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Superconducting quantum circuits have emerged as very promising platforms for quan-

tum information processing. As the field navigates the Noisy Intermediate-Scale Quantum

era, we can now achieve high-fidelity quantum gates across hundreds of physical qubits.

Nonetheless, evolving from NISQ machines to fault-tolerant quantum computers still re-

quires numerous advancements in both science and engineering.

In this dissertation, I aim to contribute solutions to the challenge of realizing large-scale

quantum computers by exploring new ways to employ parametric interactions in supercon-

ducting quantum circuits. Specifically, the parametric charge-pumping scheme, activated by

directly applying microwave drives to a coupler device that is coupled to one or multiple

fixed frequency qubits, offers the versatility to execute a variety of both single-qubit and

multi-qubit quantum operations. Moreover, the parametric coupling scheme also facilitates

innovative qubit connection architectures and potential new error correction schemes.

The thesis starts with an introduction to the theory of charge-pumped parametric inter-

actions and the classical electronics setup necessary for such operations. Building on this

foundation, I showcase the potential of parametric interactions using two experimental works

conducted during my PhD. Firstly, we have realized a prototype modular structure supercon-

ducting quantum computer with parametric interactions. The design centrals a microwave

quantum state router that realizes all-to-all couplings among four independent and detach-

able quantum modules. We have performed full mode characterization, gate calibration,

inter- and intra-module photon transfer, pairwise entanglements, and even parallel opera-

tion of simultaneous iSWAP gates. This experiment illustrates the potential of parametric

interactions for building high-efficiency qubit inter-connections.

Secondly, I demonstrate the versatility of parametric interactions by performing a para-

metric transverse component readout on a transmon qubit. This experiment utilizes the idea
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of ‘multi-parametric interactions’, in which multiple parametric drives are applied simulta-

neously to a set of quantum modes, and shows that a three-wave mixing coupler device can

not only be used for quantum gates, but can also be used to perform novel qubit readouts

that can be potentially very useful in qubit error correction schemes.

In the concluding chapter, I discuss the future of the parametric coupling scheme in

larger-scale modular devices and ongoing efforts to enhance parametric coupler performance.
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1.0 Introduction to quantum computing with superconducting circuits

1.1 Quantum Computing’s potential

Just as classical computers that operate based on algorithms that manipulate classical

bits, quantum computers function on algorithms that manipulate quantum bits, or qubits.

Unlike classical bits, which can exist in one of two states - either 0 or 1, qubits, being coher-

ent two-level quantum systems, can exist in a superposition of both states simultaneously.

Another unique property of the qubit systems, entanglement, describes the quantum phe-

nomenon that the state of one qubit becomes inherently linked to the state of another, and

measuring the state of one qubit affects the state of the other. These unique quantum prop-

erties offer new computational resources, which, as eloquently put by Nielsen and Chuang

[1], represent “iron to the classical world’s bronze age”. By harnessing these quantum prop-

erties, quantum algorithms, such as Shor’s algorithm [2] for factorization and Grover’s search

algorithm [3], have been developed. These algorithms allow quantum computers to solve spe-

cific computational problems at a significantly faster speed than their classical counterparts,

leading to what is commonly referred to as “quantum advantage” [4].

In addition to enhanced computational speed, the potential of quantum computers ex-

tends to simulating complex physical systems [5]. Constructed based on the principles of

quantum mechanics, quantum computers are intrinsically capable of emulating other quan-

tum systems. This is particularly beneficial in fields such as materials science and chemistry

[6]. For example, to understand the properties of complex molecules or high-temperature

superconductors, simulating quantum mechanics is required. Due to the ‘curse of dimen-

sionality’, these tasks pose a great challenge to classical computers, as the complexity of

computations escalates exponentially with the size of the system. Quantum computers, on

the other hand, can be designed/programmed to examine these properties effectively by

harnessing their inherent quantum nature.

Finally, the unique attributes of quantum mechanics open up exciting opportunities for

information security. Quantum encryption or quantum cryptography exploits the principles

1



of quantum mechanics to establish unbreakable security systems. Quantum Key Distribu-

tion (QKD), for instance, ensures secure communication channels capable of detecting any

eavesdropping attempts [7].

Uncovering the full potential of what quantum computers can accomplish remains an

open question, as the development of quantum algorithms is a non-trivial task that may

itself benefit from the capabilities of a quantum computer. This open question makes the

theoretical and experimental pursuit of quantum computing even more intriguing for quan-

tum physicists, and the research endeavors in the field of quantum computing also leads us

to have a reinterpretation of computer functions from a more physical perspective. As we

progress in this endeavor, we anticipate the discovery of innovative quantum algorithms that

could significantly expand our understanding and utilization of quantum computation.

1.2 Building quantum processors with superconducting circuits

The physical realization of a quantum computer requires us to build reproducible quan-

tum systems that we can isolate and precisely manipulate and measure. Various physical

systems have been considered as candidates for qubits, each offering distinct advantages

and challenges. Examples include spins in semiconductors[8, 9], trapped ions[10, 11, 12]

and neutral atoms[13], photonic systems[14, 15], and superconducting (SC) circuits[16, 17].

Among the various platforms, superconducting qubits possess several distinct advantages.

First, their fabrication processes align well with the techniques used in the well-developed

microelectronics industry, which makes large scale integration promising. Second, being ar-

tificial quantum systems, SC qubits can be made with high degree of flexibility in device

parameters, which allows us to build tailored devices to meet specific needs. Lastly, super-

conducting qubits can be operated using full microwave control, leveraging the advancements

in the established microwave industry. This compatibility with existing technologies presents

considerable advantages for the implementation of quantum computing.

To build an artificial two-level system with superconducting circuits, non-linearity need to

be introduced to the system. The most commonly used non-linear device in superconducting
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circuit is the Josephson Junction (JJ). The Josephson junction generally consist of two or

more superconductors coupled by a weak link. The weak link can be a thin insulating

barrier (known as a superconductor–insulator–superconductor junction, or S-I-S), a short

section of non-superconducting metal (S-N-S), or a physical constriction that weakens the

superconductivity at the point of contact (S-c-S). The inductive energy of the Josephson

Junction has a special Cosinusoidal relation with the superconducting phase variable through

the junction, which gives the junction Hamiltonian an large inductance component and

series of even-order non-linear terms. Based on the 4th order nonlinearity, the JJ can be

combined with a large capacitor to built a charge qubit device with reduced sensitivity to

charge noise, the transmon qubit [18]. Being a modified charge qubit, the transmon can

have strong dipole coupling with external electronic magnetic field, which allows its state

to be easily manipulated with external microwave drives. The readout of a transmon qubit

can be performed by coupling the qubit to an ancillary mode whose state depends strongly

on the qubit state [19, 20, 21]. The Josephson Junction can also be used to build other

superconducting elements that are necessary for the operation of quantum processors, which

include quantum limited parametric amplifiers[22, 23, 24] that enables high-fidelity qubit

readout, coupler devices for multi-qubit gates[25, 26], or even cryogenic control devices for

generating qubit control pulses[27, 28].

With all these developments in the construction, control, and measurement of super-

conducting qubits, the field of superconducting quantum computing has made substantial

progress over the past few decades. As a result of extensive research and development,

building and operating medium-scale quantum processors with superconducting circuits is

now a reality. This has brought us into the so-called Noisy Intermediate-Scale Quantum

(NISQ) era, where fairly high-fidelity universal quantum gates can be performed between

tens [4, 29, 30] (or hundreds [31, 32]) of qubits, showing the immense potential of quantum

computing for performing complex computation or simulation tasks that are beyond the

capabilities of classical computers[4, 29, 33].
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1.2.1 Remaining challenges in building a scalable quantum computer with su-

perconducting circuits

Despite this progress on NISQ algorithms and continually increasing qubit counts, present

quantum machines are still not capable of performing actual large scale quantum algorithms,

since quantum information tends to degrade too rapidly in larger systems due to error ac-

cumulation. Therefore, transforming NISQ machines to fault-tolerant quantum computers

with thousands of logical qubits remains a challenging research topic that must be addressed.

Achieving this goal will require continued improvements in qubit coherence, gate fidelities

and measurement fidelities. Moreover, as we proceed with large-scale integration of super-

conducting qubits, we also encounters more challenges. As the number of qubits increases,

the complete control over the quantum processor necessitates more sophisticated and exten-

sive classical control electronics. This leads us to explore the development of multiplexed

qubit control and readout schemes, as well as to advance classical electronics to meet these

needs. Another critical aspect that demands consideration is the type of connection archi-

tecture suitable for large-scale superconducting quantum circuits. These challenges, inherent

in the large-scale integration of superconducting qubits, have shaped the focus of my PhD

research. We aim to contribute solutions based on the central concept of exploiting para-

metric interactions in superconducting qubit systems. Namely, parametric interactions can

be used for performing qubit operations that enables full microwave, multiplexed control.

This control scheme places specific requirements on the control electronics used in the exper-

iments, which is an area I devoted substantial time to developing. Furthermore, parametric

interactions pave the way for constructing quantum processors in a modular manner. This

modular design allows us to replace faulty components and test sub-units separately, sig-

nificantly easing the demand for flawless fabrication. Moreover, this approach fosters novel

qubit-qubit connection topologies, shortening the communication distance between qubits

and potentially enabling new quantum error correction schemes.

4



1.3 Overview of thesis

This thesis is organized as follows. Chapter 2 introduces the fundamental theory of

charge-pumped parametric interactions, the single- and multi-qubit gates that such interac-

tions enable, and how to realize these interactions using Josephson Junction based parametric

couplers. The discussion in this chapter lays the theoretical foundation for the subsequent

chapters.

Chapter 3 provides a detailed introduction to the microwave electronics utilized in the

operation of superconducting quantum processors. Although these microwave electronics

have already been widely used since the beginning of superconducting qubit research, as

a researcher who has spent a significant amount of time programming and testing these

electronics from the very basic layer (hardware description language), I believe a summary

of the knowledge I have acquired throughout my research will be beneficial for newcomers

in this field. Moreover, this chapter also provides a thorough analysis of the requirements

for implementing paramateric quantum operations among many qubits and cavities using

these electronics — an important topic which, in my observation, has not been thoroughly

discussed in the literature

In Chapter 4 I present our work on building parametrically-controlled, prototype modular

structure quantum processors with superconductor qubits. This chapter delves into the

design, fabrication, characterization, and full operation of a four-port quantum state router,

complemented by four quantum modules. The parametric gates introduced in Chapter

2 are extensively employed in this experiment, demonstrating the versatility and efficacy

of parametric quantum operations. Following the successful realization of the quantum

router device, I further discuss the expansion of the modular architecture. This includes the

design of a 4-qubit quantum module and the exploration of other potential modular coupling

schemes.

Chapter 5 explores the topic of multi-parametric interactions, providing several illustra-

tive examples of unique quantum operations enabled by the concurrent activation of multiple

parametric processes. A noteworthy highlight of this chapter is the presentation of an in-

novative approach to measuring the transverse components of a transmon qubit, based on

5



the three-wave mixing ‘gain-conversion’ interaction, with preliminary experimental data.

This chapter further demonstrates the vast potential of parametric interaction in perform-

ing quantum operations that extend beyond conventional gate operations. Lastly, Chapter 6

summarizes the key findings and concepts explored throughout this dissertation and discusses

future prospects of parametric quantum operations and modular quantum computers.
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2.0 Quantum Operations with Charge-pumped Parametric Interactions

In gate-based quantum computing, universal single-qubit and two-qubit gates are nec-

essary for compiling an arbitrary quantum algorithm [34, 1]. For superconducting qubit

systems, single-qubit gates can be conveniently implemented by applying microwave drives

at the qubit frequency via a port that is capacitively coupled to the qubit [35, 36]. On the

other hand, two-qubit gates are generally more challenging to realize. One of the primary

reasons for this is that, unlike single-qubit gates where the qubit-filed interaction can be

rapidly turned on and off via straightforward control of the microwave drive, the two-qubit

gates require us to coherently and rapidly control the qubit-qubit interaction with a high

on/off ratio.

To achieve two-qubit gates with high fidelities, a wide variety of approaches have been

proposed and experimentally implemented. Reference [36] provides a comprehensive review

of these different approaches. Broadly speaking, these approaches can be categorized based

on two criteria: 1) whether there is a dedicated coupler device between the two qubits, and 2)

whether it requires fast flux lines for rapid frequency tuning. For example, an iSWAP gate

can be performed between two directly-coupled frequency-tunable qubits by tuning the two

qubits on- and off-resonance with each other via fast flux lines [37, 38], or using a mediating

tunable coupler [39]. Alternatively, the tunable coupler can be used between fixed frequency

qubits,where the gate can be parametrically activated by rapidly modulating the frequency

of the coupler [40, 41, 42, 43], i.e. the flux-pumping schemes. The fast flux lines used in these

schemes requires additional device and input line designs beyond the conventional microwave

control, and the frequency tunability also opens the system to additional dephasing. On

the other hand, two-qubit gates can also be performed via “fully microwave” methods, for

example, the cross-resonance gate [44, 45, 46] can be performed between two fixed-frequency

qubits with direct coupling. The speed of the cross-resonance gate is reduced when the

qubit-qubit detuning is larger than the transmon anharmonicity.

Another fully microwave-controlled method is the parametric charge-pumping scheme,

which is performed by directly applying microwave drives to a coupler device between two
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qubits[47, 48, 49, 50, 51, 52]. This scheme offers the versatility to execute both single-

qubit gates and a variety of two-qubit gates (see Sec. 2.2). Additionally, the gate’s speed is

determined by both the pump strength and the coupling strength between the qubits and the

coupler mode. This allows us to design systems with very low static qubit-qubit couplings,

while still being able to perform fast gate operations via strong external pumps, thereby

realizing gates with a very high on-off ratio.

In this section, I will provide detailed derivation of the theory behind charged-pumped

parametric interactions, as well as explore the gates enabled by these interactions. In ad-

dition, I will introduce the coupler devices that provides the non-linearity needed in these

interactions. The experiment implementation of such parametric quantum operations will

be presented in Chapter 4 and 5.

2.1 Theory of charge-pumped parametric interactions

In this section, I will provide a detailed derivation on how parametric quantum processes

can be activated by applying external electromagnetic drives on a non-linear mode in a

coupled quantum system. Specifically, we will focus on harmonic to moderately anharmonic

modes like cavities and transmons, where the system can be well-described by the creation

and annihilation operators, â† and â, i.e. the Hamiltonian after second quantization. While

the process of deriving such a quantized Hamiltonian from a superconducting circuit exceeds

the scope of our current discussion, there are excellent resources that provide comprehensive

coverage of this topic, with my favored ones being [53, 54, 36]. For our discussion of charge-

pumped parametric processes, we will utilize some of the results derived from these well-

established theories. The key points to note are:

• The Hamiltonian of a harmonic oscillator mode (or linear mode) can be written as:

Ĥlin/ℏ = ωaâ
†â, (1)

where ωa is the mode frequency.
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• The Hamiltonian of a Josephson Junction based non-linear mode can generally be written

as:

Ĥnon−lin/ℏ = ωaâ
†â +

∞∑
n=3

gn(â+ â†)n, (2)

in which gn denotes the coefficient of the nth order non-linear term, which is determined

by the device parameters and could potentially be tunable via external parameters such

as flux threading a superconducting loop.

• The coupling term between two capacitively coupled modes, A and B, can be written as:

Ĥcouple/ℏ = gab(â
†b̂+ âb̂†), (3)

in which gab is the coupling strength between the two modes, which we assume to be real

here; â/â† and b̂/b̂† are the annihilation/creation operators of mode A and B, respectively.

• An external microwave drive that is coupled to the charge variable of mode A via elec-

tronic (E) field can be written as:

Ĥdrive/ℏ =
[
ε(t)e−iωdt − ε∗(t)eiωdt

] (
â† − â

)
(4)

in which ε(t) is the (slowly varying) time dependent amplitude of the drive. The drive

envelope ε(t) is related to the amplitude of the field at the pump port A(t) via ε(t) =
√
κaA(t), with κa being the coupling strength between the A mode and the port. The

angular frequency of the pump is denoted as ωd. There are few extra points to note in

this driving term Hamiltonian:

– The external drive A(t) is typically generated with arbitrary waveform generators

(AWGs), which can provide both phase and amplitude modulation. Therefore, ε(t)

is generally a complex variable whose real and imaginary part can be controlled indi-

vidually. This allows us to create optimized pulse shapes that can reduce unwanted

transitions induced by the drive[55, 52, 56].

– When the drive is only amplitude modulated with fixed frequency ωd and phase ϕd,

Equation 4 can be simplified as [57, 36]:

Ĥdrive/ℏ = i2ε(t) cos(ωdt+ ϕd)
(
â† − â

)
, (5)

in which a π/2 phase is absorbed in ϕd.
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– Another commonly seen form of the driving term is typically written as[36]:

Ĥdrive/ℏ = ε(t)
(
e−i(ωdt+ϕd)â† + ei(ωdt+ϕd)â

)
(6)

This a further simplified version of Eq. 4, which is valid only when the drive frequency

ωd is close to the mode frequency ωa, allowing the fast rotating terms in Eq. 4 to be

neglected under rotating-wave approximation (RWA).

Based on this foundation, we can derive the emergence of parametric quantum processes

activated by external drives. As an illustrative example, let’s consider a coupling system

depicted in Fig. 1. In this system, two harmonic oscillators A and B are both coupled to a

central mode, S, who has a third-order non-linearity. The total static Hamiltonian can be

written as:

Ĥ0/ℏ = ωaâ
†â + ωbb̂

†b̂ + ωsŝ
†ŝ + g3(ŝ+ ŝ†)3 + gas(â

†ŝ+ âŝ†) + gbs(b̂
†ŝ+ b̂ŝ†) (7)

𝜔𝑎𝑎
†𝑎 𝜔𝑠𝑠

†𝑠

𝑔3 𝑠 + 𝑠† 3

𝜔𝑏𝑏
†𝑏

𝑔𝑎𝑠 𝑔𝑏𝑠

𝜀 𝑡  𝑒 -𝑖𝜔𝑝 𝑡

Figure 1: Example of three mode coupling system. Two linear modes A (labeled in

orange) and B (labeled in blue) are coupled to a central non-linear mode S (labeled in green)

with coupling coefficients gas and gbs respectively. The S mode as third order non-linearity

with coefficient g3. An external microwave pump is applied at the S mode with effective

time-dependent amplitude ϵ(t) and angular frequency ωp.

We define ∆xy to be the frequency difference (detuning) between two modes X and Y ,

e.g. ∆xy = ωx − ωy. In the on-resonance case, ∆ = 0, the eigenstates of the system become
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the maximally entangled states of the two modes, which implies that each original mode

by it self is no longer an eigenstate, and so if prepared in this state will promptly leave it.

Therefore, for quantum information processing, we generally work in the ‘dispersive regime’

[53, 54, 36], in which the direct coupling strength, gxy, is much smaller than the detuning

∆xy. Here we define the hybridization strength between two modes X and Y as

λxy =
( g
∆

)
xy

(8)

In our 3-mode system depicted in Fig. 1, we will work in the dispersive regime where

|λas| = |g/∆|as ≪ 1 and |λbs| = |g/∆|bs ≪ 1. Next, we will analyze the dynamics of this

3-mode system under an external drive applied to the non-linear mode with amplitude ε(t),

frequency ωp, and phase ϕp. To achieve this, we will employ a series of unitary transfor-

mations on the original Hamiltonian and make approximations based on this assumption of

dispersive coupling.

2.1.1 Bogoliubov transformation

The Hamiltonian in Eq. 7 can be separated into two parts, the linear part H0,L and the

non-linear part H0,NL

Ĥ0,L = ωaâ
†â + ωbb̂

†b̂ + ωsŝ
†ŝ + gas(â

†ŝ+ âŝ†) + gbs(b̂
†ŝ+ b̂ŝ†) (9)

Ĥ0,NL = g3(ŝ+ ŝ†)3 (10)

To assess the impact of the non-linearity of the S mode on the three-mode system result-

ing from its coupling with the two linear modes, we need to first perform a Bogoliubov

transformation that diagonalizes the linear part of the system’s Hamiltonian, H0,L.
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2.1.1.1 Diagonalization of a two-mode system

Reference [36] provides a complete solution for diagonalizing the Hamiltonian of a two

mode system with a Bogoliubov transformation. Specifically, for two linear modes X and Y

with frequencies ωx and ωy, and coupling strength gxy, the linear Hamiltonian can be written

as:

Ĥxy/ℏ = ωxx̂
†x̂ + ωyŷ

†ŷ + gxy(x̂
†ŷ + x̂ŷ†). (11)

The Bogoliubov transformation unitary that diagonalizes this Hamiltonian is 1:

ÛB,xy = exp
[
Λxy(x̂

†ŷ − x̂ŷ†)
]
, (12)

in which

Λxy =
1

2
arctan(2λxy) =

1

2
arctan

(
2

gxy
ωx − ωy

)
. (13)

The annihilation operators after the Bogoliubov transformation can be derived using the

Baker-Campbell-Hausdorff formula, which yields:

x̂′ = ÛB,xy x̂ Û
†
B,xy = cos(Λxy)x̂− sin(Λxy)ŷ (14a)

ŷ′ = ÛB,xy ŷ Û
†
B,xy = cos(Λxy)ŷ + sin(Λxy)x̂, (14b)

and the Hamiltonian after transformation will have the diagonal form:

Ĥ′
xy = ÛB,xy Ĥxy Û

†
B,xy

= ℏωxx̂′
†
x̂′ + ℏωyŷ′

†
ŷ′ + gxy(x̂′

†
ŷ′ + x̂′ŷ′

†
)

= ℏω′
xx̂

†x̂ + ℏω′
yŷ

†ŷ,

(15)

with the ‘dressed’ frequencies:

ω′
x = ωx +

∆xy

2

(√
1 + 4λ2xy − 1

)
(16a)

ω′
y = ωy −

∆xy

2

(√
1 + 4λ2xy − 1

)
. (16b)

1Note that we are using different notations for ∆ and the application of unitary transformations compared
to those in Ref. [36].
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Note that the formulas in Eq. 11 to 16 are derived in exact form without any approxi-

mation applied. In the dispersive regime, |λxy| =
∣∣ g
∆

∣∣
xy

≪ 1; Λxy ∼ λxy. To first-order in

λxy, Eq. 14 and Eq. 16 can be simplified to:

x̂′ ≈ x̂− λxyŷ = x̂−
( g
∆

)
xy
ŷ (17a)

ŷ′ ≈ ŷ + λxyx̂ = ŷ +
( g
∆

)
xy
x̂, (17b)

and

ω′
x ≈ ωx + λxygxy = ωx +

(
g2

∆

)
xy

(18a)

ω′
y ≈ ωy − λxygxy = ωy −

(
g2

∆

)
xy

. (18b)

The results derived in Eq.17 and Eq.18 provide simple expressions for the dressed mode

operators and frequencies following the Bogoliubov transformation in a dispersively coupled

system. More importantly, these equations also give us an intuitive understanding of how the

dressed operators and frequencies are related to the coupling coefficients and mode detunings.

Essentially, each dressed operator will carry a ∼ g/∆ portion of the other mode’s bare mode

operator, and the two frequencies will be shifted apart from each other by ∼ 2g2/∆. These

formulas will serve as important references for analyzing the share of non-linearity in multi-

mode systems that we will discuss in later sections. In the following text of this section, I

will elaborate how these results can be extrapolated to multi-mode systems with dispersive

couplings.
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2.1.1.2 General formalism for a multi-mode system

In general, the Bogoliubov transformation can be applied to a quantum system of n

linear modes with all-to-all couplings. The system Hamiltonian can be written as:

Ĥ/ℏ =
i∑

i=1

ωnâ
†
i âi +

n∑
i=1

n∑
j=i+1

gij(â
†
i âj + âiâ

†
j), (19)

which can be re-written in a matrix form:

Ĥ/ℏ = Ψ†HΨ

=
[
â†1 â†2 · · · â†n

]

ω1 g12 · · · g1n

g12 ω2 · · · a2n
...

...
. . .

...

g1n g2n · · · ωn




â1

â2
...

ân


(20)

Here, we denote Ψ as a column vector that consists of the annihilation operators (â1, ..., ân)

for each linear mode, and H is a numeric matrix (not an operator) that contains the bare

mode frequencies (ω1, ..., ωn) and the coupling coefficients gij. By nature, H is always a

Hermitian matrix, and we assume that all the mode frequencies are distinct from each other.

Then, there should always exist a unitary matrix U (the eigenvector matrix of H) that can

diagonally decompose H, i.e.

H = UH′U†

=


u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...

un1 un2 · · · unn




ω′
1 0 · · · 0

0 ω′
2 · · · 0

...
...

. . .
...

0 0 · · · ω′
n




u11 u∗21 · · · u∗n1

u12 u22 · · · u∗n2
...

...
. . .

...

u1n u2n · · · unn


(21)

The diagonal elements in H′ correspond to eigenvalues of H, which equal to the dressed

mode frequencies. Therefore, finding the Bogoliubov transformation that diagonalizes the
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system Hamiltonian Ĥ is equivalent to finding the unitary operator ÛB that transforms the

annihilation operators such that:

â′i = ÛB âi Û
†
B =

[
ui1 ui2 · · · uin

]

â1

â2
...

ân

 (22)

which gives dressed annihilation operator vector:

Ψ′ =


â′1

â′2
...

â′n

 =


u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...

un1 un2 · · · unn




â1

â2
...

ân

 = UΨ. (23)

Under the transformation represented by ÛB, the transformed Hamiltonian H′ can be

written by substituting the original annihilation and creation operators, âi and â
†
i , with their

corresponding dressed operators â′i and â′†i , respectively. Note that the numeric matrix H

will remain unchanged during this transformation, as the elements of H essentially act as

coefficients for the operators and will be directly transferred onto the new operators. Using

the matrix notation that we introduced in Eq. 20, and the results we have in Eq. 21 and 23,

we can derive the dressed Hamiltonian:

Ĥ′/ℏ = ÛB Ĥ Û †
B

= Ψ′†HΨ′

=
(
Ψ†U†) (UH′U†) (UΨ)

= Ψ†H′Ψ

=
n∑

i=1

ω′
nâ

†
i âi,

(24)

Equation 24 shows that the unitary operator ÛB indeed transforms original system Hamil-

tonian into a diagonal form with dressed frequencies ω′
i.

In the case of a two-mode system, the explicit expression for the Bogoliubov transforma-

tion unitary is given by Equations 12 and 13. For a more generalized multi-mode system,
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however, deriving an explicit expression for ÛB based on Equations 21 and 22 becomes more

complex and nontrivial. Regardless, the derivations above have shown that computing the

transformed Hamiltonian and the dressed mode frequencies doesn’t necessarily require us

to use the explicit expression of ÛB. Instead, we simply need to diagonally decompose the

characteristic matrix H as in Equation 21, then, the eigenvalues will represent the dressed

mode frequencies, and the eigenvector matrix U will serve as the transformation matrix

for the creation and annihilation operators (as in Equation 23), which can then be used to

calculate the transformed Hamiltonian. Moreover, in the dispersive coupling regime, where∣∣∣ gij
ωi−ωj

∣∣∣≪ 1, the computation of Eq. 21 can be further simplified using perturbation methods,

which I will discuss in the next section with our 3-mode example system.

2.1.1.3 Approximation method for the three-mode system under dispersive cou-

pling

Back to our three-mode system depicted in Fig. 1. The Hamiltonian in Eq. 9 can be

re-written as:

Ĥ0,L = Ψ†
0H0Ψ0 =

[
ŝ† â† b̂†

]
ωs gas gbs

gas ωa 0

gbs 0 ωb



ŝ

â

b̂

 (25)

In the dispersive regime where |λas| = |g/∆|as≪ 1 and |λbs| = |g/∆|bs ≪ 1, the eigenvalues

and eigenvectors of H0 can be calculated using the perturbation method2. To perform the

perturbation method calculation, we write H0 in two separate parts: the diagonal (unper-

turbed) part H0,D and the perturbation part H0,P

H0 = H0,D +H0,P =


ωs 0 0

0 ωa 0

0 0 ωb

+


0 gas gbs

gas 0 0

gbs 0 0

 (26)

Given that the eigenvector matrix of the unperturbed matrix H0,D is the Identity matrix,

and the diagonal elements of the perturbation matrix H0,P are zero, we find that the first-

order correction to the eigenvalues is zero. The first-order correction to the eigenvectors,

2Note that in this context we are not applying the quantum perturbation theory on quantum states,
instead, we are just using the perturbation method for the diagonalization of the matrix H0
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however, is non-zero and can be calculated as:

V
(1)
i =

∑
j ̸=i

gij
ωi − ωj

V
(0)
j =

∑
j ̸=i

λijV
(0)
j , (27)

where V
(0)
j is the jth eigenvector of the unperturbed matrix H0,D, which is essentially the jth

column of an Identity matrix. The second-order correction to the eigenvalues is given by:

E
(2)
i =

∑
j ̸=i

g2ij
ωi − ωj

=
∑
j ̸=i

λijgij (28)

Therefore, to the lowest order of energy and eigenvector corrections, the characteristic matrix

H0 can be diagonally decomposed as:

H0 ≈ U0H
′
0U

†
0

=


1 λas λbs

−λas 1 0

−λbs 0 1



ωs − λasgas − λbsgbs 0 0

0 ωa + λasgas 0

0 0 ωb + λbsgbs




1 −λas −λbs
λas 1 0

λbs 0 1

 ,
(29)

which indicates that the Bogoliubov transformation that diagonalizes the Hamiltonian Ĥ0,L

will transform the annihilation operators as:
ŝ′

â′

b̂′

 ≈ U0


ŝ

â

b̂

 =


1 λas λbs

−λas 1 0

−λbs 0 1



ŝ

â

b̂

 , (30)

and give the diagonalized Hamiltonian:

Ĥ′
0,L/ℏ = ÛB,0Ĥ0,LÛ

†
B,0/ℏ

= ω′
sŝ

†ŝ + ω′
aâ

†â + ω′
bb̂

†b̂,
(31)

with the dressed mode frequencies:

ω′
s ≈ ωs − λasgas − λbsgbs (32a)

ω′
a ≈ ωa + λasgas (32b)

ω′
b ≈ ωb + λbsgbs (32c)
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Equations 30 and 32 resemble the form of Eq. 17 and 18, but are extended to our three-

mode system. Essentially, the dressed S mode operator incorporates both a λas portion of

the bare A mode operator and a λbs portion of the bare B mode operator. In fact, the

derivation presented above (from Eq. 25 to Eq. 32) can be generalized to a multi-mode,

dispersively coupled system with a ‘star-shape’ coupling diagram, where multiple modes are

all coupled to one central mode. The properties of this generalized case will be discussed in

Sec. 2.1.1.5

2.1.1.4 The emergence of multi-wave mixing term

Now with the linear part of our 3-mode system Hamiltonian diagonalized, we can move

forward and see what the Bogoliubov transformation does to the non-linear part of the

Hamiltonian:

Ĥ′
0,NL/ℏ = ÛB,0Ĥ0,NLÛ

†
B,0/ℏ

=
1

ℏ
Ĥ0,NL|s→s′

= g3
(
ŝ′ + ŝ′†

)3
= g3

(
ŝ+ λasâ+ λbsb̂+ ŝ† + λasâ

† + λbsb̂
†
)3

(33)

The expansion of Eq. 33 contains all the possible third-order products of the three modes’

annihilation and creation operators, these terms are usually referred as the “3-wave-mixing

terms”. Each of these terms corresponds to a specific parametric process that we can activate

by applying external pumps on the modes at specific frequencies. Specifically, the existence

of the term: ŝâb̂† + ŝ†â†b̂ enables us to activate exchange interaction between the A and B

modes by pumping the S mode at frequency ωp = ωb − ωa. The strength of the exchange

interaction will be promotional to the coefficient of this three wave mixing term, which, in

this case equals to 6g3λasλbs (the factor ‘6’ is the binomial coefficient from the third-order

expansion). The dynamic of this process will be elaborated in Sec. 2.1.2.
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2.1.1.5 Dilution and propagation of non-linearity

Before we proceed from Eq. 33 and examine the effect of the external pump on the non-

linear mode, let us take a brief detour to explore the effect of Bogoliubov transformation

on some other coupling schemes. Specifically, we will consider a) the ‘star-shaped’ coupling

diagram (as depicted in Fig. 2a) to study how the strength of a multi-wave mixing terms

is ‘diluted’ by the addition of extra modes coupled to a central non-linear mode, and b)

the ‘chained’ coupling scheme (as depicted in Fig. 2b) to study how the non-linearity is

propagated to modes that are indirectly coupled to the non-linear mode.

b
a

A1

A2

A3

AN

AN+1

S S A1 A2 ANg1s

g2s

g3s

gNs

gN+1,s

g1s g12 gN-1,N
AN-1

Figure 2: ‘Star-shaped’ and ‘chained’ coupling diagrams.. a) ‘Star-shaped’ coupling

scheme between a central non-linear mode S and multiple other modes A1−An. Each mode

Ai is directly coupled to the S mode with coefficient gis. b) ‘Chained’ coupling scheme.

Mode A1 is directly coupled with the S mode with coefficient g1s, while the A2 −An modes

are coupled with each other consecutively with coefficients gi,i+1.

Dilution of non-linearity. In the star-shaped coupling scheme, multiple linear modes

(A1 − AN) are coupled to one central non-linear mode S. The linear part of the system

Hamiltonian can be written as:

Ĥstar,L/ℏ = ωsŝ
†ŝ +

N∑
i=1

ωiâ
†
i âi +

N∑
i=1

gis(â
†
i ŝ+ âiŝ

†), (34)
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which gives the characteristic matrix of the coupling system:

Hstar =



ωs g1s g2s · · · gNs

g1s ω1 0 · · · 0

g2s 0 ω2 · · · 0
...

...
...

. . . 0

gNs 0 0 0 ω
N


(35)

Assuming all couplings are within the dispersive regime, i.e. |λis| =
∣∣∣ gis
ωi−ωs

∣∣∣≪ 1, we can

apply the perturbation method to derive the diagonal decomposition of Hstar, as previously

demonstrated in Sec. 2.1.1.3. In this context, to illustrate the impact of the reduction in

the strength of the non-linear term due to the incorporation of additional linear modes, we

take into account the second-order correction for the eigenvectors of the Hstar matrix. This

results in the eigenvector matrix:

Ustar ≈


1− 1

2

∑N
i=1 λ

2
is λ1s · · · λNs

−λ1s 1 · · · 0
...

...
. . .

...

−λNs 0 0 1

 , (36)

and the dressed mode frequencies:

ω′
s ≈ ωs −

N∑
i=1

λisgis

ω′
i ≈ ωi + λisgis.

(37)

Based on the eigenvector matrix given in Eq. 36, the dressed S mode annihilation operator

after the Bogoliubov transformation can be written as:

ŝ′ ≈

(
1− 1

2

N∑
i=1

λ2is

)
ŝ+

N∑
i=1

λisâi. (38)

Assuming the S mode has a nth order non-linearity, gn(ŝ+ŝ
†)n, then, after the transformation,

we will have multi-wave mixing terms like :

ĤNWM,star(k, l,m) = ℏ Cklmgn

(1− 1

2

N∑
i=1

λ2is

)k

λlisλ
m
js

 ŝkâliâmj + h.c., (39)
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in which k + l + m = n, and Cklm is the binomial coefficient from the expansion of the

non-linear term. Therefore, if an addition linear mode (AN+1) is coupled to the S mode, the

coefficient for the multi-wave mixing term ĤNWM(k, l,m) will be decreased (diluted) by a

factor of ∼ 1
2k
λ2kN+1,s =

1
2k

(
g
N+1

ω
N+1

−ωs

)2k
.

Propagation of non-linearity. In the chained coupling scheme, the non-linear mode S

is directly coupled with one linear mode A1, and the linear modes (A1−AN)are consecutively

coupled with each other in sequence. The system Hamiltonian can be written as:

Ĥchain,L/ℏ = ωsŝ
†ŝ +

N∑
i=1

ωiâ
†
i âi + g1s

(
â†1ŝ+ âiŝ

†
)
+

N−1∑
i=1

gi,i+1

(
â†i âi+1 + âiâ

†
i+1

)
, (40)

and the characteristic coupling matrix takes the form of a symmetric ‘tridiagonal’ matrix:

Hchain =



ωs g1s 0 0 · · · 0

g1s ω1 g12 0 · · · 0

0 g12 ω2 g23 · · · 0

0 0 g23
. . . . . . 0

...
...

...
. . . ω

N−1
g
N−1,N

0 0 0 0 g
N−1,N

ω
N


(41)

Once again, we assume that all the couplings are within the dispersive regime, i.e.,

|λ1s| =
∣∣∣ gis
ωi−ωs

∣∣∣≪ 1 and |λi,i+1| =
∣∣∣ gi,i+1

ωi−ωi+1

∣∣∣≪ 1. The eigenvectors of the matrixHchain can be

calculated by iteratively applying the perturbation method. To determine the participation

of the last linear mode An in the dressed S mode, we perform the perturbation calculation

up to the N th order, which yields:

ŝ′ ≈ ŝ+
N∑
i=1

(
λ1s

i−1∏
j=1

λj,j+1

)
âi (42)

Therefore, in the multi-wave-mixing term derived from the original non-linearity of the

S mode (i.e. the terms from the expansion of gn(ŝ+ ŝ
†)n), the modes further down the chain

share less non-linearity from the S mode. Each additional step of concatenation, for example

from the N th mode to (N +1)th mode, decreases the strength of the multi-wave-mixing term

by approximately λN,N+1 =
g
N,N+1

ω
N
−ω

N+1
.
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The coupling diagrams depicted in Fig. 2 contains the basic patterns that are commonly

used in large scale dispersively coupled quantum systems. Therefore, by decomposing a large

system into these patterns and combing the results from Eq. 38 and 42, we can conveniently

estimate the coefficient for any given multi-wave mixing term in the system Hamiltonian.

This approach will be frequently used in our discussion of designing and building the para-

metrically controlled multi-mode devices in Chapter 4. In general, coupling too many modes

to the SNAIL tends to dilute the system’s nonlinearity, while using a chained coupling

approach alleviates stress on the SNAIL but doesn’t allow the nonlinearity to propagate

effectively down the chain. In our quantum router and module experiments, we employ both

schemes: the SNAILs are directly coupled to only a few modes, and a single intermediate

coupling step is introduced when needed.

2.1.2 Displacement transformation

To activate parametric processes based on the multi-wave mixing terms, external mi-

crowave pumps are generally applied to the non-linear mode at specific frequencies. To

illustrative this effect, we move back to the three-mode system depicted in Fig. 1. The

pumping term can be generally written as:

Ĥpump,S/ℏ =
[
ε(t)e−iωpt − ε∗(t)eiωpt

] (
ŝ† − ŝ

)
, (43)

in which ε(t) and ωp are the effective amplitude and angular frequency of the pump, respec-

tively. Combining with the result from Eq. 31 and 33, we get the total Hamiltonian of the

system under the external drive:

Ĥp/ℏ =
(
Ĥ′

0,L + Ĥ′
0,NL + Ĥpump,S

)
/ℏ

= ωsŝ
†ŝ + ωaâ

†â + ωbb̂
†b̂ + g3

(
ŝ+ λasâ+ λbsb̂+ h.c.

)3
+
[
ε(t)e−iωpt − ε∗(t)eiωpt

] (
ŝ† − ŝ

)
,

(44)

In which we have made the approximation that the pump is applied only on the dressed S

mode, and replaced the notation for the dressed mode frequencies ω′ with ω for simplicity

of future calculation.
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To examine the dynamics activated by the external pump, we apply a displacement

transformation that eliminates the S mode driving term and transfers its effect into the

multi-wave mixing term. The transformation operator is written as:

ÛD = exp
(
zs† − z∗s

)
, (45)

with

z =
ε(t)

ωs − ωp

e−iωpt − ε∗(t)

ωs + ωp

eiωpt (46)

A full derivation for calculating this specific form of z can be found in Appendix A. After

this transformation, the transformed operators of the S mode will take the displaced form:

ŝ′ = ÛDŝÛ
†
D = ŝ− z

ŝ′† = ÛDŝ
†Û †

D = ŝ† − z∗,
(47)

and the transformed Hamiltonian will be:

ĤD/ℏ = ÛDĤpÛ
†
D/ℏ+ i

˙̂
UDÛ

†
D

= ωsŝ
†ŝ + ωaâ

†â + ωbb̂
†b̂ + g3

(
ŝ+ λasâ+ λbsb̂− z + h.c.

)3 (48)

The (−z−z∗) component in the 3rd-order term can be rearranged based on the positive and

negative frequency components:

−z − z∗ = − ε(t)

ωs − ωp

e−iωpt +
ε∗(t)

ωs + ωp

eiωpt − ε∗(t)

ωs − ωp

eiωpt +
ε(t)

ωs + ωp

e−iωpt

=
2ωpε(t)

ω2
p − ω2

s

e−iωpt +
2ωpε

∗(t)

ω2
p − ω2

s

eiωpt

= ηe−iωpt + η∗eiωpt,

(49)

in which we have defined:

η =
2ωpε(t)

ω2
p − ω2

s

(50)

So the transformed Hamiltonian in Eq. 48 can be re-written as:

ĤD/ℏ = ωsŝ
†ŝ + ωaâ

†â + ωbb̂
†b̂ + g3

(
ŝ+ λasâ+ λbsb̂+ ηe−iωpt + h.c.

)3
(51)
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After the displacement transformation, the impact of the external pump is incorporated

into the non-linear term that involves all three modes in the system. However, the Hamil-

tonian in Eq. 51 still contains both the system dynamics attributable to the static system

Hamiltonian and the dynamics activated by the external pump. Therefore, to concentrate on

the effect of the external pump, we perform another transformation that effectively “removes”

the static Hamiltonian components. Namely, we apply a rotating frame transformation at

all three modes’ resonance frequencies.

2.1.3 Rotating frame transformation and rotating-wave approximation (RWA)

The rotating frame transformation takes the form:

ÛR = exp
[
iωatâ

†â + iωbtb̂
†b̂ + iωstŝ

†ŝ
]

(52)

After then transformation, the annihilation operators of the three modes will be transformed

as:

â′ = ÛRâÛ
†
R = âe−iωat

b̂′ = ÛRb̂Û
†
R = b̂e−iωbt

ŝ′ = ÛRŝÛ
†
R = ŝe−iωst,

(53)

while the creation operators can be calculated by taking the Hermitian conjugates of the

above expressions. This specific rotating frame transformation is effectively equivalent to

moving to the interaction picture, and the effective Hamiltonian after transformation is

given by:

ĤI/ℏ = ÛRĤDÛ
†
R/ℏ+ i

˙̂
URÛ

†
R

= g3

(
ŝe−iωst + λasâe

−iωat + λbsb̂e
−iωbt + ηe−iωpt + h.c.

)3
,

(54)

where the subscript I denotes the interaction picture.

The expansion of Eq. 54 contains all possible third-order products of â, b̂, ŝ, η, and

their Hermitian conjugates. Each third-order term is accompanied by a corresponding time-

dependent oscillating phase factor. The evolution of the quantum system state under the

Hamiltonian ĤI is governed by the time evolution operator ÛH = exp
(
− i

ℏ

∫
ĤIdt

)
. Terms

in ĤI with rapidly oscillating phases tend to cancel out in the time integral and can therefore
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be neglected. This phenomenon is commonly referred to as the rotating-wave approximation

(RWA). By carefully choosing the pumping frequency, we can selectively determine which

terms survive under RWA, thereby activating the desired dynamics. For example, by setting

ωp = ωb − ωa, the term η∗â†b̂+ ηâb̂† will have zero oscillating phase and, assuming no other

frequency collision effects, will be the only term remaining in the Hamiltonian after RWA.

The effective Hamiltonian under this pump can be written as:

Ĥeff = 6g3λasλbs

(
η∗â†b̂+ ηâb̂†

)
= geff

(
â†b̂eiϕp + âb̂†e−iϕp

)
,

(55)

in which we have defined the effective interaction strength geff = 6g3λasλbs|η|, and ϕp =

arg(η∗) is essentially the phase of the external pump. This effective Hamiltonian activates

the exchange interaction between the A and B modes. When A and B are both linear modes

(harmonic oscillators), this dynamic is usually referred to as a beam-splitter interaction

[51, 50, 48, 58] for its obvious resemblance to the optical component of the same name. In

contrast, when A and B modes are both two-level systems (qubits), this effective Hamiltonian

with various pump lengths create a continuous series of iSWAP family gates, which will be

discussed in detail in Sec. 2.2.2.

2.1.4 Summary of main results

Sections 2.1.1 through 2.1.3 provide a comprehensive derivation of the dynamics of

charge-pumped parametric interactions, based on the bare mode frequencies, couplings

strengths and the pump parameters. Here, we distill these extensive derivations into a con-

cise summary of the principal results. Using these results, we devise a simplified approach for

identifying the possible parametric processes given a multi-wave mixing term, and provides

simple formulas for estimating the strength of the parametrically activated interaction.

• In a dispersively coupled multi-mode system, the operator of the dressed non-linear mode

(S) contains linear combinations of the operators of other modes (A1, ..., AN) that are
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(directly or indirectly) coupled to the S mode:

ŝ′ ≈ ŝ+
N∑
i

piâi, (56)

in which âi is the annihilation operator of mode Ai, and pi corresponds to the partici-

pation of mode Ai in the dressed S mode. For modes that are directly coupled to the S

mode, pi can be estimated as

pi = λis =
( g
∆

)
is
, (57)

in which gij and ∆ij are the coupling strength and frequency difference between mode

Ai and S, respectively. For a mode Ai that is indirectly coupled to the S mode via m

intermediate modes Bi,1, ..., Bi,m, pi can be estimated as:

pi = λb1s

(
m−1∏
k=1

λbk,bk+1

)
λbm,ai =

( g
∆

)
b1s

( g
∆

)
b1b2

. . .
( g
∆

)
bm−1bm

( g
∆

)
bmai

, (58)

in which gbk,bk+1
and ∆bk,bk+1

are the coupling strength and frequency difference between

two adjacent intermediate modes Bi,k and Bi,k+1.

• By substituting the dressed non-linear mode operator ŝ′ into the original non-linear term

gn(ŝ+ ŝ†)n (with n ≥ 3), we can get the dressed non-linear term:

Ĥ′
NL = gn

(
ŝ+

N∑
i

piâi + h.c.

)n

(59)

• After applying the external pump on the S mode and performing both the displacement

transformation and rotating frame transformation, we get the new system Hamiltonian

in the interaction picture:

ĤI = gn

(
ŝe−iωst +

N∑
i

piâie
−iωit + ηe−iωpt + h.c.

)n

, (60)

where ωi represents the frequency of mode Ai, ωs is the frequency of the coupler mode

S, ωp is the pump frequency, and η = 2ωpε(t)

ω2
p−ω2

s
, as defined in Eq. 50.
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• From the pool of nth order terms that emerge from the expansion of Eq. 60, we can

pick the term that encapsulates our desired dynamic and includes at least one pump

component η. The desired dynamic can then be activated by pumping the S mode

at the frequency that allows the desired dynamic to persist under the rotating wave

approximation (RWA), i.e.:

kωp = ωrot (61)

in which k is the number of η/η∗ terms involved in the multi-wave mixing process, and

ωrot is the overall rotating frequency of the desired dynamic. The strength of the desired

interaction can generally be estimated as:

geff = Cgnη
k
∏
i

pi (62)

in which C is the binomial coefficient from the nth order expansion, gn is the coefficient

of the original nth order non-linearity of the S mode, and the pi terms represent the

participation factors of the interaction-involved modes in the dressed S mode, as can be

estimated using Eq. 57 and 58.

Predicting possible parametric interactions from multi-wave mixing terms.

The expansion of Eq. 59 contains terms like:

ŝ†ŝ†â1, ŝ
†â†1â2, ŝ

†ŝ†â†1â2, ŝ
†â†1â2â3, etc (63)

We usually refer to these terms as multi-wave mixing terms since each of these terms cor-

responds to a parametric process that can be activated by applying external pump(s). It

is worth noting that, in fact, none of these terms themselves will survive after RWA, since

by design we usually want to avoid the multi-wave mixing process to activate spontaneously

without any external control. However, from Eq. 47-51 we see that the existence of, for exam-

ple, ŝ†â†1â2 term actually indicates that η∗â†1â2 term (with the same coefficient) will emerge

after applying the external pump and performing the displacement transformation, which

consequently can produce the desired (â†1â2 + h.c.) interaction when the pump is applied at

the right frequency ωp = ω2 −ω1. For this reason, the ŝ
†â†1â2 term is also sometimes written
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as ⟨s⟩ â†1â2 when considering the multi-wave mixing parametric process, with ⟨s⟩ = |η| rep-

resenting the effective “pump photon” number we put into the non-linear mode S via the

external off-resonance pump.

2.2 Parametric single and multi-qubit gates

Based on the formalism we summarized in Sec. 2.1.4, we can explore what other single-

and two-qubit gates are available from multi-wave-mixing processes.

2.2.1 Single-qubit sub-harmonic gates

Consider a qubit mode (denoted as Q) with frequency ωq that is dispersively coupled to

a non-linear mode S with nth order non-linearity gn(ŝ + ŝ†)n, as depicted in Fig. 3a. Using

Eq. 59 we get the dressed non-linear term in system:

ĤQS,NL = gn
(
ŝ+ λqsσ̂− + ŝ† + λqsσ̂+

)n
, (64)

in which λqs =
gqs

ωq−ωs
is the hybridization strength between the two modes. The annihilation

and creation operators of the qubit are written in the form of Pauli ladder operators σ̂− and

σ̂+, respectively, as consider the qubit as an ideal two-level system here. The expansion of

this Hamiltonian contains the multi-wave-mixing term:

ĤQS,subH = ngnλqs
(
ŝn−1σ̂+ + (ŝ†)n−1σ̂−

)
, (65)

in which the coefficient “n” comes from the binomial expansion. This term indicates that by

pumping on the S mode at frequency ωp =
1

n−1
ωq, we can create the effective Hamiltonian:

Ĥeff
QS = ngnλqsη

n−1
(
σ̂+e

−i(n−1)ϕp + σ̂−e
i(n−1)ϕp

)
, (66)

in which η = 2ωp

ω2
p−ω2

s
ε(t), with ε(t) being the amplitude of the external pump, and ϕp the

phase of the pump. This Hamiltonian effectively mirrors an on-resonance drive on the qubit

mode, which thereby can create arbitrary single-qubit rotations (gates) by controlling the
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Figure 3: Sub-harmonic single-qubit control via a non-linear coupler and in a

single transmon. a) Coupling diagram between a non-linear coupler (labeled in green)

with nth non-linearity and a qubit mode (labeled in orange) with frequency ωq. The sub-

harmonic qubit control can be performed by applying an external pump on the coupler

mode with frequency ωp = ωq/(n − 1). b) “Chevron” plot obtained from the experiment

that shows the Rabi oscillation of the qubit under the sub-Harmonic drive, which indicates

the sub-harmonic driving scheme’s ability to perform arbitrary single qubit control. c) Sub-

harmonic control scheme using the 4th order non-linearity of the transmon qubit itself. The

pump is directly applied on the qubit at frequency ωp ≈ ωq/3. d) Spectrum of the mode

frequencies and potential driving frequencies for single qubit control of a transmon. The

commonly observed transitions, namely the two-photon |g⟩− |f⟩ transition and the |e⟩− |f⟩

transition, are both relatively close to the major |g⟩ − |e⟩ transition. In contrast, the three

photon |g⟩ − |e⟩ transition lies much further below in frequency, therefore has usually been

overlooked.

29



length and phase of the external pump. The speed of the single qubit gate is then determined

by the interaction coefficient:

geff = ngnη
n−1λqs (67)

Figure 3b shows an example single qubit sub-Harmonic Rabi-oscillation data that is taken

from our 4-qubit module device, which I will introduce in Sec. 4.4.1. In comparison with the

traditional on-resonance qubit drive, this sub-harmonic driving scheme has the interesting

property that the gate speed is proportional to the (n− 1)th power of the pump amplitude,

i.e. geff ∝ ε(t)n−1, rather than being linearly proportional to the pump amplitude. Also,

the phase of the gate is set by (n − 1)ϕp, as opposed to simply being ϕp as in the case of

on-resonance drive.

Interestingly, such sub-harmonic single qubit gates can also be implemented in a even

simpler setup - a transmon qubit by itself [56]! The transmon qubit inherently possesses a

4th order non-linearity [18]:

Ĥtr,NL =
α

12

(
q̂ + q̂†

)4
, (68)

in which α is generally known as the “anharmonicity” of the qubit, as this 4th order term

contains an always-on Kerr component:

Ĥtr,anh =
α

2
q̂†q̂†q̂q̂, (69)

which gives the transmon the unevenly spaced energy level with ωef
q −ωge

q = α. For a trans-

mon qubit, the value of α is usually around −300 to −50MHz. From the perspective of para-

metric process, this term also indicates that we can activate the |g⟩ ↔ |f⟩ transition of the

transmon by applying a pump directly to the qubit at frequency ωp = (ωf
q −ωg

q )/2 = ωge
q + α

2
.

This transition is α
2
/2π (generally ∼ −100MHz) away from the qubit’s |g⟩ ↔ |e⟩ transition

frequency, therefore is commonly observed in transmon spectroscopy experiments[59]. How-

ever, there is another term from the expansion of Eq. 68 that is typically neglected after RWA

when the external drive is applied near-resonance, but can be leveraged for sub-harmonic

driving scheme. That term is:

Ĥtr,subH =
α

3

(
q̂†q̂†q̂†q̂ + q̂†q̂q̂q̂

)
(70)
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This term suggests that the qubit |g⟩ ↔ |e⟩ transition can also be activated by pumping at3

ωp ≈ ωge
q /3, as illustrated in Fig. 3c,d. This sub-harmonic driving scheme gives an effective

Rabi rate of:

geff =
α

3
η3, (71)

in which η = ωp

ω2
p−ω2

q
ε(t). Despite the transmon’s longstanding popularity as a supercon-

ducting qubit, this hidden drive channel has not been thoroughly explored. In our recent

preprint[56], we experimentally demonstrated the complete capability of this sub-harmonic

driving scheme for full control over a standard transmon qubit. Furthermore, this driving

scheme offers the advantage of separating the qubit’s loss and control channels in the fre-

quency domain, which thereby enabling more optimal qubit input line configurations that

can reduce the heat load on the dilution refrigerator, potentially alleviating the fridge cooling

power overhead in the large-scale integration of superconducting qubits[60].

2.2.2 Parametric two-qubit gates

In Section 2.1, we derived the Hamiltonian for the three-mode system that includes two

linear modes, A and B, and a non-linear mode, S, with third-order non-linearity. Under the

external pump on the S mode, the effective system Hamiltonian was given by Eq.54. When

both A and B are two-level systems (qubits), the same derivation can be applied, allowing

us to rewrite Eq.54 as:

ĤI,QSQ/ℏ = g3
(
ŝe−iωst + λasσa,−e

−iωat + λbsσb,−e
−iωbt + ηe−iωpt + h.c.

)3
, (72)

in which we basically replaced the annihilation and creation operators for mode A and B in

Eq.54 with Pauli ladder operators. The definitions of the other variables remain the same

as in Eq.54. With this Hamiltonian as our foundation, we can explore what two-qubit gates

can be activated by applying external pumps to the S mode.

Continuous iSWAP family gates. As briefly discussed in Sec. 2.1.3, when the ex-

ternal pump is applied at frequency ωp = ωb − ωa, we can activate the exchange interaction

between the A and B modes. Here, when A and B are both qubits, the external pump

3The approximation is due to the ac-Stark shift effect that occurs during the pump.

31



ba

QA

QB

Pump

𝑔

𝑔

𝑖SWAP

𝑍 𝑏

𝑍 𝑎

𝑍

-1

1

Pump time 𝜋/𝑔𝑒𝑓𝑓
0 1/4 1/2 3/4 1 5/4

𝑖SWAP

QA

QB

Pump

𝑔

𝑔

bSWAP

𝑍 𝑏

𝑍 𝑎

𝑍

-1

1

Pump time 𝜋/𝑔𝑒𝑓𝑓
0 1/4 1/2 3/4 1 5/4

bSWAP

Figure 4: iSWAP and bSWAP exchange interactions between two qubits. a) Pulse

sequence and photon population of two qubit QA and QB under the iSWAP interaction.

Qubit A is first prepared to the excited state with a π−pulse, then the pump on the coupler

is turned on at the frequency difference betweenQA andQB. Under pumps of various lengths,

the initial Fock state photon oscillates between the two qubits, enabling the execution of a

family of (iSWAP)α gates. b) Pulse sequence and photon population of two qubit QA and

QB under the bSWAP interaction. With both qubits starting from their ground states, the

pump at the sum frequency of QA and QB makes both qubits undergo a simultaneous Rabi

oscillation between their ground and excited states. Similar to the iSWAP interaction, a

continuous family of (bSWAP)α gates can be created by controlling the length of the sum

frequency pump.

can actually create a Rabi-like oscillation between the |ge⟩ and |eg⟩ states in this two-qubit

system, as shown in Fig. 4a. The effective Hamiltonian can be written as:

Ĥeff
iSWAP/ℏ = geff

(
σa,+σb,−e

iϕp + σa,−σb,+e
−iϕp

)
, (73)
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with geff = 6g3λasλbs|η|, as described in Sec. 2.1.3. By changing the length of the external

pump, we can create a continuous family of two qubit gates whose operator can be explicitly

written down as:

Û θ
iSWAP = exp

[
−iĤeff

iSWAPt/ℏ
]
=


1 0 0 0

0 cos(θ) −i sin(θ)e−iϕp 0

0 −i sin(θ)eiϕp cos(θ) 0

0 0 0 1

 , (74)

in which θ = geff t. Such gates are known as the iSWAP family gates[61, 62], with each

θ corresponds to a partial version of the full iSWAP gate. By setting the pumping time

t = π
2
/geff and pump phase ϕp = π, we can generate the full-iSWAP gate:

ÛiSWAP =


1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

 (75)

The iSWAP gate operator looks very similar to a SWAP gate, with the key difference being

that the two central off-diagonal elements are ‘i’s rather than ‘1’s. This seemingly minor

distinction significantly alters the gate’s behavior. While the SWAP gate is a non-entangling

gate that simply exchanges the states of two qubits, the iSWAP gate executes the state

exchange with an additional “non-Hermitian” phase4 of i, which makes it an entangling

gate. In fact, the iSWAP gate is an universal two-qubit gate that can serve as a basis for

compiling any other needed gates between two qubits. It is important to note that the

iSWAP gate cannot be transformed into a SWAP gate by simply changing the phase of the

external pump. As shown in Eq. 74, the phase introduced by the pump is added to the

central off-diagonal elements in a Hermitian way, while the two ‘i’s at those positions are

inherently non-Hermitian. In fact, to construct a SWAP gate from iSWAP gates, we will

need three iSWAP gates combined with multiple single qubit gates [63].

4Here by “non-Hermitian”, we mean that the |ge⟩ → |eg⟩ and |eg⟩ → |ge⟩ transitions have the same,
instead of conjugate, added phase.
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Another special member of the iSWAP family gates is the root-iSWAP
(√

iSWAP
)
gate,

which can be generated by setting the pumping time t = π
4
/geff and pump phase ϕp = π.

The
√
iSWAP gate operator is written as:

Û√
iSWAP =


1 0 0 0

0 1√
2

i√
2

0

0 i√
2

1√
2

0

0 0 0 1

 , (76)

The
√
iSWAP gate can be employed to generate an odd Bell state from a two-qubit product

state |ge⟩, as follows:

Û√
iSWAP |ge⟩ =

1√
2
(|ge⟩+ i |eg⟩) (77)

The
√
iSWAP gate is also an universal two-qubit entangling gate, which is actually more

powerful than the iSWAP gate in terms of compiling arbitrary other two-qubit gates [62].

Moreover, since the pump duration required to generate the
√
iSWAP gate is half that

needed for the full-iSWAP gate, the
√
iSWAP gate is inherently faster. Therefore, it can be

used as a versatile and easy-to-construct basis gate in parametrically controlled multi-qubit

quantum systems.

Continuous bSWAP family gates. Similar to the iSWAP family gates in which the

pump was applied at the frequency difference between the two modes, if the external pump

is applied at the frequency sum of the two modes, i.e. ωp = ωb+ωa, then the surviving term

after RWA becomes

Ĥeff
bSWAP/ℏ = geff

(
σa,+σb,+e

−iϕp + σa,−σb,−e
iϕp
)
, (78)

This Hamiltonian activates the monochromatic two-photon excitation of the two qubit

modes, i.e. the |gg⟩ ↔ |ee⟩ transition, as shown in Fig. 4b. Again, by changing the length

of the pulse, we get another continuous family of two qubit gates whose operator can be

written as:

ÛbSWAPθ = exp
[
−iĤeff

bSWAPt/ℏ
]
=


cos(θ) 0 0 −i sin(θ)eiϕp

0 1 0 0

0 0 1 0

−i sin(θ)e−iϕp 0 0 cos(θ)

 , (79)
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in which θ = geff t. The gates described by this operator are also know as the “bSWAP”

family gates [64, 65]. When t = π
2
/geff and ϕp = π, we get the “bSWAP” gate:

ÛbSWAP =


0 0 0 i

0 1 0 0

0 0 1 0

i 0 0 0

 (80)

The “bSWAP” gate, like the iSWAP gate, is also an universal two-qubit gate, meaning it can

serve as a basis gate for compiling any other two-qubit gates. Additionally, the
√
bSWAP

gate can be used to generate an even Bell state, 1√
2
(|gg⟩+ i |ee⟩), from a product state |gg⟩.

In fact, the bSWAP family gates are “locally equivalent” [66, 67, 62] to the iSWAP family

of gates. This means that one can construct a bSWAPθ gate by combining a single iSWAPθ

gate with single qubit gates. The specific decomposition is as follows:

ÛbSWAPθ = R̂x,a(π) ÛiSWAPθ R̂x,a(−π), (81)

in which R̂x,a(±π) represents a rotation of angle ±π along the x axis on qubit A. This local

equivalence property suggests that the bSWAP family of gates possesses the same capability

for compiling other two-qubit gates as the iSWAP family of gates. However, when the

bSWAP and iSWAP interactions are activated simultaneously in the system (by applying

two pumps at the two frequencies concurrently), we can generate gates that are intrinsically

different than the iSWAP family gates. The detailed discussion involves the use of the “Weyl

Chamber” concept and will be addressed in Sec. 5.1.1.

Discrete CZ gate for transmon qubits. While the
√
iSWAP gate is a universal

and easy-to-construct gate in parametrically controlled quantum systems, it is not the most

commonly used basis gate for most quantum algorithms. Instead, many existing quantum

algorithms are written with CNOT gates. Given the iSWAP family gates as our basis gates,

the CNOT gate can be constructed using either two
√
iSWAP gates [62] or two iSWAP

gates [63], combined with single qubit gates. However, when the qubit systems are made

with transmons (or other qubits with accessible higher energy levels), we can leverage the

35



ba

00

10

20

01

11

21

02

12

22

𝑔𝑔

𝑒𝑔

𝑓𝑔

𝑔𝑒

𝑒𝑒

𝑓𝑒

𝑔𝑓

𝑒𝑓

𝑓𝑓

𝜔𝑏 − 𝜔𝑎
𝜔𝑏 − 𝜔𝑎
𝜔𝑏 − 𝜔𝑎 − 𝛼𝑎

𝜔𝑏 − 𝜔𝑎 + 𝛼𝑏

Figure 5: Energy level structures of two harmonic oscillators and two transmons.

a) Energy level structure of two harmonic oscillators. The transitions of |10⟩ ↔ |01⟩, |20⟩ ↔

|11⟩ and |11⟩ ↔ |02⟩ all has the same frequency. b) Energy level structure of two transmon

qubits. The similar transitions now have different frequencies due to the anharmonicity of

the two qubits.

higher-energy-level parametric transitions to directly generate a CZ gate between the two

qubits [68], which is locally equivalent to the CNOT gate.

When the two modes involved in the parametric exchange interaction are harmonic oscil-

lators, the dynamic described by Eq. 55 can bring the initial state |11⟩ to state 1√
2
(|02⟩ − |20⟩)

after one beam-splitter (BS) gate, and back to − |11⟩ state after another BS gate. In the

qubit system, such transition is forbidden when pumping at frequency ωge→eg
p = ωb − ωa,

since the energy required to go from |ee⟩ to |gf⟩ state is ℏωee→gf
p = ℏ(ωb − ωa + αb), and

the energy required to go from |ee⟩ to |fg⟩ state is ℏωee→fg
p = ℏ(ωb − ωa − αa), in which

αa and αb are the anharmonicity of the two transmons, respectively, as depicted in Fig. 5.

This unique spectrum allows us to create a CZ gate between the two qubits by pumping at

either ωee→gf
p or ωee→fg

p . After a full exchange period, in the {|gg⟩ , |ge⟩ , |eg⟩ , |ee⟩} subspace

of the two-qubit system, only the |ee⟩ state will undergo the exchange interaction with the

|gf⟩ / |fg⟩ state, and will come back with a negative sign (π phase shift). Thus, we get the
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effective CZ gate operator:

ÛCZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (82)

The CZ gate can be easily converted to a CNOT gate using the decomposition:

ÛCNOT = R̂y,b(π/2) ÛCZ R̂y,b(−π/2), (83)

in which R̂y,b(±π/2) represents a rotation of angle ±π/2 along the y axis on qubit B.

2.3 Superconducting parametric couplers

The two-qubit gate discussion in Sec. 2.2.2 has been based on the 3-wave mixing processes

introduced by the third-order non-linearity of the S mode. However, as shown in the analysis

in Sec. 2.1, the same effective Hamiltonian can also be activated using different order non-

linear terms. For instance, given a 4-wave mixing term
(
ŝŝâb̂† + ŝ†ŝ†â†b̂

)
, we can apply a

pump to the S mode at ωp = (ωb−ωa)/2, or two pumps whose frequencies satisfy ωp1+ωp2 =

(ωb−ωa)/2, to activate the same effective exchange interaction as in Eq. 55. This leads us to

consider the following questions: What is the optimal non-linearity order for activating

a desired parametric process? And how can we construct such a non-linear term with

superconducting quantum circuits?

2.3.1 Four-wave mixing with single Josephson Junction devices (transmon)

In superconducting qubit devices, the most common method to introduce non-linearity

is through the use of a Josephson Junction (JJ). The potential energy of a single Josephson

Junction is related to the flux Φ across the junction via:

UJ = −EJ cos (2πΦ/Φ0) = −EJ cos(φ), (84)
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where Φ0 is the magnetic flux quantum, EJ is the Josephson energy, and φ = 2πΦ/Φ0

denotes the Josephson phase variable. After combing the JJ with a capacitor and performing

the second quantization [53, 54, 36], the phase variable can be expressed in terms of the

annihilation and creation operators:

φ =

(
2EC

EJ

) 1
4

(â† + â) = φ
ZPF

(â† + â), (85)

where EC is the captive energy, and φ
ZPF

=
(

2EC

EJ

) 1
4
is the phase zero-point-fluctuation

(ZPF). Substituting Eq.85 back into Eq.84, we obtain the Hamiltonian term:

ĤJ = −EJ cos
[
φ

ZPF
(â† + â)

]
= −EJ

∞∑
n=0

(−1)nφ2n
ZPF

(2n)!

(
â† + â

)2n
(86)

Equation 86 shows that the JJ can naturally provide all the even-order non-linear terms

to the quantum system, with the leading non-linear term being fourth order. Therefore,

a simple transmon, which is usually made of a single JJ combined with a capacitor, can

be readily used as a four-wave mixing coupler for constructing parametric two-qubit gates

in superconducting multi-mode systems [47, 48, 50]. In Sec. 4.2.4.2, I will also present an

example usage of such transmon-based four-wave mixing process for exchanging photons

between the qubit and a high-Q resonator.

2.3.2 Issues of the four-wave mixing process

While 4-wave mixing couplers are relatively straightforward to implement, they do come

with inherent issues. The two primary problems are the AC-Stark shift effects and the static

ZZ interaction between the modes in the system. Moreover, in comparison with the mini-

mal third-order non-linearity, the fourth-order non-linearity introduces a significantly larger

number of possible parametric processes, which can potentially cause frequency collisions in

parametric interactions.

The AC-Stark shift effect. Following the same derivation we did in Sec. 2.1, if

the coupler mode S in Fig.1 has a fourth-order non-linearity, then the effective system

Hamiltonian under external pump can be expressed as:

ĤI/ℏ = g4

(
ŝe−iωst + λasâe

−iωat + λbsb̂e
−iωbt + ηe−iωpt + h.c.

)4
, (87)
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where the variable and operator notations follows the same definitions as in Eq. 54. From

the expansion of this Hamiltonian, we will have the always-non-rotating terms:

ĤStark = 24g4|η|2
(
ŝ†ŝ+ λ2asâ

†â + λ2bsb̂
†b̂
)

(88)

These terms indicate that when an external pump is applied to a fourth-order non-linear

coupler, all the modes in the system will be subject to a frequency shift proportional to

the power of the external pump. Given that each parametric process is addressed by a spe-

cific pumping frequency related to the mode frequencies, such frequency shifts can greatly

complicate the tuning process of parametric gates (see Sec. 4.2.4.2 for an example experi-

ment). Moreover, it makes it hard to prevent frequency collisions in multi-mode systems,

i.e., situations where two modes or two parametric transitions coincide in frequency.

Static ZZ interaction. The expansion of Eq 87 also contains the non-rotating Kerr

terms that are not related to the external pump η:

ĤKerr = 24g4|η|2
(
λ2asŝ

†ŝâ†â + λ2bsŝ
†ŝb̂†b̂ + λ2asλ

2
bsâ

†âb̂†b̂
)

(89)

These terms resemble the form of the cross-Kerr terms used in qubit dispersive readout

and are generally referred to as static ZZ interactions between modes. The existence of

these terms means that even without the external pump (when the system is in the static

state), the change in photon number in one mode will influence the state of the other modes.

The first two components in Eq. 89 indicate that the stray photons in the coupler mode S

will decohere the two computational modes A and B, while the last indirectly introduced

cross-Kerr term between the A and B modes can cause cross-talk and spectator qubit errors

[69, 70, 71]. Although it is possible to eliminate such undesirable interactions via dynamical

methods[72, 73] or by engineering the coupler design [74, 68], it is more preferable for the

coupler mode not to rely on a strong cross-Kerr term for its operation.

Frequency crowding of parametric interactions. Except for these always-non-

rotating terms, the majority of the terms from the expansion of Eq. 87 correspond to the

possible parametric interactions that can be activated by the external pump. Using the

formalism introduced in Appendix B, we can systematically identify and list the pumping

frequencies corresponding to all these potential parametric interactions. By considering a
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set of example mode frequencies: ωa/2π = 3.5GHz, ωb/2π = 5GHz, and ωs/2π = 4GHz,

we can plot the transition frequency spectrum for all the 4-wave mixing processes, as shown

in Fig. 6a. For comparison, we also performed this calculation for the same 3-mode system

but with third-order non-linearity (i.e. the Hamiltonian in Eq. 54), and the result is shown

in Fig. 6b.
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Figure 6: Parametric transition frequency spectrum in a 3-mode system with 3rd

or 4th order non-linearity. a) The parametric transitions and their required pumping

frequencies for the three-wave mixing interactions. b) The same figure for the four-wave

mixing interactions. While the latter clearly presents a larger number of possible parametric

processes that can be activated, it also possesses a considerably denser frequency spectrum,

making it harder to prevent frequency collisions among the parametric processes.

It is worth notating that the above calculation only considers a monochromatic (single
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frequency) external pump. When multiple pumps are applied at different frequencies, the

same parametric processes listed in these figures can also be activated as long as the overall

rotating frequencies of the pumping terms match with the parametric transition frequencies.

In that case, we will not have a closed-form constraint for choosing the frequency of each

specific pump, but we must make sure that non of the pumping frequencies coincide with

the monochromatic transition frequencies listed above. The comparison between Fig. 6a and

b clearly shows that the fourth-order non-linearity enables more parametric processes that

can be activated by the external pump, but it also results in a denser spectrum. This packed

spectrum raises the possibility for two transitions to collide in frequency, which will make it

impossible to address each process individually. This effect is commonly known as “frequency

crowding” in parametrically controlled quantum systems. Note that this frequency crowding

effect is not specific to the four-wave mixing processes only. With higher-order non-linearity,

it is not hard to imagine that we will have even more parametric interactions available, with

an even denser spectrum for the pumping frequencies.

In gate-based quantum computing, it is generally not necessary to have an excessive num-

ber of available interactions. Instead, the minimal requirement is to have a set of universal

basis gates that can compile the entire quantum circuit[1]. In this context, it is preferable

to have a small set of basis gates that can be easily calibrated to high fidelity, rather than

having a dense transition frequency spectrum that makes tuning the basis gate difficult.

For this reason, we would like to use the minimal-order non-linearity that is sufficient for

performing universal two-qubit gates. As illustrated in Sec. 2.2.2, the third-order non-linear

term is more than sufficient for this job. Additionally, the third-order non-linearity does not

introduce extra AC-Stark shift effects and ZZ interactions as the fourth-order non-linearity

does. Therefore, three-wave mixing-based parametric processes can be considered preferable

to higher order mixing processes for constructing quantum gates.
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2.3.3 Three-wave-mixing with the “superconducting non-linear asymmetric in-

ductive element” (SNAIL)

The superconducting non-linear asymmetric inductive element” (SNAIL) [26, 75, 76] is

a dipole element with third-order non-linearity that can be easily built as a coupler device

for three-wave mixing parametric operations. Figure 7 shows the circuit diagram and ex-

ample pictures of a SNAIL device. Basically, the central part of the SNAIL circuit contains

a superconducting loop with M(M > 1) larger identical Josephson Junctions (JJs) with

Josephson Energy EJ , and one smaller JJ with Josephson energy βEJ on the other arm.

The Hamiltonian of the SNAIL is dependent on the external flux Φext applied to the SNAIL

loop. The total potential energy of the SNAIL can be written as:

Us(φ) = −βEJ cos(φ)−MEJ cos

(
φext − φ

M

)
, (90)

in which φ is the superconducting phase across the small junction. This superconducting

phase φ is related to the flux Φ across the junction via φ = Φ/ϕ0, where ϕ0 = Φ0

2π
= ℏ

2e
is

the reduced magnetic flux quantum. Similarly, φext = Φext/ϕ0 denotes the superconducting

phase in the SNAIL loop induced by the external magnetic flux Φext.

The mixing capability of the SNAIL device can be analyzed by performing Taylor ex-

pansion around the potential minimal point (at φ = φmin). For each given each external

applied flux, the value of φmin can be calculated numerically using:

dUs

dϕ

∣∣∣
φ=φmin

= βEJ sin(φmin) + EJ sin

(
φmin − φext

M

)
= 0 (91)

Equation 91 has a single solution when β < 1/M . To avoid hysteresis and unstable behavior,

we always design the SNAIL circuit in this regime when using it as a coupler device. The

Taylor expansion of the SNAIL potential energy around φ = φmin can be written as follows:

Us(φ) = c2φ̃
2 + c3φ̃

3 + c4φ̃
4 + . . . , (92)

in which we have defined φ̃ ≡ φ− φmin, and ci are the Taylor coefficients. Here, we list the

expressions for the coefficients up to the fifth order, which have been simplified based on the

condition in Eq. 91.
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Figure 7: Circuit diagram and SEM pictures of the SNAIL device. a) Circuit

diagram of a SNAIL device. The superconducting loop containsM large Josephson Junctions

(JJs) on one arm, and one smaller JJ one the other arm. Each large junction has Josephson

energy EJ , while the small junction has Josephson energy βEJ . The device property can be

tuned via external flux Φext. b) GDS design and SEM image of a 3-large-junction SNAIL

device made with Dolan style deposition. c) GDS design and SEM image of a 2-large-

junction SNAIL device made with Manhattan style deposition.
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The second order term in the expansion gives the inductive energy of the SNAIL. For a

linear LC oscillator, the inductive energy is given by EL = Φ2

2L
=

ϕ2
0

2L
φ2 . Therefore, we can

define the SNAIL inductance as:

L
SN

=
ϕ2
0

2c2
(94)

When being used as a coupler device, the SNAIL is usually fabricated with a large

antenna for creating coupling with other modes (see Fig. 27e for an example). This antenna

forms a capacitance C, which produces the dominant part of the captive energy component

43



in the SNAIL Hamiltonian. Therefore, the total SNAIL Hamiltonian can be written as:

Hs = 4ECN
2 + Us(φ)

= 4ECN
2 + c2φ̃

2 + c3φ̃
3 + c4φ̃

4 + . . . ,
(95)

in which EC = e2

2C
is the charging energy, N is the conjugate variable for the superconducting

phase φ̃, and corresponds to the charge number (in units of Cooper pairs 2e) across the

capacitance [26, 76]. We can then apply the second quantization by letting:

N = −i 1

2φ
ZPF

(ŝ− ŝ†)

φ̃ = φ
ZPF

(ŝ+ ŝ†),

(96)

in which

φ
ZPF

=

(
EC

c2

)1/4

=
1

ϕ0

√
ℏ
2

√
L

SN

C
(97)

The quantize SNAIL Hamiltonian can then be written as:

Ĥs = ℏωsŝ
†ŝ + Ĥs,NL

= ℏωsŝ
†ŝ +

∞∑
n=3

cnφ
n
ZPF

(ŝ+ ŝ†)n
(98)

in which the SNAIL mode frequency ωs is given by:

ωs =
1

ℏ
4
√
EC c2 =

√
L

SN
C (99)

Thus, we get the coefficient gn for the SNAIL’s nth order non-linear term:

gn =
1

ℏ
cnφ

n
ZPF

(100)

Figure 8 shows the variation of the SNAIL frequency and the nonlinear coefficients g3−g5
with respect to the external flux induced phase Φext. The example parameters used in the

plot are β = 0.25, M = 3, EJ = 9.4× 10−23 J and C = 0.4 pF.

From Fig. 8 we can see that there exist a special external flux bias point Φext = Φnull
ext

that nulls the fourth order non-linearity, i.e. g4 = 0. In fact, all the even order non-linear
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Figure 8: SNAIL mode frequency and non-linear coefficients versus external flux.

a) Example of SNAIL mode frequency versus external flux. b) Example of a SNAIL mode’s

non-linear coefficients versus external flux. There exists a special external flux Φnull
ext , under

which the even-order non-linear terms are all equal to 0 and the third order non-linearity is

close to maximum.

coefficients will be canceled at this bias point, and we get g3(ŝ + ŝ†)3 as the dominant non-

linear term. Therefore, the SNAIL can be readily made as a three-wave mixing coupler

device that can perform the parametric gates introduced in the earlier sections.

It is important to note that the calculation above only considers a single SNAIL device.

When a SNAIL is coupled with other modes, the quantized phase variable φ̃ will contain the

annihilation/creation operators of the other modes, i.e.:

φ̃ = φs,ZPF
(ŝ+ ŝ†) +

N∑
i=1

φi,ZPF
(âi + â†i ), (101)

where N represents the number of modes coupled to the SNAIL and φi,ZPF is the phase

variable’s zero point fluctuations for mode i. This expression takes the similar form as we

have seen in the multi-mode system after Bogoliubov transformation (Eq. 38). In fact, φi,ZPF

also reflects the participation of mode i’s electromagnetic field in the SNAIL mode. In the

dispersive regime, we have the relation: φi,ZPF
/φs,ZPF

≈ λis = gis/(ωi − ωs).
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In the microwave design of a SNAIL-based multi-mode system, the SNAIL is typically

treated as an inductive element with a lumped inductance LSN . The value of φi,ZPF can be

extracted using either the “Black-Box Quantization (BBQ)” method [77, 76] or the “Energy

Participation Ratio (EPR)” method [78]. Subsequently, the physical parameters of the

SNAIL device, including EJ , β and M can be incorporated to calculate the non-linear

coefficients gn, thereby allowing us to analyze the SNAIL-based parametric processes using

the methods introduced in the previous sections of this chapter.

It is also worth noting that the SNAIL Hamiltonian calculated above does not account

for the shunted linear inductance introduced by the antenna pads. When the magnitude of

this inductance is comparable to the SNAIL inductance LSN , the non-linearity of the SNAIL

can be effectively ‘diluted’ by a non-negligible amount. For a comprehensive analysis of this

effect, I kindly suggest delving into the thorough discussions presented in references [76, 79].
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3.0 Microwave Electronics for Real-time Quantum Control

The control of superconducting qubits is typically performed using external microwave

drives, represented by the ε(t) term in Eq. 4. This term corresponds to the field applied to

the quantum system and is directly related to the pulse generated by microwave electronics

operating at room temperature. Therefore, the precision with which we can control the

amplitude, phase, and frequency of these pulses directly determines the operational fidelity

of our quantum processor.

Due to the rapid growth of the microwave telecommunication industry, there have been

significant technology advancements in microwave control/characterization electronics, in-

cluding equipment such as microwave signal generators, vector-network analyzers(VNAs),

spectrum analyzers(SAs), etc. These electronics operate at frequencies that align with those

of superconducting qubits/resonators, typically ranging from around 100 MHz to 10 GHz.

Using these commercially available products, we can readily perform frequency domain char-

acterization of superconducting qubit systems.

However, when it comes to precise time domain control of quantum systems for quantum

computing, these electronics face additional requirements that are not typically encountered

in their intended applications. For instance, real-time feed-forward control is often necessary

in quantum error correction [1, 30, 80, 81]. Given the finite lifetimes of superconducting

qubits, performing these feed-forward logic at the microsecond to nanosecond level becomes

crucial. Furthermore, the parametric interactions introduced in the previous chapter impose

additional demands on the phase coherence between different drive channels, which I will

introduce in details in Sec. 3.3.

Field programmable gate arrays (FPGAs) integrated with digital-to-analog converters

(DACs) and analog-to-digital converters (ADCs) offer an excellent solution to address these

requirements. FPGAs can be programmed to execute digital logic that directly runs on the

hardware at fixed clock rates of few hundred megahertz, which enables real-time readout of

qubit states, thereby facilitating the determination and execution of qubit state-dependent,

next-step operations within the same device with precise timing. Such digital logic can
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Figure 9: Example workflow of a FPGA-based qubit control system. The measure-

ment PC communicate with the FPGA via “low-speed” interfaces, while the FPGA takes

on the task of executing real-time qubit-state-dependent algorithms by directly processing

the data from the ADC and controlling the output of the DAC.

be further expanded into a soft-core processor that enables the implementation of more

complex and customizable logic functionalities at the software level, reducing the need for

frequent reprogramming of the FPGA. Figure 9 shows the example workflow of a FPGA-

based qubit control system, the digital logic can be pre-loaded from the PC to the FPGA in

the form of assembly (ASM) instructions. Such FPGA-based arbitrary waveform generators

(AWGs) and digitizers were first custom developed in university labs for controlling qubits

systems[82, 83]. Subsequently, similar equipment has become commercially available from

companies such as Keysight, Quantum Machines, Zurich Instruments, etc.

The first generation of these systems usually contain (partially programmable) FPGAs

with relatively low sampling rate (∼ 0.5 − 1GSa/s) DACs/ADCs, that need to be com-

bined with up/down conversion circuits for qubit control/readout (see Sec. 3.2.1). Over the

past three to four years, significant firmware and software advancements have been made in

these commercial products, which greatly simplifies the execution of complex qubit control
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experiments that previously requires sophisticated FPGA/software programming [84]. How-

ever, we have also seen the trend that these commercial platforms are becoming more and

more closed-source, which makes the development of new FPGA features and debugging the

low-level errors harder for researchers in the lab.

In parallel with these quantum experiment oriented hardware developments, the major

FPGA manufacturer, Xilinx, has introduced a new line of FPGA-based Radio Frequency Sys-

tem on Chip (RFSoC) hardware starting in 2017. These boards and chips feature high perfor-

mance Xilinx FPGAs integrated with very high-sampling rate DACs/ADCs (∼ 3−10GSa/s),

which enables qubit pulse generation and readout signal demodulation with direct digital syn-

thesis (DDS). Based on this powerful hardware platform, capable new open-source firmware

+ software tools have been developed for controlling quantum systems[85, 86]. In compar-

ison to the previously introduced commercial products, these RFSoC-based control setups

offer notable advantages. The high frequency DDS feature greatly reduces the requirement

for ancillary hardware components in setting up control/measurement systems, which not

only makes it much more cost-efficient than using the up/down conversion circuits, but also

greatly simplifies the frequency and timing synchronization between different components.

Additionally, the availability of open-source firmware and software enables users to have

a comprehensive understanding of the pulse synthesis and readout signal demodulation se-

quence at a very low level, which facilitates easier debugging, as well as the simpler alteration

and development of new features.

As a PhD student who works on experimental superconducting quantum computing

during this thriving and dynamic era of quantum control systems, I have been fortunate to

be actively involved in the development of quantum experiment firmware/software stacks

for my laboratory with both types of FPGA platform. In this chapter, I will first present

the basic hardware setup for generating qubit control pulses using both ‘slow’ and ‘fast’

pulse synthesis, and digital signal processing (DSP) algorithms for qubit readout signal

demodulation. Following that, I will discuss the specific requirements of phase coherence

for charge-pumped parametric interactions, the additional demands that the integration of

phase coherence places on the microwave hardware and FPGA firmware, and finally the

strategies we have employed to meet these demands effectively with both up-converted and
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DDS pulse synthesis systems.

Despite the availability of pre-packaged hardware/software platforms that can readily

execute qubit measurements, I still believe that understanding the underlying principles of

these setups is crucial. Neglecting to fully grasp the workings of the control electronics can re-

sult in various errors in experiments, with the worst case being the propagation of misleading

or false scientific findings. Given that quantum systems are inherently elusive and challeng-

ing to debug, if we fail to effectively manage our classical system, it can cause a cascade of

complications. Therefore, my objective for this chapter is twofold: firstly, to provide an ex-

planation of how microwave electronics functions for new quantum experimentalists who are

venturing into this field, and secondly, to serve as a reference for future hardware/firmware

developers, outlining the essential features required for microwave electronics in the context

of quantum computing.

3.1 Basic concepts

3.1.1 Nyquist theorem and aliasing effect

The DAC and ADC both work with discrete-time sampling. The Nyquist sampling the-

orem states that a periodic signal must be sampled at more than twice the highest frequency

component of the signal in order to accurately preserve all of the frequency content[87, 88].

Put another way, for a DAC/ADC device with sampling rate fs, the maximum frequency

component it can accurately produce/capture without aliasing (see below text) is fs/2. The

Nyquist frequency of a discrete-time sampling device is defined as:

fNq = fs/2 (102)

When the Nyquist sampling condition is not satisfied, an effect called ‘aliasing’ will

happen. Basically, signals of different frequencies will look the same after sampling. Figure

10a shows examples of aliasing effects. When sampling with fs = 2GHz, three continuous

signals (either as desired outputs of a DAC or inputs we need to recognize with an ADC),
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with frequencies of f1 = 0.2GHz, f2 = fs − f1 = 1.8GHz and f3 = fs + f1 = 2.2GHz, are

sampled as the same digital signal (purple dots).

From this example we can see that aliasing occurs in a regular pattern based on the

sampling frequency fs. This pattern is described using ‘Nyquist Zones’ in the frequency

domain, as depicted in Fig. 10b. The nth Nyquist Zone is the frequency range spanning from

(n− 1) ∗ fNq to n ∗ fNq. Each signal in the first Nyquist Zone with frequency f1 has image

tones in the higher Nyquist zones with frequencies k ∗ fs − f1 and k ∗ fs + f1.
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Figure 10: Aliasing effect and Nyquist zones. a) Aliasing effect. When the signal

frequency f is higher than the sampling rate fs, higher frequency signals (orange and green

curves) will look the same as their images in the first Nyquist Zone (blue curve) after sampling

(purple dots). b) Nyquist Zones. The nth Nyquist Zone is the frequency range from (n −

1)fs/2 to nfs/2.

For DACs, having this aliasing effect means that the output signal we defined with the

purple dots will have image Fourier components in other Nyquist zones. For ADCs, the

consequence is that all the input signals with frequencies above fNq will be ‘folded’ down

to the first Nyquist Zone. In commercial AWG/digitizer devices, to ensure a well-defined
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output spectrum/input frequency resolution, the aliasing effects are usually removed with

built-in low-pass filters on the DAC/ADC channels (see Sec. 3.2.1). However, in the RFSoC

devices, where we have access to the bare DACs and ADCs, we can exploit the aliasing effects

intentionally to generate/demodulate signals beyond the first Nyquist Zone (see Sec. 3.2.2.1

and 3.2.2.2).

3.1.2 Frequency mixing and types of analog mixers

The process of frequency mixing simply multiplies two signals in the time domain, thereby

creating new signals at the sum and difference frequencies of the two input signals. If we

consider two input signals with amplitudes represented by A1 and A2, frequencies f1 and

f2, and phases ϕ1 and ϕ2, then the resulting output signal can be expressed using the

trigonometric identity:

Vout = Vin,1 ∗ Vin,2

= A1 cos(2πf1t+ ϕ1) ∗ A2 cos(2πf2t+ ϕ2)

=
A1A2

2
[cos(2π(f1 − f2)t+ (ϕ1 − ϕ2)) + cos(2π(f1 + f2)t+ (ϕ1 + ϕ2))]

(103)

Equation 103 shows that the output signal after the mixing process consists of two

frequency components f1 + f2 and f1 − f2, and both components inherit the amplitudes and

phases from both input signals. Using this property, we can perform frequency up/down-

conversion operations to generate signals at the desired frequencies, while still maintaining

the information carried by the input signals. The mixing process can be performed via either

digital algorithms or analog mixers. In superconducting qubit experiments, analog mixers

are commonly used due to the limited analog bandwidth available in the real-time AWG and

digitizer devices.

Regular 3-port mixer. A typical analog mixer usually has three ports, namely, the

local oscillator(LO), radio frequency(RF) and intermediate frequency(IF) ports, as shown in

Fig. 11. The LO port is usually fed by a continuous generator source with relatively higher

frequency (fL) and fixed amplitude.
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In the case of frequency up-conversion, a relatively low-frequency signal (fI) is sent to

the IF port, which generates the up-converted signals on the upper sideband (USB) with

frequency fR = fL+fI and on the lower sideband (LSB) with frequency fR = fL−fI on the

RF port, as illustrated in Fig. 11a. On the other hand, in frequency down-conversion, the

input signal (with frequency fR) is fed to the RF port, while the LO frequency is set close

to the RF frequency. As depicted in Fig. 11b, this configuration produces a down-converted

signal at frequency fI = |fR − fL| on the IF port. Typically, the other mixing product

fR + fL is either automatically eliminated as it falls outside the bandwidth of the IF port,

or can be easily removed using a low-pass filter (LPF).
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Figure 11: Frequency up-/down-conversion with a regular 3-port analog mixer.

a) Frequency up-conversion setup. A low-frequency signal (fI) is send to the IF port and

mixed with a constant LO signal (fL). Two up-converted signals at frequencies fL + fI

and fL − fI are generated at the RF port. b) Frequency down-conversion setup. A high-

frequency signal (fR) is send to the RF port and mixed with a constant LO signal (fL).

Down-converted signal at frequency |fR − fL| is generated at the IF port, while the other

mixing product at fR + fL is usually removed.

Both the up- and down-conversion operations using regular 3-port mixers have inherent

issues. On the up-conversion side, since a practical analog mixer usually has leakage from

LO to RF port, we will have three frequency components on the RF output: fL− fI , fL and

fL+fI , while only of of the three is the desired signal. Given that the up-conversion circuit is

generally used for synthesizing control pulses for our quantum devices, it is necessary to re-

move these parasitic tones, as they may inadvertently activate unwanted quantum processes

in the system [89, 90]. When the IF frequency is relatively high, the unwanted tones can be
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readily removed using analog low-pass or band-pass filters, as shown in Fig. 12a. However,

when the maximum available frequency on the IF channel is limited to a few hundred mega-

hertz (which is what most AWGs can provide), the unwanted signals will get too close to

the desired signal, which makes them much more challenging to remove with analog filters;

in this case, an In-phase/Quadrature (IQ) mixer will be needed.
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Figure 12: Removing spurious signals/noise from 3-port mixers with filters. a) In

an up-conversion circuit, the spurious signals can be removed with a band-pass filter when

the IF frequency is high enough. b) In the down-conversion circuit, the noise from the image

sideband (ni) can be removed by putting a band-pass filter on the RF input, so that the

down-converted signal only contains the noise from the original signal (ns).

The down-conversion circuit is typically used for shifting the high-frequency output sig-

nals from the quantum device to lower frequencies that fall within the bandwidth of the

ADC. Although it is typically easy to remove the other spurious signals on the IF port and

leave only fI = |fR − fL|, we face the issue that the noise from the image frequency 2fL−fR
(2fI away from the desired signal) will also be down-converted to fI and added onto our

down-converted signal, as illustrated in Fig. 12b. Assuming a white noise background, this

effect will typically decrease our readout signal-to-noise-ratio (SNR) by a factor of 2, irre-

spective of the noise temperature of the incoming signal. Similarly to the up-conversion case,

when the IF frequency fI can be relatively high (limited by the analog input bandwidth of

the digitizer/ADC), we can apply a LPF/BPF on the original signal to remove the image

noise. Alternately, if a narrowband amplifier is used so that the noise of the desired signal

is much higher than at the image frequency we can also avoid SNR degradation. However,
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when fI needs to be small, another special mixer called ‘Image Reject’ (IR) mixer is generally

needed.

In-phase/Quadrature (IQ) mixer. An In-phase/Quadrature (IQ) mixer is made by

combining two 3-port mixers, whose LOs are provided by a shared source that goes through

a 90◦ hybrid, a shown in Fig. 13a. The two IF ports are called In-phase (I) and Quadrature

(Q) ports on the packaged device. When being used as an up-converter, the I and Q ports

are usually fed with two signals that also have a 90◦ phase difference. As a result, one of the

two frequency components (fL+fI or fL−fI) from the two RF ports will have a 180◦ phase

difference, and thus gets cancelled out at the combiner. Additionally, DC offsets (V0,I/Q) can

be added onto the I and Q channels to cancel out the LO leakage. Therefore, using an IQ

mixer we can create up-converted signals with only one sideband frequency. When working

with an analog IQ mixer, the relative amplitude (IQ scale) and relative phase (skew phase)

on the IQ ports usually needs to be fine tuned to compensate for the practical IQ imbalances

inherent in the device.
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Figure 13: IQ and IR mixers. a) IQ mixer. When being used as up-converters, IQ mixers

can be tuned to cancel the unwanted sideband signal. b) IR mixer. When being used as

down converters, IR mixers can separate the USB and LSB RF inputs, thereby avoid adding

image noise on the down-converted signals.

Image reject (IR) mixer. An Image Reject (IR) mixer, as shown in Fig. 13b adds an

extra 90◦ hybrid on the I and Q ports of an IQ mixer. As a result, when being used as a

down converter, the signal coming out from each IF port, I1 and I2, will exclusively contain

the frequency component that originated from either only the upper-sideband (fR = fL+fI)
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or only the lower-sideband (fR = fL − fI) input on the RF port. Therefore, each port also

only contains the noise associated with its original sideband frequency, avoiding the SNR

degradation of three-port mixers.

IR mixers can also be used as up-converters to produce single sideband up-converted

signals. However, in a practical analog device, without the ability to fine tune the internal

IQ scale and skew phase, it is very difficult to achieve sideband suppression of greater than

15 dBc (decibels relative to the desired signal), which is not ideal for generating a clean

output spectrum for qubit control, and so 3-port mixers with large IF or IQ mixers are

preferred for this task.

3.2 Basic hardware setup for single qubit control and readout

As an illustrative example of controlling a single superconducting qubit device, we con-

sider a minimal example device that contains a fixed-frequency transmon [18] qubit with a

stripline readout resonator [91]. The configuration of this device is depicted in Figure 14.

The transmon qubit usually has a |g⟩ ↔ |e⟩ transition frequency of ∼ 3−6GHz [18],while

the resonant frequency of the readout resonator falls within the 5 − 9GHz range. To have

full control over the qubit, we need to generate microwave pulses at the qubit frequency with

arbitrary pulse shape and phase. For reading out the qubit state, we consider the conven-

tional dispersive readout scheme, which requires generating pulses at the cavity frequency,

demodulating the output signal from the cavity, and extracting the phase information car-

ried in that signal (we assume readout in reflection here, in other configurations there can

be a general state-depdendent shift in the I-Q plane).

In order to generate the microwave pulses and precisely control their frequencies, wave-

forms, phases, and timing, the central instrument used is an arbitrary waveform generator

(AWG), whose core component is a digital-analog converter(DAC). For the demodulation of

the readout signal, the signal is typically processed through an analog down-conversion cir-

cuit and/or a set of amplifiers and filters, before being routed to the analog-digital converter

(ADC). The subsequent demodulation is performed with digital signal processing (DSP)
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Figure 14: Example single qubit control and measurement setup. A transmon qubit

and a stripline readout resonator are fabricated on a sapphire chip and housed within an

aluminum tube. Qubit control is realized through a dedicated port (drawn at the bottom),

which delivers microwave pulses at the qubit frequency, typically in the range of 3− 6GHz.

Qubit readout is performed by sending a drive through the resonator port (drawn at the

top) and demodulating the changes in phase or amplitude of the reflected output signal.

The resonator frequencies are typically around 5− 9GHz.

algorithms on the FPGA. The configuration of the pulse synthesis and demodulation cir-

cuit varies according to the different sampling rates of the DACs/ADCs implemented in the

setup.

3.2.1 Low-sampling rate devices with analog up/down–conversion circuits

A typical ‘low-sampling rate’ AWG + digitizer setup usually contains DACs with sam-

pling rate of fDAC
s ∼ 1GSa/s, and ADCs with sampling rate of fADC

s ∼ 500MSa/s. As shown

in Fig. 15, both the AWG and the digitizer have built-in low-pass filters (LPFs) on the DAC

and ADC channels to eliminated aliasing effects. These LPFs usually cut at frequencies

slightly lower than the Nyquist frequencies (fNq = fs/2) of the DACs/ADCs, thereby also

determining the analog bandwidth of the AWG and the digitizer channels. For example,

an 1GSa/s AWG usually has an output bandwidth of ∼ 400MHz, meaning it can output
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signals of up to ∼ 400MHz without distortion. Similarly, a 500MSa/s usually has an analog

input bandwidth of ∼ 150MHz. These frequencies are too low to be directly used as qubit

control and readout. Thus analog up/down–conversion circuits are needed.
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Figure 15: Example up- and down-conversion circuit for single qubit control and

readout. The AWG signals are up-converted with in-phase/quadrature (IQ) mixers, whose

local oscillators (LO) are provided by high frequency signal generators. On the readout side,

the output signal from the resonator is down-converted with an image reject (IR) or a regular

3-port mixer, bringing the signal’s frequency down to within the bandwidth of the ADC.

Figure 15 shows an example up/down- conversion circuit for single qubit control and read-

out. The qubit pulse synthesis circuit includes two AWG channels, an in-phase/quadrature

(IQ) mixer, and a high-frequency signal generator. For low frequency signals, the AWG

generates pulses of desired waveform (A(t)) and phase (ϕI(t)) with a carrier frequency of

fI = 100MHz, the voltage of the AWG output signal can be written as

VI(t) = A(t) cos(2πfIt+ ϕI(t)) (104)

Thus, each channel of the AWG can produce a fully arbitrary signal within its sampling

bandwidth. However, as noted above, when we apply this signal to a 3-port mixer, we

58



inevitably produce two tones separated by 2fI and leakage from the LO port. To suppress

these tones we produce pairs of signals (using pairs of channels) to the I and Q ports of

the IQ mixer. The local oscillator (LO) of the mixer is provided by the generator, which

produces a continuous sinusoidal signal at a frequency fL = fq +100MHz, in which fq is the

qubit frequency. The mixer functions as a multiplier of the LO and I/Q signals in the time

domain, which adds/subtracts the signal frequencies in the frequency domain. By tuning

the relative amplitude and phase, and adding DC offsets on the two AWG channels, the

IQ mixer can generate signal on the radio frequency(RF) port with a single frequency that

equals to difference of the LO and I/Q frequencies, i.e.

fR = fL − fI = (fq + 100)− 100 = fq (105)

Using this circuit we can generate pulses at the qubit frequency, and control its waveform

and phase with the AWG.

The resonator drive setup has similar up-conversion circuit, with the only difference

being the I/Q pulse frequencies are 50MHz, and the LO generator is shared for up- and

down- conversion using a splitter, and has a frequency of fL = fr + 50MHz. This circuit

generates arbitrary waveform at the resonator frequency fr for qubit readout. The output

signal from the resonator is mixed with the other LO copy using an image reject(IR) mixer,

which creates down-converted signal at 50MHz without adding noises from image frequency.

This 50MHz signal is then acquired by the ADC for digital demodulation. Note that the

phase carried by the original output signal, which contains the qubit state information, is

directly transferred to the down-converted signal, thus we can extract the qubit state by

demodulating the digital signal from the ADC.

3.2.1.1 System stability discussion

The control and measurement system depicted in Fig. 15 contains several analog com-

ponents. Due to their analog nature, the parameters of these components are susceptible

to changes in environmental conditions, with temperature being the most significant factor.

The changes of these parameters, including the amplifier’s gain, the signal generator and
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AWG’s frequencies and phases, can directly affect the fidelity of quantum gates. As it is

impractical to make these analog devices stay absolutely stable over time, we need to deter-

mine an acceptable degree of stability for each parameter based on the specific requirements

of the quantum system and the desired level of fidelity.

In this section, we will conduct a detailed examination of how each parameter affects the

fidelity of qubit gates. By establishing these relationships, we can compare the typical perfor-

mance specifications of the instruments with the state-of-the-art qubit properties including

coherence time, gate and readout fidelity, to identify which parameter drift is the primary

cause of errors in the system, and prioritize efforts towards stabilizing and controlling that

specific parameter to improve overall system performance.

• Frequency drift. The frequency of the qubit pulse is controlled by the frequencies of

both the generator and the AWG. Both devices have internal phase-locked loops (PLLs)

whose references can be provided via a common reference clock. In this configuration,

the frequencies of both devices can generally be maintained to have drifts within the

range of ∼ 100Hz over days. Let us consider a typical qubit π−pulse time of 50 ns,

which corresponds to a Rabi rate of ∼ 10MHz. Assuming a qubit starts in the |g⟩ state,

then the probability of finding the qubit in |e⟩ state after a detuned continuous drive is

[92]:

P|e⟩(t) =
Ω2 sin2(

√
Ω2+δ2

2
t)

Ω2 + δ2
, (106)

where Ω is the on-resonance Rabi rate and δ is the drive detuning. Then, the probability

of finding the qubit in |e⟩ state after a detuned π−pulse is:

P|e⟩(t =
π

Ω
) =

Ω2 sin2(π
√
Ω2+δ2

2Ω
)

Ω2 + δ2
= 1−

(
δ

Ω

)2

+O

[(
δ

Ω

)4
]
. (107)

Using this formula we can estimate the qubit gate error due to an 100Hz shift on the

pulse frequency: (100/106)2 = 10−8, which is far lower than the best state-of-the-art

single qubit gate error, thus this absolute frequency drift pushing a pulse off resonance

is not a concern.
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• Phase drift. The phase of the pulse can be affected by many factors in the system, e.g.

the phase drifts of the generator and AWG, the temperature change that changes the

wave travelling time in the components, or even a wiggling cable. These changes usually

happens at a rate of few degrees per minute (in a relatively bad case).

For controlling a single qubit, the time scale we need to compare with is the coherence

time of the qubit, i.e. the classical system should at least stay as stable as the qubit (that

is, its phase should be stable for as long as the qubit can hold its state in each experiment

sequence). Assuming a 0.1 degree phase drift per second (see example in Fig. 23), the

gate error rate due to this pulse phase drift is roughly 0.1/180 ∗ π ≈ 0.0017/s, while the

gate error due to qubit decoherence is roughly 1 − e−t/T2 ≈ t/T2, where t is the time of

the pulse in a experiment sequence and T2 is the coherence time of the qubit. Thus, this

slow phase drift error will not be a major concern until the qubit coherence time reaches

1/0.0017 s ≈ 10min level.

Note that in this estimation we only consider the relative phase drift within each experi-

ment sequence, and neglected the absolute phase accumulation on the instruments. This

is valid for single qubit experiments, because the phase reference frame is always defined

by the first pulse in each sequence, and the phases of the following pulses only need to

stay coherent with the first one within the same sequence.

However, for multi-qubit experiments, the absolute phase accumulation could be different

on different drive channels, thereby causing the relative phase between different drive

channels to vary at the beginning of each experiment. This relative phase between

different channels actually determines the phase of parametrically pumped multi-qubit

gates. Therefore, this relative phase change will lead to the tedious requirement of

frequent re-calibration. The details of this effect and strategies for mitigating it will be

discussed in section 3.3.

• Amplitude drift. The amplitude of the synthesized pulse is mainly determined by

three factors:

Vout = VI ∗
√
Lc ∗GA, (108)

in which the VI is the output voltage from the AWG, Lc is the I − R power conversion

loss on the mixer, and GA is the power gain of the amplifier. Note that the power of the
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signal generator is not considered here, as a typical mixer is first-order insensitive to a

change in LO power provided it is within the mixer’s operating range. Among these three

factors, the most vulnerable to environmental condition change one is the gain of the

amplifier. For example, for a Mini-Circuits ZVE-3W-83+ amplifier that we commonly

use on qubit drive channels, we observed a ∼ 2% of change in gain when the temperature

changes by 1◦C, as shown in Fig. 16a,b [56].
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Figure 16: Amplitude drift of up-converted signal and temperature stabilization

setup. a) Amplitude stability vs temperature before (grey circles and stars) and after sta-

bilization (blue circles and red stars). b) Amplitude stability over time without stabilization

(grey trace) and with stabilization (blue trace). (c) The up-conversion circuit is enclosed in

a optical box (upper yellow dashed box), whose external walls are wrapped with Styrofoam

for thermal isolation from the lab environment . A PID-controlled commercial liquid cooling

head is mounted on the bottom plate of the box, and the cooing power is regulated by the

speed of the fan attached to the cooler’s heat sink (lower yellow dashed box).

The amplitude of a single qubit pulse determines the rotation angle of the qubit on

the Bloch sphere, i.e. the Rabi rate Ω in Eq. 106 is directly proportional to the drive

voltage. Thus, the gate fidelity of an on-resonance but slightly wrong amplitude π−pulse

can be estimated using Eq. 106, by setting δ = 0 and put in a new Rabi rate Ω′:

P|e⟩(t =
π

Ω
) = sin2(

π

2

Ω′

Ω
) = sin2(

π

2

V ′

V0
) = 1− π2

4

(
δV
V0

)2

+O

[(
δV
V0

)4
]
, (109)
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in which V0 is the correct pulse voltage, V
′ is the drifted voltage, and δV = V ′−V0. From

this equation we can see that the single qubit gate error is directly proportional to the

power (voltage squared) drift of the pulse with a factor of π2

4
∗ 2 ≈ 5, which means that

1% of gain change on the amplifier (caused by 1◦C temperature change) will decrease the

gate fidelity by ∼ 5%. Thus, the room air conditioner and airflow, and their associated

amplitude drift, can be quite fatal to good qubit controls.

To solve this issue, we must stabilize the temperature of the control circuit. Fig. 16c

shows a temperature stabilization box built by Boris Mesits from our lab[56]. This box

encloses all the electronics involved in Fig. 15 except for the AWG and digitizer parts.

The internal temperature is controlled via a cooling head attached to the outer bottom

plate of the box, and the cooling power is regulated by a PID loop running on a Raspberry

Pi. Using this setup, we were able to stabilized the overall output voltage drift to within

0.1% range.

3.2.2 High-sampling rate devices with direct digital synthesis (DDS)

The Xilinx RFSoC boards provide DAC and ADC channels with much higher sampling

rate. For example, the ZCU-216 board provides maximum DAC sampling rate of 9.85GSa/s

and ADC sampling rate of 2.5GSa/s. This allows us to use direct digital synthesis (DDS)

to generate the high frequency qubit and cavity drive signals without using up conversion

circuits (see Sec. 3.2.2.1). For signal demodulation and digitization, there are two options

for processing the signal before sending it to the ADC. One approach is to down-convert

the signal to fall within the first Nyquist zone of the ADC using a regular 3-port mixer,

as shown in Fig. 17a. Alternatively, if the signal’s frequency is within the ADC’s analog

input bandwidth, it can pass through a band-pass filter and be sent directly to the ADC for

“aliasing readout”, as shown in Fig. 17b. Further details on this technique will be discussed

in Sec. 3.2.2.2.
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Figure 17: Example circuits for single qubit control and readout using high-

sampling rate DACs and ADCs. The qubit drive pulses generally have relatively lower

frequencies (≲ 6 GHz), which can be produced using Direct Digital Synthesis (DDS). The

resonator drive can either be also produced with DDS when the resonator frequency falls

within the analog bandwidth of the DAC, as in b) , or, be synthesized with a up-convertion

circuit, as in a) . The LO for the up-conversion can be provided either by an external gen-

erator or another DAC channel. The same idea applies to the ADC readout side. Note that

the circuit in a) and b) can be mixed and matched, i.e. we can use DDS the for resonator

drive but still use another DAC output only as the LO for the output signal down-conversion

for the ADC readout.
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3.2.2.1 Pulse synthesis in different DAC Nyquist zones

Figure 10a shows how a continuous signal is digitally sampled to discrete-time points.

On the output of the DAC, these discrete points need to be converted to continuous analog

signals, the conventional technique that DACs use is Zero-Order Hold (ZOH), in which

the analog output simply holds the amplitude of samples between clock ticks, as shown in

Fig. 18a.

Due to the difference between the ideal smooth signal and the staircase-like signal defined

by ZOH, the output signal from the DAC will have frequency components in higher Nyquist

Zones, as shown in in Fig. 18b. Also, the Fourier amplitude of the signal in the first Nyquist

Zone will not be flat. In fact, the overall envelop of the signal amplitude versus frequency

can be described by a sinc function [88, 87]:

AZOH(f) =
sin(πf/fs)

πf/fs
= sinc(f/fs) (110)

In the ZOH mode, the amplitudes of the image tones drop quickly in the 2nd and higher

Nyquist Zones. Thus, conventional AWGs usually have built-in LPFs on the DAC channels

that cut at around fs/2. This LPF ensures a clean output spectrum, but also limits the

output bandwidth of AWG.

To fully exploit the aliasing effect and get stronger signals from the 2nd Nyquist Zone,

some DACs can be configured to work in the “Return to Complement” (RTC), or “Mixed”

mode. In this mode, the DAC holds the sampled digital value during the first half of each

clock period, and change to the inverse (complement) value on the second half of the clock

period, as shown in Fig. 18c. The frequency spectrum of this operation mode is shown

Fig. 18d, with the amplitude now described by:

ARTC(f) =
sin2(πf/2fs)

πf/2fs
(111)

Under this mode, the DAC output spectrum now has a much stronger and flatter Fourier

amplitude in the 2nd Nyquist Zone. Combining the Mixed mode with band-pass filters

(BPFs) that cut off at fs/2 and fs allows us to generate clean, strong signals in the second

Nyquist Zone of the DAC.
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Figure 18: ZOH and Mixed operation modes of the DAC. a) DAC output voltage in

the Zero-Order Hold (ZOH) mode. The voltage is held constant at the sampling point value

over the sampling period. b) Frequency spectrum of the DAC output in the ZOH mode.

The vertical lines of the same color corresponds to the Fourier amplitudes of the same signal

in different Nyquist Zones, while different colors corresponds to different signals. The overall

envelop of the spectrum has the shape of a ‘sinc’ function. c) DAC output voltage in the

Mixed (or Return To Complement) mode. The voltage is held at the sampled value for the

first half of each sampling period and changed to the inverse (complement) value for the

second half of the sampling period. d) Frequency spectrum of the DAC output in the Mixed

mode. The Fourier components in the 2nd Nyquist Zone have a much higher amplitude then

in the ZOH mode, and is flatter versus different frequency.

The Xilinx RFSoC boards offer the capability to change the DAC operation mode be-

tween ZOH and Mixed via software APIs, and the DAC channels on these boards do not

have built-in filters. This setup provide us with significant flexibility in choosing the output
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spectrum based on our desired frequencies. As illustrated in Fig. 17, for instance, assuming a

DAC sampling rate of fs = 9.85GHz, when the qubit frequency is below 4.5GHz, we can set

the DAC to ZOH mode and use a LPF that cuts at around 4.9GHz to generate qubit drive

pulses with a clean spectrum; or when the qubit frequency is above ∼ 5.5GHz, the DAC can

be set to Mixed mode and combined with a BPF to generate the desired signal. Note that

the sampling rate of the DAC can also be changed by re-programming the FPGA firmware.

Therefore, when the mode frequency falls in the proximity of fs/2 = 4.9GHz, resulting in

image tones that are challenging to filter, we can re-program the FPGA to move down fs,

thereby moving the image frequencies further away from the desired signal and make them

easier to filter.

To operate at even higher Nyquist Zones, additional DAC operation modes are theo-

retically available. However, their practical application is often constrained by the analog

bandwidth limitations of the DACs. Therefore, for generating signals above the DAC sam-

pling rate, such as a high-frequency resonator drive or parametric pump tone, up-conversion

is still required. An example circuit is shown in Fig. 17a on the resonator drive line. It

is worth noting that, in comparison to the scheme shown in Figure 15, the IQ mixers can

be replaced with regular 3-port mixers in this scenario. This is because the intermediate

frequency (IF) signals from the DAC can now be much higher, which makes it more practical

to remove the image tones using filters. Additionally, the LO for the mixers can be provided

using combinations of extra high frequency DAC channels with amplifiers, which enables

easier phase locking than using an external signal generator.

3.2.2.2 Aliasing readout in higher ADC Nyquist zones

The aliasing effect in an ADC can be understood as a down-conversion mixing process.

As shown in Figure 10, after ADC sampling, signals from higher Nyquist Zones (orange and

green curves) will appear identical to how their images in the first Nyquist Zone (the blue

curve) was sampled (the purple dots). This frequency folding effect is typically considered

undesirable when our goal is to differentiate signals of different frequencies. However, in the

qubit readout process, we know exactly the frequency of our signal - the readout resonator
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frequency, and all the information we need is encoded in the phase and/or amplitude of that

signal. Note that in a down-conversion process, the phase and amplitude of the input signal

will be directly transferred to the down-converted signal. Thus, we can leverage this aliasing

effect to perform qubit readout with resonator output signals at frequencies much higher

than the Nyquist frequency of the ADC.

Implementing this aliasing readout technique in firmware or software is delightfully

straightforward. All we need to do is to perform the digital demodulation with a refer-

ence frequency that equals to the input signal’s image frequency in the first Nyquist Zone.

For a input signal with frequency f , this image frequency can be found by first identifying

the Nyquist Zone in which the signal falls using:

n =

⌈
f/
fs
2

⌉
, (112)

then the image frequency in the first Nyquist Zone can be calculated with:

fi =


n
2
fs − f, if n is even

−n−1
2
fs + f, if n is odd

(113)

Note that when the Nyquist Zone number n is even , the down-converted signal is actually

at −fi. Thus the phase we extract from demodulation will actually be flipped (conjugated).

Practical limitations. The practical limitation of the highest frequency signal we can

capture using this technique is determined by the analog input bandwidth of the ADC. In

section 3.2.1 I mentioned that a conventional digitizer device usually has an input bandwidth

slightly smaller than the Nyquist frequency (fs/2) of the ADC, due to the presence of the

built-in LPF. However, it is important to differentiate between the LPF-limited bandwidth

of a digitizer and the actual analog input bandwidth of a bare ADC, which, in certain

cases, can actually be few times higher than the sampling rate fs. For example, the Xilinx

ZU49DR Zynq RFSoC used on the ZCU216 board has maximum ADC sampling rate of

fs = 2.5GHz, while its analog input bandwidth is 6GHz, meaning that we can use the

aliasing readout technique to demodulate signals of up to ∼ 6GHz without significant signal

degradation. Here, the analog input bandwidth is defined as: when the input amplitude

response drops 3 dB relative to a low-frequency reference point of 100 MHz. This analog
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input bandwidth limitation exists because practical ADCs do not operate as instantaneous

samplers. Instead, they employ a “sample-and-hold” circuitry that effectively captures the

averaged input voltage over a very short period of time. Thus, when the input frequency

gets too high, the ADC will not be able to capture enough voltage from the input signal.

Interestingly, when a signal is well-filtered and its frequency is close to the ADC’s analog

input bandwidth, the signal-to-noise ratio (SNR) may not necessarily degrade significantly

even if the signal amplitude is attenuated. This is because both the signal and the noise are

attenuated by the same factor, and the input noise temperature is generally much higher than

the noise introduced by the ADC itself. However, when the signal frequency is significantly

higher than the analog bandwidth that the signal got suppressed to a level comparable to

the ADC added noise, down conversion circuit will be needed again to bring the signal back

within the ADC’s effective range.

Filtering considerations. Another catch of this aliasing readout technique is that we

must carefully filter out the noise at the image frequencies. As illustrated in Fig. 19a, the

aliasing effect will also fold the noise from other Nyquist Zones to the first Nyquist Zone

and add them on top of our down-converted signal. Thus, to avoid decreasing the signal-to-

noise-ratio(SNR) of our qubit measurement, we need to remove these images using an analog

band-pass filter(BPF) before sending the signal to the ADC. The original signal needs to

stay within the pass-band of the filter, while all the image frequency components in other

Nyquist Zones must be filtered out, as shown in Fig. 19b.

An exception to this behavior occurs when a narrow-band low-noise amplifier, such as

a Josephson parametric amplifier (JPA) [93, 23], is used on the output line. In this case,

in stead of having a white noise spectrum as depicted in yellow in Fig. 19, the noise at the

signal frequency becomes significantly higher compared to the noise at other frequencies. As

a result, extra filtering for removing the image noise is no longer necessary.

3.2.2.3 System stability discussion

The analog devices used in Fig. 17a are similar to the ones used in Fig. 15. Thus the

device parameters are susceptible to the same environmental condition changes and internal
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Figure 19: Effect of added noise from other Nyquist Zones in ADC aliasing read-

out. Here we assume a white noise background colored in yellow, and a desired signal in the

3rd Nyquist Zone (blue bar). a) The image noise from other Nyquist Zones is added onto

the down-converted signal degrading its SNR provided these zones are within the analog

bandwidth of the digitizer. b) These images can be effectively removed with an appropriate

band-pass filter.

drifts. However, in comparison to the up-conversion pulse synthesis scheme, we do have

an important additional advantage: the ability to maintain a highly stable relative phase

between different drive channels and the digital demodulation reference. This advantage

stems from the utilization of high-frequency DDS (direct digital synthesis) technique, which

enables us to digitally define all microwave signals on the same board. As a result, we can

easily reset the phase of each signal during any given clock cycle. This relative phase stability

is essential for parametrically pumped multi-qubit gates, which will be discussed in the next

section and later in sec 5.2.6. Furthermore, not having to worry about synchronizing the
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phase between different microwave sources significantly simplifies the experimental setup.

3.3 Phase coherent pulse generation for parametric quantum control

3.3.1 Formalism for analyzing drive added phase

Before we start the discussion on how the phase of each drive channel affect the state of

a quantum system, let us first establish a consensus regarding how the phase of each drive

channel itself evolves throughout an experiment.

Premise: As described in Eq. 114, the phase of each drive channel has three components.

At the beginning of each experiment, each drive channel ‘x’ has an initial phase Φx, that

may or may not be predictable/controllable. Next, over the course of the experiment, the

drive channel’s phase will have a continuously evolving component ϕx,c(t) = 2πfxt, where

fx is the drive frequency, and t is time relative to the start of the experiment. Additionally,

for each specific pulse (i) in the sequence, an extra phase, ϕx,i can be added on top of this

continuously evolving phase. This extra phase ϕx,i is fully controllable via the AWG or DAC.

Therefore: the phase of pulse i at time ti can be written as:

ϕx(ti) = 2πfxti + Φx + ϕx,i (114)

Here, to facilitate our later discussion, we refer to each drive channel ‘x’ based on its asso-

ciated frequency fx, instead of the physical hardware that generates the pulses. Therefore,

the frequency of each channel can be considered as a predetermined, constant value1.

The above premise is generally true for both up-converted and direct digital synthesised

drive channels. Next, to examine the effect of drive added phase, it is helpful to consider the

pulse induced Hamiltonian in the interaction picture, as this picture removes the system’s

“free evolution” under the qubit’s static Hamiltonian and allows us to focus on the effect of

the external drive.

Moving to the interaction picture is basically equivalent to performing a rotating frame

transformation at the static mode frequencies in the system. For example, for a single

1In practice, fx is susceptible to slow drift, and the impact of this drift will be discussed in section 3.3.2
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qubit under an external drive that is applied at time ti, the original (Schrödinger picture)

Hamiltonian can be written as:

Ĥqdrive,S/ℏ =
ωq

2
σ̂z + ε

(
σ̂−e

i(ωd(t−ti)+ϕd(ti) + σ̂+e
−i(ωd(t−ti)+ϕd(ti)

)
, (115)

in which ωq is the angular frequency of the qubit’s |g⟩ ↔ |e⟩ transition, ε is the effective

drive strength, ωd = 2πfd is the angular frequency of the drive, and ϕd(ti) is the phase of the

drive applied at time ti, which follows the form specified in Eq. 114. The Pauli-Z operator

is represented as σ̂z, while the lowering and raising operators are denoted as σ̂− and σ̂+

respectively. After the rotating frame transformation at frequency ωq, the operators will be

transferred as:

σ̂− → σ̂−e
−iωqt; σ̂+ → σ̂+e

iωqt, (116)

and the qubit’s static Hamiltonian term ωq

2
σ̂z will be removed. Assuming the drive is applied

on-resonance with the qubit frequency, i.e. ωd = ωq, then the Hamiltonian in the interaction

picture can be written as:

Ĥqdrive,I/ℏ = ε
(
σ̂−e

i(−ωdti+ϕd(ti) + σ̂+e
−i(−ωdti+ϕd(ti)

)
= ε

(
σ̂−e

i(Φd+ϕd,i) + σ̂+e
−i(Φd+ϕd,i)

) (117)

Equation 117 shows that, in the interaction picture, the continuous evolving phase in the

drive signal is eliminated. As a result, our attention can be directed towards the impact of

the two phase offset components, namely Φd and ϕd,i. Based on Eq. 117 we can write down

the gate operator for a single qubit on-resonance drive applied for duration τ :

Ûqdrive,I(τ) = exp

(
−iĤqdrive,I

ℏ
τ

)
=

 cos(ετ) −i sin(ετ)e−i(Φd+ϕd,i)

−i sin(ετ)ei(Φd+ϕd,i) cos(ετ)

 (118)

According to the discussion we had in Sec. 3.2.1.1, in each pulse sequence, the phase

drift of the drive channel is negligible, as each pulse sequence is generally much shorter than

the timescale on which phase drift typically occurs. Thus, although the value of Φd may

be different for each experiment run, we can assume it is a constant over the course of one
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experiment. This allows us to perform another unitary transformation that removes the

constant phase offset in the gate operator.

ÛΦshift
(Φ) =

1 0

0 e−iΦ

 (119)

By applying this phase shift transformation with Φ = Φd, we have the final effective operator

for a single qubit on-resonance drive, with amplitude ε, duration τ and phase ϕd,i.

Û eff
qdrive,I(τ) = ÛΦoff

(Φd)Ûqdrive,I(τ)Û
†
Φoff

(Φd)

=

 cos(ετ) −i sin(ετ)e−i(ϕd,i)

−i sin(ετ)ei(ϕd,i) cos(ετ)

 (120)

Equation 120 shows that, in a single qubit experiment, the initial phase of the drive

channel has no observable impact on the applied gate. As a result, when considering each

individual single qubit gate within the pulse sequence, we can simplify our analysis by

assuming that the gate’s phase is solely determined by the phase we introduce using the

DAC, denoted as ϕd,i. In this case, control over the initial phase of the drive channel, Φd, is

not necessary.

However, this behavior will change for multi-qubit parametric gates. In the subse-

quent analysis, we will extend our interaction picture Hamiltonian analysis to parametrically

pumped two-qubit gates, and will specifically investigate the impact of the initial phase of

each drive channel on the quantum system’s state. To guide our analysis, we will follow the

steps outlined below:

1. In the interaction picture, write down the effective system Hamiltonian under each

drive signal, with the phase of the drive included. Derive the phase-dependent gate

operator induced by each pulse.

2. Sequentially apply the gate operators in the pulse sequence to the initial qubit state

vector to obtain the final qubit state vector.

3. Examine how the initial phase Φx of each channel affects the final state.

4. Analyze the source of the Φx. For instance, in an up-converted control circuit, the

phase could be the sum of the LO and IF phase components, Φx = ΦL
x + ΦI

x. Examine

how effectively we can control/stabilize the phase contributed by each part.
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3.3.2 Phase coherent requirements for parametric multi-qubit gates

As an illustrative example, let us consider a 3-wave-mixing iSWAP gate between two

qubits A and B. In the interaction picture of this two-qubit system, the Hamiltonian that

activates the iSWAP interaction can be written as (see details in Sec. 2.1).

ĤiSWAP,I/ℏ = g
(
σ̂a,+σ̂b,−e

iϕp + σ̂a,−σ̂b,+e
−iϕp

)
, (121)

in which g is the effective exchange interaction coefficient, and ϕp is the phase of the pump

signal. The lowering and raising operators of qubit A/B are denoted as σ̂a/b,− and σ̂a/b,+,

respectively.

In a charged-pumped 3-wave-mixing process, the pump signal is typically applied at a

frequency ωp = 2πfp = ωb−ωa+ δ (assuming ωb > ωa), where ωa and ωb represent the static

angular frequencies of qubits A and B, respectively, and δ denotes the pump detuning. The

pump detuning δ is typically necessary for compensating for the AC-Stark shift effect that

arises during the parametric pump process [36, 52]. In Equation 121, the δ detuning does not

appear explicitly in the exponent as iδt, because we have transformed to a new frame that

rotates at the Stark-shifted frequencies of qubits A and B when the pulse is active. However,

the pump phase in this Hamiltonian, denoted as ϕp, does depend on the timing of the pulse

application within the experiment sequence. This is because, before the pulse is turned on,

the pump channel has been accumulating the continuously involving phase ϕp,c = ωpti, but

the interaction picture transformation that we applied before this pulse is turned on only

subtracts the phase (ωb − ωa)ti from it. Hence, the pump phase ϕp for a pulse applied at

time ti should be written as:

ϕp(ti) = ωpt+ Φp + ϕp,i − (ωb − ωa)t

= δti + Φp + ϕp,i

(122)
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Using the Hamiltonian in Eq.121, we can derive the gate operator for a full iSWAP op-

eration in the interaction picture of the two qubit system:

ÛiSWAP,I(ti) = exp

(
−iĤiSWAP,I

ℏ
π

2g

)
=


1 0 0 0

0 0 −ie−i(δti+Φp+ϕp,i) 0

0 −iei(δti+Φp+ϕp,i) 0 0

0 0 0 1

 (123)

Here we neglected the phase accumulated during the pump, as it is a constant value that can

be calibrated and fixed via single qubit virtual-Z gates [94, 95, 56]. Also, since δ and ti are

both predetermined constant values, the δti phase component can also be compensated via

virtual-Z gates after the iSWAP gate. Therefore, the only remaining potentially uncontrol-

lable phase in the iSWAP gate operator is the pump’s initial phase Φp. Our question is: does

the initial phase Φp matter, or is it essentially ‘invisible’ like in the one-qubit experiment

case discussed in the previous section?

To answer this question, let us try to follow a similar analysis to the single qubit case.

Since a typical multi-qubit experiment generally involves both single qubit control pulses

and two qubit control pulses, we can first remove the initial phase components for the single

qubit drive channels by applying the transformation:

ÛΦshift
(Φa,Φb) = ÛΦshift

(Φa)⊗ ÛΦshift
(Φb)

=


0 0 0 0

0 e−iΦb 0 0

0 0 e−iΦa 0

0 0 0 e−i(Φb+Φb)


(124)

After this transformation, the iSWAP operator becomes:

Û eff
iSWAP,I(ti) = ÛΦshift

(Φa,Φb)ÛiSWAP,I(ti)Û
†
Φshift

(Φa,Φb)

=


1 0 0 0

0 0 −ie−i(δti+Φ′
p+ϕp,i) 0

0 −iei(δti+Φ′
p+ϕp,i) 0 0

0 0 0 1

 ,
(125)
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in which Φ′
p = Φp−(Φb−Φa). Equation 125 shows that, although the phase shift transforma-

tion can eliminate the initial phase components in the single qubit drive pulses, it effectively

transfers these qubit drive channels’ initial phases to the pump channel. In fact, there is

no transformation that can completely remove all initial phase components in both the two

single qubit drive channels and the parametric pump channel simultaneously. Therefore, in

a two qubit experiment, to guarantee that the applied pulses always correspond to the same

gate operators in different experiment runs, we must ensure that the this effective initial

phase Φ′
p remains constant (or be predictable) for each experiment run, i.e.:

(Φp − (Φb − Φa))|t=Tn = const (126)

in which Tn is the starting time of the nth experiment run.

Equation 126 describes the general phase coherence requirement for two-qubit iSWAP fam-

ily gates, and provides the answer to our question: It is the effective initial phase Φ′
p =

Φp − (Φb − Φa) that determines how the observable will be affected. When Φ′
p is not con-

trollable or predictable, different experiment runs will create qubit final states with different

phases. As a result, after repeating the same DAC pulse sequence numerous times and tak-

ing the averaged result, the phase information of the final state will be averaged out and the

system will appear to be completely decohered. As an illustrative example of this effect, let’s

consider a simple experiment sequence that involves all three drive channels in a two-qubit

system, as depicted in Fig.20.

The pulse sequence starts from both qubits in their |g⟩ states. First, a π/2−pulse is

applied on qubit A, then, a full iSWAP gate is applied between the two qubits. After that,

another π/2−pulse is applied on qubit B, and finally the qubit B is measured along the Z

axis. In this simple pulse sequence, we assume the controllable parts of each pulse’s phase

ϕa,i, ϕp,i and ϕb,i have been tuned such that the only phase components left are the initial
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|𝑔⟩ 
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𝑖SWAP 

QA

QB

Pump

Figure 20: Example two-qubit pulse sequence with iSWAP gate. The qubit QA is

first prepared to the |−y⟩ state using a π/2−pulse along the x direction, then an iSWAP

gate is performed between the two qubits. Finally, the qubit QB is measured along the y

direction by applying a π/2 rotation around the x axis followed by a measurement in the z

direction.

phase parts: Φa, Φb and Φp. So we have the overall operator of the pulse sequence.

Û eff
tot = (I⊗ Û eff

π/2,B) Û
eff
iSWAP (Û eff

π/2,A ⊗ I)

=


1√
2

−i√
2

0 0

−i√
2

1√
2

0 0

0 0 1√
2

−i√
2

0 0 −i√
2

1√
2




1 0 0 0

0 0 −ie−iΦ′
p 0

0 −ieiΦ′
p 0 0

0 0 0 1




1√
2

0 −i√
2

0

0 1√
2

0 −i√
2

−i√
2

0 1√
2

0

0 −i√
2

0 1√
2



=
1

2


1 + ie−iΦ′

p 0 −i− e−iΦ′
p 0

−i− e−iΦ′
p 0 −1− ie−iΦ′

p 0

0 −1− ieiΦ
′
p 0 −i− eiΦ

′
p

0 −i− eiΦ
′
p 0 1 + ieiΦ

′
p

 ,

(127)

which gives us the final state of the two-qubit system:

|ψ⟩f = Û eff
tot |g⟩ ⊗ |g⟩ = 1

2


1 + ie−iΦ′

p

−i− e−iΦ′
p

0

0

 , (128)
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and the final Z measurement result on qubit B will result:

⟨z⟩B = ⟨ψ| I⊗ σz |ψ⟩f = sin
(
Φ′

p

)
= sin(Φp − (Φb − Φa)) (129)

Therefore, the final result we measured will depend on the effective initial phase Φ′
p. If

Φ′
p undergoes unpredictable changes at the beginning each experiment run, the averaged

result after numerous experiment repetitions will converge towards zero. To ensure that

we can obtain a valid averaged result, we must either: a) maintain a constant value for Φ′
p

across different experiment runs, or b) be able to predict the value of Φ′
p for each experiment

run so that we can adjust the controllable parts of the pulse phases (ϕa,i, ϕb,i and ϕp,i) to

compensate for that change. Next, I will discuss how these approaches can be realized using

the up-converted and DDS pulse synthesis circuits.

3.3.3 Realizing phase coherence with up-converted signal

Figure 21a shows a general up-conversion pulse synthesis setup for generating control

signals for a two-qubit system. The two qubit drives and the parametric pump channels

each has a dedicated up-conversion circuit for generating the control pulses. Some of the

filter and amplifier components are omitted here.

For a signal generated with up-converted circuit, the initial Φx phase of a drive channel

‘x’ is contributed by two components:

Φx = ΦI
x + ΦL

x , (130)

in which ΦI
x is the phase contributed by the IF channel(s) of the up-conversion circuit, which

is fully controllable by the DAC, while ΦL
x comes from the LO channel, which is usually fed

by a continuous signal generator. Therefore, the core part of the uncontrollable phase comes

from the signal generators of each up-conversion circuit. At the beginning time of the nth

experiment run, t = Tn, the phase of the generator channel ‘x’ can be written as:

ΦL
x =

∫ Tn

−∞
2πfL

x dt (131)
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Figure 21: Two-qubit control pulse generation with up-conversion circuits. a) Each

drive channel uses a dedicated set of signal generator, mixer and DAC. b) The Local Oscil-

lator (LO) for the pump channel is provided by the mix product derived from the copies of

the two qubits’ generators. This configuration guarantees that fL
p − fL

b + fL
a = 0, even when

fL
b and fL

a are subject to random drifts.

Thus, the phase coherence condition in Eq. 126 can be re-written as:∫ Tn

−∞
2π(fL

p − fL
b + fL

a )dt = const (132)

When the timing of each repetition of the experiment sequence is controlled by the

FPGA, the value of each Tn is a well-defined value. In this case, the change of the effective

initial phase Φ′
p for each experiment run is actually predictable, so we can compensate for

this phase change by adjusting the DAC-controlled phase components. However, adopting

this approach significantly complicates the process of pulse programming. Moreover, it

will not work when the experiment repetition is controlled by software, or when the signal

generators are subject to frequency drifts over time. Therefore, this approach is not generally

79



implemented. In fact, a much simpler solution would be to choose the LO channel frequencies

such that

fL
p − fL

b + fL
a = 0, (133)

so that the phase accumulations due to the continuous evolving generators are completely

removed. Note that these frequencies also need to satisfy the condition
fL
p + f I

p = fb − fa + δ

fL
a + f I

a = fa

fL
b + f I

b = fb

, (134)

in which fb, fa, and δ are determined by the physical system and the specific gate speed

required (as δ is typically proportional to the pump power). Given that the DACs usually

have analog bandwidths of at least few hundred megahertz, it is actually not hard to find

fL
x and f I

x combinations that satisfy both Eq. 133 and Eq. 134.

The actual challenge of implementing this approach is to ensure that Eq. 133 is always

satisfied, even when the LO channels experience slow frequency drifts. These frequency drifts

will also break the condition in Eq. 134. However, this corresponds to driving the quantum

process slightly off-resonance, and the resulting error is typically considered negligible (see

discussion in Sec. 3.2.1.1). In contrast, when the condition in Eq. 133 is not satisfied, it

will result in untraceable accumulation of the initial phase on each experiment run, which

makes long-term averaging of the same experiment difficult and necessitates tedious frequent

re-calibration of the pulse phases.

One way to solve this problem is to build the up-conversion circuit as in Fig. 21b. Instead

of using a separate generator to provide the LO for the pump signal, we use another analog

mixer that mixes the copies of the two qubit drive channels’ LO frequencies. This mixing

process creates a down-converted frequency that always equals to fb − fa, In this case, even

if fL
a and fL

b are still subject to frequency drifts, the condition in Eq. 133 is guaranteed to

be satisfied (assuming no mixer induced phase drift).

The circuit in Fig. 21b is basically sufficient for generating stable, phase coherent control

signals for a two-qubit system. However, for a larger-scale system with n qubits, this setup

is not quite practical, as we will need to mix the LO signals of the qubit drive channels
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for
(
n
2

)
= n(n − 1)/2 times, which greatly increases the number of microwave components

required and complicates the experiment setup.

3.3.4 Realizing phase coherence with DDS signal

The direct-digital-synthesis pulse generation circuit offers a much more straightforward

approach to fulfill the phase coherence requirement expressed in Eq. 126. As shown in

Fig. 22, here, the phase of each drive channel is completely controlled by the DAC, so we

have full control over each channel’s initial phase Φx with precise timing. To maintain phase

coherence between different experiment runs, all we have to do is to reset the phase of

all the drive channels simultaneously at the beginning of each experiment. Although the

absolute frequency of each channel can still drift over time, their relative phase will always

stay locked, which makes long-term relative phase stability easily realizable without frequent

phase re-calibration.

QA DriveDAC QA

𝑓𝑎 

DAC Pump Pump
𝑓𝑝  

QB DriveDAC QB

𝑓𝑏  

Phase reset
FPGA

Figure 22: Two-qubit control pulse generation with direct digital synthesis. Some

filters and amplifiers are omitted here. The qubit control pulses and the pump signal can be

generated with direct digital synthesis (DDS) via the DAC. The DACs are controlled by the

central FPGA, which can trigger the phase reset of all DAC channels simultaneously with

well-defined timing.

The successful implementation of this technique resides in the FPGA firmware layer.

The central soft-core processor must be able to send the phase-reset triggers to all the DAC

channels simultaneously, while avoiding any jitter that might result in a potentially varying

phase offset after each phase reset.
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Figure 23 shows an example comparison of the relative phase stability measured using

two different setups. In Fig. 23a, two signal generators are mixed to generate a 50MHz

signal, which is then sent to the digitizer for extracting the relative phase between the two

generators. All three devices are locked to the same external Rubidium clock. In Fig. 23b’s

setup, two DAC channels on a RFSoC board are mixed, and the resultant signal is sent to an

ADC on the same board to extract the phase information. The relative phase drift between

the two signal channels is monitored for an hour and plotted in Fig. 23c,d.
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Figure 23: Relative phase stability measurement with two different setups.

a) Setup for measuring the relative phase stability between two signal generators using

a ADC that is locked to the same Rubidium clock with both generators. b) Setup for mea-

suring the relative phase stability between two DAC channels with an ADC channel that is

on the same RFSoC board with the DACs. c) and d) are the measured phase results from

setup a) and b) .

The results presented in Fig. 23c show that the two generator channels, despite being

synchronized to the same external reference clock, can have a relative phase drift of approx-

imately 20◦ over a span of 5 minutes. This drift could lead to catastrophic impacts on the

stability of two-qubit quantum gates. On the other hand, the results shown in Fig. 23d
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exhibit a phase variation of less than 0.5◦ over one hour of measurement, which provides

compelling evidence of the relative phase stability offered by the RFSoC board with DDS

pulse synthesis, demonstrating its excellent suitability for parametric quantum operations.

In section 5.2, I will present another example of system phase stability measured from an

actual quantum experiment, which will clearly illustrate the crucial role played by RFSoC

hardware in achieving practical realization of long-time experiment averages.
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4.0 Building a Prototype Modular Quantum Computer with Parametric

Interactions

This chapter is adapted in part from reference [52] and its supplementary material.

4.1 Modular structure for superconducting quantum processor

In the earlier chapters I have introduced the remarkable progress in the field of circuit

QED, which has led to the development of mature techniques for building, controlling, and

measuring superconducting qubits. As a result of this extensive research and development,

building medium-scale quantum processors with superconducting circuits is now a reality.

Currently, we are in the so-called Noisy Intermediate-Scale Quantum (NISQ) era, where

fairly high-fidelity universal quantum gates can be performed between tens [4, 29, 30] (or

hundreds [31, 32]) of qubits, showing the immense potential of quantum computing for tack-

ling complex computation or simulation tasks that are beyond the capabilities of classical

computers[4, 29, 33]. Despite this progress on NISQ algorithms and continually increasing

qubit counts, these NISQ machines are still not capable of performing actual large scale

quantum algorithms, since quantum information tends to degrade too rapidly in larger sys-

tems due to error accumulation. Therefore, scaling up NISQ machines to fault-tolerant

quantum computers with thousands of logical qubits remains a challenging research topic

that must be addressed. Achieving this goal will require continued improvements in qubit

coherence and gate/measurement fidelities. Moreover, another critical aspect that must be

considered is the type of connection architecture that should be constructed in large-scale

superconducting quantum circuits.

The planar nature of Josephson junction-based quantum devices makes it a natural

choice to construct multi-qubit processors on the 2D plane of a silicon or sapphire chip.

This approach is commonly used in state-of-the-art medium-scale superconducting quantum

processors, which utilize a 2D lattice structure. This structure consists of an array of qubits
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that are connected to their nearest neighbors using coupler devices. Recent examples of

such processors include Google’s 53-qubit chip depicted in Fig. 24a [4], as well as other

devices of the same or similar topologies [96, 29, 30]. The 2D lattice structure has the

advantage that its topology is well suited for direct implementation of the surface-code error

correction scheme [97, 98, 99, 30], which offers an error-tolerant route to realizing fault-

tolerant quantum computers, albeit at the price of very high numbers of physical qubits

per logical qubit. However, in large-scale processors that rely on this monolithic fabric of

nearest-neighbor interactions, the circuit must be designed carefully to prevent spectator

qubit errors and long-range cross-talk[69, 70, 71]. Moreover, fabricating all components to

perform flawlessly on a single die is another significant challenge that must be addressed[4].

To solve these issues, researchers have borrowed ideas from large-scale and distributed

classical computers to design modular architectures for quantum processors. The modular

design divides the processor into smaller, more manageable building blocks or modules,

each containing a small number of qubits; modules are linked via quantum communication

channels. Such designs allow us to replace faulty components and test sub-units separately,

which can greatly ease requirements for flawless fabrication while also allowing distant qubits

to communicate with many fewer intermediate steps, potentially enhancing fidelity in near-

term quantum processors[102]. Moreover, sources of qubit decoherence (e.g. quasi-particles)

and cross-talk errors can be more confined within a single module instead of propagating

across the whole monolithic processor, making the mitigation of correlated errors in modular

structure devices easier to engineer[103, 104].

Many of the early proposals for modular architectures are based on atomic qubit systems[105,

106, 107, 108] (Fig. 24b). In these systems, it is easy to move information over large dis-

tances via optical fibers, but challenging to collect light from individual atoms. Under these

conditions, we cannot guarantee that light will be collected from a given shot. Therefore,

remote inter-module communication must be realized by measurement based entanglement

methods[109, 110, 111, 112, 113] which utilize external measurement events to counteract

photon loss at the expense of reduced success probability. As noted, in these systems, the

communication channel can simply be optical fibers and one can build programmable cross-

connect switches to realize all-to-all communication between module pairs [106, 107, 100].
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Figure 24: 2D lattice and modular structures for quantum processors. a) Schematic

of Google’s 53-qubit superconducting (SC) quantum processor based 2D lattice structure [4],

in which each qubit is coupled with its nearest neighbours via tunable couplers. b) Modular

structure ion-trap quantum network proposed by Monroe, et al. [100]. Each elementary

logic unit (ELU) consist of multiple ion-trap qubits. The ELUs are connected to an optical

cross-connect switch, which is used to selectively create measurement based entanglement

between arbitrary qubit pairs in the ELU array. c) Modular superconducting qubit chip

connections built by Rigetti Computing [101], in which relatively small 2D SC qubit chips

are connected via flip-chip bonds.

In superconducting circuits, there have also been several recent demonstrations of similar

measurement-based protocols[114, 47, 115, 116], but only between a single pair of logical

modes. The proposals and implementations for medium-scale modular structures are mostly

based on building static couplings between pieces of 2D lattice devices [101, 32] (Fig. 24c).

However, superconducting circuits can also transfer states directly through a controllable

communication bus. For this form of direct state exchange, we require strong, switchable

couplings from module to the communication channel to enable rapid operations, low losses

in the channel, and a dense, reconfigurable network of couplings among many modules.
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Realizations to date have focused on pairs of quantum modules [117, 118, 119, 120, 121] or

modes in a monolithic device [122, 40, 49, 123, 124]. They have utilized transmission-line

based ‘quantum bus’ communication channels and controllable module-bus couplings based

on the non-linearity of Josephson junctions or driven exchange via a non-linear coupling

mode.
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RouterModule array

M2

Mn

Qubits Communication
mode(s)

Module i

Qi
1 CiQi

2 Qi
m

Figure 25: Schematic representation of our proposed modular structure quantum

computer. Each module consists of multiple superconducting qubits that have all-to-all

intra-module couplings. At least one of these qubits works as a communication mode that

couples to the second element, the quantum router. The router can perform all-to-all oper-

ations between communication mode pairs in different modules.

In our work, we propose a new modular architecture for superconducting quantum pro-

cessors that utilizes the idea of building a coherent communication bus that connects multiple

quantum modules. The design schematic is shown in Fig. 25. Each quantum module includes

multiple qubit modes represented byQi, as well as one or more additional modes used as com-

munication mode(s)(C). Given a small number of modes in each module (less than ∼ 6), it is

feasible to build all-to-all intra-module connections between the qubits and communication

mode(s) using the parametric interactions introduced in Ch. 2, while keeping the cross-talk

effects under control and retaining unique drive frequencies for all interactions among qubits.

The communication modes of all modules are coupled to the coherent communication bus

that we call the quantum router. The quantum router utilizes similar parametric interac-
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tions between communication modes and manages the all-to-all communication among the

quantum modules. Instead of using measurement to herald entanglement between modes,

operations over the router can be thought of as direct, parametrically actuated gates between

quantum communication modes in different modules. As an experimental demonstration of

this structure, we have designed and built a prototype router-based superconducting quan-

tum computer using 3D superconducting circuits. In the following sections, I will present

the design, fabrication, characterization, and measurement processes for this device, as well

as discussions on the further scaling schemes based on modular design.

4.2 Prototype modular quantum computer with a quantum router

4.2.1 Device design and fabrication

4.2.1.1 Design overview

Figure 26 shows the overall coupling scheme of our prototype modular quantum com-

puter. A central quantum router is coupled to the communication modes of four quantum

modules. Each quantum module is designed to host one communication mode Ci, one trans-

mon qubit Qi, and one readout cavity Ri.

I would like to highlight that the router’s role extends beyond simply building connections

among multiple quantum modes. It needs to distribute these connections across a large

3D space, and selectively activate interactions between any modes that couple with it. A

standalone chip-based coupler would not be sufficient for this task, as the field of the coupler

modes would be too localized, making it difficult to interact with module modes in 3D space.

To address this, our design introduces intermediate modes (W1 − W4). These modes are

combined with a central SNAIL coupler chip (S) to form a sizeable 3D non-linear object, the

router. This structure helps distribute the non-linearity to different ports and create three-

wave-mixing terms between the SNAIL mode and all the communication modes. As a result,

we are able to perform parametric exchange operations between any pairs of communication

modes that are coupled to the router.
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In addition, we emphasize the “modularity” of our system in the additional sense that

each module and the router itself exist as independent units which can operate individually,

instead of the whole system forming a monolithic block. This offers a tremendous advan-

tage in the laboratory, as defective components can be easily replaced, and the different

components can be tested separately and then assembled.

Figure 26: Full coupling scheme of our prototype modular quantum computer. The

quantum router consists of a central 3-wave-mixing SNAIL coupler (S), and four intermediate

modes (W1 −W4) to distribute the SNAIL’s 3rd-order non-linearity to different ports. Each

module (i = 1 − 4) includes a communication mode Ci that couples to a router port, a

transmon qubit Qi that couples to the communication mode, and a readout cavity Ri for

reading out the qubit. Each mode in the system (except the intermediate modes in the

router) has a dedicated control/readout port.

In our physical realization of the above coupling scheme, the communication modes we

use are superconducting 3D cavities rather than qubits (Fig. 29), as they accommodate mul-

tiple qubit encoding schemes including the Fock encoding used in this work, cat states[125],

binomial encodings[126], GKP-encodings[127], etc. This allows our router to be compatible

with a wide array of future module designs.

Having the intermediate communication mode between the router and the qubits in

each module also eases the design of the full device, as it serves as a separation point
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between the router and the modules and allows them to be simulated individually. Even in

the current device where there is only one extra qubit and readout mode in each module,

simulating the whole device of 1 router + 4 modules in one go is already very computationally

demanding. The weak coupling between the router and the qubit modes allows us to separate

the simulation into two steps: the router-communication mode system and each module

system. Each module can be simulated as a three mode device, the communication mode,

the qubit, and the readout mode. When simulating the router, the only extra modes we

need to consider are the communication modes of the modules.

4.2.1.2 The quantum state router

In the router design, we use a SNAIL device that was introduced in Sec. 2.3.3 to bring

3rd-order non-linearity into the system, and the first four TE modes of a superconducting

3D waveguide to distribute the non-linearity across a large 3D space.

Choosing the SNAIL junction parameters. To enable fast parametric operation

in the router, the SNAIL needs to be designed with a large g3 coefficient. As introduced in

Sec. 2.3.3, the g3 coefficient is related to the large junction inductance Lj and total device

capacitance C with:

g3 ∝ (Lj)
−1/4(C)−3/4 (135)

At this point, one might think that this means we need to choose smaller Lj to achieve

larger g3 coefficient. However, in the router design, it is also important to keep the SNAIL

frequency close to the waveguide mode frequencies to ensure enough hybridization strength.

Since the SNAIL frequency fs ∝ (LjC)
−1/2, we can rewrite Eq. 135 as:

g3 ∝ (Lj)
1/2(fs)

3/2 (136)

In the following text, I will discuss our considerations for choosing the waveguide mode

frequencies. Basically, we want the SNAIL mode to remain below the waveguide modes,

and given a realistic waveguide size that can accommodate four quantum modules, the

waveguide frequencies cannot be too high. Consequently, we will have limited space to
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increase the SNAIL mode frequency. Thus, to provide the SNAIL mode with a higher g3, we

must choose a higher Lj. Given a commonly used junction ratio of α = 0.25 for a 3-large-

junction SNAIL loop, we have selected the maximum Lj that made the smaller junction

(with Lj,small = Lj/α) easy to fabricate using Dolan bridge-style lithography, which was

Lj ∼ 0.86nH.

Given the fixed large junction inductance Lj, the SNAIL mode frequency can then be fine

tuned by changing the antenna capacitance, which is primarily controlled by the capacitor

pads located close to the junctions (Figure 27e, green region). Changing the width and

the gap between the two pads allows us to tune the SNAIL frequency without significantly

affecting the direct coupling strength between the SNAIL and the waveguide modes.

Choosing the waveguide dimensions. The waveguide used here is shorted on both

ends (i.e. a 3D rectangular cavity resonator), which forms the standing wave TEmnℓ modes

with frequencies[128]:

fmnℓ =
c

2π

√(mπ
a

)2
+
(nπ
b

)2
+

(
ℓπ

d

)2

(137)

where a, b and d are the three dimensions of the rectangular waveguide, as labeled in Fig. 27a,

and c is the speed of light. Each mode is represented by three integer indices (m,n, ℓ),

where at least two of the indices are positive, while the last one can start from 0. As

these mode indices get larger, the frequency spectrum of the modes becomes denser, with

neighboring modes getting closer to each other in frequency. Since each parametric process

in the router is addressed by a specific frequency difference between two modes, to avoid

activating unwanted processes and build a clean parametric coupling scheme we want to

use the four lowest modes in the waveguide (where the mode frequencies are relatively well

separated) as intermediate modes for non-linearity distribution, and the SNAIL will stay

below all the waveguide modes so that the high-frequency modes are far detuned from it and

have minimal effect on interfering with the desired parametric processes.

To enable efficient coupling between the SNAIL mode and the four lowest frequency

waveguide modes, we choose the three waveguide dimensions such that b < a < d, which

causes the first few lowest frequency modes to be TE10ℓ modes. As shown in Fig. 27b, these

modes have electric fields all parallel to the x direction, which enables direct dipole couplings
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Figure 27: Quantum state router design with the SNAIL and waveguide modes.

a) Our convention for labeling the Cartesian axis and the waveguide dimensions. b) Elec-

tronic field (E) distribution for the first four lowest frequency waveguide modes in 3D space.

c) E -field component in the x direction as a function of the y coordinate on the z = a/2

plane for the first four lowest frequency modes, and a schematic drawing illustrating the

location of the SNAIL chip. d) Computer-aided design (CAD) drawing of the SNAIL pump

port and bias magnet. e) Color-labeled photograph of the SNAIL chip and scanning electron

microscope (SEM) image of the SNAIL loop.

between the SNAIL mode and multiple waveguide modes.

Under the constraint b < a < d, the next thing we consider is that we want to make

sure the TE10ℓ modes in the waveguide that are close to the SNAIL mode frequency do not

interfere with the final SNAIL controlled communication cavity exchange interactions. For

example, for a given communication cavity pair ci and cj, we want to make sure that |fci−fcj |
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is far detuned from |fci − fwℓ
| and |fcj − fwℓ

|, where fwℓ
is the frequency of the waveguide

TE10ℓ mode, so that the cavity photon will not leak into the waveguide modes during the

exchange interaction. This requires us to think ahead, assuming each communication cavity

mode is going to be ∼ 70 MHz detuned from the intermediate waveguide mode it couples

to, and then carefully choose the a and d dimensions such that all the possible unwanted

transitions are at least ∼ 50 MHz from all the
(
4
2

)
= 6 possible cavity transition frequencies.

Here, this ∼ 50 MHz minimum detuning is chosen such that it is much greater than the

maximum exchange interaction speed that we expect to activate, which is around 5 MHz (100

ns iSWAP gate time).

Using the waveguide frequency formula in Eq. 137, we can easily run a brute-force 2D

sweep of possible a and d dimensions, and find the feasible region where the possible frequency

collisions are all avoided (bright region in Fig. 28). Meanwhile, we also want to keep the

maximum C − C exchange pumping frequency, fmax
p , substantially below the router mode

frequencies, so that we can use a low-pass filter on the SNAIL port to protect the router

modes while allowing the pump tone to pass through (see Sec. 4.2.2). Furthermore, we

want the minimum pumping frequency, fmin
p , to stay above few hundred MHz, to ensure

the efficient delivery of pump photons to the SNAIL mode. These two extra constraints are

represented by the green and blue lines in Fig. 28. These three lines define an optimal region

on the top right corner of Fig. 28. Note that this region doesn’t always exist for arbitrary

choices of waveguide-communication cavity detunings. In creating Fig. 28, we choose the

four cavity detunings to be: [-70, -70, +70, -70] MHz from their dedicated waveguide modes.

We then settle on a point centrally positioned within this optimal region, with dimensions

a = 34.8 mm and d = 130.6 mm, as marked by the red triangle in Fig. 28. The final

dimension, b = 15.8mm, is selected to ensure that the waveguide is sufficiently wide to

accommodate the SNAIL chip, while also preserving the first few lowest frequency modes

as we defined in Fig. 27b. These dimensions give us the bare waveguide mode frequencies

of the four lowest TE10ℓ modes fw1 = 4.452 GHz, fw2 = 4.876 GHz, fw3 = 5.510 GHz and

fw4 = 6.292 GHz. These modes form the bare waveguide mode Hamiltonian we consider in
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the router device:

ĤWG/ℏ =
4∑

i=1

ωwi
ŵ†

i ŵi (138)

In practice, incorporating the SNAIL mode, along with its associated pump port and

magnet into the waveguide, will inevitably affect the waveguide mode frequencies. Thus, we

need to then fine-tune the dimensions of each object as well as the SNAIL mode parameters

to ensure that the constraints defined in Fig. 28 are still satisfied.
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Figure 28: Finding the optimized waveguide dimensions. We define the minimum

difference between the possible C − C exchange pumping frequencies and any possible un-

wanted transition frequencies as fmin
p,diff

. This plot shows how fmin
p,diff

changes as we sweep

through the possible waveguide dimensions a and b. As discussed in the text, we want to

stay in the region where fmin
p,diff

≥ 50 MHz, the boundary of which is represented by the

white line in the figure. Combing this color plot with the two addition constraints on the

minimum (fmin
p ) and maximum (fmax

p ) desired pumping frequencies, we find the optimal

region for waveguide dimensions confined by these three lines. As a preliminary estimate for

the optimized waveguide dimensions, we select a point centrally located within this region,

marked by the red triangle.
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Engineering the waveguide-SNAIL coupling strength. As mentioned earlier, the

parallel E fields of the TE10ℓ modes allow us to build direct dipole coupling between the

SNAIL and each waveguide mode, giving the bare SNAIL - waveguide coupling term in the

router:

ĤR,coup/ℏ =
4∑

i=1

gwis(ŵ
†
i ŝ+ ŵiŝ

†) (139)

in which gwis is the direct coupling strength between the SNAIL and the waveguide mode i.

The coupling strength gwis is determined by the strength of the waveguide E field across

the SNAIL junction, which we can tune with two control knobs: the shape of the SNAIL

antenna, and the location of the SNAIL inside the waveguide.

To achieve a strong coupling strength gwis, the SNAIL was designed with a long antenna

and extra pads on the far ends to draw more E field across the junctions, as shown in Figure

27e (purple region). By changing the size of these extra pads, we can adjust the SNAIL-

waveguide couplings without significantly affecting the other SNAIL parameters (e.g. SNAIL

frequency), as the SNAIL mode capacitance is dominantly controlled by the green region in

Fig. 27e.

In terms of SNAIL chip location, for a given (y, z) coordinate inside the waveguide, the

E field of the TE10ℓ modes are uniform along the x direction, with strength:

Ex(y, z) = E0 sin
πz

a
sin

ℓπy

d
, (140)

where E0 is the normalized E field strength based on the total energy stored in each mode.

The SNAIL is thus placed on the z = a/2 plane inside the waveguide, with its antenna

in parallel with the x direction to maximize overall coupling. Figure 27c shows Ex as a

function of the y coordinate on the z = a/2 plane for ℓ = 1, 2, 3, 4. Since each mode has a

different E field distribution and different frequency, we can find a position on the y axis

to place the SNAIL, where it has similar amount of hybridization strength (g/∆)wis to each

waveguide mode, in which ∆wis is the frequency difference between the SNAIL and waveguide

mode i. By fine tuning the size of the SNAIL antenna and the y location and run the EPR

simulation [78], we can tune (g/∆)wis to be around 0.1−0.3 for all the four waveguide modes

96



we use in the router. This moderate hybridization strength enables the waveguide modes to

share a sufficient amount of non-linearity from the SNAIL for the following 3-wave-mixing

operations, while also allowing the waveguide modes to have lifetimes that are tens of times

longer then the SNAIL mode, neglecting the complicating effects of spatially non-uniform

loss (see discussion in Sec. 4.2.1.4).

Additional elements for SNAIL operation. As mentioned in Sec. 2.3.3, the SNAIL

needs a tunable external flux bias to operate at the Kerr-free point. In our router design,

we achieve this by using a magnetic coil, which is wrapped around a copper spindle and

inserted into a copper shield which in turn is inserted into the waveguide body (Fig. 27d).

By applying current through the coil, we can flux bias the SNAIL to a point where only the

third-order non-linearity dominates, and give the approximate SNAIL Hamiltonian:

ĤS/ℏ ≈ ωsŝ
†ŝ + gsss(ŝ+ ŝ†)3 (141)

To deliver enough pump power to the SNAIL for fast parametric interaction, the SNAIL

pump port was inserted from the bottom of the waveguide and couples directly to the SNAIL.

Additionally, an extra square piece was added to the SNAIL antenna directly above the pump

port to further enhance the coupling strength (Figure 27e, yellow region).

The copper holder and the pump port both form low Q modes in the router that actually

limit the waveguide and SNAIL mode lifetimes. However, in Section 4.3, we will discuss how

these limitations were improved in the updated design.

Total router Hamiltonian. By summing the Hamiltonian terms in Eq.138, 139 and

141, we get the total bare Hamiltonian of the router system:

ĤR/ℏ = ĤWG/ℏ+ ĤR,coup/ℏ+ ĤS/ℏ (142)

= ωsŝ
†ŝ +

∑
i

ωwi
ŵ†

i ŵi +
∑
i

gwis(ŵ
†
i ŝ+ ŵiŝ

†) + gsss(ŝ+ ŝ†)3.

Using the non-linearity propagation formula that was introduced in Sec. 2.1.1.5. We get

the waveguide-SNAIL 3-wave-mixing terms in the router:
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Ĥ3wm
R /ℏ =

∑
i ̸=j

gwiwjs(ŵ
†
i ŵj ŝ+ ŵiŵ

†
j ŝ

†), (143)

In which the effective three-wave interaction strengths are given by gwiwjs ≈ 6gsss(
g
∆
)wis(

g
∆
)wjs.

4.2.1.3 The single qubit module

As a prototype demonstration of our proposed the modular structure quantum computer,

we design and build single qubit modules that couple to the router. Each module contains

a high-Q 3D coaxial cavity [129] as communication mode (C), one transmon qubit (Q) as

computational mode, and another 3D coaxial cavity (R) for qubit readout. The design

schematic and photograph of the real device is shown in Fig. 29.

The antenna of the transmon spans both cavities, resulting in dispersive coupling terms

between the qubit and both cavity modes in the module:

Ĥcoup
M /ℏ = gqc(q̂

†ĉ+ q̂ĉ†) + gqr(q̂
†r̂ + q̂r̂†), (144)

where gqc and gqr are the coupling strengths between the qubit and communication mode

and the readout mode, respectively. These couplings give rise to the total effective module

Hamiltonian with both Q− C and Q−R cross-Kerr terms:

Ĥeff
M/ℏ = ωcĉ

†ĉ + ωrr̂
†r̂ + ωq q̂

†q̂ +
αq

2
q̂†q̂†q̂q̂ + χqcq̂

†q̂ĉ†ĉ + χqrq̂
†q̂r̂†r̂, (145)

where ωc,q,r are the angular frequencies of the communication, qubit, and readout mode,

respectively. αq is the anharmonicity of the qubit, and χqc and χqr are the strengths of the

cross-Kerr between the qubit and communication and readout cavity modes, respectively.

By adjusting the shape of the qubit antenna and the relative z-position of the two cavities,

we can set χqr and χqc both to around 1 MHz to enable dispersive readout and four-wave-

mixing qubit-communication cavity exchange interactions (see Ref. [47, 117, 50] and Sec.

4.2.4.2).

Each mode in the module has a dedicated control/readout port, as shown in Fig. 29b and

c. The readout cavity port (purple) goes from the top of the cavity, and is over-coupled to the
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Figure 29: Single qubit module design. a) Coupling scheme in the single qubit module.

The communication cavity mode (C) is coupled to both the external waveguide mode in the

router with coupling strength gcw and the internal transmon qubit mode (Q) with strength

gqc. The qubit is also coupled to a readout cavity (R) with coupling strength gqr. Each

mode has a dedicated external port. b) Device design in microwave simulator (HFSS). The

rectangular coaxial cavity on the left is the communication cavity, while the cavity on the

right is the readout cavity. The qubit is located on the sapphire chip (colored in blue) that

goes through both cavities. c) Photograph of the device, in which the physical ports are also

shown.

to the readout mode with rate κr ∼ 1 MHz for optimized qubit state separation in dispersive

readout, i.e. κr/χqr ∼ 1. The qubit readout is performed via reflective measurement from

this port. The communication cavity port (green) is designed to be under-coupled to the

communication mode. This port is only used in the coherent state exchange experiments that

will be introduced in section 4.2.4.1, and will be removed to maximize the coherence of the
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communication mode in the Fock state experiments, where the communication modes will

serve as intermediary modes that only store (but do not compute on or read out) quantum

states, and enable the photon exchange between modules via the router controlled exchange

interactions. To avoid introducing extra external loss to the communication cavity, the qubit

control port (orange) was machined on the bottom of the readout cavity.

4.2.1.4 Full device coupling scheme

With the router and module devices separately designed, the next step is to couple the

waveguide modes in the router to the communication modes of each module. This is realized

by attaching the modules directly onto the sidewall of the waveguide and cutting a rectan-

gular window on the shared wall between each communication cavity and the waveguide.

As shown in Fig. 30b, the intrusion on the side of the communication cavity serves as part

of the common wall between the module and the waveguide, and the coupling aperture is

opened on this wall. These coupling apertures allow for direct E field overlap between each

communication cavity mode and its corresponding waveguide mode, thereby creating the

waveguide-communication mode coupling terms:

ĤRM,coup/ℏ =
4∑

i=1

gciwi
(ŵ†

i ĉi + ŵiĉ
†
i ). (146)

Here, we assume each cavity is only effectively coupled to one waveguide mode. This assump-

tion is valid because of two design choices we made. First, as shown in Fig. 30, the location

of each communication cavity is chosen such that it faces the anti-node of its correspond-

ing waveguide mode, so the E field overlap is designed to be strongest to the designated

waveguide mode. Second, each cavity is only closely detuned from one waveguide mode by

∆wc/2π = |fc − fw| ∼ 70 MHz. So, even though the couplings between the cavity and other

waveguide modes can be of similar strengths (i.e. between communication cavity 1 and the

waveguide mode 1 and 3), they are much further detuned (by ∼ GHz), which results in much

lower hybridization strength g/∆, and thus can be neglected. The size and z location of the

coupling aperture are carefully tuned in simulation such that the coupling strength is around

7 MHz between the communication mode and its dedicated intermediate waveguide mode.
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Figure 30: Full coupling scheme of our prototype modular quantum processor and

photograph of device. a) Full device coupling scheme. The router uses one SNAIL chip

and the four lowest modes in the waveguide. Modules 2-4 are single qubit modules that

each contain a communication mode (Ci), a transmon qubit (Qi) and a readout mode (Ri).

Module 1’s qubit is omitted. b) Picture of the device partially disassembled. The sidewalls

of the communication cavities serve as parts of the waveguide sidewall; the two sides are

joined with an indium wire. The small apertures (yellow boxes) on these sidewalls allow

electromagnetic field overlap between the waveguide modes and the cavity modes, thereby

creating the gcw couplings. c) Photograph of the fully assembled device, with all the ports

connected.

With the waveguide-cavity coupling terms in Eq. 146, we can once again use the non-

linearity propagation formula introduced in Sec. 2.1.1.5, and derive the communication

cavity-SNAIL 3-wave-mixing terms in the full modular device:
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Ĥ3wm
RC /ℏ =

∑
i ̸=j

gcicjs(ĉ
†
i ĉj ŝ+ ĉiĉ

†
j ŝ

†), (147)

in which the effective three-wave interaction strengths are given by

gcicjs ≈ gwiwjs

( g
∆

)
wici

( g
∆

)
wjcj

≈ 6gsss

( g
∆

)
wis

( g
∆

)
wjs

( g
∆

)
wici

( g
∆

)
wjcj

, (148)

Using these terms, we can apply pump on the SNAIL mode at the frequency difference

between two cavity modes, i.e. fp = |fci−fcj |, and selectively activate the exchange (or beam-

splitter) interaction between two communication cavity modes (Eq. 149), thereby performing

inter-module gates across the router.

Ĥeff
CC/ℏ = geffcicj ĉ

†
i ĉj + geff

∗

cicj
ĉiĉ

†
j, (149)

The effective two-body exchange rate geffcicj , can be written as geffcicj =
√
nse

iϕpgcicjs, where

ns is the pump strength expressed as a photon number (see Sec. 2.1) and ϕp is the pump

phase. By design, the
(

g
∆

)
wc

coefficients are all around 0.1. Given the SNAIL and router

parameters introduced in 4.2.1.2, i.e.
(

g
∆

)
ws

∼ 0.1 − 0.3 and gsss/2π ∼ 100 MHz , in total

we have the cavity-cavity three-wave mixing coefficient of gcicjs/2π ∼ 0.06− 0.5 MHz. The

two-step, weak hybridization allows the communication modes live up to 104 times longer

than the SNAIL mode and 100 times longer than the waveguide modes, greatly decreasing

the need for long lifetime components in the router. Given a reasonable photon number of

∼ 10, we can expect an iSWAPgate time of ∼ 200 ns− 2 µs.

One interesting advantage offered by this coupling geometry is that it effectively blocks

the direct coupling between the waveguide mode and the computational qubit mode. This is

due to the fact that the E field of the waveguide mode, as depicted by the yellow arrows in

Figure 31, is perpendicular to the antenna of the transmon qubit (shown in blue in Figure 31),

resulting in an extremely weak direct coupling between the two modes. On the other hand,

the coaxial communication cavity exhibits a radial E field (depicted in green), enabling it

to couple with both the waveguide and the qubit mode.
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Figure 31: Example E field distribution of the waveguide and module modes.

The yellow vectors represent the electric field vector of the waveguide TE103 mode, which

overlaps directly with the field of communication mode 3 (depicted as green arrows) at the

coupling aperture. The communication cavity mode also couples with the transmon qubit

through direct dipole coupling. However, the waveguide mode has very weak direct coupling

with the qubit mode as it is perpendicular to the qubit’s antenna (shown in blue). The red

vectors represent the E field of the readout mode, which also couples with the qubit, but

have near-zero coupling with the waveguide mode.

This advantage enables the design of each module as an independent device that is sepa-

rated from the router system, and provides great flexibility in choosing the qubit and readout

mode frequencies. Thus, to achieve compatibility with the router, only the communication

cavity needs to be carefully designed to match with its dedicated waveguide mode, while

the qubit and readout cavity can be designed with more freedom as long as the desired χqc

and χqr are satisfied. This allows the microwave simulation for the whole router + 4 module

system can be separated to 5 different parts and done separately.

4.2.2 Measurement system setup

Each mode in the full router + 4 module system has a dedicated control/readout port

that is made of a copper coaxial cable soldered onto a custom machined port cap on one
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end and SMA connector on the other end. Fig. 30c shows the full device with all the ports

connected. The device is then put into a cryo-perm magnetic-shielding can (Amumetal 4K)

and installed at the base (∼ 18mK) plate of a cryogenic set-up, as detailed in Fig. 32.

For controlling and reading out the full device, all pulse sequences are generated by

Keysight M3202A (1 GSa/s) and M3201A (500 MSa/s) Arbitrary Waveform Generators

(AWGs). The baseband microwave control pulses are generated at an intermediate frequency

(IF) of 100 MHz and upconverted to microwave frequencies using IQ mixers. Image rejection

(IR) mixers have been used for downconverting the detected signals to 50 MHz, which are

then digitized using a control system based on Keysight M3102A Analog-to-Digital converters

with a sampling rate of 500 MSa/s and on-board Field-Programmable Gate Arrays (FPGA)

for digital signal processing (DSP).
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Figure 32: Fridge wiring and measurement system.

The SNAIL pump line design aims to deliver sufficient power to the SNAIL mode with-

out overheating the fridge. This requires strong coupling between the pump port and the

SNAIL mode, but this can also Purcell limit the lifetimes of the waveguide modes, thereby

limiting the communication cavity modes’ lifetimes. However, the off-resonance nature of

our parametric pumping scheme actually allows us to separate these two constraints in the

frequency domain. Specifically, all the possible pumping frequencies we used here are below

all the mode frequencies as shown in Fig. 33. This allows us to use a reflective low-pass

filter (LPF) on the SNAIL pump port that protects the modes in our device while allowing
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high-power, low-frequency pumps to pass. Moreover, unlike on-resonance driving schemes

that require large amounts of attenuation (usually 20-30 dB) on the mixing chamber (MC)

plate to reduce stray photons in the drive lines, the reflective LPF used here also generates

much less heat, which also gives more tolerance to strong external pumps, thereby making

the parametric pumping scheme even more promising in realizing large-scale/multiplexed

qubit controls.

𝑓𝑤4𝑓𝑤3𝑓𝑤2
𝑓𝑤1

Δ𝑤1𝑐1

𝑓𝑐4𝑓𝑐3𝑓𝑐2𝑓𝑐1𝑓𝑆 = 3.915 GHz𝑓𝑝 ≤ 1.704 GHz

𝑓𝑐𝑢𝑡𝑜𝑓𝑓 = 𝑓𝑤1 = 4.528 GHz

Frequency0

Figure 33: Frequency spectrum of all linear modes, SNAIL mode, and pumping

frequencies.. The maximum pumping frequency on the SNAIL is fmax
p ≈ fc4 − fc1 =

1.704 GHz, which is far below the waveguide cutoff frequency fcutoff = fw1 = 4.528 GHz. The

router then naturally protects pumping tones from propagating into modules. Meanwhile,

the frequencies of all other modes don’t have to be precisely controlled, so the router can

be easily adapted to different modules without fine-tuning. Since the maximum pumping

frequency is also lower than the SNAIL frequency fmax
p < fs = 3.915 GHz, a low-pass filter

(e.g. Mini-Circuits VLF-2250+) is added to the SNAIL pump port so that strong pumps

can be applied to SNAIL while the SNAIL mode lifetimes are protected

4.2.3 Mode characterization

Router mode characterization. The SNAIL mode is characterized by measuring

the transmission signal from the SNAIL pump port, shown in yellow in Fig. 34a, to a side

probe port (labeled in green) on the waveguide using a network analyzer. The pump port is

strongly coupled to the SNAIL with a coupling Q of ∼ 2000, while the probe port is much

more weakly coupled. In the full router operation experiment, the side port is removed to
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maximize the mode lifetimes in the router.

By sweeping the bias current applied to the magnet, we can measure how the frequency

of the SNAIL and waveguide modes are changed with flux (Fig. 34b).

Figure 34: SNAIL mode characterization setup and flux sweep result. a) CAD

drawing that shows the SNAIL pump port and prob port. b) Color plot of the magnitude of

transmission signal versus the frequency from SNAIL pumping port (|S21(ω)|) for a range of

applied coil bias current/applied SNAIL flux. The dotted lines indicate the dressed modes

of the waveguide modes and SNAIL, as well as the ‘pole mode’ of the aluminum cylinder

containing the drive port. The vertical, dark-red dashed line indicates the operating flux of

the SNAIL.

In this setup, the aluminum pole for hosting the SNAIL pump port forms a low Q mode

that is also coupled to the waveguide and SNAIL modes and is visible in the transmission

measurement (brown dash-dotted line in Fig. 34b). This forms an overall coupling matrix

in the router
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Mcouple =



fs ḡpos ḡw1s ḡw2s ḡw3s ḡw4s

ḡpos fpo ḡpow1 ḡpow2 ḡpow3 ḡpow4

ḡw1s ḡpow1 fw1

ḡw2s ḡpow2 fw2

ḡw3s ḡpow3 fw3

ḡw4s ḡpow4 fw4


, (150)

in which f represent the bare mode frequencies, and ḡ = g/2π represent the coupling

strengths between different modes in frequency units. The subscripts s, po, and wi cor-

respond to the SNAIL mode, the pump port pole, and the waveguide mode i, respectively.

Once again, here we omitted the higher frequency waveguide modes in this coupling matrix

as they are far detuned from the SNAIL mode.

The observed modes in the measurement are the dressed modes in the system, with

frequencies (f̃) corresponding to the eigenvalues of the coupling matrix. By considering the

designed SNAIL parameters and the current period and offset in the flux sweep results, we

can calculate the bare SNAIL mode frequency fs as a function of the externally applied flux,

and use that to figure out the Kerr-free bias current of the SNAIL (red vertical dashed line

in Fig. 34b).

W1 W2 W3 W4 S

Frequency (GHz) 4.534 4.936 5.446 6.190 3.915

T1 (µs) 1.68 0.29 0.28 0.81

ḡws (MHz) 335 417 396 360

Table 1: Router mode parameters.

Also, based on how the waveguide mode frequencies move with the SNAIL mode, we

can fit the measured frequencies f̃wi
and f̃po as a function of the fs to extract the coupling

coefficients ḡwis. The obtained coupling coefficients are summarized in Table 1.The waveguide

mode lifetime is measured by driving a coherence state in the waveguide through the SNAIL

pump port and measure the power decay from the probe port. The result is also presented
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in Table 1.

The lifetime of the router mode is primarily limited by two factors: the coupling to the

copper intrusion of the bias magnet and the coupling to the drive port. In the full experiment,

the loss from the drive port is reduced by the reflective low-pass filter on the pump line (as

depicted in Fig. 32). However, we did not directly measure the lifetimes of the waveguide

modes with the filter in place, as the same filter makes them unmeasurable through any

available port. With the filter added, we believe the major loss sources for the waveguide

modes are the seam losses at joints between the waveguide and the communication cavity

modes, and the loss due to the copper intrusion.

Module mode characterization. The characterization of the qubit modes in each

module follows conventional qubit measurement methods [95]. Through these measurements,

we can extract qubit mode parameters, as summarized in Table 2. All values are measured

and calibrated at the operation bias point of the SNAIL.

Q2 Q3 Q4 C1 C2 C3 C4

f (GHz) 3.067984 4.040709 3.566572 4.477662 4.812500 5.474195 6.180769

T1 (µs) 60 9.1 8.4 22 (23) 23 (27) 13 (13) 15 (20)

T2R (µs) 18 6.3 8.0 44 (45) 46 (47) 22 (11) 25 (23)

T2E (µs) 24 7.6 8.0

α/2π (MHz) -141.3 -118.1 -125.8

χqc/2π (MHz) -0.11 -1.7 -0.86

Measurement fidelity 93.6% 83.0% 88.0 %

Single gate error 0.48% ± 0.04% 3.74% ± 0.5% 3.21% ± 0.6%

Table 2: Module mode parameters.

The qubit measurement fidelity is calculated using single-qubit tomography. The single-

qubit gate fidelity is measured using interleaved randomized benchmarking[130]. For com-

munication cavities, the coherence times T1 and T2 are measured by either (a) using the

under-coupled probe port to drive a coherence state and measure the power and voltage

decay or (b) swapping single photons from qubits to cavities for variable time. The two

times are listed as a (b) in the table. The pure dephasing time Tϕ can be inferred from these

values using T2 = 1/[1/(2T1) + 1/Tϕ].
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4.2.4 Parametric process tune up

4.2.4.1 C-C exchange interaction via SNAIL

Using the cavity-cavity-SNAIL 3-wave-mixing term introduced in Eq. 147, we can ac-

tivate exchange interactions between communication cavity pairs, described in Eq. 149, by

pumping on the SNAIL mode at the frequency differences between cavities. One interesting

property of this exchange interaction is that it exchanges coherent state excitation in a way

very similar to Fock state excitation. This allows us to observe the C-C exchange process by

simply measuring the voltage leaking out from a weakly coupled port on the cavity, because

this voltage, as a complex number, is proportional to the displacement parameter αCS of the

coherent state in the cavity.

Figure 35 shows an experimental pulse sequence for swapping coherent states between the

module communication modes C2 and C4. First, a short on-resonance drive is applied to C4

through the weakly coupled port, which creates a coherent state in this cavity. Then, a pump

tone is applied to the SNAIL mode near the C2−C4 difference frequency ωp = ωc4 −ωc2 + δ,

where δ is the pump detuning relative to the measured frequency difference between the

two cavity modes. Meanwhile, the light in these two cavities is monitored by receiving the

I-Q signal leaking out from each cavity’s probe port. The amplitude of the coherence state

inside the cavity can then be inferred by demodulating the signal at the corresponding cavity

frequencies. By sweeping the applied pump frequency and time, we can determine both the

swap rate and resonant condition for pumping.

The result of the pump frequency and time 2D sweep is shown in Fig. 35b, from which

we can determine the optimal detuning frequency for full photon exchange (vertical dashed

line), then we take the line cut at that frequency and plot figure c. There is a good agreement

between the envelope of the swap trace (green and purple lines) and the hybridized decay

trace, indicating that the state is only swapping between these two cavities without leaking

into other modes, and that the fidelity of state exchange is mainly limited by the lifetime of

these two cavities.

This same experiment is then performed for the six possible pairs of the four communi-

cation modes, and the full iSWAP exchange times are listed in Table 3. We find the fastest
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Figure 35: C-C coherent state exchange. a) Pulse sequence of the coherent exchange

experiment. We begin by displacing one cavity to create a coherent state, which we then

swap between a pair of cavities by applying a parametric drive to the SNAIL. We continu-

ously monitor the I-Q voltage in each cavity during the swap process. b) In-phase (I) and

quadrature (Q) received voltage from the two cavities versus pulse duration and pump de-

tuning from the nominal difference frequency. The dashed vertical line denotes the optimal

detuning frequency for full photon exchange. c) Line-cut of (b) at the optimal full-swap

detuning. The grey dashed envelope represents the hybridized T2 decoherence of the coupled

systems, given by exp
(
−Γ̄2t

)
, where Γ̄2 = (1/T2,C2 + 1/T2,C4)/2 is the averaged decoherence

rate of the two cavities involved (here C2 and C4), as the photon being exchanged spends

half of its time in each cavity.

full-swap time to be 375 ns, the slowest 1248 ns, and an average swap time of ∼ 764 ns. For

each pair, the maximum gate speed is measured by increasing the pumping power until we

see the mode coherence times substantially differ from their undriven values. On average,

the pump frequency required to fully swap light between the two cavities is detuned by

several hundred kHz (−416 kHz for the data in Fig. 35), which we attribute to a combi-

nation of SNAIL- and communication-mode static and dynamic Kerr effects; that is, the
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communication-mode frequencies are shifted due to the off-resonance pump on the SNAIL

mode. In our pulses, we are only sensitive to changes in the communication modes’ frequency

difference, so shifts can be positive/negative/zero depending on whether the two modes shift

closer together or further apart. This has strong parallels to saturation effects in parametric

amplifiers, where the amplifier modes shift with stronger pumping, which complicates ampli-

fier bias and can lead to limitations in power handling in the amplifier as bigger input signals

shift the amplifier away from its small-signal frequency [79, 75, 131, 132]. Fortunately, in

the case of parametrically controlled iSWAP gate the primary consequence is simply that

we must track these shifts and their effects on the qubits’ phases in our control electronics.

iSWAP pair iSWAP time (ns)

C1 ↔ C2 1248

C1 ↔ C3 651

C1 ↔ C4 535

C2 ↔ C3 942

C2 ↔ C4 832

C3 ↔ C4 375

Table 3: iSWAP exchange times between communication cavity pairs.

The cavity-cavity exchange interaction demonstrated here is referred as ‘beam splitters’

gates in other works on cavity-based qubits [50, 48, 58], for their obvious resemblance to the

optical component of the same name. However, in our full device operation, the communi-

cation cavities serve as intermediary modes that only store (but not compute on) quantum

states, and enable the photon exchange between modules via the router controlled exchange

interactions. We exclusively use these exchange interactions to swap Fock states fully from

a source cavity to a formerly empty target cavity. In this scenario, the gates act as a com-

bination of SWAP and z-rotation for both Fock and coherent states. Thus, in the simple

algorithms that I will demonstrate in in Section 4.2.5, we refer to the operation of these ex-

change interactions as variations of the iSWAP gate, as is typical for gates based on coherent

photon exchange[122, 47, 40, 50, 124, 68].
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4.2.4.2 Q-C exchange interaction via cross-Kerr 4WM

The intra-module (Q-C) exchange interaction is realized using the cavity-qubit cross-

Kerr term that was introduced in Eq. 145, χqcq̂
†q̂ĉ†ĉ. Using this term, we can apply two

side-band pumps on the qubit and communication cavity at frequencies: fQSB = fq + ∆

and fCSB = fc + ∆ + δ, respectively, as shown in Fig. 36a. The side-band detuning ∆ is

usually around tens of MHz to avoid activating any on-resonance transitions on the qubit

and cavity, and the extra detuning δ is added for compensating pumped induced AC-Stark

shifts. These two pumps activate the effective exchange interaction between the qubit and

communication cavity[47]:

Ĥeff
QC/ℏ = geffqici q̂

†
i ĉi + geff

∗

qici
q̂iĉ

†
i , (151)

This exchange interaction Hamiltonian takes the same form as the C − C exchange

interaction in Eq. 149. However, there are two major differences that we need to pay attention

to. First, instead of having a beam-splitter like interaction between two linear modes, the

qubit mode here is considered as a two-level system, which changes the overall behaviour of

the interaction Hamiltonian. However, since our protocols in this experiment only involving

swapping light into empty qubits/cavities, states containing two or more photons are never

occupied, we only need to consider the sub-space where only the |e0⟩ ↔ |g1⟩ transition is

involved in the qubit-cavity system. In this subspace, the exchange interaction works very

similar to an iSWAP gate between the qubit and cavity.

Second, since we are driving on a 4th-order term directly, the AC-stark shift is much

stronger than the SNAIL based 3-wave-mixing process. So instead of directly running a

pumping frequency sweep around the frequency difference between the two cavity modes as

in Fig. 35b, the tune up process is more complicated and involves more steps here.

The overall mode and pump frequency spectrum is shown in Fig. 36a. Under the qubit

and cavity side-band pumps, the qubit frequency will shift from fq to f ′
q, while the cavity

frequency almost doesn’t move (f ′
c ≈ fc). The two pump frequencies need to satisfy fCSB −

fQSB = f ′
c − f ′

q = fc − fq + δ, where δ is the overall frequency shift of both qubit and cavity

modes. Since the qubit frequency shift contributes the major part of δ, we first keep track

113



Figure 36: Tune up Q-C Fock state exchange. a) Spectrum of qubit and communication

cavity frequencies and pump tones. Two pump tones, at frequencies fQSB and fCSB, are

applied near the qubit and cavity frequencies to generate the exchange interaction between

qubit and cavity. The qubit frequency shifts from fq to f ′
q under the pump, while the

cavity frequency fc almost doesn’t move. b) Pulse sequence and measurement results for

calibrating the qubit frequency shifts under individual QSB (left) and CSB (right) pumps.

c) Pulse sequence and measurement result for the Q-C Fock state exchange experiment. The

qubit is first prepared to excited state via a Rx(π) pulse at frequency fq, then two sideband

pulses are applied at fQSB, detuned by ∆ from fq, and fCSB, detuned by ∆ + δ from fc.

Finally, projective measurement is applied to the qubit. Both pulse length and δ are swept

to determine an optimized iSWAP gate. The color plot shows the Rabi-like oscillation of

the intra-module iSWAP interaction. The vertical axis is the pulse time, the horizontal axis

is the CSB extra detuning δ, and the color indicates the |g⟩ state population of qubit.
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of the qubit frequency shift by turning on the CSB and QSB pumps individually, and do

pulse-spectroscopy on the qubit while each pump is on. Figure 36b shows the qubit frequency

shift as a function of the pump amplitudes. From these two experiments, we can pick two

pump amplitudes for CSB and QSB, then sum the qubit frequency shifts induced by each

pump, this will give us an initial estimate of δ. After that, we prepare the qubit in |e⟩, turn

on both pumps at the chosen amplitudes, and fine sweep the extra pump detuning on CSB

around this frequency, as well as sweeping the duration of both pumps. This creates the

chevron plot shown in Fig. 36c. Form this, we can extract the best detuning frequency δ

and the best iSWAP gate time.

This tune up procedure is performed in all three modules that have qubits in them. The

shortest iSWAP gate times for each qubit-cavity pair are listed in Table 4. From this we

find an averaged intra-module iSWAP gate fidelity of 94%, which is mainly limited by how

fast the iSWAP gate is compared to T2 decoherence of qubit and cavity.

iSWAP pair iSWAP time (ns)

Q2 ↔ C2 1032

Q3 ↔ C3 674

Q4 ↔ C4 452

Table 4: Q-C iSWAP gate times.
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4.2.5 Full device operation

With the inter- and intra- module gates all properly tuned up, next we can operate the

full router + 4 module device as a prototype modular quantum computer. To recap our

device structure, the single-qubit modules 2-4 each consists of one communication cavity

Ci, one transmon Qi, and one readout cavity Ri, while module 1’s qubit is omitted. The

communication cavities within each module are coupled to the router, allowing for inter-

module gates between the communication modes.

For simplicity, our qubit states throughout the system are the Fock states |0⟩ and |1⟩

(or any superposition of |0⟩ and |1⟩), although the communication modes could in principle

support a variety of more complex encodings. Here, the communication cavities serve as

intermediary modes that only store (but do not compute on) quantum states, and enable

the photon exchange between modules via the router controlled exchange interactions.

4.2.5.1 Inter-module Fock state exchange

We first use the module transmons and intra-module iSWAP operations to swap Fock

states across the router, transferring single photons between distant qubits as shown in

Fig. 37a, b. The protocol begins with all qubits and cavities prepared in their ground states.

A Rx(π) pulse is first applied to Q2 which brings it to the excited state. Second, an intra-

module iSWAP gate is performed between Q2 and C2. This fully swaps the excitation from

Q2 to C2. Third, the photon is swapped between C2 and C4 across the router by pumping

on the SNAIL mode, just as demonstrated in Fig. 35. The SNAIL pump duration is varied,

which results in an effective Rabi oscillation between the two qubits when the protocol is

completed. Finally, we apply two more intra-module iSWAP gates, C2 to Q2 and C4 to Q4.

This fully transfers the states of C2 and C4 to their respective module qubits, which are then

measured simultaneously using dispersive readout of the readout (R) modes.

The results are shown in Fig. 37c and 37d. The transfer fidelity between Q4 and Q2 is

72.5±1.17 %. We perform Lindblad master equation simulations assuming ideal interactions,

with the only defect being all modes’ measured coherences ; the simulation results (dotted

curves) show a good quantitative agreement with our data, indicating that, as with coherent
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Figure 37: Intra-module Fock state exchange. a) Illustration of the photon swap

protocol, in which a photon originating in Q2 is fully swapped to C2, then depending on the

variable inter-module pulse duration, routed to Q4 or returned to Q2. b) Experiment pulse

sequence. A photon is created in Q2, then swapped to C2. Next, it is swapped (or not) to C4

with a variable duration, inter-module iSWAP pulse. Finally, the light in C2,4 is routed via

further intra-module iSWAPs to their respective qubits, which are then measured. The upper

black bar indicates the total experimental duration with τ describing the variable, SNAIL

actuated inter-module iSWAP. c) Measurement result of Q2 and Q4 for different SNAIL

pump detuning and duration. Here, the color of the 2D sweep indicates the measurement

along the qubits’ z-axis. d) A cut of the swap data along the dotted line indicated in (c).

The green triangles and purple circles are Q2 and Q4 data, respectively, and the dashed lines

are the corresponding simulation results.

state operation, the primary fidelity limit in our system is the ratio of gate time to our

modes’ coherence times. The uncertainty given for the Fock state transfer fidelity, and all

following quoted fidelities, is calculated following the ‘bootstrap method’ in Ref. [133, 134].
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4.2.5.2 Inter-module entanglement generation.

Next, we utilize a
√
iSWAP gate, created by shortening the first intra-module iSWAP

gate from Fig. 37 by close to 1/2 in duration, to create inter-module Bell states. The
√
iSWAP has the effect of taking the single photon in the qubit and coherently ‘sharing’

it between the qubit and cavity, creating a Bell state between the two modes. Overall, the

sequence first creates a Bell pair inside a module, then shifts the communication cavity’s

component to a qubit in a second module. The quantum circuit is shown in Fig. 38a. To-

mography is performed on both qubits, while the communication cavities are not measured.

The measurement results are shown in Fig. 38b.
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Figure 38: Inter-module Bell state generation. a) Quantum circuit for generating a

Bell state between Q2 and Q4. Entanglement is first generated between Q2 and C2 using

a
√
iSWAP gate, then the cavity component is moved to Q4 using two full-iSWAP gates.

b) Tomography of the joint Q2,Q4 Bloch vector, in which each bar represents a joint mea-

surement of the two qubits in the basis indicated (I indicates no measurement). Here, the

black bars indicate the experimental result, the red rectangles are master-equation simulation

results, and the gray rectangles represent the pure Bell state. The fidelity to the target Bell

state 1√
2
(|01⟩+ |10⟩) is 76.9± 0.76%, which agrees very well with the simulation prediction

of 77.2%.

From this tomographic data, we can reconstruct the density matrix of Q2 and Q4, and

find we achieve a Bell fidelity of 76.9 ± 0.76 %. The same experiment is performed on the
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other two qubit pairs Q2−Q3 and Q4−Q3) with fidelities of 58.7±2.40 % and 68.2±0.83 %,

respectively. The results were again compared with Lindblad master equation simulations

(red rectangles in Fig. 38b), and show that the dominant source of infidelity remains the

modes’ lifetimes.

In addition, we attempted a GHZ state preparation experiment between all three qubits

in the modules using a similar scheme. The experiment sequence in shown in Fig. 39a, this

protocol requires one additional entangling gate: an intra-module CNOT. We achieve this

using a state selective qubit π−pulse [135]. We reconstruct the final state from tomography

as shown in Figure 39b, and find a fidelity of 48.9 ± 5.27 %, just below the threshold for

provable entanglement. While the result falls below the threshold for provable entanglement,

it points to our ability to implement an extensive gate set in the router, and create multi-

qubit entanglement.
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Figure 39: GHZ state generation experiment. a) GHZ state generation sequence. First,

Q2 is prepared to excited state, then an intra-module
√
iSWAP gate is performed between

Q2 and C2, which creates a bell state between them. This entanglement is then transferred

to C3 via an inter-module iSWAP gate. After that, an intra-module CNOT is performed

between C3 and Q3, which entangles Q2, Q3 and C3. In the end, Q2 state is flipped with a

π− pulse, and the photon in C3 is transferred to Q4 using two iSWAP gate, which creates a

GHZ state between Q2, Q3 and Q4. b) GHZ state generation density matrix reconstructed

from tomography. Here, each element in the density matrix is represented with a color using

the Hue-Chroma-Luminance (HCL) color scheme. The amplitude of each element is mapped

linearly to the Chroma and Luminance of the color, and the phase (from 0 to 2π) is mapped

linearly to the Hue value. This color mapping scheme has the property that elements of the

same amplitude are perceived equally by the human eye, so that the small magnitudes fades

into the white background to avoid drawing the eye to small, noisy matrix elements. The

observed fidelity state is 48.9± 5.27 %

4.2.5.3 Parallel operation

Another advantage of our architecture is that we can drive multiple parametric oper-

ations in the router simultaneously, which enables parallel operation and efficient ways to

create entanglement. We demonstrate the simplest implementation of parallel operations by
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swapping light between two pairs of modules simultaneously. Here, M2 and M4 are treated

as one sub-system, while M3 and M1 form the second one. We swap a photon from Q2 to

Q4 and Q3 to C1 across the router simultaneously. The gate sequence is shown in Fig. 5a.

The two cross-module swap interactions, C2−C4 and C3−C1, are turned on simultaneously

by pumping the SNAIL mode at the two difference frequencies using a room-temperature

combiner. The SNAIL pumps are applied for a variable period. The protocol concludes with

SWAP gates between all cavity-qubit pairs and measurement of all qubits.

Figure 40: Parallel photon exchange experiment. a) Gate sequence for parallel photon

exchange over the router. b) Photon population of all three qubits vs. router swap time.

The dots are experimental results, and the corresponding dashed lines are simulation results.

The results, detailed in Fig. 40, show that Fock states can swap between both pairs of

modules simultaneously without interference or enhanced relaxation, as shown by comparison

to master equation simulations, provided we do not swap too quickly. The drive frequencies

for parallel swap processes in the router need frequency adjustments on the order of ∼100 kHz

compared to the single iSWAP case, which we attribute to dynamic and static cross-Kerr

effects due to the paired SNAIL drives. We reduce the pump strengths, slowing the gates

from 600 ns to 1300 ns, as we observe additional decoherence when running two parallel

processes at maximum pump strength. We do not believe this is a fundamental limitation,

but can be improved in future experiments by optimized SNAIL and router design.

As further proof of the quantum coherence of parallel operations in the router, we repeat

the Bell state generation protocol between Q2 and Q4 with the M1−M3 iSWAP activated in

parallel. Again, the pump strengths are decreased, slowing the inter-module swap time. We

121



achieve a Bell state fidelity of 68.1±0.79 %, while the simulated fidelity is 68.4 %. Here, the

decrease of fidelity compared to the single Bell state generation process (which has a fidelity

of 76.9± 0.76 %) is due to the longer gate time used for the C2−C4 iSWAP in the presence

of a parallel iSWAP operation.

4.2.5.4 Multi-parametric interaction

Figure 41: Multi-parametric operation. a)W state generation pulse sequence. Together,

the (iSWAP)2/3 and ‘V-iSWAP’ gates create a W state distributed across Q2, C3, and C4.

The subsequent iSWAPs redirect the latter two components to Q3 and Q4, respectively.

b) W state generation density matrix reconstructed from tomography. Each element in

the density matrix is represented by a color using the Hue-Chroma-Luminance (HCL) color

scheme. The amplitude of each element is mapped linearly to the Chroma and Luminance

of the color, and the phase (from 0 to 2π) is mapped linearly to the Hue value. This

color mapping scheme has the property that elements of the same amplitude are perceived

equally by the human eye, so that the small magnitudes fades into the white background to

avoid drawing the eye to small, noisy matrix elements. The observed fidelity of the state is

53.4± 2.56 %

To demonstrate further capabilities of our system, we also explored the use of two simul-

taneous swap processes that link one ‘source’ cavity to two ‘target’ cavities. We refer to such
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a processes as a ‘V-iSWAP’. This form of interaction, for a certain duration, empties the

source cavity, coherently and symmetrically swapping its contents into the target cavities.

By combining the V-iSWAP with a (iSWAP)2/3 gate (which is realized by turning on the

Q2 − C2 exchange interaction for t = arctan (
√
2)/geff) as shown in Fig. 41a, we can take a

single photon from Q2 and create a W-state shared among the three designated modules.

We achieve a fidelity of 53.4± 2.56 % for this state. (see state reconstruction in Fig. 41b).

Currently, the utility of the above multi-parametric gates is limited by the slowdown

of the gate times compared to individual iSWAPs. However, we believe this kind of multi-

parametrically-pumped process should be further investigated, as it could be used to generate

other multi-qubit gates in one step. Given the overhead in composing a multi-qubit gate from

a series of two-qubit and single-qubit gates (for example, a Toffoli gate can be decomposed

into 6 C-NOTs), performing these multi-parametric gates could give better performance in

terms of gate fidelity by shortening the overall sequence time/gate count, even if operating

at a lower rate.

We also note that in the above multi-parametric experiments, we observe no indication

of fridge heating despite two strong pumps being applied to the SNAIL. As discussed earlier

in section II, the replacement of attenuation with the reflective LPF at the MC plate gives

the parametric pumping scheme an advantage of 20-30 dB in fridge heating tolerance for the

same circulating powers at base.

4.2.6 Exchange gate fidelity discussion

4.2.6.1 Estimation of router gate fidelity

In the above discussion, we have listed only state fidelities of combined intra- and inter-

module operations. Although our current device setup does not support tomography on

the communication modes, the good agreement between our experiment results and the

Lindblad master equation simulations (which consider only the measured T1 decay and Tϕ

dephasing of the involved modes) indicates that our inter-module photon exchange fidelity

is only limited by the mode coherence times and the duration of gate operations in the pulse

sequence, more importantly, our parametric pumping tone doesn’t introduce extra dephasing
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on any of the modes in the system. Thus, we can estimate the performance of the router

itself by considering the gate time (T i,j
gate) and the averaged decoherence rate (Γ̄2) of each

communication cavity pair [48] Ci and Cj, i.e. F
i,j
iSWAP ≃ 1−Γ̄i,j

2 ∗T i,j
gate. Using the values listed

in Table 2 and 3, we calculate our best inferred iSWAP exchange fidelity F 1,4
iSWAP = 98.2%,

the worst F 2,3
iSWAP = 94.7%, and the average F avg

iSWAP = 96.9%.

4.2.6.2 Exchange interaction leakage mitigation

Our router design contains intermediate waveguide modes which are close in frequency to

the communication cavity modes. Thus, it is possible that when we pump an exchange pro-

cess between two cavities strongly, their states could leak into to the neighbouring waveguide

modes. Here we show how this leakage can be fixed using the idea of “derivative removal by

adiabatic gate (DRAG)” [55] at least for moderately long-lived waveguide modes.

Here we only consider the exchange process between two cavity modes c1 and c2 with

their possible leakage to waveguide modes w1 and w2. Following the same derivations as

we have done in Sec. 2.1, to see the effect of the leakage to waveguide mode, we write the

rotating frame transformation operator in a slightly different way:

R′(t) = exp
[
iωsŝ

†ŝ+ i(ωc1 − δ/2)ĉ†1ĉ1 + i(ωc2 + δ/2)ĉ†2ĉ2

+i(ωc1 − δ/2)ŵ†
1ŵ1 + i(ωc2 + δ/2)ŵ†

2ŵ2

]
,

(152)

where δ = ωc1 − ωc2 − ωp. Then the Hamiltonian after RWA becomes:

Ĥ′RWA/ℏ =
δ

2
(ĉ†1ĉ1 − ĉ†2ĉ2) + (δ/2 + ∆1)ŵ

†
1ŵ1 + (−δ/2 + ∆2)ŵ

†
2ŵ2

+ η(gc1c2sĉ
†
1ĉ2 + gc1w2sĉ

†
1ŵ2 + gc2w1sĉ

†
2ŵ1) + h.c.,

(153)

where ∆i = ωwi
− ωci . Here, the cavity-cavity exchange term that we have seen in Eq. 149

still is present in Eq. 153. However, for ηgciwj
∼ δ + ∆j (strong pump), the effects of ĉ†i ŵj

terms (waveguide-cavity exchange) can no longer be neglected. To study how this effect can

be canceled using DRAG method, we introduce the adiabatic transformation V that allows

us to work entirely in the cavity-cavity subspace. This transformation is

V (t) = exp

{[
−iRe(η)

(
i

(
gc1w2s

∆2 − δ
ĉ1ŵ

†
2 +

gc2w1s

∆1 + δ
ĉ2ŵ

†
1

)
+ h.c.

)]}
. (154)

124



After the adiabatic transformation, we have

ĉi → ĉi +Re(η)ζiŵj, ŵj → ŵj − Re(η)ζiĉi (155)

where i, j = 1, 2; i ̸= j; ζ1 =
gc1w2s

∆2−δ
; ζ2 =

gc2w1s

∆1+δ
. After the transformation, the leakage terms:

ĉ†1ŵ2 and ĉ†2ŵ1 become:

igc1w2sωs

ω2
d − ω2

s

(
ϵy +

ϵ̇x

∆2 − δ

)
ĉ†1ŵ2 +

igc2w1sωs

ω2
d − ω2

s

(
ϵy +

ϵ̇x

∆1 + δ

)
ĉ†2ŵ1 + h.c., (156)

We find these terms can be cancelled under the condition:

ϵy = − ϵ̇x

∆2 − δ
and ϵy = − ϵ̇x

∆1 + δ
. (157)

Also, ac-Start shift (phase) error can be eliminated with the detuning δ that satisfies:

δ/2 + Re2 (η)
g2c1w2s

(∆2 − δ)2

(
−∆2 +

3

2
δ

)
= 0; δ/2 + Re2 (η)

g2c2w1s

(∆1 + δ)2

(
∆1 +

3

2
δ

)
= 0 (158)

Thus, we have eliminated the leakage to the nearest waveguide mode, however, we also

notice that this frame induces the term c†iwi with η2. This error can also be removed by

adding higher transformation to the system, but because of the fact that we drive the system

much detuned, this term can be ignored when η << 1.
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4.3 Engineering the coherence time for new module/router design

4.3.1 Upgraded quantum router device design

Mitigating loss due to SNAIL pump port and bias magnet. As discussed in

Sec. 4.2.1.2, in our previous router design the two necessary elements for controlling the

SNAIL device: the bias magnet and the pump port, were both placed inside the waveguide

mode, as shown in Fig. 42a,b. These two elements form lossy modes that limit the coherence

of the waveguide mode, thereby in turn limiting the performance of the router controlled

operations.

Figure 42c,d depict our updated router design, where the SNAIL chip is relocated to an

aluminum tube seamlessly connected to the bottom part of the waveguide body (machined

as one monolithic piece). The pump port and the magnet are directly connected only to

the SNAIL tube. This tube serves as a high-pass filter with a base mode frequency greater

than 20 GHz, efficiently preventing the electromagnetic fields of the waveguide modes we

use in the system to propagate into the tube. As a result, the direct couplings between the

waveguide modes and the lossy elements are significantly suppressed, which greatly improves

the coherence of the waveguide modes and releases the Purcell limits on communication

modes due to their coupling with the router. Additionally, the SNAIL device is designed

with an asymmetric antenna that extends into the waveguide, which creates sufficiently

strong couplings between the SNAIL and the waveguide modes, and gives hybridization

strengths that are comparable to our previous router design, i.e.,
(

g
∆

)
sw

∼ 0.1− 0.3.

Improving router-communication cavity seam quality. Another major source of

loss in our previous modular system originated from the seam at the joint of the communi-

cation cavity and the router. In the previous design, we used indium wires to seal around

this seam, hoping to form a superconducting gasket between the two aluminum bodies, as

shown in Fig. 43a. In our upgraded design, the sidewalls of the modules and waveguide

are machined with diamond-coated end mills to provide a very smooth initial finish. We

then further polish the machined device using sandpapers of progressively finer grits until

a mirror-like finish is achieved, as shown in Fig. 43b. Note that the upper piece of the
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a b

c d

Magnet

Pump port

Magnet

Pump port

Figure 42: Upgraded SNAIL port and magnet design. a) and b) display the cross-

section of the router at the SNAIL pump port in our initial design. Both the pump port and

the magnet were positioned within the waveguide, creating low-Q modes that degrade the

lifetime of router modes. On the other hand, Figures c) and d) illustrate our revised design,

in which the SNAIL chip is moved to an aluminum tube that integrates seamlessly with the

waveguide. As a result, the two loss-inducing control elements have been removed from the

waveguide’s interior, significantly reducing their direct coupling to the waveguide mode and

thereby enhancing the waveguide modes’ lifetimes.

waveguide is intentionally machined to be narrower than the bottom piece, and the modules

are bolted only with the bottom piece, thus we can avoid potential air gap due to the mis-
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alignment between the two parts of the waveguide. This flat, polished aluminum-aluminum

surface contact results in much lower loss compared to indium wire sealing (see the discussion

on improving seam losses in [136]), as confirmed by our preliminary measurement results.

a b

Indium sealing
Polished sidewall

Figure 43: Upgraded router-module connection. a) shows the router-module connec-

tion interface in our old device, in which the gap between the communication cavity and the

waveguide was sealed using indium wires. b) presents the new device, in which the waveg-

uide and the cavity both have meticulously polished sidewalls. This improvement results in

a significantly higher seam quality compared to our original design.

Preliminary measurement results. We have performed coherence time measure-

ments on the upgraded waveguide + 4 communication cavity device. This measurement is

performed without the SNAIL chip present, but with the SNAIL magnet and pump port

attached. The measurement results are summarized in Table 5.

W1 W2 W3 W4 C1 C2 C3 C4

f(GHz) 4.300 4.973 5.926 7.033 4.205 4.852 5.830 6.932

T1(µs) 1210 736 280 597 290 241 58 85

Table 5: Upgraded router mode parameters.

We have achieved coherence times in the range of hundreds of microseconds for both the

communication cavities and the waveguide modes, which are much longer than the values

we measured in the previous design (Table 1 and 2), affirming the success of the redesign
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efforts I discuss above. It is noteworthy that all components in the upgraded design are still

machined using 6061 alloy aluminum. The measured mode coherence values are comparable

to those reported previously using much higher purity aluminum (4N-5N) [129, 137]. This

further proves that the seam loss and direct couplings to lossy elements in the system is no

longer limiting the mode lifetimes, and we speculate that we have now reached the material

loss limitation of the alloy aluminum in our device.

This redesign project has provided us with valuable guidelines for developing future mod-

ular superconducting 3D devices, specifically with regards to engineering coupler control

elements without introducing extra system loss, and making high quality connections be-

tween parts of modular devices. Moving forward, we are working on deploying this upgraded

router device for larger-scale modular quantum devices with the expectation of significantly

improved coherence and gate performance.

4.3.2 Improving protection against environmental decoherence sources

Besides the improvements in the device design, we have also been putting efforts in

engineering better protection for our quantum device against environmental decoherence

sources. Multiple previous studies have demonstrated that a significant source of decoherence

for superconducting qubits arises from the breaking of Cooper pairs at the Josephson junction

via the absorption of high-energy stray photons[138, 103, 139]. These high-energy photons

can interact with our qubit device either by direct radiation that penetrate through the multi-

layered thermal and magnetic field shields that surrounds the sample, or by propagation

along the control/readout lines which are directly connected to our device. To better isolate

our device from these decoherence channels, we have adopted several improvements both in

device packaging and fridge wiring scheme.

Figure 44 shows the upgraded device packaging that we adopted for our four-qubit module

device (which I will introduce in Sec. 4.4.1). In this packaging, we connect lab-assembled

Eccosorb filters (CR-110) [140], that can effectively block high-energy photons from our

device port, with very short microwave cables. We also replaced part of the attenuation

we put on the drive line with square-shaped, copper-body ones from Quantum Microwave
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b

Eccosorb filters

Cryogenic copper-body attenuators

High quality  ZLSS low-pass filter

Eccosorb foam

a

c

d

Figure 44: Upgraded device packaging. a) Filters and attenuators housed within the

cryo-perm (Amumetal A4K) can. Each element is polished on its contact surface with the

copper sample holder to ensure good thermal contact. b) and c) Additional layers of re-

flective (aluminzed Mylar, McMaster) and absorptive (Eccosorb foam, Digikey) materials

within the cryo-perm can, for providing extra protection against high-energy stray photons.

d) Interior of the Low-Temperature Co-Fired Ceramic (LTCC) filters and suspended sub-

strate filters. The resonator-based suspended substrate has much better overall performance

and can be more effectively thermalized with the fridge plate.
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so that they can be tightly bolted to the cold sample holder for better dissipation of hot

thermal noise. The low-pass filter we used for protecting the over-coupled SNAIL mode is

also upgraded from ”low temperature co-fired ceramic” (LTCC) type filters (Fig. 44d left)

to ”suspended substrate” type ones (Fig. 44d right), which offer much less refection loss in

the stop band and transmission loss in the pass band, and has a solid aluminum body with

bolt holes that we can also thermal-anchor well to the fridge plate.
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Eccororb Filter

K&L low-pass filter

Mini-Circuit ZLSS low-pass filter

Figure 45: Upgraded fridge wiring diagram.

This whole package is then wrapped with layers of aluminum Mylar and Eccosorb foams

that acts as extra reflective and absorptive shields against high-energy photons (Fig. 44b,
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c), and is finally put in a cryo-perm can for magnetic field shielding.

Figure 45 shows a representative example of the enhanced fridge wiring diagram that we

now typically use for parametrically controlled quantum devices. In comparison with the

wiring scheme we used in the previous experiment (Fig. 32), the incorporation of additional

filters and attenuators on the drive line, along with extra insulators on the output line have

given us a much better overall device performance in our four-qubit module device, as will

be listed in Table 6.

132



4.4 Expanding modular architecture

4.4.1 The 4-qubit quantum module

In Section 4.2, I’ve discussed the design and realization of our prototype modular quan-

tum computer based on a quantum state router. The experiments on that device primarily

aimed to test the router’s functionality as a 4-port device that realizes all-to-all communi-

cation among four basic modules, each was designed to host a single transmon qubit. To

realize the full modular structure quantum computer as depicted in Fig. 25, the next scaling

step is to construct compact quantum modules that can support all-to-all connections with

a larger number of qubits.

Figure 46: Schematic and photograph of the 4-qubit module. a) Coupling scheme

of the 4-qubit module. Four transmons qubits (Q1 − Q4) are directly coupled to a central

SNAIL mode (S). Each qubit has a dedicated readout resonator (R). b) 3D rendering of

the device design. The SNAIL and qubit chips are housed within five individual aluminum

tubes. c) Photograph of the device.

Based on the methods we have developed in building the quantum state router, one intu-

itive approach we conceived for connecting multiple qubits in the quantum module is to use

a similar SNAIL based three-wave-mixing coupling scheme. However, unlike in the router

design where we need the intermediate waveguide modes to distribute the central SNAIL’s

non-linearity across a large 3D space to accommodate multiple modules, the module design

is more straightforward. In the module design, we skip the intermediate modes and directly
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couple multiple qubits to the SNAIL chip, this not only mitigates the extra frequency crowd-

ing issue induced by the intermediate modes, but also aligns with the module’s requirement

for compactness.

Coupling scheme and gate operations. Figure 46a shows the coupling scheme we

designed for our four-qubit quantum module. Four transmon qubits Q1 − Q4 (each with a

dedicated readout resonator (R1 − R4)) are directly coupled to a central SNAIL mode (S),

and forms three-wave-mixing Hamiltonian:

Ĥ3wm
Mod/ℏ =

∑
i ̸=j

gqiqjs(q̂
†
i q̂j ŝ+ q̂iq̂

†
j ŝ

†). (159)

This three-wave-mixing Hamiltonian takes the same form as the one we created between

the communication cavity modes and the SNAIL mode in Eq.147, and the interaction co-

efficient gqiqjs also follows similar non-linearity propagation rule: gqiqjs ≈ 6gsss(
g
∆
)qis(

g
∆
)qjs.

By pumping on the SNAIL mode at the difference of of the two qubits’ |g⟩ ↔ |e⟩ transition

frequencies, i.e. fp = |f ge
qi

− f ge
qj
|, we can activate the Q−Q exchange interaction:

Ĥeff
qq/ℏ = geffqiqj q̂

†
i q̂j + geff

∗

qiqj
q̂iq̂

†
j . (160)

Again, this effective Hamiltonian closely resembles the C − C exchange interaction we

had in Eq. 149. However, the qubit-qubit exchange interaction here behaves quite differently

from the ”beam-splitter” gate between cavities, since both modes involved here are actually

two-level systems. The time evolution operator of this Hamiltonian can be explicitly written

down as a simple 4-by-4 matrix:

Ûqq(t) = exp

[
iĤeff

qq t

ℏ

]
=


1 0 0 0

0 cos(gt) i sin(gt)e−iϕp 0

0 i sin(gt)eiϕp cos(gt) 0

0 0 0 1

 , (161)

in which g = abs
(
geffqiqj

)
and ϕp = arg

(
geffqiqj

)
. Note that the |11⟩ ⟨11| component in this

matrix is constant 1, as a result, instead of having to make the assumption that the |11⟩ state

was never occupied as we did in section 4.2, this Q − Q time evolution operator naturally
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takes the same form as the iSWAP family operators. In particular, the
√
iSWAP operator

of this family, created by applying the pump for t = π
4g
, is a highly potent universal two-qubit

quantum gate [62, 61]. and we can use this
√
iSWAP to gate compile arbitrary two-qubit

operations in the module system.

In addition, using the gqss(q̂
†ŝŝ + q̂ŝ†ŝ†) three-wave mixing term, we can perform single

qubit sub-harmonic gate by driving the SNAIL mode around at half of the qubit mode

frequency. The details of this sub-harmonic qubit control scheme have been discussed in

Sec. 2.2.1 and Ref. [56]. This allows all the single- and multi-qubit operations within the

module to be performed via a single SNAIL port.

Brief overview of the device design. Based on this qubit-SNAIL coupling scheme, we

have designed and build our 4-bit module device, as shown in Fig. 46b,c. The device contains

one SNAIL chip, and four transmon qubits with stripline readout resonators [91] hosted in

five individual aluminum tubes. Each mode has a dedicated control/readout port that are

made with commercial SMA waveguide probes. The qubit tubes are positioned perpendicular

to the central SNAIL tube, with their openings arranged in a way that they do not directly

face each other. This layout effectively limits the direct qubit ZZ interactions, which is

usually a challenging engineering problem in such compact multi-qubit devices with all-to-

all connectivity. With near-zero direct qubit-qubit coupling, the qubit static ZZ interaction

primarily arises from the qubits’ mutual coupling to the SNAIL mode. Given our designed

hybridization strength of ( g
∆
)qs ∼ 0.03, the qubit cross-Kerr (ZZ interaction) coefficient

χqiqj is on sub-kilohertz level. This result is further validated through our experimental

measurements based on conditioned Ramsey experiments.

Preliminary measurement results. We have performed basic characterizations, as

well as single and two-qubit gates on this four-qubit quantum module. The result are sum-

marized in in Table 6.

The coherence times and gate fidelities we measured in this device have shown substantial

improvements in comparison to those in the prior router experiment. We attribute these

improvements to various design adjustments and drive line upgrades, that will be discussed

in detail in Sec. 4.3. Currently, we are working on further improve gate fidelities and
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f (GHz) T1 (µs) T2R (µs) T2E (µs)
Single-qubit

gate fidelity

Sub-harmonic

gate time (ns)

Q1 3.871 91.0 32.0 34.0 99.80 % 220

Q2 4.385 50.3 30.9 39.9 99.84 % 12.1

Q3 4.863 60.3 17.9 30.3 99.85 % 34.2

Q4 5.863 68.3 34.5 41.7 99.88 % 38.7

S 4.276 3.03 1.52

Table 6: Mode life time and gate fidelities in the four-qubit module.

mode coherence in this four-qubit module device. Moreover, we are investigating multi-

qubit interactions [61] and exploring potential qubit encoding schemes for error-correction

[141, 142] algorithms within this system.

4.4.2 Module-router coupling scheme

Figure 47 presents a schematic representation of our proposed future integration of a four-

qubit module with the quantum router to construct a 16-qubit modular quantum processor.

The coupling of the router-module is realized through an additional stripline resonator that

couples with both the SNAIL mode of each module and a designated waveguide mode in

the router. This resonator serves as the communication mode between the router and the

module, just like the communication cavity we used in section 4.2.

This structure preserves the advantage we had in the router + 4 single-qubit-module

device design. Namely, the use of a resonator mode as communication mode accommodates

different kind of module encodings, and serves as a separation point between the router and

each module. To make each module compatible with the router, only the communication

resonator needs to be carefully designed to match with its designated waveguide mode, while

the qubit frequencies can be the same for each module without worrying about frequency

collision with qubits in other modules, because of their negligible direct coupling with the
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Router

Module Comm.
resonator

Figure 47: Schematic of our proposed 16-qubit modular quantum processor. Our

previously designed quantum router is used to couple four 4-qubit modules. Each module has

an additional stripline resonator that couples both to the SNAIL mode in the module and an

intermediate waveguide mode in the router. This resonator functions as the communication

mode between different modules. To make each module be compatible with the router, only

the shape of these stripline resonators need to be adjusted to create desired coupling with

the waveguide modes and to avoid frequency crowding during the inter-module operations.

While the design of the qubit set and SNAIL mode within each module could be the same.

router modes.

To further scale up this modular structure for a greater number of qubits, we need to

contemplate the idea of linking multiple routers together, following the similar idea of how
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each module and the router is linked, and build the whole device in a self-similar, tree-like

structure.

4.4.3 Other modular coupling schemes

The aforementioned design scheme provides a realistic approach for the physical realiza-

tion of the modular structure we originally proposed in Fig. 25. The methods and techniques

we have developed in building the router and module system not only facilitate our current

design but also pave the way for envisioning the development of modular quantum processors

with alternative architectures. It’s important to note that the structure depicted in Fig. 47

is not the only blueprint for scaling up a modular system. Moreover, it was not initially

apparent whether the original proposal was indeed the most hardware-efficient strategy for

executing quantum algorithms. To further investigate these considerations, we have recently

initiated a collaborative co-design project with computer scientists, Prof. Alex Jones and his

PhD student Evan McKinney, to explore alternative architectural possibilities for modular

quantum computers with the focus on optimizing computational efficiency [143].

One of the major results that come out from this co-design project are the “Corral”

structure qubit-qubit connection schemes, as depicted in Fig. 48. These connection schemes

has the same number of logical qubits (16) as we have in the structure shown in Fig. 47. In

Figure 48, the red vertical cylinders represent SNAIL couplers and green/yellow horizontal

bars are the qubits coupled between them. The qubit coupling architecture implements

an octagonal ring of modules, each consisting of 4 qubits, forming a pattern of fence-post

connections. The structure in Fig. 48a is the most straightforward to implement physically -

each qubit is coupled to its two nearest adjacent SNAILs, which we denoted as Corral1,1, and

resulting topology is shown in Fig. 48b. Figure 48c and d shows a slightly modified version,

in which the second fence of each module is connected to the second nearest neighbor,

which consequently decreases the average distance between all pairs of qubits. Both of these

structures can be physically built using the techniques and methods we have developed in

the compact 4-qubit module device.

Despite initially appearing similar to a ring, we note that the Corral topoligies actually
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Figure 48: 16-qubit modular device based on the “Corral” architectures. a) Cou-

pling diagram of the Corral1,1 structure. Each red pole represents a SNAIL chip, while the

green bars represent qubit chips. b) Topology of the Corral1,1 structure. c) Coupling di-

agram of the Corral1,2 structure. The yellow bars represents qubits that connect between

second nearest neighbouring SNAILs, which give shorter averaged qubit-qubit communica-

tion distance in the whole device. d) Topology of the Corral1,2 structure.

exhibit a coupling structure similar to a 4-D hypercube, which has rich local connections

and shows even higher operation efficiency in terms of state routing and quantum algorithm

decomposition [143]. The Corrals could be further scaled by adding more posts (modules)

in the ring; or with more complex designs that connect Corrals with Tree-like modules or

layouts with Corrals in a lattice pattern.

In conclusion,our research into the design and realization of the quantum router and

module system has helped us gained invaluable experiences in integrating SNAIL couplers

and qubits in 3D devices of modular structures. These experiences allow us to venture into

increasingly complex qubit connection topoligies, enabling us to move toward the future

physical realizations of larger-scale and more computationally efficient modular structure

quantum computers.
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5.0 Multi-parametric Interactions and Their Applications

The previous chapters have provided a detailed discussion on the theory and physical

realization of parametric quantum operations. Most of these discussions focus on performing

two-qubit exchange interactions using a three-wave-mixing coupler device, which requires a

monochromatic external pump at the frequency difference between the two target modes.

Interestingly, when multiple parametric processes are activated simultaneously, they can

give rise to entirely new quantum dynamics [144, 145, 146]. In this chapter, will present

examples of how multi-parametric interactions can be used to construct innovative multi-

qubit gates. Additionally, I will introduce a multi-parametric-based approach to perform

longitudinal measurement on the transverse components of a transmon qubit, supported

by preliminary experimental data. The gates introduced in this chapter, along with the

experiment on parametric qubit measurement, further demonstrate the vast potential of

parametric interactions in performing quantum operations that go beyond conventional gate

operations.

5.1 Novel multi-qubit gates

5.1.1 Multi-parametric two-qubit gates

In Section 2.2.2, I briefly introduced how the two seemingly different gates, the iSWAP

gate and the bSWAP gate, can be converted into one another by simply adding single

qubit gates before and after the two-qubit gates. In the language of group theory for gate

operations, these two gates areconsidered “locally equivalent” as one gate can be transformed

by introducing single qubit gates before and after it into the other [147], as illustrated in

Fig. 49a. This local equivalence can be visualized using the mathematical tool known as the

“Weyl Chamber” [148, 66]. As depicted in Fig. 49b, each unique type of two-qubit gate can

be represented by a specific coordinate (c1, c2, c3) within or on the surface of this chamber,

140



b

a

𝑖SWAP (𝜋/2, 𝜋/2, 0)

𝑖SWAP  

CNOT (𝜋/2, 0, 0)

(𝜋/4, 𝜋/4, 0)

Identity (0, 0, 0)

SWAP (𝜋/2, 𝜋/2, 𝜋/2)

Berkeley (𝜋/2, 𝜋/4, 0)

A = B
U1 

U2 

U3 

U4 

Figure 49: ‘Local equivalence’ of two qubit gates and the Weyl Chamber. a) Circuit

demonstration for the ‘local equivalence’ of two qubit gates. The two two-qubit gates A and

B are ‘locally equivalent’ if there exist a set of single qubit gates U1 − U4 such that A can

be decomposed into B using this circuit template. b) The Weyl Chamber representation

for the unique types of two-qubit gates. Each point in this chamber is described by three

coordinates (c1, c2, c3), representing a distinct class of two-qubit gates up to local unitary

equivalence. The locations of some commonly used two-qubit gates are labeled in the figure.

where locally equivalent 2Q gates, differing only by 1Q gates, are mapped to the same

coordinate. For example, the iSWAP and bSWAP gates share the same coordinate (π
2
, π
2
, 0).

When we tune the duration of the parametric pump, the coordinates of the (iSWAP)α

gates will move along the line connecting the ‘Identity’ point to the ‘iSWAP’ gate point, as

depicted in Fig. 50. Meanwhile, the coordinates for the (bSWAP)α gates will move along the

same trajectory. However, when both the difference frequency and sum frequency pumps

are activated simultaneously, a new system Hamiltonian arises:

ĤGC/ℏ = ηc(σ̂a,+σ̂b,− + σ̂a,−σ̂b,+) + ηg(σ̂a,+σ̂b,+ + σ̂a,−σ̂b,−), (162)

in which ηg and ηc are the coefficients for the bSWAP and iSWAP interactions, respectively.

We refer to this Hamiltonian as the ‘GC’ interaction Hamiltonian, as terms activated by

these two pumps resemble the Hamiltonians found in the ‘gain’ and ‘conversion’ processes
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of parametric amplifiers [144, 145, 146]. The time evolution operator of this interaction can

be written as:

Ûgc(t) =


cos (ηgt) 0 0 −i sin (ηgt)

0 cos (ηct) −i sin (ηct) 0

0 −i sin (ηct) cos (ηct) 0

−i sin (ηgt) 0 0 cos (ηgt)

 . (163)

Figure 50 shows the Weyl Chamber coordinates of gates produced by turning on the sum

and difference frequency pumps for various durations (t) with different relative coefficient

(ηg
ηc
). The results show that even though the iSWAP/bSWAP family of gates are funda-

mentally different than the CNOT gate, activating the bSWAP and iSWAP interactions

simultaneously with matched coefficients causes the trajectory of the gate’s Weyl Chamber

coordinates to move along the line connecting the Identity and the CNOT gate. Conse-

quently, a CNOT-equivalent gate can be constructed by implementing the ‘GC’ interaction

with ηc = ηg and t =
π
4ηg

. Another noteworthy case is when ηc = 3ηg, and t =
π
8ηg

. This oper-

ation yields a B (Berkeley) gate, which has been demonstrated to be capable of constructing

any arbitrary two-qubit quantum gate with a minimal number of both two- and single-qubit

gates [149]. In fact, by running the pump duration (t) and the relative coefficient (ηg
ηc
), we

can produce any gate on the bottom plane of the Weyl Chamber.

5.1.2 Parametric three-qubit gates

The multi-parametric interactions can also be extended to involve more than just two

qubits, enabling the creation of multi-qubit gates that act on three or more qubits. Although

circuit-based quantum computing only requires a set of universal single- and two-qubit gates

to compile an arbitrary quantum algorithm [1], having direct access to gates that manipu-

late three or more qubits can still be helpful, as these gates can potentially accelerate the

execution of quantum circuits by reducing the number of gates needed, and facilitate the

generation of highly entangled multi-qubit states in a single operation. They also appear

frequently in error correction, for instance using a third, ancillary, qubit to measure the
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𝜂𝑔 = 0 or 𝜂𝑐 = 0

𝜂𝑐 = 𝜂𝑔

𝜂𝑐 = 3 𝜂𝑔𝑖SWAP (𝜋/2, 𝜋/2, 0)

𝑖SWAP  

CNOT (𝜋/2, 0, 0)

(𝜋/4, 𝜋/4, 0)

Identity (0, 0, 0)

Berkeley (𝜋/2, 𝜋/4, 0)

Figure 50: The trajectories of two-qubit gates’ Weyl Chamber coordinates pro-

duced by continuous single- and multi-parametric interactions.. For single bSWAP

or iSWAP family gates, changing the length of the parametric pump causes trajectory to

move along the line connecting the Identity gate and the iSWAP gate. When the bSWAP and

iSWAP interactions are turned on simultaneously with matched coefficients (i.e. ηc = ηg),

the trajectory produced by different pump lengths aligns with the line connecting the Iden-

tity and the CNOT gate. When ηc = 3ηg, the trajectory moves toward the Berkeley gate

starting from the Identity gate.

parity of two data qubits. As example demonstrations of this idea, we present two 3-qubit

gates realized via multi-parametric pumping.

The “V-SWAP” gate. The “V-SWAP” gate was briefly introduced in Sec. 4.2.5.4.

By turning on the exchange interaction between one source qubit mode A and two target

qubit modes B and C with matched interaction coefficient η, we get the effective system

Hamiltonian:

ĤVSWAP = η(σ̂a,+σ̂b,− + σ̂a,−σ̂b,+) + η(σ̂a,+σ̂c,− + σ̂a,−σ̂c,+), (164)

This interaction can be understood as evenly distributing the photon stored in mode A to

mode B and C. By turning on this interaction for duration t = arccos
(
1/
√
3
)
/(
√
2η), we
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get the operator for the ‘V-SWAP” gate.

ÛVSWAP =



1 0 0 0 0 0 0 0

0 1
6
(3 +

√
3) 1

6
(−3 +

√
3) 0 − 1√

3
0 0 0

0 1
6
(−3 +

√
3) 1

6
(3 +

√
3) 0 − 1√

3
0 0 0

0 0 0 1√
3

0 − 1√
3

− 1√
3

0

0 1√
3

1√
3

0 1√
3

0 0 0

0 0 0 1√
3

0 1
6
(3 +

√
3) 1

6
(−3 +

√
3) 0

0 0 0 1√
3

0 1
6
(−3 +

√
3) 1

6
(3 +

√
3) 0

0 0 0 0 0 0 0 1


(165)

This gate can be used to generate a maximally entangled three-qubit state known as the

“W State”. By initializing the system in the simple product state |100⟩ and subsequently

applying the VSWAP gate, the system can be prepared to the desired state 1√
3
(|100⟩+|010⟩+

|001⟩) in one step.

The “∆-SWAP” gate. Another interesting three-qubit gate is the “∆-SWAP” gate,

which can be constructed by simultaneously turning on all three exchange interactions be-

tween three mode A,B and C, with matched coefficient η, and a special set of relative

pumping phase {ϕab = π/2, ϕac = −π/2, ϕbc = π/2}. The effective Hamiltonian can be

written as:

Ĥ∆SWAP = η
[
eπ/2σ̂a,+σ̂b,− + e−π/2σ̂a,−σ̂b,+ + e−π/2σ̂a,+σ̂c,−

+eπ/2σ̂a,−σ̂c,+ + eπ/2σ̂b,+σ̂c,− + e−π/2σ̂b,−σ̂c,+
]
.

(166)

By setting pump duration t = 2/(3
√
3π), we get the operator for the ‘∆-SWAP” gate.

Û∆SWAP =



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1



(167)
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This gate exhibits a unique behavior: based on the parity of the initial state, it circulates

the photon excitation among the three modes in opposite directions. Using this gate, we can

generate a “GHZ-like” state in the three mode system by starting from the initial product

state |1⟩⊗ |0⟩⊗ 1√
2
(|0⟩+ |1⟩), and applying this gate. The final state generated by this gate

gives: 1√
2
(|001⟩+ |110⟩), which is a “GHZ-like” maximally entangled three qubit state.

5.2 Qubit transverse component readout with a dissipative SNAIL coupler

The aforementioned multi-parametric interaction can also be used to construct a trans-

verse component readout on a qubit. Before we delve into the discussion of this experiment,

let us briefly review the existing readout schemes for superconducting qubits (transmons).

Traditionally, the readout of a transmon qubit is performed using the dispersive readout

technique [19, 20]. The core Hamiltonian term used in this readout scheme is the qubit-cavity

cross-Kerr term:

Ĥdisp,z/ℏ =
χ

2
σ̂z ĉ

†ĉ, (168)

in which ĉ and ĉ† are the annihilation and creation operators of a readout cavity that is

dispersively coupled to the qubit, while σ̂z denotes the Pauli-Z operator of the qubit. The

coefficient χ is generally referred to as the “dispersive shift”, which means that different σ̂z

eigenvalues of the qubit will change the cavity frequency by χ. Therefore, by applying a near-

resonance microwave drive to the cavity mode and monitoring the phase and/or amplitude

shift of the returned signal, we can perform a continuous, quantum non-demolition (QND)

measurement along the σz axis of the qubit. Tomographic measurement along the σx and σy

axes (transverse components) can be done by applying a pre-rotation on the qubit before the

σz measurement. Alternatively, it is also possible to perform continuous QND measurements

on the transverse components of the qubit. In the work presented by Vool et al.[150], this

was realized by engineering an effective Hamiltonian term that looks similar to Eq. 168 but

with the σ̂z operator replaced by σ̂x/ σ̂y operators, allowing for dispersive readout of the

corresponding qubit components.

Despite the widespread adoption of the dispersive readout scheme in superconducting
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Figure 51: IQ trajectories for dispersive and longitudinal readout. Example evolu-

tion of the pointer states on the IQ plane for longitudinal (solid lines) and dispersive (dashed

lines) readout schemes. Blue and orange correspond to the qubit in |g⟩ and |e⟩ states, re-

spectively. In dispersive readout, the two traces have very small separation at the beginning

of the readout. In contrast, the two traces in the longitudinal readout scheme consistently

move in opposite directions.

qubit experiments, which has led to progressively higher readout speeds and fidelities [151,

152, 153], this method does come with inherent issues. One of the major challenges is to

be able to rapidly populate the cavity photon number at the beginning of the measurement

process. As depicted in Fig. 51, the trajectories of the two cavity states that correspond to

the two measurement outcomes (also known as the pointer states), do not move toward the

steady state along a straight line. Instead, they initially move in the same direction, resulting

in minimal information about the qubit state at short measurement times. Accelerating the

readout process necessitates either a larger cavity drive amplitude or a stronger coupling

to the external port (denoted as κ). However, both parameters cannot be excessively high,

since an increased drive amplitude could activate unwanted qubit-cavity transitions [90],
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while a larger κ could impose a Purcell limit on the qubit’s lifetime [154]. Furthermore,

the readout term in Eq. 168 is an always-on, non-rotating term. This implies that without

careful management [155], stray photons in the cavity can unintentionally readout the qubit,

leading to qubit decoherence.

To address these issues, one proposed solution is to construct a different form of qubit-

cavity coupling, known as the “longitudinal coupling” [156, 21, 157, 158], in which the qubit

is coupled to the cavity field via its longitudinal degree of freedom. This coupling scheme

enables a new readout protocol, termed “longitudinal readout”[21], characterized by the core

Hamiltonian:

Ĥlong,z/ℏ = ζ(t)σ̂z(ĉ+ ĉ†). (169)

In the interaction picture, this Hamiltonian generates an on-resonance drive on the cavity,

with the sign of the drive depends on the qubit’s σ̂z eigenstate. As illustrated in Fig. 51,

the cavity will be displaced to opposite directions when the qubit is in different states.

Consequently, the trajectories of the pointer states consistently move in opposing direc-

tions, yielding a significantly faster initial readout speed compared to the dispersive readout

scheme [21]. The bare longitudinal interaction has been realized experimentally with super-

conducting circuits [159, 160], while the QND longitudinal readout has also been performed

“effectively” using parametric driving methods[161, 162].

Up to this point, we have used the adjectives “transverse” and “longitudinal” in various

contexts. It would be beneficial to pause here and provide some clarity regarding these

terminologies.

In terms of readout scheme:

• cavity operator for dispersive readout: c†c

• cavity operator for longitudinal readout: (c+ c†)

In terms of readout component:

• qubit longitudinal component: σ̂z

• qubit transverse components: σ̂x, σ̂y

Here in our experiment, by synchronously activating the parametric conversion and ‘gain’

interactions between a qubit and a lossy SNAIL coupler device, we effectively creates a
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longitudinal readout on the transverse component of the qubit. The effective readout

Hamiltonian is given by:

Ĥlong,xy/ℏ = ζ(t) [cos(θ)σ̂x + sin(θ)σ̂y] (ĉ+ ĉ†), (170)

in which the measurement direction θ is fully controllable by the phase of the parametric

pumps, allowing us to measure along any arbitrary axis on the equator of the Bloch sphere.

This direct QND measurement along the transverse axes of the qubit is useful in various

quantum error correction schemes [30, 81], and has the advantage of being “fast” as an

longitudinal readout protocol. Most importantly, in contrast to the previously mentioned

dispersive/longitudinal readout experiments on the transverse/longitudinal components of

the qubits [150, 163, 161, 162], which all rely on finite cross-Kerr for operation, our readout

protocol is fully based on parametric three-wave-mixing processes. Therefore, the measure-

ment can be completely deactivated when the parametric drives are turned off, leading to a

substantial reduction in stray cavity photon induced qubit decoherence.

In the following sections, I will provide a concise overview of the theory and the complete

experimental protocol for this parametric readout experiment we conducted using a standard

transmon qubit and a lossy SNAIL coupler.

5.2.1 Brief theory of the parametric transverse component readout

The basic experiment setup contains a qubit mode Q that is coupled to another mode

S with third order non-linearity, as depicted in Fig. 52 The total bare Hamiltonian of the

system can be written as:

Ĥ0/ℏ = −ωq

2
σ̂z + ωsŝ

†ŝ + g3(ŝ+ ŝ†)3 + gqs(σ̂+ŝ+ σ̂−ŝ
†), (171)

in which ωq and ωs denote the frequencies of the Q and S modes, respectively. The coefficient

g3 is the strength of the third-order non-linear term, and gqs represents the direct coupling

strength between the two modes.
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Figure 52: Coupling scheme for the parametric readout experiment. A qubit mode,

Q, with frequency ωq is weakly coupled to a non-linear mode, S, that has third order non-

linearity. Two pumps are applied to the S mode at frequencies corresponding to the difference

and sum of the Q and S mode frequencies. These pumps effectively generate an on-resonance

drive on the S mode, with a phase that is dependent on the eigenstate of the qubit’s trans-

verse component. Therefore, the qubit’s transverse component readout can be performed by

collecting and demodulating the output signal from the SNAIL mode.

To activate the parametric measurement process, two external pumps are applied to the

S mode at the frequencies ωp,+ = ωs + ωq and ωp,− = ωs − ωq (assuming ωs > ωq). The

Hamiltonian terms of these two pumps can be written as:

Ĥp,+/ℏ = i εp,+(t) cos(ωp,+t+ ϕp,+)
(
ŝ† − ŝ

)
Ĥp,−/ℏ = i εp,−(t) cos(ωp,−t+ ϕp,−)

(
ŝ† − ŝ

)
,

(172)

in which εp,± and ϕp,± are the amplitudes and phases of the two pumps, respectively. Fol-

lowing the full derivations that we have introduced in Sec. 2.1, these two pumps will activate

two parametric processes:

ĤG/ℏ = ζ+(t)
(
e−iϕp,+σ̂−ŝ

† + eiϕp,+σ̂+ŝ
)

ĤC/ℏ = ζ−(t)
(
e−iϕp,−σ̂+ŝ

† + eiϕp,−σ̂−ŝ
)
,

(173)
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in which ζ±(t) are the effective interaction strengths. The relationship between ζ±(t) and the

amplitudes and frequencies of each pump can be determined using the formulas presented

in Sec. 2.1.4, which gives:

ζ±(t) = 6g3
gqs

ωs − ωq

ωp,±

ω2
p,± − ω2

s

εp,±(t). (174)

We refer to the two processes in Eq. 173 as parametric ‘gain’ (G) and ‘conversion’ (C)

processes, as they mirror the similar processes of these names in parametric amplifiers [164,

145, 144, 146]. As introduced in Sec. 2.2.2, when the S mode is also a qubit, these two

processes correspond to the iSWAP and bSWAP interactions between the Q and S modes,

while turning on both pumps simultaneously can create a new family of two-qubit gates

[61]. However, when the S mode is a lossy, weakly anharmonic mode, the conversion process

will induce a parametric cooling effect that stabilizes the qubit to the |g⟩ state, while the

gain process will parametrically heat the qubit and stabilize it to the |e⟩ state [165]. When

both processes are activated simultaneously and the pump amplitudes are adjusted such that

ζ+ = ζ− = ζ, the effective system Hamiltonian can be expressed as:

Ĥeff/ℏ = ĤG/ℏ+ ĤC/ℏ

= ζ(t)
(
e−iϕp,+σ̂−ŝ

† + eiϕp,+σ̂+ŝ+ e−iϕp,−σ̂+ŝ
† + eiϕp,−σ̂−ŝ

)
= ζ(t)

(
eiϕmσ̂− + e−iϕmσ̂+

)
(eiϕs ŝ+ e−iϕs ŝ†)

= ζ(t) [cos(ϕm)σ̂x + sin(ϕm)σ̂y] (e
iϕs ŝ+ e−iϕs ŝ†),

(175)

in which we have reorganized the phase terms and defined:

ϕm = (ϕp,+ − ϕp,−)/2 (176a)

ϕs = (ϕp,+ + ϕp,−)/2 (176b)

Thus, by applying the two parametric pumps that activate the gain and conversion

(GC) processes with matched coefficients, we create the effective Hamiltonian of longitudinal

readout along the transverse axes of the qubit. The qubit measurement direction is controlled

by ϕm (with the subscription ‘m’ denotes ‘measurement’), while the displacement direction

of the S mode is determined by ϕs (with the subscription ‘s’ denotes ‘signal’). Both ϕm and

ϕs are fully controllable by adjusting the phase of the two pumps: ϕp,+ and ϕp,−.
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5.2.2 Experiment setup

To physically realize the Hamiltonian described in Sec. 5.2.1, we designed and built the

device shown in Fig. 53. This device actually uses the same 3D aluminum housing that

was designed for our 4-qubit module, which I have introduced in Sec. 4.4.1. The central

tube contains a SNAIL device that is used to provide the third-order non-linearity and

perform the parametric readout. For the purpose of this experiment, only one of the qubit

channels is used. The channel hosts a transmon qubit (Q) fabricated on a sapphire chip. To

perform basic qubit characterization and verify the result of the SNAIL-based parametric

measurement, a strip-line resonator (R) is fabricated on the same chip as the qubit for

performing conventional dispersive readout.

SNAIL

Qubit
Readout res.

1 cm

1 cm

Figure 53: 3D design and picture of the device used in the parametric readout

experiment. The aluminum hosing contains one central channel that hosts a SNAIL chip,

and four perpendicular channels for qubit chips. In this experiment, only one qubit channel

is used, which hosts a transmon qubit with a stripline readout resonator.

The full device parameters are listed in Table 7. The frequencies of the SNAIL and

qubit are carefully designed to ensure that all associated control and readout frequencies fall

within the analog bandwidth of the DACs and ADCs on a single Xilinx RFSoC ZCU-216

board. This facilitates straightforward phase synchronization among all the direct digital
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Qubit SNAIL Readout resonator

Frequency (GHz) ω/2π 3.544 4.972 5.378

Relaxation time (µs) T1 41.2 0.056 0.179

Coherence time (µs) T2,R 32.0

Anharmonicity (MHz) α −181

Coupling with qubit mode (MHz) g/2π 22 71

Cross-Kerr with qubit mode (MHz) χ/2π ≈ −0.09 −0.54

Coupling with port (MHz) κext/2π 2.585 0.791

Table 7: Parameters for modes in the parametric measurement experiment.

synthesized (DDS) control and readout channels, which is critical for the success of this

experiment, as will be illustrated in Sec. 5.2.6 .

Another parameter that is worth highlighting is that the direct coupling between the

qubit and SNAIL is intentionally designed (and measured) to be very small, specifically,

gqs/2π = 22.0MHz, which results in a very small estimated static qubit-SNAIL cross-Kerr

χqs/2π ≈ −90 kHz (primarily caused by the self-Kerr of the qubit). This value is significantly

lower than the typical cross-Kerr used in dispersive readout experiments, suggesting a much

reduced decoherence induced by cavity thermal photons. This residual cross-Kerr can be

further mitigated either by engineering the SNAIL design [49] or by applying additional

external drives [155].

Figure 54 shows the fridge wiring diagram and setup of room temperature electronics

for the control and measurement of the parametric readout experiment. The qubit drive,

conversion pump, and the gain pump are all generated using direct digital synthesis (DDS)

with a ZCU-216 board, which ensures the long-term phase coherence for the multi-parametric

operation. The readout resonator drive is generated using an up-conversion circuit with the

local oscillator provided by an external SignalCore generator; the same generator is used for

the down conversion of the resonator’s output signal, thus the phase drift of the generator
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Figure 54: Fridge wiring diagram and setup of room temperature electronics for

control and measurement of the parametric readout experiment.

is canceled. The output signal from the SNAIL is first amplified using a travelling-wave

parametric amplifier (TWPA) at the mixing chamber plate, then further amplified using a
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conventional HEMT amplifier and another low-noise amplifier at room temperature. We

acknowledge Lincoln Lab for providing us with the TWPA, and the QICK team from Fermi

Lab, as well as Sara Sussman from Houck group at Princeton for their generous and extremely

helpful support on operating the RFSoC board with QICK. The data we acquired in this

experiment would not have been possible without all their help.

5.2.3 Tune up matched gain-conversion processes

The first step of tuning up the parametric measurement is to tune up matched gain and

conversion processes. As illustrated in Eq. 173 and 174, in the ideal 3-wave mixing process,

the interaction coefficients of the two processes (ζ+ and ζ−) are independently controlled by

the amplitudes of the corresponding pumps (ε+ and ε−). Therefore, these two processes can

be individually tuned to find the drive amplitudes that yield the same interaction coefficient.

As shown in Fig. 55, in the conversion process, the qubit is first prepared to |e⟩ state

using a π pulse, then a pump at frequency fp,− = fs−fq+δ− is applied on the SNAIL mode.

The detuning δ− is added to compensate for the AC-Stark shift effects during the pump. By

sweeping the detuning and length of the pump, and measure the final σ̂z expectation value

of the qubit using the readout resonator, we acquire the “Chevron-like” plot that shows the

qubit is “cooled” to the ground state when the pump is applied at the right frequency, as

shown in Fig. 55b1. We then fit the data from the “on-resonance” trace (i.e. when the

pumping frequency matches with the Stark-shifted Q − S frequency difference) to acquire

the effective interactions strength ζ− under this pump, as shown in Fig. 55c1. The fitting

function we used is

⟨z⟩ = A cos2[ζ−(t+ t0)] exp(−tκqs) + A0, (177)

in which t is the independent variable — the length of the pump. The parameters A,A0

and t0 are free parameters that are related the state preparation and measurement (SPAM)

errors. The decay rate κqs = 1/2(κq + κs) is the averaged decay rate of the qubit and the

SNAIL.

The similar experiment is performed for the gain process, in which the qubit is prepared

to the |g⟩ state, and the pump is applied at frequency fp,+ = fs + fq + δ+. The result shows
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that the qubit is now parametrically heated to the |e⟩ state. We then tune the amplitude

of the gain pump to make the resulted interaction coefficient ζ+ match with the one we

acquired from the conversion process, ζ−. This will give us an initial guess for the pumping

condition.

When both the gain and conversion pumps are activated simultaneously, the Stark shift

effects induced by both pumps must be taken into account. This will cause the pumping

frequencies to shift by an additional ∼ 10MHz compared to the conditions found in the

individual pump cases. Fortunately, as seen from Eq.174, the effective interaction strength

is less sensitive to this relatively small frequency change, given that all the mode frequencies

are on the gigahertz level. Therefore, to find the pump condition that yields the matched,

on-resonance GC interaction when both pumps are on, we can perform a simple 2D sweep

over the frequencies of the two pumps, with fixed pump amplitudes that we’ve determined

from the individual tune-up processes, and a fixed pump length (3µs). The pulse sequence

and experiment results are shown in Fig.56. The qubit is first prepared in the 1√
2
(|g⟩+ |e⟩)

state with a π/2 pulse, then the gain and conversion pumps are turned on at the amplitudes

that we’ve found in the previous step, and the two frequencies are swept. A final tomography

measurement is performed on the qubit using the readout resonator after applying the pumps.

Figure 56b plots the qubit Z component after after the application of the GC pumps.

The figure shows that when only one process is resonant, the qubit is either parametrically

cooled (blue region) or heated (red region). The central white point in this plot corresponds

to when both pumps are tuned on-resonance. At this point, the qubit’s Z component is

measured to be 0. Meanwhile, in Fig. 56c, the qubit’s transverse component is maximized.

This indicates that the GC pumps applied a measurement along an axis on the equator of

the Bloch sphere, such that the length of the qubit’s transverse component is preserved after

the measurement. Therefore, the central point of this plot indicates the ideal GC pumping

condition (amplitudes and frequencies of the two pumps) for performing the parametric

transverse component on the qubit.
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Figure 55: Tune up individual gain and conversion processes. a1) Pulse sequence for

parametric qubit-SNAIL photon conversion experiment. The qubit starts from |g⟩ state and

is prepared to the |e⟩ state with a π pulse. Then, a pump is applied around the frequency

difference between the SNAIL and qubit modes. After applying the pump for various lengths

of time, the qubit is measured along the z axis using the readout resonator. b1) “Chevron-

like” plot that shows the “cooling” of the qubit under different pump lengths and frequencies.

c1) Line-cut of b1) at the on-resonance drive frequency. The orange line represents the fitted

curve, which is used to extract the interaction coefficient. a2)-c2) Experiment sequence and

measurement results for the qubit-SNAIL gain process.
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Figure 56: Tune up of simultaneous gain and conversion processes. a) Pulse sequence

for tuning simultaneous gain-conversion (GC) process. The two pumps are applied at fixed

amplitudes and lengths, while the frequencies are swept to find the on-resonance pumping

condition. b) Qubit z measurement result after the GC pumping. The blue and red region

indicates parametric cooling and heating of the qubit when only one pump is on-resonance,

while the white region in the middle indicates the optimal combination of pumping frequen-

cies that lock the qubit to a state on the equatorial plane of the Bloch sphere. c) Qubit

transverse component amplitude,
√

⟨x⟩2 + ⟨y⟩2, after applying the GC pumps. The bright

region in the middle indicates that the qubit transverse component is preserved during the

pump.
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5.2.4 Tune up the measurement frame

Once we have the matched gain and conversion coefficients, the next step is to tune up

the phase of the measurement. As illustrated in Sec. 3.3.2, the AC-Stark shift effects will

introduce additional phase shifts when the two pumps are turned on. In our parametric

measurement experiment, there are two phases we need to consider. First, the relationship

between the measurement direction and the pump phases in Eq.176a will have a constant

offset, ϕm,0, that must be calibrated. This ensures clarity about the direction along which

we are measuring. Second, after the GC measurement, the qubit’s final state will undergo

a phase change, ϕm,1. This phase change needs to be calibrated and then corrected with a

virtual-Z (VZ) gate [94, 95, 56] to ensure that the gates following the parametric measurement

will still be performed in the correct frame.

The values of ϕm,0 and ϕm,1 can be calibrated in a single phase-sweep experiment, as

illustrated in Fig. 57a. The pulse sequence is basically the same as in Fig. 56a, with the

difference being that we now sweep the phase of the initial preparation pulse on the qubit,

ϕq. At the beginning of the experiment, the phases of all the drive channels are reset to 0,

so the parametric measurement will be performed along direction ϕm,0. Taking into account

the additional phase shift ϕm,1 after the parametric measurement, the final tomography

measurement of the qubit will yield:

⟨x⟩ = cos(ϕm,1 + ϕm,0) cos(ϕq − ϕm,0)

⟨y⟩ = sin(ϕm,1 + ϕm,0) cos(ϕq − ϕm,0)

⟨z⟩ = 0.

(178)

A typical measurement result is shown in Fig. 57b. By fitting the ⟨x⟩ and ⟨y⟩ traces to

two sinusoidal functions, we can extract the value of ϕm,0 and ϕm,1. To correct these two extra

phases, we can simply add 2ϕm,0 to ϕp,−, and apply a VZ gate with phase −ϕm,1 after the

parametric measurement. Consequently, with these phase adjustments, the same experiment

produces the results shown in Fig. 58c, which shows that parametric measurement is now

aligned with the x axis, and the qubit state after measurement is adjusted back to the

measurement axis. It is worth noting that the readout signal coming out from the SNAIL

will also carry a constant phase offset, determined by the Stark-shift effects and the values of
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Figure 57: Tune up phase for parametric measurement. a) Bloch sphere representation

for the phase offset of the parametric measurement, ϕm,0, and the Stark-shift induced qubit

phase change after the GC pumping, ϕm,1. b) Qubit tomographic measurement result versus

the initial phase ϕq before calibrating the two phase offsets. c) Same experiment as in b) but

after compensating for the two phase offsets by adjusting the pump phase and applying

virtual-Z gates.

ϕp,− and ϕp,+. However, this doesn’t impact the fact that the two pointer states will always

separate in opposite directions. When a phase-sensitive amplifier is used in the readout chain

[161], the phase of the readout signal can be adjusted by tuning the values of ϕp,− and ϕp,+

to align with the desired amplification direction. Otherwise, this constant phase offset can

also be easily compensated in software post-processing.
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Figure 58: Examine measurement back action with various pump length. a) De-

cay of the qubit’s Bloch vector length R as a function of pump length at different initial

preparation phases ϕq. The measured value of R decays rapidly when the initial phase of

the qubit is perpendicular to the measurement direction. In contrast, the decay is much

slower when the qubit’s initial phase aligns parallel to the measurement direction.. b) Qubit

tomographic measurement result versus the pump length for ϕq = 0. The decay of R is

fitted to a exponential function and we extract a decay rate close to the static T2 of the

qubit, which indicates the quantum non-demolition nature of our parametric measurement.

c) Qubit tomographic measurement for ϕq = 90◦. The qubit undergoes fast decoherence un-

der the pump. From the decay trace we can extract the measurement rate of the parametric

readout.
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With the measurement direction tuned, we can apply the pump for various lengths of

time to examine the back action of our parametric measurement. The results are shown in

Fig. 58. The parametric measurement direction is tuned to be along the +x direction. After

applying the GC pumps for various lengths of time, the length of the qubit Bloch vector,

R =
√

⟨x⟩2 + ⟨y⟩2 + ⟨z⟩2, is calculated using the final tomography measurement results.

When the qubit is prepared in the |±x⟩ state, we obtain a decay constant of R that equals

to T eff
2 = 27µs, which is close to the static T2 of the qubit, indicating the quantum non-

demolition (QND) nature of the parametric measurement. On the other hand, when the

qubit is prepared in the |±y⟩ state, the decay constant of R is fitted to 77 ns, which indicates

a measurement rate of 13MHz.

5.2.5 Acquire and verify the parametric readout result

The tune-up process described above only involves applying the pumps and measuring the

final state of the qubit using the readout resonator. However, the actual result of the para-

metric readout is carried by the light emanating from the SNAIL mode. Figure. 59a shows

the complete experimental sequence, which involves capturing the output signal from the

SNAIL and demodulating the measurement results. The qubit is first prepared to |+x⟩ , |+y⟩

and |−x⟩ states, then the GC pumps are applied using the amplitude, frequency, and phase

parameters that we have tuned in the previous steps. Meanwhile, the out put signal from

the SNAIL is sent to the ADC, where demodulation is performed with direct digital synthe-

sised reference signal. After the GC pumping, a tomographic x measurement on the qubit is

performed using the readout resonator to verify the final qubit state after the measurement.

Figure 59b shows the acquired signal from the SNAIL when the qubit is prepared to |+x⟩

and |−x⟩ states. The time traces show that the SNAIL is displaced to two opposite directions

when the qubit is prepared to the two eigenstates along the parametric measurement axis. By

applying a longer pulse (6µs) and integrating the time traces, we can plot the IQ histogram

shown in Fig. 60a. The histogram is rotated such that the separation is maximized along

the I axis. The two Gaussian distributions centered around the right and left side of the

IQ plane correspond to when the qubit is prepared in the |+x⟩ and |−x⟩ states. The qubit
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Figure 59: Full parametric readout experiment. a) Pulse sequence of the parametric

readout experiment. The qubit is first prepare to three different states on the equator of the

Block sphere using π/2−pulses of different phases. Then, the gain and conversion pumps

are turned on simultaneously, meanwhile, the output signal from the SNAIL is acquired by

the digitizer where the digital demodulation is performed. Finally, a traditional tomographic

measurement is performed on the qubit using the stripline readout resonator. b) The time

domain output signal acquired from the SNAIL after demodulation. The result shows that

the output signals have a 180◦ phase difference when the qubit is prepared in the |+x⟩ and

|−x⟩ states, indicating that the output signal indeed carries the qubit’s state information.

state after the parametric measurement is further examined by calculating the average x

component of the qubit, conditioned by the measurement outcome of the final tomographic

x measurement [166]. This conditioned map is plotted in Fig. 60b, which shows that the

qubit’s final state is in the |+x⟩ / |−x⟩ eigenstate when the parametric measurement outcome

yields histograms on the right/left.

Using the histogram in Fig. 60a, we can calculate the fidelity of the parametric xmeasure-

ment. We draw a separation line between the left- and right-displaced Gaussian distributions,

and count the possibility of the measured (I,Q) points being on the right(left) side when the

qubit was prepared in the |+x⟩ (|−x⟩) state. These possibilities give us the measurement

fidelities for the |+x⟩ and |−x⟩ states, which yield F+x = 89.2% and F−x = 89.3%. These
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Figure 60: IQ histogram of the SNAIL measurement result. a) Integrated IQ his-

togram of the SNAIL output signal for different qubit initial states. The result shows that

the SNAIL mode is displaced to opposite directions when the qubit is prepared to the two

eigenstates of the σ̂x operator. b) Conditioned σ̂x measurement result from the final qubit

tomography measurement. When the SNAIL is displaced to the right/left, the qubit stay at

the |+x⟩ / |−x⟩ state after the parametric measurement, which proves the QNDness of the

parametric measurement.

fidelities are on par with previously reported continuous x measurements on transmon qubits

using different methods [150]. The infidelity of the measurement is mostly dominated by the

separation of the two Gaussian distributions. By projecting the two 2D Gaussian distribu-

tions onto the I axis and fitting them to two 1D Gaussian functions, we extract a separation

of 2.65σ, which gives a separation fidelity of 90.7%. To achieve larger separation between the

two Gaussian distributions, we need to population the SNAIL with higher averaged photon
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numbers. In our current setup, this is limited by the finite self-Kerr of the SNAIL mode

at our operation bias, where the system is most sustainable under the GC pumps. Moving

forward, we are working on repeating the experiment with arrayed SNAIL devices [79, 76],

in which the self-Kerr is greatly suppressed and hopefully can provide us with better readout

fidelity.

The protocol presented here also has the prospect of measuring multi-qubit operators by

coupling more than one qubit to a single SNAIL. For example, using the fifth order term of

the SNAIL, we can perform joint σxσx measurements of two qubits, which is very desirable

in surface code error correction schemes. Moreover, the effective Hamiltonian constructed

in Eq. 175 also has applications in other quantum operations, including multi-parametric

amplification [145, 144, 146], qubit bath engineering [165], and logical qubit operations in

various innovative quantum error corrections schemes [141, 167].

5.2.6 Stable phase coherence control with the RFSoC board

The success of the parametric measurement experiment relies strongly on the ability to

generate stable phase coherence signals for the qubit drive, the parametric pumps and the

reference tones for the SNAIL signal demodulation. Following the protocol introduced in

Sec. 3.3.2 and using the phase relation in Eq. 176, we find that to maintain a stable phase

for the parametric measurement experiment, the following conditions must be satisfied:

ϕq − (ϕp,+ − ϕp,−)/2 = const

ϕs,r − (ϕp,+ + ϕp,−)/2 = const,
(179)

in which ϕq is the phase of the qubit drive channel, ϕp,+ and ϕp,− are the phases of the gain

and conversion pumps, respectively. Phase ϕs,r is the phase of the reference tone for SNAIL

signal demodulation.

We have performed this parametric measurement experiment using two signal generation

approaches: 1) mixer-based setup with low-frequency AWGs and signal generators, and

2) direct digital synthesized (DDS) signals with an RFSoC board controlled with “Qick”

[85]. Maintaining the phase coherence condition described in Eq. 179 within a short time
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period (tens of seconds) is achievable in both setups, although the mixer-based up-/down-

conversion circuits are more complex to set up and require careful selection of the local

oscillator (LO) frequencies, while the DDS pulses simply requires a FPGA-controlled phase

reset on all channels at the beginning of each experiment. However, maintaining long-term

phase stability (over hours) is significantly more challenging in the mixer-based setup, due

to the difficulty in preserving relative phase stability between different LO channels. To test

the phase stability of the two different hardware setups, we repeated the phase calibration

experiment in Fig. 57 for ten hours with fixed control parameters set in the software.
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Figure 61: Long time-scale phase stability using different hardware setups .

a) Phase stability data obtained from running the phase calibration experiment using a

mixer-based control circuit for a duration of 10 hours. The phase exhibits a 6-minute period

drift caused by imperfections in the phase lock loop of the signal generators, and also shows

a larger overall phase drift over several hours due to temperature fluctuations. b) Phase

stability data of the same experiment obtained with a a QICK-controlled RFSoC board.

The phase remained stable throughout the entire 10-hour experiment.

Figure 61a shows the phase stability of the mixer-based setup. Although all the signal

generators and AWG channels used were locked to an external 10 MHz Rubidium clock, we

still observed a ∼ 6min-period phase drift due to the imperfections of the phase-lock-loop

in the signal generators, as well as an overall slow drift that we attribute to changes in
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room temperatures over time [168, 56]. Such drift makes all experimental studies extremely

tedious, as re-calibration is required every few minutes. In contrast, Fig. 61b shows the

same experiment performed using a QICK-controlled RFSoC board, where all the drives were

generated using direct digital synthesis with phase reset on each repetition. The measurement

phase remained stable over the entire 10-hour experiment, which allows long-time averaging

and greatly simplifies the phase calibration process.
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6.0 Conclusions and Perspectives

With the key concept of parametric interactions as the central theme, this thesis has

provided a thorough discussion of the theory, realization and applications of parametric in-

teractions in superconducting quantum systems. The theoretical derivation in Ch. 2 provides

a comprehensive illustration of charge-pumped parametric interactions. Through careful cal-

culation and analysis, we revealed the power of these interactions to facilitate universal single-

and two-qubit gates with full microwave control.

Chapter 3 discussed the indispensable role of FPGA-based microwave electronics for

real-time quantum control. In this discussion, we introduced and compared the two kinds

of control systems - mixer-based and direct-digital synthesised (DDS) pulse generation and

readout schemes. It became evident that the more recent RFSoC devices offer significant

benefits for controlling superconducting quantum devices, due to their simplicity of the

hardware setup and ability to maintain long-term relative phase coherence.

Utilizing these parametric interactions, I have conducted two major experiments. Namely,

the realization of quantum state router, and parametric readout on the transverse component

of a transmon qubit. These experiments serve as demonstrative examples that shows the

power and versatility of parametric interactions. The protocols and results presented here

have important implications for future development of coupler devices for superconducting

quantum computing, enabling novel modular quantum processor designs with innovative

topologies, and potentially inspiring other uses of parametric interactions in the manipula-

tion of superconducting quantum systems.

In our extensive journey of designing and implementing modular quantum processors,

we’ve gained invaluable experiences into simulating, fabricating, and controlling paramet-

rically coupled multi-mode systems. However, the most profound lesson we’ve learned is

the versatility of parametric interactions. They offer flexibility not just in the variety of

operations they can perform, but also in enabling novel coupling architectures. While indus-

try giants like IBM and Google have made significant progress in integrating an increasing

number of qubits using the surface code structure, we, as academic researchers, can enrich
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the field by venturing beyond established paradigms. It’s crucial that we explore innovative

qubit connection architectures, and the parametric coupling scheme offers many opportuni-

ties in this area. For example, the single-qubit subharmonic gate introduced in Sec. 2.2.1

stands as a neat recent outcome of adopting this strategy, which provides non-traditional

high-performance single-qubit gates by exploiting the intrinsic non-linearity of the transmon

qubit itself.

Finally, I leave the reader with a brief discussion of two areas where I feel there are both

great opportunities and pressing need for further work. First, how we can use my results to

further-scale up modular quantum processors, and second, addressing one of the skeletons

in the closet of parametric driving: understanding and controlling their speed limits.

6.1 Perspectives

6.1.1 Scaling up modular quantum processors

The quantum router and module experiments demonstrated in Ch. 4 has shown the ef-

fectiveness of the parametric coupler devices in achieving dense all-to-all couplings between

multiple modes, while effectively limiting cross-talk effects. However, extending such cou-

pling to a much larger number of modes (≳ 10) presents challenges. A significant issue

is frequency crowding, since each parametric operation needs to be addressed by a unique

sum/difference frequency. The router-module coupling scheme depicted in Fig. 47 solves

this problem by segmenting large multi-mode devices into smaller clusters of all-to-all cou-

pled devices. These smaller devices then use intermediate communication modes to exchange

quantum information via the router. Although our first generation quantum router and mod-

ule experiments have been successful and indicate the feasibility of this coupling scheme, we

shouldn’t restrict our focus solely to this architecture. The parametric coupling strategy

offers a plethora of possibilities for establishing qubit-to-qubit connections. For instance,

the designs in Fig. 48 leverage a similar direct coupling between qubits and SNAIL couplers,

but create multi-mode systems with higher qubit communication efficiency than the router-
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module design, although it is not as clear how to chop the corral into smaller circuits to

allow it to be fully modular.

Central resonator

Coupler

Qubit

Figure 62: A 16-bit coupling scheme with potentially identical qubit sets in each

module. Four 4-bit modules are coupled to one central cavity mode. Each module uses

a central SNAIL coupler (highlighted in blue) to perform intra-module gates between the

qubits (marked in yellow). The exchange interaction between qubits of different modules

can be activated by applying two pumps on two SNAILs, which can directly perform gates

between the target qubits and only virtually occupy the central cavity mode. The decision

of which SNAILs to pump gives us the precision to select the specific qubits on which to

perform the gate. As a result, qubit sets in different modules can share the same frequency

without the concern of frequency crowding.

Moreover, we can also think about mitigating the frequency crowding issue using inno-

vative ways of applying the parametric pumps. For instance, Fig. 62 presents an alternative

multi-mode coupling scheme based on parametric interactions. Unlike the coupling scheme

in Fig. 47, which requires intermediate communication modes to separate the intra- and

inter-module operations, this approach directly links the couplers of each module to a mu-

tual “virtual transfer station” mode. To activate an intra-module qubit-qubit exchange

interaction, one simply needs to apply pumps to the coupler modes of the two modules.

Each pump should be applied at a frequency that is detuned from the difference between the
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target qubit mode and the “transfer station” mode, creating a direct parametric exchange

interaction between the target qubits without occupying the central mode. This method

enables the execution of real all-to-all gates across all 16 modes in the four modules. More

importantly, selecting which intra-module interaction to activate is determined by deciding

which two couplers to pump. Therefore, this design allows for identical qubit sets across

different modules, substantially reducing the frequency crowding overhead.

6.1.2 Is there a boundary for parametric quantum operations?

The parametric interaction is used extensively in the experiments introduced in this

thesis. The simplified theory based on the truncated Hamiltonian introduced in Ch. 2 seems

to indicate that faster parametric operations can be realized by simply applying stronger

pumps. However, in practice we do encounter limitations on stronger parametric pumps.

One obvious practical limitation is that the cooling power of dilution refrigerator sets the

cap for the maximum power we can apply on the pump lines. This limitation is more like

a engineering problem that can be solved by improving the cooling power of the fridge and

carefully engineering the pump line design, as introduced in Ch. 4. On the other hand, as

the pump gets stronger, we have also observed other unexpected effects that can decrease

the fidelity of parametric quantum operations, which includes: 1) the desired interaction

strength stops increasing monotonically as we increase the strength of the pump, 2) the

coherence time of the modes in the system begin to decrease as the pump gets stronger, and

3) at even stronger pump power, a ‘break down’ behaviour is observed, where all the modes

in the system are suddenly heated to high-photon-number states with a small increase of

pump power, as shown in Fig. 63.

These effects appear to be more closely related to the intrinsic quantum dynamics of

the system when exposed to a strong external pump, which are actually more concerning.

However, it remains uncertain whether any of these effects suggest a fundamental limitation

to parametric operations. For instance, the reduced speed of parametric gates as pump

power increases might be attributable to the fifth-order effect in the SNAIL coupler device.

This issue might be addressable by creating an array of SNAIL loops to suppress higher-
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Figure 63: Breakdown behaviour of qubit-SNAIL system under strong external

pump. This data was obtained in our four-qubit module device that has been introduced

in Ch. 4. We prepare two qubits Q2 and Q3 in their ground states and apply pumps on

the SNAIL at different frequencies and amplitudes. Under each pumping frequency, there

is a critical pump power that suddenly heats both qubits to a high-photon-number state.

The similarity of the two qubits’ behaviour indicates that there is probably a “break down”

behaviour happening in the SNAIL coupler at the critical pump power, which leads to the

catastrophic reaction of the whole system.

order nonlinear terms [79]. Nevertheless, the decoherence of the qubit and the observed

breakdown behavior still needs further investigation. Understanding the dynamics of these

effects requires us to conducting theoretical studies and comparing the theoretical results

with the observed effects. This behavior has been seen before in semi-classical devices,

where it was associated with chaos and limit cycles, closely related to the classical behavior

of Kerr oscillators [169]. However, in our quantum system it is unclear how these concepts

cross over. In previous work in our laboratory, we explored similar concepts in two-mode

Josephson frequency comb devices[170, 171] A deeper understanding of these dynamics and
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how the concepts apply in semi-classical and more fully quantum systems is an area of active

research in the lab and with our theory collaborators, and should pave the way for the design

of improved coupler devices. This, in turn, can help sidestep these problems, pushing the

boundary for higher fidelity parametric operations.
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Appendix A General formula for displacement transformation in a non-linear

oscillator under parametric pumping

The derivation presented here is adapted from a calculation note shared by Prof. Roger

Mong. We consider a general oscillator mode A, with frequency ωa and non-linear interaction

term g(â, â†), under an external parametric pump f(t). The total system Hamiltonian can

be written as:

Ĥ/ℏ = ωaâ
†â + g(â, â†) + f(t)â† + f ∗(t)â (180)

Note that the pumping term f(t)â†+f ∗(t)â is written in a generalized form to accommodate

either flux coupling or charge coupling between the external pump and the quantum mode A.

For example, in the case of charge coupling as shown in Eq. 43, we have f(t) = ε(t)e−iωpt −

ε∗(t)eiωpt.

Our goal is to eliminate the f terms via a unitary transformation-specifically with a

displacement operator:

ÛD = exp
(
za† − z∗a

)
. (181)

Using the Baker–Campbell–Hausdorff (BCH) formula, we can calculate the transformation

of the photon annihilation and creation operators, which gives:

ÛD â Û †
D = â− z,

ÛD â† Û †
D = â† − z∗.

(182)

The time derivative of ÛD is a bit more complicated to calculate. We need to first use a

derived form of the BCH formula (know as the Zassenhaus formula) to rewrite ÛD as:

ÛD = e−
1
2
|z|2ezâ

†
e−z∗â. (183)
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Then we can take the time derivative of each exponent term, and keep in mind the commu-

tation relation [â, â†] = 1. We have:

d

dt
ÛD = (−|z||ż|)e−

1
2
|z|2ezâ

†
e−z∗â

+ e−
1
2
|z|2(żâ†)ezâ

†
e−z∗â

+ e−
1
2
|z|2ezâ

†
(−ż∗â)e−z∗â

=
[
−|z||ż|+ żâ† + ezâ

†
(−ż∗â)e−zâ†

]
e−

1
2
|z|2ezâ

†
e−z∗â

=
[
−|z||ż|+ żâ† − ż∗(â− z)

]
ÛD

=

[
−i|z|2d arg (z)

dt
+ żâ† − ż∗â

]
ÛD

(184)

Using Eq. 182 and the final result in Eq. 184, we can calculate the system Hamiltonian

after the displacement transformation, which can be written as:

Ĥ′/ℏ = ÛDĤÛ †
D/ℏ+ i

˙̂
UDÛ

†
D

= ωaâ
†â + [−ωaz + iż + f(t)] â† + [−ωaz

∗ − iż∗ + f ∗(t)] â

+ |z|2 [ωa + ∂t arg (z)] + g(â+ z, â† + z∗).

(185)

For a given pumping function f(t), to transfer away the pumping terms, we need to find

a time-dependent function z(t) such that:

f(t) = ωaz(t)− iż(t) (186)

Generally, the parametric pumps are applied with constant carrier frequencies, so f(t) can

be written as:

f(t) =
∑
Ω ̸=ωa

fΩ eiΩt, (187)

where fΩ is the amplitude of the frequency component Ω. Let

z(t) =
∑
Ω̸=ωa

zΩ eiΩt. (188)

Then Eq. 186 can be solved with Fourier decomposition, and we get the final solution for

z(t) that can be used in the displacement transformation to eliminate the pumping terms.

z(t) =
∑
Ω̸=ωa

fΩ
Ω + ωa

eiΩt (189)
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Appendix B Systematic approach for enumerating the potential parametric

interactions in a multi-mode system with nth order non-linearity

Consider a system that consists of a central coupler mode C, and (N − 1) linear modes

A1, . . . , AN−1 coupled to C. The C mode has a frequency of ωc and has nth order non-

linearity. Each linear mode Ai has a frequency of ωi and is coupled to the C mode with

a hybridization strength of λi = gc,ai/(ωi − ωc). Following the calculation in Sec. 2.1, the

interaction picture Hamiltonian for the system under external pump can be written as:

ĤI/ℏ = gn

(
ĉe−iωct +

N−1∑
i=1

λiâie
−iωit + ηe−iωpt + h.c.

)n

, (190)

in which ωp is the pumping frequency, and the effective pump photon term η follows the same

definition as in Eq. 50. The expansion of Eq. 190 contains a vast collection of possible n-wave

mixing parametric processes that can be activate by the external pump. Our goal here is

to systematically enumerate all the potential parametric processes and their corresponding

pump frequencies. To achieve this, we introduce the following formalism:

• Generally, a n-wave mixing parametric process should involve k (1 ≤ k ≤ n−1) pumping

terms η, and ℓ ≡ (n − k) mode operators. Therefore, we can categorize the n-wave

mixing processes based on the number of “pump photons” involved. Namely, we denote

the interactions that involve k pumping photons as ‘ηk interactions’.

• An ηk interaction term from the expansion of Eq. 190 can be generally written as:

ηke−ikωpt ô1ô2 . . . ôℓ e
iω

(ℓ)
rott, (191)

in which each mode operator ôi is picked from the collection of all the annihilation and

creation operators for the modes in the system1, i.e.,

ôi ∈ {ĉ, ĉ†, â1, â†1, . . . , âN−1, â
†
N−1} (192)

1Note that the coupler mode itself can also get involved in a parametric transition, e.g., pumping at
ωp = (ωc − ωa1

)/2 will activate the exchange interaction between the C and A1 mode
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Each operator carries a phase that is oscillating at its (positive or negative) mode fre-

quency, these frequencies form the collection

Ω = {∓ωc,∓ω1, . . . ,∓ωN−1}. (193)

The sum of the rotating frequency for each operator gives the total rotating frequency

of the mode operators ω
(ℓ)
rot.

• Thus, all the possible ℓ-variable sums of the rotating frequencies drawn from Ω form the

collection of the possible overall rotating frequencies of the ℓ operators.

ω
(ℓ)
rot ∈ Ω

(ℓ)
rot =

{
ℓ∑

i=1

ωmi

∣∣∣∣ ωmi
∈ Ω,mi ≤ mi+1 for mi ∈ [1, . . . , 2N ]

}
, (194)

in which Ω
(ℓ)
rot denotes the collection of all possible ω

(ℓ)
rot values. The additional constraint

mi ≤ mi+1 ensures that we only select the unique combinations from the rotating fre-

quency set Ω, e.g., ωa + ωb and ωb + ωa are considered as the same element in Ω
(2)
rot. The

size of Ω
(l)
rot is |Ω

(l)
rot| =

(
2N+ℓ−1

ℓ

)
.

• In the ηk interaction, the effective pumping frequency is kωp. Each parametric transition

corresponds to a pumping frequency that can compensate the overall rotating frequency

of the mode operators, i.e.

kωp = ω
(ℓ)
rot = ω

(n−k)
rot (195)

Note that the overall rotating frequency set Ω
(n−k)
rot contains pairs of values that are

opposites in sign, e.g. (ω1 − ω2) and (ω2 − ω1), these frequencies corresponds to pairs

of Hermitian conjugate terms, e.g. â†1â2 and â1â
†
2. Therefore, the rotating frequency

ωrot only need to iterate through the positive elements in Ω
(n−k)
rot (denoted as Ω

(n−k)
rot,+ ).

Consequently, we have the collection of the possible parametric transition frequencies for

the n-wave mixing, ηk interactions:

ω(n,k)
p ∈ Ω(n,k)

p =

{
ωrot/k

∣∣∣∣ ωrot ∈ Ω
(n−k)
rot,+

}
(196)

Finally, the collection of all the transition frequencies enabled by a nth order non-linear

term can be calculated by combing all the Ω
(n,k)
p sets for k in [1, . . . , n− 1]

Ω(n)
p = Ω(n,1)

p ∪Ω(n,2)
p ∪ · · · ∪Ω(n,n−1)

p (197)
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Following this formalism, we can systematically identify and list all the possible para-

metric transitions and their corresponding pumping frequencies given a nth order non-linear

term. An example result has been provided in Sec. 2.3.2. It is important to note that the

above calculation assumes a monochromatic (single frequency) external pump. When mul-

tiple pumps are applied at different frequencies, the same parametric processes can also be

activated as long as the overall rotating frequencies of the pumping terms match with the

transition frequencies. In that case, the above approach can still be used to identify the

transition frequencies for each parametric process (as in Eq. 194), and the pumping frequen-

cies just need to satisfy
∑

j ±ωp,j = ω
(ℓ)
rot. Moreover, this protocol also assumes that all the

involved modes have evenly spaced energy levels or simply are two-level systems. When the

modes have anharmonicity, the possible transition spectrum becomes even more complex

and significantly more non-trivial to track [89, 90].
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[57] Lucas Verney, Raphaël Lescanne, Michel H Devoret, Zaki Leghtas, and Mazyar Mir-
rahimi. Structural instability of driven josephson circuits prevented by an inductive
shunt. Physical Review Applied, 11(2):024003, 2019.

[58] Wolfgang Pfaff, Christopher J Axline, Luke D Burkhart, Uri Vool, Philip Reinhold,
Luigi Frunzio, Liang Jiang, Michel H Devoret, and Robert J Schoelkopf. Controlled

182



release of multiphoton quantum states from a microwave cavity memory. Nature
Physics, 13(9):882–887, 2017.

[59] Matthew Reed. Entanglement and quantum error correction with superconducting
qubits. Lulu. com, 2013.

[60] Sebastian Krinner, Simon Storz, Philipp Kurpiers, Paul Magnard, Johannes Heinsoo,
Raphael Keller, Janis Luetolf, Christopher Eichler, and Andreas Wallraff. Engineering
cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum
Technology, 6(1):2, 2019.

[61] Evan McKinney, Chao Zhou, Mingkang Xia, Michael Hatridge, and Alex K Jones.
Parallel driving for fast quantum computing under speed limits. In Proceedings of the
50th Annual International Symposium on Computer Architecture, pages 1–13, 2023.

[62] Cupjin Huang, Tenghui Wang, Feng Wu, Dawei Ding, Qi Ye, Linghang Kong, Fang
Zhang, Xiaotong Ni, Zhijun Song, Yaoyun Shi, et al. Quantum instruction set design
for performance. Physical Review Letters, 130(7):070601, 2023.

[63] Norbert Schuch and Jens Siewert. Natural two-qubit gate for quantum computation
using the xy interaction. Physical Review A, 67(3):032301, 2003.

[64] Marco Roth, Marc Ganzhorn, Nikolaj Moll, Stefan Filipp, Gian Salis, and Sebastian
Schmidt. Analysis of a parametrically driven exchange-type gate and a two-photon
excitation gate between superconducting qubits. Physical Review A, 96(6):062323,
2017.

[65] Stefano Poletto, Jay M Gambetta, Seth T Merkel, John A Smolin, Jerry M Chow,
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