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Deep Learning Methods and Datasets for
All-atom Protein Structure Prediction

Jonathan Edward King, PhD

University of Pittsburgh, 2023

Over the past decade, significant progress has been made in protein structure prediction,

largely thanks to tools like AlphaFold2. This paper tackles several lingering challenges in

this field. First, we introduce SidechainNet, a dataset and toolkit designed to streamline

the handling of protein sequence and structure data for machine learning and increase

its accessibility. This initiative addresses the prevalent issue of effectively collecting and

organizing data, especially in the realm of protein science, where data quality and availability

may vary. Furthermore, leading methods have been observed to fall short in real-world tasks

like molecular docking. To enhance the physical realism of predictions made by deep learning

models, we implement potential energy as a loss function through OpenMM-Loss. This

technique reduces potential energy and clashes in predicted structures, potentially rendering

these predictions more viable for various applications. We also scrutinize AlphaFold2 with the

aim of refining its sidechain modeling—a crucial aspect of drug discovery. Although we don’t

pinpoint a significantly more accurate model, our analysis reveals comparable performance

between ResNet and Transformer models in sidechain prediction tasks. In light of these

results, we recommend that future efforts concentrate on more holistic sidechain modeling

efforts. Finally, we discuss potential future developments and extensions of our methods.
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1.0 Introduction

The field of computational biology has seen remarkable advancements in recent years, owing

much of its progress in some areas to the application of machine learning techniques. Among

the various areas within computational biology, one of the most transformative breakthroughs

has been the direct prediction of complete protein structures. Such advances can potentially

revolutionize structure-based drug discovery, where knowledge of protein structures is pivotal

for designing targeted medicines.

Until recently, protein structure prediction methods and their assessments have focused

primarily on modeling the protein backbone. However, we hypothesize that predictive

accuracy and quality can be significantly improved by incorporating the modeling of amino

acid sidechain conformations alongside the protein backbone. This improvement is driven by

the intricate relationship between amino acid orientation and the overall protein structure.

Furthermore, this additional information can facilitate the direct computation of the energy

of predicted structures, which we will show can be used as a valuable loss function for training

deep learning models. In essence, our research seeks to elevate the state-of-the-art predictive

performance within the all-atom protein structure prediction domain. We endeavor to reach

this goal through three key aims:

1. Create and distribute a machine learning-oriented dataset for all-atom protein structures,

coupled with tools to streamline machine learning model development;

2. Incorporate biophysical properties and force field-based training procedures to enhance

the physical qualities of protein structure predictions; and

3. Integrate modeling methods specific to all-atom protein representations to enhance the

predictive power of state-of-the-art predictive models, using established models like

AlphaFold2 as benchmarks.
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1.1 Related Work

1.1.1 The Rise of Deep Learning

The recent explosion in the application of deep learning techniques, initially popularized in

natural language processing (NLP) and computer vision (CV), has left many researchers

contemplating how to harness these advancements for diverse scientific domains, including

structural biology. Several factors have contributed to the rapid adoption of deep learning in

NLP and CV, including the availability of vast textual and image datasets on the internet,

the recognition of commercial applications in various sectors, and the expansive landscape of

publicly accessible competitions driving technological innovation.

However, this adoption has not been as straightforward in the natural sciences. Scientific

data, particularly biological, chemical, and medical data, often lacks the abundance and

accessibility of text and image data. Additionally, the inherent costs and complexities

associated with laboratory-based research can divert early research efforts toward fields with

lower initial investment costs, despite potential interest in other scientific domains. Moreover,

the limited availability of benchmark datasets and competitions in the natural sciences has

hindered the integration of machine learning techniques in these domains.

Despite these challenges, the recent convergence of data, computational resources, and

analytical methods in biology signifies a transformative moment. This pivotal shift has

enabled scientists to explore applications of machine learning methods beyond NLP and

CV and to begin harnessing these powerful techniques for groundbreaking discoveries in the

biological sciences. Building on this momentum, this dissertation poses and seeks to address

the question: "How can we leverage deep learning to expand our understanding of protein

biology, improve drug discovery, and make impactful scientific inferences?"

2



1.1.2 Protein Structure Prediction

Accurate protein structure prediction remains a profound challenge in molecular biology.

Since the pioneering work of Kendrew and Perutz in determining the structure of sperm

whale myoglobin through X-ray crystallography in the late 1950s1, scientists have sought to

unveil the 3D structures of numerous proteins to comprehend essential molecular processes.

Proteins, composed of amino acids, may naturally fold into unique, globular structures vital

for various cellular functions. Notably, knowledge of precise amino acid sidechain orientations

is critical in structure-based drug discovery, which aims to develop medications by rational

examination of protein-drug interactions.

However, acquiring experimental protein structure data is costly and labor-intensive, often

with low success rates2. Consequently, the scientific community has dedicated substantial

efforts to developing methods for predicting protein structures from primary amino acid

sequences, given the vast availability of sequence data. This dichotomy is evident when

comparing the abundance of protein sequences (over 250 million) in databases like UniProtKB3

to the relatively sparse protein structures (about 200 thousand) in the Protein Data Bank4

(PDB).

Protein structure prediction methods can be broadly categorized into template-based and

template-free modeling. The former relies on known protein structures with similar sequences

as references, while the latter, also known as ab initio modeling, generates structures without

reference templates. Within these categories are more specific methodologies, including con-

formational sampling, fragment assembly, energy minimization, refinement, local (secondary

structure, torsion angle) structure prediction, and, lastly, contact prediction. While these

approaches have been the subject of rigorous evaluation through initiatives like the Critical

Assessment of protein Structure Prediction (CASP) competition, challenges persist. For

instance, the prediction of protein backbone conformations and sidechain orientations (which,

together, make up all-atom protein structures) remains computationally demanding due to

3



Figure 1.1: The architecture of AlphaFold26, reproduced with permission.

its NP-hard nature5.

The advent of AlphaFold7 and AlphaFold26 (AF2) (Figure 1.1) in 2018 and 2020, re-

spectively, signaled a pivotal shift in addressing these challenges. AF2, with its innovative

attention-based architecture, exhibited unprecedented predictive performance in CASP com-

petitions. However, AF2 is not without its shortcomings. It is heavily reliant on high-quality

sequence data, and its predictions often necessitate energetic minimization due to their

energetically unfavorable nature. Additionally, AF2 does not consider ligand information,

rendering it incapable of adjusting predictions based on the presence or absence of a bound

ligand. This oversight limits its utility in tasks like molecular docking or certain drug discovery

processes. Nevertheless, while criticisms and limitations of AF2 persist, its breakthroughs

have undeniably reinvigorated the pursuit of accurate protein structure prediction and served

as a source of inspiration for the broader research community.

1.1.3 Deep Learning’s Contribution to the Field

Deep learning, a subfield of machine learning, leverages neural networks with multiple layers

to approximate complex functions. The success of deep learning is underpinned by the

Universal Approximation Theorem, which states that a neural network with a single hidden

4



layer, finite number of neurons, and non-linear linear activation function can approximate

any continuous function. In practice, deep learning models improve their parameters via

backpropagation and are trained on large sets of input-output pairs. This methodology has

yielded exceptional results across a spectrum of applications, from image recognition8 and

autonomous navigation9 to language translation10.

The inspiration for this dissertation extends from Neural Machine Translation (NMT), a

branch of NLP that employs neural networks to translate between languages. Although we do

not explicitly employ our original idea in a separate aim, our early work investigated how to

frame the problem of protein structure prediction as one of language translation: translating

from the "language of amino acids" that describe a protein’s sequence to the "language of

torsional angles" that describe a protein’s structure.

NMT introduced two dominant technologies: Recurrent Neural Networks11–13 (RNNs)

and Transformer14–16 networks. RNNs process data sequentially, utilizing internal states to

accumulate information and generate output sequences. Transformers, in contrast, operate in

parallel, employing attention mechanisms to process entire input sequences simultaneously

(Figures 1.2b and 1.2a). To create a new representation for each sequence element, it first

compares, or scores, it with respect to every other sequence element (Figure 1.2a). The

sequence elements are then scaled by their scores and added, creating a new representation of

each sequence element as a weighted average over all other sequence elements. What makes

this weighted average unique, however, is that scores and weights are predicted by the model.

This causes the model to "attend" to only what it considers to be the relevant portions of

the sequence for each element.

Transformers have gained preeminence in sequence-based deep learning due to their

superior capacity for modeling long-range dependencies and lower computational demands.

The parallel processing nature of Transformers reduces training times substantially, offering

a significant advantage over RNNs. Researchers in protein structure prediction have closely

monitored developments in NLP and applied these transformative technologies when applica-

5



(a) Attention scores encapsulate relationships

between words. Figure by Jay Alammar17, re-

produced with permission..

(b) The Transformer architecture. Figure from

Vaswani et al.14, reproduced with permission.

Figure 1.2: Attention and Transformer Architectures.

6



ble. Notably, the success of AlphaFold2 and the adoption of Transformer-like architectures

have redefined the landscape of protein structure prediction.

1.1.4 Notable Works

In addition to AlphaFold2’s profound impact on protein structure prediction, several other

noteworthy contributions inform the research presented in this dissertation. For a more

thorough introduction to these works, see the corresponding sections in Aim 1, Aim 2, and

Aim 3.

That said, two works, in particular, have motivated this dissertation research and helped

it evolve over time.

Focusing on Torsion Angle Prediction and Sidechain Modeling First, in February

2018, a few months into the beginning of my own work on protein structure prediction,

Mohammed AlQuraishi of Harvard Medical School published a preprint article titled End-

to-End Differentiable Learning of Protein Structure18, in which he utilized RNNs to predict

the structure of proteins by converting amino acid sequences to sequences of torsional angles.

The torsional angles were used to reconstruct the protein, and a differentiable loss function

called Distance-based Root Mean Squared Deviation (DRMSD) was used to compare the true

and predicted structures and train the model. In contrast to Root Mean Squared Deviation

(RMSD) which measures the inter-molecular distances d(Ai, Bi) between all points in protein

A : (A1...AN) and their corresponding points in protein B : (B1...BN) after alignment,

RMSD(A,B) =
1

N
·

N∑︂
i=1

d(Ai, Bi)

7



DRMSD first measures all intra-molecular distances between all points within each protein

and then compares these two sets of distances:

DRMSD(A,B) =
1

N2 −N
·

∑︂
∀i,j∈1..N,i̸=j

d(d(Ai, Aj), d(Bi, Bj))

DRMSD effectively measures the similarity between two structures without having to align

them first, making it completely differentiable and suitable for machine learning methods.

AlQuraishi’s method proved effective as the first "end-to-end" method that could directly

predict and optimize the DRMSD of a protein structure, though it encountered two specific

challenges. First, the predicted torsional angles only considered the protein backbone and

omitted pertinent information about the amino acid sidechains. Second, although the overall

DRMSD of AlQuraishi’s structures was low when submitting them to the CASP13 competition,

due to issues with the predicted angles themselves, the structures were rejected automatically

from the competition until the angles were corrected19.

In late 2017, when work on this dissertation had just begun, our research group was

developing a method very similar to AlQuraishi’s. With the publishing of his method, we

pivoted to focus on its limitations, mainly the lack of sidechain modeling.

Choosing the Right Architecture A second paper, this time in 2019 from Rao, Bhat-

tacharya, and Thomas et al.20, informed our research direction. The authors compared

RNNs, Transformers, and a sequence alignment baseline on several tasks related to protein

sequences20. These included the prediction of secondary structure, inter-molecular contacts,

as well as protein engineering properties like fluorescence. The authors showed that, for some

tasks, the performance of Transformer-based models exceeded other methods, while other

tasks were best completed by RNN or alignment-based methods. The authors concluded

that while many of the best models include sequence alignment information, further model

development is needed to demonstrate the categorical superiority of any one method over

another.

8



Despite the uncertainty in suggested model architectures suggested by the previous paper’s

authors, the Transformer model architecture regularly outperforms other methods on NMT

tasks14,15. In addition, because the computational complexity of Transformer models is less

than that of RNNs, they can be trained significantly faster and with a dramatically reduced

training cost. In the original paper describing the Transformer model architecture, the

proposed model outperformed state-of-the-art models with a 75% reduction in Floating-point

Operations Per second (FLOPs) and training time on the order of days instead of weeks or

months, which was previously considered standard for many NMT tasks14.

With the progress and insights from the works mentioned above and recognizing the

field’s current needs, this dissertation has been framed to address several critical aspects and

investigate the benefits of different architectures in different contexts.

1.2 Dissertation Overview

The trajectory of this dissertation has evolved in tandem with the rapid advancements in

computational biology. In late 2017, our initial aspiration was straightforward: leveraging

RNNs to predict protein structures from single amino acid sequences. However, with

AlQuraishi’s similar method and the rise of Transformers in sequence modeling, we had to

rethink our approach.

We identified two main adjustments: (1) the need to model amino acid sidechains, which

AlQuraishi’s method missed; and (2) using Transformers, which have shown tremendous

promise in sequence modeling. At the same time, we noticed a consistent issue in the

community: a lack of accessible protein structure datasets for machine learning. This

observation led us to focus on creating such a dataset in Aim 1 while also working on our

prediction models.

AlphaFold’s success at CASP, along with the increased utilization of Multiple Sequence

9



Alignments (MSAs) in related methods, led us to re-evaluate our method-in-progress, the

ProteinTransformer, which was not competitive with AlphaFold and did not utilize MSAs.

However, our approach had a unique aspect: we could model all-atom protein structures

end-to-end and use them directly in downstream molecular dynamics software. This inspired

the core idea of Aim 2: harnessing the energy from predicted structures during training to

refine the physical realism of the model. Taking what we learned, Aim 3 ventures to improve

AF2’s sidechain modeling, which researchers have pointed out as a potential shortcoming.

In summary, this dissertation aims to combine deep learning and protein structure

prediction to address existing challenges in datasets and methods. Our goal is threefold:

improve the accessibility of protein structure data for machine learning, merge physical

principles with advanced machine learning techniques, and achieve precision in all-atom

prediction. Through this, we seek to bridge the gap between data-driven machine learning

and the complex world of biological sciences.
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2.0 SidechainNet: An All-Atom Protein Structure

Dataset for Machine Learning

This chapter is adapted from:

King, J. E., Koes, D. R. SidechainNet: An All-Atom Protein Structure Dataset

for Machine Learning. arXiv:2010.08162 2020. DOI: 10.48550/arXiv.2010.08162

which is also published as:

King, J. E., Koes, D. R. SidechainNet: An all-atom protein structure dataset for

machine learning. 2021; 89(11): 1489-1496. Proteins 2021. DOI: 10.1002/prot.26169.

D. R. K. conceived the original project goal of sequence-based protein structure prediction

via torsional angles. J. E. K. developed the original methods and datasets that were the

first step toward this larger goal. D. R. K. and J. E. K. decided together to publish the

SidechainNet dataset and methods. J. E. K. was the primary code author, carried out

the analysis, generated figures, and wrote the manuscript. D. R. K. provided direction

throughout.

2.1 Summary

Despite recent advancements in deep learning methods for protein structure prediction and

representation, little focus has been directed at the simultaneous inclusion and prediction

of protein backbone and sidechain structure information. We present SidechainNet, a new

dataset that directly extends the ProteinNet dataset. SidechainNet includes angle and atomic

coordinate information capable of describing all heavy atoms of each protein structure and
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can be extended by users to include new protein structures as they are released. In this

paper, we provide background information on the availability of protein structure data and

the significance of ProteinNet. Thereafter, we argue for the potentially beneficial inclusion

of sidechain information through SidechainNet, describe the process by which we organize

SidechainNet, and provide a software package (https://github.com/jonathanking/side

chainnet) for data manipulation and training with machine learning models.

2.2 Introduction

The deep learning subfield of protein structure prediction and protein science has made

considerable progress in the last several years. In addition to the success of deep learning

methods in many of the most recent Critical Assessment of protein Structure Prediction

(CASP) competitions7,21? –23, many novel deep learning-based methods have been developed

for protein representation24,25, property prediction26–28, and structure prediction18,29–34. Such

methods are demonstrably effective and extremely promising for future research. They

have the potential to make complex inferences about proteins much faster than competing

computational methods and at a cost several orders of magnitude lower than experimental

methods.

2.2.1 Protein Structure Data Availability and Information Leakage

The availability of existing data is a notable challenge for applications of deep learning

methods to protein science and, in particular, to protein structure prediction. This limitation

is not equally present in other applications of deep learning. For instance, in the field of image

recognition, the ImageNet8 dataset contains 14 million annotated and uniformly presented

images. Similarly, in the field of natural language processing, linguistic databases and the web
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provide access to hundreds of millions of samples of annotated textual data and effectively

limitless access to unannotated data. Though the Universal Protein Resource (UniProt)

database as of September 2023 contains more than 250 million unique protein sequences3,

there are currently only 210,180 protein structures in the Protein Data Bank4 (PDB), many

of which are redundant in their structure or sequence information. Furthermore, although

protein structure data is accessible through the PDB in individual files, it is not otherwise

preprocessed for machine learning tasks in a manner analogous to other machine learning

domains.

In addition to data availability, biased or skewed data presents another major challenge

for machine learning practitioners35. Something as simple as dividing the data into training

and testing splits for model development and evaluation can introduce harmful biases. Failure

to analyze the similarities or differences between training and evaluation splits can lead

to “information leakage” in which trained models exhibit overly optimistic performance

by learning non-generalizable features from the training set. One such example of this in

structural biology research is the Database of Useful Decoys: Enhanced (DUD-E) dataset36.

DUD-E remains a common benchmark for evaluating molecular docking programs and

chemoinformatic-focused machine learning methods despite recent research37,38 uncovering

dataset bias that explains misleading performance by many of the deep learning methods

trained on it.

2.2.2 Treatment of Protein Backbone and Sidechain Information

A common way to describe the structure of a protein is to divide it into two separate

components–the backbone and the sidechains that extend from it. The protein backbone is a

linear chain of nitrogen, carbon, and oxygen atoms. The torsional angles (Φ,Ψ, and Ω) that

connect these atoms form the overall shape of the protein. In contrast, protein sidechains are

chemical groups of zero to ten heavy atoms connected to the central α-carbon of each amino
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acid residue. Each of the twenty distinct amino acids is defined by the unique structure

and chemical composition of its sidechain component. Consequently, each protein is defined

by the unique sequence of its constituent amino acids. The precise orientation of amino

acid sidechains is critical to the biochemical function of proteins. Enzyme catalysis, drug

binding, and protein-protein interactions all depend on a level of atomic precision that is not

accounted for in backbone structure alone. Thus, the protein backbone and sidechain are

both crucially important to protein structure and function.

Despite this, many predictive methods treat backbone structure prediction and complete

sidechain structure prediction as distinct problems. For instance, one common approach is

to predict the protein backbone alone and then add sidechains to the generated structure

through a conformational or energy-minimizing search39. Another common method is to

optimize the structure using backbone dependent rotamer libraries40. In both cases, sidechain

placement is dependent on predicted backbone structure.

It is worth noting that some programs, like Rosetta41, allow for the simultaneous opti-

mization of protein backbone and sidechains. However, such methodology is not consistently

adopted throughout the protein structure prediction literature. Relatedly, one notable result

from CASP14, the most recent iteration of the CASP competition, was the success of Al-

phaFold 242, a deep learning protein structure prediction method. AlphaFold 2 incorporates,

to some extent, both protein sidechain and backbone information in its procedure.

Still, the methods frequently employed by the research community that asynchronously

predict protein backbone and sidechain structures remain effective. A possible reason for

separating backbone and sidechain information could be that the community believes adequate

progress in backbone structure prediction has been made without accounting for sidechain

conformations during training. Alternatively, it may be the case that such information is

simply not readily available for training deep learning models. Nonetheless, the potentially

positive effect of utilizing the complete backbone and sidechain structure at training time

has not been adequately addressed.
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2.3 Methods

We propose SidechainNet, a protein sequence and structure dataset that addresses the

concerns described in Sections 2.2.1 and 2.2.2. Namely, this work aims to account for data

similarity across training splits, to improve upon existing datasets by adding features relevant

to all-atom protein structure prediction, and, finally, to make such data available and easily

accessible to researchers in both the machine learning and structural biology fields.

2.3.1 Addressing Protein Structure Data Availability and Information Leakage

SidechainNet is based on Mohammed AlQuraishi’s ProteinNet43. ProteinNet is a dataset

designed to mimic the assessment methodology of CASP proceedings.

Under the CASP contest organization, participants develop predictive methods using any

publicly available protein structures. Thereafter, predictive methods are assessed using a

specific set of proteins selected by contest organizers and withheld from participants until

assessment. Organizers select proteins that are challenging to predict and, in the case of the

Free Modeling contest category, have minimal similarity to available protein structures. In

effect, the CASP process results in a portion of data for method development and a separate

portion for evaluation. AlQuraishi proposed that these subsets could be treated as training

and testing sets and re-purposed for machine learning.

Since no validation sets are constructed by the CASP organizers, AlQuraishi used clustering

methods to extract distinct protein sequences and structures from each training set to use

for validation. For each CASP contest, AlQuraishi ultimately constructed seven different

validation sets–each containing an increasing upper bound on the similarity between sequences

in the given validation set and those in the training set. AlQuraishi’s construction allows

users to evaluate a model’s performance on proteins that have high similarity to a given

training set (akin to the Template-Based Modeling CASP category) or proteins that have
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low or zero similarity to a training set (akin to the Free Modeling CASP category).

As a result of the constraints imposed by the CASP contest structure and AlQuraishi’s

validation set construction, ProteinNet accounts for protein sequence similarity across data

splits. This prevents information leakage and minimizes misleading performance. For these

reasons, we have replicated AlQuraishi’s training, testing, and validation set constructions in

SidechainNet.

2.3.2 Unifying Protein Backbone and Sidechain Information

SidechainNet also extends ProteinNet by including all heavy atoms of each protein and

all necessary torsional angles for atomic reconstruction. We are interested in determining

whether the availability of complete sidechain conformation information can improve the

performance of structure prediction methods. However, even if such models are not more

accurate, they will be fundamentally more expressive as they will generate all-atom protein

structures. These structures could be used without modification in downstream analyses for

structure-based drug discovery and even molecular dynamics simulations.

2.3.3 SidechainNet Properties

To the maximum extent possible, SidechainNet replicates the features included in ProteinNet

(Table 2.1). However, SidechainNet also adds support for several new features. More

information about the new features is included below.

Angle Information One important component of protein structure data often utilized in

structure prediction methods but absent from ProteinNet is the set of torsional angles that

describe the orientation of the protein. The canonical backbone torsional angles (Φ,Ψ, and

Ω) for each residue are provided in SidechainNet.
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Table 2.1: Differences between ProteinNet and SidechainNet. L represents protein length. †Position

Specific Scoring Matrices (PSSMs) developed from multiple sequence alignments. ‡SidechainNet

includes atomic coordinates for backbone oxygen atoms while ProteinNet does not. §During

processing, a select number of non-standard residues are converted to their standard forms (e.g.,

selenomethionine is partially converted to methionine). The unmodified primary sequence entry

retains the 3-letter amino acid codes for each of the original amino acids in the sequence, while the

primary sequence data entry contains the standardized 1-letter amino acid codes.

Entry Dimensionality ProteinNet SidechainNet
Primary sequence L× 1 X X

PSSM† + Information Content L× 21 X X
Missing residue mask L× 1 X X

Secondary structure labels L× 1 X X
Backbone coordinates‡ L× 4× 3 X X

Backbone torsion angles L× 3 X
Backbone bond angles L× 3 X

Sidechain torsion angles L× 6 X
Sidechain coordinates L× 10× 3 X

Crystallographic resolution 1 X
Unmodified primary sequence§ L× 1 X
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Figure 2.1: (A) A methionine residue annotated with the 3 categories of angles measured by

SidechainNet: the canonical backbone torsional angles (Φ,Ψ, and Ω) in green, the rotatable

sidechain-specific torsional angles (X1−3) in purple, and the 3-atom backbone bond angles in pink.

Atoms considered part of the residue’s sidechain are colored white, while the backbone atoms are

colored gray.

(B) Backbone bond angles (C-N-CA, N-CA-C, and CA-C-N; colored pink in 2.1A) are important for

accurately reconstructing atomic coordinates from angles. When we assumed that these angles

could be fixed during coordinate reconstruction, the result was greater reconstruction error (blue

distribution). When we utilized the actual angle values during coordinate reconstruction, we achieved

lower reconstruction error (orange distribution). Root-Mean-Square Deviation (RMSD) measures

the difference between true atomic coordinates and coordinates reconstructed from recorded angles.
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In the development of SidechainNet, we were surprised to observe that we incurred a

noticeable amount of error when attempting to reconstruct a protein’s Cartesian coordinates

given only its backbone torsional angles (Figure 2.1B). We determined that the error was

due to our assumption that several important non-torsional angles in the protein backbone

(C-N-CA, N-CA-C, and CA-C-N) could be fixed using reference values from AMBER force

fields44 rather than being allowed to vary. Thus, even if a model perfectly predicted backbone

torsional angles, it would still be subject to reconstruction error if such bond angles were held

fixed. For that reason, we decided to include these angles in SidechainNet as well (Figures

2.1A and 2.1B).

Sidechain Information SidechainNet also includes sidechain-specific information that

describes the orientation of each amino acid using both external (Cartesian) and internal

(angular) coordinate systems. This information includes up to ten atomic coordinates and up

to six torsional angles for the sidechain component of each residue.

The number of angles measured for an amino acid sidechain depends on the number

of rotatable bonds within it. For residues with aromatic sidechains (e.g., tryptophan), the

torsional angles describing the ring components of the residue are omitted since they can be

inferred, but their complete atomic coordinates are still recorded.

3-atom bond angles (as opposed to 4-atom torsional angles) and bond lengths associated

with sidechain structures are not recorded from structure files. Instead, we extracted reference

values unique to each bond from the AMBER ff19SB force field44,45. When utilizing fixed

angle values for sidechain 3-atom bond angles, the impact on reconstruction error is much

smaller than the impact discussed in Figure 2.1 because the error does not accumulate

between adjacent residues. Together with the recorded sidechain torsional angles, these angles

and bond lengths can be used to generate all-atom sidechain structures.
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2.3.4 Generation Procedure and Caveats

We constructed SidechainNet by, first, obtaining raw ProteinNet text records linked to in

ProteinNet’s GitHub repository (https://github.com/aqlaboratory/proteinnet). Then,

we parsed these records before saving them into Python dictionaries. Next, we re-downloaded

all-atom protein structures (sequences, coordinates, and angles) for each protein described by

ProteinNet from the PDB using the ProDy software package46. Finally, we combined the

remaining data (PSSMs, Information Content, and secondary structure labels) into the final

SidechainNet dataset by aligning the sequences observed during the re-downloading process

with the sequences described by ProteinNet. We replaced the coordinate and missing residue

information described in ProteinNet with the re-downloaded values to ensure consistency.

Scripts and instructions for constructing SidechainNet data are available in our GitHub

repository.

We did not include data for 468 (0.4%) of the 104,323 listed protein structures from

ProteinNet’s CASP12 dataset. Some of these structures are of proteins that include D-

amino acids. Such structures were purposely excluded despite being included in ProteinNet

because they cannot be effectively modeled with L-amino acid sidechain structures. Other

structures were excluded due to problematic file parsing, edge cases, and disagreement between

the sequences we observed and those reported by ProteinNet that could not be resolved

programmatically.

Furthermore, both ProteinNet and SidechainNet only consider single-molecule protein

chains. Proteins from the PDB that contain multiple chains are divided into multiple

independent entries, one for each chain. Any missing residue or atomic information is

padded with vectors that contain sidechainnet.GLOBAL_PAD_CHAR and match the size of

the corresponding data (e.g., 1× 3 for each missing atom, 1× 1 for each missing angle). In

addition, detailed characteristics of structure data (e.g., b-factors, multiple or alternative

sidechain locations) are ignored.
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Lastly, structures in SidechainNet are recorded directly from the PDB and have no

guarantee to be energetically minimized. In Aim 2, we develop a version of SidechainNet

that is minimized using AMBER force fields and the OpenMM software package to address

this shortcoming. This may make the data more consistent and amenable to training.

2.4 Results

SidechainNet was originally developed for Python and the PyTorch machine learning frame-

work due to their ease of use and popularity within the research community. Here we discuss

how researchers may use our Python package to load SidechainNet and efficiently train models

with it.

2.4.1 SidechainNet as a Python dictionary

In its simplest form, SidechainNet is stored as a Python dictionary organized by the same

training, validation, and testing splits described in ProteinNet. There are multiple validation

sets included therein.

Within each of SidechainNet’s training, validation, and testing splits is another dictionary

mapping data types (seq, ang, etc.) to a list containing this data for every protein. Shown

below, seq{i}, ang{i}, etc. refer to the ith protein in the dataset.

data = {"train": {"seq": [seq1, seq2, ...], # Sequences, 1-letter codes

"ang": [ang1, ang2, ...], # Angles

"crd": [crd1, crd2, ...], # Coordinates

"msk": [msk1, msk2, ...], # Missing residue masks

"evo": [evo1, evo2, ...], # PSSMs and Information Content

"sec": [sec1, sec2, ...], # Secondary structure labels

"res": [res1, res2, ...], # X-ray crystallographic resolution
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"mod": [mod1, mod2, ...], # Modified residue annotations

"ums": [ums1, ums2, ...] # Unmodified sequences, 3-letter codes

"ids": [id1, id2, ...], # Corresponding ProteinNet IDs

},

"valid-10": {...},

...

"valid-90": {...},

"test": {...}

}

By default, the load function downloads the data from the web into the current directory

and loads it as a Python dictionary. If the data already exists locally, it reads it from disk.

Other than the requirement that the data must be loaded using Python, this method of data

loading is agnostic to any downstream analyses.

>>> import sidechainnet as scn

>>> data = scn.load(casp_version=12)

2.4.2 SidechainNet as PyTorch DataLoaders

The load function can also be used to load SidechainNet data as a dictionary of torch.utils.data.DataLoader

objects. PyTorch DataLoaders make it simple to iterate over dataset items for training

machine learning models. This method is recommended for using SidechainNet data with Py-

Torch. For a complete description of the data available to the user when using SidechainNet’s

DataLoaders, see Table 2.2.

By default, the provided DataLoaders use a custom batching method that randomly

generates batches of proteins of similar length. For efficient GPU usage, it generates larger

batches when the average length of proteins in the batch is small and smaller batches

when the proteins are large. The probability of selecting small-length batches is decreased

so that each protein in SidechainNet is included in a batch with equal probability. See
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dynamic_batch_size and collate_fn arguments for more information on modifying this

behavior.

>>> dataloaders = scn.load(casp_version=12, with_pytorch="dataloaders")

>>> for batch in dataloaders['train']:

.... predicted_angles = model(batch.seqs)

.... sb = scn.BatchedStructureBuilder(batch.int_seqs, predicted_angles)

.... predicted_coords = sb.build()

.... # Compute loss between any group of true and predicted values

.... loss = compute_loss(batch.angs, batch.crds,

.... predicted_angles, predicted_coords)

.... ...

Table 2.2: Data attributes available to the user when utilizing SidechainNet’s custom Dat-

aLoaders. †May be formatted as integer or one-hot sequences depending on value of

scn.load(...seq_as_onehot=...).

Batch Attribute Description

pids Tuple of ProteinNet/SidechainNet IDs
seqs Tensor of sequences†
int_seqs Tensor of sequences represented as integers
str_seqs Tuple of sequences represented as strings
msks Tensor of missing residue masks (redundant with padding in data)
evos Tensor of Position Specific Scoring Matrix + Information Content
secs Tensor of secondary structure labels†
angs Tensor of angles
crds Tensor of coordinates
seq_evo_sec Tensor with concatenated values of seqs, evos, and secs
resolutions Tuple of crystallographic resolutions (Å), when available
is_modified Tensor of modified residue bit-vectors. Each entry is a bit-vector where a

1 signifies that the residue at that position has been modified to match
a standard residue supported by SidechainNet (e.g., selenomethionine to
methionine)
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2.4.3 Converting Angle Representations into All-Atom Structures

An important component of this work is the inclusion of both angular and 3D coordinate

representations of each protein. Researchers developing methods that rely on angular

representations may be interested in converting this information into Cartesian coordinates.

For this reason, SidechainNet provides tools to convert angles into coordinates.

In the below example, angles is a NumPy matrix or Torch Tensor following the same

organization as the NumPy angle matrices provided in SidechainNet. sequence is a string

representing the protein’s amino acid sequence. Both of these are obtainable from the

SidechainNet data structures described in Sections 2.4.1 and 2.4.2.

>>> sequence, angles = data['train']['seq'][0], data['train']['ang'][0]

>>> (len(sequence), angles.shape) # 12 angles per residue

(128, (128, 12))

>>> sb = scn.StructureBuilder(sequence, angles)

>>> coords = sb.build()

>>> coords.shape # 14 atoms per residue (128*14 = 1792)

(1792, 3)

2.4.4 Visualizing All-Atom Structures with PDB, py3Dmol, and gLTF Formats

SidechainNet makes it easy to visualize both existing and predicted all-atom protein structures,

as well as structures represented as either angles or coordinates. These visualizations are

available as PDB files, py3Dmol.view objects, and Graphics Library Transmission Format

(gLTF) files. Examples of each are included below.

The PDB format is a typical format for representing protein structures and can be opened

in software tools like PyMOL47. py3Dmol (built on 3Dmol.js48) enables users to visualize and

interact with protein structures on the web and in Jupyter Notebooks via an open-source,

object-oriented, and hardware-accelerated Javascript library (Figure 2.2). Finally, gLTF files,
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despite their larger size, can be convenient for visualizing proteins on the web or in contexts

where other protein visualization tools are not supported.

>>> sb.to_pdb("example.pdb")

>>> sb.to_gltf("example.gltf")

Figure 2.2: py3Dmol enables the user to interactively inspect all-atom protein structures from

SidechainNet within Jupyter/iPython Notebooks.

2.4.5 Extending SidechainNet with User-Specified Data

Finally, we have considered the fact that users may be interested in utilizing SidechainNet’s

functionality without strictly conforming to SidechainNet’s original organization and compo-

sition. To aid researchers with potentially different goals than the authors, we allow users to
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(1) specify which proteins to include in SidechainNet, and/or (2) customize their data split

assignment. This functionality, found in sidechainnet. create_custom, enables users to

work around the predetermined list of proteins and dataset splits inherited from ProteinNet.

Importantly, this also allows SidechainNet to expand to include new protein structures as

they are released. That said, information directly acquired from ProteinNet (e.g., Position

Specific Scoring Matrices and secondary structure information) may be omitted if users’

specified proteins were not previously included in ProteinNet.

2.5 Discussion and Conclusion

SidechainNet builds upon the strong foundation of ProteinNet to provide a protein structure

dataset with minimal bias and maximum information content. By including many of the

angles necessary to accurately reconstruct atomic Cartesian coordinates from an angle-only

protein representation, we also enable future users to develop methods that utilize either

or both internal and external coordinate systems with a previously inaccessible level of

atomic detail and model complexity. In addition, the tools developed for SidechainNet’s

programmatic construction may also be adapted for the generation of similar all-atom datasets

with alternative methods of data clustering (e.g., datasets based on CATH49).

Methods developed to explicitly include the orientation and atomic coordinates of protein

sidechains may have the upper hand in tasks such as structure-based drug discovery or in

the analysis of specific enzyme activities, where such information is necessary. Although

the impact of including sidechain information on existing predictive methods has yet to be

studied, we hope SidechainNet makes such research more accessible.

As we had hoped, since the time this work was originally published, SidechainNet has

been adopted by the community and has been used in various research projects. At the

time of writing this dissertation, SidechainNet has been starred For example, in the year
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or so preceeding the eventual publication of AlphaFold, many code repositories on GitHub

were created in an attempt to reverse-engineer it. The most popular open source repository,

by far, Additionally, SidechainNet may find use in applications beyond protein structure

prediction by making highly organized and uniformly preprocessed protein structure and

sequence data easily accessible via Python. Protein science is currently experiencing a critical

moment with respect to the development of new machine learning methods. The data that

SidechainNet provides may prove to be a useful tool for developing methods to study protein

representation, predict protein structure-property relationships, or to predict protein-protein

and protein-ligand interactions.

Since the time this work was originally published, SidechainNet has been adopted by

the community and has been used in various research projects. At the time of writing this

dissertation, SidechainNet has been "starred" (i.e., bookmarked) on GitHub 283 times and

"forked" (i.e., duplicated for modification) 32 times. See https://github.com/jonathank

ing/sidechainnet/network/dependents for a summary of projects available on GitHub

that utilize Sidechainnet. Some notable examples of SidechainNet’s use by the community

include:

• An implementation of "Denoising Diffusion Probabilistic Model for Proteins"50, origi-

nally written by Ho et al., but implemented by user lucidrains. [GitHub]

• An implementation of "Single-sequence protein structure prediction using language

models from deep learning"33, a.k.a. "RGN2", originally written by Chowdhury et al.

but implemented by user hypnopump. [GitHub]

• Original implementation of "Coarse-Graining Variational Autoencoders(CGVAE)"51,

[GitHub]

• ProteinFlow computational pipeline, a product from AdaptyvBio, a startup company.

[GitHub]

• "MP-NeRF: Massively Parallel Natural Extension of Reference Frame"52. [GitHub]
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• A popular open-source implementation (1,404 stars) of AlphaFold2 (created when it was

not clear if AF2 would ever be published), also implemented by lucidrains. [GitHub]

• ClynMut: Predicting the Clinical Relevance of Genome Mutations. [GitHub]

• "Contextual protein and antibody encodings from equivariant graph transformers"53

• "Ultra-fast protein structure prediction to capture effects of sequence variation in

mutation movies"54

• "Protein Function Analysis through Machine Learning"55

and others.

Protein science is currently experiencing a critical moment with respect to the development

of new machine learning methods. The data and framework that SidechainNet provides has

proven to be a useful tool for developing methods to study protein representation, predict

protein structure-property relationships, or to predict protein-protein and protein-ligand

interactions.

Source code and example machine learning workflows using SidechainNet can be found at

https://github.com/jonathanking/sidechainnet. To install, use the pip command-line

program (pip install sidechainnet).
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3.0 Interpreting Molecular Dynamic Forces as Deep

Learning Gradients Improves Quality Of Predicted

Protein Structures

This chapter is under review for publication at the Biophysical Journal.

D. R. K. conceived the project and developed a parallelized method for all-heavy-atom

structure generation of atomic coordinates from torsional angles. All other code, method

development, and analyses were completed by J. E. K. The manuscript was written by J. E.

K. with guidance provided by D. R. K.

3.1 Summary

Protein structure predictions from deep learning models like AlphaFold2, despite their

remarkable accuracy, are likely insufficient for direct use in downstream tasks like molecular

docking. The functionality of such models could be improved with a combination of increased

accuracy and physical intuition. We propose a new method to train deep learning protein

structure prediction models using molecular dynamics force fields to work toward these goals.

Our custom PyTorch loss function, OpenMM-Loss, represents the potential energy of a

predicted structure. OpenMM-Loss can be applied to any all-atom representation of protein

structure capable of mapping into our software package, SidechainNet. We demonstrate our

method’s efficacy by finetuning OpenFold. We show that subsequently predicted protein

structures, both before and after a relaxation procedure, exhibit comparable accuracy while

displaying lower potential energy and improved structural quality as assessed by MolProbity
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metrics.

3.2 Introduction

Deep learning (DL) methods for protein structure prediction, particularly AlphaFold2 (AF2)6

and AF2-like systems32,34,56, have proven remarkably accurate. However, barriers to the

practical use of AF2 predictions remain. Some of AF2’s shortcomings are due to limitations

of its design, while others are simply areas where accuracy could be improved. For instance,

Jumper et al.6 trained AF2 on protein structures from the Protein Data Bank (PDB)57. By

virtue of their presence in the PDB, many of these proteins formed stable crystal structures

in the lab. Such structures may not adequately reflect their in vivo conformations, which may

exhibit higher energy under crystallization conditions. Another fundamental limitation of

AF2 is its inability to simultaneously model proteins and their ligands. Without knowledge

of protein-ligand interactions, AF2 cannot reliably predict apo or holo protein states, making

drug development with these structures more challenging.

AF2 also likely needs higher accuracy for downstream tasks like docking. Several stud-

ies58–60 have demonstrated that AF2-predicted structures are surprisingly non-performant

compared to crystal structures used for docking. Despite a relatively high level of accuracy

of the protein backbone and binding sites, subtle differences between the prediction and

crystal structure cause significantly different results when docking molecules. Sidechain atom

accuracy is a likely culprit since differences in sidechain atom placement or orientation may

dramatically alter the binding pocket shape or chemical environment.

In addition to working toward more accurate models, the research community has ex-

pressed interest in developing models capable of understanding and recapitulating fundamental

physical principles. Models that leverage existing scientific knowledge could free up com-

putational resources to focus on subproblems better suited for machine learning instead
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of relearning principles taught in high school chemistry and mathematics. Such a model

could, in principle, better guide drug discovery campaigns since it may better understand the

chemical interactions between a protein and a ligand.

Researchers in several fields have tried utilizing more complex and physically relevant input

representations and model architectures or even empirical data to improve prediction quality.

For example, data representation in cheminformatics has shifted from SMILES61 (string-based)

representations of chemical structures to other representations like graphs62,63, point clouds64,

or 3D voxels65 that more closely resemble the physical reality of these systems. One DL method

for computational drug discovery utilizes theoretical chemical principles in a Siamese neural

network66. By directly subtracting the latent spaces between the two component models,

the authors model the relative free binding energy ∆∆G between two ligands, enforcing the

symmetric properties of relative binding affinities ∆∆GAB = ∆GA−∆GB = −(∆GB−∆GA).

Active learning is also often used to incorporate experimental data into machine learning

training procedures, guiding machine learning experiments with real-life data67–69.

In the same spirit, AF2’s authors incorporate physiochemical constraints into their work

by training with a "violation loss." The violation loss is a component of AF2’s composite loss

function that penalizes predictions for generating structures with overlapping (i.e., clashing)

atoms or bond lengths and angles that deviate from the corresponding values in the literature.

Despite the addition of the violation loss, AF2 predictions have significant stereochemical

violations. The recommended prediction procedure involves a relaxation step with molecular

dynamics force fields (MD FFs), which takes several seconds but significantly improves the

final structure by removing many of these violations. Triangle point attention, also developed

by AF2’s authors, is suggested to provide physical and geometric intuition to AF2. However,

because it is a neural network component with learned parameters, it is unclear how it works

in practice or if it genuinely imbues the model with any physical constraints.
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3.3 Methods

This section describes our method to improve structure predictions from methods like AF2

by incorporating physical principals from molecular dynamics force fields. We will discuss the

intuition for our approach, practical considerations for its development, and our procedure

for training and evaluating our models with custom datasets.

OpenFold is an implementation of AlphaFold2 that attempts to faithfully reproduce AF2

in PyTorch with added utilities for training. OpenFold was developed by Ahdritz et al.70,

and AlphaFold2 by Jumper et al.6. We refer to OpenFold and AlphaFold2 interchangeably

as AF2, though we only work with the OpenFold code base.

3.3.1 Forces from molecular dynamics can be interpreted as gradients in back-

propagation.

To improve overall protein structure prediction accuracy and to help protein structure

prediction models better understand physical principles, we propose capitalizing on the

relationship between the physical forces computed by molecular dynamics (MD) software

(Eq 3.1) and the gradients utilized in machine learning backpropagation (Eq 3.2).

F (X) = −∇XU(X) (3.1)

MD software evaluates the energy U(X) of a molecular system at each time step based

on the positions of the atoms X and the force field parameters. Next, the software computes

the forces acting on the atoms via Eq 3.1. Since MD software can readily compute U(X)

and −∇XU(X) for a protein system, we propose treating U(X) as a loss function whose

gradients are −F (X).
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Loss = U(X)

∇X(Loss) = −F (X)

(3.2)

For backpropagation machinery to utilize these gradients during training, all that is

needed is a custom layer with "forward" and "backward" components that return U(X) and

−F (X), respectively. We can then apply this framework to any machine learning model

capable of predicting all-atom protein structure representations.

3.3.2 OpenMM-based loss function

Figure 3.1: A graphical summary of our method for training deep learning protein structure prediction

models by interpreting MD forces as gradients.

Our custom loss function implements Eq 3.2 via the steps depicted in Fig 3.1. (1)

A deep learning model predicts an all-atom protein structure representation. Our code

supports Cartesian and internal coordinate (bond and torsional angle) representations of

protein structure. (2) The user determines a mapping between the atoms or angles predicted
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by their model and the atom or angle representation expected by the SidechainNet protein

representation developed in Aim 2. SidechainNet71 is a Python library and dataset with tools

for PyTorch-based72 deep learning protein structure prediction tasks. (3) In preparation

for energy evaluation with OpenMM73, a molecular dynamics system is initialized using the

all-atom protein representation, and hydrogen atoms are added (if not already present) to

the prediction using differentiable vector operations. (4) The custom loss function layer

and SidechainNet protein representation compute a loss equal to the predicted structure’s

potential energy. The forces acting on the atoms, also calculated by OpenMM, are designated

as gradients to train the model. The model parameters are updated, and training continues.

Users may specify any force field and solvent model available in the OpenMM package

for use with our method. For experiments in this paper, we selected the Generalized Born

Implicit Solvent (gbn) model along with the ff15ipq force field74.

Practical Consideration 1: Hydrogens Let XH and XH̄ represent a predicted protein

structure with and without hydrogen atoms. MD FFs require protein systems to contain

hydrogen atoms in order to compute U(XH) and F (XH). However, AF2 and related models

predict structures without hydrogens, XH̄ . Thus, we must find a way to add hydrogens

to the structures predicted by these models during training so that we may utilize the

values computed by OpenMM. If hydrogens are added to the predicted structure in a non-

differentiable manner (e.g., via OpenMM), we cannot train our model end-to-end. This is

because we must be able to compute the gradients or construct a forward and backward

component for every layer of our neural network. Adding hydrogens outside of PyTorch

would not retain the computation graph necessary for automatic differentiation. In other

words, we would not easily be able to compute the derivative of the function, g, that adds

hydrogens to the predicted structure, g(XH̄) = XH .

We developed software in the SidechainNet package to address this issue. Our method adds

hydrogens (if needed) to predicted protein structures, using only differentiable PyTorch vector
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operations to maintain differentiability. The software components found in SidechainNet’s

SCNProtein class enable building hydrogen-inclusive Cartesian coordinates starting from

angle-only representations via a sidechain-parallel method based on Natural extension of

Reference Frame (NeRF)75 or by adding hydrogens to the Cartesian coordinates of existing

heavy atoms, also via NeRF. Next, our software sets up an OpenMM MD system. Our

custom loss function is then used to compute U(XH) in the forward pass and −F (XH) in

the backward pass by querying these values from OpenMM. Since converting XH̄ → XH via

vector operations is differentiable, PyTorch can effectively map the all-atom forces back to

the heavy atom coordinate representation.

Our method adds hydrogens in consistent, predetermined conformations without further

optimization. Although this placement may result in non-optimal hydrogen positions, this

does not prevent our system from minimizing the structure’s potential energy.

Practical Consideration 2: Rugged Potential Energy Landscapes Training a

machine learning model using potential energy as a loss function is challenging because

protein energy landscapes can be incredibly rugged76,77. Small changes in sidechain rotamers

may cause unrealistic clashes in otherwise perfect structures. Suppose MD FFs evaluate the

energy of a protein system with clashes. In that case, the software may return astronomically

high energy values (infinite or approaching the maximum value of computational numerical

representation). These values reflect the physical impossibility of two atoms occupying the

same physical space. This behavior is not frequently observed in MD trajectories because

atoms often do not move enough between time steps to overlap or take on unrealistic

conformations. However, when training DL models using mini-batches for gradient descent,

each subsequent prediction is for a different protein and represents a new MD system.

Thus, there are no guarantees that the predicted system will be in a realistic conformation.

Furthermore, in a model like AF2, there are several other loss terms in the composite loss

function to consider (e.g., Frame Aligned Point Error (FAPE) loss, distogram loss, and
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masked multiple sequence alignment loss). The raw energy of the predicted system would

easily dominate the magnitude of the other loss terms, which we observed having maximal

values of about 1.5 loss units in a trained AF2 model.

To smooth out the energy landscape’s ruggedness and transform the loss’s range into a

range that is less likely to dominate other loss terms, we construct a sigmoid function, σ̃, by

modifying the standard sigmoid function, σ, and applying it directly to the raw energy, x

(Figure 3.2).

Parameter Value

A 5

B 106

C 3 · 105

D 5

σ(x) = (1 + e−x)−1

σ̃(x) =

(︃
1

A
+ e−

(Dx+B)
C

)︃−1

+ A+ 1

σ∗(x) =
x

1012
+ σ̃(x)

(3.3)

We heuristically chose several constant scalar parameters to construct a sigmoid function

with desirable properties. σ̃ has a maximum value of 1, a minimum value of -4, and changes

from positive to negative when the energy of a protein structure is about -20,000 kJ/mol. We

also selected a loss component weight of 0.01 for the final computed loss value. These values

were chosen so that the range of our loss function during training would not differ significantly

from the range of values of the other loss components. For example, we reasoned that since

AF2 loss components did not become negative during our finetuning experiments, we would

like our energy-based loss to become negative only after surpassing a low-energy threshold of

-20,000 kJ/mol that we associated with energetically favorable protein structures. Allowing

our loss function to become negative would enable the model to optimize the predicted

structure’s energy further, even when other loss components reached their minimal values.

We developed a second modified sigmoid, σ∗, which is a "leaky" version of σ̃. σ∗ adds

an extremely small fraction of x to σ̃. This enables constant, non-zero gradients for even

extreme energy loss values. Theoretically, this allows the model to learn from physically

implausible structures while still dramatically smoothing the energy-loss landscape. This

36



modification also removes the asymptotic lower bound in σ̃ so that models may reach any

energetic minimum.

Figure 3.2: σ̃ and σ∗ in red and purple, respectively. Both functions have nearly identical behavior

(left), except σ∗ has a non-zero derivative for extreme energy values (right).

In practice, we found these modifications helpful for training and visualizing energy values

since the range of raw energy values of predictions can be too large to plot even on a log-scaled

axis.

3.3.3 Training

Models To measure the effects of our custom loss function, we developed a fork of the

OpenFold model that enables training with our data and loss function. We finetuned models

rather than training from scratch, loading weights provided by the OpenFold authors.

We attempted to match the finetuning procedures described in the OpenFold and AF2

papers. However, we did not increase the Multiple Sequence Alignment (MSA) depth or

crop size to limit GPU memory consumption. We trained each model using four A100s for

about 12 days and achieved an effective batch size of 128 by accumulating gradients 32 times.

To avoid training instability, we used an OpenMM-Loss-specific learning rate schedule that

linearly scaled the loss function component weight to its maximum value over 1000 steps.
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Data We propose two distinct and mutually compatible ways to train AF2 to predict

structures with lower energy and better physical characteristics: training on energetically

minimized protein structures and training with our loss function.

We propose training on energetically minimized protein structures for the following reason.

Suppose we train AF2 on raw, unminimized PDB structures with our loss function. As

mentioned before, structures in the PDB likely do not reflect realistic structures in an aqueous

environment. In that case, the accuracy-based (e.g., FAPE) and energy-based (e.g., OpenMM-

Loss) loss function components may push the model in opposing directions, one towards

accurately reflecting the PDB structure and another towards predicting a conformation with

low energy. Training on protein structures that already exist at a local minimum of our loss

function should enable the model to satisfy both objectives simultaneously.

To create this minimized dataset, we used our loss function (without the sigmoid compo-

nent) to minimize a set of proteins from the SidechainNet dataset. We chose to minimize

the energy of our proteins with respect to their bond and torsional angles rather than their

atomic coordinates. This theoretically allows models that predict angle representations of

proteins to predict their target with perfect accuracy since bond lengths and angles in the

minimized set are set to idealized values with respect to the ff15ipq force field. Starting

with about 100,000 protein entries from the SidechainNet CASP 12-era78 dataset, we ended

up with about 32,000 entries that (1) did not have gaps in their structures (a requirement for

our minimization procedure); and (2) did not deviate more than 5 RMSD from their starting

structure after minimization. This dataset is called scnmin.

An unminimized version of this dataset containing identical protein entries, called scnun-

min, was retained to evaluate our loss function without minimized protein structures.

We utilized MSAs and template hits generated by the OpenFold authors for training

when available70. We followed the mmseqs2-based79 procedure suggested by the OpenFold

authors to generate the remaining input MSAs and template hits.

We chose a validation set from CAMEO80 to match the one in the OpenFold paper.
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We constructed a new test set containing 93 proteins from a one-year window of CAMEO

proteins ending on January 3, 2023. Our validation and test sets were minimized similarly to

the training set while retaining their unminimized counterparts. In cases where a protein

was rejected from our minimization procedure, we excluded it from both the minimized and

unminimized sets. To determine training convergence, we used the minimized version of the

validation set when training with scnmin and the unminimized validation set when training

with scnunmin.

3.3.4 Evaluation

It is essential to briefly discuss the distinction between accuracy (e.g., lDDT81) and structural

quality (e.g., MolProbity Score). Methods papers for protein structure prediction have

understandably focused on accurately predicting the protein structures available in the PDB.

However, as discussed earlier, these structures are not ideal prediction objectives because

they are potentially dissimilar from their in vivo counterparts. Additionally, their structures

may change significantly in different environments or when bound to other ligands.

Accuracy metrics necessitate a selection of ground truth structures. Because we trained

models to predict either minimized or unminimized structures from the PDB, using accuracy

alone to assess our method’s performance would be insufficient. Instead, we propose that a

more appropriate assessment of our method is to compare orthogonal measures of structural

quality—such as the MolProbity Score or the Clash Score computed by the MolProbity

software suite82. The MolProbity Score for a given structure reflects the crystallographic

resolution at which the observed amount of structural irregularities would be expected. For

example, a MolProbity Score of 0.8 would be the expected score from a structure determined

from an X-ray crystallographic experiment with a resolution of 0.8 Å. The Clash Score

measures per-contact clash energy in a protein structure when atoms are unrealistically close

to each other. In both cases, lower values are better. We assess structural quality metrics
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before and after AF2-prescribed relaxation with OpenMM and AMBER force fields.

We repeated each finetuning experiment with three different random seeds to measure the

robustness of our method. In the case of AF2, we utilized three different sets of weights re-

ported to have similar performance instead of retraining AF2 from scratch (finetuning_3.pt,

finetuning_4.pt, and finetuning_5.pt). In the subsequent plots and analysis, we com-

bined the results from all three seeds for simplicity. However, the trends we observe are

consistent across all seeds.

We checkpointed models by their performance on the validation set with respect to the

OpenMM-Loss. We computed p-values using the one-sided T-Test implemented in scipy83

with respect to the AF2 baseline.

3.4 Results

3.4.1 OpenMM-Loss lowers prediction potential energy while maintaining accu-

racy.

When trained with our loss function, predictions exhibit significantly lower energy loss values

compared to predictions made from AF2 (Fig 3.3). Although we do not plot raw energy

values (kJ/mol) here, we argue OpenMM-Loss is an appropriate substitution because it

monotonically increases with energy and simplifies the interpretation of extreme values.

lDDTAA, an all-atom accuracy metric, is not significantly different (p=0.8) for both methods

when evaluated on the energy-minimized CAMEO test set (Fig 3.4). We use a simplified

implementation of lDDTAA that avoids renaming ambiguous atom names and thus slightly

under-reports accuracy.
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Figure 3.3: Model prediction potential energy represented by OpenMM-Loss. Each dot represents a

predicted protein structure from the CAMEO test set before relaxation. AF2: baseline AlphaFold2

initialized using finetuning_5.pt. + scnmin: finetuned on minimized SidechainNet proteins

instead of unminimized structures. + OMM: finetuned using OpenMM-Loss with σ̃ activation. +

OMM∗: finetuned using OpenMM-Loss with σ∗ activation.

3.4.2 OpenMM-Loss improves physical properties of predictions before and

after relaxation.

Our method’s predictions have more favorable MolProbity Scores and Clash Scores on average

than predictions from AF2 (Fig 3.5, Fig 3.6, and Table 3.1). This is true both before and

after the AF2 relaxation procedure, indicating that simply minimizing AF2 predictions is not

as beneficial as incorporating energy terms into the training procedure. Our method also

has significantly more predictions with the lowest possible values of either metric (0.5 and

0, respectively). We observe a trend from top to bottom in Fig 3.5 of improving structure

quality as we add the components of our method (training on minimized structures, scnmin,

and training with our custom loss, OMM/OMM∗).

It is worth noting that training on minimized structures (scnmin) alone does not signifi-

cantly improve accuracy or structural quality metrics despite lowering the potential energy
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Figure 3.4: Accuracy between unrelaxed model predictions and the minimized CAMEO test

when comparing our method and the AF2 baseline. AF2: baseline AlphaFold2 initialized us-

ing finetuning_5.pt. + scnmin: finetuned on minimized SidechainNet proteins instead of

unminimized structures. + OMM∗: finetuned using OpenMM-Loss with σ∗ activation.

of predicted structures on average. In contrast, our loss function significantly improves

structural quality relative to the AF2 baseline. The best improvement is seen by combining

these two training strategies.

The accuracy of our models between unrelaxed structures and the minimized CAMEO test

set labels is shown in Table 3.2. Our objective is to produce more realistic predictions while

not necessarily reproducing structures from the PDB, so we do not place a significant emphasis

on accuracy values. It should be noted that direct comparison of accuracy metrics from the

minimized CAMEO test set against the baseline AF2 has a caveat: AF2 is not trained to

predict minimized structures, whereas all our methods are. Similar to our results regarding

structural quality, we find that finetuning on minimized data and with OpenMM-Loss has a

larger increase in accuracy than utilizing either one of these approaches individually.
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Unrelaxed Predictions Relaxed Predictions

Figure 3.5: Evaluating the impact of the components of our method on structural quality metrics

(Clash Score and MolProbity Score) relative to the AF2 baseline. Each dot represents a single

predicted protein from the CAMEO test set. Predictions are evaluated before and after relaxation

(left and right columns, respectively). AF2: baseline AlphaFold2 initialized using finetuning_5.pt.

+ scnmin: finetuned on minimized SidechainNet proteins instead of unminimized structures. +

OMM: finetuned using OpenMM-Loss with σ̃ activation. + OMM∗: finetuned using OpenMM-Loss

with σ∗ activation.

3.5 Discussion and Conclusions

If protein structure predictions are to become a valuable and practical tool for downstream

tasks, the scientific community requires two things. First, we must improve accuracy at the

sidechain level to avoid subtle changes in protein structure that have outsized impacts on tasks

like molecular docking. Second, we require new paradigms to incorporate theoretical physical

principles. By utilizing physical principles during training, it may be possible to continue
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Figure 3.6: Comparing Clash Scores for predicted CAMEO test set proteins from one of our trained

models (AF2 + scnmin + OMM∗) versus the AF2 baseline. Model predictions are evaluated

before and after relaxation (left and right columns, respectively). AF2: baseline AlphaFold2

initialized using finetuning_5.pt. + scnmin: finetuned on minimized SidechainNet proteins

instead of unminimized structures. + OMM∗: finetuned using OpenMM-Loss with σ∗ activation.

MolProbity Score (p-value) Clash Score (p-value)

Model Unrelaxed Relaxed Unrelaxed Relaxed

AF2 2.389 1.077 33.787 1.221
AF2 + scnmin 2.375 (4e-01) 1.087 (6e-01) 32.910 (3e-01) 1.186 (4e-01)
AF2 + OMM 2.285 (2e-02) 0.986 (1e-02) 28.156 (3e-06) 0.744 (3e-06)

AF2 + scnmin + OMM 2.271 (8e-03) 0.945 (8e-04) 27.143 (6e-08) 0.598 (2e-09)
AF2 + scnmin + OMM∗ 2.244 (1e-03) 0.915 (3e-05) 26.514 (2e-09) 0.533 (2e-12)

Table 3.1: Mean structure quality metrics of structure predictions before and after relaxation.

Computed p-values reflect the significance of being lower than the AF2 baseline.

the steady march towards improved accuracy while enforcing that predicted structures, at a

minimum, pass the basic test of physical plausibility.

Accuracy in this experiment is difficult to define because we have compared models trained

with minimized and unminimized labels. Still, we provide a framework for improving other

important metrics related to the structural quality of protein structure predictions. We also

hope to instigate a more thorough discussion on the relationship between structural accuracy
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Model lDDTAA lDDTCα TM-Score

AF2 0.736 0.818 0.671
AF2 + scnmin 0.744 0.826 0.679
AF2 + OMM 0.737 0.816 0.668

AF2 + scnmin + OMM 0.745 0.829 0.682
AF2 + scnmin + OMM∗ 0.746 0.830 0.682

Table 3.2: Structure prediction accuracy between unrelaxed predictions and the minimized CAMEO

test set structures.

(e.g., lDDT) and quality (e.g., MolProbity) metrics which are not always congruent.

A major limiting factor of current protein structure prediction methods is the lack of ligand

information at training or evaluation time. A loss function like ours could help models better

discriminate between favorable and unfavorable conformations of proteins and protein-ligand

complexes by evaluating the potential energy of predicted systems during training. A model

capable of understanding even a modest level of chemical interaction principles may have a

significant advantage over models agnostic to such principles. Though our framework only

supports protein representations at present, future work may study the impact of using an

energy-based loss function for models that include protein-ligand or ligand-only systems.
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4.0 End-to-End Sidechain Modeling in AlphaFold2:

Attention May or May Not Be All That You Need

This chapter is adapted from a manuscript in preparation for submission. J. E. K. developed

the methods, conducted the experiments, and wrote the manuscript. D. R. K. provided

guidance throughout.

4.1 Summary

AlphaFold2 has made significant strides in computational structural biology and drug discovery.

However, limitations remain, particularly for downstream tasks such as molecular docking. We

propose inaccuracies in amino acid sidechain prediction could contribute to these limitations.

To address this, we explored three simple and complementary strategies: (1) substituting

the default ResNet-based angle predictor in AlphaFold2 with a Transformer-like model, (2)

integrating sequence-level convolutions into the angle predictor’s encoder, and (3) refining the

angle predictor using an energy-like loss function. Our analysis indicates that while ResNets

and Transformers offer comparable performance, adding convolutions doesn’t significantly

enhance the predictor’s performance. However, training with an energy-like loss can sometimes

boost structural quality, especially when the entire model is finetuned. We suggest a holistic

approach that looks beyond AF2’s sidechain torsion angle predictor to improve sidechain

modeling in future studies.
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4.2 Introduction

4.2.1 The Significance of Sidechains in Drug Discovery

The discovery and design of novel drugs remain central to advancing medical science, with

protein structures serving as critical components in structure-based drug discovery. While

the unveiling of AlphaFold26 (AF2) marked a monumental leap in computational protein

structure prediction, it’s important to delineate its capabilities and limitations.

One significant limitation of AF2 lies in the use of its predictions for molecular docking, a

technique vital for drug discovery58–60. Molecular docking often necessitates highly accurate

predictions of sidechain orientations to forecast how potential drug molecules may interact

with target proteins. Although AF2 offers impressive accuracy overall, its predictions often

contain differences (some subtle, some not) that adversely affect the performance of subsequent

docking methods. For instance, a study by He et al.60 examined four small molecule-GPCR

binding complexes and found that, in three of these complexes, the sidechain conformations

predicted by AF2 deviated sufficiently from experimental structures, leading to altered

docking results for known active compounds.

Furthermore, sidechains are central to the differences observed between apo (without

ligand) and holo (with ligand) protein structures. Accurate sidechain modeling is essential

as these differences often arise from shifts in sidechain torsional angles, which in turn affect

configurational entropy and the local chemical environment84,85. These shifts in torsional

angles are crucial to understanding the distinctions between apo and holo structures and

are integral to the drug discovery process. Therefore, precise modeling of sidechains in both

apo and holo states is imperative for developing effective drugs, underscoring the need for

methods that can accurately predict sidechain conformations in various contexts.
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4.2.2 The Evolution of Sidechain Modeling Techniques

Sidechain modeling, along with protein structure prediction in general, has undergone

significant development in recent years. There are several problem formulations of note:

sidechain packing, simultaneous modeling of protein sidechain and backbone atoms, and

lastly, extensions of AF2 to improve its sidechain modeling capabilities.

The Sidechain Packing Challenge The sidechain packing problem has historically been

one of the prominent challenges in protein structure prediction. The issue revolves around

determining the optimal sidechain orientations on a fixed backbone. Several algorithms and

heuristics have been developed over the years to address this challenge, with traditional

approaches searching rotamer libraries for sidechain conformations with favorable energy86,87.

Several machine learning approaches have also been developed88–90, taking advantage of

diverse deep learning model architectures to achieve state-of-the-art accuracy and speed.

Unified Backbone and Sidechain Prediction While the sidechain packing approach

provides valuable insights, it simplifies the real-world scenario where sidechain and backbone

conformations are intrinsically linked. Recognizing this interdependence, researchers have

aimed to jointly predict both6,32,91. Methods that adopt this strategy often may also benefit

from iterative refinement, where backbone and sidechain predictions inform and refine each

other in a cyclic manner6. AlphaFold2 is a prime example of both unified protein backbone

and sidechain prediction as well as iterative refinement. It is worth noting that AF2’s

sidechain predictions, though accurate, are still not as accurate as some of the contemporary

sidechain packing techniques described above.
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4.2.3 Potential Avenues for Improved Sidechain Modeling

Given AF2’s impact, efforts to enhance its sidechain accuracy have also emerged. These

include using traditional refinement methods using molecular dynamics (MD)92 and docking

pipelines93, novel refinement methods94,95, enhancing AF2 s input96,97, or refinement of the

AF2 model itself98.

Building on these advancements, the integration of more sophisticated architectures and

training techniques presents a potential avenue for improved sidechain modeling. For instance,

considering the widespread success of the Transformer architecture across various domains, it

stands as a promising replacement for the ResNet angle predictor in AF2. Adept at managing

complex long-range dependencies, Transformers might be especially beneficial in modeling

sidechain interactions and packing. In addition, research by Yang et al. (2023)99 and prior

work in our lab (Appendix A100) shed light on the utility of convolutional neural network

layers in protein sequence and structure modeling. Yang et al. developed a convolution-only

protein sequence model, while our earlier work developed an all-atom protein sequence-to-

structure model that benefitted from convolution layers. These layers excel in discerning local

spatial patterns and, when combined with attention mechanisms, might offer a comprehensive

model that can capture localized and overarching interactions within proteins. Lastly, an

alternative strategy is implementing an energy-like loss function to guide models based on

the energetics of protein structures.

4.3 Methods

Data One of our underlying hypotheses is that protein structures with lower potential

energy and fewer atomic clashes are more desirable for practical applications like structure-

based drug discovery. Therefore, we utilize an energy-minimized subset (about 32,000 protein
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chains) of the CASP12 iteration of the SidechainNet dataset that was developed in prior

work. The protein chains in this dataset were minimized using an energy-like loss function

that interprets forces computed by OpenMM software as gradients. A validation set from

CAMEO80 was selected to match the set used in the OpenFold paper70. A test set of 93

proteins was selected from a one-year window of CAMEO proteins ending on January 3, 2023.

Validation and test sets were minimized similarly to our training set. Structures that failed

minimization were excluded from training and evaluation.

Training with Limited Compute Resources Training AlphaFold2 requires significant

computational resources. To adapt to this challenge, we developed a pretraining method. This

method is designed to utilize GPUs that are more readily available rather than the typically

required A100s. We excised the angle predictor component from the original model to train

independently of the full AF2 model. To do this, we performed inference for our dataset using

the AF2 weights (finetuning_5.pt provided by the OpenFold authors70). During inference,

we recorded the inputs to the angle predictor (the single sequence representation from AF2’s

Evoformer) and the target angle values from the true structure. We then trained each angle

predictor model separately from the AF2 model on this data using the supervised_chi loss,

which is a weighted combination of Mean Squared Error on predicted sin/cos angle values

and on the magnitude of the sin/cos vectors to ensure they lie on the unit circle. After

pretraining, angle predictors were reconstituted in the complete AF2 model, replacing the

default ResNet. This enabled us to make progress while minimizing the use of computing

resources.

We considered how best to evaluate the performance of our models relative to the

pretrained OpenFold/AlphaFold models. The ResNet model trained as part of OpenFold is

highly performant and has been trained for hundreds of thousands of training steps with an

effective batch size of 128 on over 40 A100 GPUs and a massive amount of protein structure

data. Since we do not have the compute budget to explore the impact of training all possible
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enhancements to AlphaFold2 for a similar amount of time, we evaluate each method from

scratch and compare their performance after training for the same duration. We assume they

may not perform as well as the baseline model, but our analysis will allow us to compare

their relative performance.

4.4 Results

We investigate the impact of three modifications to AlphaFold2 to improve its sidechain

modeling capabilities: (1) replacing AF2’s ResNet-based angle prediction with a Transformer-

based model, (2) supplementing the angle predictor with sequence convolutions, and (3)

finetuning AF2’s angle predictors to predict structures with lower energy.

4.4.1 Assessing Attributes of Attention

Because Transformer-like models for protein sequence modeling are highly performant, we

posited that substituting them for AF2’s ResNet could improve sidechain modeling. We

executed a hyperparameter sweep over approximately 500 Transformer-like architectures

and found several models comparable to the baseline ResNet from AF2. Models were first

pretrained, as discussed above, entirely separately from the complete AF2 model.

Comparison plots in Figures 4.1 and 4.2 evaluate the performance on various metrics for

five models: (1) ResNet (AF2) - the pretrained ResNet directly loaded from the OpenFold

model, (2) ResNet (untrained) - the ResNet architecture from AF2 without the pretrained

weights, (3) ResNet (retrained) - where the untrained ResNet is trained from scratch, (4)

AngleTransformer (AT)- the Transformer-like model from our hyperparameter sweep with

the lowest Mean Absolute Error (MAE) on sidechain torsion angles from our validation

set, and (5) AngleTransformerXL (ATXL), a AngleTransformer with a larger dimension
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architecture. ResNet (untrained) was included as a baseline to differentiate the impact of the

angle predictor versus the rest of the AF2 model on structural accuracy. Model architectures

are summarized in Table 4.1. Transformer models used GeLU activation.

Model Layers Heads Model Dim Feed-Forward Dim

ResNet (AF2) 2 - 128 -
ResNet (untrained) 2 - 128 -
ResNet (retrained) 2 - 128 -

AngleTransformer (AT) 42 1 64 1024
AngleTransformerXL (ATXL) 4 2 2048 256

Table 4.1: Comparison of ResNet and AngleTransformer model architectures.

Pretraining We first evaluated the models by pretraining them outside of the complete AF2

model, stopping training when the validation set loss angle MAE stopped improving. Results

are seen in Figure 4.1. Despite the theoretical shortcomings of pretraining angle predictors

without using the full model, we find that the ResNet (retrained) can recover a large portion

of the all-atom structural accuracy (4.1a), measured by the All-Atom local Distance Difference

Test (lDDTAA). We also see that lDDTAA is mostly simlar across pretrained models (Figures

4.1b, 4.1c). Concerning sidechain torsion angle prediction, ResNet (retrained) can match the

performance of the original ResNet (AF2) (Figure 4.1d), though it is outperformed by the

AngleTransformer (Figures 4.1e, 4.1f). Figures 4.1j and 4.1k summarize the performance

of each model across the four sidechain torsional angles and by amino acid hydrophobicity.

Lastly, in Figures 4.1g, 4.1h, and 4.1i, we see that our pretraining procedure resulted in

predictions with higher violation loss that the fully trained ResNet (AF2) model.

Pretraining and Finetuning We hypothesized that we would get a complete picture of

the AngleTransformer and ResNet’s strengths if we finetuned each further, reconstituting

them into the full AF2 model and following standard finetuning procedures. The results of
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(a) (b) (c)

(d) (e)
(f)

(g) (h) (i)

(j) (k)

Figure 4.1: Pretraining: Comparing AF2 angle predictor structure accuracy on held-out CAMEO

test set proteins after pretraining only. Higher lDDTAA is better. For violation loss and angle MAE,

lower is better.
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this finetuning experiment are summarized in 4.2 and Table 4.2. The AngleTransformerXL

was excluded from finetuning due to limited computational resources.

After finetuning the ResNet and AngleTransformer, we find that both increase in accuracy

with respect to MAE and lDDTAA, with the AngleTransformer outperforming the ResNet

(retrained) on MAE by a few degrees (Figure4.2e and Table 4.2, p=0.05) and the ResNet

insignificantly more performant according to lDDTAA (Figure4.2b and Table 4.2, p=0.27).

Violation loss values have improved for both models after finetuning, with ResNets still having

an advantage (Figures 4.2h, 4.2i). The AngleTransformer is slightly better at predicting

hydrophilic residue torsion angles than the ResNet (Figure4.2k).

We also compare the MAE of each model across amino acid residue identity in Figure 4.3.

Model lDDTAA MAE (degrees) Violation Loss

ResNet (AF2) 0.730 49.177 0.0004
ResNet (untrained) 0.642 80.208 0.2051
ResNet (retrained) 0.723 49.390 0.0048

AngleTransformer 0.710 46.491 0.0389

Table 4.2: Accuracy on CAMEO test set structures after pretraining and finetuning procedures.

4.4.2 Capturing Convolutional Characteristics

Prior work (See Appendix A)100 has shown that for all-atom protein structure modeling with

Transformers, adding convolution layers before the Transformer encoder typically enhances

prediction on angle prediction tasks. We applied the best-performing convolution architecture

from our prior work in Appendix A, a one-dimensional convolution in the sequence dimension

with a kernel size of 11 that preserves the sequence length and the dimensionality of the

sequence representation. We compare how adding this convolutional layer impacts the

performance of both our ResNet and AngleTransformer models in Figure 4.4. We repeated
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4.2: Pretraining and Finetuning: Comparing AF2 angle predictor structure accuracy

after finetuning models from Figure 4.1. Higher lDDTAA is better. For violation loss and angle

MAE, lower is better.
55



Figure 4.3: Comparing AF2 angle predictor angle accuracy by residue identity. Lower Mean Absolute

Error is better.

the experiment with three initial random seeds for each model tested. All predictions of each

model type were combined before plotting.

Despite prior evidence suggesting that convolutional layers may supplement attention-

based models100 or remove the need for them entirely99, adding a convolutional layer at

the start of the ResNet and AngleTransformer did not significantly alter angle predictor

performance on MAE (Figure 4.4a) or lDDTAA (Figure 4.4b).

4.4.3 Evaluating Energetic Elements

Lastly, we utilize an energy-based training procedure called OpenMM-Loss to improve the

structural quality of predicted structures. The process is described in detail in Aim 2 of this

dissertation.

To find the experimental conditions resulting in the highest accuracy, we evaluated several

different variables in tandem: using the ResNet vs. AngleTransformer, OpenMM-Loss (OMM)

vs. standard finetuning (no-OMM), and various finetuning procedures that finetuned only

the angle predictor or the entire AF2 model.
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(a)

(b)

Figure 4.4: Evaluting the effect of sequence convolutions during pretraining. Lower MAE and higher

lDDTAA are better.
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Figure 4.5: Evaluting the effect of OpenMM-Loss on training angle predictors. Higher lDDTAA is

better.

Finetuning Angle Predictors With and Without OpenMM-Loss In our first set

of experiments, we took the ResNet (retrained), hereafter referred to as "ResNet," and

AngleTransformer models developed above and reconstituted them into the complete AF2

model. We finetuned them as in Section 4.4.1 while testing the effects of training with

and without OMM. In one experiment, AT-OMM-10x, we also increased the weight of the

OpenMM-Loss from 0.01 to 0.1. All models were trained for about one week using four

A100 GPUs. ResNets and AngleTransformers significantly differed in their training behavior

(Figure 4.5). ResNets, in general, benefitted from much faster training times and reached their

maximal accuracy values in the shortest number of training steps. In the allotted compute

budget, it is unclear if the AngleTransformer reached its maximum accuracy. Accuracy

and structural quality metrics for four models (AT-OMM, AT-no-OMM, ResNet-OMM, and

ResNet-no-OMM) are summarized in Figures 4.6, 4.7, and 4.8. The effects of increased

OMM weight for the AT-OMM-10x model are summarized in Figure 4.9. Note that that

the AngleTransformer used here includes a convolution layer because at the start of this

experiment, we believed it would be the most performant.
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Figure 4.6: Comparing lDDTAA after finetuning full AF2 models across two variables: AngleTrans-

former vs ResNet, and OpenMM-Loss (OMM) vs standard AF2 loss. Higher lDDTAA is better.
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Figure 4.7: Comparing angle MAE after finetuning full AF2 models across two variables: Angle-

Transformer vs ResNet, and OpenMM-Loss (OMM) vs standard AF2 loss. For angle MAE, lower is

better.
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Figure 4.8: Comparing structural quality metrics after finetuning full AF2 models across two

variables: AngleTransformer vs ResNet, and OpenMM-Loss (OMM) vs standard AF2 loss. For

violation and clash score values, lower is better.

Figure 4.9: Evaluating the impact of increased OMM loss weight (Angletransformer + OMMx10) on

structural quality and accuracy. Higher lDDTAA is better. For clash score and angle MAE, lower is

better.
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FrankenModels: Combining Previously Finetuned AF2 Models with New Angle

Predictors We hypothesized that better performance could be achieved by training the

angle predictors (ResNets and AngleTransformers) in conjunction with the rest of the AF2

model rather than only finetuning the angle predictor weights as in the prior section. However,

this requires additional computational resources. As an alternative, we proposed taking the

pretrained models from Section 4.4.1 and combining them with complete AF2 models that

had been finetuned in Aim 2. Though the angle predictors and AF2 base model had been

finetuned on our SidechainNet minimized dataset independently, their combination may limit

the required additional finetuning time since the models from Aim 2 have already been trained

for several weeks. We refer to these AngleTransformer models as "AT-FrankenModels" due

to swapping out different angle predictor "heads" for AF2. Training curves displaying the

performance of AT-FrankenModels can be seen in Figure 4.10. Plots in Figure 4.11 summarize

their performance relative to the AngleTransformer models. Both AT-FrankenModels initially

underperformed during training but quickly surpassed the performance of the other models.

Figure 4.10: Combining pretrained whole AF2 models with our separately pretrained AngleTrans-

former into the AT-FrankenModel. Higher lDDTAA is better.
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Figure 4.11: Evaluating the accuracy of "AT-FrankenModels" finetuned with OMM Loss on the

CAMEO Test set. AT-FrankenModels have angle predictors and base-AF2 model components that

were pretrained separately before being finetuned together. Higher lDDTAA is better. For clash

score and angle MAE, lower is better. If you read this far, email jonathanking.jek@gmail.com, and I

will personally thank you for spending your free time reading this voluminous tome.
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4.5 Summary

We explored Transformer-like architectures as alternatives to ResNets for predicting sidechain

torsional angles in AlphaFold2 (AF2). The AngleTransformer consistently surpassed ResNets

in sidechain angle accuracy (measured as MAE), with a smaller model (AngleTransformer)

outperforming a larger one (AngleTransformerXL). Improved MAE was observed for distal

sidechain chi angles (χ2−4), especially for flexible residues like glutamic and aspartic acids

(Figure 4.3). However, the ResNet models surprisingly excelled in violation loss, even though

they were only pretrained to minimize angle loss (Figure 4.1).

Despite our intuition, adding convolution layers to AF2’s angle predictors did not enhance

accuracy (Figure 4.4). Furthermore, in experiments combining AngleTransformers, OpenMM-

Loss, and various training strategies, ResNets proved more efficient, achieving maximum

accuracy quicker (Figure 4.5). Eventually, both model types showed similar structural

accuracy, with AngleTransformers displaying lower angle MAE (Figure 4.7).

Training with OpenMM Loss didn’t significantly alter accuracy (Figures 4.6 and 4.7), and

increasing its weight didn’t yield improvement (Figure 4.9). While OpenMM Loss affected

the training versus accuracy dynamic, its implementation didn’t consistently reduce violation

loss values (Figure 4.8). Still, models trained with OpenMM Loss had lower clash scores

than models trained without. That OpenMM Loss reduced the number of clashes in the

AngleTransformer but not the ResNet points to the AngleTransformer’s capacity to improve

metrics other than angle MAE.

Upon shifting focus from angle predictors, we introduced AT-FrankenModels, combining

pretrained AngleTransformers and AF2 models to reduce the computational cost of full-AF2

finetuning. Initially, AT-FrankenModels underperformed but swiftly improved (Figure 4.10),

eventually surpassing AngleTransformer and ResNet predictors, which have not had the

benefit of extended pretraining (Figure 4.11).

64



4.6 Discussion and Future Work

We observed promising options for improving protein structure prediction. Although our

AngleTransformer models predicted sidechain torsional angles with lower MAE, this metric

alone doesn’t fully address the complexity of improving sidechain modeling in AF2.

Our findings suggest that while AngleTransformers may offer more accurate modeling,

evidenced by lower angle MAE and fewer clashes when trained with OpenMM Loss, the

advantages are not clear-cut. In contrast, ResNet models provided equal or better lDDTAA

scores, lower violation loss, required less training time, and were more parameter-efficient.

Despite previous studies suggesting the effectiveness of convolution layers, we found

limited utility for them in this context. The benefits of convolutions, such as recognizing local

structures and patterns, might be overshadowed by AF2’s existing attention mechanisms and

the specialized feed-forward layers in its ResNet angle predictor. Performance might improve

with more extensive hyperparameter tuning for convolutional layers.

Our experiments underscore the importance of a comprehensive approach to improving

sidechain-level protein structures. While refining AF2’s angle predictor can enhance sidechain

modeling, finetuning the entire model yields the best accuracy and structural quality results.

Future work could explore alternative sidechain prediction representations, possibly eschewing

χ-angle prediction for atomistic modeling of sidechain-backbone interactions. Another

worthwhile avenue might be implementing more efficient attention mechanisms, balancing

improvement in expressiveness with cost-effectiveness. Alternatively, attention mechanisms

might be supplemented by including a geometric prior, constructing attention weights based

on distances or other geometric feature vectors measured from the data.
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5.0 Conclusions and Future Directions

5.1 Conclusions

5.1.1 Evolution of Protein Structure Prediction

Protein structure prediction remains a pivotal aspect of computational biology, even with

impressive advancements like AF2. The inception of AF2 marks a synergistic blend of decades

of machine learning methodology development and breakthroughs in quantitative biology

and data. The field has mirrored the progressive trajectories observed in Natural Language

Processing (NLP) and Computer Vision (CV), where competitions have consistently driven

innovation and excellence. In a similar vein, contests like CASP and CAMEO continue to

energize the domain of protein structure prediction, offering platforms for methodological

comparison and benchmarking that evolve with the field.

5.1.2 Current Landscore

AF2 has undoubtedly made its mark on computational biology. Along with the publication

of its underlying methodology and code, the authors have also released more than 200 million

predicted protein structures as part of the AlphaFold Structure Prediction Database, all of

which have garnered widespread attention. While many of these predictions are useful, a

notable number have serious issues. Nonetheless, for a range of applications, the current

predictions are often adequate, and we anticipate continuous enhancements to AF2 and

related methodologies in the near future.
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5.1.3 Contributions of This Work

This dissertation presents three distinct, interrelated pathways aimed at advancing protein

structure prediction, conceptualized and developed in both the pre and post-AF2 eras:

1. SidechainNet: Introduced to facilitate access to and engagement with the field,

SidechainNet provides a user-friendly dataset accompanied by preprocessed data and

helper functions. It has been embraced by researchers from various backgrounds, serving

as a practical entry point and valuable resource for the community.

2. OpenMM Loss Toolkit: This toolkit helps models like AF2 better understand

biophysics. While AF2 provides accurate predictions, it doesn’t offer insights into how

proteins fold. The OpenMM Loss Toolkit works to address this gap, mitigating clashes

and structural irregularities in AF2’s predictions, with further testing of its applications

underway.

3. AF2 Sidechain Modeling Enhancements: Our experiments aimed to enhance

AF2’s sidechain modeling capabilities. While no model clearly outperformed AF2, the

experiments provided insights into the potential strengths and limitations of differ-

ent models. Transformers, provided adequate data and computational resources are

available, could potentially increase accuracy, although the additional computational

complexity is a consideration. (ResNets reach an lDDTAA of 0.80 in about 1/2 of the

number of optimization steps as AngleTransformers, all other training parameters being

the same).

5.1.4 Looking Ahead: Future Directions

There’s more work to be done in protein structure prediction.
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• Understanding Poor Docking Outcomes: High-accuracy predictions do not invari-

ably translate to successful docking outcomes, as evidenced by the work from Masha et

al.58 and others. The precise reasons for these discrepancies are unclear, and there’s no

definitive roadmap for rectifying these in AF2.

• Protein Dynamics: Proteins, in reality, are dynamic entities, not static structures.

The field must evolve its methodologies to capture the full spectrum of protein mo-

tions, from minor atomic jostles to substantial domain movements that are integral to

enzymatic activities.

• Emerging Architectures: Generative models like diffusion models are gaining traction.

These models allow for sampling from the data distribution on which they are trained,

holding potential for innovative applications such as generating libraries of potential

ligands and their conformations relative to protein structures.

• Beyond MSAs: New methods need to be devised to circumvent AF2’s reliance on

multiple sequence alignment (MSA) data. While attempts like ESM-Fold56, which

leveraged a language model, showed promise, they fell short of AF2’s performance,

indicating that further development is needed in this area.

• Energy-Based Training Procedures: Our exploration into energy-based training

methodologies aims to inspire the development of machine learning techniques that are

not opaque "black boxes". By integrating understood chemical and physical principles

with advanced machine learning techniques, we envision creating a framework that

enables more informed and accurate predictions and decision-making in the field.

In conclusion, this dissertation contributes practical tools and insights to the domain of

protein structure prediction, laying a solid foundation for future investigations and develop-

ments. We are determined that combining basic science with advanced computing will play a

pivotal role in developing better predictive models.
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Appendix A: Evaluating the Impact of Sequence

Convolutions and Embeddings on Protein Structure

Prediction

The following report describes an original method for all-atom protein structure predictions

using Transformer models developed by J. E. K. It was written and published by J. E. K.

on the Weights and Biases platform on November 3, 2022. Weights and Biases is a set of

cloud-based machine learning tools, as well as a community for machine learning developers.

Thanks to Nicholas Bardy, who implemented molecular visualizations for this project.

At the time of writing, an interactive version of this report is available at the following

address: https://wandb.ai/koes-group/protein-transformer/reports/Evaluating-t

he-Impact-of-Sequence-Convolutions-Embeddings-on-Protein-Structure-Predict

ion--Vmlldzo2OTg4Nw

A.1 Introduction

Despite recent advancements in the fields of biology, computer science, and machine learning,

protein structure prediction remains one of the "holy grails" of molecular biology. Since the

Nobel Prize-winning discovery of the structure of sperm whale myoglobin in the late 1950s,

researchers have worked to uncover the 3D structure of thousands of other proteins in an

effort to better understand the molecular basis of life.
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A.1.1 Protein Structure Background

Proteins, long chains of amino acids that naturally fold up into unique, “globular” structures

when produced, are essential to many of the life-sustaining chemical reactions in the cell.

Even though proteins are composed of only about 20 different types of amino acid residues,

each residue has a unique molecular “side chain” with chemical properties that determine

the protein’s function. In fact, knowing the precise orientation of each amino acid is key to

structure-based drug discovery, a method of developing new medicines by rational examination

of where a drug molecule might bind to its protein target.

Although protein structure information is undeniably significant, it is difficult and expen-

sive to produce. For instance, scientists may spend upwards of tens of thousands of dollars to

produce a protein structure via X-ray crystallography, with many failed experiments along

the way. As a result of the high cost, high impact, and low availability of protein structures,

the scientific community has spent significant time and effort on methods that can predict

the shape of proteins from their primary amino acid sequence, since this information is much

more readily available.

To put this in perspective, as of March 2020, there were more than 175 million protein

sequences available in the UniProtKB database, while only 162 thousand protein structures

in the Protein Data Bank (PDB) The availability of protein structure data (red) pales in

comparison with that of protein sequence data (blue) in Figure A.1. Clearly, there is a

great need (and opportunity) to predict protein structures from their underlying

amino acid sequences!
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Figure A.1: The growth of protein sequence vs. structure data. Figure from GORBI101, used with

permission.

A.2 My Work

Since August 2017, I have been working on deep learning methods for protein structure

prediction. My latest attempt is to harness the power of the "Neural Machine Translation"

methods that have been so successful over the last few years. If I can formulate the problem

of protein structure prediction as one of language translation, then I can take advantage of

these high-performing models!

In my case, I am translating from the "language of amino acid residues" (lysine, arginine,

etc.) into the "language of angles" that define how each atom is placed with respect to its

predecessors. The angles are then converted into Cartesian coordinates, which can be directly

compared to the true protein structure. One of the main contributions of my work is the fact

my models will predict both the protein backbone and side chain atoms, which is imperative

for certain research like structure-based drug discovery.

The model I am using is based on the now-ubiquitous Transformer model14, although

my current model disposes of the decoder half for simplicity. The training data is based

on ProteinNet43 by Mohammed AlQuraishi, but has been modified to include sidechain

information.
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Figure A.2: The ProteinTransformer method architecture.

You can find my current work-in-progress on the ProteinTransformer (Figure A.2) here.

A.3 Models Trained with MSE Loss Improve by Adding

Convolution Layers

A.3.1 Motivation

As much as we’ve tried, we’ve been having some trouble getting our ProteinTransformer to

make reasonable predictions. Many proteins predicted so far kind of look like big balls of

spaghetti! It could be the case that since our training data is based on amino acid sequences

alone rather than incorporating information common to other prediction methods (think

multiple sequence alignments, etc.), there just may not be much signal to work with.

However, another hypothesis is that while Transformer layers are great for predicting long-

range interactions between amino acid residues, they may not incorporate local interactions

as well. Adding local representations of the sequence via 1D convolutions may be enough
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to help the model learn simple things, such as the location of alpha-helices, that are only

dependent on their nearby neighbors.

A.3.2 Experiment

In this experiment, I modified my base ProteinTransformer model by adding 1-dimensional

sequence convolution layers after the embedding layer, but before the Transformer layers. In

essence, the predictions from this model look something like this:

Pred = TransformerAttention1..L(Conv1..n(Embedding(X)))

I tested two kernel sizes, 3 and 11. I also experimented with the number of output channels

from each convolution layer. In the models titled conv-enc-3/2 and conv-enc-11/2, each

convolution layer had twice as many output layers as input layers. This is common practice

in convolutional neural networks for image processing as each layer builds up a representation

of the underlying data. Models ending with 3/1 or 11/1 had the same number of input and

out channels. See Figure A.3 for training results.

Each model was trained for 10 epochs with the same hyperparameters and using the Mean

Squared Error (MSE) loss between the predicted angles and the true angles that represent

the protein’s structure in 3D space. For reference, lower loss values mean better performance.

This is good news - our hypothesis was correct! It looks like convolution layers (all

lines except blue, Figure A.3) help the model perform slightly better, especially when the

convolution layer windows are slightly larger (yellow, orange). Not all of the predictions look

that great, but the point of this experiment is to find any improvement, and for right now,

I’m satisfied!
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A.4 Models Trained with DRMSD Loss Also Improve with

Convolution Layers

A.4.1 Motivation

Protein structures are more than just angles, though. From Mohammed AlQuraishi’s work, we

know that "Distance-Based Root Mean Squared Distance", or DRMSD, is one differentiable

way to compare two protein structures and train a model.

Here, I am repeating the same experiment as above, but instead of just training the models

on the RMSE between the true and predicted angles, I am also comparing the complete

protein structures in something called the "Combined Loss" which combines both the RMSE

and DRMSD values. Training results are summarized in Figure A.4.

Great! We’ve now verified that convolution layers are helpful, regardless if we are

optimizing for RMSE loss or a combined loss.

A.5 Embedding Layers Appear to Improve Overall Performance

A.5.1 Motivation

Okay, now we know that adding convolution layers to the mix can help our model overall!

However, we started wondering whether or not the embedding layer was really necessary for

our model.

You see, in language translation and other language processing tasks, embedding layers

are used to take a high-dimensional representation of a word (d ≈ 104) and turn it into a

lower-dimensional representation (d ≈ 103) that incorporates the "meaning" of the word.
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However, we are not dealing with a very large input vocabulary! In fact, since there are only

20 amino acids, we have d = 20. So, what’s the point of the embedding? Well, maybe our

embedding layer is still learning something important about each residue and incorporating

this information into its embedding during training. Let’s see!

A.5.2 Experiment

The following runs (Figure A.5) show many examples of different convolution layer patterns

that are repeated with and without embedding layers. These models are trained such that the

last convolution layer has the same number of filters as the dimensionality of the Transformer

layers. This allows more flexibility when selecting the number of attention heads for the

Transformer layers since d_model must be evenly divisible by n_heads.

Interesting! Despite the wide array of different model configurations I used, the models

that used the embedding layer always performed better (see the two clusters of runs on the

upper right of Figure A.5). The aggregated chart in the upper left of Figure A.5 (in blue and

orange) makes this pretty clear.

You can also see in Figure A.5, that according to the "Parameter Importance" measure-

ment, the number of trainable parameters seems to be important. Maybe performance isn’t

dependent on whether or not an embedding is used, but rather on how many parameters the

model has! I’ll inspect this in the next section.
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A.6 Embedding Layers, Not Just Larger Models, Improve

Performance

A.6.1 Motivation

As I mentioned in the previous section, it seemed like the number of parameters in each

model was more important than whether or not the model had an embedding layer. Let’s try

another experiment to clarify whether or not this is true.

A.6.2 Experiment

To test this hypothesis, I ran 3 models (architectures summarized in Table A.1.

• The first, embedding-control, has convolution and embedding layers with a Trans-

former layer size of 256.

• The second, no-emb-less-params, forgoes the embedding layer, but keeps the same

Transformer layer size. As a result, there is an overall decrease in the number of

parameters (from 13 million to 4 million).

• The third, no-emb-same-params, also forgoes the embedding layer but increases the

size of the Transformer layer to 658 in an attempt to approximately match the same

number of parameters as the control (about 13 million).

Again, we see in Figure A.6 that models with embedding layers (purple) perform better

than other comparable models, even when we control for the number model parameters.

The Parameter Importance chart in Figure A.6 supports this conclusion as well. This is

interesting because the amino acid "vocabulary" is so much smaller than that of natural

languages, so perhaps the embedding layer is doing something else to incorporate protein
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Model Dim Parameters Trainable Params Name Embedding

648 13,275,460 13,275,460 ne2-convcomb21-11-3 No
256 13,264,920 13,264,920 m3-convcomb21-11-3 Yes
256 4,082,276 4,082,276 ne2-convcomb21-11-3 No

Table A.1: Summary of models tested in Section A.6.2.

structure information into its amino acid representations! I’ll perform a quick follow-up

experiment soon to visualize these embeddings. Maybe they learned something about amino

acids such as their hydrophobicity or chemical properties. Who knows? Either way, I’ll be

sure to continue using models with embedding layers.

A.7 Conclusion

Thanks for following along with me on a typical set of experiments that I do for my research

project! I hope I’ve been able to teach you a thing or two about protein structure as well as

some of the deep learning methods researchers are using to make predictions.
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Figure A.3: Results of adding convolution layers to ProteinTransformer trained with RMSE loss.

For all structure visualizations, red is the predicted structure and blue is the true structure. Both

the backbone and sidechain structure elements are visible in the images labeled "Validation Set

Predictions".
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Figure A.4: Results of adding convolution layers to ProteinTransformer models trained with DRMSD

loss. For all structure visualizations, red is the predicted structure and blue is the true structure.

Both the backbone and sidechain structure elements are visible in the images labeled "Validation

Set Predictions".
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Figure A.5: Testing the impact of embedding layers on ProteinTransformer performance.
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Figure A.6: Comparing the impact of embeddings on ProteinTransformers, controlling for model

parameter size. For all structure visualizations, red is the predicted structure and blue is the true

structure.
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Figure A.7: Examples of molecular visualization tools available on Weights and Biases, thanks to

Nicholas Bardy.
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