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Algorithms for Spatial Variations of Classic Optimization Problems

with Healthcare Applications

Clarence Worrell, PhD

University of Pittsburgh, 2023

Operating healthcare systems efficiently is critical for maximizing healthcare delivery to

patients. Due to the inherent spatial structure in many healthcare systems, however, this

requires solving challenging spatial optimization problems. In this work, we design solu-

tion algorithms that are implementation-friendly, scalable, and have theoretical performance

guarantees for spatial variations of three classic optimization problems that arise in this

context: machine assignment, facility location, and graph partitioning.

In Chapter 2, we consider minimizing makespan across parallel machines that are located

in different areas, a problem motivated by multi-hospital systems that share laboratory

workload using courier services. This system introduces opportunity to reduce makespan

by assigning jobs to lesser-loaded, but spatially distant, machines at the expense of trans-

portation time penalties. We develop an implementation-friendly list-scheduling algorithm

and show that it is a 2-approximation algorithm when the machines are identical. Computa-

tional experiments show that the algorithm often performs much better than its worst-case

guarantee, even when the machines are not identical.

In Chapter 3, we consider a variation of the k-center facility location problem in which

facility agents can meet clients at intermediate locations (i.e., “meet-in-the-middle”) to de-

liver goods. This problem arises when designing vaccination campaigns for geographically

dispersed populations with limited transportation resources. We show that the meet-in-the-

middle k-center problem reduces to the standard k-center problem under a certain notion

of “distance.” We develop an approximation algorithm and a mixed integer linear program

(MILP) that both leverage this reduction. Computational experiments show that we can

solve the MILP 90% faster than a MILP formulation that does not leverage the reduction.

In Chapter 4, we consider the problem of recovering the ground-truth communities of a

vertex-attributed graph that are locally distinguishable in the sense that they exhibit stronger
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community structure in more local parts of the graph. The partitioning problem arises when

labeling training data that contain responses generated from different latent sources, a major

barrier to using machine learning in healthcare. We develop a community detection algorithm

and establish conditions under which it almost exactly recovers ground-truth communities.

Computational experiments demonstrate the advantages of our method over a benchmark

spectral method.
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1.0 Introduction

Healthcare systems have inherent spatial structure. Services must be located such that

patients and providers can feasibly connect. Provider conglomeration introduces spatial

structure through economies of scale, such as resource and workload sharing across distant

provider locations. Underlying spatial attributes can even influence the structure of social

networks used for provider advertising and public health messaging. In each of these contexts,

it is important to be efficient in order to maximize utility, which is ultimately the providing

of healthcare services and information to patients.

Motivated by problems that arise in healthcare practice, we study spatial variations of

three classic optimization problems. First, we examine the parallel machine assignment

problem in which the machines are located in different areas. Next, we study an extension

of the facility location problem in which clients can meet facility agents at intermediate

locations to receive goods and services. Finally, we consider the graph partitioning problem

for graphs in which distinguishability between communities is stronger in local areas than it

is globally.

These optimization problems are NP-hard, and problem instances observed in practice

can be difficult to solve, even with modern computing hardware and commercial solvers. In

our research, we seek solution algorithms that have following traits:

• Implementation-friendly. The algorithm should ideally be accessible to those without

optimization expertise. When this is not possible, the algorithm should ideally not require

problem reformulation, for example to implement a decomposition or relaxation strategy.

Finally, the individual algorithm steps should ideally use well-established methods with

vetted open-source implementations.

• Scalable. The algorithm should enable solving, either exactly or approximately, larger

instances than could otherwise be achieved by solving the problem directly.

• Performance-guaranteed. The algorithm should ideally be accompanied by a proven

worst-case performance guarantee.
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We summarize our main contributions in each of the following sections.

1.1 Minimizing Makespan across Preloaded Machines

We consider the problem of minimizing makespan across parallel machines that are lo-

cated in different areas. Each machine has been preloaded with a set of jobs that are located

at the machine. The system manager has a one-time opportunity, prior to the start of pro-

cessing, to reassign any of the preloaded jobs to any of the other machines. Reassigned jobs

are transported en masse in a fixed amount of time and must be returned to their original

machine after they are processed. Job processing times are deterministic, known prior to

reassignment, and may be machine-specific.

The manager seeks a reassignment plan that minimizes makespan (i.e., the time at which

all job processing has completed, and any reassigned jobs have been returned to their original

machines). To support this managerial goal, we make the following contributions:

• We develop a MILP to identify optimal reassignment policies.

• We present a two-stage list scheduling algorithm and show it yields a 2-approximation

guarantee when the machines are identical. We also show that a modified version of the

algorithm admits an improved approximation guarantee when there is a large number of

small jobs.

• We present computational results demonstrating that the two-stage list scheduling algo-

rithm often performs much better than its worst-case performance guarantee, even when

the machines are not identical. We also explore the efficient frontier between makespan

and reassignment volume, and investigate the extent to which the MILP can be solved

using a commercial solver.

As a motivating healthcare application, consider a multi-hospital system that shares

clinical laboratory functions across the spatially-distant hospitals using a courier service.

Jobs originate at each hospital in the morning, and the manager has a one-time opportunity

to reassign them. Reassigned jobs are transported to their assigned hospitals for processing,
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and this transportation of course requires time. The manager would like to reassign jobs in

a manner that minimizes the time at which all job processing completes. Implementation-

friendliness is particularly important in this application because the manager is unlikely to

have access to personnel with optimization expertise.

1.2 The Meet-in-the-Middle k-Center Problem

We study an extension of the classic facility location problem in which facilities can send

agents to intermediate locations to meet-in-the-middle with clients. We consider different

cost regimes by introducing a new notion of “distance” between locations that depends on

the receiving and retrieving costs. Our notion of distance is a general notion, and it does

not necessarily define a metric between locations (i.e., by satisfying both symmetry condi-

tions and the triangle inequality), even when the receiving and retrieving costs individually

define metrics. We develop a polynomial-time algorithm for the subproblem of optimally

determining which client locations should receive and retrieve goods given a set of facility

locations. From these ideas, we show how to reduce (in polynomial time) the meet-in-the-

middle k-center problem to a (not necessarily metric) k-center problem.

Consider a system designer who seeks to minimize cost by identifying the set of locations

in which to open facilities; the set of locations that should retrieve goods from facility

locations; the set of locations that should receive goods from facility agents, and the set of

locations that should retrieve goods from locations that receive goods from facility agents

(i.e., meet-in-the-middle). To support this design goal, we make the following contributions:

• We present two MILP formulations for the meet-in-the-middle k-center problem; one of

the formulations utilizes the reduction.

• We present an approximation algorithm for the meet-in-the-middle k-center problem that

extends a greedy approximation algorithm for the metric k-center problem.

• Through computational experiments, we evaluate the performance of our methods and

explore the empirical benefits of accounting for the ability to meet-in-the-middle in fa-

cility location.
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As a motivating healthcare application, consider public health officials who are designing

a vaccination campaign for a low income country in which the patient populations are geo-

graphically dispersed. Rather than solely installing fixed vaccination clinics, they would like

to extend coverage by using an outreach strategy. During outreach, healthcare workers take

vaccines from clinics to other intermediate locations, and patients travel to those interme-

diate locations to become vaccinated (i.e., the healthcare workers and patients “meet in the

middle”). The campaign planners therefore need to determine where to locate healthcare fa-

cilities; identify which locations should receive outreach services; and amongst the locations

that do not receive outreach services, identify which locations their patients should travel

to for vaccination. Scalability is particularly important to facilitate designing country-scale

vaccination campaigns.

1.3 Recovering Locally Distinguishable Communities with Applications to

Clustering Training Data

In Chapter 4, we consider the problem of recovering the ground-truth communities of a

vertex-attributed graph that are locally distinguishable in the sense that the ground-truth

communities exhibit stronger community structure in more local parts of the graph (i.e.,

in subgraphs induced by vertices whose attributes are closer). As we demonstrate, the

community detection problem arises when labeling training data that contain responses

generated from different latent sources, a major barrier to using machine learning methods

in practice, as it is costly to have subject matter experts label the data.

Locally distinguishable communities, however, may not be globally distinguishable, pos-

ing a challenge for standard community detection methods. To address this challenge, we

make the following contributions :

• We develop a community detection algorithm that performs well on graphs exhibiting the

local distinguishability property, compared to a standard spectral partitioning method.

• We develop the local stochastic block model (LSBM), which is a generalization of the

stochastic block model (SBM) that generates graph instances exhibiting the local distin-
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guishability property.

• We establish conditions under which our algorithm almost exactly recovers ground-truth

communities in LSBM instances.

• Finally, our computational experiments demonstrate the advantages of using the method

to cluster training data over a benchmark spectral method.

As a motivating healthcare application, consider using classification models to predict

whether patients are adhering to their medication prescriptions [95]. Such models could

afford healthcare providers an opportunity to mitigate the poor adherence rates observed in

practice (for example, one meta-analysis [58] observed a 57% adherence rate to cardiovascular

disease prevention drugs across 376,162 patients). However, the labeled data (i.e., data that

identifies the ground truth of whether patients are adherent) necessary to construct such

models is often not readily available or even obtainable [29, 43]. Our community detection

algorithm provides a method to estimate ground-truth labels, which can then be used to

construct medication adherence classification models. Furthermore, because our algorithm

is graph-based, it is able to naturally leverage (through transductive learning) any partially

labeled data that are available (for example a subset of data that are labeled by subject

matter experts).

1.4 Organization

Chapters 2, 3, and 4 present the details of each contribution, including definition of

the novel problem, algorithm presentation and analysis, and computational experiments.

Chapter 5 concludes the dissertation by providing some areas for future research, as well a

summary of how each algorithmic contribution achieves our intended traits: implementation-

friendly, scalable, and performance-guaranteed.

5



2.0 Minimizing Makespan across Pre-Loaded Machines

2.1 Introduction

2.1.1 Problem Description

Consider m parallel machines in different locations, each of which is preloaded with a

set of jobs that may be processed in any order. More specifically, let there be n jobs in total

with jobs Ji ⊂ [n] := {1, . . . , n} preloaded on machine i ∈ [m] := {1, . . . ,m}. The collection

of job subsets J1, . . . , Jm partitions [n], and we let ni := |Ji| denote the number of jobs

preloaded on machine i. Processing job j ∈ [n] on machine i ∈ [m] requires pij ∈ N units

of processing time. Note that the processing time of a job is independent of the machine

on which it is preloaded. Before job processing starts, a decision-maker has a one-time

opportunity to reassign any jobs to any other machines. Processing times are deterministic,

known prior to the reassignment decision, and can be machine-specific when the machines

are unrelated (i.e., not identical). The processing of retained preloaded (i.e., “domestic”)

jobs starts immediately at time t = 0.

Jobs reassigned from one machine to another are transported at time t = 0 and arrive

at their receiving machine τ time units later, at which point the receiving machine can

preempt the processing of its current job (if the machine is busy) and begin processing the

“foreign” jobs it receives. When a machine finishes processing its foreign jobs, they are then

returned to their originating machine, where they arrive τ time units later. The goal is to

find a reassignment policy that minimizes makespan, i.e., the time until all jobs have been

processed and all reassigned jobs have been returned to their originating machine. Let C∗
max

denote the optimal makespan.

Note that, in order to minimize makespan, it is always optimal for a receiving machine

to preempt the processing of its current domestic job at time t = τ (if the machine is busy);

then process all of its foreign jobs (in any order); and finally complete processing the balance

of its domestic jobs (also in any order). Second, while we find it convenient for clarity of
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exposition to assume that all foreign jobs are returned to their origins after the machine to

which they are assigned completes their processing, returning the foreign jobs individually

as they are completed (given enough transportation resources to do so) yields an equivalent

makespan because the transportation time τ is constant.

Figure 1 (a) depicts a problem instance with two identical machines, an initial workload

of seven jobs at machine 1 (dashed lines), and an initial workload of five jobs at machine 2

(solid lines). With no reassignments, the completion times of machine 1 and 2 are 12 and 16,

respectively, resulting in a makespan of max{12, 16} = 16. Figure 1 (b) depicts the policy

that reassigns job 1 of duration two from machine 1 to machine 2 and job 10 of duration

four from machine 2 to machine 1. The assumed transportation time is τ = 4, and the

grey shading indicates periods when jobs are being transported. Machine 1 preempts job

4 upon receiving foreign job 10, and it finishes job 4 after completing foreign job 10. This

policy generates an optimal makespan of C∗
max = 14. (Note that there are multiple polices

that could generate this optimal makespan.) Figure 1 (c) depicts a sub-optimal policy that

reassigns four jobs (1, 4, 5, 7) from machine 1 to machine 2 and three jobs (10, 11, 12) from

machine 2 to machine 1; under this policy, idling occurs while waiting for jobs to be returned

to their originating machine.

As a motivating application, consider, for example, a multi-hospital system where clinical

pathology functions are shared across the hospitals using a courier service. Each job is a

human tissue specimen to be processed. Jobs vary in complexity, and processing times vary

by hospital because each hospital has their own specialties. The jobs originate at the hospitals

in the morning, and the manager has a one-time opportunity to reassign them. Reassigned

jobs are transported to the other hospitals, which of course requires time. Naturally, the

manager would like to reassign jobs in a manner that minimizes makespan.

7



Figure 1: Example timelines for two identical machines and τ = 4 depicting (a) initial

workloads, (b) optimally reassigned workloads, and (c) a sub-optimal reassignment in which

idling occurs.
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The contributions of this work are as follows:

• In Section 2.2 we develop a mixed-integer linear program (MILP) to identify optimal

reassignment policies.

• We present a two-stage list scheduling algorithm in Section 2.3 and show it yields a 2-

approximation guarantee when the machines are identical. We also show that a modified

version of the algorithm admits an improved approximation guarantee when there are a

large number of small jobs.

• Finally, in Section 2.4 we present computational results that demonstrate that the two-

stage list scheduling algorithm often performs much better than its worst-case perfor-

mance guarantee, even when the machines are not identical. We also explore the efficient

frontier between makespan and reassignment volume, and investigate the extent to which

the MILP can be solved using a commercial solver.

2.1.2 Literature Review

2.1.2.1 Related Parallel Machine Scheduling Models

The problem of interest is a generalization of the classical parallel machine assignment

problem, commonly denoted as P ||Cmax when the machines are identical and R||Cmax when

the machines are unrelated, using the notation of [36]. More specifically, when reassignment

is instantaneous (i.e., τ = 0), the problem of interest is exactly the classical parallel machine

assignment problem. Many other variations of this problem have been considered in the

literature; see, for example, the early works of [54], [35], [36], the more recent survey of [64],

and the comprehensive handbook of [12]. Here we review the work that is most relevant to

our problem.

Our problem can be interpreted as a variation of the machine assignment problem that

involves jobs with machine-specific ready and delivery times. The ready time of a job is

the time at which the job becomes available for processing. The delivery time of a job is

the amount of time that it takes to send the job to its destination after it is processed by a

machine; jobs are assumed to be delivered individually immediately after they are processed.

Existing literature on ready and delivery times assumes that the machines are in the same
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location, and consequently assumes that each job’s ready time and delivery time does not

depend on the machine to which it is assigned. However, in our problem, the machines are in

different locations, and the ready and delivery times can vary by machine. More specifically,

a job is immediately ready to be processed by the machine at which it originates, and is

ready to be processed on any other machine at time τ . Furthermore, the delivery time of a

job is zero if the job is processed by the machine at which it originates, and τ otherwise.

[18] and [10] consider ready times together with due dates, [51] consider ready times

together with setup times, [65] considers delivery times in the context of one machine, and [86]

considers delivery times in the context of multiple machines. To the best of our knowledge,

variations of the machine assignment problem with machine-specific ready and delivery times

have yet to be considered in the literature. Furthermore, these ready times and delivery times

have yet to simultaneously be considered together.

Returning processed foreign jobs to their originating machine shares some attributes with

the integrated production and outbound distribution scheduling literature; see the survey

[17]. This body of work involves a manufacturer with one or more plants that receive a

set of orders from customers at various locations. Each order must be processed on one or

more machines and then delivered individually or in batches to customers using one or more

vehicles. This problem is in some ways more complex than ours and in other ways simpler.

More specifically, it takes into account delivery vehicle routing, whereas we assume vehicles

are immediately available to directly return processed jobs to their originating machine. On

the other hand, this body of work does not consider the upfront transportation time present

in our problem when jobs are reassigned.

Also related is the body of work that considers transportation time within flow shop

environments; see, for example, [46], [47], and [94]. The basic problem involves a set of

jobs that must be processed sequentially through a set of machines, each of which performs

an operation in the overall processing of a given job. Partially completed jobs are moved

between machines by interstage transporters in batches, and each shipment from one machine

to another requires time. The objective is to determine the sequence in which jobs should be

processed to minimize makespan. This problem is different from ours because it determines

an order to process jobs through a series of machines, whereas our problem determines the
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assignment of jobs to parallel machines.

2.1.2.2 Related Scheduling Methodologies

[48] established that P ||Cmax is NP-hard. Hence, the problem of minimizing makespan

across preloaded machines and other generalizations of P ||Cmax are NP-hard as well. Exist-

ing scheduling methodologies for these other generalizations are primarily based on integer

programming formulations and approximation algorithms. List scheduling algorithms are an

important class of these approximation algorithms that order the jobs into a list and then

assign the jobs in that order to the machines. Each job is assigned to the machine that

currently has the smallest workload. List scheduling algorithms typically do not achieve the

best approximation factors, but they are easy for practitioners to implement.

Lastly, we summarize some of the methodological results most closely related to this

work. List scheduling with an arbitrarily ordered list admits a 2-approximation guarantee

for P ||Cmax; see [80] for a proof of this well-known result. [35] showed that list scheduling

with an ordered list (from largest to smallest processing time) has an approximation factor of

4
3
− 1

3m
for P ||Cmax. [86] developed a (2− 2

m+1
)-approximation algorithm for parallel machine

scheduling on identical machines with delivery times (that do not vary by machine). To the

best of our knowledge, approximation algorithms for parallel machine scheduling with ready

times have yet to be developed; however, [51] present a MILP formulation for parallel machine

scheduling with setup and ready times (that do not vary by machine).

2.2 MILP Formulation

We present an MILP formulation for the problem of minimizing makespan across preloaded

machines. Recall that the decision to reassign jobs occurs at time t = 0, and all reassigned

jobs arrive at their newly assigned machines at time t = τ . Without loss of generality, we

assume that any machine receiving foreign jobs immediately starts processing the foreign

jobs, and that any domestic job in progress is preempted (stopped and restarted later with-
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out a time penalty). When a receiving machine completes its foreign jobs, they are returned

to their originating machine(s), where they arrive after another τ time units. Finally, each

machine completes any remaining domestic work.

First, let us discuss the decision variables of the MILP. For each i, j ∈ [m] × [n], we

introduce a binary decision variable xij that indicates if job j is assigned to machine i for

processing. Furthermore, for each i ∈ [m], we introduce an auxiliary variable ξi that indicates

if at least one job that is assigned to machine i is preloaded at a different machine.

Next, we derive an expression for makespan in terms of the decision variables x, ξ, and

model parameters. To this end, we first define the completion time Ci of machine i ∈ [m] to

be the point in time at which (i) all of the jobs assigned to machine i have been processed

and (ii) all of the foreign jobs assigned to machine i have been returned to their originating

machine. It follows that the makespan of the system is maxi∈[m] Ci. Notice that we can

express the completion time of machine i as

Ci =
∑

j∈[n]\Ji

pijxij +max

{∑
j∈Ji

pijxij, 2τξi

}
. (2-1)

Thus, we have obtained an expression for the makespan in terms of x, ξ, and the model

parameters.

We present the following MILP formulation (2-2) for the problem of minimizing makespan

across preloaded machines.
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min µ

s.t. µ ≥
∑

j∈[n]\Ji

pijxij + wi ∀i ∈ [m], (2-2a)

wi ≥
∑
j∈Ji

pijxij ∀i ∈ [m], (2-2b)

wi ≥ 2τξi ∀i ∈ [m], (2-2c)

ξi ≥ xij ∀i ∈ [m], j ∈ [n] \ Ji, (2-2d)

m∑
i=1

xij = 1 ∀j ∈ [n], (2-2e)

xij ∈ {0, 1} ∀i, j ∈ [m]× [n], (2-2f)

ξi ∈ {0, 1} ∀i ∈ [m], (2-2g)

µ ∈ R, (2-2h)

wi ∈ R ∀i ∈ [m], (2-2i)

where µ and w are additional auxiliary variables. Constraints (2-2a)-(2-2c) model the

makespan of the system using expression (2-1). Constraints (2-2d) guarantee that ξi = 1

when at least one job that is assigned to machine i is preloaded at a different machine.

Constraints (2-2e) enforce that each job is processed by a machine.

We observe in our computational study presented in Section 2.4 that formulation (2-2)

can unnecessarily reassign jobs when the same makespan can be achieved with fewer reas-

signments. Accordingly, we introduce the bi-criteria objective function

µ+ ϵ
∑
i∈[m]

∑
j∈[n]\Ji

xij, (2-3)

where ϵ > 0 is a penalty parameter that is used to penalize excessive job reassignment.

Objective function (2-3) affords the decision-maker an opportunity to strike a balance be-

tween their desire to minimize makespan and their tolerance for job reassignment. If the

objective is purely to minimize makespan, then choosing a small enough value of ϵ would

ensure the MILP always returns the makespan-minimizing policy with the fewest number

of reassignments. Our third computational study in Section 2.4 (see Figure 4) explores the
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efficient frontier between between makespan and the number of reassigned jobs, a practical

consideration for the decision-maker.

2.3 Two-Stage List Scheduling Algorithm

In this section we present a two-stage list scheduling algorithm for the problem of min-

imizing makespan across preloaded machines; see the text following Algorithm 2-1 for a

description of the algorithm.

Algorithm 2-1 Two-stage list scheduling algorithm for minimizing makespan across

preloaded machines.

Input: Job subsets Ji, i ∈ [m], processing times pij, i, j ∈ [m] × [n], and transportation

time τ .

1: Stage 1. For each machine i ∈ [m]:

a. Order the jobs originating at machine i into a list from largest to smallest processing

time.

b. Assign to machine i the jobs from its list in order from largest to smallest until either

(i) all of the jobs originating at machine i have been assigned to machine i, or (ii)

the workload assigned to machine i exceeds 2τ .

Terminate the algorithm if Stage 1 assigns all jobs, else proceed to Stage 2.

2: Stage 2.

a. Combine all unassigned jobs into an arbitrarily ordered list.

b. Assign the jobs one-by-one from the list to the machine whose assignment increases

the current makespan the least.

3: End

Stage 1 of Algorithm 2-1 constructs a job list for each machine i ∈ [m] of the jobs Ji

that are preloaded at machine i. The algorithm orders the jobs from largest to smallest

processing time and then assigns them to machine i in this order until no jobs are left or the

workload exceeds 2τ . The purpose of Stage 1 is to reduce the machine idle time that arises
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from waiting for reassigned jobs to arrive from other machines. In particular, if all machines

are preloaded with at least 2τ time units of work (i.e.,
∑

j∈Ji pij ≥ 2τ for all i ∈ [m]), then

Stage 1 ensures that no idle time occurs.

Stage 2 of Algorithm 2-1 constructs an arbitrarily ordered list of the jobs that are not

assigned in Stage 1. The algorithm then assigns the jobs one-by-one from the list to the

machine whose assignment increases the current makespan the least.

Further motivation for the two stages of Algorithm 2-1 is as follows. Consider applying

an existing list scheduling algorithm, say the the algorithm of [35] that orders jobs from

largest to smallest processing time, to the problem of interest. Generally speaking, when τ

is large compared to the job processing times, Algorithm 2-1 avoids reassigning jobs, whereas

Graham’s algorithm would attempt to equivalently load each machine, potentially leading

to large makespans; see Example 2.3.1.

Example 2.3.1. Consider a system with m = 2 machines, n1 = 1 job preloaded at machine

1, n2 = 3 jobs preloaded at machine 2, pij = p for all i, j, and τ > p. Algorithm 2-1

would assign each of the four jobs to the machine on which they are preloaded, generating a

makespan of 3p. Graham’s algorithm, however, would assign one job preloaded on machine

2 to machine 1, and each of the remaining three jobs to the machine on which they are

preloaded, generating a makespan of 2τ + p > 3p.

In Theorem 2.3.1 below we establish that Algorithm 2-1 achieves a 2-approximation

guarantee when the machines are identical.

Theorem 2.3.1. Algorithm 2-1 is a 2-approximation algorithm for the problem of minimiz-

ing makespan across preloaded identical machines.

Proof. Let CAlg1
max be the makespan of the assignment policy generated by Algorithm 2-1; li

be the processing time of the last job assigned to machine i; and C−
i be the completion time

as defined by (2-1) for all jobs assigned to machine i by Algorithm 2-1, excluding the last

job assigned to machine i.

First, suppose the algorithm terminates before implementing Stage 2. Without loss of

generality, suppose machine k has the largest initial workload. If the algorithm terminates
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before Stage 2, all jobs are assigned to their originating machine. Hence,

CAlg1
max = max

i∈[m]

{
C−

i + li
}
= C−

k + lk < 2τ + lk, (2-4)

where the inequality follows from the algorithm terminating prior to reaching Stage 2. For

the sake of contradiction, suppose CAlg1
max > C∗

max, where C∗
max is the optimal makespan.

Then, in the optimal assignment, a job preloaded at the initially most loaded machine k,

say job j, must be assigned to a different machine, say machine i. It follows that

C∗
max ≥ C∗

i ≥ 2τ + pij ≥ 2τ + lk > CAlg1
max ,

where C∗
i is the makespan of machine i ∈ [m] under the optimal policy. The second inequality

follows from the need to transport job j from machine k to i for processing and then return,

the third inequality follows from the Stage 1 descending sort, and the final inequality follows

from (2-4). We have obtained a contradiction.

Now suppose that the algorithm does not terminate before implementing Stage 2. Then

we claim that

C∗
max > 2τ. (2-5)

Suppose not. Then, all jobs are assigned to their originating machine in the optimal as-

signment. However, in this setting, the algorithm would terminate before reaching Stage 2.

Hence a contradiction and the claim holds.

Let us now consider a machine i ∈ [m]. We will show CAlg1
max ≤ 2C∗

max, implying Algorithm

2-1 is a 2-approximation algorithm. Suppose that C−
i ≤ 2τ . Then

CAlg1
i ≤ 2τ + li ≤ 2C∗

max,

where CAlg1
i denotes the completion time of machine i under the Algorithm 2-1 assignment

policy, and the second inequality follows from (2-5) and the fact that li ≤ C∗
max.

Now suppose that C−
i > 2τ , which implies the last job assigned to machine i is assigned

in Stage 2. We will show that C−
i ≤ C∗

max, which will imply

CAlg1
i = C−

i + li ≤ 2C∗
max.

For the sake of contradiction, suppose C−
i > C∗

max. We claim CAlg1
k > C∗

max for all k ∈ [m].

We have two cases:
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Case 1. If k = i, then CAlg1
k > C−

k > C∗
max.

Case 2. Suppose k ̸= i. Then CAlg1
k > C∗

max because otherwise Stage 2 of Algorithm 2-1

would have instead assigned the last job that was assigned to machine i to machine k.

Let us now partition the machine indices [m] into two sets:

M1 :=

{
k ∈ [m] :

∑
j∈Jk

pkj < 2τ

}
and M2 := [m] \ T1.

Furthermore, for k ∈M1, define

αk := 2τ −
∑
j∈Jk

pkj,

which is the minimum amount of time that machine k ∈M1 can idle under any assignment.

Note that jobs can be assigned so that machines indexed by M2 do not idle. It follows that

m∑
k=1

∑
j∈Jk

pkj ≤ mC∗
max −

∑
k∈M1

αk. (2-6)

In the assignment policy generated by Algorithm 2-1, it follows from Stage 1 that each

machine k ∈ M1 runs for CAlg1
k − αi time units, and each machine k ∈ M2 does not idle.

Hence,

m∑
k=1

∑
j∈Jk

pkj =
m∑
k=1

CAlg1
k −

∑
k∈M1

αk > mC∗
max −

∑
k∈M1

αk, (2-7)

where the strict inequality follows from CAlg1
k > C∗

max for all k ∈ [m]. Inequalities (2-6) and

(2-7) yield a contradiction.

Stage 2 of Algorithm 2-1 utilizes an arbitrarily ordered list; however, existing literature

on list scheduling establishes that there are practical and theoretical benefits to using ordered

lists (see Subsection 2.1.2.2 for further discussion). While it is not immediately clear how

to modify the proof of Theorem 2.3.1 to leverage such additional structure in general, it is

not hard to see how to use ordered lists to obtain an improved performance guarantee when

there are a large number of small jobs; see Theorem 2.3.2.
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Theorem 2.3.2. Suppose that τ ≥ pij for all i, j ∈ [m] × [n] and τ ≤ α 1
m

∑
j pij ≤ αC∗

max

for some α > 0. Also suppose that the machines are identical and Algorithm 2-1 constructs

an ordered list (from largest to smallest processing time) in Step ‘a’ of Stage 2 instead of

an arbitrarily ordered list. Then this modified version of Algorithm 2-1 achieves a factor

min{2, 3α + 4
3
− 1

3m
} approximation guarantee.

Proof. By Theorem 2.3.1, it is sufficient to show that Algorithm 2-1 is a (3α + 4
3
− 1

3m
)-

approximation algorithm. Also, if Algorithm 2-1 terminates before Stage 2, then the same

argument used in the proof of Theorem 2.3.1 shows that Algorithm 2-1 constructs an optimal

schedule; accordingly, we assume that Algorithm 2-1 does not terminate before Stage 2.

The jobs assigned during Stage 1 are processed within 3τ time units on each machine

due to the assumption that τ ≥ pij for all i, j ∈ [m] × [n]. Consider the following schedule

that has a larger makespan than the schedule that Algorithm 2-1 constructs. Suppose that

each machine i ∈ [m] idles after processing its Stage 1 jobs until time t = 3τ . Then the

problem of assigning the remaining Stage 2 jobs (which will start being processed at time

t = 3τ) is an instance of P ||Cmax. Let C∗,2
max denote the optimal makespan of this instance.

Suppose that we use the list scheduling algorithm of [35] (i.e., order the jobs from largest

to smallest processing time) to approximately solve this assignment problem. It is not hard

to see that the makespan of this schedule is greater than the makespan of the schedule that

Algorithm 2-1 constructs.

Thus, because Graham’s algorithm is a (4
3
− 1

3m
)-approximation algorithm for P ||Cmax,

the makespan of the schedule that Algorithm 2-1 constructs is no greater than

3τ +

(
4

3
− 1

3m

)
C∗,2

max ≤ 3τ +

(
4

3
− 1

3m

)
C∗

max ≤
(
3α +

4

3
− 1

3m

)
C∗

max,

where the first inequality follows from the fact that C∗,2
max ≤ C∗

max, and the second inequality

from the condition that τ ≤ αC∗
max. We have established the desired result.

Under the conditions of Theorem 2.3.2, we see that using an ordered list in Step ‘a’

of Stage 2 leads to an improved approximation guarantee when the transportation time

contributes to less than α = 2
9
+ 1

9m
> 2

9
of the optimal makespan. We also see that
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the approximation guarantee improves with decreasing number of machines m and with

decreasing α (i.e., when transportation time is small relative to the optimal makespan).

In practical applications, the decision-maker may prefer retaining some quantity of jobs at

the originating machines, for example due to economic or other costs not explicitly modeled.

Modifying Algorithm 2-1 to allow a choice of when to terminate Stage 1, would give the

decision-maker the opportunity to strike a balance between their tolerance for reassigning

jobs and the performance guarantee for makespan minimization.

While Theorem 2.3.1 and Theorem 2.3.2 present bounds on the worst-case performance,

in practical applications the performance can be much better than the worst-case bounds,

as illustrated in Section 2.4.

2.4 Computational Experiments

In this section we study the empirical approximation ratio of Algorithm 2-1, the perfor-

mance of Algorithm 2-1 when the machines are unrelated, and the extent to which the MILP

can be solved with a commercial solver. In all of our experiments with identical machine

instances, we use an ordered list (from largest to smallest processing time) in Step ‘a’ of

Stage 2 of Algorithm 2-1.

First, we consider an identical and unrelated machine problem instance with m = 2, n1 =

10, and n2 = 20. We generate the job processing times for the identical machine instance by

simulating 30 observations of max {5, N (30, 15)}, i.e., a truncated normal distribution with

a minimum value of 5, mean value of 30, and standard deviation of 15. Similarly, we generate

the processing times for the unrelated machine instance by simulating two independent sets

of 30 observations of max {5, N (30, 15)}, one for each machine. We round all simulated

processing times to the nearest integer. Finally, we set ϵ = 0.0001.

Figure 2 (a) shows that the schedules generated by Algorithm 2-1 are nearly optimal for

the identical machine instances. For the unrelated machine instances (b), we see that the

makespan of the schedule generated by Algorithm 2-1 improves in τ as the solution converges

to reassigning zero jobs. For the identical machine instances, makespan increases linearly
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in τ following an inflection at τ ≈ 100, after which 2τ always exceeds
∑

j∈Ji pijxij for all

i ∈ [m] under the optimal policy.

Figure 2: Objective value and number of reassigned jobs as a function of τ for policies

generated by Algorithm 2-1 and the MILP defined by (2-2) for a system with 2 machines.

Policies generated by Algorithm 2-1 tend to reassign more jobs than optimal policies in

the identical machine case (c), although this difference decreases as the solution converges in

τ to reassigning zero jobs. The excessive reassignment is a result of the fact that Algorithm

2-1 does not have a parameter like ϵ that penalizes job reassignment. For the unrelated

machine case (d), optimal policies tend to reassign more jobs than policies generated by

Algorithm 2-1 because the MILP can better exploit the best machine for each particular

job. Algorithm 2-1 Stage 1 also retains a base level (at least 2τ if possible) of work at

each machine, whereas the MILP is free to reassign as many jobs as required to minimize
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makespan.

Note that the number of reassigned jobs under the optimal policy does not necessarily

decrease monotonically in τ . We see this behavior because the total duration of reassigned

work does not necessarily decrease monotonically in the number of reassigned jobs, e.g.,

three small jobs can require less processing time than one large job.

Next consider Figure 3, which depicts the empirical approximation ratio ρ of Algorithm

2-1 over 10,000 randomly generated identical-machine and unrelated-machine problem in-

stances. We compute the empirical approximation ratio with the MILP (2-2) and use the

following distributions for both the identical and unrelated machine instances: m ∼ U (2, 3),

ni ∼ U (2, 10), and pij ∼ max {5, N (30, 15)}. The distributions from which we generate m

and ni are discrete, and we round each simulated processing time to the nearest integer. For

each instance, we set transportation time τ = ⌈X 1
m2

∑
i,j

pij⌉, where X ∼ U (0, 0.5). In other

words, we set τ to be within 0-50% of the hypothetical average workload if the processing

of all jobs could be equally split and shared across machines, recalling that Theorem 2.3.2

admits an improved approximation guarantee when the transportation time contributes to

less than α = 2
9
+ 1

9m
> 2

9
of the optimal makespan. Finally, we set ϵ = 0.0001 for consis-

tency with the other computational studies. (We could use ϵ = 0 because this example is

not concerned with reassignment volume.)

Note that the histograms in Figure 3 (c) and (d) exclude the first bin, i.e., ρ = 1;

the proportions of instances in which ρ = 1 are indicated by the pie charts in (a) and

(b). Algorithm 2-1 generates an optimal policy for 24.8% of the identical-machine problem

instances and only 3.7% of the unrelated-machine problem instances.

In Figure 4 we examine the efficient frontier between makespan and the number of re-

assigned jobs, a practical consideration for the decision-maker. We do so by modifying the

objective function to include the convex combination of makespan and reassignment volume

as follows:

min

λµ+ (1− λ) ϵ
∑
i∈[m]

∑
j∈[n]\Ji

xij : λ ∈ [0, 1]

 . (2-8)

21



Figure 3: Empirical approximation ratio ρ of Algorithm 2-1 over simulated identical-machine

and unrelated-machine problem instances.
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Figure 4: Makespan-reassignment volume efficient frontiers for several problem instances.
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In Figure 4 (a) and (b) we consider a 2-machine system with n1 = 25 and n2 = 175.

We generate the job processing times for the identical machine instance by simulating 200

random observations of max {5, N (30, 15)}, and we generate the job processing times for the

unrelated machine instance by simulating two independent sets of 200 random observations

from max {5, N (30, 15)}. Similarly, in Figure 4 (c) and (d) we consider a 4-machine system

with n1 = 25, n2 = 50, n3 = 125, and n4 = 200. We generate the job processing times

by simulating five sets of 400 random observations of max {5, N (30, 15)}. We round all

simulated processing times to the nearest integer, and set ϵ = 0.0001. Then we solve the

MILP with the revised objective function (2-8) for three values of τ as indicated in Figure

4.

Figure 4 (b) and (d) illustrate that shorter makespans can be achieved by reassigning

more jobs in the unrelated machine cases, compared to the identical machine cases, as the

MILP can exploit the fastest machine for any given job. We see that the 4-machine unrelated

cases in (d) achieve lower makespans than the 2-machine unrelated cases in (b), despite the

fact that job processing times are simulated from the same distribution (max {5, N (30, 15)})

and n
m

= 100 in both cases. The lower makespans in (d) occur because the MILP can exploit

the fastest machine for any given job, and when there are more machines, there are more

opportunities for improved processing times. The unrelated machine cases also converge in

reassignment volume to their minimal makespans with pronounced curvature compared to

the identical machine cases in (a) and (c), and this curvature is related to the diminishing

value of reassigning smaller jobs. Finally, optimal makespan decreases in τ , as expected and

consistent with Figure 2.

The efficient frontier for the two identical machine case in Figure 4 (a) appears nearly

linear. Recall that the initial workloads in this instance are highly unbalanced (n1 = 25 and

n2 = 175). Accordingly, if the optimal policy reassigns one job, then it will tend to be the

largest job originally at machine 2, which results in the greatest makespan reduction. And if

the optimal policy reassigns two jobs, they will tend to be the largest and second largest jobs

of machine 2, and so on until the difference in workloads between the machines is smaller

than the largest available job for reassignment, at which point a smaller job(s) is reassigned

until makespan cannot be improved further. In the four identical machine case (c), the
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efficient frontier appears to be approximately piecewise linear. The change in slope occurs,

similar to (a), when the difference in workloads between the first and second most loaded

machines is smaller than the largest available job for reassignment. After that point, as λ

allows more reassignments, the average makespan reduction afforded by each reassignment

reduces, i.e., the efficient frontier slope reduces.

The approximate slope of the nearly linear portion of each efficient frontier in Figure 4

represents the average makespan reduction afforded per reassigned job. This slope can be a

metric that characterizes the potential value of reassigning jobs, thereby helping the system

manager in their decision of whether to pursue reassignment for any given problem instance.

Finally, we investigate the extent to which we can solve the MILP (2-2) with the solver

by [38]. We consider identical and unrelated machine settings with 10, 20, 30, 40, and 50

machines, and simulate processing times from U (10, 100), consistent with [33] and [27].

For each setting, we start with a problem size in which n = m, and randomly define

the originating machine of each job using a discrete uniform distribution. For this starting

problem size, we generate 10 problem instances with simulated processing times, and simulate

transportation times consistent with our computational study of algorithm performance, i.e.,

τ = ⌈X 1
m2

∑
i,j

pij⌉, where X ∼ U (0, 0.5). We solve each instance and record the average

solution time across the 10 instances.

We repeat this process, at each iteration increasing the total number of jobs to be assigned

by five. We terminate the process when (i) we reach a maximum problem size of 150 jobs, or

(ii) more than 50% of the instances for a given problem size fail to solve within the Gurobi

time limit, which we set to 10 minutes. All computations were performed using Gurobi

Version 9.5 with its default optimality tolerance of 1.00E-04, an Intel 3.6 GHz CPU, 32 GB

of RAM, and a 64-bit operating system.

Figure 5 depicts the resulting solution times by problem size. It is clear that solution

time tends to increase exponentially in the number of jobs to be assigned. It is also clear

that larger instances of the unrelated machine setting can be solved within the time limit as

compared to the identical machine setting. The difficulty in solving the identical machine

problem instances is likely caused by symmetry in the problem structure, a known challenge

surveyed by [53].
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Figure 5: Average Gurobi solution time versus problem size.

2.5 Concluding Remarks

We model and analyze the problem of minimizing makespan across preloaded machines.

This problem generalizes the classical parallel machine assignment problem by incorporating

machine-specific arrival and delivery times. We develop an MILP formulation of the prob-

lem along with a two-stage list scheduling algorithm that generalizes the existing arbitrarily

ordered list scheduling algorithm. The need for two stages arises from the fact that existing

list scheduling algorithms do not account for the transportation times considered herein. We

show that the two-stage list scheduling algorithm is a 2-approximation algorithm when the

machines are identical, matching the guarantee of the arbitrarily ordered list scheduling algo-
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rithm. We also show that by using lists that are ordered from largest to smallest processing

time, instead of arbitrarily ordered lists, our algorithm admits an improved approximation

guarantee when there are a large number of small jobs. Through computational study, we

demonstrate that the algorithm often performs much better than its worst-case performance

guarantee, even in the unrelated machine setting.
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3.0 The Meet-in-the-Middle k-Center Problem

3.1 Introduction

Given client locations and potential facility locations, the goal in facility location prob-

lems, broadly speaking, is to determine where to build facilities in order to serve clients in a

manner that optimizes some objective. Typically the objective is a function of the distances

between the facility and client locations. For instance, given a set of locations and specified

distances between the locations, the goal in the k-center problem is to build k facilities at

different locations to minimize the maximum distance between a location and its nearest

facility. (In this problem the client locations and potential facility locations are the same.)

Most objectives studied in the facility location literature do not take into account the

fact that facilities can often send agents to intermediate locations to meet-in-the-middle

with clients to reduce service distance. Accounting for the ability to meet-in-the-middle is

particularly important in vaccination campaign design for geographically dispersed popula-

tions with limited transportation resources (e.g., low to middle income countries where many

travel by walking).

In traditional vaccination campaign design, the goal is to determine where to build health-

care facilities (or clinics) to administer vaccines to patients who travel to the healthcare facili-

ties. However, it is not feasible to vaccinate an entire population with this traditional strategy

when the population is geographically dispersed and has limited transportation resources.

To improve vaccination rates in these populations, outreach is incorporated into vaccination

campaign design [39, 40, 50, 91, 92]. Outreach involves health workers transporting vaccines

from medical facilities to other intermediate locations, and patients traveling to those inter-

mediate locations to become vaccinated (i.e., facilities and clients meet-in-the-middle). The

goal in designing a vaccination campaign that incorporates outreach is therefore threefold:

locate healthcare facilities; identify which locations should receive outreach services; and

amongst the locations that do not receive outreach services, identify the location to which

their clients should travel for vaccination (i.e., a facility itself or a non-facility location that
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receives outreach, the latter of which constitutes meeting-in-the middle).

In this work we study a variation of the k-center problem in which facilities can send

agents to meet-in-the-middle with clients. Our motivation for studying a variation of the

k-center problem (as opposed to some other facility location problem) is twofold. First, the

k-center problem is quite fundamental and finds many applications (in addition to vaccine

campaign design). It follows that it is a natural setting to study the meet-in-the-middle

concept from a more general standpoint, which is a main goal of this work. Second, solving

large-scale instances of vaccine campaign design problems that arise in practice requires

heuristics. A number of heuristics have been developed for vaccine campaign design problems

that involve outreach, but to the best of our knowledge, theoretical guarantees have yet to

be established for these heuristics. Because there are a number of approximation algorithms

for the metric k-center problem that are still useful in practice (see the survey [31]), it is

natural to consider developing an approximation algorithm for a variation of the k-center

problem.

3.1.1 Problem Statement

Suppose that there are n locations labeled with indices [n] := {1, . . . , n}. As in the

k-center problem, we would like to establish k facility locations, but we additionally must

decide whether each location without a facility will be a receiving location or a retrieving

location. A receiving location receives goods from agents sent one of the facilities, while

a retrieving location sends clients to retrieve goods from a facility location or a receiving

location. In the latter case, a facility location sends agents and retrieving location sends

clients to meet-in-the-middle at a receiving location. If location i ∈ [n] is a receiving location

and location j ∈ [n] is a facility location, there is a receiving cost of cij ∈ Z≥0 for location

i to receive goods from location j. If location i is a retrieving location and location j is a

facility or receiving location, there is a retrieving cost of wij ∈ Z≥0 for location i to retrieve

goods from location j. We assume throughout that cii := 0 and wii := 0 for each i ∈ [n].

The receiving and retrieving costs should be thought of as the cost to assign a location to

receive and retrieve goods, respectively, from another location. In the context of vaccine
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campaign design, health workers travel from facility locations to receiving locations, and

patients travel from retrieving locations to facility or receiving locations to be vaccinated.

There is a receiving cost of cij for health workers to travel from location j to location i, and

there is a retrieving cost of wij for patients to travel from location i to location j. Notice

that, in this context, it is not necessarily the case that cij = wij. For instance, only a few

health care workers might to need to drive from location j to location i, while many patients

might need to walk from location i to location j.

The goal is to determine facility, receiving, and retrieving locations to minimize the

maximum receiving or retrieving cost that must be paid for all locations to obtain goods.

This objective is the meet-in-the-middle analogue of the objective of the standard k-center

problem. Note that in the special case in which cij is the distance between location i and

location j, and the receiving and retrieving costs are equal (i.e., cij = wij for all i, j ∈ [n]),

then the goal is to minimize the maximum distance that agents from a facility location and

clients from a retrieving location must travel.

Formally, we seek to solve the following optimization problem. For facility locations

F ⊆ [n], receiving locations R1 ⊆ [n] \F , and retrieving locations R2 = [n] \ (F ∪R1), define

r1(F,R1) := max
i∈R1

min
f∈F

cif

to be the maximum receiving cost paid, define

r2(F,R1, R2) := max
i∈R2

min
f∈F∪R1

wif

to be maximum retrieving cost paid, and define

f(F,R1, R2) := max {r1(F,R1), r2(F,R1, R2)} (3-1)

to be maximum receiving or retrieving cost paid. Then we seek to solve the meet-in-the-

middle k-center problem:

min
F,R1,R2⊂[n]

f(F,R1, R2)

s.t. |F | = k

R1 ⊆ [n] \ F

R2 = [n] \ (F ∪R1).

(3-2)
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It is not hard to see the potential value of accounting for the ability to meet-in-the-middle

in facility location. Consider Plot (a) of Figure 6, which depicts n = 10 locations on the

unit square. Let us take cij to be the Euclidean distance between location i and location j,

and assume that the receiving and retrieving costs are equal (i.e., cij = wij for all i, j ∈ [n]).

Recall that, in this case, the goal of the meet-in-the-middle k-center problem is to minimize

the maximum distance that agents from a facility location and clients from a retrieving

location must travel. Plot (b) shows the optimal standard 2-center solution; its objective

value (the maximum distance between a location and its nearest facility) is η = 0.52. Plot (c)

shows the facilities from the optimal standard 2-center solution together with the optimal

receiving and retrieving locations given the these facility locations (capturing the notion

that facilities and clients often meet-in-the-middle in practice even though meeting-in-the-

middle is not explicitly considered when determining facility locations). The objective of this

solution (i.e., the maximum distance that agents from a facility location and clients from a

retrieving location must travel) is η = 0.44. Plot (d) shows the optimal meet-in-the-middle

k-center solution. We observe that the optimal meet-in-the-middle k-center solution yields

a smaller maximum distance, namely η = 0.35, than the former two solutions, capturing the

potential value of accounting for the ability to meet-in-the-middle in facility location.

3.1.2 Summary of our Approach and Contributions

We study the meet-in-the-middle k-center problem (3-2) under a variety of different cost

regimes, i.e., subsets of assumptions about the receiving and retrieving costs. We discuss

each of the cost regimes in Section 3.2.

In Section 3.3 we introduce the notion of “distance” dij between locations i, j ∈ [n] that

depends on the receiving and retrieving costs. The distance dij can be thought of as the cost

at which location i can obtain goods from a facility at location j (possibly by retrieving the

goods from another location k ∈ [n]). The notion of distance plays a key role throughout this

work. In particular, we show in Section 3.4 that the the meet-in-the-middle k-center problem

(3-2) reduces to the k-center problem under this notion of distance. Unfortunately, however,

this reduction does not enable us to immediately develop an approximation algorithm for
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Figure 6: A meet-in-the-middle 2-center problem instance on the unit square together with

three feasible solutions. Receiving and retrieving costs equal the Euclidean distances between

locations. The quantity η equals the objective value of the solutions. A solid line indicates

the facility from which a receiving location obtains goods, and a dashed line indicates the

location from which a retrieving location obtains goods.

the meet-in-the-middle k-center problem with well-established techniques for the metric k-

center problem because this notion of distance does not necessarily define a metric on [n],

even when receiving and retrieving costs individually define metrics on [n]. In Section 3.3.1

we show that this notion of distance does not define a metric in any of the cost regimes

specified in Section 3.2.

In Section 3.4 we consider the subproblem of determining receiving and retrieving lo-
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cations given a set of facility locations (recall the solution in Plot (c) of Figure 6); the

subproblem also plays a key role throughout this work. We present a polynomial-time al-

gorithm for solving the subproblem in Algorithm 3-1. As a byproduct of the analysis that

establishes the correctness of the algorithm, we determine how to reduce the meet-in-the-

middle k-center problem (3-2) to the k-center problem under our notion of distance. More

specifically, to solve the meet-in-the-middle k-center problem, we establish that we can solve

the k-center problem under our notion of distance to obtain optimal facility locations and

then apply Algorithm 3-1 (with the optimal facility locations as input) to obtain optimal

receiving and optimal retrieving locations.

We propose two mixed-integer linear programming (MILP) formulations for the meet-

in-the-middle k-center problem (3-2) in Section 3.5. The first MILP formulation, which we

refer to as the assignment formulation, follows immediately from the description of the meet-

in-the-middle k-center problem. The second formulation, which we refer to as the k-center

formulation, follows from the reduction established in Section 3.4. Through computational

experiments that we present in Section 3.7 we observe that Gurobi solves the latter formu-

lation approximately one order of magnitude faster than the former formulation.

In Section 3.6 we develop an approximation algorithm for the meet-in-middle k-center

problem (3-2); the approximation factor depends on the cost regime under consideration.

Motivated by the reduction presented in Section 3.4, we consider an algorithm that extends

a greedy approximation algorithm for the metric k-center problem. Of course, distance in

our setting does not in general induce a metric, so we cannot immediately leverage the

existing approximation guarantees. Instead, we present our own analysis that requires a

more substantial effort. We also establish that our analysis is tight in Section 3.6.2.

Finally in Section 7 we carry out computational experiments. We investigate the empir-

ical performance of the methods proposed herein, and investigate the advantages of incorpo-

rating the ability to meet-in-the-middle versus (i) not meeting-in-the-middle at all and (ii)

meeting-in-the-middle but not accounting for this ability when determining facility locations

(as in Plot (c) of Figure 6).
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3.1.3 Related Literature

The k-center problem. The k-center problem has been extensively studied under the

assumption that distances between locations define a metric. Under this assumption, the

problem is referred to as the metric k-center problem. The metric k-center problem is

NP -hard [44]. It is not hard to see that this implies that the meet-in-the-middle k-center

problem (3-2) is NP -hard as well. Indeed, an instance of the metric k-center problem with

metric d reduces to an instance of the meet-in-the-middle k-center problem with c = d and

wij = maxp,q∈[n] dpq for all i ̸= j ∈ [n]. (Here the definition of the retrieving costs w ensures

that it is always optimal for a location to receive goods.)

Furthermore, Hochbaum [41] shows that for α < 2, it is NP -hard to solve the met-

ric k-center problem to within an approximation factor of α. There are a number of 2-

approximation algorithms for the metric k-center problem, including the simple greedy algo-

rithm of Gonzalez [34]. Often this algorithm is referred to as the Gon algorithm. In this work

we develop an extension of the Gon algorithm for the meet-in-the-middle k-center problem

(3-2). Other 2-approximation algorithms include the Sh algorithm [73] and the HS algorithm

[42]. The CDS algorithm proposed in [32] is yet another approximation algorithm, but it has

an approximation factor of 3. Nonetheless, it tends to achieve better empirical performance

than the Gon, Sh, and HS algorithms.

Fewer works study the setting in which distances do not define a metric. A few stud-

ies consider the asymmetric k-center problem, namely the k-center problem under the as-

sumption that the metric does not satisfy the symmetry property, but still satisfies the

triangle inequality [6, 62, 82]. In particular, [62, 82] propose O(log∗(m))-approximation al-

gorithms, and [6] proposes approximation algorithms with improved approximation factors

of O(log∗(k)), where log∗ is the iterated logarithm. In Section 3.4 we show that the meet-

in-the-middle k-center problem reduces to a k-center problem with distances that are not

necessarily symmetric nor satisfy the triangle inequality.

Many variations of the k-center problem have been considered in the literature; here, we

simply discuss the most relevant. A few studies, like this study, consider the possibility of

routing through locations to serve clients. Study [45] develops an approximation algorithm
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for the edge-dilation k-center problem. The goal in the edge-dilation k-center problem is to

choose k facility locations to minimize the maximum ratio of geometric to graph distance

between a client and its nearest facility. Another related problem is the k-next center problem

that [5] first introduced and [52] studied thereafter. The goal in the k-next center problem is

to choose k facility locations that minimize the maximum distance between clients and their

nearest facility plus the distance from this nearest facility to its nearest facility (the backup

facility).

Healthcare facility location problems. Healthcare facility location problems have re-

ceived a considerable amount of research attention; see Daskin and Dean [23] for a review

of single-level models, Rahman et al. [67] for a review specific to developing countries, and

[4, 68] for more recent reviews.

A number of studies specifically consider vaccine campaign design problems. Recall that

in traditional vaccination distribution setups, patients must travel to health facilities to be

vaccinated. In low and middle income countries, however, it is extremely difficult to vaccinate

certain parts of the population with this type of plan. Part of the difficulty lies in the fact

that these countries tend to be geographically dispersed or have nomadic populations. For

instance, study [11] demonstrates that vaccination rates in Niger are strongly correlated to

patient travel distance, and estimates that only 39% of the population of Niger was within a

one-hour walk to a health center during the dry season (and only 24% during the wet season).

Similarly, [60] estimates that nearly 40% of the population in Kenya must travel at least one

hour to reach government health services. Studies [37, 50, 75, 81] all take into account

the fact that requiring patients to travel to a vaccination site negatively affects coverage.

In 2002, the World Health Organization and its partners introduced the “reaching every

district” (RED) strategy [79] with the goal of improving immunization system performance

in areas with low coverage. Outreach trips made from medical facilities to remote locations

are an important component of the RED strategy [87]. Outreach trips can involve directly

delivering vaccines to a location, or delivering vaccines to a location that patients from other

locations then travel to (i.e., meet-in-the-middle).

To the best of our knowledge, study [50] is the first to consider a facility location problem
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that takes into account outreach trips. The study considers variations of the set covering

problem and develops several MILP formulations. All of these formulations aim to maxi-

mize location coverage. The work in [39] develops more complicated variations of these set

covering models to account for important practical considerations. This study also proposes

MILP formulations, but minimizes cost subject to ensuring full coverage instead of maxi-

mizing coverage. Subsequent work by [92] considers a variation of the set covering problem

that involves vehicle routing and develops an MILP formulation. In a follow up work, [91]

considers using machine learning methods to generate approximately optimal solutions to

the MILP as a means to rapidly generate a high quality solution, for example, when field

conditions necessitate a change to the distribution plan. Most recently, [40] considers a

variation of the set covering problem in which the objective is to maximize coverage.

In summary, existing research considers covering-style models and treats travel distance

in terms of feasibility. We consider a variation of the k-center problem in which the goal is

to minimize the maximum travel distance required to cover all locations.

Other related facility location problems. There is a vast literature on facility location

problems; we direct the readers to [14, 70, 71] for comprehensive reviews. The idea of

meeting-in-the-middle arises in public services that involve balancing public access with

operational efficiency. See [28] for a review of operations research models in urban facility

placement. As one example, the placement of public bus stops affects both operational

efficiency and public access (see also [57, 72, 84]). While the solution strategies for these

problems often address each objective in isolation (i.e., either efficiency or access) [28], the

meet-in-the-middle k-center problem (3-2) inherently balances both objectives.

Finally, our problem is related to the multi-level facility location problem (MLFLP);

see the survey [61]. Consider, for example, a two-level production-distribution system in

which goods are manufactured at production facilities, which then distribute the goods to

warehouses, which finally distribute the goods to customers. Our problem is distinct from

the MLFLP because each customer in the MLFLP must be assigned to a sequence of facility

levels; whereas in the meet-in-the-middle k-center problem, customer demand can be satisfied

by either of the levels individually.
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3.1.4 Organization

We introduce and discuss the different cost regimes of interest in Section 3.2. Then

in Section 3.3 we introduce and study a notion of distance dij between locations i, j ∈ [n]

that depends on the receiving and retrieving costs. In Section 3.4 we consider the subprob-

lem of determining receiving and retrieving locations given facility locations. We present

a polynomial-time algorithm for solving the subproblem, and we also show how to reduce

the meet-in-the-middle k-center problem (3-2) to the k-center problem under our notion of

distance. We propose two MILP formulations for the meet-in-the-middle k-center problem

(3-2) in Section 3.5. In Section 3.6 we develop an approximation algorithm for the meet-in-

middle k-center problem (3-2); the approximation factor depends on the cost regime under

consideration. In Section 3.7 we carry out computational experiments. Finally in Section

3.8 we summarize our findings and discuss future research directions.

3.2 Receiving and Retrieving Cost Regimes

We study the facility location problem of interest under different cost regimes. More

precisely, we study the problem under different subsets of assumptions about the receiving

and retrieving costs; see Assumptions 3.2.1-3.2.3 and Table 1 below. Throughout, the regime

under consideration will be clear from context.

Assumption 3.2.1. Receiving and retrieving costs individually define metrics on [n]. That

is, the costs are symmetric

cij = cji and wij = wji, i, j ∈ [n],

and the costs satisfy the triangle inequality

cij ≤ cik + ckj and wij ≤ wik + wkj, i, j, k ∈ [n].

37



Recall that, by definition, cij, wij ∈ Z≥0 for i, j ∈ [n], and cii = wii = 0, and hence we

do not need to include these properties in Assumption 3.2.1. We also note that Assumption

3.2.1 is quite natural in light of the fact that the classic k-center problem has been extensively

studied under the assumption that distances between locations define a metric on [n].

Assumption 3.2.2. Receiving and retrieving costs are equal, namely

wij = cij, i, j ∈ [n].

From an application standpoint, it may be reasonable to assume that Assumption 3.2.2

holds, for example, if goods are transported from facilities and receiving locations using the

same transportation resources that are already at these locations.

Assumption 3.2.3. For all i, j, k ∈ [n] such that i ̸= j ̸= k,

cij ≤ min{ckj + wik, cki + wjk}.

Assumption 3.2.3 states that the cost for location i ∈ [n] to receive goods from location

j ∈ [n] is less than 1) the total cost for location i to receive goods from location j through

meeting at a location k ∈ [n], and 2) the total cost for location j to receive goods from

location i through meeting at a location k.

Note if Assumptions 3.2.1 and 3.2.2 hold, then Assumption 3.2.3 holds. Also note that

if Assumption 3.2.1 holds and cij ≤ wij for all i, j ∈ [n], then Assumption 3.2.3 holds. We

summarize the four different cost regimes of interest (from most general to least general) in

Table 1 below.

Table 1: Summary of cost regimes, from most general to least general.

Regime Description Defining assumptions

1 No assumptions None

2 Metric costs Assumption 3.2.1

3 Related metric costs Assumption 3.2.1 and 3.2.3

4 Equal metric costs Assumption 3.2.1 and 3.2.2
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3.3 Distance between Locations

In this section we introduce a notion of distance between locations that plays a funda-

mental role throughout the remainder of the paper. Specifically, we use the notion in Section

3.4 to reduce the meet-in-the-middle k-center problem to a k-center problem, and we further

leverage this reduction to develop a MILP formulation in Section 3.5.2 and an approximation

algorithm in Section 3.6. In Section 3.3.1 we show that that our notion of distance does not

define a metric on [n] in any of the cost regimes described in Section 3.2.

First, for i, j ∈ [n], we define the meet-in-the-middle cost

rij :=

mink∈[n]\{i,j}max{ckj, wik} i ̸= j

0 i = j.

If location i is a retrieving location and location j is a facility location, then rij is the smallest

possible cost (as it would contribute to the objective function) at which location i can obtain

goods from a receiving location k ∈ [n] \ {i, j} that receives goods from facility location j.

Note that rij is not the total meet-in-the-middle cost ckj +wik; instead, rij is the maximum

of ckj and wik. We define the distance dij from location i to location j by

dij := min{cij, wij, rij}. (3-3)

The distance dij is the smallest possible cost at which location i can obtain goods (possibly

through a receiving location) from location j. We refer to dij as the distance between location

i and location j because we show in Section 3.4 that the meet-in-the-middle k-center problem

reduces to a k-center problem under this notion of distance.
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3.3.1 Distance in Different Cost Regimes

Clearly dij ∈ Z+ for i, j ∈ [n], and dii = 0 for i ∈ [n], but this notion of distance does not

necessarily define a metric in any of the cost regimes described in Section 3.2. It is easy to see

that this is the case in the no assumptions cost regime. In the following examples we show

that this is also the case for the other three cost regimes of interest. It will be convenient

to collect the receiving costs, retrieving costs, and distances into the n× n matrices C, W ,

and D, respectively. That is, Cij = cij, Wij = wij, and Dij = dij.

Example 3.3.1 shows that distances in the metric costs regime are not necessarily sym-

metric, nor do they necessarily satisfy the triangle inequality. Furthermore, the example

shows that both symmetry and the triangle inequality can be severely violated.

Example 3.3.1. Suppose that there are n = 3 locations, and suppose the receiving and

retrieving costs are given by

C =


0 ϵ M + ϵ

ϵ 0 M

M + ϵ M 0

 and W =


0 M M + ϵ

M 0 ϵ

M + ϵ ϵ 0

 ,

respectively, where ϵ,M ∈ Z≥0 such that ϵ≪M . It is easy to check that these costs satisfy

Assumption 3.2.1. Furthermore,

d13 = min {c13, w13,min{max{c23, w12}}} = min{M + ϵ,M + ϵ,M} = M,

d31 = min {c31, w31,min{max{c21, w32}}} = min{M + ϵ,M + ϵ, ϵ} = ϵ,

d12 = min {c12, w12,min{max{c32, w13}}} = min{ϵ,M,M} = ϵ,

d23 = min {c23, w23,min{max{c13, w21}}} = min{M, ϵ,M} = ϵ.

The distances do not satisfy the symmetry condition because d13 = M ≫ ϵ = d31, and the

distances do not satisfy the triangle inequality because d13 = M ≫ 2ϵ = d12 + d23.

Example 3.3.2 shows that distance under the related metric costs regime is not necessarily

symmetric, and Example 3.3.3 shows that distance in the equal metric costs regime does not

necessarily satisfy the triangle inequality. It follows that distance in the related metric costs

regime does not necessarily satisfy the triangle inequality as well. It is straightforward to

verify that distance is symmetric in the equal costs regime.
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Example 3.3.2. Suppose that there are n = 3 locations, and suppose that the receiving

and retrieving costs are given by

C =


0 1 2

1 0 1

2 1 0

 and W =


0 1 3

1 0 2

3 2 0

 .

It is easy to check that Assumption 3.2.1 and 3.2.3 hold. Observe that

d13 = min {c13, w13,min{max{c23, w12}}} = min{2, 3, 1} = 1

d31 = min {c31, w31,min{max{c12, w32}}} = min{2, 3, 2} = 2.

Hence the symmetry condition does not hold because d13 = 1 ̸= 2 = d31.

Example 3.3.3. Let x1 = 0, x2 = 1, x3 = 2, x4 = 4, and x5 = 6. Also let cij = wij = |xi−xj|

for i, j ∈ {1, . . . , 5}. It follows that Assumption 3.2.1 and 3.2.2 hold. We have that

d15 = min {c15,min{max{c12, c25},max{c13, c35},max{c14, c45}}}

= min {6,min{5, 4, 4}} = 4,

d13 = min {c13,min{max{c12, c23},max{c14, c43},max{c15, c53}}}

= min {2,min{1, 4, 6}} = 1,

d35 = min {c35,min{max{c31, c15},max{c32, c25},max{c34, c45}}}

= min {4,min{6, 5, 2}} = 2.

Hence the triangle inequality does not hold because d15 = 4 ≰ 3 = d13 + d35.

Example 3.3.2 and 3.3.3, in contrast to Example 3.3.1, do not demonstrate that sym-

metry and the triangle inequality can be severely violated. Proposition 3.3.1 below shows

that symmetry and the triangle inequality can only be violated up to small multiplicative

constants in the related metric costs regime. It follows that the triangle inequality can only

be violated up to a small multiplicative constant in the equal metric costs regime as well.
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Proposition 3.3.1. In the related metric costs regime, it holds that

dij ≤ 2dji, i, j ∈ [n],

and

dij ≤ 2(dik + dkj), i, j, k ∈ [n].

Proof. First we show that min{cji, wji} ≤ 2dji. For each ℓ ∈ [k], it follows from Assump-

tion 3.2.3 that

cji ≤ min{cℓi + wjℓ, cℓj + wiℓ} ≤ cℓi + wjℓ ≤ 2max{cℓi, wjℓ},

and hence

dji = min

{
cji, wji, min

ℓ∈[n]\{j,i}
max{cℓi, wjℓ}

}
≥ min

{
cji, wji,

1

2
cji

}
≥ 1

2
min{cji, wji}.

Thus, min{cji, wji} ≤ 2dji. Identical arguments show that min{cik, wik} ≤ 2dik and that

min{ckj, wkj} ≤ 2dkj.

Observe that

dij = min{cij, wij, rij} ≤ min{cij, wij} = min{cji, wji} ≤ 2dji,

where the second equality follows from Assumption 3.2.1.

Next observe that

dij = min{cij, wij, rij}

≤ min{cij, wij}

≤ min{cik + ckj, ckj + wik, cki + wjk, wik + wkj}

= min{cik + ckj, wik + ckj, cik + wkj, wik + wkj}

≤ min{cik, wik}+min{ckj, wkj}

≤ 2(dik + dkj),

where the second inequality follows from Assumption 3.2.1 and 3.2.3, and the second equality

follows from Assumption 3.2.1.
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Remark 3.3.1. Example 3.3.2 establishes that the analysis of Proposition 3.3.1 is tight with

regards to symmetry. However, Example 3.3.3 does not establish that the analysis is tight

with respect to the triangle inequality. We do not need Proposition 3.3.1 to establish any

of the main results in this work, so we do not concern ourselves with further investigating

whether or not the analysis is tight.

3.4 Determining Receiving and Retrieving Locations given Facility Locations

Given facility locations F ⊆ [n], we consider the problem of determining which of the

remaining locations [n] \ F should be receiving and retrieving locations to minimize the

maximum cost paid to obtain goods. That is, we consider solving the following subproblem

of (3-2):

min
R1,R2

{f(F,R1, R2) : R1 ⊆ [n] \ F and R2 = [n] \ (F ∪R1)} . (3-4)

We present an algorithm for solving subproblem (3-4) in Algorithm 3-1; Theorem 3.4.1

establishes that Algorithm 3-1 solves the problem of interest in the no assumptions cost

regime (see Section 3.2). As a byproduct of our analysis of Algorithm 3-1, we also show

that the the meet-in-the-middle k-center problem reduces in polynomial time to the (not

necessarily metric) k-center problem in the no assumptions cost regime; see Remark 3.4.2

below.

Steps 1-3 of Algorithm 3-1 compute the facility location fi that is closest to each location

i ∈ [n]\F without a facility. Steps 4-14 set a location to be a receiving location if is optimal

for the location to receive goods (see Steps 6-7) from a facility or if it is optimal for another

location to retrieve goods from the location (see Steps 8-13). Intuitively, we make the

location a receiving location in the latter case because if it is optimal for another location to

retrieve goods from the location, then the objective value of (3-2) will be at least the cost

for the location to receive goods. Finally, in Step 15, the algorithm sets the locations not

yet selected to be retrieving locations.

Computational complexity. Algorithm 3-1 takes the meet-in-the-middle costs {rij}i,j∈[n]
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Algorithm 3-1 Determining receiving and retrieving locations.

Input: Facility locations F ⊂ [n], receiving costs {cij}i,j∈[n], retrieving costs {wij}i,j∈[n],

meet-in-the-middle costs {rij}i,j∈[n], and distances {dij}i,j∈[n]

1: for i ∈ [n] \ F do

2: fi ← argminf∈F dif

3: end for

4: Initialize receiving locations R1 ← ∅

5: for i ∈ [n] \ F do

6: if difi = cifi then

7: R1 ← R1 ∪ {i}

8: else if difi = rifi then

9: j ← argmink∈[n]\{i,fi}max{ckfi , wik}

10: if j /∈ F then

11: R1 ← R1 ∪ {j}

12: end if

13: end if

14: end for

15: Set retrieving locations R2 ← [n] \ (F ∪R1)

16: Return R1 and R2
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and distances {dij}i,j∈[n] as input. Meet-in-the-middle costs require O(n3) operations to

compute, and distances require O(n2) operations to compute (assuming that the meet-in-the-

middle costs have already been computed). Therefore, the total computational complexity

of precomputing these costs is O(n3).

Assuming |F | = k, Steps 1-3 require O((n − k)k) operations, and Steps 4-14 require

O((n− k)n) operations because Step 9 requires O(n) operations. However, if the quantities

in Step 9 are precomputed, which can be done while computing the meet-in-the-middle

costs at no additional expense to the big-O computational complexity, then Steps 4-14 only

require O(n − k) operations. Therefore, the computational complexity of Algorithm 3-1

with and without precomputing costs is O((n− k)k) and O(n3), respectively. Consequently,

Algorithm 3-1 runs in polynomial time.

Correctness. Theorem 3.4.1 establishes that Algorithm 3.4.1 correctly identifies an optimal

solution of (3-4). Note that the theorem does not make any assumptions about the receiving

or retrieving costs.

Theorem 3.4.1. Let F ⊂ [n], and let R1 and R2 be the output of Algorithm 3-1 run with

input F . Then R1 and R2 are optimal for subproblem (3-4).

Before proving Theorem 3.4.1, we establish a preliminary result. Specifically, we establish

a lower bound on the optimal value of subproblem (3-4); see Lemma 3.4.1. Intuitively, the

lower bound holds because dif is the smallest possible cost at which location i ∈ [n] \ F can

obtain goods (possibly through a receiving location) from location f ∈ F .

Remark 3.4.1. The proof of Theorem 3.4.1 reveals that the lower bound of Lemma 3.4.1

is actually tight; that is, maxi∈[n]\F minf∈F dif = f ∗. We formally make record of this fact

in Corollary 3.4.1.

Lemma 3.4.1. Let F ⊂ [n]. Then

max
i∈[n]\F

min
f∈F

dif ≤ f ∗,

where f ∗ is the optimal value of subproblem (3-4).
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Proof. Suppose that R1 and R2 are optimal for (3-4); that is, f(F,R1, R2) = f ∗. Let

j ∈ [n] \ F = R1 ∪R2. It is sufficient to show that minf∈F djf ≤ f ∗.

If j ∈ R1, then

min
f∈F

djf = min
f∈F

min{cjf , wjf , rjf}

≤ min
f∈F

cjf

≤ max
i∈R1

min
f∈F

cif

= r1(F,R1)

≤ max{r1(F,R1), r2(F,R1, R2)}

= f ∗.

Accordingly, suppose that j ∈ R2. Let ℓ ∈ argmink∈F∪R1
wjk. We consider two cases:

Case 1. Suppose that ℓ ∈ F . Then

min
f∈F

djf = min
f∈F

min{cjf , wjf , rjf}

≤ min
f∈F

wjf

= min
k∈F∪R1

wjk

≤ max
i∈R2

min
k∈F∪R1

wik

= r2(F,R1, R2)

≤ max{r1(F,R1), r2(F,R1, R2)}

= f ∗.
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Case 2. Suppose that ℓ ∈ R1. Then we have that

min
f∈F

djf = min
f∈F

min{cjf , wjf , rjf}

≤ min
f∈F

rjf

= min
f∈F

min
k∈[n]\{j,f}

max{ckf , wjk}

≤ min
f∈F

max{cℓf , wjℓ}

= max

{
min
f∈F

cℓf , wjℓ

}
≤ max

{
max
i∈R1

min
f∈F

cif ,max
i∈R2

min
k∈F∪R1

wik

}
= max {r1(F,R1), r2(F,R1, R2)}

= f ∗,

where the last inequality follows from ℓ ∈ R1, j ∈ R2, and ℓ ∈ argmink∈f∪R1
wjk.

With Lemma 3.4.1 in hand, we are now prepared to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. Let f ∗ denote the optimal value of (3-4). From Lemma 3.4.1, it is

sufficient to show that

f(F,R1, R2) = max{r1(F,R1), r2(F,R2)} ≤ max
i∈[n]\F

min
f∈F

dif . (3-5)

This will also imply that maxi∈[n]\F minf∈F dif = f ∗.

First we show that

r1(F,R1) ≤ max
i∈[n]\F

min
f∈F

dif . (3-6)

Let j ∈ R1 and fj ∈ argminf∈F djf . Algorithm 3-1 either adds j to R1 in Step 7 or in Step

11. In the former case, since fj ∈ F ,

min
f∈F

cjf ≤ cjfj = djfj = min
f∈F

djf , (3-7)
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where the first equality follows from Step 6. Now let us consider the latter case. From

Steps 8-13, there is an index i ∈ [n] \ F such that for fi ∈ argminf∈F dif , it holds that

difi = rifi and j ∈ argmink∈[n]\{i,fi}max{ckfi , wik}. Because fi ∈ F ,

min
f∈F

cjf ≤ cjfi ≤ max{cjfi , wij} = rifi = difi = min
f∈F

dif , (3-8)

where the first equality follows from the definition of rifi . So, from (3-7) and (3-8), we see

that r1(F,R1) = maxi∈R1 minf∈F cif ≤ maxi∈R1 minf∈F dif , and consequently (3-6) holds.

Next we show that

r2(F,R1, R2) ≤ max
i∈[n]\F

min
f∈F

dif . (3-9)

Let j ∈ R2 and fj ∈ argminf∈F djf . It follows from Steps 4-15 that either djfj = wjfj or

djfj = rjfj . In the former case, since fj ∈ F ,

min
k∈F∪R1

wjk ≤ wjfj = djfj = min
f∈F

djf . (3-10)

Now let us consider the latter case, namely djfj = rjfj . From Steps 8-13, there is an index

i ∈ [n] \ F such that i ∈ argmink∈[n]\{j,fj}max{ckfj , wjk}, and by Steps 10-12 specifically,

either i ∈ F or i ∈ R1. Hence, i ∈ F ∪R1, and

min
k∈F∪R1

wjk ≤ wji ≤ max{cjfj , wji} = rjfj = djfj = min
f∈f

djf . (3-11)

So, from (3-10) and (3-11), it holds that

r2(F,R1, R2) = max
i∈R2

min
j∈F∪R2

wij ≤ max
i∈[n]\F

min
f∈F

dif ,

implying that (3-9) holds.

The desired result (3-5) follows from (3-6) and (3-9).

From Lemma 3.4.1 and the proof of Theorem 3.4.1, we obtain:

Corollary 3.4.1. Let F ⊂ [n]. Then

max
i∈[n]\F

min
f∈F

dif = f ∗,

where f ∗ is the optimal value of subproblem (3-4).
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From the above results we see that the meet-in-the-middle k-center problem (3-2) reduces

in polynomial time to the k-center problem.

Remark 3.4.2. Consider the following k-center problem under our notion of distance (3-3):

min
F⊂[n]:|F |=k

max
i∈[n]\F

min
f∈F

dif . (3-12)

From Corollary 3.4.1, it follows that the optimal value of (3-12) equals the optimal value

of the meet-in-the-middle k-center problem (3-2). Furthermore, we see from Theorem 3.4.1

that given an optimal solution F ∗ to (3-12), we can run Algorithm 3-1 with input F ∗ to

obtain R∗
1, R

∗
2 ⊂ [n] such that (F ∗, R∗

1, R
∗
2) is optimal for the meet-in-the-middle k-center

problem (3-2). Thus, the meet-in-the-middle k-center problem reduces in polynomial time

to a k-center problem. Note, however, that because our notion of distance (3-3) does not

necessarily define a metric in any of the cost regimes (see Section 3.2), the reduction does

not provide a reduction to the metric k-center problem.

3.5 Integer Programming Formulations

In this section we present two MILP formulations for the meet-in-the-middle k-center

problem (3-2). Both formulations are applicable to all four cost regimes identified in Table 1.

In Section 3.5.1 we introduce an assignment formulation that assigns each receiving location

to a facility location and that assigns each retrieving location to a facility or receiving

location. And in Section 3.5.2 we introduce a k-center formulation based on the reduction

of the meet-in-the-middle k-center problem to the k-center problem presented in Remark

3.4.2.

3.5.1 Assignment Formulation

For each i ∈ [n], we introduce the binary variable xi ∈ {0, 1} to indicate if we set up a

facility at location i. And for each i ̸= j ∈ [n], we introduce the binary variable yij ∈ {0, 1}
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to indicate if location i receives goods from location j, and we introduce the binary variable

zij ∈ {0, 1} to indicate if location i retrieves goods from location j.

Consider the following assignment MILP formulation:

min
x,y,z,η

η

s.t. η ≥ cijyij i ̸= j ∈ [n] (3-13a)

η ≥ wijzij i ̸= j ∈ [n] (3-13b)

yij ≤ xj i ̸= j ∈ [n] (3-13c)

zij ≤ xj +
∑

ℓ∈[n]:ℓ ̸=j

yjℓ i ̸= j ∈ [n] (3-13d)

xi +
∑

j∈[n]:j ̸=i

yij +
∑

j∈[n]:j ̸=i

zij = 1 i ∈ [n] (3-13e)

n∑
i=1

xi = k i ∈ [n] (3-13f)

x ∈ {0, 1}n, y, z ∈ {0, 1}n×n, η ∈ R.

Constraints (3-13a) and (3-13b) ensure that the objective equals the maximum cost paid by a

location without a facility. Constraints (3-13c) ensure that location i can only receive goods

from location j if location j is a facility location. Constraints (3-13d) ensure that location

i can only retrieve goods from location j if location j is a facility or receiving location.

Constraints (3-13e) ensure that each location is either a facility, receiving, or retrieving

location. Finally, constraints (3-13f) ensure that there are k facility locations.

Note that if (x∗, y∗, z∗, η∗) is an optimal solution to IP formulation (3-13), then (F ∗, R∗
1, R

∗
2),

where

F ∗ = {i ∈ [n] : x∗
i = 1},

R∗
1 = {i ∈ [n] : y∗ij = 1 for some j ̸= i ∈ [n]}, and

R∗
2 = {i ∈ [n] : z∗ij = 1 for some j ̸= i ∈ [n]},

is an optimal solution for the meet-in-the-middle k-center problem (3-2).
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3.5.2 k-Center Formulation

As in the assignment formulation (Section 3.5.1), for each i ∈ [n], we let the binary

variable xi ∈ {0, 1} indicate whether we set up a facility at location i. And for each i ̸= j ∈

[n], the binary variable yij ∈ {0, 1} indicates whether location i obtains goods from location

j. That is, yij = 1 if location j is closest to location i under our notion of distance (3-3).

We formulate the k-center problem (3-12) as the MILP:

min
x,y,η

η

s.t. η ≥
∑

j∈[n]:j ̸=i

dijyij i ∈ [n] (3-14a)

yij ≤ xj i ̸= j ∈ [n] (3-14b)

xi +
∑

j∈[n]:j ̸=i

yij = 1 i ∈ [n] (3-14c)

∑
i∈[n]

xi = k i ∈ [n] (3-14d)

x ∈ {0, 1}n, y ∈ {0, 1}n×n, η ∈ R.

Constraints (3-14a) enforce that the objective equals the maximum distance from a location

without a facility to a location with a facility. Constraints (3-14b) ensure that a location i

can only obtain goods from location j if location j is a facility location. Constraints (3-14c)

ensure that each location is either a facility location or obtains goods from a facility location.

Constraints (3-14d) ensure that there are k facility locations.

Proposition 3.5.1 shows how to construct an optimal solution to the meet-in-the-middle

k-center problem (3-2) from an optimal solution to the MILP (3-14). The proposition holds

in the no assumptions cost regime and follows immediately from Remark 3.4.2.

Proposition 3.5.1. Suppose that (x∗, y∗, η∗) is an optimal solution to the integer program

(3-14). Then (F ∗, R∗
1, R

∗
2) is an optimal solution to (3-2), where R∗

1, R
∗
2 ⊂ [n] is the output

of Algorithm 3-1 executed with input F ∗ = {i ∈ [n] : x∗
i = 1}.
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3.6 Approximation Algorithm

In this section we present and study a greedy algorithm for approximately solving the

meet-in-the-middle k-center problem (3-2); see Algorithm 3-2 below. The algorithm is an

extension of the greedy algorithm developed in [34] for the k-center problem.

The algorithm runs as follows. In Steps 1-5, we apply the greedy algorithm of [34], but

using our notion of distance (3-3). Specifically, in Step 1, the algorithm initializes the set of

facility locations F with an arbitrarily chosen location i ∈ [n]. In Steps 2-5, the algorithm

adds new indices to F (according to the rule described in Step 3, which chooses the index

of the location that is farthest from the locations in F ) until F contains k locations. In

Step 6, the algorithm applies Algorithm 3-1 with input F to obtain receiving locations R1

and retrieving locations R2. Finally, the algorithm returns (F,R1, R2) as a solution to the

meet-in-the-middle k-center problem (3-2).

Algorithm 3-2 Greedy algorithm.

Input: Receiving costs {cij}i,j∈[n], retrieving costs {wij}i,j∈[n], meet-in-the-middle costs

{rij}i,j∈[n], and distances {dij}i,j∈[n].

1: Select any i ∈ [n] and initialize facility locations F ← {i}

2: while |F | < k do

3: i← argmaxj∈[n]\F minf∈F djf

4: F ← F ∪ {i}

5: end while

6: R1, R2 ← Algorithm 3-1 with input F , {cij}i,j∈[n], {wij}i,j∈[n], {rij}i,j∈[n], and {dij}i,j∈[n]
7: Return (F,R1, R2)

Computational complexity. Recall from Section 3.4 that precomputing the meet-in-the-

middle costs and distances requires O(n3) operations. Step 3 of Algorithm 3-2 requires O(nℓ)

operations at the ℓ-th iteration. It follows that, as stated, Steps 2-5 use O(nk2) operations

in total. By using O(nk) memory, this total can be reduced to O(nk) operations. Recall

from Section 3.4 that the computational complexity of Algorithm 3-1 with and without

precomputing costs is O((n − k)k) and O(n3), respectively. The computational complexity
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of Algorithm 3-2 is O(nk) and O(n3) with and without precomputing, respectively.

Approximation guarantee. The greedy algorithm developed in [34] is a 2-approximation

algorithm for the metric k-center problem, but it is not immediately clear to what extent

we can establish a similar guarantee for Algorithm 3-2. The main challenge is that distance

in our setting does not necessarily define a metric in any of the cost regimes of interest (see

Section 3.3.1). While we could utilize the fact that distance approximately defines a metric

in some of the cost regimes (see Proposition 3.3.1) to establish an approximation guarantee

in these regimes, a more careful analysis yields a better approximation guarantee.

We present our main result in Theorem 3.6.1 below. The theorem states that Algo-

rithm 3-2 is a 3-approximation algorithm for meet-in-the-middle k-center problem (3-2) in

the related metric costs regime and a 2-approximation algorithm in the equal metric costs

regime.

Theorem 3.6.1. The following statements hold.

1. Algorithm 3-2 is a 3-approximation algorithm for the meet-in-the-middle k-center problem

(3-2) in the related metric costs regime.

2. Algorithm 3-2 is a 2-approximation algorithm for the meet-in-the-middle k-center problem

(3-2) in the equal metric costs regime.

Proof. See Section 3.6.1.

Proposition 3.6.1 below establishes that the analysis of Theorem 3.6.1 is tight.

Proposition 3.6.1. The following statements hold.

1. There is a meet-in-the-middle k-center problem in the related metric costs regime for

which Algorithm 3-2 yields a 3-approximation.

2. There is a meet-in-the-middle k-center problem in the equal metric costs regime for which

Algorithm 3-2 yields a 2-approximation.

Proof. See Section 3.6.2.
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3.6.1 Analysis of Algorithm 3-2

Let (F ∗, R∗
1, R

∗
2) be an optimal solution to problem (3-2). Define

OPT := f(F ∗, R∗
1, R

∗
2)

to be the optimal value of (3-2). And for each f ∈ F ∗, define the sets:

R∗
1f :=

{
i ∈ R∗

1 : f ∈ argmin
f∈F ∗

cif

}
,

R∗
2f :=

{
i ∈ R∗

2 :

[
argmin
j∈{f}∪R∗

1f

wij

]
∩

[
argmin
j∈F ∗∪R∗

1

wij

]
̸= ∅

}
,

Cf := {f} ∪R∗
1f ∪R∗

2f .

Notice that if i ∈ R∗
1f ⊂ R∗

1, then it is optimal for receiving location i to receive goods from

facility f . Also observe that if i ∈ R∗
2f ⊂ R∗

2, then it is optimal for retrieving location i to

retrieve goods from facility location f or a receiving location indexed by R∗
1f . We refer to the

set Cf as an optimal cluster. Note that the optimal clusters cover [n] (i.e., [n] = ∪f∈F ∗Cf ),

but two different optimal clusters do not necessarily have a nonempty intersection.

Before proving Theorem 3.6.1, we establish Lemma 3.6.1. The lemma states that if

two indices are in the same optimal cluster, then the distance (i.e., our notion of distance)

between the two corresponding locations is less than a constant multiple of OPT, where the

constant depends on the cost regime.

Lemma 3.6.1. Let f ∈ F ∗ and i, j ∈ Cf . Then

1. dji ≤ 3OPT in the related metric costs regime, and

2. dji ≤ 2OPT in the equal cost metric costs regime.

Proof. If i = j, then the desired result immediately follows because dij = 0. Either i = f ,

i ∈ R∗
1f , or j ∈ R∗

2f ; we consider these three cases below.

Case 1. Suppose that i = f . If j ∈ R∗
1f , then

dji = djf ≤ cjf ≤ OPT.
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If j ∈ R∗
2f , then it is either optimal for j to retrieve from location f or some location k ∈ R∗

2f .

In the former case,

dji = djf ≤ wjf ≤ OPT,

and in the latter case,

dji ≤ rji ≤ max{cki, wjk} ≤ OPT.

Case 2. Suppose that i ∈ R∗
1f . Either (i) j = f , (ii) j ∈ R∗

1f , or (iii) j ∈ R∗
2f ; we consider

each of these cases below.

Case 2.1. Suppose that j = f . Then

dji = dfi ≤ cfi = cif ≤ OPT,

where the last inequality follows from the fact that i ∈ R∗
1f .

Case 2.2. Suppose that j ∈ R∗
1f . Then

dji ≤ cji ≤ cjf + cfi = cjf + cif ≤ 2OPT,

where the last inequality follows from the fact that i, j ∈ R∗
1f .

Case 2.3. Suppose that j ∈ R∗
2f . It is either optimal for location j to retrieve from location

f , from location i, or from some location k ̸= i ∈ R∗
1f . In the first case, we see that

dji ≤ rji ≤ max{cfi, wjf} = max{cif , wjf} ≤ OPT,

where the last inequality follows from i ∈ R∗
1f and the assumption that it is optimal for

location j to retrieve from location f . In the second case, it holds that

dji ≤ wji ≤ OPT.

And in the last case, we have that

dji ≤ rji ≤ max{cki, wjk} ≤ max{ckf + cfi, wjk} = max{ckf + cif , wjk}

≤ max{2OPT,OPT} = 2OPT,
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where the last inequality follows from the fact that i, k ∈ R∗
1f and the assumption that it is

optimal for location j to retrieve from location k.

Case 3. Suppose that i ∈ R∗
2f . Either (i) j = f , (ii) j ∈ R∗

1f , or (iii) j ∈ R∗
2f ; we consider

these three cases below.

Case 3.1. Suppose that j = f . It is either optimal for location i to retrieve from location

j = f or from some location k ∈ R∗
1f . In the former case,

dji = dfi ≤ wfi = wif ≤ OPT,

and in the latter case,

dji = dfi ≤ cfi ≤ ckf + wik ≤ 2OPT,

where the last inequality follows from the fact that k ∈ R∗
1f and it is optimal for location i

to retrieve from location k.

Case 3.2. Suppose that j ∈ R∗
1f . It is either optimal for location i to retrieve from location

f , from location j, or from some location k ̸= j ∈ R∗
1f . In the first case, we have that

dji ≤ cji ≤ cfj + wif = cjf + wif ≤ 2OPT,

where the last inequality follows from the fact j ∈ R∗
1f and it is optimal for location i to

retrieve from location f . In the second case, we see that

dji ≤ wji = wij ≤ OPT.

And in the final case, we obtain a different approximation, depending on the cost regime. In

the related metric costs regime,

dji ≤ cji ≤ cjf + cfi ≤ cjf + ckf + wik ≤ 3OPT,

where the last inequality follows from the fact that j, k ∈ R∗
1f and it is optimal for location

i to retrieve from location k. And in the equal costs regime,

dji ≤ rji ≤ max{cfi, cjf} ≤ max{cfk + cki, cjf} = max{ckf + cik, cjf}

≤ max{2OPT,OPT} = 2OPT,
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where the last inequality follows from the fact that j, k ∈ R∗
1f and it is optimal for location

i to retrieve from location k.

Case 3.3. Suppose that j ∈ R∗
2f . It is either optimal for location i to retrieve from location

f or from some location k ∈ R∗
1f . First let us consider the case in which it is optimal for

location i to retrieve from location f . In this case, it is either optimal for location j to

retrieve from location f as well or from some location ℓ ∈ R∗
1f . In the former case,

dji ≤ wji ≤ wjf + wfi = wjf + wif ≤ 2OPT,

and in the latter case,

dji ≤ rji ≤ max{cℓi, wjℓ} ≤ max{cℓf + wfi, wjℓ} = max{cℓf + wif , wjℓ}

≤ max{2OPT,OPT} = 2OPT,

where the last inequality follows from the fact that ℓ ∈ R∗
1f and it is optimal for location i

and j to retrieve from location f and ℓ, respectively.

Next we consider the case in which it is optimal for location i to retrieve from some

location k ∈ R∗
1f . It is either optimal for location j to retrieve from location k or some

location ℓ ∈ R∗
1f . In the former case,

dji ≤ wji ≤ wjk + wki = wjk + wik ≤ 2OPT.

Now let us consider the latter case in which it is optimal for location j to retrieve from

location ℓ. We obtain a different approximation guarantee, depending on the cost regime.

In the related metric costs regime,

dji ≤ rji ≤ max{cℓi, wjℓ} ≤ max{cℓf + cfi, wjℓ} ≤ max{cfℓ + ckf + wik, wjℓ}

≤ max{3OPT,OPT} = 3OPT,
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where the last inequality follows from the fact that k, ℓ ∈ R∗
1f and that it is optimal for

location i and j to retrieve from location k and ℓ, respectively. Now, in the equal cost

regime,

dji ≤ rji ≤ max{cfi, cjf} ≤ max{cfk + cki, cjℓ + cℓf} = max{ckf + cik, cjℓ + cℓf}

≤ max{2OPT, 2OPT} = 2OPT,

where the last inequality follows from the fact that k, ℓ ∈ R∗
1f and that it is optimal for

locations i and j to retrieve from locations k and ℓ, respectively.

We are now prepared to prove Theorem 3.6.1. The proof follows in a similar spirit to

the proof of [34] (although our proof requires Lemma 3.6.1).

Proof of Theorem 3.6.1. Let (F,R1, R2) denote the output of Algorithm 3-2. From Corol-

lary 3.4.1, it holds that f(F,R1, R2) = maxj∈[n]\F minf∈F djf . Let j ∈ [n] \ F . It is then

sufficient to show that

min
f∈F

djf ≤ αOPT, (3-15)

where α = 3 or α = 2, depending on the cost regime.

Because the optimal clusters cover [n], it holds that j ∈ Cf for some f ∈ F ∗. We consider

two cases:

Case 1. Suppose that no two indices in F belong to the same optimal cluster. Then there

is an index i ∈ F ∩ Cf . Observe that

min
f∈F

djf ≤ dji ≤ αOPT,

where the last inequality follows from Lemma 3.6.1. Thus (3-15) holds.

Case 2. Suppose that two indices in F are in the same optimal cluster, say k, ℓ ∈ Cf̂ for

some f̂ ∈ F ∗. Without loss of generality, suppose that Algorithm 3-2 added k to F before ℓ,

and let F̂ denote the set of indices that were added to F before ℓ. Because F̂ ⊆ F , we have

that

min
f∈F

djf ≤ min
f∈F̂

djf ≤ dℓk ≤ αOPT,

where the second inequality follows from Step 3 of Algorithm 3-2, and the last inequality

from Lemma 3.6.1.
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3.6.2 Tight Meet-in-the-Middle k-Center Instances

To establish Proposition 3.6.1, we consider simple instances of (3-2) (instead of an infinite

family of instances) to provide clear insights into the properties that make an instance

challenging for Algorithm 3-2.

Proof of Proposition 3.6.1. Let us establish the first statement of the proposition. Consider

a meet-in-the-middle 1-center instance with the following receiving and retrieving costs,

respectively.

C =


0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

 and W =


0 1 2 5

1 0 1 4

2 1 0 3

5 4 3 0

 .

It is straightforward to verify that Assumption 3.2.1 holds. Furthermore, Assumption 3.2.3

holds because Assumption 3.2.1 holds and C ≤ W . Thus, the assumptions of the related

metric costs regime are satisfied. Suppose that we initialize Algorithm 3-2 in Step 1 with

location i = 1. Because k = 1, the algorithm then proceeds to Step 6. It is straightforward to

verify that, in Step 6, Algorithm 3-1 returns receiving locations R1 = {2, 4} and retrieving

locations R2 = {3}. Thus Algorithm 3-2 returns the solution F = {1}, R1 = {2, 4},

R2 = {3}. Because c21 = 1, r31 = 1, and c41 = 3, it holds that the objective value of this

solution equals 3. Now consider the solution F ∗ = {3}, R1 = {2, 4}, and R2 = {1}. Because

c23 = 1, c43 = 1, and r13 = 1, it holds that the objective value of this is solution is 1.

Therefore, the approximation ratio of the solution of Algorithm 3-2 is 3.

Now let us establish the second statement of the proposition. Consider a meet-in-the-

middle 2-center instance with

cij = wij = |i− j|, i, j ∈ {1, . . . , 7}.

Clearly the assumptions of the equal metric cost regime are satisfied. Suppose that we

initialize Algorithm 3-2 in Step 1 with i = 1. In Steps 2-4, the algorithm either adds index

6 to F or index 7 because d21 = 1, d31 = 1, d41 = 2, d51 = 2, d61 = 3, and d71 = 3.

Suppose that the algorithm adds index 7 to F . It is straightforward to verify that, in
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Step 6, Algorithm 3-1 can return receiving locations R1 = {2, 3, 5, 6} and retrieving locations

R2 = {4}. Thus Algorithm 3-2 can return the solution F = {1, 7}, R1 = {2, 3, 5, 6},

and R2 = {4}. The objective value of this solution equals 2. Now consider the solution

F ∗ = {3, 5}, R∗
1 = {2, 4, 6}, and R∗

2 = {1, 7}. The objective value of this solution is 1.

Therefore, the approximation ratio of the solution of Algorithm 3-2 is 2.

3.7 Computational Experiments

In this section we present computational experiments to (i) investigate the empirical

performance of solution methods for the meet-in-the-middle k-center problem and (ii) un-

derstand the extent to which accounting for the ability to meet-in-the-middle can be ad-

vantageous. Throughout this section we consider the equal metric costs regime (see Section

3.2).

First, we investigate the empirical performance of the methods for the meet-in-the-middle

k-center problem developed herein. To this end, we (i) compare the objective value of

approximate solutions from Algorithm 3-2 with the optimal objective value (computed using

either MILP formulation (3-13) or (3-14)); we (ii) compare the runtime of MILP formulations

(3-13) and (3-14); and we (iii) study the policy structure of approximate solutions from

Algorithm 3-2 and optimal solutions from the MILPs.

Second, we seek to understand the extent to which accounting for the ability to meet-in-

the-middle can be advantageous compared to (i) not accounting for the ability at all or to

(ii) “partially” accounting for the ability. In the former case, we compare the performance

of meet-in-the-middle k-center solutions with standard k-center solutions. In the latter case,

we compare the performance of meet-in-the-middle k-center solutions with solutions whose

facility locations are obtained from standard k-center solutions and whose receiving and

retrieving locations are obtained from Algorithm 3-1 (with the k-center facility locations as

input). This latter comparison provides insight into settings in which meeting in the middle

naturally happens but is not explicitly accounted for when determining facility locations.

We study the following exact and approximate solution methods. For clarity, we italicize
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each method name as we refer to it throughout this section.

• Exact. The exact method outputs an optimal solution to the meet-in-the-middle k-

center problem (3-2). We compute optimal solutions with either MILP formulation (3-13)

or (3-14). (In the latter case, we must also apply Algorithm 3-1 to obtain receiving and

retrieving locations.)

• Algorithm 3-2. Algorithm 3-2 outputs an approximate optimal solution to the meet-

in-the-middle k-center problem (3-2).

• Exact k-center. The exact k-center method outputs the optimal solution to the k-

center problem (i.e., just facility locations) under distances {cij}i,j∈[n]. To compute these

solutions, we solve the MILP formulation (3-14) with parameters {cij}i,j∈[n] instead of

{dij}i,j∈[n].

• Exact k-center + Algorithm 3-1. The exact k-center + Algorithm 3-1 method first

runs the exact k-center method to obtain facility locations F and then runs Algorithm 3-

1 with input F to obtain receiving and retrieving locations. Note that this method is

different from applying MILP formulation (3-14) together with Algorithm 3-1 because

MILP formulation (3-14) uses our notion of distance (3-3) that accounts for the ability

to meet-in-the-middle.

• Approximate k-center. The approximate k-center method uses the greedy algorithm

of [34] to output an heuristic solution to the standard k-center problem (i.e., just facility

locations) under distances {cij}i,j∈[n].

• Approximate k-center + Algorithm 3-1. The approximate k-center + Algorithm 3-

1 method first runs the approximate k-center method to obtain facility locations F and

then runs Algorithm 3-1 with input F to obtain receiving and retrieving locations. Note

that this method is different from Algorithm 3-2 because Algorithm 3-2 uses our notion

of distance (3-3) that accounts for the ability to meet-in-the-middle.

In Section 3.7.1 we consider randomly drawing locations from the unit square and using

Euclidean distance for receiving and retrieving costs. Then in Section 3.7.2 we take cities in

the United States as locations and use distance between the cities (determined from longitude

and latitude coordinates) as receiving and retrieivng costs.
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Hardware and software. Our computational study is performed on an LG Gram laptop

with a single 11th generation Intel core (2.92 GHz), 16 GB of RAM, and a 64 bit Win-

dows operating system. All experiments are run sequentially. The MILP formulations are

solved using Gurobi Optimizer 10.0, and our algorithms are coded using Python 3.9 and the

Anaconda 2021.11 distribution.

3.7.1 The Euclidean Meet-in-the-Middle k-Center Problem on the Unit Square

We generate Euclidean meet-in-the-middle k-center problem instances on the unit square

as follows. First we draw n points (labeled by [n]) from the uniform distribution on the unit

square [0, 1]2. Next we set the receiving cost cij for each i, j ∈ [n] to be the Euclidean

distance between points i and j. Recall that throughout this section we consider the equal

metric costs regime; accordingly, the retrieving costs are wij = cij for each i, j ∈ [n].

Runtime of MILP formulations (3-13) and (3-14). First we compare the runtimes of

our two exact methods, namely the MILP formulations (3-13) and (3-14). Note that, for

the latter case, we do not report the runtime of Algorithm 3-1, which computes receiving

and retrieving locations, as it is negligible compared to the MILP runtime for moderately

large values of n. We consider Euclidean meet-in-the-middle k-center instances with n ∈

{50, 100, . . . , 500} and k/n ∈ {0.1, 0.5, 0.9}. For each value of n and k/n, we generate

10 instances. We report the corresponding average runtimes, along with their standard

deviations, in minutes in Figure 7.

We make the following observations:

• Figure 7 illustrates that the runtime required to solve the exact k-center MILP is typically

90% less than the time required to solve the exact assignment MILP.

• Runtimes for both methods appear to be exponential in problem size, which is not

surprising in light of the fact that the meet-in-the-middle k-center problem is NP-hard.

We were only able to solve the exact assignment MILP (3-13) for problems sizes up to

n = 500 within a 15 minute time limit. The right panel in Figure 7, and our experiment

in Section 3.7.2, both show that we can solve significantly larger exact k-center MILP

(3-14) formulations within this time limit.
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Figure 7: Average solution time of the exact assignment MILP (3-13) and exact k-center

MILP (3-14) for a range of Euclidean meet-in-the-middle k-center problems on the unit

square.

• Figure 7 also indicates that problems with fewer facilities are more difficult to solve.

Empirical approximation ratios and the value of meeting in the middle. In our

next experiment, we study the empirical approximation ratios of the six methods of interest.

We generate Euclidean meet-in-the-middle k-center instances on the unit square with n =

100 locations. We consider instances with k ∈ {5, 10, . . . , 95}. For each value of k, we

generate 10 instances. We report the sample mean and standard deviation for the empirical

approximation ratio ρ = zalg/z∗ of each method, where zalg denotes the objective value

of an algorithm-generated policy, and z∗ denotes the optimal objective value generated by

the exact assignment MILP formulation (3-13). The plots in the Figure 8 are organized

as follows. Plot (a) compares the empirical performance of the following approximation

methods: approximate k-center, approximate k-center + Algorithm 3-1, and Algorithm 3-2.

Plot (b) illustrates the performance of the following methods that do not consider the ability

to meet in the middle at all: approximate k-center and exact k-center. Plot (c) illustrates
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(a) Approximation methods for the meet-in-
the-middle k-center problem.

(b) Methods that do not consider the ability
to meet in the middle.

(c) Methods that consider the ability to meet
in the middle.

Figure 8: Approximation ratios, ρ = zalg/z∗, for each method over a range of synthetic

problem instances on the Euclidean unit square.

the performance of the following methods that partially consider the ability to meet in the

middle: approximate k-center + Algorithm 3-1 and exact k-center + Algorithm 3-1. We

make the following observations:

• Plot (a) in Figure 8 supports Theorem 3.6.1, which establishes that Algorithm 3-2 is
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a 2-approximation algorithm for the meet-in-the-middle k-center problem in the equal

metric costs regime (recall that this experiment was designed with equal costs).

• Plot (a) in Figure 8 also demonstrates that, on average, Algorithm 3-2 yields better

approximate solutions to the meet-in-the-middle k-center problem than approximate k-

center method and approximate k-center method + Algorithm 3-1.

• Comparing Plots (b) and (c) in Figure 8, we see that meeting-in-the-middle yields lower

costs than either not meeting-in-the-middle at all, or only partially accounting for the

ability to meet in the middle. Naturally the difference in performance is more significant

in the former case.

3.7.2 A Meet-in-the-Middle k-Center Problem on the United States Map

In this section we apply the six algorithms to real geospatial data [7] that includes latitude

and longitude coordinates for 1,000 cities in the United States. We treat the 1,000 cities as

locations, and we measure the distance between two cities by the geospatial distance between

their latitude and longitude coordinates.

Figure 9 depicts an optimal solution to the meet-in-the-middle k-center problem (3-2) for

k = 50. Red stars indicate facility locations, solid blue circles indicate receiving locations,

and hollow blue circles indicate retrieving locations. A solid line between two locations in-

dicates that one location receives goods from the other, and dashed lines indicate that one

location retrieves goods from the other. Note that we obtained the optimal solution from the

exact k-center MILP (3-14) within 15 minutes. We could only solve the exact assignment

MILP (3-13) for instances up to n = 500 locations and k = 75 facilities within a 15 minute

time limit.

Facilities in Figure 9 are distributed in a grid-like manner. Facilities are not necessarily

located at population centers, and it is often optimal to locate facilities between population

centers. For example, the left panel of Figure 10 depicts the Florida portion of the global

policy and shows that it is optimal to locate a facility south of Orlando, which is able to

directly serve the populations of Saint Petersburg and Port Saint Lucie, and indirectly serve

the major populations south of those locations. The right panel of Figure 10 shows that
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it is optimal to locate a facility near the relatively small population center of Schenectady,

New York, which is able to directly and indirectly cover the entire Boston and New York

City areas. These insights are not surprising given that our algorithm does not consider

population size.

For each of the six methods, Figure 11 depicts the Florida portion of the global policy

generated with n = 1, 000 cities in the United States and k = 50 facilities. The exact

method generated a policy in which the vast majority of the state is covered by only one

facility, whereas the other methods required two facilities to cover most of the state. The

figure also clearly shows the extended coverage that a given facility can achieve by using the

meet-in-the-middle strategy.

Figure 12 plots the approximation ratios of each method over a range of k values for the

real geospatial dataset, similar to Figure 8. While we observe the same relative performance

between each method as we did in the synthetic data experiments, the methods overall per-

formed better (ρ values closer to 1) in the experiments with real data. The performance

degradation observed in the synthetic data experiments is likely because the facility loca-

tion step is more challenging when the locations are randomly distributed; whereas in real

geospatial data, the locations tend to naturally cluster (due to human settlement patterns),

and this makes facility location decisions somewhat easier.
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Figure 9: Optimal policy generated by the exact method for n = 1, 000 cities in the United

States and k = 50 facilities.

67



Figure 10: Optimal policies generated by the exact method for the South Florida area (left

panel) and New England area (right panel).
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(a) Exact (b) Algorithm 3-2

(c) Exact k-center (d) Exact k-center + Alg. 3-1

(e) Approximate k-center (f) Approx. k-center + Alg. 3-1

Figure 11: Florida portion of the global policy generated by each algorithm with n = 1, 000

cities in the United States and k = 50 facilities.
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(a) Approximation methods for the meet-in-
the-middle k-center problem.

(b) Methods that do not consider the ability
to meet in the middle.

(c) Methods that consider the ability to meet
in the middle.

Figure 12: Approximation ratios, ρ = zalg/z∗, for each method applied to the n = 500 most

populous U.S. cities over a range over a range of 20 uniformly spaced values of k
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3.8 Discussion

In this work we consider a variation of the k-center problem in which facilities can send

agents to intermediate locations to meet-in-the-middle with clients. Our primary motivation

for studying this problem stems from its application to vaccine distribution in geographically

dispersed populations with limited transportation resources. To vaccinate parts of these

populations, health workers take vaccines from medical facilities to intermediate locations,

and patients travel to those intermediate locations to become vaccinated.

From a methodological standpoint, we studied the meet-in-the-middle k-center problem

(3-2) under a variety of cost regimes; proposed a natural notion of distance between locations;

developed a polynomial-time algorithm for solving subproblem (3-4) to determine optimal

receiving and retrieving locations given a set of facility locations; presented two MILP for-

mulations; and finally developed an approximation algorithm with performance guarantees

for the related metric and equal metric cost regimes. Through computational experiments

we observed that accounting for the ability to meet-in-the-middle can significantly reduce

service distance, and we observed that our exact and approximation algorithms can solve

significantly larger problem instances than the assignment MILP formulation (3-13).

There are a few interesting directions for future research. Naturally it is of interest to

consider the meet-in-the-middle capability in the context of other facility location problems,

such as those with fixed costs, supplies, demands, and capacities. Our meet-in-the-middle

problem could be extended to consider the possibility of facilities delivering goods to a

sequence (route) of locations from which nearby clients retrieve goods by traveling. We could

consider different objectives, such as minimizing the total travel distance, or minimizing

the demand-weighted travel distance. Finally, while we established that our analysis of

Algorithm 3-2 is tight, we could explore whether other algorithms might provide better

guarantees. Similarly, it would be interesting to explore algorithm performance under relaxed

cost regimes, such as problems in which only Assumption 3.2.1 (i.e., metric costs) holds.
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4.0 Recovering Locally Distinguishable Communities with Applications to

Clustering Training Data

4.1 Introduction

Community detection (or graph clustering) involves clustering the vertices of a graph into

vertex subsets called communities. A community is usually thought of as a subset of vertices

that are more densely connected to each other than to vertices that are not in the subset.

The amount that the communities are more densely internally than externally connected

captures the extent to which the communities are distinguishable (or the strength of the

community structure). Typically the goal in community detection problems is to either

recover ground-truth communities or explore natural groupings of the vertices.

Data clustering problems are often recast as community detection problems through the

notion of a similarity graph. A similarity graph is a graph whose vertices represent data

points and whose edges indicate whether or not data points are “similar.” (The edges may

also have weights that capture the amount of similarity.) Recasting data clustering problems

as community detection problems is particularly effective when it is of interest to find clusters

of data points that are spread across space (e.g., when ground-truth communities are known

to admit such structure).

In this work we consider a community detection problem in which the goal is to recover

ground-truth communities of a vertex-attributed graph that are locally distinguishable in the

sense that the ground-truth communities exhibit stronger community structure in more local

parts of the graph (i.e., in subgraphs induced by vertices whose attributes are closer). A

more precise (but still somewhat informal) description of the local distinguishability property

that we consider is as follows.

72



The local distinguishability property. Communities are locally distinguishable if the

following two conditions hold:

(i) The amount that the likelihood that there is an edge between two vertices in the same

community exceeds the likelihood that there is an edge between two vertices in different

communities (with the same attributes as the two vertices in the same community)

increases as the distance (under some metric) between the attributes of the vertices

decreases.

(ii) The likelihood that there is an edge between two vertices in the same ground-truth

community (different ground-truth communities) increases (decreases) as the distance

between the attributes of the vertices decreases.

Condition (i) alone captures the fact that locally distinguishable communities exhibit stronger

community structure in more local parts of the graph. Condition (ii) is an additional condi-

tion that we enforce that is not necessarily implied by condition (i).

As we demonstrate in Subsection 4.2.1, the recovery problem of interest naturally arises

when clustering training data that contains responses generated from different latent sources.

More specifically, we show that the ground-truth communities (corresponding to the latent

sources) of certain similarity graphs for the training data (whose edges capture whether

or not the responses of training data points are similar) satisfy the local distinguishability

property under mild conditions.

Locally distinguishable communities, however, may not be globally distinguishable (i.e.,

have higher internal than external connection density). Accordingly, the recovery problem

poses a challenge for community detection algorithms that are designed based on standard

notions of a community. In this work we design an algorithm specifically for the recovery

problem. The algorithm first clusters the vertex set into local vertex subsets, then applies a

standard (spectral) community detection algorithm to each graph induced by one of the local

vertex subsets to obtain local communities, and finally agglomerates the local communities

into global communities. We present a schematic of the algorithm along with a more detailed

discussion about the algorithm in Subsection 4.2.2.

Our goal in this work is twofold. First, we aim to establish conditions under which our
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algorithm theoretically recovers when applied to the local stochastic block model (LSBM), a

variation of the stochastic block model that incorporates the local distinguishability property.

We direct the reader to Section 4.3 for a formal description of the LSBM and Subsection 4.3.1

for a summary of the main theoretical recovery guarantee that we develop for the algorithm.

Second, we aim to evaluate the empirical performance of the method on LSBM instances

and its viability for clustering real training data. To this end, we present a computational

study in Section 4.8.

4.1.1 Organization

First in Section 4.2 we provide motivation for this work; specifically, we discuss the

motivating application of clustering training data, present a schematic of the community de-

tection algorithm that we propose, and discuss related work. Next we present a description

of the LSBM in Section 4.3 along with the main recovery guarantee that we develop for the

community detection algorithm. In Section 4.4 we introduce and study the algorithm that

we will use to construct local vertex subsets. Next we present and analyze a spectral com-

munity detection algorithm for partitioning the local vertex subsets into local communities

in Section 4.5. Then in Section 4.6 we introduce and analyze the algorithm that we will

use to agglomerate the local communities. In Section 4.7 we present a full description of

the community detection algorithm that we propose along with a formal recovery guarantee.

Finally we present a computational study in Section 4.8, and we conclude with discussion

and directions for future research in Section 4.10.

4.2 Motivation and Related Work

In Subsection 4.2.1 we discuss the motivating application of clustering training data.

Next we provide a schematic of the community detection algorithm that we propose in

Subsection 4.2.2. Finally in Subsection 4.2.3 we discuss related work.
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4.2.1 Clustering Training Data

Consider training data D = {(xi, yi)}i∈[n] ⊂ Rm × R, where [n] := {1, . . . , n}, that con-

tains n feature-response pairs. Let f1, f2 : Rm → R be functions that we will refer to as

sources. Suppose that each response is generated from one of the two sources: for each

i ∈ [n], either yi = f1(xi) + ϵi or yi = f2(xi) + ϵi, where ϵi is random noise. (Later in this

section we will place formal assumptions on the random noise.) Further suppose that the

sources are latent, meaning the source of each response is unknown.

Example 4.2.1. As a running example, let us consider the cars dataset from the CMU

Statlib library [69]. (We actually use the slightly revised version of the dataset from the UC

Irvine Machine Learning Repository [66].) The dataset contains feature information (e.g.,

miles per gallon, car weight, and model year) for 406 different cars. Each car has a model

year between 1970 and 1982. We restrict our attention to newer cars that have a model year

in 1979-1982 and older cars that have a model year in 1970-1973. This reduces the dataset

to n = 243 data points. Take xi to be the weight of the i-th car (i.e., there is m = 1 feature),

and take yi to be miles per gallon (mpg) of the i-th car. Also take f1(xi) to be the mpg of

a newer car of weight xi, and take f2(xi) to be the mpg of an older car of weight xi. (The

sources are known in this case, but we will pretend that they are not.) See the first plot of

Figure 13 for a scatter plot of the data. Observe that a newer car that has the same weight

as an older car (naturally) tends to have higher mpg. The second plot in Figure 13 depicts

overlaid smoothed estimates of the mean mpg (along with 95% confidence intervals) of newer

and older cars as a function of their weight. We can think of these estimated functions as

the sources f1 and f2, respectively.

Consider clustering the training data D; there are two key applications of this task. The

first is training clusterwise models, and the second is labeling unlabeled data for training a

classification model. We direct the reader to Subsection 4.2.3 for a thorough discussion of

these applications and related work.
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Figure 13: The car training data along with another plot of overlaid smoothed estimates of

the mean mpg (along with 95% confidence intervals) of newer and older cars as a function

of their weight.

Next we demonstrate that the ground-truth communities (corresponding to the sources)

of certain similarity graphs for the training data are locally distinguishable under the fol-

lowing assumptions. The most strict assumption is that the sources are separable:

(i) For τ > 0, it holds that infx∈Rn f1(x)−f2(x) ≥ τ . We say that the sources are τ -separable.

In words, the first source outputs higher responses than the second source. Note that

this condition is satisfied in Example 4.2.1.

The other assumptions are rather mild in comparison; we assume that the sources are Lipshitz

and that the random noise terms are independent and identically distributed mean 0 normal

random variables:

(ii) For L > 0, the sources are L-Lipshitz. That is, |f1(x1) − f1(x2)| ≤ L∥x1 − x2∥2 and

|f2(x1)− f2(x2)| ≤ L∥x1 − x2∥2 for all x1, x2 ∈ Rn.

(iii) The noise terms ϵi, i ∈ [n] are independent and identically distributed mean 0 normal

random variables.
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A similarity graph G for D. We introduce the following vertex-attributed similarity graph

G for the training data D. The vertex set of G is V = [n], the attributes of vertex i ∈ V are

xi (the features for the i-th data point), and there is an edge between vertices i ̸= j ∈ [n] if

|yi − yj| ≤ δ, where δ is a parameter. (We discuss how to choose/tune δ below.) That is,

there is an edge between vertices if the responses in the data points that they represent are

close. We say that G is the δ-similarity graph for D. We also write G = (V,E, x), where E

is the edge set of G, and the columns of x ∈ Rm×n are the vertex attributes (i.e., the i-th

column of x is xi).

Let δ > 0, G = (V,E, x) be the δ-similarity graph for D, and i ̸= j ∈ V . Define the

function ϕδ : R→ [0, 1] by ϕδ(γ) := P(|ϵi− ϵj +γ| ≤ δ) for γ ∈ R. Note that ϕδ is decreasing

on R≥0 because the random variable ϵi − ϵj follows a mean 0 normal distribution. Also let

pij := P(|yi− yj| ≤ δ) denote the probability (with respect to ϵi and ϵj) that there is an edge

between vertices i and j.

Consider Proposition 4.2.1 below, which lower bounds (upper bounds) pij when the

vertices i and j are in the same (different) ground-truth communities. The proposition

readily follows from the three assumptions above.

Proposition 4.2.1. Suppose that assumptions (i)-(iii) above hold. Let δ > 0, G be the

δ-similarity graph for D, and i ̸= j ∈ V . If vertices i and j are in the same ground-truth

community,

pij ≥ ϕδ(L∥xi − xj∥2). (4-1)

Otherwise, if the vertices are in different ground-truth communities,

pij ≤ ϕδ(τ − L∥xi − xj∥2). (4-2)

Proof. Suppose that vertices i, j are in the same ground-truth community. Furthermore,
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without loss of generality, suppose that yi = f1(xi) + ϵi and yj = f1(xj) + ϵj. Then

pij = P(|yi − yj| ≤ δ)

= P(|ϵi − ϵj + f1(xi)− f1(xj)| ≤ δ)

= P(|ϵi − ϵj + |f1(xi)− f1(xj)|| ≤ δ)

= ϕδ(|f1(xi)− f1(xj)|)

≥ ϕδ(L∥xi − xj∥2),

the third equality follows from the fact that ϵi− ϵj follows a mean 0 normal distribution, the

third equality from the definition of ϕδ, and the inequality from the fact that f1 is L-Lipschitz

and ϕδ is decreasing.

Now suppose that vertices i, j are in different ground-truth communities. Furthermore,

without loss of generality, suppose that yi = f1(xi) + ϵi and yj = f2(xj) + ϵj. From a similar

argument as above,

pij = ϕδ(|f1(xi)− f2(xj)|)

= ϕδ(|f1(xi)− f2(xi) + f2(xi)− f2(xj)|)

≤ ϕδ(|f1(xi)− f2(xi)| − |f2(xi)− f2(xj)|)

≤ ϕδ(τ − L∥xi − xj∥2)

where the first inequality follows from the reverse triangle inequality and the fact that ϕδ

is decreasing, and the second inequality follows from the fact the sources are τ -separable,

L-Lipschitz, and ϕδ is decreasing.

We are now setup to verify the two local distinguishability conditions (see Section 4.1);

first we verify the second condition. Recalling that ϕδ is decreasing, inequality (4-1) tells us

that the probability that there is an edge between vertices i in j in the same ground-truth

community is larger (or at least guaranteed to be) if the distance ∥xi − xj∥2 between their

attributes is smaller. Similarly, assuming that ∥xi−xj∥2 ≤ τ/L, inequality (4-2) tells us that

the probability that there is an edge between vertices i in j in the different ground-truth

communities is smaller (or at least guaranteed to be) if the distance ∥xi − xj∥2 between
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the attributes is smaller. Thus the second local distinguishability condition holds (assuming

that the attributes are sufficiently close). Now let us verify the first local distinguishability

condition. Suppose that vertices i and j are in the same ground-truth community, vertices

u ̸= v ∈ V are in different ground-truth communities, and ∥xi − xj∥2 = ∥xu − xv∥2. Further

suppose that ∥xi − xj∥2 ≤ τ/(2L). From (4-1) and (4-2),

pij − puv ≥ ϕδ(L∥xi − xj∥2)− ϕδ(τ − L∥xi − xj∥2) ≥ ϕ(τ/2)− ϕ(τ/2) = 0.

Furthermore, the function h : [0, τ/(2L)] → R≥0 defined by h(r) = ϕδ(Lr) − ϕδ(τ − Lr) is

decreasing because its derivative h′(r) = L(ϕ′
δ(Lr)+ϕ′

δ(τ−Lr)) is negative (as ϕδ is decreas-

ing). It follows that pij − puv is larger (or at least guaranteed to be) if the distance between

the attributes ∥xu − xv∥2 = ∥xi − xj∥2 is smaller. Thus, the first local distinguishability

property holds (assuming that the attributes are sufficiently close).

Figure 14: The proportion of edges between vertices in the same ground-truth community

and different ground truth communities of the 2-similarity graph at different distances be-

tween attributes (car weight in this case), and the communities output by a standard spectral

method applied to the adjacency matrix of the 2-similarity graph.

In light of this discussion, we revisit Example 4.2.1:

Example 4.2.2. Let us consider the 2-similarity graph for the training car data. We report

the proportion of edges between vertices in the same ground-truth community and different
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ground truth communities at different distances between the attributes (car weight in this

case) in the first plot of Figure 14. Observe that both local distinguishability conditions hold

as long as the distance between attributes is sufficiently small (specifically, the difference

between car weights is less than 500), resonating with the above argument.

Now consider applying the standard spectral community detection method (that uses the

signs of the entries of eigenvector for the second largest eigenvalue of the adjacency matrix)

to the 2-similarity graph. We report the communities that the method outputs in the second

plot of Figure 14. Notice that the communities do not agree much with the ground-truth

communities; this is not surprising in light of the fact that locally distinguishable ground-

truth communities are not necessarily globally distinguishable.

Tuning the parameter δ in a semi-supervised setup. While our argument for local dis-

tinguishability does not rely on a particular specification of the parameter δ, the specification

could impact the performance of a community detection algorithm applied to the δ-similarity

graph. One option is to choose δ to produce the most distinguishable local communities un-

der some pre-defined measure (e.g., the second largest eigenvalue). Another option is to use

labels {zi}i∈I ⊆ {−1,+1} for a subset of the data points (index by I ⊆ [n]) if such labels are

available. We explore this direction in our computational experiments in Section 4.8, and

we discuss connections with the semi-supervised learning literature in Subsection 4.2.3.

We conclude by noting that we will primarily focus on the community detection problem

of interest for the remainder of this work, for the most part forgetting the underlying moti-

vating application of clustering training data. An exception, however, is the computational

study in Section 4.8, in which we use the community detection algorithm that we develop to

cluster similarity graphs for training data that we introduce here.

4.2.2 Schematic of Community Detection Algorithm

We present a schematic of our community detection algorithm in Algorithm 4-1. Note

that the algorithm takes a metric d : Rm×Rm → R≥0 as input. As we discuss in more detail

below, the metric will be used to cluster the attributes to construct local vertex subsets. Also

note that the algorithm takes parameters (k, r) as input. We discuss these parameters in
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more detail below as well, along with Steps 1-3 of the algorithm. We present a more formal

description of the steps as separate algorithms in Section 4.4, 4.5, and 4.6, respectively, and

we present a more formal description of the community detection algorithm as a whole in

Section 4.7.

Algorithm 4-1 Schematic of community detection algorithm.

Input: Vertex-attributed graph G = (V,E, x), metric d : Rm ×Rm → R≥0, and parameters

(k, r)

1: Construct k local vertex subsets V (i) ⊆ V , i ∈ [k]

2: Partition each local vertex subset V (i) into local communities C
(i)
1 and C

(i)
2 = V (i) \C(i)

1

3: Agglomerate the local communities into global communities C1 and C2 = V \ C1

4: Return the global communities C1 and C2

Step 1: Local vertex subset construction. A local vertex subset with respect to x is a

subset V ′ ⊆ V of the form V ′ = {i ∈ V : d(xi, c) ≤ r} for some c ∈ X and r > 0. We refer

to c and r as the center and local radius of V ′, respectively.

Step 1 of Algorithm 4-1 constructs k local vertex subsets V (i) ⊆ V , i ∈ [k] with respect to

the input vertex attributes x. The number of local vertex subsets k is a parameter specified

by the user. We will establish values of k that ensure theoretical recovery performance and

discuss how to tune k in practice. To construct the local vertex subsets, we apply a k-

center clustering algorithm to the vertex attributes; see Algorithm 4-2 in Section 4.4. The

algorithm computes k centers ci, i ∈ [k] and then uses these centers to construct the local

vertex subsets

V (i) := {j ∈ V : d(xj, ci) ≤ r} , i ∈ [k],

where the local radius r is another parameter specified by the user. Like k, we will establish

values of r that ensure theoretical recovery performance and discuss how to tune r in practice.

We note that r must be chosen large enough that each vertex is in at least one of the

local vertex subsets. Also, some vertices might belong to multiple local vertex subsets (so

V (i), i ∈ [k] will not necessarily partition V ).
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Step 2: Local community detection. Step 2 of Algorithm 4-1 partitions each local

vertex subset V (i) into local communities C
(i)
1 and C

(i)
2 = V (i) \C(i)

1 , which should be thought

of as estimates of the local ground-truth communities (i.e., the intersection of the ground-

truth communities and V (i)). To obtain C
(i)
1 and C

(i)
2 , we apply a spectral algorithm to (a

recentered version of) the adjacency matrix A(i) of the subgraph G[V (i)] in G induced by V (i);

see Algorithm 4-3 in Section 4.5. That is, A(i) is the principal submatrix of the adjacency

matrix A of G that contains the columns and rows of A indexed by V (i). We will refer to

A(i) as the local adjacency matrix of V (i).

We remark that existing analysis for spectral methods applied to the SBM does not

readily lend itself to the setting of interest. Existing analysis relies on closed-form formula

for the eigenvectors and eigenvalues of expected value of the adjacency matrix of the SBM

that do not hold in the setting of interest. To circumvent this, we will establish spectral

properties of the expected value of local adjacency matrices.

Step 3: Agglomeration of local communities. Step 3 of Algorithm 4-1 agglomerates

the local communities into global communities C1 and C2. For each i ∈ [k], define the

local community pair C(i) = (C
(i)
1 , C

(i)
2 ). In each iteration of our agglomeration method

(Algorithm 4-4 in Section 4.6), we agglomerate two community pairs together using vertex

agglomeration. The first iteration of the vertex agglomeration method proceeds as follows

(the remaining iterations proceed similarly). We select the indices i ̸= j ∈ [k] that maximize

|V (i) ∩ V (j)|, and then we agglomerate C(i) and C(j) based on how many vertices are shared

between these local community pairs.

4.2.3 Related Work

Below we discuss three related bodies of research.

The SBM and community detection. Naturally it is of interest to understand condi-

tions under which community detection algorithms can recover ground-truth communities.

Towards this end, a number of works study the theoretical performance of community detec-

tion algorithms applied to random graphs models that have built-in community structure.

Most of these works consider the SBM (or some variation of it). In the SBM, n vertices
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are first randomly partitioned into ground-truth communities, and then edges are placed

between pairs of vertices in the same community with probability p (the within probability)

and between pairs of vertices in different communities with probability q (the between proba-

bility). Ground-truth communities are more distinguishable (or there is stronger community

structure) if the difference p− q is larger.

Classic work on the topic establishes lower bounds on the difference p − q that guar-

antee that an algorithm of interest (numerous algorithms have been considered) recovers

the ground-truth communities with high probability (i.e., with probability tending to 1 as

n→∞) [9, 13, 16, 21, 22, 26, 74, 55, 83]; we discuss different notions of recovery in Section

4.3. While classic work lower bounds p−q, more recent work considers the case in which p and

q are small as well, i.e. when the graph is sparse. On one hand, this is practical consideration,

as graphs that arise in practice are often sparse. On the other hand, it is a theoretical consid-

eration, as there is an information-theoretic phase transition in the sparse regime [2]. It is now

known that semidefinite programming methods and the standard spectral method exactly

recover (see Section 4.3) up to the information-theoretic threshold in the sparse regime [2, 3].

Our work is inherently different in two ways from these developments. First, in the

LBSM (see Section 4.3), the within and between probability are not homogeneous (they are

functions of the distance between vertex attributes), so the model is more challenging to

study. Specifically, existing work on the SBM relies on analytic formulae that do not extend

to our setting. Second, it is not clear that sparse graphs arise in the underlying application

of labeling training data. In fact, if the points are densely distributed enough, then one could

argue that the graphs are not sparse if the similarity parameter δ (see Subsection 4.2.1) is

of the appropriate order. Based on these considerations, we establish a lower bound on a

quantity that is analogous to the difference p− q (see Section 4.3), rather than additionally

considering a sparse regime of some sort.

We note that there are numerous studies (like ours) that consider vertex-attributed

variations of the SBM [25, 30, 59, 90, 89, 88, 96]. To the best of our knowledge, the most

closely related variation is the geometric block model [30]. In this model, there is an edge

between two vertices if the their random attributes are close enough. The setup differs from

ours in two ways. First, even if two vertices have the same attributes, it is not guaranteed
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that there will be an edge between them in our model. Second, we allow our algorithm to

use the attributes, specifically a metric that captures the distance between them.

We conclude by directing the reader to the survey [1] for a comprehensive overview of

existing work on the SBM.

Clustering training data. There are two key applications of clustering training data. The

first application is training clusterwise models. When responses are generated from different

sources, it might not be possible to adequately fit a model (especially an interpretable model,

such as a linear regression model) to the data. To circumvent this, one could first cluster the

training data and then fit a model to each cluster of data. The models could then be studied

(in which case interpretability is important) or even aggregated for prediction purposes. Most

of the work in this area has focused on clusterwise linear regression, in which the goal is to

construct linear models for each cluster [24]. Our work is different in that it does not make

any parametric modeling assumptions. A consequence of this, however, is that our methods

are potentially only practical in applications that have low-dimensional feature spaces.

The second application is labeling unlabeled data for training a classification model. The

goal in this application is to label the data points according to their source (i.e., cluster the

training data) in order to construct a classification model that predicts the source of a new

data point. The problem arises, for example, when constructing classification models for

predicting whether or not a patient is taking their medication because labeled data (that

captures whether or not a patient is taking their medication) is often not readily available

or even obtainable [29, 43]. When partially labeled data is available, the problem is a semi-

supervised learning problem; below we discuss work in this direction.

Transductive semi-supervised learning. The semi-supervised learning literature pri-

marily considers semi-supervised binary classification problems; see the surveys [15, 78]. The

data in these problems is comprised of features {xi}i∈[n] ⊂ Rm and labels {yi}i∈I ⊆ {−1,+1}

for a subset of the features (indexed by I ⊂ [n]). Recall from Subsection 4.2.1 that the semi-

supervised version of clustering training data is a slightly different; specifically, we are given

labels {zi}i∈I for a subset of the feature-response data {(xi, yi)}i∈[n].

Methods for semi-supervised binary classification fall into one of two classes: inductive
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and transductive. Inductive methods use the data to directly construct a classification model.

Transductive methods first use the data to label the unlabeled features and then use the re-

sulting fully labeled data to construct a classification model. Transductive methods typically

involve the following three steps. First they construct a similarity graph for the feature data.

A common approach is to add an edge between two vertices if the corresponding features

are close enough. After the graph is constructed, they create weights for the edges, using

the labels for the subset of the points. Finally they apply a graph clustering method to the

weighted graph to obtain a partition and hence labels.

In our approach, we place an edge between vertices if the corresponding responses are

close enough. Also, we do not explicitly use the labeled data points (e.g., to construct edge

weights), but we use them to tune the similarity parameter δ and the parameters (k, r) of

Algorithm 4-1.

4.3 The Local Stochastic Block Model

Define V := [n], where n is a positive integer. Let U denote the uniform distribution

on [0, 1]m. Also let d2 denote the Euclidean metric on Rm (i.e., d2(x1, x2) = ∥x1 − x2∥2 for

x1, x2 ∈ Rm). Note that maxx1,x2∈X d2(x1, x2) ≤
√
m. Finally let p, q, α, β ∈ [0, 1].

The local stochastic block model (LSBM). A vertex-attributed graph G = (V,E, x)

together with ground-truth communities C∗
1 ⊆ V , C∗

2 = V \C∗
1 follow the LSBM under param-

eters (n,m, p, q, α, β) (or we write (G,C∗) ∼ LSBM(n,m, p, q, α, β), where C∗ = (C∗
1 , C

∗
2) is

the pair of ground-truth communities) if the graph and communities are generated as follows.

(i) C∗
1 = {i ∈ V : Zi = 1}, where Zi, i ∈ V are independently drawn from the Bernoulli

distribution with probability parameter 1/2. That is, in SBM parlance, we consider a

symmetric model.

(ii) The vertex attributes xi, i ∈ V are independently drawn from U . The attributes x and

ground-truth community assignments Zi, i ∈ V are independent.

(iii) For each i ̸= j ∈ V , an edge is placed between vertices i and j (i.e., {i, j} ∈ E) with
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probability

pij =

p+ α (1− d2(xi, xj)/
√
m) if i, j ∈ C∗

1 or i, j ∈ C∗
2

q − β (1− d2(xi, xj)/
√
m) otherwise,

(4-3)

independently of the other distinct vertex pairs.

To ensure that (4-3) is well-defined, we assume that p+ α ≤ 1 and 0 ≤ q − β ≤ 1. We also

assume that p ≥ q, which guarantees that within probability p + α(1− d2(xi, xj)/
√
m) is at

least as large as the between probability q − β(1− d2(xi, xj)/
√
m):

p+ α(1− d2(xi, xj)/
√
m) ≥ q − β(1− d2(xi, xj)/

√
m).

Note that if α = β = 0, then the LSBM is exactly the (symmetric) SBM (with parameters

p and q).

The local distinguishability property. Consider Figure 15, which presents plots of the

probability pij as a function of scaled distance d2(xi, xj)/
√
m for different values of α and β.

Assuming α > 0, the within probability p+ α(1− d2(xi, xj)/
√
m) decreases as a function of

the distance d2(xi, xj). That is, the probability that we add an edge between two vertices in

the same ground-truth community decreases as the distance between their attributes grows.

Now consider the between probability q− β(1− d2(xi, xj)/
√
m). If β < 0, then the between

probability increases as a function of distance. That is, the probability that we incorrectly

add an edge between two vertices in different ground-truth communities increases as distances

increases. Lastly, we note that if α > −β, then the difference of the within probabilities and

between probabilities, namely p− q+ (α+ β)(1− d2(xi, xj)/
√
m), decreases as a function of

the distance d2(xi, xj).

Local and global difference. Define the local difference

Dℓ := p+ α− (q − β)

and the global difference

Dg := p− q.
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Figure 15: Edge probability pij as a function of scaled distance d2(xi, xj)/
√
m for different

values of α and β. More specifically, p = 0.5 and q = 0.4 in all three plots; (α, β) =

(0.1, 0), (0.1, 0.2), (0.3, 0.2) in the left, center, and right plots, respectively.

In the three panels of Figure 15, we have that Dℓ = 0.2, 0.4, 0.6 and Dg = 0.1, 0.1, 0.1,

respectively. Note thatDℓ ≥ Dg. The local and global difference capture how distinguishable

ground-truth communities are at a local and global level. Analogous to results in the SBM

literature, we will establish conditions on Dℓ and Dg under which our algorithm recovers

with high probability, bringing us to our next point.

Recovery in the LSBM. Let Ĉ1, Ĉ2 ⊆ V such that Ĉ1∩ Ĉ2 = ∅ and Ĉ1∪ Ĉ2 ̸= ∅. Similarly

let C̃1, C̃2 ⊆ V such that C̃1 ∩ C̃2 = ∅ and C̃1 ∪ C̃2 ̸= ∅. Define the agreement between the

pairs Ĉ = (Ĉ1, Ĉ2) and C̃ = (C̃1, C̃2) to be the proportion of the vertices in Ĉ1∪ Ĉ2∪ C̃1∪ C̃2

that the pairs agree upon:

A(C,C∗) :=
max{|Ĉ1 ∩ C̃1|+ |Ĉ2 ∩ C̃2|, |Ĉ1 ∩ C̃2|+ |Ĉ2 ∩ C̃1|}

|Ĉ1 ∪ Ĉ2 ∪ C̃1 ∪ C̃2|
.

(We define agreement in a slightly more general way than usual because we will examine the

agreement of local communities in addition to global communities.)
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Let (G,C∗) ∼ LSBM(n,m, p, q, α, β). A community detection algorithm that takes input

(G, d, p, q, α, β) and outputs a global community pair C = (C1, C2) (i.e., C1∪C2 = V ) exactly

recovers if

P(A(C,C∗) = 1) = 1− o(1)

and almost exactly recovers if

P(A(C,C∗) = 1− o(1)) = 1− o(1).

Throughout our little-o notation is with respect to the number of vertices n. We treat m as a

fixed constant, given the underlying motivation of low-dimensional feature/attribute spaces.

In this work we will establish conditions on Dℓ and Dg under which our algorithm almost

exactly recovers.

We allow the algorithm to use these parameters (p, q, α, β) to obtain a theoretical guaran-

tee; specifically, the algorithm uses the parameters in the local spectral community detection

algorithm to recenter local adjacency matrices (see Section 4.5). In the computational exper-

iments of (4.8), we will use an alternative spectral community detection method that does

not require the parameters as input (but does not yield a theoretical guarantee, at least as

far as we could show). Similarly, the algorithms that we develop run in the general setup of

Subsection 4.2.2, in which the attributes are not necessarily in [0, 1]m and d is any metric,

but we only establish theoretical guarantees for them when the attributes belong to [0, 1]m

and d = d2.

4.3.1 Almost Exact Recovery Result

First we set the stage for our results. The standard spectral method (that computes the

top eigenvector of a centered version of the adjacency matrix) applied to the SBM almost

exactly recovers if p− q = Ω(1/
√
n), i.e. (p− q)

√
n→∞ as n→∞ [1]. The result follows

from the Davis-Kahan theorem and a concentration bound for the operator norm; we will

use similar techniques in our analysis of the local spectral community detection method in

Section 4.5. While there are stronger guarantees for the standard spectral method (see the
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Figure 16: Comparison of almost exact recovery regions (depicted in blue) in terms of the

local difference Dℓ and global difference Dg that we would expect for a standard spectral

method and that we establish for our community detection method. The orange area captures

the region in which the global difference is larger than the local difference (a regime that we

do not consider).

review of related work in Subsection 4.2.3), they require more involved arguments that we

were unable to generalize to the setting of interest.

One could guess that applying the standard spectral method to the LSBM would almost

exactly recover under the same condition that Dg = p − q = Ω(1/
√
n) because p − q lower

bounds the difference of the within and between probability in the sense that p − q ≤

p − q + (α + β)(1 − d2(xi, xj)/
√
m) for all i ̸= j ∈ V . More strongly, it actually holds that

p − q ≤ pij − puv for i ̸= j in the same ground-truth community and u ̸= v in different

ground-truth communities. We show that we can remove the condition that Dg = Ω(1/
√
n)

by assuming that the local difference Dℓ is sufficiently large, namely Dℓ = Ω(1/
√
n):

Theorem 4.3.1. If Dℓ = Ω(1/
√
n), then Algorithm 4-5 (run with appropriate input) almost

exactly recovers.

Proof. See Section 4.7.
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In Figure 16 we present an illustrative comparison of the almost exact recovery regions

(in terms of the local difference Dℓ and global difference Dg) that we would expect for a

standard spectral method and that we establish for our community detection method.

4.4 Constructing Local Vertex Subsets

We present the algorithm that we will use to construct local vertex subsets in Algorithm

4-2. Note that the algorithm takes vertex attributes x as input, as opposed to a vertex-

attributed graph G = (V,E, x); the algorithm will not use the edges of the graph to construct

the local vertex subsets. Also note that the algorithm takes two input parameters: the

number of local vertex subsets k and the local radius r for the output local vertex subsets.

Algorithm 4-2 Local vertex subset construction algorithm.

Input: Vertex attributes x, metric d, number of local vertex subsets k, and local radius r

1: Select any index j ∈ [n]

2: U ← {j}

3: while |U | < k do

4: j ← argmaxk∈[n]\U mini∈U d(xi, xk)

5: U ← U ∪ {j}

6: end while

7: for i ∈ [k] do

8: Select any index ℓ ∈ U

9: V (i) ← {j ∈ [n] : d(xj, xℓ) ≤ r}

10: U ← U \ {ℓ}

11: end for

12: Return V (i), i ∈ [k]

Greedy k-center clustering. The first part of Algorithm 4-2 (specifically Steps 1-6)

runs part of the greedy algorithm of [34] designed for the k-center problem. Given points

(attributes) x1, . . . , xn ∈ X and a metric d on X, the goal in the k-center problem is to
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choose k of the n points to be centers to minimize the maximum distance (under d) from

a point to its nearest center. In Step 1 the algorithm chooses any index j ∈ [n]; the index

should be thought of as the index of the point xj that will serve as the first “center.” Next

the algorithm initializes the set U of center indices in Step 2. Then in Step 4 the algorithm

chooses the index of the next center to correspond to the point that is farthest from the

centers whose indices have been chosen thus far. The algorithm adds the index to U in Step

5. The algorithm stops adding indices to U (i.e., the while loop terminates) once k indices

have been chosen.

In Steps 7-11 the algorithm uses the center indices U to construct local vertex subsets

V (1), . . . , V (k). Specifically, for each ℓ ∈ U , the algorithm constructs a local vertex subset

that contains the indices of all points that are within distance r to xℓ. In other words, the

algorithm assigns each point to each center that is within distance r. Accordingly, a vertex

could be either be in one local vertex subset, multiple local vertex subsets, or no vertex

subsets. In contrast, the greedy algorithm of [34] assigns each point to a center that it is

closest to, ensuring that each point is assigned to exactly one cluster.

Coverage, containment, and intersection properties. Our aim in running Algorithm

4-2 is to obtain local vertex subsets that (i) cover all of the vertices and (ii) individually

contain enough vertices to recover local communities (later with a local community detection

method), and (ii) intersect enough to eventually agglomerate via vertex agglomeration. Here

we establish conditions under which these desired outcomes hold.

First we present a lower bound on k (in terms of r) that ensures Algorithm 4-2 returns

local vertex subsets that cover all of the vertices. Our proof of Theorem 4.4.1 in Appendix

4.11 first constructs a (r/2)-net for [0, 1]m (see Definition 4.11.1 in Appendix 4.11) of car-

dinality at most (4
√
m/r)

m
and then utilizes the fact that the greedy algorithm of [34] is a

2-approximation algorithm for the k-center problem.

Theorem 4.4.1. Let x ∈ [0, 1]m. Further suppose that 0 < r < 1 and n ≥ k ≥ (4
√
m/r)

m
.

Let V (i), i ∈ [k] denote the local vertex subsets that Algorithm 4-2 outputs when run with

input (x, d2, k, r). Then the local vertex subsets V (i), i ∈ [k] cover V ; that is, ∪i∈[k]V (i) = V .

Proof. See Appendix 4.11.
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Note that the lower bound on k (and hence n) in Theorem 4.4.1 grows exponentially with

the dimension m of X. From a theoretical standpoint, this will not be an issue because we

are investigating recovery performance as n→∞ andm is a fixed constant. From a practical

standpoint, we are interested in the case in which the attribute space is low-dimensional.

The next result that we present (see Theorem 4.4.2 below) assumes that the attributes are

independently drawn from the uniform distribution U . The result depends on the quantity

γ(r) := minx∈[0,1]m Py∼U(y ∈ B(x, r)), where r > 0. The quantity γ(r) lower bounds the

probability that the attributes of a vertex in the LSBM are in a given ball of radius r centered

at a point in [0, 1]m. Also, γ(r) > 0. It is possibly to lower bound by an exponentially small

quantity in m, but to keep the presentation clean, we forgo doing this. The result also

depends on the notion of an intersection graph. For η > 0, define the η-intersection graph

of the local vertex subsets V (i), i ∈ [k] to have vertex set [k] and an edge between vertices

i, j ∈ [k] if |Vi ∩ Vj| ≥ η.

Theorem 4.4.2. Suppose that xi ∼ U , i ∈ [n] are independent. Further suppose that

0 < r < 1 and n ≥ k ≥ (16
√
m/r)

m
. Let V (i), i ∈ [k] denote the local vertex subsets that

Algorithm 4-2 outputs when run with input (x, d2, k, r). Then the γD(r/8)
2

n-intersection graph

of the local vertex subsets is connected with probability at least

1−
(
16
√
m/r

)m
exp (−γ (r/8)n/8) .

Proof. See Appendix 4.11.

Theorem 4.4.2 shows that the γ(r/8)
2

n-intersection graph of the local vertex subsets that

Algorithm 4-2 outputs is connected with high probability. This implies that each local

vertex subset contains a constant (in n) fraction of the vertices, namely γ(r/8)
2

. Also we

will see in Subsection 4.6 that we can successfully agglomerate local communities via vertex

agglomeration if the local vertex subsets intersect on enough vertices precisely in the sense

that the intersection graph is connected. The proof of Theorem 4.4.2 follows from a similar

argument to the one that we use in the proof of Theorem 4.4.1 together with a Chernoff

bound and the union bound.
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4.5 Local Community Detection

In this section we propose and study the algorithm that we will use for local community

detection. More specifically, let G = (V,E, x) be a vertex-attributed graph that has ground

truth-community pair C∗ = (C∗
1 , C

∗
2). Also let V ′ ⊆ V be a local vertex subset with respect

to x. We consider applying a spectral community detection algorithm to the local adjacency

matrix A′ of V ′ (i.e., the adjacency matrix of the subgraph G[V ′] in G induced by V ′) to

recover local ground-truth communities C∗
1 ∩V ′ and C∗

2 ∩V ′. We remark that the algorithm

is specifically designed for the case when (G,C∗) is generated according to the LSBM. At

the end of this section we describe an alternative local community detection method that we

use in the computational study of Section 4.8.

Define n′ := |V ′| be the number of vertices in V ′. For the sake of exposition, we will

assume throughout this section that V ′ = [n′]. Suppose that r is the local radius of V ′. Also

for the sake of exposition, we define the local multiplier of V ′ as λ := r√
m

(i.e., the radius,

rescaled), and we say V ′ is a λ-local vertex subset.

Algorithm 4-3 Local spectral community detection algorithm.

Input: Local adjacency matrix A′ of V ′ = [n′], local multiplier λ of V ′, and model parame-

ters (p, q, α, β)

1: Compute a top eigenvector u1 of

A′ + (p+ α(1− λ))I − p+ q + (α− β)(1− λ)

2
ee⊤

2: Return the local communities C = (C1, C2) defined by

C1 = {i ∈ [n′] : (u1)i < 0} and C2 = {i ∈ [n′] : (u1)i ≥ 0}

We present a description of the local spectral community detection algorithm in Algo-

rithm 4-3. In Step 1 the algorithm computes a top eigenvector of the centered local adjacency

matrix

Ã := A′ + (p+ α(1− λ))I − p+ q + (α− β)(1− λ)

2
ee⊤, (4-4)

where I is the n′× n′ identity matrix, and e is the n′-dimensional vector of all ones. In Step
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2 the algorithm uses the sign of the entries in u1 to construct local communities C1 and C2.

Some motivation for the algorithm is as follows.

Motivation. Let us continue to treat x and C∗ as fixed, but suppose that A′ is generated

according to (4-3) under x and C∗, i.e.,

P(A′
ij = 1) =

pij(x,C
∗) i ̸= j

0 i = j

(4-5)

for i ≤ j ∈ [n′], and Aij = Aji for i > j. Define the n′ × n′ matrix P ′ := E [A′], where the

expectation is with respect to (4-5) (i.e., not additionally with respect to x or C∗, as we have

assumed that they are fixed). Note that P ′
ij = pij(x,C

∗) if i ̸= j, and P ′
ij = 0 if i = j. Also

define u ∈ {−1,+1}n′
by

ui :=

+1 i ∈ C∗
1

−1 i ∈ C∗
2 ,

,

and define the n′ × n′ matrix D by

Dij :=


α
(
λ− d2(xi,xj)√

m

)
i ̸= j and either i, j ∈ C∗

1 or i, j ∈ C∗
2

−β
(
λ− d2(xi,xj)√

m

)
i ̸= j and either i ∈ C∗

1 , j ∈ C∗
2 or i ∈ C∗

2 , j ∈ C∗
1

0 i = j.

Note that, since V ′ is a λ-local vertex subset with respect to x, we have Dij ≥ 0 if vertices

i, j are in the same ground-truth community, and Dij ≤ 0 if vertices i, j are in different

ground-truth communities.

From (4-3), for i ̸= j, we can write

pij(x,C
∗) =

p+ α(1− λ) + α
(
λ− d2(xi,xj)√

m

)
i, j ∈ C∗

1 or i, j ∈ C∗
2

q − β(1− λ)− β
(
λ− d2(xi,xj)√

m

)
otherwise,

and hence

P ′ + (p+ α(1− λ))I =
p+ q + (α− β)(1− λ)

2
ee⊤ +

p− q + (α + β)(1− λ)

2
uu⊤ +D.
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It follows from (4-4) and P ′ = E[A′] that

E[Ã] =
(
p− q + (α + β)(1− λ)

2

)
uu⊤ +D. (4-6)

As long as either p − q > 0 or α + β > 0 and λ < 1 (ensuring that no entry of E[Ã]

equals 0), we see from (4-6) that E[Ã]ij is positive (negative) if the vertices i, j belong to the

same (different) communities. It follows from the Perron-Frobenius theorem (applied to the

positive matrix diag(u)E[Ã] diag(u)) that the matrix E[Ã] has a unique top eigenvector, the

signs of whose entries tell us the local ground-truth community assignments. Accordingly,

by computing the top eigenvector of Ã in Step 1 of Algorithm 4-3, we hope to recover local

ground-truth community assignments.

Almost exact local recovery. Theorem 4.5.1 shows that Algorithm 4-3 almost exactly

recovers local ground-truth communities if Dℓ = Ω
(

1√
n′

)
and λ ≤ 1

4
(i.e., if the radius of

the local vertex subset is not too large). As discussed above, the condition that p− q > 0 or

α+ β > 0 (and λ < 1, which is implied by λ ≤ 1
4
) ensures that E[Ã] has all non-zero entries.

Theorem 4.5.1. Suppose that p − q > 0 or α + β > 0. Let x ∈ Rn×m, and let C∗ be a

global community pair. Suppose that V ′ ⊆ V is a λ-local vertex subset with respect to x

of cardinality n′ = |V ′| such that λ ≤ 1
4
. Further suppose that A′ ∈ Rn′×n′

is generated

according to (4-5) under x and C∗. Let C denote the output of Algorithm 4-3 when run with

input (A′, λ, p, q, α, β). Then there exist absolute constants c1, c2 > 0 such that

P
(
A(C,C∗) ≥ 1− c1

D2
ℓn

′

)
≥ 1− exp(−c2n′).

Proof. See Appendix 4.12.

Practical implementation. Centering the local adjacency matrix in Algorithm 4-3 re-

quires the model parameters (p, q, α, β). The standard spectral method that computes the

second eigenvector of A′ (instead of the top eigenvector of Ã) bypasses this centering step

and does not require any model parameters. We were not able to establish a guarantee for

the standard spectral method, but we use it anyways in our computational study in Section

4.8 instead of Algorithm 4-3. We leave it as an open question to establish a theoretical

guarantee for the standard spectral method applied locally (and globally); see Section 4.10.
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4.6 Local Community Agglomeration

Let G = (V,E, x) be a vertex-attributed graph that has ground-truth community pair

C∗ = (C∗
1 , C

∗
2). Also let C(i) = (C

(i)
1 , C

(i)
2 ), i ∈ [k] be local community pairs, i.e. C

(i)
1 , C

(i)
2 ⊆

V such that C
(i)
1 ∩C

(i)
2 = ∅ for each i ∈ [k]. Assume that each vertex in V belongs to at least

one of the local communities. In this section we propose an algorithm for agglomerating the

local community pairs into a global community pair C = (C1, C2) to recover C∗, presuming

that the local community pairs have high enough agreement with their corresponding local

ground-truth community pairs.

First we establish preliminary definitions. For i ∈ [k], define V (i) = C
(i)
1 ∪ C

(i)
2 to be the

corresponding local vertex subset for C(i). Also, for i ̸= j ∈ [k], define the local communities

C(i\j) = (C
(i\j)
1 , C

(i\j)
2 ) by C

(i\j)
ℓ := C

(i)
ℓ \ V (j) for ℓ ∈ [2].

We present a description of the agglomeration method in Algorithm 4-4. At each iteration

the algorithm agglomerates two local community pairs together with vertex agglomeration.

More specifically, in Step 3 the algorithm chooses the indices i and j of the two community

pairs that intersect on the most vertices. Then in Steps 4-6 the algorithm agglomerates the

communities within those pairs that share the most vertices. Exactly k − 1 vertex agglom-

erations are needed to obtain global communities; indeed, the while loop in the algorithm

terminates after k − 1 iterations (as it holds that |U | = 1 by this point). The algorithm re-

turns a community pair C that is a global community pair, as long each vertex in V belongs

to at least one of the input local communities (as we assumed).

From local to global agreement. One would hope that if the agreement of each of

the local community pairs is sufficiently high, then the agreement of the global community

pair that Algorithm 4-4 outputs will be high. Here we present a result in this direction;

see Theorem 4.6.1. The result additionally assumes that the η-intersection graph (for some

η > 0) of the corresponding local vertex subsets is connected (which recall from Section 4.4

we can guarantee holds with high probability for certain values of η).

Theorem 4.6.1. Let G = (V,E, x) be a vertex-attributed graph that has ground-truth com-

munity pair C∗ = (C∗
1 , C

∗
2). Also let C(i) = (C

(i)
1 , C

(i)
2 ), i ∈ [k] be local community pairs.
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Algorithm 4-4 Vertex agglomeration algorithm.

Input: Vertex attributed graph G, local community pairs C(i) = (C
(i)
1 , C

(i)
2 ), i ∈ [k]

1: U ← [k]

2: while |U | > 1 do

3: (i, j)← argmaxi ̸=j∈U |V (i′) ∩ V (j′)|

4: (a, b)← argmax(a′,b′)∈{(1,2),(2,1)}|C
(i)
1 ∩ C

(j)
a′ |+ |C

(i)
2 ∩ C

(j)
b′ |

5: C
(i)
1 ← C

(i)
1 ∪ C

(j\i)
a

6: C
(i)
2 ← C

(i)
2 ∪ C

(j\i)
b

7: U ← U \ {j}

8: end while

9: C ← C(i), where i ∈ U is the only index left in U

10: Return community pair C

Suppose that each vertex in V belongs to at least one of the local communities. Also suppose

that the η-intersection graph of V (i), i ∈ [k] is connected. Finally suppose that

min
i∈[k]

A(C(i), C∗) ≥ 1− ζη

2k+1n
,

where 0 ≤ ζ ≤ 1. Then Algorithm 4-4 applied with input (G, (C(i))i∈[k]) outputs a global

community pair C = (C1, C2) that satisfies

A(C,C∗) ≥ 1− ζη

4n
.

Proof. See Appendix 4.13.

Note that Theorem 4.6.1 requires that the disagreement of each of the local community

pairs is exponentially small in k. It might be possible to improve this dependence on k in

the analysis, but such a result is not required to establish almost exact recovery results with

respect to n. We leave this as a direction for future research. More generally, it is of interest

to consider other agglomeration methods as well (e.g., optimization-based agglomeration

methods); see Section 4.10 for further discussion.
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4.7 Community Detection Algorithm

We present a formal description of the community detection algorithm in Algorithm 4-5.

Step 1 of the algorithm runs Algorithm 4-2 to obtain local vertex subsets V (i), i ∈ [k]. Next

Steps 2-4 apply Algorithm 4-3 to each of the local vertex subsets to obtain local community

pairs C(i), i ∈ [k]. Finally the algorithm agglomerates the local community pairs into a

global community pair in Step 5 using Algorithm 4-4.

Algorithm 4-5 Community detection algorithm.

Input: Vertex-attributed graph G = (V,E, x), metric d, algorithm parameters (k, r), and

model parameters (p, q, α, β)

1: Compute local vertex subsets V (i), i ∈ [k] using Algorithm 4-2 run with input (x, d, k, r)

2: for i = 1, . . . , k do

3: Run Algorithm 4-3 with input (A(i), r√
m
, p, q, α, β) to obtain local community pair

C(i) = (C
(i)
1 , C

(i)
2 ), where A(i) is the local adjacency matrix A(i) of V (i)

4: end for

5: Run Algorithm 4-4 with input (G, (C(i))i∈[k]) to obtain C = (C1, C2)

6: Return C = (C1, C2)

Almost exact recovery. Theorem 4.7.1 below presents conditions that ensure Algorithm

4-5 (under specific input specifications) almost exactly recovers LSBM communities. Our

proof of the theorem follows from Theorem 4.4.1, 4.4.2, 4.5.1, and 4.6.1. Note that Theorem

4.3.1 follows from Theorem 4.7.1.

Theorem 4.7.1. Suppose that n ≥ (64
√
m)

m
. Let (G,C∗) ∼ LSBM(n,m, p, q, α, β). Also

let C denote the global community that Algorithm 4-5 outputs when run with input G, d2,

(k, r) =
(⌈
(64
√
m)

m⌉
, 1
4

)
, and (p, q, α, β). Then there are constants ci(m) > 0, i ∈ [4] (that

depend on m) such that if

Dℓ ≥
c1(m)√

n
, (4-7)

then it holds that

P
(
A(C,C∗) ≥ 1− c2(m)

D2
ℓn

)
≥ 1− c3(m) exp(−c4(m)n).
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Proof. See Appendix 4.14.

The supposition that n ≥ (64
√
m)

m
in Theorem 4.7.1 is included to ensure that k =⌈

(64
√
m)

m⌉ ≤ n. Condition (4-7) is required to guarantee that local community agreement

is high enough to achieve “successful” agglomeration.

Going into more detail, the proof of Theorem 4.7.1 reveals that c1(m) is doubly expo-

nentially large in m. (This in turn through (4-7) implies an even larger lower bound on

n than (64
√
m)

m
.) The intuition is as follows. Recall that Theorem 4.6.1 requires local

disagreement to be exponentially small in k. Accordingly, because Theorem 4.7.1 requires k

to exponentially large in m, we must set c1(m) to be doubly exponentially large in m.

4.8 Computational Experiments

Our first goal in this computational study is to evaluate the empirical recovery perfor-

mance of Algorithm 4-5 applied to LSBM instances. Our second goal is to investigate its

viability for clustering training data.

We consider the following modified implementation of Algorithm 4-5 that does require

model parameters (p, q, α, β) as input. Instead of applying Algorithm 4-3 in Steps 2-4 to

construct local communities, we apply the standard spectral method to the local adjacency

matrices. In our experiments with clustering data, we tune the input parameters (k, r) to a

subset of the data that is assumed to be labeled. Specifically, we consider k ∈ {2, . . . , 10} and

r ∈ {0.1, 0.2, . . . , 0.5} such that 2rk ≥ 1. The condition 2rk ≥ 1 ensures that it is possible

to cover [0, 1] with k Euclidean balls of radius r (intervals of length 2r). (If Algorithm 4.4

does not output local vertex subsets that cover V , we arbitrarily assign uncovered vertices

to one community after Algorithm 4-5 terminates.) We also tune the similarity parameter δ.

As a benchmark, we compare the performance of Algorithm 4-5 with the standard spectral

method; we also tune the similarity parameter for the benchmark.

We consider recovering LSBM communities in Subsection 4.8.1, clustering synthetic train-

ing data from Lipschitz sources in Subsection 4.8.2, and clustering the car dataset from

Subsection 4.2.1 in Subsection 4.8.3.
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4.8.1 Recovering LSBM Communities

We generate (G,C∗) ∼ LSBM(n, 1, p, q, α, β) with the following specification of param-

eters: n = 200, p, q ∈ {0.4, 0.45, . . . , 0.7}, and α = β = .3. Under each specification of the

parameters p and q, it holds that p+α > q−β (i.e., the ground-truth communities are locally

distinguishable). Under some specifications, p > q, p = q, or p < q (i.e., the parameters are

not globally distinguishable).

We generate 10 LSBM instances under each specification of parameters and apply Algo-

rithm 4-5 along with the standard spectral method to each of the instances. When applying

Algorithm 4-5 to each instance, we give it the benefit of the doubt and choose the parameter

specification that yields the highest accuracy. (In subsequent sections we actually tune the

parameters.) We report average accuracy of both algorithms across all of the instances in

the heat plots of Figure 17.

Figure 17: Average accuracy of Algorithm 4-5 and the standard spectral method against the

within probability p and between probability q.

We observe that when p ≥ q, the algorithms perform similarly, even when p − q = 0.

This is interesting in light of the discussion in Subsection 4.3.1, i.e., perhaps the standard

spectral algorithm almost exactly recovers when Dℓ = Ω(1/
√
n) and p − q ≥ 0. However,

when p ≪ q, we see that Algorithm 4-5 outperforms the standard spectral method. This

is not surprising in light of the fact that the ground-truth communities are locally but not

globally distinguishable in this regime.

100



4.8.2 Clustering Training Data from Separable, Lipschitz Sources

We revisit the setup from Subsection 4.2.1. Our goal is to understand how the Lipschitz

constant L of the sources and the percentage of labeled data points (i.e, |I|/n) impacts the

accuracy of Algorithm 4-5. (The percentage of labeled data points will impact our ability to

tune the parameters (k, r) and δ.) We consider one-dimensional linear sources (i.e., m = 1)

defined by f1(x) = 1/2 + Lx and f2(x) = −1/2 + Lx for x ∈ R, where L > 0. The sources

are separable and L-Lipschitz. We independently generate the noise terms ϵi, i ∈ [n] from

the normal distribution that has a mean of 0 and a standard deviation of 1/10.

To generate an instance, we first independently sample n = 200 features xi, i ∈ [200]

from the uniform distribution on [0, 1]. Then we uniformly at random partition the features

into two equally sized subsets (i.e., each subset contains 100 features). Next we a generate

a response yi = fj(xi) + ϵi for each feature xi, where j ∈ {1, 2} captures which subset of

the partition that the feature belongs to. We use the responses to generate the δ-similarity

graph for the training data D = {(xi, yi)}i∈[200]. Finally, we uniformly at random label |I| of

the data points.

Figure 18: Average accuracy of Algorithm 4-5 and the standard spectral method against the

Lipschitz constant L and the percentage |I|/n of labeled data.

For each L ∈ {1, 1.2, . . . , 2} and |I|/n ∈ {.05, .1, . . . , .3}, we generate 10 instances. We

apply Algorithm 4-5 and the standard community detection method to each of these in-

stances. More specifically, for each value of (k, r) (specified earlier at the beginning of
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Section 4.8) and δ ∈ {0.2, 0.4, . . . , 1}, we apply Algorithm 4-5 and choose the output com-

munities that give the highest accuracy on the subset of labeled data. Similarly, for each

δ ∈ {0.2, 0.4, . . . , 1}, we apply the standard spectral method and choose the output commu-

nities that give the highest accuracy on the subset of labeled data. We report the average

accuracy of both methods in the heat plots of Figure 18.

We observe in general that Algorithm 4-5 outperforms the standard spectral method,

especially on instances that have a larger Lipschitz constant, as the performance of the

standard spectral method naturally deteriorates as the the Lipschitz constant gets larger.

While the performance of the spectral method does not change much with the amount of

labeled data, the performance of Algorithm 4-5 significantly improves when at least 10%

(versus 5%) of the data is labeled.

4.8.3 Clustering the Car Dataset

Recall the car dataset from Subsection 4.2.1. In this subsection we consider using Algo-

rithm 4-5 to cluster the dataset under different amounts |I| of labeled data.

Figure 19: Average accuracy (with 95% confidence intervals) of Algorithm 4-5 and the

standard spectral method against the percentage |I|/n of labeled data, along with predicted

communities output by Algorithm 4-5.

First we apply the transform (xi −mini xi)/(maxi xi −mini xi) to the features (i.e. the

car weights) so that they take on values in [0, 1]. (This allows us to “successfully” tune
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the parameters (k, r) of Algorithm 4-5 over the values specified at the beginning of Section

4.8). Similar to Subsection 4-5, we uniformly at random label |I| of the data points. For

each value |I| ∈ {10, 20, . . . , 100}, we generate 10 instances of labeled data in this way. We

apply Algorithm 4-5 and the standard community detection method to each of the instances.

We tune the parameters of the methods in the same way as Subsection 4.8.2, but we tune

over δ ∈ {1, . . . , 10} instead. We report average accuracy across the different fractions of

available labeled data in Figure 19. We also present an illustration of communities output

by Algorithm 4-5 that have an accuracy of approximately 0.91.

Both methods on average find communities that have higher agreement with the ground-

truth communities when more data is available. Algorithm 4-5, however, tends to find

communities with higher agreement, especially when more data is available. We observe

in the second plot of Figure 19 Algorithm 4-5 fails to identify correct community structure

amongst cars with very low or very high weight, as these cars typically only come from one

source, either newer or older cars, respectively.

4.9 Computational Experiments with Edge Agglomeration

As a future research direction, we consider augmenting our community detection Al-

gorithm 4-5 with edge agglomeration. Recall that the agglomeration step (i.e., Step 5 of

Algorithm 4-5) relies on vertex agglomeration, which joins local communities that inter-

sect on a sufficiently large number of vertices, more specifically, C ′
i1, C

′
i2 and C ′

j1, C
′
j2 when

|(C ′
i1 ∪C ′

i2) ∩ (C ′
j1 ∪C ′

j2)| ≥ η. For graphs with strong local distinguishibility, Algorithm 4-5

may terminate before all local communities have been agglomerated into global communities.

That is, Algorithm 4-5 terminates when |(C ′
i1∪C ′

i2)∩ (C ′
j1∪C ′

j2)| > η for all unagglomerated

communities C ′
i1, C

′
i2 and C ′

j1, C
′
j2.

As an extreme but illustrative example, consider the hypothetical graph in Figure 20.

Each vertex represents a politician who lives in either the city of Pittsburgh, Pennsylvania

or the city of Boston, Massachusetts. The ground-truth communities correspond to the

democrat (blue) and republican (red) political affiliations. Naturally it is more likely that
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there is an edge between vertices representing politicians living in the same city (regardless

of whether the politicians have same political affiliation). If Algorithm 4-5 were to be applied

using the local vertex subsets indicated as ellipses in Figure 20, the algorithm would terminate

prior to joining the local communities into global communities (i.e., because |(C ′
i1 ∪ C ′

i2) ∩

(C ′
j1 ∪ C ′

j2) = ∅|).

Figure 20: A hypothetical LBSN of democrat (blue) and republican (red) politicians who

live in the cities of Pittsburgh, Pennsylvania and Boston, Massachusetts.

To prevent early termination of Algorithm 4-5, we consider an edge agglomeration step

in which, at the i-th iteration, we agglomerate local community C ′
i1 with the current global

community that it shares the most edges with, and we agglomerate the local community C ′
i2
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with the other current global community. More specifically,

C ′
1 ← C ′

1 ∪ (C ′
i1 \ C ′

2) and C ′
2 ← C ′

2 ∪ (Ci2′ \ C ′
1) if |E(C ′

1, C
′
i1)| ≥ |E(C ′

2, C
′
i1)|,

C ′
1 ← C ′

1 ∪ (C ′
i2 \ C ′

2) and C ′
2 ← C ′

2 ∪ (C ′
i1 \ C ′

1) otherwise.
(4-8)

In Algorithm 4-6, we present a modified community detection algorithm that includes

edge agglomeration in Step 6.

Algorithm 4-6 Modified community detection algorithm with edge agglomeration.

Input: Vertex-attributed graph G = (V,E, x), metric d, model parameters (p, q, α, β), and

algorithm parameters (k, r)

1: Compute local vertex subsets V (i), i ∈ [k] using Algorithm 4-2 run with input (x, d, k, r)

2: for i = 1, . . . , k do

3: Run Algorithm 4-3 with input (A(i), r/
√
m, p, q, α, β) to obtain local community pair

C(i) = (C
(i)
1 , C

(i)
2 ), where A(i) is the local adjacency matrix of V (i)

4: end for

5: Agglomerate the local community pairs into pair C = (C1, C2) using Algorithm 4-4 with

input (G, (C(i))i∈[k])

6: If Step 5 completes prior to assigning all vertices to a global community such that

C1 ∪ C2 = V , then agglomerate the remaining local community pairs into C = (C1, C2)

using edge agglomeration per (4-8)

7: Return C = (C1, C2)

In the following subsections, we study the performance of Algorithm 4-6 on a real-

world social network without ground-truth communities, as well as to the task of image

segmentation.

4.9.1 Experiment with an Empirical Social Network

We first consider a location-based online social network called Brightkite that consists

of 58,228 vertices and 214,078 undirected edges ([49], online data accessed June 14, 2022).

Each vertex represents a user (person), and an undirected edge exists between two vertices
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if there is a friendship between the corresponding users. The dataset also includes about

4.5 million user check-in locations, each specified by latitude and longitude. The Brightkite

dataset is used by [20], along with others, to study user movement in location-based social

networks.

We start by picking a random seed vertex in Washington, D.C. and and a random seed

vertex in Philadelphia, PA. For each of these vertices, we perform a breadth-first search for

connected vertices whose average check-in location is within a 50-mile radius of the seed,

until two 125-vertex subgraphs are formed. The breadth first search ensures that each of

the two subgraphs does not have disconnected components. Figure 21 depicts the resulting

subgraphs, and we see that they are connected to each other by user friendships between

the two cities. This graph is similar to an LSBM instance in the sense that edge likelihood

changes as a function of distance between vertices.

While the Brightkite dataset does not identify a ground-truth community for each vertex,

we can compare the partitions generated by Algorithm 4-6 and spectral partitioning. Figure

22 illustrates that the spectral algorithm (left) partitions the graph by city (Washington,

D.C. and Philadelphia), whereas Algorithm 4-6 returns communities that are distinguishable

within each city (i.e., Algorithm 4-6 returned locally distinguishable communities). Factors

that might generate such locally distinguishable communities in social networks might include

political affiliation, brand preferences, and media preferences.

4.9.2 Experiment with Images

We conclude our experiments by illustrating how Algorithm 4-6 can be applied to image

segmentation. Image segmentation seeks to divide an image into distinct objects. The

machine vision community has performed an enormous amount of research in this area since

the 1970’s, and one class of the resulting methods involves graph partitioning. Surveys of

graph theoretic approaches to image segmentation are provided by [63] and [19]. The basic

idea is to construct a graph in which each vertex corresponds to a pixel, and each edge is

weighted by some measure of color similarity between two pixels. The resulting graphs can

be huge, even for moderately resolute images, and the process is made more tractable by
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Figure 21: A 250-vertex subgraph of the Brightkite social network [49] containing vertices

within a 50-mile radius of Washington, D.C. and Philadelphia, PA.

considering edge addition only within the local neighborhood of each pixel. Graph theoretic

methods can then be applied to partition the resulting graph representation of the image.

In our experiment, we do not restrict edges to local neighborhoods. This more global

approach to edge addition allows the possibility for a object to include distant pixels; that

is, we do not assume that an object must be composed of a contiguous set of pixels (i.e.,

an object could be disjoint). To improve tractability, we construct a non-weighted graph

in which edges are added between vertices if the “distance” between their associated pixel

colors is within some threshold, which is a decreasing linear function of geometric distance.

This approach requires two notions of distance. For geometric distance, we use the Euclidean
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Figure 22: Communities identified by spectral partitioning (left) and Algorithm 4-6 (right).

distance between pixel location indices. For the distance between colors, we use the Python

colormath library (specifically the color diff.delta e cie2000 method) by [77]. To further

improve tractability for larger images, our procedure considers edge addition at only some

probability for pixel pairs whose geometric distance exceeds some threshold. Once the graph

is constructed, we can apply Algorithm 4-6 to generate an image partition.

Figure 23 depicts the partition generated by Algorithm 4-6 for a heatmap image. We note

that our method of graph construction allows the resulting segmented objects to be disjoint.

A disjoint partition would be desirable if, for example, the heat map were topographic and

the goal were to distinguish between high elevation and low elevation regions.

We now consider an image of cervical cells depicted in the left panel of Figure 24. In

the female body, the cervix is a channel-like organ that connects the uterus and vagina. A

Pap smear is a cervical cancer screening test, which involves removing a small quantity of

cells from the surface of the cervix. The specimen is then plated onto a microscope slide

and stained to visually enhance certain cell features, such as the nucleus and cytoplasm,

important for early detection of precancerous cells. Human review of each microscope slide,

which can contain thousands of cells, is tedious and labor-intensive. As such, there have

been many efforts to automate review of Pap smear slides (see for example the survey of [8]).
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Figure 23: Partitioning of a heatmap by Algorithm 4-6.

A recent example of an automated Pap smear slide review process is proposed in [85].

The process consists of image acquisition and pre-processing, segmentation of individual cells

from the whole slide image, feature extraction and selection to characterize each cell, and

finally a machine learning classification model to identify potentially precancerous cells. The

most predictive features in the classification model included the ratio of the cell’s nucleus

area to cytoplasm area, the green and red color intensities of the nucleus, and the green and

red color intensities of the cytoplasm. Note that cytoplasm color is an indicator of the cell’s

originating location on the cervix (“superficial” or “intermediate”).

In our experiment, we filter out the slide background and cell nucleai using a threshold

technique, such that the resulting image contains only cell cytoplasm. The right panel of

Figure 24 depicts that Algorithm 4-6 generates a similar partition in which the red cells are

assigned to one object and the green cells are assigned to the second object. As previously

noted, our method of constructing the graph allows the resulting segmented objects to be

disjoint, which is desirable in this example of partitioning images of cells. The partitioning

technique could fit into the automated process of [85], for example, as a pre-processing step

to separate the cells by their originating location (“superficial” or “intermediate”). Then,
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two classification models could be trained (one for red cells and the other for green), rather

than introducing that complexity into one classification model as was done by [85].

Figure 24: Partitioning of cells in a pap smear cytology slide by Algorithm 4-6.

4.10 Discussion

We considered the problem of recovering the ground-truth communities of a vertex-

attributed graph that are locally distinguishable in the sense that the ground-truth communi-

ties exhibit stronger community structure in more local parts of the graph (i.e., in subgraphs

induced by vertices whose attributes are closer). As we demonstrated in Subsection 4.2.1,

the problem arises when clustering training data that contains responses generated from

different latent sources. More specifically, we showed that the ground-truth communities

(corresponding to the latent sources) of certain similarity graphs for the training data are

locally distinguishable under mild conditions. Locally distinguishable communities, however,

are not necessarily globally distinguishable (i.e. have higher internal than external connec-

tion density), posing a challenge for standard community detection methods. Accordingly,

in Sections 4.2.2 and 4.4-4.7, we proposed and studied a community detection algorithm

that first clusters the vertex set into local vertex subsets, then applies a spectral community
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detection algorithm to each graph induced by one of the local vertex subsets to obtain local

communities, and finally agglomerates the local communities into global communities. In

Theorem 4.3.1 we established conditions under which the algorithm almost exactly recovers

communities when applied to the local stochastic block model (LSBM), a generalization of

the stochastic block model (SBM) that we propose in Section 4.3 that incorporates the local

distinguishability property. In Section 4.8 we evaluated the empirical performance of the

method on LSBM instances and its viability for clustering training data. We observed that

our method outperforms a spectral method benchmark when ground-truth communities are

locally but not globally distinguishable, as we would expect. Furthermore, the method’s

performance can significantly improve when a small subset of labeled data is available.

There are a number of interesting directions for future work. First, naturally it is of

interest to develop exact (instead of almost exact) recovery guarantees. Second, in the

context of clustering training data, it might make more sense to consider an alternative to

the local spectral community detection method (i.e., Algorithm 4-3), particularly a method

designed for low-dimensional clustering, given that clustering points with similar features

more or less boils down to clustering their one-dimensional responses. Third, and we think

most importantly, there is a need for a better agglomeration method; one direction is to

develop an optimization-based agglomeration method. Furthermore, if partially labeled data

is available, naturally it is of interest to exploit this when agglomerating. Finally, it is

of interest to explore using our method for community detection problems that arise in

applications other than clustering training data.
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4.11 Analysis of Algorithm 4-2

Here we set out to prove Theorem 4.4.1 and 4.4.2. First we introduce the notion of an

ϵ-net (with respect to the Euclidean metric d2) for a set X ⊆ Rm.

Definition 4.11.1. For ϵ > 0 and X ⊆ Rm, we say that a set N ⊆ X is an ϵ-net for X

(with respect to the Euclidean metric d2) if for each y ∈ X there exists z ∈ N such that

d2(y, z) ≤ ϵ.

If X ⊆ [0, 1]m, then there is an ϵ-net for X of cardinality |N | ≤
(

2
√
m
ϵ

)m
:

Lemma 4.11.1. Let X ⊆ [0, 1]m. For 0 < ϵ < 1, there is an ϵ-net N for X of cardinality

|N | ≤
(

2
√
m
ϵ

)m
.

Proof. For ζ ∈ Z>0, it is straightforward to see that there is a subset N ′ ⊂ [0, 1]m of

cardinality |N ′| = ζm such that the collection
{
B∞

(
y, 1

2ζ

)}
y∈N ′

partitions [0, 1]m. Because

B∞

(
y, 1

2ζ

)
⊆ B2

(
y,

√
m

2ζ

)
for each y ∈ N ′, it follows that the collection

{
B2

(
y,

√
m

2ζ

)}
y∈N ′

covers [0, 1]m. So, taking ζ =
⌈√

m
ϵ

⌉
, we have that there is a subset N1 ⊂ [0, 1]m of cardinality

|N1| =
⌈√

m
ϵ

⌉m
≤
(

2
√
m
ϵ

)m
such that the collection

{
B2

(
y,

√
m

2ζ

)}
y∈N1

covers [0, 1]m. Because

B2

(
y,

√
m

2ζ

)
⊆ B2

(
y, ϵ

2

)
for each y ∈ N1, the collection

{
B2

(
y, ϵ

2

)}
y∈N1

also covers [0, 1]m.

Let N2 = {y ∈ N1 : B2

(
y, ϵ

2

)
∩X ̸= ∅}. For each y ∈ N2, take zy ∈ B2

(
y, ϵ

2

)
∩X. Then the

set N = {zy}y∈N2 is an ϵ-net for X.

With Lemma 4.11.1 in hand, we are now prepared to prove Theorem 4.4.1:

Proof of Theorem 4.4.1. From Proposition 4.11.1 there is a r
2
-net N for X = {xi}i∈[n] of

cardinality |N | ≤
(

4
√
m
r

)m
≤ k. It follows that

min
y1,...,yk∈X

max
i∈[n]

min
j∈[k]

d2(xi, yj) ≤
r

2
. (4-9)

In other words, the optimal value of the k-center problem is less than or equal to r
2
. Because

the greedy algorithm of [34] is a 2-approximation for the k-center problem, the set U of

center indices that Algorithm 4-2 constructs satisfies

max
i∈[n]

min
j∈U

d2(xi, xj) ≤ 2 min
y1,...,yk∈X

max
i∈[n]

min
j∈[k]

d2(xi, yj) ≤ r,
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where the second inequality follows from (4-9). Thus, the local vertex subsets cover V .

Before proving Theorem 4.4.2, consider Lemma 4.11.2. The lemma states that every

ball in a collection of balls centered at points in an ϵ-net for [0, 1]m contains at least γ(ϵ)
2
n

attributes with high probability. The proposition follows from a Chernoff bound and the

union bound.

Lemma 4.11.2. Suppose that xi ∼ U , i ∈ [n] are independent. Let 0 < ϵ < 1 and N be any

ϵ-net for [0, 1]m. Then

P
(
|B(y, ϵ) ∩ {xi}i∈[n]| ≥

γ(ϵ)

2
n, ∀y ∈ N

)
≥ 1− |N | exp

(
−γD (ϵ)n

8

)
.

Proof. Let y ∈ N . The random variable Ny := |B(y, ϵ) ∩ {xi}i∈[n]| follows a binomial

distribution with parameter n and success probability parameter py = P(xi ∈ B(y, ϵ)) ≥ γ(ϵ),

where the inequality follows from the definition of γ(ϵ). Hence

P
(
Ny ≤

γ (ϵ)

2
n

)
≤ P

(
Ny ≤

py
2
n
)
≤ exp

(
−pyn

8

)
≤ exp

(
−γ(ϵ)n

8

)
, (4-10)

where the second inequality follows from a standard Chernoff bound for the binomial distri-

bution. Now observe that

P
(
Ny ≥

γ (ϵ)

2
n, ∀y ∈ N

)
= 1− P

(
∃y ∈ N : Ny ≤

γ(ϵ)

2
n

)
≥ 1−

∑
y∈N

P
(
Ny ≤

γ (ϵ)

2
n

)
≥ 1− |N | exp

(
−γ (ϵ)n

8

)
,

where the first inequality follows from the union bound, and the second inequality follows

from (4-10).

Now we prove Theorem 4.4.2:
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Proof of Theorem 4.4.2. By Lemma 4.11.1, there is a r
8
-netN of cardinality |N | ≤

(
16

√
m

r

)m
for [0, 1]m. Suppose that |B(y, r

8
) ∩ {xi}i∈[n]| ≥ 1

2
γ
(
λ
8

)
n for all y ∈ N , which happens

with probability at least 1 −
(

16
√
m

r

)m
exp

(
−γ(r/8)n

8

)
by Proposition 4.11.2 together with

|N | ≤
(

16
√
m

r

)m
. It is sufficient to show that the γ(r/8)

2
-intersection graph of the local vertex

subsets V1, . . . , Vk is connected.

Let U denote the set of center indices that Algorithm 4-2 constructs. From Theorem 4.4.1,

it follows that the collection {B
(
xi,

r
4

)
}i∈U covers {xi}i∈[n]. (While we run Algorithm 4-2

with input r, not r/4, the algorithm only uses r after the set U is constructed.) So, because

B(y, r
8
) ∩ {xi}i∈[n] ̸= ∅ for all y ∈ N , the collection {B

(
xi,

r
2

)
}i∈U covers ∪y∈NB2

(
y, r

8

)
⊇

[0, 1]m. Consider the graph H that has vertex set U and an edge between vertices i, j ∈ U if

B
(
xi,

r
2

)
∩ B

(
xj,

r
2

)
̸= ∅. We see that H is connected because the collection {B

(
xi,

r
2

)
}i∈U

covers [0, 1]m and {xi}i∈U ⊆ [0, 1]m. Let i, j ∈ U such that there is an edge between i and

j in H. To show that the 1
2
γ
(
r
8

)
-intersection graph of the local vertex subsets V1, . . . , Vk

is connected, it is sufficient to show that B (xi, r) ∩ B (xj, r) contains at least
1
2
γ
(
r
8

)
of the

attributes. By definition of H, there exists y ∈ B
(
xi,

r
2

)
∩ B

(
xj,

r
2

)
. Take z ∈ N such that

z ∈ B
(
y, r

8

)
. Then

B
(
y,

r

8

)
⊂ B

(
z,

r

2

)
⊆ B (xi, r) ∩B (xj, r) ,

and hence B (xi, r)∩B (xj, r) contains at least
1
2
γ
(
r
8

)
attributes as B

(
y, r

8

)
contains at least

this amount of attributes.

4.12 Analysis of Algorithm 4-3

Our main goal in this section is to establish Theorem 4.5.1. Let us recall the setup of

Section 4.5. Let x ∈ Rn×m and C∗ = (C∗
1 , C

∗
2) be global ground-truth community pair.

Suppose that V ′ ⊆ V is a 1
4
-local vertex subset with respect to x of cardinality n′ = |V ′|.

Without loss of generality, we assume that V ′ = [n′]. Further suppose that A′ ∈ Rn′×n′
is

generated according to (4-5) under x and C∗. Let P̃ := E[Ã], where Ã is defined as in (4-4).

In the proofs that we present in this section, we will use the definitions of P ′, u, and D from

Section 4.5 along with the expression for E[Ã] = P̃ in (4-6).
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Our analysis follows in the footsteps of existing analysis for related spectral methods

applied to the SBM. The main challenge is that this existing analysis heavily relies on analytic

formulas for the eigenvectors and eigenvalues of P̃ that do not generalize to the context of

the LSBM. Accordingly, we first establish properties of the eigenvalues and eigenvectors of

P̃ in Lemma 4.12.1 and 4.12.2 below, respectively.

We introduce the following notation. Let λ1(M) ≥ λ2(M) ≥ · · · ≥ λn′(M) denote the

eigenvalues of a symmetric matrix M ∈ Rn′×n′
. For each i ∈ [n′], define ui(M) to be an

eigenvector of M with eigenvalue λi(M). Finally let ∥M∥F and ∥M∥2 denote the Frobenius

and operator norm of M , respectively.

Lemma 4.12.1 presents a lower bound on λ1(P̃ ) and an upper bound on λ2(P̃ ); these

bounds will ultimately enable us to lower bound the difference λ1(P̃ )− λ2(P̃ ).

Lemma 4.12.1. It holds that

1. λ1(P̃ ) ≥
(

p−q+(α+β)(1−λ)
2

)
n′ and

2. λ2(P̃ ) ≤ (α + β)λn′.

Proof. First we define the sets

S1 := {(i, j) ∈ V ′ × V ′ : i ̸= j and either i, j ∈ C∗
1 or i, j ∈ C∗

2},

S2 := {(i, j) ∈ V ′ × V ′ : i ̸= j and either i ∈ C∗
1 , j ∈ C∗

2 or i ∈ C∗
2 , j ∈ C∗

1}.

Note that S1, S2, and {(i, i)}i∈V ′ partition V ′ × V ′ = [n′]2.
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Let us establish the first statement of the lemma. Observe that

λ1(P̃ )

= max
∥x∥2=1

x⊤P̃ x

≥
(

1√
n′
u

)⊤

P̃

(
1√
n′
u

)
=

(
p− q + (α + β)(1− λ)

2

)
n′ +

1

n
u⊤Du

=

(
p− q + (α + β)(1− λ)

2

)
n′ +

1

n′

∑
i,j∈[n′]

Dijuiuj

=

(
p− q + (α + β)(1− λ)

2

)
n′ +

α

n′

∑
(i,j)∈S1

(
λ− d2(xi, xj)√

m

)
+

β

n′

∑
(i,j)∈S2

(
λ− d2(xi, xj)√

m

)

≥
(
p− q + (α + β)(1− λ)

2

)
n′,

where the first inequality follows from ∥u∥2 =
√
n, the second equality follows from (4-6),

the fourth equality follows from the definitions of u and D, and the last inequality follows

from the fact that V ′ is a λ-local vertex subset.

Now let us show the second statement of the lemma. Because |Dij| ≤ λα for (i, j) ∈ S1,

and |Dij| ≤ λβ for (i, j) ∈ S2, we have that

∥D∥F ≤ λ

 ∑
(i,j)∈S1

α2 +
∑

(i,j)∈S1

β2

1/2

≤ λn′
√

α2 + β2 ≤ (α + β)λn′. (4-11)

From (4-6) and Weyl’s inequality,

λ2(P̃ ) ≤
(
p− q + (α + β)(1− λ)

2

)
λ2

(
uu⊤)+ λ1(D) ≤ ∥D∥F ≤ (α− β)λn′,

where the second inequality follows from λ2(uu
⊤) = 0 and λ1(D) ≤ ∥D∥F , and the last

inequality from (4-11).

Lemma 4.12.2 shows that the signs of the entries of u1(P̃ ) capture the ground-truth

communities. The lemma also establishes a lower bound on the magnitude of the entries.

Lemma 4.12.2. Suppose that p− q > 0 or α > β and λ < 1. Then the following statements

hold.
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1. Each entry of u1(P̃ ) is nonzero.

2. For i, j ∈ [n′], the sign of (u1(P̃ ))i is different from the sign of (u1(P̃ ))j if i ∈ C∗
1 , j ∈ C∗

2

or i ∈ C∗
2 , j ∈ C∗

1 .

3. mini∈[n′]|(u1(P̃ ))i| ≥ 1−λ

2
√
n′ .

Proof. Let M̃ = diag(u)P̃ diag(u). The matrix M̃ has the same eigenvalues as P̃ , and

u1(M̃) = diag(u)u1(P̃ ) is an eigenvector of M̃ with eigenvalue λ1(P̃ ) (i.e., the largest eigen-

value of M̃). As discussed in Section 4.5, all entries of M̃ are positive under the assumption

that p − q > 0 or α > β and λ < 1. Consequently, from the Perron-Frobenius theorem,

diag(u)u1(P̃ ) has either all positive or all negative entries. It follows that the first and second

statement of the lemma hold.

To establish the third statement, it is sufficient to show that mini∈[n′](u1(M̃))i ≥ 1−λ

2
√
n′ .

The main result of [56] implies that

min
i∈[n′]

(u1(M̃))i ≥

(
mini,j∈[n′] M̃ij

maxi,j∈[n′] M̃ij

)
max
i∈[n′]

(u1(M̃))i. (4-12)

We bound the right hand side of (4-12) from below. Because ∥u1(M̃)∥2 = 1,

max
i∈[n′]

(u1(M̃))i ≥
1√
n′
. (4-13)

From (4-6) and the definition of M̃ ,

min
i,j∈[n′]

M̃ij =
p− q + (α + β)(1− λ)

2
+ min

i,j∈[n′]
|Dij|

≥ p− q + (α + β)(1− λ)

2

≥ (1− λ)(p− q + α + β)

2
. (4-14)
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Similarly, we have that

max
i,j∈V ′

M̃ij =
p− q + (α + β)(1− λ)

2
+ max

i,j∈[n′]
|Dij|

≤ p− q + (α + β)(1− λ)

2
+ max{α, β}λ

=
p− q + α + β

2
+

(2max{α, β} − (α + β))λ

2

≤ p− q + α + β

2
+

(α + β)λ

2

≤ p− q + α + β. (4-15)

The second statement follows from (4-12) together with (4-13), (4-14), and (4-15).

We are now prepared to prove Theorem 4.5.1. The proof utilizes the version of the

Davis-Kahan theorem from [93] (specifically, Corollary 3). In our setting, the theorem tell

us that surely

min
s∈{−1,1}

∥u1(Ã)− su1(P̃ )∥2 ≤
23/2∥Ã− P̃∥2
λ1(P̃ )− λ2(P̃ )

. (4-16)

We also use the following concentration inequality for the operator norm of A′ − P ′:

P(∥A′ − P ′∥2 ≤ ĉ1
√
n′) ≥ 1− exp(−ĉ2n′), (4-17)

where ĉ1, ĉ2 > 0 are absolute constants. The inequality holds because the entries of A′ are

(up to symmetry) independent Bernoulli random variables and P ′ = E[A′]; see, for example,

Section 2.3 of [76].

Proof of Theorem 4.5.1. From Lemma 4.12.2 and λ ≤ 1/4, we have that mini∈[n′]|(u1(P̃ ))i| ≥
3

8
√
n′ . Hence, surely

1− A(C,C∗) ≤ 1

n
min

s∈{−1,1}

∥∥∥∥83√n(u1(Ã)− su1(P̃ ))

∥∥∥∥2
2

=

(
8

3
min

s∈{−1,1}
∥u1(Ã)− su1(P̃ )∥2

)2

≤

(
8

3
· 2

3/2∥Ã− P̃∥2
λ1(P̃ )− λ2(P̃ )

)2

=

(
8

3
· 2

3/2∥A′ − P ′∥2
λ1(P̃ )− λ2(P̃ )

)2
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where the second inequality follows from (4-16). It follows from (4-17) that there are absolute

constants c̃1, c2 > 0 such that

1− exp(−c2n′)

≤ P

1− A(C,C∗) ≤

(
c̃1
√
n′

λ1(P̃ )− λ2(P̃ )

)2


≤ P

1− A(C,C∗) ≤

(
c̃1
√
n′

((p− q)/2 + (α + β)3/8− (α + β)/4)n′

)2


= P

(
1− A(C,C∗) ≤

(
c̃1

((p− q)/2 + (α + β)/8)
√
n′

)2
)

≤ P

(
1− A(C,C∗) ≤

(
8c̃1

(p− q + α + β)
√
n′

)2
)

= P
(
1− A(C,C∗) ≤ c1

D2
ℓn

′

)
,

where the second inequality follows from Lemma 4.12.1 and λ ≤ 1/4, and the last equality

follows from the definition of Dℓ and taking c1 = 64c̃21.

4.13 Analysis of Algorithm 4-4

Here we prove Theorem 4.6.1. Let us recall the setup of Section 4.6. Let G = (V,E, x)

be a vertex-attributed graph that has ground-truth community pair C∗ = (C∗
1 , C

∗
2). Also let

C(i) = (C
(i)
1 , C

(i)
2 ), i ∈ [k] be local community pairs. Assume that each vertex in V belongs

to at least one of the local communities. Recall that V (i) = C
(i)
1 ∪C

(i)
2 for i ∈ [k], and define

ni := |V (i)|. Also recall the definition of C(i\j) for i ̸= j ∈ [k].

Consider any two local community pairs, say C(1) and C(2). Lemma 4.13.1 shows that

if we “appropriately” agglomerate C(1) and C(2), then we will not lose too much agreement.

That is, the second condition of the lemma posits (without loss of generality) that for each ℓ ∈

[2], it holds that C
(ℓ)
1 and C

(ℓ)
2 share more vertices with the ground-truth communities C∗

1 and

C∗
2 , respectively, than with C∗

2 and C∗
1 , respectively. So it is appropriate to agglomerate C

(1)
1
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with C
(2)
1 and agglomerate C

(1)
2 with C

(2)
2 , i.e. to construct new agglomerated communities

C
(3)
1 = C

(1)
1 ∪ C

(2\1)
1 and C

(3)
2 = C

(1)
2 ∪ C

(2\1)
2 .

Lemma 4.13.1. Let 0 ≤ δ ≤ 1
2
. For each ℓ ∈ [2], suppose that

1. A(C(ℓ), C∗) ≥ 1− δ and

2. A(C(ℓ), C∗) = 1
nℓ
(|C(ℓ)

1 ∩ C∗
1 |+ |C

(ℓ)
2 ∩ C∗

2 |).

Let C
(3)
1 = C

(1)
1 ∪ C

(2\1)
1 and C

(3)
2 = C

(1)
2 ∪ C

(2\1)
2 . Then for C(3) = (C

(3)
1 , C

(3)
2 ), we have

A(C(3), C∗) ≥ 1− 2δ.

Proof. Let n1∧2 = |V (1) ∩ V (2)|. Also let V (3) = V (1) ∪ V (2) and n3 = |V (3)|. Note that

n3 = n1 + n2 − n1∧2.

From the definition of A(C(3), C∗),

A(C(3), C∗) ≥ 1

n3

(|C(3)
1 ∩ C∗

1 |+ |C
(3)
2 ∩ C∗

2 |)

=
1

n3

(|(C(1)
1 ∪ C

(2\1)
1 ) ∩ C∗

1 |+ |(C
(1)
2 ∪ C

(2\1)
2 ) ∩ C∗

2 |)

=
1

n3

(|C(1)
1 ∩ C∗

1 |+ |C
(2\1)
1 ∩ C∗

1 |+ |C
(1)
2 ∩ C∗

2 |+ |C
(2\1)
2 ∩ C∗

2 |)

=
1

n3

(|C(1)
1 ∩ C∗

1 |+ |C
(2)
1 ∩ C∗

1 | − |C
(2)
1 ∩ V (1) ∩ C∗

1 |)

+
1

n3

(|C(1)
2 ∩ C∗

2 |+ |C
(2)
2 ∩ C∗

2 | − |C
(2)
2 ∩ V (1) ∩ C∗

2 |)

=
1

n3

(n1A(C
(1), C) + n2A(C

(2), C)− |C(2)
1 ∩ V (1) ∩ C∗

1 | − |C
(2)
2 ∩ V (1) ∩ C∗

2 |)

≥ 1

n3

((1− δ)(n1 + n2)− |C(2)
1 ∩ V (1)| − |C(2)

2 ∩ V (1)|)

=
1

n3

((1− δ)(n3 + n1∧2)− |V (1) ∩ V (2)|)

=
1

n3

((1− δ)n3 − δn1∧2)

≥ 1− 2δ

where the fourth equality follows from the second condition of the lemma, the second in-

equality follows from the first condition of the lemma, and the last inequality follows from

n1∧2 ≤ n3.
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Next we show in Lemma 4.13.2 that if the agreement of local community pairs C(1) and

C(2) is sufficiently high (relative to the number of vertices that they intersect on), then vertex

agglomeration appropriately agglomerates them. Condition (4-18) ensures that Algorithm

4-4 selects the appropriate local communities to agglomerate together in Step 4.

Lemma 4.13.2. Suppose that the following conditions hold.

1. |V (1) ∩ V (2)| ≥ η.

2. For ℓ ∈ [2], it holds that A(C(ℓ), C∗) ≥ 1− η
5n

and

3. A(C(ℓ), C∗) = 1
nℓ
(|C(ℓ)

1 ∩ C∗
1 |+ |C

(ℓ)
2 ∩ C∗

2 |).

Then

|C(1)
1 ∩ C

(2)
1 |+ |C

(1)
2 ∩ C

(2)
2 | > |C

(1)
1 ∩ C

(2)
2 |+ |C

(1)
2 ∩ C

(2)
1 |. (4-18)

Proof. For the sake of contradiction, suppose that

|C(1)
1 ∩ C

(2)
1 |+ |C

(1)
2 ∩ C

(2)
2 | ≤ |C

(1)
1 ∩ C

(2)
2 |+ |C

(1)
2 ∩ C

(2)
1 |. (4-19)

Now observe that

η ≤ |(C(1)
1 ∪ C

(1)
2 ) ∩ (C

(2)
1 ∪ C

(2)
2 )|

= |C(1)
1 ∩ C

(2)
1 |+ |C

(1)
1 ∩ C

(2)
2 |+ |C

(1)
2 ∩ C

(2)
1 |+ |C

(1)
2 ∩ C

(2)
2 |

≤ 2(|C(1)
1 ∩ C

(2)
2 |+ |C

(1)
2 ∩ C

(2)
1 |)

= 2(|C(1)
1 ∩ C

(2)
2 ∩ C∗

1 |+ |C
(1)
1 ∩ C

(2)
2 ∩ C∗

2 |+ |C
(1)
2 ∩ C

(2)
1 ∩ C∗

1 |+ |C
(1)
2 ∩ C

(2)
1 ∩ C∗

2 |)

≤ 2(|C(2)
2 ∩ C∗

1 |+ |C
(1)
1 ∩ C∗

2 |+ |C
(1)
2 ∩ C∗

1 |+ |C
(2)
1 ∩ C∗

2 |)

= 2(n1(1− A(C(1), C∗)) + n2(1− A(C(2), C∗)))

≤ 2(
n1η

5n
+

n2η

5n
)

≤ 4η

5

where the second inequality follows from (4-19), the fourth inequality from the second con-

dition of the lemma, and the last inequality from n1, n2 ≤ n. We have obtained a contradic-

tion.

We are now prepared to prove Theorem 4.6.1:
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Proof of Theorem 4.6.1. It is sufficient to show that after the ℓ-th agglomeration for 0 ≤

ℓ ≤ k − 1, it holds that

min
i∈U

A(C(i), C∗) ≥ 1− ζη

2k+1−ℓn
. (4-20)

We proceed by induction. Clearly (4-20) holds for ℓ = 0, so suppose it holds for 0 ≤ ℓ < k−1.

Then at the beginning of the iteration ℓ+ 1 of Algorithm 4-4, we have that

min
i∈U

A(C(i), C∗) ≥ 1− ζη

2k+1−ℓn
≥ 1− ζη

8n
≥ 1− ζη

5n
,

where the second inequality follows from ℓ < k−1. Lemma 4.13.2 implies that the appropri-

ate communities are agglomerated together in iteration ℓ+ 1. It follows from Lemma 4.13.1

that after the (ℓ+ 1)-th agglomeration,

min
i∈U

A(C(i), C∗) ≥ 1− 2ζη

2k+1−ℓn
= 1− ζη

2k+1−(ℓ+1)n
.

Thus, by induction, the desired result holds.

4.14 Analysis of Algorithm 4-5

Proof of Theorem 4.7.1. We break the proof into four steps. The first three correspond to

the three main steps of Algorithm 4-5, and the last combines the results from the first three

together.

Step 1: Local vertex subset construction. Let η = γ(1/32)n
2

. We introduce the event

E1 =
{
∪i∈[k]V (i) = V and η-intersection graph of V (i), i ∈ [k] is connected

}
.

Because k = ⌈(64
√
m)m⌉ ≥ (16

√
m)m =

(
4
√
m
r

)m
(as r = 1

4
), we have from Theorem 4.4.1

that ∪i∈[k]V (i) = V surely. Accordingly,

P(E1) = P(η-intersection graph of V (i), i ∈ [k] is connected)

≥ 1−
(
64
√
m
)m

exp

(
−γ(1/32)n

8

)
,

≥ 1− ĉ1(m) exp(−ĉ2(m)n), (4-21)
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where the first inequality follows from Theorem 4.4.2 with r = 1
4
, and the second equality

follows from taking ĉ1(m) = (64
√
m)m and ĉ2(m) ≤ γ(1/32)

8
. (Such a constant ĉ2(m) indeed

exists; see Section 4.4.)

Step 2: Local community detection. For each i ∈ [k], consider the event

E2i =

{
A(C(i), C∗) ≥ 1− ĉ3

D2
ℓη

}
,

where ĉ3 equals the absolute constant c1 in Theorem 4.5.1. Because V (i) is a 1
4
√
m
-local vertex

subset and E1 ⊆ {|V (i)| ≥ η}, we can apply Theorem 4.5.1 to obtain that

P(E2i | E1) ≥ 1− exp(−ĉ4η), (4-22)

where ĉ4 equals the absolute constant c2 in the theorem. For

E2 =

{
min
i∈[k]

A(C(i), C∗) ≥ 1− ĉ3
D2

ℓη

}
,

we can apply (4-22) and the union bound to obtain that

P(E2 | E1) ≥ 1− k exp(−ĉ4η)

≥ 1− (65
√
m)m exp

(
− ĉ4γ(1/32)n

2

)
= 1− ĉ5(m) exp(−ĉ6(m)n), (4-23)

where the second inequality follows from k ≤ (65
√
m)m and the definition of η, and the

equality from taking ĉ5(m) = (65
√
m)m and ĉ6(m) ≤ ĉ4γ(1/32)

2
.

Step 3: Agglomeration. Let us take

c1(m) =
ĉ
1/2
3 2(⌈(64

√
m)m⌉+3)/2

γ(1/32)
=

ĉ
1/2
3 2(k+3)/2

γ(1/32)
,

and define

ζ =
c1(m)2

D2
ℓn

.

First note that from (4-7) that ζ ≤ 1. Second note that from the definitions of ζ and η,

E2 =

{
min
i∈[k]

A(C(i), C∗) ≥ 1− ζη

2k+1n

}
.
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Accordingly, for E3 =
{
A(C,C∗) ≥ 1− ζη

4n

}
, we can apply Theorem 4.6.1 to obtain that

P(E3 | E1 ∩ E2) = 1. (4-24)

Step 4: Putting it all together. Finally, take

c2(m) =
ĉ32

(64
√
m)m

γ(1/32)
=

ĉ32
k

γ(1/32)
.

Then we have that E3 =
{
A(C,C∗) ≥ 1− c2(m)

D2
ℓn

}
. Observe that

P(E3) ≥ P(E1 ∩ E2 ∩ E3)

= P(E3 | E1 ∩ E2)P(E2 | E1)P(E1)

≥ 1− ĉ1(m) exp(−ĉ2(m)n)− ĉ5(m) exp(−ĉ6(m)n),

where the second inequality follows from (4-21), (4-23), and (4-24). Thus the desired result

follows.
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5.0 Conclusions

We have studied and developed algorithms for spatial variations of three classic opti-

mization problems. In Table 2, we summarize each algorithmic contribution with respect to

our intention that they be implementation-friendly, scalable, and performance-guaranteed.

Table 2: Summary of our algorithmic contributions with respect to the intended traits

Algorithmic

Contribution

Implementation-

friendly

Scalable Performance-

guaranteed

Minimizing

makespan across

preloaded machines

Does not require

optimization exper-

tise

n log n complexity

enables scaling

2-approximation for

identical machines

The meet-in-the-

middle k-center

problem

Requires solving

the standard k-

center problem

along with a sim-

ple assignment

algorithm

Polynomial com-

plexity enables

scaling

Guarantees pro-

vided that are

specific to each cost

regime

Recovering locally

distinguishable

communities with

applications to

clustering training

data

Requires standard

spectral partition-

ing along with

a decomposition

and agglomeration

scheme

Decomposition

and agglomeration

enables scaling

Guarantee provided

for instances of the

LSBM
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Finally, we offer a few interesting directions for future research in the following para-

graphs.

Minimizing makespan across preloaded machines. While we consider minimizing

makespan, in practice jobs may be prioritized by some measure of importance. A modified

version of Algorithm 2-1 that minimizes makespan while satisfying job priority constraints

would be a meaningful extension. Analysis of the modified algorithm might also be performed

to establish a performance guarantee. In light of the fact that the list scheduling algorithm

of Graham [35] admits a 4
3
− 1

3m
approximation guarantee, it is natural to wonder if the

modified version of Algorithm 2-1 considered in Theorem 2.3.2 (i.e., that uses an ordered list

in Step ‘a’ of Stage 2) also admits a factor 4
3
− 1

3m
approximation guarantee. It would also

be interesting to develop a more general model along with solution algorithms for problems

with machine-specific ready and delivery times. Finally, it would be interesting to consider

uncertain processing times, as well as settings in which transportation is constrained.

The meet-in-the-middle k−center problem. One could consider the meet-in-the-

middle capability in the context of other facility location problems, such as those with

fixed costs, supplies, demands, and capacities. Our meet-in-the-middle problem could be

extended to consider facilities that deliver goods to a sequence (route) of locations from

which nearby clients retrieve goods by traveling. One could consider different objectives, such

as minimizing the total travel distance, or minimizing the demand-weighted travel distance.

Our problem, like all facility location problems, requires a choice of k as a user input. While a

choice of k in practice may be determined by budget, methods that help the user determine

an appropriate value (for example, by considering the cost of each additional facility in

context with its incremental improvement to the objective value) would be meaningful.

Finally, while we established that our analysis of Algorithm 3-2 is tight, one could explore

whether other algorithms might provide better guarantees. Similarly, it would be interesting

to explore algorithm performance under relaxed cost regimes, such as problems in which

only Assumption 3.2.1 (i.e., metric costs) holds.

Recovering locally distinguishable communities with applications to cluster-

ing training data. First, developing exact (instead of almost exact) recovery guarantees

would be a natural extension to our work. Second, in the context of clustering training
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data, it might be useful to consider methods designed for low-dimensional clustering, given

that clustering points with similar features more or less reduces to clustering their one-

dimensional responses. Third, and we think most importantly, there is a need for a better

agglomeration method; one direction is to develop an optimization-based agglomeration

method. Furthermore, if partially labeled data are available, naturally it is of interest to ex-

ploit this when agglomerating. Fourth, our community detection algorithm requires a choice

of k as user input, which may be difficult in practice. Developing methods to help the user

choose an appropriate value of k, especially when a partially labeled data are unavailable

for semi-supervised learning, could improve algorithm performance in practice. Fifth, in

healthcare and many other applications, each type of classification error (false positive and

false negative) may have different consequences. Somehow considering the consequences of

classification errors in the community detection algorithm might be a meaningful extension.

Finally, one could explore using our method for community detection problems that arise in

applications other than clustering training data.
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