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Abstract 

Investigation of Arterial Luminal Topography and Design of Crimped Fiber Composites 

 

Nandan N Pitre, PhD 

 

University of Pittsburgh, 2023 

 

 

The lumen of arteries usually appears corrugated in histological cross-sections. These 

corrugations occur due to the wrinkling of the Internal Elastic Lamina (IEL) and have often been 

attributed to fixation artefacts. We quantify the IEL topography and test whether the corrugations 

are actually present in arteries under physiological conditions. This is done by imaging cross-

sections of fixed arteries at different diameters and comparing them to the diameter measured in-

vivo using ultrasound. It is seen that the IEL corrugations flatten out as the arterial diameter 

increases, and the IEL contour length is ~10% more than the circumference at ultrasound diameter. 

These results provide evidence that the luminal topography is not completely flat under 

physiological conditions. 

 

Fibrous collagen exists in biological tissues in the form of crimped fibers. This crimped 

nature of fibers enables them to uncrimp before stretching and provide an increased stiffness as 

the tissue stretches, thus imparting ‘strain-hardening’ behavior to the tissues. Composites of soft 

material embedded with short stiffer crimped fibers have the potential to show similar mechanical 

behavior and have the advantage of being flow processible. Here we study the mechanics of 

crimped fiber composites by quantifying the stress transfer between a single crimped fiber and a 

an embedding soft matrix, and examining the mechanical response of crimped multifiber 

composites under tension, using 3D finite element analysis. 



 iv 

As the composite is stretched, fibers with large crimp amplitude and large relative modulus 

straighten significantly at small strains without bearing significant load. Thus, crimped fiber 

composites show a super-linear increase in stress upon tension. Stress-transfer mechanics of a 

crimped fiber are captured using a shear lag model, where the crimped fiber can be replaced by an 

equivalent softer straight fiber with increasing strain-dependent modulus. Multifiber composites 

show that higher fiber volume fraction yields higher reinforcement. Moreover, maximum 

reinforcement is achieved when the fibers are oriented along the direction of the stretch. Thus, the 

degree of strain-hardening and the degree of reinforcement of multi-crimped-fiber composites can 

be tuned by changing fiber parameters to achieve the desired mechanical behavior of the 

composite.  
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Introduction to Dissertation 

This dissertation examines two aspects of the straightening of thin wavy structures under 

tension. Both aspects are related to vascular mechanics, in one case the actual microstructure of 

arteries, and in the second case, in the mechanics of materials that mimic arterial tissue. The 

internal elastic lamina (IEL) in arteries serves as the wavy structure in the study in Part 1, and we 

investigate the role it plays in the morphology of the arterial lumen. Here, arterial luminal 

topography and its relevance under physiological conditions is investigated. In Part 2, mechanics 

of the arterial tissue are considered with the primary goal of designing a synthetic tissue substitute 

that can mimic the mechanical behavior of the arterial wall and other soft tissues which show 

strain-hardening properties. Here crimped fibers embedded in a matrix serve as the wavy structure, 

and their effect on the mechanical behavior is studied. 

 

Part 1 

Part 1 consists of investigation into the microstructure observed in arteries. It has been 

known for many decades that cross-sections of fixed arteries that are imaged under microscope 

show that the inner lumen is wrinkled. However, these images necessarily require extraction of the 

arteries from the body. Biological tissues like arteries undergo changes when taken out of the body, 

both because many factors in vitro are different as compared to in vivo (e.g. excision causes loss 

of luminal pressure) as well as preparation methods (e.g. dehydration during fixation). Thus, these 

wrinkles of the lumen have often been attributed to artifacts due to fixation, handling and other 

changes in temperature and moisture. However, since imaging the arterial lumen at high resolution 

is not possible in vivo, the issue of whether these structures are indeed an artifact, or are they 



 xvi 

present under physiological conditions remains unresolved. Our approach starts with the idea that 

the IEL corrugations are a geometric and mechanical effect. Thus, we seek to examine fixed 

arteries at the same diameter as they used to be prior to excision. This study is conducted on porcine 

carotid arteries and the in-vivo measurements of arterial diameter are done using ultrasound. Here 

we also develop an innovative way of fixing the arteries in conical segments that allows us to 

obtain a range of diameters for the same artery in order to evaluate how the IEL topography 

changes with the blood vessel diameter. Chapter 1 presents this study along with a discussion of 

the results. 

 

Part 2 

Biological tissues contain fibrous collagen which exists in the form of crimped fibers in 

unstressed state. This crimped state allows the fibers to uncrimp before stretching, thus imparting 

a strain-hardening behavior to the tissue. A composite reinforced with crimped fibers may be 

considered as a biomimetic analog of collagenous tissues. Short fibers (often glass or carbon fibers) 

are often used as reinforcing fillers in composites. In the context of soft materials however, if the 

fibers are crimped and embedded in a soft matrix, it may be possible to achieve mechanical 

behavior similar to that of biological tissues, where the composite stiffness increases super-linearly 

with stretch. Such a composite material may have potential applications as synthetic tissue 

substitutes, but being composed of chopped fibers, would still be flow-processible. In Part 2, we 

look at such short crimped-fiber composites and their mechanical behavior. 

In order to control and predict the behavior of these composites, it is necessary that to 

understand the mechanics underlying how crimped fibers contribute to the mechanical response of 

the composite. Here we present two studies examining the composite mechanics. 
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As the first step in understanding the mechanics of crimped fibers, in Chapter 2, we conduct 

a computational study of the stress transfer occurring between a single finite-length crimped fiber 

and the soft matrix within which it is embedded. Different parameters of the crimped fibers are 

tested for their effect on fiber loading.  Here we look at whether crimped fibers initially uncrimp 

without bearing significant load and become increasingly load-bearing as they straighten out. This 

behavior would validate the use of crimped fibers as strain-hardening reinforcers. We also look at 

the end-effects of the fiber, specifically the extent to which the portion near the ends of the fiber 

is less load bearing, as is known to happen for straight fibers. At the end of this chapter, we discuss 

how the shear lag model can be modified to form a model for crimped fibers, and the concept of 

an Equivalent Straight Fiber (ESF) model is developed. A further study into the reduction in fiber 

crimp amplitude that occurs as the composite is stretched is presented in Section 

1.01(a)(i)Appendix C, along with experimental verification. 

In chapter 3, we extend this study to the case where there are multiple such crimped fibers 

embedded in a soft matrix. This is also a computational study using 3D finite element simulations. 

The parameter space is wider and includes the volume fraction of fibers as well as their alignment. 

We look at how the orientation of fibers in the composite affects the degree of strain-hardening. 

In this study we discuss how some computational models can be used to predict these multifiber 

simulation results. Here we also develop a computational workflow that can efficiently generate 

highly complex geometries of composites with dispersed crimped fibers, with control of alignment 

and fiber geometry while still having random placement of fibers. We also provide an experimental 

verification of the results, where actual multi-crimped-fiber composite samples are created and 

tensile stretched.  
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At the end of Part 2, we have a mathematical basis and experimental verification for a short 

crimped fiber reinforced composite material with tunable properties to match a range of 

mechanical behaviors. 

This can then be extended to developing vascular prosthesis as well as synthetic substitutes 

for other tissues. Combining with the study in part 1 and Appendix B, which shows a method for 

fabricating tubes with luminal topography, vascular grafts can be fabricated with luminal 

topography as well as matching the mechanical behavior of arteries. 

Chapter 4 summarizes the research in this dissertation and discusses the ways in which it 

can be taken further, as well as the limitations and challenges that need to be addressed in doing 

so. 



 1 

Part 1 

 

 

 

 

 

 

 

 

Relevance of Internal Elastic Lamina Corrugations Under Physiological 

Conditions 
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Overview 

A variety of complex microstructures are often seen in images of biological tissues. Many of these 

can only be observed after the tissues are taken out of the body and the tissues are fixed. Then the question 

remains: are they actually present in the body, or are they an artifact of the process by which they are 

observed? And do they have a potential biological function? 

The focus of this chapter is on the wrinkled microstructures seen on the luminal surface of 

fixed arterial cross-sections. In Part 1, we look at this aspect, where we investigate the presence 

and the relevance of luminal corrugations in arteries. Although known that these are caused by the 

wrinkling of the Internal Elastic Lamina, little evidence exists with regards to answering the above 

questions: are they present in a normal functioning body, and do they have a biological function. 

Here, we study porcine arteries which are inflated to diameters comparable to the in-vivo measured 

diameters and compare the topography, in order to answer the question: do IEL corrugations exist 

under physiological conditions? 

The following schematic illustrates the logical flow of this study. 
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1.0 Investigation of the Relevance of Internal Elastic Lamina (IEL) Corrugations Under 

Physiological Conditions 

1.1 Introduction 

Muscular arteries are multi-layered structures: the innermost intima, followed by the 

media, and the outermost adventitia [1-5] (Figure1. 1). The intima consists of a continuous layer 

of endothelial cells lining the lumen of the artery. The media consists of elastin lamellae, collagen 

fibers and smooth muscle cells, and the adventitia primarily consists of large bundles of crimped 

collagen fibers and fibroblast cells, and anchors the artery to the surrounding tissue [1-5]. Between 

these two layers is the media, which consists of multiple layers of elastin and smooth muscle cells 

oriented circumferentially interspersed with collagen fibers. The number of elastin layers varies 

with the size and function of the artery. However, all arteries have an internal elastic lamina (IEL) 

that separates the intima from the media[2, 4].  This layer is comprised by roughly 79% elastin[6] 

and is much thicker in large arteries than in arterioles [2, 6]. The IEL includes fenestrations of 

around 3-4 µm in diameter [7] which are needed for mass transport between the intimal and medial 

layers [7, 8].  
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Figure1. 1 Cartoon schematic showing layers of artery 

In most histological cross-sections of arteries[9-19], the IEL appears to be heavily 

corrugated with wavelengths on the order of a few tens of microns (example Figure1.2). The 

literature from 1930 to the late 1980’s revealed the presence of arterial luminal corrugations by 

optical or electron microscopy as summarized by Tindall and Svendsen[19]. These corrugations 

were thought to be an artifact of the fixation process, attributable to the vasoconstriction that occurs 

when arteries are extracted and preserved [20-22]. Our study was initiated to determine if these 

IEL corrugations exist in vivo under physiological conditions[19] or if they are indeed a fixation 

artifact. 
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Figure1. 2 Histological arterial cross-section 

Left pericardiacophrenic artery (image source: University of Michigan histology library (License: CC BY-

NC-SA 4.0 Deed)) 

This question of whether corrugations exist in vivo is difficult to address by experiments 

on live animals. Corrugations on the order of a few tens of microns are too small to detect using 

current noninvasive imaging techniques such as ultrasound imaging. Invasive techniques such as 

optical coherence tomography or intravascular ultrasound also lack the necessary resolution. While 

microCT imaging can reach these resolutions, the dynamic nature of arterial pulsations makes the 

technique unsuitable for in vivo imaging. Ex vivo studies of fixed arteries allow the corrugated 

structure visualized with exquisite precision, but most fixation processes can induce significant 

distortion of the tissues. Moreover, arteries undergo vasoconstriction in the setting of hypotension, 

dehydration, tonus of the arterial wall, hypoxia, hypothermia, or from handling during tissue 

isolation and fixation[20-28]. 

In vitro studies have also examined how the amplitude of the corrugations become smaller 

as arteries are distended. Lee and Chien [13] held canine carotid arteries (roughly 1.5 mm inner 

diameter) at various pressures up to 100 mm Hg during fixation. Scanning electron microscopy 
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revealed that the lumen was heavily corrugated at 0 mm Hg with typical corrugation width and 

height being 15 µm and 10 µm, respectively. These corrugations became shorter in amplitude with 

increasing luminal pressure (and hence increasing diameter) but were still clearly visible at 60 mm 

Hg. Their amplitude reduced sharply at 80 mm Hg and was nearly flat at 100 mm Hg.  

Greensmith and Duling [11] examined smaller vessels using arterioles of typical inner 

diameter 80 µm. Unlike Lee, the vessels were tuned not by varying luminal pressures. Instead, 

norepinephrine was used to vasoconstrict the vessels while maintaining a fixed transmural pressure 

of 50 mm Hg. By using the vasoconstrictor, the vessels could be constricted to diameters below 

their unstressed diameter. Corrugations appeared when vessels were 110-125% of their unstressed 

diameter and the arteries became highly corrugated when they were less than 90% of their 

unstressed diameter. The corrugations were typically several microns wide and several microns in 

amplitude. 

Finally as a portion of a computational study on buckling phenomena in tissues [29], we 

reported measurements of pig carotid arteries of typical diameter 4 mm. As in Lee et al, the arteries 

were fixed while being held at various luminal pressures of up to 160 mm Hg. The arteries were 

observed to be very corrugated (34 µm peak to peak distance between the corrugations and 20 µm 

amplitude) at pressures below 100 mm Hg, but rapidly lost amplitude above 125 mm Hg. 

These and other studies agree that for arteries ranging from a few mm to less than 100 µm 

in diameter, the corrugation amplitude increases with decreasing diameter or luminal pressure. 

This raises the question of whether arteries are sufficiently distended that they are smooth or are 

insufficiently distended such that they retain significant corrugations under physiologic conditions. 

Although this question of whether arteries are corrugated in vivo was specifically discussed by 
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Tindall and Svendsen with evidence “for” and “against” this structure, they did not come to a 

definitive conclusion.  

Before proceeding, it is useful to clarify the mechanics underlying a corrugated 

topography. Composed primarily of elastin, the IEL is much stiffer than the underlying medial 

smooth muscle cell layer. Thus, the near-lumen mechanics is expected to follow that of layered 

composites comprising a thin stiff layer bonded to a thicker but softer layer. Under compressive 

loading, the thin stiff layer responds by deforming (rather than compression) and these 

corrugations grow in amplitude. Indeed, similar stiff-on-soft layer mechanics is also responsible 

for the wrinkling of skin. In the extreme case when the modulus mismatch is large, the stiff layer 

may behave as an “inextensible” layer, i.e. accommodate the compression entirely by bending 

without bearing any compressive strain. In this limiting case, the topographic corrugations become 

a geometric effect, i.e. the corrugations solely depend on the diameter of the blood vessel. 

Accordingly, any mechanism that causes arterial shrinkage such as loss of pressure upon excision 

or vasoconstriction, would also induce the IEL to become corrugated. That the IEL mechanics 

follow stiff-on-soft layer mechanics is implicit in the previous literature, although it has not been 

explicitly stated.  

This physical picture also suggests that the question of physiological relevance may be 

addressed by quantifying the ratio:  

𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐼𝐸𝐿

𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑙𝑢𝑚𝑖𝑛𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

The denominator is the reference value against which the IEL contour length is compared. 

A ratio exceeding 1 would imply that the IEL cannot remain smooth under physiological 

conditions. In fact, a similar ratio was used for quantification by Greensmith and Duling who used 

the zero-pressure diameter, and by Svendson and Tindall, who used a luminal circumference 
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calculated from external measurement of in vivo diameter for normalizing (rather than the 

physiological diameter).  

Our approach is as follows: We measure the physiological diameter in a live animal under 

anesthesia using ultrasound measurements. We then extract and fix the artery at various diameters. 

Quantitative image analysis is done to measure the IEL length and compare it against the 

physiological diameter. One significant aspect of this research is that we greatly reduce the 

uncertainty in our measurements by fixing a single artery at a variety of diameters. In contrast, in 

previous research on this topic, a different artery had to be used at each different diameter. Thus, 

the reference value for comparison varied in each specimen, thus leading to greater uncertainty in 

the measurements. 

1.2 Methods 

1.2.1 Data Collection 

Artery diameters were measured in vivo using GE Vscan AirTM ultrasound. Carotid arteries 

(Left Carotid (LC) and Right Carotid (RC)) in pigs between the weights of 40 and 55 kgs were 

imaged. The animals were part of other experimental research unrelated to this article and did not 

involve the carotid arteries. Ultrasound imaging was conducted under general anesthesia 

(Isoflurane, 2% with 2.5 l/min O2) and prior to any surgical process. After euthanasia, the imaged 

arteries were harvested. A total of 9 arteries from 6 animals were included in this study. 

The excised arteries were rinsed in saline and the surrounding tissue was surgically 

removed. The arteries were mounted on the luer connectors in the inflation setup and secured in 
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place. Figure1. 3(A) is a diagram depicting the inflation setup while Figure1. 3(B) shows a 

photograph of the actual setup. 3D printed rigid conical sleeves were placed over the artery before 

inflating as shown in Figure1. 3 (C). These conical sleeves were designed to have inner diameter 

ranging from 3 mm on one end to 7 mm on the other. These sleeves ensured that inflation of the 

covered section of the artery is restricted to the inner diameter of the sleeve. Additional conical 

sleeves were sometimes used upon an artery if the length of the excised artery allowed (Eg. 

Figure1. 3 (C) shows an artery with 3 conical sleeves). This allowed us to obtain additional conical 

sections on the same artery which offered additional spare cross-sections, although one conical 

section was sufficient for analysis. One end of the artery was connected to the air outlet while the 

other end was closed off using a luer stop. The arteries were then subjected to pulsatile inflation 

cycles so as to relax the constricted artery to allow distension when pressurized.  Standard tissue 

fixation protocol was followed for fixing the arteries under inflation.  The arteries were filled with 

4% paraformaldehyde, while being immersed in the same solution and inflated to a high pressure 

for 1 hour. This pressure was regulated so that the arteries had maximum contact with the conical 

sleeve without damaging the tissue. After 1 hour, the arteries were emptied of the solution, and 

filled with and immersed in 30% sucrose in phosphate buffer solution (PBS) for 24 hours. After 

fixation, the arteries were then taken off the setup and stored at -80° C. Figure1. 4 shows artery 

(P10322 LC) fixed using the above method, showing conical segments where the sleeves restricted 

expansion. The central benefit of this approach is that it allows the same artery to be examined 

across a range of diameters that encompass the range of diameters measured by ultrasound on the 

anesthetized animal. A secondary benefit is that since the arteries are pressed against a circular 

surface during fixation, their cross-sections remain almost perfectly circular which facilitates 

further data analysis. 
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Figure1. 3 Artery inflation-fixation setup 

(A) Conceptual cartoon of the inflation setup, (B) Actual experimental setup, and (C) Inflated artery with 3D 

printed conical sleeves, filled with fixation fluid 

 

Figure1. 4 Fixed porcine arteries 

P10322 Right and Left Carotid: showing conical segments where the sleeves were present (indicated by red 

trapeziums) 

 

10 μm thick sections were taken from the conical part of the frozen arteries. 2-3 sections 

were taken at each diameter for 4-5 different diameters along the length of the conical part. To 

observe the effect of vessel diameter on the luminal corrugations, sections at different diameters 
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were imaged. The range of diameters was chosen such that the diameter of artery observed in the 

ultrasound lies between the smallest and largest section and at least one section has a diameter 

close to that observed in vivo. These included diameters small enough to observe heavy 

corrugations to larger ones where the IEL had flattened out. The inflation setup allowed getting 

circular cross-sections of the same artery at different luminal diameters. The artery sections were 

imaged under Nikon A1 spectral confocal microscope. Auto-fluorescence of elastin was used to 

image the IEL. The thickest innermost layer of elastin in the images was considered for IEL 

topography analysis. Figure1. 5 (A to C) shows representative confocal images of artery sections 

(P723 LC) at different diameters, and the magnified view below each image shows the degree to 

which the IEL corrugations flatten as the artery diameter increases. We emphasize that all three 

images were obtained from the same artery. 

 

 

Figure1. 5 Confocal images of arterial cross-sections 

(A to C) Confocal images of artery (P723 LC (cross-sections # 1, 3 and 5)) at increasing diameters and 

zoomed in view (red box) of the IEL 
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1.3 Data Analysis and Results 

For each image, the degree of IEL corrugations (the quantity 𝐶𝑓 defined below) and the 

degree to which the cross section is compressed with respect to the diameter measured by 

ultrasound were measured. To do so, the images were first converted to binary and the IEL layer 

was isolated (Figure1. 6 (A)). Boundaries of the isolated IEL were then converted to XY data. The 

center of the arterial cross-section was calculated and the XY data was then converted to polar 

coordinates (𝑟, 𝜃). The inner and outer boundaries were thus separated and an average radius (𝑟𝑎𝑣𝑔) 

was calculated from this data. This gave us the average cross-section diameter (𝐷𝑎𝑣𝑔 = 2 𝑟𝑎𝑣𝑔). 

𝐷𝑎𝑣𝑔 was normalized by the diameter observed in ultrasound (𝐷𝑈𝑆) and the various values of 

𝐷𝑎𝑣𝑔, 𝐷𝑈𝑆 and their ratios are shown in Table 1.1.  Figure1. 6 (B) shows the XY data of the isolated 

IEL along with the circle of radius, 𝑟 = 𝑟𝑎𝑣𝑔. Figure1. 6 (C) shows the inner and outer boundaries 

of the corrugated IEL along with 𝑟𝑎𝑣𝑔 when converted to polar coordinates. Resolution of the 

images was 1000x1000 (± 50) pixels. Scalebars from the images were also converted to XY data 

for converting pixel data to mm scale. 
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Figure1. 6 Data analysis for arterial cross-sections 

(A) Isolated IEL binary image, (B) IEL mapped with fitted circle of radius, 𝒓 = 𝒓𝒂𝒗𝒈 and zoomed in view 

(red box), and (C) IEL inner and outer boundary mapped in polar coordinates with 𝒓𝒂𝒗𝒈, for a 

section of the artery (P723 LC, cross-section #1 (𝑪𝒇 = 𝟐. 𝟔𝟖)) 

The non-corrugated circumference (𝐿𝑎𝑣𝑔) and the diameter (𝐷𝑎𝑣𝑔) of the arterial cross-

section was calculated using 𝑟𝑎𝑣𝑔.  Contour length of the IEL (𝐿𝑐) was calculated using the inner 

boundary of the isolated IEL in polar coordinates (Figure1. 6(C)). These quantities are shown 

schematically in Figure1. 7. 

𝐿𝑎𝑣𝑔 = 𝜋𝐷𝑎𝑣𝑔 

𝐿𝑐 = ∑(Δ𝜃. 𝑟)2 + Δ𝑟2 
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Figure1. 7 Schematic of arterial cross section showing calculated quantities 𝑫𝒂𝒗𝒈, 𝑳𝒂𝒗𝒈  and 𝑳𝒄 

The degree of corrugation then was calculated using the quantity Corrugation factor, 𝐶𝑓, 

defined as the ratio of the IEL contour length to the non-corrugated circumference of the cross-

section. 

𝐶𝑓 =
𝐿𝑐

𝐿𝑎𝑣𝑔
=

𝐿𝑐

𝜋𝐷𝑎𝑣𝑔
 

(1.1) 

𝐶𝑓 > 1 indicated the presence of a corrugated IEL whereas 𝐶𝑓 = 1 indicated that the corrugations 

had flattened out. The values of 𝐶𝑓 for the various cross sections are listed in the last column of 

Table 1. 1, and the dependence of 𝐶𝑓 on 𝐷𝑎𝑣𝑔/𝐷𝑈𝑆 is shown in Figure1. 8 (A). 

Corrugation factor (𝐶𝑓) for all cross-sections of successfully imaged arteries was compared against 

the normalized diameter of the cross-section, normalized by the diameter observed in ultrasound 

imaging (𝐷𝑈𝑆), shown in Figure1. 8. The average corrugation amplitude was measured from the 

cross-sections, compared with the normalized diameter in Appendix A Figure 2. Table 1. 1 lists 

all the measured and calculated quantities for the cross sections, and Appendix A Figure  3 shows 

the range of 𝐷𝑎𝑣𝑔/𝐷𝑈𝑆 obtained for the different arteries. 
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Table 1. 1 Calculated quantities from arterial cross-section images 

Pig ID Artery 
𝐷𝑈𝑆 

(mm) 

Cross-

section 

image # 

𝐷𝑐𝑠 

(mm) 
𝐷𝑐𝑠/𝐷𝑈𝑆 

Amp 

(𝜇𝑚) 
𝐶𝑓 

10322 LC 4.8 

1 2.51 0.52 8.47 1.56 

2 2.60 0.54 7.28 1.51 

3 2.61 0.54 6.21 1.50 

4 4.23 0.88 4.22 1.23 

5 4.73 0.99 2.54 1.07 

12422 

LC 4.73 1 1.03 0.22 12.05 3.17 

RC 5.19 

1 1.34 0.26 9.72 3.16 

2 2.28 0.44 7.36 1.89 

3 2.27 0.44 7.48 1.75 

4 3.48 0.67 7.94 1.42 

5 4.10 0.79 5.84 1.22 

6 5.48 1.06 2.74 1.10 

12622 

LC 3.76 

1 1.45 0.39 10.18 2.56 

2 2.46 0.66 5.04 1.30 

3 3.47 0.92 3.34 1.22 

4 4.58 1.22 2.59 1.04 

RC 4.96 

1 1.34 0.27 11.01 2.87 

2 2.55 0.51 5.54 1.37 

3 3.41 0.69 4.03 1.28 

4 4.98 1.00 3.04 1.09 

723 
LC 4.77 

1 1.73 0.36 9.24 2.68 

2 2.17 0.46 9.21 2.00 

3 3.30 0.69 7.84 1.34 

4 3.19 0.67 7.16 1.42 

5 4.93 1.03 2.84 1.11 

1 2.56 0.54 8.61 1.58 
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RC 4.73 

2 3.21 0.68 6.78 1.09 

3 4.02 0.85 3.52 1.08 

4 5.40 1.14 2.74 1.08 

3523 LC 4.59 

1 1.42 0.31 8.19 3.21 

2 2.12 0.46 6.22 1.57 

3 4.30 0.94 4.52 1.10 

4 5.05 1.10 2.94 1.10 

3623 RC 4.23 

1 2.19 0.52 8.42 1.51 

2 2.53 0.60 8.24 1.34 

3 3.66 0.87 5.01 1.11 

4 4.43 1.05 2.86 1.07 

1.4 Discussion 

As expected, 𝐶𝑓 reduces, and hence the degree of corrugations reduces, as arteries expand 

(Figure1. 8 (A)). Some of the arterial cross sections are severely compressed with respect to the 

ultrasound-measured diameter, with Cf values reaching as high as 3. These are of questionable 

practical relevance, and certainly not relevant to the question of whether the IEL is corrugated 

under physiological conditions. Accordingly, we now focus only on relatively modest Cf values 

(Figure1. 8 (B)). 
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Figure1. 8 Dependence of 𝑪𝒇  𝐨𝐧 𝑫𝒂𝒗𝒈/𝑫𝑼𝑺 

(A) Showing 𝑪𝒇 𝒗𝒔 𝑫𝒂𝒗𝒈/𝑫𝑼𝑺 for all arterial cross-sections (colored dots), (B) A subset of the data magnifying 

the region with 𝑪𝒇 < 𝟏. 𝟔 

 

The vertical line in Figure1. 8 (B), drawn at 𝐷𝑎𝑣𝑔/𝐷𝑈𝑆 = 1, represents a fixed arterial cross 

section matches that measured by the ultrasound. The data in Figure1. 8 seem to cross this line 

with an intercept of approximately 1.1 suggesting that the IEL is 10% longer than the 

circumference for a diameter measured by ultrasound.  

Before discussing the data further, it is important to emphasize that the 𝐶𝑓 defined in Eq. 

1.1 is not a direct measure of amplitude, but a measure of how the contour length of the IEL 

compares with the circumference of the artery as measured by ultrasound. As mentioned in the 

introduction, the simplest mechanical picture of corrugation mechanics is to treat the IEL as an 

inextensible layer. In that case, Eq. 1 can be rewritten as  

𝐶𝑓 =
𝐿𝑐

𝜋𝐷𝑈𝑆
(

𝐷𝑈𝑆

𝐷𝑎𝑣𝑔
)

−1

 
(1.2) 
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Motivated by this, we sought to compare Figure1. 8 (B) against  

𝐶𝑓 = 𝑎 (
𝐷𝑈𝑆

𝐷𝑎𝑣𝑔
)

−𝑏

 
(1.3) 

The dashed blue line corresponds to 𝑎 = 1 (or equivalently 𝐿𝑐 = 𝜋𝐷𝑈𝑆) and 𝑏 = 1. This 

represents an inextensible IEL which the corrugations disappear exactly at the diameter of the 

ultrasound experiment. The experimental values clearly deviate upwards from the data in the 

vicinity of 
𝐷𝑈𝑆

𝐷𝑐𝑠
= 1 (i.e. the arteries are significantly corrugated as the diameter approaches the 

ultrasound value), but 𝐶𝑓 also has a weaker dependence on 
𝐷𝑈𝑆

𝐷𝑐𝑠
 than expected. By trial and error, 

we find that 𝑎 = 1.1 and 𝑏 = 0.5 give reasonable fits to the data (two other pairs of parameters: 

(𝑎 = 1.06 ;  𝑏 = 0.6 and 𝑎 = 1.12 ;  𝑏 = 0.4) also give reasonable fits. Values of a less than 1.06 

fall below all of the rightmost points in Figure1. 8 (B) regardless of the value of b. While one may 

consider other variations to Eq. 1.2 which allow more than two parameters, these do not capture 

the data any better than Eq. 1.3. 

The fact that values less than 1.06 are unable to capture the data suggests that the IEL is 

longer than the circumference corresponding to the ultrasound-measured diameter. Further, since 

the data are far better captured by values of b much less than 1 suggest that the IEL is not strictly 

inextensible. This may be seen more directly in Appendix A Figure 4 which directly plots the 

measured 𝐿𝑐 vs diameter for each of the arteries examined, where we see that 𝐿𝑐 increases with 

increase in cross section diameter. 

While similar data have been published by previous researchers, in those cases, the IEL 

contour length was compared against the normalization done based either on the image itself [16], 

or on the zero-pressure diameter of the excised artery prior to fixation [11]. Svendson and Tindall 
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[16] quantified the corrugations by measuring length of the IEL in fixed arterial cross sections, 

and compared it to the in vivo luminal circumference. This in vivo circumference was calculated 

from the in vivo outer diameter measured for the exposed aorta of anesthetized rabbits. This study 

showed that the IEL circumferential length was 10-30% more than the approximated in vivo 

luminal circumference. 

Figure1. 9 illustrates how a cross-section with IEL contour length = 10% larger than the 

circumference of the artery looks like. Figure1. 9 (A) shows a cross-section modelled in CAD with 

a corrugation factor = 1.1, comparing to the actual confocal image for one of the cross-sections 

with 𝐶𝑓 = 1.1 (Figure1. 9 (B)). Qualitatively, we see that in the confocal image, The IEL 

corrugations look flattened out even though the IEL contour length given by the calculations is 

10% more than the artery circumference. However, there are a few things that need to be 

considered. Firstly, the arterial cross sections are not exactly circular when fixed – meaning that 

there is a variation in local curvatures. As can be seen in the zoomed in sections of the IEL, the 

IEL is not entirely flat but has a fine variation which changes with the local curvature. Thus, at 

places where the local curvature is smaller, the corrugations are more prominent than those with a 

larger local curvature. Our measure of corrugations (𝐶𝑓) is the average value of IEL contour length: 

circumference ratio, averaged over the entire cross-section. Hence there are portions of the cross-

section, where this ratio is locally higher or lower than the calculated 𝐶𝑓. Secondly, the scale of 

the corrugations in the model (Figure1. 9 (A)) is much larger than that of the artery (Figure1. 9 

(B)) is, which enables them to be more visible in a zoomed-out image of the model. When the 

images are converted to binary, these minute variations are taken into consideration during 

calculating the corrugation factor. 



 20 

We observed that the diameter at which the corrugations flatten is larger than the diameter 

measured by ultrasound, supporting the presence of a corrugated luminal surface at the in vivo 

diameter. However, the surface contour length at this diameter was ~10% larger than the 

circumference of the artery which suggests that the corrugations are not very prominent at the 

ultrasound diameter. To determine if the luminal corrugations are significant at physiological 

diameters, we need to verify whether the diameter observed in ultrasound truly represents the 

physiological in vivo diameter of the artery. In the above mentioned study by Svendson and 

Tindall, the anesthetized artery diameters were found to be around 30% larger than the diameters 

of the fixed arterial cross-sections [16]. It has been well demonstrated that vasodilation occurs 

during anesthesia [30-35]. Thus, the arterial diameters measured by ultrasound in our study are 

larger than the physiological diameter in non-anesthetized animals. Smaller arterial diameter 

corresponds to a larger 𝐶𝑓 and hence more prominent corrugations in the IEL topography. Hence, 

at physiological diameters, the IEL would be more corrugated than that at the larger diameters we 

observed in this study. 
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Figure1. 9 IEL topography for C_f ~ 1.1 

(A) CAD model showing how the topography looks at 𝑪𝒇 = 1.1, and (B) 723 LC, cross-section #5 (𝑪𝒇 = 1.11) 

 

When there exist ridges on the inner lumen of a tubular conduit, these ridges flatten as the 

diameter of the conduit increases. Thus, in a pulsatile flow, these ridges provide a dynamic surface 

topography which could play an important role in reducing platelet adhesion and as a self-cleaning 

mechanism [36, 37]. Inspired by this principle, we looked at fabricating tubular conduits with 

surface topography. This study is shown in Section 1.01(a)(i)Appendix B and was conducted 

primarily as a fabrication methods study to create tubes with internal or external topography. These 

tubes have different potential applications including vascular replacements, and more details are 

given in Section 1.01(a)(i)Appendix B. 
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1.5 Conclusion 

To summarize, we have examined the anatomy of arterial corrugations using optical 

microscopy of pig carotid arteries. Histological sections of arteries generally show that the luminal 

surface is strongly-corrugated. This is most evident from the tortuous and wavy appearance of the 

internal elastic lamina (IEL) that defines the boundary of the lumen. Yet, arteries are known to 

constrict upon excision from the body and also shrink during fixation, and hence these corrugations 

are sometimes believed to be an artifact of specimen fixation. Indeed, research on arteries fixed in 

an inflated state shows that the corrugations reduce as they are inflated. The central question 

underlying this research is whether the luminal surface of arteries is smooth or corrugated under 

physiological conditions. 

The methodology followed in this article makes two main advances over previous research 

on arterial topography. First, we measure the diameter the carotid arteries using ultrasound while 

the animal is under anesthesia prior to excising the arteries. Second, we develop an innovative 

method of inflating each artery against the inside of a conical surface so that the exact same artery 

can be fixed simultaneously at many different diameters. Taken together, these innovations greatly 

reduce the uncertainty about the exact value of the physiological diameter, and also quantify the 

dependence of topography on diameter without the ambiguities caused by sample-to-sample 

variability. 

Two central results appear from the quantification. First, the contour length of the IEL is 

roughly 10% longer than the arterial circumference from the ultrasound images. This indicates that 

under anesthesia when the ultrasound measurements were taken, the IEL is not entirely smooth. In 

fact, the physiological diameter is likely to be even smaller than the ultrasound diameter since 

anesthesia generally induces vasodilation. Thus, our results suggest that the arteries are corrugated 
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under physiological conditions. Second, we find that as the IEL corrugations flatten grow with 

increasing diameter, the IEL contour length does not remain fixed, but instead increases 

approximately as (diameter) 0.5. Thus, even though the IEL has a high stiffness as compared to the 

surrounding tissue, it does not appear to behave like an inextensible membrane. 
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Design of Crimped Fiber Composites 
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Overview 

The arterial wall consists of a number of different elements, among which the collagen 

fibers, elastin and smooth muscle cells dictate the mechanical response of the arteries. These 

elements together allow the arteries to distend, and also provide them with strain-hardening 

properties wherein the arterial wall stiffness increases as the arterial tissue stretches. These 

properties can be thus given to vascular prosthesis in order to make their mechanical behavior 

closer to that of biological arterial tissue. Such a behavior is observed not only in arterial tissue 

but in other biological soft tissues such as skin, bladder walls, etc. as well. The goal of Part 2 is to 

develop soft composites which seek to mimic the strain hardening behavior of tissues. 

Combining more than one material to make a composite can lead to newer mechanical 

properties of the composite material. As mentioned above, tissues in our body consist of multiple 

different components which impart different properties to their mechanical behavior. Thus, 

different composites can achieve different behaviors depending on the constituents used. Short 

fiber composites are one such type where the behavior of the composite can be altered simply by 

varying the mechanical and geometric properties of two components: a softer matrix and short stiff 

fibers. In Part 2 of this dissertation, we present studies wherein such a strain hardening behavior 

can be replicated in a composite comprising a soft matrix with short stiffer crimped fibers 

embedded in it. Here we explore the parameters that come into play when designing such a material 

and the effect of those parameters on the mechanical behavior. 

To control the mechanical response of the composite, it is necessary to understand how 

each component affects the composite properties. Thus, the first step is to understand how these 

crimped fibers affect the mechanical response of the composite. We therefore examine the 

mechanics of stress transfer for a single finite-length crimped fiber embedded in a soft matrix in 
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Chapter 2. This study was published as a paper J. Biomechanics and Modelling in Mechanobiology 

[38]. 

With a fundamental understanding of how a single crimped fiber affects the mechanical 

properties of short crimped fiber composites, we can now investigate what happens when there are 

multiple such fibers dispersed in a soft matrix to some target volume fraction. In Chapter 3, we 

explore additional parameters such as fiber volume fraction and fiber orientation, and the 

dependence of the mechanical behavior of the composite on these parameters. We also compare 

how the Equivalent Straight Fiber model for a single fiber (proposed in Chapter 2) predicts the 

behavior of multifiber composites. Multifiber composites are also fabricated in this study and the 

computational results are verified in this section. 

The logical flow of Part 2 is illustrated in the following schematic. 
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2.0 Mechanics of a Single Finite-Length Crimped Fiber Embedded in a Soft Matrix 

2.1 Introduction 

In a stress-free state, fibrous collagen in the body is organized with a periodic crimp pattern [39, 

40]. This structure is observed in numerous tissues such as blood vessels, valve leaflets, intestine, 

ligaments, and tendons [39-41]. The crimped nature of collagen affects the mechanical and load-

bearing properties of these tissues [39, 40, 42-45]. The crimp pattern allows for highly nonlinear 

behavior wherein tissues act as soft materials at low strains as fibers uncrimp without bearing much 

load, but as stiffer materials at higher strains as fully uncrimped fibers become increasingly load-

bearing [39-44, 46, 47]. This phenomenon is well studied, and there have been numerous studies 

of collagen structure and its contribution to the mechanics of tissues [46-49]. 

In computational studies, soft tissues are often modelled as composites comprising of stiffer fibers 

embedded in a softer hyperelastic matrix, and their behavior has been modelled using finite 

element method for various types of fiber arrangements [50-57]. The fibers in these studies are 

treated as having periodic crimps defined by either helical [58] or planar sinusoid [50, 52, 57] 

geometry. Boundary conditions are prescribed such that they undergo tensile loading within the 

simulations [51, 55]. Such computational studies have helped develop an understanding of the 

mechanisms responsible for the experimentally observed non-linear elastic response of these 

tissues in response to externally applied loads [59-64]. 

Devices intended for implantation within the body have sought to replicate the mechanical 

behavior of collagen containing tissues, for example, using wavy knitted patterns as a graft 
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material [61, 62] to manufacture long continuous crimped fibers for applications such as vascular 

conduits [59-65]. Other approaches aiming to replicate these behaviors include electrospinning 

crimped fibers onto graft surfaces [59, 63, 64]; using multilayer collagen fiber reinforced tissue 

engineered composites [60]; suturable scaffolds [65, 66], stents [67], and bladder matrix[68]. 

However, a common limitation of these approaches is that it is difficult to process these materials 

into arbitrary shapes [69, 70]. Indeed, this problem is not unique to crimped fibers – all continuous 

fiber composites are difficult to fabricate into arbitrary shapes, though there has been more recent 

progress in this direction [71]. Outside of the biomedical area, it has long been common to use 

chopped fiber composites (sometimes also called short fiber composites) to overcome the 

processability limitations of continuous fiber composites. Such composites are typically based on 

glass or carbon fibers cut to several-mm lengths and dispersed within a polymer matrix. Also, 

conceptually related are nanocomposites which comprise stiff nanoscale fillers of high aspect ratio 

such as carbon nanotubes, cellulose whiskers, or clay platelets dispersed into plastics [72-74]. 

Since the reinforcing fillers are no longer continuous, such chopped fiber composites or 

nanocomposites can be processed via conventional plastics processing operations including 

extrusion, molding, and extrusion-based 3D printing [57, 75-80]. However, since the fillers are not 

in a crimped form, such composites do not replicate the strain-hardening behavior of collagen 

containing tissues. The eventual goal of this research is to develop synthetic tissue substitutes 

where crimped fibers of a finite length act as reinforcing agents for a softer matrix. Such short 

fiber composites with crimped fibers may mimic the strain hardening behavior of collagen-rich 

tissues.  Their mechanical properties may be tuned by changing the properties of the fibers such 

as the modulus, orientation, crimp geometry, and volume fraction of fibers [81-83]. Most 
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importantly, similar to other chopped fiber composites, they would be processible, e.g. by molding 

or extrusion, thus facilitating manufacture of arbitrary shapes [77, 80, 84].  

This chapter is the first step in understanding the mechanics of short fiber reinforced composites 

where we quantify the contribution of a single fiber to the properties of the composite. As reviewed 

in 2.2, such a single-fiber analysis has provided enormous insights into how a fiber’s length and 

mechanical properties affect the modulus of the composite for non-crimped fibers. Thus, this study 

aims to take the same approach for crimped fiber composites by considering a single crimped fiber 

embedded in a sufficiently large soft matrix and examining the mechanics of uncrimping as the 

surrounding matrix is stretched. 

2.2 Shear Lag Model for Straight Fiber Composites 

When a composite composed of straight fibers embedded in a softer matrix is placed under tensile 

stress, there occurs a transfer of stress from the matrix to the fiber thread [85]. A commonly-used 

model for this stress transfer is based on the shear lag theory [85, 86], first developed by Cox 

(1952) to model the behavior of discontinuous fiber composites when all of the fibers are aligned 

along the tensile direction. This theory assumes that each fiber (of length 2𝐿 and radius 𝑟𝑓) is 

located at the center of a cylindrical matrix such that the ratio of fiber volume to the cylinder 

volume matches the volume fraction 𝜙 of fibers in the composite. When the matrix is stretched 

along the x-direction (i.e. along the axis of the cylinder) to a strain of 𝜀, the stress in the fiber rises 

from zero at the fiber ends as per  
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𝜎𝑓(𝑥) = 𝐸𝑓𝜀 [1 − 𝑐𝑜𝑠ℎ (
𝑛

𝑟𝑓
𝑥) . 𝑠𝑒𝑐ℎ (𝑛

𝐿

𝑟𝑓
)] (2.1) 

where 𝑥 is the coordinate along the fiber direction such that the fiber spans −𝐿 < 𝑥 < 𝐿. 

Note that 𝜎𝑓/𝐸𝑓 is simply the strain 𝜀𝑓 in the fiber. The quantity 𝑛 is   

𝑛 =  [
2 𝐸𝑚

𝐸𝑓(1 +  𝜈𝑚) 𝑙𝑛 (
1
𝜙)

]

1
2

 (2.2) 

where 𝐸𝑓 and 𝐸𝑚 are the moduli of the fiber and matrix, respectively and 𝜈𝑚 is the Poisson’s ratio 

of the matrix. The quantity 𝐸𝑓/𝐸𝑚 will be called relative modulus henceforth. Exemplary profiles 

of 𝜀𝑓(𝑥) = 𝜎𝑓/𝐸𝑓 are shown as solid lines in Error! Reference source not found.(A) discussed l

ater. Integration of Eq. 2.1 over the fiber length gives the mean stress in the fiber as  

  𝜎�̅� = 𝐸𝑓𝜀 (1 −
𝑡𝑎𝑛ℎ (𝑛𝐿/𝑟𝑓) 

𝑛𝐿/𝑟𝑓
) (2.3) 

Since the fibers are taken as aligned along the loading direction, the stress of the composite can be 

obtained by a weighted average of the fiber and the matrix. The ratio of this composite stress to 

the applied strain 𝜀 gives the composite modulus:  

𝐸𝑐𝑜𝑚 =
𝜎�̅� 

ε
𝜙 + 𝐸𝑚(1 − 𝜙) (2.4) 

where the subscript com indicates composite. 

It is also useful to define a dimensionless quantity 𝜀𝑓(𝑥) =
𝜎𝑓(𝑥)

𝐸𝑓
 which is a measure of the strain 

in the fiber so that Eq. 2.1 can be rewritten as  

𝜀𝑓(𝑥) =
𝜎𝑓(𝑥)

𝐸𝑓
= 𝜀 [1 − 𝑐𝑜𝑠ℎ (

3𝑥

𝑙𝑠
) . 𝑠𝑒𝑐ℎ (

3𝐿

𝑙𝑠
)] (2.5) 
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where 𝑙𝑠 = 3𝑟𝑓/𝑛 is defined as the shear lag length. The factor of 3 is generally included in the 

definition of 𝑙𝑠 because for sufficiently long fibers, the quantity in the square brackets is nearly 1 

everywhere except within a distance of 𝑙𝑠 from the ends. 

Eqs. 2.1-2.5 offer key insights on how the length of fibers affects the mechanics of chopped fiber 

composites. Two limits can be identified readily. In the long fiber limit, 
𝐿

𝑙𝑠
=

𝑛𝐿

3𝑟𝑓
≫ 1, Eq. 2.1 and 

2.2 state that the entire length of the fiber except for the region within a distance 𝑙𝑠 from the ends 

has 𝜎𝑓(𝑥) ≈ 𝐸𝑓𝜀, or equivalently 𝜀𝑓(𝑥) ≈ 𝜀. Accordingly, most of the fiber is loaded to the highest 

extent possible at the applied strain, and hence Eq. 2.4 states that the composite modulus 𝐸𝑐𝑜𝑚 is 

simply a volume-weighted average of the moduli of the fiber and the matrix. However, the fiber 

strain drops to zero over the length of roughly 𝑙𝑠 adjacent to each end. Within this region, stress is 

transferred by shear from the matrix to the fiber. In the short fiber limit, when 
𝐿

𝑙𝑠
=

𝑛𝐿

3𝑟𝑓
 is on the 

order of 1 or smaller, Eq. 2.1 and 2.2 state that 𝜎𝑓(𝑥) < 𝐸𝑓𝜀, or 𝜀𝑓(𝑥) < 𝜀. In this case, no portion 

of the fiber is fully-loaded, and the chopped fiber is a relatively ineffective reinforcing agent. 

Although the mechanics of crimped fiber composites are expected to differ from that of straight 

fiber composites, two effects may be expected from the discussion above. First, we anticipate that 

because the fiber can accommodate stretching by uncrimping, the actual strain in the fiber will be 

lower than the strain in the matrix, i.e. unlike Eq. 8, 𝜀𝑓 < 𝜀 is expected in the mid-section of a fiber 

even if the fiber is very long. Under these uncrimping conditions, the mid-section of the fiber 

contributes relatively little to the composite modulus because it bears only a low stress. Yet, as the 

fiber uncrimps, it will increasingly resemble a straight fiber, i.e. 𝜀𝑓 will approach 𝜀 as the strain 

increases, leading to the strain hardening that mimics collagen-bearing tissues. Second, even for 

crimped fibers, we anticipate a near-end section where the fiber experiences lower strain than the 
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central section. In this region, only partial uncrimping is expected, and hence this region will 

contribute less to strain hardening. The central goal of this article is to quantify these two effects 

as the crimp amplitude and the modulus of the fibers is varied.  

With the above background, we can now formulate the questions to be addressed by 

simulations in this paper: (a) At what strain does the mid-section of a long fiber uncrimp, how does 

the uncrimping affect the load borne by the fiber, and how does the uncrimping tune the strain 

hardening behavior of the composite?, (b) Over what length near the fiber ends does the stress 

reduce significantly – which in turn defines the minimum length of crimped fiber necessary to 

achieve the desired strain hardening, and (c) How are the previous two questions affected by the 

fiber geometry and modulus of the fiber relative to the matrix? 

2.3 Methods 

We examined the mechanics of stress transfer of a crimped fiber embedded in a matrix 

using 3D finite element simulations. A single crimped fiber was embedded in a matrix of a 

relatively low Young’s modulus and of dimensions 2𝐿𝑚 along the x-direction, 2𝐻𝑚 along the y 

direction, and 𝑊𝑚 along the z-direction (Figure 2. 1 (A)). Taking advantage of symmetry, only 

half of the geometry was modelled. For straight fiber simulations, the fiber was specified as a 

hemicylinder of radius 𝑟𝑓 and length 2𝐿 = 400 𝑟𝑓 centered on the x-axis. The crimped fiber was 

modelled as a sequence of circular arcs, with the cross-section being hemicylindrical (Figure 2. 1 

(B-C)). These arcs were defined by a parameter 𝜃, the projected angle. The wavelength of the 

crimps was fixed 𝜆 = 40 𝑟𝑓 and thus a change in 𝜃 corresponded to a change in the initial 
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amplitude of the crimps (Figure 2. 1 (D)). The dimensions of the matrix were chosen to be 2𝐿𝑚 =

2000 𝑟𝑓 , 2𝐻𝑚 = 2400 𝑟𝑓 and 𝑊𝑚 = 400 𝑟𝑓. Doubling the dimensions of the matrix did not change 

the results significantly, showing that these dimensions were sufficiently large for the matrix to be 

regarded as infinite in extent. The simulation geometry was modelled in Autodesk Inventor (2018) 

and meshed in the FeBio software [87]. 

The left face of the matrix (the plane 𝑥 =  −𝐿𝑚) was held fixed while the right face (𝑥 =

𝐿𝑚) was displaced along the x-direction using a rigid body connection. The applied displacements 

corresponded to nominal strains (ratio of x-displacement to 2𝐿𝑚) of up to 0.69. Symmetry 

boundary conditions were imposed on the center plane (z=0), whereas the remaining surfaces (𝑦 =

± 𝐻𝑚 and 𝑧 = 𝑊𝑚) were kept stress-free. Neo-Hookean material was chosen both for the thread 

and the surrounding matrix. An adaptive tetrahedral mesh was used for the fiber and matrix. The 

mesh density was uniform across the fiber and the total number of elements increased with contour 

length of the fiber (i.e. with the amplitude), ranging from 21916 for straight fiber to 31620 for fiber 

with semicircular arcs. Facet-to-facet no-slip contact was applied between fiber and the matrix. 

Figure 2. 1 (E) shows a screenshot of the fiber mesh as seen at the central plane. The simulation 

results were found to be nearly identical when the mesh density was doubled, i.e. with 8-fold 

increase in the number of elements, showing that the mesh density was adequate to correctly 

resolve the mechanics. 

Two sets of simulations were conducted. In the first, the modulus ratio was held fixed at 1000 and 

four values of 𝜃 (0°, 120°, 150° and 180 °) were examined. The corresponding ratios of peak-to-

trough amplitude to the wavelength were 0, 0.29, 0.38 and 0.5. This set of simulations allowed a 

clear assessment of the strain-dependent uncrimping of fibers, and the comparison with a straight 

fiber.  In the second set, the initial amplitude was held fixed at 𝜃 = 150°, while the modulus ratio 
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was varied. These simulations were also compared against simulations for a straight fiber 

geometry. The simulations also provided end reaction forces that had to be applied at the 𝑥 =

± 𝐿𝑚 boundaries to maintain the specified displacement. These forces allowed calculation of the 

contribution of the embedded fiber to the stiffness of the composite as described in the Appendix. 
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Figure 2. 1 Geometry of single fiber simulations 

(A) Relative dimensions of the matrix and embedded fiber (B) Magnified view of the geometry of the  fiber, 

(C) Semi-circular cross section of the hemicylindrical  fiber, (D) Examples of how 𝛉 affects the initial 

amplitude of the  fiber, (E) Tetrahedral adaptive mesh near the fiber-matrix interface illustrated for the fiber 

with 𝜽 = 𝟏𝟓𝟎° 
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2.4 Results 

2.4.1 Stress Evolution of Uncrimped Vs Crimped Fiber 

To illustrate the effect of crimps on the stretching behavior, Figure 2. 2 compares two cases: 𝜃 =

0° (straight fiber) vs 𝜃 = 150°, both at a relative modulus value of 1000. In both cases, we plot 

the stress profile in the fiber normalized by its modulus (𝜎𝑓/𝐸𝑓) at four values of applied strain 

(𝜀 =0.15, 0.33, 0.51 and 0.69) which are indicated by the horizontal dotted lines in Figure 2. 2 (A). 

Here, 𝜎𝑓 refers to the 𝜎𝑥𝑥 component of the in-fiber Cauchy stress tensor. These values are. 

Consistent with Section 2.2, the quantity 𝜎𝑓/𝐸𝑓 is defined as 𝜀𝑓 henceforth. Figure 2. 2 (A) shows 

that the profiles of 𝜀𝑓 in the straight fiber are in reasonable agreement with those predicted by the 

shear lag model Eq. 2.1 with no fitting parameters. The 𝐿/𝑙𝑠 calculated using Eq. 2.5 is 1.2, thus 

showing that the half-length of the fiber only slightly exceeds the shear lag length. Accordingly, 

Eq. 2.5 predicts, and simulations confirm, that the 𝜀𝑓(𝑥) in the mid-section of the fiber is nearly 

constant and nearly equal to the applied strain, whereas it reduces to zero over a distance of roughly 

𝑙𝑠 from the ends. 

Figure 2. 2 (B) shows the 𝜀𝑓(𝑥) profiles for an embedded crimped fiber with 𝜃 = 150°. Although 

modulated by the crimp wavelength, the gross distribution of 𝜀𝑓 qualitatively resembles that in 

Figure 2. 2 (A): the mid-section of the fiber has a nearly uniform value of 𝜀𝑓, which reduces to zero 

near the ends. The major quantitative difference however is that the magnitude of 𝜀𝑓 near the 

middle is much lower than the applied strain because, as explained the end of Section 2, the applied 

strain is accommodated by uncrimping. A second, more subtle difference is that with increasing 

strain, the uniformly-loaded mid-section shrinks. Equivalently, there is an increase in the length 
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near the ends where stress is lower than in the mid-section. The solid lines in Figure 2. 2 (B) are 

discussed later in Section 2.5.1, along with Eq. 2.5. 

 

Figure 2. 2 Stress evolution of uncrimped vs crimped fiber 

(A) Distribution of 𝜺𝒇 = 𝝈𝒇/𝑬𝒇 for straight fiber: simulation data (black dashed line), Eq. 5 (black solid line), 

and (B):  𝝈𝒇/𝑬𝒇, where 𝝈𝒇 is the x-component of the Cauchy stress in the fiber; for crimped fiber with 𝛉 

=150°: simulation data (blue dashed line), Eq. 9 (blue solid line, discussed in section 5.1). In both graphs, the 

data are shown at applied strain values (going from top to bottom) of 0.69, 0.51, 0.33, 0.15. These four values 

are shown as horizontal dotted black lines in A. The images in B are screenshots of the fiber at the same four 

strains to illustrate uncrimping. 

2.4.2 Effect of Initial Amplitude 

We will now quantify the uncrimping behavior by comparing fibers of various initial amplitudes 

(i.e. various 𝜃 values), all at a relative modulus of 1000. Figure 2. 3 shows the spatial distributions 

𝜀𝑓(𝑥) of the various fibers, all at an applied stretch of 0.69. Snapshots of the fiber shape before 

and after stretching to an applied strain of 0.69 are shown in Figure 2. 4. 
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Figure 2. 3 Normalized stress in fiber: effect of crimp amplitude 

Non-dimensional stress 𝜺𝒇(𝒙) = 𝝈𝒇(𝒙)/𝑬𝒇 for different initial crimp amplitudes given by 𝜽 = 0° (straight 

fiber), 120°, 150° and 180°; for 𝑬𝒇/𝑬𝒎 = 1000 and applied strain = 69% (dashed lines), and Eq. 9 (solid lines, 

discussed in section 5.1) 

As in Figure 2. 2 (B), in all cases, the mid-section of the fiber has an approximately flat distribution 

of 𝜀𝑓. Further the mid-section also has a nearly uniform crimp amplitude (upper portion of Error! R

eference source not found.). Both these observations suggest that the mid-sections of the fibers 

are isolated from any effects of shear lag from the fiber ends. Therefore, the mechanics of 

uncrimping – independent of end effects – can be quantified by examining a narrow section of the 

fiber near the middle. For this, we selected a two-wavelength-wide region at the center and 

calculated two quantities: the peak-to-trough amplitude which quantifies the geometric aspects of 

uncrimping, and the mean value of 〈𝜀𝑓〉 = 〈𝜎𝑓〉/𝐸𝑓 which quantifies the strain borne by the fiber.  

Figure 2. 4 (A) shows that for the straight fiber, the mean value of 〈𝜀𝑓〉 is only slightly smaller than 

applied strain 𝜀 and increases almost linearly with 𝜀. The slight nonlinearity is a geometric effect 

of the fiber length increasing as strain increases. For all the crimped fibers, 〈𝜀𝑓〉 < 𝜀 at small 

applied strain, and then grows non-linearly in a manner similar to collagen recruitment. 
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Concurrently, the amplitude reduces rapidly at low strain before levelling off as the fibers 

straighten. In effect, since the fiber straightens at small applied strain, further stretching must be 

accommodated by fiber stretching, rather than uncrimping. As discussed in Section 1, this increase 

in 〈𝜀𝑓〉 (and hence 〈𝜎𝑓〉) relates to strain hardening, and will be quantified later in this paper. As 

expected, all three quantities (𝜀 − 〈𝜀𝑓〉), the 𝜀 value at which 〈𝜀𝑓〉 increases rapidly, and the 𝜀 value 

at which the amplitude significantly reduces all increase with θ. All three trends indicate an 

increasing degree of uncrimping with increasing initial crimp amplitude. 

 

Figure 2. 4 Reduction in amplitude: effect of crimp amplitude 

Upper images show amplitude profiles at applied strain 𝜺= 0 (top left) and 𝜺 =0.69 (top right). (A) Mean value 

〈𝜺𝒇〉 averaged over two wavelengths near the center, and (B) percent decrease in crimp amplitude in the mid 
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portion of the fiber for 𝑬𝒇 = 1000. Vertical lines correspond to the strains needed for geometric straightening 

(see text). 

The vertical lines in Figure 2. 4 correspond to “geometric straightening”, and are calculated as the 

strain needed to make the end-to-end length of the uncrimped fibers equal to the fiber contour 

length of the original crimped fiber. Figure 2. 4 (B) shows that at a strain corresponding to 

geometric straightening, the amplitude has only reduced by about 55-60% of the original value, 

i.e. a significant portion of the straightening continues beyond this point. 

Finally, the amplitude profiles at the top of Figure 2. 4 show that the crimp amplitude does not 

decrease as much near the ends. This is not surprising: it is the tensile stress that induces 

straightening, and the end-region has a much lower tensile stress. Since the amplitude change is 

modest, one may expect that this end region would make only a small contribution to strain 

hardening. 

2.4.3 Effect of Relative Modulus 

The effect of relative modulus was examined by comparing fibers with three values of (𝐸𝑓/𝐸𝑚) = 

10, 100 and 1000. The angle was held fixed at 𝜃 = 150°. Qualitatively, all three values of relative 

modulus show similar behavior, and in all cases, the mid-section of the crimped fiber has a plateau 

in 𝜀𝑓. Quantitatively, two effects are readily apparent. First, with decreasing relative modulus, the 

𝜀𝑓 increases (Figure 2. 5) indicating that fibers of lower stiffness accommodate the applied strain 

by stretching rather than uncrimping. Second, as fiber modulus reduces, the mid-section where the 

fiber has nearly-constant 𝜀𝑓 becomes wider (equivalently, the near-end region of the fiber which 

bears a lower stress becomes shorter). 
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Figure 2. 5 Normalized stress in fiber: effect of relative modulus 

Non-dimensional stress 𝜺𝒇(𝒙) = 𝝈𝒇(𝒙)/𝑬𝒇 for 𝑬𝒇 = 10, 100 and 1000, and 𝜽 = 150° 

Analogous to Figure 2. 5, Figure 2. 6 (A) shows the evolution of the average value 〈𝜀𝑓〉 over two-

wavelengths at the center of the fiber, whereas Figure 2. 6 (B) shows the % decrease in crimp 

amplitude in the mid-section. The crimp amplitude decreases much less with decreasing relative 

modulus: for a relative modulus of 1000, the amplitude reduces by 82% of the original value, 

whereas for a relative modulus of 10, the decrease is only 21%. Similar to Figure 2. 4, beyond the 

strain for geometric straightening (vertical line), the decrease in amplitude with strain continues, 

but becomes more gradual (Figure 2. 6 (B)). 
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Figure 2. 6 Reduction in amplitude: effect of relative modulus 

Upper images show amplitude profiles at applied strain 𝜺= 0 (top left) and 𝜺=0.69 (top right). Note that the 

end-to-end length for profiles on the right are 69% longer than those on the left. (A) Mean value 〈𝜺𝒇〉 

averaged over two wavelengths near the center, and (B) percent decrease in crimp amplitude in the mid 

section of the fiber for 𝜽 = 150° 

2.5 Discussion 

The simulations show that at any given value of applied strain, the mid-section of the crimped fiber 

bears a lower stress than a straight fiber of the same aspect ratio and modulus. Further, similar to 
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a straight fiber, the crimped fiber has a near-end region that is loaded less than the mid-section. 

The ultimate goal of these simulations is to inform the design of composites that use chopped 

crimped fibers to achieve strain-hardening behavior that mimics collagen-rich tissues. In this 

Discussion section, we do so in two steps: Section 2.5.1 proposes that the crimped fiber may be 

treated as an equivalent straight fiber. Section 2.5.2 then uses the equivalent straight fiber concept 

to estimate the modulus of composites comprising crimped fibers embedded in a soft matrix. 

2.5.1 Equivalent Straight Fiber (ESF) Model 

As discussed above, Figure 2. 2, Figure 2. 3 and Figure 2. 5 show that the gross shape of 𝜀𝑓(𝑥) 

profile resembles that of straight fibers, albeit with a wavelength-scale modulation. This suggests 

that we may regard the crimped fiber as an equivalent straight fiber which has the same end-to-

end length as the crimped fiber, but a different effective radius, shear lag length, and stiffness. 

Accordingly, the stress in the crimped fiber may be postulated to follow Eq. 2.1, but in modified 

form 

𝜎𝑓(𝑥) = 𝐸𝑓
𝑒𝑓𝑓

𝜀 [1 − 𝑐𝑜𝑠ℎ (
𝑛𝑒𝑓𝑓

𝑟𝑓
𝑒𝑓𝑓

𝑥) . 𝑠𝑒𝑐ℎ (𝑛𝑒𝑓𝑓
𝐿

𝑟𝑓
𝑒𝑓𝑓

)] (2.6) 

where 𝑛𝑒𝑓𝑓 is defined identically as Eq. 2.2, but with 𝐸𝑓 replaced with 𝐸𝑓
𝑒𝑓𝑓

. Here 𝐸𝑓
𝑒𝑓𝑓

< 𝐸𝑓 is 

the modulus of the equivalent straight fiber. For a sufficiently long crimped fiber, Eq. 2.5 has a 

flat profile near its middle, however, unlike the for a straight fiber, the magnitude of the stress far 

from the ends is 𝐸𝑓
𝑒𝑓𝑓

𝜀. The ratio 𝐸𝑓
𝑒𝑓𝑓

/𝐸𝑓 may be regarded as a fiber efficiency factor, and we 

anticipate that its value increases with applied strain as the fiber uncrimps and approaches a straight 
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fiber. Further the stress decays towards zero within an effective shear lag distance 𝑙𝑠
𝑒𝑓𝑓

=

3𝑟𝑓
𝑒𝑓𝑓

/𝑛𝑒𝑓𝑓. Eq. 2.5 was fitted to the strain profiles using 𝐸𝑓
𝑒𝑓𝑓

 and 𝑟𝑓
𝑒𝑓𝑓

 as the fitting parameters, 

and the solid lines in Figure 2. 2 (B), Figure 2. 3 and Figure 2. 5 show that reasonable fits are 

obtained. The corresponding fitting parameters, and the calculated values of 𝑙𝑠
𝑒𝑓𝑓

, all suitably non-

dimensionalized, are shown in Figure 2. 7 (A-C) at fixed modulus ratio, and (E-G) for fixed 

amplitude. The shear lag length for fiber with large amplitude (𝜃 = 180) and modulus ratio of 

1000 is smaller than half of the crimp wavelength for 𝜀 < 0.15, making the fits unreliable for small 

strains for this fiber, and hence are not reported in Figure 2. 7. 

The results of Figure 2. 7  can now guide the design of composites based on chopped crimped 

fibers. Figure 2. 7 (A and E) quantify the degree to which sufficiently long crimped fibers can act 

as strain-hardening reinforcers. Specifically, Figure 2. 7 (A) shows that at a relative modulus of 

1000, crimped fibers have 
𝐸𝑓

𝑒𝑓𝑓

𝐸𝑓
< 0.1 at small strain, i.e. they have an effective modulus that is 

over 10-fold lower than their actual modulus. Equivalently, the stress in the fiber is less than 10% 

of the value expected for a long straight fiber. With increasing strain, their effective modulus 

increases analogous to collagen recruitment, and further, fibers with larger initial crimp amplitudes 

require larger strains to be recruited. Indeed, at the highest amplitude corresponding to 𝜃 = 180°, 

𝐸𝑓
𝑒𝑓𝑓

𝐸𝑓
 remains below 0.1 up to an applied strain of nearly 0.52, indicating that the fibers are 

approximately inextensible. i.e. they uncrimp with very little stretching. An unexpected result from 

Figure 2. 7 (E) is that for fibers with a modulus ratio of 10, 𝐸𝑓
𝑒𝑓𝑓

 is nearly independent of 𝜀 

suggesting that these fibers are altogether ineffective at realizing strain hardening, i.e. crimped 
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fibers with the geometry used here can only confer significant strain hardening if their modulus is 

at least 100-fold larger than of the matrix. 

 

Figure 2. 7 ESF results for single fiber simulations 

Variation in (A&E) equivalent effective modulus factor 𝑬𝒇
𝒆𝒇𝒇

/𝑬𝒇), (B&F) normalized effective radius 

( 𝒓𝒇
𝒆𝒇𝒇

/𝒓𝒇 ), (C&G) normalized effective shear lag length (𝒍𝒔
𝒆𝒇𝒇

/𝒓𝒇) and (D&H) normalized modulus of the 

composite (𝑬𝒄𝒐𝒎/𝑬𝒎) with applied strain using 𝝓 = 𝟏 × 𝟏𝟎−𝟑. Left column shows effect of varying crimp 

amplitude at fixed relative modulus of 1000. Right column shows effect of relative modulus at fixed crimp 
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amplitude corresponding to 𝜽 = 150°. Vertical lines indicate the strains for geometric straightening of the 

crimps. 

Figure 2. 7 (A and E) only comment on the uncrimping behavior of sufficiently-long fibers 

since the value of 𝐸𝑓
𝑒𝑓𝑓

only determines stress in the fiber far from the ends. To understand fiber 

length effects, we turn to . Figure 2. 7 (C and G) which plots the strain-evolution of the effective 

shear lag length 𝑙𝑠
𝑒𝑓𝑓

. As discussed above, a straight fiber with 𝐿 < 𝑙𝑠 cannot be loaded to its fullest 

extent and hence may be regarded as an ineffective reinforcing agent. Analogously, for a crimped 

fiber if 𝐿 < 𝑙𝑠
𝑒𝑓𝑓

, the mid-section of the fiber bears a stress even lower than 𝐸𝑓
𝑒𝑓𝑓

𝜀. Such a fiber 

will uncrimp less than a long fiber, and be unsuitable to realize strain-hardening behavior. Figure 

2. 7 (C) shows that for a relative modulus of 1000, 𝑙𝑠
𝑒𝑓𝑓

 is comparable to the wavelength at small 

strain, but increases significantly with strain, i.e. a fiber that is long enough to approximate infinite-

length at small strain may have more significant end-effects at large strain. 

2.5.2 Modulus of Composites 

The modulus of such composites can be estimated from adding the matrix and the fiber 

contributions as per Eq. 2.4. We now take advantage of the equivalent fiber concept and hence 

integrate Eq. 2.5 over the fiber length to estimate the mean stress in the fiber, 𝜎𝑓. The final 

expression for 𝜎𝑓 is identical to Eq. 2.3, but with effective quantities on the right hand side. 

Appendix A shows that an independent method of estimating 𝜎𝑓 using end-reaction forces is in 

excellent agreement with the equivalent fiber approach. The values of 𝐸𝑐𝑜𝑚 thus calculated from 

Eq. 2.4 are plotted in Figure 2. 7 (D and H). They show how the desired level of strain hardening 

can be achieved by an appropriate choice of initial amplitude and relative modulus of the fibers. 
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For small strains, all the composites (but especially those with crimped fibers of high initial 

amplitude) have a modulus that is only slightly higher than of the matrix. At high relative modulus, 

the fibers make increasing contributions to modulus as strain increases, analogous to collagen 

recruitment. The strain for onset of strain hardening approximately matches the geometric limit of 

the strain needed to completely uncrimp the fibers. As mentioned above, the degree of strain 

hardening is very modest for modulus ratios of 100 and 10 (Figure 2. 7 (H)), i.e. for the geometry 

considered here, crimped fibers would be useful for strain hardening only if the relative modulus 

is on the order of 1000 or higher. 

The limitations of Eq. 2.4 must be noted: it is only justifiable if the fibers are aligned along the 

tensile direction and dilute (and hence their stress fields are non-interacting). In our calculations, 

we have used a volume fraction (𝜙) of 1 × 10−3 for the fiber in the simulated matrix as 

representative of dilute conditions. A more detailed computational study would be needed to 

identify the volume fraction at which fibers interact with each other, and to estimate the modulus 

of the crimped fiber composites with a high volume fraction of fibers. 

2.5.3 Fiber Contribution to Reinforcement 

As illustrated in Fig. 1 in the main text, the simulation outputs the tensile force 𝐹 that must 

be applied on the boundary at 𝑥 = 𝐿𝑚 to achieve the desired strain. Simulations were also 

conducted without a fiber to obtain the force 𝐹𝑚 when the matrix alone is stretched. We may now 

define 𝛽 as  

𝛽 =
𝐹 − 𝐹𝑚

𝐹𝑚
 (2.7) 



 48 

𝛽 represents the fractional extra force needed to stretch the matrix due to the presence of 

the fiber.  

 

The quantity 𝛽 may be compared against the force-contribution of the fiber calculated 

using the effective fiber approach described in the main text. The quantity 
𝜎𝑓̅̅ ̅̅

𝐸𝑚 𝜀
 defined in Section 

2.4.1, as the ratio of average stress in the fiber to that in the matrix, is obtained from simulation 

data. The contribution of the single fiber is then estimated by integrating the stress profile over the 

entire fiber to obtain 

 

𝛼 =
𝜎�̅�

𝐸𝑚 𝜀
. 𝜙 =

𝐸𝑓
𝑒𝑓𝑓

𝐸𝑚
(1 −

𝑡𝑎𝑛ℎ (𝑛𝑒𝑓𝑓𝐿/𝑟𝑓
𝑒𝑓𝑓

) 

𝑛𝑒𝑓𝑓𝐿/𝑟𝑓
𝑒𝑓𝑓

) 𝜙 (2.8) 

where 𝜙 is the volume fraction of the fiber in the matrix. 𝛼 represents the ratio of average 

stress in fiber to average stress in the matrix, when experiencing the same strain, scaled to the 

volume fraction of the thread. 

 

The contribution of the fiber to the composite stiffness obtained in these two distinct ways 

– 𝛽 using the total force, and 𝛼 using the average of the stress distribution – are compared in Figure 

2. 8 for the same simulations as Figure 2. 3 and Figure 2. 4. Figure 2. 8 also includes a theoretical 

value of 𝛼 for a straight fiber from the shear lag model (dashed). This is obtained from averaging 

Eq. 2.3 in the main text over the length of the straight fiber 

𝛼𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 =
𝐸𝑓

𝐸𝑚
(1 −

𝑡𝑎𝑛ℎ (𝑛𝐿/𝑟) 

𝑛𝐿/𝑟
) 𝜙 

(2.9) 
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For the straight fiber, 𝛼 and 𝛽 start at a higher value and remain nearly constant. The slight 

increase in the quantities is due to in increase in the fiber length as strain increases. For the crimped 

fibers, 𝛼 and 𝛽, start at low values and increase non-linearly with strain, indicating increasing 

contribution as the fiber uncrimps. The good agreement between the two methods establishes that 

Eq. 2.8 can be used to accurately obtain the contribution of the crimped fiber to the composite once 

the quantities 𝐸𝑓
𝑒𝑓𝑓

 and 𝑟𝑓
𝑒𝑓𝑓

 are found for the equivalent fibers. 

 

Figure 2. 8 Fiber force contribution 

Comparison of two different methods of calculating the contribution of single fibers to the force in the 

composite. Stars show the value of 𝜷 calculated from the end-reaction forces (Eq. A1). Solid lines are 

calculations of 𝜶 from the equivalent fiber model (Eq. A2). Dashed black line is the prediction of shear lag 

model (Eq. A3) with no fitting parameters. 
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2.6 Summary and Conclusion 

The crimped structure of collagen fibers is well-recognized as contributing to the strain hardening 

behavior of tissues. We consider the mechanics of composites composed of chopped crimped 

fibers embedded in a softer matrix. Such discontinuous fiber composites have the potential to show 

strain hardening behavior while also being flow-processible. This paper examines the behavior of 

a single crimped fiber of a specified length as the matrix embedding the fiber is stretched. 

Simulations show that such a crimped fiber bears lower load than a straight fiber of the same 

modulus, but that the load borne by the fiber increases non-linearly as the matrix strain increases. 

Concurrently, the fiber is found to straighten (i.e. the crimp amplitude reduces) analogous to 

collagen recruitment.  

As with traditional chopped-fiber (also known as short-fiber) composites, there are significant end-

effects. There is a certain length near the ends of the crimped fiber where the stress is significantly 

lower than the stress in its mid-section, analogous to the shear lag length in straight fiber 

composites. Consequently, the fiber does not uncrimp in this less-loaded region near the ends. This 

can be verified experimentally as well. A more detailed study of the amplitude variation along the 

fiber and experimental verification is presented in Section 1.01(a)(i)Appendix C. Thus, crimped 

fibers can significantly contribute to the modulus of the composite (and hence to the strain 

hardening behavior of the composite) only if the fiber is much longer than this shear lag length. 

This can also be seen by looking at the crimp amplitude along the fiber. 

Broadly, the stress profiles in crimped fibers resemble those in straight fiber composites, and hence 

we develop the concept of an equivalent fiber. Accordingly, a crimped fiber can be treated as an 

equivalent straight fiber, but with an effective modulus and effective radius that is different from 
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its true modulus and radius. This allows prediction of the contribution of the fiber to the modulus 

of the composite. 

We quantify how all the relevant quantities: the load bearing capability of the fiber, the shear lag 

length, and the modulus of the composite, depend on the crimp amplitude and the modulus of the 

fiber relative to the matrix. Fibers with small crimp amplitude or modest relative modulus are load 

bearing even at small strain. Such fibers raise the modulus of the composite, but not in a strain-

hardening fashion. In contrast, large crimp amplitude and large relative modulus first straighten 

significantly without bearing significant load, and then bear increasing load once they become taut. 

This mimics the strain hardening behavior of collagen-containing tissues such as skin or arterial 

walls. Surprisingly high relative modulus values, on the order of 1000, are necessary to see 

significant strain hardening behavior. In summary, the degree of non-linearity and the extent of 

fiber loading can be controlled by changing fiber parameters such as fiber length, relative stiffness, 

and crimp geometry. 
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3.0 Mechanics of Multi-Fiber Composites with Short Crimped Fibers 

3.1 Introduction 

Fibrous collagen is observed in numerous tissues such as blood vessels, valve leaflets, 

intestine, ligaments, and tendons, and exists in the form of crimped fibers[39-41]. The crimp 

pattern of fibers gives the tissues strain hardening properties, wherein they act as soft materials at 

low strains as fibers uncrimp at low loads, but as stiffer materials at higher strains as fully 

uncrimped fibers become increasingly load-bearing[39-44, 46, 47]. Hence, soft tissues are often 

modelled as composites comprising stiffer fibers of helical[58] or planar sinusoid [50, 52, 57] 

geometries, embedded in a softer hyperelastic matrix, and their behavior has been modelled using 

finite element method for various types of fiber arrangements [50-57]. 

Inspired by this, we consider composites comprising stiff crimped fibers embedded in a 

soft matrix, which could provide similar strain hardening behaviors. Specifically, following the 

literature on chopped fiber-reinforced composites, we consider finite-length crimped fibers 

dispersed randomly in a matrix. The benefit of such short fiber composites is that they can be flow-

processed by extrusion, molding, and extrusion-based 3D printing [57, 75-80], whereas continuous 

fiber composites cannot.  

As a first step to understanding the mechanics of such composites, we previously studied [38] the 

stress transfer between a single finite length crimped fiber embedded in a softer matrix as the 

matrix is stretched. We showed that if the crimped fiber with a relatively high modulus (e.g. 1000-

fold higher than that of the matrix), the fiber bore very little load at small strain; instead the 

stretching was almost entirely accommodated by straightening (i.e. uncrimping). At larger strain, 
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the fiber became increasingly load-bearing, analogous to the strain hardening contribution of a 

wavy collagen fiber. In contrast, crimped fibers with a relatively small modulus (e.g. 10-fold 

higher than that of the matrix) became load-bearing even at small strains, and hence did not behave 

in a strain hardening fashion. Incidentally, we also showed how the finite length of the fiber 

affected the results, specifically that each fiber was incompletely loaded near its ends, analogous 

to the shear lag effect [86] in straight-fiber composites. Since this end-section did not experience 

significant stretching, it also did not uncrimp significantly. 

Moreover our results in the study showed that for a crimped fiber to have a significant non-

linear contribution towards composite stiffness, the modulus ratio between the fiber and the matrix 

needs to be on the order of 1000 or higher [38].  

In this chapter, we now turn to composites in which multiple crimped fibers are randomly 

dispersed into a matrix and test the extent to which the fibers confer strain hardening behavior in 

a realistic model of a fiber-reinforced composite. The central research questions to be tackled 

computationally are two-fold. First, how does composite mechanics depend on the loading of the 

crimped fibers? Specifically, due to the relatively large aspect ratio of the fibers, we anticipate 

significant interaction between the strain field surrounding each fiber, and the computations 

provide guidance on the volume fraction of dispersed fibers needed to realize the targeted 

mechanical behavior. Second, in a realistic material-processing operation, fibers are not likely to 

be perfectly aligned along the same direction. Thus, computations allow us to test how variations 

in alignment affect the mechanics. Computational approaches are especially powerful for this latter 

task because it is difficult to realize controllable alignments in experiments. We also compare the 

results of the multi-fiber simulations with the Equivalent Straight Fiber model from section 2.5.1 

for predicting composite behavior from the behavior of a single embedded fiber, and to the 
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Holzapfel-Gasser-Ogden model[88] of tissues to show how crimped fiber composites may be 

regarded as fiber composites with a certain alignment angle of fibers. 

3.2 Methods 

3.2.1 Modelling and Simulations 

We examined the mechanics of crimped fiber composites under tensile stretch using 3D 

finite element simulations. Crimped fibers were created and embedded in a soft matrix of 

dimensions 𝐿𝑚 along the x-direction (stretching direction), 𝐻𝑚 along the y-direction (width 

direction) and 𝑊𝑚 along the z-direction (thickness direction of of the matrix).  

The geometry of the matrix and fibers was modelled in Houdini. Similar to our previous 

research [38], the wavelength of the crimps was fixed at 𝜆 = 40𝑟𝑓, where 𝑟𝑓 is the fiber radius.  

The end-to-end length of each fiber was fixed at 2𝐿 = 10𝜆. As the crimp amplitude of the fibers 

increased, the contour length of fibers also increased proportionately, in turn increasing the volume 

fraction of fibers in the sample, as shown in Table 3. 1. The fiber geometry was modelled as 

sinusoidal (Figure 3. 3 (D, E)) with circular cross-section. Four different fiber geometries with 

different amplitudes, corresponding to 𝐴/𝜆 = 0 (straight fiber), 0.144, 0.192 and 0.25 were 

modelled. Normal of the fiber plane was set parallel to the z-axis and they were then distributed in 

the matrix using a randomized scatter function which allowed us to specify the number of fibers 

(𝑛𝑓). Three different volume fractions of fibers were examined corresponding to 𝑛𝑓 = 100, 200 

and 300. A wrangle node in Houdini was used to determine the orientation (𝜃𝑓) of these fibers. 

Three different orientations were created for 𝜃𝑓 = 0° (fibers oriented in the direction of stretch), 
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fibers oriented randomly between {0, 180°}, and 90° (fibers oriented perpendicular to the direction 

of stretch). The matrix was modelled as a box with dimensions 𝐻𝑚 = 2400𝑟𝑓 , 𝐿𝑚 = 2000𝑟𝑓 and 

𝑊𝑚 = 80𝑟𝑓. The fiber distribution and the box were then intersected using a boolean node in order 

to cut off those parts of fibers which were out of the matrix. These models were then exported to 

fTetWild [89] meshing software. Adaptive mesh was used with number of elements in the fibers 

ranging from 227363 for straight fibers (𝑛𝑓 = 200) to 383324 for fibers with A3 geometry (𝑛𝑓 =

200) and total elements in geometry ranging from 12.3 million to 19.5 million. Doubling the mesh 

density did not change the results significantly, showing that the mesh density was adequate to 

correctly resolve the mechanics. Meshed models were then imported into FeBio software [90] for 

further simulations. Figure 3. 1 shows the detailed flow of the process used to model the geometry 

in Houdini. The details about the geometry are shown in Table 3. 1. Note that 𝜙𝑓 ∝ 𝑛𝑓 and hence 

the volume fractions for other 𝑛𝑓 values can be obtained readily from the last column. 

 

Table 3. 1 Details of fiber geometry for different crimp amplitudes of fiber 

Fiber geometry name 𝐴/𝜆 Fiber Contour Length 𝜙𝑓 for 𝑛𝑓 = 200 

Straight fibers 0 400𝑟𝑓 0.000379 

A1 0.144 472.5𝑟𝑓 0.000447 

A2 0.192 519.3𝑟𝑓 0.000492 

A3 0.25 585.2𝑟𝑓 0.000554 

Neo-Hookean material model was chosen for the matrix and fibers. Since the single fiber 

study [38] showed that the relative stiffness of the fibers must be on the order of 1000 for the fibers 

to have a significant contribution, the modulus ratio (𝐸𝑓/𝐸𝑚) was fixed at 1000. Poisson’s ratio of 

𝜈 = 0.4 was chosen for the material. The surface at x = 0 was constrained in space and a stretch 

of 1.5 was applied to the surface x = 𝐿𝑚 in the positive x-direction using a rigid body connector. 
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All the other surfaces were unconstrained. Figure 3. 2 shows meshed simulation setup and Figure 

3. 3 (A-E) show the geometry in detail. 

 

Figure 3. 1 Flow of process to model the fibers and matrix in Houdini 

 

Figure 3. 2 Meshed simulation setup at (A) ε=0 and (B) ε=0.5 
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Figure 3. 3 Geometry modelled in Houdini 

Geometry of composite with crimped fibers (geometry A2) for (A) 𝜽𝒇 = 𝟎°, (B) 𝜽𝒇 = 𝟗𝟎°, (C) 𝜽𝒇 =

𝒓𝒂𝒏𝒅𝒐𝒎 𝒐𝒓𝒊𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏; (D) and (E) Close-up snapshot of the fiber showing sinusoidal geometry 

Three sets of simulations were conducted where each of the three parameters (fiber 

amplitude, fiber orientation angle, and the number of fibers) were varied in turn, keeping the other 

two fixed. In the first, fiber orientation angle 𝜃𝑓 was fixed at 0° (oriented in the direction of stretch), 

𝑛𝑓 held fixed at 200, and fiber geometry was varied with increasing 𝐴/𝜆 (straight fiber, A1, A2, 

A3). In the second set, the fiber was kept fixed at the A2 geometry, 𝜃𝑓 was fixed at 0° and volume 

fractions were varied corresponding to 𝑛𝑓 = 100, 200, 300 fibers for straight fiber. In the third set, 

𝑛𝑓 was kept fixed at 200 with different𝜃𝑓 = 0°, 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑 𝑎𝑛𝑑 90°) for straight fibers 

and for the A2 fiber geometry. 
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3.3 Results and Analysis 

3.3.1 Effect of Amplitude 

The effect of the added fibers can be illustrated from the difference in the stress between 

simulations of the composite vs the simulation of the matrix without embedded fibers (Figure 3. 4 

(A)). Here 𝜎 and 𝜎𝑚 refer to the 𝜎11 component of the true Cauchy stress for the simulations of 

the fiber-containing composites and the simulation of the matrix alone (without fibers) 

respectively. This stress is calculated by dividing the force experienced by the rigid body to attain 

a strain of 0.5, by the true cross-sectional area (𝐴0(1 − 𝜈𝜀)2). The fibers in these simulations are 

oriented at 𝜃𝑓 = 0°, and the volume fraction corresponds to 𝑛𝑓 = 200. It is seen from Figure 3. 4 

(A) that straight fibers have a higher contribution to stress than the crimped fibers. The contribution 

of crimped fibers decreases with increase in crimp amplitude, showing that higher crimp leads to 

a softer behavior of the composite. Moreover, unlike the case of straight fibers, the contribution of 

crimped fibers increases more steeply (i.e. super-linearly) with strain. This is shown more clearly 

by comparing the fractional increase in stress relative to the no-fiber simulation ((𝜎 − 𝜎𝑚)/𝜎𝑚), 

as in Figure 3. 4 (B). This quantifies how the crimped fibers make only modest contribution to the 

stress at lower strains, but much more as the applied strain increases. The vertical lines in Figure 

3. 4 correspond to the geometric straightening strain (𝜀𝑔𝑒𝑜, when the end-to-end fiber length (2L) 

= contour length of the fiber) for the different geometries A1, A2 and A3. If the fibers were 

approximately inextensible (i.e. with low bending modulus, but high stretching modulus), one 

would expect them to uncrimp completely and become load bearing when at a matrix strain of 
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𝜀𝑔𝑒𝑜. In this case we see that the fibers already become somewhat load bearing at the strain of 𝜀𝑔𝑒𝑜 

as was also noted for single embedded fibers [38]. 

 

Figure 3. 4 Multi-fiber composites: effect of amplitude 

(A) Difference between composite simulation stress and no-fiber simulation stress, and (B) relative increase in 

stress with respect to no-fiber simulation for straight fibers (black), A1(red), A2 (blue) and A3 (green), and 

vertical lines represent 𝜺𝒈𝒆𝒐 for the crimped geometries. 

3.3.2 Effect of Fiber Volume Fraction 

Figure 3. 5 compares three different volume fractions corresponding to 𝑛𝑓 = 100, 200 and 

300, all for straight fibers oriented at 𝜃𝑓 = 0°. The fiber contribution (𝜎 − 𝜎𝑚) increases linearly 

with strain (Fig. 5A), and increases roughly proportionally to the volume fraction. The fractional 

increase in stress (𝜎 − 𝜎𝑚)/𝜎𝑚 is nearly strain-independent (Fig. 5(B)) and this value is also 

proportional to the volume fraction.  

The simplest model for the tensile stress in a composite containing long, well-aligned fibers 

is to take a volume-weighted average 𝜎 = 𝜀(𝐸𝑚 + 𝜙𝑓𝐸𝑓). The corresponding predictions are 

shown by the dot-dashed lines in Figure 3. 5, and are seen to overestimate the simulations. We 
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believe this is because in the simulations, there is a finite length near the end of the fiber (called 

shear lag length) where the fiber is incompletely loaded, and hence the ends of the fiber do not 

contribute as much as the central portion of the fiber. In contrast, the volume-weighted average 

assumes that the entire fiber is loaded, and hence over-predicts the stress.  

Figure 3. 6 is similar to Figure 3. 5, except for crimped fibers of geometry A2, at orientation 

𝜃𝑓 = 0°. As compared to the straight fiber composites, for a strain up to 0.25, the crimped fiber 

contribution is lower than that of straight fibers, and the crimped fiber contribution increases non-

linearly at higher strains. The vertical line corresponds to 𝜀𝑔𝑒𝑜 for the crimped fiber and it can be 

seen from Figure 3. 6 (A and B) that the difference in stresses and relative increase in stress, both 

increase at a higher rate beyond the 𝜀𝑔𝑒𝑜. 

 

Figure 3. 5 Multi-fiber composites: effect of volume fraction for straight fibers 

(A) Difference between straight fiber composite simulation stress and no-fiber simulation stress, and (B) 

relative increase in stress with respect to no-fiber simulation for 𝒏𝒇 = 𝟏𝟎𝟎, 𝟐𝟎𝟎 and 300; and theoretical 

trend (dotted lines) 
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Figure 3. 6 Multi-fiber composites: effect of volume fraction for crimped fibers 

(A) Difference between crimped fiber (geometry A2) composite simulation stress and no-fiber simulation 

stress, and (B) relative increase in stress with respect to no-fiber simulation for 𝒏𝒇 = 𝟏𝟎𝟎, 𝟐𝟎𝟎 and 300; 

vertical line corresponds to 𝜺𝒈𝒆𝒐 

3.3.3 Effect of Fiber Orientation 

Three different orientations of the fibers were modelled: 𝜃𝑓 = 0° (fibers oriented in the 

direction of the stretch), 𝜃𝑓 = {0, 180°} (random orientation of fibers), and 𝜃𝑓 = 90° (fibers 

oriented perpendicular to the direction of stretch) (Figure 3. 3). The A2 geometry was used in all 

cases, and the volume fraction of fibers was kept constant (𝑛𝑓 = 200) for these comparisons. For 

straight fibers, the fiber contribution to the stress, (𝜎 − 𝜎𝑚) increased approximately linearly with 

strain (Figure 3. 7 (A)) and therefore the fractional increase in stiffness was nearly strain-

independent (Figure 3. 7 (B)). Fibers oriented in the direction of stretch contributed far more as 

compared to composite with random fiber orientation, whereas. Fibers aligned perpendicular to 

the direction of stretch hardly contributed since the matrix between the fibers bore the strain. 
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Similar results were observed for crimped fibers, except that similar to Figure 3. 4 and Figure 3. 

6, the contribution for 𝜃𝑓 = 0° and randomly oriented crimped fibers was non-linearly incremental 

with strain (Figure 3. 8). However fiber contribution to the stress in the random case was found to 

be about 60% of that for the well-aligned case. This shows showing that the additional stiffness to 

the composite decreases as the crimped fiber orientation deviates from the direction of stretch. The 

central conclusion of this section is that even a random orientation of crimped fibers can give 

strain-hardening behavior, although the degree of strain-hardening is weaker than for uniaxially-

oriented fibers. These results provide direct guidance to experimental implementations, since flow-

processing of crimped fiber composites is unlikely to give perfect orientation of fibers. 

 

Figure 3. 7 Multifiber composites: effect of orientation for straight fibers 

(A) Difference between straight fiber composite stress and no-fiber simulation stress, and (B) relative increase 

in stress with respect to no-fiber simulation for different orientations and 𝒏𝒇 =  𝟐𝟎𝟎 
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Figure 3. 8 Multifiber composites: effect of orientation for crimped fibers 

(A) Difference between crimped fiber (geometry A2) composite stress and no-fiber simulation stress, and (B) 

relative increase in stress with respect to no-fiber simulation for different orientations and 𝒏𝒇 =  𝟐𝟎𝟎 

3.3.4 Scatter-Seed Variability 

Fiber distribution inside the matrix is determined by a randomized function in Houdini[], 

which creates seed points to which the fiber geometry is then copied. The number of scatter seed 

points is equal to the number of fibers (𝑛𝑓). In order to look at the variability in the results when 

the scatter seed points are differently distributed, 5 different configurations of different scatter 

seeds were simulated for i) Straight fibers (𝜃 = 0°, 𝑛𝑓 = 200) and ii) Crimped fiber (geometry A1, 

𝜃 = 0°, 𝑛𝑓 = 200). The difference in stress and the no-fiber simulation stress for these two cases 

are plotted in Figure 3. 9 (A and B). Here Scatter0 refers to the configuration whose results are 

presented in this study. The maximum deviation in stress from Scatter0 configuration for straight 

fibers is {-0.48%,0.11%}, whereas that for crimped fibers (geometry A1) is {-0.13%,0.26%}. This 
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shows that different random configurations give similar simulation results, or equivalently, that 

the system size is sufficiently large to be statistically-meaningful. 

 

Figure 3. 9 Scatter-seed variability analysis 

Difference in composite stress and no-fiber simulation stress for (A) straight fibers, and (B) Crimped fibers 

(geometry A1); for θ=0° and n_f=200 

3.4 Discussion 

The purpose of the simulations is to guide design of composites in which crimped 

reinforcing fibers confer strain hardening behavior. The results above show how the fiber geometry 

and volume fraction can be used to target the desired mechanical behavior. Yet, such simulations 

are computationally-expensive, and moreover require expertise in creating the geometries. It 

would be useful to have an approach that approximately predicts the mechanical behavior of a 

crimped fiber system without needing computationally-expensive multifiber simulations. Section 

3.4.1 tests whether computationally-cheaper single fiber simulations, can predict the mechanical 

behavior of a multifiber composite. Section 3.4.2, tests whether the mechanical behavior by the 
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Holtzapfel-Gasser-Ogden model commonly used for tissue mechanics can predict similar results 

as the multi-crimped-fiber composites. 

3.4.1 Equivalent Straight Fiber model 

Previously [38] we showed that a single crimped fiber embedded in a softer matrix behaves 

like a softer fiber at lower strains and stiffer fiber at higher strains. Accordingly, it may be regarded 

as a equivalent straight fiber whose modulus increases with applied strain. The strain-dependent 

modulus (𝐸𝑓
𝑒𝑓𝑓

) of this Equivalent Straight Fiber (ESF) were obtained by fitting the in-fiber strain 

distribution to that expected for a straight fiber as per Cox’s Shear Lag model. Here we test whether 

the same approach can be predict the strain-dependent modulus multi-fiber composites. 

Simulations were conducted in the same geometry as Figure 3. 3, but with a single fiber at 

the center of the geometry aligned along the stretching direction. As previously, the strain 

distribution along the fiber was obtained and fitted to the distribution expected from the shear lag 

model: 

𝜎𝑓(𝑥) = 𝐸𝑓
𝑒𝑓𝑓

𝜀 [1 − 𝑐𝑜𝑠ℎ (
𝑛𝑒𝑓𝑓

𝑟𝑓
𝑒𝑓𝑓

𝑥) . 𝑠𝑒𝑐ℎ (𝑛𝑒𝑓𝑓
𝐿

𝑟𝑓
𝑒𝑓𝑓

)] (3.1) 

Here, 𝐸𝑓
𝑒𝑓𝑓

 is the effective fiber modulus which changes with applied strain, 𝐿 and 𝑟𝑓
𝑒𝑓𝑓

 

are the fiber length and effective fiber radius, and 𝑛𝑓
𝑒𝑓𝑓

= 𝑓(𝐸𝑓
𝑒𝑓𝑓

). Figure 3. 10 shows the single 

fiber geometry along with the single fiber simulation data and the fitted Eq. 3.1 fit, for one of the 

fiber geometries (A2). 𝐸𝑓
𝑒𝑓𝑓

(𝜀) from the single-fiber simulations for the various crimp geometries 

are shown in Figure 3. 11, and as expected, the effective modulus of the equivalent fiber increases 

with strain (i.e. with uncrimping). Incidentally, the strain distribution in randomly-selected fibers 
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from the multifiber composite agrees well with this single-fiber strain distribution (Figure 3. 12), 

i.e. a typical fiber in the multifiber composite behaves similarly to that a single fiber an infinite 

matrix. 

 

Figure 3. 10 Single fiber simulation geometry and fits 

(A) Geometry of single fiber simulation for fiber geometry A2, (B) zoomed in fiber profile, and (C) stress data 

obtained from the single fiber simulation (pale data points) with ESF model fit (solid line); for fiber geometry 

A2 
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Figure 3. 11 Effective fiber modulus (E_f^eff) from single-fiber simulations using the ESF model for different 

crimp geometries 

 

Figure 3. 12 Comparison of ESF with simulation data 

Equivalent Straight Fiber model for crimped fibers using 𝑬𝒇
𝒆𝒇𝒇

 values obtained from single fiber simulations 

(solid line) and in-fiber stress data (light colored data points) for a randomly-selected single fiber embedded 

in the multifiber composite 

The modulus of the composite can now be estimated from a simple volume-weighted 

average of the components: 

𝐸𝑐𝑜𝑚𝑝𝐸𝑆𝐹
= (1 − 𝜙𝑓)𝐸𝑚 +  𝜙𝑓𝐸𝑓

𝑒𝑓𝑓
=

𝜎𝑚𝑎𝑡𝑟𝑖𝑥(𝜀)

𝜀
+  𝜙𝑓𝐸𝑓

𝑒𝑓𝑓
 (3.2) 
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Note that we have approximated (1 − 𝜙𝑓) ≈ 1 given the low values of 𝜙𝑓. The 

corresponding predictions are compared with the multifiber composites in Figure 3. 13 (A and B) 

where the points are calculated by simply dividing the composite stress obtained from the 

simulations by the applied strain (𝜎/𝜀). 

 

Figure 3. 13 Instantaneous composite modulus 

𝑬𝒄𝒐𝒎 calculated using 𝑬𝒇
𝒆𝒇𝒇

 values from single fiber simulations (solid lines) and obtained from the multi-fiber 

simulations (dots) for (A) different crimp geometries, and (B) different volume fraction for A2 geometry 

Figure 3. 13 shows a reasonable agreement between the multi-fiber simulation results and 

those predicted by the ESF model for a single crimped fiber. Thus, if a single fiber is considered 

equivalent to a straight fiber with a strain-dependent modulus, we can use the weighted linear 

approximation to estimate the composite modulus of multi-fiber composites. The predictions from 

the single crimped fiber are slightly higher at larger strains and slightly lower at smaller strains, 

nevertheless we emphasize that the solid lines are computationally inexpensive since only a single 

fiber must be simulated. This difference may be attributed to the interactions between fibers that 

occur in multi-fiber composites when the fibers are close to each other. 
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3.4.2 Modified Anisotropic HGO-C model 

Holzapfel-Gasser-Ogden model [88] is commonly used to model the constitutive behavior 

of tissues since it allows the effect of fiber alignment to be accounted explicitly.  We tested whether 

crimped fiber composites can be represented by the HGO model. We used the Modified 

Anisotropic HGO (MA HGO-C) [91] model for compressible materials for fitting the stress-strain 

curves obtained the above simulations of crimped fiber composites. Although in the HGO model, 

the strain hardening is attributable to strain-direction realignment of the fibers, these equations can 

capture any form of strain hardening including that due to crimps as considered here. 

 The MA HGO-C model for strain energy is as follows: 

ΨOGH =  Ψ𝑣𝑜𝑙 +  Ψ𝑖𝑠𝑜 + Ψ𝑎𝑛𝑖𝑠𝑜 = Ψ𝑚𝑎𝑡𝑟𝑖𝑥 + Ψ𝑓𝑖𝑏𝑒𝑟 (3.3) 

where ΨOGH is the total HGO energy of the material, Ψ𝑣𝑜𝑙 is the volumetric part, Ψ𝑖𝑠𝑜 is 

the isotropic part and Ψ𝑎𝑛𝑖𝑠𝑜 represents the anisotropic part of strain energy due to the fibers. 

Ψ𝑚𝑎𝑡𝑟𝑖𝑥 = [
1

2
𝜅0(𝐽 − 1)2] + [

1

2
𝜇0(𝐼1 − 3)] 

(3.4) 

Ψ𝑓𝑖𝑏𝑒𝑟 =  Ψ𝑎𝑛𝑖𝑠𝑜 =  
𝑘1

2𝑘2
∑(𝑒𝑘2𝐸𝑎

2
− 1)

𝑁

𝑎

 

(3.5) 

𝐸𝑎 = κ0(I1 − 3) + (1 − 3𝜅)(𝐼𝑓𝑁
− 1) (3.6) 

where 𝐽 =  𝜆1𝜆2
2 = 𝜆1𝜆3

2, when stretch 𝜆1 = 𝜆, and the matrix is unconstrained in directions 

2 and 3. 𝜅 = 0 if the fibers are perfectly aligned and 𝜅 = 1/3 if the fibers are oriented randomly 

(isotropic response). N is the number of fiber families. 𝜅0 is the bulk modulus and 𝜇0 is the shear 

modulus given by 𝜇0 = 𝐸/2(1 + 𝜈). Parameter 𝑘1 represents some form of the stiffness 

contributed by the fibers. 𝑘2 relates to the non-linear behavior of the composite. For this analysis 
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we considered there to be only two families of perfectly aligned fibers (𝜅 = 0), oriented at an angle 

±𝛼 to the direction of stretch. Hence for fiber unit vector, 𝑎0𝑓 = [cos 𝛼 , sin 𝛼, 0], we have 

 

Ψ𝑎𝑛𝑖𝑠𝑜 =  
𝑘1

2𝑘2
(𝑒𝑘2(𝐼𝑓−1)

2

− 1) 
(3.7) 

𝐼1 = 𝑡𝑟(𝐶) = 𝑡𝑟(𝐹𝑇𝐹) =  𝜆1
2 + 𝜆2

2 + 𝜆3
2 =  𝜆2 +

2𝐽

𝜆
 

(3.8) 

𝐼𝑓 = 𝑎0𝑓(𝐶 𝑎0𝑓) =  𝜆1
2 cos2 𝛼 + 𝜆2

2 sin2 𝛼 =  𝜆2 cos2 𝛼 +
𝐽𝑠𝑖𝑛2𝛼

𝜆
 

(3.9) 

Derivative of eq (5) with respect to F gives expression for stress. 

𝜎 =
1

𝐽
𝐹

𝜕Ψ

𝜕F
 

(3.10) 

𝜎𝑓𝑖𝑏𝑒𝑟𝑠 = 𝜎𝑎𝑛𝑖𝑠𝑜 =
2𝑘1

𝐽
(𝐼𝑓 − 1) (𝑒𝑘2(𝐼𝑓−1)

2

) (𝑎𝑓 ⊗ 𝑎𝑓) 
(3.11) 

This gives us: 

𝜎𝑓𝑖𝑏𝑒𝑟𝑠 = 2𝒌𝟏𝜆2 cos2 𝜶 (𝜆2 cos2 𝜶 +  
𝑠𝑖𝑛2𝜶

𝜆
− 1) (𝑒

𝒌𝟐(𝜆2 cos2 𝜶 + 
𝑠𝑖𝑛2𝜶

𝜆
−1)

2

) 
(3.12) 

The first principle stress (𝜎11) is given by: 

𝜎11 = 𝜎𝑚𝑎𝑡𝑟𝑖𝑥 + 𝜎𝑓𝑖𝑏𝑒𝑟𝑠 =  𝜎𝑚𝑎𝑡𝑟𝑖𝑥 + 𝜎𝑎𝑛𝑖𝑠𝑜11
 (3.13) 

 

Where 

𝜎𝑚𝑎𝑡𝑟𝑖𝑥=𝜇0 (𝜆2 −
1

𝜆
) 

(3.14) 
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In writing the above equations, where we assume two families of fibers oriented at angle 

±𝛼. Although in the HGO model, the strain hardening is attributable to strain-direction 

realignment of the fibers, these equations can capture any form of strain hardening including that 

due to crimps as considered here. 

Eq. 3.13 provides 3 parameters, 𝑘1, 𝑘2 and 𝛼 which must be fitted to the simulation data. 

Multiple combinations of these three parameters were found to give comparable fits to the data, 

and the following procedure was adopted to fit data for the various cases consistently. For straight 

fibers that are perfectly-aligned (i.e. alpha=0), as the strain approaches 0, Eq. 3.12 gives  

𝜕𝜎𝑓𝑖𝑏𝑒𝑟𝑠

𝜕𝜀
 𝑎𝑡 𝜀 → 0 = 4𝑘1 

(3.15) 

This can be equated to 𝜙𝑓𝐸𝑓, which is the expected modulus for a fiber composite straight, 

perfectly-aligned fibers. Accordingly,  

𝑘1 =
𝜙𝑓𝐸𝑓

4
 

(3.16) 

This value of 𝑘1 was adopted in all cases. The parameter 𝑘2 relates to the strain at which 

strain hardening appears. For well-aligned crimped fibers, the physical picture of uncrimping 

suggests that 𝑘2 should be related to the strain required for geometric straightening (𝜀𝑔𝑒𝑜). 

Specifically, fibers are expected to make a negligible contribution to the stress for 𝜖 < 𝜖𝑔𝑒𝑜, but 

increasing contributions for 𝜖 > 𝜖𝑔𝑒𝑜. Based on this physical insight,  𝑘2 was selected to be the 

value at which 𝜎𝑓𝑖𝑏𝑒𝑟 = 1.03 × 𝜎𝑚𝑎𝑡𝑟𝑖𝑥, i.e. the fiber contribution became 3% of the matrix 

contribution. The value of 𝑘2 thus obtained was nearly insensitive to the 𝛼 value used. In summary, 

the values of 𝑘1 and 𝑘2 were pinned down based on the composition and the crimped geometry 

respectively. The remaining fitting parameter, 𝛼, was then obtained by fitting the simulation data. 

The corresponding fits are shown in Figure 3. 14, and all the model parameters are shown in Table 



 72 

3. 2. The central observation is that within the HGO framework, the varying degrees of crimp may 

be regarded as equivalent to straight fibers at specific angles as illustrated in Figure 3. 15. Since 

according to the HGO model, higher 𝛼 corresponds to a slower increase in the modulus of the 

composite, these fits are in accordance with our results that for a higher crimp amplitude, the onset 

of strain-hardening is at a higher applied strain. 

 

Figure 3. 14 MA-HGO-C fits 

MA HGO-C fits (solid lines) and simulation data (datapoints) for (A) Different fiber geometries with 𝜽 = 𝟎°, 

𝒏𝒇 = 𝟐𝟎𝟎  (B) Different volume fractions for fiber geometry A2 and 𝜽 = 𝟎° 

 

Table 3. 2 HGO fit parameters 

Parameter values used (𝒌𝟏, 𝒌𝟐) and obtained fit (𝜶) from the MA HGO-C model fits, for composites with 

different fiber geometries and different volume fractions 

Fiber 

geometry 

𝒏𝒇 𝑬𝒇 𝝓𝒇 𝒌𝟏 𝒌𝟐 𝜶 (°) 𝑹𝟐 

A1 200 1000 4.47e-4 0.112 1 47.05 0.998 

A2 200 1000 4.92e-4 0.123 3 53.57 0.998 

A3 200 1000 5.54e-4 0.139 40 59.78 0.997 

A2 100 1000 2.46e-4 0.0614 3 52.80 0.999 
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A2 300 1000 7.38e-4 0.184 3 52.81 0.997 

 

 

Figure 3. 15 HGO equivalent configurations 

Equivalent configurations for HGO model with two families of fibers oriented at angle 𝜶 to the stretch 

direction fitted for fiber geometries A1, A2, A3 with 𝒏𝒇 = 𝟐𝟎𝟎 and 𝜽𝒇 = 𝟎° (shown on top) 

3.4.3 Experimental Verification 

In order to verify the results of the multi-fiber simulations, we fabricated composites with 

chopped fibers embedded in a soft silicone matrix. These fibers were obtained by separating the 

individual filaments of a polyester sewing thread. These fibers had diameter of 15𝜇𝑚 and had a 

mild waviness due to the twisted nature of the sewing thread with an average amplitude to 

wavelength ratio of 0.05. The fibers were cut to a length of 4-5 mm and mixed with soft silicone 

(Ecoflex 00-20 (𝐸𝑚 = 40 Kpa)) after undergoing plasma treatment for better adhesion. Volume 

fractions of the fibers are listed in Table 3. 3. A major challenge in fabricating these composites is 

getting an orientation of the fibers. A stretch-mold setup was used in order to achieve fiber 
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orientation, where the mold was made out of a stiffer silicone (M4136) and after the silicone with 

chopped fibers was poured into the mold, the mold was stretched to a strain of 1. This allowed the 

fibers to orient themselves in that direction due to viscous shear forces in the uncured silicone 

during stretching. The mold was held in this position until the silicone cured. Figure 3. 16 (A) 

shows a cartoon schematic of the stretch-mold setup. Qualitatively, a reasonable fiber orientation 

was obtained with an approximately ± 10° variation as seen in Figure 3. 16 (B and C), which show 

the resulted cured sample with oriented fibers. 

Table 3. 3 Volume fraction and orientation details of experimental samples 

Sample 𝐸10 𝐸20 𝐸30 𝐸2𝑟𝑎𝑛𝑑 𝐸290 

Preferred orientation 

(𝜃𝑓) 

0° 0° 0° random 90° 

Measured 𝜙𝑓 (w/w) 3.95e-4 7.91e-4 1.17e-3 7.99e-4 7.83e-4 

 

Figure 3. 16 Multifiber composites experimental setup 

(A) Schematic of stretchable mold setup for achieving fiber orientation, (B) camera image of sample with 

fibers oriented at 𝜽𝒇 = 𝟎°, (C) camera image of sample with fibers oriented at 𝜽𝒇 = 𝟗𝟎° 
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The effect of volume fraction and orientation on the composite behavior seen in the 

simulations was verified by doing tensile stretch tests on the cured samples. Similar plots as those 

in section 3 were plotted, where the composite stress was compared against stress for the silicone 

without any fibers. Relative increase in stress ((𝜎 − 𝜎𝑚)/𝜎𝑚) are shown in Figure 3. 17, for 

different volume fractions (A), and for different fiber orientations (B). 

 

Figure 3. 17 Tensile test results for experimental samples 

Relative increase in stress with respect to no-fiber silicone for (A) different fiber volume fractions (𝜽𝒇 = 𝟎°) 

and (B) Different fiber orientations (𝝓𝒇 = 𝟕. 𝟗𝟏e-4± 𝟏%) 

Consistent with the simulations, the fiber contribution increases with increasing fiber 

volume fraction and is maximum when the fibers are oriented in the direction of stretch. The wavy 

nature of the fibers is evident from Figure 3. 17, where the relative fiber contribution increases 

with applied strain showing evidence of some strain hardening behavior. 

As seen in Figure 3. 17 (B and C), the orientation of the fibers deviates from the desired 

orientation by ±15°. The rate at which the stretchable mold is stretched and the viscosity of the 

uncured silicone affects the shear flow in the uncured silicone and can potentially affect how well 

the fibers get oriented. The effect of this rate of stretching the mold and viscosity needs to be 

quantified in order to have better control over the orientation. Volume fraction of the fibers also 
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affects the orientation since higher volume fraction corresponds to higher chances of the fibers 

getting tangled. Another challenge is to limit the gross bending of the fibers during alignment. 

3.5 Summary and Conclusion 

Extending our previous study for the stress transfer behavior of a composite with single 

stiffer crimped fiber embedded in a large matrix, we now quantify the mechanical behavior of  

multi-fiber composites containing crimped fibers. The response of multi-fiber composites depends 

upon fiber parameters like the fiber geometry (straight or crimped), fiber volume fraction and fiber 

orientation. This was studied for sufficiently stiff fibers (modulus ratio 𝐸𝑓/𝐸𝑚 = 1000) by varying 

the above-mentioned parameters. Contribution of the fibers decreases with the amount of crimped. 

Crimped fibers contribute less at lower strains and higher at higher strains, thus giving evidence 

of strain-hardening behavior. Higher volume fraction leads to higher fiber contribution to overall 

composite stress. Maximum contribution of the fibers is when they are all oriented in the direction 

of the stretch and lowest contribution is when they are all perpendicular to the direction of the 

stretch. The HGO model agrees with the crimped fiber composite behavior in that higher crimp 

amplitudes correspond to a larger HGO fiber orientation angle (𝛼), meaning that the onset of strain 

hardening is at a larger applied strain. The ESF model suggested by us in the single fiber study can 

be extended to a multifiber study by weighted linear extrapolation based upon the mechanical 

response of a single fiber simulation. 

We thus have a mathematical basis for a crimped fiber composite material for soft tissue 

substitutes, i) which gives strain-hardening response to uniaxial tension, ii) which consists of short 

crimped fibers which give the advantage of being flow-processible, and iii) the properties of which 
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can be altered by changing the fiber crimp geometry, volume fraction of orientation. This material 

thus can be used as soft tissue replacement for tissues with a range of mechanical behaviors. The 

relevance of the simulations results was shown by fabricating chopped fiber composites with stiffer 

polyester fibers embedded in soft silicone matrix. The central experimental challenge is the 

increasing difficulty of uniformly dispersing the fibers into the matrix as the fiber fraction 

increases. This challenge is not unique to crimped fibers, but appears even in composites of 

chopped straight fibers. 
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4.0 Concluding Remarks 

In this dissertation we study the straightening of wavy structures in arteries and the role 

they play in the morphological and the mechanical aspects of the tissues. Part 1 presented a study 

on the morphological aspect where the relevance of Internal Elastic Lamina (IEL) corrugations 

under physiological conditions. This study strongly supports the conclusion that the arterial lumen 

is corrugated under physiological conditions, and the IEL contour length is at least 10% longer 

than the inner circumferential length of the artery under physiological conditions. It was also seen 

that the IEL corrugations flatten as the artery diameter increases, as seen from the reduction in 

corrugation amplitude (Appendix A Figure 1) and the corrugation factor (Figure1. 8) with the 

increase in arterial diameter. This means that as the arteries change diameter, which occurs as they 

dilate and constrict under physiological pulsation, the arterial lumen exhibits a dynamic 

topography. Such a dynamic topography can have potential function as a self-cleaning mechanism 

for reducing thrombotic activity[36, 37]. This can thus potentially be implemented into fabricating 

vascular grafts with a wrinkled lumen with dynamic topography[36, 37]. A corrugated luminal 

surface also provides increased surface area for nutrient transport and in case of smaller arteries, 

can potentially influence the flow of blood through the graft. In Section 1.01(a)(i)Appendix B, we 

provide a facile method for fabrication of such tubes with luminal topography. In this section we 

also show how the luminal corrugation wavelength and amplitude can be controlled by changing 

the parameters such as the thickness ratio of tube wall to lumen, prestrain applied in order to create 

the topography and the possible effect of the modulus ratio of the tube wall material to the lumen 

material. These tubes can be made to suit the size of the targeted artery and have potential 

applications as vascular prosthesis. 
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In Part 2 of this research, we made progress towards synthetic analogs to soft tissues. 

Biological tissues contain collagen in the form of crimped fibers which uncrimp as the tissue is 

stretched. The fibers bear lower loads at smaller strains and become increasingly load bearing as 

they uncrimp, thus imparting a strain-hardening behavior to the tissue, where in the tissue stiffness 

increases with increasing strain. We proposed a composite material comprising short stiffer 

crimped fibers embedded in a softer matrix that can show strain-hardening properties. The degree 

of strain-hardening of such composites can be controlled by varying the parameters like fiber crimp 

amplitude, fiber:matrix modulus ratio, fiber volume fraction and fiber orientation. 

4.1 Comparison with the arterial wall 

The synthetic composites developed in part 2 are inspired by tissues containing collagen 

fibers. Specifically, the crimped fibers sought to reproduce one aspect of collagen fibers, viz. that 

they are wavy. Only under tensile deformation do they straighten and become load bearing. 

Although we sought to mimic this aspect of tissues, in fact, there are many differences between 

our composites vs collagen-containing tissues. In this section, we will briefly comment on these 

differences. 

The arterial wall of muscular arteries is composed of 3 layers: the innermost intima, 

followed by the media, and the outermost adventitia [1-5]. The intima consists of a continuous 

layer of endothelial cells lining the lumen of the artery. The media consists of elastin lamellae, 

collagen fibers and smooth muscle cells, and the adventitia primarily consists of large bundles of 

crimped collagen fibers and fibroblast cells [1-5]. Elastin in the arteries functions in restoring the 

tissue to its original configuration whereas collagen fibers exist in the form of crimped fibers which 
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uncrimp and provide increasing resistance to the tissue as it gets stretched, thus limiting the extent 

of stretch. The modulus of elastin obtained from aorta is between 0.15 – 0.41 MPa and the modulus 

of collagen fibers under uniaxial tests is between 300 – 2500 MPa [3, 5, 92], thus providing with 

a modulus ratio between 2000-5000. This compares with a ratio of 1000 used in most of our 

simulations. 

Chow et al. [3] conducted a biaxial study on porcine thoracic aortic specimens, where in 

the orientations of collagen and elastin fibers in the media and adventitial were observed. Collagen 

fibers in the media and the adventitia are largely oriented circumferentially with the ratio of 

circumferentially: longitudinally oriented fibers being ~ 2 for medial collagen fibers and ~3 for 

adventitial collagen fibers. Thus, the arterial tissue has different mechanical properties in the 

circumferential and longitudinal directions. This can also be seen from the stress-strain curves 

from tensile tests conducted on porcine aorta [92, 93], where the stress when stretched in the 

circumferential direction is around 30-40% higher than that when stretched in the longitudinal 

direction. Collagen fibers intersect with each other with the average fiber length between 

intersections being around 4 times the fiber diameter[94]. This leads to crosslinking of the fibers[3, 

94]. Such crosslinking is not present in our samples. Instead the fibers are dispersed individually 

with no physical linkages between them. Indeed crosslinking would be undesirable since they 

would make flow-processing impossible, whereas flow-processing is the chief benefit of chopped 

fiber composites.  

Collagen and elastin concentrations vary in different arteries [94-96]. Collagen content 

(w/w dry) is around 37.5-43 % in the ascending aorta, common iliac arteries, 47-51% in the 

abdominal aorta and internal iliac arteries, and 33-44% in external iliac arteries, whereas elastin 

content is around 43-50% [94]. Change in the concentrations of collagen and elastin affects the 
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mechanical properties of the arteries. Concentrations of collagen and elastin also vary with age 

and disease [95, 96]. 

In order to compare the strain-hardening behavior of the arterial tissues in this study to that 

obtained from the multifiber simulations, we can compare the ratio of incremental modulus at 30 

%:10% strain, obtained from the study by Dai et al [92] to that from our study. The 30%:10% 

incremental modulus ratio for arteries is around 1.9, whereas it is ~1.15 for a simulation with 𝑛𝑓 =

200,
𝐴

𝜆
= 0.192 and orientation = 0°. To reach the higher value for arteries, it would be necessary 

to increase the crimp amplitude, and possibly also the fiber loading. 

In short, there are many variables when trying to replicate the structure of the arterial tissue. 

However, we propose that the mechanical response of the arterial tissue can be replicated by a 

composite with a simpler composition – short, stiffer crimped fibers embedded in a soft matrix. 

Elastin in the arteries can be said to be analogous to the soft elastic matrix, and the collagen fibers 

can be analogous to the stiffer crimped fibers in the crimped fiber composite. The modulus ratio 

modelled in this study is lower than that observed in the arteries. The anisotropic behavior due to 

different orientations of the collagen fibers in different layers can be achieved in case of the 

crimped fiber composite by changing the orientation of the crimped fibers, where the maximum 

increase in stress is obtained when the fibers are oriented in the direction of stretch (Figure 3. 8). 

Concentrations of collagen and elastin can be accommodated by fiber volume fraction in the 

composite. The degree and onset of strain-hardening increases with increase in fiber crimp 

amplitude and fiber:matrix modulus ratio. Thus, by changing the combination of fiber material and 

geometry parameters, the mechanical response of the crimped fiber composite can be tuned to 

match that of the arterial tissue. 
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In taking this study further, the next logical step would be to obtain the optimum 

combination of parameters for the crimped fiber composite in order to match the mechanical 

response of the arteries. This can be combined with the study in Part 1 to fabricate vascular grafts 

with mechanical properties similar to those of arterial tissue and with luminal topography. This 

study of crimped fiber composite as a synthetic tissue substitute is not limited to vascular grafts, 

but by finding optimal combinations of fiber parameters, can be extended to match the behavior 

of other soft tissues as well. 

Fabrication of the synthetic material can then be done with these optimal combinations of 

fiber parameters. The experimental samples made in this study included composites made with 

fibers that were roughly 4 mm long and 15 𝜇𝑚 in diameter. In order to fabricate samples that can 

substitute thin tissues like the vascular wall or skin, the fibers will have to be much smaller in size. 

Crimping fibers which are on the scale of few microns in length, and getting controlled and desired 

crimps is a challenge in microfabrication and would require more sophisticated setups than those 

demonstrated in this study. Another challenge is finding materials for the matrix and the fiber that 

are biocompatible and which have the desired mechanical properties, and this would involve 

biocompatibility studies. Also, the method of orienting the fibers within the matrix would need to 

be further developed for better control over getting the desired fiber orientation, for example, 

orienting the fibers circumferentially in the case of vascular grafts. Finally, flow-processing of 

fiber-containing composites is challenging since the viscosity increases drastically as the fiber 

loading increases. This is not unique to crimped fibers, but relevant to any fiber-reinforced 

composites. Thus careful design of flow processing would be needed to maintain fiber orientation 

in the final composite. 
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Appendix A : Investigation of the Internal Elastic Lamina – Supplementary Information 

Appendix A.1 Corrugation amplitude 

Average corrugation amplitude was calculated from the cross-section images. The inner 

boundary of the IEL obtained as points in polar coordinates Figure1. 6(C) was averaged over 5-6 

wavelengths to obtain a smoothed curve that roughly passes through the middle of every 

amplitude. Appendix A Figure 1 shows the IEL data in polar coordinates and the averaged data. 

The root-mean-square deviation between the averaged curve and the IEL boundary data gave the 

deviation of the corrugations from the averaged central curve. The amplitude was then calculated 

as twice the RMS deviation. Corrugation amplitude is plotted for the cross-sections in Appendix 

A Figure 2. 

 

Appendix A Figure  1 Showing IEL data points and averaged data 
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Appendix A Figure  2 Corrugation amplitude vs normalized cross-section diameter 

In tandem with studies mentioned above, the corrugation amplitude, averaged over the 

cross-section of the artery decreases as the normalized diameter of the artery increases, showing 

that the IEL flattens as the arterial diameter increases. The vertical line in the figure corresponds 

to a cross-section diameter equal to that observed in ultrasound. The values of amplitude as the 

𝐷𝑎𝑣𝑔/𝐷𝑈𝑆 approaches 1 are less reliable due to the values of data and averaged data are very close. 

Appendix A.2 Range of Artery Diameters Analyzed 

Appendix A Figure  3 shows the range of artery diameters that were obtained from the 

animals. Normalized by the ultrasound diameter, this plot shows us where the data points fall on 

the x-axis in Figure1. 8. 
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Appendix A Figure  3 Range of 𝑫𝒂𝒗𝒈/𝑫𝑼𝑺 obtained for different arteries 

Appendix A.3 IEL Contour Length for Arterial Cross-Sections 

IEL Contour length (𝐿𝑐) calculated from the images of arterial cross-sections was plotted 

against the diameter of the cross-sections (𝐷𝑎𝑣𝑔). It is seen qualitatively from Appendix A Figure  

4, that the 𝐿𝑐 increases with 𝐷𝑎𝑣𝑔 (shown in black dashed line). Increase in IEL contour length 

shows that the IEL is not inextensible but stretches as the artery is stretched. 
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Appendix A Figure  4 𝑳𝒄 𝒗𝒔 𝑫𝒂𝒗𝒈 for different cross sections, showing increase in 𝑳𝒄 with increase in diameter 

Appendix A.4 Details of Study Animals 

 Appendix A Table. 1 lists details of the animals (pigs) whose arteries were considered in 

this study. 

Appendix A Table. 1 Weight and gender information of pigs 

Pig ID Weight (kgs) Gender 

P10322 41 F 

P12422 50 M 

P12622 50 M 

P723 54 M 

P3523 55 M 

P3623 52 F 
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Appendix B . Facile Method for Fabricating Elastomeric Tubes with Internal or External 

Microtopography 

Appendix B.1 Introduction 

Many surfaces within the human body are not flat, but instead have a complex surface 

topography[97]. Familiar examples itself include fingerprints[98], papillae on the tongue[99], and 

sulci on brain[100]. The inner surface of many conduits within the body are also highly textured, 

e.g. longitudinal wrinkles on the luminal surface of blood vessels[97, 101], villi on intestines [102], 

and circumferential wrinkles in  anatomical conduits such as trachea[103], intestines[104] and 

esophagus[105]. Such topography often has biological functions, e.g. increasing mass transport 

rates due to higher surface area, regulating fluid flow, or permitting expansion without mechanical 

damage. Looking more broadly beyond human anatomy, textured surfaces are common in biology 

and include sharkskin riblets that reduce drag [106], cuttlefish or octopus papillae that help 

camouflage [107-109], or textures that reduce biofouling [37, 110]. These observations have 

inspired numerous biomimetic approaches that exploit surface topography for specific 

applications.  

Turning to synthetic systems, conduits with luminal or external corrugated surfaces, have 

a number of potential applications [36, 101, 111]. The corrugations can increase surface area which 

is useful in increasing transport rates across membranes as observed in biological tissues [112]. 

Increased surface area also helps in heat dissipation from the tube surface[113, 114]. Surface 

topography in tubes can also help in regulating fluid flow [114]. Luminal longitudinal wrinkles in 

vascular conduits lead to a dynamic topography, where the surface topography changes as the 
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diameter of the conduit changes, which can act as a self-cleaning mechanism to reduce fouling 

[36, 101]. 

One challenge for research in this area is the difficulty of fabricating tubes with internal or 

external topography. Large scale manufacturing operations such as tube extrusion with a 

corrugated die, or by molding within a textured mold are unsuitable for research purposes due to 

the need for specialized expertise and equipment. Moreover, achieving features smaller than 100 

micron requires complex machining to fabricate the molds and extrusion dies used in such 

operations. This paper illustrates a rapid prototyping method that can create small-scale 

topography on the inner or outer surface of elastomeric tubes. Our focus is on applications where 

the topography must be realized on relatively soft tubes which are capable of expansion. Such 

tubes are used in research on soft robotics, pneumatic actuators, as well as in our own research on 

developing vascular grafts with antithrombotic properties. 

We take inspiration from prior research that exploits the buckling behavior of multilayered 

composites[115-121] to develop surface texture. The essential idea is to compress a thin stiff layer 

that is bonded to the surface of a softer layer. The thin layer then spontaneously buckles to give a 

highly wrinkled surface. The compression may be applied by various methods: unequal thermal 

expansion between the stiff and the soft layers [116], unequal swelling of the two layers [122], 

pre-stretching the softer layer prior to bonding [123], or exploiting plasticity of the stiff layer [124, 

125]. In all these cases, the goal is to create a “strain mismatch” such that the thin stiff layer 

experiences compression, and therefore buckles.  This approach has the benefit of creating 

wrinkled textures with length scale on the order of tens of microns over large surfaces, but without 

the need of microfabrication methods. Although the essential principle of exploiting the buckling 

of a substrate-supported thin film to realize surface texture can be applied to any geometry, the 
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specific fabrication methods developed previously cannot be applied easily to tubes. This is 

because the common methods of applying the thin film onto the surface of the soft layer (spin-

coating, roll-coating, blade coating) are only suitable for flat surfaces and cannot be applied to the 

inner or outer surface of cylinders. One popular method for realizing a stiff-on-soft structure is to 

expose a silicone elastomer to UV/Ozone treatment to create a silica-like surface layer [37, 118]. 

While this method may work for the outer surface of tubes, it is unsuitable for the inner surface. 

Similarly, deposition of a thin metal film on the surface of an elastomer [116] is also unsuitable 

for the inner surface of tubes. 

This paper shows a method for the fabrication of tubular conduits with an internal luminal 

or external topography. We retain the idea of exploiting the buckling of a supported thin film but 

use the method of spraycoating to deposit the thin layer. Spraycoating can allow for coatings as 

thin as 100-200 nm [126], and such coatings can readily give wrinkles with few micron 

wavelengths. Thus we retain the central advantage of the buckling approach that small-scale 

topography can be created without the need of microfabrication. While spraycoating can only be 

conducted on the outer surface of tubes, we show that elastomeric tubes can be inverted to realize 

wrinkles along the luminal (i.e. inner) surface. Finally we also show how the same method can be 

adapted to vary the orientation of the topography. 

One further aspect of this paper is to show how soft seamless elastomeric tubes can be 

made easily. Traditional methods to fabricate tubes require extrusion using special pipe extrusion 

dies. Here we show a method to rapidly fabricate seamless elastomeric tubes by using readily 

available metal tubes as molds. This method would prove useful for rapid prototyping of any 

elastomeric tubes, even when surface topography is not needed. 
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Appendix B.2 Materials, Methods, and Results 

The focus of this study was to develop a method of corrugating the inner surface of a 

tubular conduit. The same method can be used to corrugate the outer surface as well. Since this 

latter procedure is simpler and only requires eliminating two steps, we will not discuss it in detail 

but only show an example later in the paper.  

As in previous research, we exploit the wrinkling instability of a thin stiff film bonded to 

a softer substrate. Prestretching the soft substrate during film deposition creates a strain mismatch 

between these two layers, thus imposing compression onto the stiff film, which then wrinkles. In 

our case, the softer substrate is simply an elastomeric tube. The central challenge is to deposit a 

thin stiff film onto the inner surface of this tube while holding the tube in a prestretched 

configuration. 

The overall fabrication method to develop wrinkles on the inner surface is illustrated in 

Appendix B Figure. 1. The soft elastomeric tube was first inverted, so as to expose its inner surface, 

and then mounted onto a cylindrical rod which serves as a mandrel. The material forming the stiff 

layer was spray coated onto this surface. The coated tube was removed from the mandrel and 

reinverted so that the surface bearing the stiff film was now the inner surface of the tube. The 

crucial aspect of the procedure is that a strain mismatch between the tube and the stiff film can be 

created by suitable choice of the mandrel and mounting method. Specifically, by using a mandrel 

with a diameter larger than the inner diameter of the soft tube, we created a circumferential strain 

mismatch. Accordingly, the tubes developed longitudinal wrinkles when removed from the 

mandrel. If the tubes were mounted onto the mandrel and held with an axial stretch during coating, 

this led to an axial strain mismatch between the coating and the tube, and hence induced 

circumferential wrinkles. Introducing a twist to the tube led to helical wrinkles. 
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Appendix B Figure. 1 Schematic illustration of process to create inner luminal wrinkles 

The above method was developed using the silicone rubber Ecoflex-20 for the soft tube 

and the silicone rubber Dow Corning M4136 as the stiff layer. Both materials are platinum-curing 

two-part formulations and have excellent mutual adhesion. Appendix B Figure. 2 shows the elastic 

stress-strain behavior of the two silicones used in the above study measured using uniaxial tensile 

test: Ecoflex-20 (𝐸 = 0.042 𝑀𝑃𝑎) for the soft tube, and Dow Corning M-4136 (𝐸 = 1.58 𝑀𝑃𝑎). 

Application of the method to other materials will be discussed at the end of this paper. 

 

Appendix B Figure. 2 Showing tensile behavior for Ecoflex-20 and Dow Corning M-4136 silicones 
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Appendix B.2.1 Fabrication of Seamless Soft Tubes 

Tubular conduits of inner diameter 4 mm and wall thickness of 1.1 mm were manufactured 

from soft silicone (Ecoflex-20) by casting in annular molds. These molds comprised a stainless-

steel center rod held concentrically within a smooth-walled aluminum tube. In the first step 

(Appendix B Figure. 3(A)), the rod was held in place by means of 3D-printed endcaps. A gentle 

vacuum was applied to suck in the uncured Ecoflex-20 into the mold. The endcaps had openings 

through which the silicone can flow. Once the mold was completely filled as judged by silicone 

rising into the suction tube, the end caps were replaced with 3-D printed annular inserts which seal 

off the molds (Appendix B Figure. 3(B)) and the filled tubes were allowed to sit till the silicone 

cured. Cured silicone tubes along with the center rods were taken out of the aluminum molds, and 

the tubes were then removed off the mandrel. A few drops of isopropanol were found to facilitate 

release of the tubes from the rods and from the aluminum tubes. This procedure yielded seamless 

tubes with uniform wall thickness. 

Note that metal rods and tubes that define the annular space that forms the mold are readily 

available in a wide variety of diameters. Accordingly, the above procedure can be used across a 

wide range of tube dimensions. Our two-step procedure was developed to avoid trapping air 

bubbles in the annular cavity, and sucking the uncured silicone into the annular mold completely 

avoids air bubbles. If a large wall thickness was desired, our two-step procedure may not be 

necessary; one may directly pour the silicone into the annular cavity and allow any air bubbles to 

simply rise upwards before the silicone cures. 
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Appendix B Figure. 3 Process of making seamless silicone tubes using annular mold 

(A) Custom 3D printed endcaps hold the center rod in place during suction, and (B) The center rod is held 

concentrically by 3D printed annular inserts during curing 

These Ecoflex-20 tubes were then inverted and mounted onto rods (henceforth called 

“mandrels”) of suitable diameter (see Results below) corresponding to the amount and type of 

prestrain desired, as described in the paragraph above. If the outer surface of a thick-walled tube 

is coated and then inverted so that it becomes the inner surface, the tube creases and this affects 

the uniformity of wrinkles developed due to strain mismatch between the sprayed layer and the 

tube. Hence, pre-inversion of the tube is to obtain uniform wrinkles. 

Appendix B.2.2 Spray Coating a Thin Stiff Layer 

The stiff silicone M4136 was dissolved in hexane in a 1:1 weight ratio. This ratio was 

chosen so that the viscosity of the solution was sufficiently low to allow spraying with an airbrush, 
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which was cleaned with hexane prior to the start of each experiment. The mandrel with tube and 

the airbrush were then mounted on the spray setup (Appendix B Figure. 4). The spray setup 

consists of a chuck which holds the mandrel and rotates it at 120 rpm, and a reciprocating carriage 

which holds the airbrush. The carriage can move up to 35 cm at speeds ranging from 0.2 mm/s to 

8 mm/s using stepper motors controlled by an Arduino system. The spray head was located 10 cm 

away from the rotating mandrel and a constant air pressure of 15 psi was applied to the airbrush 

during spraying. The coating thickness was varied by varying the speed and number translations 

of the airbrush during spraying. Coated rods were then placed at 100°C to accelerate curing of the 

sprayed silicone layer. After the deposited layer was cured, the tubes were reinverted. The design 

of the spray setup and the Arduino codes controlling the stepper motors can be made available 

upon request. This method could be used to create wrinkles in longitudinal, circumferential or 

helical directions depending on the way the prestrain is applied. A larger diameter mandrel 

provided a circumferential pre-strain and correspondingly led to development of longitudinal 

wrinkles, pre-stretch in the axial direction led to circumferential wrinkles, while introducing a twist 

to the tube led to helical wrinkles.  

The wrinkle topography was quantified by optical microscopy of cross sections of the 

wrinkled tubes. The tubes were first cast in a transparent silicone to prevent them from collapsing 

when cutting their cross sections. Thin slices of the embedded tubes were then cut and imaged to 

measure thickness of the deposited film, and wavelength and amplitude of the wrinkles. The effect 

of (i) number of coats on film thickness, (ii) translational speed of airbrush on film thickness, (iii) 

film thickness on wrinkle wavelength, and (iv) pre-strain on wrinkle amplitude and wrinkle 

direction were evaluated. 
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Appendix B Figure. 4 Schematic showing different components of the spray coating setup 

Appendix B.2.3 Quantification of Wrinkled Topography 

Appendix B Figure. 5 (A) shows the cross-sectional view of a slice of a sample as seen 

under the microscope. The specific example shown corresponds to mounting the inverted 

elastomeric tubes on a mandrel of diameter 6.24 mm before spray-coating. Upon reinverting, the 

image shows a strongly-wrinkled inner surface. We first discuss how the spraying parameters 

affect the thickness of the coating and the wrinkle morphology. In all cases, spraying successfully 

deposited a uniformly-thick coating whose thickness increased with number of coats, where each 

coat corresponded to one translation of the airbrush mounted on the translator. A slower translation 

speed caused more deposition per unit area of the tube and thus, slower speed corresponded to a 

thicker coating (Appendix B Figure. 5 (B)). 
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Appendix B Figure. 5 Wrinkle-lumen tube and coating thickness 

(A) Cross-section of the reinverted tube with a magnified microscope image of the wrinkles, and (B) Film 

thickness measured for different translator speeds and number of coats 

With increasing thickness of the spray-coated film, the wrinkle morphology also changed 

in tandem. Appendix B Figure. 6 (A) shows that the wavelength and amplitude increase almost 

proportionately with the thickness. The wavelengths may be compared against the theory of 

wrinkling of a stiff elastic film bonded to a thick soft substrate[127] which predicts  

𝜆 = 2𝜋ℎ (
𝐸𝑓(1 − 𝜈𝑠)2

𝐸𝑠(1 − 𝜈𝑓)
2)

1
3

 

(B1) 

For fixed material properties, the wavelength of the wrinkles is predicted to increase 

proportionately with the thickness of the film. This is indeed seen in Appendix B Figure. 6 (A) for 

the same samples as from Appendix B Figure. 5 (B). For the values of 𝐸𝑓 and 𝐸𝑠 measured 

experimentally, the modulus ratio is roughly 38 and hence the above equation predicts 𝜆 = 14.5ℎ. 

This is roughly two-fold larger than the slope of the 𝜆 vs ℎ data in Appendix B Figure. 6 (A). A 

portion of this discrepancy may be the effect of prestretch; The above Eq. B1 was derived for the 

compression of a stiff film on a soft substrate where both layers are initially stress-free. In contrast, 
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here the soft elastomeric layer is prestretched which is expected to reduce the wavelength [128]. 

The amount of prestretch can be estimated as follows. The inner radius of the fabricated tube is 

2mm. Upon inversion, and then placing onto the mandrel, this inner surface is stretched to a radius 

of 3.92mm. This latter value is a sum of the mandrel radius (3.12mm) and wall thickness calculated 

after taking into account the stretch and Poisson’s ratio (𝑡 = 0.8mm). The ratio of the stretched 

surface to the original deformed surface is 1.96. For this value, the expectation based on accordion 

mechanics is roughly 69.5% decrease in wavelength [128]. 

The results of Appendix B Figure. 5 (B) and Appendix B Figure. 6 (A) were all obtained 

by placing the inverted tubes onto mandrels of diameter 6.24 mm. A separate set of experiments 

was conducted varying the mandrel diameter, and hence the circumferential strain mismatch at 

two different film thicknesses.  The wrinkle wavelength was found to decrease with increasing 

mandrel diameter, once again in agreement with the expectation that prestretch should decrease 

wavelength. This was done for two different coatings (2 coats at 1mm/s and 6 coats at 1mm/s). 

The larger strain, and correspondingly larger coating layer was accommodated by a combination 

of increasing wrinkle amplitude and decreasing wrinkle wavelength (Appendix B Figure. 6 (B)). 

 

Appendix B Figure. 6 Effect of thickness and prestrain 
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Dependance of wrinkle wavelength (blue) and amplitude (orange) on (A) film thickness and (B) amount of 

pre-strain for thicker coating (squares) and thinner coating (solid circles) 

Having established the basic method of achieving wrinkled topography inside a cylindrical 

tube, we will now illustrate several variations that alter the structure of the wrinkles. These were 

done with relatively large coating thicknesses (~120-150 𝜇𝑚) for ease of imaging. Appendix B 

Figure. 7 (A) illustrates a sample prepared using the same approach as Appendix B Figure. 5 and 

Appendix B Figure. 6, viz. placing the inverted tube onto a large diameter mandrel prior to spray 

coating, followed by re-inversion. The same method can be applied – much more easily – to realize 

tubes with wrinkles on their outer surface (Appendix B Figure. 7 (B)). In this case, inversion and 

re-inversion is not needed; the soft tube was directly placed onto a larger diameter mandrel.  

Instead of imposing a circumferential strain mismatch using a larger diameter mandrel, we 

may instead impose an axial mismatch by simply fixing the tube in an elongated state onto the 

mandrel. In this case, since the film experiences compression along its inner surface, 

circumferentially-oriented wrinkles are expected. The upper image in Appendix B Figure. 7 (C) 

shows an example of this situation realized by inverting a tube onto a mandrel of diameter 4mm 

and holding it elongated by a factor of 2 during coating. In a similar manner, fixing the tube in a 

twisted configuration prior to spray-coating can give helical wrinkles (lower image in Appendix 

B Figure. 7 (C)). In this case, a twist of 360° was applied over a 3 cm long segment of tube. Finally, 

applying a combined axial and circumferential pre-strain induced a more complex pattern of 

wrinkles (Appendix B Figure. 7 (D and E)). 
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Appendix B Figure. 7 Tubes with different types of surface topographieses 

Cross sections of tubes with (A) internal longitudinal wrinkles (𝜺𝒄𝒊𝒓𝒄 =  𝟏. 𝟓𝟒), (B) external longitudinal 

wrinkles (𝜺𝒄𝒊𝒓𝒄 =  𝟏. 𝟓𝟒); Tubes with (C) circumferential wrinkles (𝜺𝒂𝒙𝒊𝒂𝒍 =  𝟏) (top) and helical 

wrinkles(𝜺𝒕𝒘𝒊𝒔𝒕 = 𝟑𝟔𝟎° 𝒐𝒗𝒆𝒓 𝟑 𝒄𝒎) (bottom) visible through the tube walls; and (D) (𝜺𝒄𝒊𝒓𝒄 =  𝟏. 𝟓𝟒, 𝜺𝒂𝒙𝒊𝒂𝒍 =

𝟏) and (E) (𝜺𝒄𝒊𝒓𝒄 =  𝟎. 𝟗𝟔, 𝜺𝒂𝒙𝒊𝒂𝒍 = 𝟏): Through-wall microscope images of patterned wrinkles formed using 

combinations of different directional pre-strains 

Appendix B.3 Discussion 

We will now discuss some essential material considerations in applying this fabrication 

method, possible variations of the method, and the limitations in extending it more broadly. One 

key requirement is that the tube and the coated layer must have a large difference in modulus; this 

is a requirement for all the buckling-based methods of developing topography. A second key point 
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is that realizing wrinkles on the internal surface requires inverting and then reinverting elastomeric 

tubes. Thus, it is crucial that the elastomeric tubes be sufficiently stretchy to permit inversion. 

Many silicone elastomers, natural rubber, and various synthetic rubber tubes do have sufficient 

stretchability to permit inversion. A third requirement is that the two layers must have excellent 

adhesion so that they remain bonded during inversion. These latter two requirements are less 

relevant if wrinkles are desired on the external surface; inversion is not needed, and further, due 

to the smaller strains experienced, the film may be expected to remain bonded even with modest 

adhesion. Thus, situations with outer wrinkles may be implemented with a much wider range of 

materials.  

We have used a simple pressure-driven spray as a coating method to create the thin stiff 

film on the surface. While simple and inexpensive, it requires diligent cleaning (in our case, by 

spraying several mL of hexane after each experiment) to prevent clogging. However, alternate 

methods such as electrospraying or electrodeposition may also be used, especially if very thin 

coatings are desired. Dipcoating is also viable, but with the crucial limitation that the elastomeric 

tube must be chemically incompatible with the solvent. This is because dipcoating requires the 

tube to remain immersed into the solvent for extended periods, and a solvent that has good 

compatibility with the elastomeric tube would induce large degree of swelling. This is especially 

true if thin coatings are desired, which require very slow dipcoating. Indeed, in our own case, 

dipcoating the stiff layer onto the tube using hexane as a solvent would not be viable due to severe 

swelling. One benefit of spraying is that the solvent can evaporate rapidly, and hence significant 

swelling can be avoided. 

Other ways to coat the inner surface of tubular conduits include methods such as plasma 

sputtering[129], improvised spray-coating[130], plasma immersion[131], vapor deposition. 
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However, in these methods, it is difficult to induce a pre-strain to the tubes, which is necessary to 

develop topography using bilayer strain-mismatch. 

Finally we contrast this paper against the approach taken in our own past research. In that 

case, a thin stiff layer is first dipcoated onto a large diameter mandrel, coated with a soft adhesive, 

and then inserted into a smaller-diameter soft tube as done in the study by Nath et al. [36]. Note 

that the soft tube must expand to accommodate the larger mandrel, thus inducing strain mismatch 

between the stiff layer and the tube. Upon curing the adhesive, the coated layer becomes strongly 

bonded to the inner surface of the tube. Upon removal of this now-bilayered tube from the mandrel, 

wrinkles appear as the soft tube shrinks in diameter. The central challenge of that approach is that 

the stiff film can undergo significant damage or even delaminate from the mandrel when inserting 

the mandrel into the soft tube. 

Appendix B.4 Conclusion 

To summarize, we have developed a method of fabricating soft elastomeric tubes with 

surface topography without the need of large-scale microfabrication. We have illustrated methods 

useful in various areas of research: (1) a method to create long, thin-walled silicone cylindrical 

tubes by using the annular space between a tube and a rod; (2) a spraycoating method to apply a 

thin coating onto a cylindrical surface with the desired strain mismatch, and (3) the idea of 

inverting the tubes before coating so that wrinkles can be developed on the inner surface of the 

tubes. All three methods are inexpensive, require little equipment, and can be used across a range 

of geometries making them suitable for rapid prototyping. This method can be used to create 

topography of a range of scale depending on the stiff layer thickness and applied pre-strain. Small 
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variations of the method allow the orientation surface topography to be varied, e.g. the wrinkles 

being oriented circumferentially or axially, or on the outer surface of the tubes. Tubes made by 

this method are well-suited for research on applications such as synthetic tubular prosthetics for 

replacing biological conduits, or conduits that resist fouling by a purely mechanical means. 
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Appendix C : Amplitude Variation and Fiber Strain for Single Embedded Crimped Fiber 

and Experimental Verification 

Appendix C.1 Introduction 

Stiffer fibers embedded in softer matrix provide reinforcement and stiffness to the 

composites. Using short fibers as reinforcement fillers gives the advantage of being able to 

fabricate the composites using conventional plastics processing operations such as extrusion, 

molding, and extrusion-based 3D printing [57, 75-80]. Compared to stiffer straight fibers, stiffer 

crimped fibers behave differently when embedded in a soft matrix. As the matrix is stretched, the 

crimped fibers initially uncrimp before developing a strain. This leads to strain hardening behavior 

of the composite, since crimped fibers as fillers act as softer reinforcers at lower strains and provide 

higher stiffness to the composite at higher strains. 

Stress transfer occurring between the matrix and the fiber for a finite length straight fiber 

was shown by Cox’s Shear Lag Theory [86]. According to this model, there is a certain length near 

the ends of the straight fiber that does not bear full load, whereas the middle portion of the fiber is 

fully loaded. This length (termed as ‘shear lag length (𝑙𝑠)’) is dependent on the fiber modulus and 

the fiber aspect ratio. Calculation of 𝑙𝑠 helps us estimate length of the fiber which does not 

contribute completely towards composite stiffness and thus helps us decide the minimum fiber 

length for such short fiber composites. This study had not been done for when the fiber is initially 

crimped. 

In our previous study, we quantified the stress transfer occurring between the matrix and 

the fiber for a single finite length crimped fiber [38]. It was found that similar to a straight fiber, 
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there is an analogous length near the ends of the crimped fiber where the stress is lower than the 

fully loaded middle region of the fiber, which was termed as the ‘effective shear lag length (𝑙𝑠
𝑒𝑓𝑓

)’. 

In contrast to straight fiber behavior, 𝑙𝑠
𝑒𝑓𝑓

 is not constant for the crimped fiber, but increases with 

increase in applied strain. This is in tandem with the assumption that the fiber uncrimps at lower 

strains and as it uncrimps, its geometry gets closer to that of a straight fiber correspondingly 

increasing the resistance of the fiber to further stretch. This effective shear lag length for a crimped 

fiber is not only dependent on the applied strain but also on the relative stiffness of the fiber (as in 

the case of straight fibers) and the degree of crimp of the fiber. The degree of crimp can then 

quantified by the initial amplitude of crimps for the fiber. Since this portion of the fiber near the 

ends is not fully loaded, we can infer that this portion will not uncrimp as much as the fully loaded 

region. In order to determine the 𝑙𝑠
𝑒𝑓𝑓

, we proposed an Equivalent Straight Fiber model as a 

modified form of the Cox’s Shear Lag Model, which approximated a crimped fiber to an equivalent 

straight fiber whose modulus increases with strain. 

In order to estimate the fraction of fiber length contributing towards reinforcement, the 𝑙𝑠
𝑒𝑓𝑓

 

needs to be calculated for the crimped fiber from the fiber stress and strain. Although, the values 

of fiber stress and strain are possible to obtain from computational simulations, these values are 

difficult to measure in a physical system. In a physical setup, fiber stress cannot be directly 

measured but needs to be calculated from fiber strain. Markers can be placed upon the fiber and 

these markers can be tracked as the matrix is stretched to calculate the strain. However, this 

requires the markers to be on the scale of the fiber width, and presents difficulty when dealing with 

fibers of micron-scale diameters. In such a physical setup, however, it is still possible to directly 

observe the fiber profile using a camera. 
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This study is a follow up of the previous single crimped fiber simulation study, where our 

goal is to investigate whether the fraction of fiber which contributes towards composite stiffness 

can be quantified by observing only the fiber profile at different applied strains to the matrix. Since 

the crimped fiber does not fully uncrimp where there is no complete fiber loading, we suggest 

looking at the reduction in peak amplitudes along the fiber. This analysis is first carried out on the 

same set of simulations that were presented in the previous study [38]. We then provide an 

experimental verification of this method wherein samples were created with a single embedded 

crimped fiber in a softer matrix. Similar analysis was done by tracking the peaks and troughs of 

the crimped fiber in the experimental samples in order to find out the fraction of the fiber that 

uncrimps. 

Appendix C.2 Methods 

Appendix C.2.1 Uniaxial Stretching of Single Fiber Samples 

Samples were made with a single crimped fiber embedded in the central plane of a 

relatively softer matrix. The samples were made in lab using 100% polyester thread filaments of 

diameter 15-20 𝜇𝑚, and Sylgard 184 silicone as the surrounding matrix. Specialized set up was 

used for crimping the threads and embedding them into the silicone (Appendix C Figure. 1). 

The crimping setup consisted of a silicone mold with groves of wavelength 400 microns 

(Appendix C Figure. 1 (A)). This corresponded to the crimped threads having a wavelength which 

was 40-50 times the fiber radius. This ratio is similar to that for the fiber modelled in simulations 

in the single fiber computational study [38]. The silicone mold had gutters connected to the groves 
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with an outlet for vacuum. A grooved blanket with interlocking grooves was placed on top, 

sandwiching the threads which were laid out on the base perpendicular to the direction of grooves. 

Vacuum was applied in order to secure the blanket to the base mold and the entire set up was then 

gradually heated to 200° C. This temperature did not cause the fibers to melt but was enough to 

soften them in order to allow the grooves to form the fibers using plastic deformation. After a short 

period of time (~4 minutes), the setup was rapidly cooled by immersing in an ice bath while still 

applying the vacuum. Once cooled and the vacuum turned off, the grooved blanket was removed 

and the fibers were gently removed from the grooved base, thus retaining their crimped geometry. 

Appendix C Figure. 1 (C) shows the resulted crimped fibers. 

The crimped fibers were cut to a length of 4 mm ensuring that there were 8-10 wavelengths 

in the fiber length. These threads were then plasma treated for better adhesion to the silicone and 

placed on thin flat silicone (Sylgard 184) slabs. An equal amount of the same silicone was then 

poured on top, thus embedding the threads in the central plane. The samples were allowed to cure 

for sufficient time before placing in the uniaxial tensile setup and were then stretched to a strain 

of 20-25%. Images of the fibers were taken at multiple strains using a mounted camera for image 

analysis (Appendix C Figure. 1 (B)). 
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Appendix C Figure. 1 Fiber crimping setup 

(A) Cartoon schematic of thread crimping setup, (B) Cartoon schematic of tensile stretch setup, and (C) 

resulting crimped fiber filaments 

Appendix C.2.2 Image Analysis 

Analysis was carried out for both the single fiber simulations from the previous study, and 

for the experimental samples. To obtain the fiber profile at different strains, XY coordinates of the 

fiber were output from the single fiber simulations. For the single fiber experimental samples, 

images of the fiber inside the matrix were captured at discrete values of applied strain as the matrix 

was stretched. Analysis of these images was done using ImageJ and Matlab softwares. Images of 

fibers taken with the camera (Appendix C Figure. 2 (A – top)) were converted to binary format 

and the fiber profile was isolated (Appendix C Figure. 2 (A – middle)). The central axis of the 
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fiber was mapped to straight line, in order to eliminate errors due to gross-scale bending of the 

fiber (Appendix C Figure. 2 (A – bottom)). Appendix C Figure. 3 shows the fiber profiles at 

different strains for (A) single fiber simulation, and (B) single fiber experimental sample. Here, 

we see that as the matrix is stretched, the fiber does not stretch uniformly. There is a variation in 

the crimp amplitudes (𝐴𝑐) along the fiber. The dotted lines in Appendix C Figure. 3 show 

qualitatively that the amplitude reduces more for peaks in the middle region of the fiber as 

compared to the peaks near the ends. The Y-axis on the plots in Appendix C Figure. 3 (A and B) 

is magnified in order to emphasize the variation in the amplitudes seen along the fiber. Thus we 

can define a certain “penetration length” for the amplitude (𝑙𝑝𝐴
) which is the length of the fiber 

near the ends where the peak amplitude is not maximally reduced. This length can be found out by 

calculating the reduction in crimp amplitude for the peaks along the fiber at different strains. 

 

Appendix C Figure. 2 Image analysis of single fiber sample 

(A) Image analysis process showing (top to bottom): camera image of single fiber sample, binary isolation of 

fiber profile, and plotted fiber profile with mapped peaks (red circles) and half-wavelength points (black 

stars), and (B) camera images of fiber profile with increasing applied strain (top to bottom) 
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Appendix C Figure. 3 Single fiber profile under stretch 

fiber profile at 3 different strains for (A) single fiber simulations (
𝑬𝒇

𝑬𝒎
= 𝟏𝟎𝟎𝟎,

𝑨𝒄𝟎

𝝀
= 𝟎. 𝟏𝟗), and (B) single 

fiber experimental sample (
𝑬𝒇

𝑬𝒎
= ##,

𝑨𝒄𝟎

𝝀
= 𝟎. 𝟎𝟖) 

In order to get the reduction in crimp amplitude, the peaks and troughs of the fiber profiles 

were calculated both for the simulations and from the camera images. These are shown as red 

circles in fig 2C for experimental sample. Amplitude was calculated as the distance of the peak 

from the central axis of the fiber and the reduction in crimp amplitude was calculated as 𝐴𝑟𝑒𝑑𝑖
=

 
𝐴𝑐0,𝑖

−𝐴𝑐𝑖

𝐴𝑐0,𝑖

|
𝜀

, where 𝐴𝑐0
 refers to the crimp amplitude of the unstretched fiber (𝜀 = 0), and 𝑖 refers 

to the 𝑖𝑡ℎ  peak. For a total of ‘n’ peaks (𝑖 = 1,2, … , 𝑛), the plot of 𝐴𝑟𝑒𝑑 𝑣𝑠 𝑖 resembles the shape 

of the plot for fiber stress as given by the Shear Lag Model. Thus, in order to find 𝑙𝑝𝐴
, an equation 

similar to the shear lag model was fitted to these plots. Since the shear lag model works for a range 

𝑥 = {−𝐿, 𝐿}, where L is the half length of the fiber and the origin is situated at the center of the 
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fiber, the origin of 𝐴𝑟𝑒𝑑 𝑣𝑠 𝑖  plots was also shifted to the midpoint of the fiber (𝑜𝑟𝑖𝑔𝑖𝑛 =
𝑛+1

2
). 

Thus, the first peak (𝑖 = 1) now became − (
𝑛−1

2
) and the 𝑛𝑡ℎ peak became (

𝑛−1

2
) . Eq. C1 was 

then fitted for the range 𝑥 = {− (
𝑛−1

2
) , (

𝑛−1

2
)}. 

𝐴𝑟𝑒𝑑 = 𝐴𝑚𝑎𝑥𝜀 (1 − cosh (
3𝑥

𝑙𝑝𝐴

)) (sech (
3 (

𝑛 − 1
2 )

𝑙𝑝𝐴

)) 

(C1) 

In Eq. C1, the quantity (𝐴𝑚𝑎𝑥𝜀) is the maximum reduction in amplitude seen at the middle 

of the fiber, and 𝐴𝑚𝑎𝑥 and 𝑙𝑝𝐴
 are the two fitting parameters. The points where the fiber profile 

intersects with the central axis of the fibers (inflection points) were also tracked (shown as stars in 

Appendix C Figure. 2 (A – bottom)). Average strain in the fiber was predicted by calculating the 

quarter-wavelength distances between the peaks and inflection points. Variation in amplitude 

along the fiber, changes in 𝑙𝑝𝐴
 with strain and the average strain in the fiber were compared in this 

study, for a single fiber simulation and single fiber experimental sample. 

Appendix C.3 Results 

Appendix C.3.1 Amplitude Variation along the Fiber 

Amplitude reduction for the peaks along the fiber were calculated for 2 sets of simulations: 

i) comparing different relative modulus of fiber: matrix (
𝐸𝑓

𝐸𝑚
= 10, 100 and 1000) for initial crimp 

amplitude, 
𝐴𝑐0

𝜆
= 0.19, and ii) comparing fibers with different initial crimp amplitudes 
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(
𝐴𝑐0

𝜆
= 0.14, 0.19 𝑎𝑛𝑑 0.25) for 

𝐸𝑓

𝐸𝑚
= 1000. The reduction in amplitude along the fiber was 

plotted against the peak number (𝑖 = 1, … , 𝑛). Appendix C Figure. 4 (A) shows the reduction in 

amplitude for the peaks along the fiber for a single fiber simulation with 
𝐸𝑓

𝐸𝑚
= 1000 and 

𝐴𝑐0

𝜆
=

0.19. However in order to get the 𝑙𝑝𝐴
, we need to look at the 𝐴𝑟𝑒𝑑 in the middle of the fiber relative 

to the 𝐴𝑟𝑒𝑑 at the ends of the fiber. Thus, the relative difference between values of 𝐴𝑟𝑒𝑑 at the 

center and the fiber end (𝐴𝑟𝑒𝑑𝑖
− 𝐴𝑟𝑒𝑑1

) was considered for fitting to Eq. C1. These values along 

with the fits of Eq. C1 are shown in Appendix C Figure. 4 (B). Appendix C Figure. 5 shows the 

𝑙𝑝𝐴
 normalized by the half range of peaks (

𝑛−1

2
), so that 𝑙𝑝𝐴

/ (
𝑛−1

2
) represents the fraction of the 

fiber length where the peaks are not maximally reduced. Lower the value of 𝑙𝑝𝐴
/ (

𝑛−1

2
) , larger 

fraction of the fiber and correspondingly more number of peaks have maximal amplitude 

reduction. Appendix C Figure. 5 (A) shows the change in 𝑙𝑝𝐴
/ (

𝑛−1

2
)  with strain for different fiber: 

matrix modulus ratios. We see that as the fiber becomes relatively stiffer than the matrix, the value 

of 𝑙𝑝𝐴
/ (

𝑛−1

2
)  also increases, which means that there is a larger fraction of fiber that has lesser 

reduction in amplitude near the ends and hence, a larger fraction of the fiber that does not ‘uncrimp’ 

as much as that in the middle. Appendix C Figure. 5 (B) shows the change in 𝑙𝑝𝐴
/ (

𝑛−1

2
)  with 

strain for different initial crimp amplitudes. We see that the 𝑙𝑝𝐴
 initially increases with increasing 

strain and then decreases. The vertical lines correspond to “geometric straightening” and are 

calculated as the strain needed so that the end-to-end length of the uncrimped fibers becomes equal 

to the contour length of the original crimped fiber, or in other words, the strain at which the fiber 

completely straightens out. It is seen that the largest value of 𝑙𝑝𝐴
 is when the applied strain is close 

to the strain required for geometric straightening. This means that initially, there is a larger part of 
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the fiber in the middle that has uniform maximal amplitude reduction. As the strain increases, there 

are lesser number of peaks which have maximal amplitude reduction. However, once the applied 

strain increases beyond the strain required for geometric straightening, the number of peaks with 

maximal reduction increases, thus showing that beyond this strain, uncrimping of the fiber 

propagates from the middle of the fiber outward towards the ends. 

 

Appendix C Figure. 4 Reduction in crimp amplitude: simulations 

(A) reduction in amplitude, and (B) reduction in amplitude relative to end peak with Eq.1 fits; for single fiber 

simulation (
𝑬𝒇

𝑬𝒎
= 𝟏𝟎𝟎𝟎,

𝑨𝒄𝟎

𝝀
= 𝟎. 𝟏𝟗) 

 

Appendix C Figure. 5 Amplitude penetration length: simulations 
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Amplitude penetration length (𝒍𝒑𝑨
) vs strain for single fiber simulation for fiber with  (A) different relative 

modulus ratios, and (B) different initial crimp amplitude 

Similar analysis to that done for fiber profiles obtained from simulations was performed 

on the images captured for the single fiber experimental samples. Whereas the simulations can 

output a very large number of XY points for the fiber profile, the experimental images are limited 

by the limitations in image tracking and camera resolution. Hence the points were interpolated in 

order to achieve higher accuracy for finding peaks and half-wavelength points. Due to these 

limitations, experimental analysis results have a larger variation than the simulations. A total of 3 

samples were made and tested. Results for one of the sample are presented here. Since each sample 

was made separately, they were not exactly alike, although the results for all the samples 

qualitatively matched. Appendix C Figure. 6 (A) shows the amplitude reduction for a polyester 

fiber (
𝐸𝑓

𝐸𝑚
~ 500 and

Ac0

𝜆
= 0.08), and Appendix C Figure. 6 (B) shows the reduction in amplitude 

relative to the amplitude reduction at the ends of the fiber along with fits of Eq. C1. Qualitatively, 

it is evident from these plots that there is a lower reduction in the amplitude near the ends similar 

to that observed in simulations. Plotting 𝑙𝑝𝐴
/ (

𝑛−1

2
) with applied strain also shows a similar trend 

to that observed in simulations, where the 𝑙𝑝𝐴
 initially increases with strain and then beyond a 

certain value of strain, starts decreasing, meaning that the propagation of uncrimping is outward 

from the middle beyond this strain (Appendix C Figure. 7). 
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Appendix C Figure. 6 Reduction in crimp amplitude: experiments 

(A) reduction in amplitude, and (B) reduction in amplitude relative to end peak with Eq.1 fits; for single fiber 

simulation (
𝑬𝒇

𝑬𝒎
~ 𝟓𝟎𝟎,

𝑨𝒄𝟎

𝝀
= 𝟎. 𝟎𝟖) 

 

Appendix C Figure. 7 Amplitude penetration length: experiments 

Amplitude penetration length (𝒍𝒑𝑨
) vs strain for single fiber experimental sample (

𝑬𝒇

𝑬𝒎
~ 𝟓𝟎𝟎,

𝑨𝒄𝟎

𝝀
= 𝟎. 𝟎𝟖) 



 115 

Appendix C.3.2 Average Strain in the Fiber 

Average strain in the fiber was calculated from the fiber contour length (CL) of the fiber, 

calculated from the fiber profile. Average fiber strain was calculated as: 

𝜀𝑓𝑚𝑒𝑎𝑛
=

𝐶𝐿𝜀 −  𝐶𝐿0

𝐶𝐿0
 

Where the subscript indicates the applied strain to the matrix. This is plotted in Appendix 

C Figure. 8 for single fiber simulations and the 3 single fiber experimental samples. We can see in 

the plots that the mean fiber strain is lower than the applied strain. This can be attributed to the 

crimped nature of the fiber. 

 

Appendix C Figure. 8 Mean fiber strain 

Showing 𝜺𝒇𝒎𝒆𝒂𝒏
 (solid lines) with 𝒚 = 𝒙 line (red dashed) for (A) single fiber simulation, and (B to D) 

experimental samples (E1, E2, E3) 
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Appendix C.4 Discussion 

In multifiber composites, quantifying the fraction of fiber length contributing to 

reinforcement of the composite is useful in deciding the minimum length of the fibers. Here, we 

quantify it for crimped fibers, by looking at the reduction in fiber crimp amplitudes which are 

calculated simply by imaging the fiber and looking at the fiber profile under different applied 

strains. This study shows that the fraction of fiber that uncrimps and the strain in fiber can both be 

calculated only from the fiber profile. This method of quantifying the fiber fraction contributing 

to reinforcement simply by imaging the fiber profile at different strains could be useful in assessing 

the fiber contribution of chopped crimped fiber to the composite without the need of computational 

simulations. 

There are certain constraints and limitations of using this method of making single crimped 

fiber samples and imaging the fiber profile to obtain the 𝑙𝑝𝐴
 and fiber strain. Since the fibers are 

very small, handling them is difficult and thus the process of making the sample is prone to manual 

errors. While crimping the fibers, they need to lie exactly perpendicular to the groves of the 

vacuum forming mold in order to get the exact desired amplitude:wavelength ratio. Fibers that are 

not lying perpendicular or fibers with a gross bending might not get uniformly crimped. While the 

crimped fiber is laid on the silicone slab and equal amount of silicone is poured on top to ensure 

the fiber is central to the sample, there is little control to maintain the fiber in the central plane, 

and it can change the configuration slightly until the newly poured silicone cures. In order to get 

good images of very small fibers embedded in the matrix, the fiber needs to be in the plane 

perpendicular to the camera axis and in the plane of the stretch. Camera resolution needs to be 

sufficiently good and the matrix material needs to be transparent in order to allow through-depth 

imaging. 
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