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Abstract 

Elucidating Complex Biological Interactions Using Computational Techniques 

 

Zhenjiang Fan, PhD 

 

University of Pittsburgh, 2023 

 

 

 

 

Studying complex biological systems faces numerous technical challenges due to their 

intricate nature and the multitude of interacting factors involved while analyzing related datasets.  

These challenges include the data diversity in biomedical datasets, nonlinearity behaviors among 

variable interactions, contextual causal factors, subtype heterogeneity, and causal mechanism 

complexity. To address these challenges, we must build specified computational models to tackle 

certain problems. Two of the most widely used computational tools are machine learning (ML) 

and deep learning (DL). Despite their tremendous potential, integrating ML and ML into biological 

research is not a trivial task.  

In our first project where we aim to understand dynamics among complex biological 

networks, such as subtype biological networks for a disease, we utilized a network similarity 

measuring method based on normalized Laplacian matrix eigenvalue distribution to systematically 

identify a comparable estrogen receptor negative (ER-) normal ceRNA network comparable to 

estrogen receptor positive (ER+) normal reference ceRNA network. We exploited various network 

analysis techniques to study dynamics among constructed subtypes of breast cancer. Our 

systematically analyzing disease subtype network using these network analysis techniques 

provides a meaningful research direction. 

For our second project where we determine to address the nonlinearity behavior and 

identify complex causal mechanisms in complex biomedical data, we developed a causal inference 
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method that learns both linear and nonlinear causal relations and estimates the effect size using a 

deep-neural network approach coupled with the knockoff framework. By using both simulation 

data and multiple real world biomedical datasets, we demonstrated that our proposed method 

outperforms existing methods in identifying true and known causal relations. The identified 

nonlinear causal relations and estimating their effect size can help understand the complex disease 

pathobiology, which is not possible using other methods. 

In our third project where we aim to address the data diversity, nonlinearity behavior, 

contextual causal factor problems in single-cell sequencing datasets, we created a DL model to 

identify condition-specific cell subtypes when we have multiple types of information. In 

comparison with existing clustering algorithms, our proposed clustering method outperforms them 

in terms of various evaluation matrices using both simulation data and real-world single-cell 

sequencing data. 
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1.0 Introduction  

1.1 Motivations 

Complex biological systems are incredibly diverse, ranging from the molecular level to 

ecosystems. Exploring them allows us to gain fundamental benefits to our health. For instance, 

elucidating complex biological systems enables us to identify external environmental and lifestyle 

factors influencing individual health. More importantly, by studying complex biological systems 

using computational methods and understanding the intricacies of the human body, we can gain 

insights into the disease and disorder mechanisms and pave the way for the development of new 

diagnostic tools, treatments, and therapies [1], [2]. This knowledge is also vital for personalized 

medicine and disease prevention strategies. 

Studying complex systems using computational methods can also contribute to the 

technological development in computational modeling, data analysis, and simulation, which are 

applicable to a wide range of scientific domains [3]. For instance, understanding brain neurons 

behaviors gave the inspiration to the creation of artificial neural network models. With these 

powerful computational methods and predictive models, we can further simulate biological 

processes and comprehend them even better. Thus, we are entering into a positive-feedback circle, 

where the more we learn about complex biological systems the more powerful computational 

methods evolve and vice versa. 

Biological research generates vast amounts of data, including genomic, transcriptomic, 

clinical, and imaging data. Analyzing and interpreting these complex datasets systematically and 

jointly using computational methods brings down research cost compared to conducting laboratory 
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experiments [1], [4]. Therefore, studying complex biological systems offers a wide range of 

benefits, from deepening our understanding of life and evolution to fostering medical 

advancements and innovative technologies. These motivations contribute to the ever-growing 

interest and significance of research in this field. 

1.2 Problems & Challenges  

In general, understanding complex biological systems presents numerous challenges due 

to their intricate nature and the multitude of interacting factors involved [5]–[10]. Some of the non-

technical challenges cannot be addressed using computational methods, like ethical considerations 

and interdisciplinary collaboration. The ethical consideration challenge arises when we need to 

involve experiments on living organisms while studying complex biological systems. Addressing 

these ethical consideration challenges, such as ensuring animal welfare or obtaining informed 

consent in human studies, poses a complicated challenge. Another non-technical challenge is 

interdisciplinary collaboration as understanding complex biological systems requires collaboration 

among scientists from diverse disciplines, including biology, physics, mathematics, computer 

science, and engineering. While some of the technical challenges include: 

a) Integrative Analysis of Diverse Data: Biological research generates vast amounts 

of data, including genomic, transcriptomic, clinical, and imaging data. Analyzing 

and interpreting these complex datasets requires sophisticated computational and 

statistical methods. 

b) Data Nonlinearity: Complex biological systems often exhibit nonlinear behavior, 

meaning that small changes in one entity can lead to disproportionate effects on the 
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system as a whole. With this nonlinearity, predicting the outcomes of perturbations 

or interventions in such systems can be challenging. 

c) Contextual Causal Factors: Complex biological systems are influenced by multiple 

interacting factors or contexts, including genetic, environmental, and stochastic 

elements. Given a certain context, disentangling the contributions of individual 

factors and understanding their collective impact is a complex task. 

d) Subtype Network Comparison: Complex biological systems exhibit significant 

heterogeneity at various subtype or phenotype networks, for example, different 

subtypes of a disease mechanism or diverse phenotypes of a cancer. However, it is 

challenging to identify similarities and differences by comparing these subtype 

networks. Some technical factors can also pose a challenge while using 

computational techniques to study biological systems. For example, there are many 

networks comparison measuring matrices, such as edit distance, degree matrix, and 

adjacency matrix, where each of them compares two networks in a different aspect 

(the degree matrix can identify the node-related equivalence of networks and the 

adjacency matrix can capture the structural equivalence of networks).  

e) Causal Mechanism Complexity: Complex biological systems, such as cells and 

organs, are incredibly complex with numerous interconnected components. The 

interactions and feedback loops among various elements make it difficult to unravel 

cause-and-effect relationships and understand the system as a whole, as in the study 

of causal inference, it is believed a causal mechanism or graph cannot involve a 

cycle. 



 4 

Despite these challenges, ongoing advancements in computational modeling and 

interdisciplinary collaborations are steadily improving our understanding of complex biological 

systems. For almost all these technical challenges, computational methods can be exploited to 

solve them. In this thesis, we designed a few computational methods to address some of these 

challenges, which will be discussed in the following sections. 

1.3 Background  

Over the years, advancements in ML and DL have revolutionized the way we approach 

and comprehend complex systems. ML and DL methods have the unique capability to identify 

patterns, extract meaningful features, and make accurate predictions from complex system data. 

These techniques leverage the inherent computational power to handle vast amounts of 

information, enabling researchers to navigate through intricate networks and gain insights that 

were previously unattainable using traditional analytical approaches. 

One of the important applications of ML and DL is the analysis of biomedical data to better 

understand complex biological systems. With the advent of high-throughput technologies, vast 

amounts of genetic and protein sequence data are being generated at an unprecedented rate. ML 

and DL algorithms can learn from the complex biological networks built using these datasets, 

uncovering hidden relationships between genes, proteins, and biological functions.  

Understanding heterogeneities and dynamics among complex biological networks (two of 

the challenges mentioned above), such as subtype biological networks for a disease, has been a 

longstanding problem in the field of biology, requiring in-depth knowledge and analysis of 

intricate interactions between various components. A biological network consists of biological 
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entities (nodes) and relations (edges) between biological entities within a complex biological 

system [11]. Biological networks, as any other common real-world networks, appear in many 

forms or categories, forms like undirected, directed, bidirected, weighted, bipartite, multi-edge, 

hypergraphs, and trees [12]. Some well-known complex biological networks include protein–

protein interaction networks, genetic regulatory networks (DNA–protein interaction networks), 

metabolic networks, signaling networks, and neuronal networks [12].  As DL is based on artificial 

neural networks (ANNs) and ANNs are inspired by the biological neural networks [13], thus, DL 

can be regarded as a form of biological neural networks. By definition, an ANN consists of a 

collection of artificial neurons inspired by working mechanism of the neurons in a biological brain. 

Neurons pass wights or signals to the neurons at the next layer, just like the synapses in a biological 

brain. Then, the receiving neurons process weights or signals and pass the output signals to the 

neurons at the next level [13]. 

By harnessing the power of computational algorithms and large-scale data analysis, ML 

and DL have proven to be invaluable tools in deciphering the inner workings of biological 

networks at different levels. DL has emerged as a transformative approach to overcome the 

limitations of traditional ML methods. DL models, such as deep neural networks (DNNs), are 

capable of automatically learning hierarchical representations directly from raw data, eliminating 

the need for manual feature engineering. This enables them to capture intricate patterns and 

dependencies within complex biological systems [14], [15]. DL techniques have shown 

remarkable success in diverse biological applications, including clinical and library image 

analysis, genomics [16]–[18]. 

ML and DL have greatly enhanced our understanding of fundamental biological processes 

at different levels. Since ML techniques employ statistical models and algorithms to identify 
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patterns or make predictions based on input data, they have also been successfully applied to 

various biological problems, such as gene expression analysis, identifying sequence motifs, 

predicting protein structures, and elucidating gene regulatory networks, and disease diagnosis [15], 

[19], [20].  

In recent years, ML and DL have also played a crucial role in drug discovery, and 

personalized medicine development [16]–[18]. Traditional methods for identifying potential drug 

candidates are time-consuming and costly, often resulting in high failure rates. ML and DL models, 

on the other hand, can rapidly screen large chemical libraries, predict drug-target interactions, and 

optimize drug properties, leading to more efficient and targeted drug discovery pipelines. 

DL models have also been employed to predict protein-protein interactions, classify cancer 

subtypes, and identify regulatory elements in the genome [14], [16], [17]. These achievements 

highlight the potential of deep learning to unravel intricate biological phenomena that were 

previously challenging to decipher. 

1.4 Research Statement 

Despite their tremendous potential, integrating ML and DL into biological research is not 

a trivial task. To tackle the challenges and problems mentioned above, specific computational 

models must be designed. The following are the three projects that we worked on during this 

program. 
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1.4.1 Project 1 - 3ʹ-UTR Shortening Contributes to Subtype-Specific Cancer Growth by 

Breaking Stable ceRNA Crosstalk of Housekeeping Genes 

Research Question: In breast cancer, different subtypes of tumor samples, such as 

estrogen receptor positive and negative (ER+ and ER-), are characterized by distinct molecular 

mechanisms, including possible differences in the post-transcriptional regulation called the 

competing-endogenous RNA (RNAs that interact through the competition of microRNA binding). 

While we can construct the ER+ competing-endogenous RNA (ceRNA) network by applying a 

traditional correlation cutoff (>=0.6) because there are enough number of samples of ER+ breast 

cancer (n=77 in the Cancer Genome Atlas database (TCGA)), it is not clear how to identify ER- 

normal ceRNA network comparable to ER+ ceRNA network because there are only 20 ER- 

samples in the TCGA (n=20). Challenges: We found that ER+ and ER- subtypes provide different 

sample sizes of samples (n=77 and 20, respectively), biasing the ceRNA network size and 

disabling the fair comparison of the network dynamics. And it is not straightforward to identify 

ER- normal ceRNA network comparable to ER+ normal ceRNA network. 

Novelties, Implementation Difficulties, Existing Methods, and Advantages of Our 

Method: To shed a systematic understanding between two biological conditions, one can compare 

network models that represent the conditions. However, there is no dedicated algorithm to identify 

comparable networks from the conditions of different sample sizes. Due to the absence of such 

methods, we tried several straightforward methods to address these challenges and identify the 

ER- ceRNA network comparable to ER+ ceRNA network. Below are the results we obtained from 

the experiments. First, the same cutoff will inflate the number of edges for the ER- network. 

Second, subsampling the ER+ normal samples to match the number of samples for ER- (n=20) 

does not work because the subsampled ceRNA networks do not keep topological consistency 
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among themselves. Third, we could not use the co-expression cutoff that makes the same statistical 

significance to ER+, because, to achieve the same statistical significance of the traditional cutoff 

value (0.6) of ER+, the cutoff value of ER- would inflate to 0.91 which results in a drastically 

deflated number of edges. To address this and identify comparable networks between ER+ and 

ER- breast cancer, our method leverages a network similarity measure and studies its performance 

with extensive experiments. Consequently, this method could identify the ceRNA network from 

ER- samples that demonstrated a similar structure and properties of the graph to ER+ network. 

1.4.2 Project 2 - Deep Neural Networks With Knockoff Features Identify Nonlinear Causal 

Relations and Estimate Effect Sizes in Complex Biological Systems 

Research Questions: Complex biological systems are characterized by non-linear 

associations [21], [22]. For example, the effects of hormone receptor status on breast cancer 

biology are often nonlinear due to their complex interactions with other molecular complexes in 

multiple regulation processes[23]–[25]. Another example of nonlinearity in biological systems is 

how molecular/clinical features are interacting for patients’ phenotypes (e.g., clinical outcomes). 

When they interact, they often are regulated through multiple biochemical pathways[26], and thus 

these relations are likely nonlinear.  Thus, the question is how to model and capture the nonlinearity 

in computational analyses of biological systems. Challenges: Because of this nonlinearity, 

learning causalities and estimating the effect size in such systems can be challenging. Learning 

causal relationships between clinical features is vital for making informed medical decisions, 

developing effective treatments, and improving overall patient outcomes. Thus, to allow for 

learning nonlinear causal relationships between clinical/molecular features, it is crucial to develop 

a method that can learn nonlinear causal relationships. Additionally, estimating effect size in causal 
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inference is critical for understanding the practical significance and implications of research 

findings.  For example, it aids in making informed decisions, comparing interventions, and 

planning future studies to advance our understanding of causal relationships. Thus, it is also crucial 

to enable the estimation of the effect size especially in the nonlinear causal relationships.  

Novelties, Implementation Difficulties, Existing Methods, and Advantages of Our 

Method: Our method, causal Directed Acyclic Graphs using deep-learning VAriable SElection 

(DAG-deepVASE), explicitly learns nonlinear causal relationships, linear causal relationships, and 

estimate their effect sizes using a deep-neural network approach coupled with the knockoff 

framework. This method involves many computational techniques such as Mixed Graphic Model 

and knockoff data generation. Previously, causal inference has been approached using traditional 

fashion, either constraint-based or score-based, and deep-learning based searching. Peter and Clark 

(PC) [27], one of the most popular algorithms under the constraint-based approaches [28]–[33], 

runs in two steps. The first step is to use a combination of conditional independence tests; in the 

second step, it uses graph pruning techniques to determine a skeleton of the directed acyclic graph 

and then to determine the causal directions in the skeleton network. PC usually produces many 

bidirectional causal relations because it is constrained-based causal inference method where it uses 

rules to determine causal directions. Under the score-based approach, Degenerate Gaussian (DG) 

[34] is a recently proposed method extending the widely used likelihood score function BIC score 

[35], [36]. It was designed for processing mixed types of data by embedding discrete variables into 

a continuous space using one hot vector representation. On the other hand, several deep-learning 

approaches have been proposed. DAG-GNN [37], proposed by Yu et al., is a deep generative 

model and applies a variant of the structural constraint to learn the directed acyclic. Zheng et al. 

extended DAG-GNN by generalizing it so various approximations can be used for search 
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(NOTEARS) [38]. Although deep-learning approaches successfully generalized the problem of 

causal inference and facilitates the use of advanced deep-learning techniques for this problem, 

these two methods are limited due to the common strategy that they search over large directed 

cyclic graphs (DAGs). They only use the DNN component to address nonlinearity in how DAGs 

are searched through, not to address nonlinearity in each relationship. On the contrary, DAG-

deepVASE utilizes the deep learning component in a completely novel way to explicitly learn both 

nonlinear causal relationships, as well as their effect sizes. In our method, we explicitly set one of 

the features as the target and identify related features in each iteration while learning nonlinear 

associations. This explicit setting enables us to identify nonlinearity in each relationship. 

1.4.3 Project 3 - Deep Neural Network Jointly Learning Gene Expression and Biological 

Condition Information Identifies Cell Subtypes Nonlinearly Linked to the Biological 

Condition 

Research Questions: Among many cell types, biologists and clinicians are usually 

interested in cell types that are related to a particular biological condition, e.g., a particular 

pathological state among multiple phases of a disease (disease-specific cell subtypes). The 

question is how to exploit this biological condition information to better identify condition-specific 

cell subtypes. Challenges: Existing methods only use gene expression data to identify cell types 

and thus do not fully leverage the biological condition information to identify condition-specific 

cell subtypes. The challenge is to develop a method that leverages not only gene expression 

information but also biological condition information to accurately identify condition-specific cell 

types. 
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Novelties, Implementation Difficulties, Existing Methods, and Advantages of Our 

Method: While existing methods, like Leiden, Louvain, and Milo, only use gene expression 

information to identify clusters, our method jointly learns cell types using gene expression, a 

biological condition, a set of known cell types to accurately identify finer cellular states linked to 

a biological condition with the highest sensitivity and specificity. Since our method is based on 

DNN, compared with other clustering methods, our method can capture nonlinear cell dynamics 

that other methods cannot. Louvain and Leiden are two of the most widely used clustering methods 

in computational biology. Louvain aims to detect communities in complex biological networks 

based on a modularity score. The modularity score quantifies the quality of an assignment of nodes 

to communities, therefore, it tries to maximize a modularity score for each community. Leiden is 

an extension of Louvain where it can find some communities where Louvain finds them not well-

connected. Milo is a method for differential abundance analysis on a K-nearest Neighbor (KNN) 

graph from single-cell RNA sequencing data. Since these methods only use gene expression, they 

are not designed to identify the cell types that are abundant in related biological conditions due to 

three limitations: 1) it does not consider the impact of one criterion on another; samples of a 

particular biological condition would render distinct biological functions represented with distinct 

molecular behavior and this distinct molecular behavior can have an impact to the level of gene 

expression; 2) it disregards the dimensional differences in the criteria, as the gene expression 

information typically represents several thousand genes while only one particular type of 

biological condition is exploited at any given time; and 3) the optimizations rely on linear modeling 

that they do not capture the nonlinear relationships between cell identity and gene 

expression/biological condition information. On the other hand, our method addresses all the 

limitations. First, our method simultaneously optimizes two loss functions, 𝐿𝑡  for the gene-
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expression information and 𝐿𝑧  for the biological condition information to identify the optimal 

solution in terms of both the biological condition and gene expression. Second, in identifying the 

solution, we balance the weights between the high dimensional gene expression data and the 

biological condition information by controlling the weight of the gene expression information vs. 

that of the biological condition information. Third, to capture the nonlinear relationships, we utilize 

a DNN component to encapsulate the complex and nonlinear relationships using multiple layers 

of nonlinear activators. 

1.5 Contributions 

1.5.1 Contributions of Project 1 “3ʹ-UTR Shortening Contributes to Subtype-Specific 

Cancer Growth by Breaking Stable ceRNA Crosstalk of Housekeeping Genes” 

Contributions to Computational Biology: With our method, we made a discovery that 

would be impossible without it that house keeping (HK) genes can play a novel role as stable and 

strong miRNA sponges (sponge HK genes) that synchronize the ceRNA networks of normal 

samples (adjacent to ER+ and ER– tumor samples). We also identified 3′US events (3′untranslated 

region (UTR) shortening that removes microRNA binding sites located in the 3′UTR of genes) in 

the ER- tumor break the stable sponge effect of HK genes in a subtype-specific fashion, especially 

in association with the aggressive and metastatic phenotypes. Our findings bring a new perspective 

on the role of previously unexplored class of genes, house keeping genes on the breast cancer 

etiology. Contributions to Computer Science: To address the challenge and identify the ER- 

network comparable to ER+ network, we proposed a systematic way utilizing a network similarity 
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measure called normalized Laplacian matrix eigenvalue distribution. We exploited various 

network analysis techniques to study heterogeneities and dynamics differentiating the breast 

cancer subtypes.  Furthermore, through our findings, we demonstrated that this network 

comparison method successfully brings biologically meaningful and innovative findings. 

1.5.2 Contributions of Project 2 “Deep Neural Networks With Knockoff Features Identify 

Nonlinear Causal Relations and Estimate Effect Sizes in Complex Biological 

Systems” 

We developed a causal inference method that learns both linear and nonlinear causal 

relations and estimates the effect size using a deep-neural network approach coupled with the 

knockoff framework. The DNN approach allows for identifying nonlinear relationships between 

the input features and the knockoff framework allows for estimating the effect size of the 

associations between the input features. Our method outperforms existing methods in identifying 

true and known nonlinear causal relations. The identified nonlinear causal relations and estimating 

their effect size can help understand the complex disease pathobiology, such as breast cancer, 

pediatric sepsis, and the effect of gut microbiome on BMI, which is not possible using other 

methods. We created a GitHub repository (https://github.com/ZhenjiangFan/DAG-deepVASE) to 

make this causal inference method public so that computational biologists can utilize and extend 

our method. 
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1.5.3 Contributions of Project 3 “Deep Neural Network Jointly Learning Gene Expression 

and Biological Condition Information Identifies Cell Subtypes Nonlinearly Linked to 

the Biological Condition” 

Contributions to Computational Biology: As integrated biomedical datasets like multi-

omics data are receiving more attention from researchers, our computational model creates a new 

direction for understanding complex biological systems by analyzing multiple data resources 

because researchers can follow our DNN model design where the model takes multiple data 

resources (data resources collected from the same set of samples) as input, such as mRNA 

expression, DNA methylation, and microRNA (miRNA) expression. Our approach could also 

inspire other computational biologists to start thinking about utilizing other biological information 

(e.g., cell spatial information) while building their DNN model. Contributions to Computer 

Science: We designed and implemented a DNN-based joint-learning method that simultaneously 

optimizes multiple data sources of different nature (e.g., gene expression, a biological condition, 

a set of known cell types). In incorporating the data sources, our method explicitly leverages the 

different levels of method maturity for each source. For example, while clustering methods using 

gene expression information, like Leiden, Louvain, and Milo are well developed, there is no 

method either using the biological condition information or incorporating the information to gene 

expression information to accurately identify condition-specific cell types (e.g., cellular states 

linked to a biological condition). By first embedding the clustering results from such a method that 

is based on gene expression information and jointly training the biological condition information 

on the embedding, we achieve the better sensitivity and specificity than other methods that use 

only gene expression information. Generally, many real-world datasets need to be interpreted 

jointly with other data. Therefore, our method can also be utilized as a general clustering method 
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in such a scenario. We also created a GitHub repository for this method and made it public for 

researchers to use, which can be found at https://github.com/ZhenjiangFan/scDeepJointClust. 

1.6 Future Work 

1.6.1 Future Work for Project 1 “3ʹ-UTR Shortening Contributes to Subtype-Specific 

Cancer Growth by Breaking Stable ceRNA Crosstalk of Housekeeping Genes” 

Our first project aimed to study the distinct ceRNA dynamics between the ER+ and ER- 

group of tumor samples. Although ER status is an important clinical variable [39], it is important 

to note that the two groups do not directly represent further clinical subtypes of breast cancers, 

such as HER2+ or Triple-Negative. Thus, to reveal further clinical relevance of the ceRNA 

dynamics, more study is warranted in direct clinical subtypes within each group. 

1.6.2 Future Work for Project 2 “Deep Neural Networks With Knockoff Features Identify 

Nonlinear Causal Relations and Estimate Effect Sizes in Complex Biological 

Systems” 

DAG-deepVASE clearly has many advantages over existing methods. However, our 

method can be improved in two aspects. The first aspect is that our method cannot take nonordinal 

categorical variables as the knockoff generation approach use in this work, model-X knockoff, 

assumes Gaussian distribution, whereas nonordinal variables do not follow Gaussian distribution. 

Therefore, one future work would be generating the knockoff variables for nonordinal categorical 
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variables based on a regression model for nonordinal categorical variables [40]. The second future 

work could focus on finding a way to estimate statistical significance of the likelihood ratio test 

we derived to determine the causal direction as our method currently only estimate the effect size 

but not statistical significance.  

1.6.3 Future Work for Project 3 “Deep Neural Network Jointly Learning Gene Expression 

and Biological Condition Information Identifies Cell Subtypes Nonlinearly Linked to 

the Biological Condition” 

Our approach capitalizes on the fact that condition-specific cells show an enrichment of a 

specific biological condition in the cells of the same type. Thus, our approach may not be useful 

to identify cell types that do not exhibit such an enrichment pattern. Therefore, a future work may 

increase the sensitivity on the enrichment degree by testing weights to the DNN model to adjust 

the importance of the biological conditions compared to the gene expression information. Another 

direction for future work concerns identifying cell subtypes or cell states of the same type. 

Currently, our method is to refine the cell type definition constructed based on the gene expression 

with the biological condition information. However, the cell types may be further divided based 

on the enrichment of the biological conditions. For example, a cell type can have multiple states 

that are differentially enriched in biological conditions. Then, it is interesting to identify such cell 

states since they can inform further treatment strategies. In that sense, another future work may 

aim to divide the number of cell types identified using the gene expression information. (e.g., 

cluster number (K)) so the divided cell types can represent different cell states of the same type 

that show different enrichment pattern to the biological condition. For this, we would need to build 

another model that has three components, an evaluation estimator (e.g., K-fold cross-validation), 
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a clustering performance evaluation matrix (e.g., Silhouette score), and a custom loss function to 

the DNN model. 
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2.0 Project 1 - 3ʹ-UTR Shortening Contributes to Subtype-Specific Cancer Growth by 

Breaking Stable ceRNA Crosstalk of Housekeeping Genes 

 

2.1 Summary  

Shortening of 3ʹUTRs (3ʹUS) through alternative polyadenylation (APA) is a post-

transcriptional mechanism that regulate expression of hundreds of genes in human cancers. In 

breast cancer, different subtypes of tumor samples, such as estrogen receptor positive and negative 

(ER+ and ER-), are characterized by distinct molecular mechanisms, suggesting possible 

differences in the post-transcriptional regulation between the subtype tumors. In this study, based 

on the profound tumorigenic role of 3ʹUS interacting with competing-endogenous RNA (ceRNA) 

network (3ʹUS-ceRNA effect), we hypothesize that the 3ʹUS-ceRNA effect drives subtype-specific 

tumor growth. However, we found that the subtypes are available in different sample size, biasing 

the ceRNA network size and disabling the fair comparison of the 3ʹUS-ceRNA effect. Using 

normalized Laplacian Matrix Eigenvalue Distribution, we addressed this bias and built the tumor 

ceRNA networks comparable between the subtypes. Based on the comparison, we identified a 

novel role of housekeeping (HK) genes as stable and strong miRNA sponges (sponge HK genes) 

that synchronize the ceRNA networks of normal samples (adjacent to ER+ and ER- tumor 

samples). We further found that distinct 3ʹUS events in the ER- tumor break the stable sponge 

effect of HK genes in a subtype-specific fashion, especially in association with the aggressive and 
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metastatic phenotypes. Knockdown of NUDT21 further suggested the role of 3ʹUS-ceRNA effect 

repressing HK genes for tumor growth. In this study, we identified 3ʹUS-ceRNA effect on the 

sponge HK genes for subtype-specific growth of ER- tumors. 

2.2 Introduction 

 Approximately, 70% of human genes contain multiple polyadenylation (polyA) sites in 

the 3ʹ-untranslated region (3ʹ-UTR) [41]. Through alternative polyadenylation (APA) during 

transcription, messenger RNAs (mRNA) from the same gene can have various 3ʹ-UTR lengths. 

Since the 3ʹ-UTR contains regulatory regions including microRNA (miRNA) target sites, mRNAs 

with shortened or lengthened 3ʹ-UTRs may diversify the regulation landscape, for example 

miRNA binding landscape. In human cancer, 3ʹ-UTR lengthening (3ʹUL) has been associated with 

cell senescence [42] with implications for tumor-associated processes, such as cell cycle inhibition, 

DNA damage/repair process, and tumor suppression [43]–[46]. Widespread 3ʹ-UTR shortening 

(3ʹUS) has been reported for diverse types of human cancer [41]. Further, 3ʹUS events add 

prognostic power beyond common clinical and molecular covariates in cancer patients [47] and 

are associated with drug sensitivity in cancer cell lines [48]. These results suggest that APA events, 

both 3ʹ-UTR shortening and lengthening, play important roles in cancer etiology and treatments.  

The 3ʹ-UTR is also implicated in competing-endogenous RNA crosstalk (ceRNA) [49]. 

CeRNAs co-regulate each other RNAs through competing for binding miRNAs. In diverse types 

of cancer, ceRNA regulation involves established oncogenes and tumor suppressor genes [50] and 

facilitates molecular pathway interactions for tumorigenesis [51]. When 3ʹ-UTR shortening genes 

lose miRNA target sites on their 3ʹ-UTRs and do not sequester the miRNAs, the associated 
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miRNAs bind to the 3ʹ-UTR of the ceRNA partners. As a result, 3ʹ-UTR shortening disrupts 

ceRNA crosstalk (3ʹUS-ceRNA effect) for growth in diverse types of cancer, including breast 

cancer [52]. In a recent study, we showed that this 3ʹUS-ceRNA effect promotes tumor growth 

independent of potential confounding factors, such as somatic mutation status (SNPs and small 

INDELs), tumor purity, immune cell infiltration, cell proliferation, or miRNA biogenesis and 

expression [53].  

Breast cancer can be classified into two major subtypes based on the presence or absence 

of estrogen receptor (ER) [39]. Estrogen receptor positive (ER+) breast tumors grow in the 

presence of the hormone estrogen. So, ER+ cancers can be treated with endocrine therapy which 

blocks ER activity or depletes estrogen levels. On the other hand, estrogen receptor negative (ER-

) breast tumors have unique growth mechanism due to absence of the estrogen receptor. The unique 

growth mechanism of ER- tumors makes it difficult to treat ER- breast cancer that has a worse 

prognosis than ER+ [54] with a more aggressive phenotype [55], [56]. Based on the profound 

tumorigenic effect of 3ʹUS-ceRNA [52], we hypothesize that 3ʹUS-ceRNA effects specific to ER- 

breast tumors contribute to the unique growth mechanism. In this study, we tested this hypothesis 

by addressing a quantitative challenge due to different sample sizes between ER+ and ER- breast 

tumor samples. As a result, we identified a novel subset of housekeeping (HK) genes (sponge HK) 

effectively sponging miRNAs to synchronize the ceRNA networks in normal samples (adjacent to 

the subtype tumor samples). Further, we showed that the 3ʹUS-ceRNA effects repress the sponge 

HK genes, leading to subtype-specific tumor growth. In ER- breast tumor, this subtype-specific 

tumor growth is associated with aggressive and metastatic phenotypes of ER- tumors, attributing 

its unique grow mechanism partially to subtype-specific 3ʹUS-ceRNA effects. 
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2.3 Materials and Methods 

2.3.1 TCGA Breast Tumor RNA-seq Data and Identification of Breast Cancer Subtypes 

Quantified gene expression files (RNASeqV1) for primary breast tumors (TCGA sample 

code 01) and their matching solid normal samples (TCGA sample code 11) were downloaded from 

the TCGA Data Portal[57]. We used 97 breast tumor samples that have matched normal tissues, 

which were further categorized into 77 estrogen receptor positive (ER+) and 20 estrogen receptor 

negative (ER-). For ER+ and ER-, we collected both normal (ER+ normal and ER- normal) and 

tumor (ER+ tumor and ER- tumor) samples. A total of 10,868 expressed RefSeq genes (fragments 

per kilobase of transcript per million mapped reads (FPM) ≥ 1 in > 80% of all samples) were 

selected for downstream analyses. 

2.3.2 Selection of miRNA Target Sites 

Predicted miRNA-target sites were obtained from TargetScanHuman version 6.2 [58]. 

Only those with a preferentially conserved targeting score (Pct) more than 0 were used [47]. 

Experimentally validated miRNA- target sites were obtained from TarBase version 5.0 [59], 

miRecords version 4 [60] and miRTarBase version 4.5 [61]. The target sites found in indirect 

studies such as microarray experiments and high-throughput proteomics measurements were 

filtered out [62]. Another source is the microRNA target atlas composed of public AGO-CLIP data 

[63] with significant target sites (q-value < 0.05). The predicted and validated target site 

information was then combined to use in this study. Among 1,261 miRNAs curated in the TCGA 
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BRCA data, we used 713 expressed ones (avg. FPM > 1) in our analyses (Supplemental Table. 

1. Tab 7). 

2.3.3 Statistical Significance of Pearson Correlation Coefficient 

The implementation of the Pearson r function is provided by a python package, SciPy, and 

available at https://scipy.org/, which returns the calculated correlation coefficient and a 2-tailed p-

value for testing non-correlation. The Pearson correlation coefficient measures the linear 

relationship between two variables (e.g. gene X and gene Y) and when the two covariates follow 

binormal distribution, we can assume that their Pearson’s correlation follows student t distribution. 

The p-value is calculated by three steps: 1) calculating the value of the Pearson’s correlation t, 2) 

defining the degree of freedom df (N-2, where N is the sample size), 3) getting the probability of 

having t or more extreme than t from a Student's t-distribution with the degrees of freedom df. We 

used hypergeometric test in Scipy to estimate significant of miRNA binding site overlap between 

genes. 

2.3.4 Detection of APA Events 

We used DaPars [47] to identify 3ʹUTR shortening and lengthening in RNA-Seq data based 

on the same cutoff and parameter values optimized in the original paper. We checked that our 

prediction is 100% matched with that of the original DaPars result. The DaPars paper provided 

multiple lines of evidence to demonstrate that DaPars indeed identified APA events in the TCGA 

data. First, 51% of the DaPars predictions are within 50 bp of the annotated APAs compiled from 

Refseq, ENSEMBL, UCSC gene models and polyA database (polyA_DB[64]). Second, in the 
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upstream (-50 nt) of the predicted APA sites, MEME motif enrichment analysis [65] successfully 

identified canonical polyA signal AATAAA. 

2.3.5 Housekeeping, Transcription Factor and Tumor-Associated Genes 

Housekeeping genes are required for the maintenance of basic cellular functions that are 

essential for the existence of a cell, regardless of its specific role in the tissue or organism. 

Generally, housekeeping (HK) genes are expected to be expressed at relatively constant rates in 

most non-pathological situations [66]. We used 3,804 HK genes defined in RNA-Seq data for 16 

normal human tissue types: adrenal, adipose, brain, breast, colon, heart, kidney, liver, lung, lymph, 

ovary, prostate, skeletal muscle, testes, thyroid, and white blood cells [67].  

Transcription factors (TFs) play an important role in the gene regulatory network. We 

downloaded 2,020 TF genes defined in TFcheckpoint database [68], in which TF information is 

collected from 9 different resources. Among them, we used 1,020 genes that are further supported 

by sequence-specific DNA-binding RNA polymerase II activity.  

The tumor-suppressor genes and oncogenes were defined by the TUSON algorithm from 

genome sequencing of > 8,200 tumor/normal pairs[69], in particular residue-specific activating 

mutations for oncogenes and discrete inactivating mutations for tumor-suppressor genes. TUSON 

computationally analyzes patterns of mutation in tumors and predicts the likelihood that any 

individual gene functions as a tumor- suppressor gene or oncogene. We used 466 oncogenes and 

466 tumor suppressor genes at the top 500 in each prediction (after subtracting 34 genes in 

common). 



 24 

2.3.6 Building Subtype ceRNA Networks 

For each of the breast cancer data (ER+ normal, ER+ tumor, ER- normal, and ER- tumor) 

that we defined above, we constructed a ceRNA network based on microRNA (miRNA) target site 

share and expression correlation[52], [70]. The same miRNA target site information was 

determined regardless of the subtypes, resulting into the miRNA target site share network (based 

on FDR  > 0.05 in hypergeometric test with miRNA target site information). And given the same 

miRNA target site share network, the expression correlation information for each subtype will 

select ceRNA network edges for each subtype.  

We first constructed the ER+ normal reference ceRNA network by applying a traditional 

correlation cutoff (>=0.6) on the miRNA target site share network. Then, to identify ER- normal 

ceRNA network comparable to ER+ normal reference ceRNA network, we applied different 

correlation cutoff values (0 to 1 with a step size of 0.01) on the miRNA target site share network 

for ER- normal samples, and select the correlation cutoff values that makes ER- normal ceRNA 

network most similar to ER+ normal reference ceRNA network. To estimate topological similarity, 

we employed normalized Laplacian Matrix Eigenvalue Distribution that discovers ensembles of 

Erdős–Rényi graphs better than other metrics such as Sequential Adjacency or Laplacian[71]. 

After identifying the ER+ normal reference network and the corresponding ER- normal network, 

we used the same cutoffs (0.6 for ER+ subtypes and 0.68 for ER- subtypes) to construct the ER+ 

tumor network and the ER- tumor network, respectively. An overall workflow is in Supplemental 

Figure. 1. 

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
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Supplemental Figure 1. Workflow for the ceRNA network construction for the TCGA breast tumor and the 

matched normal samples of ER+ and ER- subtypes. 

2.3.7 Estimating Topological Similarity 

To identify the structural equivalence between two networks, we employed spectral 

analysis not only to identify the structural similarities, but also to track down the underlying 

dynamic behavior changes between them. Spectral clustering on networks uses the eigenvalues of 

several matrices, such as adjacency matrix, the Laplacian matrix, the normalized Laplacian matrix. 

In this research, we used the normalized Laplacian matrix since it involves both the degree matrix 

and adjacency matrix, where the degree matrix can identify the node related equivalence of 

networks and the adjacency matrix can capture the structural equivalence of networks. Another 
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very important reason of using the normalized Laplacian eigenvalue matrix is that it is more 

sensitive to small changes because it considers more information. 

For network G, the normalized Laplacian of G is the matrix: 

𝑁 = 𝐷−1 2⁄ − 𝐿𝐷−1 2⁄                                                                       (1) 

where L is the Laplacian matrix of G and D is the degree matrix. The Laplacian matrix L is defined 

as: 𝐿 = 𝐷 − 𝐴, where A is the adjacency matrix of G. 

 

In N, each of its entry elements is given by: 

𝑁𝑖,𝑗 =

{
 
 

 
 1, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 degree(𝑣𝑖) ≠ 0

−
1

√degree(𝑣𝑖) degree (𝑣𝑗)
, 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑣𝑖  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (2) 

 

where degree (vertex v) is the function that returns the degree of the vertex v. 

 

To assess how close two network G1 and G2 are, we first built N1 and N2 based on the 

connection information of G1 and G2, respectively. Then, we defined 𝑑𝑖𝑠𝑡1  and 𝑑𝑖𝑠𝑡2  as the 

eigenvalue distribution of N1 and N2, respectively. We further used the Kolmogorov–Smirnov 

test (KS test), which is defined as: 

𝐾1,2 = sup
𝑥
|𝑑𝑖𝑠𝑡1(𝑥) − 𝑑𝑖𝑠𝑡2(𝑥)|                                         (4) 

where sup
𝑥

 is the supremum of the set of distances. 

By using the normalized Laplacian Matrix and KS test, ER+ normal reference network 

𝐺𝑟𝑒𝑓
𝐸𝑅+ is compared with a ER- normal subnetwork with a particular correlation cutoff i 𝐺𝑖

𝐸𝑅− in the 

following three steps: 
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1) Compute the normalized Laplacian metrics 𝑁𝑟𝑒𝑓
𝐸𝑅+  and 𝑁𝑖

𝐸𝑅−  from 𝐺𝑟𝑒𝑓
𝐸𝑅+  and 

𝐺𝑖
𝐸𝑅− respectively. 

2) Compute the eigenvalues 𝐸𝑟𝑒𝑓
𝐸𝑅+  and 𝐸𝑖

𝐸𝑅−  from 𝑁𝑟𝑒𝑓
𝐸𝑅+  and 𝑁𝑖

𝐸𝑅−  respectively. 

3) Compute the KS statistic between 𝐸𝑟𝑒𝑓
𝐸𝑅+  and 𝐸𝑖

𝐸𝑅− . 

 

The third step test the null hypothesis that eigenvalues  𝐸𝑟𝑒𝑓
𝐸𝑅+  and 𝐸𝑖

𝐸𝑅−  are drawn from 

the same continuous distribution. If the two-tailed p-value returned by the KS test is high, then we 

cannot reject the hypothesis that 𝐺𝑟𝑒𝑓
𝐸𝑅+  and 𝐺𝑖

𝐸𝑅−  are the same network. In another word, the 

higher the p-value is, the more similar 𝐺𝑟𝑒𝑓
𝐸𝑅+  and 𝐺𝑖

𝐸𝑅− . 

 

 

2.4 Results  

2.4.1 Widespread 3ʹ-UTR Shortening and Lengthening Events for ER+ and ER- 

To identify subtype-specific APA genes, we first identified 77 ER-positive (ER+) and 20 

ER-negative (ER-) sample pairs (breast tumor and the adjacent normal samples) from 97 sample 

pairs available in TCGA (see Methods). Then, we identified 3ʹUTR shortened (3ʹUS) and 3ʹUTR 

lengthened (3ʹUL) genes (tumor vs. normal) using DaPars [47] in each subtype. We found that the 

ER+ and ER- sample pairs have similar numbers of total 3ʹUS genes and 3ʹUL genes (Figure. 

2.1A). However, 3ʹUS genes are more recurrent (occurring in > 20% of the tumor samples [47]) 

in both the subtype tumors (Figure. 2.1B, C e.g. P=5.0×10-5 for ER+). Further analyses showed 
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that 3ʹUS and 3ʹUL play distinct roles in the subtypes. First, the recurrent 3ʹUS and 3ʹUL genes 

show little overlap (1 and 13 genes in common, P=1.27e-6 and P=3.97e-9, respectively, Figure. 

2.1B, C). Second, the number of 3ʹUL events is not correlated with that of 3ʹUS events across the 

tumor samples (P=0.35 for ER+ and P=0.61 for ER-, Figure. 2.1D, E). Third, Ingenuity Pathway 

Analysis (IPA) shows that the recurrent 3ʹUS and 3ʹUL genes are enriched for distinct sets of 

molecular pathways (Supplemental Table. 1. Tab 1, Supplemental Figure. 2). The IPA analysis 

further suggests that 3ʹUL or 3ʹUS genes themselves have limited roles for cancer overall, since a 

small number of pathways are significantly (P<10-2) enriched for them (12 and 14 for 3ʹUL in ER-

/+ and 29 and 3 for 3ʹUS in ER-/+ samples)and at most a couple of them are “cancer” pathways 

(one for 3ʹUL in ER+ and two for 3ʹUS in ER- with keyword “cancer”). Based on the profound 

tumorigenic role of 3ʹUS in its interaction with ceRNAs (3ʹUS-ceRNA effect) [52], we hypothesize 

that 3ʹUS-ceRNA effect, not 3ʹUS cis effect, promotes ER- specific tumor growth.  
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Figure 2.1. A Global APA events distinct for ER+ and ER-. (A). Heatmaps showing the genes with 3ʹUS (top 

panel) or 3ʹUL (bottom panel) in ER+ samples (left column) or ER- samples (right column), ranked by the 

total number of APA events. (B), (C) Overlap of the recurring (>20% in samples) 3ʹUS and 3ʹUL genes in 

ER+ and ER-, respectively. (D), (E), The number of APA genes (3ʹUS in line and 3ʹUL in red bar) in the 

tumor-normal sample pairs in In ER+ and ER-, respectively, ordered as in Figure. 1.1A. 
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Supplemental Figure 2. IPA pathways enriched for the recurrent 3ʹUL and 3ʹUS genes in ER- and ER+. 

Colors represent enrichment of each pathway (column) for each class of genes (row). The red lines in the 

heatmap cut the pathways into 5 clusters in accordance with the dendrogram drawn on the bottom. 

 

2.4.2 Two-Step Pairwise Normalization of ER+ and ER- ceRNA Network 

We previously identified the 3ʹUS-ceRNA effect in the ceRNA network [52]. To identify 

the 3ʹUS-ceRNA effect specific to ER- tumors, we aim to build ceRNA networks for ER- and ER+ 

tumors and compare them. Computationally, ceRNA gene pairs in the networks are those that share 

a significant number of miRNA target sites and are co-expressed [52], [70]. However, using the 

common co-expression cutoff (e.g., Pearson’s ρ > 0.6) will inflate the number of edges for ER- 

(160,687 in ER- normal vs. 88,275 in ER+ normal, Supplemental Figure. 3A). To test if this 

inflation is attributable to the sample size difference, we built the ceRNA network 100 times from 

different numbers of (20, 40, 60, and 75) normal subsamples from ER+ tumors based on the same 

co-expression cutoff (Supplemental Figure. 3B). In general, the number of edges in the ceRNA 

networks increases as the subsample size decreases. Especially, when the same number of samples 
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(20) to that of ER- normal network is used, the number of edges in the subsampled networks 

becomes closer to the case of ER- normal network.  

Since the network size difference is attributable to the sample size difference, one might 

want to subsample ER+ normal samples to match the number of samples for ER- (n=20). To assess 

this solution, we subsampled 20 ER+ normal samples 100 times, built a ceRNA network for each 

subsample, and collected all the edges (916,999) across the networks. Then, we checked how many 

times each edge occurs across the 100 subsampled networks. We found that the subsampled 

ceRNA networks do not keep topological consistency within them, as 22.1% (202,997) of the 

edges are shared by less than the 20 ceRNA networks (Supplemental Figure. 3C). Then, one 

might want to build the ER- ceRNA network using the co-expression cutoff with the same 

statistical significance to ER+ (0.91, P~=10-8.2, Supplemental Figure. 3D). To achieve the same 

statistical significance of the traditional cutoff value (0.6) of ER+, the cutoff value of ER- would 

inflate to 0.91, resulting in a drastically deflated number of edges (Supplemental Figure. 3D). 

We addressed this issue in the following way. First, we built the reference network from normal 

samples of larger size (ER+) using the common correlation cutoff (Pearson’s ρ > 0.6). Since 

normal samples should have similar molecular dynamics between ER+ and ER-, we sought to find 

the co-expression cutoff for ER- normal network that yields the most topological similarity to the 

ER+ reference network. To estimate topological similarity, we employed a normalized Laplacian 

Matrix Eigenvalue Distribution that discovers ensembles of Erdős–Rényi graphs better than other 

metrics, such as Sequential Adjacency or Laplacian [71] (see Methods). While ER- normal 

network topology changes drastically if different correlation cutoff values are used (Supplemental 

Figure. 3E, 3F), we found that the cutoff 0.68 makes the ER- normal network most similar to the 

ER+ reference network (Supplemental Figure. 3G). Using another measure for topological 

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model


 32 

similarity, average clustering coefficient [72], the cutoff of 0.68 is supported again since normal 

ER- network with correlation cutoff 0.68 makes the closest average clustering coefficient to the 

reference network (0.4, Supplemental Figure. 3H). Since normal and tumor ceRNA networks 

within each subtype share the same number of samples thus would not suffer from this bias [52], 

[73]–[75], we applied the subtype-specific cutoffs (0.68 for ER- and 0.6 for ER+) to build the 

tumor ceRNA networks in each subtype. 
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Supplemental Figure 3. Two-step Pairwise Normalization of ER+ and ER- ceRNA network. (A) Number of 

edges in the ceRNA networks by the correlation coefficient cutoff (black and red line for ER+ and ER- 

normal networks, respectively). (B) Number of edges in 100 networks built from a subset of ER+ normal 

samples in different size. Blue dotted line indicates the number of edges of ER- normal network whose sample 

size is 20 (160,687) (C) The number of edges shared among 100 ER+ normal samples, where each of them was 

built by using 20 randomly chosen samples. (D) Statistical significance (p-value) achievable by using different 
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correlation coefficient cutoff values for ER+ (black) and ER- (red) samples. Statistical significance for a 

correlation coefficient cutoff value is described in Methods.. (E) Comparison of ER- normal network with the 

miRNA target site share network to by correlation cutoff value (see Methods). (F) Comparison of ER- normal 

network with that of the previous correlation cutoff value in the stepwise increase (see Methods). (G). 

Significance of topological similarity (y-axis) of ER+ normal network with ER- normal ceRNA networks built 

by  different cutoff values (x-axis). The bigger the p-value is, the more similar the two networks are. (H) 

Comparison of the ER+ normal reference network  with ER- normal ceRNA networks built by different 

correlation cutoff values in the average clustering coefficient. 

2.4.3 ʹUTR Shortening Is Associated With the Aggressive Metastatic Phenotypes of ER- 

Tumors in ceRNA 

In normal ER- ceRNA network based on the subtype-specific co-expression cutoff, 1,783 

genes are in the ceRNA relationship with 521 3ʹUS genes (3ʹUS ceRNA partners). Among 1,783 

3ʹUS ceRNA partners, 498 (27.9%) are found only in ER- (ER- 3ʹUS ceRNA partners), whereas 

the other 1,285 (72.1%) are also in ER+ as 3ʹUS ceRNA partners (common 3ʹUS ceRNA partners, 

Figure. 2.2A). We found that 118 IPA canonical pathways significantly (P < 0.01) enriched for 

the ER- 3ʹUS ceRNA partners (Supplemental Table. 1. Tab 2) are linked with several aspects of 

ER- specific tumor phenotypes (Figure. 2.2B). The first set of the pathways are “cancer” 

pathways. For example, the “Molecular Mechanisms of Cancer” pathway (P=10-5.25) includes a 

comprehensive set of genes, disruptions of which are known to promotes tumor growth. Specific 

to breast cancer, the enrichment of the “Breast Cancer Regulation by Stathmin1” (P=10-3.92) 

pathway is interesting, since overexpression of Stathmin1 correlates with loss of the ER [76] and 

with aggressive breast tumor phenotypes [77]. The second category of pathways underlies the 

aggressive metastasis of ER- tumors. For example, among eight pathways that were shown to play 
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roles in breast tumor metastasis [78], we found that five of them are significantly enriched for ER- 

3ʹUS ceRNA partners with the exception of PI3K/AKT, the enriched p-value of which is just below 

the significance cutoff (P=10-1.95). Further, previous studies have associated breast tumor 

malignancy and poor survival with abnormal control of Ephrin A (reviewed in [79]), which is 

strongly enriched for ER- 3ʹUS ceRNA partners (P-val=10-5.05). In normal samples without 3ʹ-

UTR shortening, 3ʹUS ceRNA partners should closely regulate these pathways. However, in ER- 

tumors characterized by widespread 3ʹUS events, most (81.7%) of the 3ʹUS ceRNA partners lost 

the ceRNA relationship (Figure. 2.2C), likely losing the normal control.  
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Figure 2.2. 3ʹUTR shortening is associated to ER-’s aggressive phenotypes in ceRNA. (A) Intersection of 3ʹUS 

ceRNA partners between ER- and ER+ normal ceRNA networks. (B) IPA canonical pathways significantly (P 

< 0.01) enriched for the ER- 3ʹUS ceRNAs. Pathways are colorcoded by keyword, “Cancer” in blue, 

“Signaling” in red and those associated with aggressive phenotypes [78] in green. (C) Intersection of 3ʹUS 

ceRNA partners in ER- between normal and tumor ceRNA networks. 
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2.4.4 Housekeeping Genes Keep ER+ and ER- Normal ceRNA Networks to Similar 

Topology 

Further, we categorized genes that have possible sponge effect (>5 miRNA binding sites 

in the 3ʹUTR) into housekeeping (HK), tumor-associated (tumor suppressors or oncogenes, TA), 

and transcription factor (TF). Based on 3,804 HK [67], 932 TA [69], and 1,020 TF genes [68] 

curated in public databases (see Methods), the ceRNA networks consist of 3-fold more HK genes 

than TA or TF genes (Figure. 2.3A for normal and Supplemental Figure. 4A for tumor). Due to 

their active roles in cell maintenance [67], HK genes are expected to maintain constant expression 

levels under most physiological conditions [67]. Accordingly, the 958 HK ceRNA genes in ER- 

normal (Figure. 2.3.A) express as highly as (Supplemental Figure. 4B), but with less significant 

variation (P=1.72e-54) across the normal samples (Figure. 2.3B), than 1,906 non-HK ceRNA genes 

in the network. With our observation that the HK genes contain more miRNA binding sites than 

the other genes (P=0.05, Figure. 2.4C), they should function as stable sponges for miRNAs [80]. 

Thus, with a significant number (P=8.77e-771) of overlap in the HK ceRNA genes between ER- 

and ER+ normal samples (Figure. 2.3D), we hypothesize that they keep ER- and ER+ normal 

ceRNA networks in similar topology. To test this hypothesis, we first selected edges involving the 

HK ceRNA genes from the ER+ and ER- normal ceRNA networks to form subnetworks and 

compared the subnetworks using normalized Laplacian Matrix Eigenvalue Distribution. Further, 

we randomly subsampled the same number of edges not involving HK genes 200 times from the 

ER+ and ER- ceRNA networks and compare the networks in the same way (Figure. 2.3E). The 

HK ceRNA networks are significantly more similar between ER+ and ER- (P < 0.01) than 200 

non-HK ceRNA networks, suggesting that HK genes make normal ceRNA crosstalk consistent 

between the subtypes through the miRNA sponge effect. 
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Figure 2.3. Housekeeping genes make consistent ceRNA networks between ER- and ER+ normal samples. (A) 

Number (and the percentage to the total number of nodes in the networks) of housekeeping (HK), tumor-

associated (TA), or transcription factor (TF) genes in the ER- and ER+ normal ceRNA networks. (B) 

Standard deviation of gene expressions of 958 HK genes and 1,906 non-HK genes in the ER- normal ceRNA 

network. (C) Number of miRNA binding sites on the 3ʹUTR of 886 HK and 1,748 non-HK genes in the 

network. (D) Number of HK genes shared by ER- and ER+ normal ceRNA networks. (E) Distribution of the 

similarity p-values between the subnetworks of ER+ and ER- normal ceRNA networks with 922 HK genes or 

the same number of non-HK genes. The higher the p-value is, the more similar the networks are [71]. 

 

Supplemental Figure 4. (A) Number (and the percentage to the total number of nodes in tumor networks) of 

HK genes and other important classes of genes in ER+ and ER- normal ceRNA networks. (B) Average gene 

expression values of 958 HK genes and 1,906 non-HK genes in the ER+ and ER- normal samples. 
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2.4.5 3ʹUS Disrupts ceRNA Crosstalk of Housekeeping Genes for ER- Specific Growth 

We further examined the impact of 3ʹUS on the role of HK genes. First, 3ʹUS genes are 

highly connected to HK genes. Out of 958 HK genes, 727 HK genes (75.8%) are connected to 

3ʹUS genes, which is in the same scale as the other classes of genes that are known to be regulated 

by 3ʹUS genes [50], [52] (196 (61.8%)  TA genes and 245 (90.2%) TF genes, Figure. 2.4A). Also, 

these HK genes are more highly connected in the network compared to 231 HK genes that are not 

connected to 3ʹUS genes (Figure. 2.4B). Previously, we showed that 3ʹUS represses the ceRNA 

partners in tumor [52]. Consistently, these HK genes, ceRNA partners of 10.2 3ʹUS genes on 

average (Supplemental Table. 1. Tab 5), are more repressed in tumor than 231 HK genes not 

connected to 3ʹUS genes (P-value=0.00035, Figure. 2.4C). For example, Transforming Growth 

Factor Beta Regulator 1 (TBRG1) is connected to four 3'US genes (PPP6C, DICER1, H2AFV, 

UBL3) in ER- normal samples. With 3'US in ER- tumor samples, TBRG1 is significantly down-

regulated (logFC = -0.15) considering the general up-regulation of the other housekeeping genes 

(Figure. 2.4C). TBRG1 and those 4 3'US genes are predicted to share binding sites of miR-874 

(see Materials and Methods). MiR-874 was experimentally shown to repress TBRG1 to promote 

non-familial breast cancer[81]. Although miR-874 was expressed (avg. FPM is 5.3 and 5.1 in ER- 

tumor and normal samples), they were not significantly (P-value=0.58) up-regulated in ER- tumor 

samples to repress TBRG1. Instead, 3'UTR shortening of the four genes may redirect miR-874 to 

bind more efficiently on TBRG1, leading to its repression. We checked that TBRG1 is not 

alternatively polyadenylated in ER- tumors (neither 3'US nor 3'UL). Globally, we checked that 

only 76 out of 958 HK ceRNA genes in ER- (7.9%) are either 3'US or 3'UL genes in tumors. This 

low overlap between our HK genes and 3'US genes implies that HK genes may not be directly 

related to growth-related functions [82], [83], but contribute to tumorigenesis through 3'US-
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ceRNA. To further understand the impact of the repression on the ceRNA network, we compared 

the number of the ceRNA partners of these HK genes between normal and tumor. Previously, we 

showed that 3ʹUS genes will break their relationship with the ceRNA partners [52]. Since the 

ceRNA relationship changes, either loss or gain, could propagate to neighboring ceRNA 

relationships [51], the repression of HK genes should break the ceRNA relationship not only with 

3ʹUS genes but also with other ceRNA partners. Consistent to the expectation, 727 3ʹUS HK 

ceRNA partners lost higher ratios of the ceRNA partners in tumor (Figure. 2.4D). We found a 

similar trend of HK gene repression in ER+ breast cancer when connected to 3ʹUS genes 

(Supplemental Table. 1. Tab 6).  

The loss of HK ceRNA partners naturally reduces the high overlap of HK genes between 

ER+ and ER- (Figure. 2.5A), resulting into 505 and 144 HK genes that are ceRNA partners of 

3ʹUS genes unique in ER- and ER+ tumor (ER- and ER+ HK ceRNA partners), respectively 

(Figure. 2.5B). While it is known that cell growth and cell cycle regulations are different in the 

subtypes [84]–[86], we found that the 505 ER- HK ceRNA partners are enriched for cell growth- 

and cell cycle-related IPA pathways (Figure. 2.5C, Supplemental Table. 1. Tab 3). First, they 

are enriched for pathways associated to growth factor (with keyword “GF”). Especially, EGF (P-

val=10-2.99) activates cell cycle progression in ER- tumors [87], and expression of VEGF (P-

val=10-2.42) is associated to ER- tumors [88]. Also, both EGF and VEGF are suspected to 

proliferate ER- tumors when estrogen cannot sustain them [88]. Second, cell cycle pathways are 

enriched for ER+ specific HK ceRNA partners, suggesting that ER-regulated cell cycle [89], [90] 

differentiates ER+ and ER- cancer partially at the ceRNA level. Especially, since regulation of cell 

cycle, G1- and S-phase and their transition ratio, is crucial for ER+ tumor’s proliferation (reviewed 

in [91]), it is interesting that cell cycle regulation pathways for various phases (G1/S or G2/M) of 
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various mediators (Estrogen or Cyclins) are enriched with 144 ER+ HK ceRNA partners. Third, 

considering that the enrichment analysis was for the disjoint sets of genes (505 unique to ER- and 

144 unique to ER+), it is interesting that these unique HK ceRNA partners are commonly 

significantly enriched for some “cancer” pathways e.g. “Molecular Mechanisms of Cancer”, 

showing that the HK ceRNAs are involved in cancer mechanisms equally significantly but in a 

subtype-specific fashion. 

 

Figure 2.4. 3ʹUS disrupts ceRNA relationship of HK genes in ER- tumors. (A) # of 3ʹUS genes connected to 

housekeeping (HK), transcription factor (TF), and tumor-associated (TA) genes in the ER- ceRNA network. 

(B) Degree (# neighbors in ER- normal ceRNA network), (C) log2 fold change (tumor vs. normal), (D) degree 

ratio (tumor vs. normal) of 727 and 231 HK genes that are ceRNA partners of 3ʹUS genes or not, respectively. 

Degree ratio in (D) represents the ratio of the number of neighbors retained in tumor. 
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Figure 2.5. 3ʹUS disrupts the ceRNA relationship of HK genes for ER- specific growth. Number of HK 

ceRNA partners unique and common to ER- and ER+ normal (A) and tumor (B) ceRNA networks. The 

numbers in parentheses are normalized to the number of genes shared between tumor and normal. (C) IPA 

canonical pathways significantly (P < 0.01) enriched for ER+ and ER- specific HK ceRNA partners. Pathways 

are color-coded by keyword, “Cancer” in red, “GF” in brown, “Estrogen” in green, and “Cell Cycle” in blue. 

 

2.4.6 3ʹUS Represses Housekeeping Genes to Promote Tumor Growth 

To gain insights into the cause-and-effect relationship from 3ʹUS-mediated HK gene 

repression to tumorigenesis, we revisited a previous study [52], [82], in which 3ʹUS-ceRNA effect 

promotes tumorigenesis in NUDT21 knockdown (KD) in HeLa cells and glioblastoma (data 

available in GSE42420 [14] and GSE78198 [31]). First, we chose 11,431 genes that are expressed 

in the experiment data (avg. FPKM > 1). Among them, we further chose 4,430 genes that would 

work as miRNA sponges (>5 miRNA binding sites). To identify ceRNA relationship with the 

genes, we will solely use significance of miRNA binding site overlap (FDR < 0.05), since the other 
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criteria for the ceRNA identification, co-expression, cannot be effectively estimated from two 

replicates of NUDT21 KD experiments. In this way, we identified 860 3ʹUS genes and 2,449 of 

their ceRNA partners. Among these 3ʹUS ceRNA partners, a significant portion of them (705, 

28.8%) are HK genes, while 184 are TA and 163 are TF genes. Especially, it is interesting to note 

that HK genes in the network are only either 3'US genes (n=298) or 3'US ceRNA partners (n=705). 

On the other hands, almost half of the TA and TF genes in the network are not connected with 

3'US genes (149 of 333 (44.7%) and 147 of 310 (47.4%) for TA and TF, respectively), showing 

that HK genes can be a major target of 3'US ceRNA effect. Based on our previous finding that 

3ʹUS represses the ceRNA partners in tumor [52], we further checked the repression of HK genes 

in NUDT21 KD. 705 HK genes that are 3ʹUS ceRNA partners are more repressed than TA and TF 

genes or than 298 HK 3'US genes in the network (Figure. 2.6A, P-value=0.01 and 0.05, 0.002, 

respectively). These results confirm that HK genes are repressed in the tumorigenic process 3ʹUS-

ceRNA effect promotes [52].  

To assess the impact of this repression on tumor growth, we further conducted IPA analysis 

on 705 HK 3'US ceRNA partners in comparison to the other 2,410 HK genes not in the network. 

First, although there are much less HK 3'US ceRNA partners than the other HK genes, they are 

enriched for more IPA Diseases & Functions terms (Supplemental Table. 1. Tab 4). While the 

IPA analysis gives N/A for the terms that are so lowly enriched that cannot be estimated, HK 3'US 

ceRNA partners have 581 terms with N/A value and HK genes not in the network have 693 terms 

with N/A value. Further, we replaced the N/A values with the minimum value and compare the p-

values in HK 3'US ceRNA partners vs. the other HK genes. This comparison shows that more 

terms are significantly (P-value < 0.01) enriched for HK 3'US ceRNA partners (254 terms with 

better p-values for HK 3'US ceRNA partners and 141 for the other HK genes). This trend is more 
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pronounced for the terms that are important for cancer. For example, IPA terms with keywords 

“Cell”, “Cancer (or Tumor)”, “Apoptosis (, Death, or Necro)”, and “Growth (, Proliferation, or 

Progression)” are significantly (P-value < 2.2e-16) more enriched in the HK 3'US ceRNA partners, 

while certain terms for general biological processes such as “RNA” are enriched in the other HK 

genes (Figure. 2.6B). While this analysis does not support our hypothesis as a whole, it 

demonstrates a potential role of HK gene repression in a tumorigenesis process with HeLa as a 

model system. It follows that the ER- specific tumor progression is attributable to the repression 

of different HK genes. 

 

Figure 2.6. (A). log2 fold change (FC) (NUDT21 KD vs. WT) of 705 HK, 184 TA, and 163 TF genes that are 

(potential) ceRNA partners of 3'US genes. log2FC of 298 HK genes that are 3'US genes is displayed on the 
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rightmost box. (B). Number of terms with the keyword indicated on the x-axis. Numbers on bar represent the 

actual number of terms. 

 

 

 

2.5 Discussion 

To investigate the role of 3ʹUS-ceRNA effect [52] for estrogen receptor negative (ER-) vs. 

ER+ breast tumors, we built the ceRNA networks that are comparable to each other subtype by 

addressing the bias due to the different number of samples (72 for ER+ and 20 for ER- in TCGA). 

A fair comparison of the networks suggests that 3ʹUS disrupts the ceRNA network for ER- tumors’ 

aggressive phenotypes. Further, we revealed a role of 3ʹUS-ceRNA effect on housekeeping (HK) 

genes. In the cancer context, the potential for being ceRNA was identified for mRNAs (e.g. [92]) 

as well as long non-coding RNAs (e.g. [93]) and pseudogenes (e.g. [94]). Among mRNAs, it has 

been shown that tumor-associated (TA) genes and transcription factor (TF) genes heavily 

contribute to ceRNA regulation [50]. While reaffirming the high contribution (and thus high 

potential of biological function) of the TA and TF genes to breast cancer ceRNA networks, we 

further found the high contribution of housekeeping (HK) genes. HK genes were reported as stable 

“control” genes for miRNA sponge effect (e.g. [95]), indirectly supporting our novel findings. By 

analyzing TCGA breast cancer and reanalyzing an experimental data, we found more direct 

supports for their roles to ceRNA.  
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Further analyses show that 3ʹUS disrupts ceRNA crosstalk of HK genes in a subtype-

specific fashion. First, we showed that a subset of HK genes is trans target of 3ʹUS-ceRNA effect 

(sponge HK genes) enriched in important pathways in association to ER-’s aggressive phenotype. 

Since they are much less than the other HK genes in number (e.g. 705 3ʹUS ceRNA HK genes vs. 

2,401 HK genes in the NUDT21 KD experiment), our definition may shed novel insights into 

identifying another set of biomarkers indicating tumor progression.  

In network analysis, a network of interest is often compared to a reference network. 

However, if the networks are built from different numbers of samples, the comparison will be 

biased due to the sample size difference (Supplemental Figure. 3). With the assumption that 

normal samples should have similar molecular dynamics, we found the subtype-specific cutoff 

values for normal ceRNA networks. Then, we construct ER+ and ER- tumor ceRNA networks 

(two-step pairwise normalization method). As the resulting ceRNA networks facilitate novel 

discoveries on the subtype-specific 3ʹUS-ceRNA effect, we expect that the two-step pairwise 

normalization method can further help normalize biological networks built with the different 

number of samples if the matched normal samples are available.  

We note that this normalization method can help further identify the genes playing 

important roles in a subtype-specific fashion. For example, we used the KS test to compare the 

eigenvalue distribution of the Laplacian matrix of the two networks, ER+ and ER- ceRNA 

network. The eigenvalue distribution is a set of eigenvalues each representing a temporal snapshot 

of the network [71]. Since 𝐾1,2 in Eq. 4 represents the snapshot point at which the topology of the 

two networks is most apart, the edges appearing at that time point strongly differentiate the two 

subtypes in the ceRNA level. In that sense, genes in the edges can be further investigated for their 

roles in each of the subtypes. Also, the resulting networks, the comparable ceRNA networks of 
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ER+ and ER- breast tumors, can further help identify important genes for specific functions in the 

subtypes. Biological network analysis techniques were used to identify the genes playing important 

roles in the ceRNA network [50], [96]. To identify such genes for ER- tumor, the samples need to 

be compared with ER+ in our context. In that sense, we can build a differential network (ER- vs. 

ER+) based on the comparable ceRNA networks. Then, since hub genes in the differential network 

would facilitate the ceRNA regulation of many genes only for a specific subtype, e.g. ER- breast 

tumor, they would be good candidates for important functions specific to the ER- tumors. We can 

further identify those for specific functions based on the gene sets defined for the functions e.g. 

Gene Ontology [97]. Our study showed the distinct 3'US-ceRNA dynamics between the ER+ and 

ER- group of tumor samples. Although ER status is an important clinical variable [39], it is 

important to note that the two groups do not directly represent further clinical subtypes of breast 

cancers, such as HER2+ or Triple-Negative. Thus, to reveal further clinical relevance of 3'US-

ceRNA dynamics, more study is warranted in the clinical subtypes within each group. 
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3.0 Project 2 - Deep Neural Networks With Knockoff Features Identify Nonlinear Causal 

Relations and Estimate Effect Sizes in Complex Biological Systems 

  

3.1 Summary 

Learning the causal structure helps identify risk factors, disease mechanisms, and candidate 

therapeutics for complex diseases [98]–[100]. However, although complex biological systems are 

characterized by non-linear associations, existing bioinformatic methods of causal inference 

cannot identify the nonlinear relationships and estimate their effect size [101]–[105]. To overcome 

these limitations, we developed the first computational method that explicitly learns nonlinear 

causal relations and estimates the effect size using a deep-neural network approach coupled with 

the knockoff framework [106], named causal Directed Acyclic Graphs using deep-learning 

VAriable SElection (DAG-deepVASE) [107]. Using simulation data of diverse scenarios and 

identifying known and novel causal relations in molecular and clinical data of various diseases, 

we demonstrated that DAG-deepVASE [107] consistently outperforms existing methods in 

identifying true and known causal relations. In the analyses, we also illustrate how identifying 

nonlinear causal relations and estimating their effect size help understand the complex disease 

pathobiology, which is not possible using other methods. With these advantages, the application 

of DAG-deepVASE [107] can help identify driver genes and therapeutic agents in biomedical 

studies and clinical trials.  
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3.2 Background 

The most important thing to consider when adding elements to your ETD, is to aim for 

consistency. If you add block text or quotations that vary from the Normal style, your best bet is 

to create a style for that customization and use it throughout the document. It’s also best to 

minimize the amount of in-line editing that you do, as when you adjust a few lines of text that 

varies from the rest of the document, it will most probably be flagged on review.  

Since molecular and clinical variables interact for the development of complex diseases 

such as cancer, asthma, and sepsis [98]–[100], learning the causal structure among the variables 

helps identify risk factors, disease mechanisms, and candidate therapeutics for the complex 

diseases for future evaluation. For example, if an abnormal expression of a certain gene modifies 

the expression level of other genes and contributes to the development of a disease, then controlling 

this gene can lead to the effective treatment of the disease.  

A popular statistical model for causal inference is the causal directed acyclic graph (DAG), 

which learns conditional dependence among variables[105], [108], [109] because the conditional 

dependence can further imply the causal relationships under three causal assumptions: Markov, 

faithfulness, and sufficiency. The causal Markov condition states that causal relationships among 

the set of variables in their probability distributions (e.g. Bayesian network) are conditionally 

independent of their non-descendants given their parents[110]. The causal faithfulness condition 

states that all independence relations in the data are consequences of the Causal Markov condition. 

The causal sufficiency condition states that input data measured all the common causes of the 
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measured variables, thus no latent (unobserved) confounder exists. Since the assumptions are not 

usually met in data, statistical causal inference is limited to identifying causal relationships that 

are Markov equivalent, which hold the same adjacencies and imply the same independence and 

conditional independence relationships on the same variables (v-structure). Under the 

assumptions, bioinformatic methods have incorporated two main approaches to building DAGs: 

constraint-based or score-based[27], [36], [111]–[116]. Constraint-based algorithms learn 

constraints that restrict the set of possible causal graphs by testing conditional independence in the 

input data. Peter and Clark (PC) [27], one of the most popular algorithms under this category[28]–

[33], uses a combination of conditional independence tests and graph pruning techniques first to 

determine an skeleton of the DAG and then to determine the causal directions in the skeleton 

network. On the other hand, score-based algorithms generally formulate the causal learning 

problem as a search problem to optimize a certain score function with respect to an unknown DAG 

and the input data. For example, the Degenerate Gaussian score (DG) was recently proposed [34] 

by extending the widely used BIC score [35], [36] for mixed types of data. Specifically, by 

embedding discrete variables into a continuous space using one hot vector representations, DG 

demonstrates a near-perfect performance under certain simulation scenarios of high-dimensional 

data.  

Previously, causal inference methods have been successfully used to provide insights into 

molecular mechanisms and predict treatment effects. First, to provide insights into molecular 

mechanisms (e.g., transcriptional regulatory relationship between genes), methods have been 

developed to integrate multiple types of data where the direction of effect is known from one type 

to another (e.g., from DNA variants to gene expression). Developments in this approach utilized 

both score-based [117], [118] and constraint-based [119]–[122] algorithms. For example, MRPC 
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uses PC to examine a set of causal relationships between DNA variants and gene expression 

information implied by the principle of mendelian randomization (PMR). Second, to predict 

treatment effects, causal inference was done using multiple intervention trial or experiment data 

(e.g., RNAi-based gene knockout experiments). For example, conservative local causal discovery 

(CLCD) tests conditional (in)dependence among multiple entities (e.g., proteins) across 

experiments [123] and BACKSHIFT evaluates particular causal scenarios shared across 

experiments using a linear causal model [124]. Treatment effect can also be predicted based on the 

relationship of the input samples with other samples for which treatment effects are known. To 

this end, causal k-nearest neighbor algorithm (causal KNN) estimates the effect based on the 

nearest neighbors with known treatment effects. Similarly, causal random forest attempts to 

identify neighbors after recursively partitioning the covariate space through creating a set of 

decision trees. While they successfully identified biologically meaningful or clinically reasonable 

causal relations in various validation experiments, they are not necessarily relying on artificial 

intelligence (AI) methods and tend to test independence for a limited number of entities or based 

on naïve assumptions on the relationships among data points.  

Recently, methods have employed AI methods to address the limitations of previous causal 

inference methods. For example, a recent development, causalMGM (causal mixed graphical 

model) [125], first identifies associations between different types of data using a mixed graphical 

model (MGM) and then infers causality of the associations through PC. This two-stage approach 

showed good scalability and accuracy for high-dimensional simulated and biological data of mixed 

types [125]. Also, to identify an optimal DAG based on an optimality score, a challenge can be the 

intractable search space that increases with a complexity super exponential to the number of the 

input variables. Thus, a group of methods have been developed to efficiently navigate the search 



 52 

space. Previously, this problem was addressed with additional structure assumptions, e.g., in terms 

of tree width [126], number of variables [127], ancestral constraints [128], or a set of prior 

knowledge [129]. While they were designed to shrink the intractable search space with the 

assumptions, methods can also be developed to expand the search space and efficiently navigate 

it. In that regard, a recent breakthrough formulates the problem as a continuous optimization with 

a structural constraint that ensures acyclicity [130] and spurs further development of deep neural 

network (DNN) models. For example, Yu et al. proposed a deep generative model and apply a 

variant of the structural constraint to learn the DAG (DAG-GNN) [37] and Zheng et al. generalized 

this framework so various approximations can be used for search (NOTEARS) [38] , including 

neural networks. Despite all substantial progresses in those approaches, we found several 

challenges to identify causality for complex diseases. First, a method should identify both linear 

and non-linear associations. While linear associations may exist, complex biological systems are 

characterized by non-linear associations [21], [22]. For example, the effects of hormone receptor 

status on breast cancer biology are often nonlinear due to their complex interactions with other 

molecular complexes in multiple regulation processes[23]–[25]. Some of the nonlinear 

associations may be revealed in the existing DNN methods. However, the methods utilize the DNN 

component to effectively navigate the search space over various DAGs while optimizing an 

optimality score across all the relationships in a DAG as has been done previously. Generally, the 

optimality scores are based on a likelihood model with product terms to represent the variable 

relationships. For example, as the optimality score, both DAG-GNN and NOTEARS can use the 

BIC score that select the product terms to determine significant variable relationships. A product 

term of two variables assumes that the relationship between the variables is additive and 

proportional, meaning that the effect of one variable on the other is assumed to be constant across 
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all levels of the other variable. Since the constant effect is satisfied only in linear relationships, the 

methods based on such optimality scores are designed to consider only linear relationships. In 

other words, as a DNN component is to address nonlinearity, existing methods use the DNN 

component to address nonlinearity in how various DAGs are searched through, not to address 

nonlinearity in each relationship. In this sense, they do not explicitly identify each causal 

relationship as nonlinear. Second, a method should estimate the effect size of each association. 

This is critical to facilitating a translatable understanding of the causal relationships since it is 

important to select a limited number of the most significant causal relationships for downstream 

experiments or clinical trials due to both technical and practical limitations. However, currently, 

no method can not only identify the nonlinear relationships but also estimate their effect size.  

To address these limitations and enable a more realistic and translatable causal structure 

learning for complex diseases, we developed the first computational method that explicitly learns 

nonlinear causal relationships as well as linear causal relationships, named causal Directed Acyclic 

Graphs using deep-learning VAriable SElection (DAG-deepVASE) [107]. To identify nonlinear 

causal relationships in high-dimensional data, DAG-deepVASE [107] incorporated a two-step 

approach: 1) identify associations and estimate their effect sizes and 2) infer the causality among 

the associations. In the first step, to identify each causal relationship as nonlinear, DAG-

deepVASE [107] puts a deep neural network (DNN) model between each potential causal 

relationship. However, a regular DNN model cannot estimate the effect size between an input 

variable and the response variable since it would be difficult to summarize the edge weights 

between neurons across multiple layers between the variables. To address this difficulty, DAG-

deepVASE [107] incorporated the knockoff framework into the DNN model to estimate the effect 

size. Previously, this architecture was used to control false positive rate in the context of variable 
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selection [131]. In this work, we extend this architecture to measure the effect size in the context 

of causal inference for the first time. Further, to learn the causal direction for the identified 

nonlinear associations, DAG-deepVASE [107] extends a score-based approach, DG. While it was 

not known which causal inference approach would learn the causal direction of nonlinear 

associations, we conducted extensive studies to find that its asymptotic properties make the 

inference tractable and flexible enough to learn nonlinear causalities.  

DAG-deepVASE [107] consistently outperforms other methods in identifying true causal 

relations in simulation data of diverse scenarios and identifying known and novel causal relations 

in molecular and clinical data of various diseases (pediatric sepsis, gut bacteria/nutrient intake and 

BMI, and breast cancer), facilitating a systematic understanding of the complex disease 

pathobiology. In the analyses, we also illustrate how identifying nonlinear causal relations and 

estimating their effect size help understand the complex disease pathobiology, which is not 

possible using other methods.  

3.3 Materials and Methods 

In developing our method, we followed the DOME (Data, Optimization, Model, and 

Evaluation) guidelines stated in https://dome-ml.org/. Especially, we selected testing data that is 

representative of the domain (TCGA breast cancer for molecular data, gut microbiome and obesity 

data for metagenomics, and pediatric sepsis data for clinical data) per the Data guidelines. Their 

accessions are further detailed in the Availability of Supporting Data section below. Per the 

Optimization guidelines, we performed experiments with various numbers of neuron layers (1~5 

layers) and various numbers of neurons (10, 50, 100, 200, 400, and 600 neurons) in each layer on 
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the simulation data (10 and 190 features in true and false causal relation to the outcome, 

respectively, generated for 1,000 samples) (Supplemental Figure. 8). These experiments justify 

the current design principle of DNN methods to put multiple layers of the neurons that is the same 

as the number of input features. For example, our experiments demonstrate that, to run on the 

simulation data, which consist of 100 features, DNN models of multiple layers of 100 neurons 

perform the best. In this project, we followed this design principle to implement our methods and 

reported all hyperparameters (Table 3.1) and optimization protocol under Running parameters 

of DAG-deepVASE [107] section below. Per the Model guidelines, we dockerized our method to 

make it easier for people to test and deploy. Lastly, per the Evaluation guidelines, we compare our 

method both with public method (causalMGM) and simple (baseline) method (linear-DG) on the 

same dataset. 

Table 3-1. Parameter settings for the deep-learning component of DAG-deepVASE. 

 
Parameters Value 

DNN Activation function Rectified linear unit (ReLU) 

Initial weight values Glorot normal intializer 

Regularization 𝐿1−𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

Optimization Adam optimization 

Loss function Mean of squares of errors (MSE) 

FDR FDR control rate 0.05 
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3.3.1 Availability of Supporting Data 

We used a simulation data set, two public data, and one access-controlled data. Our 

simulation data are downloadable from our project website 

(https://github.com/ZhenjiangFan/DAG-deepVASE). TCGA breast invasive carcinoma (BRCA) 

data were downloaded from https://tcga.xenahubs.net, available under BRCA cohort, under gene 

expression RNAseq section, on IlluminaHiSeq (n=1,218) TCGA Hub. It consists of the gene 

expression RNAseq dataset (dataset ID: TCGA.BRCA.sampleMap/HiSeqV2) and the clinical 

phenotype dataset (dataset ID: TCGA.BRCA.sampleMap/BRCA_clinicalMatrix). To investigate 

the dietary effect of the human gut microbiome, we downloaded a cross-sectional data of 98 

healthy volunteers from https://noble.gs.washington.edu/proj/DeepPINK/ that preprocessed the 

data set collected from [132] . We also used an access-controlled data of pediatric sepsis. The 

entire data are available upon request and after taking due steps for the rights and welfare of human 

research subjects involved in the study (regarding the Institutional Review Board review). 

However, to ensure reproducibility of our findings, we uploaded a down-sampled (70%) version 

of our data sets for the interactions of SIRS on the code and data repository site described below. 

The interactions of SIRS forms the basis of our novel findings and include SIRS with heart rate, 

CRP (C-reactive protein), IFN-γ (interferon gamma), CNS (central nervous system) dysfunction, 

and IL (interleukin)-22. We ensured that our findings are reproduced using this data set. Details of 

each data are given below.  

 

https://tcga.xenahubs.net/
https://noble.gs.washington.edu/proj/DeepPINK/
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3.3.2 Breast Cancer Data 

The gene expression RNAseq section in the Xena website is the level 3 data estimates in 

log2(x+1) transformed RSEM normalized count obtained from the TCGA data coordination 

centers. The University of North Carolina TCGA genome characterization center experimentally 

measured the gene expression profile using the Illumina HiSeq 2000 RNA Sequencing platform. 

Since we selected genes based on the expression variation, we did not use gene expression data 

with further normalization in the Xena website, such as pancan normalization or percentile 

normalization. For the gene expression dataset, we selected 500 or 2,000 expressed genes based 

on their variances. Then, we added ERBB2 (also known as HER2 or neu) to the selected gene set 

to the 500 genes selected above. ERBB2 was included due to its important role in human 

malignancies, especially for human breast cancers [133]. For the clinical dataset, we used 10 well-

known clinical status features: PAM50 status (PAM50Call_RNAseq), HER2 status 

(HER2_Final_Status_nature2012), tumor stage (Converted_Stage_nature2012), tumor node status 

(Node_nature2012), the progesterone receptor status 

(breast_carcinoma_progesterone_receptor_status), the estrogen receptor status 

(breast_carcinoma_estrogen_receptor_status), the number of lymph nodes 

(lymph_node_examined_count), neoplasm cancer status (person_neoplasm_cancer_status), 

pathologic stage information (pathologic_stage). 

3.3.3 Gut Microbiome Data 

This data has 214 micronutrients and 87 genera from 90 healthy donors. They were 

between the ages of 18 and 40 and required to be free from any chronic gastrointestinal disease, 
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cardiac disease, diabetes mellitus or immunodeficiency diseases, to have a normal bowel 

frequency (between once every 2 days and 3 times per day), to have body mass index (BMI) 

between 18.5 and 35. They had not taken antibiotics within 6 months prior to enrollment, proton 

pump inhibitors, H2 receptor antagonists, tricyclic antidepressants, narcotics, anticholinergic 

medications, laxatives, or antidiarrhea medications within 4 weeks of enrollment, or NSAIDs, 

dietary supplements, or antacids within 2 weeks prior to enrollment.  

The BMI data were evaluated based on the donors’ information and the bacteria data are 

extracted using 16S rRNA sequencing from the stool samples. For a consistent result with previous 

analyses, we used the same data pre-processing procedure as previous computational work on the 

data [131]. In particular, the nutrient values are normalized using the residual method to adjust for 

caloric intake and then standardized [134]. Then, this data is log-ratio transformed to get rid of the 

sum-to-one constraint and then centralized. Following [135], 0s are replaced with 0.5 before 

converting the data to a compositional form. With both the nutrient intake and genera composition 

as predictors, we treat BMI as the response. 

3.3.4 Pediatric Sepsis Data 

The pediatric sepsis data were collected from 9 PICUs in the Eunice Kennedy Shriver 

National Institutes of Child Health and Human Development Collaborative Pediatric Critical Care 

Research Network (including Children’s Hospital of Pittsburgh, Children’s Hospital of 

Philadelphia, Children’s National Medical Center, Children’s Hospital of Michigan, Nationwide 

Children’s Hospital, Children’s Hospital of Los Angeles, St. Louis Children’s Hospital, C. S. Mott 

Children’s Hospital, and Mattel Children’s Hospital at the University of California Los Angeles) 

[136]. Briefly, we collected blood samples and clinical data obtained from our previously 
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published PHENOMS study[136]. Approval was obtained from The University of Utah 

Institutional Review Board, Central IRB # 70976. Written informed consent was obtained from 

one or more parents/guardians for each child.  Assent was garnered when the child was able.  

Patients were enrolled from 2015 to 2017.  The CONSORT diagram and details of the clinical 

study protocol have been previously published [136].  In brief, children qualified for enrollment 

in PHENOMS if they 1) were between the ages of 44 weeks gestation to 18 years of age; 2) were 

suspected of having infection meeting two or more of four systemic inflammatory response criteria 

[137], and 3) had one or more organ failures [138]. Three consented and enrolled children who 

were excluded from reporting in the parent study manuscript due to a maximum per site enrollment 

of 81 patients to evenly distribute enrollment among the centers, are additionally included in this 

analysis. Another work investigating this data is in progress and thus this data is currently not 

deposited in the public domain yet. There originally were 55 candidate clinical features and 33 

cytokine features measured from 404 children admitted. We removed features with a missing rate 

higher than 20% as well as highly correlated features (Pearson's correlation coefficient > 0.6). 

Finally, we dropped samples with any missing data. As a result, this dataset provides 56 features 

(Table 3.2) from 281 samples with low correlations (< 0.3 and > -0.44 in Pearson's correlation 

coefficient). In our analyses, some clinical terms were reported with abbreviations; GCS: Glasgow 

Coma Scale; CRPH: C-reactive protein; SIRS: Systemic Inflammatory Response Syndrome: 

sCD163: soluble CD163; M-CSF: Macrophage colony-stimulating factor. Table 3.2 has all the 

variables with full names. To address the high right-skewness of the clinical data, we employed 

the log transformation (log10) on the values. 

Table 3-2. Variables in the pediatric sepsis data 

Variable Description of variable 
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Demographic   

Age   

PRISMa   

Low SBP Lowest Systolic Blood Pressure 

High Heart Rate Highest Heart Rate 

Low Temp Lowest Temperature 

High Temp Highest Temperature 

GCS The lowest GCS score 

Lower Platelet Lowest Platelets 

Labs  

Higher Creatinine Highest value from PRISM High Creatinine and High 

Creatinine 

Low Lymphocyte            Absolute lymphocyte count 

Low Hemoglobin Hemoglobin 

Low Platelet Platelet count 

ex vivo TNF-α Blood endotoxin-stimulated TNF-α 

SFASLigand sFas Ligand 
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sCD163 Soluble CD163 

ADAMTS13 A disintegrin and metalloproteinase with a 

thrombospondin type 1 motif, member 13 

Organ failure  

SIRS Systemic Inflammatory Response Syndrome criteria  

Cytokine 

CRP C-reactive protein 

IFN-β Interferon-β 

IL-22 Interleukin-22 

IL-18 Interleukin-18 

IL-18BP Interleukin-18-binding protein 

MIG-CXCL9 Chemokine (C-X-C motif) ligand 9 (CXCL9) or 

monokine induced by interferon gamma (MIG) 

IL-1β Interleukin 1β 

IL-4 Interleukin-4 

IL-6 Interleukin-6 

IL-8 Interleukin-8 
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IL-10 Interleukin-10 

IL-13 Interleukin-13 

IL-17A Interleukin-17A 

IFN‐γ Interferon‐γ 

IP-10/CXCL10 C–X–C motif chemokine 10 (CXCL10) or interferon γ-

induced protein 10 kDa (IP-10) 

MCP-1/CCL2 Chemokine (C-C motif) ligand 2 (CCL2) or monocyte 

chemoattractant protein 1 (MCP1) 

MIP-1α Macrophage inflammatory protein-1 alpha 

MIP-1β Macrophage inflammatory protein-1β 

TNF-α Tumor necrosis factor α 

MCP-3 Monocyte chemotactic protein-3 

IFN.α2 Interferon α-2 

IL-1α Interleukin 1α 

IL-2Ra Interleukin-2 receptor antagonists 

IL-3 Interleukin-3 

IL-16 Interleukin-16 
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M-CSF Macrophage colony-stimulating factor 

SCF Stem cell factor 

Trail Trial 

Ferritin Ferritin 

 

3.3.5 Availability of Supporting Source Code and Requirements 

Project name: DAG-deepVASE 

Project home page: https://github.com/ZhenjiangFan/DAG-deepVASE 

Operating system(s): Platform independent 

Programming language: Python, Java, C, and R 

Other requirements: e.g., Java 1.3.1 or higher, Tomcat 4.0 or higher 

License: MIT license 

3.3.6 Pre- and Post-processing 

To reduce false-positive discoveries, DAG-deepVASE carries out several pre- and post-

processing steps. As a pre-processing step, DAG-deepVASE filters out variable pairs that are 

conditionally independent on all the other variables based on inverse covariance (< 0.0001), using 

a python function in the package for machine-learning optimization (scipy.linalg.inv). Although 

it’s a common practice for computational causal inference under certain assumptions and the 

filtered-out nodes may not change the rest of the network, we made it optional since they can be 
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important nodes for downstream analysis [139]. As another optional postprocessing step, DAG-

deepVASE can detect a cycle (a non-empty tail in which the first and the last nodes are equal) in 

the network connecting the causal relations. Further, users can remove the cycle components by 

removing edges with their prior knowledge or DAG-deepVASE can automatically remove the 

edges with the least effect size it estimates.  

3.3.7 Directed Acyclic Graph Using Deep-Learning-Based Variable Selection (DAG-

deepVASE) 

We provide here a brief overview of DAG-deepVASE that aims to identify linearly and 

nonlinearly associated variables while estimating their effect sizes (Figure 3.1B, C, respectively) 

and learn their causal directions (Figure 3.1D) to produce a DAG from data matrix X consisting 

of M input variables (Figure 3.1A). In the first step, to identify linearly associated variables, DAG-

deepVASE develops a penalized regression function with the interaction terms connecting the 

variables and maximizes the likelihood score with sparsity penalties (Materials and Methods, 

Figure 3.1B). While the linear associations have been the main focus of previous causal inference 

methods[102], DAG-deepVASE further identifies nonlinearly associated variables by developing 

a set of deep neural network (DNN) models, each with one of the input variables as the outcome 

and all the others as the dependent variables of the model (Figure 3.1B). Note that this approach 

is different from most existing DNN-based causal inference methods in that DAG-deepVASE 

models nonlinearity in individual variable relationships while other methods model nonlinearity 

in the way variable relationships are combined with respect to the input data. Further, we set out 

to estimate the effect size on the individual variable relationships in our DNN model. Although 

estimating the effect size is important to design further clinical trials and/or experimental 
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validations with strong drivers, it is not straightforward to summarize the edge weights across 

multiple layers for effect size estimation in a regular DNN approach. DAG-deepVASE 

successfully estimates the effect size of the nonlinear associations by embedding the knockoff 

variables in the DNN model (Figure 3.1B). Knockoff variables are a synthetic and noisy copy of 

the input variables, which resemble the correlation structure of the input variables, but are 

conditionally independent of the outcome, given the input variables. This property of knockoff 

variables allows us to estimate how important the original association is in reference to the 

knockoff variables, leading to the effect size estimation.  

In the second step, after identifying both linear and non-linear associations, DAG-

deepVASE determines their causal direction using a single metric to ensure causal inference 

consistency between linear and nonlinear causalities. Since this is one of the first methods that 

identify nonlinear causal directions, it is unknown whether PC or DG would work better to identify 

nonlinear causal directions. Among various measures, we chose to use DG because it is accurate, 

decomposable, and flexible. While its accuracy, which was demonstrated in simulations[34], is 

clearly beneficial to learning accurate causal directions, we separately conducted an extensive 

study to find that its decomposability and flexibility were critical to identifying nonlinear causal 

directions. DG decomposes the task of identifying the optimal causal structure into determining 

the causal direction of each association. Whereas PC determines the optimal causal structure by 

considering all associations simultaneously, decomposability allows us to determine the causal 

direction of each nonlinear association without referring to other associations, making each causal 

inference tractable. DG also shows flexibility in learning the causal structure generated outside of 

its model class (conditional Gaussian model). This flexibility allows us to extend DG to learn 

nonlinear causal directions. In simulation data of diverse scenarios and biological data of various 
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contexts, we demonstrate that DAG-deepVASE can learn causal relations up to the Markov 

equivalence classes of the true causal relationship. 

 

Figure 3.1. Overview of DAG-deepVASE. (A) An input data matrix consisting of M variables (V1, V2, ..., VM), 

either continuous or ordinal categorical, collected from N samples. (B) Left: An example of the identified 
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linear associations using a statistical graphical model (MGM). Right: identifying nonlinear associations using 

a deep neural network (deep-learning) model. After the first run sets V1 as response and identifies its 

association with other variables, DAG-deepVASE will run this model with each of the other variables (V2, V3, 

..., VM) as response and with all the other variables as input. (C) Left: estimating the effect size of linear 

associations in the statistical graphical model. Right: estimating the effect size of nonlinear associations in 

reference to knockoff filter implemented in the deep-learning model. (D) Learning the causalities by running 

the degenerate Gaussian (DG) separately on the identified associations, either linear or nonlinear. 

3.3.8 Running Parameters of DAG-deepVASE 

To identify linear and nonlinear associations in each data set, we first performed pre-

processing steps described in the “Pre- and post-processing” section below. To identify linear 

associations after the steps, we ran Lee and Hastie’s log-likelihood model [103] for all possible 

variable pairs (𝑥, 𝑦 in Equation 2.1) with the penalty to select important variables (Equation 2.2). 

We set the sparsity penalty values of the likelihood function to 0.3 unless specified otherwise. 

Variable pairs remained after applying the penalty are significant linear associations.  

 To identify nonlinear associations, we first built a deep neural network model consisting 

of the input layer, two hidden layers, and the output layer (Step 1-1 in Figure. 3.1). Assume that 

the input data has p input variables, then we set the input layer with 2*p neurons, since we 

generated the knockoff variable for each input variable and combine them in a pair-wise fashion 

in the input layer (Equation 2.3, 2.4). The combined input-knockoff neurons are fully connected 

to the hidden layers. For the case of p input variables, each hidden layer has p neurons, further 

transformed using the rectified linear unit activation (ReLU) function[140]. The initial weights for 

the hidden layer are generated using the Glorot normal initializer[141], which uses 
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𝐿1−𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 with the regularization parameter set to 𝑂(√
2𝑙𝑜𝑔𝑝

𝑛
). To train this model, mean 

of squares of errors (MSE) is used to calculate the loss in comparison with the response on the 

output layer. To train the model’s parameters with respect to the loss function, we used a stochastic 

gradient descent method called “Adam optimization”. Then, we ran it to identify variables that 

predict the outcome variable with a high effect size estimated in Equation 2.5, 2.6. Equations are 

described in the section of Algorithm of DAG-deepVASE. All running parameters for the 

nonlinear module is summarized in Table 3.1. To identify nonlinear associations between all pairs, 

we ran this procedure repeatedly with each variable as outcome and all the rest as input. While the 

procedure was previously developed to identify input variables that can predict the outcome [131], 

DAG-deepVASE identify these prediction pairs as associated variables based on a widely accepted 

notion that a predictor and the outcome is statistically an associated pair. For theoretical 

understanding of the Equations, readers are referred to the following section. 

3.3.9 Algorithm of DAG-deepVASE 

Let 𝑋 be the data matrix of interest with variables measured over 𝑁 observations. 𝑥𝑖 ∈ 𝑋 

is the 𝑀 -dimensional feature vector observed for sample 𝑖, consisting of 𝐶 continuous variable set 

𝑋𝐶 and 𝐷 ordinal categorical variable set 𝑋𝐷 (𝐶 + 𝐷 = 𝑀). To systematically construct a DAG 

from both linear and nonlinear associations among variables, DAG-deepVASE leverages a well-

established computational framework where variable associations are first identified, and their 

causal directions are then learned [102], [104], [142].  

In the first step, DAG-deepVASE selects linearly associated variables based on Lee and 

Hastie’s log-likelihood [103] as follows.   
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Equation 2.1. 𝑙𝑜𝑔𝑝(𝑋𝐶 , 𝑋𝐷, Θ) = ∑ ∑ (−
1

2
𝛽𝑘𝑙𝑋𝐶𝑘𝑋𝐶𝑙) +

𝐶
𝑙

𝐶
𝑘 ∑ 𝛼𝑘𝑋𝐶𝑘

𝐶
𝑘 +

∑ ∑ 𝑣𝑘𝑙(𝑋𝐷𝑙)𝑋𝐶𝑘
𝐷
𝑙

𝐶
𝑘 + ∑ ∑ Φkl(𝑋𝐷𝑘, 𝑋𝐷𝑙)

𝐷
𝑙

𝐷
𝑘 − log(𝑍) , 

where Θ represents all of the model parameters, 𝛽𝑘𝑙  is the interaction coefficient between two 

continuous variables, 𝑋𝐶𝑘  and 𝑋𝐶𝑙 , 𝛼𝑘  is the potential of continuous variable 𝑋𝐶𝑘 , 𝑣𝑘𝑙  is the 

interaction parameter between continuous variable 𝑋𝐶𝑘 with each index of the categorical variable 

𝑋𝐷𝑙, Φ𝑘𝑙 is a matrix of interaction parameters between discrete variable 𝑋𝐷𝑘 and 𝑋𝐷𝑙 (indexed by 

their levels) [103]. If the data consists only of continuous variables, this model reduces to a 

multivariate Gaussian model with 𝛽𝑘𝑙 coefficient as entries in the precision matrix. If only with 

categorical variables, this model is the popular pairwise Markov random field with potentials given 

Φkl. While calculating the partition function 𝑍 can be expensive, it is possible to optimize the log-

likelihood edge by edge [105] under the faithfulness and causal Markov assumptions. Overall, this 

equation models the log-likelihood of interactions of continuous variables and categorical 

variables as a multinomial linear regression. To ensure sparsity and select associated variables in 

the regression model, Sedgewick et al. introduced sparsity penalties for associations between 

continuous variables, between a continuous and a categorical variable, and between categorical 

variables (𝜆𝑐𝑐, 𝜆𝑐𝑑, 𝜆𝑑𝑑, respectively) as follows [105]. 

Equation 2.2. 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒Θ𝑙(Θ) + 𝜆𝑐𝑐 ∑ |𝛽𝑖𝑗| +𝑖<𝑗 𝜆𝑐𝑑 ∑ ||𝑣𝑖𝑗||
2
+𝑖,𝑗 𝜆𝑑𝑑 ∑ ||Φij||

𝐹
𝑖<𝑗  

For balance estimation of the associations, DAG-deepVASE uses the same sparsity penalty 

(0.3 for all three interactions) and set FDR level 𝑞 as 0.05. After selecting the interactions, we 

report as effect size the coefficients in the model (𝛽𝑖𝑗, 𝑣𝑖𝑗 , or, Φij, corresponding to the type of the 

selected variables).  

In the second step, DAG-deepVASE selects non-linearly associated variables as follows. 

To identify nonlinear associations with 𝑥𝑖 , DAG-deepVASE sets multiple perceptron layers 
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between 𝑋\𝑖 = {𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, . . , 𝑥𝑀} and 𝑥𝑖 (Step 1. Nonlinear association in Figure 4.1) 

and estimate the effect size of the association between (𝑥𝑗 ∈ 𝑋\𝑖 , 𝑥𝑖). To estimate the effect size, 

DAG-deepVASE generates model-X knockoff[143]. For input variables 𝑥𝑖  and 𝑥𝑗 , the 

exchangeability property ensures that (𝑥𝑖, 𝑥𝑗 , 𝑥�̃�) =
𝑑 (𝑥𝑖, 𝑥�̃�, 𝑥𝑗), where " =𝑑 " denotes equality in 

distribution. This exchangeability properties help prioritize causal relations with 𝑥𝑖 over simple 

correlations. For example, suppose (𝑥𝑖, 𝑥𝑘) is a correlation without causal relation. Then, the 

feature exchangeability (𝑥𝑖, 𝑥𝑘, 𝑥�̃�) =
𝑑 (𝑥𝑖, 𝑥�̃�, 𝑥𝑘) will hold and make their relationship measure 

|𝑅𝐼𝑖𝑘| and |𝑅𝐼𝑖�̃�| exchangeable, which will make 𝑆𝑖𝑘 = |𝑅𝐼𝑖𝑘| − |𝑅𝐼𝑖�̃�| to follow a distribution 

symmetric around 0. On the other hand, suppose (𝑥𝑖 , 𝑥𝑗) is a causal relation. Then,  𝑆𝑖𝑗  will 

indicate how deviated the relationship of (𝑥𝑖 , 𝑥𝑗) is compared to the null hypothesis, leading to 

estimation of the effect size. The idea is that knockoff matrix �̃�  is generated to mimic the 

correlation structure within 𝑋 but minimises the cross-correlation with outcome variable[143]. 

Specifically, model-X knockoff variables for the set of random variables 𝑋 = (𝑥1, … , 𝑥𝑝)
𝑇
 of our 

interest are a new family of random variables �̃� = (𝑥1̃, … , 𝑥�̃�)
𝑇
 that satisfies two properties: (1) 

(𝑋, �̃�)
𝑠𝑤𝑎𝑝(𝑠)

=𝑑  (𝑋, �̃�) for any subset 𝑆 ⊂ {1,… ,𝑀}, where 𝑠𝑤𝑎𝑝(𝑠) means swapping 𝑥𝑗  and 

𝑥�̃�  for each 𝑗 ∈ 𝑆 and =𝑑 denotes equal in distribution, and (2) �̃� ⫫ 𝑌|𝑋, that is, �̃� is independent 

of 𝑋  given outcome 𝑌 . Suppose 𝑥𝑗~𝛮(0, 𝛴)  with 𝛴 ∈ ℝ𝑀×𝑀  the covariance matrix. A valid 

construction of 𝑥�̃�  is  

Equation 2.3. 𝑥�̃�|𝑥𝑗~𝛮(𝑥𝑗 − 𝑑𝑖𝑎𝑔{𝑆}𝛴
−1𝑥𝑗 , 2𝑑𝑖𝑎𝑔{𝑆} − 𝑑𝑖𝑎𝑔{𝑆}𝛴

−1𝑑𝑖𝑎𝑔{𝑆}). 

Model-X knockoffs can be sampled from the conditional distribution of 𝑥�̃�|𝑥𝑖 as follows.  

Equation 2.4. (𝑥𝑗 , 𝑥�̃�)~ 𝛮 ((
0
0
), ( 𝛴

𝛴−𝑑𝑖𝑎𝑔{𝑆}
𝛴−𝑑𝑖𝑎𝑔{𝑆}

𝛴
)) 
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In this sampling, the sensitivity of identifying 𝑥𝑗 can increase with a larger 𝑆 since it will 

make the knockoffs more different from 𝑆, subjected to another constraint that 𝑆 should make 𝛴 −

𝑑𝑖𝑎𝑔{𝑠} ≥ 0.  By pairing knockoff variable 𝑥�̃�  with the corresponding input variable 𝑥𝑗  and 

optimizing together for 𝑥𝑖, one can quantify the importance of 𝑥𝑗 in reference to 𝑥�̃�. Specifically, 

let 𝑊𝑖
(0)
∈ ℝ𝑀×1,𝑊𝑖

(1) ∈ ℝ𝑀×𝑀,𝑊𝑖
(2) ∈ ℝ𝑀×𝑀, 𝑎𝑛𝑑 𝑊𝑖

(3)
∈ ℝ𝑀×1  be the weight matrices 

connecting the input vector to the first hidden layer, the first hidden layer to the second hidden 

layer, the second hidden layer to the third hidden layer, and the third hidden layer to 𝑥𝑖 , 

respectively. The weight estimates can be summarized into 𝑤𝑖 = 𝑊𝑖
(0)
⊗ (𝑊𝑖

(1)𝑊𝑖
(2)𝑊𝑖

(3)) , 

where ⊗ denotes the element-wise matrix operation. Also, let 𝑟𝑖𝑗𝑖 and 𝑟𝑖𝑗�̃� be the filter weight for 

𝑥𝑗 and its knockoff counterpart 𝑥�̃�. Then, variable importance values can be estimated for input 

and knockoff variables as follows.  

Equation 2.5. 𝑅𝐼𝑗𝑖 = 𝑟𝑖𝑗𝑖 × 𝑤𝑖 𝑎𝑛𝑑 𝑅𝐼𝑗𝑖̃ = 𝑟𝑖𝑗�̃� ×𝑤�̃�. 

We use Adam to train this deep learning model with respect to the mean squared error loss, 

using an initial learning rate of 0.001 and batch size 10. With 𝑆𝑗𝑖 = |𝑅𝐼𝑗𝑖| − |𝑅𝐼𝑗𝑖̃ | , DAG-

deepVASE estimates effect size on (𝑥𝑗 ∈ 𝑋\𝑖,  𝑥𝑖 ) adopted from [106], [144], which can be 

described in the following two options: 

Equation 2.6. 𝑇 = 𝑚𝑖𝑛 {𝑡 ∈ 𝑆,
|{𝑗:𝑆𝑗𝑖≤− 𝑡}|

|{𝑗:𝑆𝑗𝑖≥𝑡}|
 ≤ 𝑞} 𝑜𝑟 𝑇+ = 𝑚𝑖𝑛 {𝑡 ∈ 𝑆,

1+|{𝑗:𝑆𝑗𝑖≤− 𝑡}|

1⋁|{𝑗:𝑆𝑗𝑖≥𝑡}|
 ≤ 𝑞} 

where 𝑞  is a user-defined nominal false discovery rate and 𝑇  or 𝑇+  is a threshold value for 

determining which features should be selected. We controlled FDR 𝑞 = 0.05 based on 𝑆𝑗𝑖. While 

this setting has previously been used for a variable selection problem with respect to outcome 31, 

we extend this problem to estimate the nonlinear effect size for associated variables in this project. 

Since model-X knockoff assumes to follow Gaussian distribution, we will include only continuous 
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or ordinal categorical variables that approximately follow Gaussian distribution (using Q-Q plot). 

We set parameters of DAG-deepVASE according to a guideline that utilized the knockoff 

framework for variable selection [131] (Table 3.1).   

In the third step, for each identified variable association ( 𝑥𝑖 , 𝑥𝑗 ), whether linear or 

nonlinear, DAG-deepVASE determines the causal direction as extended from the DG framework 

as follows. calculated as: 

Equation 2.7. 𝐷𝐺(𝐺, 𝑍) = ∑ 𝑑𝑔 (𝑍𝑗|𝑍𝑃𝑎𝑗
𝐺)

𝑝
𝑗=1 , 

where 

𝑑𝑔 (𝑍𝑗|𝑍𝑃𝑎𝑗
𝐺) =  ℓ (𝜃𝑚𝑙𝑒|𝑍{𝑗}∪𝑃𝑎𝑗

𝐺) − ℓ (𝜃𝑚𝑙𝑒|𝑍𝑃𝑎𝑗
𝐺) −

𝑐

2
|𝑍𝑗| |𝑍𝑃𝑎𝑗

𝐺| log(𝑛), 

where 𝑐 is a penalty discount used to tune the density of the resulting graph. Also, ℓ(𝜃𝑚𝑙𝑒|𝑍𝑠𝑢𝑏), 

which is the log-likelihood of a subset of Z, is computed using the Gaussian log-likelihood function 

in reference to ∑̂𝑠𝑢𝑏 , the partial covariance matrix for the input variables. Note 𝑑𝑔 (𝑍𝑗|𝑍𝑃𝑎𝑗
𝐺) =

𝑙𝑜𝑔𝑃 (𝑋𝑗|𝑋𝑃𝑎𝑗
𝐺) if the data has only continuous variables[36]. By maximum likelihood, the DG 

framework determines 𝑥𝑗  as causal and 𝑥𝑖  as effect if 𝑑𝑔(𝑥𝑖|𝑥𝑗) > 𝑑𝑔(𝑥𝑗|𝑥𝑖) or 𝑑𝑔(𝑥𝑖|𝑥𝑗) −

𝑑𝑔(𝑥𝑗|𝑥𝑖) > 0. Due to multiplication commutativity,  

Equation 2.8. 𝑑𝑔(𝑥𝑖|𝑥𝑗) − 𝑑𝑔(𝑥𝑗|𝑥𝑖) 

=  ℓ(𝜃𝑚𝑙𝑒|𝑥{𝑖,𝑗}) − ℓ(𝜃𝑚𝑙𝑒|𝑥𝑗)

−
𝑐

2
|𝑥𝑖||𝑥𝑗| log(𝑁) − (ℓ(𝜃𝑚𝑙𝑒|𝑥{𝑗,𝑖}) − ℓ(𝜃𝑚𝑙𝑒|𝑥𝑖) −

𝑐

2
|𝑥𝑗||𝑥𝑖| log(N)) 

=ℓ(𝜃𝑚𝑙𝑒|𝑥𝑖) − ℓ(𝜃𝑚𝑙𝑒|𝑥𝑗) 

= 𝑙(
�̂�𝑚𝑙𝑒|𝑥𝑖

�̂�𝑚𝑙𝑒|𝑥𝑗
).(1) 
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After running this likelihood ratio test, we algorithmically remove the causal relations that 

create a cycle (a non-empty tail in which the first and the last nodes are equal) to ensure acyclicity 

by removing the one association with the least effect size (𝑆𝑗𝑖).  

3.3.10 Simulation for Nonlinear Associations 

The nonlinear simulation datasets were generated using a single index model [145]–[148]. 

Each simulation dataset consists of three parts: outcome variable 𝑦 = (𝑌1, … , 𝑌𝑛)
𝑇 ∈ ℝ𝑁⨉1; a set 

of independently and identically distributed random variables 𝑋 ∈ ℝ𝑁⨉𝑀 which have a different 

degree of nonlinear association with 𝑦;  and a set of independently and identically distributed 

random variables 𝑍 ∈ ℝ𝑄⨉𝑀 which have no association with 𝑌. The following model was used to 

generate associated variable pairs 𝑥𝑖 and 𝑌: 

Equation 2.9. 𝑌𝑖 = 𝛼𝑔(𝑥𝑖
𝑇𝛽) + (1 − 𝛼)𝑥𝑖

𝑇𝛾 + 𝜀𝑖 

where 𝑔 is a nonlinear link function which we set to be a cube (𝑋3) function, 𝑌𝑖 is the outcome 

value and 𝜀𝑖 is noise added to the 𝑖𝑡ℎ outcome. 𝛼 determines the proportion of the (non)linearity 

of the simulation where 𝛼 = 1 determines the association of 𝑋𝑖 and 𝑌𝑖 only with the nonlinear link 

function (complete-nonlinear) and 𝛼 = 0.5  determines the association half by the nonlinear 

function and half by the linear function (partial-nonlinear). The distribution for noise 𝜀  was 

simulated from 𝒩(0, 𝜎2Ι𝑁), where 𝜎 is set as 1. The rows of 𝑋 was simulated independently from 

a distribution 𝒩(0,∑)  with a precision matrix ∑−1 = (𝜌|𝑗−𝑘|)1≤𝑗,   𝑘≤(𝑞+𝑝)  with 𝜌 = 0.5 . A 

similar strategy has been used to assess the performance of deep-learning methods developed for 

variable selection and causal inference, deepPINK[131], and DAG-GNN[37], respectively. In this 

project, we extended their methods by diversifying the degree of nonlinearity by adding the 
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proportion of linearity 𝛼. Also, note that this simulation satisfies the essential condition for causal 

inference, causal sufficiency. Specifically, 𝑌  is the direct product of 𝑋  without a mediator 

(Equation 2.9). Since this means no latent confounder in the causal relationship from 𝑋 to 𝑌, it 

satisfies causal sufficiency. The other two essential causal assumptions, causal Markov and 

faithfulness are not relevant to the simulation since there is no other variable in the simulation that 

is conditionally dependent or independent of 𝑋 and 𝑌. Altogether, this simulation experiment is 

designed to evaluate the performance of causal inference methods in a straightforward setting. 

For each parameter combination (number of features and samples, complete- or partial-

nonlinear), we ran various numbers of repetitions (50, 100, and 150), but report the results of 50 

repetitions as different numbers of repetitions returned very similar results.  

3.4 Results 

 

3.4.1 DAG-deepVASE Improves Power in Identifying Nonlinear Causal Relations in 

Simulation Data 

To evaluate the performance of DAG-deepVASE in the presence of multiple causal 

variables, we compared DAG-deepVASE with competing methods on simulation data. Such 

methods include causalMGM, DG, NOTEARS, and DAG-GNN. We included causalMGM and 

DG because they employ the two-step strategy as DAG-deepVASE:  identifying variable 

associations and then learning the causal direction of the associations. While causalMGM was 
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originally developed with the two-step strategy, DG does not have the first step because DG is 

developed to learn causality based on given associations. To be fair to DG, we developed the first 

step for DG: in the first step, we applied MGM to identify associations and in the second step, we 

used the original DG to learn their causalities. We will refer to this model as linear-DG model 

since the MGM implementation identifies variable associations based on the linear interaction 

terms. Also, note that whereas DAG-deepVASE identifies both linear and nonlinear associations 

and uses DG to learn their causal directions, linear-DG identifies linear associations and uses DG 

to learn their causal directions, and causalMGM identifies only linear associations and applies PC 

to learn their causal directions. We included NOTEARS and DAG-GNN because they are 

established DNN methods to infer causality. We ran the methods using default parameters or those 

suggested by the authors throughout this project (Table 3.1). 

To compare the methods in sensitivity and specificity simultaneously, we simulated 10 

data sets of 40 or 100 variables where half (20 or 50, respectively) of the variables collectively 

determine the outcome (true associations) and the other half are not associated with the outcome 

(false associations, see Materials and Methods). Each data set was simulated for 10,000 samples. 

To mimic biological variables that would interact in various degrees of nonlinearity, simulations 

were conducted under two scenarios: complete-nonlinear or partial-nonlinear scenarios. We ran 

DAG-deepVASE and causalMGM on the datasets. We did not run linear-DG since it identifies the 

same association pairs as causalMGM. We did not run NOTEARS and DAG-GNN for this 

experiment since it is not straightforward to vary threshold values for plotting the ROC curve in 

the DNN architecture. In both complete- and partial-nonlinear scenarios, DAG-deepVASE 

consistently outperformed causalMGM in AUC (area under the receiver operating characteristic 

curve). Specifically, for the simulations with 40 and 100 associations under the complete-nonlinear 
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scenario, DAG-deepVASE achieves an average of 0.84 and 0.82 AUC, respectively, 

outperforming causalMGM which achieves an average of 0.71 and 0.68 AUC (Figure. 3.2A and 

Figure. 3.2B, respectively). The same trend is observed under the partial-nonlinear scenario where 

DAG-deepVASE achieves an average of 0.84 and 0.83 AUC and causalMGM achieves an average 

of 0.73 and 0.71 AUC for the simulations with 40 and 100 associations (Supplemental Figure. 6A 

and Supplemental Figure. 6B, respectively). 

To further mimic biological situations where true associations would be relatively rare 

among all pairwise combinations of biological variables, we simulated different numbers of 

variables (M = 50, 100, 200, 400, 600, 800, 1000, 1500, 2000, 2500, and 3000) with various sample 

sizes (N=200, 600, 1000), where ten variables collectively determine the outcome (true 

associations). For each combination of variable number and sample size, we conducted the 

simulation experiment 50 times. In the complete-nonlinear simulation scenario, we first compared 

the number of true associations identified by each method before assessing the causal directions. 

DAG-deepVASE shows a two-fold higher power than the other methods by identifying more than 

90% of the true associations in most simulation scenarios (Figure. 3.2C). Interestingly, while 

DAG-GNN performs slightly better than linear approaches, causalMGM and linear-DG, in terms 

of power and sensitivity, NOTEARS performs the worst in all scenarios in general. Second, we 

compared the number of true and false causal directions learned from the identified associations 

(Figure. 3.2D, respectively, Supplemental Table. 2. Tab 1). In all experiments under the 

complete-nonlinear scenario, DAG-deepVASE consistently outperforms the other methods in 

identifying true causalities. Especially, for larger sample sizes (n=600 and 1,000), DAG-

deepVASE identified more than 97% of the true causalities. causalMGM returned bidirectional 

causal directions for all identified associations, which are counted as both true and false positives. 
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On the other hand, although linear-DG identified less than half of the true associations as 

mentioned above, it learned the true causalities on the small number of the identified associations 

(Figure. 3.2D), demonstrating that DG can be used to learn nonlinear causalities. Further, the other 

DNN methods also identified less than 50% of the true causalities than DAG-deepVASE. Together 

with such high true positive rates, DAG-deepVASE also outperforms the other methods by not 

identifying any false casualties in any of the scenarios, whereas competing methods suffer from 

high false causalities. For example, causalMGM returns 3~5 false-positive causalities by returning 

bidirectional causalities (Figure. 3.2E, Supplemental Figure. 5D) and both DNN methods, 

NOTEARS and DAG-GNN, suffer from the highest number of false causalities. In the partial-

nonlinear scenario, a very similar result is returned for power (Supplemental Figure. 5C), true 
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positive causalities (Supplemental Figure. 5D), and false positive causalities (Supplemental 

Figure. 5E).  

 

Supplemental Figure 5. AUC estimated for DAG-deepVASE and causalMGM on (A) 20 true and false 

associations and (B) 40 true and false associations, both under complete-nonlinear scenarios. (C) Average 

number, and standard error (error bar), of true associations in the partial-nonlinear scenario identified by 

DAG-deepVASE (red), causalMGM (gray), linear-DG (yellow), NOTEAR (blue), and DAG-GNN (green) 

over 50 runs in various simulation scenarios, varying the number of features and sample sizes. Average 

number, and standard error (error bar), of (D) true causalities and (E) false causalities over 50 runs. DAG-

deepVASE and linear-DG did not identify any false causalities. 
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Supplemental Figure 6. (A-J) Variable values against the BMI value window (1~5) that are identified as a 

nonlinear association to BMI (K-O) Variable values against the BMI value window (1~5) that are identified as 

a linear association to BMI. In the figures, KS is Kolmogorov-Smirnov (KS) test statistic, p-value is estimated 

from the KS test, rval is from a linear regression model, pval is from the linear regression, and importance is 

measured in DAG-deepVASE. The gray area indicates 95% confidence intervals, the blue line indicates 

median values, and the red line represents a linearly regressed line. P-value for linear fit is calculated from a 

permutation test with R2 (Methods) (P) Effect size estimated by DAG-deepVASE for 16 validated factors and 

285 other factors to BMI. 
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Altogether, DAG-deepVASE outperforms the other methods by identifying the highest 

number of true nonlinear associations and by learning the highest number of true causalities across 

various simulation scenarios without false positives, while competing methods could identify less 

than half of true nonlinear causalities with several false positives.  

 

Figure 3.2. Performance assessment of causal inference methods on the simulated data AUC estimated for 

DAG-deepVASE and causalMGM on (A) 20 true and false associations and (B) 40 true and false associations, 

both under complete-nonlinear scenarios. (C) Average number, and standard error (error bar), of true 

associations in the complete-nonlinear scenario identified by DAG-deepVASE (red), causalMGM (gray), 

linear-DG (yellow), NOTEAR (blue), and DAG-GNN (green) over 50 runs in various simulation scenarios, 

varying the number of features and sample sizes. Average number, and standard error (error bar), of (D) 

true causalities and (E) false causalities. DAG-deepVASE and linear-DG did not identify any false causalities. 

 

 

 

               

          

         

          

 
  
 
  
 
  
 
 
 
 
  
  
 
 

               

          

         

          

 

 

               

          

         

          

 
 
 
 
 

 

 
  
  
 
  
 
 
 
 
  
  
 
 

            
         
         

                                        

                                        

                                  

                                  



 81 

 

3.4.2 DAG-deepVASE Identifies Both Linear and Nonlinear Associations Among Clinical 

Features With High Sensitivity in Pediatric Sepsis Data 

To demonstrate the importance of identifying nonlinear variable associations for sensitive 

causal inference, we first focus on identifying associations among diverse types of variables in 

clinical data. The data consists of clinical and biomarker variables (laboratory parameters, 

cytokines, and chemokine measurements) from 404 children with severe sepsis[149]. We 

compared DAG-deepVASE and causalMGM in this section. We excluded linear-DG because they 

identify the same set of associations with causalMGM. We excluded NOTEAR and DAG-GNN 

from further analyses since they identified high rates of false positive causalities in simulation 

studies. Since DAG-deepVASE assumes that the variables follow the Gaussian distribution, we 

consider 45 continuous or ordinal categorical variables excluding one binary/nominal variable in 

the data set. Among the variables, DAG-deepVASE identifies 118 associations (Figure 3.3A), 

whereas causalMGM identifies 42 associations (49.5%, Supplemental Table. 2. Tab 2) of the 

associations. Since causalMGM is only able to identify linear associations, the 42 associations are 

likely linear. Many of the identified linear associations are already clinically and biologically 

verified. For example, the serum level of soluble CD163 (sCD163), a macrophage activator[150],  

only has linear associations (Figure 3.3B) with biomarkers known to activate macrophages, such 

as M-CSF (macrophage colony-stimulating factor)[151], MCP-1 (monocyte chemoattractant 

protein-1)[152], Il-1b[153], TNF-a [154], [155] and other key drivers of macrophage response 

including its ligand hemoglobin [156]. Also, age is another variable only linearly associated with 

other variables, including heart rate, creatinine, and lymphocyte count (Figure 3.3B). Since each 
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of them changes monotonically with age in pediatric subjects [157]–[159], it is reasonable that 

they are identified as linear associations.  

In addition to the 42 linear associations that are identified by both DAG-deepVASE and 

causalMGM, DAG-deepVASE uniquely identifies 76 nonlinear associations. Multiple nonlinear 

associations have been validated in previous clinical and biological studies with an implication for 

nonlinearity. An example is an association between systemic inflammatory response syndrome 

(SIRS) status and heart rate (Figure 3.3B). This association is expected as nonlinear, as the SIRS 

status is diagnosed by a nonlinear combination, which is the presence of any two of the four clinical 

criteria, including tachycardia (elevated heart rate) [160]. Also, as the SIRS response is defined as 

a result of systemic immunological activation, DAG-deepVASE uniquely found nonlinear 

associations between SIRS status and pro-inflammatory cytokines including CRP [161], [162], IL-

1β [163], and IFN-γ [164] (Figure 3.3B), corroborating their collective roles in inflammation. 

Since cytokines are produced involving different combinations of signal transduction pathways 

[165], [166], their associations with  SIRS are expected to be nonlinear rather than linear.  

While the method identified validated associations, DAG-deepVASE also identified novel 

nonlinear relationships of clinical potential for future validation. For example, it identified the 

nonlinear associations between central nervous system (CNS) dysfunction and SIRS and between 

IL-22 and SIRS (Figure 3.3B). The former is validated: critically ill patients with SIRS are known 

to have a measurable risk for organ dysfunction such as CNS dysfunction [167], [168]. This 

validation also confirms our causal inference that found the causal direction from SIRS status to 

CNS dysfunction (Supplemental Table. 2. Tab 2). As it is imperative to elucidate how SIRS 

interacts with modifiable cytokines for clinical potential, our causal inference also suggests the 

novel clinical potential of IL-22 to treat CNS dysfunction through modifying SIRS status. While 
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IL-22 plays a key role in immunoregulation and has been linked to the development of organ 

failure in mouse models of abdominal sepsis [169], DAG-deepVASE revealed the causal 

relationship from IL-22 to SIRS status in children with sepsis. Especially, it identified this 

relationship by strong effect size (top 19th out of 118, Supplemental Table. 2. Tab 2), suggesting 

a strong reproducibility and thus clinical utility. After more experimental validations, this result 

can help design future clinical trials to treat organ dysfunctions with IL-22 for pediatric sepsis. 

Altogether, DAG-deepVASE identifies both validated and novel findings by identifying linear and 

nonlinear associations with high sensitivity.  

 

Figure 3.3. Linear and nonlinear associations in pediatric sepsis data (A) Number of linear (blue) and 

nonlinear (red) associations involving each of the 45 variables. (B) A subnetwork of linear (blue) or nonlinear 

(red) variable associations involving SIRS (associated only non-linearly) and sCD183 (associated only 

linearly) and with normalized effect size. Gray nodes connect between IFN-γ and TNFα. For full names of the 

variables, readers are referred to Materials and Methods. 

3.4.3 DAG-deepVASE Accurately Identifies Nonlinear Causalities and Estimates Their 

Effect Sizes in the Nutrients/Gut Bacteria and Body-Mass Index (BMI) Data. 

Variables in complex biological systems interact in varying degrees of nonlinearity [170]–

[172]. To examine the sensitivity of DAG-deepVASE in the presence of various degrees of 

nonlinearity, we compared DAG-deepVASE with causalMGM and linear-DG on a cross-sectional 
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data set consisting of 214 nutrient intakes, 87 gastrointestinal (GI) bacteria genera and body-mass 

index (BMI) collected from 90 healthy volunteers[132]. Note that nutrient intakes would affect GI 

bacteria before affecting BMI, suggesting generally a more nonlinear relationship between the 

nutrient intakes and BMI than between them and GI bacteria. For a balanced assessment, we 

selected the same number (8) of nutrient intakes and bacteria genera that are known to affect BMI 

in animal experiments or clinical trials out of the 214 nutrient intakes and 87 bacteria genera data 

(Supplemental Table. 2. Tab 3). We selected the 16 features also because they were previously 

suggested to have nonlinear associations with BMI by a DNN-based variable selection method 

[131]. DAG-deepVASE identified 15 associations, while causalMGM and linear-DG identified 

only 5 associations (31.3%): all these 5 associations are between specific GI bacteria and BMI 

(Figure 3.4A). Note that causalMGM and linear-DG fail to identify any association between 

nutrient intakes and BMI, while DAG-deepVASE could identify all 8 of them. Since nutrient 

intakes likely affect BMI more nonlinearly than between GI bacteria and BMI, this result reaffirms 

that DAG-deepVASE uniquely identifies nonlinear relationships. To characterize the nonlinear 

associations, we examined how the 8 nutrient intake and 8 bacteria genera levels change against 

the BMI value. The 5 associations between GI bacteria and BMI identified by all three methods 

show a single linear association throughout the BMI region (Figure 3.4B (p-value for linear fit: 

0.001), Supplemental Figure. 6K-O). On the other hand, the other 8 associations between nutrient 

intakes and BMI and 3 associations between GI bacteria and BMI, which are identified by only 

DAG-deepVASE, show nonlinear relationships (Figure 3.4C (p-value for linear fit: 0.58), 

Supplemental Figure. 6A-J (p-value for linear fit on average 0.42)), characterized by multiple 

sub-trends across the BMI ranges. For example, choline and phosphatidylcholine w/o suppl. intake 
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(Figure 3.4C) shows an increasing trend from BMI 1~3, a decreasing trend from BMI 3~4, then 

another increasing trend from BMI 4~5.  

In the second step of determining causalities from the identified associations, we deemed 

true the causal directions from nutrient intake/ bacteria genera to BMI based on literature in Table 

3.3. DAG-deepVASE identified true causal directions from all the 15 associations it found. On the 

other hand, as causalMGM uses PC to learn the causal directions of the associations, PC removed 

2 of the 5 associations in its step of testing the conditional independence relationship and identified 

the other 3 associations as bidirectional causalities that we considered to be both false positive and 

false negative (Figure 3.4D). While linear-DG identified 5 true causal directions on the five 

identified associations, it still could not learn 11 causalities because of its inability to identify 

nonlinear causality. Altogether, DAG-deepVASE outperforms other methods due to its ability to 

identify nonlinear associations combined with the excellent performance of DG in learning 

nonlinear causalities among the identified associations.  

Table 3-3. nonlinear associations (8 nutrient intakes and 8 bacteria genera) that were validated in literature. 

 Nutrient intake     Bacteria genera 

 Micronutrient     Reference     Phylum       Genus Refe

rence 

1 Linoleic [173]   Proteobacteria     Sutterella [174] 

2 Omega 6 [175]   Firmicutes     Allisonella [135] 

3 Dairy Protein [176]   Firmicutes     Holdemania [177] 

4 Aspartic 

Acid, Aspartame 

[178]   Firmicutes     Mitsuokella [179] 
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5 Phenylalanin

e, Aspartame 

[178]     Firmicutes     Clostridium [135] 

6 Choline, 

Phosphatidylcholine 

[180]     Firmicutes     Megamonas [181] 

7 Theaflavin 3-

gallate, flavan-3-

ol(2) 

[182]     Firmicutes     Megasphaera [179] 

8 Choline, 

Phosphatidylcholine 

w/o suppl. 

[180]     Firmicutes  Acidaminococcus [135] 

 

Further, to demonstrate how the effect size DAG-deepVASE estimates leads to the 

unbiased discovery of causal relations, we estimated the effect size of all 301 potential associations 

between nutrient intake/bacteria genera and BMI using DAG-deepVASE including non-validated 

ones (Supplemental Table. 2. Tab 3). The top 5 associations that have the largest effect sizes 

estimated by DAG-deepVASE’s nonlinear module are all validated: Meganomas [181], 

Phenylalanine [178], Mitsuokella [179], Parvimonas [178] and Sporobacter [179]. Since these 

findings were independent, it is difficult to prioritize their importance. To conduct further 

experimental validations or clinical trials that target a limited number of strong associations, 

estimating effect sizes via DAG-deepVASE enables to prioritize important variables. Also, while 
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the 5 top features are already validated, it would be interesting to validate other novel features with 

large effect sizes.   

 

Figure 3.4. Performance assessment of four causal inference methods on various degrees of nonlinear 

associations in BMI/bacteria/gut microbiome data (A) Number of associations the methods (causalMGM, 

linear-DG, and DAG-deepVASE) identified between the BMI status and 8 nutrient intake (blue) and 8 

bacteria genera in the gut (red) that are validated associated with the BMI status. (B) The relationship 

between BMI and Firmicutes-Allisonella identified with confidence interval (gray intervals). Red line 

represents the estimated linear regression and p-value for linear fit is calculated from a permutation test with 

R2 (Materials and Methods). (C) The relationship between BMI and Choline, Phosphatidylcholine w/o suppl 

identified with confidence interval (gray intervals). Blue line connects the middle point of the BMI values 1 to 

5. (D) Number of true positive (dark blue) and false positive (red) causalities identified by causalMGM, 

linear-DG, and DAG-deepVASE. DAG-deepVASE and linear-DG did not identify any false causalities. 
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3.4.4 DAG-deepVASE Identifies Causal Relations Among Molecular and Clinical 

Variables in Breast Cancer Data. 

Among various types of variable interactions in a complex disease, identifying causal 

relationships between molecular variables (e.g., gene expression) and clinical variables (e.g., 

cytokine measurements in the serum) are particularly interesting because the findings can help 

identify molecular therapeutics. To evaluate the performance of DAG-deepVASE in learning the 

complex molecular pathogenic mechanisms, we compared DAG-deepVASE with causalMGM 

and linear-DG on the TCGA breast cancer of gene expression and clinical variables, such as 

PAM50 (n=601 tumor samples). PAM50 is an important clinical feature to categorize breast 

tumors, which is defined by the tumor’s expression of 50 genes (PAM50 genes) [183]. Therefore, 

we consider the causal directions from the genes to the PAM50 status as true positives. For our 

analysis, we chose 10 of the 50 genes (PAM50-defining genes) that are also included in the top 

500 genes that have the highest variance across the samples (high variance gene set). In addition 

to the 10 genes, we also considered 5 clinical variables, which are known to characterize breast 

tumors with the PAM50 status: estrogen receptor (ER) [184], progesterone receptor (PER) [184], 

human epidermal growth factor receptor (HER)[185], lymph node status[186], and tumor staging 

code[187].  

In the first step of identifying associations between the 10 PAM50-defining genes with the 

highest variances and PAM50 status, DAG-deepVASE identified 9 associations out of 10 

associations, while causalMGM and linear-DG identified only 5 of them, attributing the 40% 

power increase of DAG-deepVASE to the identification of nonlinear associations. Between the 5 

clinical variables and PAM50, DAG-deepVASE identified all 5 associations while causalMGM 

and linear-DG identified only one association (20%) (Figure 3.5A, Supplemental Figure. 7A, 
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B), suggesting that 80% (4 of 5) of the associations are nonlinear. In the second step of learning 

causal directions, DAG-deepVASE outperforms both causalMGM and linear-DG, identifying true 

causalities from all 9 identified associations between the genes and PAM50 (Figure. 3.5B). On 

the other hand, causalMGM identified bidirectional causalities for 3 associations after the PC step 

removed the other two associations based on the conditional independence relationships. And 

linear-DG identified the correct causalities on all 5 identified associations but still missing 

causalities for the other 5 associations that linear-DG could not identify. We did not assess the 

causal directions between the 5 clinical variables and PAM50 since the true causal directions are 

not clear between them. We tried different parameter settings of the methods to find that this trend 
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holds true across the parameter settings (Supplemental Figure. 7C, Supplemental Table. 2. Tab 

4).  

 

Supplemental Figure 7. (A) PAM50-defining genes associated with the PAM50 status of patients identified by 

both DAG-deepVASE and causalMGM (purple) or uniquely by DAG-deepVASE (red). Both DAG-

deepVASE and causalMGM could not identify a PAM50-defining gene (MIA) in a dotted line. (B) clinical 

features (e.g., hormone status) of the breast cancer samples associated with PAM50 that are identified by 

both DAG-deepVASE and causalMGM (purple) or uniquely by DAG-deepVASE (red). (C) Number of 

causalities identified by causalMGM, linear-DG, and DAG-deepVASE run with various parameter settings. 

(D) Number of validated associations (blue), causalities identified from genes to PAM50 status (orange) or 

from PAM50 status to genes (gray) when 20 PAM50 genes are run on DAG-deepVASE. (E) Effect size 
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estimated by DAG-deepVASE for 9 PAM50-defining genes and 491 other genes in the 500 genes with highest 

expression variance. 

To ensure reproducibility of this finding, we further selected the top 20 genes from PAM50 

genes with the largest variance in the data and evaluated the methods on the genes. In identifying 

the true associations, DAG-deepVASE identified 19 associations out of 20 (95.5%) while both 

causalMGM and linear-DG identified 6 of them (30%) (Supplemental Figure. 7D). And, in 

learning the causal directions, DAG-deepVASE identified 19 true causalities from all the identified 

associations, while causalMGM identified 4 true and 2 false causalities out of the 6 associations 

and direct-DG identified 6 true causalities from all the identified associations (Supplemental 

Figure. 7D). Altogether, the results demonstrate that DAG-deepVASE outperforms causalMGM 

and linear-DG in identifying true associations, learning true causalities, and differentiating false 

causalities in the breast cancer data.To demonstrate how DAG-deepVASE enables us to 

understand complex pathogenic mechanisms across multiple regulatory layers in breast cancer, we 

expanded our analysis by investigating causalities among the 10 genes and the 6 clinical features, 

including the PAM50 status. Specifically, we inspected whether it is linear or nonlinear causalities 

in the following categories: causalities between a gene and a clinical feature and causalities 

between clinical features. First, while only a few causalities between genes were identified as non-

linear interactions (2 of 8 (25%)), most of the causalities between clinical features and between a 

clinical feature and a gene were identified as nonlinear causalities (13 out of 15 (86.7%) and 34 

out of 43 (79.1%) respectively). While many of them are previously validated in clinical trials or 

biological experiments, e.g., from ERBB2 (HER2) to PR (progesterone receptor), ERBB2 to ER 

(estrogen receptor), and ERBB2 to PAM50 [188]; KRT5 (keratin5) to PR and KRT5 to ER[189] 

(Figure. 3.5D), the prevalence of nonlinear causality is consistent with the expectation since the 
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clinical features, mostly hormone receptor status, are regulated through multiple biochemical 

pathways[26], and thus these relations are likely nonlinear. Other studies also advocate the 

nonlinear interactions of the clinical features by showing that incorporating nonlinearity in 

statistical models improves the prediction accuracy of their effects on breast tumor biology, e.g., 

in the transcriptional profile and survival analysis[23]–[25]. Second, between a gene and a clinical 

feature, the method found that all 43 causal directions are from genes to clinical features (Figure. 

3.5C). Since the clinical features in this data are mainly hormone receptor status, this result 

conforms to the expectation that genes code for the hormone receptor activity[190]. Incorporating 

all linear and nonlinear causalities under the categories sheds mechanistic insight into the complex 

tumorigenic process underlying breast cancer. For example, although the keratin genes (KRT5, 

KRT14, and KRT17) were found to interact in cancer genome studies [191]–[193], it was not clear 

how the cluster affects clinical features for cancer. Our result suggests that it is because the gene 

cluster is formed in linear interactions but its effect on clinical features is mostly nonlinear. 

Altogether, DAG-deepVASE could identify nonlinear causalities, consisting of 74.2% of all 

causalities in this data, which would be missed by other existing methods. Identifying nonlinear 
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causal relationships sheds insights into not only genetic interactions but also their interactions with 

clinical features of tumor biology. 

 

Figure 3.5. DAG-deepVASE on TCGA breast cancer data. (A) Number of validated associations from 

molecular (blue) and clinical (orange) variables to PAM50 identified by causalMGM, linear-DG, and DAG-

deepVASE. (B) Number of causalities identified by causalMGM, linear-DG, and DAG-deepVASE. (C) 

Number of linear and nonlinear causalities DAG-deepVASE learned between two of the 10 genes, between a 

gene and a clinical variable, or between two of the 6 clinical variables. (D) Causalities inferred by DAG-
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deepVASE over 10 molecular variables, 5 clinical variables, and the PAM50 status as linear (purple) and 

nonlinear (red) by DAG-deepVASE. ‘person_neoplasm_cancer_status’ refers to the state or condition of an 

individual's neoplasm. ‘PR_status’, ‘ER_status’, and ‘HER2_status’ refer to the status of progesterone 

receptor, estrogen receptor, and human epidermal growth factor 2 receptor in the tumor sample. 

 

Supplemental Figure 8. Average number, and standard error (error bar) of DAG-deepVASE for 10 true 

associations generated in the complete-nonlinear scenario for 1,000 samples with 190 false associations. To 

evaluate the model sufficiency, DAG-deepVASE was implemented with various numbers of neuron layers 

(1~5 layers) and various numbers of neurons (10, 50, 100, 200, 400, and 600 neurons) in each layer. 

3.5 Conclusion 

We developed the first method, DAG-deepVASE that explicitly learns both linear and 

nonlinear causal relationships in complex biological systems in high-dimensional molecular and 

clinical data. In complex biological systems, multiple regulatory layers, e.g., transcriptome and 

methylation layers, extensively interact [52], [98], [100], [194] and render variable interactions 

highly nonlinear. In the simulated data of diverse scenarios and biological data of various contexts 
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(pediatric sepsis, TCGA breast cancer, BMI with nutrients and gut bacteria), DAG-deepVASE 

consistently outperforms existing methods in identifying known and new nonlinear causal 

relations. In the first step to identify associations, while DAG-deepVASE identifies all the linear 

associations that are identified by causalMGM and linear-DG, the method identifies non-linear 

associations through DNN, which shows the power ranging from 87 % to 100 % in identifying 

associations. In the second step to identify causalities from the identified associations, DAG-

deepVASE infers causalities with a high accuracy (ranging from 88 % to 100 %) while 

causalMGM learned bidirectional causalities on most of the associations and linear-DG learned 

only a small number of identified associations correctly. The reason why causalMGM learned 

bidirectional causalities in our analyses is that it returns a bidirectional causality between variables 

mediated or confounded by latent variables 8, which very likely exist in molecular and clinical data 

sets. In contrast, the second step in DAG-deepVASE imposes a model on input variables (𝑥𝑗) 

instead of on the conditional distribution of the association (distribution of 𝑥𝑗|𝑥𝑖). This imposition 

guarantees to identify nonlinear associations even when the model for the association is mis-

specified due to absence of latent mediating variables.  

To explicitly learn nonlinear associations, DAG-deepVASE leverages a DNN approach 

differently from other DNN-based causal inference methods by explicitly modelling nonlinearity 

in individual variable pairs. Previous DNN approaches have been proposed mainly to navigate the 

intractable search space for the optimal DAG. Although the studies showed that their local optimal 

DAGs are often comparable to the global ones obtained through expensive combinatorial search, 

these methods can also return only a stationary-point solution rather than the global optimum. For 

example, in our simulation experiments, NOTEARS and DAG-GNN showed generally less than 

50% of power compared to DAG-deepVASE. However, our experiments also suggest that the 
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approach of using DNN for navigating the search space may perform better when more samples 

are collected to construct a more comprehensive search space. For example, the DNN methods 

identified generally more true causalities when more samples are input (Figure. 3.2C, 3.2D and 

Supplemental Figure, 5C, D), though the improvement seems to come at the expense of high 

false positives (Figure. 3.2E and Supplemental Figure. 5E).   

Another advantage of DAG-deepVASE is the knockoff framework to estimate effect size 

for nonlinear associations that prioritizes causal relations over simple correlation based on the 

exchangeability property of the knockoff framework (see Method). The estimated effect size is 

significantly larger for validated causal relationships than for non-validated ones in both the BMI 

data (P-value=0.02, Supplemental Figure. 6P) and the breast cancer data (P-value=0.03, 

Supplemental Figure. 7D). Based on the rationale that the effect sizes of validated associations 

are more apparent and thus stronger, these results suggest that the effect sizes estimated by DAG-

deepVASE make sense, and these can facilitate translatable findings of the causal relationships by 

selecting strong causal relations, either linear or nonlinear, to test in downstream experiments or 

clinical trials. However, care needs to be taken in interpreting the nonlinear effect size as it does 

not indicate the strength or the direction of causal relations.  

DAG-deepVASE enables a further translatable understanding of complex diseases by 

putting linear and nonlinear associations together. In the subnetwork of pediatric sepsis data 

presented above, IFN-γ and TNFα are connected through linear and nonlinear associations (gray 

nodes in Figure. 3.3B). Mouse experiments showed that the interaction between IFN-γ and TNFα 

triggers inflammatory cell death, tissue damage, and mortality in acute immune diseases 

characterized by “cytokine storm” including lipopolysaccharide (LPS)-mediated sepsis [195]. 

While it is difficult to identify multiple cytokines involved in the complex interactions, DAG-
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deepVASE could identify the interactions between IFN-γ and TNFα via multiple associations of 

both linear and nonlinear ones, including MCP-1/CCL2. Since MCP-1/CCL2 shows a protective 

role in a similar mouse model (a polymicrobial sepsis model with LPS) [196], DAG-deepVASE 

suggests a therapeutic potential to the detrimental interaction between IFN-γ and TNFα.  

Despite the clear advantages, DAG-deepVASE has some limitations in improving the 

clinical relevance of the findings. The first is that DAG-deepVASE cannot take nonordinal 

categorical variables and take only continuous and ordinal categorical variables that approximately 

follow Gaussian distribution since model-X knockoff assumes Gaussian distribution. In this 

project, this condition did not pose any problem as all variables of our interest were either 

continuous or ordinal categorical. However, in the future, we will generate the knockoff variables 

for nonordinal categorical variables based on a regression model for nonordinal categorical 

variables [40]. Second, while DAG-deepVASE can estimate the effect size, it does not estimate 

statistical significance. Thus, to identify significant causal relations in the future, we will estimate 

statistical significance of the likelihood ratio test we derived to determine the causal direction in 

(1). Third, as with other methods of learning causalities from observational data, the validity of 

the learned causalities depends on how well the data comply with the three causal assumptions: 

Markov, faithfulness, and sufficiency. However, biological data could violate these assumptions 

and weaken the applicability of the inference results. For example, since multiple biological layers, 

such as genomic, transcriptomic, and epigenetic layers, often interact to render a phenotype in 

humans, confounders can occur in any of the layers. However, it is not always feasible to measure 

all variables from all the layers due to technical and practical reasons, indicating that the causal 

sufficiency assumption of no latent confounder would be hardly met for biological data. Thus, it 
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is necessary to conduct further experiments or clinical trials to validate the causal relationship 

learned through DAG-deepVASE. 

In summary, we developed DAG-deepVASE, which learns causal relationships in complex 

biological systems. DAG-deepVASE is the first method that uses a DNN approach to identify 

linear and nonlinear associations and learn their causal directions. DAG-deepVASE outperforms 

existing methods, causalMGM, and linear-DG, in identifying known causal relations in various 

simulation scenarios and molecular and clinical data sets. In addition to known causalities, DAG-

deepVASE identifies novel complex pathobiological interactions involving nonlinear causal 

relations, which is not possible using other methods. By applying the knockoff framework to DNN, 

DAG-deepVASE estimates effect size for nonlinear associations that prioritizes causal relations, 

which allows to prioritize future clinical and experimental validations. With these advantages, the 

application of DAG-deepVASE can help identify driver genes and therapeutic agents in 

biomedical studies and clinical trials.  
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4.0 Project 3 - Deep Neural Network Jointly Learning Gene Expression and Biological 

Condition Information Identifies Cell Subtypes Nonlinearly Linked to the Biological 

Condition 

4.1 Summary 

With recent advent of single-cell level biological knowledge, interests grow in identifying 

the cell states or subtypes that are not only representative of the molecular behavior in terms of 

gene expression, but also linked to the biological condition of interest, such as disease samples 

versus normal samples. Since no method has been developed to identify such condition-specific 

cell subtypes, existing approaches undertake a two-step process where cell clusters of homogenous 

molecular behavior are first identified based on gene expression information and some of those 

clusters that are enriched in the biological condition of interest are further selected as condition-

specific cell subtypes. However, this approach can lead to suboptimal solutions due to three 

limitations: 1) it does not consider the impact of one criterion on another, 2) it disregards the 

dimensional differences in the criteria, and 3) the optimizations rely on linear modeling. To address 

the limitations and accurately identify such condition-specific cell subtypes, we present 

scDeepJointClust, the first method that addresses the limitations by jointly training on both types 

of information in a deep neural network (DNN) approach. Using scDeepJointClust on simulation 

data of multiple scenarios and biological data of various contexts, we demonstrated the superiority 

of scDeepJointClust over existing methods in terms of sensitivity and specificity, holding 

significant promise for advancing our understanding of cellular states and their implications in 

complex biological systems. 
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4.2 Introduction 

The expansion of single-cell measurements, e.g., single-cell RNA-Seq (scRNA-Seq) data, 

allows researchers to identify cellular states or subtypes that exhibit a homogeneous molecular 

behavior in terms of gene expression. Further, with the recent progress in our understanding of 

cellular states, there is growing interest in identifying cell states or subgroups that serve as 

representatives of gene expression patterns and exhibit enrichment in specific biological 

conditions. These condition-specific cell states encompass various contexts, including 

distinguishing disease samples from normal samples, identifying specific stages among multiple 

developmental stages, and differentiating experimental intervention samples from control 

experiments. The ability to accurately identify and characterize such condition-specific cell states 

holds immense potential for advancing our understanding of complex biological systems and their 

implications in disease mechanisms and therapeutic interventions [197], [198]. The significance 

of identifying condition-specific cell subgroups extends to both biological and clinical domains. 

From a biological standpoint, cells of the same type exhibit distinct states based on their 

developmental stage, function, and responses to external stimuli [199]–[201]. Thus, the 

identification of diverse states in the same cell type aids researchers in comprehending the intricate 

mechanisms driving tissue development, immune responses, and disease progression. From a 

clinical perspective, understanding if specific cell states correlate with improved clinical outcomes 

under particular treatment regimens holds importance since such knowledge can pave the way for 
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targeted therapies that have the potential to significantly enhance disease treatment and 

management [202]. 

Despite the significance of identifying condition-specific cell subtypes, existing methods 

have not explicitly utilized biological condition information for this purpose. Instead, a common 

approach involves a two-step process that employs different methods in each step. In the first step, 

cell clusters are defined based mostly on the molecular behavior represented in the gene expression 

information. To achieve this, several methods embed the gene expression information of cells into 

a graph structure, such as a k-nearest neighbor graph, and detect dense regions in the graph through 

community detection algorithms. These clusters are then classified into cell types. In the second 

step, the pre-defined cell clusters are further examined to identify cell subtypes that are enriched 

in the biological condition of interest compared to other condition(s) (e.g., tumor samples versus. 

normal), often referred to as a differential abundance test. For example, on the scRNA-seq data of 

immune cells from 35 non-small cell lung cancer (NSCLC) samples and 29 matched healthy non-

involved samples [203], a recent study pre-defined 30 cell clusters of multiple cell types (e.g., B, 

Mast, macrophage, natural killer (NK) cells) based on the gene expression information. Then, by 

quantifying and comparing their abundance in the tumor versus healthy samples, specific clusters 

were identified as cell states correlated with an enhanced response to immunotherapy, such as 

PDCD1+CXCL13+ activated T cells, IgG+ plasma cells, and SPP1+ macrophages. Despite these 

findings, the current approach lacks explicit integration of biological condition information into 

the identification of condition-specific cell subtypes.  

Indeed, the two steps can be reversed in the analysis pipeline, offering an alternative 

approach to identifying condition-specific cell subtypes. Specifically, one could first conduct a 

differential abundance test without the definition of cell clusters and then further perform 
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clustering based on the test result. To implement this approach, practitioners can use a method like 

Milo. Milo was recently developed to allow users to perform differential abundance analysis by 

the unit of neighbors, sets of random cells Milo identified to be similar in the gene expression 

profile. Since the neighbors redundantly represent mixture of cells and not all the cells are sampled 

in the neighborhood representation, Milo cannot be directly used to define cell clusters. However, 

practitioners can still overlay the differential abundance result with predefined cell clusters on the 

same dimensionality-reduced feature space and visualize how the predefined cell clusters align 

with the abundance results, leading to potential refinements that better reflect the cell states linked 

to the biological condition. Since Milo can also cluster cells using k-nearest neighbor algorithm 

and the corresponding latent space without explicitly using the biological condition information, 

it presents a suitable choice for our comparison experiment. 

In both of the two-step approaches described above, we identify three limitations that can 

hinder the accurate identification of condition-specific cell states or subtypes. First, the approaches 

do not consider potential interactions between the two criteria, gene expression and the biological 

condition information. Since samples of a particular biological condition would render distinct 

biological functions represented with distinct molecular behavior, it is expected that the distinct 

molecular behavior is represented in the level of gene expression. Due to this interaction, 

optimizing one criterion after another would not be able to model the interaction and thus be a less 

integrated and holistic approach compared to training on the two criteria simultaneously, or jointly 

training on the criteria that can balance the two criteria in a single optimization process. Secondly, 

when identifying cell states based on both gene expression information and the biological 

condition, it is essential to explicitly control the weight of the two criteria. While the gene 

expression information typically represents tens of thousands of genes, we are interested in a 
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particular type of biological condition at any given time. Thus, when training a model on the gene 

expression information and the biological information separately, the biological condition's weight 

and influence can be effectively diluted and diminished during the optimization process. Thirdly, 

it is essential to learn the complex relationship in how the cell states are defined with respect to 

gene expression and the biological condition information. Cells undergo a series of differentiation 

events that lead to the formation of distinct cell types with specialized functions, rendering a unique 

set of molecular characteristics that nonlinearly determine their identity and functional properties. 

However, most existing methods do not fully consider the nonlinear relationship of cell identity. 

For example, in case of Milo, which relies on a simple k-nearest neighbor (KNN) data structure, 

the ability to uncover the complex relationship among cells is limited. As a result, the method may 

not fully exploit the richness of the data and might overlook critical associations between cell states 

and the biological condition of interest.  

In this project, we present scDeepJointClust as a solution to address the aforementioned 

limitations. Firstly, to enable simultaneous training on both gene expression and the biological 

condition information, scDeepJointClust adopts a joint-learning approach where the model is 

simultaneously trained on both information. Second, in order to effectively control the weights 

assigned to the gene expression information and the biological condition in the joint learning 

process, scDeepJointClust takes the molecular status as input to represent the whole gene 

expression information. Given the considerable sophistication of existing methods in capturing the 

molecular status represented in gene expression information, scDeepJointClust adopts an approach 

where it can take the result of such a method as an input, along with the biological condition 

information. This design allows practitioners to effectively control the weights between the gene 

expression information and the biological condition, empowering them with the flexibility to 
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adjust the contribution of each factor. This flexibility further allows to update the identification 

when future methods emerge to represent the molecular behavior more accurately from gene 

expression information. Since methods are being developed to improve performance of cell 

clustering based on gene expression, this computational adaptability allows scDeepJointClust to 

directly import the improvement to more accurately identify condition-specific cell states or 

subtypes. Thirdly, to learn the complex and nonlinear relationship in how cell states are defined 

with the input data, scDeepJointClust utilizes the DNN method that can model the nonlinearity 

with a number of neuron layers.   

scDeepJointClust represents the first attempt, to the best of our knowledge, to explicitly 

identify cell states that are not only representative of gene expression but also associated with 

biological conditions using a Deep Neural Network (DNN) model in a joint learning framework. 

Previously, DNN joint learning approaches have demonstrated successful applications across 

diverse scientific domains, effectively integrating multiple sources of information to solve 

complex problems. For instance, in the context of speech recognition where DNN models have 

been extensively utilized, a multi-feature and multi-task DNN method learns multiple acoustic 

features to successfully enhance language recognition performance [204]. Similarly, to classify 

images, a DNN method was proposed to consider both class label information and local spatial 

details, exhibiting remarkable accuracy on various benchmark datasets when compared to baseline 

methods [205]. Remarkably, the DNN method for image classification addresses a problem 

structure akin to ours where the class label and local information are replaced by the biological 

information and gene expression information. Due to this similarity, it underscores the potential 

of the DNN joint learning approach in effectively solving our specific problem. DNN approaches 

have been used in the context of single-cell RNA-Seq data, albeit without the utilization of joint 
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learning. For instance, a DNN model was proposed to correctly solve cell-type related problems, 

such as identifying new cell types and states, by integrating pathway knowledge [206] as prior 

knowledge. Also, a recent work selects genes whose expression pattern are shared by the cells of 

the same type by reducing representation in the output layer of denoising autoencoder [207] with 

neural approximator (DAWN) and pairing this reduced representation with the model-based EM 

clustering.  

Using scDeepJointClust on simulation data of multiple scenarios and real biological data 

of different contexts, such as patients with advanced melanoma and non-small cell lung cancer 

undergoing ICB), we demonstrate the advantage of using scDeepJointClust over existing methods 

in terms of sensitivity and specificity.  Altogether, we develop a DNN-based joint-learning method 

that simultaneously optimizes the information of gene expression and the biological condition to 

successfully identify cellular states linked to a biological condition with the highest sensitivity and 

specificity.  

4.3 Materials and Methods 

 

4.3.1 Model Setting 

The proposed method consists of an input layer, a dropout layer, 𝑀 hidden layers, a cell 

type classification output layer, a responder-nonresponder classification output layer. This model 

takes one input data and two labeled data. The input data is a single-cell level gene expression 
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matrix 𝑋 consisting of 𝑁 cells (in rows) and 𝐷 genes (in columns). The first labeled data is cell 

type matrix 𝑌𝑡 in which each row 𝑦𝑖
𝑡 = (𝑡1, … , 𝑡𝐽), where 𝐽 is the number of cell clusters defined 

using gene expression information, where 𝑡𝑗 = 0 if cell 𝑖 belongs to cluster 𝑗 and 0 otherwise. The 

second labeled data is cell origin label matrix 𝑌𝑟 in which each row 𝑦𝑖
𝑟 = (𝑟1, … , 𝑟𝐾), where 𝐾 is 

the number of biological conditions, where 𝑟𝑘 = 0 if cell 𝑖 belongs to condition 𝑘 and 0 otherwise. 

The input layer passes on its output to the dropout layer. The dropout layer randomly sets 5% of 

its neuron units to 0 at each step of the training procedure. As a result, only relevant genes would 

be selected as parts of the final representation layer. For each of the 𝑀 hidden layers 𝑚, we use 

Glorot normal initializer (Xavier normal initializer) for initializing the layer weights and Rectified 

Linear Units (ReLU) as its activation function. The output of 𝑚 can be described as follows: 

𝑜𝑚 = 𝑅𝑒𝐿𝑈(𝑊𝑚𝑜𝑚−1 + 𝑏𝑚) 

where 𝑊𝑚 is the weight matrix, 𝑜𝑚−1 is the output of the previous layer, and 𝑏𝑚 is the bias term 

for this layer.  

As cell types are perceived as classes, we compute the loss between the cell type output 

layer’s predictions and the true labels based on categorical cross-entropy and use softmax as the 

activation function for the cell type output layer. The output of the cell type output layer can be 

described as follows: 

�̅�𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑡𝑜𝑚 + 𝑏𝑡) 

where 𝑊𝑡 is the weight matrix, 𝑜𝑚 is the output of the last hidden layer, and 𝑏𝑡 is the bias term for 

the layer. 

If the biological conditions are multiple, we use the same softmax function to optimize. 

However, since biological conditions are often binary (e.g., case vs. control or responder vs. non-

responder), we provide an option of it being binary and compute the loss between the responder-
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nonresponder output layer’s predictions and the true labels based on cross-entropy and use sigmoid 

as the activation function for the output layer. The output of this layer can be described as follows: 

�̅�𝑟 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑟𝑜𝑚 + 𝑏𝑟) 

where 𝑊𝑟 is the weight matrix, 𝑜𝑚 is the output of the last hidden layer, and 𝑏𝑟 is the bias term for 

the layer. 

 

Objective function and optimization 

Since our method is a joint learning algorithm, the objective function includes two loss 

functions, a classification loss from the cell type predictions, a classification loss from the 

biological condition predictions. The cell type prediction loss is calculated as follows: 

𝐿𝑡 = −∑∑𝑦𝑗𝑛
𝑡 𝑙𝑜𝑔�̅�𝑗𝑛

𝑡

𝐽

𝑗=1

𝑁

𝑛=1

 

where 𝑦𝑛
𝑡 and �̅�𝑛

𝑡 are two vectors in a one-hot representation, 𝑦𝑗𝑛
𝑡  is the truth value (0 or 1) of 𝑗𝑡ℎ 

element in the one-hot vector 𝑦𝑛
𝑡, and �̅�𝑗𝑛

𝑡  is the predicted probability of 𝑥𝑛 being categorized as 

𝑗𝑡ℎ cell type. 

The cell origin prediction is calculated as follows: 

𝐿𝑟 = −∑𝑦𝑛
𝑟𝑙𝑜𝑔�̅�𝑛

𝑟

𝑁

𝑛=1

+ (1 − 𝑦𝑛
𝑟)log (1 − �̅�𝑛

𝑟) 

where 𝑦𝑛
𝑟 is the truth value of 𝑥𝑛 being a responder and �̅�𝑛

𝑟 is the predicted probability of 𝑥𝑛 being 

a responder. 

With these two losses, the objective function for the proposed method can be described as 

follows: 

𝑚𝑖𝑛 − λ𝑡 ∑ ∑ 𝑦𝑗𝑛
𝑡 𝑙𝑜𝑔�̅�𝑗𝑛

𝑡𝐽
𝑗=1 − λ𝑟 ∑ 𝑦𝑛

𝑟𝑙𝑜𝑔�̅�𝑛
𝑟𝑁

𝑛=1 + (1 − 𝑦𝑛
𝑟) log(1 − �̅�𝑛

𝑟)𝑁
𝑛=1   



 108 

where λ𝑡 is a user-defined value for controlling how much emphasis should be put on cell type 

information, λ𝑟  is a user-defined value for controlling how much emphasis should be put on 

responder-responder information. 

To minimize this objective function, we use the Adam optimization algorithm, which is a 

stochastic gradient descent method, to retrieve the optimal network parameters 𝛩.  

4.3.2 Clustering Module 

For this work, we utilized the K-Means clustering algorithm [208] in the clustering module, 

and the implementation of the algorithm is provided and maintained by scikit-learn [209]. 

K-Mean clustering algorithm aims to partition the input data X with N observations into K 

clusters. The algorithm works in the following fashion: 

1) Randomly selects K centroids as the beginning points for each cluster. 

2) For each data point 𝑋𝑛, calculate the distance between 𝑋𝑛 and centroid 𝐶𝑘 using a 

distance metric, and assign 𝑋𝑛 to its closest cluster centroid 𝐶𝑘. 

3) For each cluster, calculate the average of all the data points in this cluster and re-initialize 

its centroid based on the average. 

4) Keep repeating steps 2 and 3 until there is no change in the assignments of data points to 

clusters, meaning the centroids have stabilized. 

4.3.3 Simulation Data 

We used the R package dyntoy [210] to generate simulated single-cell datasets with 

discrete clusters. For each simulated dataset, we generated 10 discrete clusters. In each of these 

clusters, we assign 90% of the cells to one of two simulated biological conditions (C1 and C2) and 

the rest 10% of the cells to the other condition. If 5 of these 10 clusters are dominated by condition 

C1 (90% of the cells belong to C1), then the other 5 clusters were populated with the other 
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condition C2 (90% of the cells belong to C2), and vice versa. This simulation procedure was 

introduced by Milo [211]. 

4.3.4 Non-Small Cell Lung Cancer (NSCLC) Single-Cell RNA Sequencing (scRNA-seq) 

Data 

NSCLC CITEseq dataset was presented in Leader et al [203]. We downloaded the NSCLC 

metadata from their GitHub repository: https://github.com/effiken/Leader_et_al. The scRNA-seq 

data pre-processing workflow in this work, e.g., the selection and filtration of cells based on QC 

metrics, data normalization and scaling, and the detection of highly variable features, was 

performed using the R package Seurat [212] Seurat, an R toolkit, is widely used in the field of 

computational biology to analyze scRNA-seq data. 

4.3.5 Benchmarked Clustering Methods 

We evaluated our method against three existing clustering methods. This section provides 

details on what packages were used and how they were run. 

• Louvain [213]: Louvain algorithm is a popular hierarchical clustering method used to 

identify communities within complex biological networks. This algorithm calculates a 

modularity score for each community to maximize the detection of communities. The 

modularity score is typically used to evaluate how well nodes are assigned to 

communities. The Louvain implementation used in this work is also supported by the 

Python package Scanpy [214]. PCA was also computed before Louvain was performed. 

• Leiden [215]: Leiden is also a hierarchical clustering algorithm, which is based on 

Louvain. The algorithm has been modified to address the issue of poorly connected 

communities. This is done by periodically breaking down the communities into smaller, 

more well-connected ones. All the Leiden clustering runs were performed using the 

Python package Scanpy [214], which is a scalable toolkit for analyzing single-cell gene 

https://github.com/effiken/Leader_et_al
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expression data. We performed principal component analysis (PCA) on the data before 

running Leiden. 

• Milo: Milo is developed to perform differential abundance testing by assigning cells to 

partially overlapping neighborhoods on a k-nearest neighbor graph. We used the Python 

implementation of Milo algorithm (https://github.com/emdann/milopy) [211]. As Milo 

requires a k-nearest neighbor (KNN) graph before performing its downstream analysis, 

we used the KNN implementation from the Python package Scanpy [214] to build such 

graphs. 

4.3.6 Single-Cell RNA Sequencing Annotation 

The cell type annotation was performed using an R package called ‘SingleR’ [216], a novel 

computational method for performing unbiased cell type annotation on scRNA-seq data. SingleR 

annotates each cell by leveraging a reference transcriptomic dataset of pure cell types. The 

reference transcriptomic dataset used in this work is generated and supplied by Blueprint and 

ENCODE [203], [210]–[212], [214], [217]. 

 

4.4 Results 

 

4.4.1 Modeling Cell States by Jointly Training on Gene Expression and the Biological 

Condition Information 

To accurately identify cell states linked to a biological condition (e.g., tumor vs. normal 

samples), we present scDeepJointClust (Figure. 4.1A) to address the limitations in the current 

https://github.com/emdann/milopy
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two-step approaches. To address the first limitation and jointly train on both gene expression and 

the biological condition information, scDeepJointClust simultaneously optimizes two loss 

functions, 𝐿𝑡 for the gene-expression information and 𝐿𝑧 for the biological condition information 

of the cells (see Methods). To simultaneously address the second limitation and control the weight 

of the gene expression information vs. that of the biological condition information, 

scDeepJointClust sets 𝐿𝑡 with the cluster information generated by a method of user’s choice. By 

optimizing 𝐿𝑡  this way, scDeepJointClust will first embed the cluster structure onto the 

scDeepJointClust model. Furthermore, by optimizing 𝐿𝑧, we can enhance the identification of cell 

states that hold significant importance in a biological condition. As illustrated in Figure. 4.1B, cell 

clusters often exhibit overlapping gene expression patterns, such as cluster 3 overlapping with 

cluster 2 in the illustration. If the clusters convey valuable biological signals associated with a 

specific biological condition under investigation, they are expected to exhibit certain levels of 

enrichment or depletion in terms of the biological condition information. For example, in Figure. 

4.1C, cluster 1 and 3 show an enrichment of condition A vs. condition B while cluster 2 shows an 

enrichment of condition B vs. condition A. If condition A represents a disease state (e.g., tumor) 

and condition B represents a control state (e.g., normal), then clusters 1 and 3 would represent the 

cells associated with biological processes related to the tumors. To solve the third limitation and 

accurately model the complex relationship in the cell state assignment, scDeepJointClust uses a 

DNN component to encapsulate the complex and nonlinear relationships using multiple layers of 

nonlinear activators called neurons (Figure. 4.1A). Specifically, the neurons in the first layer learn 

to extract low-level features from the gene expression data, while neurons in the subsequent layers 

learn to extract higher-level features. Each layer acts as a nonlinear transformation of the input 
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data, making the model more expressive and capable of capturing the complex relationships 

between the information and the cell states.  

Concretely, scDeepJointClust employs several DNN techniques to accurately pick up 

signal from single-cell data. First, scDeepJointClust utilizes dropout to prevent overfitting (see 

Methods). Overfitting is a serious problem in single-cell data analysis because single-cell data is 

high-dimensional and noisy [218]–[221], and it is easy to fit a model that captures the noise 

additional to the underlying biological signal, leading to false discoveries and misinterpretation of 

the results [222]–[225]. By dropping out neurons, scDeepJointClust is forced to learn redundant 

representations and is less likely to rely on a few neurons to make decisions, encouraging a more 

robust and less overfitting estimation. Second, scDeepJointClust allows the learning on the 

biological condition of multiple values by adaptively designing the cell type output layer with 

either softmax (for multiple values) and sigmoid (for binary values). This adaptable design is 

crucial because it allows for the analysis of single-cell data in both two-group and multi-group 

scenarios. As an example of the two-group scenarios, normal samples are frequently analyzed 

alongside tumor samples to gain insight into tumor biological processes relative to the 

corresponding normal tissue state. An example of a multi-group comparison is the analysis of 

embryonic brain development where researchers can examine the gene expression profiles of brain 

tissue samples collected at multiple developmental stages, such as early embryonic, mid-

embryonic, and late embryonic stages. By analyzing the multi-group data collectively, 

scDeepJointClust can identify cell clusters that exhibit enrichment for any of the multiple 

biological conditions, thereby effectively revealing crucial cell subtypes that are characteristic in 

the developmental stages. 
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Figure 4.1. Overview of scDeepJointClust. (A) An input matrix of gene expression and the biological 

condition information (columns) over a set of cells (rows) is fed into the DNN component. Then, the 

representation layer will transfer the training result to two output layers so the model can be optimized with 

two criteria 𝑳𝒕 and 𝑳𝒓. (B) An example 3 cell clusters (cluster 1 in gray, cluster 2 in green, and cluster 3 in 

yellow) on UMAP using the gene expression information. (C) The cells in the example clusters are presented 

with two biological conditions, A or B, where each cluster is characterized with one of either condition, 

cluster 1 and 3 with condition A and cluster 2 with condition B. 

 

4.4.2 scDeepJointClust Refines Pre-Defined Cell Clustering Results With Condition 

Information 

To evaluate the performance of scDeepJointClust in the presence of gene expression 

information and the biological condition information, we simulated 10 clusters of 10,000 cells 

each cluster characterized by both types of information (see Materials and Methods). The gene 

expression information was simulated to reflect varying distances between cell clusters, 

representing different degrees of similarity among them, as is the case in biological data. The 

biological condition was simulated to exhibit differential enrichment degrees across the cell types. 
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For example, we assigned a higher proportion (e.g., 80%) of a biological condition to several 

clusters, while allocating a lower proportion (e.g., 20%) of the biological condition to the 

remaining clusters. With this experimental design, we conducted two scenarios of simulation 

experiments. In the first scenario, we simulated two distinct biological conditions, along with gene 

expression profiles, to replicate case-control sequencing experiments (tumor vs. normal), where 

samples from the case group are sequenced alongside control group samples and analyzed in 

relation to each other (Figure. 4.2A). On the simulated gene expression data, we ran established 

clustering methods that take only gene expression information (K-means, Leiden, Louvain, and 

Milo). Then, on each of the clustering results, we ran scDeepJointClust with the biological 

condition information. After repeating this experiment 100 times, we compared the clustering 

result to the ground truth definition of cell clusters in terms of Silouette score, demonstrating that 

scDeepJointClust always outperforms the clustering results of the other methods (Figure. 4.2B). 

Specifically, scDeepJointClust demonstrates over a twofold enhancement compared to K-means-, 

Leiden-, and Louvain-based clustering outcomes, while it also markedly improves the clustering 

result of Milo.  

Further, we simulated another scenario where three biological conditions, instead of two, 

are spread over 10 clusters of cells with varying distances from each other (Figure. 4.2C). 

scDeepJointClust outperforms the clustering results of the established methods almost equally as 

the case of two biological conditions with over a twofold improvement. Overall, the superior 

performance of scDeepJointClust illustrates how it takes advantage of the biological condition 

information to better identify cell types that are enriched with a specific biological condition. 
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Figure 4.2. Performance assessment using simulation data. (A) UMAP visualization of 10 simulated cell 

clusters using the gene expression information. On the visualization, the cells are colored by two simulated 

biological conditions, A or B. (B) Methods’ performance in silhouette score in 100 random trials for each 

experiment. While Kmeans, Leiden, Louvain, and Milo represent the clustering result of the methods in 

terms of Silouette score, DL-Kmeans, DL-Leiden, DL-Louvain, and DL-Milo represent the result of the 

refinement brought by scDeepJointClust. (C) UMAP visualization of 10 simulated cell clusters using the gene 

expression information. On the visualization, the cells are colored by three simulated biological conditions, A, 

B or C. (D) Methods’ performance in silhouette score in 100 random trials for each experiment. While 

Kmeans, Leiden, Louvain, and Milo represent the clustering result of the methods in terms of Silouette score, 

DL-Kmeans, DL-Leiden, DL-Louvain, and DL-Milo represent the result of the refinement brought by 

scDeepJointClust. 
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4.4.3 scDeepJointClust Embeds Pre-Defined Cell Clustering Results in A Deep Neural 

Network Model 

One of the key features of scDeepJointClust is its utilization of a deep neural network 

(DNN) structure to embed a gene-expression-based clustering outcome (𝐿𝑡). Ensuring the high 

quality of this embedding is essential because the joint training with the biological condition 

information (𝐿𝑧 ) will rely on this embedding. To test quality of the embedding, we trained 

scDeepJointClust’s DNN structure only with a gene-expression-based clustering outcome and 

evaluate if the training can effectively incorporate the clustering outcome by separating the 

clusters. For this, we downloaded a single cell RNA-Seq data set of 16,291 immune cells from 48 

tumor samples of melanoma patients treated with immune checkpoint therapy (Pembrolizumab, 

anti-PD1) [226]. From the cells, the original study identified 11 cell types based on a list of known 

marker genes and a manual review process. The identified cell types include B, Plasma, 

Monocyte/Macrophages, Dendritic cells, etc. We visualized the cell types on a t-SNE plot based 

on gene expression data and labeled them by the original clustering result (Figure. 4.3A). Despite 

a rough separation observed on the t-SNE plot, the cell types are not perfectly separated from each 

other by the gene expression. The lack of clear separation in the gene-expression-based projection 

implicates a challenge in deriving the clusters solely based on gene expression. However, when 

we specifically trained scDeepJointClust based on the clustering result in the original paper 

(Figure. 4.3B), the representation layer of scDeepJointClust (the dark blue layer in Figure. 4.1A) 

further separates the clusters so it can effectively facilitate the subsequent joint learning processes 

with the biological condition information. 

To ensure generalizability of this model behavior, we downloaded another single cell 

RNA-Seq data set of 361,929 cells from 35 early-stage NSCLC lesions. By running an 
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unsupervised batch-aware clustering method [227] on the data, they derived 60 cell clusters 

representing diverse sub cell types of immune cells such as Natural Killer (NK), T, Mononuclear 

Phagocyte (MNP), plasmacytoid Dendritic Cell (pDC), B, plasma, and MAST cells. In line with 

the melanoma data, the t-SNE visualization of the cells solely based on the gene expression 

information demonstrates not clear separations among the cell types (Figure. 4.3C). However, 

upon training scDeepJointClust only with the gene-expression-based clustering outcome, the 

representation layer effectively segregates the clusters (Figure. 4.3D). With the melanoma data 

and the NSCLC data using different clustering methods on the gene expression information, our 

results consistently showed the lack of separation in the cell type clusters on the original gene-

expression feature space and an improved separation of them when trained on scDeepJointClust’s 

DNN model, demonstrating that the DNN model effectively facilitates the subsequent joint 

learning processes which will be with the biological condition information. 
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Figure 4.3. Evaluation of embedding performance. (A) tSNE of the melanoma single cell data using the gene 

expression profile. (B) tSNE of the melanoma single cell data after training on 𝑳𝒕 in accordance with 11 input 

clustering result. (C) tSNE of the NSCLC single cell data using the gene expression profile. (B) tSNE of the 

NSCLC single cell data after training on 𝑳𝒕 in accordance with 60 input clustering result. 

 

4.4.4 scDeepJointClust Identifies Cell Clusters Correlated With Enhanced Response to 

Immunotherapy 

To evaluate the performance of scDeepJointClust using both gene expression and the 

biological condition information, we further analyzed the NSCLC tumor samples and patient-
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matched healthy (noninvolved) lung samples (nLung) since it is one of few data sets that provides 

a CITE-Seq data from two experimental conditions (tumor and nLung samples). CITE-Seq data is 

a combination of gene expression and antibody information where the antibodies represent cell 

epitopes that play important roles in identifying the true cell types. Thus, we measured true positive 

and false positive rate (TPR and FPR) in subsequent experiments against the cell cluster IDs 

published in the original paper that were based on the gene expression and antibody information. 

Since scDeepJointClust is designed to identify cell types that are enriched with a particular 

condition, we selected four cell subtypes that showed an enrichment to either tumor samples or 

nLung samples in the original paper and its replication data set, which are NK, B, T, monocyte 

and macrophage (momac) cells. NK cells, B cells, and T cells are part of the comprehensive 

immune defense system, collectively working to detect, eliminate, and remember specific 

pathogens while maintaining the overall health of the body. In both the original data and a 

replication data of NSCLC [228] vs. normal samples, NK cells are enriched in nLung samples vs. 

tumor samples and momac, T, and B cells are enriched in tumor samples vs. nLung samples. For 

targeted analysis, we specifically chose two patients with higher counts of the cells out of 7 patients 

in the data, namely 695 and 703. To evaluate how scDeepJointClust refines the result of existing 

clustering methods in patient 695 and 703, we first clustered the cells based only on the single cell 

RNA-Seq data using existing clustering methods (Leiden, Louvain, and Milo). After annotating 

the clusters into cell types using a computational method, singleR, based on the Human Primary 

Cell Atlas reference dataset [216], we assessed how well the identified NK, B, and T cells match 

those identified in the original publication that we deemed true. Then, we ran scDeepJointClust on 

the clustering result with the biological condition information (tumor vs. nLung) and compared 

the results.  
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In terms of TPR, scDeepJointClust enhances the result of all the tested methods for all four 

cell types in both patients with only few exceptions in identifying B and momac cell types (Figure. 

4.4A, 4.4B, Table 4.1). Furthermore, scDeepJointClust also enhances the FPR in both patients 

with a single exception in identifying T cell types (Figure. 4.4C, 4.4D, Table 4.1). Given the 

uncertainty in choosing a gene-expression-based clustering algorithm, it is worth emphasizing that 

the improvement provided by scDeepJointClust remains substantial across all clustering 

algorithms tested. It is interesting to note that, when there is little gain in either TPR or FPR, 

scDeepJointClust substantially refines the result in the other criteria, refining the overall results of 

cell state identification. For example, although scDeepJointClust does not improve TPR of momac 

identification for Patient 695 from any existing algorithms, scDeepJointClust makes drastic 

improvements from all the methods in terms of FPR. Similarly, for Patient 695, while 

scDeepJointClust does not improve false positive rate of B, NK, and T cell identification, it 

improves true positive rate of the cells.  

Table 4-1. Parameter settings for the deep-learning component of DAG-deepVASE. 

  Patient 695   

TPR for B Leiden 0.979147 0.963033 -0.01611 -0.016 

 Louvain 0.977251 0.82019 -0.15706 -0.157 

 Milo 0.033175 0.15327 0.120095 0.12 

TPR for NK  Leiden 0.802244 0.957924 0.15568 0.156 

 Louvain 0.821879 0.945302 0.123422 0.123 

 Milo 0.046283 0.160237 0.113954 0.114 

TPR for T Leiden 0.939153 0.936316 -0.00284 -0.003 

 Louvain 0.925702 0.952969 0.027267 0.027 

 Milo 0.035044 0.671516 0.636472 0.636 

TPR for 
MoMac Leiden 

1 1 
0 0 

 Louvain 1 1 0 0 

 Milo 1 1 0 0 

      

FPR for B Leiden 0.002786 0.002502 -0.00028 0 

 Louvain 0.003405 0.002743 -0.00066 -0.001 
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 Milo 0.024529 0.023448 -0.00108 -0.001 

FPR for NK  Leiden 0.029759 0.024458 -0.0053 -0.005 

 Louvain 0.027385 0.022598 -0.00479 -0.005 

 Milo 0.023581 0.022231 -0.00135 -0.001 

FPR for T Leiden 0.020647 0.021292 0.000645 0.001 

 Louvain 0.015352 0.014963 -0.00039 0 

 Milo 0.013982 0.148728 0.134746 0.135 

FPR for 
MoMac Leiden 

0.156359 0.160935 
0.004576 0.005 

 Louvain 0.156586 0.134113 -0.02247 -0.022 

 Milo 0.961896 0.389561 -0.57233 -0.572 

      

  Patient 706   

TPR for B Leiden 0.998094 0.988325 -0.00977 -0.01 

 Louvain 0.997856 0.826123 -0.17173 -0.172 

 Milo 0.039552 0.475578 0.436026 0.436 

TPR for NK  Leiden 0.693069 0.936634 0.243564 0.244 

 Louvain 0.871287 0.912871 0.041584 0.042 

 Milo 0.041584 0.239604 0.19802 0.198 

TPR for T Leiden 0.860237 0.950734 0.090496 0.09 

 Louvain 0.720881 0.722573 0.001692 0.002 

 Milo 0.037254 0.566715 0.529461 0.529 

TPR for 
MoMac Leiden 

1 0.981481 
-0.01852 -0.019 

 Louvain 1 1 0 0 

 Milo 1 0.888889 -0.11111 -0.111 

      

FPR for B Leiden 0.185023 0.183857 -0.00117 -0.001 

 Louvain 0.205181 0.174297 -0.03088 -0.031 

 Milo 0.020753 0.020848 9.51E-05 0 

FPR for NK  Leiden 0.024738 0.02002 -0.00472 -0.005 

 Louvain 0.033178 0.019777 -0.0134 -0.013 

 Milo 0.021581 0.020212 -0.00137 -0.001 

FPR for T Leiden 0.026304 0.027393 0.001089 0.001 

 Louvain 0.018643 0.017311 -0.00133 -0.001 

 Milo 0.018943 0.019873 0.00093 0.001 

FPR for 
MoMac Leiden 

1 0.981481 
-0.01852 -0.019 

 Louvain 1 1 0 0 

 Milo 1 0.888889 -0.11111 -0.111 
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Figure 4.4. Demonstration of scDeepJointCluster in NSCLC data. TPR difference of scDeepJointClust vs. 

existing methods (Leiden in red, Louvain in blue, and Milo in green) in identifying B, NK, T, or momac cells 

in (A) Patient 695 and (B) Patient 706. Since the difference was calculated in reference to the performance of 

existing methods, positive values represent superiority of scDeepJointClust over existing methods. FPR 

difference of scDeepJointCluster vs. existing methods (Leiden in red, Louvain in blue, and Milo in green) in 

identifying B, NK, T, or momac cells in (C) Patient 695 and (D) Patient 706. Since the difference was 

calculated in reference to the performance of existing methods, negative values represent superiority of 

scDeepJointClust over existing methods. 
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4.5 Conclusions 

In this project, we introduced scDeepJointClust, a novel approach for clustering cells into 

subtypes or states by refining an initial clustering result with the consideration of metadata 

indicating the biological conditions. We further conducted multiple experiments using simulation 

data generated in diverse scenarios and biological data of different contexts (melanoma and 

NSCLC tumors treated with immunotherapy treatments) to demonstrate superiority of 

scDeepJointClust over existing methods, raising three important implications as follows. First, 

scDeepJointClust considers previously unexplored information during the clustering process such 

as whether cells were derived from tumor or normal samples, representing an innovative approach 

to refine the performance of existing sophisticated methods. Secondly, scDeepJointClust harnesses 

the power of state-of-the-art gene-expression-based clustering methods, incorporating their 

sophistication and accuracy. This ensures that scDeepJointClust stays at the cutting edge of 

performance by leveraging the advancements in gene-expression-based clustering techniques. 

Third, by employing the DNN method to embed and train on both types of information, gene 

expression and the biological condition, scDeepJointClust successfully captures and models the 

nonlinear relationship in how cell states are defined with such data. 

However, scDeepJointClust also calls for further investigation to tackle some 

methodological and analytical limitations. A methodological limitation is that our approach 

capitalizes on enriched biological conditions in the cells of the same type, which may not be 

advantageous for identifying cell types that do not exhibit such enrichments. However, considering 

that the primary focus of immunologic studies lies in identifying differentially abundant cell types 

between conditions, we believe that scDeepJointClust effectively addresses this specific interest. 

From an analytical standpoint, it is important to acknowledge that the evaluation of true positive 
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rate (TPR) and false positive rate (FPR) against the original cluster IDs in the NSCLC data might 

not be entirely precise. Although the original IDs are expected to closely approximate the true cell 

types, as they rely not only on gene expression profiles but also on cell epitope information, the 

extent to which cell identity can be accurately learned from single-cell RNA-Seq or CITE-Seq data 

remains an ongoing area of study. Therefore, our evaluation based on the original cell type IDs 

may not precisely reflect the true cell identification performance. Nonetheless, when combined 

with our simulation results, which showcases superiority of scDeepJointClust over the simulated 

truth, the results together strongly suggest that it outperforms other existing methods in accurately 

defining true cell clusters. 

In summary, we developed scDeepJointClust, which identifies cellular states that are 

differentially abundant between biological conditions. Identifying those cellular states is utmost 

important because it provides crucial insights into the functional and molecular diversity within a 

tissue or organism. However, the current formulation of this problem employs a two-step 

approach, which can potentially lead to suboptimal solutions. In contrast, scDeepJointClust tackles 

this problem by transforming it into a joint-learning problem and leveraging a DNN-based 

approach. This innovative methodology facilitates more accurate identification of cellular states, 

thus providing valuable insights into the underlying functional and molecular diversity associated 

with important pathobiology. By harnessing these advantages, the application of scDeepJointClust 

holds significant promise for advancing our understanding of cellular states and their implications 

in complex biological systems. 
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