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Abstract

Machine learning uses historical data to make predictions about new data. It has been fre-
quently applied in healthcare to optimise diagnostic classification through discovery of hidden
patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD)machine
learning research entails one of the most promising clinical applications, in which timely and
accurate diagnosis is essential. The objective of this scoping review is to summarise the appli-
cation and clinical utility of machine learning techniques used in paediatric cardiology research,
specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying
CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising
the diagnosis and assessment of CHD.Deep learning and support vectormachine were themost
commonly used algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical
applications primarily focused on the classification of auscultatory heart sounds, transthoracic
echocardiograms, and cardiac MRIs. The range of these applications and directions of future
research are discussed in this scoping review.

Introduction

Clinical intuition is commonly characterised as a “feeling”. This feeling of subconscious pattern
divergence can be applied to the diagnosis of complex illnesses or impending clinical deterio-
ration. Clinical intuition is derived from repeated exposures to similar events that are stored in
the human brain over time. This library of events can fine tune intuition so that when a future
clinical event occurs, the clinician can anticipate or predict what will happen next. Humans are
relatively efficient at taking into account multidimensional data (i.e., laboratory results, monitor
data, and diagnostic imaging). Similarly, machine learning can closely replicate human intuition
and support the deep infrastructure that goes into diagnosing complex illnesses or prediction of
clinical deterioration, however, remains unaffected by biases and recent experiences that so
often cloud our human judgement.

Machine learning is a discipline at the intersection of mathematics, statistics, and computer
science that provides a powerful catalogue of techniques used to make predictions about future
events. Machine learning implies training a computer algorithm on historical data stored in a
large data set in order to “learn” how tomake predictions about future events. Advances in com-
putational power to handle complex amounts of reference data at high speed have led to the
observed exponential growth of machine learning applications in healthcare in recent years.
Such machine learning applications are conceptually different from computerised algorithms
based on classical statistical modelling. The latter follows a rule-based logic where a programmer
decides a set of conditional statements derived from domain knowledge to automate “human-
like” clinical decision making (i.e., if body mass index > 30 then class = “obese”). In contrast, a
machine learning algorithm “learns” the modelling parameters from historical data to develop
decision rules for future predictions. This “learning” process performs in a fashion completely
unbiased by existing domain-knowledge given that there are hidden patterns in the data that
might not be obvious to humans. Furthermore, since machine learning algorithms use a
data-driven logic independent from that of clinicians, it has been shown that machine learning
algorithms outperform clinicians in some scenarios.1 Figure 1 summarises the machine learning
pipeline, emphasising its role in “data-driven” decision making.

Machine learning has been successfully applied to medicine in many fields, such as advanced
cardiac imaging.2 In this context, medical images are processed and compiled to extract features
used by the algorithm to fine tune its classification of outcomes. The majority of advances in
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medical imaging machine learning applications (i.e., artifact
removal, augmentation of disease classification accuracy, etc.) have
been developed in various adult populations.3–8

Neonatal and paediatric populations, especially the most vul-
nerable like those with CHD, could greatly benefit from machine
learning-based improved diagnostic accuracy and early disease
detection. One in 100 live births in the United States is diagnosed
with CHD every year, of which nearly 7,200 have critical CHD.9–12

These life-threatening structural malformations of the heart are
present at birth and require intervention in the first year of life.13,14

Delays in timely diagnosis in neonates with CHD, and limited
access to specialised cardiac programmes, could result in prevent-
able morbidity or mortality in some cases. Securing access to spe-
cialised neonatal or paediatric cardiac programmes preemptively,
although challenging, has been shown to play an instrumental role
in decreasing risk of CHD infant mortality.15 The observed benefits
of machine learning applications in healthcare are promising for
optimising timing and accuracy of CHD diagnoses, thereby pro-
viding early targeted access to highly specialised cardiac care.
The objective of this scoping review is to describe the application
and clinical utility of machine learning techniques used for diag-
nosing and assessing underlying critical and non-critical CHD.
In this review, we will briefly define the emerging research appli-
cations where machine learning has been applied in paediatric car-
diology, describe the various machine learning techniques used in
these categories, and summarise the specific applications used for
diagnosis and assessment of critical and non-critical CHD.

Materials and methods

Literature search strategy
We followed the guidelines for Preferred Reporting Items for

Systematic Reviews and Meta-Analyses Extension for Scoping
Reviews.16 All original, peer-reviewed studies published in
PubMed database between January, 2015 and February, 2021 that
described the use of machine learning or predictive analytics for
predicting diagnostic outcomes in patients with critical and
non-critical CHD were included. The most recent search was con-
ducted on 20 February 2021. The search terms were “(machine
learning) AND ((congenital heart disease) OR (cardiovascular dis-
ease in children))”. Studies focused on populations without a CHD
diagnosis were excluded. The search was limited to English-
language articles. This search yielded 219 journal articles. After
screening the titles and abstracts, we excluded articles that were

irrelevant (n= 169). Among the 50 full-text articles reviewed,
20 articles focusing on CHD diagnosis and assessment were retained
for inclusion in this scoping review. Figure 2 briefly summarises the
work flow for article search and selection.
Data coding scheme

Full-text articles were analysed using the matrix method as per
recommendations by Whittemore and Knafl.17 A single reviewer
first sorted each article into a table using ascending chronological
order with the following eight domains: journal / author informa-
tion, purpose, design, sample, variables, results, limitations, and
implications for future research. These domains were selected after
discussions between the coauthors, then the information related to
each domain were abstracted by a single reviewer. In addition to
these general domains, we defined a data dictionary for the
abstracted machine learning elements necessary for this study.
These elements included: class of machine learning approach
(supervised vs. unsupervised, regression vs. classification, tradi-
tional learning vs. deep learning); specific algorithm used (logistic
regression, support vector machine, etc.); techniques used for test-
ing and cross-validation; and the use of independent external
validation.
Synthesis of findings

Results were reported using the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses Extension for Scoping
Reviews guidelines.16 Each article was assessed for its standard
of documentation using the Minimum Information About
Clinical Artificial Intelligence Modeling checklist.18 Simple
descriptive statistics and pie charts were used to report frequencies
of different machine learning algorithms applied across eligible
studies. Next, the content of the abstracted domains of eligible
studies were qualitatively synthesised. Based on domain
expertise and discussions among coauthors, three categories of
machine learning applications for the diagnosis and assessment
of CHD emerged and results were summarised for each of these
categories.

Results

There were 50 studies that broadly focused on the application of
machine learning in paediatric cardiology research. These studies
were categorised and focused on various intentions for clinical use
(Figure 3): diagnosis and assessment of underlying critical and
non-critical CHD (n= 20),1,19–37 prediction and risk stratification
of outcomes in CHD (n= 15),38–52 management of patients with

Figure 1. Summary of a typical Machine Learning Pipeline
Application.
*Machine Learning (ML), Principal Component Analysis (PCA).
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CHD (n= 2),53,54 medical device research (n= 4),55–58 novel genet-
ics and biomarkers in CHD (n= 5),59–63 CHD in pregnancy
(n= 3),64–66 and social media research (n= 1).67 The distribution
of various machine learning algorithms used in these studies is
summarised in Figure 4. The two most common algorithms were
deep neural networks (deep learning) and support vector
machines. Hidden Markov models and linear discriminant analy-
sis were the least common algorithms.

There were 20 studies focusing on the diagnosis and assessment
of critical and non-critical CHD. The Table 1 summarises the
details of these studies, including purpose, design, sample, machine
learning technique, and primary findings. All studies were
observational, generally of small sample size. None of the studies

provided 100% of the Minimum Information About Clinical
Artificial Intelligence Modeling checklist items (standard
documentation guidelines).18 Included studies applied machine
learning to auscultation of heart sounds in patients with
CHD, interpreting transthoracic echocardiogram data, or process-
ing medical images (cardiovascular MRI). As shown in Figure 5,
deep neural networks and support vector machines were also
the most commonly used classification algorithms in these studies.
More importantly, Table 1 highlights that using cross validation on
existing retrospective data, the overall accuracy of the various
machine learning algorithms exceeded 80%, with some techniques
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Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses Flow Diagram of Included Articles.

Figure 3. Distribution of Machine Learning Applications and Uses in Pediatric
Cardiology Research.
*Congenital Heart Defect (CHD).

Figure 4. Distribution of Machine Learning Algorithms Used in Pediatric Cardiology
Research in General.
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Table 1. Summary of studies focusing on machine learning techniques applied to diagnosing and assessing CHD in neonates, infants, and children

Study citation Study aim and design Machine learning approach Main findings

Auscultation of heart sounds

Gomez-Quintana S, et al
(2021).34

Case-control study (n= 265 newborns [39 Other CHD,
89 PDA, 137 healthy], gestational ages 35 to 42 weeks).
PCG recordings in the first 6 days of life used to create
a decision support system that can detect sound
signatures with and without PDA and CHD. Two clinical
sites were used.

A boosted decision tree classifier with 10-fold cross
validation using a training and testing 90/10 split
dataset was used to estimate the probability of PDA or
CHD. No external validation.

The classifier achieved an AUC of 78% for detecting CHD
and 77% for detecting PDA.

Lv Jingjing, et al (2021).37 Case-control study (n= 1362 [1194 abnormal heart
sounds and 168 normal heart sounds], mean age 2.4
years [SD 3.1, median 0.9, and age range 1 day to
15.9 years]). To compare detection of abnormal heart
sounds via remote and automated artificial intelligence
auscultation with face-to-face auscultations by
experienced cardiologists (gold standard). One clinical
site was used.

CNN with 5-fold cross validation. No external validation. Remote auscultations compared to face-to-face
auscultations- sensitivity, specificity, and accuracy of
98% (95% CI 97-99%), 91% (95% CI 87-95%), and 97%
(95% CI 96-98%), respectively. Automated artificial
intelligence auscultations compared to face-to-face
auscultations- sensitivity, specificity, and accuracy of
97% (95% CI 96-98%), 89% (95% CI 84-94%), and 96%
(95% CI 95-97%), respectively.

Aziz S, et al (2020).29 Case-control study (n= 56 [17 ASD, 11 VSD, and 28
healthy], to automate detection and classification of
CHD through use of pattern recognition techniques.
One clinical site was used.

SVM with 10-fold cross validation. Quadratic, cubic, and
Gaussian kernels were applied to the SVM classifier. No
external validation.

SVM classifier with a cubic kernel function using a
subset of fused frequency and temporal based features,
had the best performance for binary and multiclass
experiments. Accuracy 95.24%, sensitivity 95.24%,
specificity 95.24%, PPV 86.96%, NPV 98.36%, and error
4.76%.

Gharehbaghi A, et al
(2020).30

Case-control study (n= 115 [10 ASD, 25 healthy with
innocent murmur, 25 healthy with no murmur, 15 MR,
15 TR, and 25 VSD], average age 3.9 – 2.4 to 12.6 ± 4.4)
to diagnose children with a septal defect versus
children with valvular leakage. Both of these conditions
are known to have a systolic murmur. One clinical site
was used.

TGNN with K-fold validation where there are different
values of K, ranging from 2 to half of the minimum
group size (A-test method), using a training and testing
70/30 spilt dataset. Repeated random sub-sampling was
applied, as well. No external validation.

Average accuracy 88.4% ± 3.9, sensitivity 91.6% ± 5.7,
classification error 9.89% using the A-test method
(evaluates structural risk).

Elgendi M, et al (2018).27 Cohort study (n= 60, median age 7 years [range
3 months to 78 years]) to classify pulmonary artery
hypertension using sound signatures from non-invasive
pulmonary circulation vibrations. One clinical site was
used.

LDA with leave one out cross validation. No external
validation.

Sensitivity 84%, specificity 88.57% for entropy (disorder
of heart sound pattern) of the first sinusoid formant
(frequency resonance) of heart sounds.

Sun S, et al (2018).20 Case-control study (n= 227 [60 VSD and 167 healthy],
VSD group average age 2 years and healthy group
average age 21 years) to classify small, medium, and
large VSD based on heart sound feature extraction. Two
databases (3M and Michigan), 1 cohort of
undergraduate students, and
1 clinical site were used.

PCA for feature generation and ellipse model, and SVM
for classification using 2,276 heart sounds (22% positive
cases). A Gaussian kernel was applied to the SVM
classifier. No external validation.

The ellipse model used for classification, had the
highest performance with accuracy 95.5%, 92.1%, and
96.2% for small, medium, and large VSD, sensitivity of
94.9%, 93.8%, and 95.3%, and specificity 95.6%, 91.9%,
and 96.3%, respectively.

Thompson W, et al (2018).36 Case-control study (n= 603 cases [374 abnormal
confirmed by echocardiogram and pathologic murmur,
and 229 normal confirmed by echocardiogram and
innocent murmur (90) or no murmur (139)], median age
8.8 ± 0.1 to 80.9 years) to compare classification of heart
rate by murmur detection algorithm and gold standard
3-lead electrocardiogram. One clinical site was used.

Murmur detection algorithm that performs a signal
quality check, heart sounds are segmented (S1 systole,
S2, and diastole), feature vectors emerge, and then
these feature vectors are used to build a non-linear
artificial intelligence classifier. The patients included in
the Johns Hopkins Cardiac Auscultatory Database were
not used for training, only for testing.

Murmur detection algorithm sensitivity and specificity
for detecting pathologic cases was 93% (CI 90-95%) and
81% (CI 75-85%), with accuracy of 88% (CI 85-91%).

(Continued)
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Table 1. (Continued )

Study citation Study aim and design Machine learning approach Main findings

Gharehbaghi A, et al
(2017).22

Case-control study (n= 90 [55 healthy and 35 CHD], age
6.6 ± 1.2 to 11.8 ± 4.1 years) to classify BAV and mitral
regurgitation using recorded heart sounds. One clinical
site was used.

Hidden Markov Model and SVM using repeated random
sub-sampling with 5-fold cross validation training /
testing 50/50 split dataset. A quadratic kernel was
applied to the SVM classifier. No external validation.

Accuracy 86.4%, sensitivity 85.6%, and specificity 87%.

Gharehbaghi A, et al
(2017).26

Case-control study (n= 90 [30 VSD, age 3.6 ± 1.2 years;
30 valvular regurgitation, age 11.8 ± 4.1 and 12.6 ± 4.4
years; 30 healthy, age 6.7 ± 3.7 years]) to classify
phonocardiography recordings and distinguish between
VSD and AV valve regurgitation. One clinical site was
used.

TGNN with leave one out validation method. No
external validation.

Accuracy 86.7% and sensitivity 83.3%.

Gharehbaghi A, et al
(2015).1

Case-control study (n= 50 [22 BAV and 28 healthy],
median age 7 years [range 2.5 to 12 years]) to classify
BAV through use of recorded heart sounds. One clinical
site was used.

Statistical TGNN, and SVM using 856 cardiac cycles (45%
positive cases) with cross validation on training / testing
50/50 split dataset. A linear kernel was applied to the
SVM classifier. No external validation.

The statistical TGNN on average had better performance
than the other models with classification rate 87.4%,
sensitivity 86.5%, and specificity 88.4%.

Transthoracic echocardiogram

Wang J, et al (2021)33 Case-control study (n= 1308 children [823 healthy, 209
VSD, 276 ASD]) designed to automatically interpret
five-view echocardiograms. One clinical site was used.

A multi-channel CNN was applied to the dataset with
a training / testing 90/10 split. No external validation.

The video-based model diagnosed the binary
classification problem (positive or negative) with 93.9%
accuracy, and the 3-class classification problem
(negative, ASD, VSD) with 92.1% accuracy. This model
was also able to achieve an AUC for binary classification
of 0.922. This model did not use a ground truth label or
key-frame annotation.

Diller GP, et al (2019).19 Case-control study (n= 267 [152 CHD and 155 healthy],
mean age 39 ± 16 years) to remove artifacts from
transthoracic echocardiograms by estimating cross-
entropy (a loss function that measures differences
between two probability distributions- original image
vs. reconstructed image)19,73 and sum of squared
differences (measures quality between healthy and CHD
images). One clinical site was used.

DNN with an autoencoder applied to 153,420 apical
4-chamber views from CHD subjects and 24,354 from
healthy subjects with 70/30 training/testing split. No
external validation.

Autoencoders trained significantly better on CHD
samples than healthy samples (cross-entropy- healthy:
0.2649 ± 0.0369 vs. 0.2597 ± 0.0327 for CHD), and (mean
squared difference- healthy: 133.89 ± 79.06 vs.
118.86 ± 61.52 for CHD). A lower cross-entropy indicates
a closer representation of the underlying distribution.

Diller GP, et al (2019).25 Case-control study (n= 199 [132 CHD and 67 healthy],
mean age 38 ± 12 to classify transposition of the great
arteries after arterial switch procedure vs. congenitally
corrected or healthy subjects. Two clinical sites were
used.

CNN on 4-chamber apical view images with 80/20
training/testing split. No external validation.

Model accuracy 95% in the training set and 94.4% in the
testing set.

Meza JM, et al (2018).21 Cohort study of neonates with critical left heart
obstruction (n= 651, median gestational age 38 [38-39]
weeks) to phenotype clinically meaningful clusters of
baseline and pre-intervention disease.
21 clinical sites enrolled in the Congenital Heart
Surgeons’ Society Data Center were used.

Unsupervised hierarchical, non-overlapping,
agglomerative cluster analysis used 136 baseline
quantitative and qualitative morphologic and functional
variables from baseline echocardiograms. No external
validation.

Three distinct groups emerged (C1 = 215, C2= 338, and
C3 = 98). Aortic valve atresia and LV end diastolic
volume were significantly different between groups
(11%, 87%, and 8% for aortic atresia and 1.35, 0.69, and
2.47 cm2 for median LV end diastolic area between the
three clusters, respectively).

Pereira F, et al (2017).23 Case-control study (n= 90 [26 CoA and 64 healthy],
neonatal mean age 7 days) to classify CoA and healthy
hearts from 2-D echocardiograms. One clinical site was
used.

SVM using 5-fold cross-validation on training and testing
datasets of ~80/20. A Gaussian kernel was applied to
the SVM classifier. No external validation.

The parasternal long axis view had the lowest false
negative error rate (end diastolic phase [7.7], end
systolic phase [11.5]), and the lowest total error rates
(end diastolic phase [18.9], end systolic phase [20.0]).
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Table 1. (Continued )

Advanced medical imaging

Tandon A, et al (2021)35 Cohort study (n= 87 patients with repaired tetralogy of
Fallot and pulmonary stenosis or atresia, age in the
training dataset was 13.5 years [IQR 10-17.5], and age in
the testing dataset was 13.9 [IQR 11.7-18]) to automate
ventricular contouring during CMR of repaired tetralogy
of Fallot patients. One clinical site and one scanner
type was used.

CNN using training / testing datasets ~70/30. These
datasets were not randomly split, the groups were
separated by time. The earlier enrolled cases were
assigned to the training dataset. No external validation.

This study was a continuation of previously established
research. The retrained contouring algorithm included
mostly structural normal hearts with the addition of the
repaired tetralogy of Fallot patients. Spatial metrics
were used to evaluate algorithm performance (Dice
Similarity Coefficient- shows spatial overlap in
3-dimensions. A Dice of 1 = perfect spatial overlap and
0 = no spatial overlap). The LV endocardial, LV
epicardial, and RV endocardial at end diastole all had
improved Dice metrics in the retrained algorithm 0.903
(0.875, 0.920) p= 0.0248; 0.905 (0.881, 0.937) p< 0.0001;
and 0.894 (0.855, 0.907) p < 0.0001.

Lu Y, et al (2020).32 Cohort study (n= 3 ASD patients [550 images, 275
before and 275 after atrial septal occlusion surgery) to
segment right atrium CMR images to aid in determining
surgical outcomes. One clinical site and one scanner
type was used.

U-net deep CNN was compared to an active contour
model with cross validation using training and testing
datasets in a 3:1 ratio. No external validation.

The proposed technique outperformed the traditional
active contour model when accurately segmenting the
atria. The U-net mean and SD reported for the Dice
Similarity Index, Jaccard Index, and Hausdorff Distance
were 0.9488 (± 0.0209), 0.9033 (± 0.0374), and 7.5625
(± 4.4549).

Karimi-Bidhedi S, et al
(2020).31

Case-control study (n= 64 patients, age range of 2 to
18 years; [20 tetralogy of Fallot, 9 double outlet right
ventricle, 9 transposition of the great arteries - repaired
arterial switch operation, 8 cardiomyopathy, 9 coronary
artery anomaly, 4 pulmonary stenosis or atresia,
3 truncus arteriosus, and 2 aortic arch anomaly]).
Developed synthetically segmented CMR images to
produce a large training dataset used for automated
detection of complex heart disease. One clinical site
and two scanner types were used.

A generative adversarial network was used to augment
the training dataset. A fully convolutional network was
used to segment the CMR images. The sample was split
randomly, 26 patients were assigned to the training
dataset and 38 patients to the testing dataset. The
training dataset was split further 80/20 for training and
validation. The framework was externally validated on
second dataset.

The fully convolutional network (automated) produced
average Dice Similarity Index metrics of 91% and 86.8%
for LV at end-diastole and end-systole; and 87.4% and
80.6% for RV at end-diastole and end-systole,
respectively.

Hauptmann A, et al (2019).28 Cohort study (n= 250 [retrospective data, mean age
22 ± 13 years] and n= 10 [prospective data, mean age
34 ± 17 years]). For the prospective study, one clinical
site and one scanner type was used.

CNN used to de-noise CMR images of free-breathing
individuals with cross-validation on retrospective data
and external validation on the prospective data.

RMSE and SSIM error rates of SNR, acceleration factor,
and image cropping features were computed on the
reconstructed image of the test dataset. The
continuously rotating tiny golden angle CMR sampling
pattern had the lowest RMSE and highest SSIM
compared to all other sampling methods. SNR
decreased from 20 dB to 10 dB, and the acceleration
factor increased from 10x to 16x.

Bruse JL, et al (2017).24 Case-control study (n= 60 [20 healthy aged 15 ± 2 years,
20 with surgical aortic arch reconstruction aged 23 ± 7
years, and 20 with Lecompte maneuver reconstruction
aged 14 ± 3 years) to identify meaningful clusters within
anatomical shape data. One clinical site and one
scanner type was used.

Agglomerative hierarchical clustering was performed to
subdivide groups. Followed by PCA with leave one out
strategy and 10-fold cross-validation. No external
validation.

The best performing distance/linkage combination had
correlation coefficient scores > 0.8 and an F score ~0.9.
Classification accuracy for healthy arches, CoA shapes,
and arterial switch shapes were 83%, 85%, and 100%,
respectively.

* Area Under the Curve (AUC), Atrial Septal Defect (ASD), Atrioventricular (AV), Bicuspid Aortic Valve (BAV), Cardiovascular Magnetic Resonance Imagining (CMR), Coarctation of the aorta (CoA), Confidence Interval (CI), Congenital Heart Defects (CHD),
Convolutional Neural Network (CNN), Deep Neural Network (DNN), Linear Discriminant Analysis (LDA), Interquartile Range (IQR), Left Ventricle (LV), Mitral Regurgitation (MR), Negative Predictive Value (NPV), Patent Ductus Arteriosus (PDA), Positive Predictive
Value (PPV), Principal Component Analysis (PCA), Right Ventricle (RV), Root Mean-Square Error (RMSE), Signal-to-Noise Ratio (SNR), Standard Deviation (SD), Structural Similarity Index (SSIM), Support Vector Machine (SVM), Time Growing Neural Network
(TGNN), Tricuspid Regurgitation (TR), Ventricular Septal Defect (VSD).
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reaching 95 to 100%. With the exception of two studies, none of
these models were externally validated on independent data sets.
The remainder of this scoping review will focus on the qualitative
synthesis of 20 studies that focused on machine learning applica-
tions for the diagnosis and assessment of CHD.
Synthesis of literature

It is apparent that machine learning in paediatric cardiology
research is an evolving field. Diagnosing and assessing patients with
CHD can typically be done non-invasively, using examination
findings and diagnostic tools based on auditory or visual pattern
recognition. However, such medical images and signal data are con-
sidered unstructured; they are not stored as tabular data or in
formatted fields.68 These type of data historically require the time-
consuming process of clinician review and interpretation. Thus, in
individuals with CHD, machine learning techniques described in
Table 1 have focused on accurate diagnosis and assessment based
on the classification of auscultatory heart sounds, transthoracic echo-
cardiograms, or cardiovascular magnetic resonance images.
Auscultation

Aortic valves are normally tricuspid in nature and provide an
outlet for blood flow from the heart to the body. Bicuspid aortic
valves occur in 0.5 to 2% of children.1,69–72 A subset of these
patients develops progressive valve disease and/or aortic dilatation,
with risk of life-threatening aortic aneurysm and dissection.
Children with known bicuspid aortic valves must be monitored
throughout their lives to measure risk for aortic aneurysm.
Diagnosis of bicuspid aortic valves can be done via phonocardio-
gram, which records cyclical sounds produced by the heart.1

Patients with a bicuspid aortic valve typically have a systolic ejec-
tion click. Identification of this click through traditional ausculta-
tion methods can be limited due to provider expertise and skill, as
well as rapid heart rates in young children. Gharehbaghi and col-
leagues performed a study that collected phonocardiogram data
prospectively.1 This study created a statistical time growing neural
network that automatically classified bicuspid aortic valves
through use of recorded heart sounds produced by the phonocar-
diogram.1 The phonocardiogram recordings were preprocessed, so
that the cardiac cycle could be segmented to recognise the

additional heart sound (systolic ejection click). This segmentation
was used to build a classifier to identify healthy subjects and those
with a bicuspid aortic valve. The model was able to classify the 865
cardiac cycles with 98.5% accuracy. This improved diagnostic sen-
sitivity for a subtle exam finding stands to bring many previously
unrecognised children and adults to appropriate cardiac care.

Several other investigators are also using non-invasively recorded
heart sounds to diagnose cardiac disease.29,30,34 For example, Elgendi
and colleagues27 used linear discriminant analysis to detect pulmo-
nary arterial hypertension using digital auscultation to record the
unique vibrations of the hypertensive pulmonary circulation.
Their model performed well, with a sensitivity of 84% and specificity
of 88.6% for entropy (disorder of heart sound pattern) of the first
sinusoid formant (frequency resonance of heart sounds). Sun and
colleagues,20 aimed to diagnose small, medium, and large ventricular
septal defects based on heart sound feature extraction, using
classification boundary curves and ellipse models. The ellipse model
outperformed five other models used in the study for normal, small,
medium, and large ventricular septal defect classification (accuracy
99%, 95.5%, 92.1%, and 96.2%). Cardiac auscultation is nuanced, but
clearly machine learning holds promise for improving diagnostic
accuracy for providers at all experience levels.
Transthoracic echocardiogram

Echocardiography is the mainstay of non-invasive assessment
for CHD, but requires experienced reviewers that remain suscep-
tible to biases. Coarctation of the aorta, a common form of critical
CHD characterised by narrowing of the thoracic aorta, is particularly
well suited for echocardiographic diagnosis, though poses challenges
when it comes to image interpretation.23 Narrowing of the aorta
causes obstruction of normal blood flow to the body and excessive
pressure to be generated by the left ventricle. If the obstruction is not
diagnosed in a timely manner, it can lead to heart failure and poor
systemic perfusion. Pereira and colleagues23 retrospectively collected
2-dimensional echocardiographic images of the aortic arch. The aim
of this study was to develop a fully automated algorithm to detect
coarctation of the aorta from 2-dimensional echocardiographic
images using standard view planes (suprasternal, apical, and para-
sternal windows). Static images representing a single cardiac cycle
(end diastolic and end systolic phases) were pre-selected for model
development. Neonates born with coarctation of the aorta alone and
healthy neonates born without coarctation of the aorta were
included in the sample. A stacked denoising autoencoder neural net-
work was used for feature extraction over predefined image regions
(sectors). A support vector machine classifier was trained on a ran-
dom subset of training data features. The parasternal long axis view
had the lowest coarctation error rate (end diastolic phase [7.7], end
systolic phase [11.5]), and the apical view had the lowest healthy
error rate (end diastolic phase [20.0], end systolic phase [20.0]).23

When the views were combined, more undecided cases resulted.
The increase in undecided cases with inclusion of multiple views
is not surprising given the increased model complexity, and there-
fore difficulty for the model to classify outcomes.

Further research has focused on image denoising, automatic
detection, and clustering subjects based on quantitative image data
to further support clinical decisionmaking and diagnosis of critical
and non-critical CHD.33 Diller et al.19 aimed to remove acoustic
shadowing artifacts that occur during transthoracic echocardio-
grams through the use of a deep neural network and autoencoder.
Cross-entropy (a loss function that measures differences between
two probability distributions – original image vs. reconstructed
image)19,73 and sum of squared differences (measures image
quality) were performance evaluation metrics used on the test data

Figure 5. Distribution of Machine Learning Algorithms Used in Pediatric Cardiology
Research Focusing on the Diagnosis and Assessment of Critical and Non-Critical CHD
The most common neural network types were the convolutional neural network, time
growing neural network, autoencoder, and generative adversarial network.
The most common kernel among the studies who used support vector machine was a
Gaussian kernel.
*Congenital Heart Defect (CHD).
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set. Autoencoders extracted features and trained significantly
better on CHD samples compared to healthy samples, represented
by a lower cross-entropy and lower mean squared difference
(0.2597 ± 0.0327 and 118.86 ± 61.52).19 Finally, Meza et al.21 used
an unsupervised hierarchical cluster analysis in 651 neonates with
critical left heart obstruction to determine if subjects could be
defined using more clinically meaningful clusters. Images were
derived from transthoracic echocardiograms, and three distinct
groups emerged (n= 215, 338, 98). Aortic valve atresia and left
ventricular end diastolic volume variables significantly distin-
guished the groups. Median left ventricular end diastolic area
for groups 1, 2, 3 was 1.35, 0.69, and 2.47 cm2 (p < 0.0001).
Aortic atresia in groups 1, 2, 3 was present in 11%, 87%, and
8%, (p < 0.0001).21 The authors suggest that clustering analyses
yield more reliable delineation of subject heart structure character-
istics. These data support the use of clustering approaches to more
accurately diagnose CHD. The added complexity and volume of
data in diagnostic imaging poses a challenge to machine learning,
but these investigators demonstrate the potential value machine
learning brings to clinical pattern fitting and decision making.
Cardiovascular MRI

Cardiovascular MRI is considered the clinical gold standard for
accurate assessment of ventricular volumes and function.
Obtaining quality images requires repetitive breath holding, which
can be a challenge for patients with CHD who may suffer from
shortness of breath at baseline or who are simply too young to
comply with breath-holding instructions. The investigators of
the next study explored alternative ways to denoise cardiovascular
magnetic resonance images that were captured during free-
breathing. Specifically, they aimed to use real-time imaging, while
applying reconstruction techniques to denoise the images (artifact
versus artifact free images).28 Metrics used to evaluate the
performance of their convolutional neural network were the
signal-to-noise ratio, acceleration factor, and image cropping.
The root-mean square error and the structural similarity index
were used to evaluate the test data set reconstructed image
accuracy. The continuously rotating tiny golden angle sampling
pattern had the lowest root-mean square error, and the highest
structural similarity index (p< 0.0001) compared to all other sam-
pling methods. The signal-to-noise ratio decreased from 20 dB to
10 dB, and the acceleration factor increased from 10x to 16x.
Finally, the reconstruction time for all slices originating from
raw data was 5.6x faster for the convolutional neural network
(22 seconds).28 This study demonstrates that machine learning
models have the potential to successfully remove artifact, while
decreasing reconstruction times to produce better quality images
and more accurate measurements in real-time. More importantly,
if these models become widely used, they have the potential to
improve patient comfort or decrease the need for sedation in
infants and younger children during cardiovascular MRI, as the
need for frequent breath holding is no longer required.

Further, clustering subjects based on their cardiovascular MRI
data is a very popular approach presented in the literature. While
cardiac imaging has already been established as a standard and
definitive way to diagnose complex heart disease, investigators
are now taking advantage of the machine learning applications
that can unveil hidden patterns in these data to boost diagnostic
accuracy.31,32,35 Bruse and colleagues24 used agglomerative hierar-
chical clustering and principal component analysis to detect clin-
ically meaningful shape clusters using anatomical cardiovascular
MRI data. Subjects with and without surgically corrected coarcta-
tion of the aorta and subjects with healthy aortic arches were

included. For each cross-validated run, 83% of healthy aortic
arches were assigned to the healthy group, 85% of the coarctation
shapes were correctly assigned, and 100% of the surgically cor-
rected shapes were accurately assigned. Human clinicians would
ideally use the results provided by the machine learning model
to either compare or validate their own interpretation of the image
data. This suggests that clustering techniques have the potential to
inform clinical decision making at the time of diagnosis, thus
improving accuracy and efficiency.

Finally, cardiac segmentation applied to cardiovascular mag-
netic resonance images is a process that takes a complex multidi-
mensional image of the heart and separates its major sections,
for example, the ventricles and coronary arteries. Segmentation
is necessary because each ventricle or vessel can then be assessed
quantitatively. Particularly, ventricular mass, volume, or ejection
fraction can be quantitively measured. Segmentation driven by
deep learning; specifically convolutional neural networks require
large amounts of training data. Research studies aiming to optimise
cardiac segmentation driven by deep learning in patients with
CHD are faced with data accessibility challenges related to the
extreme heterogeneity of cardiac anatomy and rarity of disease
within the CHD population. Generative adversarial networks learn
from real images in order to generate synthetic image data. The
generative adversarial network has two networks that compete
with one another. A generator network creates false images that
the discriminator network will use to decipher between real and
false images.74 Through these networks, new synthetic images
are produced and can increase the size of training data sets in
populations with limited image data.75 Investigators used these
methods to create synthetic image data in patients with
Tetralogy of Fallot, an extremely rare heart condition in the general
population but one of the most common critical CHD, and found
the images to be anatomically accurate.76 Generative adversarial
networks may have major implications in CHD diagnostic image
research, as they can potentially expand training data sets and
allow models to predict rare and life-threatening diseases.

Discussion

This scoping review demonstrates that machine learning is a
rapidly evolving field of paediatric cardiology with a myriad of
potential functions. The majority of these applications focused
on the diagnosis and assessment of underlying CHD, including
classification of auscultatory heart sounds, transthoracic echocar-
diograms, or cardiovascular magnetic resonance images.

Deep neural networks and support vector machines were com-
monly used algorithms for such tasks. Deep neural networks are
popular to use when analysing human data because they are robust
and can handle inconsistent data. They are designed to model
human cognitive abilities, which process, store, and retrieve
information. Deep neural networks are extremely complex and
often not interpretable to clinicians; therefore, their utility is some-
what controversial when applied to clinical decision-making tasks.
On the other hand, support vector machines are a popular tech-
nique used for binary outcome classification (i.e., diseased versus
healthy). Support vector machines use features and can separate
classes by maximising the distance between data points in each
class. For healthcare-related classification problems, support
vector machines have high accuracy and do not suffer from multi-
collinearity (highly correlated features), which is an issue
with human data as many features are often highly correlated
(i.e., systolic, diastolic, mean blood pressure values). Although
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support vector machines have their advantages, this technique is
computationally intensive, with the non-linear support vector
machine being more exhaustive than linear.

Implementing and translating machine learning results into
clinically meaningful tools is a necessary path to improving diag-
nostic accuracy and efficiency.

Importantly, there are techniques to improve deep neural net-
work interpretability, which is one of the most used algorithm
types for diagnosing and assessing CHD. Heat maps are one exam-
ple that can ensure models are capturing valid image signatures to
further expand clinical usefulness. The integrated gradient method
is another technique used to explain how a deep neural network
predicted an outcome by visualising input feature importance.
The linear interpretable model-agnostic explanation is an
application used with convolutional neural networks to discover
what the convolutional neural network learns while deriving pre-
dictions, providing more interpretability to clinical end-users.
Investigators have used this technique after comparing diagnostic
performance of a convolutional neural network versus trained car-
diologists andMUSE (GEHealthcare) automated analysis. The lin-
ear interpretable model-agnostic explanation technique presented
physiologically relevant electrocardiogram segments chosen by the
convolutional neural network when predicting diagnostic classes.77

Implementing any of these techniques is equivalent to feature
importance ranking in random forest or coefficients in support
vector machine for interpretability purposes. These methods
can be applied to validate and corroborate that a model is
predicting a legible signal, further supporting clinical end-user
interpretability. For clinicians, the algorithm outputs must be rel-
evant and trustworthy to garner clinician support. If implemented,
clinicians will use machine learningmodels to classify healthy indi-
viduals versus those with diseases. Clinicians have a desire to
understand how classification results are derived. Achieving this
understanding will support machine learning prediction translation
and clinical uptake.

To date, machine learning has been successfully explored and
applied to support clinicians in many ways including early recog-
nition of cardiorespiratory instability. Bose and colleagues found
that in 634 individuals with in-hospital cardiac arrest, 79% of these
patients also had cardiorespiratory instability four to 24 hours
prior to arrest.78,79 Predicting cardiorespiratory instability risk is
significant because patients who experience this type of instability,
if not attended to, can progress to in-hospital cardiac arrest.
However, if cardiorespiratory instability is recognised early,
cardiac arrest may be prevented.

Machine learning-based technologies have the opportunity to
not only advance expert care at tertiary centres but also to provide
access to quality care in remote areas without local subspecialty
expertise. Udine and colleagues found that CHD infant mortality
was associated with higher poverty levels.15 The American
Academy of Family Physicians’ position paper on poverty and
health describes that poverty affects the built environment, which
includes buildings, infrastructure, and services.80,81 In the case of
limited access to expert care, machine learning can be used as a tool
to connect specialised cardiac programmes with distant primary
care providers. Machine learning can systematically be applied
to clinical data, process it, and provide improved accuracy and
timely diagnosis of CHD for patients in various clinical settings.
For patients in remote clinical settings, diagnostic data could be
sent to a tertiary care centre for consultation (machine learning
output analysis and patient triage). Even for patients with access
to specialised cardiac programmes, they too may benefit from

having their clinical data processed by machine learning algo-
rithms. Specifically, advanced cardiac imaging data could result
in automated detection of cardiac diseases. Machine learning mod-
els are likely to save time, while boosting diagnostic accuracy.

Although, machine learning appears to be an evolving and
promising tool for CHD diagnostics, there are still several limita-
tions to consider. General limitations of machine learning in
healthcare include lack of diverse and large data sets, poor stand-
ardisation across hospital systems, expertise and time challenges
related to ground-truth labelling, lack of comparable testing sets,
poor transparency of algorithm design, and inadequate prospective
integration into clinical workflow. Specifically for the models
addressed in this scoping review, their limitations are as follows:
deep neural network requires large amounts of data, and carries
the black box concept (you don't know how or why the network
came up with the output); support vector machine is computation-
ally exhaustive and not ideal for problems with many training
examples; principal component analysis reduces variables and
dimensionality to improve interpretability, but will sacrifice pre-
diction accuracy in doing so; cluster analyses are used when the
outcome is unknown, so accuracy cannot be determined, and
results tend to not be representative of real-world problems;
HiddenMarkovmodels require a priori knowledge about the prob-
lem, otherwise severe overfitting will result; linear discriminant
analyses require a normal distribution, but do not impose assump-
tions which will increase bias. Linear discriminant analysis also
suffers from issues with multicollinearity; and decision trees are
considered an unstable classifier, meaning small changes in data
can cause large changes in decision tree structure. Decision trees
are expensive and time consuming as it takes a lot of time to train
the model. Overfitting can also be a problem with this type of
classifier.

Further limitations related to this scoping review include using
a broad literature search strategy. Our goal was to describe the
comprehensive applications of machine learning used in paediatric
cardiology research and then focus on machine learning tech-
niques used for diagnosis and assessment. This approach required
screening an extensive amount of journal article titles and
abstracts. In the future, it will be interesting to explore the predic-
tive capabilities of other non-invasive diagnostic technologies,
such as the 12-lead electrocardiogram. Few paediatric focused
studies have considered the disease detection capabilities of this
technology.82 In adult focused machine learning cardiac research,
12-lead electrocardiograms are already being leveraged to detect
acute coronary syndrome.83,84

In conclusion, these findings indicate that machine learning is a
very promising tool for diagnosing and assessing critical and non-
critical CHD, yet extensive research is still needed to build robust
and generalisable models for clinical use, especially considering the
extreme heterogeneity of complex CHD.
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