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Between Dynamical Attractors, Spiking Neural Networks, And Convolutional

Neural Circuits

Eduardo Diniz, PhD

University of Pittsburgh, 2023

Understanding spatiotemporal neural dynamics and developing biologically-inspired ar-

tificial neural networks remain open challenges in computational neuroscience. Critical gaps

persist in elucidating cortical rhythms, memory consolidation, and biological networks’ re-

markable spatiotemporal processing capabilities. We hypothesize that asymmetric connec-

tivity and dedicated fast-slow processing pathways in neural systems enhance depth, robust-

ness, and versatility in handling complex spatiotemporal patterns. Our first contribution is

elucidating how neurons communicate and synchronize activity via temporally precise spikes

by examining the dynamics of spike-coding networks. Developing models of cortical neu-

ral oscillators reveal the origins of spontaneous transitions between active and silent states

underlying slow-wave sleep rhythms, demonstrating how the balance of excitation and inhi-

bition orchestrates these oscillations. Our second contribution is establishing a mathematical

equivalence between spike-coding and Hopfield networks by showing that fast and slow asym-

metric connectivity induces equivalent cyclic attractor dynamics in both systems. The asym-

metric weights in slow connections enable both models to generate complex temporal firing

sequences, transitioning between quasi-attractor states representing stored memories. Sim-

ulations demonstrate the efficacy of spike-coding networks for encoding and retrieving tem-

poral sequences while performing the n-back working memory task. Our third contribution

is to harness generative adversarial networks for unpaired cross-modality translation from 3

Tesla to 7 Tesla magnetic resonance imaging. We propose a fast-slow convolutional network

architecture to enhance translation performance by balancing local and global information

processing. This dissertation makes significant contributions by elucidating brain mecha-

nisms underlying rhythms and memory and unifying foundational computational frameworks

while extracting principles to improve artificial neural network design.
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1.0 Introduction

Neural Computation, encompassing the intricacies of brain dynamics and artificial neu-

ral networks (ANNs), is a nexus of mathematical, computational, and biological disciplines.

The multifaceted nature of this interdisciplinary domain necessitates an understanding of

spatiotemporal patterns, mechanisms of neural dynamics, and practical application in com-

putational models. By synergistically combining insights from these spheres, we aspire to

bridge the existing chasm between biological and artificial intelligence (AI).

In the forthcoming sections, we delve deeper into the intricacies of biological and ar-

tificial neural systems, exploring their unique strengths, inherent challenges, and potential

synergy avenues. We begin with a detailed examination of spatiotemporal patterns, fast and

slow processing pathways, and asymmetric connectivity—critical constructs spanning both

realms. Throughout this dissertation, we will dissect the state-of-the-art methodologies in

ANNs, the complexity of biological neural dynamics, and the promising frontier where these

two domains intersect.

1.1 General Background

Understanding biological neural networks’ dynamics and computational capabilities re-

mains a fundamental challenge in neuroscience. Advanced theoretical modeling and analyt-

ical techniques from dynamical systems theory and mathematical biology have provided key

insights into the emergence of complex neural phenomena (Dayan and Abbott, 2005). For

instance, the origins of coordinated firing patterns, macroscale brain rhythms, and high-order

functions like memory consolidation have been illuminated through detailed models of spike

timing neural coordination (Boerlin et al., 2013), coupled neural oscillators (Breakspear,

2017), and attractor networks (Hopfield, 1982).

In parallel, ANNs have rapidly advanced machine learning and AI systems, drawing

inspiration from neuroscience (Hassabis et al., 2017). AI models like convolutional neural
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networks (CNNs) (LeCun et al., 1998), recurrent neural networks (RNNs) (Lipton et al.,

2015), and spiking neural networks (Maass, 1997) have achieved state-of-the-art results across

diverse tasks from computer vision to natural language processing. Especially noteworthy

are generative adversarial networks (GANs) (Goodfellow et al., 2014), which can learn to

mimic complex high-dimensional distributions like medical images (Yi et al., 2019).

However, gaps remain between our understanding of biological computation and the

capabilities of artificial models (Marblestone et al., 2016). The characterization and un-

derstanding of spatiotemporal patterns present an intriguing nexus where the realms of

biological and ANNs converge and offer synergistic opportunities. The inherent complexity

of these patterns, with their intricate interplay of spatial structures and temporal dynam-

ics, is reminiscent of the challenges faced in delineating biological neural dynamics and the

computational undertakings of their artificial counterparts.

1.2 Spatiotemporal Patterns in Biological and Artificial Systems

Spatiotemporal patterns are ubiquitous phenomena in the natural world, characterized

by correlated changes in space and time. Think of the rhythmic dance of starlings in murmu-

ration, the orchestrated progression of cells during embryonic development, or the rhythmic

waves along a shoreline. These patterns inherently capture a sequence of events or states,

evolving across space over a specific duration. They are pivotal in diverse fields, from physics

and chemistry to ecology and social sciences. Such patterns offer a lens to understand com-

plex systems’ behavior, where the spatial arrangement and temporal sequence of elements

are interdependent and jointly influence the observed outcome. Their study provides insights

into the mechanisms underlying these phenomena and informs strategies to predict, and at

times control, their future evolution.

2



1.2.1 Historical Context

The fascination with spatiotemporal dynamics in biology can be traced back to the early

observations of coordinated behaviors in flocking birds, schooling fish, and synchronized

firefly flashes. Researchers were captivated by how individual organisms, seemingly acting

independently, could give rise to such large-scale coordinated behaviors. Turing’s seminal

work in the 1950s on morphogenesis, where he proposed reaction-diffusion systems to explain

pattern formation in animal coats (Turing, 1952), laid the foundation for understanding how

simple interactions at a local level could manifest into complex spatial patterns. Subsequent

work in neuroscience sought to understand the brain’s spatiotemporal patterns, from the

synchronized firing of neurons to the propagation of waves across neural populations.

In parallel, cellular automata became an instrumental model in the 1940s and 50s of

Computer Science, with pioneers like John von Neumann and later Stephen Wolfram explor-

ing how simple rules could lead to complex spatiotemporal evolutions (Wolfram, 1983). The

desire to emulate and understand biological systems led to the birth of ANNs in the late

1950s and 60s, with Rosenblatt’s perceptron being one of the earliest examples (Rosenblatt,

1958). As computers became more powerful, the complexity of these systems grew, leading

to the development of architectures specifically designed to handle spatiotemporal data.

The interplay between biology and computation became more pronounced as the decades

passed. Biological insights drove innovations in machine learning, while computational mod-

els provided tools and frameworks to dissect and predict biological phenomena. Today, the

study of spatiotemporal patterns stands at this vibrant intersection, enriched by a legacy of

interdisciplinary collaboration and mutual inspiration.

1.2.2 Artificial Networks and Their Limitations

While advanced artificial networks like CNNs, RNNs, and GANs excel in recognizing

and generating patterns across spatial and temporal domains, they often lack the depth of

encoding, robust persistence, and the nuanced hierarchies that biological systems exhibit

when processing spatiotemporal patterns (Lake et al., 2017).

CNNs, for instance, have been extensively employed in image and video processing tasks.

3



Their layered architecture mimics, to some extent, the hierarchies observed in the visual

system, with earlier layers capturing low-level features like edges and contours and deeper

layers representing high-level abstractions and semantic entities (Krizhevsky et al., 2012).

However, the static nature of CNNs, with fixed feedforward connections, contrasts with the

adaptability and feedback mechanisms inherent in biological systems.

RNNs, on the other hand, are designed to capture temporal dependencies in sequences,

making them suitable for tasks such as natural language processing and time-series prediction

(Hochreiter and Schmidhuber, 1997). The mechanism by which they store memory, though

inspired by the temporal dynamics of biological systems, is oversimplified. In biological

neurons, the history of activations is stored in a complex interplay of ionic currents, synaptic

strengths, and dendritic computations (Magee and Johnston, 2005). In contrast, in RNNs,

this memory is condensed into state vectors updated through matrix multiplications.

GANs are a recent addition to the family of neural networks, designed for generating new

instances that resemble a given set of training data (Goodfellow et al., 2014). Their capability

to synthesize intricate patterns is a testament to their power in representing spatiotemporal

data. However, while GANs can produce novel patterns, their representation of them is more

brittle than the plastic, context-aware representation in biological networks.

1.2.3 Biological Neural Systems: Hierarchy, Compositionality, and Storage

Biological neural systems naturally handle these patterns with an exceptional hierarchy

and compositionality, as observed in the visual system, where neurons progressively extract

higher-level features (Hubel and Wiesel, 1962). Similarly, compositionality is a crucial brain

property that allows the encoding of complex spatiotemporal patterns, as observed in lan-

guage processing (Fodor and Pylyshyn, 1988).

Such complex spatiotemporal patterns are encoded in synaptic weights and neuronal

parameters. One prominent mechanism is spike-timing-dependent plasticity (STDP). In

this process, synapses are strengthened or weakened based on the relative timing of pre- and

post-synaptic spikes (Bi and Poo, 1998). This is a critical component of pattern completion,

where brief input cues can reconstruct the entire stored pattern (O’Reilly and Rudy, 2001).
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Moreover, neural circuits can dynamically transition and replay these patterns. Replay is

particularly important in the consolidation of memory, where the brain replays sequences of

neuron firing patterns observed during waking hours (Ji and Wilson, 2007). As for dynamic

transitioning, it is speculated to occur via the activation of separate populations of neurons

or changes in the firing pattern within a single population (Harris et al., 2003).

Reliable persistence without corruption over time is another critical aspect of these pat-

terns. Biological systems showcase a resilience to adversarial attacks and noisy inputs, stem-

ming from their evolutionary history, that contemporary artificial networks often struggle

with (Szegedy et al., 2013). This resilience in biological systems is hypothesized to result from

the intricate balance between excitation and inhibition, local and global network dynamics,

and short-term and long-term plasticity mechanisms (Buzsaki and Draguhn, 2004).

Lastly, storing many such patterns and their flexible expression is paramount. This aspect

is strongly linked to neuronal multistability, where a single neuron or neuronal network can

exhibit various stable states (Izhikevich, 2007). This property allows the storage of multiple

patterns and their flexible retrieval upon receiving specific inputs.

1.3 Asymmetric Connectivity Motifs in Biological Networks

Asymmetry in connectivity is pivotal in orchestrating the complex spatiotemporal pro-

cessing capabilities observed in these networks (Sporns, 2011). In essence, asymmetric con-

nectivity is not merely a random occurrence but is evolutionarily optimized for sophisticated

information processing within the intricate structures of neural networks (Song et al., 2005).

Within cortical hierarchies, feedforward and feedback pathways introduce distinct forms

of asymmetry, serving critical functions in information processing. Feedforward pathways

enable the hierarchical progression of feature extraction, while feedback mechanisms provide

top-down modulation, enhancing the specificity and contextuality of perceptions (Felleman

and Van Essen, 1991). This organization ensures an intricate balance between sensory stim-

uli’s detailed representation and contextual information integration, vital for a coherent

perceptual experience (Rao and Ballard, 1999).
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Inhibitory interneurons are quintessential for imposing asymmetric regulation on excita-

tory networks. By their very nature, these interneurons counter excitation, ensuring that the

network’s dynamics are stabilized and avoid runaway activity (Isaacson and Scanziani, 2011).

This is fundamental in maintaining the homeostasis of neural circuits, ensuring the appro-

priate balance between excitation and inhibition. This is crucial for efficient information

processing and preventing pathological activity (Vogels et al., 2011).

The hippocampal formation, critical for memory processes, features an asymmetric se-

quential connectivity pattern among its subregions: the dentate gyrus, CA3, CA1, and the

subiculum. This supports the transformation and integration of information, with each

subregion contributing uniquely to memory encoding, consolidation, and retrieval (Amaral

and Witter, 1989). This organization is instrumental for temporal association and pattern

separation, foundational processes for episodic memory formation (Teyler and Rudy, 2007).

Neuromodulatory systems, encompassing components like acetylcholine, dopamine, and

serotonin, can diffusely project and exert asymmetric gain control over their target networks

(Marder, 2012). This means that neuromodulators can dynamically adjust the sensitivity

and responsiveness of neuronal populations, thereby tuning network dynamics based on the

context or behavioral state. Such asymmetric modulatory influences play a crucial role in

processes ranging from learning and attention to mood regulation (Dayan and Yu, 2006).

The biological neural landscape is replete with asymmetric architectural motifs that

collectively define the multifaceted dynamics of information processing. Through feedfor-

ward sweeps of activity, feedback contextual modulation, pulsed inhibitory controls, and

neuromodulatory influences, these asymmetries together shape the complex spatiotemporal

patterns of activity. However, perturbations in these asymmetric interactions can manifest

as failures in coordinating distributed processing and disruptions in temporal sequencing, of-

ten underlying neurological and psychiatric conditions (Bressler and Menon, 2010). Hence,

understanding these asymmetric motifs can offer profound insights into the intricacies of

biological systems, providing avenues for understanding their depth, robustness, and adapt-

ability in spatiotemporal encoding.
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1.4 Fast and Slow Pathways in Biological Systems

Biological neural networks’ intricate tapestry of fast and slow processing pathways epit-

omizes versatility in spatiotemporal processing. Rapid encoding mechanisms ensure the

preservation of transient, dynamic details. In parallel, slower pathways allow refining these

encodings, embedding them within broader contexts. This integrated approach facilitates

the emergence of highly sophisticated neural representations (Buzsaki and Draguhn, 2004).

Biological systems leverage the interplay between rapid feedforward sensory pathways

and slower feedback mechanisms. The former are apt at capturing dynamic stimuli through

immediate feature extraction (Lamme and Roelfsema, 2000). In contrast, the latter afford

contextual refinement over extended timescales, integrating information across different hi-

erarchies and bolstering representational accuracy and sophistication (Gilbert and Li, 2013).

Excitatory pyramidal neurons respond instantly within local circuits, enabling rapid sig-

nal propagation. Conversely, inhibitory interneurons, often characterized by their slower

temporal profiles, meticulously fine-tune these dynamics, ensuring stability and prevent-

ing over-excitation (Isaacson and Scanziani, 2011). This duality effectively balances rapid

activity and slow, stabilizing modulation.

The hippocampal formation also illustrates the fast-slow dichotomy, featuring a rapid

feedforward trisynaptic loop, which interfaces with the neocortex through slower reciprocal

connections (Buzsáki, 1996). This enables memory consolidation by replaying previously

encoded sequences, transferring episodic memories for long-term storage (Carr et al., 2010).

Neuromodulatory systems often operate on slower timescales. Through diffuse projec-

tions, these systems induce state transitions in faster networks. Acetylcholine, in particular,

is instrumental in gating plasticity, modulating cortical dynamics, and adjusting representa-

tions based on the prevailing behavioral contexts (Hasselmo and Sarter, 2011).

As currently conceptualized, ANNs often lack dedicated pathways distinguishing between

fast and slow temporal scales. Many architectures, especially those in mainstream deep

learning, consist of homogenous components operating on roughly similar timescales, thereby

missing out on the multi-scale temporal processing in biological systems (Bengio et al., 2015).

Therefore, incorporating dedicated fast and slow processing streams into artificial neural
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architectures could be transformative. Slow global networks, for instance, might modulate

and gate the representations in faster local pathways, mirroring biological top-down modu-

lation (Friston, 2010, Lee and Mumford, 2003). By embedding structured fast-slow motifs,

artificial systems could attain heightened temporal fidelity (Kiebel et al., 2008), depth (Has-

sabis et al., 2017), and adaptability (Lake et al., 2017), moving closer to the versatility

exhibited by their biological counterparts (Kriegeskorte, 2015).

1.5 Research Gaps

While advanced artificial networks have made strides in mimicking neural processes, a

discernible gap remains between their capabilities and the nuanced intricacies of biologi-

cal systems. Neural Computation, bridging the vast landscapes of biological and artificial

realms, sits at a pivotal juncture of understanding and innovation. The exploration of spa-

tiotemporal patterns, fundamental to both domains, elucidates the intricate dance between

spatial structures and temporal dynamics. The historical backdrop has witnessed ground-

breaking research and models that offer insights into this domain. However, three primary

gaps remain in comprehensively grasping spatiotemporal patterns and their representations:

1. Depth of Encoding: Biological systems inherently process spatiotemporal patterns

with remarkable depth and hierarchy. In contrast, while modern ANNs can recognize

and even generate these patterns, they often lack the intricate depth of encoding observed

in their biological counterparts.

2. Robustness and Resilience: Biological neural systems have evolved over millennia

to be inherently resilient to adversarial attacks, noise, and degradation. Conversely,

artificial systems, though powerful, have shown vulnerabilities, especially in noisy envi-

ronments or under adversarial conditions.

3. Natural Versatility: Biological systems exhibit versatility in handling a multitude of

spatiotemporal patterns simultaneously, seamlessly transitioning between them based

on context. On the other hand, artificial systems often require separate specialized

8



architectures to handle different patterns or tasks, lacking the inherent multitasking

dynamism observed in biological networks.

Fast and slow asymmetric motifs in biological systems epitomize the sophistication of

neural computation, facilitating robust, layered, and adaptable spatiotemporal processing.

Embracing these principles, particularly when designing and conceptualizing artificial neural

architectures, offers a promising avenue. Drawing inspiration from such biological models,

and incorporating them into machine learning paradigms, can bridge existing gaps and ele-

vate the capabilities of artificial systems (Hassabis et al., 2017).

1.6 Dissertation Objectives

Biological systems exhibit remarkable hierarchical encoding depth, noise resilience, and

versatile transitions between stored patterns. There is a critical need to capture these ca-

pabilities in artificial systems. Asymmetric fast-slow motifs in biological networks offer

inspiration, but their core computational principles need further elucidation.

The overall objectives of this dissertation are to (i) elucidate spike timing coordination

mechanisms enabling cortical state transitions, providing insights into the resilience gap, (ii)

to establish a mathematical equivalence between Hopfield networks and spike-coding net-

works by introducing structured asymmetric connectivity, inducing equivalent cyclic attrac-

tor transitions that enable both models to store static memory patterns that can be replayed

as temporal sequences, thereby addressing the versatility gap, (iii) to develop an unpaired

image-to-image translation framework using GANs as a testbed for evaluating benefits of

separate fast-slow processing pathways. This provides insights into the depth gap.

Our central hypothesis is that asymmetric connectivity and dedicated fast and

slow processing pathways in neural systems enhance depth, robustness, and ver-

satility in handling complex spatiotemporal patterns.

The rationale for this dissertation is that synergistically combining insights from theo-

retical neuroscience and models of neural computation will provide advances not attainable

through either alone. Mathematical modeling will elucidate biological principles related to
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the identified gaps. GAN implementations will assess the practical potential of bio-inspired

architectures. This combined approach aims to elucidate mesoscale brain mechanisms while

extracting lessons to shape AI.

1.7 Specific Aims

To attain the overall objectives, three specific aims will be pursued (Figure 1.1). The

aims explore whether introducing separate fast-slow processing streams and asymmetric

connectivity motifs can impart biological sophistication. Aim 1 models balanced excitation-

inhibition, inspired by patterned biological inhibition regulating network stability. It investi-

gates resilience mechanisms for adaptable transitions between brain states. Aim 2 introduces

structured asymmetry into associative memory models to unify pattern completion and tem-

poral sequencing, assessing versatile memory transitions lacking in ANNs. Aim 3 explores

separate processing streams in a GAN framework, emulating feedforward-feedback and neu-

romodulatory asymmetries, to enhance translation depth and fidelity.

1.7.1 Aim 1

Our Aim 1 is to elucidate the spike coordination mechanisms enabling syn-

chronization and rhythmic transitions between active and silent cortical states

when balancing fast excitatory slow inhibitory activity. We hypothesize that the

spontaneous transitions between Up and Down states emerge from the coordinated balance of

excitation and inhibition in cortical networks when near a codimension-two bifurcation point.

This hypothesis aligns with the resilience and versatility gaps, as balanced interactions are

critical for biological systems’ stability and repertoire.

We predict that:

(i) Modulating the relative excitatory-inhibitory activity will determine the frequency and

duration of state transitions. This prediction provides insights into the resilience gap by

revealing stabilizing mechanisms.
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Figure 1.1: Hypothesis and specific aims pursued in this dissertation. Our hypoth-

esis (blue box) is evaluated by addressing three aims (green boxes). Aims 1, 2, and 3, are

pursued in Chapters 2 and 3, 4, and 5, respectively. The Venn diagram (orange circles)

illustrates which research gaps each aim addresses.
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(ii) Identifying the bifurcation structure underlying this excitation-inhibition balance will

provide insights into the origin of cortical slow oscillations. This prediction addresses

the encoding depth gap by connecting microscale dynamics to macroscale rhythms.

To test this, we will use the following approach (Chapters 2 and 3):

1. Derive membrane potential dynamics for spike-coding neuron networks.

2. Examine phase-locking for synchronizing spike times across neurons.

3. Apply population modeling to cortical neurons exhibiting Up-Down state transitions.

4. Analyze the effect of noise and coupling strength on transitions in oscillator networks.

5. Identify the bifurcation mechanism underlying cortical rhythm generation.

This theoretical modeling approach will advance our understanding of how interactions at

the neuronal level coordinate to generate macroscopic brain rhythms.

1.7.2 Aim 2

Our Aim 2 is to prove a mathematical equivalence between Hopfield and spike-

coding networks by introducing slow asymmetric connectivity. We hypothesize

that incorporating synapses with rotational symmetry will induce equivalent cyclic attractor

transitions in both models. This hypothesis directly tackles the versatility and encoding gaps

regarding transitioning between stored memories in a meaningful sequence.

We predict that:

(i) Introducing asymmetry into Hopfield networks through structured perturbations of the

synaptic weights will induce cyclic dynamics, allowing sequential transitions between

stored memory states. This addresses the versatility gap by demonstrating memory

chaining capacity.

(ii) Similarly, adding structured asymmetric synaptic connectivity in spike-coding networks

will allow them to exhibit cyclic dynamics and maintain temporal order information. This

prediction provides insights into the versatility gap by unifying associative completion

and temporal sequencing.
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(iii) The cyclic dynamics emerging from structured asymmetric synaptic weights will unify

the computational capabilities of Hopfield and spike-coding networks. This prediction

bridges theory to application, aligning with the depth and encoding gap.

(iv) Simulating spike-coding networks with appropriate tuning of slow synaptic weights on

a working memory task will demonstrate their capability to encode and discriminate

temporal sequences. This assessment tackles the resilience gap regarding handling noise

and partial inputs.

To test this, we will use the following approach (Chapter 4):

1. Present the concepts of associative memory in modern Hopfield networks and their ability

to store patterns through Hebbian learning.

2. Show equivalence between the spike-coding and Hopfield networks when parameterized

by cyclic permutation matrices.

3. Generalize the mathematical equivalence framework through circulant matrices that en-

able modeling arbitrary temporal dependencies.

4. Relate the models to CNNs, which also perform a form of discrete convolution by using

convolutional filters to detect spatial patterns.

5. Simulate a spiking neural network implementing the n-back working memory task to thor-

oughly characterize the ability of spike-coding networks to encode and retrieve meaningful

temporal sequences.

By connecting these foundational neural network models through a common mathematical

framework, we aim to provide an integrated understanding of the associative and dynamic

aspects of neural computation.

1.7.3 Aim 3

Our Aim 3 is to develop an unsupervised deep learning approach for cross-

modality medical image translation using dual fast-slow pathways generative

adversarial networks. We will focus on the challenging task of translating 3 Tesla (3T)

magnetic resonance imaging (MRI) scans to 7 Tesla (7T) MRI. Based on the predictions

from Aim 2 that architectural asymmetry and separate slow-fast processing pathways can
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enhance model performance, we hypothesize that a dual pathway GAN generator will improve

translation accuracy compared to a standard single pathway generator. This hypothesis di-

rectly assesses the prediction from Aims 1 and 2 that separate asymmetric pathways confer

benefits like enhanced robustness and depth, aligning with those gaps.

We predict that:

(i) The model can generate realistic synthetic 7T MR images from 3T MR inputs while

preserving structural and semantic information. This tests the depth of encoding gap by

evaluating multi-scale translation fidelity.

(ii) The model will demonstrate robust performance in translating tissue-specific charac-

teristics between modalities. This prediction addresses the resilience gap by assessing

consistency across datasets.

(iii) Implementing a dual pathway GAN generator will enhance translation accuracy com-

pared to a standard single pathway generator. This directly tackles the depth and re-

silience gaps by validating the benefits of architectural asymmetry.

To test this, we will use the following approach:

1. Curate multi-site datasets of unpaired 3T and 7T structural MRI scans as training and

validation data for the GAN models.

2. Implement standard and dual pathway CycleGAN architectures using 2D convolutional

neural networks for unsupervised 3T to 7T MRI translation.

3. Optimize model hyperparameters, including network width and depth, loss functions,

and training procedures to enhance translation fidelity.

4. Quantitatively evaluate model performance using segmentation metrics, including Dice

coefficient and Percentual Area Distance for key tissue types.

5. Compare standard and dual pathway models to assess the predicted benefits of intro-

ducing asymmetric processing streams.

The focus on translational impact, rigorous quantification, and clinical relevance in the

evaluation ensures Aim 3 meets the standards for an applied biomedical engineering contri-

bution. This comprehensive approach encompassing robust dataset curation, model devel-
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opment, and quantitative validation, aims to rigorously assess the real-world applicability of

conceptual predictions on the benefits of architectural asymmetry for medical image analysis.

While Aims 1 and 2 establish core theoretical principles through detailed modeling of

biological phenomena, Aim 3 demonstrates the practical potential of these findings in deep

neural networks. The focus on architectural asymmetry in Aim 3, inspired by the coordinated

excitation-inhibition balance in Aim 1 and structured synaptic perturbations in Aim 2,

bridges theory and application. Collectively, the three Aims provide an integrative platform

spanning neural computation models and their implementation in machine learning systems.

1.8 List of Contributions

Contributions in Chapter 2:

• Derived dynamical equations governing membrane potential dynamics in networks

of spiking neurons.

• Demonstrated how populations of leaky integrate-and-fire neurons can encode signals

into spike times through phase-locking.

• Analyzed stability of phase-locked states and impact of synaptic time constants.

• Generalized coding network to handle multiple input signals.

Contributions in Chapter 3:

• Developed Wilson-Cowan neural oscillator network exhibiting transitions between

Up and Down states.

• Demonstrated the spontaneous emergence of slow oscillations from the balance be-

tween excitation and inhibition.

• Analyzed the effects of noise and coupling strength on the frequency and duration

of the state transitions.

• Revealed Bogdanov-Takens bifurcation underlies rhythm genesis in slow oscillations.

Contributions in Chapter 4:

• Reviewed mathematical principles behind modern Hopfield networks and their ability

to store memories through Hebbian learning.
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• Demonstrated the equivalence between spike-coding and Hopfield models by repre-

senting asymmetric weights in Hopfield networks as cyclic permutation matrices.

• Generalized the mathematical equivalence framework to circulant matrices that en-

able modeling complex temporal dependencies.

• Related the discrete convolution implemented in these networks to CNNs.

• Simulated the n-back working memory task in the spike-coding network to demon-

strate the ability of spike-coding networks to encode and retrieve temporal sequences.

Contributions in Chapter 5:

• Compiled unpaired datasets of 3T and 7T structural MR images to train CycleGAN

networks.

• Developed 2D CycleGAN model to translate 3T MRI to synthetic 7T MRI in an

unsupervised manner using unpaired training data.

• Implemented Fast-Slow U-Net architecture to enhance translation through separate

fast and slow processing pathways.

• Evaluated quality of synthesized 7T images using segmentation metrics including

Dice coefficient and percent area difference.

• Demonstrated potential of CycleGAN for spatial adaptive normalization to combine

3T and 7T MR data.

1.9 Overview of the Dissertation Structure

Aim 1 will be addressed in Chapters 2 and 3. Chapter 2 comprehensively examines spike-

coding networks’ mathematical foundations and dynamics. Key topics include spike time

encoding via phase-locking, stability analysis of phase-locked solutions, and extensions to

handling multiple encoded signals. The theoretical modeling approach will provide insights

into spike coordination mechanisms for synchronizing distributed neuronal populations.

Chapter 3 builds upon the spike timing coordination principles from Chapter 2 to inves-

tigate the population dynamics underlying cortical Up-Down state transitions during slow-

wave sleep. Key topics include developing a network model of coupled neural oscillators
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exhibiting bistable Up-Down states, analyzing the modulation of state transitions by noise

and coupling strength, and identifying a Bogdanov-Takens bifurcation structure giving rise

to the spontaneous emergence of slow oscillations from the delicate balance of excitation and

inhibition. This modeling approach sheds light on the mesoscopic mechanisms orchestrating

macroscale brain rhythms.

Aim 2 will be covered in Chapter 4. We prove that introducing asymmetry to Hopfield

and spike-coding networks elicits equivalent cyclic attractor dynamics, allowing both models

to generate temporal sequences. Structured synaptic weight perturbations induce cycles

in Hopfield networks, while structured asymmetric connectivity creates equivalent cycles in

spike-coding networks. This unifies their ability to store static memory patterns that can be

replayed as complex timing sequences. Simulations of spike-coding networks on the n-back

task demonstrate this sequence generation capacity. Thus, Chapter 4 provides a unified view

of associative memory models through the lens of cyclic dynamics.

Aim 3 will be explored in Chapter 5, where we present our work on developing a 2D

CycleGAN model for cross-modality 3T to 7T MRI translation. We train the model on

unpaired 3T and 7T datasets and implement the Fast-Slow U-Net architecture to improve

multi-scale processing. The model is evaluated using tissue segmentation tasks to quantify

its efficacy in generating realistic 7T MRI from 3T inputs. This approach demonstrates

CycleGAN’s potential to aid spatial adaptive normalization for combining historical 3T and

modern 7T data, accelerating brain imaging research. The key contributions are the compi-

lation of multi-site 3T and 7T MR datasets, developing of an unsupervised 2D CycleGAN

model, implementing the Fast-Slow U-Net variant, and quantitative evaluation using seg-

mentation metrics. The results highlight CycleGAN’s capacity to bridge the technological

divide between MRI field strengths while preserving compatibility with existing data.

Chapter 6 summarizes this dissertation research’s key findings and contributions. It

also discusses potential future directions from this theoretical and computational modeling

work on elucidating brain rhythms and memory consolidation mechanisms. References cited

across all chapters are collected in the bibliography.
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2.0 Spike-Based Predictive Coding: A Framework for Neural Network

Implementation

2.1 Chapter Summary

This chapter explores spike-based predictive coding networks’ mathematical foundations

and dynamics. These networks encode information using precise spike times rather than

average firing rates. We derive the equations governing the membrane potential dynamics of

spiking neurons and their synchronization through phase-locking. Stability analysis reveals

how parameters like the synaptic time constant affect network synchronization. At extremes,

specific parameters lead to complex behaviors like metastability. We also generalize the

network to encode multiple signals through linear combinations of spike trains. Overall,

examining spike-coding network dynamics offers insights into how neurons communicate

and self-organize in the brain.

2.2 Introduction

The human brain is a complex network of approximately 86 billion neurons, which

communicate via electrical signals to transmit information and mediate cognitive processes

(Azevedo et al., 2009). Understanding how these neurons encode and decode information

in the form of electrical impulses, often represented as spike trains, is one of the central

challenges in computational neuroscience.

Spike coding refers to information encoded in the timing of action potentials, also known

as spikes, within neurons. These spikes represent rapid, transient shifts in a neuron’s mem-

brane potential. This form of neural communication contrasts the rate coding approach,

where the average firing rate of a neuron is considered the primary carrier of information

(Gerstner et al., 2014). By focusing on the precise timing of individual spikes, spike coding

allows for a more detailed and intricate understanding of neuronal information processing.
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Since the seminal work of Lapicque at the beginning of the 20th century, numerous models

have been proposed to describe the biophysics of neural spiking behavior, with the Hodgkin-

Huxley model and the leaky integrate-and-fire model being amongst the most renowned

ones (Hodgkin and Huxley, 1952, Lapicque, 1907). Over the years, the field has embraced

diverse perspectives, exploring stochastic aspects, adapting firing thresholds, and integrating

synaptic dynamics, among others (Brette and Gerstner, 2005, Friston et al., 2006).

In recent years, a new paradigm has emerged exploring predictive coding in neural net-

works, a hypothesis postulating that the brain is a prediction machine (Rao and Ballard,

1999). This framework has been adapted to the context of spiking neurons, leading to the

development of spike-based predictive coding networks. These networks have demonstrated

substantial potential for modeling neuronal dynamics and serving as the groundwork for

more complex computational models (Eliasmith and Anderson, 2003, Boerlin et al., 2013).

We start with a comprehensive exploration of the mathematical and theoretical founda-

tions of spike-coding networks, delving into the differential equations that govern their be-

havior and the extension of these concepts to encompass multiple encoded functions. Then,

we derive the phase-locking conditions and examine the impact of different parameters on

synchronization and stability. Phase-locking—the process in which two or more oscillat-

ing systems establish a fixed phase relationship—has significant implications for neuronal

synchronization, communication, and information processing within neural circuits (Buzsaki

and Draguhn, 2004). Finally, we provide crucial insights into the behavior of the networks

under extreme conditions. The complex mechanisms underlying these regimes advance our

understanding of neuronal dynamics and hint at the potential applications in ANNs and

computational models that strive to mimic the brain’s sophisticated coding strategies.
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2.3 Constructing the Spike-Coding Network

2.3.1 Modeling Spiking Neurons

Suppose we want to encapsulate a signal, denoted as f(t), within the activities of a neural

network. Initially, we impose a constraint on this network, specifying that it comprises

spiking model neurons. These neurons are characterized by generating a short-lived pulse

or spike when their membrane voltage surpasses a predetermined threshold. Without this

crossing, the neurons remain dormant and devoid of output. Hence, our task is to translate

f(t) into spike trains emitted by these neurons.

Decoding f(t) can be achieved by filtering and summing these spike trains, effectively

enabling synaptic integration. Specifically, the response of neuron i (i = 1, 2, . . . , N) to an

incoming current striking its membrane is defined as the spike train (Figure 2.1b:

δi(t) =
∑
k

δ(t− tki ). (2-1)

Here, δ(·) represents a Dirac δ function, while tki symbolizes the spike times of neuron i.

Next, we posit the normalized synaptic current, si(t), to be the filtered form of the spike

train δi(t) using an exponential filter (Figure 2.1c:

si(t) = δi(t) ∗ e−t/τ =

∫ ∞

0

e−t′/τδi(t− t′)dt′. (2-2)

In this equation, τ signifies the timescale of the filter. We assume that the neural membrane

exhibits capacitive properties, resulting in the temporal filtering of its inputs.

This formulation can equivalently be represented as the dynamical equation:

τ
dsi
dt

= −si + τδi. (2-3)

We can construe this equation as a model of post-synaptic potential. Notably, with

the use of this simplified synapse model, each presynaptic spike from neuron i causes an

instantaneous increase of 1 in the normalized synaptic current, i.e.,

si → si + 1. (2-4)
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This current then decays exponentially toward 0, with a time constant τ between spikes.

Finally, we define the output of the network, z(t), as a weighted sum of the normalized

synaptic currents:

z(t) =
N∑
i=1

ωisi(t). (2-5)

Our final assumption is that the output weights ωi are known and they span the phase

space. Figure 2.1a summarizes our configuration.

2.3.2 Decoding the Signal

Our objective is to derive the dynamical equations characterizing individual neurons and

synapses, to discern the nature of the driven input signal fD(t), processed through weights

uD, and to determine the pattern of connectivity (the N×N matrix of fast synapses strength

J fast) required for the network to generate suitable spike trains at appropriate times to

accurately represent the signal f(t), i.e., z(t) ≈ f(t). Furthermore, we desire to express

fD(t), uD, and J fast solely in terms of ω and s(t).

To achieve our goal, we must solve the classic credit-assignment problem in network

learning, i.e., we must determine how each neuron i in the network should behave such that

the network’s output z(t) approximates the desired signal f(t) as closely as possible. This

can be conceptualized as an optimization problem. One approach is to define the mean

squared error of the signal’s decoding over time, denoted as E(t0):

E(t0) =

∫ T

t0

(f(t) − z(t))2 dt. (2-6)

The objective then is to pinpoint the minimal set of spike trains δi(t), (i = 1, 2, . . . , N),

during the interval [t0, T ] such that E(t0) reaches a minimum. It is worth noting that

our optimization strategy does not entail adjusting the fixed output weights, which are

predetermined; instead, we optimize the timing of the spikes.

This approach deviates from rate coding networks, wherein the recurrent connections,

J fast, are random and fixed, while the decoding weights are learned. Therefore, the opti-

mization problem we must resolve is:

min
δ1,...,δN

E(t0). (2-7)
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(a)

(b) (c)

Figure 2.1: The spike-based neural network. (a) Structure of the network. A given

input fD is supplied to the network via weights uD. The neurons within the network are

interconnected through fast synapses, the strengths of which are given by the matrix J fast.

Specifically, the synaptic current generated in a postsynaptic neuron i by a presynaptic

neuron j is dictated by the synaptic weight J fast
ij multiplied by the normalized synaptic

current sj(t) from neuron j. The network output is computed by summing, with weights ω,

the synaptic currents of the neurons. (b) An example of a spike train from neuron i, δi(t),

and (c) the corresponding normalized synaptic current, si(t). τ = 100 milliseconds.

Gradient-based techniques do not provide a feasible solution, as establishing a differen-

tiable error measure suitable for spike trains is still a topic of ongoing research. Nevertheless,
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Boerlin et al. (2013) proposes a simple heuristic, which entails utilizing a spike rule for the

greedy minimization of the cost function E(t0). This rule asserts that neuron i should only

generate a spike at time t if such an action would reduce the decoding error at time t.

Let us consider E(t|no spike) = (f(t) − z(t))2 as the decoding error at time t, assuming

no spikes occurred at that time, and E(t|neuron i spikes) = (f(t) − z̄(t))2 as the decoding

error at time t, assuming neuron i fired at that time.

A critical question to address here pertains to the effect of a spike on the output; that is,

how does the new output, z̄(t), adjust if neuron i fires at time t? To answer this, we write a

dynamical equation for z(t):

dz

dt
=

N∑
i=1

ωi
dsi
dt

(time derivative of Eq. (2-5))

= −1

τ

N∑
i=1

ωisi +
N∑
i=1

ωiδi (Using Eq. (2-3))

= −1

τ
z +

N∑
i=1

ωiδi (Using Eq. (2-5))

∴ τ
dz

dt
= −z +

N∑
i=1

τωiδi. (2-8)

Note that Eq. (2-8) has a similar form to Eq. (2-3), and by analogy, we can conclude

that each spike from neuron i instantaneously increases the output by ωi:

z → z + ωi,

and then the output decays exponentially toward 0 with a time constant τ between spikes.

Consequently, the new output z̄(t), given that neuron i fired at time t is:

z̄ = z + ωi. (2-9)
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Thus, we arrive at the spiking rule for neuron i: Neuron i should fire whenever the

following condition is met:

E(t|neuron i spikes) < E(t|no spikes) (2-10)

(f − z̄)2 < (f − z)2

(f − (z + ωi))
2 < (f − z)2 (Using Eq. (2-9))

−2fωi + 2zωi + ω2
i < 0 (Expanding the squares)

ωi(z − f) < −ω2
i

2

ωi(f − z) >
ω2
i

2
. (2-11)

If we consider ωi(f − z) as the membrane voltage, vi(t), and ω2
i /2 as the firing threshold,

Ti of neuron i, then we can define the voltage of neuron i and the firing threshold as

vi(t) := ωi(f − z) (2-12)

and

Ti :=
ω2
i

2
. (2-13)

This brings us to conclude that whenever the error (f − z) exceeds ωi/2, neuron i will

fire a spike, as illustrated by the following firing rule:

vi(t) = ωi(f − z) >
ω2
i

2
= Ti. (2-14)

To refine our understanding, we aim to derive a model that encapsulates this behavior for

individual neurons within the network. We formulate a dynamical equation for the neuron’s
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potential vi(t). Therefore, we take the time derivative of Eq. (2-12):

dvi
dt

= ωi

(
ḟ − dz

dt

)
(ḟ :=

df

dt
)

= ωiḟ +
1

τ
ωiz −

N∑
j=1

ωiωjδj (Using Eq. (2-8))

∴ τ
dvi
dt

= τωiḟ + ωiz −
N∑
j=1

τωiωjδj

= τωiḟ + [ωif − ωif ] + ωiz −
N∑
j=1

τωiωjδj

= −ωi(f − z) + ωi(τ ḟ + f) −
N∑
j=1

τωiωjδj

= −vi + ωi(τ ḟ + f) −
N∑
j=1

τωiωjδj (Using Eq. (2-12))

∴ τ
dvi
dt

= −vi + ωi(τ ḟ + f) +
N∑
j=1

(−τωiωj)δj. (2-15)

From Eq. (2-15), it becomes apparent that every spike originating from neuron j results

in an instantaneous decrease in the voltage of neuron i by an amount of ωiωj,

vi → vi − ωiωj. (2-16)

Specifically, when i = j, it leads to the self-reset

vi → vi − ω2
i , (2-17)

which implies that neuron i fires when vi = Ti, followed by a reset to vi = Ti − ω2
i = −Ti.

The membrane potential of neuron i, vi(t), essentially tracks the decoding error f(t)−z(t).

Once this decoding error surpasses Ti = ωi/2 (refer to Eq. (2-14)), neuron i is triggered to

fire a spike. This, in turn, modifies the network’s output as z → z + ωi (refer to Eq. (2-9)).

Additionally, the firing of neuron i resets its membrane voltage to vi → −Ti.

Eq. (2-15) along with the firing condition stated in Eq. (2-14) collectively describe a

network of leaky integrate-and-fire neurons. The input to this network is characterized by

fD(t) = τ ḟ + f, (2-18)
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whereas the input weights are denoted by uD = ω, and the fast synaptic connections are

expressed as J fast
ij = −τωiωj.

The approach to understanding rate-based networks—in which neurons communicate

via continuous variables contrasting with the spike-based communication in spike-coding

networks—often involves a bid to compensate for the effects of nonlinearities (e.g., firing rule)

and synaptic connections J fast. This can be achieved by selecting a suitable output weight ω.

A common strategy is setting fD(t) to f(t), then tuning ω such that z equals f . That way, the

network could encode f(t) via the neurons’ firing rates and later decode it through ω (Amit

and Brunel, 1997). Despite the reasonable results this technique produces for rate-based

networks, it often falls short when applied to spiking networks, whether they are rate-coding

or spike-coding networks1. Here, the deficiency is attributable to the inability to offset the

effects of the low-pass filtering operation and the resultant phase delay—occurring during

the conversion from spikes to normalized synaptic currents—through the mere adjustment

of ω. A viable solution is to input a high-pass filtered, phase-advanced version of the desired

output, fD = τ ḟ + f , into the network (Abbott and Kepler, 2005).

2.4 Autonomous Encoding of Signals

Eq. (2-15) offers the dynamic model for the spiking neurons and expresses uD and J fast

solely in terms of ω. However, fD remains related to the signal f . In this state, the network

essentially operates as an autoencoder (Hinton and Salakhutdinov, 2006). It accepts the

desired signal f(t) as an input, represents it through neuronal activity, and recovers f(t)

at the output by decoding the spike trains. Even though we have determined how to drive

the network to achieve f(t) at the output, our ultimate goal is to develop an autonomous

system, i.e., a network that can encode f independently without requiring it as input. This

demands a three-fold approach: ensuring that the network can generate fD (as given in

1Spiking networks can come in two flavors: rate-coding and spike-coding. In rate-coding networks,
neurons communicate through spikes and encode the target output in the neurons’ firing rates. In contrast,
spike-coding networks communicate through spikes but encode the target output in the spike times. Both
are spiking networks communicating through spikes but differ in how they encode the target output.
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Eq. (2-18)) autonomously; identifying a set of recurrent connections that can accomplish

this with satisfactory accuracy; and ensuring the stability of the solution with respect to the

network dynamics (Doya et al., 1992).

For the case of a linear dynamic system that produces f as

τ ḟ = −f + Af + c(t), (2-19)

where c(t) is a general control signal, we can identify such an input.

Specifically, we can rewrite Eq. (2-15) by integrating Eq. (2-19):

τ
dvi
dt

= −vi + ωiAf −
N∑
j=1

τωiωjδj + ωic (Using Eq. (2-19))

= −vi + ωiAz −
N∑
j=1

τωiωjδj + ωic (Since f ≈ z)

= −vi +
N∑
j=1

ωiAωjsj −
N∑
j=1

τωiωjδj + ωic (Using Eq. (2-5))

∴ τ
dvi
dt

= −vi +
N∑
j=1

(−τωiωj)δj +
N∑
j=1

(ωiAijωj)sj + ωic(t). (2-20)

Now, along with J fast
ij = −τωiωj, we have

J slow
ij = ωiAωj. (2-21)

J slow
ij represents a set of connections that effectively implement the dynamic system given by

Eq. (2-19). The synapses described by J slow transform the normalized synaptic currents sj,

therefore slower recurrent connections when juxtaposed with J fast, which modifies the raw

spikes δj instead, hence the adopted fast/slow terminology.

The interplay between rapid recurrent synapses (J fast) and slower recurrent synapses

(J slow) serve a two-fold purpose, with the former primarily orchestrating a competitive dy-

namic among neurons and the latter fostering cooperation. For example, consider the inter-

action between neuron i and neurons k that share sign (ωkωi > 0). When neuron i fires, it

excites similar neurons, immediately incrementing their voltages vk(t) proportional to ωkωi.

Such cooperative connections provide predictions trajectory of f(t). In situations where f(t)
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remains static (setting A = 1 and c(t) = 0 in Eq. (2-19)), these connections enable the

network to sustain ongoing activity, thereby preventing z(t) from decaying to zero.

Conversely, when neuron i interacts with neurons j that have an opposite sign (ωjωi < 0),

the action of neuron i firing prompts an inhibition of dissimilar neurons, as evidenced by an

immediate decrement in their voltages vj(t) proportional to ωjωi.

At first glance, one might attempt to conclude that fast synapses may correspond to

observed AMPA excitatory synapses in biological neural networks, and slower synapses match

NMDA inhibitory synapses. Similarly, one might assume that speedy GABAA synapses

relate to fast responses and lethargic GABAB synapses to slower responses. However, this

assumption is overly simplistic. The relationship between these in biological neurons is far

more intricate due to the diverse processes that modify these synapses (Koch, 2004).

Figure 2.2 offers a network representation of the autonomous network that has been

constructed, with Figure 2.2a detailing the resultant output feedback structure that follows

by modifying Eq. (2-18) given the assumptions Eq. (2-19) and f ≈ z:

τ ḟ = −f + Af + c (Eq. (2-19))

τ ḟ + f = Af + c

fD(t) = Af(t) + c(t) (Using Eq. (2-18))

Consequently, we must pass the network output through the linear dynamical system

defined by A, append c(t), and then feed this as the network input. Importantly, this negative

feedback loop does not need to be explicitly implemented in the network but can be realized

within the neural population (Amit, 1989). As illustrated in Figure 2.2b, the arrangement

presented in Figure 2.2a is equivalent to the inclusion of a new set of synaptic connections

with strengths corresponding to Eq. (2-21). Consequently, the network’s connectivity is

entirely contingent upon ω and the desired dynamics A.
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(a) (b)

Figure 2.2: Network representation of the autonomous spike-coding network.

(a) Schematic of the output feedback mechanism employed to generate the input in terms

of the output, premised on the assumption that f(t) satisfies Eq. (2-19). (b) Schematic por-

traying an equivalent network constructed via the inclusion of an additional set of synapses

(J slow) with strengths as indicated by Eq. (2-21). Red connections indicate slow synaptic

connections, while black connections denote fast ones. c(t) represents the control signal.

2.4.1 Spike-Trigger Adaptation

Before moving forward, it is necessary to address an additional consideration: the case

where ωi is markedly small. As indicated in Eq. (2-9), if ωi is small, neuron i will minimally

influence z, yet will fire at a remarkably high rate, given the prediction of a shallow firing

threshold by Eq. (2-13). This issue could be avoided through the introduction of a quadratic

cost term controlled by the gain µ to encourage as few spikes as possible and to foster a

uniform distribution of spikes across neurons:

E(t0) =

∫ T

t0

[
(f(t) − z(t))2 + µ

N∑
i=1

s2i (t)

]
dt. (2-22)
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From this, we can re-derive the spiking rule for neuron i as follows:

E(t|neuron i spikes) < E(t|neuron i does not spike)

(f − (z + ωi))
2 + µ(s2i + 1) < (f − z)2 + µs2i (Using Eq. (2-4))

−2fωi + 2zωi + ω2
i + µsi + µ < 0

ωi(z − f) + µsi < −1

2
(ω2

i + µ).

ωi(f − z) − µsi >
1

2
(ω2

i + µ). (2-23)

Following similar logic to prior discussions, we define the voltage of neuron i as

vi(t) := ωi(f − z) − µsi (2-24)

and the firing threshold as

Ti :=
1

2
(ω2

i + µ). (2-25)

In this context, the dynamic equation for vi(t) becomes:

dvi
dt

= ωi

(
ḟ − dz

dt

)
− µ

dsi
dt

(Derivative of Eq. (2-24))

∴ τ
dvi
dt

= τωiḟ + ωiz −
N∑
j=1

τωiωjδj − µ (−si + τδi) ((2-3) & (2-8))

= τωiḟ + [ωif − ωif ] + ωiz + µsi −
N∑
j=1

τωiωjδj − τµδi

= −[ωi(f − z) − µsi] + ωi(τ ḟ + f) −
N∑
j=1

τωiωjδj − τµδi

= −vi + ωi(τ ḟ + f) −
N∑
j=1

τωiωjδj − τµδi (From (2-24))

∴ τ
dvi
dt

= −vi + ωi(τ ḟ + f) +
N∑
j=1

(−τωiωj)δj − τµδi. (2-26)

As suggested by Eq. (2-26), each spike from neuron j causes a momentary decrease in

voltage by ωiωj (a concept previously introduced; refer to Eq. (2-16)). This results in a reset:

vi → vi − ω2
i − µ. (2-27)
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This implies that neuron i fires when vi = Ti and then resets to vi = Ti − ω2
i − µ = −Ti,

with Ti given by Eq. (2-25). Eq. (2-26) also implies that J fast
ij = −τ(ωiωj + µδij)

2.

The role of the quadratic cost gain µ is similar to introducing a hyperpolarizing current

in the membrane potential of neurons that just spiked and relates to previous findings on

spike-triggered adaptation (Liu and Wang, 2001, Benda and Herz, 2003).

2.4.2 Multiple Encoded Functions

The previous discussion has primarily been confined to instances where f(t) is a scalar

function, thereby limiting Eq. (2-19) to represent either a low-pass filter or an integrator

within a one-dimensional context. To expand our framework to a more extensive range of

system implementations, we introduce the possibility of f(t) being a vector. Variable and

parameter definitions utilized throughout the following derivation can be found in Table 2.1.

Adapting the derivations of the earlier sections to support multiple encoded functions

is a straightforward process. As before, signal decoding proceeds via the computation of a

weighted sum of normalized synaptic currents as shown in Eq. (2-28):

zk(t) =
N∑
j=1

ωkjsj(t), (2-28)

where ωkj represents the weight of neuron j’s contribution to the output fk(t).

In this generalized framework, the network dynamics evolve according to the following:

τ
dvi
dt

= −vi +
K∑
k=1

ωik(τ ḟk + fk) − τ
K∑
k=1

ωik

N∑
j=1

ωkjδj − τµδi, (2-29)

complemented by the spiking rule:

vi > Ti =
1

2

(
K∑
k=1

ω2
ik + µ

)
. (2-30)

2By the notation δij it is meant the Kronecker delta function, i.e., δij = 0 when i ̸= j, and δij = 1 when
i = j. Not to be confused with δi, which denotes the spike train of neuron i.
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An autonomous network capable of encoding f(t) can be constructed assuming that fk(t)

are generated by a linear dynamic system represented as follows:

τ ḟk = −fk +
K∑
p=1

Akpfp + ck. (2-31)

Suppose this assumption holds and the approximation f ≈ z is in effect. In that case,

we can re-write Eq. (2-29) to yield:

τ
dvi
dt

= −vi +
K∑
k=1

ωik

N∑
j=1

Akjωpjsj − τ

K∑
k=1

ωik

N∑
j=1

ωkjδj − τµδi +
K∑
k=1

ωikck, (2-32)

with the respective fast and slow synaptic currents expressed as

J fast
ij = −τ

(
K∑
k=1

ωikωkj + µδij

)

and

J slow
ij =

K∑
k=1

K∑
p=1

ωikAkpωpj.

Interestingly, this network structure can autonomously represent any linear dynamical

system by simply choosing A appropriately.

In matrix notation, Eqs. (2-28)–(2-32) are

z(t) = Ωs(t), (2-33)

τ v̇ = −v + ΩT (τ ḟ + f) − τΩTΩδ − τµδ + ΩTc, (2-34)

with spiking rule

v > T =
1

2
diag

(
ΩTΩ + µI

)
. (2-35)

Assuming f(t) can be generated by a linear dynamic system of the form

τ ḟ = −f + Af + c, (2-36)

we can re-write Eq. (2-34) as

τ v̇ = −v + Ωslows + Ωfastδ + ΩTc, (2-37)

where Ωfast = −τ
(
ΩTΩ + µI

)
and Ωslow = ΩTAΩ.
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Table 2.1: List of variables and parameters for the autonomous spike-coding network.

Variable/Parameter Description

τ synapse dynamics timescale (scalar)

N number of neurons (scalar)

K number of inputs (scalar)

f(t) = [f1(t), . . . , fK(t)]T encoded signals (K × 1 vector)

c(t) = [c1(t), . . . , cK(t)]T control signals (K × 1 vector)

z(t) = [z1(t), . . . , zK(t)]T decoded (or estimated) signals (K × 1 vector)

δ(t) = [δ1(t), . . . , δN(t)]T spike trains (N × 1 vector)

s(t) = [s1(t), . . . , sN(t)]T normalized synaptic currents (N × 1 vector)

v(t) = [v1(t), . . . , vN(t)]T membrane potentials (N × 1 vector)

T = [T1, . . . , TN ]T firing thresholds (N × 1 vector)

µ quadratic cost term gain (scalar)

A
describes the linear temporal evolution of the

encoded signal f(t) (K ×K matrix)

Ω =


ω11 ω12 · · · ω1N

ω21 ω22 · · · ω2N

...
...

. . .
...

ωK1 ωK2 · · · ωKN



decoding weights (K ×N matrix);

ωki is the weight of contribution of neuron i to

the k-th decoded signal zk(t)

Ωi = [ω1i, . . . , ωKi]
T i-th column of Ω (K × 1 vector)

Jfast = −τΩTΩ
fast synaptic connections (N ×N matrix);

Jfast
ij = −τΩT

i Ωj

Jslow = ΩTAΩ
slow synaptic connections (N ×N matrix);

Jslow
ij = ΩT

i AΩj

In summary, the autonomous network of spiking neurons encoding the linear dynamical
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system in Eq. (2-36) within the spike times of neurons are given by the following set of

differential equations:

τ v̇ = −v + Ωslows + Ωfastδ + ΩTc (2-38)

τ ṡ = −s + τδ, (2-39)

where

Ωfast = −τ
(
ΩTΩ + µI

)
, (2-40)

Ωslow = ΩTAΩ. (2-41)

2.5 Oscillatory Patterns in Spike-Coding Networks

Our focus in this section lies primarily in the analytical examination of spike-coding net-

works, specifically those operating in regimes supportive of frequency-locked solutions. This

realm of operation is characterized by network units acting as oscillators, exhibiting a syn-

chronous firing pattern that shares a common period (Hoppensteadt and Izhikevich, 1997).

This behavior encapsulates all phase-locked solutions, notably the synchronous and travel-

ing wave states, foundational to understanding the complex dynamics of neural networks

(Ermentrout, 1996, Kopell and Ermentrout, 2002, Kuramoto, 1984).

To facilitate comprehension, we reiterate our experimental setup and recapitulate the

dynamical equations which serve as the foundation for our subsequent mathematical analysis.

The following system defines the spike-coding network of N uniform LIF neurons:

τ
dvi
dt

= −vi − τϵ
N∑
j=1

J fast
ij δj(t) + ϵ

N∑
j=1

J slow
ij sj(t) + ωiIi, (2-42a)

τ
dsi
dt

= −si + τδi(t). (2-42b)

Here, Ii denotes a persistent external bias, and the terms J fast
ij = ωiωj and J slow

ij = ωiAijωj

designate recurrent connections from the jth neuron to the ith neuron. The function δi(t) =∑
n∈Z δ(t− tni ) is the spike train of the ith neuron, with firing times tni . This structure entails
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neurons communicating with one another through the synaptic transmission of spike trains.

The global strength of these synaptic connections is represented by the parameter ϵ.

In this context, si(t) signifies the temporal evolution of the postsynaptic response to the

spike train δi(t); i.e., each spike is transformed into a postsynaptic current, as dictated by

the kernel implicit in Eq. (2-42b):

si(t) = (α ∗ δi)(t), (2-43)

where

α(t) = e−t/τΘ(t) (2-44)

is the standardized postsynaptic response kernel, and Θ(t) = 1 for t > 0.

Applying the method of variation of parameters, one can solve equations (2-42) and

obtain:

vi(t) = vi(0)e−t/τ +ωiIi
(
1 − e−t/τ

)
+ ϵ

1

τ

∑
j,m

J slow
ij A(t− tmj , 0)− ϵ

∑
j,m

J fast
ij E(t− tmj , 0), (2-45)

where

E(x, y) := e−(x+y)/τΘ(y) (2-46)

and A(x, y) denotes the integral

A(x, y) := e−x/τ

∫ x

0

eu/τα(u + y)du. (2-47)

From the perspective of the ith neuron, it perceives a sequence of action potentials

occurring at times {tmj }, with each spike eliciting a synaptic response conforming to (2-42b).

A spike is triggered when vi reaches the threshold ϑi, immediately resetting vi to the resting

potential, −ϑi. By denoting the firing times of the ith neuron by {tmi }, we can conceptualize

the neuron as a functional unit that translates {tmj } → {tmi }.

We can construct an implicit map of the firing times for the spike-coding network under

consideration. Here, ϑi symbolizes the firing threshold, implying vi(t
n
i
−) = ϑi and vi(t

n
i
+) =

−ϑi. Integrating Eq. (2-42) from tni to tn+1
i yields the nonlinear firing time map:

ϑi = ωiIi(1 − e−(tn+1
i −tni )/τ ) + ϵ

1

τ

∑
j,m

J slow
ij A(tn+1

i − tmj ) − ϵ
∑
j,m

J fast
ij E(tn+1

i − tmj ), (2-48)

where tn+1
i > tmj ,∀j,m.
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2.5.1 Phase-Locked States

We restrict our attention to phase-locked solutions of (2-42) in which every oscillator

fires with a self-consistent period T , to be determined. For instance, consider the case where

two neurons continue firing periodically when coupled. Suppose that neuron i = 1 fires at

times tn1 = nT , where n is an integer, while neuron i=2 fires at tn2 = (n − ϕ2)T . Thus,

both neurons are firing at the same frequency but are separated by a phase 0 < ϕ2 < 1. In

general, the spike times satisfy,

tni = (n− ϕi)T, (2-49)

with constant phases ϕi.

Plugging the ansatz (2-49) in (2-48), we arrive at the algebraic conditions for phase-

locking in the spike-coding network:

ϑi = ωiIi(1 − e−T ) − ϵ
∑
j

J fast
ij ET (ϕj − ϕi) + ϵ

1

τ

∑
j

J slow
ij AT (ϕj − ϕi), (2-50)

where

AT (ϕ) :=
∑
m

A(T, (ϕ−m)T ) = e−T/τ

∫ T

0

eu/ταT (u + ϕ)du, (2-51)

αT (ϕ) :=
∑
m

α((ϕ−m)T ), (2-52)

and

ET (ϕ) :=
∑
m

E((m− ϕ)T ) =
∑
m

e−(ϕ−m)T , (2-53)

with AT (ϕ), αT (ϕ) and ET (ϕ) extended outside the range 0 < ϕ < 1, by making them

periodic functions of ϕ with period T .

Choosing ϕ1 as a reference phase, Eq. (2-50) generates a system of N equations for

the unknown period T and the remaining N − 1 relative phases ϕj − ϕ1. These equations

could be evaluated for several coupling functions α(t), yielding the algebraic conditions for

phase-locking in a spike-coding network with various topologies.

ET (ϕ) represents the “instantaneous phase interaction” in that it depicts the immediate

consequences of a neuron’s spiking on the membrane potential of other interconnected neu-

rons, predominantly through fast synaptic connections. Essentially, ET (ϕ) is a normalized
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sum of exponential terms characterizing the disparities in spike times amongst different neu-

rons, weighted by the inverse of the exponential decay rate, 1−e−T/τ (Roxin et al., 2005). It

encapsulates the nature of an immediate synaptic response induced by the spiking activity

of a neuron, as reflected in its phase ϕ. Intuitively, ET (ϕ) depicts the extent to which a spike

from a presynaptic neuron instantly impacts the postsynaptic neuron’s membrane potential,

culminating in an instantaneous change in its potential (Wang, 2010).

AT (ϕ) is a “delayed phase interaction function” that encapsulates the lagged influence

of a neuron’s spiking on other neurons, predominantly through slow synaptic connections.

This delay is triggered by the conversion process of a spike into a postsynaptic current, as

represented by the integral in its definition. The normalization here is also conducted by

1 − e−T/τ , which approximates the contribution from various spikes (Roxin et al., 2005).

At an intuitive level, AT (ϕ) represents how the postsynaptic neuron’s membrane potential

is altered over time, after the firing of the presynaptic neuron, factoring in the process of

postsynaptic current generation and its subsequent decay (Hansel et al., 1995).

In aggregate, ET (ϕ) and AT (ϕ) articulate the phase interaction effects, thereby encapsu-

lating the impact of one neuron’s spiking activity on another, while taking into account the

time scales of synaptic transmission (Ermentrout and Terman, 2010).

2.5.2 Stability of Phase-Locked States

Stability analysis plays a vital role in the study of dynamical systems. Here, we’re

interested in the stability of the phase-locked solutions of the spike-coding network (2-42).

In simple terms, we want to know whether small perturbations in the phase will be damped

out or amplified over time, determining whether the system returns to the phase-locked state

or moves away from it, respectively.

Perturbations to the phase-locked state of the system can be formally expressed as:

tni = (n− ϕi)T + δni . (2-54)

Here, δni constitutes infinitesimal perturbations in the phases of the neurons.
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Next, we linearized the firing time map (2-48) around the phase-locked state. This is

achieved by taking the first-order Taylor expansion of the map with respect to the perturba-

tions. The non-linear term involving the spike times will become a linear term involving the

phase perturbations δϕi. The linearized map gives us a set of linear differential equations

that describe how the perturbations evolve.

Specifically, we substitute Eq. (2-54) into Eq. (2-48) and unfold the resultant expression

as a power series in the perturbations δni . Phase-locked equations (2-50) can be recovered at

the O(1) order, while the O(δ) order yields an infinite-order linear difference equation. This

equation forms an explicit map for the perturbations:

0 = ωiIie
−T/τ (δn+1

i − δni )

+ ϵ
∑
j

J fast
ij ET (ϕj − ϕi)(δ

n+1
i − δmj ) − ϵ

1

τ

∑
j

J slow
ij AT (ϕj − ϕi)(δ

n+1
i − δni )

+ ϵ
∑
j

J slow
ij αT (ϕj − ϕi)(δ

n+1
i − δni ) + ϵ

∑
j

J slow
ij HT (ϕj − ϕi)(δ

n
i − δmj ). (2-55)

Here, HT (ϕ) is defined by:

HT (ϕ) := e−T/τ

∫ T

0

eu/τα′
T (u + ϕ)du, (2-56)

where α′
T ≡ dαT/du.

The function HT (ϕ) is a time-dependent quantity defined in terms of the time derivative

of αT . In essence, HT (ϕ) is a measure of how the membrane potential of the ith neuron

responds to a small change in the phase difference between it and another neuron in the

network. The intuition behind this function is that it captures how phase perturbations

propagate through the network, influencing the timing of each neuron’s spikes.

Eq. (2-55) represents the linearized map at phase-locked solutions, premised on the as-

sumption that the relatively insignificant O(δ2) terms can be safely disregarded.

To facilitate understanding of this intricate expression, let us contemplate the case of an

uncoupled network with constant input Ii(t) = Ii. In such a setting, the asymptotic value of

the membrane potential for the ith neuron is ωiIi. If ωiIi > ϑi, the neuron exhibits periodic
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firing. Assuming vi(0) = 0, Eq. (2-45) allows us to solve for the time of the first spike, t1i ,

leading to the following relationship:

ϑi = ωiIi

(
1 − e−t1i /τ

)
.

Subsequently, we find:

t1i = τ ln

(
ωiIi

ωiIi − ϑi

)
≡ Ti. (2-57)

This equation captures Ti, the period of the isolated ith neuron, thereby shedding light

on the intrinsic rhythm of the individual neuron when not subjected to any external influence

or coupling with other neurons.

By utilizing the approximation T ≈ Ti and integrating Eq. (2-57) into Eq. (2-50), we

get:

ϵ
∑
j

J fast
ij ET (ϕj − ϕi) − ϵ

1

τ

∑
j

J slow
ij AT (ϕj − ϕi) = 0.

Thus, Eq. (2-55) denoting the perturbation map can be condensed to the following form:[
ωiIi − ϑi + ϵ

∑
j

J slow
ij αT (ϕj − ϕi)

]
(δn+1

i − δni ) = ϵ
∑
j

J slow
ij HT (ϕj − ϕi)(δ

n
i − δmj ). (2-58)

To determine the rate and direction in which the perturbations evolve, we consider

solutions of the form:

δni = λnδi. (2-59)

This represents a specific form of solutions to the perturbation map that describes how per-

turbations in the phase of firing neurons evolve. Here, δni denotes the perturbation in the

firing time of the ith neuron at the nth spike, and λ is an eigenvalue of the Jacobian of the

firing map at the phase-locked state (2-55), that characterizes the rate of evolution of the

perturbations. The intuition behind this solution is that perturbations evolve geometrically

over time—that is, they either grow or shrink at a constant rate as determined by λ. If

Re(|λ|) < 1, then the perturbations shrink over time, suggesting the stability of the equilib-

rium state. On the other hand, if Re(|λ|) > 1, the perturbations grow over time, suggesting

the instability of the equilibrium.
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Substituting (2-59) in (2-48):[
ωiIi − ϑi + ϵ

∑
j J

slow
ij αT (ϕj − ϕi)

]
(λ− 1)δi = ϵ

∑
j J

slow
ij

[
H̃T (ϕj − ϕi, λ)δj −HT (ϕj − ϕi)δi

]
. (2-60)

Here, H̃T (ϕ, λ) is defined as:

H̃T (ϕ, λ) := e−T/τ

∫ T

0

eu/τ
∑
m

λ−mα′(u + ϕ)du. (2-61)

H̃T (ϕ, λ) is a more general form of HT (ϕ) that includes a dependence on λ, the eigenvalue

of the perturbation map.

Interestingly, for δi = δ, λ = 1 denotes a trivial solution, symbolizing perturbations

concurrent with the phase-locked solutions. This implies that they are degenerate for uniform

phase shifts in the firing times, indicated by tni → tni + δ. The stability criterion can thus

be expressed in terms of nontrivial solutions to Eq. (2-60): if all remaining solutions λ fulfill

Re(λ) < 0, the phase-locked state is linearly stable. This indicates that δi tends towards 0

geometrically fast as n approaches infinity.

2.5.3 Special Case—Stability of Synchrony

Although solutions λ are typically found through numerical integration, we can further

analytically investigate the stability characteristics of the synchronous state, a specific phase-

locked solution where ϕi = ϕ for all i and an arbitrary ϕ. For the sake of simplicity, suppose

Ii = I holds for all i and a fixed I such that ωiI > ϑi. The collective period of oscillation,

Tc, then adheres to:

Tc = τ ln

(
ωiI

ωiI − ϑi

)
. (2-62)

Under the condition that ωi/ϑi is constant, Tc is self-consistent, signifying a synchronous

state of the system.

By setting T = Tc in Eq. (2-50), the existence of a synchronous solution is contingent

upon the equation:

Ii =
I

ϑi

[
1 − ϵ

1

τ
γslow
i AT (0) + ϵγfast

i ET (0)

]
, (2-63)

where γslow
i and γfast

i are defined as
∑

j J
slow
ij and

∑
j J

fast
ij respectively.
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Additionally, it is important to note that:

HT (0) = A′
T (0). (2-64)

Also, integrating by parts and using Eq. (2-62), we can demonstrate:

A′
T (ϕ) = e−T/τ

∫ T

0

eu/τα′
T (u + ϕ)du

= αT (ϕ + T ) − e−T/τα(ϕ) − 1
τ
AT (ϕ) (integration by parts)

= αT (ϕ)
[
1 − e−T/τ

]
− 1

τ
AT (ϕ) (α(T + ϕ) = α(ϕ))

= αT (ϕ)

[
1 − ωiI − ϑi

ωiI

]
− 1

τ
AT (ϕ) (using (2-62))

∴
ωiI

ϑi

A′
T (ϕ) = αT (ϕ) − 1

τ

ωiI

ϑi

AT (ϕ). (2-65)

A′
T (ϕ) captures the rate of change of the membrane potential response to the phase

difference. The intuition behind this is that it encapsulates the sensitivity of each neuron’s

membrane potential to changes in the phase difference between them and other neurons.

Enforcing synchrony, the condition of Eq. (2-63), and the identities (2-64) and (2-65),

Eq. (2-60) can be reformulated to:[
(λ− 1)

(
ωiI
ϑi

(
ϵγfast

i ET (0) + ϵγslow
i A′

T (0) + 1
)
− ϑi

)
+ ϵγslow

i A′
T (0)

]
δi = ϵH̃T (0, λ)

∑
j J

slow
ij δj. (2-66)

The left-hand side describes the dynamics of a single neuron’s perturbation (δi) due to

external stimuli and its interaction with the overall network. It includes the effect of the

strength of external stimuli (ωiI/ϑi), intrinsic neuronal properties such as the fast and slow

timescales of neuronal dynamics (γfast
i and γslow

i ), and the external fields (ET (0) and A′
T (0)).

The right-hand side describes the network topology’s collective influence on the neuron’s

perturbation through the sum
∑

j J
slow
ij δj. Here, J slow

ij represents the slow synapse connec-

tivity matrix and δj the perturbation of neuron j. The term H̃T (0, λ) is a scaled version of

the first derivative of the external field, including the effects of the phase-locked state (λ).

Under the assumption of homogeneity in the neuronal dynamics, i.e., when γslow
i and

γfast
i are independent of i, we can further simplify (2-66) by diagonalizing it in terms of the

eigenvalues of J slow and suitably align δ = (δ1, . . . , δN) with one of the eigenvectors. In
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this case, γslow is the degenerate eigenvalue corresponding to the eigenvector (1, . . . , 1) that

correspond to constant phase shift. Let σp, for p = 1, . . . , N , denote the eigenvalues of J slow
ij .

Then, (2-66) simplifies to

(λ− 1)
(

ωiI
ϑi

(
ϵγfast

i ET (0) + ϵγslow
i A′

T (0) + 1
)
− ϑi

)
+ ϵγslow

i A′
T (0) − ϵσpH̃T (0, λ) = 0. (2-67)

This simplification allows us to express the original matrix equation in terms of eigen-

values of J slow denoted by σp. Specifically, it gives the synchrony condition for each eigendi-

rection p of the network connectivity matrix, associating synchrony to a particular mode of

collective neuronal activity represented by the eigenvector corresponding to σp.

2.6 Analysis of Postsynaptic Potentials for the Exponential Synaptic Kernel

In the case of the postsynaptic response given by (2-44), ET (ϕ), AT (ϕ), and H̃T (ϕ, λ)

reduce to a geometric series, which can subsequently be evaluated into a closed form. Let’s

start with ET (ϕ), representing the effective connectivity between neurons. It is calculated

by summing up the total postsynaptic potentials, given by Eq. (2-44), at every firing time

of a periodic neuron firing with period T and phase ϕ:

ET (ϕ) =
∞∑
n=0

e−(nT+ϕ)/τ . (2-68)

This is a geometric series with a common ratio r = e−T/τ . The sum of this series, when

|r| < 1, is given by 1/(1 − r). Applying this formula to the series, we obtain

ET (ϕ) =
e−ϕ/τ

1 − e−T/τ
. (2-69)

The quantity AT (ϕ), on the other hand, represents the average phase advancement due

to the postsynaptic potentials. It’s calculated by summing up the weighted postsynaptic

potentials, where the weight is the time since the last firing, over all firings. The contribution

to the phase advancement from the nth firing is (nT + t)e−(nT+t)/τ , where t ranges from 0

to T . Therefore, AT (ϕ) can be expressed as an infinite sum of integrals:

42



AT (ϕ) =
∞∑
n=0

∫ T

0

(nT + t)e−(nT+t+ϕ)/τdt. (2-70)

Solving the integral inside the summation, we have

∫ T

0

(nT + t)e−(nT+t+ϕ)/τdt =
[
−(nT + t)e−(nT+t+ϕ)/τ − τe−(nT+t+ϕ)/τ

]T
0
. (2-71)

Calculating this expression at t = T and t = 0, and subtracting the latter from the

former, we get

−(n + 1)Te−((n+1)T+ϕ)/τ − τe−((n+1)T+ϕ)/τ + (nT )e−nT/τ + τe−(nT+ϕ)/τ . (2-72)

Summing this up over all n gives us the expression for AT (ϕ):

AT (ϕ) =
1

1 − e−T/τ

[
ϕT +

Te−T/τ

1 − e−T/τ

]
e−ϕT/τ . (2-73)

To derive the equations for A′
T (ϕ) and H̃T (ϕ, λ), we need to differentiate AT (ϕ) and

evaluate a sum that involves a function of ET (ϕ), respectively.

The derivative of AT (ϕ) with respect to ϕ gives us A′
T (ϕ):

A′
T (ϕ) =

d

dϕ

[
1

1 − e−T/τ

[
ϕT +

Te−T/τ

1 − e−T/τ

]
e−ϕT/τ

]
= −T

1

1 − e−T/τ

[
ϕT +

Te−T/τ

1 − e−T/τ

]
e−ϕT/τ +

T

1 − e−T/τ
e−ϕT/τ

A′
T (ϕ) = −TAT (ϕ) + Te−ϕT/τ .

Now, H̃T (ϕ, λ) is defined as

H̃T (ϕ, λ) =
∞∑
n=0

λnET (nϕ)

=
∞∑
n=0

λn e−nϕT/τ

1 − e−T/τ

H̃T (ϕ, λ) =
1

1 − e−T/τ

∞∑
n=0

(λe−ϕT/τ )n,
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which is a geometric series with ratio r = λe−ϕT/τ . The sum of this series is given by 1/(1−r)

when |r| < 1, hence we have

H̃T (ϕ, λ) =
1

(1 − e−T/τ )(1 − λe−ϕT/τ )
.

Substitute the above expressions into Eq. (2-66), we get:

(λ− 1)(αiβi − ϑi)δi + ξiδi = η
∑
j

J slow
ij δj, (2-74)

where αi := ωiI
ϑi

, βi := ϵγfast
i ET (0) + ϵγslow

i A′
T (0) + 1, ξi := ϵγslow

i A′
T (0), and η := ϵH̃T (0, λ)

Now, for Eq. (2-67), we need to introduce one more term: ζp := ϵσpH̃T (0, λ). Then, using

the terms defined earlier, Eq. (2-67) can be rewritten as:

(λ− 1)(αiβi − ϑi) + ξi − ζp = 0 (2-75)

2.6.1 Exploring Extreme Regimes

In a complex system like this, further analytical simplifications are only meaningful under

specific conditions or certain parameter regimes. Nevertheless, the analytical expressions can

provide insights into the system’s qualitative behavior and guide future modeling.

Let’s consider the limits of some of the parameters of our equations and how they affect

the system. When τ approaches infinity, the time constant of the postsynaptic response

becomes very large. From the definitions of ET (0), AT (0), A′
T (0), and H̃T (0, λ), we can

observe that in this case, these terms become independent of the time delay T and instead

become constants. This implies that the system’s dynamics become time-invariant.

The term ϵ in the equations measures the coupling strength between neurons. If ϵ

approaches zero, the coupling strength becomes very weak. In this case, all terms involving

ϵ vanish, which includes βi, ξi, η and ζp. Effectively, this reduces (2-74) and (2-75) to

simple expressions involving only the intrinsic frequencies of the oscillators and the phase

differences, leading to a set of independent oscillators.

The term ϑi in the equations scales the phase difference between neurons, and if this

term approaches infinity, it indicates that the phase difference between neurons becomes

infinitesimally small. In this limit, the first part of both Eqs. (2-74) and (2-75) vanish (due
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to αi being finite), effectively simplifying the system of equations. The system behavior then

depends mostly on the slow coupling terms.

In the limit as γfast approaches infinity, the influence of ET (0) (which multiplies γfast)

in both (2-74) and (2-75) will dominate all other terms. The implication is that synchro-

nization in the system is chiefly driven by the terms with ET (0) and potentially leads to an

immediate phase locking, assuming ϵ is finite. This is a scenario where the fast connections

in the network would primarily control synchronization. When γfast goes to zero, the terms

involving ET (0) in Eqs. (2-74) and (2-75) become negligible. In this case, synchronization

depends on the terms involving A′
T (0) (related to slow coupling) and the individual intrinsic

properties of each oscillator (characterized by λ, ωi, ϑi).

Analogous to the corresponding γfast case, when γslow goes to zero, the terms in (2-74)

and (2-75) involving A′
T (0) become negligible. In this case, synchronization is mainly influ-

enced by the terms involving ET (0) (related to fast coupling) and the individual properties of

each oscillator. As γslow approaches infinity, the terms involving A′
T (0) in (2-74) and (2-75)

will dominate. This means slow connections primarily drive the synchronization. This could

result in a very slow phase locking process, as the system will need time to respond to the

slow interactions. The longer transient time before reaching a synchronized state allows the

system to exhibit rich and complex dynamics.

2.6.2 Implications of Dominant Slow Connections and Multistability

As γslow edges towards infinity, the phase-locking process becomes largely dictated by the

network’s slow connections, referring to the “slow” coupling of oscillators. This transforma-

tion underscores the critical role of frequency interplay and the oscillators’ phase relationships

in determining system behavior (Buzsaki and Draguhn, 2004).

In neuroscience, “slow” connections encapsulate the connections via modulatory neu-

rotransmitter systems or comparably slower chemical synapses with longer latency periods

Destexhe and Sejnowski (2003). These slow connections are pivotal in modulating the net-

work’s global state, influencing network behavior over extended timescales, and contrasting

the fast synaptic connections.
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A predominant γslow results in phase-locking between oscillators on significantly slower

timescales, resonating with observations in large-scale brain networks. In such systems,

slower frequencies commonly control faster frequencies’ activities through “phase-amplitude

coupling” (Voytek et al., 2010). Given their precision, the phase relationships between

oscillators become pivotal. This shift can lead to “multistability,” where multiple stable

phase-locked conditions are possible (Rosenblum and Pikovsky, 2003). This ability to switch

between different coherent activity patterns based on the oscillators’ phase relationships can

provide a multistable network.

The concept of “dynamical relaying” (Vicente et al., 2008) adds another layer of com-

plexity to networks dominated by slow connections. Under such circumstances, an indirect

pathway might sometimes be more expedient than a direct one, primarily due to the delay-

intrinsic frequency interplay within the nodes. This interplay may precipitate phase-locking

along indirect pathways, creating more complex synchronization patterns.

These insights parallel the transient dynamics highlighted by Deco and Jirsa (2012), and

Litwin-Kumar and Doiron (2012), showing that the synchronization process’s nuances can

provide key insights into the underlying mechanisms. Deco and Jirsa (2012) discussed the

notions of multistability and “ghost attractors” in the context of ongoing cortical activity,

indicating the potential for the system to inhabit several states before reaching synchro-

nization. Furthermore, Litwin-Kumar and Doiron (2012) demonstrated the implications of

slow dynamics on network variability in a cortical network with clustered connections. They

found that the time taken to reach a synchronized state directly influences the variability of

the network, leading to high variability when slow dynamics are present.

They also resonate with Engel and Singer (2001) temporal binding concept and the struc-

tured flows in the dynamical framework proposed by Huys et al. (2014). Engel and Singer

(2001) suggested that these transients could play a critical role in forming sensory awareness,

as the brain’s perception of external stimuli is often determined during these periods. The

analysis by Huys et al. (2014) provides a dynamical framework for understanding motor be-

havior, emphasizing the structured flows on manifolds that may occur during the transition

to synchronization.
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2.7 Conclusions

This chapter focused on a network of spiking model neurons, distinguished by their ability

to generate a short-lived pulse or spike when their membrane voltage surpasses a specified

threshold. Encoding a signal, denoted by f(t), into a series of spikes, or spike trains, forms

the cornerstone of the spike-coding network (Eliasmith and Anderson, 2003, Boerlin et al.,

2013, Abbott et al., 2016).

Building upon this premise, we discussed the membrane potential dynamics, vi, for neu-

ron i. We set up a differential equation (Eq. (2-15)) representing the evolution of vi, con-

sidering an integration process, inhibitory feedback, and a stimulus-dependent drive, which

led us to Eq. (2-26). The neuron’s firing rule was defined so that whenever vi reaches a

threshold Ti, it fires and resets its potential to vi = Ti − ω2
i − µ = −Ti (Eq. (2-25)). We

further unpacked that the quadratic cost gain µ contributes a hyperpolarizing current to the

membrane potential, particularly influencing the recently spiked neuron, thereby suggesting

a mechanism for spike-triggered adaptation (Liu and Wang, 2001, Benda and Herz, 2003).

Subsequently, we focused on extending the network’s functionality from scalar to vector-

encoded operations. While we initially limited our discussions to scalar function f(t) and

corresponding low-pass filter or integrator systems, we broadened the scope by allowing

f(t) to operate as a vector function, thus expanding the range of systems the network

could potentially implement (Gütig, 2014). In this generalized network, the signals f(t)

were decoded through a weighted sum of normalized synaptic currents, with each neuron

contributing to the output based on its assigned weight.

We then presented an autonomous network model capable of encoding f(t), with fk(t)

functions generated by a linear dynamic system (Boerlin et al., 2013). We could reformulate

the network equations using an approximation, concluding that any linear dynamical system

could be autonomously implemented with an appropriate choice of A.

We derived the phase-locked solutions within the framework of the spike-coding net-

work. This exploration commenced with the derivation of generic conditions fostering phase-

locking, culminating in a set of algebraic equations contingent upon the relative phases of

the oscillators alongside the self-consistent collective period. Subsequent analysis pivoted
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towards evaluating the linear stability of these phase-locked solutions through perturbations

of the firing times and the consequent examination of the asymptotic behavior of these per-

turbations. Notably, we observed that a pair of parameters dictated the stability of the

solutions—λ, and the time constant of the synaptic response, τ .

Analysis of the phase-locking dynamics of the network gave us invaluable insights into

how neurons synchronize their activity, how different parameters affect this synchronization,

and the stability of these phase-locked states. The analysis of extreme conditions, where

certain parameters approach infinity, sheds light on the robustness of these synchronization

phenomena and their susceptibility to changes in network parameters.

When parameters such as γslow grew unbounded, we observe an increase in the coupling

strength between the neurons leading to intriguing behaviors, such as metastability. Studying

these phenomena further underscores the delicate balance of parameters needed to maintain

a stable and functional neuronal network, and highlights the necessity of local and network-

level control mechanisms.

This theoretical examination exposed the complexity of spike-coding networks and pro-

vided valuable perspectives on neuronal communication. As we continue to refine our un-

derstanding of the dynamics of neuronal networks, biomimetic models like the spike-coding

networks, despite their simplicity, continue to offer us profound insights into the complex

mechanisms underlying neuronal behavior and inter-neuron communication.
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3.0 The Interplay of Synchronization and Origination in Slow Oscillations

3.1 Chapter Summary

This chapter investigates the neural mechanisms underlying the spontaneous transitions

between active (Up) and silent (Down) states in cortical networks during slow-wave sleep. A

model of weakly coupled Wilson-Cowan neural oscillators is analyzed, demonstrating bista-

bility between quiescent and active states. Stochastic fluctuations and the coupling strength

between neural populations modulate transitions between these bistable states. Varying key

parameters reveals a Bogdanov-Takens bifurcation underlies the genesis of slow oscillations.

This provides insight into the complex coordination of excitation and inhibition required to

orchestrate the rhythmic Up-Down state transitions underlying slow-wave activity.

3.2 Introduction

Among the numerous strategies to model extensive brain networks, mesoscopic-level

models such as firing rate or population models have proven to be one of the most effective

approaches. These models focus on the average spike rates of neuron groups rather than

scrutinizing the individual activity of each neuron within the network (Ermentrout, 1998a).

This approach provides two primary advantages: computational efficiency, which eases the

simulation of large-scale brain networks (Markram, 2006, Izhikevich and Edelman, 2008),

and suitability for comparison with experimental data, facilitating correlation with real-

world phenomena (Deco et al., 2008, Bojak et al., 2010).

Standard neuroimaging techniques such as electroencephalogram (EEG), local field po-

tential (LFP) recordings, magnetoencephalogram (MEG), and functional magnetic resonance

imaging (fMRI) measure the collective activity of large neuron populations rather than in-

dividual intracellular potentials. Thus, population models may serve as more representative

approximations of emergent collective behavior within cortical columns.
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In the context of brain region networks, each node symbolizes a neuronal ensemble (typ-

ically ranging between 103 − 106 neurons). Each ensemble carries its dynamic description,

distinguished by its mathematical complexity and biological detail. The widely recognized

model formulated by Wilson and Cowan (WC) (Wilson and Cowan, 1972, 1973) is the focus

of this discussion, as it describes cortical area activity. In the WC model, each network node

is an interconnected pair of excitatory and inhibitory neuronal populations.

Wilson and Cowan adopted statistical methodologies to examine the collective behavior

of substantial neuron populations. Their model embodies a mean-field approximation of a

coupled network of excitatory and inhibitory neurons, focusing on their mean activity level,

a strategy analogous to approximating the motion of gas molecules with mean-field terms

such as temperature and pressure (Kittel, 2004). This mean-field approach has widespread

applications in statistical physics, especially when addressing computationally or analytically

arduous problems. Its efficacy in computational neuroscience is similarly recognized (see

Deco et al. (2008) and the references therein).

The current analysis emphasizes the dynamical behavior of WC oscillators within a

locally coupled, homogeneous system context. Despite the model’s simplicity, disregarding

elaborate topological and physiological detail, it manifests various dynamical behaviors. This

repertoire encompasses equilibrium states, multistability, oscillations, traveling waves, and

chaotic dynamics. The model produces coordinated spontaneous transitions between two

distinct membrane potentials with the appropriate setup. It successfully accounts for many

of the properties of active Up and quiescent Down states observed in corticothalamic networks

during slow-wave sleep (SWS).

3.3 Background

3.3.1 Slow-Wave Sleep

SWS is critical in various other physiological functions. Aside from facilitating the pro-

cess of memory consolidation (Plihal and Born, 1997, 1999, Girardeau et al., 2009), SWS

50



contributes to the regulation of metabolic processes (Iliff et al., 2012, Sharma et al., 2010),

and fostering brain development and plasticity (Wilhelm et al., 2008). The glymphatic sys-

tem, a waste clearance pathway in the brain, shows increased activity during SWS, suggesting

a role in metabolic waste clearance (Åkerstedt and Nilsson, 2003, Fultz et al., 2019). Fur-

thermore, the synaptic homeostasis hypothesis posits that SWS aids in the recalibration of

synaptic strength, balancing the need for plasticity with the finite metabolic and structural

limits of the brain (Tononi and Cirelli, 2014).

A quintessential feature of SWS lies in its regulatory mechanisms, specifically the spa-

tiotemporal orchestration of synchronous EEG rhythms, including delta waves, spindles, and

K-complexes. These components, characterized by their specific amplitude and frequency,

are integral to non-rapid eye movement (NREM) sleep, marked by reduced physiological

activity and sensory awareness (Steriade, 1997).

Stages 3 and 4 of NREM sleep are particularly significant due to their association with

SWS, a state delineated by slow-wave activity (SWA) surpassing 75 microvolts and occurring

at less than 1 Hz. This occurrence is non-trivial, accounting for approximately 10% to 20%

of a robust young adult’s sleep period (Carskadon and Dement, 2017).

There is heightened intrigue in comprehending the collective dynamics of corticothalamic

networks that underlie slow oscillations during SWS. The slow oscillations are a macroscopic

behavioral manifestation that engages a broad range of electrophysiological categories of cor-

tical and thalamic neurons. They result in alternating periods of activity and silence within

corticothalamic networks, spanning approximately one second (Steriade et al., 1993a,b).

Two distinct states demarcate these oscillations: the Up states, characterized by depo-

larization and intense synaptic activity (spanning both excitatory and inhibitory), and the

Down states, typified by neuronal hyperpolarization and a relative quiescence (Figure 3.1).

These oscillations are posited to originate intracortically. They can be observed in vitro in

cortical preparations, as well as in vivo in deafferented pieces of the cortex (Steriade et al.,

1993b, McCormick and Sanchez-Vives, 2000, Destexhe and Sejnowski, 2003). This intracor-

tical origin hypothesis is further bolstered by suppressing these oscillations in the thalamus

following cortical deafferentation (Timofeev and Steriade, 1996).

Contrastingly, more contemporary studies posit that the full manifestation of slow waves
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Figure 3.1: Slow oscillations in local cortical field potentials (LFP) and the mem-

brane potential of an adult cat’s cortical neuron during non-rapid eye move-

ment (NREM) sleep. (A) Simultaneous intracellular, LFP, and electromyography (EMG)

recording during sleep and wakefulness. The animal is in NREM sleep at the beginning of the

recording, transitioning to an awake state after approximately 70 seconds (arrows indicate

EMG activation). Action potentials are truncated in the intracellular recording. (B) Levels

of delta power in the LFP are higher during NREM sleep than during waking. Plotted

are 10-second bins of the ratio of spectral power (< 4 Hz/ > 4 Hz) recorded in the LFP.

(C) Intracellular activity and LFP recording from (A) are shown at an expanded time scale.

Note clear fluctuations of the membrane potential between Up and Down states during SWS

(C1) in association with the slow oscillation (< 1 Hz) in the LFP. During wakefulness (C2),

the cell is tonically depolarized, and no sustained episodes of hyperpolarization are present.

Adopted from (Mukovski et al., 2007).

during NREM sleep necessitates the involvement of both the cortex and thalamus (David

et al., 2013). This assertion opposes the early findings of Steriade et al. (1993b). Despite
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initial inhibition, slow wave activity within the deafferented cortical slab gradually recovers,

suggesting a possible thalamic contribution (Lemieux et al., 2014).

The enduring phenomena of Up and Down states within corticothalamic networks are

attributed to the intersection of inherent neuronal properties and the synaptic organization

of these circuits (Steriade et al., 1991, McCormick and Sanchez-Vives, 2000, Destexhe and

Sejnowski, 2003, Crunelli and Hughes, 2010). Each slow oscillation cycle can originate from

any cortical site, cascading sequentially toward other cortical regions.

In adult humans, the initiation of activity can occur anywhere within the cortex but

exhibits a predilection towards the frontal areas, from where it diffuses (Massimini et al.,

2004). A similar propagation pattern is observable in feline subjects, where slow oscillations

can originate anywhere within the cortex. However, activity preferentially appears at the

frontier between areas 5 and 7, spreading anterolaterally (Volgushev et al., 2006).

An intriguing observation is the synchronous onsets of silent states, which occur even

more synchronously than the onsets of activity (Volgushev et al., 2006). This suggests a large-

scale synaptic mechanism capable of effecting long-range synchronization, thus facilitating

the transition from activity to silence. However, the network mechanisms underlying these

spontaneous state alternations remain largely enigmatic.

Pertinent questions arise from these observations. How does activity originate when the

network is in a silent state? Does activity onset have a precise cortical location, or can it

originate anywhere? Inversely, how and where does silence initiate? Moreover, perhaps the

most intriguing question pertains to the observation that the onsets of silence appear even

more synchronized and precise than the onsets of activity.

Among the manifold hypotheses endeavoring to decipher the origins of active states

during SWS, three distinct propositions—namely, the propagation hypothesis, the synchro-

nization hypothesis, and the integration hypothesis. Each conjecture embodies potential

mechanistic insights, offering prismatic perspectives that shed light on the otherwise elusive

nature of these states (Lüthi and McCormick, 1998, McCormick and Sanchez-Vives, 2000,

Cossart et al., 2003, Timofeev et al., 2000). A meticulous examination of each hypothesis,

including its conjectures and potential limitations, is required to untangle the convoluted

enigma of active state genesis during SWS.
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The propagation hypothesis postulates the existence of a specific set of neurons that

pioneer the genesis of the active state, which subsequently propagates laterally with sys-

tematic site-specific onset delays. This hypothesis postulates that during silent states, h-

currents, which activate when the membrane potential plunges beyond approximately -50

to -70 millivolts (Lüthi and McCormick, 1998), incrementally depolarize Layer V pyramidal

neurons towards the Up state equilibrium potential, situated at approximately -30 millivolts

(McCormick and Sanchez-Vives, 2000). In contradistinction, the synchronization hypothesis

contends that a heterogeneous ensemble of neurons maintains the capacity for sporadic spon-

taneous firing even amidst the silent state. The harmonized orchestration of these neuronal

ensembles directs the transition from silence to activity (Cossart et al., 2003).

Lastly, the integration hypothesis proposes the potential for the genesis of weaker activity

to commence sporadically from multiple locations. This hypothesis suggests that the accu-

mulation of spike-independent neurotransmitter release may precipitate depolarizing events.

These events, in turn, could activate inward currents that depolarize specific neurons to

the firing threshold. If sufficient events transpire within a postsynaptic integration period,

additional neurons may become involved (Timofeev et al., 2000).

No singular hypothesis proposed thus far has proven entirely satisfactory in its explana-

tory power or congruity with empirical findings. While illuminating fragments of the giant

puzzle, each postulation inevitably encounters contradictions or limitations when confronted

with experimental results (Luczak et al., 2007, Timofeev et al., 2000, Cossart et al., 2003, Mc-

Cormick and Sanchez-Vives, 2000). For instance, extracellular signal recording experiments

have revealed unique spiking patterns for Layer V neurons during Up states, displaying

a stereotypical sequential activation pattern. This pattern belies the supposition of ran-

domized spontaneous firing synchronizing or integrating into activity, thereby bringing into

question the tenability of the synchronization and integration hypotheses (Timofeev et al.,

2000, Cossart et al., 2003). It instead bolsters the propagation hypothesis, which posits a

well-localized origin with subsequent propagation (McCormick and Sanchez-Vives, 2000).

Nevertheless, the propagation hypothesis has its inconsistencies. The preferential loca-

tion for the onset of activity varies across species (Massimini et al., 2004, Volgushev et al.,

2006) and changes with age within species (Kurth et al., 2010), leading to a degree of incon-
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gruity within the hypothesis itself. Furthermore, the propagation hypothesis hinges on the

assumption of focal activity possessing sufficient intensity. However, the h-current in neocor-

tical neurons is relatively feeble and unlikely to propagate activity to target cells effectively,

thereby casting doubts on its candidacy as a primary mechanism (Timofeev et al., 2002).

To address these shortcomings and reconcile the seeming contradictions, Chauvette et al.

(2010) advanced a hybrid mechanism of active state initiation, merging elements from both

the propagation and integration hypotheses. This postulation acknowledges that local neo-

cortical activity could originate in any neuron and at any depth. However, it emphasizes

that the Layer V pyramidal cells, with their staggering synaptic count of 50,000-60,000—

significantly surpassing any other cortical cell type (DeFelipe and Fariñas, 1992)—are more

susceptible to initial activation in a stochastic setting of neurotransmitter release. The

propensity for pyramidal cells in deep layers to intrinsically burst (Connors and Gutnick,

1990) enhances their potential to instigate Up states in their targets (Timofeev et al., 2000).

The complex choreography of active states during SWS involves a delicate equilibrium

of excitation and inhibition, ensuring their steady maintenance (Shu et al., 2003, Haider

et al., 2006, Beltramo et al., 2013, Lemieux et al., 2015). However, this dynamic ballet does

not dance indefinitely, and there inevitably arises the question: How do these active states

conclude, thereby birthing silent states? Previous computational models have implicated

mechanisms such as activity-dependent synaptic depression (Holcman and Tsodyks, 2006,

Kilpatrick and Bressloff, 2010) or spike adaptation through the activation of hyperpolarizing

intrinsic currents (McCleney and Kilpatrick, 2016) in orchestrating the onset of silence.

However, the work of Volgushev et al. (2006) introduced a twist in the tale by demon-

strating that the onset of silence manifests more synchronously than its termination. This

revelation instigates a reevaluation of traditional understanding about state alternation, as

no cell-level mechanism, such as firing adaptation or synaptic depression, can independently

account for the synchronous onset of silence. This is because these processes would im-

ply the onset of silence at diverse times across different neurons. Consequently, the puzzle

begs for a network mechanism that could effectuate a switch from activity to silence, likely

accomplished via active inhibition (Steriade et al., 1993a).

This theoretical void has been filled with two contending hypotheses for the onset of

55



silence from activity, and both are premised on a transient imbalance between excitation and

inhibition via the disfacilitation of subpopulations of excitatory neurons (Beltramo et al.,

2013, Lemieux et al., 2015). The pacemaker hypothesis proposes that cortical regions are

subject to direct, widespread inhibitory input from extracortical areas, suggesting a global

signal cues the Down state (Lemieux et al., 2014). In contrast, the disynaptic relay hypothesis

postulates a more nuanced mechanism wherein widespread excitatory inputs synchronously

recruit a subpopulation of cortical inhibitory interneurons that hyperpolarize a subset of

cortical neurons below the firing threshold. The dampened activity of these hyperpolarized

neurons attenuates the excitatory drive on their targets, thereby sparking a domino effect of

disfacilitation that eventually silences the entire network (Lemieux et al., 2015).

Notwithstanding these hypotheses, the conundrum persists; the network mechanisms un-

derlying the synchronized onsets of silence in corticothalamic neurons during SWS remain

enigmatic. In sum, the genesis of active cortical states during sleep is predicated on sponta-

neous, spike-independent release, with a propitious bias towards layer V pyramidal neurons.

This predilection stems from their substantial synaptic inputs and expansive divergence of

outputs, engendering an environment ripe for initiating active states (Chauvette et al., 2010).

On the other hand, the denouement of these states can be ascribed to network mechanisms

predicated on active inhibition.

Two prominent theories illuminate this network dynamics. The first, intracortical in its

machinations, posits that excitatory neurons could recruit a subset of inhibitory neurons via

disynaptic pathways. This, in turn, would instigate a cascade of disfacilitation, essentially

nudging the network towards a state of silence (Lemieux et al., 2015). The second theory

invokes a more global mechanism, suggesting that widespread inhibitory inputs from extra-

cortical areas could act as the proverbial “handbrake,” arresting cortical activity and thus

heralding the onset of silence (Lemieux et al., 2014).

Together, these observations provide a robust yet evolving framework for understanding

the orchestration of active and silent states during sleep. However, much like the cortical

states, our comprehension of these mechanisms remains fluid.
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3.3.2 Neural Oscillator

Neural oscillators, believed to play a crucial role in generating oscillating activity in

the brain, are prevalent throughout the neural system (Rakic, 1975). As the fundamental

unit of our network, the neural oscillator model is defined such that the excitatory neurons’

population generates action potentials that excite the inhibitory neuron population. This

inhibitory population then counteracts with inhibition, forming a feedback loop between the

excitatory and inhibitory units (see Figure 3.2).

τx
dxj

dt
+ xj = Fx(weexj + wieyj + Tj + σxγj), (3-1a)

τy
dyj
dt

+ yj = Fy(weixj + wiiyj + Sj + σyηj), (3-1b)

Fs(u) =
1

1 + e−βs(u−θs)
, s ∈ {x, y}, (3-1c)

The fractions of firing excitatory and inhibitory neurons are denoted by xj and yj, respec-

tively. The variables τx, τy > 0 are their corresponding membrane time constants. The inputs

Tj and Sj represent the aggregate currents from external sources (e.g., sensory organs, other

brain regions, implanted electrodes) reaching the jth excitatory and inhibitory neurons, re-

spectively. The parameters wie and wei, known as synaptic, signify inhibitory-excitatory and

excitatory-inhibitory interconnections coupling the ith neural oscillator populations, while

wee and wii denote feedback parameters, representing excitatory-excitatory and inhibitory-

inhibitory interconnections within the jth neural oscillator. The random variables γ and

η are normally distributed with zero mean, unit variance, and amplitudes σx and σy, re-

spectively, introduced to account for the intrinsic neuronal differences and to encourage

spontaneous state switching. The nonlinearity Fs is a logistic function with threshold θs

and scaling parameter βs, where s ∈ x, y. The function Fs can be interpreted as a firing

probability rather than an actual firing rate, adopting a logistic function.

First, it is worth noting the clear distinction between the neurons in the model: they

are either excitatory or inhibitory, a classification that harkens back to “Dale’s principle”

(Dale, 1935, Eccles, 1976), a helpful framework in mathematical neuroscience. This principle

postulates that a neuron exerts the same physiological action at all its targets; that is, all

synapses of a neuron are either excitatory or inhibitory.
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Figure 3.2: A neural oscillator model. It consists of two units, an excitatory xi (blue

circle) and an inhibitory yi (red triangle), forming a feedback loop. Labels for units in-

puts and outputs correspond to Eqs. (3-1a) and (3-1b). Small blue circles denote excitatory

synaptic connections, red triangles inhibitory synaptic connections, and purple circles rep-

resent connections that could have excitatory or inhibitory effects. Dotted curves indicate

extra-cortical inputs and solid one’s cortico-cortical connections.

The system (3-1) fundamentally parallels the seminal work done by Wilson and Cowan in

their model (Wilson and Cowan, 1972, 1973). However, the distinction lies in the approach

to incorporating refractoriness: the WC model does this by premultiplying the firing rates,

denoted as Fx and Fy, by factors of (1 − rxxj) and (1 − ryyj) respectively, a feature absent

in the system above. The introduction of these terms acknowledges the refractory dynamics

encompassing both neuronal populations. They signify the proportion of neurons that retain

the potential to fire, contingent on their refractory periods, represented by rx and ry.

Nevertheless, it is noteworthy that these multiplicative factors, despite contributing to

the complexity of the model, do not significantly impact the analysis of the equations. The
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effects these factors introduce can effectively be compensated for by rescaling the param-

eters of the nonlinearities Fx and Fy (Pinto et al., 1996, Curtu and Ermentrout, 2001).

Consequently, without loss of generality, assigning values of zero to rx and ry is warranted.

Additionally, the firing rates Fx and Fy can be considered as modified instances of the

conventional logistic function, with the specific property that Fx(0) = Fy(0) = 0. The terms

xj and yj pertain to the low-pass filtered versions of the proportions of active excitatory

and inhibitory cells. This modification has the aggregate effect of eliminating oscillatory

components from neural responses that exceed 100 Hz.

Despite its seemingly minimalist representation, the (3-1) model can emulate numerous

phenomena observed in actual neural systems. This includes firing rates, bistability, and

varied oscillatory behaviors. Notably, these myriad phenomena are captured despite the

model being an extreme abstraction of the rich neurodynamics inherent to cortical regions.

3.3.3 Phase Portraits

The seminal work of Beer (1995) undertook a comprehensive analysis of two-population

networks, which was subsequently expanded by Ermentrout (1998b) to accommodate gaps

in Beer’s assessment. These inquiries illuminate that the entire conduct of two-cell neural

networks can be systematically classified and predicted. Specifically, if the function Fs, where

s is a member of the set x, y, exhibits a monotonic nature (such as squashing functions akin

to Fs) and the weight of the connections adhere to either weiwie > 0 or wee, wii < 0, there

are no limit cycles (oscillations) and merely fixed points in the WC model (Eq. (3-1)). As a

result, comprehensive qualitative dynamical analysis can be performed by exploring nullcline

intersections; these are curves on the x–y plane characterized by dx/dt = dy/dt = 0. It is

noteworthy that the intersections of nullclines correspond to fixed points.

Our interest primarily lies in the dynamics of cortical slow oscillations, leading us to

consider neural oscillators that can present limit cycles. This condition is met when both self-

excitation (wee ≥ 0 and wii ≤ 0) and a negative feedback loop between the two populations

(wie ≥ 0 and wei ≤ 0) exist. Figure 3.3 graphically portrays a typical limit cycle on the x–y

plane. In this diagram, time progresses counter-clockwise along the limit cycle. The phase
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Figure 3.3: Stable limit cycle in the single neural oscillator model (3-1). The orange

curve represents the x-nullcline (dx/dt = 0) and the green one represents the y-nullcline

(dy/dt = 0). There is a single fixed point, labeled (⃝), where the nullclines intersect: an

unstable focus. The oscillator starts at the upper-left corner, marked by (□), and quickly

converges to the limit cycle solution. The parameters for this simulation are: τx = 1, τy = 0.7,

wee = 15, wie = −10, wei = 20, wii = −5, T = −3, S = −7.5, σx = σy = 0, θx = θy = 0 and

βx = βy = 1.

plane is divided into four regions by the x– and y–nullclines (illustrated as orange and green

curves), wherein dx/dt and dy/dt exhibit different signs. The oscillator initiates in the upper-

left region, where x and y decrease (dx/dt < 0 and dy/dt < 0) until the trajectory intersects

the x–nullcline. Post-intersection, x begins to increase (dx/dt > 0), while y continues to

decrease (dy/dt < 0). This is a consequence of the inhibitory population’s activity reducing

to such an extent that it ceases to suppress the firing of the excitatory neurons.

As the trajectory enters the lower-right region (dx/dt > 0 and dy/dt > 0), x and y

increase. At this stage, a sufficient number of excitatory neurons are active and commence
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the recruitment of the inhibitory population. When the trajectory reaches the upper-right

region, sufficient inhibitory neurons are active to inhibit the excitatory population (dx/dt < 0

and dy/dt > 0). Finally, when the balance between excitation and inhibition is disrupted

once more, y decreases, and the cycle begins anew, akin to the predator-prey relationship

described in the Lotka-Volterra equations (Hoppensteadt, 2006).

The intersection of the x- and y-nullclines, denoted by a small circle at the center of

Figure 3.3, represents an equilibrium corresponding to an unstable focus. Inferring the

number and location of these equilibria from the analysis of Eq. (3-1) can be challenging.

However, once the nullclines are identified, the task becomes geometrically straightforward.

We used the Euler method to numerically solve the equations in subsequent simulations,

with a time step of ∆t = 0.05.

Eq. (3-1) supports asymptotic behaviors apart from stable oscillations. By merely varying

the external inputs Tj and Sj, we can generate a phase portrait that is qualitatively distinct

from the one illustrated in Figure 3.3. Figure 3.4 depicts a qualitatively different portrait

of two stable equilibria at different membrane potentials and a saddle point. Saddle points

play a crucial role as their stable manifolds form separatrices, which divide the plane into

the domains of attraction for multiple stable fixed points.

But the neural oscillator supports yet another qualitatively different dynamic: the coex-

istence of Up and Down as stable states, i.e., bistability. The phase portrait of this scenario

is illustrated in Figure 3.5a. In a striking departure from the scenario portrayed in Fig-

ure 3.4, where two stable resting equilibria existed at the subthreshold membrane potential

for firing, in the present case, the upper-right node transformed into a stable focus. This

focus, near the point (0.35, 0.25) as seen in Figure 3.5a, is characterized by an attenuated

oscillation encircling it. Therefore, introducing a slight noise factor can trigger spontaneous

transitions between Up and Down states, a phenomenon illustrated in Figure 3.5b1.

From a dynamic systems perspective, these qualitative changes in the phase portrait

correspond to bifurcations of neural oscillator dynamics. FitzHugh (1961) pioneered local

bifurcation analysis in neuroscience, followed by Ermentrout and Cowan (1979) in the analy-

1The execution of this and the simulations in the next section relied on the XPP software package, a
robust tool often used in such computational neuroscience contexts (Ermentrout, 2002).
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Figure 3.4: Multiple dynamical attractors in the single neural oscillator

model (3-1). The fixed points labeled (△) are stable nodes and the one labeled (□) is

a saddle. As before, the orange curve represents the x–nullcline, and the green one repre-

sents the y–nullcline. The blue curve is the stable manifold of the saddle point; it divides

the phase plane into two regions: the gray region is the attraction domain of the stable

node in the upper-left corner, and the complementary region is the attraction domain of the

stable node in the lower-left corner. Hence, trajectories to the left of the stable manifold will

converge to the lower-left stable node (e.g., trajectory starting in point A), and trajectories

to the right of the stable manifold will converge to the upper-right stable node (e.g., trajec-

tory starting in point B). Parameters are the same as in Figure 3.3, except T = −3.8 and

S = −16.

sis of the WC equations. For a comprehensive bifurcation analysis of the WC equations, the

reader is referred to Borisyuk and Kirillov (1992) and Hoppensteadt and Izhikevich (1997).
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(a) (b)

Figure 3.5: Bistability and oscillation in the single neural oscillator model (3-1).

(a) The fixed point labeled (△) is a stable node corresponding to the Down state, the fixed

point labeled (□) is a saddle, and the fixed point located near the point (0.35, 0.25) is an

unstable focus corresponding to the Up state. As before, the orange curve represents the

x-nullcline, the green one represents the y-nullcline, and the blue curve is the stable manifold

of the saddle point. The gray region is the attraction domain of the Up state, and oscillators

starting there (e.g., the trajectory beginning in A) converge to the limit cycle. Conversely,

oscillators starting in the complementary region (e.g., the trajectory beginning in B) converge

to the resting state. The parameters for this simulation are: τx = 1, τy = 0.7, wee = 15,

wie = −10, wei = 20, wii = −5, T = −3.8, S = −7.5, σx = σy = 0, θx = θy = 0 and

βx = βy = 1. (b) A simulation of (3-2) when additive white noise is added to the inputs,

showing spontaneous state switching. Parameters as in (a) with σx = σy = 0.015.

3.3.4 Weakly Interconnected Oscillatory Networks

Intriguingly, the weak interconnectivity among neural oscillators does not impede their

oscillatory patterns (Hoppensteadt and Izhikevich, 1997). We repurpose the model (3-1) into

an array encompassing N neural oscillators to investigate further the properties inherent to
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a network of such weakly linked oscillators. This array has a unique configuration, featuring

nearest-neighbor coupling with periodic boundary conditions (refer to Figure 3.6).

τx
dxj

dt
+ xj = Fx(weexj − wieyj + Tj + σxγj), (3-2a)

τy
dyj
dt

+ yj = Fy(weixj − wiiyj + Sj + σyηj), (3-2b)

Fs(u) =
1

1 + e−βs(u−θs)
, s ∈ x, y, (3-2c)

The equations are parameterized as per the following conditions:

xj =


(1− cx)xj + (cx/2)[xj+1 + xN ] if j = 1,

(1− cx)xj + (cx/2)[xj+1 + xj−1] if 1 < j < N,

(1− cx)xj + (cx/2)[x1 + xj−1] if j = N,

(3-3)

Correspondingly,

yj =


(1− cy)yj + (cy/2)[yj+1 + yN ] if j = 1,

(1− cy)yj + (cy/2)[yj+1 + yj−1] if 1 < j < N,

(1− cy)yj + (cy/2)[y1 + yj−1] if j = N.

(3-4)

The parameters cx and cy, nonnegative by definition, indicate the network’s coupling

strength between neighboring excitatory and inhibitory populations.

3.4 Network Mechanisms behind Slow-Wave Oscillations

We will use the network defined by (3-2)–(3-4) to explore the genesis of slow oscillations.

The network includes N = 50 WC neural oscillators with the parameters set to τx = 1,

τy = 0.7, wee = 15, wie = −15, wei = 10, wii = −5, T = −3.75, S = −5.4, σx = σy =

0.02, θx = θy = 0, βx = βy = 1, cx = 0.3, and cy = 0.11. Thus, we assume that each

neural oscillator operates in a setting where Down and Up states coexist, as illustrated in

Figure 3.5a. This, however, does not imply that isolated oscillators present bistability.

Probing for indications of Down to Up and Up to Down state transitions propagating

through the network is particularly enlightening. Our point of departure was a network

devoid of activity, with activity variables xj = yj = 0 for 1 ≤ j ≤ 50. After that, the system

could evolve per Eq. (3-2) for up to 100 seconds. The period was divided into bins of size

∆t = 0.05 ms for a detailed examination.
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Figure 3.6: Periodic array of neural oscillators with nearest-neighbor coupling. An

array of N neural oscillators, as in Figure 3.2, each featuring nearest-neighbor coupling in a

ring configuration - that is, x0 is identical to xN , xN+1 corresponds to x1, and y0 and yN+1

align with yN and y1, respectively. Excitatory synaptic connections are represented by small

blue circles, inhibitory connections by red circles, and purple circles symbolize connections

that could be either excitatory or inhibitory. Dotted lines indicate extra-cortical inputs, while

solid lines demonstrate cortico-cortical connections. While intra-oscillator connections are

only partially displayed for simplicity, they should be considered existing, as per Figure 3.2.

Similarly, connection weights are not depicted due to brevity. Lastly, the wiring configuration

reflects the coupling and boundary conditions stated in Eqs. (3-2–3-4).
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3.4.1 Emergence of Slow Oscillations

Macroscopically, the network generates spontaneous oscillations (Figure 3.7a). The phe-

nomenon is quite robust, and the sharp state transitions imply that the population of neurons

transitions between Up and Down states synchronously (Figure 3.7c). This resembles the

observations by Volgushev et al. (2006) in the cat neocortex during SWS; likewise, we

also see a robust long-range correlation of oscillators during each activity regime and, more

significantly, during state transitions.

Interestingly, the irregular pattern of activity suggests the network’s inherent heterogene-

ity; not all Up and Down states are identical, and the duration in each state varies. This

irregularity indicates an intrinsic dynamism at each state transition. This dynamic behav-

ior may contribute to the network’s robustness and adaptability, allowing it to respond to

varying inputs and conditions, a salient feature crucial to any physiological system.

Figure 3.7c further unravels the critical role played by the network’s inherent nonlinear-

ities Fs and population activity in these state transitions. The silent phase (bluish regions)

reflects a lack of activity across the network, supported by the individual oscillators’ intrinsic

bistability rather than active inhibition. However, the onset of widespread firing (reddish

regions) is triggered by an increase in the activity of a subset of excitatory populations due

to background noise, leading to a cascading recruitment of neighboring oscillators.

Subsequently, as inhibitory populations’ activity escalates, the balance between excita-

tion and inhibition tilts, propelling the excitatory populations towards their stable manifolds

and consequently returning the network to its silent state. This termination process in-

triguingly sidesteps neuronal adaptation, with slow oscillations engendered solely through a

strategic interplay between excitation and inhibition. The oscillation frequency and state du-

ration are largely dictated by the distribution of active populations and the overall degree of

coupling, a finding that further underscores the network’s complex multi-scale coordination.

3.4.2 Noise Modulation

To investigate how stochastic fluctuations modulate the behavior of the network, specif-

ically how they influence the active population distribution during the Up and Down states,
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Figure 3.7: Emergence of slow-wave oscillations in the neural oscillator network.

(a) Activity of the x44 excitatory population over 100 seconds. (b) Expanded x44 population

activity corresponding to the highlighted blue box in (a) over the interval from t = 60 to

t = 90 seconds. (c) The time-space plot of the activity of the entire network of oscillators over

the interval from t = 60 to t = 90 seconds. Time “runs downwards vertically,” and oscillators

are aligned on the horizontal axis. Excitatory (left region) and inhibitory populations (right

region) were separated for easy visualization. The transition from one state to the other was

defined to occur at (0.23, 0.08), according to the location of the saddle point in Figure 3.5a

and accounting for the effects of noise. Blue activity denotes silence, and red sustained firing.

Noise amplitude: σx = σy = 0.02; degree of coupling: cx = 0.3, and cy = 0.11.

we methodically manipulated the σy parameter while keeping σx invariant. The network

model delineated in Figure 3.7 served as our foundational benchmark for these explorations.
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Figure 3.8 shows a network where σy was curtailed by 20%. The upper trace represents

the activity of the x44 excitatory population over 100 seconds, while the rest of the figure

provides a detailed account of the network behavior within the initial 30 seconds. The

frequency of state transitions dwindled after reducing the inhibitory noise component. For

instance, a single, approximately 5-second-long transition to the Up state can be observed

within the first 30 seconds. However, this state was observed three times in the original

scenario (Figure 3.7), each time of a different, and generally longer, duration.

On the contrary, elevating σy by 20% generally truncated the durations of both Up and

Down states, as demonstrated in Figure 3.9. For example, a significantly greater number of

state transitions can be observed within the first 30 seconds (Figure 3.9b), compared to the

corresponding spans in Figures 3.7 and 3.8. Several transitions occur even before the entire

network has the chance to engage in the activation of all populations, particularly evident

in the initial 10 seconds of Figure 3.9c.

Intuitively, mitigating the influence of noise results in fewer transitions and a reduction

in the duration of states due to the diminished probability of threshold crossings. Conversely,

an increase in noise augments the frequency of state transitions and generates short-lived

states due to the accentuated number of threshold crossings. When the noise amplitude

becomes excessively large, as depicted in Figure 3.10b, the network transits states faster

than the time requisite to engage all oscillators, leading to epochs of meta-activity, where

only isolated subsets of populations are active.

3.4.3 Coupling Modulation

It is naturally anticipated that the intensity of the coupling will determine the frequency

of state changes and the duration that the network persists in each state. To scrutinize the

modulatory effect of coupling on the network’s behavior, we manipulated the coupling degree

among the excitatory populations, denoted as cx, while keeping cy constant. Initially, based

on our fundamental network model, we studied the consequences of reducing the coupling.

Figure 3.10a shows a time-space plot of a network in which cx was decreased by 50%.

The widespread silence observed throughout 100 seconds substantiates our preliminary ob-
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Figure 3.8: Effects of decreasing the inhibitory noise in the neural oscillator net-

work. (a) Activity of the x44 excitatory population over 100 seconds. (b) Expanded x44

population activity corresponding to the highlighted blue box in (a) over the time interval

from t = 0 to t = 30 seconds. (c) Time-space plot of the activity of the entire network of

oscillators over the time interval from t = 0 to t = 30 seconds. Noise amplitude: σx = 0.02,

σy = 0.016; degree of coupling: cx = 0.3, cy = 0.11.

servation that the Down states are sustained due to the absence of activity rather than due

to active inhibition. Here, cx was diminished to below what was necessary to couple the re-

maining active excitatory populations (as depicted by sparsely scattered red dots throughout

the image), thereby obstructing activity propagation across the entire network. Essentially,
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Figure 3.9: Effects of increasing the inhibitory noise in the neural oscillator net-

work. (a) Activity of the x44 excitatory population over 100 seconds. (b) Expanded x44

population activity corresponding to the highlighted blue box in (a) over the time interval

from t = 0 to t = 30 seconds. (c) The time-space plot of the activity of the entire network of

oscillators over the time interval from t = 0 to t = 30 seconds. Noise amplitude: σx = 0.02,

σy = 0.024; degree of coupling: cx = 0.3, cy = 0.11.

we rendered the Up state unstable by lessening the coupling.

We then proceeded to increase cx by 50%. As evident from Figure 3.10b, after roughly

10 seconds, the network transitions from the Down to the Up state and persists for the

remaining 90 seconds. In this instance, the imbalance between excitation and inhibition

becomes apparent. However, the uncontrolled excitation among the inhibitory populations
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Figure 3.10: Effects of varying the degree of coupling in the neural oscillator

network. (a) Time-space plot showcasing the activity of the entire network of oscillators

over 100 seconds. Noise amplitude: σx = σy = 0.02; degree of coupling: cx = 0.15, and

cy = 0.11. The network remains silent for the entire duration. (b) Time-space plot of

the activity over 100 seconds showing sustained firing post Down to Up transition. Noise

amplitude: σx = σy = 0.02; degree of coupling: cx = 0.45, and cy = 0.11.

drives the excitatory ones towards their stable manifolds; the heightened degree of coupling

fortifies the Up state sufficiently to withstand inhibitory onslaughts. In this context, the

Down state is destabilized by the escalating coupling among the excitatory populations.
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3.5 Bifurcation Analysis

Identical patterns of silence and sustained firing can be achieved by increasing or decreas-

ing the degree of coupling among the inhibitory populations. Consequently, the origin of

slow oscillations may be comprehended as a combination of excitation and inhibition alone,

with the relative imbalance of activity among the populations causing the destabilization of

either the Up or the Down state. In this respect, cx and cy can be perceived as bifurcation

parameters and, as such, are accountable for the qualitative shifts in behavior as depicted in

Figures 3.7c, 3.10a, and 3.10b.

Stable Down and Up states coexistence can be understood as the system operating near

a saddle-node bifurcation point. A saddle-node bifurcation corresponds to creating or anni-

hilating a pair of fixed points, an essential process in our model for generating the bistability

between Up and Down states. The spontaneous transitions between them under stochastic

noise can be seen as stochastic perturbations driving the system across the bifurcation point.

However, stochastic driving cannot account for the observed rhythmic transition between

high and low activity when there is a balance between excitation and inhibition. In this

scenario, a Hopf bifurcation, creating or annihilating a limit cycle surrounding a fixed point,

can account for spontaneously generated rhythmic transition between Up and Down states.

In the context of our model, the Bogdanov-Takens bifurcation, a type of codimension-

two bifurcation, characterized by the coincidence of a saddle-node and a Hopf bifurcation,

provides an elegant mathematical framework for describing the mechanism of the Up and

Down state transitions. Specifically, the model parameters cx and cy control the proximity

to the bifurcation point, modulating the bistability and the frequency of state transitions.

3.6 Conclusions

Our investigation has been focused on the influence of stochastic perturbations and the

strength of coupling within a straightforward population model, designed to emulate the

slow oscillations witnessed in cortical networks during SWS. This network comprised WC
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neural oscillators, with neighboring oscillators coupled and with periodic boundary condi-

tions applied. The oscillators functioned in a bistable region, that is, a region where stable

quiescent and excited states coexist. State transitions were induced by infusing independent

white noise into the neuron subpopulations.

Unlike previous modeling studies (Bazhenov et al., 2002, Holcman and Tsodyks, 2006,

Parga and Abbott, 2007, Duc et al., 2015, McCleney and Kilpatrick, 2016), our model

does not resort to any underlying systematic slow process like firing-rate adaptation or

synaptic depression to mechanistically explain the stochastic origin of active states and slow

oscillations. Instead, the onsets of silence are mediated by a network mechanism per the

disynaptic relay hypothesis, where inhibition following excitation induces a chain reaction of

disfacilitation terminating activity (Lemieux et al., 2015)

The collective dynamics of the network exhibited spontaneous and synchronized state

transitions. Depending on the degree of coupling between the inhibitory and excitatory

populations, we observed complete silence, sustained widespread activity, or rhythmic oscil-

lations. Additionally, the amplitude of the noise was found to modulate the frequency and

duration of states during slow oscillations. The interplay between the saddle-node and Hopf

bifurcations in the Bogdanov-Takens bifurcation, as we vary the coupling parameters cx and

cy, parsimoniously accounts for the rich tapestry of dynamics we observed. Overall, These

modeling results demonstrate how the complex coordination of excitation and inhibition can

spontaneously generate rhythmic transitions between Up and Down states.
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4.0 Associative Memory and Temporal Sequence Learning

4.1 Chapter Summary

This chapter establishes an equivalence between two seminal neural network models—

Hopfield networks and spike-coding networks—that have largely been studied independently.

Hopfield networks rely on fixed point attractors to store memories, while spike-coding net-

works emphasize precise spike timing for temporal processing. We prove these models can

be unified under the same mathematical framework using circulant matrices to represent

asymmetric weights in Hopfield networks. This introduces dynamics that enable complex

spike sequences generated from the stored attractor states. Our analysis combines two

central, yet disconnected models in neural computation, providing a unified lens for under-

standing the interlinked principles of associative memory and temporal sequence learning in

recurrent neural networks. Specifically, we demonstrate that: (1) Stable states in Hopfield

networks provide a substrate for generating spike sequences in spiking networks; (2) Asym-

metric weights implemented via circulant matrices induce dynamics between stored attractor

states; (3) The two models are mathematically equivalent under this formulation. Overall,

this work elucidates how neural networks can learn spatial and temporal patterns, under-

scoring the importance of jointly considering associative and dynamic aspects in modeling

biological neural computation.

4.2 Background

4.2.1 Classical Hopfield Networks

John Hopfield pioneered formulating a novel paradigm in the landscape of associative

memories by introducing Hopfield Networks in 1982 (Hopfield, 1982). The core concept

encapsulates a particular type of associative memory wherein the recurrent synaptic con-
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nections between neurons offer a scaffold for a Lyapunov function, synonymously termed an

energy function, to preside over the temporal dynamics of the neuron states. Such a frame-

work enables the activity of the neurons—the state variables, to undergo a monotonically

non-increasing evolution towards a local minimum of this Lyapunov function, these terminal

points characterizing the fixed-point attractors of the neural network dynamics.

The mechanics of the Hopfield networks, or their computation functionality, are orches-

trated by the temporal evolution of their state. A binary state architecture was proposed,

evolving in discrete time intervals. This dynamical process can be elegantly encapsulated

through the following mathematical expression:

vi[t + 1] =

1, if
∑N

j=1 Jijvj[t] + Ij > 0,

0, otherwise.

(4-1)

In this model, vi[t] signifies the activity or state of the i-th neuron, with the total number of

neurons in the network denoted by N . Ij represents the bias input impinging upon neuron

j, and Jij encapsulates the synaptic weight associated with the connection from neuron j to

neuron i. At each time step, a neuron is selected in a stochastic manner, and the ensuing

state is determined by the Eq. (4-1) (Hopfield, 1982).

The synaptic weight matrix J must exhibit specific characteristics for the network dy-

namics to be governed by a Lyapunov function. The diagonal entries of this matrix must

be null, implying no self-connections, or Jii = 0,∀i, and the matrix must be symmetric, i.e.,

Jij = Jji,∀i, j. Under these premises, the energy function E[t] can be defined as follows

(Goles-Chacc et al., 1985, Bruck, 1990):

E[t] = −1

2
vTJv − vT I = −1

2

∑
i,j

Jijvj[t]vi[t] −
∑
j

Ijvj[t]. (4-2)

This energy function E[t] thus acts as a Lyapunov function for the dynamical system (4-1).

The aforementioned Lyapunov function is the nexus binding the principles of associative

memory and a Hopfield network. An associative memory paradigm is distinctly identified by

its capacity for cued pattern recall; when given a fragment of a stored pattern, the system

strives to output the complete, nearest matching stored memory pattern.
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Let us consider a reservoir of M patterns denoted as {ξµ}Mµ=1. If the synaptic weight

matrix J is configured such that each pattern ξµ is a local minimum of the Lyapunov func-

tion (4-2), then any initial state (or query) within the basin of said attractor will inevitably

converge to the state corresponding to the pattern ξµ. This propensity is a testament to the

network’s associative recall capacity (Hopfield, 1982).

The construction of a synaptic weight matrix, J , that projects the M patterns, ξµ, to the

attractors of the Lyapunov function (4-2) is an essential step in building Hopfield networks.

In its most rudimentary form, this matrix can be composed by the summation of outer

products of the given patterns:

J =
M∑
µ=1

ξµ · ξµT . (4-3)

This particular learning rule, characterizing the formation of the synaptic weight matrix,

is labeled as a Hebbian rule. This nomenclature stems from synaptic weights being propor-

tional to the covariance of the pre- and postsynaptic states, aligning with Donald Hebb’s

postulate of learning and synaptic plasticity (Hebb, 1949).

So far, we have primarily discussed Hopfield networks characterized by binary state

variables evolving in discrete time intervals. Hopfield, in 1984, proposed an extension of this

model to a domain where both the state variables and time manifest as continuous quantities.

In this continuous setting, let us denote vi as the internal potential of a neuron i and let

g be a bounded, real, and monotonically increasing function, typically a sigmoid function.

This function g transmutes a neuron’s potential into a firing rate, signified by si = g(vi).

Suppose the internal potential of a neuron i reacts instantaneously to the input from neuron

j via synaptic weight Jij. It then follows an exponential decay with a constant τ .

The temporal evolution of the neurons’ internal potential can be comprehensively de-

scribed by a system of N ordinary differential equations:

τ
dvi
dt

= −vi +
N∑
j=1

τJijg(vj) + Ii, (4-4)

where Ii represents the bias input to neuron i (Hopfield, 1984).
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Analogous to the discrete counterpart, if the synaptic weight matrix, J , exhibits sym-

metry, we can define a Lyapunov function for the continuous system as follows:

E = −1

2
vTJv − vT I − 1

τ

N∑
j=1

∫ g(vj)

g−1(z)dz. (4-5)

This energy function is a Lyapunov function for the dynamical system (4-4) (Hopfield, 1984).

4.2.2 Modern Hopfield Networks

The original formulations of Hopfield networks, both discrete and continuous versions,

unfortunately, suffer from a fundamental limitation–their storage capacity scales linearly

with the number of inputs (Hopfield, 1982). Furthermore, this retrieval system requires

the memories to be entirely uncorrelated for flawless pattern retrieval. This condition often

needs to be revised in complex real-world applications where correlation among memories is

the norm rather than an exception.

The introduction of strong nonlinearities into the activation function g has been instru-

mental in addressing the storage capacity limitations inherent in classical Hopfield networks.

This adaptation has allowed for a super-linear scaling relationship between the number of

inputs and the network’s storage capacity, as elucidated in studies by Krotov and Hopfield,

Demircigil et al. (2016, 2017). This advanced model, christened as “Modern Hopfield Net-

works” or “Dense Associative Memories,” marks a significant departure from the classical

formulations. These modern networks’ discrete and continuous versions have been studied

extensively (Krotov and Hopfield, 2016, Ramsauer et al., 2020).

The binary neuron model in modern Hopfield networks has been adequately discussed

in the literature (Krotov and Hopfield, 2016). However, for continuity and comprehensive

understanding, we will focus on the case of continuous variables and time from now on.

A general system of differential equations in the form of (4-4), where sj = g(vj), for a

non-linear function g, can exhibit complex dynamics. The choice of nonlinearities and initial

conditions can heavily influence the nature of these dynamics.

Modern Hopfield networks, though similar in structure, tend to exhibit more tractable

dynamics due to their intrinsic design. They are engineered to have an underlying energy
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function E(t) that is guaranteed to decrease over time, i.e., dE(t)/dt ≤ 0. This characteristic

ensures the convergence of the system dynamics to fixed-point attractor states, simplifying

the analysis and comprehension of their behavior.

Let us consider a fully connected network of N neurons characterized by a symmetric

matrix of weights. Each synaptic connection weight from neuron j to neuron i is represented

by Jij, 1 ≤ i ≤ N, 1 ≤ j ≤ N . We represent the activity of each neuron i, vi, using its

activation function gi and timescale τi. The evolution of vi over time can be modeled by the

firing rate, Eq. (4-6), is:

τi
dvi
dt

= −vi +
N∑
j=1

Jijgj(vj). (4-6)

A Lagrangian function L
(
{vi}Ni=1

)
is assumed to encapsulate the dependency on the state

of (4-6). Consequently, we can express each activation function gi as a partial derivative of

the Lagrangian with respect to vi:

gi :=
∂L

∂vi
. (4-7)

The introduction of the Lagrangian function allows for the derivation of a global energy

function for (4-6), which is defined as (4-8):

E = vTg − L− 1

2
gTJg. (4-8)

The first term on the right-hand side, vTg−L, represents the Legendre transform of the

Lagrangian L with respect to the vector v (Krotov, 2021).

The temporal evolution of the energy function E(t), represented by its derivative with

respect to time, is defined as:
E(t)

dt
= −(∇v)THv∇v, (4-9)

where Hvij = τi∂
2v/∂vi∂vj represents the Hessian of v.

The energy function is guaranteed to decrease over time (dE(t)/dt ≤ 0) if the Hessian

Hv is positive semi-definite (Krotov, 2021). Furthermore, if the energy function (4-8) is

bounded from below, v will converge to a fixed-point attractor (Krotov, 2021).

The nature of the Lagrangian function significantly influences the behavior of the acti-

vation functions gi. Each gi is a non-linear function of its corresponding state variable vi for
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additive Lagrangian functions. However, for non-additive Lagrangian functions, each gi can

be a function of a subset of the state vector v.

The cases of non-additivity become particularly intriguing when the activation function gi

embodies canonical neural computations. Specifically, we have instances where gi enables di-

visive normalization, a mechanism widely referenced in the literature (Reynolds and Heeger,

2009, Ni et al., 2012, Ohshiro et al., 2011, Carandini and Heeger, 2012). Alternatively, gi can

facilitate contrast normalization by implementing softmax functions (Heeger, 1992, Geisler

and Albrecht, 1992, Bonin et al., 2005). These instances highlight the fascinating breadth

of computational capabilities within the non-additive domain.

We now shift our attention to a two-tier network consisting of both fast and slow neurons,

denoted respectively by vfi , 1 ≤ i ≤ N f and vsj , 1 ≤ j ≤ N s. This system is differentiated

by their kinetic time constants, with fast neurons exhibiting a significantly smaller constant

than their slower counterparts. This disparity can be mathematically represented as τi =

τ f ,∀1 ≤ i ≤ N f , τj = τ s,∀1 ≤ j ≤ N s, where τ f ≪ τ s.

Moreover, the output functions of fast and slow neurons (hf
i and gsj , respectively) are

contingent on the activities within their corresponding neuronal populations. That is, hf
i =

h
(
vfi i = 1Nf

)
and gsj = g

(
vsjj = 1Ns

)
.

We then model the temporal evolution of the neurons’ state through the following system

of differential equations:

τ f
dvfi
dt

=
Ns∑
j=1

Jijg
s
j − vfi + Ii, (4-10)

τ s
dvsj
dt

=
Nf∑
i=1

Jjih
f
i − vsj + Ij. (4-11)

These equations contain activation functions hf and gs, which are derivatives of their re-

spective Lagrangian functions: hf
i = ∂Lf/∂vfi and gsj = ∂Ls/∂vsj . The Lagrangian functions

are denoted as follows:

Lf = log

 Nf∑
i=1

ev
f
i

 , (4-12)

Ls =
1

2

Ns∑
j=1

(vsj )
2. (4-13)

79



For such defined Lagrangians, we can leverage the averaging theory when τ f ≪ τ s to

express Eq. (4-11) in terms of the steady-state solutions of Eq. (4-10).

The resulting averaged equations for the slowly-varying neurons under these conditions

are given by (Ramsauer et al., 2020):

τ s
dvsj
dt

=
Nf∑
i=1

Jijsoftmax

(
Ns∑
j=1

Jijv
s
j

)
− vsj + Ij, (4-14)

This equation, fascinatingly, has an underlying energy function:

E =
1

2

Ns∑
j=1

(vsj )
2 − log

 Nf∑
i=1

exp

(
Ns∑
j=1

Jijv
s
j

) . (4-15)

This remarkable framework of Eqs. (4-14) and (4-15) has a distinct resemblance to the

self-attention mechanism (Vaswani et al., 2017) brought to prominence by the transformative

deep learning architecture (Ramsauer et al., 2020, Krotov and Hopfield, 2020).

4.2.3 Storage and Retrieval of Temporal Sequences in Hopfield Networks

A fundamental form of short-term memory can retain the order of a sequence of stimuli

(Fuster and Alexander, 1971, Howard and Kahana, 2002); for instance, recognizing whether

a given stimulus has been presented before in a sequence. Implementing such a system

within an ANN requires the capability to store and retrieve temporal sequences, which can

be thought of as ordered chains of patterns. A robust short-term memory system of this

type must satisfy three primary criteria:

1. The production of temporal sequences should be autonomous, not dependent on down-

stream feedback or upstream modulation (Hochreiter and Schmidhuber, 1997);

2. The rhythmic output must manifest as a network-level phenomenon rather than as an

intrinsic property of individual neurons (Buzsaki and Draguhn, 2004);

3. The network should possess a rich set of rhythmic outputs modulated by afferent inputs

(Fries, 2005, Rajan et al., 2016). We can interpret the output as a cyclic transition

of stored patterns, with the network capable of chunking and arranging these patterns,

producing many temporal sequences (Buzsáki, 2010).
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We aim to construct a theoretical framework encompassing these requirements by relying on

fundamental neural elements, that is, modeling the desired behavior in terms of the most

straightforward possible neurons and synaptic forms. As discussed in Section 2.2.1, a sym-

metric synaptic weight matrix, akin to Eq. (4-3), leads to pattern storage using fixed-point

attractors. The natural progression from this point is to explore the impact of introducing

non-symmetric synapses on the dynamic landscape of the network.

The implications of injecting noise into the ideal symmetric “Hebbian” synapses, thereby

inducing asymmetry, have been previously examined analytically (Sompolinsky and Kanter,

1986). Consider a network composed of N neurons with synaptic weights J̄ij = Jij + ηij,

where ηij follows a normal distribution N (0, , σ2/N), and Jij constitutes the Hebbian term

characterizing a well-functioning network. Sompolinsky and Kanter (1986) demonstrated

that the network could withstand substantial levels of σ, that is, high degrees of asymmetry,

without a significant decline in performance.

By demonstrating the network’s resilience to asymmetry, Sompolinsky et al.’s findings

provide a basis for understanding how asymmetric synapses could contribute to network

dynamics without undermining the base Hebbian storage capacity. It also paves the way for

further investigations into how structured asymmetry might engender novel dynamics, such

as the emergence of rhythmic output patterns that could underlie the system’s capacity for

storing and retrieving temporal sequences.

Structured asymmetry within synaptic weights has been the subject of rigorous study,

with systematic investigations performed by Hopfield that provide an insightful perspective

on the matter (Hopfield, 1982, 1984). A simple yet effective approach considered by Hopfield

involved supplementing the existing synaptic matrix with an additional set of synapses, which

can be represented as:

H = λ
M∑
µ=1

ξµ+1 · ξµT . (4-16)

In this equation, λ characterizes the relative strength of the new set of synapses compared

to the original set represented by J in Eq. (4-3), and M represents the total number of stored

patterns. For ease of analysis and clarity, we treat the original and additional synapses as

two distinct sets; however, it is not essential for the practical operation of the network, as

81



a single synapse connecting every pair of neurons can potentially comprise both symmetric

and asymmetric components.

The fundamental idea underpinning this arrangement is to establish a correlation between

sequentially adjacent patterns, i.e., [ξ1, . . . , ξµ, ξµ+1, . . . , ξM ]. This intention is reflected in

the outer products ξµ+1 · ξµT in Eq. (4-16). Moreover, depending upon the final pattern

ξM+1, we either obtain a finite sequence concluding at pattern µ = M (if ξM+1 = ξM), or a

periodic sequence transitioning from states ξr,∀1 ≤ r < M, to ξM , if ξM+1 = ξr.

Taking into account the newly introduced synaptic connections, J̄ = J+H , the resultant

effect on a particular neuron’s activity (for instance, neuron i) can be quantified as:

N∑
j=1

Jijgj(vj) + λ
N∑
j=1

Hijgj(vj) =
M∑
µ=1

ξµi

N∑
j=1

ξµj gj(vj) + λ
M∑
µ=1

ξµ+1
i

N∑
j=1

ξµj gj(vj), (4-17)

In this equation, the inner sums of the terms on the right-hand side represent the overlaps

between pattern ξµ and the current network state. A comparison of Eq. (4-17) with the

second term on the right-hand side of (4-6) can provide enlightening insights into the effects

of introducing asymmetry.

To simplify, let us analyze the scenario where the M patterns {ξµ}Mµ=1 are random,

normalized, and uncorrelated. Assuming that the current state of the network aligns with a

given pattern p, denoted ξp, all the overlaps in Eq. (4-17) will be null for µ ̸= p and equal

to one for µ = p. Therefore, Eq. (4-17) simplifies to:

ξpi + λξp+1
i . (4-18)

It is observable from this equation that the parameter λ essentially determines the pattern

(either ξp or ξp+1) towards which the state of neuron i will evolve in the next instance.

Assuming a condition where all neurons synchronously update, and λ is appropriately

adjusted, a network expressed by (4-6) with a synaptic weight matrix as given by (4-16) will

reproduce the specified sequence of patterns. Each subsequent pattern follows the prior one

with each update of the state. However, one must note that the network requires precise

tuning of parameters, such as λ, and is vulnerable to noise. Even minor correlations between

patterns can lead to errors in the sequence of output patterns (Hopfield, 1982).
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Another noteworthy concern is the assumption of synchronous updates, which seems

untenable in biological and artificial neural network scenarios. Under asynchronous updates,

where different neurons are updated at different times, the output at any given time step

would be a superposition of patterns. This occurs because the update of a particular neuron

depends on the current state of all other neurons, which includes the new states of neurons

updated earlier. Consequently, the effective current at the neuron being updated at a given

time step would not be a superposition of current and next state, as suggested by the idealized

scenario of Eq. (4-18), but a superposition of multiple patterns.

Furthermore, addressing the transient nature of the patterns produced in the current

model is critical. In this scheme, the network spends only a single step at each pattern

in the sequence. Though the network successfully traverses the sequence of patterns, these

patterns do not persist in the output long enough to be “cognitively” perceptually distinct

(Hopfield, 1984). This discrepancy questions the model’s utility in simulating cognitive

processes where information must be retained over more extended, meaningful periods.

In summary, while this method introduces an exciting perspective on modeling the se-

quential dynamics of neural networks, several challenges arise from the required precision in

parameter tuning, the biological and practical infeasibility of synchronous updates, and the

transient nature of the network states.

To effectively capture the robust and temporally stable behavior of a pattern sequence

within the neural network, our model must evolve to accommodate quasi-attractors, a con-

cept widely recognized within the domain of dynamical systems (Conley, 1988). Quasi-

attractors embody the idealized features of both stability and robustness of fixed-point at-

tractors while integrating an additional property: the destabilization of the quasi-attractor

as it persists for prolonged periods, thereby enabling the network state’s transition to the

succeeding quasi-attractor. This is a pivotal characteristic as we desire network states to

stabilize for substantial periods, allowing for “cognitive” recognition.

Our model further imposes the constraint that synaptic weights can only be modified on

a timescale significantly slower than the network’s primary timescale. Echoing the principles

outlined in Section 2.2.1, we will maintain a solution where the fast synaptic weights are kept

static. Modifying synapse strengths will be reserved for the more complex task of learning.
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The additional set of synapses, which previously enabled the network to generate a

sequence of patterns, is paradoxically the origin of instability, as it promotes the departure

from the current pattern as soon as the network state begins to align. The solution to this

issue, as suggested independently by Sompolinsky and Kanter (1986) and Kleinfeld (1986),

introduces a synaptic mechanism that effectively delays the synapses responsible for pattern

transitions (as indicated in Eq. (4-16)) in comparison to the synapses responsible for robust

pattern retrieval (as denoted in Eq. (4-3)). This “synaptic mechanism” is an umbrella term

encompassing various biological mechanisms capable of implementing such delays, including

a simple delay in direct synaptic contact between two neurons or introducing relays through

other neurons or complete networks.

4.2.3.1 Delay Mechanisms

First, let us consider the scenario where a simple delay is implemented through the

slow synapses. We denote si(t) as the neuron i activity, delayed by τd seconds. Formally,

si(t) = vi(t− τd). The contributions to the state of neuron i from the network consequently

become:
M∑
µ=1

ξµi

N∑
j=1

ξµj gj(vj(t)) + λ
M∑
µ=1

ξµ+1
i

N∑
j=1

ξµj gj(vj(t− τd)). (4-19)

Following similar lines of analysis as previously established, if the network state aligns

with pattern p at t = 0, then Eq. (4-19) simplifies to ξpi for 0 < t < τd. At t = τd, the second

term in Eq. (4-19) becomes nonzero, resulting in ξpi + λξp+1
i , mirroring Eq. (4-18), but with

a critical difference.

In the following τd seconds (τd < t < 2τd), there will be no extraneous terms inducing

transitions towards the subsequent patterns in the sequence, as the information about state

transition will not propagate through the transition synapses due to the implemented time

delay. This modification allows all neurons to update their states towards the following

pattern in the sequence, even in the asynchronous update scenario. The network lingers

in each pattern for an interval τd, where τd can be fine-tuned so that each pattern remains

stable long enough to facilitate “cognitive” recognition.

The scope of our model is not restricted to simple delays. The delaying mechanism can
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be further generalized by substituting the simple delay with a filter for postsynaptic activity

transmitted over J slow. Consider the following formulation:

si(t) = vi ∗ w(t) =

∫ ∞

0

w(−t′)vi(t− t′)dt′, (4-20)

In this instance, w(t) denotes the filter applying a weighted time-average over the signal

arriving via J slow, with w(t) being non-negative and normalized, i.e.,∫ ∞

0

w(t)dt = 1. (4-21)

By definition, the average time interval τd is given by:

τd =

∫ ∞

0

tw(t)dt.

Additionally, we assume that w(t) does not overweight contributions from more than two

patterns simultaneously, i.e., if the network spends a period T in each pattern, then τd < 2T .

Notably, if w(t) = δ(t − τd), then Eq. (4-20) reverts to the simple time delay case.

Moreover, for the specific scenario of an exponential decay filter, defined as:

w(t) =


1
τd
e−t/τd , if t > 0

0, otherwise.

(4-22)

The network’s contribution to a given neuron’s activity via the slow synapses equates

to the normalized synaptic current (refer to Eq. (2-2)) in the spiking network introduced

in Section 2.2.1. This correlation underscores the intricate relationships between varying

network architectures and synaptic mechanisms.

The normalization condition given by Eq. (4-21) has noteworthy implications for the

period T spent in each pattern for the case of Eq. (4-22). Specifically, T is given by

T = τd ln

(
2λ

λ− 1

)
, (4-23)

with the stipulation that T < 2τd if the condition e2/(e2 − 2) < λ < e/(e− 2) is satisfied.

By the same reasoning as that developed in Section 2.2.2, a meaningful energy function

can be defined as a mean field approximation for the slow synapses, despite the lack of a

landscape of stable fixed-point attractors. The mean field contribution from the additional
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slow, asymmetric synapses introduces an extra term to the energy function that underlies

the fast, symmetric synapses. Qualitatively, this additional term will deepen the valley

representing the fixed-point attractor for the network’s current state pattern ξp for the

duration of the averaging period T , after which this valley is gradually filled in. In contrast,

the valley representing the subsequent pattern ξp+1 is deepened.

4.2.3.2 Correlated Patterns

Addressing the restrictions imposed by uncorrelated patterns is vital, as this might seem

somewhat limiting, especially considering the high correlation of stimuli in their natural

or direct mapped form. However, numerous strategies have been proposed to address this

concern, and several warrant further discussion.

The first of these strategies adopts an agnostic stance, positing that raw stimuli are trans-

formed into uncorrelated patterns before storage. At the time of retrieval, these patterns are

subsequently re-mapped into their representative physical or sensory forms. An alternative

strategy suggests subtracting the mean correlation between the directly mapped stimuli from

the synaptic matrices, thereby preserving local neuronal interactions and connectivity.

The most comprehensive approach, and the one we adopt here, involves projecting the

synaptic matrices into a more conducive space. If we denote {ξµ}Mµ=1 as the set of M patterns

to be stored, and define J fast according to Eq. (4-25), then the new set of patterns can be

expressed as:

ζµ =
M∑
p=1

J fast−1
ξp, (4-24)

where J fast−1
represents the inverse of the matrix J fast, the new patterns ζµ will be orthogonal

to the set {ξµ}Mµ=1 and will therefore be uncorrelated.

4.3 Connecting Hopfield and Spike-Coding Networks

In this section, we derive the important result connecting the predictive coding framework

discussed in Chapter 2 and the concept of associative memories through Hopfield networks.
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To ensure terminological consistency and lucidity, let us rename the stabilizing synapses

matrix (Eq. (4-3)) as J fast and the transition synapses matrix (Eq. (4-16)) as J slow to reflect

their delayed behavior:

J fast =
M∑
µ=1

ξµ · ξµT , (4-25)

J slow = λ

M∑
µ=1

ξµ+1 · ξµT . (4-26)

It is now clear we are drawing a parallel between the synaptic matrices J fast and J slow

and Ωfast (Eq. (2-40)) and Ωslow (Eq. (2-41)) from the spike-coding network. We are ready

to show that the Hopfield Network with asymmetric synaptic weights is equivalent to the

autonomous spike-coding network in (2-20).

The dynamics of a continuous Hopfield network including both J fast and J slow are:

dvi
dt

= −vi +
M∑
µ=1

ξµi

N∑
j=1

ξµj gj(vj) + λ
M∑
µ=1

ξµ+1
i

N∑
j=1

ξµj gj(vj(t− τd)) + Ii

= −vj +
N∑
j=1

M∑
µ=1

ξµi ξ
µ
j gj(vj) +

N∑
j=1

M∑
µ=1

λξµ+1
i ξµj gj(vj(t− τd)) + Ij

∴
dvi
dt

= −vi +
N∑
j=1

J fast
ij gj(vj) +

N∑
j=1

J slow
ij gj(vj(t− τd)) + Ii, (4-27)

where i, j index the neurons, µ indexes the patterns, N is the number of neurons, M is the

number of patterns, vi is the potential of neuron i, Ii is a bias input current to neuron i, ξµi

represents the ith component of the µth stored pattern, gj is an activation function, vj(t−τd)

is the delayed input stimulus, and λ weights the asymmetric synapses H .

From a term to term comparison with Eq. (2-32), reproduced below for clarity,

τ
dvi
dt

= −vi − τ
K∑
k=1

ωik

N∑
j=1

ωkjδj +
K∑
k=1

ωik

N∑
j=1

Akjωpjsj +
K∑
k=1

ωikck

∴ τ
dvi
dt

= −vi +
N∑
j=1

Ωfast
ij δj +

N∑
j=1

Ωslow
ij sj + Ωijcj, (4-28)

we can see the following:
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• The Ωfast
ij weights in (4-28) are akin to the symmetric J fast

ij weights in (4-27). Both

represent correlations within a stored pattern.

• The leak/decay vj term is present in both models.

• The Ij bias input is akin to ωic in (4-28).

• The neuron time constant τ in (4-28) is equivalent to 1/λ in (4-28); the inverse of the

asymmetric synapses H relative strength.

• The delayed asymmetric J slow
ij weights in (4-27) are analogous to the slow recurrent

synapses Ωslow
ij in (4-28). For a carefully chosen A, we can show they are equivalent.

If A is defined such that Aij = 1 if j = (i + 1) mod N and 0 otherwise, that is, A is a

N ×N matrix with the following form:

A =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 . (4-29)

Then multiplying ξµ by A will result in ξµ+1. That is,

Aξµ = ξµ+1. (4-30)

Applying the ansatz (4-30), Eq. (4-27) becomes:

dvi
dt

= −vj +
N∑
j=1

M∑
µ=1

ξµi ξ
µ
j gj(vj) +

N∑
j=1

M∑
µ=1

λ(Aξµ)iξ
µ
j gj(vj(t− τd)) + Ij

dvi
dt

= −vj +
N∑
j=1

M∑
µ=1

ξµi ξ
µ
j gj(vj) +

N∑
j=1

M∑
µ=1

λξµi Aijξ
µ
j gj(vj(t− τd)) + Ij.

This matches Eq. (4-28) by identifying:

gj(vj) ≡ sj

ξµ ≡ Ωi,

where Ωi = [ω1i, . . . , ωKi]
T is the i-th column of Ω and represent the decoding weights of

neuron i. Each pattern ξµ corresponds to signal zk in the spike-coding framework.

Therefore, with this particular permutation matrix A, (2-32) is equivalent to (4-27) and

we establish an equivalence between the predictive coding framework of spike-coding networks

and the associative memory of continuous Hopfield networks.
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4.3.1 Cyclic Permutation Matrices

The matrix under consideration, A, is characterized as a permutation matrix, specifically

defined by a square binary matrix structure with precisely one entry of 1 for each row and

column, and 0s dispersed otherwise (Brualdi et al., 1991). The particular A in (4-29) is

known as a Sylvester’s cyclic permutation matrix (Aitken, 2017).

Sylvester’s permutation matrices carry distinct properties and significant implications

for a system’s dynamics governed by such matrices. First, their orthogonality implies that

the system is invariant under the transformation represented by the matrix (Strang, 2022).

Furthermore, orthogonal matrices preserve the inner product, meaning that the angles and

lengths are preserved (Blank et al., 2008).

For Hopfield networks, the permutation matrix’s transpose equivalent to its inverse cre-

ates a new system configuration from the original connectivity matrix J slow. Such invariance

could prompt symmetry or uniformity in the network’s dynamic behavior, affecting its pat-

tern recognition and memory recall capacity (Rao et al., 2002).

In the context of spike-coding networks, the transformation denoted by ΩTAΩ yields a

new weight matrix that conserves the geometric attributes of the original weight matrix Ω.

Since weight matrices denote the synaptic connections’ strength, this transformation might

culminate in symmetrical or uniform synaptic connections in the transformed network. This

uniformity can stimulate synchronous neuron firing, creating stable patterns or oscillations

within the network (Dayan and Abbott, 2005).

Sylvester’s permutation matrices have a determinant of −1, suggesting that the system

undergoes a reflection or a parity transformation (Horn and Johnson, 2012). This has impli-

cations for physical systems described by such matrices, which include changes in direction

but maintain the system’s volume. For example, in physics, this is related to time-reversal

symmetry, where a negative determinant implies that the system behaves the same way if

time is reversed (Sakurai and Commins, 1995).

In the framework of the Hopfield network, this could potentially lead to a reflection or

inversion in the network’s operational behavior. For instance, the transformation J slow will

negate the connectivity matrix given H is an identity matrix. In the context of network
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dynamics, this could give rise to flipping in the stored or retrieved patterns, as commonly

observed in the stability of anti-patterns (Roelfsema and Ooyen, 2005).

For spike-coding networks, this could mean that the network’s dynamics exhibit a balance

between excitation and inhibition or represent some form of reset mechanism in the neuronal

dynamics, where a certain state leads to a reversal in the neurons’ behavior (Izhikevich, 2007).

Eigenvalues of these matrices are the nth roots of unity, implying the system’s dynam-

ics are cyclical; after n sequential transformations, the system returns to its initial state,

highlighting the periodic and, thus, predictable behavior of the system.

In a Hopfield network scenario, this could evoke periodic or rhythmic patterns in the

network’s dynamics, such as cyclic shifts in memory recall patterns or oscillations between

stable states based on input and initial conditions (Chen and Amari, 2001).

In the context of a spike-coding network, this could signify oscillatory activity. These

cycles might correspond to various rhythmic activities observed in the brain, such as theta,

alpha, beta, and gamma rhythms (Buzsaki and Draguhn, 2004). Additionally, it might de-

note cyclic dynamics in a neuron chain or a ring network, where activity cyclically propagates

through the network (Ermentrout and Terman, 2010).

In conclusion, a system governed by a permutation matrix exhibits a periodic behavior.

It is also invariant under the transformation represented by the matrix (owing to orthogo-

nality), and time-reversal symmetry (as the determinant is -1). For a spike-coding network,

these properties could result in symmetrical synaptic connections, excitatory-inhibitory bal-

ance, and the emergence of oscillations. For Hopfield networks, these properties potentially

introduce symmetry, stability of “anti-patterns,” and cyclic shifts in memory recall patterns

or oscillations between various stable states.

4.3.2 Generalization to Circulant Matrices

In the presented framework, two important theoretical constructs converge—the predic-

tive coding framework and the associative memory dynamics of Hopfield networks. Specif-

ically, the Hopfield network with asymmetric synaptic weights shows equivalency with the

autonomous spike-coding network for a cyclic permutation matrix. Now, we generalize to
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the case of arbitrary circulant matrices.

A circulant matrix has the property that its columns (or rows) are cyclic shifts of each

other. In other words, a circulant matrix has the form Cc (Gray et al., 2006):

Cc =


c0 cN−1 cN−2 · · · c1

c1 c0 cN−1 · · · c2
...

...
...

. . .
...

cN−1 cN−2 · · · c1 c0

 . (4-31)

For any circulant matrix Cc of size N ×N , there exists an associated polynomial p(c) in the

cyclic permutation matrix A (Eq. (4-29)), such that:

Cc = c0I + c1A + c2A
2 + ... + cN−1A

N−1, (4-32)

where I is the identity matrix, ck, ∀0 ≤ k ≤ N − 1 are the polynomial coefficients, and each

power of A corresponds to a cyclic shift of the matrix (Pan, 2001).

As a result, we can express any circulant matrix as a linear combination of the cyclic

shift matrices An, where n is the shift count. By introducing the circulant matrix Cc =∑N−1
n=0 cnA

n into the definition of J slow, allows us to capture more complex interaction dy-

namics in the network. The new definition of J slow in terms of Cc is give by:

J slow = λ
M∑
µ=1

N−1∑
n=0

cnξ
µ+n · ξµT . (4-33)

This matrix captures more general interaction dynamics in the network, by weighting all

the different shifted patterns in determining the influence of neuron j on neuron i.

With the given generalized J slow, (4-27) becomes:

dvi
dt

= −vi +
N∑
j=1

M∑
µ=1

ξµi ξ
µ
j gj(vj) + λ

N∑
j=1

M∑
µ=1

N−1∑
n=0

cnξ
n+µ
i ξµj gj(vj(t− τd)) + Ii.

= −vi +
N∑
j=1

J fast
ij gj(vj) + λ

N∑
j=1

N−1∑
n=0

cnξ
µ
i A

n
ijξ

µ
j gj(vj(t− τd)) + Ii

∴
dvi
dt

= −vi +
N∑
j=1

J fast
ij gj(vj) +

N∑
j=1

J slow
ij gj(vj(t− τd)) + Ii. (4-34)

91



Given the new form of Ωslow, the correspoding Ωslow in (4-34) is:

Ωslow =
N−1∑
n=0

cnΩ
TAnΩ, (4-35)

which is obtained by replacing A with the circulant matrix Cc.

The polynomial Cc defines the neural interaction topology. Specifically, the coefficients

cn in Cc determine how much of the nth shifted pattern will affect the current neuron

state. Consequently, Cc defines how information propagates through the network and how

the network’s state evolves. When n = 1 and c0 = 0, this reduces to the 1-step cyclic

permutation case. Higher order terms like c2A
2 describe longer range correlations.

It is worth noting that the generalization of the networks to incorporate circulant matrices

does not dilute the models’ original purpose. In contrast, it fortifies them by accounting for

more complex scenarios and introducing additional parameters that may enhance the models’

predictive power and fidelity to real neural dynamics (Marullo and Agliari, 2020). Varying

the coefficients cn allows flexible control over the temporal window and structure of the

correlations (Cheng et al., 2015). For example, high-order terms of the form ciA
i, i ≥ 2, can

model longer-range dependencies, like slowly oscillating brain rhythms.

Therefore, expressing Cc as a polynomial in A provides a general way to systematically

map cyclic, convolving dynamics between Hopfield and spike-coding networks across multiple

scales. The quadratic form ΩTCcΩ could be seen as representing the aggregate effect of

these synaptic weights at multiple timescales on the neural activity, implying a multi-scale

model of neural computation and learning. The term with the identity matrix, c0Ω
TIΩ,

would represent the current influence of the synaptic weights on the neural activity. The

term c1Ω
TAΩ would then capture the influence of synaptic weights with a one-step delay,

c2Ω
TA2Ω would capture the influence with a two-step delay, and so on.

The proposed interpretation mirrors the notion of multi-timescale learning within rein-

forcement learning theory. This theory acknowledges that different learning facets can, and

more importantly, should advance at disparate rates (Sutton and Barto, 2018).
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In parallel, this interpretation aligns with empirical evidence in neuroscience, specifically

with the observed plasticity changes in the brain’s synapses. Plasticity changes can span sev-

eral timescales, from short-term alterations persisting in seconds to long-term modifications

lasting days or even longer (Fusi et al., 2005).

Furthermore, this model could also be useful in capturing and studying phenomena like

STDP, where the change in a synapse’s strength depends on the precise timing of pre- and

postsynaptic spikes (Markram et al., 2011). Likewise, it could be useful in modeling synaptic

consolidation, where synaptic changes induced during periods of wakefulness are solidified

during sleep (Diekelmann and Born, 2010), a central mechanism for memory storage and

consolidation, balancing the need for learning new information and maintaining the stability

of neuronal networks (Abel and Lattal, 2001).

4.3.3 Circular Convolutions

Circulant matrices have been extensively studied for their unique properties and diverse

applications in a range of fields, from image processing (Gonzales and Wintz, 1987), coding

theory (McEliece, 2002), to communication systems (Proakis, 2007).

Circulant matrices offer a unique implementation of circular convolutions due to their

specific structure, which allows for rotations and shifts in their entries. Let’s begin with the

definition of circular convolution to appreciate the connection between circulant matrices

and circular convolutions. For two vectors of length N , denoted as a = [a0, a1, ..., aN−1] and

b = [b0, b1, ..., bN−1], the circular convolution of a and b is given by:

(a⊛ b)n =
N−1∑
k=0

akb(n−k) mod N , (4-36)

where n ranges from 0 to N − 1, the operation (n − k) mod N denotes the modulus after

division, ensuring the indices are cyclic (Gray et al., 2006).

Now, let’s consider a circulant matrix Cb, whose first column is defined by the vector

b = [b0, b1, ..., bN−1]. Each subsequent column of Cb is a cyclic shift of the previous column.

When Cb multiplies a, the resulting vector is exactly the circular convolution of a and b:

Cba = a⊛ b. (4-37)
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One of the most significant properties of circulant matrices is that they are diagonalizable

by the discrete Fourier transform (DFT) matrix (Davis, 1979). This property is critical

because it allows using the fast Fourier transform (FFT), an efficient algorithm for computing

DFTs, in matrix-vector multiplication involving circulant matrices (Lu, 1989).

To demonstrate this property, let FN be the N × N DFT matrix, whose elements are

given by FN [k, n] = ωkn
N , where ωN = e2πi/N is the Nth root of unity. It can be shown that

Cb = F−1
N DFN , (4-38)

where D is a diagonal matrix with elements equal to the DFT coefficients of the vector b.

This result implies that the circular convolution of two vectors a and b, which can be

computed as Cba if Cb is a circulant matrix with first column equal to b, can also be

computed in the Fourier domain using the FFT as follows:

Cba = F−1
N DFNa = F−1

N (FNy) ⊙ (FNx), (4-39)

where ⊙ denotes the Hadamard (element-wise) product.

This result shows that circular convolution in the time domain corresponds to point-

wise multiplication in the Fourier domain (Bracewell, 1986), a fundamental property used

in many digital signal processing applications (Oppenheim, 1999).

This opens the door to a more in-depth investigation of the system in the frequency

domain since its dynamics becomes decouple, allowing for easier analysis, i.e., the solution

to each frequency component of the system can be examined independently. This yields

valuable insights into the oscillatory behavior of the system, such as the frequency content

of the system’s response and the effects of delays on this response.

Furthermore, stability can be evaluated by examining the roots of the system’s charac-

teristic equation in the Fourier domain. Specifically, we can analyze the spectral radius of

the DFT of the matrices, which represents the maximum magnitude of their eigenvalues. If

the spectral radius is less than or equal to one, the system is stable; otherwise, it is unstable.

Importantly, this stability criterion is significantly easier to check than directly analyzing

the potentially high-dimensional dynamical system.
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Therefore, the application and implications of circulant matrix C and its induced circular

convolution have far-reaching impacts on both Hopfield Networks and spike-coding networks.

They introduce robust computational mechanisms that allow for modeling cyclic temporal

dynamics and correlations, thus playing a pivotal role in memory and sequencing.

For Hopfield Networks, the circulant matrix C serves to implement a time-delayed au-

tocorrelation function between stored patterns ξµ. This function enables the creation of

cyclic transitions between stored memories, thereby executing a shift register as associations

cycle through time. The introduction of asymmetric synapses, which encode spatial correla-

tions using circulant matrices, highlights the suitability of these structures for convolution.

Through these cyclic dynamics, robust transitioning between stored states is enabled, a

factor that reduces corruption and improves overall network performance.

In the context of spike-coding networks, employing the special C matrix leads to the

implementation of circular convolution through slow synapses ΩTCΩ, hence facilitating

correlations of states across time. This process allows the network to dynamically reconstruct

temporal sequences from the stored patterns, introducing a new dimension of flexibility and

responsiveness in memory function. The cyclic permutation of states essentially implements

a form of delay line memory, a technique that further underscores the role of cyclic structures

in network memory and sequencing. Importantly, this cyclic structure provides a stable way

to introduce delays without interference between associations, thus ensuring smooth and

efficient network operations.

4.3.4 Universality with Circulant Structure

Previously, we showed that spike-coding networks can implement arbitrary linear dy-

namical systems by appropriately choosing the matrix A (Chapter 2). We now show that

this result holds even if A is replaced in the original formulation by the circulant matrix Cc.

Let’s consider the following linear time-invariant (LTI) system, represented as

ẋ = −x + Ax + c,

where A is the system matrix and c denotes the external input.
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The equation’s homogeneous solution is often expressed in the form of

xh(t) = e(A−I)tx(0),

where I is the identity matrix, and x(0) designates the initial conditions. This characterizes

the system’s natural dynamics, i.e., that is independent of the external input.

The additional term c yields a particular solution that must be determined based on

the nature of c(t). Techniques such as the method of undetermined coefficients, variation

of parameters, or Laplace transform can be used to find this particular solution, xp(t). The

overall solution is x(t) = xh(t) + xp(t).

An essential concept within this context is the system’s impulse response, h(t), defined

as the system’s output when the input c(t) is an impulse function, denoted as δ(t). This

response carries comprehensive information about the system’s characteristics; it can be used

to compute the system’s output for any given input through the convolution operation, i.e.,

x(t) = h(t) ⋆ c(t) (Chen, 1984).

Let us delve into a scenario where a vector h = [h0, h1, h2, ..., hN−1]
T whose elements

are the impulse response of an LTI system is the kernel for a circulant matrix Ch. In this

scenario, the following association holds:

1. Circulant matrix Ch is comprised of columns representing cyclic shifts of h.

2. Multiplying Ch by a vector x corresponds to the circular convolution of h and x.

3. Given proper zero-padding of x, the circular convolution with h approximates a linear

convolution with h.

Therefore, it is inferred that this matrix, defined by the impulse response of a filter,

implements the corresponding filtering operation, with the cyclic structure capturing the

temporal evolution of the filter’s response, i.e., Chx mirrors the operation of the LTI sys-

tem on input x. Hence, constraining A as a circulant matrix does not limit the class of

linear systems the spike-coding network implements. The circulant structure preserves the

network’s universal linear function approximation property.
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4.3.5 Convolutional Neural Circuits

The circulant matrix acts as a discrete LTI filter, effectively implementing a discrete

convolution with the network state. This mechanism creates a sliding filter effect, unearthing

correlations across time and space. Notably, this operation resembles the convolutional layers

in convolutional neural networks (CNNs).

In the context of Hopfield networks, asymmetric synapses implement convolution with a

circulant matrix, correlating the stored patterns. This process mirrors CNN filters’ strategy

to convolve their weights across space. In parallel, slow synapses in spike-coding networks

perform a function akin to computing a convolutional filter that transitions between temporal

states. This resembles the hierarchical processing inherent in CNNs, assembled by stacking

multiple convolutional layers.

The associative memory properties and dynamical features of Hopfield and spike-coding

networks could inspire enhancements to CNNs. A hallmark of these models is their ability

to handle spatio-temporal data naturally. In contrast, standard CNNs often struggle with

temporal information. Thus, embedding spatio-temporal processing capabilities into CNNs

could boost their effectiveness in video and sequence data tasks.

For instance, introducing external memory modules, motivated by Hopfield’s associa-

tive memory, could empower CNNs to store and retrieve valuable prior activations relevant

to a task, potentially augmenting their performance (Weston et al., 2014). Furthermore,

segmenting features into fast and slow timescales, mirroring the fast and slow synapses of

spike-coding networks, could equip CNNs with a more intricate mechanism for temporal pro-

cessing. Here, fast features detect immediate cues, while slow features integrate context over

time (Tavanaei et al., 2019). Chapter 5 introduces a CNN inspired by this dual “fast-slow”

pathway to tackle an image-to-image translation problem.
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4.4 Simulations

4.4.1 Methods

This section describes the simulation methods, including the spiking neural network ar-

chitecture, training procedures, and parameters used to implement the n-back working mem-

ory task. The network consists of interconnected excitatory and inhibitory spiking neurons

with synaptic plasticity. Training involves presenting sequences of stimuli and modulating

the network’s synaptic weights to produce the desired output spike patterns. Key parameters

include the number of excitatory and inhibitory cells, synaptic strengths, neuronal dynamics,

and training algorithms.

4.4.1.1 The n-back Task

The n-back task, originating from Kirchner’s study in 1958, has proven to be an indis-

pensable tool in cognitive psychology and neuroscience, particularly for assessing working

memory capabilities (Kirchner, 1958, Baddeley, 2003). The task operates by presenting sub-

jects with a series of stimuli and requiring them to identify when a current stimulus matches

the one from n trials prior. This fundamental setup permits extensive flexibility in research

designs by allowing adjustment in key variables such as the memory span n, the set of stimuli

N , and the interstimulus intervals ti (Jaeggi et al., 2010a).

The theoretical construct of the n-back task is grounded in the working memory model,

where the task is seen to place a significant demand on the central executive component—the

center of attentional control. In the context of the n-back task, this component is engaged

in ongoing information management and updating, which is scaled according to the value of

n, indicating the memory span needed (Conway et al., 2005).

Adjustments in the task parameters can effectively modulate its complexity and difficulty.

A higher n value elevates the task’s difficulty due to increased information load and potential

for interference, challenging the participant’s cognitive resource management (Jaeggi et al.,

2010b). Similarly, a larger stimulus set N enhances discrimination difficulty within the task

by necessitating differentiation among an increased number of stimuli, thereby heightening
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Figure 4.1: The n-back task. In each trial, the subject has to memorize a sequence of

stimuli, drawn from the stimuli set (here {A, B, C}) and perform an action whenever the

current stimulus is equal to the stimulus presented n steps before (here n = 2).

cognitive load (Oberauer, 2005). Interstimulus intervals ti, the time lapses between consec-

utive stimuli, also contribute to the task’s modulation. Shorter intervals necessitate rapid

cognitive processing and response, whereas longer intervals can amplify memory load as the

retention of information over a longer duration is required (Zakay, 1989).

Performance on the n-back task is conventionally quantified by the ratio of correctly

executed actions, a direct measure of working memory accuracy. This metric is often supple-

mented with reaction times to evaluate cognitive efficiency (Jaeggi et al., 2010a). Effective

and efficient working memory is characterized by high accuracy and minimal reaction times.

In essence, the n-back task is a robust and adaptable instrument for exploring working

memory and cognitive functioning. The manipulation of key task variables enables the

generation of detailed cognitive profiles and contributes to our understanding of the nature

and boundaries of human working memory.

4.4.1.2 Network Architecture

To demonstrate the capabilities of the unified Hopfield and spike-coding network frame-

work, we trained a network consisting of 200 interconnected excitatory and inhibitory spiking
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neurons, as described in Section 2.2.1, to perform the 5-back memory task. The first 100

neurons were modeled as excitatory units and the last 100 as inhibitory.

The synaptic connectivity includes fast synapses Ωfast for pattern storage (Section 4.2.1)

and slow synapses Ωslow for sequencing (Section 4.3.2). The recurrent synaptic weights Ω

were randomly initialized based on uniform and binomial distributions to simulate biologi-

cally realistic randomness and variation in the network connectivity (Sjostrom et al., 2008).

For excitatory neurons (indices 1 to 100), Ωij ∼ B(1, 0.3) · U(0.06, 0.1), where B(1, 0.3)

refers to a binomial distribution with n = 1 trial and probability p = 0.3. This results

in a binary sample of either 0 or 1, with a 70% chance of being 1. U(0.06, 0.1) refers

to a continuous uniform distribution ranging from 0.06 to 0.1. By multiplying the binomial

sample by the uniform sample, we obtain synaptic weights of 0 (with 70% probability) or take

on continuous values between 0.06 and 0.1 (with 30% probability). This models the patchy

connectivity observed in cortical networks, where each neuron only connects to a subset

of other neurons (binomially distributed), with the strengths of those present connections

varying continuously (uniformly distributed).

Likewise, for inhibitory neurons (indices 101 to 200), Ωij ∼ B(1, 0.7) · U(−0.1,−0.06),

i.e., synaptic weights that are either 0 (with 30% probability) or take on continuous values

between -0.06 and -0.1. The negatives represent an inhibitory reversal potential (Ferrante

et al., 2013). Overall, this initialization scheme produces a largely inhibitory-dominated

network with sparse, patchy recurrent projections reflecting biological constraints (Perin

et al., 2011, Song et al., 2005, Yoshimura et al., 2005).

The recurrent feedback weights Ωslow are scaled to 0.1Ωfast to keep the overall network ex-

citation below the threshold, maintaining stability and preventing runaway dynamics (Mur-

phy and Miller, 2003). The spiking cost µ = 0.1 added in ΩTΩ+µI (see Eq. (2-37)) is used

to implement a form of sparse and distributed coding across the neural network, regulating

the propensity of individual neurons to fire (Boerlin et al., 2013), as explained in Section

2.4.1.

To evaluate the network’s robustness, we introduced different types of noise and pertur-

bations during simulations:

Gaussian voltage noise with a standard deviation of (σV = 0.1) was introduced into each
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neuron to encourage irregular spiking patterns, replicating the diverse spiking activities

exhibited by cortical neurons (Mainen and Sejnowski, 1995). This variability in spiking

behavior is rooted in various biophysical noise sources, including channel noise due to the

random opening and closing of ion channels, and synaptic noise due to the stochasticity

in neurotransmitter release and reception (Faisal et al., 2008).

To emulate the inherent variability in sensory inputs, Gaussian noise (σstim = 0.1) was

superimposed onto the input pixels at each step (Brunton et al., 2013). Real sensory

inputs are subject to random fluctuations due to multiple factors, including transduction

noise in sensory receptors and external environmental noise.

A drifting Ornstein-Uhlenbeck (OU) process (σOU = 0.05, λOU = 10 was utilized to model

slow input fluctuations over time. The OU process is a continuous-time stochastic process

that exhibits two key features: (1) it is Gaussian, signifying that any linear combination

of the process at different points in time follows a Normal distribution (Gardiner et al.,

1985), and (2) it is Markovian, implying that the future state of the process is solely

determined by the current state, independent of its history (Van Kampen, 1992). The

OU process is a fundamental model for mean-reverting processes, effectively representing

fluctuations around a long-term mean value. The given parameters induce a rapid return

to the mean within 10 seconds, with the process increments having a standard deviation

of 0.05. This is intended to mimic effects such as the drift in attentional focus or slow

sensory variations (Lundqvist et al., 2010).

A synaptic transmission delay τdelay of 2 milliseconds was incorporated into the model

to reflect biological limitations on the propagation of spikes between neurons. Delays

in signal transmission can arise due to several factors, including synaptic delay, axonal

conduction delay, and dendritic processing delay (Swadlow, 1994, Buzsáki et al., 2012)

To simulate neuronal death, 40% of neurons were silenced midway through trials. In

biological systems, neurons can die for various reasons, from normal aging to pathological

conditions, testing the resilience and adaptability of neural networks (Haspel et al., 2021).

Finally, the network’s spiking dynamics were simulated via the forward Euler numerical

integration method with a fine-grained time step of 0.1 milliseconds. Unlike their continuous

counterparts, spiking neural networks represent and transmit information through discrete
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events. Thus, accurately capturing these dynamics requires numerical methods that can

handle such discontinuities and nonlinearity. The forward Euler method offers a simple yet

effective solution, as it is an explicit method capable of tracking the abrupt changes associated

with spike events (Press, 2007). Furthermore, the small time step size of 0.1 milliseconds

is chosen to ensure numerical stability and accuracy. This fine temporal resolution allows

the simulation to capture the millisecond-scale precision inherent in neural computation

faithfully, given the rapid timescale of spiking activity (Lytton and Hines, 2005).

4.4.1.3 Network Training

The spike-coding network has fixed recurrent weights Ω for pattern storage, as described

in Chapter 2. Given the weight initialization procedure from the previous section, the

patterns stored in Ω are not directly “cognitively” interpretable as the input targets ζ.

Therefore, using the procedure in Section 4.2.3.2, we train a projection matrix W between

the patterns stored in Ω and the desired patterns ζµ:

ζµ = Wξµ.

W is initialized randomly and trained using the following Hebbian-like learning rule:

∆W ∝ η (ζ −Wξ) ξT

This learning rule tunes the mapping W to associate the fixed random patterns in Ω with

the actual patterns ζ we want to store.

The slow weights Ωslow implement temporal sequencing and are structured as follows:

Ωslow =
∑
n

cnA
n,

where A is a cyclic permutation matrix and cn are the trainable coefficients.

The c = [c1, . . . , cn] coefficients are updated according to the unsupervised learning rule:

∆c ∝ −α (Ans−Ωslows) .
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This learning rule modifies the cn to tune the structure of Ωslow and embed the 5-back

computation. Therefore, after training, the network leverages the fast weights Ωfast for

memory storage and the trained slow weights Ωslow to generate complex spike sequences for

retaining and comparing stimuli over time.

The training involved presenting many 4 seconds long trials of input-target pairs (ζ, ỹ)

where ζ was a random binary vector with 6 dimensions (pixels), where each pixel was either

“On” (1) or “Off” (0), and ỹ the desired 5-back match/non-match readout indicating a

stimulus match or non-match. Learning was initiated after 1 second to avoid adapting to

input transients irrelevant to the task. The learning rates η and α decayed exponentially

across 100 training epochs to embed robust encoding.

4.4.2 Results

The resulting spiking network could accurately perform the 5-back memory task, dynam-

ically retaining and comparing stimuli over time, as illustrated in Figure 4.2. The network’s

spiking activity depicted sparse and irregular firing patterns, closely mirroring those observed

in biological cortical networks (Yuste, 2015).

Throughout the simulations, small amounts of Gaussian noise and several perturbations

were introduced that were not present during training. Despite these disruptions, the net-

work continued to perform the 5-back task accurately. The distributed encoding provided

resilience against perturbations, a key feature of biological neural systems.

Notably, the network generalized well to new input sequences, indicating the learning

of robust computational rules rather than simply memorizing specific associations. The

capacity to handle novel sequences highlights the potential of these biologically inspired

learning principles for implementing flexible working memory systems.

Importantly, our simulations show that integrating principles from the spike-coding net-

work framework with Hopfield associative memory networks can reproduce key computa-

tional motifs of short-term memory and temporal processing in the brain. Notably, this in-

cludes robustness to neuronal death, a natural process in biological neural networks. When

a portion of the neurons was eliminated, the network’s overall performance did not substan-
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Figure 4.2: Simulation results for a spiking neural network trained to perform the

5-back memory task. (a) 6-pixel binary input vectors. (b) Network readout indicating

match/non-match. (c) Underlying irregular spiking activity across neurons. (d) Example

voltages exhibiting fluctuations around the threshold. (e) Input currents to example neurons.

(f-g) Zoomed voltages and currents highlight balanced excitation/inhibition. The network

exhibits complex dynamics, distributed encoding, and resilience to perturbations, including

40% unit deletions. Network parameters: N = 200 , λ = 2, Ωslow = 0.1Ωfast, µ = 0.1,

τdelay = 2. Learning parameters: η = 0.01 , α = 0.001, decaying exponentially over 100

epochs. Noise parameters: σV = 0.1, σstim = 0.1, σOU = 0.05, λOU = 10.

tially change, indicating a high level of redundancy (Figure 4.2c) (Barrett et al., 2016). The

remaining neurons compensated for this loss by increasing their firing rates, showcasing the

adaptability of the network. Conversely, adding neurons decreases population firing rates,
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and each neuron’s activity can be arbitrarily sparse.

The network operates in a regime of balanced excitation and inhibition (Figures 4.2f and

g). Under the influence of a given input, a group of neurons will oscillate between active

patterns, maintaining a threshold-adjacent state with balanced underlying excitation and

inhibition (Isaacson and Scanziani, 2011). Other neurons, detached from the current readout,

experienced relatively more inhibition. This behavior aligns with research demonstrating

that balanced networks can perform nonlinear transformations when subnetworks receive

balanced inputs, while the rest receive more inhibition (Baker et al., 2020).

Finally, the network exhibited robustness against transmission delays. Spurious spikes

induced by delays did not initiate cascades of subsequent spikes, hereby preventing the

erroneous propagation of signals across the network. This resilience against delays could be

linked to the network’s ability to store sequences in slow synapses, a feature facilitated using

a circulant matrix in our model. This functionality of the circulant matrix can be thought of

as a form of “temporal error correction,” where the precise time-stamp of neural firing is not

essential, as long as the sequence of firing, or the relative timing, remains intact. This aspect

contributes to the network’s ability to handle and adapt to delays in neural transmission,

further enhancing the network’s robustness and adaptability (Borst and Theunissen, 1999).

4.5 Conclusion

This chapter presented a unifying framework that connects two seminal neural network

models—Hopfield networks and spike-coding networks. Although differing in their emphasis

on fixed point attractors versus spike timing, we proved they offer two complementary per-

spectives on the same underlying phenomenon—encoding associative memories and temporal

sequences in recurrent networks.

The key insight underpinning this unification was recognizing the inherent linkage be-

tween these models; the stable attractor states in Hopfield networks provide a substrate for

generating complex temporal spike sequences, which are dynamically replayed in spike-coding

networks. In essence, Hopfield networks supply the associative memories, while spike-coding
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networks provide the sequencing between these memories. Our analysis established a math-

ematical equivalence between these classic models by using circulant matrices to represent

asymmetric weights in Hopfield networks. This introduction of asymmetry induced dynamics

that enabled smooth transitions between stored attractor states.

Combining these two central yet formerly disconnected models in neural computation

provides a unified lens for understanding the interlinked principles of associative memory

and temporal sequence learning in recurrent networks. The proposed framework synergisti-

cally integrates complementary computational elements from each model into an integrated

system. Hopfield networks contribute content-addressable associative memories implemented

via attractor states. Spike-coding networks lend efficient temporal processing and sequencing

enabled by precise spike patterns. Our unified perspective based on circulating dynamics

between attractor states sheds light on the intricate mechanisms underlying sophisticated

functions like working memory, thereby advancing theoretical models of neural computation.

Furthermore, introducing circulant matrices establishes an intriguing connection to CNNs.

This link highlights potential cross-pollination between these biologically-inspired models

and deep learning architectures. Insights from associative memories and spike-based dy-

namics could inspire enhancements in convolutional networks, such as embedding external

memory modules or multi-timescale feature processing. This synthesis of foundational neural

network models provides theoretical and practical value. It offers a principled integration

of key concepts spanning decades of research in mathematical neuroscience. Additionally, it

points towards further unification between biological and artificial neural systems by eluci-

dating their shared algorithmic principles.
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5.0 Cross-Modality Image Translation of 3 Tesla Magnetic Resonance

Imaging to 7 Tesla using Generative Adversarial Networks

5.1 Chapter Summary

The rapid advancements in Magnetic Resonance (MR) Imaging technology have pre-

cipitated a new paradigm, wherein cross-modality data translation across diverse imaging

platforms, field strengths, and disparate locales is increasingly challenging. This issue partic-

ularly accentuates when transitioning from 3 Tesla (3T) to 7 Tesla (7T) MR imaging systems.

This study proposes a novel solution to these challenges by harnessing the power of Gen-

erative Adversarial Networks (GANs)—specifically, the CycleGAN architecture—to create

synthetic 7T images from 3T data. Employing 1112 and 490 unpaired 3T and 7T MR images

datasets, we trained CycleGAN models to translate 3T MR brain images into corresponding

7T data for spatial adaptive normalization across field strength. Alongside the traditional

U-Net generator, we implement the Fast-Slow U-Net variant with separate local and global

information processing pathways. Rigorous independent testing on 25 distinct subjects af-

firmed the model’s proficiency in accurately predicting various tissue types, encompassing

cerebral spinal fluid, gray matter, and white matter. Our approach provides a reliable and

efficient methodology for synthesizing 7T images, thereby significantly aiding in the spatial

adaptive normalization of longitudinal data. The Fast-Slow U-Net model showed particular

promise in enhancing visual quality, with our results suggesting it results in more reliable

and accurate segmentation. Furthermore, our results delineate the potential of GANs in

amplifying the Contrast-to-Noise Ratio (CNR) from 3T, enhancing the diagnostic capability

of the images. While acknowledging the potential risk of model overfitting, our research un-

derscores a promising progression towards harnessing the benefits of 7T MR imaging systems

in research investigations while preserving compatibility with extant 3T MR data. Thus,

the research propounded herein is poised to contribute significantly to neuroimaging and the

broader medical imaging domain.
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5.2 Introduction

MR Imaging (MRI) technology has offered unprecedented, high-definition, and non-

invasive insights into the intricacies of the human brain structure and function (Hagmann

et al., 2006). This advancement has considerably enhanced our understanding of the brain’s

morphological and functional changes across the lifespan and in various neurodegenerative

conditions (Ashburner and Friston, 2000). In addition, it has spearheaded the discovery of

potential biomarkers for numerous neurological disorders (Ross et al., 2012), thereby opening

the doors to early detection and therapeutic intervention.

MRI has shifted from conventional/clinical 3T MRI systems towards high-field strength

7T MRI systems (Uğurbil, 2014). The benefits 7T MRI include augmented signal-to-noise

ratio (SNR), enhanced visualization of intricate brain structures due to reduced voxel size,

and an improved CNR resulting from faster tissue relaxation times (Uğurbil, 2014). De-

spite these advantages, the increased costs, restricted availability, increased susceptibility

artifacts, a higher specific absorption rate (SAR), and radiofrequency (RF) inhomogeneity

may complicate image acquisition and interpretation (van Osch and Webb, 2014).

The field has seen significant advancements in RF coil design and application that are

instrumental in overcoming the challenges of 7T MRI, chiefly ensuring high-quality and high-

resolution acquisition (Santini et al., 2021b). Yet, transitioning longitudinal patient studies

from the widely-used 3T systems to the more advanced 7T systems presents substantial

hurdles. The primary reason for this is the innate differences in the images generated by the

two systems, especially the contrast variations among soft tissues. These may affect direct

image comparisons and complicate longitudinal analyses (Obusez et al., 2018).

Other factors, such as the temporal variability in image quality and systematic differences

between varying field strengths, can complicate statistical analyses of aggregate data (Fortin

et al., 2018). These difficulties underscore the need for efficient spatial adaptive data nor-

malization methodologies capable of handling the variances across different field strengths;

they are paramount in strengthening our comprehension of the neuroanatomical shifts and

progressions associated with normal aging and pathological processes.

AI and machine learning technologies have significantly shaped numerous sectors, includ-
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ing healthcare (Bohr and Memarzadeh, 2020). Notably, medical imaging is being improved

by the potential of deep learning methods, extending their reach into the complex realm of

neuroimaging (Shen et al., 2017). Specifically, applying CNNs in image classification tasks

has improved diagnostic accuracy and efficiency (Litjens et al., 2017). Building on this mo-

mentum, GANs and their variants have emerged as powerful tools for medical image analysis,

including tasks like image synthesis, segmentation, and data augmentation (Nie et al., 2018).

Introduced by Goodfellow et al. (2014), GANs comprise a unique model structure em-

ploying two deep neural networks: the generator and the discriminator. They engage in

an adversarial process, aiming to generate synthetic data resembling the original distribu-

tion. These networks have demonstrated proficiency in modeling complex data distributions

(Arjovsky et al., 2017, Salimans et al., 2016), proving beneficial for various image tasks.

CycleGANs, an extension of GANs, provide a solution for unpaired image-to-image trans-

lation tasks (Zhu et al., 2017), including photo enhancement (Chen et al., 2017), style transfer

(Gatys et al., 2016), and image synthesis (Wang et al., 2018). Within the realm of medical

imaging, its applications have been transformative. For example, they have shown potential

in tasks like lesion synthesis (Guerrero et al., 2018). These networks can enrich rare disease

datasets by generating synthetic lesion images, facilitating better disease detection and diag-

nosis. Additionally, they have been used for organ segmentation by transforming the images

into simpler representations that ease the segmentation process (Cai et al., 2019).

One significant application pertains to cross-modality image translation, such as con-

verting Computed Tomography (CT) images to MR images and vice versa (Wolterink et al.,

2017). In practical scenarios, patients may not undergo CT and MR scans due to cost,

radiation exposure, or other considerations. By training on unpaired CT and MR datasets,

CycleGAN has demonstrated the capability to generate synthetic but anatomically accurate

MR images from CT scans and, conversely, to produce CT-like images from MR scans.

Cross-modality image translation, defined by the machine learning and imaging com-

munity, consists of converting images from one modality to another, retaining the crucial

content while modifying the style to resemble the target modality (Zhu et al., 2017). 3T

and 7T, despite employing the identical principle of nuclear MR, exhibit divergent opera-

tional mechanics due to distinct field strengths. This differentiation manifests in significant
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contrasts in image quality, resolution, CNR, susceptibility effects, and spectral separation

(Vaughan et al., 2001). Thus, the transition from 3T to 7T MRI goes beyond reducing

systematic variations within the same data type; it signifies a paradigm shift accentuated

by profound alterations in image properties. In this regard, the transformation from 3T to

7T surpasses data harmonization’s scope, warranting 3T MRI to be considered one modality

and 7T MRI another. The conversion process from 3T to 7T via GANs fulfills this criterion,

as it retains the intrinsic information (content) from the 3T images and translates the image

properties (style) to align with that of 7T MRI.

This study harnesses a dataset of unpaired 3T and 7T MR images to train CycleGAN-

based models capable of translating 3T MR data into synthetic 7T data. This innovative

approach is directed towards addressing the issue of spatial adaptive MR data normalization,

allowing the scientific community to extract the benefits offered by the 7T systems while still

utilizing previous longitudinal data acquired at 3T.

Recent advancements in CNN design have led to models that separate the processing of

high and low-frequency features through multiple pathways (Simonyan and Zisserman, 2014,

Feichtenhofer et al., 2016, Tran et al., 2015). Based on the results of Chapter 4, we propose a

fast-slow architectural motif containing distinct fast and slow pathways for local and global

information, respectively. The fast pathway focuses on extracting fine details using smaller

convolutional kernels, while the slow pathway captures broader semantic context through

dilated convolutions. The Fast-Slow U-Net variant of CycleGAN is a potential architecture

option to enhance cross-modality 3T to 7T MRI translation.

5.3 Materials and Methods

The landscape of machine learning has been significantly shaped by the emergence of

GANs, as conceptualized by Goodfellow et al. (2014). This novel model structure, built upon

game-theoretic principles, employs two deep neural networks in strategic interaction: the

generator and the discriminator. The generator aims to generate synthetic data replicating

the actual data distribution, while the discriminator strives to discern the synthesized data
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from the real data. This adversarial dance evolves over iterative training sessions, yielding

refined performance from both networks and improved proficiency in modeling complex data

distributions (Arjovsky et al., 2017, Salimans et al., 2016).

Taking a step further, CycleGANs provides a robust solution to unpaired image-to-

image translation, a challenging problem in computer vision. Zhu et al. (2017) introduced

CycleGAN’s architecture, comprising two GANs containing a generator and a discriminator.

The generator creates compelling images of the target domain, deceiving the discriminator,

which strives to differentiate real images from the translated ones within the target domain.

The design of CycleGAN is such that each generator maps an input image from a source

domain to a target domain and vice versa to ensure cyclical consistency (Zhu et al., 2017).

A feature that distinctly characterizes CycleGAN from traditional GANs is its cycle

consistency loss. This loss function aims to ensure that the cycle of translating an image

from one domain to another and back again reconstructs the original image. Let X denote

the domain of images, and Y denote another domain of images. We can represent an image

from X as x ∈ X , and an image from Y as y ∈ Y . Let’s construct image datasets from each

domain: DX = {x1, x2, . . . , xm} consisting of M images from X , and DY = {y1, y2, . . . , yn}

consisting of N images from Y . Now, let the mappings G : X → Y and F : Y → X be the

generators between the two domains. Then, the cycle consistency loss is:

Lcyc(G,F ) = Ex∼DX [∥F (G(x)) − x∥1] + Ey∼DY [∥G(F (y)) − y∥1] . (5-1)

Ex∼DX and Ey∼DY are the expectations taken over the datasets DX and DY , respectively.

The terms ∥F (G(x)) − x∥1 and ∥G (F (y)) − y∥1 measure the absolute difference between

the original image and the image that has been translated to the other domain and back,

i.e., F (G(x)) means G translates an image x ∈ DX to domain Y and then translated to

X by F . Similarly, G (F (y)) takes an image y ∈ DY , translates it to domain X by F and

then translates it back to Y by G. The cycle consistency loss should be small if the model

performs well, indicating that the original and the cycled-back image are nearly identical.

Our study uses the CycleGAN framework to deal with unpaired 3T and 7T MR data.

Figure 5.1 shows a representation of the architecture and functioning of the overall model. We

implement two variations of the CycleGAN; the original integrates two generator networks
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Figure 5.1: The cyclical consistency of the CycleGAN. This figure visually demonstrates

the 3T cycle consistency. The 7T loop is conceptually symmetric. The generators are

marked as performing the mappings G3T→7T : 3T → 7T and G7T→3T : 7T → 3T . The real

3T image is fed to the G3T→7T (top left), yielding the synthetic 7T image (top middle).

The D7T discriminator differentiates between the real and synthetic 7T images and strives

to minimize the 7T adversarial loss (bottom left). The synthetic 7T image is fed into the

G7T→3T generator, yielding the reconstructed 3T Image. The 3T cycle consistency loss

ensures the 3T image can be reconstructed from the synthetic 7T image (top right).

based on the U-Net architecture (Ronneberger et al., 2015), with inserted residual blocks

between the encoding and decoding stages (He et al., 2016). The variant implements a dual

pathway U-Net inspired by the connections between fast and slow processing in spike-coding,

Hopfield networks, and convolutional neural circuits discussed in Section 4.3.5.

U-Net is a CNN architecture renowned for its utility in biomedical image segmentation.

It is named after its U-shaped structure, consisting of a contracting path for capturing con-

text and a symmetric expanding path for precise localization. The expanding pathway uses

transposed convolutions, with skip connections transferring feature maps from the contract-
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ing path to recover spatial information.

Residual blocks, proposed in the ResNet architecture by He et al. (2016) resolve training

difficulties encountered with deep neural networks. These blocks consist of several convo-

lutions, after which the input is added to the output, creating a residual connection. This

configuration allows the network to learn residual functions concerning the layer inputs,

facilitating the training of deeper models.

Both models use instance normalization and stride-2 convolutions. Instance normaliza-

tion is often used in style transfer tasks (Ulyanov et al., 2016). It computes the mean and

variance for each sample separately, leading to the relative scaling of activations. This tech-

nique is beneficial for content and style disentanglement for image generation tasks. Stride-

2 convolutions help reduce the spatial dimensions of feature maps and allow the model to

learn more abstract representations in deeper layers (Goodfellow et al., 2016).

Finally, our CycleGAN models use 70 × 70 PatchGANs for the discriminator networks.

PatchGANs, as described by Isola et al. (2017), classify whether each patch in an image is

real or fake instead of assessing the picture as a whole. This patch-level classification enables

the generation of sharper and more contextually accurate images.

5.3.1 Fast-Slow U-Net

The key to implementing fast and slow separation in a CNN is to process different

information frequencies separately, combine them, and ensure that learning is effective across

the entire network. This requires a purposeful reconfiguration of the network’s architecture,

and we draw inspiration from the hierarchical nature of biological networks. The “fast” and

“slow” features can be interpreted as separate components of the CNN architecture, each

responsible for different types of information processing. Let us consider a two-pathway

architecture, also known as a dual-stream architecture (Simonyan and Zisserman, 2014).

The “fast” pathway can be designed to respond to high-frequency changes in the input,

capturing immediate, rapid changes in the scene. It can be characterized by small, densely

connected convolutional layers that capture fine-grained detail. One possible approach is to

create a shallow architecture with smaller receptive fields to handle high-frequency, spatially
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detailed features (Canziani et al., 2016).

On the other hand, the “slow” pathway should be architected to detect and encode

lower-frequency, more abstract features. It provides a more contextual picture of the input,

capturing long-term dependencies and integrating information over time. This can be imple-

mented with deeper convolutional layers with larger receptive fields. Another critical aspect

of the slow pathway is temporal integration. In video processing, this could be achieved by

3D convolutions or recurrent layers, which can integrate information across frames (Tran

et al., 2015). An equivalent mechanism incorporating a larger spatial context could be used

for non-temporal applications like cross-modality image translation. One approach is to

use dilated convolutions, which allow the network to have a larger receptive field without

increasing the number of parameters or the amount of computation (Yu and Koltun, 2015).

The idea behind dilated convolution is straightforward. Instead of sliding the convolu-

tional kernel through the input in contiguous steps, the operation is performed with gaps

or “dilations” between the input units. This dilation process is controlled by a parameter

known as the dilation rate, d. When d = 1, the operation is equivalent to standard convo-

lution. For d > 1, the kernel is spread over a larger input area, effectively increasing the

receptive field without adding more parameters (Yu and Koltun, 2015).

The primary advantage of dilated convolution is its ability to exponentially expand the

receptive field without loss of resolution or coverage overlap and a significant increase in com-

putational load. This is crucial in applications like semantic segmentation, where capturing

long-range dependencies at a high resolution is essential (Wang et al., 2018). It has been

used in several influential models. In the DeepLab-v3 semantic segmentation architecture, it

is used to extract multi-scale features effectively (Chen et al., 2017). It has also found use in

audio generation and text-to-speech synthesis models, such as Google’s WaveNet, allowing

the model to capture information across different time scales (Oord et al., 2016).

To combine the outputs from the fast and slow pathways, we can fuse them at each corre-

sponding layer before proceeding to the next. The exact fusion method (e.g.,, concatenation,

weighted sum) depends on the specific task and the nature of the data (Feichtenhofer et al.,

2016). We can create a multi-level, multi-receptive field feature representation by concate-

nating the feature maps produced by each path along the channel dimension.
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Here we propose the Fast-Slow U-Net, based on the traditional U-Net structure (Ron-

neberger et al., 2015) but with a significant modification involving two distinct fast and slow

pathways. This modification allows for processing and exploiting the input data at different

scales and contexts, allowing the model to balance efficiency and performance. The fast

pathway captures fine-grained details, and the slow pathway accounts for the global context.

Figure 5.3.1.2 shows a schematic representation of the modified U-Net architecture. The

following sections describe each pathway and its building blocks in detail.

5.3.1.1 Fast Pathway

The fast pathway is a standard feed-forward CNN that extracts low-level details from the

image. In the specific model described, the input to the fast pathway is a grayscale image of

size 224 × 224 × 1. The first layer of the fast pathway includes two sequential 3 × 3 padded

convolutions with 64 filters each, followed by instance normalization and ReLU activations

(Glorot et al., 2011). After this stage, a 2 × 2 max pooling operation (Scherer et al., 2010)

reduces the spatial dimension of the feature maps by half (112 × 112 × 64).

Subsequently, similar convolutional, ReLU, and max-pooling layers are applied, but this

time with 128 filters (resulting in feature maps of size 56×56×128), followed by other similar

layers with 256 filters (resulting in 28 × 28 × 256 feature maps), and 512 filters (resulting in

14 × 14 × 256 feature maps). Finally, the bottleneck comprises two sequential 3 × 3 padded

convolutions with 1024 filters each, followed by instance normalization and ReLU activations

(14 × 14 × 1024 features). The model can rapidly capture the finer details in the images

through the fast pathway, providing a granular understanding of the input image.

5.3.1.2 Slow Pathway

The slow pathway operates concurrently with the fast pathway but employs dilated

convolutions to capture more global and contextual information from the image. In the first

layer of the slow pathway, two 3 × 3 dilated convolutions with a dilation rate of d = 2 are

used, each having 64 filters and followed by ReLU activations. A max pooling operation

then halves the spatial dimension, similar to the fast pathway.
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3x3 Convolution +
Padding +
Instance Norm. +
ReLU

2x2 Max pooling2x2 Up Sampling

Concatenation

1x1 Convolution +
Softmax

3x3 Dilated
Convolution +
Padding +
Instance Norm. +
ReLU

Figure 5.2: A schematic representation of the Fast-Slow U-Net architecture. The dual-pathway model, consisting of a fast path-

way (left) and a slow pathway (right), processes high-frequency and low-frequency details separately. The fast pathway rapidly

captures fine-grained details using standard convolutions, while the slow pathway aggregates broader contextual information

through dilated convolutions. Features from both pathways are fused at different levels, ensuring effective multi-scale feature

learning. The architecture culminates in a 1 × 1 convolution, producing a single-channel output representation.

116



The subsequent layers follow the same design but with dilation rates of d = 4, d = 8, d =

16, and d = 16, respectively, and an increasing number of filters (128, 256, 512, and 1024),

resulting in final feature maps of size 14×14×1024. The outputs of each dilated convolution

were padded to match the corresponding layers in the fast pathway. This approach enables

the slow pathway to aggregate more considerable contextual information, essential in many

segmentation tasks, such as object identification and boundary localization.

5.3.1.3 Merging and Upsampling

Upon reaching the U-Net bottleneck, the merging and upsampling process begins. First,

the bottlenecks of the slow and fast pathways are concatenated and upsampled to twice their

spatial dimensions and then passed through two 3 × 3 convolutional layers with instance

normalization and ReLU activation. Then, the resulting feature maps are concatenated

with the corresponding features from the fast pathway, creating a combined feature map.

The concatenated features are passed through a 3 × 3 convolutional layer with instance

normalization and ReLU activation. After, they are concatenated with the corresponding

slow pathway features, followed by a 3 × 3 convolutional layer with instance normalization

and ReLU activation. This process is repeated for feature maps 56×56×256, 112×112×128,

and 224×224×64. This step leverages the strengths of both pathways by fusing fine-grained,

local details from the fast pathway with broader, contextual details from the slow pathway.

5.3.1.4 Final Layer

In the Fast-Slow U-Net architecture, the final layer employs a 1× 1 convolutional opera-

tion with a single filter. The 1× 1 convolution operation, also known as network-in-network

operation, has a pivotal role in transforming the depth dimension of the feature maps (Sprin-

genberg et al., 2014). It effectively functions as a channel-wise fully connected layer, relating

features at each spatial location while maintaining the spatial structure of the image.

A single feature is extracted from the output of the previous layer. This single feature

map encodes the transformed content of the input image in the same style, with the spatial

dimensions preserved. The final output is, therefore, an image of size 224 × 224 × 1.
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5.3.2 Dataset

We leveraged an extensive collection of unpaired and paired 3T and 7T MR images from

diverse sources to ensure a rich and comprehensive dataset. The 3T MR data were primarily

sourced from the Human Connectome Project (HCP), a globally recognized brain imaging

dataset that contains high-definition, multimodal brain imaging data from healthy adults

(Sotiropoulos et al., 2013). Specifically, structural 3T images were sourced from a subset of

1112 scans in the HCP’s 1200 subjects data release. Images were acquired using a Siemens

3T Connectome Skyra and a standard 32-channel Siemens receive head coil at Washington

University in St. Louis. The scans were conducted using a T1-weighted (T1w) Magnetization

Prepared RApid Gradient Echo (MPRAGE) protocol with a repetition time (TR) of 2400ms,

echo time (TE) of 2.14ms, flip angle (FA) of 8◦, field of view (FOV) of 224mm× 224mm,

and 0.7mm isotropic resolution, lasting approximately 8 minutes.

The inclusion criteria for the 3T HCP data required participants to be aged between 22

and 35 years with no significant history of psychiatric disorder, substance abuse, neurological

or cardiovascular disease, and the ability to provide valid informed consent. Participants were

required to have a Mini Mental Status Exam score above 28.

Exclusion criteria included multiple non-provoked seizures or a diagnosis of epilepsy,

genetic disorders such as cystic fibrosis, use of prescription medications for migraines in the

past 12 months, and conditions such as multiple sclerosis, cerebral palsy, brain tumor, stroke,

sickle cell disease, thyroid hormone treatment in the past 12 months, current treatment for

diabetes, head injury, and premature birth. Other exclusion criteria were the presence of

unsafe metal or devices in the body (e.g., cardiac pacemakers, cochlear implants, aneurysm

clips), current or historical use of chemotherapy or immunomodulatory agents that could

affect the brain, pregnancy, and moderate to severe claustrophobia.

The 7T dataset was sourced from the 7TBRP dataset, acquired at the RF Research

Facility at the University of Pittsburgh, a specialized research center for high-field imaging.

The dataset included 490 subjects’ structural 7T MR images. The scans were acquired using

a Siemens Magnetom 7T whole-body MR scanner and an in-house developed RF 7T Tic-Tac-

Toe head coil system (Santini et al., 2018, 2021b, Krishnamurthy et al., 2019, Santini et al.,

118



2021a). The scans were conducted using a T1w MPRAGE protocol with a TR of 3000ms,

TE of 2.17ms, bandwidth of 391Hz/Px, GRAPPA reconstruction with acceleration factor

R = 2, and 0.75mm isotropic resolution, lasting approximately 5 minutes.

Exclusion criteria for the 7TBRP dataset included pregnancy or lactation, acute med-

ical problems that could result in neurocognitive or brain dysfunction, including diabetes

mellitus, coronary artery disease, and causes cerebral vasculities, such as peripheral vascular

disease. Other exclusion criteria were contraindications to MR scanning such as electronic

implants, magnetically-activated implants, tattoos above the shoulders, or brain implants.

Data acquisition across all studies was conducted following the protocol approved by local

institutional review boards. All participants were older than 18 and able to provide written

informed consent before participation.

A set of paired 3T-7T data from the 7TBRP dataset were used to compare 3T and

7T data. The data set consisted of MR images from 25 subjects. The study-specific inclusion

and exclusion criteria for the paired data were similar to those for the unpaired 7T datasets.

5.3.3 Data Preprocessing

A fundamental step in the MR data pipeline, data preprocessing is aimed at standardizing

the data originating from varied sources and subjects. This step is a mitigation measure for

inter-subject and inter-scanner variability (Nyul and Udupa, 1999, Tustison et al., 2010). The

inherent variations in MR data necessitate the application of several preprocessing stages to

ensure the data’s reliability and consistency.

The first stage of preprocessing, bias field correction, was conducted using FMRIB’s

Automated Segmentation Tool (FAST) part of FSL (Zhang et al., 2001). This technique

mitigates the intensity inhomogeneity observed within MR images due to magnetic field

variations or patient positioning differences (Vovk et al., 2007). If not correctly trained,

deep learning models can learn from these inhomogeneities and become biased, leading to

sub-optimal performance. Bias field correction can rectify this, enabling the model to con-

centrate on the salient features of the image (Arnold et al., 2001). This process results in

enhanced feature extraction, improved segmentation, and registration outcomes, bolstering
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the effectiveness of subsequent processing and training phases (Tustison et al., 2010).

Following bias field correction, we performed spatial normalization using the Statistical

Parametric Mapping (SPM) toolbox’s coregister function, co-registering the images via nor-

malized mutual information to the Montreal Neurological Institute 152 standard (MNI152)

space (Ashburner, 2007, Penny et al., 2011). Normalization facilitates the comparison and

integration of data across subjects, as each voxel corresponds to the same anatomical struc-

ture across all images (Evans et al., 2012). This alignment minimizes the need for the neural

network to learn these invariances, potentially improving the performance (Cao et al., 2017).

In the next stage, we transformed the image intensities to a standard normal range of

[−1, 1] using SPM’s image calculator function. This transformation minimizes inter-subject

variability, fostering improved image data consistency (Nyul and Udupa, 1999). Additionally,

intensity normalization allows the model to focus more on structural or semantic differences

across images than absolute pixel intensities (Goodfellow et al., 2016). This is critical during

the early stages of training as it prevents the gradients from either vanishing or exploding,

resulting in a more stable optimization process and quicker convergence (LeCun et al., 2002).

Furthermore, intensity normalization can also make the learning process less dependent on

the specific units used. This is especially important when combining data from multiple

sources with different measurement units or scales (Bishop and Nasrabadi, 2006).

Next, we skull-stripped the images using the Brain Extraction Tool (BET) within FSL,

removing non-brain tissue from the MR images and thereby reducing dimensionality, which

can enhance the efficiency of subsequent model training (Iglesias and Sabuncu, 2015, Smith,

2002). For computational efficiency, we transformed 3D images into 2D by extracting axial

slices using FSL’s fslslice function, which is less computationally intensive while preserving

critical anatomical information.

5.3.4 Model Training

Training a deep learning model requires orchestrating various strategies and methods

to optimize performance. In the context of our CycleGAN models implemented within the

TensorFlow framework (Abadi et al., 2016), we had to consider various elements such as com-
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putation hardware, optimization algorithms, weight initialization, regularization techniques,

and learning rate schedules.

We used NVIDIA TitanX GPUs for training and adopted an iterative training strategy;

the discriminators were updated four times for each update of the generators within the

training loop. This prevented the generators from overpowering the discriminators, which is

critical to maintaining the dynamics of the adversarial process (Goodfellow et al., 2014).

We used early stopping as a regularization technique to control the model’s capacity and

prevent overfitting. We halted the training when no significant improvement in the validation

set’s performance was observed, i.e., the validation loss did not decrease by 0.1% over five

consecutive epochs (Prechelt, 2002). Furthermore, L1/L2 regularization was employed to

encourage the model to learn distributed and sparse representations, which can increase its

generalization ability (Ng, 2004).

We used the Adam optimizer (Kingma and Ba, 2014) for the optimization algorithm. Its

adaptive learning rate and efficient computation makes it a superior choice for training deep

learning models, especially in achieving faster and more effective convergence. The Xavier

weight initialization method was used for all the convolutional layers (Glorot and Bengio,

2010). Additionally, all the bias terms were initialized to zero. Proper weight initializa-

tion can significantly improve the convergence rate and prevent problems like vanishing or

exploding gradients, making the optimization process more stable.

Finally, we used learning rate annealing to fine-tune the speed at which the model learns.

The learning rate was set at 10−4 for the first 100 epochs and was linearly decreased to zero

afterward. By gradually reducing the learning rate, the model can make significant updates

to learn the gross structure of the data in the early stages and then fine-tune its weights in

later stages, allowing for smoother and more effective convergence (Bengio, 2012).

5.3.5 Model Evaluation

The traditional approach to assessing GANs, primarily focusing on discriminator loss,

needs an explicit measure of sample quality. This work thus evaluates the quality of training

by leveraging a pre-trained deep neural network to embed the samples, inspired by Heusel
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et al. (2017) methodology. We adopted a ResNet-50 architecture pre-trained on ImageNet

(He et al., 2016), given its effectiveness in similarity searching in the embedding space for

various forms of imaging data, including MRI, even without fine-tuning (Yosinski et al.,

2014). The quality of samples, in this context, is evaluated based on their realism and

”closeness” to the target domain. We calculated the Fréchet ResNet Distance (FRD) and

the Cosine ResNet Distance (CRD) between each sample in the ResNet-50 embedding space

to facilitate a comparison between 3T and 7T MRI features.

Let DX ′ = G(DY) be the dataset of synthetic samples and ResNet(DX ) and ResNet(DX ′)

denote the ResNet-50 embeddings of real and synthetic samples, respectively. The FRD,

computed as the Fréchet distance (Dowson and Landau, 1982) or as the Wasserstein-2 dis-

tance (Vallender, 1974) between the ResNet(DX ) and ResNet(DX ′) embeddings is:

FRD (N (µX ,ΣX ),N (µX ′ ,ΣX ′))2 = ∥µX − µX ′∥22 + Tr(M), (5-2)

where

M =

(
ΣX + ΣX ′ − 2

(
Σ

1
2
X · ΣX ′ · Σ

1
2
X

) 1
2

)
,

N (µX ,ΣX ) and N (µX ′ ,ΣX ′) are the multivariate Gaussian distributions over ResNet(DX )

and ResNet(DX ′), respectively, ∥ · ∥2 represents the Euclidean norm, and Tr the trace.

Likewise, the CRD is the average cosine distance between each real z ∈ ResNet(DX ) and

synthetic z′ ∈ ResNet(DX ′):

CRD = 1 − 1

M ·N

M∑
i=1

N∑
j=1

zi · z′j
∥zi∥2 · ∥z′j∥2

, (5-3)

where zi represents the i-th feature embedding in ResNet(DX ) and z′j represents the j-th

feature in ResNet(DX ′). M and N are the total real and synthetic samples, respectively.

This expression calculates the cosine similarity between each pair of feature embeddings,

normalizes it by their Euclidean norms, and then averages the distances over all pairs.

Finally, we measured the sample quality over the synthetically generated 7T MR images.

The accuracy of the generated synthetic 7T MR images was thoroughly scrutinized by cross-

referencing these images with their respective real 7T ground truth counterparts. Images

were segmented using FSL’s FAST segmentation tool. Specifically, we used two key and
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widely used evaluation metrics in medical imaging: the Dice Coefficient (Dice) and the Per-

centual Area Difference (PAD). These metrics were indispensable for evaluating the model’s

performance and provided imperative insights for future model enhancement.

The Dice, introduced by Dice (1945), measures the overlap between the predicted and

the ground truth segmentation. Mathematically, for an expected pixel set A and the ground

truth pixel set B, the Dice is:

Dice = 2 · |A ∩ B|
(|A| + |B|)

, (5-4)

where |·| represents the cardinality of a set. The range of Dice spans from 0 (indicating

no overlap) to 1 (indicating a perfect overlap), rendering it an excellent indicator of the

congruence between predicted and real segmentation (Zou et al., 2004).

Conversely, the PAD measures the discrepancy in the size between the predicted and the

ground truth segmentation. Specifically, it evaluates the model’s accuracy in estimating the

size of the segmented objects. For an expected area A and the ground truth segmentation

area B, the PAD is computed as:

PAD = 100% · |A−B|
B

, (5-5)

where |·| is the absolute value. The PAD is inversely proportional to the performance of the

segmentation, with smaller values indicating superior performance (Huang et al., 2019).

5.4 Results

The performance of the model was assessed using multiple parameters, including gener-

ators, discriminators, and cycle consistency losses in the validation dataset; FRD and CRD

embedding quality measures; and a detailed analysis of the prediction for various brain tissue

types and Dice and PAD sample quality metrics from independent test data.
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5.4.1 Training Performance

We assessed the models’ performance by first analyzing the generator and discriminator

losses in the validation dataset. The generator and discriminator essentially participate in

a minimax game, where the generator seeks to create images that the discriminator cannot

distinguish from the real 7T images. In contrast, the discriminator aims to accurately classify

real images from synthetic ones (Goodfellow et al., 2014).

Figures 5.3a and 5.3b show that the tug-of-war between generators and discriminators

(for both CycleGAN models) resulted in the generators’ losses gradually decreasing, demon-

strating the generators’ increasing proficiency in creating images that the discriminators

struggle to differentiate from real MR images. In tandem, the discriminators’ losses also

decreased, indicative of their improving ability to distinguish between real and generated

images. At minima, the convergence of the losses substantiates the model’s efficacy in pro-

ducing synthetic MR-like images from real data.

However, this is evidence of improvement only during the early training stages. Beyond

that, since generator and discriminator losses plateaued after the 14th epoch, the cycle-

consistency losses suggest that the output kept improving. Hence, to quantitatively evaluate

the progression of the CycleGAN models, we apply the FRD and CRD metrics described

in Methods 5.3.5 to the data generated at each training epoch. This strategy allows us to

scrutinize the training dynamics of the CycleGANs. As shown in Figures 5.3c and 5.3d,

FRD and CRD though slightly noisy, stop decreasing beyond the 90th and 140th epochs,

for the Fast-Slow and Traditional CycleGAN, respectively. Overall, Figure 5.3 demonstrates

the embedded MR images capture more relevant features, with measures of transformation

quality showing a consistent and smooth decrease throughout the training process.

5.4.2 Visual Representation of Results

Further, an independent test dataset evaluated the models’ generalization ability, where

we used the models to translate 3T images from new subjects, unseen during training, into

synthetic 7T images. Figure 5.4 exhibits examples of real and synthetic 7T MR image pairs

generated by the Traditional CycleGAN model. Immediately, the synthetic images manifest
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(a) (b)

(d)(c)

Figure 5.3: Progression of CycleGAN models training dynamics and quality metrics for 3T

to 7T MRI translation. (a) Generator, Discriminator, and Cycle Consistency Losses for the

3T loop for the Traditional (T) and the Fast-Slow (FS) CycleGAN, (b) Generator, Discrim-

inator, and Cycle Consistency Losses for the 7T loop (c) Fréchet ResNet Distance (FRD),

(d) Cosine Resnet Distance (CRD). The vertical black dotted line mark epoch 167, where

we halted training for both models.
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convincing resolution and contrast properties that mimic the attributes of real 7T images,

demonstrating the model’s success in generating high-fidelity 7T-like images from 3T data.

Moreover, the Fast-Slow model generated synthetic 7T with more accurate, sharper tissue

boundaries and finer anatomical details. This indicates the dual pathway design enhanced

the model’s ability to preserve local textures and global tissue contrasts.

5.4.3 Tissue Type Specific Prediction

Diving deeper, we analyzed the models’ performance in generating specific brain tissue

types—the cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM)—by com-

puting the Dice and the PAD. The results, visualized using box plots (Figure 5.5a), revealed

that the Traditional (T) CycleGAN achieved a median Dice of 82.97% for CSF, 80.92% for

GM, and 89.68% for WM. The Fast-Slow (FS) CycleGAN showed superior performance with

a median Dice of 87.82% for CSF, 85.31% for GM, and 90.45% for WM.

Figure 5.5b has the PAD scores. The median PAD for the T model was 6.98% for CSF,

7.67% for GM, and 4.72% for WM. The FS model had similar performance with a median

PAD of 5.64% for CSF, 2.28% for GM, and 4.72% for WM. These median scores demonstrate

consistent performance across all three tissue types, with mean Dice significantly high and

PAD reasonably low, corroborating both models’ robustness in translating detailed tissue-

specific characteristics from 3T to 7T.

We utilized robust statistical methods to objectively assess the differences in performance

between the FS and T models. Normality testing is an essential preliminary step before

performing parametric tests. The Shapiro-Wilk test is a widely accepted method for assessing

the normality of data distributions (Shapiro and Wilk, 1965). Paired t-tests are commonly

used to compare two related groups, assessing the differences in their means (Student, 1908).

However, multiple comparisons increase the risk of false positives (Type I errors). The Holm-

Bonferroni correction method effectively adjusts the p-values to control the familywise error

rate (Holm, 1979). Effect sizes complement significance tests, measuring the magnitude of

the differences. Cohen’s d is a widely used effect size measure, where values of 0.2, 0.5, and

0.8 represent small, medium, and large effects, respectively (Cohen, 1992).
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Figure 5.4: Examples of paired, real 3T and 7T MR images and the corresponding synthetic

7T images generated by the Traditional (T) and Fast-Slow (FS) CycleGAN model.
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Figure 5.5: Group-level segmentation performance for the validation (25 subjects) dataset across different tissue

types—Cerebral Spinal Fluid (CSF), Gray Matter (GM), and White Matter (WM)—for the Traditional (T)

and Fast-Slow (FS) CycleGAN models.. We plot single-patient data overlaid on group-level whisker-box plots (center,

median; box, 25th to 75th percentiles; whiskers, 1.5 interquartile range) and the smoothed data distribution. The median values

are shown. The stars above the plots denote statistical significance, with p ≤ 0.0001 represented by four asterisks (****). ns

denotes no statistical significance.
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The Shapiro-Wilk test results indicated that the data distributions for both the FS and

T models were generally normal, as shown by the p-values greater than 0.05 for most tissue

types. In the FS model, the p-values were 0.749 for Dice-CSF, 0.257 for Dice-GM, 0.414

for Dice-WM, 0.027 for PAD-CSF, 0.710 for PAD-GM, and 0.586 for PAD-WM. In the T

model, the p-values were 0.718 for Dice-CSF, 0.899 for Dice-GM, 0.188 for Dice-WM, 0.152

for PAD-CSF, 0.870 for PAD-GM, and 0.007 for PAD-WM.

The paired t-tests revealed statistically significant differences between the FS and T

models regarding the Dice metric across all tissue types, with the FS model outperforming

the T model. The p-values for Dice were ≪ 0.0001 for all tissue types (Dice-CSF: p =

6.38 × 10−13, Dice-GM: p = 2.38 × 10−11 Dice-WM: p = 5.74 × 10−8). However, there

were no significant differences in the PAD metric for any tissue type except GM (PAD-CSF:

p = 0.932, PAD-GM: p = 5.74 × 10−9, PAD-WM: p = 0.389).

Cohen’s d effect sizes further illustrated the magnitude of the differences between the

two models. Large effect sizes were observed for the Dice in the CSF (1.40) and GM (1.53),

and a moderate effect size for the WM tissue type (0.84). Conversely, the effect sizes for the

PAD metric were negligible for the CSF (-0.03) and WM (-0.27) tissue types and large for

the GM tissue type (-2.60), indicating substantial differences between the two models.

In conclusion, the FS model significantly outperformed the T model regarding the Dice

metric across all tissue types. Still, no significant differences existed in the PAD metric for

any tissue type, except GM. The effect sizes indicated these differences were substantial,

especially for the CSF and GM tissues.

5.5 Conclusions

This study sought to contribute with a novel approach to spatial adaptive MR data nor-

malization between the 3T and 7T MR modalities, a persistent issue in medical imaging. Uti-

lizing CycleGAN, an unsupervised generative adversarial network, our model demonstrated

promising performance in generating clear 7T-like MR images from 3T inputs, evidenced by

the high Dice and PAD (Taha and Hanbury, 2015, Zou et al., 2004). These scores affirm
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both models’ competence in maintaining the original morphological features of the brain

and preserving the clinical relevance of the images, which has a significant implication in

furthering neurological research (Moeskops et al., 2016, Ronneberger et al., 2015).

Both models’ successful performance, especially in tasks requiring global contrast prop-

erties, supports the hypothesis that our approach enables a seamless transition to 7T MR

systems without jeopardizing the quality of previously obtained 3T data (Ashburner and Fris-

ton, 2000, Johansen-Berg and Behrens, 2006). This holds promise in facilitating consistent

and robust data analysis, mitigating potential bias and loss of statistical power associated

with missing data in longitudinal studies (Schaer et al., 2008, Little and Rubin, 2019).

Previous research efforts have probed into creating 7T images using advanced deep-

learning methodologies (Hou et al., 2016, Qin et al., 2019). Nevertheless, our model stands

out due to its unsupervised learning aspect and capacity to function without resorting to

frequency domain information (Klosowski and Frahm, 2017, Huang et al., 2019). The Cycle-

GAN models’ effectiveness in minimizing image variance underlines its potential to tackle the

formidable challenge of cross-modality image translation between different MR field strengths

(Adriany et al., 2008, Van der Velden et al., 2015).

Our model offers a promising approach to cross-modality MR image translation, allow-

ing the utilization of 3T and 7T MRI technologies in longitudinal studies examining brain

health (Uğurbil, 2014, Keuken and Forstmann, 2015). Our study constitutes a significant

leap towards exploiting the capabilities of cutting-edge neuroimaging technologies without

devaluing the rich trove of existing imaging data. This spatial adaptive normalization tactic

helps bridge the technological gap, potentially accelerating the identification and validation

of imaging biomarkers for neurological conditions (Bourgeat et al., 2015, Zhang et al., 2015).

The Fast-Slow U-Net aimed to enhance CycleGAN performance by separately processing

local, high-frequency input features and global, low-frequency context. The motivation was

handling multi-scale information would aid in complex 3T to 7T MRI translation, inspired

by our conclusions from Section 4.3.5. Overall, the Fast-Slow U-Net CycleGAN experiment

formed an important step in an ongoing endeavor to determine optimal network architectures

for cross-modality 3T to 7T MRI translation using CycleGANs.
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5.5.1 Limitations

Our research has made a significant step forward in advancing the application of Cycle-

GAN to transform 3T to 7T MR data. The success of the translation task does, however,

depend heavily on various factors, including the quality and nature of the input data, model

architecture, and training procedure. Despite our progress, it is essential to consider these

factors as potential limitations that may impact the results.

One of the primary limitations concerns the 2D nature of the implemented model. Adopt-

ing a 2D CycleGAN model was primarily due to computational considerations; however, the

inherent lack of three-dimensional context by independently processing each slice results in

slice-to-slice inconsistencies (Çiçek et al., 2016, Milletari et al., 2016). Additionally, patch-

based image processing might result in losing local spatial information, which is critical in

medical image segmentation (Tajbakhsh et al., 2020). These inconsistencies may impact the

quality and fidelity of the synthesized 7T images. As Yushkevich et al. (2006) have demon-

strated, 3D analysis can significantly enhance image interpretation and extract critical infor-

mation from complex structures. Although implementing 3D CycleGAN architecture would

alleviate this concern, the extensive computational demand often hinders its deployment.

The second potential pitfall is associated with an intrinsic property of CycleGANs,

namely the non-bijective or many-to-many mapping between domains (Zhu et al., 2017).

This can lead to struggles with controlling the mode of output (Ghosh et al., 2018) and

non-functional transformations, which introduce potentially unrealistic information, or “hal-

lucinations,” into the synthetic images (Almahairi et al., 2018). These limitations and the

difficulty of maintaining the semantic consistency of anatomical structures in synthesized

images (Chartsias et al., 2018) hinder their diagnostic applicability (Wang et al., 2020).

Consequently, future research should focus on devising strategies to rectify this challenge,

such as regularizing the model with a perceptual loss (Johnson et al., 2016) or improving

training procedures to facilitate a better generalization (Roth et al., 2020).

Variations in image quality across MR scanners and imaging protocols can also influence

our model’s performance (Jovicich et al., 2006, Kruggel et al., 2010). This issue is frequently

encountered in multi-center studies and can generate images that do not accurately represent
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real-world variance, reducing its practical use. Therefore, future research is warranted to

assess the model’s resilience against such variations and verify its performance on diverse

datasets, including those featuring pathological changes (van Opbroek et al., 2015).

The question of data dependence and the potential for error in translation must also

be mentioned. The translation’s success relies heavily on the quality of the input data,

meaning that errors during preprocessing, like inaccurate skull-stripping or normalization,

could adversely impact the output (Iglesias and Sabuncu, 2015). Similarly, the translation

process could inadvertently introduce or exaggerate noise or artifacts not present in authentic

7T images, leading to misleading interpretations (Chen et al., 2017).

The performance evaluation of segmentation algorithms plays a significant role in medical

imaging. It determines the efficacy and reliability of these algorithms in clinical practice. We

employed the Dice and PAD scores. Despite its widespread usage, the Dice score has a few

limitations. One major drawback is that it needs to account for the geometric correspondence

between the predicted and ground truth segments (Taha and Hanbury, 2015). It does not

consider how well the predicted segment’s shape, location, and orientation match the ground

truth. In some scenarios, this information is critical, mainly when the size and position of

the segment are clinically significant (e.g., tumor segmentation) (Crum et al., 2006).

Conversely, the PAD evaluates the size estimation accuracy of segmentation results.

While PAD effectively measures size discrepancies, it does not provide information on the

spatial overlap between the predicted and the ground truth segmentation. Thus, two seg-

mentations with the same area but in different locations would yield a zero PAD, failing to

account for the spatial mismatch (Isensee et al., 2017). This limitation is critical in situations

where the accurate localization of the object of interest is essential.

5.5.2 Future Directions

In conclusion, our research underscores the transformative potential of blending advanced

machine learning techniques with clinical applications, particularly within neuroimaging

(Obermeyer and Emanuel, 2016, Esteva et al., 2019). Our results provide a powerful testi-

mony to the potential of CycleGAN in handling unpaired data, thus offering a compelling
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solution to MR translation across different field strengths.

However, despite its merits, the CycleGAN models we investigated have limitations, and

these challenges delineate promising avenues for future enhancement. Our study used gen-

erators based on the U-Net architecture (Ronneberger et al., 2015), which have delivered

excellent results in medical image segmentation tasks. However, U-Net-based models pri-

marily exploit local dependencies in the data, potentially neglecting long-range relationships

between pixels. In contrast, with the advent of Vision Transformers (ViTs), there is poten-

tial to enhance our model’s performance further (Dosovitskiy et al., 2020). ViTs can capture

these intricate, long-range dependencies, which could be highly advantageous for tasks in-

volving complex morphological structures such as brain MR images (Wang et al., 2018).

This, in turn, could improve the segmentation performance, particularly for brain images

that exhibit non-local relationships between anatomical structures (Petit et al., 2021).

Overall, the Fast-Slow U-Net experiment formed an important step in an ongoing en-

deavor to determine optimal network architectures for cross-modality 3T to 7T MRI transla-

tion. The results indicate that the Fast-Slow model significantly outperforms the Traditional

model, especially for the CSF and GM tissue types. Further investigations are needed to un-

derstand the contributing factors to these differences and validate the models’ performance

in larger datasets and across diverse populations. Nevertheless, the Fast-Slow U-Net remains

a promising avenue for future exploration.
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6.0 Discussion

6.1 Summary of Key Findings and Contributions

6.1.1 Spike-Coding Dynamics and Neural Synchronization (Chapter 2)

Chapter 2 explored the mathematical foundations and dynamics of spike-coding net-

works. These networks encode information using precise spike times rather than average fir-

ing rates to encode information. The equations governing the membrane potential dynamics

of spiking neurons were derived. It was shown how populations of leaky integrate-and-fire

neurons can synchronize their spike times through a process known as phase-locking. Stabil-

ity analysis revealed how key parameters like the synaptic time constant impact network syn-

chronization. Varying these parameters revealed regimes exhibiting complex synchronization

behaviors like metastability. The spike-coding network formulation was also generalized to

handle encoding multiple input signals through linear combinations of spike trains. Overall,

examining spike-coding network dynamics provided insights into how neurons communicate

and self-organize to generate coordinated spiking activity and how synchronization depends

on intrinsic neuronal and synaptic properties. Deriving the dynamical equations and explor-

ing synchronization phenomena advances our theoretical understanding of the mechanisms

enabling diverse temporal coding strategies employed by neural circuits in the brain.

6.1.2 Origins of Slow Oscillations in Cortical Networks (Chapter 3)

Chapter 3 investigated the neural mechanisms underlying the spontaneous transitions be-

tween active Up and silent Down states in cortical networks during slow-wave sleep. A model

of weakly coupled Wilson-Cowan neural oscillators was analyzed, demonstrating bistability

between quiescent and active states. Stochastic fluctuations and the coupling strength be-

tween neural populations were found to modulate transitions between these bistable states.

Varying key parameters revealed that a Bogdanov-Takens bifurcation underlies the genesis of

slow oscillations, providing insight into the complex coordination of excitation and inhibition
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required to orchestrate the rhythmic Up-Down state transitions. This modeling elucidated

how the interplay between noise, coupling topology, and nonlinear population dynamics gives

rise to the spontaneous emergence of slow oscillations from cortical circuits. Revealing the

bifurcation structure governing state transitions advances our mechanistic understanding of

how sleep rhythms originate and are controlled.

6.1.3 Unified View of Associative Memory Models (Chapter 4)

Chapter 4 established a unifying framework connecting two foundational neural network

models—Hopfield and spike-coding networks. Although differing in their emphasis on fixed

point attractors versus spike timing, these classic models offer complementary perspectives

on the same phenomenon—encoding associative memories and temporal sequences in re-

current networks. The key insight enabling this unification was recognizing the inherent

linkage between the models; the stable attractor states in Hopfield networks provide a sub-

strate for generating complex temporal spike sequences, which are dynamically replayed in

spike-coding networks. In essence, Hopfield networks supply the associative memories, while

spike-coding networks provide the sequencing between these memories. This analysis estab-

lished a mathematical equivalence between the models using circulant matrices to represent

asymmetric weights in Hopfield networks. This introduction of carefully structured asym-

metry induced dynamics that enabled smooth transitions between stored attractor states.

The circulant structure was further generalized to capture more complex temporal depen-

dencies and correlations critical for tasks like the n-back working memory task. Overall,

this work provided a unified lens for understanding the interlinked principles of associative

memory and temporal sequence learning in neural networks. By synergistically integrating

complementary computational elements from each model, it elucidated a shared algorithmic

foundation spanning decades of research in mathematical neuroscience.

6.1.4 Cross-Modality MRI Translation with CycleGAN (Chapter 5)

Chapter 5 presented a novel deep learning approach for cross-modality translation of

3T MRI to 7T MRI using GANs. The model aimed to synthesize 7T-like images from
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widely available 3T data, overcoming the challenges in transitioning longitudinal studies to

more advanced 7T systems. The approach employed unpaired 3T and 7T MR datasets to

train CycleGAN models for unsupervised 3T to 7T MRI translation. A specialized Fast-Slow

U-Net variant was implemented alongside standard U-Net generators to enhance multi-scale

image processing. Rigorous quantitative evaluation affirmed the model’s efficacy in predict-

ing key tissue types from independent test data. This research underscores GANs’ potential

for spatial adaptive normalization of MR data across field strengths. Generating synthetic

7T images from 3T inputs provides an efficient solution to bridge the technological divide

and preserve compatibility with existing data. The results highlight deep learning’s transfor-

mative capabilities in medical imaging and the need for innovative specialized architectures

adapted to the problem structure. The work elucidates a promising cross-disciplinary ap-

proach blending neuroscience, medical imaging, and AI.

6.2 Synthesis and Significance of Research Directions

6.2.1 Elucidating Mechanisms of Neural Synchronization and Sequencing

Chapters 2 and 4 provided complementary modeling perspectives that elucidate neural

networks’ mechanisms to synchronize distributed neurons and sequence spatiotemporal pat-

terns. Chapter 2 analyzed spike-coding networks and showed how populations of neurons can

precisely coordinate their spike timing through phase-locking. Chapter 4 examined asym-

metric Hopfield networks and revealed how structured synaptic weight perturbations induce

cyclic attractor dynamics, allowing the storage and replay of temporal sequences. Despite

their differing emphases, analysis of these foundational models exposed unifying principles

governing how neural circuits orchestrate flexible spike-based coding. The synchronization

phenomena in spike-coding networks and the sequential replay of memories in asymmetric

Hopfield networks rely on shared mathematical principles and circuit mechanisms. These

insights advance our theoretical grasp of the algorithms leveraged by biological neural com-

putation to coordinate precise spike timing and represent temporal sequences and memories.
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This knowledge helps establish guiding principles for designing more sophisticated neural

network models capable of dynamic synchronization and sequencing.

6.2.2 Multi-Scale Modeling of Brain Rhythms and Memory Consolidation

A key theme connecting Chapters 3 and 4 is the multi-scale coordination underlying

complex neural dynamics and computation. Chapter 3 demonstrated how slow oscillations

originate from the delicate balance of excitation and inhibition within cortical neural pop-

ulations. Mathematical analysis revealed this mesoscopic population-level rhythm genesis

depends on a Bogdanov-Takens bifurcation, linking microscopic neuron properties to global

brain states. Chapter 4 provided a multi-timescale circulant matrix framework to unify mi-

croscopic spike-coding networks and macroscopic Hopfield associative memories. This gener-

alization using circulant matrices could capture neural interactions across diverse timescales,

from fast synaptic currents to slow neuromodulation. Together, these examples showcase the

importance of multi-scale modeling, from biophysical neurons to emergent rhythms and mem-

ories, to unravel cross-level mechanisms in the brain. They provide theoretical foundations

to bridge cellular, population, and systems neuroscience approaches.

6.2.3 Bridging Biological and Artificial Neural Systems

Challenging applications like medical image analysis underscore key gaps between state-

of-the-art AI systems and biological intelligence. As evidenced in Chapter 5, while Deep

Learning models like CycleGAN can synthesize compelling 7T MR data from 3T inputs, sig-

nificant improvement remains compared to human-level complex visual interpretation and

understanding. Fundamentally, ANNs lack the levels of specialized domain knowledge and

architectural adaptation that allow biological neural networks to handle complexity and gen-

eralize robustly. Implementing the Fast-Slow U-Net variant took inspiration from the spike-

coding networks and asymmetric Hopfield networks analyzed in Chapters 2 and 4 to improve

task performance. Those models demonstrated the utility of separate pathways for local and

global information processing. However, much scope exists to integrate additional brain-

inspired motifs inspired by those analyses, like hierarchical processing, top-down feedback,
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and neuromodulation. Such bio-inspired enhancements tailored to particular tasks could

significantly advance AI by instilling some of the flexibility and efficiency of biological neural

networks. More broadly, this cross-disciplinary approach combining neuroscience, medical

imaging, and AI offers a promising direction for developing more human-like intelligence—

interpretable, data-efficient, and trustworthy systems that learn from nature.

6.3 Limitations and Future Research Directions

6.3.1 Extending Theoretical Models with Physiological Details

The conceptual models explored in this dissertation, including the spike-coding networks

in Chapter 2 and the Wilson-Cowan neural oscillators in Chapter 3, provide valuable theoret-

ical insights into the computational principles and dynamical mechanisms underlying neural

processing. However, these simplified models necessarily omit many physiological details

of real neurons. As Gerstner et al. (2014) suggested, incorporating additional biophysical

realism could improve the models’ accuracy and experimental predictive power.

For instance, prior work has shown the precise shape of action potentials can influence

synchronization in spiking neural networks (Izhikevich, 2004). Neurons exhibit a diversity

of spike shapes depending on their molecular composition and morphology (Bean, 2007).

Adding spike shapes beyond simple delta functions could reveal new mechanisms by which

postsynaptic waveform characteristics modulate coding and communication in local circuits.

Furthermore, axonal propagation delays can significantly impact synchronization phe-

nomena (Vicente et al., 2008). Large-scale wiring diagrams have provided new data on the

distribution of axonal conduction delays in cortical networks (Markram et al., 2015). Incor-

porating biologically constrained models of axonal delays could enhance the predictions of

synchronization principles derived in Chapter 2.

Additionally, dendrites’ active properties and complex geometry are crucial in neuronal

integration and plasticity (Gidon and Segev, 2012). Recent advances in neuron morphology

imaging could enable the integration of detailed dendritic morphologies into neural network
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models (Gouwens et al., 2019). This could uncover new computational principles stemming

from interactions between dendritic nonlinearities and network connectivity patterns.

In summary, while conceptual models provide important theoretical insights, adding

physiological details like empirically-based spike shapes, axonal delays, and dendritic mor-

phologies could lead to more biologically realistic models with enhanced experimental pre-

dictive power. This dissertation developed foundations to incorporate such details through

multi-scale modeling spanning subcellular to systems levels.

6.3.2 Large-Scale Simulations and In Vivo Experiments

The models developed in this dissertation are limited in scale, typically comprising hun-

dreds of model neurons. An important future direction is scaling up the models to simulate

larger neural systems and capture emergent phenomena arising in whole-brain networks.

Recent advances in supercomputing infrastructure and simulation software enable mod-

eling spiking activity across billions of neurons (Kunkel et al., 2014). Large-scale simulations

of full cortical networks could examine how the computational principles identified in the

simpler models manifest at larger scales, where interactions across areas and feedback loops

come into play. Such large-scale models could better capture complex spatiotemporal pat-

terns like those observed empirically in multi-electrode recordings (Timme et al., 2016).

Additionally, in vivo experiments are essential to validate the predictions from conceptual

and simulation models (Kopell et al., 2011). Techniques like optogenetics, electrophysiology,

and imaging enable precise perturbation and observation of neural activity in living systems

(Grosenick et al., 2015). Testing theoretical predictions in animal models could refine and

extend the modeling frameworks developed in this dissertation.

For instance, experimentally driving specific cell types predicted to control transitions

between synchronous Up and Down states could causally probe their computational roles in

vivo (Lewis et al., 2012). Comparing the statistics of neuronal recordings against simulation

data can also help validate and constrain theoretical models (Gerstner and Naud, 2009).

An integrated approach combining multi-scale modeling with empirical measurements

is necessary to align theory and experiments. The modeling approaches in this disserta-
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tion provide foundations to bridge conceptual models, large-scale simulations, and biological

experiments through mutually informative multi-scale exploration of neural systems.

6.3.3 Advancing AI through Bio-Inspiration

This dissertation developed conceptual models to advance our theoretical comprehension

of biological neural computation. Looking forward, the insights gained could help inspire

new directions to improve AI systems.

Fundamental principles in neuroscience like sparse coding, hierarchical processing, and

neuromodulatory control could provide blueprints for enhancing Deep Learning architectures

(Bengio et al., 2015, Kriegeskorte, 2015). For example, introducing winner-take-all dynamics

or divisive normalization motivated by neuroscience models has improved network efficiency

and generalization (Carandini and Heeger, 2012, Riesenhuber and Poggio, 1999). Neuro-

modulated learning, where different plasticity rules operate in distinct network layers, could

enable more flexible training (Miconi et al., 2018).

Additionally, specialized architectures adapted to the structure of particular problems

have shown promise in tasks like medical imaging and time series analysis (Bai et al., 2018).

The Fast-Slow U-Net model developed in Chapter 5 demonstrates how dual-pathway designs

separating local and global processing could benefit image analysis applications. Brain-

inspired architectures incorporating recurrent processing for working memory could enhance

sequential learning (Frank et al., 2001, O’Reilly and Frank, 2006).

Finally, developing more interpretable AI systems is critical for trust and transparency

in medical and scientific applications (Samek et al., 2017). Incorporating neuroscience-based

representations and objectives could yield more explainable models than end-to-end Deep

Learning (Kietzmann et al., 2017). Integrating conceptual theories with practical machine

learning could catalyze interpretable AI that learns from nature.

This research aims to complement data-driven AI by distilling essential computational

principles from neuroscience. While not directly prescriptive, these theoretical insights may

offer inspiration for developing the next generation of intelligent systems that integrate syn-

ergistically with human capabilities.
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6.4 Conclusion

This dissertation advanced our understanding of the algorithms and mechanisms under-

lying neural computation in the brain through integrated modeling across multiple scales.

The research elucidated principles of spike timing coordination that enable distributed

neurons to synchronize or sequence activity patterns flexibly. It revealed how global brain

rhythms can spontaneously emerge from the nonlinear dynamics of interacting populations.

A unifying mathematical framework that links conceptual models of associative memory and

temporal processing in recurrent networks was introduced.

Together, these findings provide unified mechanistic explanations spanning neural coding,

system-level rhythms, and memory consolidation. The models synergistically incorporate

biophysical spiking neurons, mesoscopic population interactions, and abstract associative

memories—bridging cellular to systems neuroscience. Analyses of network synchronization,

nonlinear dynamics, bifurcations, and circulant weight matrices revealed common motifs

underlying diverse computational capabilities.

This work elucidates a path toward interpretable AI by distilling essential algorithms

from neuroscience. While not directly prescriptive, these conceptual insights may guide the

development of brain-inspired computing. Separating fast and slow representations could en-

hance multi-scale processing in deep networks. Circulant connectivity could introduce robust

sequential processing. Rich dynamics modeled through bifurcations may enable context-

dependent computation. Integrating such motifs could yield more efficient, generalizable,

and trustworthy AI systems that productively cooperate with human capabilities.

The convergence of neuroscience and AI is a promising cross-disciplinary approach to

unraveling the complexities of natural and artificial systems. This research aims to accelerate

progress at the intersection of these fields by elucidating unifying principles spanning levels

of analysis, from biophysical mechanisms to collective computations. By revealing shared

mathematical foundations, it contributes towards a unified understanding of biological and

AI while highlighting enhancements to emerge from their synergistic integration.

141



Bibliography

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, and Matthieu Devin. Tensorflow: Large–scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016. arXiv:1603.04467.

Larry F Abbott and Thomas B Kepler. Model neurons: from hodgkin-huxley to hopfield.
In Statistical Mechanics of Neural Networks: Proceedings of the Xlth Sitges Conference
Sitges, Barcelona, Spain, 3–7 June 1990, pages 5–18. Springer, 2005.

Larry F Abbott, Brian DePasquale, and Raoul-Martin Memmesheimer. Building functional
networks of spiking model neurons. Nature neuroscience, 19(3):350–355, 2016.

Ted Abel and K Matthew Lattal. Molecular mechanisms of memory acquisition, consolida-
tion and retrieval. Current opinion in neurobiology, 11(2):180–187, 2001.

Gregor Adriany, Pierre-Francois Van de Moortele, Johannes Ritter, Steen Moeller, Edward J
Auerbach, Can Akgün, Carl J Snyder, Thomas Vaughan, and Kâmil Uğurbil. A geomet-
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variables in balanced spiking networks. PLoS computational biology, 9(11):e1003258, 2013.

Adam Bohr and Kaveh Memarzadeh. Artificial intelligence in healthcare. Academic Press,
2020. ISBN 0128184396.

Ingo Bojak, Thom F Oostendorp, Andrew T Reid, and Rolf Kötter. Connecting mean field
models of neural activity to eeg and fmri data. Brain topography, 23(2):139–149, 2010.

Vincent Bonin, Valerio Mante, and Matteo Carandini. The suppressive field of neurons in
lateral geniculate nucleus. Journal of Neuroscience, 25(47):10844–10856, 2005.

Roman M Borisyuk and Alexandr B Kirillov. Bifurcation analysis of a neural network model.
Biological Cybernetics, 66(4):319–325, 1992.

Alexander Borst and Frédéric E Theunissen. Information theory and neural coding. Nature
neuroscience, 2(11):947–957, 1999.

P. Bourgeat, V. L. Villemagne, V. Dore, B. Brown, S. L. Macaulay, R. Martins, C. L. Masters,
D. Ames, K. Ellis, C. C. Rowe, O. Salvado, J. Fripp, and Aibl Research Group. Comparison
of mr–less pib suvr quantification methods. Neurobiol Aging, 36 Suppl 1:S159–66, 2015.
ISSN 1558–1497 (Electronic) 0197–4580 (Linking). doi: 10.1016/j.neurobiolaging.2014.04.
033. URL https://www.ncbi.nlm.nih.gov/pubmed/25257985.

144

https://www.ncbi.nlm.nih.gov/pubmed/25257985


Ronald Newbold Bracewell. The Fourier Transform and Its Applications. McGraw-Hill,
1986.

Michael Breakspear. Dynamic models of large-scale brain activity. Nature neuroscience, 20
(3):340–352, 2017.

Steven L Bressler and Vinod Menon. Large-scale brain networks in cognition: emerging
methods and principles. Trends in cognitive sciences, 14(6):277–290, 2010.

Romain Brette and Wulfram Gerstner. Adaptive exponential integrate-and-fire model as
an effective description of neuronal activity. Journal of neurophysiology, 94(5):3637–3642,
2005.

Richard A Brualdi, Herbert John Ryser, et al. Combinatorial matrix theory, volume 39.
Springer, 1991.

Jehoshua Bruck. On the convergence properties of the hopfield model. Proceedings of the
IEEE, 78(10):1579–1585, 1990.

Bingni W Brunton, Matthew M Botvinick, and Carlos D Brody. Rats and humans can
optimally accumulate evidence for decision-making. Science, 340(6128):95–98, 2013.
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Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.
3d u–net: learning dense volumetric segmentation from sparse annotation. In Medical
Image Computing and Computer–Assisted Intervention–MICCAI 2016: 19th International
Conference, Athens, Greece, October 17–21, 2016, Proceedings, Part II 19, pages 424–432.
Springer, 2016. ISBN 3319467220.

A. Chartsias, T. Joyce, M. V. Giuffrida, and S. A. Tsaftaris. Multimodal mr synthesis via
modality–invariant latent representation. IEEE Trans Med Imaging, 37(3):803–814, 2018.
ISSN 1558–254X (Electronic) 0278–0062 (Print) 0278–0062 (Linking). doi: 10.1109/TMI.
2017.2764326. URL https://www.ncbi.nlm.nih.gov/pubmed/29053447.

Sylvain Chauvette, Maxim Volgushev, and Igor Timofeev. Origin of active states in local
neocortical networks during slow sleep oscillation. Cerebral cortex, 20(11):2660–2674, 2010.

Chi-Tsong Chen. Linear system theory and design. Saunders college publishing, 1984.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587,
pages 1511–1520, 2017.

Tianping Chen and Shun Ichi Amari. Stability of asymmetric hopfield networks. IEEE
Transactions on Neural Networks, 12(1):159–163, 2001.

Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang.
An exploration of parameter redundancy in deep networks with circulant projections. In
Proceedings of the IEEE international conference on computer vision, pages 2857–2865,
2015.

J Cohen. A power primer. Psychological bulletin, 112(1):155–159, 1992.

Charles Conley. The gradient structure of a flow: I. Ergodic Theory Dynam. Systems, 8
(Charles Conley Memorial Issue), 1988.

Barry W Connors and Michael J Gutnick. Intrinsic firing patterns of diverse neocortical
neurons. Trends in neurosciences, 13(3):99–104, 1990.

146

https://www.ncbi.nlm.nih.gov/pubmed/29053447


Andrew RA Conway, Michael J Kane, Michael F Bunting, D Zach Hambrick, Oliver Wilhelm,
and Randall W Engle. Working memory span tasks: A methodological review and user’s
guide. Psychonomic bulletin & review, 12:769–786, 2005.

Rosa Cossart, Rafael Yuste, and Dmitriy Aronov. Attractor dynamics of network up states
in the neocortex. Nature, 423(6937):283–288, 2003.

W. R. Crum, O. Camara, and D. L. Hill. Generalized overlap measures for evaluation
and validation in medical image analysis. IEEE Trans Med Imaging, 25(11):1451–61,
2006. ISSN 0278–0062 (Print) 0278–0062 (Linking). doi: 10.1109/TMI.2006.880587. URL
https://www.ncbi.nlm.nih.gov/pubmed/17117774.

Vincenzo Crunelli and Stuart W. Hughes. The slow (¡1 hz) rhythm of non-rem sleep: a
dialogue between three cardinal oscillators. Nature Neuroscience, 13(1):9–17, 2010.

Rodica Curtu and Bard Ermentrout. Oscillations in a refractory neural net. Journal of
mathematical biology, 43(1):81–100, 2001.

Henry Dale. Pharmacology and nerve-endings. Journal of the Royal Society of Medicine, 28
(3):319–332, 1935.

François David, Joscha T. Schmiedt, Hannah L. Taylor, Gergely Orban, Giuseppe Di Gio-
vanni, Victor N. Uebele, John J. Renger, Régis C. Lambert, Nathalie Leresche, and Vin-
cenzo Crunelli. Essential thalamic contribution to slow waves of natural sleep. The Journal
of neuroscience: the official journal of the Society for Neuroscience, 33(50):19599–19610,
2013.

Philip J Davis. Circulant matrices, volume 2. Wiley New York, 1979.

Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and mathe-
matical modeling of neural systems. MIT press, 2005.

Peter Dayan and Angela J Yu. Phasic norepinephrine: a neural interrupt signal for unex-
pected events. Network: Computation in Neural Systems, 17(4):335–350, 2006.

Gustavo Deco and Viktor K Jirsa. Ongoing cortical activity at rest: criticality, multistability,
and ghost attractors. Journal of Neuroscience, 32(10):3366–3375, 2012.

Gustavo Deco, Viktor K Jirsa, Peter A Robinson, Michael Breakspear, and Karl Friston. The
dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput
Biol, 4(8):e1000092, 2008.

Javier DeFelipe and Isabel Fariñas. The pyramidal neuron of the cerebral cortex: morpho-
logical and chemical characteristics of the synaptic inputs. Progress in neurobiology, 39
(6):563–607, 1992.

147

https://www.ncbi.nlm.nih.gov/pubmed/17117774


Mete Demircigil, Judith Heusel, Matthias Löwe, Sven Upgang, and Franck Vermet. On a
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