
 

  

Title Page  

Computational Study on Site-Selectivity of DMDO-Mediated C–H Hydroxylation 

 

 

 

 

 

 

 

 

by 

 

Yimin Chen 

 

Bachelor of Science, Nanjing University, 2018 

 

 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of the 

 

Dietrich School of Arts and Sciences in partial fulfillment 

  

of the requirements for the degree of 

 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

 

2023



   

 

 ii 

Committee Page 

UNIVERSITY OF PITTSBURGH 

 

DIETRICH SCHOOL OF ARTS AND SCIENCES 

 

 

 

 

 

 

 

 

 

This dissertation was presented 

 

by 

 

 

Yimin Chen 

 

 

It was defended on 

 

August 17, 2023 

 

and approved by 

 

Paul Floreancig, Professor, Chemistry, University of Pittsburgh 

 

Rob Coalson, Professor, Chemistry, University of Pittsburgh 

 

John Keith, Associate Professor, Chemical and Petroleum Engineering, University of Pittsburgh 

 

Peng Liu, Professor, Chemistry, University of Pittsburgh 

  



   

 

 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Yimin Chen 

 

2023 

 

 

 

 



   

 

 iv 

Abstract 

Computational Study on Site-Selectivity of DMDO-Mediated C–H Hydroxylation 

 

Yimin Chen, PhD 

 

University of Pittsburgh, 2023 

 

 

 

 

C–H hydroxylation is an important type of transformation in organic synthesis. However, 

it is challenging to control the site-selectivity for structurally complex substrates with multiple C–

H bonds of similar inherent reactivities. The site-selectivity of dimethyldioxirane (DMDO)-

mediated C–H hydroxylation is investigated via computational chemistry tools and statistical 

methods to better understand factors affecting site-selectivity and to develop a predictive model 

for site-selectivity. In addition to the previously recognized electronic effects on site-selectivity, 

this study reveals the significance of steric effects and strain-release effects. A model capable of 

quantifying the electronic effects, steric effects, and strain-release effects on the selectivity of 

structurally complex compounds is developed. A reaction-specific descriptor based on solvent-

accessible surface area (SASA) is developed to describe steric effects of C–H bonds. An activation 

function was found to be critical to improve the performance of the SASA descriptor. In addition, 

further application of the site-selectivity prediction model to a macrocyclic molecule is performed 

to examine the applicability of the model to structurally complex and conformationally flexible 

molecules. 
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1.0 Introduction 

1.1 DMDO-Mediated Late-Stage C–H Hydroxylation 

C–H hydroxylation is an important tool in late-stage diversification of drugs1 and 

simulation of drug metabolism.2 The hydroxylation reaction converts C–H bonds into C–OH 

bonds, which can alter the solubility and polarity of molecules,3 make it easier to construct more 

complex core backbones, and create sites for further downstream functionalization, such as 

glycosylation. Organic oxidants,4–6 transition metal catalysts,7 electrochemical methods,8,9 and 

enzymes10 have been employed in this type of transformation. The control of site selectivity in C–

H hydroxylation is being actively pursued by researchers because the chemical properties of 

different C–H bonds in a natural product can have little difference. Site-selective C–H 

hydroxylation can reduce protecting and deprotecting stages in synthetic sequences and reduce the 

usage of toxic or hazardous reagents. Different methods have been developed to perform selective 

C–H hydroxylation5,7,9,10 while factors controlling site-selectivity of different C–H hydroxylation 

reactions are often unclear. 
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Figure 1-1 Different approaches of site-selective C–H hydroxylation 

 

Dimethyldioxirane (DMDO) is a potent and easy-to-use organic oxidant capable of 

performing selective C–H hydroxylation. Previous experimental studies have showed that DMDO 

can selectively oxidize one or two C–H bonds in a complex substrate.11–13 This makes DMDO-

mediated oxidation a useful tool for drug diversification. DMDO can be prepared from acetone 

and KHSO5, which are inexpensive starting materials.14 Also, the only side product from DMDO-

mediated C–H hydroxylation is acetone, which makes the disposal after experiments quite easy. 

DMDO-mediated C–H hydroxylation often favors C–H bonds with low bond dissociation 

energies (BDEs), including tertiary alkyl C–H bonds (BDE ≈ 96 kcal mol–1),15 ether α C–H bonds 

(BDE ≈ 96 kcal mol–1),16 and acetal α C–H bonds (BDE ≈ 92 kcal mol–1).17 However, other factors 
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alter the selectivity. In DMDO-mediated oxidation of tetrahydrofuran (Figure 1-2a), the ether α 

C–H bonds were selectively oxidized in both major and minor products. The minor product is the 

result of C–H hydroxylation while the major product is the result of overoxidation of the ɑ-C–H 

hydroxylation product.18 Here, the site-selectivity can be explained by BDE alone. The BDE of 

ether α C–H bonds in tetrahydrofuran is lower than that of typical alkyl C–H bonds due to the 

stabilization of the radical center by the lone-pair electrons of the neighboring oxygen atom in the 

radical intermediate formed after the homolysis of an ether α C–H bond. In the DMDO-mediated 

oxidation of 3-methyltetrahydropyran (Figure 1-2b),18 no C–H hydroxylation product was 

observed at the tertiary C3 site. The major product is a lactone formed via overoxidation at the C6 

site. The minor product is formed via overoxidation at the C2 site. Among the two electronically 

activated ether α C–H bonds, the C6–H bond is favored over C2–H possibly because of less steric 

clash with the C3-methyl group. DMDO-mediated oxidation of 5β-androstan-3α-17β-diacetoxy 

(Figure 1-2c)19 favors the C5–H hydroxylation. Here, C5–H is less sterically hindered because the 

substrate is a 5β form of steroid, which might contribute to the site-selectivity. By contrast, in the 

DMDO-mediated oxidation of a stereoisomer of the steroid, 5α-androstan-3β-17β-diacetoxy 

(Figure 1-2d), only C14–H hydroxylation occurred.20 In the DMDO-mediated oxidation of estrone 

acetate (Figure 1-2e),4 the substrate underwent selective C9–H hydroxylation followed by 

dehydration, which led to a Δ9,11 unsaturated derivative. Here, the C9–H, a tertiary benzylic C–H 

bond, is more electronically activated than C6–H, a secondary benzylic C–H bond, and other 

tertiary alkyl C–H bonds in the same substrate. In the DMDO-mediated oxidation of a cholestane 

derivative (Figure 1-2f), only C25–H hydroxylation occurred.21 There are six tertiary C–H bonds 

with similar electronic properties in this substrate, while only one of them was oxidized. This 

example demonstrated that it can be difficult to predict the selectivity prior to experiments. When 
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tigogenin acetate was submitted to DMDO (Figure 1-2g), only the tertiary ether α C–H bond, C16–

H, is hydroxylated.22 When a bryostatin analogue was submitted to DMDO (Figure 1-2h), only 

C9–H hydroxylation occurred.23 The macrocyclic substrate can adopt multiple conformations in 

solution, making it even more challenging to understand the steric properties of different C–H 

bonds. The selectivity of this conformationally substrate will be investigated computationally in 

Chapter 4. The reactive C9–H is one of the four tertiary ether α C–H bonds. C15–H, a tertiary 

acetal α C–H bond, which is also an allylic C–H bond, is expected to be even more electronically 

activated because its BDE is expected to be significantly lower than that of C9–H. However, C15–

H was not oxidized in the experiment, which indicated that not only electronic effects but also 

steric effects play an important role in DMDO-mediated C–H hydroxylation. 
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Figure 1-2 DMDO-mediated site-selective C–H hydroxylation 
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Methyl(trifluoromethyl)dioxirane (TFDO) is an alternative oxidant used in C–H 

hydroxylation and often shares similar site-selectivity as in DMDO-mediated reactions. In the 

TFDO-mediated oxidation of tetrahydrofuran (Figure 1-3a),18 ether α C–H bonds were oxidized 

in both major and minor products, yielding similar site-selectivity as in the DMDO-mediated C–

H hydroxylation. In the TFDO-mediated oxidation of 3-methyltetrahydropyran (Figure 1-3b),18 

the major product is formed via overoxidation at the C6 site, whereas the minor product is formed 

via overoxidation at the C2 site. The site-selectivity favoring the less sterically hindered C-H bond 

is similar to that of DMDO. In the TFDO-mediated oxidation of estrone triflate (Figure 1-3c),9 the 

substrate initially underwent selective C9–H hydroxylation, the same site in the DMDO-mediate 

reaction, followed by dehydration to afford a Δ9,11 unsaturated derivative. With the more reactive 

TFDO, the Δ9,11 unsaturated derivative subsequently underwent alkene epoxidation and 1,2-

hydride shift to get the major product with a C=O double bond installed on the C11 position. In 

the TFDO-mediated oxidation of a cholestane derivative (Figure 1-3d), only C25–H hydroxylation 

occurred, which is the same site that was hydroxylated with DMDO.21 Similarly, in the TFDO-

mediated oxidation of tetraacetyl-brassinolide (Figure 1-3e), only the exocyclic tertiary C–H bond 

(C25–H) is hydroxylated.24 The TFDO-mediated selective C–H hydroxylation has been applied in 

a synthetic route towards (+)-phorbol (Figure 1-3f). A fused tetracyclic intermediate was submitted 

to TFDO and only a secondary C12–H hydroxylation occurred,25 which is vicinal to the 

cyclopropane ring. Here, strain-release effect might come into play because the ring strain in the 

fused [6,3]-cyclic system may be partially released in the transiently produced radical 

intermediate. 
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Figure 1-3 Experimental results of TFDO-mediated C–H hydroxylation 

 

Taken together, the previous experimental results indicated that DMDO and TFDO gave 

similar site-selectivity in C–H hydroxylation of various structurally complex scaffolds, although 
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TFDO is often more reactive, leading to higher yields, and occasionally, more byproducts via 

alkene epoxidation. The site-selectivity in both DMDO- and TFDO-mediated reactions appears to 

be controlled by multiple factors, including electronic effects, strain-release effects, and steric 

effects. 

1.2 Mechanistic Insights from Experimental and Computational Studies on DMDO-

Mediated C–H Hydroxylation 

Previous experimental results indicated that DMDO-mediated C–H hydroxylation is an 

electrophilic process. Isotope labeling experiments were performed by preparing 17O-enriched 

DMDO using 17O-labeled acetone.26 The 17O chemical shift was 302 ppm, which is the result of 

large deshielding. The NMR results suggested that there is a low-lying unoccupied σ*(O–O) 

orbital as LUMO and a high-lying occupied π*(O–O) orbital as HOMO.27 The π*(O–O) orbital is 

higher in energy because of coplanarity of lone pairs on the oxygen atoms enforced by the three-

membered ring. The three-membered ring also leads to depleted electron density in the direction 

of the O–O bond, which weakens the O–O bond and promotes the reaction with electron-rich C–

H bonds. The reaction rates of DMDO-mediated reactions with a series of para-substituted 

cumenes were measured.28 The Hammett plot gave a large negative ρ value of –2.76, which further 

confirmed the electrophilic nature of the DMDO-mediated C–H hydroxylation. 
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Figure 1-4 DMDO-mediated C–H hydroxylation is electrophilic. 

 

Some experimental results of DMDO-mediated C–H hydroxylation can exclude the 

mechanism involving long-lived free radicals. In the DMDO-mediated hydroxylation of 

enantioenriched (R)-2-phenylbutane (Figure 1-5), (S)-2-phenylbutan-2-ol was obtained with 

complete stereorentention.29 The rate constant of the racemization of radicals derived from 

enantioenriched chiral substrates was estimated to be greater than or equal to 1012 s−1, which is 

already very fast. If DMDO-mediated C–H hydroxylation proceeded via a mechanism involving 

long-lived free radicals, loss of enantiomeric excess (ee) should have been observed. The 

stereoretention shown in Figure 1-5 is consistent with a mechanism involving an intimate radical 

pair, which quickly collapses once generated. Another plausible mechanism is a concerted C–H 

insertion process without radical intermediates. DMDO-mediated C–H hydroxylation on 
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cyclododecane and deuterated cyclododecane showed kH/kD = 4.97. The primary kinetic isotope 

effect indicated that the cleavage of C–H bond happens during the rate-determining step of this 

reaction.30 

 

 

Figure 1-5 DMDO-mediated C–H hydroxylation of (R)-2-phenylbutane 

 

Previous computational studies from density functional theory (DFT) calculations and 

multiconfiguration methods, such as CASPT2, support a mechanism involving intimate radical 

pairs.31,32 In the commonly accepted mechanism of DMDO-mediated C–H hydroxylation, the first 

step is hydrogen atom transfer (HAT), which involves a concerted process of homolytic cleavage 

of both the C–H bond in the substrate and the O–O bond in DMDO with an O–H bond formation, 

leading to an intimate radical pair of an alkyl radical and an oxygen-centered radical. This is 

followed by a second, oxygen rebound step, where the C–OH bond in DMDO is homolytically 

cleaved and the hydroxyl radical is transferred to the alkyl radical derived from the substrate, 

leading to the C–H hydroxylation product and an acetone molecule as byproduct. The second step 

(oxygen rebound) is expected to be barrierless in solution.33 The rate- and selectivity-determining 

step of DMDO-mediated C–H hydroxylation is HAT. The HAT transition state is an open-shell 

singlet, which has significant diradical character, making it challenging to compute, especially for 

structurally complex substrates.  
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Figure 1-6 Mechanism of DMDO-mediated C–H hydroxylation 

 

To understand the substrate effects on reactivity, the Houk group used DFT to calculate 

the enthalpies of activation (ΔH‡) for the HAT step in DMDO-mediated C–H hydroxylation of a 

library of relatively small model substrates (Figure 1-7).34 Bimodal linear relationships between 

the computed enthalpy of activation and the BDE of C–H bond were observed.34 The 26 substrates 

tested were divided into two groups based on whether there is resonance stabilization of the radical 

intermediates generated after HAT. Good correlations between the enthalpy of activation and BDE 

were found within each group, which confirmed that BDE plays an important role in determining 

reactivity and site-selectivity of DMDO-mediated C–H hydroxylation. However, steric effects 

were not considered in this study, because the relatively small substrates would not reflect how the 

steric environment of C–H bonds contributes to the reactivity and site-selectivity in DMDO-

mediated hydroxylation.  
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Figure 1-7 Bimodal correlations between ΔH‡ and BDE in DMDO-mediated C–H hydroxylation of relatively 

small substrates. “Saturated” C–H bonds are alkyl C–H bonds not adjacent to any multiple bond or benzene ring. 

“Unsaturated” C–H bonds are those adjacent to C=C double bond, C=O double bond, C≡N triple bond, or benzene 

ring. 

 

Besides electronic effects, other factors including steric effects and strain-release effects in 

DMDO-mediated C–H hydroxylation have only been qualitatively studied. In Figure 1-8a, the 

methyl ester acetate derivative of lithocholic acid was submitted to DMDO and only 5β-hydroxy 

product was obtained,35 which is similar to the site-selectivity of DMDO-mediated C–H 

hydroxylation of certain 5β steroids.19 The A and B rings in a 5β steroid are like a cis-decalin, 

where the C5–H is less sterically hindered. In Figure 1-8b, the methyl ester diacetate derivative of 

chenodeoxycholic acid was submitted to DMDO, in addition to the 5β-hydroxy product, 17α-

hydroxy product was also obtained.35 The acetoxy group on C7 deactivates C5–H via inductive 

effects while allows competitive C–H hydroxylation on other sterically accessible C–H bonds. In 

Figure 1-8c, the methyl ester diacetate derivative of ursodeoxycholic acid was submitted to 
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DMDO, in addition to 5β- and 17α-hydroxy products, 14α-hydroxy product was also obtained.35 

Here, the C14–H in the ursodeoxycholic acid derivative is expected to be less sterically hindered 

compared to the C14–H in the chenodeoxycholic acid derivative. A previous computational study 

indicated the computed enthalpies of activation for DMDO-mediated C–H hydroxylation of 

equatorial tertiary C–H bonds of a series of cyclohexane derivatives decreased with substrates 

containing more axial methyl substituents (Figures 1-9).31 This can be explained by the strain-

release effect: when the intimate radical pair is formed, the 1,3-diaxial interactions are partially 

released because the radical center undergoes planarization. The triaxial 1,3,5-

trimethylcyclohexane has the greatest 1,3-diaxial interactions, which accounts for its lowest 

enthalpy of activation. 
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Figure 1-8 Steric effects in DMDO-mediated C–H hydroxylation on derivatives of bile acids 
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Figure 1-9 Strain-release effects promote the DMDO-mediated C–H hydroxylation of cyclohexane derivatives 

with axial substituents. 

 

1.3 Predictive Models of Reactivity and Selectivity of Chemical Reactions 

Various regression models have been developed to predict reactivity and site-selectivity of 

different C–H functionalization reactions, where free energy of activation is predicted by relatively 

easy-to-obtain substrate descriptors.7,34,36–38 Different regression models, including multivariate 

linear regression,36 gaussian process regression,39 kernel ridge regression,40–42 and random 

forest,43,44 have been used. These models have been applied to various types of reactions, including 

methane activation by frustrated Lewis pairs,45 as well as other reaction types, such as nucleophilic 

aromatic substitution46 and nucleophilic additions to covalent drugs.47 
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Various linear regression models have been reported for C–H bond functionalization. In 

these studies, different types of substrate descriptors are used. Houk reported correlations between 

BDE of C–H bonds and enthalpy of activation for DMDO-mediated C–H hydroxylation in some 

small substrates (Figure 1-10a).34 Davies and Sigman developed a SMART (Spatial Molding for 

Approachable Rigid Targets) descriptor to quantify spatial constraint in C–H functionalization of 

1-bromo-4-pentylbenzene via different dirhodium catalysts (Figure 1-10b).36 They utilized 

multivariate linear regression to predict the relative free energy of activation using multiple 

descriptors including the SMART descriptor. Floreancig and Liu found that carbocation stability 

and electrostatic attraction are two important factors on the reactivity of oxidative C–H 

functionalization with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).37 They used substrate 

hydride dissociation energy to quantify the contribution of carbocation stability and substrate 

redox potential to quantify the contribution of electrostatic attraction (Figure 1-10c). They used 

multivariate linear regression to develop a predictive model for reactivity of DDQ-mediated C–H 

functionalization. White studied the C–H hydroxylation using non-heme iron catalysts (Figure 1-

10d).7 Her group used natural population analysis (NPA) charge, adjusted A value, and higher 

order terms to model the relative free energy of activation. Nicewicz studied the site-selectivity of 

photoredox-mediated aryl and heteroaryl C–H functionalization (Figure 1-10e).38 His group 

employed redox potential, the difference in NPA charges between the radical cation and neutral 

species, and charge density in the radical cation to predict site-selectivity and successfully 

summarized the rules they found in a knowledge-based flowchart. Hong developed a random forest 

model with 32 physical organic descriptors to predict site-selectivity of radical C–H 

functionalization of heterocycles (Figure 1-10f).48 Cundari used neural network to predict the free 

energy of activation for methane activation by frustrated Lewis pairs (Figure 1-10g).45 Regression 
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models have also been widely applied to study other types of reactions besides C–H 

functionalization.49 Buttar used gaussian process regression to predict the free energy of activation 

of nucleophilic aromatic substitution (SNAr) reactions based on some descriptors (Figure 1-11a).46 

Lilienfeld utilized kernel ridge regression to predict free energy of activation for SN2 reaction of 

non-aromatic substrates (Figure 1-11b).50 Researchers from Boehringer Ingelheim utilized the 

extremely randomized trees algorithm (Figure 1-11c),51 which is similar to random forest but 

performs random splits and does not require bootstrap, to predict the free energy of activation for 

the reaction of acrylamides and 2-chloroacetamides with methylthiolate anion (CH3S
–).47 Here, 

methylthiolate anion was used as a mimic of glutathione in biological systems. 
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Figure 1-10 Recent applications of predictive models for C–H functionalization 
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Figure 1-11 Recent applications of predictive models for other reactions 

 

Descriptor selection is often a major challenge when developing robust and transferrable 

predictive models. Employing a smaller number of descriptors in a model is often more desirable 

because it not only reduces the number of necessary data points to train the model but also 

improves the interpretability of the model. The Sigman group studied the site-selectivity of 

oxidative addition in Suzuki reaction where 38 phosphine ligands were tested.52 The initially 

established model was complex and difficult to interpret. The initial model was established by 

using stepwise linear regression and applying certain criterion associated with the number of 

descriptors. Then the initial model was refined by adding and removing terms manually. This led 

to a simpler model that was more interpretable. The Doyle group used a random forest model to 

study palladium-catalyzed Buchwald–Hartwig cross-coupling of 4-methylaniline with aryl 

halides.53 They tried to predict reaction yield based on substrate and reagent descriptors. Principal 
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component analysis (PCA) was used to reduce the number of descriptors. The Yu group used a 

modified ant colony optimization (ACO) algorithm to perform descriptor selection for quantitative 

structure–activity relationship studies of cyclooxygenase inhibitors.54 

Reaction-specific descriptor has been shown to improve the robustness and reliability of 

predictive models and is expected to better describe steric and stereoelectronic effects in some 

reactions. Although a number of phosphine ligand parameters have been already calculated and 

incorporated into databases,55 the existing transferable descriptors alone are often insufficient to 

predict transition metal‐catalyzed reactions. The Schoenebeck group developed reaction-specific 

descriptors, such as Pd–I–I–Pd dihedral angle and Wiberg bond order between both Pd centers in 

a complex, and employed them in machine learning algorithms to predict new phosphine ligands 

that can generate dinuclear Pd(I) species.56 When studying the selectivity of Pd-catalyzed amination 

of 3,2- and 5,2- Br/Cl-pyridines, Sigman and Tan found that none of the descriptors from a ligand 

descriptor database correlate well with the experimentally measured difference in free energy of 

activation.57 However, the distance between Pd and Cl in computed structures of L2PdCl2 

complexes had a positive correlation with the experimental selectivity. Including this rarely used 

Pd–Cl distance descriptor led to a predictive model of site-selectivity and facilitated the discovery 

of a new ligand to further improve the selectivity. To analyze electronic and steric effects in first-

58 and second-generation Grubbs olefin metathesis catalysts,59 Suresh developed descriptors based 

on molecular electrostatic potential60 and successfully quantified the relative importance of 

electronic effects and steric effects in Grubbs olefin metathesis catalysts with his reaction-specific 

descriptor. Taken together, these previous examples suggest that the development of new substrate 

descriptors is an important strategy to develop robust and transferrable predictive regression 

models. 
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Figure 1-12 Commonly used steric descriptors in predictive models 

 

Sometimes a customized steric descriptor for a specific reaction can significantly improve 

the quality of the predictive model under development. Some commonly used steric descriptors 

are A value,61 Sterimol parameters,62 and percent buried volume (Figure 1-12).63 In the previously 

mentioned collaboration between the Davies group and Sigman group (Figure 1-10b),36 the 

researchers initially found that Sterimol parameters,62 percent buried volume,63 and some 

descriptor related to the solid angle64 showed poor correlations with the experimentally observed 

site-selectivity since the dirhodium catalysts under investigation featured bowl-shaped pockets. 

The researchers had to develop steric descriptors tailored to the bowl-shaped pockets since 
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commonly used steric descriptors were not suitable for such catalysts. They docked a macrocyclic 

thioether molecule to the cavity of the dirhodium catalysts and sampled its conformations. They 

calculated VCAVITY, which is the volume of the surface enclosing all conformations of the 

macrocyclic thioether molecule. They obtained NPROBE, which is the number of conformations. 

They computed entry surface area (ESA) as well. They named the three descriptors SMART 

descriptors, which stands for Spatial Molding for Approachable Rigid Targets. In their final model 

after forward selection, which is a form of stepwise regression, the maximum value of VCAVITY 

was retained along with two electronic descriptors. This study demonstrates that a customized 

steric descriptor can be valuable in the development of predictive models for certain reactions. 

We aim to develop a predictive model of the site-selectivity of DMDO-mediated C–H 

hydroxylation with some descriptors that are easy to calculate. We prioritize the interpretability of 

this model. In this way, chemical intuition can guide the development of this model. This model 

can help the usage of DMDO in organic synthesis. The protocol established during the 

development of this model is expected to be generalizable to other reactions. 
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2.0 Computational Methods 

2.1 Computational Details of Generating Descriptors and Computing Activation Free 

Energies for Substrates in the Data Set 

All DFT calculations were performed with the Gaussian 09 software.65 For each substrate 

in the data set, geometry optimization was performed with the B3LYP66 functional and 6-31G(d) 

basis set.67–76 After geometry optimization, vibrational frequency calculation was performed to 

make sure that the optimized structures are local minima on the potential energy surface. The 

Compliance software was used to retrieve the relaxed force constants of C–H bonds from the 

Hessian matrix in the formatted checkpoint file.77 Sterimol parameters62 and solvent accessible 

surface area (SASA)78 were calculated from the DFT-optimized geometry using Sterimol.py and 

VMD79 respectively. A probe radius of 1.4 Å was used to calculate solvent accessible surface area 

(SASA). Single-point energy was then calculated with the B3LYP functional66 and 6-311++G(d,p) 

basis set in the gas phase in Gaussian.73,74,80–86 Natural population analysis (NPA) charge,87 

CHELPG charge,88 and Laplacian bond order89 were calculated at the same level of theory as the 

single point energy calculations. BDEs were calculated by the reaction enthalpy of the homolytic 

cleavage reaction of C–H bond at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) level of theory. 

The free energies of activation of the hydrogen atom transfer step of DMDO-mediated C–H 

hydroxylation were computed at the B3LYP/6-311++G(d,p)/SMD(acetone)//B3LYP/6-31G(d) 

level of theory, with geometry optimization of the transition state performed with broken-

symmetry DFT with the UB3LYP functional and 6-31G(d) basis set. Vibrational frequency 
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calculations were performed to ensure that the optimized transition state structures are first-order 

saddle points on the potential energy surface and to get the thermal corrections. Wavefunction 

stability test was performed for all open-shell singlet transition state structures with the 

“stable=opt” keyword in Gaussian. Because DMDO-mediated C–H hydroxylation is usually 

conducted in acetone solvent, when calculating the hydrogen atom transfer barriers, single-point 

energies were calculated with the SMD solvation model90 in acetone. The UB3LYP functional and 

6-311++G(d,p) basis set were used in the single-point energy calculations. 

 

 

Figure 2-1 Illustration of solvent accessible surface area (SASA) calculations. A probe with radius of 1.4 Å was 

used in the calculations of the present study. 

 

Probe sphere
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3.0 Developing a Predictive Model for DMDO-Mediated C–H Hydroxylation 

3.1 Data Set Generation and Preliminary Analysis 

We established a library of substrates with diverse steric and electronic properties to train 

and validate the predictive model. The substrates include those used in previous experimental 

studies of DMDO-mediated C–H hydroxylation as well as some relatively small model substrates. 

In total, 31 substrates are included in the data set, and in many cases, multiple C–H bonds in one 

substrate were included. There are 79 C–H bonds in total, including 31 tertiary alkyl C–H bonds, 

28 secondary ether α C–H bonds, 14 tertiary ether α C–H bonds, and six acetal α C–H bonds in 

the data set. C–H bonds known to be unreactive with DMDO due to their high BDEs were not 

included in the data set. The C–H bonds included in the data set are highlighted in red in Figure 3-

1. 
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Figure 3-1 Data set for developing a reactivity and selectivity model of DMDO-mediated C–H hydroxylation 

 

For each targeted C–H bond in the data set, we calculated several steric and electronic 

descriptors (Table 3-1), as well as the free energy of activation for the HAT step in DMDO-

mediated C–H hydroxylation. The solvent accessible surface area (SASA) of a C–H bond 

describes the area of the surface area of the C–H bond that is exposed to a solvent molecule. The 

SASA of a C–H bond was calculated from the DFT-optimized geometry of the substrate using the 

“measure” command in VMD on Windows.79 Both the carbon atom and the hydrogen atom in the 
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C–H bond were specified. The DFT-optimized geometry of the substrate was also used to calculate 

Sterimol parameters L, B1, and B5 using Sterimol.py.62 After defining the C–H bond as a primary 

axis of attachment, L is the total distance following the primary axis of attachment. B1 is the 

shortest distance perpendicular from the primary axis of attachment. B5 is the longest distance 

perpendicular from the primary axis of attachment. Although SASA and Sterimol parameters both 

describe the steric properties of a C–H bond, the Sterimol parameters describe the steric property 

of the alkyl group attached to the hydrogen (e.g., length, width), whereas the SASA describe the 

degree of exposure of the bond itself. We expect that the subtle differences between SASA and 

Sterimol parameters may lead to different effectiveness in describing the steric effects in different 

types of reactions. In the DMDO-mediated C–H hydroxylation, because the O–O bond of the 

DMDO molecule is nearly collinear with the C–H bond of the substrate in the HAT transition state, 

we surmised that the SASA of the C–H, may be a more suitable steric parameter than Sterimol 

parameters. 

Several electronic descriptors of the substrate were calculated using single point energies 

at the B3LYP/6-311++G(d,p) level of theory, including the natural population analysis (NPA) 

charge87 and the CHELPG charge88 of the hydrogen atom in C–H bonds, and the Laplacian bond 

order of the C–H bond.89 Natural population analysis is usually linked with rehybridization. NPA 

charge is derived based on natural atomic orbitals, which are localized. CHELPG charge is derived 

via fitting to the electrostatic potential at points selected according to certain scheme. Laplacian 

bond order is the integral of the negative part of the Laplacian of the electron density in fuzzy 

overlap space multiplied by –10. The C–H bond BDE were also calculated at the B3LYP/6-

311++G(d,p)//B3LYP/6-31G(d) level of theory from the reaction enthalpy of the C–H bond 

homolysis. 



   

 

 28 

Relaxed force constant is a somewhat special descriptor because it describes both 

electronic and steric properties of a C–H bond.77 The relaxed force constants were calculated from 

geometry optimization and frequency calculation of the substrates at the B3LYP/6-31G(d) level 

of theory, which give the Hessian matrix. A software named Compliance was used to calculate the 

relaxed force constant from the Hessian matrix.77 

 

Table 3-1 List of substrate descriptors 

Descriptors for electronic properties BDE, NPA charge, CHELPG charge, 

Laplacian bond order 

Descriptors for steric properties SASA, L, B1, B5 

Descriptors for both eletronic and steric properties Relaxed force constant 

 

The HAT transition states were computed at the B3LYP/6-311++G(d,p)/SMD(acetone)// 

B3LYP/6-31G(d) level of theory. Because the HAT transition state is an open-shell singlet, 

broken-symmetry DFT calculations (UB3LYP) were used in both geometry optimization and 

single point energy calculations. The initial guess of the wavefunction was generated by setting 

one fragment composed of the DMDO molecule and the hydrogen atom to be transferred as a 

doublet and the other fragment composed of remaining atoms as a doublet using 

“guess(fragment=2)” keyword. The stability of the wavefunction was checked using the 

“stable=opt” keyword to ensure the most stable open-shell singlet wavefunction was used in both 

geometry optimization and single point energy calculations. 
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Next, we analyzed the computed descriptors of the C–H bonds in the data set. First, we 

constructed a correlation matrix of the descriptors to evaluate if there are any highly correlated 

descriptors in the data set. The existence of highly correlated descriptors can be detrimental to the 

performance of the model, which, for example, can be caused by multicollinearity of regression 

models. Highly correlated descriptors also negatively impact the interpretability of the model being 

developed. Pearson correlation coefficients between the computed descriptors were used as the 

elements of the correlation matrix (Figure 3-2). Because the Pearson correlation coefficient does 

not depend on the order of descriptors in calculation, correlation matrix is always a symmetric 

matrix, half of which is shown in Figure 3-2. Pearson correlation coefficients range from –1 to 1. 

If the Pearson correlation coefficient of variables X and Y is –1, the data points lie exactly on a line 

with a negative slope. If the Pearson correlation coefficient of variables X and Y is 1, the data points 

lie exactly on a line with a positive slope. If the Pearson correlation coefficient of variables X and 

Y is 0, there is no linear dependency between X and Y. From the correlation matrix, a relatively 

strong negative correlation between two steric descriptors B1 and SASA (r = –0.86) was observed. 

A moderate positive correlation between SASA and Laplacian bond order (LBO) (r = 0.74) was 

observed as well. Besides these two correlations, other descriptors in the data set are not strongly 

correlated. Based on the correlation matrix analysis, all computed descriptors were kept in the 

subsequent analysis and model development steps. 
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Figure 3-2 Correlation matrix of descriptors from the data set 

 

Next, we analyzed the chemical space of the data set to make sure the electronic and steric 

properties of substrates in the data set are diverse enough to represent a large chemical space, 

where the data points are not clustered that may cause bias in the resulting model. The computed 

values of electronic descriptors exhibit relatively broad ranges for the natural population analysis 

(NPA) charges of the hydrogen atom in the C–H bond (0.123~0.211) and the BDE of C–H bonds 

(84.2~96.8 kcal mol–1). This suggests the C–H bonds in the data set represent reasonable ranges 

of charge density and bond strength. In terms of steric properties, the SASAs of the C–H bonds 

cover a very broad range from 0.29 Å2 to 33.17 Å2, indicating C–H bonds with diverse steric 
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properties, from those are almost completely blocked to completely unhindered, have been 

included in the data set. We examined the distribution of NPA charge versus SASA and the 

distribution of BDE versus SASA for all data points (Figure 3-3). The scattered distributions in 

these plots suggest that the chosen data points are not clustered in the steric and electronic space. 

Based on these analyses, we consider the range and distribution of the data point satisfactory for 

subsequent model developments. 

 

Figure 3-3 Chemical space of the data set 

3.2 Single-Descriptor Predictive Models 

We explored several different types of predictive models for C–H bond reactivity in 

DMDO-mediated hydroxylation. First, we considered single-descriptor models, using univariate 

linear regression that uses only one descriptor to predict the activation free energy. Similar 
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approach was used by Houk in a previous study with a data set of mostly sterically unhindered 

substrates, where BDE was used as the sole descriptor to develop a predictive model for activation 

enthalpy.34 

Before any linear regression is performed, we split the data set into a training set and a 

validation set. Because our data set is not very large, method for training/validation split may 

impact the performance of the model. We employed the Kennard–Stone algorithm to split the data 

set.91 The Kennard–Stone algorithm can provide a subset that is more representative of the entire 

data set than a subset from random split. In our data set of 79 C–H bonds, we employed the 

Kennard–Stone algorithm to extract a training set composed of 59 C–H bonds, which is about 75% 

of the entire data set. The remaining 20 C–H bonds were used as the validation set. 

Next, we performed least squares fitting between each descriptor and the computed free 

energy of activation (ΔG‡
DFT) of C–H bonds in the training set. The results are plotted in Figures 

3-4, 3-5, and 3-6. The performance of each univariate linear regression model was analyzed based 

on the coefficients of determination (R2) values shown in the figures. In addition, the slopes of the 

linear relationships were analyzed because they represent the sensitivity to each descriptor when a 

correlation with activation free energy is present. 

In general, none of the univariate linear regression models gave strong correlation with the 

ΔG‡
DFT values. The NPA charge gave the highest coefficient of determination (R2 = 0.461) among 

all the electronic descriptors. Interestingly, although the NPA charge gave a reasonable correlation, 

no correlation was observed with the CHELPG charge (R2 = 0.0006), suggesting that this 

molecular electrostatic potential (MESP)-based charge scheme is not sufficient to describe the 

electron density effects on reactivity with DMDO. The drastically different performances of NPA 

and CHELPG charges imply that the electronic effects of DMDO-mediated C–H hydroxylation 
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manifest via charge transfer from the C–H bond to DMDO, rather than affected by non-covalent 

electrostatic interactions between the C–H bond and the DMDO, because the NPA charge can 

better describe the charge density of C–H bond and its tendency as electron donor, whereas 

CHELPG charge better describes non-covalent electrostatic interactions with other polar 

molecules or point charges. 

BDE gave a low coefficient of determination of R2 = 0.0827, which is in contrast to 

previous report34 that suggests BDE alone can serve as a sufficient descriptor for reactivity 

prediction of relatively small molecules. This result highlighted the significance of including other 

parameters, especially steric descriptors, in predictive reactivity model for structurally complex 

substrates.  

Although the correlations of the univariate regression models are modest or poor, the slopes 

of these relationships still provide useful insights into how these individual factors contribute to 

the reactivity. The positive slope in the fitted equation between BDE and free energy of activation 

agrees with the previous study by Houk.34 However, a smaller slope of 0.661 was obtained from 

the present data set, compared to a slope of 0.91 with “saturated” C–H bonds in the previous study. 

It should be noted that the “saturate” C–H bonds in the previous study are mostly primary, 

secondary, and tertiary alkyl C–H bonds, whereas the C–H bonds in the present work include a 

substantial percentage of ether α C–H bonds. The difference in sensitivity to BDE may be 

attributed to the different types of C–H bonds included in the data sets, or the inclusion of sterically 

distinct substrate slightly decreasing the sensitivity to electronic effects. The positive slope in the 

fitted equation between NPA charge and free energy of activation is expected, because it is 

consistent with the fact that DMDO-mediated C–H hydroxylation is an electrophilic process where 

more electron-rich C–H bonds react faster. The slope of this correlation (154) is comparable to 
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those in other electrophilic C–H bond functionalization reactions. For example, in a recent 

computational study from our group, slopes of 123 to 302 were observed for the correlations 

between ΔG‡ and NPA charges of hydrogen atoms in the Ag-catalyzed benzylic C–H amination 

with different types of ligands and nitrene precursors.92 

The negative slope in the fitted equation between SASA and free energy of activation is 

also expected, because it is consistent with the fact that more sterically hindered C–H bonds 

undergo slower reactions. SASA gives the highest coefficient of determination (R2 = 0.443) among 

all the steric descriptors. Among the steric parameters, B1 gives a better correlation with ΔG‡
DFT 

than B5 and L. Because B1 can be viewed as the minimum width of the alkyl substituent attached 

to the C–H bond, this result suggests that this reaction is more sensitive to the local steric 

environment around the C–H bond, rather than longer-range steric repulsions, which can be better 

described by B5, which describes the maximum width of the substituent, and L, which describes 

the length of the substituent. We surmised that the better correlation of SASA compared to 

Sterimol parameters can also be attributed to the fact that the DMDO-mediated hydroxylation is 

more sensitive to local steric environment around the hydrogen atom, because SASA describes the 

steric hindrance of the hydrogen atom itself, rather than alkyl substituent.  

Among the other descriptors considered Laplacian bond order gives a relatively poor 

coefficient of determination (R2 = 0.179), whereas no correlation was observed with between 

relaxed force constant and free energy of activation (R2 = 0.0598). 
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Figure 3-4 Univariate linear regression between electronic descriptor and free energy of activation 

y = 0.611x−27.3, R2 = 0.0827 y = 154x+0.722, R2 = 0.461

y = −2.96x+28.5, R2 = 0.0006 y = −84.6x+95.8, R2 = 0.179
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Figure 3-5 Univariate linear regression between steric descriptor and free energy of activation 

y = −0.315x+33.2, R2 = 0.443 y = 1.17x+24.5, R2 = 0.147

y = 4.30x+17.4, R2 = 0.337 y = 0.363x+25.9, R2 = 0.0909
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Figure 3-6 Univariate linear regression between relaxed force constant and free energy of activation 

 

Taken together, several useful conclusions can be drawn from the above analysis. First, 

none of the univariate models provides sufficient accuracy to predict free energy of activation. 

This strongly suggests the reactivity of the compounds in the data set are affected by more than 

one factors, and thus a multivariate approach with both electronic and steric descriptors are needed 

to develop a more accurate model. Second, NPA charge and SASA show the best correlations with 

free energy of activation, among all electronic and steric descriptors, respectively. The slopes from 

these correlations are consistent with our chemical intuition.  

 

3.3 Multivariate Linear Regression Models 

Next, we explored strategies to develop multivariate linear regression models that uses both 

electronic and steric descriptors for reactivity prediction. We performed stepwise regression on the 
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training set to select appropriate descriptors from those included in the data set (Table 3-1) and to 

identify the minimum number of descriptors required for the multivariate regression model. 

Stepwise regression uses an iterative, step-by-step approach to construct the regression model by 

evaluating how adding or removing a potential descriptor affects the performance of the model, 

based on certain criterion. We used the commonly used Akaike information criterion (AIC) with 

the form of AIC = 2k+n ln(RSS/n)–2C for model evaluation.93 In our case, k is equal to the number 

of descriptors plus one and n is the number of C–H bonds in the training set (n = 59). RSS is the 

residual sum of squares in least squares fitting. The constant C does not affect the evaluation results 

and thus is often ignored in model comparisons. Models with smaller AIC values are preferred. 

For models with comparable AIC values, those with fewer number of descriptors are preferred 

because they are easier to interpret and may require a small number of training set data points. 

We performed forward selection of stepwise regression on the training set using Akaike 

information criterion (Table 3-2). In the first step, the NPA charge descriptor was selected, giving 

an AIC of 147.64. In the second step, the SASA descriptor was added while the AIC of the model 

decreases by 20.84. This suggests an improved performance of the two-descriptor model compared 

with the one-descriptor model. In the third step, the BDE descriptor was added and the AIC of the 

model further decreased by 17.63, indicating further improvement over the two-descriptor model 

with NPA and SASA. In the fourth step, the CHELPG charge descriptor was added. However, the 

AIC of the model only moderately decreased by 1.22. After that, the algorithm could not lower the 

AIC of the model by adding another descriptor and stopped. Because the four-descriptor model 

did not substantially improve the AIC value, we decided to use the three-descriptor model with 

NPA charge, SASA, and BDE as descriptors. It should be noted that the three chosen descriptors 
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are among those with the best correlations with ΔG‡ in the univariate regression models discussed 

earlier. 

 

Table 3-2 Use Akaike information criterion in the forward selection of descriptors 

Number of steps Descriptors selected Akaike information 

criterion (AIC) 

1 NPA charge 147.64 

2 NPA charge, SASA 126.80 

3 NPA charge, SASA, BDE 109.17 

4 NPA charge, SASA, BDE, CHELPG charge 107.95 

 

To validate the descriptors chosen by the forward selection process, we developed three 

multivariate linear regression models using descriptors chosen in the second, third, and fourth steps 

of the forward selection, which have two, three, and four descriptors, respectively (Table 3-2). The 

resulting models from the training set and the predicted values in the validation set are shown in 

Figure 3-7. All three models gave much improved performances than the univariate regression 

models shown in Figures 3-4, 3-5, and 3-6. Based on the RMSE (root mean square error) and 

coefficient of determination (R2) of the training set data points, the performance of the three-

descriptor model is noticeable better than that of the two-descriptor model, whereas the four-

descriptor model only shows minimal improvement from the three-descriptor model. Similar 

trends were observed from the RMSE and R2 values of validation set data points, where the three-

descriptor model gives a lower RMSE and a higher R2 compared to the two-descriptor model, but 

the four-descriptor model essentially give the same RMSE and R2 values as the three-descriptor 
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model. These results further confirmed the results AIC analysis in the forward selection process 

indicated that the fourth descriptor, CHELPG charge, will not substantially improve the model 

performance. This is consistent with the poor correlation between CHELPG charge and ΔG‡ 

observed in our univariate model analysis, which is shown in Figure 3-4. 

 

 

Figure 3-7 Performance of two-, three-, and four-descriptor linear regression models with descriptors chosen 

from forward selection stepwise regression 

 

Although the three descriptors from the predictive model ΔG‡ = 91.9NPA–

0.261SASA+0.711BDE–49.1 were identified solely based on statistical analysis, each of the 

descriptors represents an expected effect that affects the C–H hydroxylation reactivity. In 

particular, NPA charge describes electronic effects, BDE is affected by both bond strength and 

strain-release after the formation of intimate radical pair, and SASA describes steric effects. These 

individual factors have been previously identified or proposed as components contributing to the 
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reactivity and site-selectivity of DMDO-mediated C–H hydroxylation. The coefficients of the 

three descriptors in the multivariate model are also consistent with the chemical intuition: the 

positive coefficient for NPA charge is consistent with the electrophilic process, the negative 

coefficient for SASA is consistent with the expected steric effects that C–H bonds with larger 

SASA should encounter less steric hindrance, and the positive coefficient for BDE is consistent 

with the fact that the reaction favors weaker C–H bonds as well as those can alleviate 

intramolecular steric strain once the planarized radical center is formed. 

The identification of SASA as a more effective steric descriptor than the more commonly 

used Sterimol parameters is also worth noting. We propose that SASA is a particularly effective 

steric descriptor for the C–H hydroxylation because the C–H hydroxylation involves an outer-

sphere C–H cleavage mechanism where the DMDO reagent does not form a bond with the carbon 

atom in the rate- and selectivity-determining HAT transition state (Figure 3-8). This is distinct 

from many known transition metal-catalyzed C–H activation mechanisms that involve an inner-

sphere pathway, where a metal–carbon bond is being formed in the transition state. Therefore, we 

surmise that the SASA of the C–H bond, can be more effective to describe steric effects in outer-

sphere C–H activation mechanisms (e.g., in HAT) whereas Sterimol parameters (L, B1, and B5), 

which describe the steric bulk of the alkyl group of the C–H bond, can be generally more effective 

for inner-sphere C–H activation mechanisms.  
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Figure 3-8 Characteristics of the transition state in HAT step of DMDO-mediated C–H hydroxylation 

 

In summary, based on the forward selection stepwise regression results, we have identified 

NPA, SASA, and BDE as three descriptors for multivariate linear regression models. Although 

these descriptors were chosen based on the statistical analysis of their performances in stepwise 

regression, they are in the same time chemically meaningful to describe different factors affecting 

the HAT transition state stability. In subsequent sections, we turned our attention to further 

refinements of the three-descriptor model based on these three descriptors. 

 

3.4 Using an Activation Function to Improve the Performance of Solvent Accessible 

Surface Area as a Reaction-Specific Steric Descriptor in Multivariate Regression 

Although the three-descriptor model described in the previous section provides reasonable 

agreement with the DFT-calculated free energies of activation, the RMSE is still relatively large 

(2.36 and 2.67 kcal/mol for training and validation sets, respectively), which translates to up to 
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c.a. 100-fold error in terms of rate constants. We surmised that the challenges of accurate reactivity 

prediction are partially attributed to the fact that C–H bonds with very diverse steric properties 

were included in the data set. In particular, we questioned whether the free energy of activation 

truly maintains a linear relationship with SASA in a relatively broad range (from 0.29 Å2 to 33.17 

Å2, see Figure 3-3). We postulate that because of the relatively small size of DMDO, substrates 

with small to medium degrees of steric hinderance may be less sensitive to steric effect. This 

hypothesis is supported by previous studies by Houk which indicated electronic parameters alone 

(i.e., BDE) is sufficient to predict reactivity of C–H bonds in relatively less hindered substrates.34 

The hypothesis that less hindered and more hindered C–H bonds have different degrees of 

sensitivities to steric effects is supported by the ΔG‡
DFT versus SASA plot shown in Figure 3-9. 

Here, two regimes were observed: a reasonable correlation between ΔG‡
DFT and SASA was 

observed for C–H bonds with relatively small SASA values (red points in Figure 3-9), indicating 

steric effects being a major factor affecting their reactivity, whereas no correlation was observed 

for C–H bonds with relatively large SASA values (yellow points in Figure 3-9). 

 



   

 

 44 

 

Figure 3-9 Location of dividing line determined by piecewise linear regression between SASA and free energy 

of activation 

 

The nonlinear relationship between ΔG‡
DFT and SASA is caused by the different 

sensitivities to steric effects for more hindered and less hindered C–H bonds,90 leading to a “growth 

regime” for more hindered C–H bonds and a “plateau regime” for less hindered C–H bonds. We 

propose to use an activation function to address this nonlinear relationship. Various forms of 

activation functions have been used to develop artificial neural networks, but their applications in 

physical organic chemistry free energy relationships are still limited. Activation functions, such as 

the sigmoid function (Figure 3-11), can convert a linear input to a nonlinear output. Here, we 

propose to use the sigmoid function because it provides a growth regime preceding the plateau 

regime, which matches the type of nonlinearity for SASA, where smaller SASA leads to a growth 
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regime (i.e., more sensitive) and larger SASA leads to a plateau regime (i.e., less sensitive). The 

sigmoid function has already been used in modeling autocatalytic reactions,94 modeling Brønsted 

coefficient of certain reaction,95 and neural networks.96,97 The genuine sigmoid function has the 

form of  

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 

The curve of sigmoid function has an inflection point at (0, 0.5). When the input value is 

smaller than zero, the slope of sigmoid function increases as the input value increases. When the 

input value is greater than zero, the slope of sigmoid function decreases as the input value 

increases. The tangent to the curve of sigmoid function at the inflection point (0, 0.5) intersects 

one asymptote y=1 at the point (2, 1). Thus, x=2 acts as a dividing line. More generally, the tangent 

to the curve of 1/(1+exp(–x/(0.5d))) at the inflection point (0, 0.5) intersects one asymptote y=1 at 

the point (d, 1). In this case, x=d acts as a dividing line (Figure 3-10). This dividing line separates 

the growth and plateau regimes of the sigmoid function. Therefore, when designing a sigmoid 

function for SASA, a reasonable position of the dividing line (d) separating the growth and plateau 

regimes, needs to be chosen. We used the data in the training set to locate the dividing line (d). 

From the nonlinear relationship observed in the scatter plot of ΔG‡
DFT and SASA of C–H bonds 

(Figure 3-9), we performed piecewise linear regression between ΔG‡
DFT and SASA with a R 

package named segmented to detect the change point.98–102 Piecewise linear regression has been 

used to model the relationship between biological activity and certain substituent constants of 2-

furylethylene compounds.103 The change point (i.e., dividing line, d) is calculated to be 13.42 Å2 

with the standard error being 1.179 Å2 in our case. The multiple coefficient of determination is 

0.735. Using d = 13.42 Å2 to separate the growth (red) and plateau (yellow) regimes, we obtained 
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very different slopes before and after the change point (Figure 3-9). For all C–H bonds with SASA 

smaller than 13.42 Å2 (i.e., in the growth regime), the slope is –1. For those with SASA larger than 

13.42 Å2 (i.e., in the plateau regime), the slope is close to zero. 

 

 

Figure 3-10 Curve of the sigmoid function and location of the dividing line. Here, d is equal to two. The red line 

is the tangent at the inflection point. The yellow line is an asymptote. 

 

Using the change point detected via piecewise linear regression, we propose a sigmoid 

activation function for SASA, named aSASA, as a new descriptor for steric effects (Figure 3-11):  

𝑎𝑆𝐴𝑆𝐴 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (
𝑆𝐴𝑆𝐴

0.5𝑑
) =

1

1 + 𝑒−
𝑆𝐴𝑆𝐴
0.5𝑑

 

where d (the dividing line) is 13.42 Å2. We expect that the aSASA descriptor should have a more 

linear relationship with reactivity, because it has different sensitivities with smaller and larger 

SASA values. When SASA is smaller than d, the aSASA descriptor is quite sensitive towards 

changes in SASA, which corresponds to the growth regime. When SASA is larger than d, the 

aSASA descriptor is not as sensitive towards changes in SASA, which corresponds to the plateau 

regime. 
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Figure 3-11 Activated solvent accessible surface area (aSASA) descriptor 

 

To explore whether the use of the activated aSASA descriptor further improves the 

performance of the three-descriptor multivariate linear regression model, we replaced the SASA 

descriptor in the three-descriptor model with sigmoid(SASA/6.71), which corresponds to a 

dividing line of d = 13.42 Å2. We compared the performance of the previous three-descriptor 

model with the new model using aSASA descriptor in Figure 3-12. A noticeable improvement was 

observed with the new model using aSASA (Figure 3-12, right). A smaller RMSE was obtained 

for both training and validation sets, whereas the coefficients of determination (R2) improved for 

both training and validation sets. Further examination of these results indicates that although the 

improvements were observed for both the growth (SASA < 13.42 Å2) and plateau (SASA ≥ 13.42 

Å2) regimes, the improvements are more noticeable for the growth regime where steric effects are 

more important for reactivity. 
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Figure 3-12 Comparison of the performance of three-descriptor linear regression models with the standard 

SASA descriptor and with the aSASA descriptor using sigmoid activation function. The three-descriptor linear 

regression model with the standard SASA descriptor is shown on the left. The three-descriptor linear regression 

model with the aSASA descriptor using sigmoid activation function is shown on the right. 

 

Next, we performed tests with different sigmoid functions to validate whether our approach 

to identify the dividing line (d) is optimal for the performance of the aSASA descriptor. We used 

sigmoid(SASA) and sigmoid (SASA/18) in place of sigmoid(SASA/6.71) to train the three-

descriptor linear regression model (Figure 3-13). These new sigmoid functions correspond to a 

dividing line at 2 Å2 and 36 Å2, respectively. The generated models show clearly inferior 

performance compared to the model with dividing line set at 13.42 Å2. Therefore, these results 

suggest that a careful and rational choice of the dividing line (d) for the sigmoid function is 

important to obtain optimal performance using the activated aSASA descriptors.  
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Figure 3-13 Performance of two models with different dividing lines 

ΔG‡ = 127NPA–25.1sigmoid(SASA)+0.491BDE–14.7

⬤ Training set (SASA < 13.42 Å2) ⬤ Training set (SASA ≥ 13.42 Å2)

 Validation set (SASA < 13.42 Å2)  Validation set (SASA ≥ 13.42 Å2)

Training RMSE = 2.68 kcal mol−1, R2 = 0.660

Validation RMSE = 2.92 kcal mol−1, R2 = 0.917

ΔG‡ = 83.0NPA–25.5sigmoid(SASA/18)+0.724BDE–35.2

Training RMSE = 2.20 kcal mol−1, R2 = 0.772

Validation RMSE = 2.54 kcal mol−1, R2 = 0.889
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4.0 Further Applications of the Predictive Model to Structurally Complex Molecules 

4.1 Challenges of Site-Selectivity Prediction for Conformationally Flexible Macrocyclic 

Molecules 

Predicting site-selectivity for late-stage C–H functionalization of macrocyclic molecules is 

often more challenging because of their conformational flexibility and multiple potentially reactive 

C–H bonds with similar steric and electronic properties. Here, we attempt to apply the predictive 

model developed in Chapter 3 to the DMDO-mediated C–H hydroxylation of a bryostatin 

analogue. Bryostatin is a group of macrocyclic lactones isolated from marine bryozoan Bugula 

neritina, which serve as drug candidates.104–113 Among these natural products, bryostatin 1 is the 

most studied member and shows antineoplastic activity.104 The mechanism may involve the 

binding of bryostatin 1 towards the first conserved (C1) domain of protein kinase C.114,115 

Bryostatin can potentially be used to treat Alzheimer’s disease116 and HIV infection.117 Bryostatin 

1 can inhibit SARS-CoV-2 BA.1 as well.118 The key building blocks in biosynthesis of bryostatin 

1 are acetate, S-adenosyl methionine, and glycerol.119 There are many synthetic attempts towards 

this group of macrocyclic lactones in literature.120–127 Paul A. Wender is one of the pioneers in 

developing synthetic routes for bryostatin analogues.128–133 Wender and his collaborators found 

that the (R)-configuration of the C3–OH, the free hydroxyl group at the C26 position, and the C 

ring are essential for the biological activity of bryostatin, while A and B rings are less important. 

Wender replaced the tetrahydropyran in the B ring with an acetal linkage to reduce the burdens in 

synthesis of bryostatin analogues. It was proposed that the hydroxyl group at the C9 position in 
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the A ring is not responsible for the binding of bryostatin 1 towards protein kinase C and three 

analogues of bryostatin 1 were synthesized to verify this hypothesis. Here, we computationally 

evaluate the site-selectivity of DMDO-mediated C–H hydroxylation of one of these analogues, 

which is shown in the right half of Figure 4-1. Experimentally, this analogue underwent selective 

C9–H hydroxylation with DMDO (Figure 4-2a).23 The DMDO-mediated reaction with the 

analogue 2a shown in Figure 4-2b gave a mixture of three products, including the C9–H 

hydroxylation and oxidation of the free hydroxyl group at the C26 position. The additional methyl 

substituent at the C26 position of this analogue might have enhanced the reactivity of the tertiary 

C–H at this position. The analogue 3a shown in Figure 4-2c also underwent selective C9–H 

hydroxylation with DMDO. Although the C26–H in the third analogue is also a tertiary C–H bond, 

substituting the hydroxyl group at C26 with an acetoxy group is apparently sufficient to protect 

the hydroxyl group in the third analogue. The late-stage diversification shown in Figure 4-2 did 

not significantly alter their binding affinities, which supported the hypothesis proposed by 

Wender.23 Later the C ring was identified to be responsible for the binding of bryostatin and the 

C1 domain of isoforms of protein kinase C.134 

 

Figure 4-1 Bryostatin 1 and one of its analogues under study 
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Figure 4-2 DMDO-mediated C–H hydroxylation on analogues of bryostatin 1 
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Intramolecular hydrogen bonds are observed in the crystal structure of bryostatin 1. The 

hydrogen bonds may be crucial for its biological activity104 as well as conformational flexibility. 

There is a hydrogen bond between C19–OH as the hydrogen bond donor and the oxygen atom in 

C3–OH as hydrogen bond acceptor. In addition, a bifurcated hydrogen bond135was observed, 

involving C3–OH as the donor, and the oxygen atom in the A ring and the oxygen atom in the B 

ring both serving as the acceptors. Bryostatin 10 in CDCl3 also contains this hydrogen bond 

network, which was revealed by ROESY spectrum and temperature‐dependent coupling patterns 

in NMR.136,137 In bryostatin analogues, if C3–OH is changed to the (S)-configuration, the hydrogen 

bond between C19–OH and the oxygen atom in C3–OH still exists.131 However, the hydrogen 

bond between C3–OH and the oxygen atom in the B ring disappears and the biological activity of 

the analogue substantially decreases. 

 

 

Figure 4-3 Intramolecular hydrogen bonds in the crystal structure of bryostatin 1 

 

The conformational landscape of macrocycles such as bryostatin can be quite complex138 

and may be affected by interactions with solvent molecules.139 Through rotational echo double 
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resonance NMR and molecular dynamics, one bryostatin analogue was observed to adopt multiple 

conformations in a membrane environment, which are different from the crystal structure.140 The 

conformational flexibility may complicate the application of the model developed in Chapter 3 to 

bryostatin analogues. 

 

4.2 Application of the Predictive Model to a Simplified Model Based on the Crystal 

Structure 

 

Figure 4-4 A simplified model of the bryostatin analogue 1a used in computational study 

 

Because the crystal structure of bryostatin 1 has already been reported,104,126 we used the 

crystal structure to create a slightly simplified model substrate of the bryostatin analogue 1a by 

replacing the long alkyl chain on the ester group with a methyl group to reduce computational 

costs (Figure 4-4). We calculated the NPA charge, SASA, and BDE descriptors for this molecule. 

Here, the NPA charge and BDE were calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) 

level of theory, which is the same as the methods employed in the previous chapter. SASA values 
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were calculated using optimized structure of the crystal structure. We then applied the model 

developed in Chapter 3  

ΔG‡
predicted = 63.7NPA–22.9sigmoid(SASA/6.71)+0.703BDE–28.1 

to predict the free energy of activation for each potentially reactive C–H bond in the simplified 

model of the bryostatin analogue 1a. The computed NPA, BDE, SASA descriptors, and the 

predicted free energies of activation are provided in Table 4-1. To validate the predicted values, 

we also used DFT to calculate the activation free energies for each C–H bond at the B3LYP/6-

311++G(d,p)/SMD(acetone)//B3LYP/6-31G(d) level of theory. The ΔG‡
DFT values are the free 

energy difference between the computed transition state structure and the reactants. 

 

Table 4-1 Results of the crystal structure 

Site NPA SASA/Å2 

BDE/kcal 

mol–1 

ΔG‡
DFT/kcal 

mol–1 

ΔG‡
predicted/kcal 

mol–1 

C3 0.190 5.45 92.2 34.1 33.0 

C5 0.156 7.72 89.7 27.0 27.5 

C9 0.152 12.40 90.6 25.8 25.5 

C11 0.161 6.76 90.0 31.5 28.7 

C15 0.160 1.79 86.0 29.4 29.6 

C20 0.222 2.03 81.9 45.2 30.4 

C23 0.183 3.19 90.9 37.5 33.3 

C25 0.221 2.65 96.0 38.4 39.8 

C2 HR 0.223 17.14 94.4 33.7 31.2 
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C2 HS 0.221 8.30 97.2 37.2 36.6 

C13 axial 0.161 27.91 92.6 26.4 24.7 

C13 equatorial 0.190 28.05 92.6 28.4 26.5 

C22 axial 0.222 11.54 81.3 33.4 23.8 

C22 equatorial 0.256 7.05 81.3 41.3 28.4 

C26 HR 0.170 20.71 92.3 28.8 25.7 

C26 HS 0.185 23.32 91.9 27.2 26.1 

 

The comparison of ΔG‡
predicted values predicted using the three-descriptor regression model 

and DFT-computed ΔG‡
DFT values are shown in Figure 4-1. Three outliers are noticeable: at the 

C22 axial site, the ΔG‡
predicted(C22 axial) is 9.6 kcal mol–1 lower than the DFT-computed 

ΔG‡
DFT(C22 axial), at the C22 equatorial site, ΔG‡

predicted(C22 equatorial) is 12.9 kcal mol–1 lower 

than ΔG‡
DFT(C22 equatorial), at the C20 site, ΔG‡

predicted(C20) is 14.8 kcal mol–1 lower than 

ΔG‡
DFT(C20). Considering the three outliers are all allylic C–H bonds, the poor performance of 

the regression model for these C–H bonds is not completely unexpected, because we did not 

include any allylic or benzylic C–H bonds in the training set. Because previous work from Houk 

revealed that allylic and benzylic C–H bonds have a very different dependence on BDE,34 we 

surmised that our model, which was trained using non-allylic and non-benzylic C–H bonds, cannot 

be applied to allylic and benzylic C–H bonds. Therefore, this test case revealed an important 

limitation to the regression model developed in Chapter 3, and suggested that future work is needed 

to include allylic and benzylic C–H bonds in the training set to obtain a more general model. 
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Figure 4-5 Performance of the three-descriptor regression model for site-selectivity of DMDO-mediated C–H 

hydroxylation of a bryostatin analogue 

 

When the three allylic C–H bonds (C20, C22 axial, and C22 equatorial) were excluded, the 

performance of the predictive model substantially improved. A coefficient of determination (R2) 

of 0.886 and RMSE of 2.02 kcal mol–1 were obtained, which are both similar to the performance 

of the model using the validation set (see Chapter 3). This data suggested that predictive model 

can provide reliable prediction for alkyl and ɑ ether C–H bonds in a structurally complex 

macrocyclic molecule. 

When excluding the allylic C–H bonds, which cannot be accurately predicted by the model, 

we identified five most reactive sites that are within 2 kcal mol–1 of the lowest ΔG‡
predicted (i.e., 

ΔG‡
predicted = 24.7~26.7 kcal mol–1): C9–H (ΔG‡

predicted = 25.5 kcal mol–1), C13axial–H (ΔG‡
predicted 

= 24.7 kcal mol–1), C13equatorial–H (ΔG‡
predicted = 26.5 kcal mol–1), C26R–H (ΔG‡

predicted = 25.7 kcal 

ΔG‡
predicted = 63.7NPA–22.9sigmoid(SASA/6.71)+0.703BDE–28.1

 Outliers

R2 = 0.349

RMSE = 5.76 kcal mol–1

After removing outliers, R2 = 0.886
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mol–1), and C26S–H (ΔG‡
predicted = 26.1 kcal mol–1). Because these ΔG‡

predicted values are within the 

expected error range (2.01 kcal mol–1) of the regression model, we do not expect our predictive 

model can conclusively predict which of the five sites is the most reactive with DMDO. Although 

the multiple C–H bonds with comparable reactivity complicate the site-selectivity prediction, the 

experimentally observed reactive site (C9) was successfully identified by the regression model as 

one of the most reactive site with a ΔG‡
predicted of 25.5 kcal mol–1, which is the second lowest after 

C13axial–H. Interestingly, the DFT-computed ΔG‡
DFT values correctly identified the most reactive 

site for hydroxylation: the ΔG‡
DFT for C9 (25.8 kcal mol–1) is the lowest, although the ΔG‡

DFT for 

C13 axial (26.4 kcal mol–1) is only slightly higher, further revealing the similar reactivities between 

these two sites.  

It should be noted that the regression model successfully predicted the higher reactivity at 

C9 compared to other sites with comparable electronic properties, highlighting the importance of 

considering substrate steric effects in the predictive model. For example, C3, C5, C11, and C15 

are all successfully predicted to be significantly less reactive than C9, which is consistent with the 

experimental results. Because the SASA values for these C–H bonds, along with C9–H, are all 

within the growth regime of the sigmoid function (SASA < 13.42 Å2), the activation function 

would clearly predict the greater sensitivity to steric effects for these C–H bonds.  

For the two tertiary ɑ ether C–H bonds in the A ring (C5 and C9), the contribution from 

the aSASA term (i.e., –22.9(sigmoid(SASAC5/6.71)–sigmoid(SASAC9/6.71))) to the ΔG‡
predicted 

difference is 2.4 kcal mol–1 based on the SASA values for C5–H (7.72 Å2) and C9–H (12.40 Å2). 

This steric effect makes a dominant contribution to the predicted reactivity difference between 

these sites (ΔG‡
predicted(C5)–ΔG‡

predicted(C9) = 2.0 kcal mol–1). This specific example further 

highlights the importance of using activated steric descriptor, aSASA, because although the SASA 
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values of these two C–H sites only differ 4.7 Å2, because both are in the growth regime of the 

sigmoid activation function, this subtle SASA difference is amplified in the linear regression 

model to correctly predict the steric effects on site-selectivity. 

In the future development of the predictive model, the first step should be including more 

allylic and benzylic C–H bonds like C6–H in estrone derivatives into the data set. After that, some 

tuning should be performed like adjusting the dividing line in the aSASA descriptor. Based on our 

previous experience, chemical intuition should still be taken into consideration if the 

interpretability of the predictive model needs conserving. Our experience of designing a reaction-

specific descriptor may be generalizable towards other reactions. 

4.3 Conclusions 

We developed a computational protocol tackling the site-selectivity of DMDO-mediated 

C–H hydroxylation via predictive models. Chemical insights obtained by detailed analysis on 

previous experimental and computational results and statistical tools were integrated together to 

generate a predictive model for the reaction under investigation. A customized steric descriptor 

based on an activation function named aSASA was proposed during the development of this 

predictive model, which is expected to be generalizable to other C–H functionalization reactions. 

We later examined the applicability of the model via application to a macrocyclic lactone substrate. 

Multivariate linear regression was extensively used in this work, which is easy to use and 

can be clearly linked to chemical intuitions. Lack of allylic and benzylic C–H bonds in the data set 

inherently limited the usage of this predictive model, which was revealed in the application to a 
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macrocyclic lactone substrate containing allylic C–H bonds. However, due to rare appearance of 

allylic and benzylic C–H bonds in previous experimental results of DMDO-mediated C–H 

hydroxylation, this limitation cannot be exaggerated. The interpretability brought by linear 

regression made it easier to improve the model. The chemical insights helped us decide whether 

the slope in univariate linear regression, which corresponds to sensitivity, should be positive or 

negative if the descriptor is suitable for certain reaction. The model generated from linear 

regression can be formally decomposed when performing comparisons between two C–H bonds 

since the intercept remains unchanged, which is shown in the application of the model to a 

macrocyclic lactone substrate and can help us better understand the controlling factors of site-

selectivity in this reaction. 

The aSASA descriptor developed in this work is tunable and expected to be applicable to 

other C–H functionalization reactions. The interval covered by values of certain descriptor can be 

divided into a growth regime and a plateau regime while the same changes in the descriptor within 

different regimes can lead to significantly different changes in the property researchers are 

interested in, which in this case is the free energy of activation. This nonlinear behavior can be 

approximated by an activation function where a dividing line should be set at an appropriate 

position based on expertise. We resorted to piecewise linear regression to detect the change point 

and then set the dividing line at the change point, which in practice was time-efficient and could 

lead to a result that was near optimal. This might add to the toolbox of predictive models used by 

chemists. 

This interpretability-prioritized protocol built on top of previous experimental and 

computational results and exploration of reaction-specific descriptor might be insightful to 

chemists hoping to use predictive models for other C–H functionalization reactions and even more 
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complex transformations. Our aSASA descriptor is a contribution to the field of steric descriptors. 

The predictive model for site-selectivity of DMDO-mediated C–H hydroxylation developed in this 

work can be valuable to synthetic organic chemists attempting to use this reaction. 
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Appendix A Code for performing quality threshold clustering 

Attached is a computer code written by me to perform quality threshold clustering141,142 on 

a symmetric multiprocessing computing node. In the generated clusters, no pair of members will 

have a similarity value greater than a threshold specified by the user. The similarity value should 

have no dependence on the order of two members and is supposed to be calculated before using 

this program. A typical example of the similarity value is root-mean-square deviation of atomic 

positions (RMSD) between frames in the output of a molecular dynamics simulation. This program 

is written in C programming language with OpenMP. It uses features from the C99 standard. This 

program has been tested with the C compiler from GNU Compiler Collection (gcc version 10.2.0). 

A compile-time flag “-fopenmp” should be used when compiling the code. The most up-to-date 

version of the code can be obtained from GitHub at https://github.com/yimin-chen-at-sdf/parallel-

quality-threshold-clustering or from Codeberg at https://codeberg.org/yimin-chen-at-sdf/parallel-

quality-threshold-clustering. 

 

#include <omp.h> 

#include <stdio.h> 

#include <stddef.h> 

#include <stdlib.h> 

#include <string.h> 

#include <unistd.h> 

#include <getopt.h> 

 

https://github.com/yimin-chen-at-sdf/parallel-quality-threshold-clustering
https://github.com/yimin-chen-at-sdf/parallel-quality-threshold-clustering
https://codeberg.org/yimin-chen-at-sdf/parallel-quality-threshold-clustering
https://codeberg.org/yimin-chen-at-sdf/parallel-quality-threshold-clustering
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void PrintUsage() 

{ 

    printf("To use this program, edit the first number in the command 

in the following line according to the size of your rmsd.dat file or 

equivalently the number of frames in your trajectory generated by 

molecular dynamics. "); 

    printf("Next, edit the second number in the command in the 

following line according to your own needs and pay attention to the 

dimension or unit of the data stored in your rmsd.dat file. "); 

    printf("Then, edit the name of the file which will store the 

output after calculation. "); 

    printf("Finally, set the OMP_NUM_THREADS environment variable 

before typing the edited command.\n"); 

    printf("./parallelqt --number 1000 --threshold 0.42 --output 

clusteringresult.txt\n"); 

} 

 

void* AllocIntArray (int rows, int cols) 

{ 

    return malloc( sizeof(int[rows][cols]) ); 

} 

 

void* AllocFloatArray (int rows, int cols) 

{ 

    return malloc( sizeof(float[rows][cols]) ); 
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} 

 

void ReadFloatArray (int rows, int cols, float array[rows][cols]) 

{ 

    FILE *data; 

    data=fopen("rmsd.dat", "rb"); 

    if (data == NULL) 

    { 

        fprintf(stderr, "rmsd.dat does not exist!\n"); 

        exit(1); 

    } 

    fread(array, sizeof(float[rows][cols]), 1, data); 

    fclose(data); 

} 

 

int **ConvertIntMatrix(int *a, int nrow, int ncol) 

{ 

    int **m; 

    m = (int **) malloc((size_t) ((nrow)*sizeof(int*))); 

    if (m == NULL) 

    { 

        fprintf(stderr, "Memory allocation failure in 

ConvertIntMatrix().\n"); 

        exit(1); 

    } 
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    m[0] = a; 

    for (int i=1; i<nrow; i++) 

        m[i] = m[i-1] + ncol; 

    return m; 

} 

 

float **ConvertFloatMatrix(float *a, int nrow, int ncol) 

{ 

    float **m; 

    m = (float **) malloc((size_t) ((nrow)*sizeof(float*))); 

    if (m == NULL) 

    { 

        fprintf(stderr, "Memory allocation failure in 

ConvertFloatMatrix().\n"); 

        exit(1); 

    } 

    m[0] = a; 

    for (int i=1; i<nrow; i++) 

        m[i] = m[i-1] + ncol; 

    return m; 

} 

 

void FreeConvertIntMatrix(int **b) 

{ 

    free((char*) b); 
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} 

 

void FreeConvertFloatMatrix(float **b) 

{ 

    free((char*) b); 

} 

 

void SetBit (unsigned A[], int o) 

{ 

    A[o/sizeof(unsigned)] |= 1 << (o%sizeof(unsigned)); 

} 

 

int TestBit (unsigned A[], int o) 

{ 

    return ( (A[o/sizeof(unsigned)] & (1 << (o%sizeof(unsigned)) )) != 

0 ); 

} 

 

void MultiClustering (int **frame, float **rmsd, int **localframe, 

float **restrict localrmsd, int *index, int stack, int start, int 

remainder, unsigned *restrict clusterbit, int clusterbitsize, int del, 

int lmax, int *restrict outputnumber) 

{ 

    int cardinality, anchor, cancer, flag; 

    float nominee; 
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    for (int l=0; l<stack; l++) 

    { 

        for (int m=0; m<clusterbitsize; m++) 

        { 

            clusterbit[m] = 0; 

        } 

        SetBit(clusterbit, index[l+start]); 

        cardinality = 1; 

        while (cardinality < remainder) 

        { 

            nominee = -1.0; 

            for (int m=0; m<lmax; m++) 

            { 

                if (localframe[l][m] < 0) 

                    break; 

                if (TestBit(clusterbit, localframe[l][m]) == 0 && 

localrmsd[l][m] > 0.0) 

                { 

                    if (nominee < 0.0) 

                    { 

                        anchor = m; 

                        nominee = localrmsd[l][m]; 

                    } 

                    else 

                    { 
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                        if (localrmsd[l][m] < nominee) 

                        { 

                            anchor = m; 

                            nominee = localrmsd[l][m]; 

                        } 

                    } 

                } 

            } 

            if (nominee < 0.0) 

                break; 

            cardinality++; 

            anchor = localframe[l][anchor]; 

            SetBit(clusterbit, anchor); 

            if (anchor < index[l+start] || anchor > index[start+stack-

1]) 

            { 

                for (int m=0; m<lmax; m++) 

                { 

                    if (localframe[l][m] < 0) 

                        break; 

                    if (TestBit(clusterbit, localframe[l][m]) != 0 || 

localrmsd[l][m] < 0.0) 

                        continue; 

                    cancer = -1; 

                    for (int n=0; n<del; n++) 



   

 

 69 

                    { 

                        if (frame[anchor][n] < 0 || frame[anchor][n] > 

localframe[l][m]) 

                            break; 

                        if (frame[anchor][n] == localframe[l][m]) 

                        { 

                            cancer = n; 

                            break; 

                        } 

                    } 

                    if (cancer < 0) 

                        localrmsd[l][m] = -1.0; 

                    else 

                    { 

                        if (localrmsd[l][m] < rmsd[anchor][cancer]) 

                            localrmsd[l][m] = rmsd[anchor][cancer]; 

                    } 

                } 

            } 

            else 

            { 

                for (int m=l+1; m<stack; m++) 

                { 

                    if (index[m+start] == anchor) 

                    { 
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                        flag = m; 

                        break; 

                    } 

                } 

                for (int m=0; m<lmax; m++) 

                { 

                    if (localframe[l][m] < 0) 

                        break; 

                    if (TestBit(clusterbit, localframe[l][m]) != 0 || 

localrmsd[l][m] < 0.0) 

                        continue; 

                    cancer = -1; 

                    for (int n=0; n<lmax; n++) 

                    { 

                        if (localframe[flag][n] < 0 || 

localframe[flag][n] > localframe[l][m]) 

                            break; 

                        if (localframe[flag][n] == localframe[l][m]) 

                        { 

                            cancer = n; 

                            break; 

                        } 

                    } 

                    if (cancer < 0) 

                        localrmsd[l][m] = -1.0; 
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                    else 

                    { 

                        if (localrmsd[l][m] < localrmsd[flag][cancer]) 

                            localrmsd[l][m] = localrmsd[flag][cancer]; 

                    } 

                } 

            } 

        } 

        outputnumber[l+start] = cardinality; 

    } 

} 

 

int EndingClustering (int **frame, float **rmsd, int *shortidlist, 

float *restrict diameter, int seqseed, int remainder, unsigned 

*restrict clusterbit, int clusterbitsize, int del, int lmax) 

{ 

    int cardinality, anchor, cancer; 

    float nominee; 

    for (int l=0; l<clusterbitsize; l++) 

    { 

        clusterbit[l] = 0; 

    } 

    SetBit(clusterbit, seqseed); 

    cardinality = 1; 

    while (cardinality < remainder) 
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    { 

        nominee = -1.0; 

        for (int l=0; l<lmax; l++) 

        { 

            if (TestBit(clusterbit, shortidlist[l]) == 0 && 

diameter[l] > 0.0) 

            { 

                if (nominee < 0.0) 

                { 

                    anchor = l; 

                    nominee = diameter[l]; 

                } 

                else 

                { 

                    if (diameter[l] < nominee) 

                    { 

                        anchor = l; 

                        nominee = diameter[l]; 

                    } 

                } 

            } 

        } 

        if (nominee < 0.0) 

            break; 

        cardinality++; 
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        anchor = shortidlist[anchor]; 

        SetBit(clusterbit, anchor); 

        for (int l=0; l<lmax; l++) 

        { 

            if (TestBit(clusterbit, shortidlist[l]) != 0 || 

diameter[l] < 0.0) 

                continue; 

            cancer = -1; 

            for (int m=0; m<del; m++) 

            { 

                if (frame[anchor][m] < 0 || frame[anchor][m] > 

shortidlist[l]) 

                break; 

                if (frame[anchor][m] == shortidlist[l]) 

                { 

                    cancer = m; 

                    break; 

                } 

            } 

            if (cancer < 0) 

                diameter[l] = -1.0; 

            else 

            { 

                if (diameter[l] < rmsd[anchor][cancer]) 

                    diameter[l] = rmsd[anchor][cancer]; 
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            } 

        } 

    } 

    return cardinality; 

} 

 

void MonoClustering (int **frame, float **rmsd, float *restrict 

diameter, int seqseed, unsigned *indexbit, int remainder, unsigned 

*restrict clusterbit, int clusterbitsize, int del, float toc) 

{ 

    int cardinality, anchor, cancer; 

    float nominee; 

    #pragma omp parallel for 

    for (int l=0; l<clusterbitsize; l++) 

    { 

        clusterbit[l] = 0; 

    } 

    SetBit(clusterbit, seqseed); 

    #pragma omp parallel for 

    for (int l=0; l<del; l++) 

    { 

        if (TestBit(indexbit, frame[seqseed][l]) == 0) 

            diameter[l] = rmsd[seqseed][l]; 

        else 

            diameter[l] = -1.0; 
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    } 

    cardinality = 1; 

    while (cardinality < remainder) 

    { 

        nominee = -1.0; 

        #pragma omp parallel for reduction(max:nominee) 

        for (int l=0; l<del; l++) 

        { 

            if (diameter[l] > 0.0) 

                nominee = diameter[l]; 

        } 

        if (nominee < 0.0) 

            break; 

        nominee = toc + 1.0; 

        #pragma omp parallel for reduction(min:nominee) 

        for (int l=0; l<del; l++) 

        { 

            if (diameter[l] > 0.0 && diameter[l] < nominee) 

                nominee = diameter[l]; 

        } 

        anchor = del; 

        #pragma omp parallel for reduction(min:anchor) 

        for (int l=0; l<del; l++) 

        { 

            if (diameter[l] == nominee) 
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                anchor = l; 

        } 

        diameter[anchor] = -1.0; 

        cardinality++; 

        anchor = frame[seqseed][anchor]; 

        SetBit(clusterbit, anchor); 

        #pragma omp parallel for private(cancer) 

        for (int l=0; l<del; l++) 

        { 

            if (diameter[l] < 0.0) 

                continue; 

            cancer = -1; 

            for (int m=0; m<del; m++) 

            { 

                if (frame[anchor][m] < 0) 

                    break; 

                if (frame[anchor][m] == frame[seqseed][l]) 

                { 

                    cancer = m; 

                    break; 

                } 

            } 

            if (cancer < 0) 

                diameter[l] = -1.0; 

            else 
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            { 

                if (diameter[l] < rmsd[anchor][cancer]) 

                    diameter[l] = rmsd[anchor][cancer]; 

            } 

        } 

    } 

} 

 

void PrintCitation() 

{ 

    printf("If you want to use this program in any of your published 

work, please cite the following papers:\n"); 

    printf("1. Laurie J. Heyer, Semyon Kruglyak, and Shibu Yooseph, 

Exploring Expression Data: Identification and Analysis of Coexpressed 

Genes, Genome Research, 1999, 9, 1106-1105. 

DOI:10.1101/gr.9.11.1106.\n"); 

    printf("2. Anthony Danalis, Collin McCurdy, and Jeffrey S. Vetter, 

Efficient Quality Threshold Clustering for Parallel Architectures, 

2012 IEEE 26th International Parallel and Distributed Processing 

Symposium, Shanghai, China, 2012, pp. 1068-1079. DOI: 

10.1109/IPDPS.2012.99.\n"); 

} 

 

int main (int argc, char *argv[]) 

{ 
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    int numberofelements = -1; 

    float thresholdofclustering = -1.0; 

    char *outputtext; 

    int opt = 0; 

    static struct option long_options[] = 

    { 

        {"number",    required_argument, NULL, 'n'}, 

        {"threshold", required_argument, NULL, 't'}, 

        {"output",    required_argument, NULL, 'o'} 

    }; 

    int long_index = 0; 

    while ((opt = getopt_long(argc, argv, "n:t:o:", long_options, 

&long_index)) != -1) 

    { 

        switch (opt) 

        { 

            case 'n': 

                numberofelements = atoi(optarg); 

                break; 

            case 't': 

                thresholdofclustering = atof(optarg); 

                break; 

            case 'o': 

                outputtext = (char 

*)malloc((strlen(optarg)+1)*sizeof(char)); 



   

 

 79 

                if (outputtext == NULL) 

                { 

                    fprintf(stderr, "Memory allocation failure in 

obtaining the name of the output file.\n"); 

                    exit(1); 

                } 

                outputtext[strlen(optarg)] = '\0'; 

                strcpy(outputtext, optarg); 

                break; 

            default: 

                PrintUsage(); 

                exit(1); 

        } 

    } 

    if (numberofelements == -1 || thresholdofclustering == -1.0) 

    { 

        PrintUsage(); 

        exit(1); 

    } 

    int rows = numberofelements; 

    int cols = numberofelements; 

    int order, counter, delta, cancer, available; 

    float d = thresholdofclustering; 

    float (*R)[cols] = AllocFloatArray(rows, cols); 

    if (R == NULL) 
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    { 

        fprintf(stderr, "Memory allocation failure in creating matrix 

R.\n"); 

        exit(1); 

    } 

    ReadFloatArray(rows, cols, R); 

    int *interaction; 

    interaction = (int *)malloc(rows*sizeof(int)); 

    if (interaction == NULL) 

    { 

        fprintf(stderr, "Memory allocation failure in creating array 

interaction.\n"); 

        exit(1); 

    } 

    #pragma omp parallel for private(counter) 

    for (int i=0; i<numberofelements; i++) 

    { 

        counter = 0; 

        for (int j=0; j<numberofelements; j++) 

        { 

            if (R[i][j] <= d) 

                counter++; 

        } 

        interaction[i] = counter - 1; 

    } 
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    delta = 0; 

    #pragma omp parallel for reduction(max:delta) 

    for (int i=0; i<numberofelements; i++) 

    { 

        if (interaction[i] > delta) 

            delta = interaction[i]; 

    } 

    if (delta == 0) 

    { 

        printf("The threshold specified by the user is smaller than 

the minimum value of pairwise distance in rmsd.dat file. Each element 

can form a one-membered cluster by itself while the result has no 

practical value.\n"); 

        free(interaction); 

        free(R); 

        exit(1); 

    } 

    rows = numberofelements; 

    cols = delta; 

    int (*B1)[cols] = AllocIntArray(rows, cols); 

    if (B1 == NULL) 

    { 

        fprintf(stderr, "Memory allocation failure in creating matrix 

B1.\n"); 

        exit(1); 
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    } 

    float (*B2)[cols] = AllocFloatArray(rows, cols); 

    if (B2 == NULL) 

    { 

        fprintf(stderr, "Memory allocation failure in creating matrix 

B2.\n"); 

        exit(1); 

    } 

    #pragma omp parallel for private(counter) 

    for (int i=0; i<numberofelements; i++) 

    { 

        counter = 0; 

        for (int j=0; j<numberofelements; j++) 

        { 

            if (j == i) 

                continue; 

            else 

            { 

                if (R[i][j] <= d) 

                { 

                    B1[i][counter] = j; 

                    counter++; 

                } 

            } 

        } 
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        for (int j=counter; j<delta; j++) 

        { 

            B1[i][j] = -1; 

        } 

    } 

    #pragma omp parallel for private(counter) 

    for (int i=0; i<numberofelements; i++) 

    { 

        counter = 0; 

        for (int j=0; j<numberofelements; j++) 

        { 

            if (j == i) 

                continue; 

            else 

            { 

                if (R[i][j] <= d) 

                { 

                    B2[i][counter] = R[i][j]; 

                    counter++; 

                } 

            } 

        } 

        for (int j=counter; j<delta; j++) 

        { 

            B2[i][j] = -1.0; 
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        } 

    } 

    free(R); 

    int *I, *work, *capacity; 

    unsigned *S; 

    I = (int *)malloc(rows*sizeof(int)); 

    if (I == NULL) 

    { 

        fprintf(stderr, "Memory allocation failure in creating array 

I.\n"); 

        exit(1); 

    } 

    available = omp_get_max_threads(); 

    work = (int *)malloc(2*available*sizeof(int)); 

    if (work == NULL) 

    { 

        fprintf(stderr, "Memory allocation failure in creating array 

work.\n"); 

        exit(1); 

    } 

    capacity = (int *)malloc(rows*sizeof(int)); 

    if (capacity == NULL) 

    { 

        fprintf(stderr, "Memory allocation failure in creating array 

capacity.\n"); 



   

 

 85 

        exit(1); 

    } 

    if (rows%sizeof(unsigned) == 0) 

        order = rows / sizeof(unsigned); 

    else 

        order = rows / sizeof(unsigned) + 1; 

    S = (unsigned *)malloc(order*sizeof(unsigned)); 

    if (S == NULL) 

    { 

        fprintf(stderr, "Memory allocation failure in creating array 

S.\n"); 

        exit(1); 

    } 

    #pragma omp parallel for 

    for (int i=0; i<numberofelements; i++) 

    { 

        I[i] = i; 

    } 

    #pragma omp parallel for 

    for (int i=0; i<order; i++) 

    { 

        S[i] = 0; 

    } 

    int unclustered = numberofelements; 

    int maxcardinality, sum, ideal, temp, fragment, record; 



   

 

 86 

    float nominee; 

    unsigned *SP; 

    int *icache; 

    float *dcache; 

    int **aB1; 

    float **aB2; 

    aB1 = ConvertIntMatrix(&B1[0][0], rows, cols); 

    aB2 = ConvertFloatMatrix(&B2[0][0], rows, cols); 

    FILE *fp; 

    fp = fopen(outputtext, "w"); 

    while (unclustered > 0) 

    { 

        if (unclustered == 1) 

        { 

            SetBit(S, I[0]); 

            fprintf(fp, "%d\n", I[0]); 

            break; 

        } 

        else 

        { 

            if (unclustered > available && available > 1) 

            { 

                sum = 0; 

                for (int i=0; i<unclustered; i++) 

                { 
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                    sum += interaction[I[i]]; 

                } 

                sum += unclustered; 

                ideal = sum / available; 

                work[0] = 0; 

                #pragma omp parallel for 

                for (int i=1; i<2*available; i++) 

                { 

                    work[i] = -1; 

                } 

                counter = available; 

                if (sum % available == 0) 

                { 

                    for (int i=0; i<available; i++) 

                    { 

                        if (work[2*i] >= unclustered) 

                        { 

                            work[2*i] = -1; 

                            counter = i; 

                            break; 

                        } 

                        temp = interaction[I[work[2*i]]] + 1; 

                        if (temp >= ideal) 

                        { 

                            work[2*i+1] = work[2*i]; 
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                            if (i < available-1) 

                                work[2*i+2] = work[2*i] + 1; 

                        } 

                        else 

                        { 

                            for (int j=1; temp<ideal; j++) 

                            { 

                                if (work[2*i]+j >= unclustered) 

                                { 

                                    record = j - 1; 

                                    break; 

                                } 

                                temp = temp + 

interaction[I[work[2*i]+j]] + 1; 

                                record = j; 

                            } 

                            work[2*i+1] = work[2*i] + record; 

                            if (i < available-1) 

                                work[2*i+2] = work[2*i] + record + 1; 

                        } 

                    } 

                } 

                else 

                { 

                    for (int i=0; i<available; i++) 
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                    { 

                        if (work[2*i] >= unclustered) 

                        { 

                            work[2*i] = -1; 

                            counter = i; 

                            break; 

                        } 

                        temp = interaction[I[work[2*i]]] + 1; 

                        if (temp > ideal) 

                        { 

                            work[2*i+1] = work[2*i]; 

                            if (i < available-1) 

                                work[2*i+2] = work[2*i] + 1; 

                        } 

                        else 

                        { 

                            for (int j=1; temp<=ideal; j++) 

                            { 

                                if (work[2*i]+j >= unclustered) 

                                { 

                                    record = j - 1; 

                                    break; 

                                } 

                                temp = temp + 

interaction[I[work[2*i]+j]] + 1; 
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                                record = j; 

                            } 

                            work[2*i+1] = work[2*i] + record; 

                            if (i < available-1) 

                                work[2*i+2] = work[2*i] + record + 1; 

                        } 

                     } 

                } 

                while (counter < available) 

                { 

                    record = -1; 

                    fragment = 0; 

                    for (int i=0; i<counter; i++) 

                    { 

                        temp = 0; 

                        for(int j=work[2*i]; j<=work[2*i+1]; j++) 

                            temp = temp + interaction[I[j]] + 1; 

                        if (temp > fragment) 

                        { 

                            record = i; 

                            fragment = temp; 

                        } 

                    } 

                    if (record == -1) 

                    { 
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                        fprintf(stderr, "Error in allocating per-

thread starting and ending indices, which indicates the user might 

have forgotten to set the OMP_NUM_THREADS environment variable.\n"); 

                        exit(1); 

                    } 

                    if (work[2*record+1] == work[2*record]) 

                    { 

                        record = -1; 

                        fragment = 0; 

                        for (int i=0; i<counter; i++) 

                        { 

                            if (work[2*i+1]-work[2*i]+1 > fragment) 

                            { 

                                record = i; 

                                fragment = work[2*i+1] - work[2*i] + 

1; 

                            } 

                        } 

                        if (record == -1) 

                        { 

                            fprintf(stderr, "Error in allocating per-

thread starting and ending indices.\n"); 

                            exit(1); 

                        } 

                        if (fragment == 1) 
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                            break; 

                    } 

                    if (work[2*counter] != -1) 

                    { 

                        fprintf(stderr, "Error in allocating per-

thread starting and ending indices.\n"); 

                        exit(1); 

                    } 

                    work[2*counter] = work[2*counter-1]; 

                    work[2*counter+1] = work[2*counter-1]; 

                    for (int i=record+1; i<counter; i++) 

                    { 

                        work[2*i] -= 1; 

                        work[2*i+1] -= 1; 

                    } 

                    work[2*record+1] -= 1; 

                    counter++; 

                } 

                #pragma omp parallel for private(SP, temp) 

schedule(static) 

                for (int i=0; i<counter; i++) 

                { 

                    SP = (unsigned *)malloc(order*sizeof(unsigned)); 

                    if (SP == NULL) 

                    { 
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                        fprintf(stderr, "Memory allocation failure in 

creating array SP to be used by MultiClustering().\n"); 

                        exit(1); 

                    } 

                    int localrow, localmax; 

                    localrow = work[2*i+1] - work[2*i] + 1; 

                    localmax = 0; 

                    for (int j=0; j<localrow; j++) 

                    { 

                        temp = 0; 

                        for (int k=0; k<delta; k++) 

                        { 

                            if (B1[I[work[2*i]+j]][k] < 0) 

                                break; 

                            if (TestBit(S, B1[I[work[2*i]+j]][k]) == 

0) 

                                temp++; 

                            if (temp == interaction[I[work[2*i]+j]]) 

                                break; 

                        } 

                        interaction[I[work[2*i]+j]] = temp; 

                        if (temp > localmax) 

                            localmax = temp; 

                    } 
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                    int (*multiicache)[localmax] = 

AllocIntArray(localrow, localmax); 

                    if (multiicache == NULL) 

                    { 

                        fprintf(stderr, "Memory allocation failure in 

creating matrix multiicache.\n"); 

                        exit(1); 

                    } 

                    float (*multidcache)[localmax] = 

AllocFloatArray(localrow, localmax); 

                    if (multidcache == NULL) 

                    { 

                        fprintf(stderr, "Memory allocation failure in 

creating matrix multidcache.\n"); 

                        exit(1); 

                    } 

                    for (int j=0; j<localrow; j++) 

                    { 

                        temp = 0; 

                        for (int k=0; k<delta; k++) 

                        { 

                            if (B1[I[work[2*i]+j]][k] < 0) 

                                break; 

                            if (TestBit(S, B1[I[work[2*i]+j]][k]) == 

0) 
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                            { 

                                multiicache[j][temp] = 

B1[I[work[2*i]+j]][k]; 

                                multidcache[j][temp] = 

B2[I[work[2*i]+j]][k]; 

                                temp++; 

                            } 

                        } 

                        for (int k=temp; k<localmax; k++) 

                        { 

                            multiicache[j][k] = -1; 

                        } 

                        for (int k=temp; k<localmax; k++) 

                        { 

                            multidcache[j][k] = -1.0; 

                        } 

                    } 

                    int **amultiicache; 

                    float **amultidcache; 

                    amultiicache = 

ConvertIntMatrix(&multiicache[0][0], localrow, localmax); 

                    amultidcache = 

ConvertFloatMatrix(&multidcache[0][0], localrow, localmax); 
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                    MultiClustering(aB1, aB2, amultiicache, 

amultidcache, I, localrow, work[2*i], unclustered, SP, order, delta, 

localmax, capacity); 

                    free(SP); 

                    SP = NULL; 

                    FreeConvertIntMatrix(amultiicache); 

                    FreeConvertFloatMatrix(amultidcache); 

                    free(multiicache); 

                    free(multidcache); 

                    multiicache = NULL; 

                    multidcache = NULL; 

                    amultiicache = NULL; 

                    amultidcache = NULL; 

                } 

            } 

            else 

            { 

                #pragma omp parallel for private(SP, icache, dcache, 

temp) schedule(static) 

                for (int i=0; i<unclustered; i++) 

                { 

                    SP = (unsigned *)malloc(order*sizeof(unsigned)); 

                    if (SP == NULL) 

                    { 



   

 

 97 

                        fprintf(stderr, "Memory allocation failure in 

creating array SP to be used by EndingClustering().\n"); 

                        exit(1); 

                    } 

                    temp = 0; 

                    for (int k=0; k<delta; k++) 

                    { 

                        if (B1[I[i]][k] < 0) 

                            break; 

                        if (TestBit(S, B1[I[i]][k]) == 0) 

                            temp++; 

                        if (temp == interaction[I[i]]) 

                            break; 

                    } 

                    interaction[I[i]] = temp; 

                    icache = (int *)malloc(temp*sizeof(int)); 

                    if (icache == NULL) 

                    { 

                        fprintf(stderr, "Memory allocation failure in 

creating array icache to be used by EndingClustering().\n"); 

                        exit(1); 

                    } 

                    dcache = (float *)malloc(temp*sizeof(float)); 

                    if (dcache == NULL) 

                    { 
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                        fprintf(stderr, "Memory allocation failure in 

creating array dcache to be used by EndingClustering().\n"); 

                        exit(1); 

                    } 

                    temp = 0; 

                    for (int k=0; k<delta; k++) 

                    { 

                        if (B1[I[i]][k] < 0) 

                            break; 

                        if (TestBit(S, B1[I[i]][k]) == 0) 

                        { 

                            icache[temp] = B1[I[i]][k]; 

                            dcache[temp] = B2[I[i]][k]; 

                            temp++; 

                        } 

                        if (temp == interaction[I[i]]) 

                            break; 

                    } 

                    capacity[i] = EndingClustering(aB1, aB2, icache, 

dcache, I[i], unclustered, SP, order, delta, temp); 

                    free(SP); 

                    free(dcache); 

                    SP = NULL; 

                    dcache = NULL; 

                } 
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            } 

            maxcardinality = 0; 

            #pragma omp parallel for reduction(max:maxcardinality) 

            for (int i=0; i<unclustered; i++) 

            { 

                if (capacity[i] > maxcardinality) 

                    maxcardinality = capacity[i]; 

            } 

            for (int i=0; i<unclustered; i++) 

            { 

                if (capacity[i] == maxcardinality) 

                { 

                    counter = i; 

                    break; 

                } 

            } 

            SP = (unsigned *)malloc(order*sizeof(unsigned)); 

            if (SP == NULL) 

            { 

                fprintf(stderr, "Memory allocation failure in creating 

array SP to be used by MonoClustering().\n"); 

                exit(1); 

            } 

            dcache = (float *)malloc(delta*sizeof(float)); 

            if (dcache == NULL) 
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            { 

                fprintf(stderr, "Memory allocation failure in creating 

array dcache to be used by MonoClustering().\n"); 

                exit(1); 

            } 

            MonoClustering(aB1, aB2, dcache, I[counter], S, 

unclustered, SP, order, delta, thresholdofclustering); 

            free(dcache); 

            dcache = NULL; 

            fprintf(fp, "%d", I[counter]); 

            for (int i=0; i<rows; i++) 

            { 

                if (TestBit(SP, i) != 0 && i != I[counter]) 

                    fprintf(fp, ",%d", i); 

            } 

            fprintf(fp, "\n"); 

            #pragma omp parallel for 

            for (int i=0; i<order; i++) 

            { 

                S[i] += SP[i]; 

            } 

            for (int i=0; i<rows; i++) 

            { 

                if (TestBit(SP, i) != 0) 

                { 
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                    for (int j=0; j<unclustered; j++) 

                    { 

                        if (I[j] == i) 

                        { 

                            for (int k=j; k<unclustered-1; k++) 

                                I[k] = I[k+1]; 

                            I[unclustered-1] = -1; 

                            unclustered--; 

                            break; 

                        } 

                    } 

                } 

            } 

            free(SP); 

            SP = NULL; 

        } 

    } 

    fclose(fp); 

    free(I); 

    free(S); 

    FreeConvertIntMatrix(aB1); 

    FreeConvertFloatMatrix(aB2); 

    free(B1); 

    free(B2); 

    free(interaction); 
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    free(work); 

    free(capacity); 

    PrintCitation(); 

    return 0; 

} 
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Appendix B Data Set 

Appendix Table 1 Training and validation sets splitting results using the Kennard–Stone algorithm 

ID Compound Label Site Category Split Result 

1 

5β-androstan-3α-17β-diacetoxy S30 

C3 

ether α 

tertiary 

Training 

2 C5 

tertiary 

alkyl 

Training 

3 C8 

tertiary 

alkyl 

Training 

4 C9 

tertiary 

alkyl 

Training 

5 C14 

tertiary 

alkyl 

Training 

6 C17 

ether α 

tertiary 

Training 

7 

3-methyltetrahydropyran S14 

C2 axial 

ether α 

secondary 

Validation 

8 

C2 

equatorial 

ether α 

secondary 

Training 

9 C3 

tertiary 

alkyl 

Training 
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10 C6 axial 

ether α 

secondary 

Validation 

11 

C6 

equatorial 

ether α 

secondary 

Validation 

12 

2-methyltetrahydrofuran S8 

C2 

ether α 

tertiary 

Training 

13 

C5 cis to 

methyl 

ether α 

secondary 

Validation 

14 

C5 trans 

to methyl 

ether α 

secondary 

Training 

15 

3-methyltetrahydrofuran S9 

C2 cis to 

methyl 

ether α 

secondary 

Validation 

16 

C2 trans 

to methyl 

ether α 

secondary 

Training 

17 C3 

tertiary 

alkyl 

Training 

18 

C5 cis to 

methyl 

ether α 

secondary 

Training 

19 

C5 trans 

to methyl 

ether α 

secondary 

Validation 

20 1,3-dioxane S16 C2 axial acetal α Training 
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21 

C2 

equatorial 

acetal α Training 

22 C4 axial 

ether α 

secondary 

Training 

23 

C4 

equatorial 

ether α 

secondary 

Training 

24 

2,2,4-trimethyl-1,3-dioxane S18 

C4 

ether α 

tertiary 

Training 

25 C6 axial 

ether α 

secondary 

Validation 

26 

C6 

equatorial 

ether α 

secondary 

Validation 

27 

2,4,4-trimethyl-1,3-dioxane S19 

C2 acetal α Training 

28 C6 axial 

ether α 

secondary 

Validation 

29 

C6 

equatorial 

ether α 

secondary 

Training 

30 

4,4,6-trimethyl-1,3-dioxane S20 

C2 axial acetal α Training 

31 

C2 

equatorial 

acetal α Training 

32 C6 

ether α 

tertiary 

Validation 
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33 

3-isopropyltetrahydro-2H-pyran S15 

C2 axial 

ether α 

secondary 

Training 

34 

C2 

equatorial 

ether α 

secondary 

Validation 

35 C3 

tertiary 

alkyl 

Training 

36 C6 axial 

ether α 

secondary 

Training 

37 

C6 

equatorial 

ether α 

secondary 

Training 

38 C7 

tertiary 

alkyl 

Training 

39 

2-(tert-butyl)-1,3-dioxane S21 

C2 acetal α Training 

40 C4 axial 

ether α 

secondary 

Training 

41 

C4 

equatorial 

ether α 

secondary 

Training 

42 

2-oxaspiro[5.5]undecane S17 

C1 axial 

ether α 

secondary 

Training 

43 

C1 

equatorial 

ether α 

secondary 

Training 
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44 C3 axial 

ether α 

secondary 

Training 

45 

C3 

equatorial 

ether α 

secondary 

Training 

46 acyclic S1 1 

ether α 

tertiary 

Training 

47 acyclic S2 4 

ether α 

tertiary 

Training 

48 acyclic S3 5 

ether α 

tertiary 

Training 

49 acyclic S4 7 

ether α 

tertiary 

Training 

50 acyclic S5 8 

ether α 

tertiary 

Validation 

51 acyclic S6 9 

ether α 

tertiary 

Training 

52 acyclic S7 10 

ether α 

tertiary 

Training 

53 

tigogenin acetate S31 

C3 

ether α 

tertiary 

Training 

54 C5 

tertiary 

alkyl 

Training 
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55 C8 

tertiary 

alkyl 

Training 

56 C9 

tertiary 

alkyl 

Training 

57 C14 

tertiary 

alkyl 

Training 

58 C16 

ether α 

tertiary 

Training 

59 C17 

tertiary 

alkyl 

Training 

60 C20 

tertiary 

alkyl 

Training 

61 C25 

tertiary 

alkyl 

Training 

62 C26 axial 

ether α 

secondary 

Training 

63 

C26 

equatorial 

ether α 

secondary 

Training 

64 

4-(tert-butyl)-2,3-

dimethyltetrahydrofuran 

S10 C3 

tertiary 

alkyl 

Training 

65 

3-isopropyl-2,4,5-

trimethyltetrahydrofuran 

S11 C4 

tertiary 

alkyl 

Validation 
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66 

2,4-di-tert-butyl-3-

methyltetrahydrofuran 

S12 C3 

tertiary 

alkyl 

Validation 

67 

4-(tert-butyl)-2,2,3-

trimethyltetrahydrofuran 

S13 C3 

tertiary 

alkyl 

Training 

68 

1,1,6,6-

tetramethyldecahydronaphthalene 

S22 C4a 

tertiary 

alkyl 

Training 

69 

1,1,3,3,6,6-

hexamethyldecahydronaphthalene 

S23 C4a 

tertiary 

alkyl 

Training 

70 

1,1,4,4,6,6-

hexamethyldecahydronaphthalene 

S24 C4a 

tertiary 

alkyl 

Validation 

71 

1,1,3,3,8,8-

hexamethyldecahydronaphthalene 

S25 C4a 

tertiary 

alkyl 

Validation 

72 

2,4b-

dimethyltetradecahydrophenanthrene 

S27 C10a 

tertiary 

alkyl 

Validation 

73 

1-(tert-butyl)-1,2,6-

trimethyldecahydronaphthalene 

S26 C4a 

tertiary 

alkyl 

Training 

74 

2,4b,9,9-

tetramethyltetradecahydrophenanthrene 

S28 C10a 

tertiary 

alkyl 

Validation 

75 

2,4b,10,10-

tetramethyltetradecahydrophenanthrene 

S29 C10a 

tertiary 

alkyl 

Training 

76 

2,4b-

dimethyltetradecahydrophenanthrene 

S27 C4a 

tertiary 

alkyl 

Validation 
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77 

1-(tert-butyl)-1,2,6-

trimethyldecahydronaphthalene 

S26 C8a 

tertiary 

alkyl 

Training 

78 

2,4b,9,9-

tetramethyltetradecahydrophenanthrene 

S28 C4a 

tertiary 

alkyl 

Training 

79 

2,4b,10,10-

tetramethyltetradecahydrophenanthrene 

S29 C4a 

tertiary 

alkyl 

Validation 

 

Appendix Table 2 Computed electronic descriptors 

ID BDE/kcal mol–1 NPA charge CHELPG charge 

Laplacian bond 

order 

1 94.7 0.194 -0.0183 0.815 

2 92.9 0.198 -0.0477 0.771 

3 92.2 0.195 -0.0463 0.775 

4 90.5 0.196 -0.0444 0.768 

5 88.3 0.193 -0.077 0.76 

6 93.5 0.2 -0.0255 0.81 

7 92.2 0.151 -0.0198 0.787 

8 92.2 0.186 0.006 0.821 

9 93.4 0.192 -0.0309 0.779 

10 92.1 0.15 -0.0239 0.792 

11 92.1 0.186 0.0162 0.824 

12 88.2 0.155 -0.0464 0.797 
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13 89.7 0.164 -0.0161 0.816 

14 89.7 0.171 -0.0235 0.82 

15 89.8 0.155 -0.0199 0.802 

16 90.1 0.18 -0.0226 0.818 

17 91.3 0.193 -0.0349 0.783 

18 89.9 0.174 -0.0057 0.819 

19 89.9 0.162 -0.0201 0.811 

20 92.1 0.123 -0.0006 0.803 

21 96.8 0.178 0.0703 0.854 

22 92.5 0.155 -0.0197 0.794 

23 92.5 0.191 0.0112 0.83 

24 89.2 0.155 -0.1085 0.794 

25 91 0.155 -0.0695 0.801 

26 91 0.189 0.0199 0.824 

27 89.9 0.127 -0.0541 0.802 

28 91.8 0.155 -0.0659 0.797 

29 91.8 0.19 0.0205 0.824 

30 90.8 0.125 -0.0566 0.808 

31 95.1 0.177 0.0574 0.851 

32 90 0.156 -0.0837 0.79 

33 92.1 0.151 -0.01 0.786 

34 92.1 0.189 0.0384 0.828 
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35 93.3 0.192 0.0034 0.769 

36 92.1 0.15 -0.0227 0.792 

37 92.1 0.185 0.0115 0.827 

38 91.4 0.183 -0.0648 0.777 

39 91.5 0.135 0.0154 0.783 

40 92.3 0.156 -0.0089 0.795 

41 92.3 0.19 0.0334 0.829 

42 92.3 0.159 0.0075 0.784 

43 92.3 0.189 0.0574 0.821 

44 92.1 0.15 -0.0215 0.793 

45 92.1 0.186 0.0092 0.824 

46 88.3 0.179 -0.054 0.82 

47 88.8 0.179 -0.0269 0.808 

48 89.5 0.179 0.0249 0.801 

49 86.2 0.179 -0.0664 0.806 

50 86.8 0.183 0.0221 0.803 

51 86.5 0.184 0.016 0.801 

52 84.2 0.188 0.075 0.807 

53 94.4 0.194 -0.0502 0.812 

54 91.3 0.192 -0.0988 0.766 

55 92 0.195 -0.0411 0.774 

56 91.9 0.192 -0.034 0.761 



   

 

 113 

57 89.7 0.191 -0.0286 0.758 

58 90.2 0.176 -0.0513 0.806 

59 95 0.211 0.0287 0.776 

60 90.4 0.207 -0.0584 0.784 

61 93.4 0.188 -0.02 0.778 

62 93 0.169 0.0089 0.804 

63 93 0.184 0.0303 0.82 

64 91.6 0.198 -0.0446 0.781 

65 91.2 0.198 -0.0499 0.782 

66 92 0.205 -0.0352 0.781 

67 90.3 0.202 -0.0522 0.778 

68 92 0.19 -0.0507 0.771 

69 92.3 0.192 -0.0258 0.774 

70 91.9 0.196 -0.0196 0.768 

71 91.8 0.191 -0.0433 0.775 

72 91.7 0.189 -0.0535 0.772 

73 91.2 0.189 -0.0423 0.774 

74 91.7 0.191 -0.0349 0.774 

75 90.6 0.196 0.00841 0.771 

76 91.4 0.195 -0.00643 0.763 

77 92.4 0.199 -0.0741 0.769 

78 91.7 0.195 0.0208 0.765 
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79 91.8 0.197 0.0368 0.767 

 

Appendix Table 3 Computed steric descriptors 

ID SASA/Å2 L/Å B1/Å B5/Å 

1 7.19 3.07 3.03 8.16 

2 9.65 2.9 2.94 8 

3 2.9 3.42 3.14 9.21 

4 1.01 7.47 3.25 9.56 

5 6.08 8.06 3.09 8.72 

6 6.22 7.83 2.93 10.67 

7 19.99 2.52 1.7 4.85 

8 21.29 2.5 1.95 4.46 

9 16.07 2.5 2.74 4.88 

10 24.72 2.51 1.76 5.93 

11 26.89 2.49 1.91 3.6 

12 18.77 2.5 2.35 4.19 

13 31.04 2.5 1.74 5.14 

14 29.88 2.5 1.74 4.51 

15 28.14 2.71 1.67 4.52 

16 28.29 2.5 1.73 4.33 

17 16.55 2.5 2.62 4.17 

18 32.01 2.5 1.74 4.64 
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19 29.4 2.5 1.68 5.19 

20 25.15 2.51 1.67 4.76 

21 27.76 2.49 1.9 3.51 

22 26.51 2.5 1.69 4.39 

23 32.3 2.49 1.91 3.55 

24 12.16 3.36 2.69 5.44 

25 21.19 3.27 1.8 5.6 

26 29.01 2.49 1.91 4.71 

27 10.57 3.43 2.4 5.46 

28 20.86 3.3 1.79 5.56 

29 29.98 2.49 1.92 4.57 

30 22.31 3.37 1.77 5.48 

31 30.7 2.49 1.91 4.67 

32 12.11 3.39 2.43 5.62 

33 18.05 2.53 1.7 5.74 

34 14.87 3.27 1.96 5.72 

35 11.15 2.5 3.16 4.9 

36 24.23 2.51 1.76 7.29 

37 27.71 2.49 1.91 4.61 

38 14.62 2.63 2.81 6.37 

39 8.78 2.54 3.17 4.79 

40 27.81 2.5 1.86 6.76 
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41 33.17 2.49 1.91 5.93 

42 20.32 2.65 1.77 5.16 

43 14.97 4.19 1.98 5.35 

44 25.88 2.51 1.7 7.28 

45 26.6 2.49 1.91 6 

46 17.57 2.5 2.66 3.84 

47 14.62 2.53 2.72 4.49 

48 10.86 2.52 3.14 4.5 

49 13.42 2.74 2.98 4.49 

50 8.25 2.94 3.12 4.51 

51 9.41 2.99 3.31 4.53 

52 7.24 3.11 3.38 4.51 

53 8.98 3.61 3.02 16.53 

54 9.41 4.33 2.91 14.11 

55 3.04 3.84 3.43 11.15 

56 7.24 3.9 3.18 12.26 

57 7.82 4.56 3.61 11.96 

58 11.77 4.03 3.36 13.98 

59 9.41 4.63 3.39 13.99 

60 3.33 4.78 2.99 15.48 

61 13.08 3.6 2.73 17.18 

62 14.92 10.05 1.98 16.31 
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63 24.47 2.5 3.03 16.53 

64 3.76 3.78 2.99 5.77 

65 3.33 3.69 2.99 5 

66 1.74 3.75 3 5.83 

67 3.76 3.86 2.99 5.77 

68 5.07 3.42 2.79 5.73 

69 0.87 3.48 2.83 5.73 

70 1.59 3.49 3.62 5.76 

71 4.49 3.41 2.84 5.71 

72 3.86 3.48 2.77 6.02 

73 4.29 3.51 2.78 7.07 

74 2.56 3.48 2.8 6.07 

75 0.29 3.56 3.3 6.18 

76 2.03 4.53 3.16 5.24 

77 2.9 3.62 3.68 5.83 

78 2.61 4.5 3.16 6.06 

79 1.74 4.47 3.18 5.71 

 

Appendix Table 4 Relaxed force constant, aSASA descriptor, and free energy of activation calculated by DFT 

ID 

Relaxed force 

constant/mdyne Å–1 

aSASA = 

sigmoid(SASA/6.71) 

ΔG‡
DFT/kcal mol–1 

1 5.18 0.745 32.7 
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2 4.93 0.808 26.7 

3 5 0.606 34.7 

4 4.93 0.538 36.4 

5 4.81 0.712 30.3 

6 5.18 0.716 32.8 

7 4.76 0.952 24.5 

8 5.24 0.960 28.5 

9 5 0.916 26.8 

10 4.81 0.975 23.7 

11 5.26 0.982 28.3 

12 4.72 0.943 21.4 

13 4.78 0.990 22 

14 5 0.988 21.8 

15 4.74 0.985 23.1 

16 5.1 0.985 22.2 

17 5.03 0.922 26.7 

18 5.05 0.992 23.2 

19 4.81 0.988 22.3 

20 4.72 0.977 24 

21 5.41 0.984 28.9 

22 4.85 0.981 25.5 

23 5.29 0.992 29.4 
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24 4.85 0.860 25 

25 4.9 0.959 24.7 

26 5.26 0.987 27.4 

27 4.76 0.829 24.4 

28 4.88 0.957 25.4 

29 5.26 0.989 28.4 

30 4.78 0.965 23.5 

31 5.38 0.990 27.4 

32 4.81 0.859 25.7 

33 4.76 0.936 24.7 

34 5.32 0.902 29.9 

35 4.95 0.840 28.9 

36 4.81 0.974 23.4 

37 5.24 0.984 27.9 

38 4.93 0.898 26.8 

39 4.63 0.787 26.3 

40 4.85 0.984 24.7 

41 5.29 0.993 28.4 

42 4.81 0.954 24.2 

43 5.26 0.903 30.2 

44 4.81 0.979 23 

45 5.26 0.981 28 
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46 5.13 0.932 21.3 

47 5.05 0.898 23.5 

48 5.03 0.835 27.7 

49 4.98 0.881 21.3 

50 5.03 0.774 25.4 

51 5.03 0.803 28.9 

52 5.05 0.746 27 

53 5.18 0.792 32.7 

54 4.85 0.803 29.4 

55 5.03 0.611 35.2 

56 4.83 0.746 31.6 

57 4.81 0.762 30.6 

58 5.08 0.852 23.1 

59 5.1 0.803 33.5 

60 5.18 0.622 35.8 

61 5 0.875 27.4 

62 5 0.902 26.2 

63 5.24 0.975 28.9 

64 5.08 0.637 34.3 

65 5.13 0.622 34.2 

66 5.15 0.564 42.8 

67 5.08 0.637 36.4 
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68 4.95 0.680 31.8 

69 5.03 0.532 37.5 

70 4.95 0.559 35.9 

71 5 0.661 31.8 

72 4.98 0.640 30.9 

73 4.98 0.655 31.4 

74 5 0.594 36.3 

75 4.98 0.511 37.1 

76 4.93 0.575 37.8 

77 4.95 0.606 38.2 

78 4.93 0.596 35.4 

79 4.93 0.564 38.6 
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