have comparable timescales with both hNaP and h2Na decreasing. Continuing forward,
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Figure 28: (A) Ramping bursting pattern exhibited by the DSPK model (24), (25) for gL = 4.

To analyze the burst further, we divide it into different regions as shown (B) Bifurcation

diagram of the fast subsystem with respect to h2Na for hNaP = 0.22. (C) Bifurcation diagram

of the fast subsystem with respect to h2Na for hNaP = 0.245. (D) Bifurcation diagram of the

fast subsystem with respect to h2Na for hNaP = 0.215. In all (B)-(D), the bursting trajectory

is overlaid in grey.
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Figure 29: The two-parameter bifurcation diagram of the fast subsystem of DSPK model

(24), (25) with respect to h2Na and hNaP for gL = 4. The slow averaged nullcline of h2Na

averaged over the oscillations in the fast subsystem is shown in blue. The slow averaged

nullcline of hNaP averaged over the stable oscillation in fast-intermediate subsystem is shown

as dashed black line. The bursting trajectory is overlaid in grey.
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h2Na hits its nullcline at blue diamond, and starts increasing, causing it to intersect the

homoclinic curve, lose the stable oscillations and fall to the lower branch of the v nullcline.

Region IV: In this region, the burst traverses the lower branch of the v-nullcline till it

hits the SN at cyan diamond marker and jumps up to start slow oscillations in Region I.

We have now analyzed the full burst. Like previously mentioned, slow average nullcline

of h2Na (shown in light blue in 29) is valid through the burst. From cyan to black asterisks

(region I and II) h2Na is considered to have intermediate timescale. Here, we only know the

drift in hNaP in region I where there are stable oscillation in fast intermediate subsystem.

From black to cyan asterisks (region III and IV), h2Na is close to nullcline and can be

considered as slow. Hence in this region, the slow averaged nullcline of hNaP (shown in black

in 29) is valid.

For gL = 3.54 (AM spiking), we had a small amplitude periodic cycle in the hNaP −h2Na

space that does not intersect the homoclinic curve (See Figure 26C). In case of gL = 4,

the amplitude of oscillation in the hNaP − h2Na space (intermediate-slow subsystem) has

grown large enough that it intersecting the homoclinic curve (See Figure 29). This causes

the oscillations in the top stable periodic branch of the fast subsystem to fall to the lower

stable branch, leading to a transition in the activity pattern from spiking to bursting.

3.5.4 gL = 4.6

For gL = 4.6, the model exhibits spiking pattern shown in Figure 30A. Non-dimensionalization

(See Appendix and Supplementary Figure 52) shows that for gL = 4.6, the timescale constant

of h2Na is comparable to the timescale of the fast variables in the model, particularly for

high v values. In this case, we analyze the model as having 6 fast variables and 1 slow vari-

able (hNaP ). Figure 30B shows the bifurcation diagram of the fast subsystem (all variables

including h2Na) with respect to the slow variable hNaP . Notice that the spiking trajectory

corresponds to a stable periodic orbit in the fast subsystem for hNaP ≈ 0.33 (See Figure

30C).
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Figure 30: (A) Spiking pattern exhibited by the DSPK model (24), (25) for gL = 4.6. (B)

Bifurcation diagram of the fast subsystem (now also including h2Na) with respect to hNaP .

The spiking trajectory is overlaid in grey. Notice that the spiking trajectory is a stable

periodic orbit in the fast subsystem for for h2Na = 0.33 (C) The spiking trajectory exhibited

by the model for gL = 4.6 shown in grey whereas the periodic orbit in the fast subsystem

with h2Na = 0.33 is shown in red.
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3.6 Discussion

In this work, we present three models that exhibits ramping bursting pattern. The two

phenomenological models explain how adding slow dynamics to the sodium and potassium

currents, which are responsible for the upstroke and downstroke of the spikes in the burst,

respectively, helps shape the bursting pattern. We then apply this to a more realistic model

by adding an additional slow negative feedback to the inward sodium current and see that

we get the ramping effect. This is based on experimental evidence that suggest that sodium

current may have different inactivation components that evolves at different timescales [68,

56].

Non dimensionalization classifies hNaP as a slow variable and v, hNa, mNa, mNaP , and n

as fast variables. The timescale of h2Na, while always faster than hNaP , is more comparable

to hNaP when gL is low. On the other hand, when gL is higher, the timescale of h2Na becomes

more comparable to the timescale of the other fast variables. Hence, we analyzed h2Na as

having slow timescale in the first two cases with gL = 3.5 and gL = 3.54, an intermediate

timescale when gL=4, and a fast timescale when gL = 4.6. Numerical simulations in Figure

31 shows that when gL increases from 3.5 to 3.54, the critical point becomes unstable and

there are stable periodic orbits in the h2Na-hNaP space which grow in size as gL increases. It

could be further analyzed to check if this is due to a Hopf bifurcation in the slow subsystem.

When the periodic orbit in the slow subsystem grows and starts to intersect the homoclinic

curve, like shown in Figure 29, the oscillations which where stabilized in the upper branch of

v-nullcline loses stability and falls to the stable lower branch. This marks the transition from

AM spiking to bursting. The transition from bursting to the fast spiking when gL=4.6 is not

well defined. We have seen that when gL=4.6, the h2Na variable has timescale comparable

to the other fast variables in the system. We leave the more mathematical analysis of each

of the transitions as future direction for further exploration.

Adding potassium concentration dynamics to a bursting model results in ramping burst-

ing pattern as seen in [3]. However, in both the model in [3] as well as the DSPK model

(24), (25), the parameter range where the model displays ramping effect is very narrow. A

future direction to explore would be to add sodium concentration dynamics to the model. If
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Figure 31: The activity patterns in the h2Na − hNaP space for different values of gL.

the ENa slowly changes during the burst, it is possible that we may see ramping dynamics.

Modeling resurgent Na+ current is yet another direction to explore in order to get ramping

dynamics since it can enhance inward current flow and lead to faster spiking during the burst

[52].
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4.0 The role of Kölliker-Fuse nucleus in breathing variability 1

4.1 Introduction

Breathing is an automatic process produced and shaped by the respiratory central pattern

generator (rCPG), which comprises several neural structures in the brainstem [79]. Extensive

work has characterized the synaptic and ionic mechanisms that generate and regulate the

activity of ventromedullary respiratory neurons and how these mechanisms affect breathing

rhythm and pattern. This study focuses on a major counterpart to the medullary rCPG:

the pontine Kölliker-Fuse nucleus (KF). The KF is part of the parabrachial complex in

the dorsolateral pons and is formed by a collection of neurons surrounding the superior

cerebellar peduncle [90]. Although it was first described as the inspiratory off-switch center,

compelling evidence indicates that the KF activity critically contributes to maintaining the

eupneic 3-phase respiratory pattern (inspiration, post-inspiration, and stage 2 of expiration).

Moreover, KF neurons are required for the adjusting breathing characteristics across a range

of conditions.

Much of this evidence derives from studies featuring significant perturbations in KF ac-

tivity. For example, lesions of the KF substantially alter the respiratory pattern, introducing

augmented variability in frequency and amplitude, or even eliminating the post-inspiratory

phase and thus disrupting eupneic breathing [64, 35, 25, 10, 12, 77, 45]. Chemical excitation

of KF neurons enhances constrictor activity in upper airway muscles and prolongs the du-

ration of the post-inspiratory phase of the respiratory cycle [25]. In contrast, disruption of

GABAergic transmission in the KF induces periodic apneas, respiratory irregularities, and

the loss of abdominal expiratory contractions (or active expiration) during exposure to high

levels of carbon dioxide [2, 20, 9]. KF neurons are also targets for neuromodulators that

modify neuronal excitability and change the breathing pattern and rhythm. In this regard,

activating 5-HT1A (serotonin) receptors in the KF reduces spontaneous apneas, while antag-

1This chapter is based on work submitted to The Journal of Physiology : John, S., Barnett, W., Abdala,
A., Zoccal, D., Rubin, J., & Molkov, Y. (2023). The role of Kölliker-Fuse nucleus in breathing variability.
bioRxiv : the preprint server for biology, 2023.06.15.545086. https://doi.org/10.1101/2023.06.15.545086
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onizing these receptors can destabilize breathing frequency [20]. Some KF neurons express

µ-opioid receptors that, when activated, can cause breathing irregularities and bring about

life-threatening apneas, a mechanism associated with opioid-induced respiratory depression

[5]. In addition to the control of eupneic breathing, the KF also contributes to the res-

piratory adjustments related to behaviors such as vocalization, swallowing, and coughing

[24, 44, 11], acting as a convergent and integrative synaptic station that relays inputs from

suprapontine regions to the rCPG [40]. Despite the evidence showing the critical role of

the KF in breathing control, its cellular organization and interaction with other respiratory

compartments to adjust the respiratory rhythm and pattern remain uncertain.

There is a long tradition of using mathematical modeling and computational techniques

to build theoretical models of the rCPG, develop intuition about how it functions, and test

hypotheses on respiratory rhythm and pattern generation [53, 59, 67]. In the past, models

were developed integrating a medullary CPG circuit with a pontine component using an

established reduced, activity-based mathematical framework [9, 95, 59, 32, 72, 71]. Previ-

ous models differed in their assumptions about pontine interactions and intrinsic dynamics,

which need to be better characterized experimentally. These models have provided a proof

of principle for the proposed central role of the KF in respiratory control and have yielded

preliminary predictions about interactions of the KF with other pontine and medullary res-

piratory areas as well as their contribution to respiratory rhythmicity and pattern formation

under a variety of conditions. The details of these predictions, however, depend on the as-

sumptions made about intrinsic properties and activity patterns of KF neurons, synaptic

interactions in the circuit, and conditions leading to aberrant KF activity and subsequent

perturbations of breathing. To reproduce specific experimental observations, model networks

that include the KF have required the presence of specific synaptic pathways, such as from

inhibitory neurons in the Bötzinger Complex (BötC) [95] and NTS pump cells [58]. Mod-

els have also suggested that KF neurons may have certain intrinsic properties modulating

their activity such as endogenous bursting [95]. This capability, however, has never been

demonstrated experimentally.

Understanding the mechanisms underlying the control of KF activity is essential to iden-

tify its role in breathing pattern formation in eupnea and to determine how changes in

82



these mechanisms affect the expiratory motor pattern and contribute to inducing stereo-

typed breathing patterns such as those observed in Rett syndrome [2]. In this study we

consider various KF circuit organizations paired with different baseline activity patterns and

local input sources to assess which may explain a set of experimental observations not previ-

ously addressed. Specifically, each model configuration was tested against the following list

of benchmarks based on the literature: (1) reduction of GABA/5-HT1A inhibition in the KF

leads to an aberrant respiratory pattern in which breathing is intermittently disrupted by

periods of apnea [2, 20]; (2) the duration of apneic periods is relatively constant or increases

as the inhibition level to KF decreases [2, 20]; (3) when KF is dysfunctional, a sufficient

inchibition of the KF neurons transforms intermittent breathing into eupnea [2, 1]; (4) a

further increase in inhibition of the KF neurons causes abdominal expiratory activity during

the late part of the E2, or late-E, phase of the respiratory cycle, with a frequency that in-

creases in a step-wise, or quantal, manner as inhibition is strengthened [47]. We discuss two

viable model configurations, while presenting evidence against certain others, and formulate

experimentally testable implications in each case.

4.2 Methods

To study the contribution of KF activity to the generation and modulation of various

respiratory patterns, we developed and analyzed two families of computational models of a

respiratory brain stem neuronal circuit. In the first family, which we call the tonic model,

the KF population is homogeneous with steady, sustained or tonic activity under normal

conditions. The other family combines two KF populations, one that shows sustained tonic

activity (as in the tonic model) and another that is intrinsically silent under normal condi-

tions. Based on the inclusion of the second population, we refer to this as the silent model.

Schematic diagrams of the models are shown in Figure 32.

The models presented in this work are adapted from previous models for respiratory

neurons and circuits [72, 71, 95]. To form these models, we incorporated the KF component

into a pre-existing model presented by [71]. Similarly to that model, the models in this
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work include the following respiratory populations, which together comprise what we call

the respiratory core: pre-inspiratory (pre-I) and early-inspiratory (early-I) populations of the

pre-Bötzinger Complex (pre-BötC) and post-inspiratory (post-I) and augmenting expiratory

(aug-E) populations of the Bötzinger Complex (BötC). The pre-I and early-I populations

are active during the inspiratory phase of respiration (I phase), whereas aug-E and post-I

are active during the expiratory phase (E phase). The models also include a late-expiratory

(late-E) population of the lateral parafacial region (pFL), which remains inactive during

resting breathing [16].

All of the synaptic connections between these respiratory populations in the models

shown in Figure 32 are either directly shown in, or inferred from, experimental observations

[71]. Both models also include a KF sub-population, named KF-t, that is tonically active

under normal conditions and helps to maintain eupnea. The silent model includes KF-

t and another KF sub-population, named KF-s, that is silent under normal conditions.

The interactions of the KF units with the respiratory core in these models occur through

excitatory connections from KF-t and KF-s to the post-I population. These connections have

been proposed previously [58, 45, 9, 37]. Little is known about sources of inhibition to KF

neurons. For exploratory purposes, we considered both tonic inhibition to the KF originating

from an unspecified outside source and recurrent inhibitory connections within the KF. We

analyze the extent to which each of these inhibition types, within each model, yields outputs

consistent with respiratory perturbations seen in Rett syndome (RTT), and we also study

the emergence of late-E activity (active expiration). Previous work by [95] introduced a

simplified representation of pulmonary stretch receptor feedback related to I phase output.

As part of the analysis of the silent model done in the current chapter, we study the primary

effect of this pathway by considering what happens if we introduce an additional excitatory

connection from post-I to KF-s (shown as a black dashed arrow in Figure 32B). Although this

connection would need to run through another inhibitory population and thus be manifested

via disynaptic disinhibition in reality, for simplicity we treat it as a monosynaptic excitation

in this work.

Each component in these models is described by a single two-dimensional system of

Hodgkin-Huxley type equations representing the dynamics of a membrane voltage variable
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Figure 32: Schematic diagrams for the respiratory network models considered in this work.

(A) Tonic model. (B) Silent model. The labels b6, b7, β6, β7 refer to parameters used to

represent the strengths of certain connections explored in the model. Abbreviations referring

to neuronal populations and sites are described in the text.
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v and a secondary slow variable h or m. We consider this framework as a simplified rep-

resentation of dynamics in which the activity levels of neurons within each population are

synchronized, and the reduction that it provides allows us to use the tools of phase plane

analysis to understand model dynamics and the effects of parameter variations. To present

the equations for this system, we assign a subscript from 1 to 5 for the pre-I/I, early-I, aug-E,

post-I and late-E units, respectively. The Kf-t unit is labeled as 6 and the additional Kf-s

unit in the silent models as 7.

The pre-I/I (i = 1) and late-E (i = 5) units feature a persistent sodium current [18, 71]

and hence are represented by the following differential equations:

 v′i = − (INaP i
+ IKi

+ ILi
+ Isynei + Isynii +Wi)/C,

h′
i = (hNaP i

− hi)/tNaP i
,

(29)

where INaP i
is the persistent sodium current, IKi

represents the delayed rectifier potassium

current, ILi
is the leak current, Isynei and Isynii are the excitatory and inhibitory synaptic

currents, and Wi represents the noise, respectively, for each unit. All of the other units in the

model network (i ∈ {2, 3, 4, 6, 7}) are modeled as adaptive neurons and obey the following

equations:


v′i = − (IADi

+ IKi
+ ILi

+ Isynei + Isynii +Wi)/C,

m′
i = (γi fi(vi)−mi)/tAD for i ∈ {2, 3, 4},

m′
i = pi((αi fi(vi)−mi)/tADi

) for i ∈ {6, 7},

(30)

where IADi
is a second potassium current causing adaptation during spiking and tAD is a

constant shared for all i ∈ {2, 3, 4}. Importantly, the parameters tNaP i
from (29) and 1/tAD

and pi/tADi
from (30) are small relative to the timescale of the voltage variables, such that

the hi and mi evolve relatively slowly.
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The various currents in (29) and (30) are defined as follows:

INaP i
= gNaP i

∗mNaP (vi) ∗ hi ∗ (vi − eNa),

IKi
= gKi

∗mk(vi)
4 ∗ (vi − eKi

),

IADi
= gAD ∗mi ∗ (vi − eKi

),

ILi
= gLi

∗ (vi − eLi
),

Isynei = gsyne ∗ (vi − esyne) ∗ (αi ∗ fi(vi) + ai +
∑7

j=1,j ̸=i ai,j ∗ fj(vj)),

Isynee = gsyni
∗ (vi − esyni

) ∗ (βi ∗ fi(vi) + bi +
∑7

j=1,j ̸=i bi,j ∗ fj(vj)).

(31)

In system (31), we introduce asterisks to indicate multiplication, to avoid confusion relating

to the vi-dependent terms in the first two equations.

The noise term, Wi, in (29) and (30) is

Wi = si ωi

√
dt, (32)

where ωi ∼ N (0, 1) (i.e., a normally distributed random variable with mean 0 and standard

deviation 1) and t is the time variable. For most of the analysis in this work, we turn off the

noise by setting si = 0. We indicate clearly where noise has been turned on when we describe

the results. In this case, we perform simulations using the Euler method in XPPAUT [28]

with timestep dt = 0.1.

The activation functions associated with (29),(30), and (31) are given by:

mNaP (vi) = (1 + exp((vi − vmNaP
)/kmNaP

))−1,

hNaP (vi) = (1 + exp((vi − vhNaP
)/khNaP

))−1,

mK(vi) = (1 + exp((vi − vmK
)/kmK

))−1,

tNaP i
= tNaP (cosh((vi − vhNaP

)/khNaP
))−1,

tADi
= ci + ni/(1 + cosh((vi − vADi)/kADi)),

(33)

with the constants ci, ni defined for i ∈ {6, 7}. The output function fi for i ∈ {1, 2, 3, 4, 5},

which appears in both (30) and (31), takes the piecewise linear form
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fi(vi) =



0 if
vi − vmin

vmax − vmin

≤ 0,

vi − vmin

vmax − vmin

if 0 <
vi − vmin

vmax − vmin

< 1,

1 otherwise,

(34)

whereas the output function fi for i ∈ {6, 7} is given by

fi(vi) =


0 if

vi − vmin

vmax − vmin

≤ 0,

vi − vmin

−vmin

otherwise,

(35)

for constants vmin and vmax. The default values of these constants and all other parameters

used in the models appear in Tables 8, 9.

4.3 Results

4.3.1 Tonic Model

4.3.1.1 Transitions from normal breathing to periodic breathing

For the default parameter values given in Table 8, the tonic model generates a eupneic

breathing pattern (Figure 33A). Notice that KF-t is assumed to exhibit tonic activity, with

a constant non-zero output f6(v6) ≈ 0.15 (pink), which may result from sustained drive

from elsewhere in the pons that may potentially be tuned by feedback pathways. The tonic

excitatory input from KF-t promotes the long E phase duration compared to the I phase

duration during normal breathing activity in the model. Experiments show that a significant

reduction of the GABA inhibition to the KF leads to respiratory apneas [2], suggesting the

hypothesis that such a reduction underlies respiratory disruptions as seen in RTT. When

the level of sustained inhibition to KF-t in the model is reduced, KF-t produces endogenous

oscillations, which in turn lead to a prolonged active phase of the post-I population on some

cycles that interrupt the normal breathing pattern and would manifest as respiratory apneas

in a physiological system (Figure 33B). A comparison of the KF-t output traces between the
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Table 8: Default parameter values for the tonic model.

gNapi 5.0 nS (i ̸= 5) gNap5 4.72 nS gKi
5.0 nS (i ̸= 6)

gLi
2.8 nS (i ̸= 6) gL6 2.5 nS gAD 10.0 nS

gsyni
60.0 nS eNa 50.0 mV eKi

−85.0 mV (i ̸= 6)

eLi
−60.0 mV (i ̸= 6) eL6 −66.5 mV esyne 0.0 mV

a1 0.03 a2 0.875 a3 0.9

a5 0.11 a6 0.15 a12 0.5

a53 0.25 a64 0.95 α6 1.0

b23 0.42 b24 0.22 b25 0.09

b32 0.1 b41 1.0 b42 0.66

b45 0.101 β6 0.05 tNaP 4.0× 103

vmNaP −40.0 mV vmK −30.0 mV vhNaP −55.0 mV

kmNaP −6.0 mV kmK −4.0 mV khNaP 10.0 mV

c6 7.0× 102 n6 1.0× 104 vAD6 −42.0 mV

γi 1.0 (i ̸= 4) γ4 2.0 si 0.0 (∀i)

gK6 0.0 nS gsyne 10.0 nS eK6 −90.0 mV

esyni
−75.0 mV a4 0.6 a51 0.5

b6 0.001 b31 0.15 b43 0.2

tAD 2.0× 103 vmax −20.0 mV vmin −50.0 mV

kAD6 0.9 mV p6 0.0286
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Table 9: Default parameter values for the silent model. The other parameter values for the

model are as given in Table 8.

a7 0.1 a74 0.75 α7 1.0 β7 0.0

n7 5.0× 103 vAD7 −50.0 mV kAD7 −0.5 mV p7 0.02

b7 0.02 c7 4.0× 102

two panels of Figure 33 shows that while KF-t output is elevated during the active phase

of its oscillations relative to its sustained output level in the tonic case, the KF-t output

becomes lower than the tonic level during the silent phases, or inter-burst intervals, in the

oscillatory case. This difference causes the respiratory cycles that occur in between apneas

within periodic breathing (Figure 33B) to be shorter than the normal cycle periods seen in

eupneic breathing (Figure 33A), consistent with experimental observations under RTT-like

conditions [2].

We used nullcline analysis to better understand which forms of inhibition to KF-t could

support the generation of the activity patterns that we expect based on experimental findings

and to explain why the tonic KF-t output switches to an oscillatory pattern when inhibition

is reduced in a sustained way. We see in Figure 34 that KF-t, as modeled by (30), has a

cubic v6-nullcline (solid blue). The m6-nullcline (solid red) intersects the active branch of

the v6-nullcline for default parameter values, corresponding to a stable equilibrium point at

v6 ≈ −42 (solid grey square). Notice in Figure 34A that when we reduce the recurrent or

self-inhibition within the KF-t (lower β6), the slow nullcline intersects the middle branch

of the v6-nullcline, destabilizing the equilibrium point and leading to oscillatory behavior

of KF-t. The oscillatory trajectory of the KF-t unit in this regime is overlaid in grey in

the figure panel. The trajectory oscillates between the left and right stable branches of the

fast v6-nullcline. The reduction of tonic inhibition (b6) that comes in from outside to the

KF-t, in contrast, does not depend on the output of the KF-t unit and hence shifts the

v6-nullcline vertically, which does not induce a transition in the stability of the equilibrium
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Figure 33: Tonic model output patterns. (A) Normal respiratory rhythm for the default

parameter values given in Table 8. (B) Periodic breathing when recurrent inhibition is shut

off, β6 = 0.0 (simulated RTT). KF engages in slow oscillations (pink trace, bottom subplot)

that drive prolonged E phases.

91



point and hence does not lead to KF-t oscillations (Figure 34B). Thus, we henceforth assume

for this model that the recurrent inhibition strength β6 is non-zero in the eupneic regime

and decreases in the RTT condition, which represents a prediction of this work, and for

simplicity we assume that the tonic inhibition strength b6 = 0, since this form of inhibition

is not necessary to explain experimental observations.

While Figures 33, 34 illustrate the extreme case of full removal of the inhibition to KF-t

in the tonic model (β6 = 0), Figure 35A,B show the periodic breathing exhibited by the tonic

model at the partially reduced inhibition levels β6 = 0.025, which is near the value where

KF-t transitions from tonic to oscillatory behavior, and β6 = 0.015. For these intermediate

inhibition levels, although the KF-t equilibrium point lies on the middle branch of the v6-

nullcline and is unstable, its position is in between the two intersection points shown in

Figure 34A; that is, it lies closer to the local maximum of the v6-nullcline. The proximity

of the equilibrium and the m6-nullcline to this maximum means that the trajectory evolves

very slowly at the end of the KF-t active phase, resulting in a longer KF-t oscillation period

and larger duty cycle for larger β6. This effect explains the prolonged KF-t oscillations in

Figure 35A, B.

Even though the KF oscillations are longer for these transitional values of β6 than for

the simulated RTT condition (β6 = 0), notice that the actual apnea durations are relatively

short for these values and increase slightly as β6 decreases (Figure 35C). How can longer

KF-t active durations produce shorter apneas when apneas in the model result from KF-t

drive to the post-I unit? The key to explaining this outcome is to focus on the level of

KF-t output while it is active. Our simulations show that when KF-t output is above about

0.23, it supports prolonged post-I activity corresponding to apneas. When KF-t output falls

below this value, closer to levels comparable to the output in the tonic regime with β6 = 0.05,

the normal respiratory rhythm takes over. For intermediate β6 near the transition to KF-t

oscillations, during each prolonged KF-t active period, KF-t output relatively quickly reaches

close to the tonic level and plateaus. Thus, apnea duration is relatively short. When β6 is

reduced from there, although KF-t active phases become shorter, the amplitude of each

oscillation increases (see Figure 34A) and it takes longer for KF-t output to decrement to

tonic levels. Therefore, even though the KF-t burst duration decreases when inhibition is

92



Figure 34: Tonic KF-t model in the phase plane. (A) The default model has a stable

equilibrium point with v6 ≈ −42 (grey square), corresponding to tonic activity. When

the recurrent inhibition to KF-t is removed, the local maximum (black asterisk) of the

resulting v6 nullcline (blue dashed curve) shifts to the right of the slow nullcline (red curve).

Oscillations emerge in KF-t in this case (grey orbit). (B) The v6 nullcline shifts upwards

when tonic inhibition is removed as shown by the dashed blue curve. KF-t remains tonic in

this case since the local maximum of the v6 nullcline (black asterisk) remains on the left of

the equilibrium point (see also zoomed view in inset).
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lowered, the apnea duration increases. As a final subtlety, we note that the actual apnea

duration plotted in Figure 35C (green curve) is not monotonic. This non-monotonicty arises

because the apnea duration also depends on the phase of post-I activity when KF-t becomes

active. Regardless of this phase, post-I stays active for a similar amount of time after KF-t

activation occurs, based on the level of KF-t output. Thus, when KF-t activation occurs

relatively late within the E phase, the overall apnea will be long, and this phase relation

need not vary monotonically with β6.

Since KF-t output falls to near tonic levels during each KF-t active phase, we only

count the first post-I active period within each of these KF-t cycles as an apnea. Thus, the

frequency of apneas increases as the recurrent inhibition β6 is lowered from 0.025 (Figure

35D). These findings match the experimental results reported previously [2, 47].

To further study burst patterning and transitions in activity patterns when recurrent

inhibition to KF-t is lowered, we modified the tonic model to include additive Gaussian

noise in the voltage equation (si = 1.0 in (29) and (30)), as described in Section 4.2. Figure

36A,B show the total respiratory duration (i.e., from one E onset to the next) during the

(n+1)st burst relative to the duration for the nth burst (Tn+1 versus Tn) for inhibition levels

β6 = 0.0 (RTT) and β6 = 0.025 (just after the onset of KF-t oscillations) along with the

same information for the default value β6 = 0.05. During normal breathing (blue dots), this

level of noise induces little variability in the respiratory period (which takes values between

4 and 5s). In the case of RTT (red dots), respiratory periods cluster around two values, one

corresponding to long apneas each having a duration of nearly 8s and the other to shorter

normal breathing periods of approximately 3s. The reason that the normal, non-apneic

respiratory bursts in RTT are shorter than those defined for the default model parameters

is that, as we pointed out with respect to Figure 35, the inter-burst KF output level within

KF-t oscillations is much lower than its tonic output level at the baseline level of inhibition.

For the sub-normal inhibition level β6 = 0.025 (grey dots) considered in Figure 36B, the

durations of the longest post-I cycles are generally shorter than the prolonged apneas in the

RTT case (Figure 36B, red dots), as discussed above. In the intermediate case, as we have

also discussed already, each post-I cycle duration depends on the gradually declining KF-t

output level (Figure 35A), and hence there is much more variability in the respiratory cycle
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Figure 35: Tonic model output depends on the level of recurrent inhibition within the KF-

t population (β6). (A) Respiratory pattern with a recurrent inhibition strength near the

point of transition of KF-t from tonic to oscillatory (β6 = 0.025). (B) Respiratory pattern

with recurrent inhibition strength β6 = 0.015, representing an intermediate case between

that shown in (A) and the RTT condition shown in Fig. 33B. (C) When β6 is decreased,

the period of KF-t oscillations and its burst or active phase duration decreases while apnea

duration remains roughly the same but slightly increases. (D) Apnea frequency, defined as

KF-t burst frequency (i.e., the inverse of the period of oscillations), rises as the inhibition

level to KF-t decreases.
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Figure 36: (A) Total respiratory cycle duration during the (n+ 1)st cycle relative to the nth

cycle for the tonic model with noise, β6 = 0.05 (default value, blue dots) and β6 = 0.0 (RTT,

red dots). (B) Total respiratory cycle duration during the (n+ 1)st cycle relative to the nth

cycle for the tonic model with noise, β6 = 0.05 (default value, blue dots) and β6 = 0.025

(gray dots).
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duration, with less of a clear clustering of durations, than for the extreme β6 values. These

results are consistent with the findings in [2]. In particular, Figure 5Cb in [2] shows that the

effects of blocking KF GABAA receptors in wild-type rats are comparable to Figure 36A.

Past literature has shown that a systemic application of various 5-HT1AR agonists can re-

duce the frequency of spontaneous apneas and restore normal respiratory function to various

degrees in the murine model of RTT [1, 20]. These agonists can potentially boost a potas-

sium current and thus enhance tonic inhibition within the KF [51]. They can also facilitate

glycinergic neurotransmission [75] or opening of chloride channels [55], each of which may

underlie an increase in recurrent inhibition. In Figure 37A, we show nullclines for the KF-t

unit, comparing the RTT scenario in which KF-t is oscillatory to a case with increased recur-

rent inhibition. The slow nullcline (solid red) intersects the middle branch of the v6-nullcline.

This comparison repeats that given in Fig. 34A, showing that if recurrent inhibition to KF-t

(β6) increases, the tonic KF activity is restored, which implies that periodic breathing will

switch back to the normal breathing pattern. On the other hand, from the RTT condition,

increasing the external tonic inhibition (b6) to KF-t does not switch the nullcline intersection

off of the middle branch (Fig. 37A, dashed v6-nullcline) and hence maintains the oscillatory

KF activity, until with a sufficient increase in b6 the intersection moves to the left branch

of the v6-nullcline (Fig. 37A, dash-dotted v6-nullcline) and stabilizes. This stable equilib-

rium point location implies that KF-t becomes fully inactive and no longer supports normal

breathing.

Overall, these simulations indicate that a reduction in the recurrent inhibition to the KF

neurons that provide tonic input to the ventromedullary neurons can trigger episodic apneas

and drive breathing irregularities. In this scenario, reduction of tonic inhibition to the KF

does not produce similar effects. A prediction emerging from this analysis is that drugs that

boost endogeneous inhibition would be more efficacious at reversing breathing irregularity

than drugs that boost or produce an exogenous tonic inhibitory drive.
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Figure 37: (A) Starting with oscillatory KF-t (RTT), β6 = 0.0. When recurrent inhibition,

β6, is increased from 0.0, KF-t becomes tonic. When tonic inhibition, b6, is increased, KF-t

remains oscillatory. When it’s increased further, it becomes silent. (B) Tonic model with

inhibition increased above baseline. When recurrent inhibition is increased, KF-t remains

tonic with its equilibrium point on the right branch of the v6-nullcline but the point moves

to a lower v6 value, corresponding to less KF output. When tonic inhibition is increased, the

equilibrium point moves to the middle branch and destabilizes, and thus a transition from

tonic KF output to KF oscillations occurs.
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4.3.1.2 Emergence of active expiration

Expiration is a process that becomes active in conditions of increased respiratory drive.

Exposure to low oxygen (hypoxia) or high carbon dioxide levels (hypercapnia) triggers active

expiration with the recruitment of abdominal muscles during the late part of the E2 phase

(i.e., late expiration, or late-E) to improve pulmonary ventilation [8]. Decreased KF activity

is known to play a role in the emergence of late-E abdominal activity [45, 9]. Moreover,

[47] showed that systemic administration of the 5-HT1AR agonist NLX-101 increases the

respiratory drive, elevating the respiratory frequency and causing the appearance of active

expiration (late-E activity) under resting conditions.

We first consider the phenomenon of late-E activation. The tonic model has an excitatory

synaptic connection from KF-t to post-I and an inhibitory connection from post-I to late-E

(see Figure 32A). This architecture suggests that when there is a reduction in KF activity, a

decrease in post-I output will result, which in turn will reduce the post-I dependent inhibition

to late-E. If KF-t output is reduced sufficently, then late-E should start spiking. This logic

leads us to consider the input-related mechanisms by which 5-HT1A agonists may strengthen

inhibition in the KF. In Figure 37B, we analyze the effect of increasing each of the two

different types of inhibition to KF-t. Initially, the KF-t unit has a stable equilibrium at

v6 ≈ −42. When we increase recurrent inhibition, the slow nullcline (shown in red) still

intersects the modified v6-nullcline (shown in dashed blue) on its right branch, leading to

a stable tonic equilibrium (Figure 37B). In this case, however, the stable equilibrium has

a lower v6 value than originally. Therefore, we see that increasing recurrent inhibition, β6,

reduces the tonic output level f6(v6) of KF-t and eventually causes KF-t output to turn

off. If we instead turn on and increase tonic inhibition to KF-t (b6 > 0), notice in Figure

37B that at first a small reduction in the v6-coordinate of the equilibrium point and hence

in f6(v6) occurs, but this is not sufficient to promote late-E activity. With an additional

increase in b6, the equilibrium point moves to the middle branch of the v6-nullcline and KF-t

becomes oscillatory, leading to continued late-E suppression. Therefore, to see the emergence

of late-E spiking in the tonic model, we gradually increased the recurrent inhibition (β6) to

KF-t and kept b6 = 0.
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For the parameter values given in Table 8, there is no late-E activation, as seen in

Figure 33A. An emergence and quantal acceleration of late-E activity with increasing β6 are

illustrated in Figure 38. When we increase β6 to 0.3 (Figure 38A), late-E spikes once during

every three post-I bursts. For β6 = 0.6 (Figure 38B), late-E spikes once during every two

post-I bursts. Increasing β6 to 1.8 (Figure 38C) results in a late-E spike during every post-I

burst. The increasing late-E spiking frequency with respect to β6 is summarized in Figure

38D. This figure plots the ratio of the number of late-E spikes to the number of post-I bursts

on the y axis. For example, at β6 = 1.2, the ratio is 2/3, corresponding to two late-E spikes

during every three post-I bursts.

In the experiments of [47], this increase was largely due to a decrease in the post-I

duration while the duration of pre-I oscillations remained roughly the same. Under increases

in β6, our tonic model reproduces these findings; indeed, we can see in Fig. 38 that the

E phase becomes shorter as β6 increases from panel A to panel C (see middle subplots),

due to the reduced KF excitation to post-I, while the I phase duration essentially does not

change (see top subplots). These results are quantified across a range of β6 values in Figure

39. Overall, the fact that our model results parallel the data from previous experiments

indicates that the assumptions we have made in constructing the tonic model, including the

importance of recurrent inhibition within the KF-t populations, are plausible and suggests

that our findings may be useful to guide future experiments.

4.3.2 Silent Model

In contrast to the tonic model, the silent model has two KF units: KF-t and KF-s. The

values for all of the parameters that appear in both the tonic model and the silent model

remain the same as in the tonic model (Table 8), while the values of parameters specific to

the silent model are given in Table 9. With these values, KF-t is tonic, with a stable critical

point for which f6(v6) ≈ 0.15, and KF-s is silent, with a stable critical point below vmin such

that its output is zero. Note that the lack of output of the KF-s unit does not reflect an

inability to activate; rather, this unit remains quiescent in the baseline model tuning relevant

for eupneic rhythm generation, just as the late-E population does. The bursting pattern of
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Figure 38: Quantal acceleration of late-E in the tonic model. (A)-(C) Burst patterns exhib-

ited by the tonic model at different inhibition levels. (A) β6 = 0.3. (B) β6 = 0.6. (C) β6

= 1.8. (D) The late-E spiking frequency increases with respect to the recurrent inhibition

strength β6.
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Figure 39: Durations of inspiration and expiration and overall respiratory period vary with

ln(β6) in the tonic model. The gradual decrease in the period with increasing β6 comes from

a drop in the E phase duration, whereas the I phase duration remains roughly constant.

the silent model for the default parameter values naturally matches that of the tonic model

since KF-s is silent (Figure 40). Hence, our analysis of the role of KF in active expiration

resulting from increases in inhibition within the KF, and the corresponding Figures 37B, 38

and 39, apply for the silent model as well.

As with the tonic model, we consider nullclines for the silent model as a means to

determine what forms of inhibition of the KF allow the model to match experimental findings

on RTT-like respiratory patterns. Importantly, in the silent model, we assume that if the

KF-s population becomes active, then it will provide drive to post-I, and in our analysis,

we manipulate the inhibition to KF-s. This approach makes the silent model a distinct

alternative to the tonic model. If we instead varied inhibition to the KF-t unit in the

context of the silent model, then the KF-s unit would simply remain silent and hence would

be irrelevant, so our results would trivially match the previous subsection.

Nullcline analysis shows that for the silent model, KF-s transitions to oscillatory behavior

when we reduce the tonic inhibition strength to the KF-s unit, b7 (Figure 41A), because this
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Figure 40: Eupneic respiratory rhythm exhibited by the silent model for default parameter

values given in Tables 8, 9.

loss of inhibition causes the model to no longer have a stable fixed point in the silent phase.

The same does not happen with recurrent inhibition, since KF-s is initially silent and hence

receives no recurrent inhibitory input regardless of β7; for simplicity, we fix β7 = 0 in our

default parameter set. In the subsequent subsections, we will consider the effects of reduced

tonic inhibition in the silent model.

Before considering effects of reduced inhibition in the silent model, we note that once

tonic inhibition is reduced, increasing it restores the normal breathing rhythm (Figure 41B).

On the other hand, starting from the case of reduced tonic inhibition and introducing a small

amount of recurrent inhibition keeps KF-s in an oscillatory state, and a further increase in

β7 causes the v7-nullcline to become monotonic. Once this occurs, the KF-s system has a

stable critical point at a v7 level such that f7(v7) > 0, corresponding to a tonic KF-s output

(Figure 41B). Overall, in contrast to the tonic model, which suggests that inhibition within

the KF is recurrent and hence depends on KF activity levels, the silent model suggests that

inhibition to KF respiratory neurons is sustained and arrives from an outside source. Future

experimental determination of the nature of inhibition to KF respiratory neurons will help
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to distinguish which, if any, of our models is consistent with the biological reality.

When the tonic inhibition, b7, to KF-s is reduced in the silent model, KF-s activity

transitions from quiescent, with a stable critical point on the left branch of the v7-nullcline, to

oscillatory, with an unstable critical point on the middle branch (Fig. 41A). The oscillations

in KF-s provide oscillatory drive to post-I and produce a periodic breathing pattern similar

to that observed in RTT. At the minimal value of b7 = 0.0, which we will refer to as our silent

model representation of RTT, the apneic breathing pattern exhibited by the model is shown

in Figure 42A. Notice that during RTT, the model does not produce late-E activation. This

absence contrasts with the tonic model in Figure 33B, where we see late-E spiking during

RTT-like apneas. The onset of periodic breathing, as b7 is reduced in the silent model,

occurs at b7 ≈ 0.015 and the burst pattern just below this inhibition level is shown in

Figure 42B. In Figure 42C,D we plot the period of KF oscillations, the apnea duration

and the apnea frequency as the inhibition strength b7 is varied. The apnea duration remains

roughly constant and is non-monotonic in b7 (shown in green Figure 42C), whereas the apnea

frequency increases as b7 decreases (Figure 42D). These results agree qualitatively with the

results for the tonic model (Figure 35C,D).

Recall from Figure 33B and Figure 35A,B that as the inhibition level decreases in the

tonic model, the KF-t burst/active phase duration decreases while the silent phase duration

remains roughly the same. This causes the period of KF-t oscillations to decrease and apnea

frequency to increase. In the silent model, however, we see in Figure 42A,B that the period

of KF-s oscillations decreases mainly due to the reduction of silent phase duration of KF-s

when b7 is lowered from 0.015. This effect arises because with less inhibition, the v7-nullcline

in the silent phase moves farther away from the m7-nullcline (Fig. 41A), which yields less of

a delay in the jump-up to the active phase. Therefore, this is another distinction between

the tonic and silent models.

To study burst patterning in the silent model, we modified the model by adding Gaussian

noise with mean 0 and standard deviation 1 by setting si = 1 in (29) and (30). Figure 43

shows the total respiratory duration during the (n + 1)st burst relative to the duration for

the nth burst (Tn+1 versus Tn) for inhibition levels b7 = 0.0 (RTT) and b7 = 0.014 (just after

the onset of KF-s oscillations) and b7 = 0.02, the default value. The model did not show
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Figure 41: Phase plane analysis of impacts of altered inhibition in the silent model. (A) When

the tonic inhibition to KF-s is removed, the slow nullcline (red curve) intersects the middle

branch of the resulting v7-nullcline (green dashed curve). Therefore, oscillations emerge in

KF-s in this case. (B) Starting with oscillatory KF-s (RTT scenario), when tonic inhibition

is increased, KF-s becomes silent (i.e., nullclines intersect on left branch of dashed green

v7-nullcine). When recurrent inhibition is increased, KF-s remains oscillatory (intersection

on middle branch of cyan dashed v7-nullcline). When it is increased further, KF-s becomes

tonic (montonic black v7-nullcline).
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much variability in respiratory periods (blue dots in Figure 43) during normal breathing

conditions, as expected. Notice in Figure 42A that during KF-s oscillations, the inter-burst

KF-s output matches the KF-s output level (≈ 0) during normal breathing. Therefore, in the

RTT regime in this model, we expect that the breathing cycle durations in between apneas

will remain the same as in the eupneic case. Aligning with this expectation, in the RTT case,

we observe two different respiratory cycle durations (red dots in Figure 43): apneas with

duration ≈ 9s and normal breathing cycles during the silent phase of each KF-s oscillation,

which match the cycle duration with the default model. This perseverance of the normal

cycle duration even in the RTT condition differs from the activity in the tonic model since,

in the tonic model under RTT conditions, the cycle duration in between apneas is shorter

than the default respiratory breathing period.

For an intermediate value of inhibition in the silent model, for example b7 = 0.014, the

apneas are shorter compared with the RTT case (Fig. 43). We see in Fig. 42C, however,

that apnea duration is clearly non-monotonic in b7. Notice from Fig. 42A,B that for different

levels of b7, the initial KF-s activation can occur at different phases within the ongoing post-

I active phase. For certain intervals of b7, this phase shift changes smoothly, but as b7 is

decreased through other values, KF-s activation can switch from occurring early in every nth

post-I cycle to late in every (n − 1)st cycle, yielding increased apnea durations. To avoid

this arbitrary phase relation, we next introduced a putative excitatory connection from the

post-I unit to the KF-s unit and examined its effects.

Including this excitatory drive does not change the eupneic breathing pattern exhibited

by the silent model, since KF-s is silent in this regime (Figure 40). The effects of varying in-

hibition on the v7-nullcline and its intersection with the m7-nullcline also remain unchanged,

and thus we focus on effects of varying tonic inhibition to KF-s. As was the case without

the drive from post-I to the KF-s unit, when the inhibition strength parameter b7 is reduced

sufficiently, the KF-s unit produces endogenous oscillations, which in turn leads to a pertur-

bation in the normal breathing rhythm (Figure 44A). The transition of KF-s from the silent

to the oscillatory state occurs now occurs at b7 ≈ 0.02 and the bursting pattern exhibited

at this inhibitory level is shown in Figure 44B. Notice that in this case, post-I activation

on certain cycles immediately recruits KF-s activation, without any phase lag. This effect
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Figure 42: The silent model exhibits apneas, with preservation of normal cycle durations

in between them, as tonic inhibition is reduced. (A) Periodic breathing exhibited by the

model for b7 = 0.0 (RTT). (B) Respiratory pattern at an inhibition value near the point of

transition of KF-s from tonic to oscillatory (b7 = 0.014). (C) The period of KF-s oscillations,

KF-s burst/active phase duration, silent phase duration and apnea duration with respect to

b7. (D) Apnea frequency, which is equal to the inverse of the period of KF-s oscillations,

increases as the inhibition level to KF-s decreases.
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Figure 43: Total respiratory duration during the (n + 1)st burst relative to that in the nth

burst for silent model 1 with noise with b7 = 0.02 (default value), b7 = 0.014, and b7 = 0.0

(RTT).

smooths out the dependence of apnea duration on b7 and results in a monotonic relationship.

The results related to apnea duration and frequency (Figure 44C,D) qualitatively agree

with those for the tonic model (Figure 35C,D) as well as for the silent model without feedback

from post-I to KF-s (Figure 42C,D). The excitatory connection from post-I to KF causes the

apnea duration to increase steadily as b7 is decreased in this augmented model (Figure 44C)

and also results in a step-like decline in KF-s period as b7 decreases. This pattern represents

a quantal effect: an approximately constant plateau occurs when KF-s activates once every

n post-I cycles for fixed n, and then a step down to a lower period occurs when b7 becomes

low enough that KF-s can activate once every n− 1 post-I cycles.

Figure 45 shows the burst patterning of the augmented silent model with Gaussian noise.

This figure is comparable with Figure 43 in that the cycle durations between apneas carry

over from the normal case to the cases with reduced inhibition levels. The new feature here

is that the additional synaptic connection makes the cycle durations less variable than they

were previously.

Finally, we do not separately consider the emergence of active expiration in the silent
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Figure 44: The inclusion of excitatory drive from post-I to KF-s reduces the variability in

cycle durations. (A) Periodic breathing exhibited by the model for b7 = 0.0 (RTT). (B)

Respiratory pattern at an inhibition value near the point of transition of KF-s from tonic

to oscillatory (b7 = 0.02). (C) The period of KF-s oscillations, KF-s burst/active phase

duration, KF-s silent phase duration, and apnea duration with respect to b7. In this case,

the blue curve is identical to and completely hidden by the green curve, due to the connection

from post-I to KF-s. (D) Apnea frequency increases non-monotonically as the inhibition level

to KF-s decreases.
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Figure 45: Total respiratory duration during the (n + 1)st burst relative to that in the nth

burst when noise is included, with b7 = 0.03 (default value), b7 = 0.02 and b7 = 0.0 (RTT).

model. Since the KF-s population is silent by default, increasing the inhibition to KF-s from

its baseline state would have no effect, while increasing the inhibition to KF-t with KF-s

remaining silent would simply repeat the results that we obtained with the tonic model as

described in Section 4.3.1.2.

4.4 Discussion

In this work, we consider a family of respiratory circuit models, which include the KF,

designed to be minimal in terms of the complexity of the neural units, endogenous neuronal

dynamics, and synaptic connections involved. We show that two of these models capture

the central experimental findings on the response of respiratory patterns to manipulations

involving the KF: (1) reduction of GABA-mediated inhibition to KF neurons induces periodic

or intermittent breathing with apneas [2, 20]; (2) durations of apnea events are maintained or

lengthen with reductions in the inhibition level to KF [2, 20]; (3) when intermittent breathing
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occurs, increases in KF inhibition can induce eupnea [2, 1]; (4) from the eupneic state,

additional increases in KF inhibition causes quantal activation of abdominal late-E activity

[47]. Within this computational framework, we identify the synaptic connections that are

compatible with the experimental results and obtain predictions about KF properties, circuit

organization, and respiratory neuron behaviors under various conditions that could be tested

to distinguish the two models and to check their validity. Our work builds on a series of

assumptions and logical inferences, supported by the literature, which we now discuss before

turning to the predictions that we derive as well as model limitations and future directions.

4.4.1 KF as a source of breathing irregularities

Intermittent breathing, such as observed in RTT, manifests as breathing that is periodi-

cally disrupted by apneic episodes. These apneas are accompanied by abnormally strong con-

strictor activity to the upper airways driven by motor neurons that exhibit a post-inspiratory

activity pattern during regular breathing [93, 1, 82]. Post-inspiratory activity strongly de-

pends on excitatory outputs from the KF [79, 25]. Disruption of inhibitory transmission

in the KF, causing disinhibition, leads to periodic breathing with periods of excessive post-

inspiratory activity to the larynx [20, 2]. These findings provide strong (yet indirect) evidence

that intermittent breathing can result from periodic KF overactivation on a time scale slower

by an order of magnitude than respiration. Such a slow timescale suggests that the emerging

oscillations can originate within the KF, resulting from a combination of intrinsic neuronal

properties and synaptic inputs to the region. Our work illustrates some possible mechanisms

that could give rise to this patterned KF activity.

4.4.2 Baseline activity in the KF

KF contains a large population of glutamatergic neurons that connects with the rCPG

[37]. A recurrent excitatory network endowed with spike frequency adaptation properties

(i.e., exhibiting a reduction in firing frequency within ongoing spiking activity) has the ca-

pacity to produce population-based rhythmic bursting. Changing parameters can transition

such a system to a bursting regime regardless of whether it initially lies in a silent or tonically
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active state with a steady activity level. Therefore, we consider two basic KF network con-

figurations. In the first configuration (tonic model), KF is represented by a single population

with a tonic activity pattern under baseline conditions, which can transition into a bursting

regime by relevant perturbations. In the second configuration (silent model), KF includes a

subpopulation that is quiescent at baseline, either due to a a balance of endogenous currents

that is inadequate to induce spiking without boosts in excitatory drive or due to suppression

by ongoing inhibition, but starts producing oscillatory activity as parameters change. In the

latter case, we assume that there is another population of neurons in the KF that always

produces tonic output to provide the necessary excitatory drive to the rCPG. Still, unlike in

the tonic model, this population does not become oscillatory under the manipulations that

we consider.

4.4.3 Sources of GABA-mediated inhibition

Experiments show that reduced GABAergic inhibition in the KF leads to the emergence

of slow oscillations modulating rCPG activity and causing breathing irregularities [2]. De-

pending on the KF network configuration, we infer different origins of this inhibition. Specif-

ically, in the tonic model, this inhibition appears to be recurrent. Although we implement

this recurrence as self-inhibition in our minimal model, this recurrent inhibition is a reduced

representation of a scenario in which the KF population excites inhibitory interneurons that

in return provide feedback inhibition. The location of these inhibitory interneurons is not

specified by our model. One can speculate that these neurons can represent a local inhibitory

subpopulation providing negative feedback within the KF for self-regulation. Alternatively,

they could be located in another site, such as the BötC or the parabrachial nucleus, proved

to have recurrent connectivity with KF [30, 36, 90]. In contrast, in the framework of the

silent model, the GABAergic inhibition in KF is predicted to take the form of a tonic or

sustained drive, probably originating externally to the KF; for example, the NTS is known

to send feedforward inhibitory projections to the KF and hence could represent the source

of this input [65, 49].
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4.4.4 Mechanisms of 5-HT1A inhibition

Experimental evidence indicates that manipulating 5-HT1A receptors in the KF produces

changes in respiratory activity comparable to the changes induced by modulating GABAer-

gic inhibition [20, 2]. Specifically, 5-HT1A antagonists evoke intermittent breathing while

5-HT1A agonists can reduce breathing irregularities or even restore eupnea [20, 15]. While

serotonergic inputs originate outside of the KF (e.g., in the raphe nucleus), their functional

effects, mediated by 5-HT1A receptors, are compatible with both the recurrent and tonic

inhibition scenarios. Specifically, tonic inhibition could be membrane hyperpolarization due

to the activation of 5-HT1AR-coupled potassium channels [60], which is compatible with the

silent model. On the other hand, another known impact of 5-HT1AR activation is the en-

hancement of glycinergic inhibition in neurons that express the GlyR α3 subunit [75]. This

mechanism could be involved in altering the recurrent inhibition provided by glycinergic in-

terneurons. Potentially, the interneuron population could coexpress both GABA and glycine

and thus could mediate the effects of both GABAergic and serotonin-modulated recurrent

inhibition in the tonic model. Finally, our results on the emergence of active expiration (Sec-

tion 4.3.1.2) suggest that 5-HT1A agonists may strengthen the recurrent inhibition within a

tonic population of KF neurons.

4.4.5 Additional predictions and implications

Both the tonic and silent models, with appropriate forms of inhibitory connections, cap-

ture the set of benchmarks that we initially imposed. While it is not feasible to use these

models for quantitative predictions, our modeling framework can allow us to propose exper-

imental designs that can be deployed to test and select between these models. For starters,

the structural differences that distinguish the two models themselves represent predictions.

Specifically, the tonic model assumes that the KF would feature prominent recurrent inhibi-

tion, through which increased activity in KF neurons strengthens the inhibitory inputs that

these neurons receive. In contrast, the silent model predicts an important role for a sustained

inhibitory input to KF from an outside source, as well as the presence of a subpopulation of

KF neurons that exhibit little or no activity under control states of eupneic respiration.
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The network configurations predicted by the two models also have different implications

for abdominal activity during periods of intermittent breathing when inhibition in KF is

compromised. Indeed, in the tonic model, reduction in recurrent inhibition transforms steady

KF activity into an oscillatory regime with periods of overactivity inducing temporary apnea,

adaptation to near a normal activity level, and then periods of silence (see Fig. 35A, B).

During the latter periods, KF does not provide excitation to post-inspiratory neurons in

BötC, which results in a disinhibition of expiratory neurons in pFL and evokes abdominal

late-E activity that drives active expiration (Fig. 35A, B). In contrast, in the silent model,

oscillations in KF emerge in a previously silent population while the steady activity of the

tonic KF subpopulation remains unaltered. Therefore, conditions for the abdominal activity

breakthrough are never created (see Fig. 42A, B). Interestingly, some apneic events in some

RTT mice are accompanied by abdominal activation without a clearly corresponding late-E

activation [1], but this result does not suffice to distinguish the two models, as late-E activity

could be present yet phase-shifted by other factors.

Typically, experiments relating to respiration in RTT and under compromised KF in-

hibition compare across two groups, such as control versus experimental mice or wild-type

versus knock-out mice. Using computational models allows us to generate predictions about

the effects that we expect from gradual changes that induce states in-between the extreme

endpoints. In the tonic model, reductions in inhibition to KF induce a regime of KF oscilla-

tions with a long epoch of sustained KF activity within each cycle. In this regime, apneas are

interspersed with respiratory cycles with a mix of durations, including some slightly longer

and some slightly shorter than those seen under control conditions (Figures 35, 36). Further

decreases in inhibition are predicted to shorten the KF active duration and the oscillation

period, with a small increase in apnea duration and a regularization of cycle durations in

between apneas. The silent model points to a different pattern of changes with progressive

decrease in inhibition to KF. In this model, we see that when the onset of apneas occurs,

the durations of the cycles in between the apneas are fairly stereotyped and match those

seen in control conditions (Figures 42, 43). Decreasing inhibition allows apnea durations

to show a net increase, but unlike in the tonic model, this relationship is non-monotonic.

If we hypothesize the inclusion of an additional excitatory connection from BötC neurons
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to the quiescent KF population, then we recover a more consistent phase relation between

expiratory BötC and KF activity, which regularizes the trend in apnea durations (Figures

44, 45).

In summary, the tonic and silent models are both consistent with published experiments

but can be differentiated in terms of their predictions about KF activity in baseline condi-

tions, inhibitory pathways that impact KF activity, and alterations in respiratory patterns

resulting from decreases as well as increases in inhibition to the KF. Finally, an interesting

possibility that should also be kept in mind is that the tonic and silent models may both

be valid but in different regimes of respiratory circuit function; for example, changes under

vagotomy may alter KF activity in a way that corresponds to switching between these two

models. These possibilities require experimental verification to be validated.

4.4.6 Model limitations and future directions

By starting from a minimal modeling framework, we were able to use analytical tools,

including analysis of nullclines in certain phase planes, to argue against the presence of spe-

cific combinations of KF endogenous dynamics and forms of inhibition to the KF, while

also providing a proof of principle that certain other configurations can capture a range of

experimental findings and merit further consideration. A natural next computational step

would be to address the limitations of this minimal modeling framework by implementing

the proposed circuit arrangements in a more complete model featuring populations of spiking

neurons with a full complement of known transmembrane ion currents in each of the con-

stituent brain regions as well as more biologically detailed synaptic interactions. Past work

has shown that endowing KF neurons with intrinsic bursting capabilities and also assuming

the presence of certain synaptic interactions between neurons in the KF, in the parabrachial

nucleus (PBN), and in the BötC produces a circuit that also produces eupneic respiratory

output and captures the effects of vagotomy as well as periodic breathing following reduc-

tion of GABAergic inputs to the KF [95]. Because these ideas were considered previously

and represent a specific set of assumptions that go beyond our minimal framework (e.g.,

involvement of a PBN component), we did not consider these properties in this work. While
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the results that we obtained show that endogeneous KF oscillations are not necessary to

explain experimental findings, since previous studies have demonstrated the presence of KF

neutrons with phasic discharge patterns both with and without vagotomy [61], another nat-

ural future direction will be to compare these frameworks directly and to explore possible

ways to integrate these models. Of course, future experimental work to directly derive more

information about the intrinsic properties of KF neurons, their endogenous dynamics, and

the synaptic interactions in which they are involved would be an invaluable complement to

computational approaches. Hopefully the findings from this work and other computational

studies can guide these experimental investigations in productive directions.

4.4.7 Conclusions

Our modeling results, tuned to capture experimental observations, highlight the impor-

tance of the KF neurons in maintaining eupneic breathing and support the hypothesis that

disruptions in KF activity can contribute to the emergence of pathological respiratory phe-

notypes. Our predictions suggest two different possible circuit organizations that may be

present within the KF, with neuronal subpopulations displaying distinct intrinsic charac-

teristics and synaptic connections. These new possibilities can foster future experimental

and pre-clinical studies examining in detail the proposed features and their involvement in

pathological states associated with breathing irregularities, such as RTT.
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5.0 Conclusion

Many of the reduced mathematical models that exhibit square-wave bursting yield tran-

sitions to an alternative pseudo-plateau bursting pattern with small parameter changes. This

susceptibility to activity change could represent a problematic feature in settings where the

release events triggered by spike production are necessary for function. In the second chapter,

we analyze how model bursting and other activity patterns vary with changes in a timescale

associated with the conductance of a fast inward current. Specifically, using numerical sim-

ulations and dynamical systems methods, such as fast-slow decomposition and bifurcation

and phase-plane analysis, we demonstrate and explain how the presence of a slow negative

feedback associated with a gradual reduction of a fast inward current in these models helps

to maintain the presence of spikes within the active phases of bursts. Therefore, although

such a negative feedback is not necessary for burst production, we find that its presence

generates a robustness that may be important for function.

In the following chapter, we aim to develop models that display ramping bursting pat-

tern exhibited by the neurons in the pre-BötC. We first explore two mechanisms that help

control the spike frequency and burst shape using phenomenological models : (1) AHP,

which controls the strength of hyperpolarization between spikes (2) SPK, which modulates

the spike height in the burst. [3] developed a model that considers the biological mechanism

corresponding to AHP modulation. Following the SPK mechanism, in this work, we present

the dynamic spike height model which exhibits ramping dynamics. Furthermore, we study

the robustness of the ramping pattern and analyze its transitions to other activity patterns

with parameter changes. Some of the parameters in the model, including the extra cellular

potassium concentration and the sodium conductance, may change during the development

of mammals. A future direction would be to more broadly explore how changes to these

parameters affect the bursting pattern.

In last project, we study the dynamics of the Kölliker-Fuse nucleus (KF), which is part of

the parabrachial complex. KF participates in the generation of eupnea under resting condi-

tions and the control of active abdominal expiration when increased ventilation is required.
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Moreover, dysfunctions in KF neuronal activity are believed to play a role in the emergence

of respiratory abnormalities seen in Rett syndrome (RTT), a progressive neurodevelopmen-

tal disorder associated with an irregular breathing pattern and frequent apneas. Relatively

little is known, however, about the intrinsic dynamics of neurons within the KF and how

their synaptic connections affect breathing pattern control and contribute to breathing irreg-

ularities. In the fourth chapter, we use a reduced computational model to consider several

dynamical regimes of KF activity paired with different input sources to determine which

combinations are compatible with known experimental observations. We further build on

these findings to identify possible interactions between the KF and other components of the

respiratory neural circuitry. Specifically, we present two models that both simulate eupneic

as well as RTT-like breathing phenotypes. Using nullcline analysis, we identify the types of

inhibitory inputs to the KF leading to RTT-like respiratory patterns and suggest possible KF

local circuit organizations. When the identified properties are present, the two models also

exhibit quantal acceleration of late-expiratory activity, a hallmark of active expiration featur-

ing forced exhalation, with increasing inhibition to KF, as reported experimentally. Hence,

these models instantiate plausible hypotheses about possible KF dynamics and forms of local

network interactions, thus providing a general framework as well as specific predictions for

future experimental testing.

This work displays a variety of bursting activity exhibited by the respiratory neurons in

mammalian brainstem. In the second chapter, we present square wave and pseudo-plateau

bursting patterns, while third chapter introduces the ramping dynamics, all of which are

observed in pre-BötC neurons. The final project introduces the respiratory rhythm and also

explores the longer than normal expiratory phase activity seen in RTT mice. In this work,

geometric singular perturbation theory serves as the primary tool for analyzing all the models

used to study these distinct activity patterns, as they are multiple-timescale models. We also

use dynamical systems methods such as bifurcation analysis and nullcline analysis to further

analyze the robustness of the bursting patterns with respect to parameter changes. Notice,

however, that in all the models, with the exception for the dynamic spike height model in

chapter 3, there was clear division of timescales into fast and slow components which made

the analysis easier. It was trickier to analyze the timescale of h2Na in the dynamic spike
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height model as the timescale division was less clear.

It is important to realize that, unlike the standard fast-slow models, biological models

can have more than two timescales in them and have components that evolve at different

timescale in different regions of the phase space. All the reduced mathematical models

analyzed in the second chapter have clear separation of variables into fast and slow variables.

However, we show that having an additional inactivation variable that evolves at a particular

rate could improve robustness. The dynamic spike height model in chapter 3 which exhibits

ramping bursts have components varying at three timescales, and the second inactivation

gate associated with the sodium current changes timescale at different burst instances. This

model is also an example where the timescale of a variable changes with parameter variations.

These results demonstrate that when we take into account the additional timescale features

in these models, deviating from the standard fast-slow systems, we observe more interesting

and biologically realistic bursting patterns.
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Appendix A Non-dimensionalization

Non-dimensionalization of a model is a form of scaling that expresses the rate of change

of each model variable as the product of a dimensionless speed and a function of constrained

magnitude. The dimensionless speeds are appropriate to compare across all variables to

evaluate their relative rates of change. In this process, each original variable is represented

as a fraction of a nominal value, often taken to be the maximum of the range over which

that variable is observed to evolve in the dynamics of interest. The equations are then

expressed in terms of these non-dimensional fractions and the magnitudes of the correspond-

ing unitless speeds represent their timescale constants; note that gating variables are already

non-dimensional fractions with maximal values of one, so no scaling is needed for their equa-

tions. We derive the scaled equations in detail for the generic endocrine model (6)–(7); a

similar derivation leads to the scaled equations for all the other models in this work, which

are merely stated for reference.

A.1 Generic endocrine model

Note that the variable n for the generic endocrine model (6)–(7) is a gating variable.

Hence, we represent the other two variables v and c as v = V Qv and c = C Qc, with

dimensionless variables V and C, respectively. Here, Qv and Qc are constants, representing

the nominal values of v and c, respectively. We now derive differential equations for V and

C using that V ′ = 1
Qv

v′ and C ′ = 1
Qc

c′. We start with the equation for V ′:
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V ′ = 1
Qv

v′

= − 1
Qv cm

(ICa(v) + IK(v, n)

+ IK(Ca)(v, c)
)

= − 1
Qv cm

(
gca m

2
∞(v) (v − eca)

+ gk n (v − ek)

+ gkca
c4

c4 + k4
s

(v − ek)

)
= − 1

cm

(
gcam

2
∞(V Qv) (V − ēca)

+ gk n (V − ēk)

+ gkca
C4

C4 + k̄4
s

(V − ēk)

)
,

where ēca =
1
Qv

eca, ēk = 1
Qv

ek, and k̄s =
1
Qc

ks. We now define gmax = max (gca, gk, gkca), so

that the rescaled equation for V becomes

V ′ = −gmax

cm

(
gca
gmax

m2
∞(V Qv) (V − ēca)

+ gk
gmax

n (V − ēk)

+ gkca
gmax

C4

C4 + k̄4
s

(V − ēk)

)
,

which is of the form

V ′ = Rv f(V, n, C),

with f an O(1) function, because at least one of the ratios gca
gmax

, gk
gmax

, and gkca
gmax

equals

1; indeed, the form of m∞(V Qv), defined in (7), does not significantly affect the speed

associated with the calcium current as it is a function on the unit interval. Hence, Rv =

gmax/cm is the constant that represents the timescale on which V evolves. We apply similar

steps to the other two equations so that we obtain dimensionless model equations of the

form 
V ′ = Rv f(V, n, C),

n′ = Rn g(V, n, C),

C ′ = Rc h(V, n, C),

where the functions f , g and h are all O(1).
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Recall that n is already in non-dimensional form and it has timescale constant Rn = 1/τn;

using the same arguments as for m∞(V Qv), the expression n∞(V Qv) (also defined in (7))

has a negligible effect on the order of the right-hand side for n.

The non-dimensonalization process for the C ′-equation is less straightforward. Applying

similar steps, however, we find:

C ′ = 1
Qc

c′

= − fc
Qc

(α ICa(v) + kp c)

= − fc
Qc

(α gcam
2
∞(V Qv) (V Qv − eca)

+ kp C Qc)

= −fc αQv gca
Qc

(m2
∞(V Qv) (V − ēca)

+ kp Qc

αQv gca
C
)
.

The right-hand side of this equation suggests Rc = fc αQv gca/Qc, but this is only true if

the two components in the brackets sum to an O(1) function. We again use the form of

m∞(V Qv) to claim that the first component is O(1). Note that the second component is

linear in C with coefficient fc kp/Rc = 0.015/Rc for the default parameters given in Table 1.

Hence, as long as Rc is at least of order 10
−2, this coefficient is at most 1, as required.

During the analysis, we find that v ∈ [−65, 10] and c ∈ [0, 2]. Therefore, we choose

nominal values Qv = 100 and Qc = 2 for the variables v and c, respectively. the default

parameters from Table 1 then give:

Rv =
max (gca, gk, gkca)

cm
≈ 716,

Rn = τ−1
n ≈ 33,

Rc =
fc αQv gca

Qc

≈ 1.7

(36)

Note that Rc is sufficiently large to justify the factorization for the C ′-equation.
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A.2 Sodium-potassium minimal model

Using the same calculations as done for the generic endocrine model above, we obtain

the dimensionless sodium-potassium minimal model (8)–(9). Since both n and s are gating

variables in this model, only the equation for v needs to be scaled. Again setting v = V Qv,

we find 

V ′ = −gmax

cm

(
gL

gmax
(V − ēL)

+ gna

gmax
m∞(V Qv) (V − ēna)

+ gk
gmax

n (V − ēk)

+ gkm
gmax

s (V − ēk)

− 1
gmax Qv

I
)
,

n′ = 1
τn

(n∞(V Qv)− n) ,

s′ = 1
τs

(s∞(V Qv)− s) ,

where ēL = 1
Qv

eL, ēna = 1
Qv

ena, ēk = 1
Qv

ek, and gmax = max (gL, gna, gk, gkm). Note that

the actual timescale constants for the sodium-potassium minimal model do not depend on

the chosen value for Qv; indeed, m∞(V Qv) as defined in (9) has no significant effect for the

same reasons as in the generic endocrine model, and we can assume Qv is chosen such that

1/(gmaxQv) ≤ 1. By setting all parameters to their default values given in Table 2, we find

timescale constants

Rv =
max (gL, gna, gk, gkm)

cm
≈ 20.0,

Rn = τ−1
n ≈ 6.6,

Rs = τ−1
s ≈ 0.005,

which represent the relative speeds of v, n and s, respectively.
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A.3 Minimal Chay–Keizer model

The equations in terms of dimensionless variables for the minimal Chay–Keizer model (10)–

(11) are derived in complete analogy to the other derivations. The only difference is that

the time constant in the equation for the gating variable n is a function of v, denoted τn(v).

Hence the timescale constant for n depends on v in this case. Since v ∈ [−65, 0] and c ∈ [0, 6]

, we choose nominal values Qv = 100 for V = 1
Qv

v and Qc = 6 for C = 1
Qc

c. Observing

from the analysis that τn(v) = τn(V Qv) ∈ [10, 20], we find for the default parameters given

in Table 3:

Rv =
max (gca, gk, gkca)

cm
≈ 1.8,

Rn =
1

τn(V Qv)
∈ [0.05, 0.1],

Rc =
fc αQv gca

Qc

≈ 0.004.

Note that the timescale constant Rc for the slow variable c requires fc kp/Rc ≤ 1, but with

fc = 0.0058 and kp = 0.00513ms−1 in Table 3, this is certainly satisfied if Rc is of order 10
−3.

A.4 Butera model

Again in complete analogy to the earlier models, we find timescale constants representing

the relative speeds for the variables v, n, and p in the Butera model (12)–(13). Based on

the default parameters values given in Table 4, we find timescale constants:

Rv =
max (gL, gna, gk, gnap, gton)

cm
≈ 1.33,

Rn = τ−1
n ≈ 0.17,

Rp =
1

τp(V Qv)
∈ [10−4, 10−3].
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A.5 AHP model

We find timescale constants representing the relative speeds for the variables v, hNa,

mNa, hNaP , mNaP , n, hAHP and mAHP in the AHP model 19-21. Based on the default

parameters values given in Table 6, we find timescale constants:

Rv =
max (gNa, gNaP , gAHP , gK , gL, gsyn)

cm
≈ 6.11,

RhNa
=

1

τhNa
(V Qv)

∈ [0.157, 3.06]

RmNa
=

1

τmNa
(V Qv)

∈ [4.00, 13.88]

RhNaP
=

1

τhNaP
(V Qv)

∈ [10−4, 0.012]

RmNaP
=

1

τmNaP
(V Qv)

∈ [1.00, 64.46]

Rn =
1

τn(V Qv)
∈ [0.049, 0.796]

RhAHP
=

1

τhAHP
(V Qv)

∈ [0.001, 0.082]

RmAHP
= t−1

mAHP
≈ 0.2

A.6 SPK model

We find timescale constants representing the relative speeds for the variables v, hNa,

mNa, hNaP , mNaP , n, hSPK , h2SPK and mSPK in the AHP model 22, 23. Based on the

default parameters values given in Table 5, we find timescale constants:

125



Rv =
max (gNa, gNaP , gAHP , gK , gL, gsyn)

cm
≈ 6.11,

RhNa
=

1

τhNa
(V Qv)

∈ [0.156, 4.59]

RmNa
=

1

τmNa
(V Qv)

∈ [4.0, 19.89]

RhNaP
=

1

τhNaP
(V Qv)

∈ [10−4, 0.021]

RmNaP
=

1

τmNaP
(V Qv)

∈ [1.0, 148.89]

Rn =
1

τn(V Qv)
∈ [0.048, 0.841]

RhSPK
= t−1

hSPK
≈ 2.0

Rh2SPK
=

1

τh2SPK
(V Qv)

∈ [0.001, 0.144]

RmSPK
= t−1

mSPK
≈ 2.0

A.7 DSPK model

We find timescale constants representing the relative speeds for the variables v, hNa,

h2Na, mNa, hNaP , mNaP and n in the DSPK model 24, 25. Based on the default parameters

values given in Table 7, we find timescale constants.
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When gL = 3.5, timescale constants are :

Rv =
max (gNa, gNaP , gAHP , gK , gL, gsyn)

cm
≈ 6.94,

RhNa
=

1

τhNa
(V Qv)

∈ [0.24, 0.744]

Rh2Na
=

1

τh2Na
(V Qv)

∈ [10−4, 0.011]

RmNa
=

1

τmNa
(V Qv)

∈ [4.0, 4.78]

RhNaP
=

1

τhNaP
(V Qv)

∈ [10−4, 0.002]

RmNaP
=

1

τmNaP
(V Qv)

∈ [1.0, 3.5]

Rn =
1

τn(V Qv)
∈ [0.13, 0.49]

When gL = 4, timescale constants are :

Rv =
max (gNa, gNaP , gAHP , gK , gL), gsyn)

cm
≈ 6.94,

RhNa
=

1

τhNa
(V Qv)

∈ [0.167, 1.7]

Rh2Na
=

1

τh2Na
(V Qv)

∈ [10−4, 0.11]

RmNa
=

1

τmNa
(V Qv)

∈ [4.0, 8.45]

RhNaP
=

1

τhNaP
(V Qv)

∈ [10−4, 0.006]

RmNaP
=

1

τmNaP
(V Qv)

∈ [1.0, 19.20]

Rn =
1

τn(V Qv)
∈ [0.06, 0.7]
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When gL = 4.6, timescale constants are :

Rv =
max (gNa, gNaP , gAHP , gK , gL), gsyn)

cm
≈ 6.94,

RhNa
=

1

τhNa
(V Qv)

∈ [0.166, 2.07]

Rh2Na
=

1

τh2Na
(V Qv)

∈ [10−4, 0.2]

RmNa
=

1

τmNa
(V Qv)

∈ [4, 9.94]

RhNaP
=

1

τhNaP
(V Qv)

∈ [10−4, 0.0079]

RmNaP
=

1

τmNaP
(V Qv)

∈ [1.0, 28.84]

Rn =
1

τn(V Qv)
∈ [0.058, 0.739]

128



Appendix B Supplementary Figures

Supplementary figures for Chapter 2 and 3.

USN

HC

LSN

SupAH

SNPO

Figure 46: (A) Depolarization block exhibited by the sodium-potassium minimal model (8)-

(9) resulting from a full-system stable steady state (v, n, s) ≈ (−11.5, 0.93, 1.0) at elevated

voltage for gna = 35. (B) Bifurcation diagram of the model’s fast system associated with

(A). The stable steady state lies where the fast subsystem equilibrium curve intersects the

s-nullcline (dashed black).
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SupAH

HC
LSN

Figure 47: (A) Fast spiking exhibited by the modified sodium-potassium minimal model

(8)-(9), (15)-(16) resulting from a full-system stable periodic orbit with s ≈ 1.0 for gna = 39

and 1/τh = 13. (B) Bifurcation diagram of the model’s fast system associated with (A).
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SupAH

HC

LSN

USN

Figure 48: Fast spiking exhibited by the generic endocrine model (6)-(7) resulting from a

full-system stable periodic orbit with c ≈ 0.7 for gca = 0.81 and α = 2. (B) Bifurcation

diagram of the model’s fast system associated with (A).

Figure 49: Two-parameter bifurcation diagram of the butera model (12)-(13) with respect

to gk.
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(A)

(C)

(B)

(D)

RO/PP

SW

QS

SS/PP

QS

RO/PP

SW

SS/PP

SW
RO/PP

PP

SS

SS

SWRO/PP

Figure 50: Two-parameter bifurcation diagrams of the modified generic endocrine model

(6)-(7) and (14),(16), with respect to (A) gca and 1/τh for vh = −30 and sh = −1; (B) gca

and 1/τh for vh = −35 and sh = −1; (C) vh and gca for 1/τh = 30 and sh = −1; (D) sh and

gca for vh = −30 and 1/τh = 30.
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Figure 51: (A)-(C) Bifurcation diagrams of fast subsystem of the SPK model (22), (23) with

respect to hNaP for different values of hSPK . (A) hSPK=1 (B) hSPK = 0.66 (C) hSPK = 0.33

(D) The two-parameter bifurcation diagram of fast subsystem of the SPK model (22), (23)

with respect to hNaP and hSPK .
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Figure 52: The absolute value of the derivatives of hNaP (slowest variable), h2Na and n

(slowest variable among in the fast subsystem) in the DSPK model (24), (25) for different

values of gL (A) gL=3.5 (B) gL=4 (C) gL=4.6
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[16] A. L. Bianchi, M. Denavit-Saubié, and J. Champagnat. Central control of breath-
ing in mammals: neuronal circuitry, membrane properties, and neurotransmitters.
Physiological Reviews, 75(1):1–45, 1995.

[17] D. Bucher, G. Haspel, J. Golowasch, and F. Nadim. Central pattern generators. eLS,
pages 1–12, 2015.

[18] R. J. Butera, J. Rinzel, and J. C. Smith. Models of respiratory rhythm generation in
the pre-botzinger complex. i. bursting pacemaker neurons. Journal of neurophysiology,
82(1):382–397, 1999.

[19] R. R. Dhingra, T. E. Dick, W. I. Furuya, R. F. Galán, and M. Dutschmann. Volumetric
mapping of the functional neuroanatomy of the respiratory network in the perfused
brainstem preparation of rats. The Journal of physiology, 598(11):2061–2079, 2020.

136



[20] R. R. Dhingra, M. Dutschmann, and T. E. Dick. Blockade of dorsolateral pontine
5HT1A receptors destabilizes the respiratory rhythm in C57BL6/J wild-type mice.
Respiratory Physiology & Neurobiology, 226:110–114, 2016. Brain and breathing.

[21] A. Dhooge, W. Govaerts, and Y. A. Kuznetsov. MATCONT: a MATLAB package for
numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software
(TOMS), 29(2):141–164, 2003.

[22] M. T. H. Do and B. P. Bean. Subthreshold sodium currents and pacemaking of
subthalamic neurons: modulation by slow inactivation. Neuron, 39(1):109–120, 2003.

[23] F. Dumortier and R. Roussarie. Geometric singular perturbation theory beyond nor-
mal hyperbolicity. In Christopher K. R. T. Jones and Alexander I. Khibnik, editors,
Multiple-Time-Scale Dynamical Systems, pages 29–63, New York, NY, 2001. Springer
New York.

[24] M. Dutschmann and T. E. Dick. Pontine mechanisms of respiratory control. Compr
Physiol, 2(4):2443–69, 2012.

[25] M. Dutschmann and H. Herbert. The kolliker-fuse nucleus gates the postinspiratory
phase of the respiratory cycle to control inspiratory off-switch and upper airway resis-
tance in rat. European Journal of Neuroscience, 24(4):1071–1084, 2006. 076TETimes
Cited:30Cited References Count:64.

[26] R. Eckert and J. E. Chad. Inactivation of ca channels. Progress in biophysics and
molecular biology, 44(3):215–267, 1984.

[27] B. Ermentrout. Type I membranes, phase resetting curves, and synchrony. Neural
Computation, 8(5):979–1001, 1996.

[28] B. Ermentrout. XPPAUT5.41 – the differential equations tool. 2003.

[29] B. Ermentrout and D. H. Terman. Mathematical Foundations of Neuroscience. Inter-
disciplinary Applied Mathematics (IAM), Vol. 35. Springer, New York, NY, 2010.

[30] K. Ezure, I. Tanaka, and Y. Saito. Brainstem and spinal projections of augmenting
expiratory neurons in the rat. Neuroscience research, 45(1):41–51, 2003.

137



[31] N. Fenichel. Geometric singular perturbation theory for ordinary differential equa-
tions. 31:53–98, 1979.

[32] K. C. Flor, W. H. Barnett, M. Karlen-Amarante, Y. I. Molkov, and D. B. Zoccal.
Inhibitory control of active expiration by the botzinger complex in rats. J Physiol,
2020.

[33] A. Franci, G. Drion, and R. Sepulchre. Robust and tunable bursting requires slow
positive feedback. Journal of Neurophysiology, 119(3):1222–1234, 2018.

[34] A. Franci, G. Drion, V. Seutin, and R. Sepulchre. A balance equation determines a
switch in neuronal excitability. PLoS Computational Biology, 9(5):e1003040, 2013.

[35] M. L. Fung and W. M. St John. The functional expression of a pontine pneumotaxic
centre in neonatal rats. J Physiol, 489 ( Pt 2):579–91, 1995.
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M. Dutschmann. Breathing dysfunctions associated with impaired control of postin-
spiratory activity in mecp2-/y knockout mice. The Journal of physiology, 579(Pt
3):863–876, 2007.

[83] J. Tabak, J. Rinzel, and R. Bertram. Quantifying the relative contributions of di-
visive and subtractive feedback to rhythm generation. PLoS Computational Biology,
7(4):e1001124, 2011.

[84] J. Tabak, N. Toporikova, M. E. Freeman, and R. Bertram. Low dose of dopamine
may stimulate prolactin secretion by increasing fast potassium currents. J Comput
Neurosci., 22(2):211–22, 2007.

142



[85] W. Teka, J. Tabak, T. Vo, M. Wechselberger, and R. Bertram. The dynamics un-
derlying pseudo-plateau bursting in a pituitary cell model. J. Math. Neurosc., 1(12),
2011.

[86] W. Teka, K. Tsaneva-Atanasova, R. Bertram, and J. Tabak. From plateau to pseudo-
plateau bursting: Making the transition. Bull Math. Biol., 73(6):1292–1311, 2011.

[87] A. K. Tryba, F. Peña, and J. M. Ramirez. Stabilization of bursting in respiratory
pacemaker neurons. The Journal of neuroscience : the official journal of the Society
for Neuroscience, 23(8):3538–3546, 2003.

[88] K. Tsaneva-Atanasova, H. M. Osinga, T. Rie, and A. Sherman. Full system bifurcation
analysis of endocrine bursting models. J Theor Biol., 264(4):1133–1146, 2010.

[89] K. Tsaneva-Atanasova, H. M. Osinga, T. Rie, and A. Sherman. Cross-currents be-
tween biology and mathematics: The codimension of pseudo-plateau bursting. Dis-
crete Contin. Dyn. Syst. Ser. A., 32(8):2853–2877, 2012.

[90] A. G. Varga, S. N. Maletz, J. T. Bateman, B. T. Reid, and E. S. Levitt. Neuro-
chemistry of the kolliker-fuse nucleus from a respiratory perspective. J Neurochem,
2020.

[91] T. Vo, R. Bertram, and M. Wechselberger. Multiple geometric viewpoints of mixed
mode dynamics associated with pseudo-plateau bursting. SIAM Journal on Applied
Dynamical Systems, 12(2):789–830, 2013.

[92] T. Vo, J. Tabak, R. Bertram, and M. Wechselberger. A geometric understanding of
how fast activating potassium channels promote bursting in pituitary cells. Journal
of Computational Neuroscience, 36(2):259–278, 2014.

[93] N. Voituron, C. Menuet, M. Dutschmann, and G. Hilaire. Physiological definition of
upper airway obstructions in mouse model for rett syndrome. Respiratory physiology
neurobiology, 173(2):146–156, 2010.

[94] M. Wechselberger. Geometric Singular Perturbation Theory Beyond the Standard
Form. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, Vol. 6.,
Springer Cham, Springer Nature Switzerland AG., 2020.

143



[95] S. Wittman, A. P. Abdala, and J. E. Rubin. Reduced computational modelling of
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