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Abstract 

Variation in Opportunity to Learn at Secondary Education: The Social Determinants of 

Between- and Within-School STEM Tracking in the US and Beyond 

 

Shangmou Xu, PhD 

 

University of Pittsburgh, 2023 

 

 

 

 

This dissertation investigates the social determinants of STEM curriculum tracking and 

changes in the nature of STEM tracking in both US and cross-national settings over recent decades 

in five NCES High School longitudinal datasets and in seven TIMSS studies. Methodologically, 

this dissertation contributes to the field by developing a consistent and comprehensive transcript-

based and instructional content-based measurement scheme of the most important organizational 

dimensions of tracking. This research also advances the current state of knowledge in the field of 

STEM curriculum and education inequality by adding rich description of the organizational 

dimensions of tracking both in the US and globally and drawing attention to the ways in which 

STEM curriculum tracking departs from its functional ideal. Although tracking systems are 

intended to benefit all students, too often they result in widening educational inequality. Using rich 

data on student course taking over the course of secondary education, I produce new measures at 

both the school-level and country-level capturing inequality in STEM opportunity to learn, both 

of which are essential to the STEM pipeline. At the same time, as with prior policy-focused studies, 

this research project draws attention to tracking policies and practices themselves in hopes of 

generating organizational awareness of, and introspection by administrators towards tracking. In 

an era of curriculum intensification, this work helps researchers and policymakers understand how 

schools with different compositional characteristics expose students to differently tracked learning 

environments. Moreover, this dissertation study also advocates a systematic understanding of 



 v 

tracing the fundamental sources of inequality in opportunity to learn. Overall, while it may be 

difficult to describe a given determinant of tracking in the context of the secondary data analyses 

in this dissertation as unequivocally dysfunctional, this research may nevertheless encourage 

scrutiny of curricular policy and practice that too often go unexamined. 
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1.0 Introduction 

Existing research on tracking has primarily focused on two main aspects that contribute to 

educational inequality: the process of track placement and the effects of tracking. Track placement 

refers to the process that, in theory, primarily groups students based on their achievement levels. 

Official organizational logic views tracking as a rational approach to tailoring instruction to better 

match students’ learning needs in different, relatively skill-homogeneous classrooms (Rosenbaum, 

1976). However, in addition to the assignment process ostensibly based on achievement, track 

placements can also be influenced by social factors including gender, SES, race/ethnicity. Family 

SES, for example, is found to influence track placements as high-SES parents become involved in 

track selection (Useem, 1992) and generate higher educational expectations for kids (Kelly, 2004; 

Parker et al., 2016). Research on the effects of tracking considers the role of track placements in 

magnifying initial achievement discrepancies and producing educational inequality. In theory, 

tracking benefits all students, by providing instruction in their zone of proximal development 

(Hanushek, & Wößmann, 2006; Oakes, 1985; Van Houtte, & Stevens, 2009). However, in practice, 

track placements determine the extent of learning opportunities offered to students, including 

instructional content, pace, and learning environment (Hallinan, 1987). On average, lower-track 

students experience more constrained learning opportunities compared to their high-track 

counterparts. As students progress through schooling, and depending on both placement processes 

and the effects of tracking, initial variation in student engagement and achievement is magnified 

(Kelly, & Covay, 2008). 

Although not the focus of the present study, it should be noted that in the US, students first 

experience curriculum differentiation upon entry to primary education, in the form of ability 
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grouping within classrooms (Curran et al., 2020). In particular, students of different reading and 

literacy abilities, are assigned into different ability groups for various forms of literacy instruction 

(Entwisle, & Alexander, 1993; Slavin, 1987). Later in secondary education, tracking takes place 

between classrooms. Considering both the accumulated effect of differentiated learning 

opportunities and the role of social inequality in track and ability-group placement, tracking at 

secondary education is theoretically less responsive to achievement distributions than primary 

education, where we might expect variation in achievement to more closely determine track 

placements (Kelly, & Covay, 2008).  

At least since Rosenbaum’s (1976) case study of Grayton high, sociologists have sought to 

ascertain just how functional secondary school tracking systems really are. The term “functional” 

works in at least three ways (Davis & Moore, 1945; Kelly, 2009). First, according to functionalists’ 

view of education, education is a rational and efficient system that sorts students who exhibit 

different levels of ability and effort into different occupational positions. Second, track assignment 

is functional at the individual student level, as the achievement distribution is closely related to 

track placement and appropriate content and pace of learning. Third, from the teachers’ 

perspective, tracking offers functional, or perhaps, “technical” benefits, allowing them to more 

easily tailor instruction to students’ level of readiness. Critical to my dissertation, this investigation 

goes beyond simply determining whether high track students learn at a faster rate, or whether 

students from different social backgrounds are placed in different tracks, although both of those 

questions speak to functionalism. At the system/policy level, several organizational dimensions of 

tracking are relevant to evaluating the functional logic of tracking. To preview these dimensions 

that I consider in more detail subsequently, consider the following examples. First, to what extent 

does a school consider student achievement during enrollment? Schools may tailor their 
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enrollment process to be explicitly sensitive to achievement (later I refer to this as high selectivity) 

to create skill homogeneous instructional environments and better fit the achievement distribution 

of the student body (e.g., Eccles, & Roeser, 2011). Relatedly, in addition to considering students’ 

“subject-specific” needs, schools may also promote corequisites, a form of “cross-subject” 

tracking (later I use the term scope), based on students’ achievement on both subjects. Moreover, 

a school’s ability to flexibly reconsider students’ instructional needs by allowing for mobility 

across tracks may also be considered as functional, as effectively matching students’ 

ability/capacity with instruction may boost students’ achievement (Domina et al., 2019). However, 

as many have argued (e.g., Lucas, & Good, 2001; Domina et al., 2019), tracking systems that 

follow a “tournament style” (i.e., where students only move down, and rarely or never upward; see 

Rosenbaum, 1976 for the origin of this term) may depress the positive effect of having high 

flexibility. Therefore, the flexibility to move students upward may be the more relevant form of 

mobility under the functional logic of tracking. 

Scholars of tracking have also directly considered less functional (or even conflict) 

determinants of tracking, including policies and practices that affect track placement based on 

various social determinants (e.g., race and SES). For example, prior sociology research on tracking 

finds that high-SES families have an advantage in accessing high-track courses (Kelly, 2004; 

Lareau, 2011; Hanselman et al., 2022) and are able to maintain their advantages (Domina et al., 

2016; Gamoran, 2004). These studies suggest non-functional aspects of tracking; that is, when 

achievement is clearly not the sole determinant of track placements, and when inequality in track 

placements go beyond functional explanations and occur across several socio-demographic 

dimensions (e.g., Kelly, 2009), and further exacerbate the existing racial-ethnic or gender 

inequality in achievement (e.g., Riegle-Crumb, 2006; Riegle-Crumb, & Grodsky, 2010).  
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This dissertation builds on the conceptual framework proposed by Kelly and Price (2011) 

and measures developed in Xu and Kelly (2020, see also Kelly, 2004, 2009; Riegle-Crumb, & 

Grodsky, 2010; Schneider, Swanson, & Riegle-Crumb, 1997; Stevenson, Schiller, & Schneider, 

1994) to explore the social determinants of STEM curriculum tracking in both US and international 

settings. In Kelly and Price’s (2011) empirical work on examining the relationship between school 

compositional characteristics and school-to-school differences in school tracking policies, they 

innovatively applied theories of social stratification, including technical-functional theory, 

opportunity hoarding, and status competition, to explain the observed school-to-school variations 

in tracking policies themselves. This study extends this framework by examining how both 

functionalism and social forces are related to curriculum differentiation, utilizing actual measures 

of course-taking experiences, in both US and cross-national research settings. In the US analysis, 

overall, I examine the relationship between school composition and the organizational dimensions 

of tracking. This analysis includes a longitudinal investigation of how and why the US school 

tracking system changed over the period of roughly 1980-2010. In particular, I pose two research 

questions. First, are observed school-to-school differences in math and science tracking practice 

more obviously related to easy-to-document functional motivations for tracking or to potentially 

dysfunctional social forces of tracking?  Second, how have US schools’ math and science within-

school tracking structures changed over past decades, and are these changes explained primarily 

by functional or dysfunctional mechanisms. Procedurally, and in Chapter organization, I begin in 

Chapter 2 by providing a descriptive portrait of the levels, variation, and changes in the 

organizational dimensions of tracking across cohorts, which helps ease readers into working with 

these measures, and the inferential analysis in Chapter 3 proceeds according to the research 

questions above. 
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Moving to the international setting, there is a foundational difference with the US: 

between-school tracking in some countries is much more extensive than in the US. For example, 

it is expected that some countries implement strict between-school tracking to better fit their 

developmental goals (e.g., Germany’s “tripartite” secondary education tracking system enables 

vocational students to receive early on-site vocational training). Yet, studies of cross-national 

inequality in education often fail to trace the sources of inequality in opportunity to learn in as 

systematic way. In Chapter 4, I propose a theoretical framework, encompassing internal-

development processes, basic social inequality, the distribution of achievement across schools, and 

national educational policies, to explore the fundamental origins of inequality in opportunity to 

learn. This conceptual framework first draws attention to the theoretical link between education 

inequality and basic social inequality as a country develops; thereafter, school-to-school 

differences in opportunity to learn may be further attributed to both functional and conflict forces 

of tracking.  

While it may be difficult to describe a given determinant of tracking in the context of the 

secondary data analyses in this dissertation as unequivocally dysfunctional, this research may 

nevertheless encourage scrutiny of curricular policy and practice that too often go unexamined. To 

summarize, Chapter 2 and 3 of this integrated dissertation contain analyses of within-school 

tracking in the US, while Chapter 4 contains cross-national analyses of between-school tracking. 
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2.0 Organizational Dimensions of Tracking, a Descriptive Analysis 

2.1 Introduction 

In the sociology of education and other social science research on curriculum tracking, 

scholars have focused on two factors that collectively have consequences in producing and re-

producing educational inequality: the placement process of curriculum tracking and the effect of 

curriculum tracking on learning. As a major component of opportunity to learn, systematic 

differences in school curricular organization can induce inequality in learning opportunities and 

may ultimately produce inequality in learning outcomes when students experience different 

degrees of exposure to curricular content. Yet, despite the fact that scholars know much about: (1) 

the unequal process of track assignments, and (2) the effect of track placement on educational 

inequality, such studies often neglect the social forces that motivate the origin of, and explain 

changes in, tracking practices. In Kelly and Price’s (2011) empirical work on examining the 

relationship between school compositional characteristics and school-to-school differences in 

school tracking policies, they innovatively applied theories of social stratification, including 

technical-functional theory, opportunity hoarding, and status competition, to explain the observed 

school-to-school variation in tracking policies. Building on Lucas and Berends’ (2002) 

conceptualization of linking the school-level curriculum tracking system with schools’ student 

body compositions (i.e., where the tracking system is responsive to the composition of student 

populations), Kelly and Price (2011) identified various functional factors at the school level (e.g., 

school size and achievement heterogeneity) and conflict factors, such as racial-ethnic 

heterogeneity, that were associated with the schools’ overall elaboration of tracking policies. At 
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the same time, as in prior work with similar policy data (Kelly, 2007), they draw attention to 

tracking policies and practices themselves, rather than patterns of outcomes. 

In Chapter 2 and 3, I examine how school composition is related to tracking, and how and 

why the US school tracking system changed in recent decades. I begin (Chapter 2) by descriptively 

analyzing changes across decades/studies in the organizational dimensions of tracking, an analysis 

that will help introduce readers to the measurement of tracking without introducing complicated 

statistical models. How have US schools’ tracking structures changed over past decades? Over the 

past 40 years, the US secondary school curriculum has experienced the standards-based reform 

movement, including national level policy change (e.g., NCLB), major waves of educational 

reform at the state and local level (e.g., standards-based reform), including state-level/regional 

policies about course taking in particular (e.g., algebra for all in CA). These policies introduced 

higher academic standards and graduation requirements, enforced high-stake tests and 

accountability, and, as a consequence, produced a concomitant rapid academic intensification 

(Austin, 2020; Domina, & Saldana, 2012). Domina and Saldana (2012) identified consistent trends 

of academic intensification of individual subjects using data from 1982 to 2004. They found that 

the proportion of high-schoolers who completed precalculus and calculus tripled, but inequality in 

calculus completion remained pronounced. Using a new measurement strategy with the 

consideration of both changes in individual subjects and changes in association among different 

subjects, Austin (2020) instead argued that the trends of curriculum intensification was prominent 

during the 1980s and 90s, but stable in the 2000s. What about scope and other dimensions of 

tracking? This project goes beyond the very basic measures of course taking in the existing 

literature by providing a way to consistently measure the multiple organizational dimensions of 

tracking systems at the aggregate level of the school, utilizing four NCES High School longitudinal 
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studies. In Chapter 3, I turn to a more complex analysis of tracking that focuses on the association 

between school composition and tracking, both in pooled cross-section and in changes over-time. 

Are observed school-to-school differences in tracking practice and changes in tracking practices 

more obviously related to easy-to-document functional motivations for tracking,  or instead, to 

dysfunctional social forces of tracking? For example, schools may promote curriculum tracking to 

increase efficiency by creating skill-homogeneous instructional environments, or schools with a 

high proportion of advantaged students may create especially elaborated tracking systems in 

response to opportunity hoarding or status competition processes.  

This study is novel in several ways. First, while various research has examined the 

relationship between elaboration of tracking and school composition of student populations within 

single states (e.g., Domina et al., 2016; Kelly, & Price, 2011), we lack knowledge of how these 

findings can be generalized to the whole nation over the past 40 years. Second, it’s also worthwhile 

to note that throughout the project I use multiple measures of the various organizational 

dimensions of tracking systems, instead of just a single ordinal measure of the overall elaboration 

of tracking. Sørenson’s (1970) original theoretical work on organizational differentiation in school 

systems argued that school tracking systems varied along at least four organizational dimensions, 

including inclusiveness, selectivity, electively, and scope (see also, Domina et al., 2019; Gamoran, 

1992; Kelly, 2007). Research on organizational dimensions of within-school curriculum tracking 

find that (1) different organizational dimensions may produce different educational outcomes; (2) 

a policy may have different effects on different organizational dimensions of tracking (e.g., Kelly, 

& Price, 2011) and, (3) organizational dimensions are noticeably unique/distinct, having limited 

correlation with each other (e.g., Domina et al., 2019). Thus, these empirical studies suggest that 

the full set of organizational dimensions of tracking is needed to conceptualize schools’ practice 



 9 

of tracking, and, therefore, may capture greater variation across school-level tracking systems. 

Moreover, the observed changes in each organizational dimension of tracking may be motivated 

by different social mechanisms and thus examining the dimensions individually may be 

worthwhile. For parsimony, I will often refer to “tracking” as the overall topic of this dissertation, 

but I dedicate much effort to exploring specific dimensions of tracking, constructing rich measures 

from student transcript data. Third, to reiterate a key difference from Kelly’s prior work, I focus 

on observed course taking patterns from transcript data, rather than schools’ stated policies and 

practices in curriculum guides. 

In these two chapters, I utilize four NCES High School longitudinal studies, HS&B, NELS: 

88, ELS: 2002, and HSLS:09 to explore trends in school tracking systems over the period 1982-

20131. By addressing two main research questions with four datasets, I am able to extend the scope 

of the current studies by adding rich description of US schools’ tracking structure and exploring 

changes in the determinants of tracking over time. Another unique contribution is that I examine 

the tracking system for both mathematics and science, whereas many prior studies have looked 

only at math. Considering a second discipline/content area not only increases the robustness of the 

results, it also addresses the on-going push to examine high school math and science education 

from the perspective of the STEM pipeline (e.g., Wang, 2013). Although the data collection time 

points do not necessarily align neatly with any specific policy changes, because we have 4 cohorts 

with on average 9 years in between data collection waves, I am able to capture trends in US 

tracking systems over the course of 40 years. This analysis is split into two chapters with Chapter 

 

1 The first NCES high school longitudinal study, NLS-72 didn’t provide transcript data.  
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2 being the descriptive analysis of trends in US tracking systems over the past 40 years and Chapter 

3 being multivariate models of the correlates of tracking system over time. 

Because Chapter 2 and 3 draw on multiple longitudinal studies, finding a way to 

consistently measure tracking elaboration and multiple organizational dimensions of tracking from 

several databases is a substantial part of this work. The measurement of tracking consists of two 

major steps: (1) describing individual student course taking, and (2) describing the structural 

features of tracking systems at the school-level from individual student course taking patterns and 

other student assessment information. Individual student course taking can be accessed from 

transcript datasets which are available in each database, summarizing a given student’s course 

taking. Transcripts are analyzed using the concept of course sequences, revealing the course-taking 

hierarchy across students. Starting with data on individual student course taking, I use various 

aggregation strategies to develop multiple measures of the structural features of tracking systems 

at the school-level, including inclusiveness, scope, selectivity, and mobility.  

Chapter 3 develops multivariate models, selectively using measures first reported in the 

descriptive analysis in Chapter 2, to further address my overarching question: how is school 

composition related to tracking and has the balance between functional and conflict forces in the 

US tracking system changed over time? Again, I examine the following research questions.  

(1) Is variation in US schools’ tracking structures related to school-level compositional 

characteristics that can be attributed to different logics and determinants of tracking?  

(2) How have these relationships changed over the past several decades? 

By exploring these two questions, I identify how and why US high school STEM tracking systems 

vary across schools, and how the sources of that variation have changed over time. For example, 

if tracking systems are becoming more responsive to test score distributions, the US tracking 
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systems are becoming increasingly functional (at least in that basic respect). Otherwise, if tracking 

systems are getting more tightly coupled with the socioeconomic distribution of each school, then 

it might be said that tracking systems have become increasingly dysfunctional. 

2.2 Background Literature 

2.2.1 Track Placement: An Organizational Perspective 

In theory, track placement primarily involves grouping students based on their achievement 

levels. According to the official organizational logic, tracking is seen as a rational approach to 

tailor instruction and match students' learning needs in relatively skill-homogeneous classrooms 

(Rosenbaum, 1976). However, track placement is not solely determined by achievement and can 

be influenced by social factors such as gender, SES, and race/ethnicity, which can contribute to 

educational inequality. For instance, high-SES parents' involvement in track selection and higher 

educational expectations for their children can influence track placements (Useem, 1992; Kelly, 

2004; Parker et al., 2016). 

Another area of research focuses on organizational approaches that determine track 

placement at the school level. In particular, such research seeks to reveal the way in which school 

tracking systems are shaped by internal and external factors, and how educational inequality is 

generated in this process. To begin, it is generally understood that schools determine (1) the 

amount of available learning opportunities students are exposed to2, and (2) the way in which 

 

2 Of course, another important source of inequality in learning opportunities is the learning outside of school settings.  
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opportunities to learn are allocated among students. For example, schools determine how many 

differentiated learning experiences are in place for each subject. Kelly (2007) found a substantial 

variation in the number of vertical levels of ELA, Math, Science and Social Studies courses, using 

a dataset of curriculum guides from 92 North Carolina high schools. Schools also formally regulate 

the sorting process by adopting enrollment criteria and measures, such as prerequisites and 

corequisites, teacher recommendations, and minimum GPA/standard test scores requirements 

(Kelly, & Covay, 2008). Yet, schools are not the sole actors determining the placement process, 

as track placement is also constrained by a broad array of inter-correlated pedagogical, socio-

political, and policy-implementation processes, creating even more variation in school curriculum 

tracking systems. Examining organizational approaches provides more insights into why schools 

adopt different tracking systems—the sources of school-to-school differences in tracking—and 

helps understand educational inequality generated from tracking at the school level. This section 

summarizes three social and organizational phenomena that shape and constrain track placement 

and related social theories that help explain the observed school-to-school differences in tracking 

systems. 

2.2.1.1 Policy and Accountability 

First, school tracking systems are greatly influenced by formal state and district-level 

policies, trends in school reform, and accountability regulations. Beginning in the 1990s, with a 

wave of standards-based school reform policies and push for curricular intensity, policy groups 

started to develop higher curricular standards for instruction and learning (National Council on 

Education Standards and Testing, 1992), pushing schools to place more students in higher tracks 

(Schiller & Muller, 2003). For example, Domina and Saldana (2012) found that over a two-decade 

period of change, the average high school graduate took approximately five more academic credits. 
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By 2004, approximately 43% of high school graduates earned credits in trigonometry or higher 

math courses, whereas only 19% of high school graduates in the class of 1982 completed 

trigonometry or higher math courses. More recent policies, such as Algebra for All, College Prep 

for All, and ongoing policy trends emphasizing STEM courses, aim to expand enrollment for 

gatekeeping courses. Yet, in practice, the implementation of formal tracking policies may be 

affected by accountability pressures and the lack of mandates and regulations. At-risk schools, for 

example, are found to be more responsive to state-level tracking policies in recent decades 

(Domina et al., 2016), similar to studies on accountability policies that find the most positive 

effects on observed achievement among at-risk schools (e.g., Lauen, & Gaddis, 2012), whereas 

other schools may not fully implement the tracking policies (Domina et al., 2015). 

2.2.1.2 Technical and Normative Beliefs 

Next, school administrators and teachers' pedagogical and normative beliefs also shape 

track placement processes and the way in which schools implement tracking policies at the school 

level. First, technical rationales for tracking argue that it creates a skill-homogeneous learning 

environment where instruction can better match students' needs and benefit them the most (e.g., 

Hallinan, 1994). Studies of de-tracking often find complex effects of heterogeneity on students' 

educational outcomes. Low-achieving students have been found to benefit from de-tracking of 

instructional environments in some cases (e.g., Domina et al., 2019), yet the inclusion of high-

level content in skill-heterogeneous classrooms can have negative effects (e.g., Penner et al., 2015; 

Rosenbaum, 1999). Technical considerations of curriculum tracking concern the pedagogical 

challenges of teaching in a classroom with diverse course-taking readiness. In particular, teachers 

may be ill-prepared for teaching in skill-heterogeneous classrooms, and learning materials used in 

a skill-heterogeneous classroom may not be well-suited to the instructional needs of all students 
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(Clotfelter et al., 2015; Kelly & Covay, 2008; Loveless, 1999; Northrop, Borhseim-Black, & 

Kelly, 2019). Thus, school administrators and teachers who embrace such pedagogical concerns 

may prefer to promote highly differentiated curriculum systems. 

Relatedly, educators' more general functional beliefs about schooling can also shape the 

school tracking system. Early theoretical works emphasize that schooling is an effective 

socializing mechanism, whereby students are sorted into learning environments that anticipate the 

already-differentiated occupational realm and society (Davis, & Moore, 1945; Hurn, 1993). How 

might this general functional paradigm of schooling affect a school's tracking system? School 

leadership literature finds that schools are sensitive to historical and local norms (Arum et al., 

2007; Meyer, & Rowan, 2006), and decisions about tracking systems are shaped and constrained 

by the normative belief of functionalism (Gamoran, 2004; Watanabe, 2006). Combining technical 

rationales of tracking and functional beliefs of schooling, a technical/functional theory of tracking 

considers the role of curriculum of tracking in both facilitating instruction and responding to social 

stratification in the occupational structure. For example, Domina et al., (2016) found that that 

schools with technical-functional concerns tended to resist curriculum intensification; that is, a 

technical-functional concern encouraged schools with low average achievement scores or 

heterogenous student compositions to slow down the trends of enrolling all students in algebra and 

to continue to provide skill-differentiated courses.  

 

2.2.1.3 Internal and External Political Interests 

Lastly, both internal and external political interests in maintaining differentiated 

curriculum systems exert additional pressures on tracking practices, including placement policies 

and practices. External political interests affecting tracking include pressure from advantaged 
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parents and their children who have strong preferences for tracked learning environments, where 

high-track classrooms provide greater learning opportunities. As theorized by the conflict 

paradigm of schooling, social stratification processes serve the interests of elite groups such that 

valuable learning opportunities are disproportionately allocated among different social groups. 

Studies on tracked classrooms find that students in high-track classes have access to more rigorous 

instruction and experienced teachers (e.g., Kelly, 2004; Kelly & Carbonaro, 2012) and higher-

achieving peer students (e.g., Zimmer, 2003) than lower-track classes. This competition for status, 

along with meritocratic beliefs in schooling, may push high-SES families to pursue these exclusive 

advantages. More broadly speaking, advantaged families have a general preference for maintaining 

their social advantages. As theorized by the Effectively Maintained Inequality (EMI) framework, 

maintaining and producing inequalities are effective approaches to preserving social advantages 

(Lucas, 2001). Students who are consistently placed in high-track classes may secure better spots 

in colleges and achieve higher educational attainment (e.g., Attewell, & Domina, 2008). Thus, to 

maintain such educational and social advantages, high-SES children and their families may be 

more actively involved in promoting elaborate school tracking systems. Beyond individual 

negotiations and pressures associated with specific students and their parents to get into specific 

classes, the external political pressure associated with high-SES families also plays a role in 

determining the aggregate nature of tracking systems in schools serving elite families/high-SES 

communities. Students from high-SES families limit the accessibility to high-track curriculum, so 

that students from low-SES families may encounter additional barriers to high-track courses. 

Qualitative studies of school leadership find that high-SES families have greater political and 

economic power to influence tracking practices (e.g., Lewis, & Diamond, 2015), and as a result, 

high-SES schools experience more pressure to maintain highly differentiated curriculum systems. 
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In fact, research on de-tracking policies often finds that advantaged students and their families 

resist de-tracking trends (e.g., Well, & Oakes, 1996) and even push schools to create new forms 

of distinctions (e.g., Domina, et al., 2016). 

Another form of political interest in tracking, internal political interests, pertains to 

teachers' preference for teaching in high-track classes. Teachers typically prefer teaching high-

track classes (Carey & Farris, 1994), in part, for justifying their teaching abilities and seniority 

(e.g., Finley, 1984; Kelly, 2004). Thus, teachers may also have political interests in preserving a 

differentiated curriculum system to secure inherent track placement for themselves as well. 

 

2.2.2 Theories of Tracking: Linking Tracking with School Characteristics  

Organizational analyses of tracking examine the extent to which formal policies, school 

technical and normative beliefs, and political interests shape and constrain tracking systems at the 

school level. This organizational lens also helps elucidate decision-making processes about 

tracking practices. In reality, each of the forces discussed above may interact with others and create 

even greater and more complex variations in tracking systems. For example, schools with different 

local normative beliefs regarding the functionalism of schooling may conceptualize students’ 

course-taking readiness and gatekeeping courses differently (Watanabe, 2006), leading to distinct 

responses to external political pressures on tracking practices (i.e., elite schools may be more 

actively against de-tracking policies than other schools, Domina, et al., 2016). Yet, how does the 

organizational lens enable us to understand important variation in school tracking systems? 

Organizational analyses of tracking systems often attribute variation in tracking systems to 

ascribed school characteristics, linking tracking practices with school compositional 
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characteristics, using social theories of schooling, namely, functional and conflict paradigms (e.g., 

Hirschl, & Smith, 2023; Kelly, & Price, 2011; Riegle-Crumb et al., 2019). Studies linking tracking 

systems with school characteristics advance an important theoretical assumption about tracking; 

while school and district personnel make final decisions about the provision of opportunity and 

criteria of allocation, that decision-making process is responsive to ascribed school characteristics 

(Lucas, & Berends, 2002). 

Functional paradigms describe a rational and meritocratic view of schooling; schools 

prepare students with different levels of cognitive skills and effectively sort students into 

differentiated labor markets. This selection process is seen as a rational way to translate variations 

in skills and efforts into stratified social positions and occupational spheres. Rational perspectives 

on curriculum tracking also emphasize the pedagogical consideration of teaching in skill-

homogeneous classes. If technical/functional beliefs about tracking hold in a school, Kelly and 

Price (2011) hypothesized that we may expect that the overall elaboration of the tracking system 

would be related to the achievement-heterogeneity of the student body. Thus, variation in school 

tracking across schools would be explained by variability of achievement scores, as well as the 

basic capacity to create a highly differentiated tracking system. It’s not surprising to find that 

schools that in general have diverse distributions of course-taking readiness have a tracked learning 

environment in place (e.g., Kelly, & Price, 2011; Long et al., 2012), as the creation of skill-

homogeneous classes is theorized as a technical and logical response to a diverse student body. 

In contrast to technical/functional explanations of tracking, first, opportunity hoarding 

theory describes the inter-group conflict between, for example, high-SES families and 

working/poor families. The access to valuable resources is secured and limited to in-group 

members, yet the systematic barriers block the access to the same resources and exclude out-group 
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members using social boundaries (Tilly, 2000). Opportunity hoarding theory serves as a viable 

theoretical framework to examine the way in which educational inequalities are generated due to 

tracking, as it describes how learning opportunities are disproportionately allocated among 

different social groups. Kelly and Price (2011) hypothesized that if opportunity hoarding processes 

held in a school, a more highly elaborated tracking system would be associated with a more diverse 

distribution of family background (e.g., greater variation in family SES, race/ethnicity). Finally, 

status competition describes the competition for better educational attainment and labor force 

success within middle-class and high-SES families to maintain their advantages (Brown, 2001; 

Collins, 1979). Different with respect to the form of conflict, status competition process speaks to 

an intra-group competition. Such competition processes reflect the preferences of pursuing 

competitive education among middle-class families (Useem, 1991) due to a “fear of falling” 

(Ehrenreich, 1989). Driven by status competition, middle- and professional-class families much 

more actively pursue the best possible college placement than working-class and poor families 

(Baker, & Stevenson, 1986). Kelly and Price (2011) hypothesized that elaborated tracking policies 

would be linked to lower proportions of minority and low-SES students, if the school 

compositional effect on tracking was explained by status competition.  

Applying all three tracking theories, Kelly and Price (2011) found that school 

compositional measures related primarily to the technical-functional explanation and status 

competition theory were associated with school-to-school variation in elaboration of tracking 

policies. Schools with compositional characteristics including greater variation in achievement 

scores, capacity to create a highly differentiated tracking system, and fewer minority and low-SES 

students were found to provide highly differentiated tracking systems with limited access to high-

track course-taking experiences. Although it’s nearly impossible to fully measure the actual 
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motivations of school administrators and parents during the policy-making and implementation 

process, studies of social theories of tracking provide (1) a theoretical foundation for examining 

the link between tracking systems and school characteristics, and (2) a framework for 

understanding the complex organizational approaches of tracking practices. This analysis adopts 

this theoretical lens to examine the school-to-school differences in tracking over the course of 

1982-2013. 

2.2.3 Organizational Dimensions of Tracking  

In Oakes’ (1985) seminal book, she asserts that, “…many schools claim that they do not 

track students, but it is the rare school that has no mechanism for sorting students into groups that 

appear to be alike in ways that make teaching them easier…” (page 3). In many cases, an adequate 

measure of school curricular differentiation must move beyond simplistic categorizations of 

tracking practice (e.g., classifying schools as tracked or untracked schools, or labeling schools as 

vocational, general, or academic tracks). Schools create various learning experiences by regulating 

different tracking policies, applying curricular standards differently, and offering different content 

in courses. Sørenson’s (1970) original theoretical work on organizational differentiation in school 

systems argued that school tracking systems varied along four organizational dimensions: 

inclusiveness, selectivity, electively, and scope. These dimensions remain relevant in 

contemporary research, although they are often not applied precisely as originally articulated by 

Sorensen for various reasons (e.g., a specific interest in mobility, lack of availability of student-

level achievement data, etc.) Examining dimensions of tracking enables us to understand how 

structural characteristics of schools’ tracking practice might relate to student achievement growth 

and school-to-school differences in the nature of tracking and its outcomes. 
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2.2.3.1 Inclusiveness 

Inclusiveness is defined as the extent to which high-status learning opportunities are 

available to students. In practice, researchers often measure inclusiveness as the share of the 

student body that is assigned to the highest track (usually what would align with “the college 

preparatory track,” even as that is itself often not clearly defined in a given school). In the US, 

schools vary in the extent to which they provide rigorous course content for students (Domina, & 

Saldana, 2012). A high inclusivity school exposes all, or as many as possible, students to 

academically rigorous course content (Kelly, 2007), whereas a low inclusivity school reserves 

rigorous instruction and course content for only the highest achievers. For example, studies on 

school sector effects on course taking show greater inclusiveness and academic press in Catholic 

schools (Carbonaro, & Covay, 2010; Xu, & Kelly, 2020). Austin (2020) found that even as 

curriculum intensification policies (e.g., Algebra for all) enrolled more low-SES students in 

rigorous math courses, their course-taking was not increased in other subject areas, or they even 

compensated for more challenging math courses by reducing their course-taking level in other 

subject areas, notably, science courses! ELA course taking, on the other hand, stayed high and 

stable across datasets. Turning to the possible effects of inclusiveness, in general, many scholars 

theorize that schools with high inclusivity will have higher average achievement growth, since 

large college preparatory tracks offer high levels of academic press to more students. However, as 

Gamoran (1992) argued, extremely high inclusivity may diminish the total benefits of academic 

press on the mean achievement gain by creating new stigmas among low achieving students. Snow 

(1991) also found that, in high inclusivity schools, adjusting instruction to accommodate low-

achieving students in class may undermine high-achiever’s learning process.  
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In this project, I use both the original definition of tracking inclusiveness (proportion of 

students in the high-track), along with school-mean course sequence level. I term these measures 

collectively, “level-related measures of tracking.” It’s obvious that, in the era of curriculum 

intensification, we should observe an increase in tracking inclusiveness over the past 40 years, but 

I will provide new estimates using a transcript-based coding in both math and science. In the 

multivariate models, the associations between tracking inclusiveness and both functional factors 

and conflict factors will be empirically interesting and are difficult to predict, as the changes in 

tracking inclusiveness can be motivated/influenced by both functional (e.g., schools may “track 

down” students with lower prior achievement to better fir their academic needs) and conflict 

factors (e.g., the competition for status may expand to all students). In the multivariate models, I 

will begin by examining the extent to which tracking inclusiveness is associated with school-level 

functional factors and how that association has changed over time. Then, after considering the 

functional factors, I will examine the extent to which tracking inclusiveness is associated with 

conflict factors. It’s worthwhile to note that the remaining variation between schools in 

inclusiveness, after controlling for both functional and conflict factors, might be conceptualized as 

the variation in academic press (i.e., school-level normative emphasis on academic climate, 

excellence and “conformity to specified academic standards,” McDill et al., 1986; see also Lee, & 

Smith, 1999). 

2.2.3.2 Selectivity: Differentiation and Skill Homogeneity 

Sørenson (1970) defined selectively as, “the amount of homogeneity that educational 

authorities intend to produce by [track] assignment[s]” (page 362). This was never a particularly 

clear concept because it references intentions, and potentially confounded multiple features. 

Gamoran (1992) argued that a highly selective tracking system has two features: it produces 
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substantial gaps between groups in terms of selection criterion (i.e., in a system with three tracks, 

average student achievement level would be very different in those three tracks), and the variance 

in achievement within each level is small (homogeneity of achievement, see also Hallinan, 1994). 

Under this definition, we would expect high between-track inequality in achievement and rigor of 

instruction, as teachers adjusted instruction to a homogenous group of students. However, while 

Gamoran (1992) stuck close to Sorensen’s original conceptualization, measuring selectivity in 

terms of the “selection result”, Kelly (2007) emphasized that Sorensen’s definition of selectivity 

referred to “the intended outcomes of tracking system, not the means by which this outcome is 

achieved,” and clearly, the original definition confounds the sorting of students with the number 

of levels present in the system to begin with. A highly selective school sorts students into tracks 

strictly by achievement criteria, while the number of available tracks may moderate the selectivity. 

He then suggests that considerations of selectivity should consider both the number of options 

available and assignment criteria, revising Sørenson’s (1970) original approach.  

Subsequent work has generally adopted Kelly’s (2007) revised approach to selectivity 

related dimensions of tracking. Domina et al. (2019) considered both result-oriented measures and 

intended outcome-oriented measures of selectivity. In this work, the degree of curricular 

differentiation was defined as the number of distinct curricular positions in the organization, which 

is theoretically equivalent to Kelly’s (2007) conceptualization of the number of options available. 

One may expect, related to the degree of curricular differentiation, that in highly differentiated 

systems teachers place much emphasis on developing skill-specific instruction. Domina et al. then 

defined classroom skills homogeneity as the degree to which “organizations assign students to 

different settings based on salient observed characteristics” (Domina et al., 2019). Thus, as a 

second measure of selectivity, they generated the seventh-grade test-score homogeneity within 
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eighth-grade classrooms to measure selectivity at eighth grade. The application of panel data is 

methodologically preferred in creating the later measure.  

In the era of curriculum intensification, I also expect that the sorting process has become 

less related to achievement over the course of this study because higher-level courses are generally 

open to more students regardless of prior achievement. Moreover, similar to tracking 

inclusiveness, I examine the extent to which tracking selectivity is associated with school-level 

functional factors, including achievement heterogeneity and school size, and how that association 

may have changed over time. First, a functional logic of tracking may motivate schools to tailor 

their sorting process to better fit the achievement distribution of the student body. In addition to 

the achievement distribution, the extent of curricular differentiation may also be responsive to 

school size, as larger schools have been found to have more highly differentiated curriculum 

systems (Kelly, & Price, 2011). Furthermore, after considering the functional factors, I will also 

examine the extent to which tracking selectivity is associated with conflict factors.  

2.2.3.3 The Electivity Realm: Mobility 

Electivity is defined as the extent to which students’ individual choice impacts track 

placement. Usually, a student’s track placement is determined by factors such as prior 

achievement, course-taking experiences, or teacher recommendations, yet some schools may 

consider student preference or enable students to choose the courses. However, Gamoran (1992) 

argued that even within schools that had a formal policy to allow student choice, students’ track 

placements were highly impacted by school authorities, as teachers generally recommend a “right” 

choice based on performance. Students’ self-perceptions of whether they select their tracking 

placement provides some evidence on electivity in the early tracking literature. In Jones, 

Vanfossen, and Ensminger’s (1995) study on students’ perception on tracking, they reported two 
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thirds of students believe they chose their track placements, and they argued that students who 

believe that they choose their tracking placement were more likely to be motivated. Gamoran 

(1992) also observed a similar proportion of students who believed that they selected their track 

placements. He then argued that schools with a more elective (measured as the proportion of 

students who believed that they choose their tracking placement) tracking system produced overall 

higher math achievement. However, as Kelly (2004) argued, student choice can also exacerbate 

existing inequality by introducing a parental involvement effect, and thus choice unto itself is not 

clearly functional or dysfunctional. 

Relatedly, although not listed in Sørenson’s (1970) original domains, tracking mobility 

captures a similar aspect of tracking. Kelly (2007) argued that electivity was closely related to the 

amount of track mobility over time, as students were more likely to move upward or downward 

along the track “ladder” in schools with greater electivity. The concept of mobility featured 

prominently in Rosenbaum’s (1976) classic study of tracking. Rosenbaum provided an example 

of a “tournament style” tracking system at Grayton High. Despite the official rhetoric among 

school staff that mobility was common and expected, upward mobility in Grayton High was 

extremely rare, whereas students frequently moved downward from high-track classes to low-track 

course work. Subsequent studies observed a similar pattern of tournament-style tracking systems 

(e.g., Domina et al., 2019; Lucas, & Good 2001). Domina and his colleagues, for example, found 

41% of students in their sample experienced downward mobility from eighth grade to ninth grade 

in mathematics, and 34% of students experienced downward mobility in ELA. In contrast they 

observed much less upward movement from the eighth grade low track to the ninth grade middle 

track or from eighth grade middle track to the ninth grade high track. It’s commonly argued that 

exposure to high-mobility tracking systems may boost students’ achievement by matching 
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students’ capability with instruction. Tournament-style mobility, however, is likely to depress this 

achievement boost and create achievement inequality (e.g., Domina et al., 2019).  

In this project, absent any way to measure choice directly, I consider upward and 

downward mobility separately to capture different aspects of the flexibility of tracking systems. In 

the era of curriculum intensification, I expect a decrease in downward mobility over the course of 

1982-2013, whereas the trend for upward mobility might not be obvious. For downward mobility, 

I will explicitly focus on how conflict forces might be associated with downward tracking mobility. 

In contrast, I do not anticipate any relationships between functional factors and downward 

mobility. For example, if downward mobility increases as the proportion of low-SES students in a 

school increase, the practice of tracking students down is suggestive of conflict forces. Therefore, 

I will examine the extent to which downward mobility is associated with school-level conflict 

factors and how any association has changed over time, controlling for functional factors. On the 

other hand, upward mobility may be associated with both functional and conflict factors. However, 

here I argue that the level of upward mobility itself (rather than associations with school 

composition) is a more salient measure of functionalism as schools “open up” learning 

opportunities through mobility. Yet, the association between conflict factors and any remaining 

variation in upward tracking mobility may indicate that upward mobility is restricted for, for 

example, low-SES students.  

2.2.3.4 Tracking Scope 

Tracking scope is narrowly defined as the extent to which students’ track placement is 

vertically consistent across all subject areas. According to this definition, in schools with high (or 

we might say “wide,”) track scope, students that are assigned to the high track in one subject (e.g., 

in ELA) are highly likely to be assigned to the high track in another subject (e.g., Math). Some of 
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the correlation in tracking across subjects can be explained by shared cognitive skills (e.g., 

mathematics and science share quantitative reasoning skills), with additional correlation more 

policy driven. In practice, Kelly and Price (2011) found that school course policies related to 

tracking scope included course corequisite policies and block schedule policies, which both 

required students to enroll in courses of the same track level simultaneously. They reported that 

20% of schools in their sample had a block schedule policy such that it was nearly impossible to 

enroll, for example, in AP English without enrolling in AP US History. Kelly and Price (2011) 

also considered cross-subject prerequisite policies (e.g., a math pre-requisite for a science course) 

as an indicator of high tracking scope since high-track courses were limited to students who 

completed prerequisite courses. In many European and Asian school systems, students are placed 

into overarching track placements where they are exposed to the same level of instruction in all 

subject areas (Lucas, 1999). In the US, Lucas (1999) reported that the US school system turned 

from an overarching tracking system to a system that enabled schools to track students on the basis 

of individual subject areas; this has become an oft-cited claim about tracking systems. Yet, he did 

not examine actual school policies, which often indicate otherwise and would temper such a firm 

conclusion about system change.  

Theoretically, schools with wide track scope are more likely to exhibit salient between-

track inequality in achievement as students are exposed to differentiated learning experiences for 

more subject areas and longer time periods. Gamoran (1992) found that the negative effect of 

tracking on low-track students was magnified in schools with wide track scope. Moreover, wide 

scope may also limit the school’s ability to flexibly adjust students’ track placement based on 

students’ learning outcome and capacities (Hallinan, 1994), because rigorous corequisites are in 

place.  
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In this project, I will consider both scope between two closely related subject areas, which 

is likely to strongly reflect the impact of correlated achievement, and scope between two disparate 

subject areas, which less obviously reflects correlated achievement. I will use the correlation 

between math and ELA course sequence (M-E) and the correlation between science and ELA 

course sequence (S-E) to measure scope between disparate subjects. For tracking scope between 

two related subjects, I will use the correlation between math and science course sequence (M-S). 

In examining school-to-school variation in scope, I will primarily focus on the relationship 

between conflict-related measures of composition and scope, examining the extent to which both 

M-E, S-E, and M-S tracking scope is associated with conflict factors (e.g., SES heterogeneity), 

after controlling for achievement heterogeneity and school size3.  

2.3 Analytic Strategy 

2.3.1 Sequential measures of individual course taking  

Building on Kelly (2009), Stevenson et al. (1994), my previous work (Xu, & Kelly, 2020), 

and other scholarship using transcript data (e.g., Riegle-Crumb, & Grodsky, 2010) this project 

 

3 A more obvious functional logic for tracking scope is that subject-area differences in achievement between students 

correspond to differences in course taking. Due to data limitation however, in this analysis, I only have constant 

measures of math achievement across all databases. Thus, I argue that remaining variation in correlated course taking 

beyond math achievement heterogeneity may potential be evidence of conflict forces. Later in analysis, I am able to 

examine the association between tracking scope and correlated achievement for one cohort.  
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aggregates students’ cumulative math and science course taking to capture school-level 

organizational dimensions of tracking. This process starts with assigning individual course codes 

to each available course from NCES transcript datasets. NCES uses the Classification of 

Secondary School Courses (CSSC) to classify courses transcribed from the 1982 (HS&B), 1992 

(NELS:88), and 2002 (ELS:2002) cohorts, and the School Courses for the Exchange of Data 

(SCED) to classify courses from the 2013 cohort (HSLS:09). The complete description of the 

coding process for individual courses is shown in Appendix A. To capture students’ cumulative 

mathematics course taking, I assigned each student a unique Mathematic Course Sequence (MCS) 

code indicating the difficulty level of the combination of courses taken by the end of 12th grade. 

The MCS codes start with 1–less than algebra I and end with 9–calculus or higher, often based on 

identification of joint courses (e.g., Level 3 is Algebra I and Geometry). Students with higher MCS 

values have deeper and richer mathematic learning experiences than students with lower values. 

The full cumulative Mathematics Course Taking codes are shown in Table 2.1. 

Table 2.1 Cumulative Mathematic Course Sequence (MCS) Codes 

Mathematic Course Sequence (MCS) Content 

1 Less than Algebra I 

2 Algebra I or Geometry, but not both 

3 Algebra I and Geometry 

4 Algebra I or Geometry, with at least one transition 

course 

5 Algebra II 

6 Algebra II with at least one math elective course 

7 Algebra III or Trigonometry, but not both 

8 Algebra III and Trigonometry 

9 Calculus or higher 

 

Different in some respects from math courses, science courses vary in their disciplinary 

content (e.g., biology, chemistry, and physics, often referred to as the “big-three” in the popular 

press). The measure of Science Sequence Level considers both 1) sequential course difficulty level 
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and 2) their disciplinary content (e.g., biology, chemistry, or physics, or often referred as “big-

three”). The student-level Science Sequence (5 levels) is measured as follow, 

1– Student took no big-three courses 

2– Student took only one disciplinary category from big-three (e.g., only biology courses, 

but no chemistry or physics course) 

3– Student took two disciplinary categories from big-three (e.g., biology and chemistry 

course, but no physics course), without higher-level courses  

4– Student took all of the big-three courses (biology, chemistry, and physics), without 

higher-level courses 

5– Student took two or three disciplinary categories from big-three with at least one higher-

level course.  

Higher-level courses are defined as courses that at least provide a detailed understanding of a 

specific general field (e.g., Chemistry II), or introduction to a post-introductory sub-field (e.g., 

Inorganic Chemistry). The full cumulative Science Course Taking codes are shown in Table 2.2. 

Table 2.2 Cumulative Science Course Sequence (SCS) Codes 

Science Course Sequence (SCS) Content 

1 Student took no big-three courses (Physics, Chemistry, 

Biology) 

2 Student took only one disciplinary category from big-

three (e.g., only biology courses, but no chemistry or 

physics course) 

3 Student took two disciplinary categories from big-three 

(e.g., biology and chemistry course, but no physics 

course), without higher-level courses 

4 Student took all biology, chemistry, and physics courses, 

without higher-level courses 

5 Student took two or three disciplinary categories from 

big-three with at least one higher-level courses. 
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2.3.2 Organizational dimensions of tracking 

I then create a set of measures of school-level organizational dimensions of tracking based 

on individual measures of course sequences. First, I consider tracking inclusiveness as the 

percentage of students who took high-level courses. Math inclusiveness is measured as the 

percentage of students who reached Level 7 Sequence (Algebra III or Trigonometry, but not both) 

or higher Math Course Sequence. To determine this criterion, I considered both the basic rigor of 

courses, as well as the proportion of students who did and did not take courses (and thus the 

variability a given criterion captures). For example, students who reach Level 9 math Sequence 

took multiple high-level courses, but the percentage of students who reach Level 9 may be 

extremely low for many schools, in particular for early cohorts. Thus, reaching Level 9 may not 

be a good criterion to determine math inclusiveness as it doesn’t capture much variability across 

students or schools. Science inclusiveness is measured as the percentage of students who reached 

Level 5 or higher Science Sequence. Later in this chapter, I discuss the differences between using 

Level 5 and Level 4 to determine science inclusiveness based on more detailed descriptive results.  

Tracking selectivity is measured as the intraclass correlation (ICC) calculated from a large 

one-way ANOVA between achievement scores and track placements. The ICC is the Pearson 

product-moment correlation computed over all possible pairs of observations that can be 

constructed within groups. The ICC measures the extent to which the variation on student 

standardized achievement scores at 9th grade is explained by students’ track placements.  

Tracking scope is measured as the correlated track placement between a pair of subjects. 

In this analysis, I examine three pairs of subjects. First, I consider the correlation between math 

and science course sequence that captures the correlated track placement between two closely 
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related subjects. Next, I consider the correlations between math and ELA, and science and ELA 

course sequences, capturing the correlated track placement between two distinct subjects.  

To measure track mobility, I first examine the “typical” mathematic course-taking 

trajectory from grade 9 to grade 12 and calculate the mean increase in MCS code by subtracting 

grade 9 MCS code from grade 12 MCS code. The mean increase in MCS code is 4.4., meaning, 

on average, students gain four and half levels during high school. I then pick an interval of increase 

in MCS code from 3 to 6 as the “typical” trajectory. Students who gain less than 3 levels are 

counted as downwardly mobile and students who gain more than 6 levels during high school are 

counted as upwardly mobile. The percentage of students who experience mobility is then 

calculated as the measure of mobility. Alternatively, instead of examining the trajectory across the 

entire high school, I also consider the mobility between two adjacent grade levels for each student. 

I choose to examine the trajectory-based measures as the main measure of mobility as it captures 

the mobility across the entire high school and thus conceptually produces a more general measure 

than the alternative one. Table 2.3 summarizes these measures of the organizational dimensions of 

tracking. Independent measures will be derived from HSLS:09, ELS:2002, NELS:88, and HS&B 

survey research. 

Table 2.3 Measures of the organizational dimensions of tracking 

Organizational dimensions of 

tracking 

Measures 

Inclusiveness Percentage of students who took Level 7 or higher Math 

courses or Level 4 or higher Science courses 

Scope Correlation between math/science and ELA course 

sequence 

Selectivity Intraclass correlation (ICC) calculated from large one-

way ANOVA between student standard achievement 

score and tracking placement 

Mobility Percentage of students who experiencing mobility 

(Mobility is defined as departure of typical trajectory) 
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2.4 Results 

2.4.1 Descriptive Statistics: Mathematics Tracking 

2.4.1.1 Mean Sequence Level 

Table 2.4 summarizes descriptive statistics of school-mean measures of Mathematics 

tracking by cohorts, including various organizational dimensions of tracking. To capture the 

overall course-taking rigor for each cohort, I calculate the grand mean of school-mean Math 

Course Sequence Level. To address the issue of measurement error and reliability shrinkage due 

to the unbalanced data structure of NCES longitudinal data, I calculate the cohort-specific 

multilevel reliability among schools with same (or similar) school size, using the loneway 

command in STATA. The school-specific multilevel reliabilities are then used as school-level 

analytic weights to generate the descriptive statistics. Weighted and unweighted descriptive 

measures are listed side-by-side for comparison in Table 2.4. 

What is the mean level of course taking and how has it changed over time? As shown in 

Table 2.4, Row 1, the weighted cohort mean of school-mean Math Course Sequence for 1982 

(HS&B) and 1992 (NELS) high school graduates are below Level 5–Algebra II (3.70 and 4.79, 

respectively), whereas the weighted grand mean for school-mean Math Course Sequence of 2004 

(ELS) and 2013 (HSLS) high school graduates rise dramatically to 5.60 and 6.26, respectively.
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Table 2.4 Descriptive Statistics of School-level Measures of Organizational Dimensions of Mathematics Tracking by Dataset (n=3620 schools, multilevel 

reliabilities used as analytic weights) 

 HS&B (n=920) NELS (n=1050) ELS (n=720) HSLS (n=930) 

Measures of Tracking Weighted Unweighted Weighted Unweighted Weighted Unweighted Weighted Unweighted 

1. School-mean Math Sequence Level         

Mean 3.70 3.66 4.79 4.77 5.60 5.58 6.26 6.24 

Standard Deviation 1.35 1.33 1.53 1.57 1.38 1.39 1.28 1.28 

2. Inclusiveness         

Mean .235 .232 .350 .347 .470 .468 .600 .598 

Standard Deviation .202 .201 .257 .262 .249 .251 .233 .234 

3. Selectivity         

Mean .506 .515 .510 .513 .457 .459 .420 .420 

Standard Deviation .253 .253 .291 .292 .226 .227 .216 .217 

4. Tracking Scope between Math and 

Science 
        

Mean .467 .471 .585 .599 .491 .493 .532 .533 

Standard Deviation .253 .254 .238 .246 .236 .240 .224 .223 

5. Tracking Scope between Math and 

English 
        

Mean .431 .438 .514 .527 .442 .448 .439 .440 

Standard Deviation .253 .255 .244 .252 .215 .219 .212 .212 

6. Upward Mobility         

Mean .092 .091 .080 .078 .116 .116 .177 .176 

Standard Deviation .131 .130 .129 .131 .147 .147 .198 .198 

7. Downward Mobility         

Mean .563 .570 .415 .417 .293 .295 .198 .200 

Standard Deviation .230 .228 .251 .260 .228 .232 .178 .180 

8. All Mobility         

Mean .656 .661 .494 .496 .409 .411 .375 .376 

Standard Deviation .219 .217 .258 .265 .259 .261 .234 .235 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 
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SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond Longitudinal Study of 1980 Sophomores (HS&B-So: 

80/82), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, 

National Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 1992.”; U.S. 

Department of Education, National Center for Education Statistics, Education Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up 

Survey, High School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 

09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection” 
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Continuing to consider the improvement in the overall math curriculum rigor shown in 

Row 1 of Table 2.4 further, the mean of school-mean Math Course Sequence in the 2013 cohort 

was one and a half levels (1.49) higher than students in the 1992 cohort. This difference is 

approximately half of the difference between, for example, completing Algebra II (Level 5) and 

completing Algebra III and Trigonometry (Level 8) for high school. The school-mean Math 

Course Sequence in the 2013 cohort was a remarkable two and a half levels higher (2.56) than 30 

years ago. Figure 2.1 visualizes the increasing trends by overlapping all four density distributions 

of school-mean Math Course Sequences. Kernel density estimations are calculated and plotted for 

smooth curves. As shown in Figure 2.1, the Kernel density distributions for all four cohorts are 

approximately normal and the peak of the distributions move from Level 3–taking both Algebra I 

and Geometry, but not higher (HS&B) to over Level 6–Algebra II with at least one higher-level 

elective course (HSLS), indicating a trend of curriculum intensification. Table 2.4, Row 1 also 

shows that the school-level standard deviation of Math Course Sequence Level decreases, in the 

context of a rising mean, from 1.53 (NELS) to 1.28 (HSLS), indicating that, on average, school-

to-school differences in sequence level became smaller in the 2013 cohort than earlier cohorts.  
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Figure 2.1 Kernel Density Distribution of School-mean Math Course Sequences (MCS) by Datasets. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 

2.4.1.2 Inclusiveness 

Mathematics Tracking inclusiveness is measured as the percentage of students who 

completed Level 7 (Algebra III or Trigonometry, but not both) or higher Math Course Sequence. 

Table 2.4, Row 2 summarizes the cohort-means of school tracking inclusiveness. As shown in 
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Table 1, Row 2, schools enrolled approximately only one fourth of (23.5%) students into Algebra 

III, Trigonometry, or higher courses in the 1982 cohort, whereas this percentage went up to 35.0% 

in the 1992 cohort and 47.0% in the 2004 cohort. In the 2013 cohort, schools, on average, enrolled 

nearly two thirds of students into higher-level math courses. Figure 2.2 shows the visualization of 

the density distribution of school tracking inclusiveness by cohorts. As shown in Figure 2.2, the 

density distributions of the 1982 and 1992 cohort are positively skewed with the peak at 

approximately 20%, indicating that the majority of schools in the 1982 and 1992 cohorts enrolled 

less than one third of students in higher-level math courses. The peak of the distribution moves 

greatly from the 1982 cohort (HS&B) to the 2013 cohort (HSLS). By the 2013 cohort (HSLS), the 

majority of schools now enroll more than 60% of students in higher-level math courses (and the 

distribution is now even somewhat negatively skewed). Table 2.4, Row 2 also shows that the 

school-level standard deviation of math inclusiveness decreases from .257 (NELS) to .233 (HSLS), 

indicating that, school-to-school differences in math tracking inclusiveness in the 2013 cohort were 

smaller than in the 1992 cohort. 
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Figure 2.2 Kernel Density Distribution of Mathematics Tracking Inclusiveness by Dataset. DATA SOURCE: 

U.S. Department of Education, National Center for Education Statistics, High School and Beyond Longitudinal 

Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 

2.4.1.3 Selectivity  

Mathematics Tracking selectivity is measured as the intraclass correlation (ICC) 

calculated from a large one-way ANOVA between the student math standardized achievement 

score and track placement. The ICC measures the extent to which the variation in math 
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achievement at 9th grade is explained by student track placements. Table 2.4, Row 3 summarizes 

the cohort-mean of school tracking selectivity. As shown in Table 2.4, Row 3, on average, US high 

school tracking systems became less selective based on achievement since the 1992 cohort, 

changing from .510 in the 1992 cohort to .420 in the 2013 cohort, whereas students from the 1982 

cohort experienced a similar level of tracking selectivity with the 1992 cohort. Figure 2.3 

visualizes this decreasing trend of tracking selectivity. As shown in Figure 3, the shape of the 

density distribution of tracking selectivity changes from negative skewed to approximately normal, 

indicating an overall decreasing trend in US high school tracking selectivity. Table 2.4, Row 3 

also shows that the school-level standard deviation of math tracking selectivity decreases from 

.291 (NELS) to .216 (HSLS), indicating that, on average, between-school stratification in 

selectivity in the 2013 cohort was smaller than for early cohorts.  

 

Figure 2.3 Kernel Density Distribution of Mathematics Tracking Selectivity by Dataset. DATA SOURCE: U.S. 

Department of Education, National Center for Education Statistics, High School and Beyond Longitudinal 

Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 
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Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 

2.4.1.4 Tracking Scope 

Math and Science Tracking scope is measured as the correlation between students’ Math 

Course Sequence code and Science Course Sequence code within each school. Table 2.4, Row 4 

shows that the cohort-mean math-science tracking scope remains at a moderate level over the 

course of 1982-2013, ranging from .467 to .585. I also calculated tracking scope between math 

and ELA course taking using the correlation between students’ Math Course Sequence and ELA 

track placement. ELA track placement is simply measured as the most rigorous ELA course taken 

during high school using curriculum rigor provided by NCES. Students who completed at least 

one Enriched/advanced, Honors, or College level ELA course are labeled as high track; students 

who only completed Basic/remedial or General level ELA course are labeled as low track. This 

binary measure captures the basic variation in ELA course taking across students and, while not 

as fine-grained as the other transcript-based measures in this study, is useful for calculating a 

simple measure of tracking scope. Table 2.4, Row 5 shows that tracking scope between math and 
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ELA also remains moderate, ranging from .431 to .514, over the period of this study. Previous 

research has found greater Math-ELA scope (e.g., .67 from Domina et al., 2019).4  

Moreover, as shown in Table 2.4, Row 4, the Math-Science tracking scope first went up 

from .467 (HS&B), then went down from .585 (NELS) to .491 (ELS) and went back up to .532 

(HSLS). Table 1, Row 4 also shows that the school-level standard deviation of math-science 

tracking scope stays around .23 level, indicating that, on average, school-to-school differences in 

scope remained stable across cohorts.  

 

4 There are a few possibilities that might explain this difference in findings. First, Donima et al., (2019) used a sample 

from 23 CA middle schools and the calculated math-ELA scope may not be comparable to the scope calculated from 

a representative sample of US schools. Second, the measure of math course-taking track has nine levels in this analysis, 

compared to Domina et al.’s three-level measure. This may create more variability across students in terms of their 

math course-taking levels and lower the math-ELA scope. 
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Figure 2.4 Kernel Density Distribution of Mathematics Science Tracking Scope by Dataset.  DATA SOURCE: 

U.S. Department of Education, National Center for Education Statistics, High School and Beyond Longitudinal 

Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 
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Figure 2.5 Kernel Density Distribution of Tracking Scope between Math and English by Dataset. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 

2.4.1.5 Track Mobility  

Finally, I use the “typical” course-taking trajectory to examine Math track mobility. Recall 

that in this analysis, track mobility examines the extent to which an individual student’s course-

taking trajectory moves away from the “typical” course-taking trajectory. For example, a student 
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who only took Informal Math (Level 1) during 9th grade but completed Trigonometry and 

Analytical Geometry (Level 8) before 12th grade is labeled as upwardly mobile (moving 7 levels). 

Another student who already took Algebra II (Level 5) before 10th grade but only complete Algebra 

III (Level 7) at 12th grade is considered downwardly mobile (moving 2 levels).  

 

Figure 2.6 Kernel Density Distribution of Mathematics Upward Tracking Mobility by Dataset. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 
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Figure 2.7 Kernel Density Distribution of Mathematics Downward Tracking Mobility by Dataset.  DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 

School-level tracking mobility is measured as the percentage of students who experience 

upward mobility or downward mobility. Table 2.4, Rows 6,7, and 8 summarize the cohort-mean 

of upward track mobility, downward track mobility, and all track mobility, respectively. As shown 

in Table 2.4, Row 6, on average, schools only provided approximately 9% and 8% of students with 

opportunity for upward mobility in the 1982 and 1992 cohorts, respectively. This percentage went 
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up substantially in the 2013 cohort such that, on average, over one sixth (17.7%) of students can 

move upwardly in math. Figure 2.6 visualizes this trend. As shown in Figure 6, although all three 

density distributions of upward mobility are skewed positively, the high peak at around 0.0% 

moved dramatically down from the 1982 and 1992 cohorts to the 2013 cohort, indicating that many 

more schools in 2013 cohort provided at least minimal opportunity for moving up the course taking 

hierarchy. However, as shown in Table 1, Row 6, the school-level standard deviation of upward 

mobility also increases from .129 (NELS) to .198 (HSLS), indicating that, on average, school-to-

school differences in upward track mobility in the 2013 cohort were greater than the 1982 and 

1992 cohorts. For downward mobility, as shown in Table 1, Row 7, on average, schools tracked 

over 55% and 40% of students down in the 1982 and 1992 cohorts, respectively. Thirty years later, 

this percentage was cut by two thirds with only 20% of students moving down the track hierarchy. 

As shown in Figure 2.7, the shape of the density distribution of downward mobility went from 

normal to positively skewed, indicating that schools, on average, moved fewer students down to 

the lower track. Moreover, Table 1, Row 7 shows that the school-level standard deviation of 

downward mobility also decreases from .251 (NELS) to .178 (HSLS), indicating that, on average, 

between-school stratification in downward track mobility were smaller than the 1992 cohort.  

2.4.1.6 Correlation Matrix of Dimensions of Tracking 

Table 2.5 examines the correlation matrix between all school-level measures of 

Mathematics tracking, with a panel for each cohort. Figures 2.8 to 2.11 visualize the correlations 

among all dimensions of tracking. The correlation matrix captures the extent to which 

organizational dimensions are empirically associated within each cohort. First, level-related 

measures are tightly correlated with each other (school-mean Sequence Level and tracking 

inclusiveness). As shown in Table 2.5, Row 2, the correlation coefficients between Variable 1– 
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School-mean Math Sequence Level and Variable 2–Inclusiveness are extremely high for all four 

cohorts (.82, .88, .83, and .84 for HS&B, NELS, ELS, and HSLS, respectively), indicating a strong 

positive relationship between tracking inclusiveness and overall school emphasis on rigorous 

academic curriculum.  

More importantly, dimensions of tracking structure (i.e., selectivity, scope, and mobility) 

are only moderately or even weakly associated with other dimensions. Table 2.5 shows that the 

correlations between tracking selectivity and scope in most cohorts are around a .15 level (Column 

3 in each panel), indicating a fairly weak relationship between selectivity and scope. Tracking 

selectivity has even weaker relationships with track mobility for all cohorts, suggesting that, in 

general, tracking selectivity may have different fundamental determinants. Math-science scope 

and math-ELA scope are moderately correlated in the 1992, 2004, and 2013 cohorts, showing that, 

at least some schools have overarching tracking scope across different subject areas. This 

relationship, however, is weaker in the 1982 cohort. Math-ELA scope has moderate relationships 

with downward mobility in the 1982, 1992, 2004 cohorts, indicating that schools in early decades 

had a somewhat more “overarching” tracking structure. Yet, such structure became weaker in the 

2013 cohort.  

Moreover, the strength of correlations between level-related measures and tracking 

structure varies across dimensions. Tracking inclusiveness and mean sequence are closely 

negatively associated with downward track mobility in the 1982, 1992, and 2004 cohort, indicating 

that schools with, on average, lower math curriculum rigor tend to track more students down along 

the course-taking hierarchy. These correlations went down to moderate strength in the 2013 cohort, 

and it’s likely due to the fact that fewer students experienced downward mobility in high schools. 

However, the correlations between Variable 1– School-mean Math Sequence Level and Variable 
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3–Selectivity are fairly weak, ranging from .06 to .09. Therefore, unlike tracking inclusiveness, 

there is virtually no relationship between tracking selectivity and school-mean Math Course 

Sequence Level. 

Table 2.5 Correlation Matrix of School-level Measures of Organizational Dimensions of Mathematics 

Tracking (n=3620 schools) 

 HS&B (1982 cohort) NELS (1992 cohort) 

 1a 2 3 4 5 6 7 1 2 3 4 5 6 7 

1. Mean Sequence               

2. Inclusiveness .82       .88       

3. Selectivity -.02 .05      .07 .11      

4. M-S Scope -.02 .01 .08     -.16 -.13 .07     

5. M-E Scope -.07 -.01 .18 .18    -.26 -.19 .08 .32    

6. Upward Mobility .30 .48 .01 -.04 .01   .28 .41 .09 -.11 -.07   

7. Downward Mobility -.78 -.61 .10 .10 .17 -.36  -.80 -.63 -.02 .24 .31 -.18  

8. All Mobility -.61 -.32 .11 .08 .18 .26 .80 -.64 -.41 .03 .18 .27 .32 .88 

 ELS (2004 cohort) HSLS (2013 cohort) 

 1a 2 3 4 5 6 7 1 2 3 4 5 6 7 

1. Mean Sequence               

2. Inclusiveness .83       .84       

3. Selectivity .05 .12      .11 .13      

4. M-S Scope .07 .07 .18     .05 .02 .15     

5. M-E Scope -.17 -.14 .16 .28    .02 -.01 .13 .31    

6. Upward Mobility .12 .29 .06 -.01 .04   .37 .41 .04 -.01 -.01   

7. Downward Mobility -.63 -.41 .04 .11 .25 -.11  -.50 -.37 .01 .16 .14 -.22  

8. All Mobility -.49 -.19 .08 .10 .24 .47 .82 -.10 .04 .04 .12 .10 .63 .61 

a. Variable number: 1– School-mean Math Sequence Level; 2–Inclusiveness; 3–Selectivity; 4–Tracking Scope 

between Math and Science; 5–Tracking Scope between Math and English; 6–Upwards Mobility; 7–Downwards 

Mobility; 8–All Mobility 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 
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Figure 2.8 Scatter Plot Matrix of Selected Organizational Dimensions of Math Tracking for HS&B. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 
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Figure 2.9 Scatter Plot Matrix of Selected Organization Dimensions of Math Tracking for NELS. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 
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Figure 2.10 Scatter Plot Matrix of Selected Organization Dimensions of Math Tracking for ELS. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 
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Figure 2.11 Scatter Plot Matrix of Selected Organization Dimensions of Math Tracking for HSLS. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 
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2.4.2 Descriptive Statistics: Science Tracking 

2.4.2.1 Mean Sequence Level and Total Courses Taken  

Table 2.6 summarizes descriptive statistics of school-mean measures of Science tracking 

by cohorts, including various organizational dimensions of tracking. To capture the overall course-

taking experience for each cohort, I calculate the grand mean of school-mean Science Course 

Sequence Level. As shown in Table 2.6, Row 1, the weighted cohort mean of school-mean Science 

Course Sequence increases from 2.35 (HS&B) to 3.80 (ELS) and slightly decreases to 3.75 

(HSLS). In general, the Table 2.6, Row 1 shows an improvement in the overall science curriculum 

rigor from the 1982 cohort to the 2004 cohort and the school-level emphasis on a rigorous 

academic curriculum in science is stable in the subsequent decade. Figure 2.12 visualizes the 

Kernel density distribution of school-mean science sequence level by cohort. As shown in Figure 

2.12, the density distribution of the 2004 cohort and the 2013 cohort are nearly identical, whereas 

the peak of the distribution for the 1982 cohort is almost two levels lower than these two cohorts. 

Table 2.6, Row 1 also shows that the school-level standard deviation of school-mean science 

sequence level stays around .6 level, indicating that, on average, students from all four cohorts 

experienced similar levels of between-school stratification in the average level of science course 

taking. To further unpack the trends of science course taking across cohorts, I calculate the school-

mean total number of science courses taken. As shown in Table 2.6, Row 2, on average, the average 

student took a full three additional science courses across the cohorts represented here, from 2.50 

(NELS) to 5.88 (HSLS).
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Table 2.6 Descriptive Statistics of School-level Measures of Organizational Dimensions of Science Tracking by Datasets (n=3620 schools, multilevel 

reliabilities as analytic weights) 

 HS&B (n=920) NLES (n=1050) ELS (n=720) HSLS (n=930) 

Measures of Tracking Weighted Unweighted Weighted Unweighted Weighted Unweighted Weighted Unweighted 

1. School-mean Science Sequence Level          

Mean 2.35 2.35 3.43 3.43 3.80 3.80 3.75 3.75 

Standard Deviation .550 .544 .619 .640 .592 .596 .607 .608 

2. School-mean Total Number of 

Science Courses Taken 
        

Mean 2.50 2.49 4.82 4.83 5.14 5.16 5.88 5.88 

Standard Deviation .732 .731 1.59 1.63 1.60 1.64 1.91 1.91 

3. Inclusiveness (Level 5 as high-level 

science sequence) 
        

Mean .119 .119 .248 .247 .348 .347 .436 .434 

Standard Deviation .150 .150 .224 .232 .260 .264 .223 .224 

4. Inclusiveness (Level 4 and 5 as high-

level science sequences) 
        

Mean .148 .147 .449 .447 .609 .607 .654 .652 

Standard Deviation .163 .162 .253 .261 .253 .257 .234 .235 

5. Selectivity          

Mean .427 .435 .446 .451 .343 .344 .313 .315 

Standard Deviation .247 .250 .276 .278 .224 .225 .191 .192 

6. Tracking Scope between Math and 

Science 
        

Mean .467 .471 .585 .599 .491 .493 .532 .533 

Standard Deviation .253 .254 .238 .246 .236 .240 .224 .223 

7. Tracking Scope between Science and 

English 
        

Mean .373 .378 .482 .492 .395 .400 .388 .389 

Standard Deviation .252 .255 .240 .247 .222 .228 .200 .200 

8. Upward Mobility         

Mean .169 .170 .087 .087 .171 .170 .170 .169 

Standard Deviation .191 .192 .138 .143 .188 .189 .180 .180 
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NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond Longitudinal Study of 1980 Sophomores (HS&B-So: 

80/82), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, 

National Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 1992.”; U.S. Department 

of Education, National Center for Education Statistics, Education Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), “Base-

year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection” 
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Figure 2.12 Kernel Density Distribution of School-mean Science Course Sequences (SCS) by Dataset. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 

2.4.2.2 Inclusiveness 

Science Tracking inclusiveness is measured as the percentage of students who completed 

Level 5 (Student took two or three disciplinary categories from big-three with at least one higher-

level courses) Science Course Sequence. Table 2.6 Row 3 summarizes the cohort-mean of school 
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tracking inclusiveness. As shown in Table 2.6, Row 3, schools enrolled approximately only 12% 

and 25% students into at least two disciplinary categories with one higher-level course (level 5) in 

the 1982 and 1992 cohorts, whereas this percentage went up to one third (34.8%) in the 2004 

cohort. In the 2013 cohort, schools, on average, enrolled over 40% of students (43.6%) into at least 

two disciplinary categories with one higher-level course. Figure 2.13 shows the visualization of 

the density distribution of school tracking inclusiveness by cohorts. As shown in Figure 2.13, the 

density distribution of the 1992 cohort is positively skewed with the peak at approximately 15%, 

indicating that the majority of schools in the 1992 cohort enrolled less than 15% of students in 

high science track. The peak of the distribution moves greatly from the 1992 cohort to the 2013 

cohort. In the cohort 2013, the approximately normal distribution indicates that half of the schools 

enrolled more than 40% of students into the high-track courses in science. Table 2.6, Row 3 also 

shows that the school-level standard deviation of science inclusiveness slightly increases from .150 

(HS&B) and .224 (NELS) to .260 (ELS) but returns to the .22 level in HSLS, indicating that, on 

average, the school-to-school differences in science tracking inclusiveness went up first, peaked 

at the 2004 cohort, and went down in the 2013 cohort.  
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Figure 2.13 Kernel Density Distribution of Science Tracking Inclusiveness by Dataset.DATA SOURCE: U.S. 

Department of Education, National Center for Education Statistics, High School and Beyond Longitudinal 

Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 

To check the robustness of the measure of science tracking inclusiveness, I also calculate 

the science inclusiveness using a different definition for the high science track. As shown in Table 

2.6, Row 4, if both Level 4 (Student took all biology, chemistry, and physics courses, without 

higher-level courses) and Level 5 are considered as high science track, the science inclusiveness 
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increases from 14.8% in HS&B to 65.4% in HSLS, indicating a very similar trends as in Table 2.6, 

Row 3.  

2.4.2.3 Selectivity  

Science Tracking selectivity is measured as the extent to which the variation on student 

math standard achievement score at 9th grade is explained by students’ Science track placement. 

Table 2.6, Row 5 summarizes cohort-mean of school science tracking selectivity. As shown in 

Table 2.6, Row 5, on average, the US high school tracking system became less selective based on 

achievement since the 1992 cohort, changing from .446 in the 1992 cohort to .313 in the 2013 

cohort. Science tracking selectivity slightly went up from the 1982 cohort to the 1992 cohort. 

Figure 2.14 visualizes this decreasing trend of science tracking selectivity. As shown in Figure 

2.14, although the shape of the density distributions of tracking selectivity remains positively 

skewed across cohorts, the distribution of HSLS shows a much higher peak, indicating many more 

school science curriculum systems are less selective in the 2013 cohort. Table 2.6, Row 5 also 

shows that the school-level standard deviation of math tracking selectivity decreases from .276 

(NELS) to .191 (HSLS), indicating that, on average, school-to-school differences in science 

tracking selectivity in the 2013 cohort were smaller than earlier cohorts.  
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Figure 2.14 Kernel Density Distribution of Science Tracking Selectivity by Dataset. DATA SOURCE: U.S. 

Department of Education, National Center for Education Statistics, High School and Beyond Longitudinal 

Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 

2.4.2.4 Track Mobility  

Finally, to measure Science track mobility, I first examine the “typical” science course-

taking trajectory from grade 9 to grade 12 for each student by subtracting the lowest Science 

Course Difficulty code from the highest code. The five-level Science Course Difficulty code is 
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used to consider sequential courses difficulty level when constructing Science Course Sequence 

Level and it has the following meaning, 

1– Course provides basic concepts on specific field (e.g., Biology I) 

2– Course is based on level 1 course, providing a more detailed understanding on specific 

field, or introduction to a sub-field (e.g., Biology Advanced Study) 

3– Course provides an in-depth study on a specific sub-filed (e.g., Anatomy) 

4– Course provides a higher-level comprehensive study of specific field (e.g., AP Biology) 

5– In addition to level 4, course requires higher-level interdisciplinary knowledge to finish 

(e.g., AP Physics C: Electricity and Magnetism) 

In HSLS, 62% of students do not move any level whatsoever from 9th grade to 12th grade, 

staying at the same difficulty level throughout high school. Since the “typical” science course-

taking trajectory is “staying at the same level”, downward mobility cannot be defined the same 

was as in math, although the total number of courses taken partially captures something like 

downward mobility. To measure upward mobility, I count students who gained more than 1 level 

during high school as upwardly mobile. Approximately, in HSLS, 17% of students were upwardly 

mobile.  

School-level science track mobility is then measured as the percentage of students who 

experience upward mobility. Table 2.6, Row 8 summarizes the cohort-mean of science upward 

track mobility. As shown in Table 2.6, Row 8, on average, schools only provided approximate 9% 

of students with opportunity for upward mobility in science in the 1992 cohort. This percentage 

went up substantially in the 2004 cohort with, on average, 17.1% of students moving up in science. 

In the 2013 cohort, this percentage remained at 17.0%. Inconsistent with the larger trend, in the 

1982 cohort, 16.9% of students experienced science upward mobility.  
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Figure 2.15 visualizes this trend. As shown in Figure 2.15, although all four density 

distributions of upward mobility are skewed positively, the high peak at around 0.0% moved 

dramatically down from the 1992 cohort to the 2004 and 2013 cohort, indicating that many more 

schools in the 2004 and 2013 cohort provided at least minimal opportunity for moving up the 

course taking hierarchy. However, as shown in Table 2.6, Row 8, the school-level standard 

deviation of upward mobility also increases from .138 (NELS) to .188 (ELS) and .180 (HSLS), 

indicating that, on average, between-school stratification of science upward mobility in the 2004 

and 2013 cohorts were greater than earlier cohorts.  

 

Figure 2.15 Kernel Density Distribution of Science Upwards Tracking Mobility by Dataset. DATA SOURCE: 

U.S. Department of Education, National Center for Education Statistics, High School and Beyond Longitudinal 

Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 
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Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 

2.4.2.5 Correlation Matrix 

Table 2.7 examines the correlation matrix between all school-level measures of science 

tracking by cohorts. Again, the correlation matrix captures the extent to which organizational 

dimensions of science tracking are empirically associated within each cohort. Figures 2.16 to 2.19 

visualize the correlations among all dimensions of tracking. Similar to the Mathematics correlation 

matrix, the correlation coefficients between Variable 1– School-mean Science Sequence Level and 

Inclusiveness are extremely high for all cohorts (.90 level for inclusiveness using Level 4 as high 

science track, and .70 level for inclusiveness using Level 5 as high science track), indicating a 

strong positive relationship between tracking inclusiveness and overall school emphasis on 

rigorous science academic curriculum. The school-mean science sequence also has a strong 

relationship with the mean number of science courses taken in the 1982 cohort. However, this 

correlation decreased to a .2 level in later cohorts. This is likely due to the fact that students took 

more science courses in the 1992, 2004, 2013 cohorts, reducing the relationship between number 

of courses taken and course sequence levels.  

Moreover, dimensions of tracking structure are weakly to moderately related to other 

measures of structure. First, tracking selectivity has moderate relationships with tracking scope for 

all four cohorts, but has extremely weak relationships with upward track mobility. This is similar 

with the correlations between math selectivity and other measures of tracking structure. Math-

science scope and Science-ELA scope are also moderately correlated for all cohorts. Recall that 
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Math-science scope also has a moderate relationship with Math-ELA scope, showing some 

evidence that schools may loosely place students into similar Math, Science and ELA tracks. 

Tracking scope, however, is only weakly associated with science upward track mobility.  

Moving to the correlation between level-related measures and tracking structure, I find that 

the correlation between Variable 1– School-mean Science Sequence Level and Variable 5–

Selectivity is fairly weak. Therefore, unlike tracking inclusiveness, there is virtually no 

relationship between tracking selectivity and school-mean Science Course Sequence Level. I also 

find a weak to moderate positive relationship between science tracking inclusiveness and upward 

track mobility in the 1982, 1992, 2004, and 2013 cohort, at .31, .33, .48, and .54, respectively, 

indicating that schools with higher science inclusiveness tend to have stronger upward mobility. 

This relationship is weaker in the 1982 and 1992 cohort, suggesting that these two dimensions of 

tracking may have different fundamental determinants; the strength then goes up to a moderate 

level in later decades. Overall, correlation analysis explicitly addresses whether measures of 

dimensions of tracking may reflect an underlying construct of a highly elaborated tracking system. 

Yet, this analysis indicates that the various dimensions of tracking are only moderately or even 

weakly associated.  

Table 2.7 Correlation Matrix of School-level Measures of Organizational Dimensions of Science Tracking 

(n=3620 schools) 

 HS&B (1982 cohort) NELS (1992 cohort) 

 1a 2 3 4 5 6 7 1 2 3 4 5 6 7 

1. Mean Sequence               

2. Number of 

Courses 
.70       .26       

3. Inclusiveness 4 .78 .46      .90 .23      

4. Inclusiveness 5 .67 .36 .88     .75 .16 .64     

5. Selectivity -.03 -.03 -.00 -.00    .01 -.01 .02 .07    

6. M-S scope -.04 -.06 .06 .09 .27   -.17 -.11 -.14 -.07 .12   

7. S-E Scope .05 -.01 .07 .10 .26 .29  -.08 -.08 -.11 .04 .18 .34  

8. Upward Mobility .08 -.05 .23 .31 .10 -.00 .07 .06 0.5 .10 .33 -.01 -.04 -.05 
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 ELS (2004 cohort) HSLS (2013 cohort) 

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

1. Mean Sequence               

2. Number of 

Courses 
.11       .23       

3. Inclusiveness 4 .91 .14      .90 .22      

4. Inclusiveness 5 .71 .05 .53     .70 .19 .62     

5. Selectivity .00 .00 .03 .02    -.03 -.02 -.04 .08    

6. M-S scope -.23 -.02 -.21 -.12 .16   -.15 -.09 -.12 -.12 .17   

7. S-E Scope -.11 -.05 -.10 -.08 .15 .24  -.16 -.05 -.16 -.07 .22 .23  

8. Upward Mobility .25 .07 .22 .48 .00 -.05 -.03 .41 .19 .32 .54 .13 -.04 .11 

a. Variable number: 1– School-mean Science Sequence Level; 2–School-mean Total Number of Science Courses 

Taken; 3–Inclusiveness (Level 4 and 5 as high-level science sequences); 4– Inclusiveness (Level 5 as high-level 

science sequences); 5–Selectivity; 6–Tracking Scope between Math and Science; 7–Tracking Scope between 

Science and English; 8–Upwards Mobility 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 
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Figure 2.16 Scatter Plot Matrix of Selected Organization Dimensions of Science Tracking for HS&B. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 
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Figure 2.17 Scatter Plot Matrix of Selected Organization Dimensions of Science Tracking for NELS. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 
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Figure 2.18 Scatter Plot Matrix of Selected Organization Dimensions of Science Tracking for ELS. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 
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Figure 2.19 Scatter Plot Matrix of Selected Organization Dimensions of Science Tracking for HSLS. DATA 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High 

School Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National 

Education Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study, 1992.”; U.S. Department of Education, National Center for Education Statistics, Education 

Longitudinal Study of 2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, High School 

Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, First Follow-up Survey, 2013 Update Survey, 

High School Transcript Collection”. 
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2.5 Discussion and Conclusion 

In Chapter 2, I created a comprehensive measurement scheme of organizational dimensions 

of tracking and explored trends in US tracking systems over the period 1982-2013. Considering 

school-mean Course Sequence Level and tracking Inclusiveness as level-related measures of 

tracking, US high school students, on average, now take more rigorous STEM courses than 

decades ago (although my window of observation does not include the most recent years). In 

particular, school-mean math sequence level rises by almost 70% from 1982 to 2013 and math 

inclusiveness goes up by 155% over the same period of time. Moreover, considering the fact that 

the standard deviation of school-mean math sequence level and inclusiveness have both become 

smaller in later decades, US high schools not only provide more opportunity to learn in math, but 

also vary less across schools in later decades. Science sequence level and inclusiveness increase 

by 65% and 263%, respectively, but unlike in math, the standard deviation of science sequence 

level and inclusiveness also became greater in the 2004 and 2013 cohorts.  

Regarding the structure of tracking systems, in general, US high school tracking systems 

have become less elaborate with less selective and more flexible tracking systems in place. More 

specifically, math tracking selectivity drops from a .50 level in the 1982 and 1992 cohorts to a .4 

level in the 2013 cohort and science tracking selectivity goes down from over .40 to a .30 level in 

2013. Moreover, I find that the variation in both math and science tracking selectivity across 

schools (captured by the standard deviation) decreased over the past decades. In terms of upward 

track mobility, both math and science upward mobility doubled from approximately 8% in the 

1992 cohort to 17% in the 2013 cohort. However, the standard deviation of math upward mobility 

also went up over the past three decades, from a .13 to a .20 level. Recall that one interpretation of 

upward mobility is that it captures the extent to which schools flexibly match students’ readiness 
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to track placements. This analysis of track mobility shows that while schools on average “open 

up” more learning opportunities in recent decades, school-to-school differences in OTL also 

become greater. Tracking scope, on the other hand, remains at around a .50 level across cohorts.  

Examining the extent to which individual dimensions of tracking are conceptually related 

to other dimensions, I first find that school-mean sequence level and tracking inclusiveness are 

closely correlated. As expected, these associations may indicate that the overall emphasis on 

rigorous academic curriculum and placing more students into high-level courses usually go 

together. More importantly, this chapter also contributes to the discussion of whether schools tend 

to have overarching strong or weak tracking systems. Here, schools with “strong” tracking system 

have high selectivity, wide scope, and low mobility, whereas a “weak” tracking system has low 

selectivity, narrow scope and moderate mobility. Early empirical studies found evidence that 

schools tended to have overarching strong curriculum tracking system (e.g., Rosenbaum, 1976). 

From the curriculum policies/guides perspective, Kelly and Price (2011) found higher-level inter-

dimension correlations than this study, indicating that dimensions of tracking in many US high 

schools hang together; that is, for example, schools with wide scope tend to also have high-level 

selectivity. In this chapter, I find that dimensions of tracking structure are only moderately or even 

weakly associated with other dimensions, suggesting that individual dimensions of tracking don’t 

usually work together. In particular, math and science tracking selectivity are orthogonal to all 

other dimensions of tracking. However, I find some evidence that scope and track mobility are 

weakly-to-moderately correlated. For example, I find moderate relationships between Math-ELA 

scope and downward mobility in the 1982, 1992, and 2004 cohorts. Both Math-ELA scope and 

downward mobility perhaps more directly capture the extent to which school tracking systems 

constrain learning opportunities than more ambiguous organizational dimensions. For this reason, 
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I focus on these constructs in particular in some subsequent analyses. Thus, the moderate 

correlations between Math-ELA scope and downward track mobility support notions of “strong” 

and “weak” tracking systems, but many other associations do not.  

To show the complexity of school-to-school differences in dimensions of curriculum 

tracking, I pick two pairs of typical schools from the 2013 cohort to discuss here. Schools from 

each pair are located within the same state, serve nearby neighborhoods, and have similar 

compositional characteristics. State information is hidden and compositional characteristics (% of 

poor and % of white) are rounded to the neatest 10% for confidentiality purposes. As shown in 

Table 2.8, Pair A schools are predominantly white public schools where most students are from 

high-SES families and are located in Suburban areas of a Northeastern state. The STEM tracking 

system of School A1 is highly selective as this school ranks extremely high in both math and 

science tracking selectivity, whereas School A2 has a moderate level of STEM tracking selectivity. 

Schools A1 and A2 also differ in math and science tracking inclusiveness. School A1 ranks quite 

high in math inclusiveness but moderately in science inclusiveness, whereas School A2 ranks low 

in math inclusiveness but high in science inclusiveness. Regarding track mobility, both Schools 

A1 and A2 rank moderately. Pair B schools are predominantly white private schools with most 

students from high-SES families and are located in metropolitan areas of a Midwestern state. 

School B1 ranks extremely low in math and science selectivity and scope, showing a flexible 

school tracking system with presumably few prerequisites and corequisites in place. Yet, science 

mobility and inclusiveness of School B1 are quite low, indicating that some restrictions in track 

placement exist simultaneously. School B2, on the other hand, promotes a relatively more 

elaborate tracking system with greater selectivity and scope. But School B2 also has higher track 

mobility and inclusiveness, showing some flexibility of their tracking system. Overall, although 
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these typical school cases are chosen purposefully, and inferences should be derived first and 

foremost from the prior descriptive trends and associations, example school pairs from Table 2.8 

show that (1) within a school, individual dimensions of tracking do not always work together, and 

(2) even schools that share similar compositional characteristics may be very different in their 

tracking systems.
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Table 2.8 Pairs of schools from the 2013 cohort selected to illustrate limited covariance in dimensions of tracking, percentile rank on each dimension 

among all schools from the 2013 cohort 

Schools Urbanicity % Poor5 % White Sector Math 

Selectivity 

MS 

Scope 

Math 

Upward 

Mobility 

Math 

Inclusiveness 

Science 

Selectivity 

Science 

Upward 

Mobility 

Science 

Inclusiveness 

A1 Suburban 10% 80% Public 92nd 61st 36th 79th 79th 66th 43rd 

A2 Suburban 10% 80% Public 48th 45th 47th 16th 50th 43rd 81st 

B1 City 10% 80% Private 5th 1st 44th 70th 13th 30th 40th 

B2 City 0% 80% Private 49th 72nd 51st 92nd 31st 99th 79th 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), “Base-year Survey, 

First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

5 State information is hidden and compositional characteristics (% of poor and % of white) are rounded to the neatest 10% for confidentiality purposes. 
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3.0 Multivariate Analysis of Social Determinants of Tracking 

3.1 Introduction  

In Chapter 3, I turn to developing multivariate models, selectively utilizing organizational 

measures of tracking first reported in the descriptive analysis in Chapter 2, to address my 

overarching question: how is school composition related to tracking and has the balance between 

functional and conflict forces in the US tracking system changed over time? Building on the 

theoretical framework of Kelly and Price (2011) and other related empirical studies on the structure 

of tracking systems (e.g., Domina et al., 2019; Kelly, 2007), I examine associations between 

organizational dimensions of high school STEM curriculum tracking (school-mean course-taking 

level, selectivity, scope, and mobility) and school compositional factors (e.g., achievement 

heterogeneity, percentage of advantaged students, and racial/SES diversity), both in pooled cross-

section and in changes over-time. Are observed school-to-school differences in tracking practice 

and changes in tracking practices more obviously related to easy-to-document functional 

motivations for tracking or to dysfunctional social forces of tracking? For example, schools may 

promote curriculum tracking to increase efficiency by creating skill-homogeneous instructional 

environments, or schools with a high proportion of advantaged students may create especially 

elaborated tracking systems in response to opportunity hoarding or status competition processes. 

Ultimately, these associations seek to describe where the basic structure of a school’s curriculum 

tracking system comes from.  
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3.2 Analytical Strategy 

3.2.1 Dependent Variables 

Dependent variables in this empirical chapter are directly derived from the descriptive 

measures of organizational dimensions of Mathematics and Science tracking, created in Chapter 

2. To further unpack different aspects of the US secondary education tracking system, I classify 

dependent variables into two major analytical categories in the subsequent model estimations, 

level-related measures of tracking and course-taking patterns that reveal the structure of tracking. 

Level-related measures of tracking contain various dependent measures that are related to overall 

Sequence Level, including school-mean Sequence Level, math and inclusiveness, and mean 

number of science courses. Tracking structure captures different dimensions of tracking in which 

schools vary in terms of the overall elaboration of tracking, including selectivity, scope, and 

mobility. Or stated differently, collectively these measures can be used to identify the overall 

“strength” of the tracking system. I also put the variance of Sequence Level within the school into 

this category because the variance examines the extent to which students are exposed to different 

course-taking experiences. I should note that the primary intent of defining analytical categories 

in this way is to organize the presentation of results and following discussion. The dependent 

measures within each analytic category may have different sources of variation; I am not claiming 

they indicate, reflectively, a latent construct. 

I also made a few extra modifications to certain measures of tracking. First, for parsimony, 

I include only Level-5 Science inclusiveness (only Level 5– “Student took two or three disciplinary 

categories from big-three with at least one higher-level courses” as high-level science sequence) 

as a dependent variable in this chapter. Second, I drop the combined measure of mobility (All 
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mobility), both because it combines two very disparate outcomes for students, and because the 

majority of mobility is downward (e.g., total and downward mobility are correlated .88 in NELS).  

3.2.2 Model Specification 

To address Research Question 2-1, I first examine the basic association between school-

level compositional characteristics and tracking measures by running a series of time-pooled 

regression models without any statistical controls. Basic association models have the following 

general form, 

𝑌𝑖 =  𝛼0 + 𝛿𝐾𝑖 + 휀𝑖 

where 𝑌𝑖 are various school-level measures of tracking at school i. 𝐾𝑖 parameters are school-level 

functional and dysfunctional factors at school i, one factor at a time.  

To further answer Research Question 2-2, I run time-pooled models with the following 

general form. 

𝑌𝑖 =  𝛼0 + 𝛿𝑋𝑖 + 𝜋𝑀𝑖 + 𝜃𝑍𝑖  + 휀𝑖 

where 𝑌𝑖 are various school-level organizational dimensions of tracking at school i. 𝑋𝑖 is a vector 

of school-level technical-functional factors. 𝑀𝑖 is a vector of school-level conflict factors and will 

be added after 𝑋𝑖. 𝑍𝑖 are school-level covariates. The estimation of 𝛿 and 𝜋 addresses Research 

Question 2-1. 

Then, to address the Research Question 2-2, I first run series of regression models to 

estimate the school-level organizational dimensions of tracking with only year indicators as 

independent variables. These categorical trend models have the following form, 

𝑌𝑖 =  𝛼0 +  𝛽1𝐶𝑜ℎ1982 +  𝛽2𝐶𝑜ℎ2004 +  𝛽3𝐶𝑜ℎ2013 + 𝜃𝑍𝑖 +  휀𝑖 



 78 

 where 𝑌𝑖  are various school-level organizational dimensions of tracking at school i, 

𝐶𝑜ℎ1982~𝐶𝑜ℎ2013 represent the year when high school transcripts were collected for each cohort 

(1983, 2004, and 2013). 𝐶𝑜ℎ1992 (represents NELS) is used as reference year and not in the model. 

The estimation results of 𝛽1~𝛽3 capture the cohort effect in relation to the reference year. 𝐶𝑜ℎ1992 

is chosen as the reference year because the measurement of dimensions of tracking is more reliable 

than 𝐶𝑜ℎ1982. 𝑍𝑖 is school-level covariate. 

Alternatively, I also run linear trend models with an ordinal time indicator to capture the 

overall trend of each organizational dimension of tracking. These models have the general form, 

𝑌𝑖 =  𝛼0 + 𝛽𝐶𝑜ℎ + 𝜃𝑍𝑖  + 휀𝑖 

where 𝑌𝑖 are various school-level organizational dimensions of tracking at school i, 𝐶𝑜ℎ is a time 

indicator, centered at cohort 1992. This linear trend models also serve as the baseline trend model 

in the subsequent model estimation. I also run the baseline trend analysis without school-level 

covariates and the results will be provided in the supplemental information.  

Then, to examine whether changes in tracking practices are more obviously related to 

functional motivations for tracking, I run cohort-interaction models: 

𝑌𝑖 =  𝛼0 +  𝛽𝐶𝑜ℎ + 𝛿𝑋𝑖 + 𝛾(𝐶𝑜ℎ × 𝑋𝑖) + 𝜃𝑍𝑖 + 휀𝑖 

where 𝑌𝑖  are various school-level organizational dimensions of tracking at school i. 𝐶𝑜ℎ  are 

single cohort indicators (NELS as reference cohort as well), 𝑋𝑖  is a vector of school-level 

technical-functional factors. 𝐶𝑜ℎ × 𝑋𝑖  is an interaction matrix indicating the cross product 

between cohorts and functional factors. 𝛿 is the estimated effect of 𝑋𝑖 on 𝑌𝑖 at reference cohort 

(i.e., 1992 in this analysis). The estimation of 𝛾 can be used to determine whether changes in 

tracking practices are more or less obviously related to functional motivations for tracking. If  𝛾 is 

a positive value, the total estimated effect of 𝑋𝑖 on 𝑌𝑖 , (𝛿 + 𝛾), will be larger than the estimated 
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effect at the reference year, indicating the changes in tracking practices are more obviously related 

to functional motivations for tracking. 

After controlling for all functional factors, I will add a vector of conflict factors. The full 

cohort-interaction model has the following specification: 

𝑌𝑖 =  𝛼0 +  𝛽𝐶𝑜ℎ + 𝛿𝑋𝑖 + 𝛾(𝐶𝑜ℎ × 𝑋𝑖) + 𝜋𝑀𝑖 + 𝜌(𝐶𝑜ℎ × 𝑀𝑖) + 𝜃𝑍𝑖  + 휀𝑖 

where 𝑌𝑖 are various of school-level organizational dimensions of tracking at school i. 𝐶𝑜ℎ  is the 

cohort indicators (NELS as reference cohort as well), 𝑀𝑖 is a vector of school-level conflict factors. 

𝐶𝑜ℎ × 𝑀𝑖  is an interaction matrix indicating the cross product between cohorts and conflict 

factors. 𝜋 is the estimated effect of 𝑀𝑖 on 𝑌𝑖 at reference cohort (i.e., 1992 in this analysis). The 

estimation of 𝜌 can be used to determine whether changes in tracking practices are more or less 

obviously related to conflict motivations for tracking, after controlling for all functional factors. If  

𝜌  is a positive value, the total estimated effect of 𝑀𝑖  on 𝑌𝑖  , (𝜋 + 𝜌), will be larger than the 

estimated effect at the reference year, indicating the changes in tracking practices are more 

obviously related to conflict force of tracking. 

Across the different studies examined here, and within each study, the number of students 

sampled in each school varies considerably. As such, the data structure is unbalanced, with 

different levels of sampling error in the school-level outcomes and predictors I examine. To begin 

to address this differential school-level reliability, I calculate the cohort-specific multilevel 

reliability for each school based on the within-school sample size, using the loneway command in 

STATA. The estimated multilevel reliabilities are then stored and used as school-level analytic 

weights (aweight in STATA) to estimate models. 
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3.3 Results 

3.3.1 Level-related measures of tracking 

Table 3.1 to 3.9 report findings concerning level-related measures of tracking, including 

mean Math Course Sequence Level, using various model-building strategies. All models include 

each school’s multilevel reliability as analytic weights. Table 3.1 reports the unconditional 

association between Mathematics and Science level-related measures of tracking and each element 

of school composition from (averaging over) the years 1982-2013. These models provide a 

baseline estimation of the relationship between school compositional characteristics and school-

level organizational dimensions of tracking, without any statistical controls. Table 3.2 examines 

the correlations among all dependent variables.  

Next, Table 3.3, 3.4, and 3.5 report the time-pooled model partial associations between 

measures of school composition and level-related outcomes throughout the period 1982-2013. 

Table 3.3 and 3.4 focus specifically on mean Math Course Sequence Level, using a streamlined 

(Table 3.3) and saturated (Table 3.4) specification respectively. Table 3.5 summarizes the time-

pooled model estimation for all level-related measures of tracking, using the model specification 

reported in Table 3.4, Model 6. Tables 3.1 to 3.5 are used to address the first research question of 

this chapter: is variation in US schools’ tracking system related to school-level compositional 

characteristics that might signal different tracking mechanisms? 

Table 3.6 reports the baseline time trend of all level-related measures of tracking, using 

both linear trend models and categorical trend models. Finally, Table 3.7, 3.8, and 3.9 report 

cohort-interaction models for level-related measures of tracking. Table 3.7 and 3.8 focuses on 

mean Math Course Sequence Level, while table 3.9 shows results for other level-related measures 
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of tracking, using the full-model specification reported in Table 3.8, Model 6. Keep in mind, the 

overall reduced-form effect of individual school compositional factors is reported in 3.1. Table 

3.7, 3.8, and 3.9 are used to address the second major research question of this chapter: how has 

the relationship between school tracking systems and school composition changed over the past 

40 years?  

3.3.1.1 Baseline, Time-Pooled Association  

Table 3.1 summarizes the baseline association between level-related measures of tracking 

and school compositional factors, on average, during the period 1982-2013. Each cell from Table 

3.1 reports the regression coefficient, standard error, and standardized beta from an unconditional 

regression estimation of each level-related measure of tracking using only one school 

compositional factor.6   

Table 3.1 Unconditional Association between School-level Mathematics and Science Level-related Measures of 

Tracking and school composition, 1982-2013 (n = 3620 schools) 

  1. Math Mean 

Sequence 

2. Math 

Inclusiveness 

3. Science 

Mean 

Sequence 

4. Mean 

Number of 

Science 

Courses 

5. Science 

Inclusiveness 

1. Achievement 

Heterogeneity 

.106*** .016*** .024*** .114*** .011*** 

 (.014) a (.002) (.007) (.017) (.002) 

Std. Beta .126 .115 .058 .114 .090 

R-square .016 .013 .003 .013 .008 

2. School Size (9-12 

grade) 

-.017*** -.002*** -.008*** .009* -.000 

 (.004) (.001) (.002) (.004) (.001) 

Std. Beta -.082 -.07 -.075 .038 -.013 

R-square .007 .005 .006 .001 .000 

3. School-mean 

Achievement  

.164*** .027*** .044*** .043*** .016*** 

 (.004) (.001) (.002) (.006) (.001) 

 

6 Coefficients reported in Table 3.1 are weighted using the estimated multilevel reliability for each school. Coefficients 

have no major differences with unweighted model estimations.  
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Std. Beta .538 .541 .298 .121 .349 

R-square .289 .293 .089 .015 .122 

4. School-mean SES 1.865*** .300*** .657*** .707*** .182*** 

 (.051) (.008) (.027) (.069) (.008) 

Std. Beta .522 .516 .379 .168 .346 

R-square .272 .266 .144 .028 .120 

5. Percentage of non-

free lunch 

1.129*** .189*** .254*** -.759*** .058** 

 (.125) (.020) (.061) (.149) (.019) 

Std. Beta .157 .161 .073 -.089 .054 

R-square .025 .026 .005 .008 .003 

6. Percentage of white .710*** .097*** .189*** -.378*** .036* 

 (.094) (.015) (.046) (.111) (.014) 

Std. Beta .128 .107 .070 -.058 .044 

R-square .016 .011 .005 .003 .002 

7. Shannon Index of 

Race Diversity 

.388*** .073*** .237*** 1.029*** .081*** 

 (.079) (.013) (.038) (.091) (.012) 

Std. Beta .085 .098 .106 .191 .121 

R-square .007 .010 .011 .036 .015 

8. SES heterogeneity .241* .043* -.050 .394~ .046~ 

 (.115) (.025) (.089) (.217) (.027) 

Std. Beta .122 .084 -.059 .130 .098 

R-square .076 .025 .013 .034 .028 

      

a. Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

According to functional theories of tracking, level-related measures of course taking should 

be strongly related to school-mean achievement. I find school-mean achievement is indeed 

positively associated with school-mean Math Course Sequence, Math inclusiveness, and, to a 

lesser extent, school-mean Science Course Sequence (Table 3.1, Row 3). Although treated 

elsewhere in the analysis as important compositional variables related to functional theories of 

tracking, achievement heterogeneity and school size are not expected to have a substantial 

functional association with level-related measures in Table 3.1 (I consider measures of 
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heterogeneity further below). Examining the magnitude of the associations, Table 3.1 Row 3 

shows that a one standard deviation difference in school-mean achievement is positively associated 

with a .522 and .641 standard deviation increase in school-mean Math Course Sequence level and 

Math inclusiveness, respectively, but is associated with only a .298 standard deviation difference 

in school-mean Science Course Sequence level.7 

Is the basic level of course taking in a school also associated with status competition?  

According to status competition theory, students from middle- and professional- class families 

may compete with their peers, pursuing higher-track course-taking experiences with the ultimate 

goal of getting into elite colleges and maintaining their social status. In this section, I consider 

school-mean SES, percentage of White students, and percentage of non-poor students as school-

level measures that may reveal the effects of status competition, although the results in Table 3.1 

are fully unconditional, and thus also carry functional effects through their association with 

achievement. As shown in Table 3.1, Row 4, 5, and 6, both math and science level-related 

measures of tracking are positively associated with school-mean SES, percentage of non-free lunch 

recipients, and percentage of White students (with the exception of mean number of science 

courses), indicating a potential intra-group competition process that are associated with the mean 

level of course-taking rigor. Similar to the effects of school-mean achievement, the standardized 

 

7  I also conducted discrete change calculations between schools at the 75th percentile and schools at the 50th 

percentile. The predicted Math school-mean Course Sequence level for schools at the 75th percentile of mean 

achievement are, on average, .58 levels higher than schools at the 50th percentile of mean achievement. The predicted 

difference in Science Course Sequence level is only .15 between schools at the 75th percentile of mean achievement 

and schools at 50th percentile.  



 84 

beta reported in Table 3.1, Row 5 indicates that the strength of the baseline associations for percent 

non-poor and white are stronger in math than science (.157 vs. .037). 8  

Returning to measures of compositional heterogeneity, conceptually, functional and 

conflict theories would anticipate associations between these measures and the dispersion in 

course taking within a school more so than the mean level of course taking. Nevertheless, as shown 

in Table 3.1, Row 1,7, and 8, all three measures of heterogeneity are in fact positively associated 

with various level-related measures of tracking in these unconditional models. The standardized 

beta reported in Table 3.1, Rows 1, 7, and 8 show that the strength of the associations for 

heterogeneity measures is at approximately the .10 level which is similar to the strength of 

associations for percent white and percent non-poor. One explanation for the various heterogeneity 

effects is that these are picking up aspects of the achievement distribution not captured by the 

mean. Later I consider additional moments of school-level achievement (square and cubic terms). 

In those analyses (Table 3.4 and 3.3), I still find that these measures of heterogeneity are positively 

associated with mean level of course taking even after considering functional factors and the 

effects of status competition. These results may indicate heightened competition processes among 

students in general, somehow evoked by the presence of status heterogeneity of various kinds, that 

in fact are associated with the mean course-taking rigor, an explanation I return to (along with 

other possible mechanisms) following the full set of results.  

 

8 Discrete change calculations indicate that schools at the 75th percentile of percentage of non-poor students are 

predicted to have a .14 level higher school-mean Math Course Sequence than schools at the 50th percentile; this 

difference is only .03 of a level for school-mean Science Course Sequence.  
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Overall, during the period of 1982-2013, on average, school-mean course-taking level is 

associated with various measures of school composition that reflect functional factors as 

anticipated. Compositional features such as percent non-free lunch, and percent white are also 

associated with course taking level, reflecting an unknown mix of status competition and 

functional effects in these basic associations. Additionally, compositional features of schools we 

typically theorize to affect the distribution of course taking, appear to be related to the mean level 

of course taking as well, at a similar level to compositional features theorized to produce status 

competition.  

3.3.1.2 Time-pooled Model of Partial Associations 

Moving to analysis of partial associations, I rely on three analyses to investigate the 

relationship between achievement composition as a functional factor, the set of status competition 

factors, and compositional measures of heterogeneity, and tracking outcomes. First, Table 3.2 

shows the correlation matrix of school composition measures. Second, to simplify and clearly 

illustrate the unique effects of school composition related to functional factors, status competition, 

and heterogeneity measures, specifically, Table 3.3 reports model estimations using only school-

mean achievement, and summary scales for status competition variables and measures of 

heterogeneity. Of course, such models are glossing over a lot of information and potentially 

missing some key nuance in the findings, but they are useful for exposition. Thereafter, Table 3.4 

reports more saturated models with the multiple compositional measures reported simultaneously 

(e.g., both school-mean SES and school percent free-lunch), and multiple moments of the 

achievement distribution of the school.   
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Table 3.2 Correlation Matrix of School Composition Measures 

 Mean 

Achi. 

Size Mean SES % White % non-

poor 

Achi. 

Hetero. 

SES 

Hetero. 

Mean Achievement        

School Size -.03       

Mean SES .67 -.09      

Percent White .33 -.31 .39     

Percent non-poor .43 -.10 .59 .52    

Achi. 

Heterogeneity 

.14 .13 .02 .03 -.02   

SES Heterogeneity .08 .14 -.03 -.10 -.06 .21  

Race Diversity -.00 .32 -.09 -.53 -.22 .14 .15 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

As shown in Table 3.2, school-mean achievement is strongly correlated with school-mean 

SES and has a moderate relationship with percent white and non-poor, indicating that in the 

baseline associations, these measures related to status competition process (e.g., % white) may in 

fact be carrying functional effects through their relationship with school-mean achievement. 

School-mean SES has moderate to high positive relationships with other status competition factors, 

percent white and non-poor, but has weak or no relationship with heterogeneity measures. This is 

important to subsequent analyses because 1) the status competition factors do not for the most part 

carry the effect of heterogeneity measures, and 2) there is a statistical as well as theoretical 

motivation to group these measures. The relationships among heterogeneity measures, albeit weak, 

are consistently positive and stronger than their associations with status competition factors.  

Is school-mean course-taking rigor in the US secondary education sector, over the period 

1982-2013, most associated with technical-functional processes, status competition within 
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advantaged students in a school, or perhaps competition among students in general (evoked by the 

presence of status heterogeneity)? Table 3.3 and 3.4 report time-pooled associations between 

school composition and school-mean Math Course Sequence Level, using theoretically 

meaningful summary scales (Table 3.3) or more saturated combinations/groupings of variables 

(Table 3.4). 9   The simplified exposition in Table 3.3 makes clear relationships potentially 

obfuscated by covariance between similar measures (e.g., school-mean SES and % free lunch, 

etc.). 

Table 3.3 Time-pooled Model Estimation of School-level Math Mean Course Sequence Level using school-

mean Achievement, Status Competition scale, and Heterogeneity Scale, 1982-2013 (n = 3620 schools; School-

level Covariates includes school size,b sample percentage of white students, school sectors, urbanicity, 

geographic region, student-teacher ratio, and average daily instruction hours) 

 
Model 1 Model 2  Model 3 Model 4 Model 5 Model 6 

1. School-mean 

Achievement 

.151*** 
  

.153*** .144*** .144*** 

 
(.005) a 

  
(.006) (.005) (.006) 

2. Status Competition 

Scale 

 
.437*** 

 
-.045 

 
.009 

  
(.050) 

 
(.047) 

 
(.047) 

3. Heterogeneity 

Scale 

  
.464*** 

 
.244*** .245*** 

   
(.045) 

 
(.041) (.042) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .329 .200 .227 .350 .353 .357 

a. Robust Standard errors in parentheses 

b. School size included as covariate only in models for level-related outcomes, elsewhere it is conceptually related to 

assessing functional explanations. 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

 

9 Additionally, Table 3.2 is also structured to be consistent with later tables, with variables such as school size (grouped 

with the functional factors) expected to be more strongly related to the structure of tracking than the level. 



 88 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

Table 3.3, Models 1–3 report the effect of school-mean achievement (as the principle 

functional measure expected to affect mean levels of course taking), a status-competition scale, 

and a heterogeneity scale, controlling for school covariates (e.g., school sector, urbanicity, sampled 

percent white), 10  while Models 4 and 5 consider status competition and heterogeneity, after 

controlling for school-mean achievement. Model 6 is the full model. To construct the summary 

scales, I first create the standardized form for each independent variable, and then calculate the 

mean of these standardized variables. Table 3.4 has the same model specifications, but has more 

saturated representation of independent variables, providing more robust comparisons of R-square 

across models.  

Table 3.4 Time-pooled Model Estimation of School-level Math Mean Course Sequence Level using 

functionally-related variables, status-competition related variables, and measures of heterogeneity, 1982-2013 

(n = 3620 schools; School-level Covariates includes sample percentage of white students, school sectors, 

urbanicity, geographic region, student-teacher ratio, and average daily instruction hours) 

 
Model 1 Model 2  Model 3 Model 4 Model 5 Model 6 

Functional Factor       

1. School-mean 

Achievement 

.236 
  

.357 .161 .232 

 
(.380) a 

  
(.440) (.381) (.451) 

2. Achievement ^ 2 -.003 
  

-.004 -.002 -.002  
(.008) 

  
(.009) (.008) (.009) 

3. Achievement ^ 3 .000 
  

.000 .000 .000  
(.000) 

  
(.000) (.000) (.000) 

4. School Size -.006   -.009* -.011** -.013*** 

 (.004)   (.004) (.004) (.004) 

Status Competition       

5. School-mean SES 
 

2.170*** 
 

1.459*** 
 

1.491***   
(.076) 

 
(.086) 

 
(.089) 

6. Percentage of 

White 

 
-.723*** 

 
-.413** 

 
-.104 

 

10 School size is included as a covariate in this table only, later school size is used as a key functional measure related 

to various tracking structure outcomes. 
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(.157) 

 
(.147) 

 
(.157) 

7. Percentage of non-

free lunch 

 
-1.641*** 

 
-1.806*** 

 
-1.788*** 

  
(.170) 

 
(.159) 

 
(.159) 

Heterogeneity 

Measures 

      

8. Achievement 

Heterogeneity 

  
.098*** 

 
.070*** .051*** 

   
(.016) 

 
(.014) (.014) 

9. SES Heterogeneity 
  

.326* 
 

-.272 -.133    
(.175) 

 
(.179) (.176) 

10. Shannon Index of 

Race Diversity 

  
.764*** 

 
.550*** .444*** 

   
(.092) 

 
(.082) (.089) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .330 .285 .263 .403 .395 .438 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

As shown in Table 3.3, Model 1, on average, during the period 1982-2013, school-mean 

achievement is positively associated with mean Math Couse Sequence Level, and the coefficient 

remains positively significant after controlling for the status competition scale and/or the 

heterogeneity scale in subsequent models, which is consistent with functional explanations for 

school-to-school variation in mean course taking. The total effect of functional process is quite 

large; the R-square is .392 just from school-mean achievement and other school-level covariates. 

Note that while scales are labeled for simplicity as, e.g., “status competition scale,” status 

competition is an underlying and unseen process/mechanism, while the scale is just a measure of 

composition. Model 2 reports the effect of more obvious conflict forces on mean Math Course 

Sequence Level, while Model 3 shows the partial association with school heterogeneity that was 

not originally theorized to affect mean course taking outcomes. As shown in Model 2, the status 
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competition scale is positively associated with mean level. However, after controlling for school-

mean achievement and the heterogeneity scale in Model 6, status competition has no significant 

relationship with school-mean mathematics course taking. A statistically significant effect of 

school-mean SES emerges in Table 3.4, but given the association with % non-free lunch, which is 

off-setting, the total effect of the status competition related variables is quite small; the R2 rises 

from .33 to .40 from Model 1 to Model 4 in Table 3.4.  

Table 3.3, Model 3 shows a significant positive relationship between the heterogeneity 

scale and mean Math Course Sequence Level, this effect remains positive and significant after 

controlling for school-mean achievement and the status-competition scale. To begin to interpret 

this relationship, it may be useful to build on previous arguments about the effects of status 

competition. The association between the status competition scale and school-mean course-taking 

rigor likely reveals a competition process within advantaged students in a school. I would further 

suggest that the association between the heterogeneity scale reflects a similar competition process, 

but among all students in that school in general. Here I hypothesize that competition for status is 

made more salient by the heightened status variation, in various ways, in the school population. 

The R-square rises from .33 to .39 from Model 1 to Model 5 in Table 3.4. The R-square change 

between Model 1 and 4 (7.3%) is similar to the change between Model 1 and 5 (6.5%), indicating 

that status competition process and heterogeneity measures contribute almost equally to the total 

school-to-school differences in mean course-taking level. 

Although I have thus far focused on one level-related measure, the mean level of math 

course taking in the school, four additional level related measures are available. Table 3.5 reports 

those results using the same model specification as Model 6 in Table 3.4. Overall, the results are 

similar across the different school-level course taking outcomes, although the associations with 
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science course taking are consistently weaker than with math. The R-squares for Math models are 

higher than Science models (over a .4 level for math and around a .2 level for science). This is 

likely due to the fact that schools vary less in mean Science course-taking level than in Math 

course-taking level. 11 

Table 3.5 Summary of Time-pooled Model Estimation of School-level Mathematics and Science Level-related 

Measures of Tracking using functionally-related variables, status-competition related variables, and 

measures of heterogeneity, 1982-2013 (n = 3620 schools; School-level Covariates includes sample percentage 

of white students, school sectors, urbanicity, geographic region, student-teacher ratio, and average daily 

instruction hours) 

 
1. Math Mean 

Sequence 

2. Math 

Inclusiveness 

3. Science 

Mean 

Sequence 

4. Mean # of 

Science 

Courses 

5. Science 

Inclusiveness 

Functional Factor      

1. School-mean 

Achievement 

.232 -.000 .189 1.169~ .093 

 
(.451) a (.060) (.255) (.674) (.076) 

2. Achievement ^ 2 -.002 .000 -.004 -.025~ -.002 
 

(.009) (.001) (.005) (.014) (.002) 

3. Achievement ^ 3 .000 -.000 .000 .000~ .000 
 

(.000) (.000) (.000) (.000) (.000) 

4. School Size -.013*** -.002** -.007*** .001 -.002* 

 (.004) (.001) (.002) (.006) (.001) 

Status Competition      

5. School-mean SES 1.491*** .231*** .798*** 1.452*** .189*** 
 

(.089) (.015) (.048) (.119) (.015) 

6. Percentage of White -.104 -.027 .096 .060 -.025 
 

(.157) (.027) (.094) (.231) (.026) 

7. Percentage of non-

free lunch 

-1.788*** -.271*** -.753*** -2.002*** -.201*** 

 
(.159) (.027) (.083) (.222) (.025) 

Heterogeneity Measures      

8. Achievement 

Heterogeneity 

.051*** .008*** .013~ .060** .004~ 

 

11 In Chapter 2, Table 2.1, for example, the weighted coefficient of variation (Standard deviation divided by the mean) 

of school-mean Math Course Sequence for the 1992 cohort is .32, whereas the coefficient of variation of school-mean 

Science Course Sequence is only .17. 
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(.014) (.002) (.007) (.019) (.002) 

9. SES Heterogeneity -.133 -.021 -.148 .222 .004 
 

(.176) (.028) (.094) (.230) (.029) 

10. Shannon Index of 

Race Diversity 

.444*** .073*** .397*** 1.115*** .091*** 

 
(.089) (.015) (.050) (.124) (.015) 

School Covariates Yes Yes Yes Yes Yes 

R-squared .438 .436 .280 .216 .234 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Overall, perhaps most important to understanding school-to-school variation in the mean 

level of course taking, the technical-functional process appears to be the strongest factor associated 

with mean course-taking level, on average, during the period of 1982-2013. In addition, a greater 

density of advantaged students, as well as heterogeneity in the student body, are associated with 

higher average levels of course taking (and almost equally so). Although not the only possible 

mechanism, these findings are consistent with theories of status competition, and considering the 

effect of heterogeneity, possibly evidence of a more pervasive process of competition evoked by 

heterogeneity.  

3.3.1.3 Baseline Trend and Cohort-interaction Model 

Table 3.6 reports the baseline time trends of level-related measures of tracking using both 

linear trend models and categorical trend models. As shown in Table 3.6, Row 1, overall, as 

reported by other researchers using different but related measures over a shorter period (e.g., 
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Domina, & Saldana, 2012), the average course-taking level increased substantially throughout the 

period 1982-2013.   

Table 3.6 Baseline Trends of School-level Mathematics and Science Level-related Measures of Tracking using 

Linear Trend Model and Categorical Trend Model, 1982-2013 (n = 3620 schools; School-level Covariates 

includes school sectors, urbanicity, geographic region, student-teacher ratio, and average daily instruction 

hours) 

  1. Mean Math 

Sequence 

2. Math 

Inclusiveness 

3. Science 

Mean 

Sequence 

4. Number of 

Science 

Courses 

5. Science 

Inclusiveness 

Panel 1: Linear Trend Model (Cohort centered at 1992) 

1. Cohort (centered at 

1992) 

.812*** .116*** .422*** .979*** .100*** 

 
(.021) a (.004) (.010) (.026) (.004) 

2. School-level 

Covariates 

Yes Yes Yes Yes Yes 

R-square .413 .359 .419 .392 .253 

Panel 2: Categorical Trend Model (NELS as reference) 

3. HS&B -1.164*** -.130*** -1.084*** -2.322*** -.131*** 

 (.065) (.011) (.028) (.074) (.011) 

4. ELS .660*** .092*** .322*** .258*** .091*** 

 (.068) (.012) (.029) (.077) (.011) 

5. HSLS 1.347*** .225*** .274*** .934*** .175*** 

 (.064) (.011) (.028) (.073) (.011) 

6. School-level 

Covariates 

Yes Yes Yes Yes Yes 

R-square .419 .360 .541 .457 .255 

a. Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

School-mean Math Course Sequence level increased by, on average, .81 of a level every 

decade; that is approximately 2.4 levels (.81 ×3 = 2.43, or a 2.43 ÷ 9 = 26.6% relative increase) 

out of a 9-level Course Sequence scale over the period of this study (Table 3.6, Cell 1-1). School-

mean Science Course Sequence Level goes up by, on average, .42 of a level every decade, and by 



 94 

approximately 1.3 levels throughout the period 1982-2013. Keep in mind that Science Course 

Sequence is only on a 5-level scale, a 1.3 level rise in Science Course Sequence Level is 

approximately a 26.0% increase out of a 5-level scale, similar in that metric to math. Inclusiveness 

measures the percentage of students who complete high-level math or science courses, and is, 

therefore, a more intuitively scaled measure. Table 3.6, Row 1 reports that, on average, schools 

track 12% more students to high-level math courses and 10% more students to high-level science 

courses every decade. It’s worthwhile to note that all dependent measures are at the school level, 

but these baseline trends models are interpretively almost identical to student-level analyses 

because school-level measures are aggregated from student-level measures. R-square statistics 

reported in Table 3.6 range from the .25 to .50 level, indicating a quite large contribution from 

cohort-to-cohort differences, relative to school-to-school differences within each cohort.  

Is the basic course-taking level in a school more or less related to the apparent technical-

functional process, status competition within advantaged students, and measures of heterogeneity 

(revealing I argue, competition among all students in general), over the period of 1982-2013?  

Table 3.7 and 3.8 examine the interaction effects between cohorts and school composition on 

school-mean Math Course Sequence Level. Consistent with time-pooled partial association 

models, I consider the same theoretically meaningful summary scales in streamlined models in 

Table 3.7 and more-saturated combinations/groupings of dependent variables in Table 3.8.  

Table 3.7 Cohort-Interaction Model Estimation of the Trends of School-level Math Mean Course Sequence 

Level using school-mean Achievement, Status Competition scale, and Heterogeneity Scale, 1982-2013 (n = 

3620 schools; School-level Covariates includes school sizeb, sample percentage of white students, school 

sectors, urbanicity, geographic region, student-teacher ratio, and average daily instruction hours) 

 
Model 1 Model 2  Model 3 Model 4 Model 5 Model 6 

1. Cohort (centered at 1992 

cohort) 

.765*** .883*** .783*** .654** .820*** .692** 

 (.196) a (.020) (.023) (.248) (.200) (.257) 
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2. School-mean 

Achievement 

.129*** 
  

.105*** .134*** .109*** 

 
(.005) 

  
(.006) (.005) (.006) 

3. School-mean 

Achievement× Cohort 

-.001   .002 -.001 .002 

 (.004)   (.005) (.004) (.005) 

4. Status Competition Scale 
 

.864*** 
 

.487*** 
 

.469***   
(.046) 

 
(.046) 

 
(.046) 

5. Status Competition 

Scale× Cohort 

 -.092***  -.091**  -.090** 

  (.027)  (.030)  (.031) 

6. Heterogeneity Scale 
  

-.045 
 

-.195*** -.161***    
(.044) 

 
(.041) (.040) 

7. Heterogeneity Scale× 

Cohort 

  .074*  .002 .007 

   (.033)  (.029) (.030) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .539 .501 .429 .567 .543 .570 

a. Robust Standard errors in parentheses 

b. School size included as covariate only in models for level-related outcomes, elsewhere it is conceptually related to 

assessing functional explanations. 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.8 Cohort-Interaction Model Estimation of the Trends of School-level Math Mean Course Sequence 

Level using functionally-related variables, status-competition related variables, and measures of 

heterogeneity, 1982-2013 (n = 3620 schools; School-level Covariates includes sample percentage of white 

students, school sectors, urbanicity, geographic region, student-teacher ratio, and average daily instruction 

hours) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

1. Cohort (centered at 1992 cohort) 1.434 .657*** .447*** 1.439 3.492 2.067 

 (7.589) a (.089) (.125) (8.121) (8.204) (8.695) 

Functional Factors        

2. School-mean Achievement  .490   .811 .766 .967~ 

 (.454)   (.504) (.502) (.543) 

3. School-mean Achievement × Cohort -.068   -.107 -.181 -.136 

 (.451)   (.487) (.485) (.518) 

4. Achievement ^ 2 -.008   -.015 -.013 -.017 

 (.010)   (.011) (.010) (.011) 

5. Achievement ^ 2 × Cohort .002   .003 .004 .003 

 (.009)   (.010) (.010) (.010) 

6. Achievement ^ 3 .000   .000 .000 .000 
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 (.000)   (.000) (.000) (.000) 

7. Achievement ^ 3 × Cohort -.000   -.000 -.000 -.000 

 (.000)   (.000) (.000) (.000) 

8. School Size 9-12 grade -.003   -.008* .000 -.006 

 (.004)   (.004) (.004) (.004) 

9. School Size × Cohort .005*   .006* .007* .006* 

 (.002)   (.003) (.003) (.003) 

Status Competition       

10. School-mean SES  1.674***  1.174***  1.177*** 

  (.072)  (.078)  (.080) 

11. Mean SES × Cohort  -.132*  -.376***  -.374*** 

  (.057)  (.072)  (.074) 

12. Percentage of White  -.113  .056  -.072 

  (.142)  (.134)  (.140) 

13. Percentage of White × Cohort  .004  .065  -.001 

  (.073)  (.075)  (.092) 

14. Percentage of non-free lunch  -.066  -.329*  -.312~ 

  (.163)  (.157)  (.160) 

15. Percentage of non-free lunch × Cohort  .094  .245*  .279* 

  (.119)  (.113)  (.115) 

Heterogeneity Measures       

16. Achievement Heterogeneity   .018  -.017 -.019  
  (.016)  (.015) (.015) 

17. Achievement Heterogeneity × Cohort   -.010  -.004 -.002 

   (.012)  (.011) (.011) 

18. SES heterogeneity   .103  -.334* -.201 

   (.173)  (.156) (.153) 

19. SES heterogeneity × Cohort   .626***  .185 .182 

   (.142)  (.126) (.127) 

20. Shannon Index of Race Diversity    -.163~  -.309*** -.255** 

   (.095)  (.085) (.086) 

21. Shannon Index of Race Diversity × 

Cohort 

  .035  -.114* -.077 

   (.059)  (.058) (.071) 

22. School-level Covariates Yes Yes Yes Yes Yes Yes 

R-square .540 .535 .421 .588 .553 .591 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Here, I focus on the cohort interaction coefficients in Table 3.7 and 3.8. School-mean 

achievement has a very stable effect on school-mean Math Course Sequence Level, with no 

statistically significant interaction terms in Table 3.7, Model 1, 4, 5, and 6. The effect of status 

competition on school-mean Math Course Sequence Level decreases, as the cohort-interaction 
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with the scale of status competition has significant negative effects on math Course Sequence 

Level in Table 3.7, Model 2. These coefficients persist in Model 4 and 6 where I consider the 

partial effects of functional process and/or the heterogeneity scale. The R-square rises from .413 

in the baseline trends model to .535 in Table 3.8, Model 2. Lastly, Table 3.7, Model 3 reports the 

cohort-interaction estimation using only heterogeneity scale and its interaction with cohort. 

Although Model 3 may suggest an increasing trend in the effect of heterogeneity, after considering 

both school-mean achievement and status competition processes in Model 6, the effect of 

heterogeneity on school-mean Math Course Sequence Level becomes stable across cohorts.  

Results from Model 3.7 indicate, first of all, that technical-functional processes remain a 

strong factor that links to the school-mean math course-taking level throughout my period of study, 

even considering the changing effects of other compositional factors. One feature of American 

education over this period has been the rise in measured achievement of students (e.g., Lee, & 

Reeves’ 2012 study on reading and math achievement trends over the period of 1990-2009 using 

NAEP data). Thus, I expect changes in the level of achievement to partially explain trends in course 

taking. The R-square change from the baseline trends model (Table 3.6, Cell 1-1) to Table 3.7, 

Model 1 is .13, indicating a moderate contribution from considering the level of achievement at 

each cohort, on average. 12  School size, despite having no effect on course-taking level in time-

pooled models, is increasingly related to math Course Sequence Level, as reported in Table 3.8, 

Model 6. Next, the effect of the scale of status-competition becomes weaker in later cohorts. 

Additionally, Table 3.8 reports that this trend is primarily driven by the declining effect of school-

 

12 I also run a baseline model with only cohort fixed effect and level of achievement. The R-square is .529 which 

indicate a similar amount of contribution just from the level of school-mean achievement at each cohort.  
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mean SES (Model 2, 4, and 6). Nevertheless, given the fact that the coefficient of the interaction 

term is much smaller than of the main effect, I find that status competition processes within 

advantaged students in a school remains a conflict force that drives up mean course taking even 

into the 2010s, which I later show specifically in sensitivity analyses. Lastly, Table 3.7 shows no 

evidence that the effect of heterogeneity changes substantially across cohorts. The effect of SES 

heterogeneity appears to go up in Table 3.8, Model 3, but later in Model 6, however, the cohort-

interaction terms for all three measures of heterogeneity show stable effects on school-mean Math 

Course Sequence Level. Table 3.9 reports the model estimations of all five level-related measures 

of tracking, using the same model specification as Model 6 in Table 3.8. Overall, the results are 

similar across different level-related outcomes. School-mean achievement has stable effects on 

level-related measures of tracking, except for math inclusiveness (Table 3.9, Row 3). The effects 

of various measures of competition related to status competition processes on school-mean Math 

and Science Course Sequence Level and number of science courses also have decreasing trends 

over cohorts (Row 11 and 13).13  

  

 

13 Moreover, school-mean science Course Sequence Leve, in particular, has significant negative relationships with the 

cohort-interaction terms of achievement heterogeneity and race diversity, indicating an apparent decreasing trend of 

the effect of heterogeneity over cohorts. However, the effects of heterogeneity on all other level-related measures are 

pretty stable over cohorts.   
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Table 3.9 Summary of Cohort-Interaction Model Estimation of the Trends of School-level Mathematics and 

Science Level-related Measures of Tracking using functionally-related variables, status-competition related 

variables, and measures of heterogeneity, 1982-2013 (n = 3620 schools; School-level Covariates includes 

sample percentage of white students, school sectors, urbanicity, geographic region, student-teacher ratio, and 

average daily instruction hours) 

 1. Math 

Mean 

Sequence 

2. Math 

Inclusivene

ss 

3. Science 

Mean 

Sequence 

4. Mean # 

of Science 

Courses 

5. Science 

Inclusivene

ss 

1. Cohort (centered at 1992 cohort) 2.067 3.102* -.689 13.384 -.255 

 (8.695) a (1.299) (4.634) (11.893) (1.355) 

Functional Factors       

2. School-mean Achievement  .967~ .173* .631* 2.459*** .176* 

 (.543) (.071) (.249) (.533) (.073) 

3. School-mean Achievement × Cohort -.136 -.192* .040 -.811 .013 

 (.518) (.077) (.273) (.713) (.080) 

4. Achievement ^ 2 -.017 -.003* -.013* -.050*** -.003* 

 (.011) (.002) (.005) (.011) (.002) 

5. Achievement ^ 2 × Cohort .003 .004** -.000 .017 -.000 

 (.010) (.002) (.005) (.014) (.002) 

6. Achievement ^ 3 .000 .000* .000* .000*** .000* 

 (.000) (.000) (.000) (.000) (.000) 

7. Achievement ^ 3 × Cohort -.000 -.000** .000 -.000 .000 

 (.000) (.000) (.000) (.000) (.000) 

8. School Size 9-12 grade -.006 -.001 -.003~ .009~ -.000 

 (.004) (.001) (.002) (.005) (.001) 

9. School Size × Cohort .006* .000 .004** .009* -.000 

 (.003) (.000) (.001) (.004) (.000) 

Status Competition      

10. School-mean SES 1.177*** .184*** .587*** .931*** .140*** 

 (.080) (.014) (.041) (.102) (.015) 

11. Mean SES × Cohort -.374*** -.013 -.201*** -.315** .006 

 (.074) (.013) (.040) (.110) (.013) 

12. Percentage of White -.072 -.005 .198* .510** .002 

 (.140) (.024) (.080) (.181) (.024) 

13. Percentage of White × Cohort -.001 -.019 -.225*** -.626*** -.026~ 

 (.092) (.016) (.052) (.124) (.015) 

14. Percentage of non-free lunch -.312~ -.072** -.145~ -.484* -.049~ 

 (.160) (.027) (.085) (.201) (.027) 

15. Percentage of non-free lunch × Cohort .279* -.005 .548*** .950*** .035~ 

 (.115) (.020) (.062) (.161) (.020) 

Heterogeneity Measures      

16. Achievement Heterogeneity -.019 -.001 -.020** -.035* -.004~  
(.015) (.002) (.007) (.017) (.002) 

17. Achievement Heterogeneity × Cohort -.002 .000 -.023*** -.017 -.002 

 (.011) (.002) (.006) (.015) (.002) 

18. SES heterogeneity -.201 -.037 -.219** .009 -.024 

 (.153) (.026) (.076) (.180) (.025) 

19. SES heterogeneity × Cohort .182 -.009 .093 .195 .010 

 (.127) (.023) (.067) (.173) (.023) 

20. Shannon Index of Race Diversity  -.255** -.022 .010 .097 -.005 

 (.086) (.014) (.045) (.109) (.014) 

21. Shannon Index of Race Diversity × 

Cohort 

-.077 -.009 -.147*** -.120 .001 
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 (.071) (.012) (.039) (.100) (.011) 

22. School-level Covariates Yes Yes Yes Yes Yes 

R-square .591 .543 .528 .436 .355 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

3.3.1.4 Summary of level-related analysis  

Considering all model estimations of level-related measures of tracking, both time-pooled 

models and cohort-interaction models reveal substantial relationships between level-related 

measures of tracking and school-level compositional characteristics that may signal different 

tracking mechanisms. Time-pooled models provide the broadest summary look at school-to-school 

differences in mean course-taking level over the period of 1982-2013.14  In particular, I find that 

the technical-functional process is the strongest factor associated with mean course-taking level, 

on average, during the period of 1982-2013. The competition process within advantaged students 

in a school is also positively related to school-mean course-taking level. In addition to that, I further 

argue that the competition among all students in general is also associated with mean level. The 

cohort-interaction models examine how these relationships change throughout the period of this 

study. Both technical-functional processes and measures of heterogeneity have stable effects on 

level-related measures of tracking, whereas the effect of status competition processes becomes 

weaker in later decades.     

 

14 Time pooled models also consider the cohort-to-cohort error inherently induced by each specific NCES study by 

averaging the cohort-specific measures.  
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3.3.2 Tracking Structure 

Tables 3.10 to 3.24 and Supplementary Tables B.1 and B.2 report model estimation results 

concerning various dimensions of math and science tracking structure, including the variance of 

Course Sequence within the school, tracking selectivity, tracking scope, and track mobility. 

Collectively, these organizational dimensions of tracking structure speak to the overall elaboration 

of the curriculum tracking system in US high schools. Table 3.10 and 3.11 report the unconditional 

associations between each element of school composition and measures of Math and Science 

structure, respectively, on average, over the period of 1982-2013. Similar to Table 3.1, Table 3.10 

and 3.11 provide a baseline model estimation of the relationship between school composition and 

school-level organizational dimensions of tracking, without considering any statistical controls.  

Next, Tables 3.12 to 3.18, and Appendix Table 8 report the time-pooled partial associations 

between tracking structure outcomes and school composition, on average, over the period of 1982-

2013. Table 3.12 specifically focuses on the variance of students’ Math Course Sequence within 

the school using streamlined model specifications, as the variance of Math Course Sequence 

examines the most basic form of inequality in course taking within a school. Similar to Table 3.3, 

I consider the theoretically meaningful scales of school composition related to functional 

processes, status competition, and opportunity hoarding in streamlined models. Further in Tables 

3.13 and 3.14, I report the streamlined model estimations of all measures of tracking structure 

using the full model specification reported in Table 3.12, Model 6. Supplemental Tables 3.15, 

3.16, and S.1 summarize the time-pooled partial associations between school composition and 

measures of tracking structures using fully-saturated model specifications.  

Tables 3.17 and 3.18 report the baseline time trend of all measures of tracking structure, 

using linear trend models and categorical trend models. Tables 3.19 to 3.23 and Appendix Table 
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9 report cohort-interaction model estimations of measures of tracking structure. Tables 3.19 to 

3.21 focus on model estimations using streamlined model specifications, whereas Tables 3.22, 

3.23, and S.2 summarize model estimation results for fully-saturated models. Finally, Table 3.24 

summarizes estimated effects of school composition on measures of tracking structure from both 

time-pooled models and cohort-interaction models, using symbols to qualitatively summarize the 

direction and consistency of relationships from 1982 to 2013. In Table 3.24, green triangles 

represent increasing effects over time of school composition consistent with different logics of 

tracking on the multiple dimensions of tracking structure investigated here, whereas red upside-

down triangles indicate decreasing association over time. I label stable effects throughout the 

period of this study with yellow squares.  

3.3.2.1 Initial Evidence on Tracking Structure and School Composition: Time-Pooled 

Baseline Associations  

Table 3.10 and 3.11 summarize the baseline association between measures of Math and 

Science tracking structure and school compositional factors, respectively, on average during the 

period of 1982-2013. Each cell from Table 3.10 or 3.11 reports the regression coefficient, standard 

error, and standardized beta from an unconditional regression estimation of each measure of 

tracking structure using only one school compositional factor.15  

 

 

15 Coefficients reported in Table 3.10 and 3.11 are weighted using multilevel reliabilities. Coefficients have no major 

differences with unweighted model estimations.  
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3.3.2.1.1 Evidence of a Functional Logic in the Structure of Tracking 

Are various measures of tracking structure potentially responsive to technical-functional 

processes? The functional theory of tracking suggests that schools place students into tracked 

course-taking experiences to meet their instructional needs, and thus the measures of tracking 

structure should be responsive to the achievement distribution. Here I analyze achievement 

heterogeneity, as opposed to school-mean achievement used in the previous section, as a key 

functional determinant of tracking structure. Another conceptually important component of the 

functional logic of tracking is that larger schools may have greater capacity to provide students 

with various course-taking experiences. Under functional norms, schools with a more diverse 

distribution of achievement and larger student population are expected to provide students with a 

correspondingly diverse set of course-taking pathways, in general.  

Table 3.10 Unconditional Association between School-level Mathematics Tracking Structure and school 

composition, 1982-2013 (n = 3620 schools) 

  1. Variance 

of Math 

Sequence 

within the 

School 

2. Math 

Selectivity 

3. Math-

Science 

Scope  

4. Math-

English 

Scope  

5. Math 

Downward 

Mobility  

6. Math 

Upward 

Mobility  

1. Achievement 

Heterogeneity 

.244*** .016*** .015*** .010*** -.009*** .007*** 

 (.026) a (.003) (.002) (.002) (.002) (.001) 

Std. Beta .156 .118 .123 .082 -.070 .092 

R-square .024 .014 .015 .007 .005 .008 

2. School Size (9-

12 grade) 

.028*** .001~ .002** .001~ .003*** .000 

 (.007) (.001) (.001) (.001) (.001) (.000) 

Std. Beta .074 .038 .056 .038 .102 .001 

R-square .005 .001 .003 .001 .010 .000 

3. School-mean 

Achievement  

.006 .001 -.003*** -.007*** -.021*** .008*** 

 (.009) (.001) (.001) (.001) (.001) (.000) 

Std. Beta .010 .017 -.067 -.157 -.438 .283 

R-square .000 .000 .004 .025 .192 .080 

4. School-mean 

SES 

.054 .016 -.022* -.063*** -.245*** .074*** 

 (.110) (.011) (.009) (.010) (.008) (.006) 

Std. Beta .008 .029 -.042 -.124 -.441 .218 

R-square .000 .001 .002 .015 .194 .048 
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5. Percentage of 

non-free lunch 

.992*** .094*** -.045* -.086*** -.124*** .028* 

 (.229) (.021) (.018) (.021) (.020) (.012) 

Std. Beta .076 .087 -.043 -.087 -.110 .041 

R-square .006 .008 .002 .007 .012 .002 

6. Percentage of 

white 

.506** .075*** -.001 -.020 -.107*** .024** 

 (.173) (.017) (.014) (.016) (.015) (.009) 

Std. Beta .050 .087 -.001 -.025 -.124 .045 

R-square .002 .008 .000 .001 .015 .002 

7. Shannon Index 

of Race Diversity 

.038 -.053*** -.003 .003 -.038** .029*** 

 (.143) (.013) (.012) (.013) (.012) (.008) 

Std. Beta .005 -.077 -.004 .005 -.054 .066 

R-square .000 .006 .000 .000 .003 .004 

8. SES 

heterogeneity 

1.164*** .054 .133*** .043 .007 .085*** 

 (.338) (.033) (.027) (.031) (.029) (.018) 

Std. Beta .058 .031 .083 .027 .004 .081 

R-square .003 .001 .007 .001 .000 .007 

       

a. Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.11 Unconditional Association between School-level Science Tracking Structure and school 

composition, 1982-2013 (n = 3620 schools) 

  1. Variance of 

Science 

Sequence within 

the School 

2. Science 

Selectivity  

3. Science-

English Scope  

4. Science 

Upward 

Mobility  

1. Achievement 

Heterogeneity 

.044*** .001 .005* .007*** 

 (.005) a (.003) (.002) (.002) 

Std. Beta .136 .010 .046 .073 

R-square .019 .000 .002 .005 

2. School Size (9-12 grade) .008*** .002* .003*** .001 

 (.001) (.001) (.001) (.000) 

Std. Beta .100 .053 .098 .026 

R-square .010 .003 .010 .001 

3. School-mean 

Achievement  

-.001 -.002* -.004*** .009*** 

 (.002) (.001) (.001) (.001) 

Std. Beta -.006 -.051 -.090 .292 
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R-square .000 .003 .008 .085 

4. School-mean SES -.029 .005 -.007 .074*** 

 (.023) (.011) (.010) (.006) 

Std. Beta -.021 .009 -.013 .197 

R-square .000 .000 .000 .039 

5. Percentage of non-free 

lunch 

-.078 .069** -.002 .104*** 

 (.049) (.023) (.021) (.013) 

Std. Beta -.028 .065 -.002 .135 

R-square .001 .004 .000 .018 

6. Percentage of white .051 .018 -.019 .024* 

 (.037) (.017) (.016) (.010) 

Std. Beta .024 .022 -.023 .041 

R-square .001 .001 .001 .002 

7. Shannon Index of Race 

Diversity 

.012 -.032* .014 .016~ 

 (.031) (.014) (.013) (.008) 

Std. Beta .007 -.048 .022 .034 

R-square .000 .002 .000 .001 

8. SES heterogeneity .227** .078* .092** .089*** 

 (.071) (.035) (.031) (.019) 

Std. Beta .054 .046 .059 .077 

R-square .003 .002 .004 .006 

     

a. Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Tables 3.10 and 3.11, Row 1 and Row 2 examine the unconditional associations of 

achievement heterogeneity and school size with all ten measures of tracking structure (six DVs for 

math and four DVs for science). According to the functional logic of tracking, I expect that the 

variance of Course Sequence Level within the school is responsive to achievement heterogeneity. 

While it may be less apparent that, under a functional logic of tracking, other dimensions of 

tracking structures are related to achievement heterogeneity, I expect that tracking Selectivity, in 

particular, is responsive to achievement heterogeneity. Selectivity speaks to the selection criteria 

in producing tracked homogeneous course-taking experiences. In this analysis, the measure of 
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selectivity is intended to reflect a school’s overall emphasis on students’ achievement when 

implementing enrollment policies, even as it is not a direct measure of policies. Schools with 

greater selectivity are more likely to adopt more rigorous requirements for course enrollment based 

on achievement or course prerequisites. Under this definition, I argue that a diverse distribution of 

achievement within a school may motivate school administrators and teachers to implement 

rigorous selection processes, in order to create homogeneous course-taking environments, if the 

school embraces the functional logic of tracking and promotes a highly-tracked curriculum based 

on students’ instructional needs. Schools with a homogeneous achievement distribution, instead, 

may not have the similar instructional concerns to promote rigorous selection criteria, and thus 

may have a lower level of tracking Selectivity. As shown in Table 3.10 and 3.11, Row 1, 

achievement heterogeneity is positively associated with the variance of course sequence level, and, 

to a lesser extent, tracking selectivity. The positive associations with achievement heterogeneity, 

as expected, may reveal the presence of a functional motivation of curriculum tracking, on average, 

during the period 1982-2013. 

Tables 3.10 and 3.11 also report associations between school composition and scope and 

mobility, but functional concerns are not necessarily expected to produce associations between the 

measures of composition considered here and scope or mobility. Rather, systems with generally 

higher levels of mobility (i.e., the levels of mobility themselves indicate functionalism16, not their 

association with school composition), and tracking scope appropriate to cross-subject achievement 

 

16 Even as the absolute, optimal level, what is “most functional,” is unclear. 
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similarity17 would be said to be more functional18. In contrast, later, measures of scope between 

disparate subjects will be considered a more obvious indicator of conflict forces. Corequisites 

polices for disparate subjects are rarely seen the US high schools19, thus the observed tracking 

scope between two distinct subjects (e.g., scope between ELA and Math or science in this analysis) 

reflects the overarching inequality structure that constrains the opportunity to learn. Because 

schools don’t actively “control” the level of tracking scope between STEM and ELA courses, I 

argue that such scope likely reflects conflict forces of tracking. The positive associations with these 

DVs observed in Table 3.10 and 3.11 may only serve as statistical controls in later models.  

The functional logic of tracking also suggests that larger schools may have greater capacity 

to provide students with various course-taking experiences. In examining the relationships 

between school size and all measures of tracking structure, I argue that, in addition to the 

association between school size and the variance of Course Sequence, functional theories of 

tracking may also be supported by associations between school size and upward mobility. In this 

 

17 Studies of high school curriculum guides (e.g., Kelly, 2007) find that schools usually adopt course corequisites 

policies to promote tracking scope between closely-related subjects, such as math corequisites for science courses or 

ELA corequisites for social science courses. The rationale underneath the policies is that students may need a certain 

set of mathematical skills to take science courses, or language skills to take social sciences courses. 

18 An obvious functional motivation of tracking scope, of course, is the correlations in abilities, but this is not the focus 

of this analysis. As argued by Lucas and Berends (2002), correlated ability contributes to much of the correlation 

across different subjects; that is, the functional logic of tracking may suggest that tracking Scope between, for example, 

Math and science course taking is responsive to the correlation between Math and science achievement, rather than 

just the distribution of Math achievement. 

19 As reported in Kelly (2007), for example, only one high school out of a sample of 92 schools explicitly required 

ELA corequisites for honors science courses. 
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analysis, mobility examines the extent to which students have the ability to move away from the 

typical course-taking trajectory. It’s worthwhile to note that unlike other measures of tracking 

structure in this analysis, upward mobility partially describes the way in which schools “open up” 

the opportunity to learn for students, and thus has a somewhat different functional logic.20 Schools 

with higher upward mobility, in particular, enable students to enroll in elective or even higher-

level courses that students from other schools don’t normally take at the current grade level. 

Therefore, in this analysis, I argue that associations between school size and upward mobility 

reveal functionalism. The concept of downward mobility, however, mixes the ideas that 1) 

downward mobility opens opportunity for students who aren’t able to catch up and 2) downward 

mobility constrains opportunity to learn, and thus its association with school size is not a clear 

indicator of the functional logic of tracking.  

3.3.2.1.2 Conflict Forces and the Structure of Tracking Systems 

Status competition theories of tracking suggest that an intra-group competition for status 

is common in high-SES and elite schools and thus these schools are more likely to embrace a more 

elaborated tracking system to create and preserve advantage for the most-advanced students. In 

this section, I argue that the ascriptive status competition factors in Table 3.1 (school-mean SES, 

percentage of non-free lunch recipients, and percent white) imply a competitive context, overall. 

In addition to SES-related measures, I also consider school-mean achievement as an element that 

may increase intra-group competition processes within a school. The achievement-based measures 

 

20 Of course Upward Mobility has somewhat mixed conceptualization in this analysis in which mobility speaks to 

both approaches that tracking opens up opportunity and advantaged groups prioritize opportunity. I will come back to 

this later in this analysis. 
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may, in particular, capture the internal anxiety among high-achieving students of falling behind 

other peer students.  

I begin this section by examining the most basic evidence of conflict forces of tracking. As 

shown in Table 3.10 and 3.11, Row 3–6, in terms of the unadjusted, baseline relationships, the 

variance of math Sequence within the school and math and science Selectivity are positively 

associated with at least one factor of status competition processes (Table 3.10, Columns 1 and 2, 

and Table 3.11, Column 2). These findings indicate that the status competition processes within 

advantaged students may, in general, be associated with the overall elaboration of tracking 

structure. The tracking scope between math and science, however, is not related to any status 

competition factors. Additionally, Tables 3.10 and 3.11 report that upward mobility are positively 

associated with school-mean status level, showing a more general approach though which 

advantaged students and parents may in fact actively seek more learning opportunities. Different 

with respect to other measures of tracking structure, the associations between upward track 

mobility and the status level speak to both the way in which the intra-group competition “opens 

up” more flexible course-taking practices and high-status students and families prioritize learning 

opportunities to obtain advantages in course taking.21  The standardized beta indicates that the 

strength of the associations between upward mobility and status competition factors are at a .2 

level, whereas the associations for variance of math Sequence and Selectivity are at a much lower 

level.  

 

21 I should note that in these data we don’t see which students are mobile. Other dimensions of tracking (e.g., scope) 

are more clearly related to within-school inequality. Here I only consider the level of mobility in the school as a whole.  
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Are highly elaborated tracking systems also common in schools with diverse student 

populations? Opportunity hoarding theories of tracking describe a set of unequal distribution 

processes, which create uneven course-taking opportunities among students from different SES, 

race, or ethnicity groups within a school; that is, inter-group competition is expected to be more 

common in schools with more diverse student populations, and thus these schools should be more 

likely to implement highly elaborated curriculum tracking systems. Following prior research (e.g., 

Kelly, & Price, 2011), I consider race and SES heterogeneity as school compositional measures 

that may capture the extent to which advantaged students monopolize opportunities to learn. In 

particular, I find in Table 3.10 and Table 3.11, Row 7, 8, SES heterogeneity is positively associated 

with science selectivity and tracking scope (Row 8), showing some evidence that the elaboration 

of tracking is related to an inter-group conflict process. The standardized beta coefficients, 

however, are relatively weak. 

3.3.2.2 Time-pooled Model and Cohort-interaction Model of Partial Associations 

Moving to the partial associations analysis, I consider both time-pooled models and cohort-

interaction models to examine the relationships between the elaboration of tracking structures and 

school compositional factors that reveal functional, status competition, and opportunity hoarding 

processes. Tables 3.12 and 3.19 specifically focus on the variance of math Sequence within the 

school using both streamlined time-pooled and cohort-interaction model specifications, as the 

variance of Course Sequence examines the most basic form of inequality in course taking within 

a school and has the largest between-school variance among all DVs in both time-pooled and 
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cohort-specific settings.22 Similar to level-related measures of tracking, I first examine the effect 

of the theoretical summary scales of functional, status competition, and opportunity hoarding 

processes on all measures of tracking structure in streamlined models. Tables 3.13 and 3.14 

summarize the time-pooled model estimations of all school-level measures of tracking structure 

using the full model specification reported in Table 3.12, Model 6, whereas Tables 3.20 and 3.21 

report the cohort-interaction model estimations of all DVs using the full model in Table 3.19, 

Model 6. Keep in mind that the construction of summary scales is somewhat different than the set 

of scales I use in level-related models. Here the functional scale is the standardized mean 

composite of achievement heterogeneity and school size. The status competition scale combines 

school-mean achievement, SES, percent white, and non-poor. The opportunity hoarding scale 

combines race and SES heterogeneity. I then consider fully-saturated model estimations of all 

dependent variables in Tables 3.15 and 3.16 for time-pooled model estimations, and in Tables 3.22 

and 3.23 for cohort-interaction model estimations. Fully saturated models further examine the 

effect of single theoretically-meaningful school compositional factors, as opposed to the effects of 

summary scales.  

Table 3.12 Time-pooled Model Estimation of School-level Variance of Math Sequence within the School using 

Functional Scale, Status Competition scale, and Opportunity Hoarding Scale, 1982-2013 (n = 3620 schools; 

School-level Covariates includes sample percentage of white students, school sectors, urbanicity, geographic 

region, student-teacher ratio, and average daily instruction hours) 

 
Model 1 Model 2  Model 3 Model 4 Model 5 Model 6 

1. Functional Scale .498***   .448*** .503*** .450***  
(.081) a   (.083) (.085) (.087) 

 

22 I calculate standard deviation of measures of tracking structure among all schools for time-pooled variance and 

large one-way ANOVA for within-cohort variance. The variance of Math and Science Course Sequence Level have 

the largest within-cohort variance as well.    
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2. Status Competition 

Scale 

 .435***  .344***  .343*** 

 
 (.101)  (.103)  (.103) 

3. Opportunity 

Hoarding Scale 

  .125  -.018 -.006 

 
  (.080)  (.084) (.084) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .053 .048 .042 .057 .053 .057 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.13 Summary of Time-pooled Model Estimation of School-level Mathematics Tracking Structure 

using Functional Scale, Status Competition scale, and Heterogeneity Scale, 1982-2013 (n = 3620 schools; 

School-level Covariates sample percentage of white students, school sectors, urbanicity, geographic region, 

student-teacher ratio, and average daily instruction hours) 

 
1. Variance 

of Math 

Sequence 

within the 

School 

2. Math 

Selectivity 

3. Math-

Science 

Scope  

4. Math-

English 

Scope  

5. Math 

Downward 

Mobility  

6. Math 

Upward 

Mobility  

1. Functional Scale .450*** .038*** .016* .008 -.016* .011*  
(.087) (.009) (.007) (.008) (.007) (.005) 

2. Status Competition 

Scale 

.343*** .039*** .008 -.012 -.080*** .045*** 

 
(.103) (.010) (.008) (.009) (.008) (.006) 

3. Opportunity 

Hoarding Scale 

-.006 -.019* .002 -.007 -.043*** .027*** 

 
(.084) (.008) (.007) (.008) (.007) (.004) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .057 .032 .040 .048 .214 .080 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 



 113 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.14 Summary of Time-pooled Model Estimation of School-level Science Tracking Structure using 

Functional Scale, Status Competition scale, and Heterogeneity Scale, 1982-2013 (n = 3620 schools; School-

level Covariates sample percentage of white students, school sectors, urbanicity, geographic region, student-

teacher ratio, and average daily instruction hours) 

 
1. Variance of 

Science 

Sequence 

within the 

School 

2. Science 

Selectivity  

3. Science-

English Scope  

4. Science 

Upward 

Mobility  

1. Functional Scale .102*** -.001 .009 .010*  
(.019) a (.009) (.008) (.005) 

2. Status Competition 

Scale 

.015 .049*** .013 .060*** 

 
(.020) (.010) (.009) (.006) 

3. Opportunity Hoarding 

Scale 

-.008 -.007 .004 .022*** 

 
(.017) (.009) (.008) (.005) 

School Covariates Yes Yes Yes Yes 

R-squared .049 .035 .030 .065 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.15 Summary of Time-pooled Model Estimation of School-level Mathematics Tracking Structure using 

functionally-related variables, status-competition related variables, and measures of heterogeneity, 1982-2013 

(n = 3620 schools; School-level Covariates includes sample percentage of white students, school sectors, 

urbanicity, geographic region, student-teacher ratio, and average daily instruction hours) 

 
1. Variance 

of Math 

Sequence 

within the 

School 

2. Math 

Selectivity 

3. Math-

Science 

Scope  

4. Math-

English 

Scope  

5. Math 

Downward 

Mobility  

6. Math 

Upward 

Mobility  

Functional Factor       
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1. Achievement 

Heterogeneity 

.217*** .017*** .010*** .008** -.005* .004** 

 
(.033) a (.003) (.003) (.003) (.002) (.002) 

2. School Size .001 .001 -.001 -.001 .001~ -.001~ 

 (.009) (.001) (.001) (.001) (.001) (.000) 

Status Competition       

3. School-mean 

Achievement 

-.026 -.000 -.004** -.006*** -.011*** .007*** 

 (.016) (.002) (.001) (.002) (.001) (.001) 

4. School-mean SES .064 .008 .050** .025 -.189*** .051***  
(.203) (.021) (.016) (.020) (.015) (.011) 

5. Percentage of 

White 

-.224 .068~ .007 .034 .016 .017 

 
(.381) (.039) (.029) (.032) (.026) (.018) 

6. Percentage of non-

free lunch 

1.802*** .087* .001 .019 .294*** -.101*** 

 
(.366) (.036) (.029) (.034) (.026) (.019) 

Heterogeneity 

Measures 

      

7. SES Heterogeneity .373 .033 .069* .004 .015 .060**  
(.425) (.041) (.032) (.038) (.029) (.021) 

8. Shannon Index of 

Race Diversity 

-.195 -.062** -.020 .010 -.076*** .020* 

 
(.203) (.020) (.017) (.019) (.015) (.010) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .074 .044 .055 .068 .337 .133 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.16 Summary of Time-pooled Model Estimation of School-level Science Tracking Structure using 

functionally-related variables, status-competition related variables, and measures of heterogeneity, 1982-2013 

(n = 3620 schools; School-level Covariates includes sample percentage of white students, school sectors, 

urbanicity, geographic region, student-teacher ratio, and average daily instruction hours) 

 
1. Variance of 

Science 

Sequence within 

the School 

2. Science 

Selectivity  

3. Science-

English Scope  

4. Science 

Upward 

Mobility  

Functional Factor     
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1. Achievement 

Heterogeneity 

.034*** .001 .002 .003~ 

 
(.007) a (.003) (.003) (.002) 

2. School Size .004* .000 .002~ -.001 

 (.002) (.001) (.001) (.000) 

Status Competition     

3. School-mean 

Achievement 

-.004 -.005** -.007*** .009*** 

 (.003) (.002) (.001) (.001) 

4. School-mean SES .065 .058** .072*** .012  
(.043) (.022) (.020) (.012) 

5. Percentage of White .148~ .029 .005 -.072***  
(.080) (.039) (.034) (.021) 

6. Percentage of non-free 

lunch 

-.101 .154*** .032 .047* 

 
(.072) (.034) (.033) (.019) 

Heterogeneity Measures     

7. SES Heterogeneity .123 .053 .098* .048*  
(.083) (.044) (.039) (.022) 

8. Shannon Index of Race 

Diversity 

-.020 -.026 .000 -.002 

 
(.046) (.020) (.020) (.012) 

School Covariates Yes Yes Yes Yes 

R-squared .053 .057 .049 .102 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.17 Baseline Trends of Measures of Mathematics Tracking Structure using Linear Trend Model and 

Categorical Trend Model, 1982-2013 (n = 3620 schools; School-level Covariates includes school sectors, 

urbanicity, geographic region, student-teacher ratio, and average daily instruction hours) 

  1. Variance 

of Math 

Sequence 

within the 

School 

2. Math 

Selectivity 

3. Math-

Science 

Scope  

4. Math-

English 

Scope  

5. Math 

Downward 

Mobility  

6. Math 

Upward 

Mobility  

Panel 1: Linear Trend Model (Cohort centered at 1992) 

1. Cohort (centered 

at 1992) 

-.272*** -.029*** .011** -.010* -.118*** .030*** 

 
(.049) a (.005) (.004) (.005) (.003) (.003) 
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2. School-level 

Covariates 

Yes Yes Yes Yes Yes Yes 

R-square .050 .029 .040 .048 .378 .073 

Panel 2: Categorical Trend Model (NELS as reference) 

3. HS&B -.391** -.006 -.115*** -.085*** .161*** .009 

 (.149) (.015) (.012) (.016) (.010) (.008) 

4. ELS -.385* -.050*** -.087*** -.072*** -.100*** .030*** 

 (.155) (.015) (.012) (.014) (.011) (.008) 

5. HSLS -1.111*** -.084*** -.045*** -.071*** -.202*** .096*** 

 (.146) (.014) (.012) (.012) (.010) (.008) 

6. School-level 

Covariates 

Yes Yes Yes Yes Yes Yes 

R-square .059 .032 .069 .067 .382 .086 

a. Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.18 Baseline Trends of Measures of Science Tracking Structure using Linear Trend Model and 

Categorical Trend Model, 1982-2013 (n = 3620 schools; School-level Covariates includes school sectors, 

urbanicity, geographic region, student-teacher ratio, and average daily instruction hours) 

  1. Variance of 

Science Sequence 

within the School 

2. Science 

Selectivity  

3. Science-English 

Scope  

4. Science Upward 

Mobility  

Panel 1: Linear Trend Model (Cohort centered at 1992) 

1. Cohort (centered at 

1992) 

.027* -.044*** -.012** .013*** 

 
(.011) a (.005) (.005) (.003) 

2. School-level 

Covariates 

Yes Yes Yes Yes 

R-square .039 .058 .030 .020 

Panel 2: Categorical Trend Model (NELS as reference) 

3. HS&B -.123*** -.021 -.106*** .076*** 

 (.032) (.015) (.015) (.009) 

4. ELS -.113*** -.100*** -.096*** .085*** 

 (.033) (.015) (.014) (.009) 

5. HSLS .002 -.133*** -.087*** .087*** 

 (.031) (.014) (.012) (.009) 

6. School-level 

Covariates 

Yes Yes Yes Yes 

R-square .045 .068 .062 .056 

a. Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 
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NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.19 Cohort-Interaction Model Estimation of the Trends of School-level Variance of Math Sequence 

within the School using Functional scale, Status Competition scale, and Opportunity Hoarding Scale, 1982-

2013 (n = 3620 schools; School-level Covariates includes school sizeb, sample percentage of white students, 

school sectors, urbanicity, geographic region, student-teacher ratio, and average daily instruction hours) 

 
Model 1 Model 2  Model 3 Model 4 Model 5 Model 6 

1. Cohort (centered at 1992 

cohort) 

-.400*** -.261*** -.347*** -.362*** -.423*** -.384*** 

 (.050) a (.048) (.051) (.050) (.052) (.052) 

2. Functional scale 1.139***   1.083*** 1.105*** 1.040***  
(.132)   (.134) (.135) (.136) 

3. Functional scale × 

Cohort 

-.159*   -.168** -.171* -.165* 

 (.062)   (.061) (.067) (.066) 

4. Status Competition Scale  .558***  .464***  .469***  
 (.109)  (.108)  (.108) 

5. Status Competition 

Scale× Cohort 

 -.290***  -.263***  -.269*** 

  (.062)  (.061)  (.062) 

6. Opportunity Hoarding 

Scale 

  .273**  .127 .157~ 

 
  (.092)  (.091) (.091) 

7. Opportunity Hoarding 

Scale × Cohort 

  -.016  .028 -.017 

   (.065)  (.069) (.069) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .080 .064 .057 .088 .081 .089 

a. Robust Standard errors in parentheses 

b. School size included as covariate only in models for level-related outcomes, elsewhere it is conceptually related to 

assessing functional explanations. 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 
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Table 3.20 Summary of Cohort-Interaction Model Estimation of the Trends of School-level Mathematics 

Tracking Structure using Functional scale, Status Competition scale, and Opportunity Hoarding Scale, 1982-

2013 (n = 3620 schools; School-level Covariates includes school sizeb, sample percentage of white students, 

school sectors, urbanicity, geographic region, student-teacher ratio, and average daily instruction hours) 

 
1. Variance 

of Math 

Sequence 

within the 

School 

2. Math 

Selectivity 

3. Math-

Science 

Scope  

4. Math-

English 

Scope  

5. Math 

Downward 

Mobility  

6. Math 

Upward 

Mobility  

1. Cohort (centered at 1992 

cohort) 

-.329*** -.034*** .010* -.015** -.124*** .029*** 

 (.051) a (.005) (.004) (.005) (.003) (.003) 

2. Functional scale .598*** .037*** .012~ .007 .014* .005  
(.097) (.010) (.008) (.010) (.007) (.004) 

3. Functional scale × 

Cohort 

-.185** .014* .003 .005 -.012* .001 

 (.067) (.006) (.006) (.007) (.005) (.004) 

4. Status Competition Scale .447*** .011 .011 -.032** -.134*** .046***  
(.110) (.012) (.009) (.012) (.007) (.006) 

5. Status Competition 

Scale× Cohort 

-.289*** .022*** -.000 .016* .029*** .009* 

 (.062) (.006) (.005) (.007) (.004) (.004) 

6. Opportunity Hoarding 

Scale 

.165~ -.005 -.004 -.004 .002 .012** 

 
(.091) (.009) (.007) (.009) (.006) (.004) 

7. Opportunity Hoarding 

Scale × Cohort 

-.030 -.005 .005 .002 .005 .008~ 

 (.069) (.006) (.006) (.007) (.005) (.004) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .081 .056 .043 .053 .451 .118 

a. Robust Standard errors in parentheses 

b. School size included as covariate only in models for level-related outcomes, elsewhere it is conceptually related to 

assessing functional explanations. 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.21 Summary of Cohort-Interaction Model Estimation of the Trends of School-level Science Tracking 

Structure using Functional scale, Status Competition scale, and Opportunity Hoarding Scale, 1982-2013 (n = 
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3620 schools; School-level Covariates includes school sizeb, sample percentage of white students, school 

sectors, urbanicity, geographic region, student-teacher ratio, and average daily instruction hours) 

 
1. Variance of 

Science 

Sequence 

within the 

School 

2. Science 

Selectivity  

3. Science-

English Scope  

4. Science 

Upward 

Mobility  

1. Cohort (centered at 1992 cohort) .022* -.045*** -.015** .008* 

 (.011) a (.005) (.005) (.003) 

2. Functional scale .097*** .010 .007 .005  
(.022) (.010) (.010) (.005) 

3. Functional scale × Cohort -.006 -.002 .006 .003 

 (.014) (.006) (.007) (.004) 

4. Status Competition Scale .078*** .025* .009 .043***  
(.023) (.012) (.012) (.006) 

5. Status Competition Scale× Cohort -.083*** .009 -.000 .028*** 

 (.013) (.006) (.007) (.004) 

6. Opportunity Hoarding Scale -.016 .010 .009 .007  
(.019) (.010) (.010) (.005) 

7. Opportunity Hoarding Scale × 

Cohort 

.012 .005 .001 .023*** 

 (.015) (.006) (.006) (.004) 

School Covariates Yes Yes Yes Yes 

R-squared .062 .070 .034 .094 

a. Robust Standard errors in parentheses 

b. School size included as covariate only in models for level-related outcomes, elsewhere it is conceptually related to 

assessing functional explanations. 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.22 Summary of Cohort-Interaction Model Estimation of the Trends of School-level Mathematics 

Tracking Structure using functionally-related variables, status-competition related variables, and measures 

of heterogeneity, 1982-2013 (n = 3620 schools; School-level Covariates includes sample percentage of white 

students, school sectors, urbanicity, geographic region, student-teacher ratio, and average daily instruction 

hours) 

 
1. Variance 

of Math 

Sequence  

2. Math 

Selectivity 

3. Math-

Science 

Scope  

4. Math-

English 

Scope  

5. Math 

Downward 

Mobility  

6. Math 

Upward 

Mobility  
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Cohort (centered at 

1992 cohort) 

.824 -.319*** -.114~ -.199** -.121* -.103* 

 (.779) a (.072) (.068) (.077) (.052) (.048) 

Functional Factor       

1. Achievement 

Heterogeneity .290*** .021*** .009** .007~ .005* .002  
(.038) (.004) (.003) (.004) (.002) (.002) 

2. Achievement 

Heterogeneity × Cohort -.075** .003 -.001 .004~ .001 .002 

 (.027) (.003) (.002) (.003) (.002) (.001) 

3. School Size -.002 -.000 -.001 -.001 .000 -.000 

 (.009) (.001) (.001) (.001) (.001) (.000) 

4. School Size × Cohort -.006 .001~ .001 .000 -.001** -.001* 

 (.006) (.001) (.001) (.001) (.000) (.000) 

Status Competition       

5. School-mean 

Achievement .000 -.003 -.005*** -.007*** -.011*** .006*** 

 (.017) (.002) (.001) (.002) (.001) (.001) 

6. School-mean 

Achievement × Cohort -.023 .005*** .003* .002 .002 .002* 

 (.015) (.001) (.001) (.001) (.001) (.001) 

7. School-mean SES .402~ .033 .044* .030 -.141*** .039***  
(.208) (.022) (.017) (.021) (.014) (.011) 

8. School-mean SES × 

Cohort -.573** -.016 -.022 -.011 .068*** .013 

 (.180) (.016) (.016) (.017) (.012) (.012) 

9. Percentage of White -.378 .077~ .034 .017 .015 .013 

 (.395) (.043) (.032) (.040) (.025) (.016) 

10. Percentage of White 

× Cohort .037 -.026 -.025 .013 -.000 .014  
(.229) (.022) (.020) (.024) (.015) (.013) 

11. Percentage of non-

free lunch .908* -.043 .021 -.056 .070* -.051** 

 (.439) (.045) (.035) (.051) (.027) (.020) 

12. Percentage of non-

free lunch × Cohort .725* .037 .020 .042 -.072*** -.040*  
(.302) (.029) (.025) (.033) (.021) (.017) 

Opportunity Hoarding       

13. SES Heterogeneity .662 .024 .072* -.025 .008 .034~ 

 (.437) (.044) (.034) (.045) (.026) (.019) 

14. SES Heterogeneity 

× Cohort -.144 -.021 -.021 .040 -.021 .044*  
(.341) (.031) (.029) (.034) (.022) (.021) 

15. Shannon Index of 

Race Diversity .049 -.018 -.050* .023 .022 .004 

 (.235) (.024) (.019) (.025) (.015) (.009) 

16. Shannon Index of 

Race Diversity × Cohort .254 -.015 .020 .001 .024* -.002  
(.175) (.016) (.015) (.018) (.011) (.010) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .104 .071 .064 .076 .485 .160 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 
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of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Table 3.23 Summary of Cohort-Interaction Model Estimation of the Trends of School-level Science Tracking 

Structure using functionally-related variables, status-competition related variables, and measures of 

heterogeneity, 1982-2013 (n = 3620 schools; School-level Covariates includes sample percentage of white 

students, school sectors, urbanicity, geographic region, student-teacher ratio, and average daily instruction 

hours) 

 
1. Variance of 

Science 

Sequence within 

the School 

2. Science 

Selectivity  

3. Science-

English Scope  

4. Science 

Upward Mobility  

Cohort (centered at 1992 

cohort) 

.239 -.241** -.261*** -.149** 

 (.166) a (.078) (.075) (.046) 

Functional Factor     

1. Achievement 

Heterogeneity 

.030*** .005 .002 .003 

 
(.008) (.004) (.004) (.002) 

2. Achievement 

Heterogeneity × Cohort 

.001 .002 .002 .002 

 (.006) (.003) (.003) (.001) 

3. School Size .004* -.000 .001 -.001 

 (.002) (.001) (.001) (.000) 

4. School Size × Cohort -.000 -.001 .000 -.000 

 (.001) (.001) (.001) (.000) 

Status Competition     

5. School-mean Achievement .001 -.006*** -.009*** .006*** 

 (.004) (.002) (.002) (.001) 

6. School-mean Achievement 

× Cohort 

-.009** .003* .004** .004*** 

 (.003) (.001) (.001) (.001) 

7. School-mean SES .087~ .093*** .095*** -.005  
(.044) (.023) (.021) (.012) 

8. School-mean SES × Cohort -.135*** -.021 -.057*** .069*** 

 (.037) (.017) (.017) (.011) 

9. Percentage of White .097 .029 -.002 -.027 

 (.087) (.044) (.040) (.021) 

10. Percentage of White × 

Cohort 

.112* -.020 .011 -.045*** 

 
(.050) (.022) (.023) (.014) 

11. Percentage of non-free 

lunch 

.037 .036 .020 .017 

 (.089) (.045) (.047) (.022) 

12. Percentage of non-free 

lunch × Cohort 

.050 .014 .012 -.036* 

 
(.063) (.028) (.030) (.017) 

Opportunity Hoarding     

13. SES Heterogeneity .180* .036 .119* .014 

 (.087) (.047) (.046) (.022) 

14. SES Heterogeneity × 

Cohort 

.053 .020 -.016 -.001 

 
(.071) (.033) (.033) (.020) 
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15. Shannon Index of Race 

Diversity 

-.098~ .016 -.007 -.008 

 (.054) (.025) (.025) (.013) 

16. Shannon Index of Race 

Diversity × Cohort 

.118** .004 .017 .010 

 
(.040) (.016) (.018) (.010) 

School Covariates Yes Yes Yes Yes 

R-squared .073 .088 .058 .158 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

3.3.2.2.1 The Variance of Course Sequence Level within the School 

I begin by considering the variance of Course Sequence Levels in math within the school, 

which I consider to be the most basic measure of course taking inequality as it summarizes the 

students entire high school course taking experience. As shown in Table 3.12, Model 1, the 

functional scale is positively associated with the variance of Math Sequence, on average, over the 

period 1982-2013. The coefficient remains significantly positive after considering the status 

competition scale and/or opportunity hoarding scale in Model 4, 5, and 6.  

Later in Table 3.15, Model 1, the variance of Math Course Sequence is only associated 

with achievement heterogeneity, but not school size. This result is consistent with the official 

rationale of curriculum tracking; that is, schools with a more diverse distribution of achievement 

are more likely to provide students with a correspondingly diverse set of course-taking pathways. 

The total effect of functional processes here, however, is not quite as large as the previously 

reported effect on mean course-taking level (The R-square is only at a 5% level for variance of 

math). Model 2, 4, and 6 from Table 3.12 show significant and positive associations between the 
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scale of status competition and the most basic form of inequality in course taking (the variance), 

indicating an apparent intra-group conflict force that increase the dispersion of the opportunity to 

learn, over the period 1982-2013, on average. Table 3.15, Model 1 shows that the percentage of 

non-poor students is the strongest status competition factor that is related the variance, indicating 

that schools with more students from advantaged families have more highly disparate course-

taking experiences within the school. In contrast, the opportunity hoarding scale is positively 

related to the variance of Course Sequence in baseline models but does not appear to be related to 

the variance of math course taking, after controlling for functional factors. The total effects of both 

functional and status competition processes are quite weak, accounting for approximately less than 

10% of the total variance. Note that some of the measures of tracking structure that rely on both 

course taking outcomes and student characteristics in their construction (e.g., selectivity) may have 

greater measurement error, and thus less signal in these models.  

Has the most basic structure of inequality in course taking in the US secondary education 

system become more or less related to school composition that signals different mechanisms of 

tracking since 1982? Table 3.19 examines interaction effects between cohorts and school 

composition factors on the variance of Math Sequence, throughout the period of this study. As 

shown in Table 3.19, the effects of functional processes (as captured by school composition) on 

the variance of math Sequence within a school decrease over the course of 1982-2013, as the 

cohort-interaction coefficients are consistently negative in Model 1, 4, 5, and 6. The effects of 

school composition factors related to status competition processes also decrease since 1982. Later 

in Table 3.22, Model 1, the full-saturated model indicates that the effects of school-mean SES and 

percent non-poor have opposite trends where the effect of school-mean SES decreases but the 

effect of percent non-poor increases. Nevertheless, the net effect of those off-setting but 
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conceptually and empirically related measures of family background is a decline in the relevance 

of school mean family background.  

3.3.2.2.2 Tracking Selectivity 

Tracking selectivity directly speaks to the extent to which students’ course-taking 

experiences are affected by their prior achievement; a factor frequently targeted by course 

enrollment requirements. Tables 3.13 and 3.14, Models 2 reports the time-pooled model 

estimations of both Math and Science tracking Selectivity, respectively, using streamlined model 

specifications. 

As shown in Table 3.13, Model 2, math Selectivity is positively associated with functional 

compositional factors, after considering both scales of conflict factors. Later in Table 3.15, Model 

2, Math tracking Selectivity is only positively associated with achievement heterogeneity, but not 

school size. Recall that I have argued that, if US high schools embrace the functional logic of 

curriculum tracking in general, achievement heterogeneity should be associated with tracking 

Selectivity. Results in Tables 3.13 and 3.15 are consistent with that hypothesis. Tracking 

Selectivity for Science, however, is not associated with the functional scale or any functional 

factors in Table 3.14 or Table 3.16. This result is consistent with the baseline associations reported 

in Tables 3.10 and 3.11.  

Is tracking selectivity in US high schools also related to less-functional sources of tracking? 

Status competition theories of tracking, in general, suggest that intra-group competition processes 

are associated with tracking structure, including tracking selectivity, after accounting for 

functional measures. As shown in Tables 3.13 and 3.14 (Model 2), the status competition scale is 

positively associated with both Math and Science tracking Selectivity, after considering other 

dimensions of school composition. Relatedly, tables 3.15 and 3.16 show that Math and Science 
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tracking Selectivity are positively associated with specific measures of composition related to 

status competition, including school-mean SES, percent white, and percent non-poor. Opportunity 

hoarding processes, however, show less evidence of exerting pressure on selectivity (small 

negative associations in Tables 3.13 and 3.14).  

Tables 3.20 and 3.21 examine time trends in the associations between tracking Selectivity 

and school compositional factors, using cohort-interaction models. As shown in Table 3.20, Model 

2, the interaction term between the functional scale and cohort is positively associated with math 

selectivity, after controlling for other cohort-interaction terms and cohort-fixed effect. This 

indicates that functional logic of tracking becomes an even stronger concern in later decades that 

motivates the US high schools to adopt rigorous course enrollment processes. The cohort-

interaction with the scale of status competition processes, similarly, also has a positive relationship 

with math tracking selectivity, indicating that the effect of the status competition scale become 

stronger in later decades. The effects of both the functional scale and status competition scale on 

science tracking selectivity, however, remain stable throughout the period of this study.  

3.3.2.2.3 Tracking Scope 

Tracking scope captures the extent to which students are placed into similar course-taking 

experiences in both closely-related and distinct subjects. As shown in Table 3.13, Model 3, 

tracking scope between math and science is positively associated with the functional scale, after 

controlling for the conflict-related measures of composition. Although not central to functional 

conceptualizations of tracking, there appears to be an association between achievement 

heterogeneity and school size, and scope. Tracking scope between STEM and ELA courses, as 

expected, are not related to the functional scale in Table 3.13, Model 4, and Table 3.14, Model 3. 

Later in the discussion section, I run a set of ancillary statistical models to examine the extent to 
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which math-science tracking scope is appropriate to cross-subject achievement similarity for the 

1992 cohort23. The association between math-science tracking scope and achievement correlation 

(net of conflict forces) may support a more functional view of promoting corequisites between 

math and science.  

The associations between measures of composition related to conflict forces and STEM-

ELA tracking scope are theoretically more important in this analysis, as this relationship captures 

the extent to which schools constrain opportunity to learn and promote the overall elaboration of 

tracking in an explicitly non-functional manner24. Although neither Table 3.13 nor 3.14 reports 

positive relationships between the status competition scale and tracking scope, the full-saturated 

model estimations reported in Table 3.15 and 3.16 show some significant associations. As shown 

in Table 3.16, Model 3, school-mean SES is positively associated with tracking scope between 

Science and ELA, indicating that high-SES schools, on average, promote greater scope, over the 

period of 1982-2013. Table 3.15, Model 3 also reports that higher school-mean SES is associated 

with greater tracking scope between Math and science courses.  

Is tracking scope, as one of the major dimensions of curriculum tracking, also greater in 

heterogenous schools where inter-group competition may be highly salient? As suggested by 

Opportunity Hoarding theories of tracking, schools with more diverse student populations are 

expected to adopt an elaborate tracking system in response to the inter-group competition among 

families from different social groups. As shown in key results reported in Tables 3.13 and 3.14, 

 

23 Only NELS (the 1992 cohort) measured 8th grade science achievement scores. 

24 Similar to the tracking scope between math and science course taking, the achievement correlation between ELA 

and STEM also implies a technical-functional consideration of placing students into similar ELA and STEM courses. 

Nevertheless, this functional consideration does not necessarily support the associations with school composition. 
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neither measure of tracking scope shows a significant relationship with the opportunity hoarding 

scale. Later in fully saturated models, Table 3.15, Model 3 shows a significant relationship 

between SES heterogeneity and math-science scope. Even more striking, SES heterogeneity is 

positively associated with tracking scope between ELA and science (Table 3.16, Model 3). 

Overall, time-pooled models concerning the conflict forces of tracking scope first indicate that 

scope is not related to both scales of conflict theories, the status competition scale and the 

opportunity hoarding scale. The relationships between scope and individual social factors, 

however, shows that school-mean SES and SES heterogeneity link to scope that likely reflect the 

rigor of course corequisites (and related processes) and structure inequality in course enrollment.  

Has the scope of tracking systems in US high schools become more or less responsive to 

school composition that relates to functional and conflict forces? Tables 3.21, 3.22, 3.22, and 3.23 

examine the effect of cohort-interaction terms on both math-science and science-ELA scope. 

Overall, Table 3.20, Model 3 and Table 3.21, Model 3 report that the effects of scales of functional 

and conflict processes on tracking scope are stable over time, as none of the cohort-interaction 

terms are significant. Later in Table 3.23, Model 3, the cohort-interaction with school-mean SES 

is negatively associated with tracking scope between ELA and science, indicating that the intra-

group competition in high-SES schools exerts lesser pressure on promoting tracking scope in later 

decades.  

Considering both cohort-interaction models and time-pooled model estimations, overall, 

school-mean SES and SES heterogeneity, and, to a lesser extent, measures of composition 

generally associated with functionalism, are associated with greater tracking scope, throughout the 

period of 1982-2013. Additionally, the competition within high-SES school became somewhat 
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less of a concern in promoting greater tracking scope in later decades. Yet, the extent to which 

model estimations support the social theories of tracking remain unclear in this analysis.  

3.3.2.2.4 Track Mobility 

Track mobility, overall, and in theory, speaks to the extent to which schools flexibly match 

students’ achievement, level of engagement, and self-efficacy, to track placements, as these 

student-level readiness factors change over time. In this analysis, of the two forms of mobility, I 

argue that upward track mobility is the more salient process through which schools “open up” 

learning opportunities, although observed rates of upward mobility may also reflect students’ and 

parents’ emphasis on academic press. In contrast, the measure of downward track mobility 

combines both the concept of providing appropriate instruction for low-achievers, but also 

represents an increasing constraint on students’ learning opportunities as they move through 

schooling. I begin by considering the level of mobility itself (rather than associations with 

composition), as the level of mobility 25  directly reflects schools’ overall emphasis on the 

functional logic of tracking. 

Table 3.17, Model 6 and Table 3.18, Model 4 describe the baseline trends of math and 

science upward track mobility that may partially capture changes in functional motivations of 

tracking. As shown in these models, on average, over the period of 1982-2013, US high schools 

provided 3% and 1.3% more students every decade with the opportunities to move up away from 

 

25 Here I should note that extremely high-level of mobility could be potentially attributed to unstable curriculum 

systems or arbitrary implementations of curriculum policies, and thus perhaps only moderate- to high- level of track 

mobility relates to a functional consideration of tracking. In this analysis, I find that an average school moves 35%-

50% students out of typical course-taking trajectories throughout the period of this study.  
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the Math and Science typical course-taking trajectories, respectively. To the extent that this 

mobility means capable students can pursue appropriately-challenging courses, these results may 

indicate tracking systems have become increasingly functional. However, these unadjusted results 

may also reflect an increasing emphasis on academic press and rigorous STEM courses among 

elite schools. 

Now considering associations with student composition, due to heterogeneity in effects 

within each theoretical grouping, I focus first on Tables 3.15 and 3.16. These tables reveal some 

interesting findings about the associations between upward track mobility and various measures 

related to the potential for conflict forces26 (e.g., school-mean SES, percent non-poor, and SES 

and race distributions). As shown in these models, both Math and Science upward mobility are 

positively associated with school-mean achievement, and SES heterogeneity; Math upward 

mobility is also positively associated with school-mean SES and race heterogeneity. Math 

downward mobility, however, is negatively associated with school-mean SES and achievement, 

and race heterogeneity. Overall, the time-pooled partial associations between school composition 

and track mobility indicate that high-SES schools and schools with diverse student population tend 

to have higher upward mobility and lower downward mobility (see also Tables 3.13 and 3.14), 

Importantly, in this analysis of mobility in particular, I argue that the positive associations with 

measures of composition related to conflict, blocked aspirations, etc., are not necessarily evidence 

of those social forces in this case. Keep in mind that track mobility captures a generally positive 

 

26 The associations of achievement heterogeneity with both forms of track mobility may not support the fundamental 

logic of functional theories. The positive associations with these DVs observed in Table 3.15 and 3.16 may only serve 

as statistical controls. 
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dimension of tracking structure, and one associated with a rising emphasis on academic press. 

Therefore, in this section, I find that school compositions traditionally hypothesized as only 

generative of increasing inequality may in fact have a set of more ambiguous effects on learning 

opportunities, at least in terms of mobility. Yet, from these findings we cannot identify which 

students are upwardly mobile. In addition to time-pooled model estimations, cohort-interaction 

models reported in Table 3.22, Model 6, and Table 3.23, Model 4 show that the link between 

higher upward mobility and schools with diverse student population is even stronger in later 

decades.  

3.4 Discussion 

 Chapter 3 dives deep into the nature of the US high school curriculum tracking system in 

the era of curriculum intensification and provides new insights into how and why US high schools 

vary in tracking practices. Building on the theoretical framework of Kelly and Price (2011) and 

other related empirical studies on the structure of tracking systems (e.g., Domina et al., 2019; 

Kelly, 2007), I examine associations between organizational dimensions of high school STEM 

curriculum tracking (school-mean course-taking level, selectivity, scope, and mobility) and school 

compositional factors (e.g., achievement heterogeneity, percentage of advantaged students, and 

racial/SES diversity). These associations seek to describe where the basic structure of a school’s 

curriculum tracking system comes from. Here in this analysis, I consider realized patterns of course 

taking that capture the actual practices of curriculum tracking from student transcript datasets (e.g., 

Austin, 2020) rather than school policy documents and curriculum guides (e.g., Kelly, & Price, 

2011). These associations provide new insight into social theories of tracking which include 
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technical-functional rationales, status competition theories, and opportunity hoarding theories of 

tracking. Consistent with Kelly and Price’s (2011) analysis of single state data, in Chapter 2, I find 

that any given organizational dimension of tracking is only moderately or even weakly associated 

with other dimensions. Thus, in this chapter I proceeded by analyzing each dimension of tracking 

in turn.  

Prior research described two over-arching organizational processes that determine 

students’ opportunities to learn at the school level (Sørensen, 1989; see also Hanselman et al., 2022 

for more recent discussion of provision decisions and allocation decisions). The first process 

determines the amount of total available learning opportunities, which involves decisions about 

course-offerings and the learning environment and academic press in each classroom. Second, 

schools have to make allocation decisions, deciding criteria to govern the placement process. Both 

organizational processes are shaped and constrained by inter-correlated micro- and macro-level 

factors, including (1) school resources that determine the available learning opportunities 

(Sørensen, 1989), (2) external political and policy pressures that influence the patterns of course-

offering and placement criteria (e.g., Domina et al., 2016), (3) communities’ and families’ 

involvement in negotiating schools’ tracking practices (e.g., Lewis, & Diamond, 2015), and (4) 

school administrators’ and instructors’ beliefs in curriculum tracking that shapes schools’ learning 

and instructional environment (e.g., Oakes et al., 1997). In this analysis, I consider school 

composition as a contextual factor that motivates schools toward different practices of curriculum 

tracking. I should note that any given school compositional factor may be associated with multiple 

of the above processes (e.g., family involvement in tracking practices or school’s response to a 

specific policy) that shape different aspects of a tracking system, or even offset each other. 

Therefore, this study discusses a broad array of relationships between tracking and school 
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composition that further supports theoretical explanations of school-to-school differences in 

tracking practices. 

3.4.1 Level-related measures of tracking 

Using a sample of 3,620 high schools from four NCES longitudinal high school studies, 

my investigation of tracking first provides insights into how the overall STEM course-taking level 

(math and science school-mean course taking level and tracking inclusiveness) in schools is 

responsive to school compositional factors over the period of 1982-2013. The analysis of overall 

course-taking level quickly shows the trends of curricular intensification and the “de-tracking” 

practices in recent decades reported previously (e.g., Domina, & Saldana, 2012), where higher 

level of course taking correspond to a greater proportion of students experiencing high-track 

courses in high schools. In this analysis, using the specific coding process developed in Xu and 

Kelly (2020), I find an increasing trend in both course-taking level and tracking inclusiveness 

throughout the period of 1982-2013. On average, school-mean math and science course sequence 

level increased by .81 and .42 of a level every decade. Relatedly, schools track 12% more students 

to high-level math courses and 10% more students to high-level science courses every decade. 

Consistent with prior empirical research concerning the technical-functional rationale of 

tracking (e.g., Clotfelter et al., 2015; Iatarola et al., 2011), in this chapter, I find a stable set of 

positive associations between level-related measures of tracking and school-mean prior 

achievement, over the period of this study. In examining the technical-functional logic of tracking, 

school-mean achievement level is a major technical concern of schools that should be associated 

with the overall course-taking level of a school, since students with higher prior achievement 

exhibit, in general, greater readiness to take high-track courses. Therefore, the consistent positive 
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associations between school-mean course-taking level and prior achievement from 1982 to 2013 

support technical-functional views of tracking. I should note that while a focus on a single, 

summary measure of the overall course-taking level appropriately reveals the positive 

consequences of curricular intensification practices over the recent decades, it may also in part 

reveal more specific changes including those that maintain inequality. For instance, in Domina et 

al.’s (2016) analysis of 1,524 California schools from 2003 to 2013, they found that elite schools 

promoted “double high tracks” in response to the state-wide de-tracking policies, creating a means 

to maintain differences in status and learning opportunities27. My measure of overall course-taking 

level instead captures a broader range of changes in course-taking level across the US. Later in 

this section, I provide more insights into the changes of structure of curriculum tracking and the 

way in which the associations with school composition may support different fundamental logics 

of tracking. 

In addition to the functional-technical considerations of overall course-taking level, in this 

analysis, I examine the associations between course-taking level and school compositional factors 

concerning the conflict motivation of tracking. Over the period of this study, I find that school-

mean SES, on average, is positively associated with measures of course-taking level in math and 

science, after controlling for prior achievement; however, these associations are generally getting 

 

27 Domina’s analysis also revealed a positive association between school-mean prior achievement and proportion of 

students enrolled into high-track 8th grade math courses (partially overall course-taking level). They further examined 

the change of tracking structure as a source of the rising of course-taking level and figured out that a new track above 

all existing tracks (8th grade algebra + geometry) might induce the increase in overall course-taking level. They then 

attributed the positive association between prior achievement and course-taking level to functional pressure to resist 

the de-tracking practices.  
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weaker in later decades. Such relationships demonstrate a basic inequality-generating process due 

to tracking; that is, even considering functional processes that match students’ overall prior 

achievement level with instructional rigor, placement into higher-level courses still favors 

socioeconomically-advantaged schools. This result resonates with early arguments on the role of 

tracking in reproducing socioeconomic inequalities (e.g., Lucas, 1999; Oakes, 1994), although 

much of these studies focused on within-school inequality rather than differences across schools. 

To further explain this phenomenon, I argue that theories of status competition provide a 

conceptual explanation; that is, a general competitive environment among elite students may force 

up the overall course-taking level. This overall competition among high-SES families may speak 

to socio-political approaches where high-SES parents and students actively seek advanced courses 

and exert pressures on schools’ accommodations and policy changes in tracking. School 

administrators and instructors may also respond, sometimes overly, to such external political 

pressures. I should note, however, in this chapter we do not see which students are enrolled in 

high-track courses. Additionally, some of the effects of school-mean SES may be capturing 

measurement error in achievement. Thus, this analysis considers status competition theories (and 

other social theories of tracking) as a summary of complicated ascriptive organizational and social 

approaches that collectively shape the practices of tracking, providing an explanatory perspective 

into the basic way in which actual tracking practices vary across schools.  

This chapter also reveals the more surprising finding that course-taking at the school level 

has stable positive associations with race-ethnicity heterogeneity and, to a lesser extent, prior 

achievement heterogeneity, over the period of this analysis. There appears to be a relationship 

between the heterogeneity of the student body, broadly, and greater access to advanced learning 

opportunities. This relationship should not be explained by theories of opportunity hoarding, since 
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those theories imply exclusion of particular groups from high track courses, not necessarily any 

change in mean level of course taking. Some other organizational and social processes may provide 

better explanations for this relationship. For example, in schools with heterogeneous student 

populations, the competitive environment among advantaged students may also expand to other 

students within the same school and thus increase the overall awareness of schooling. Additionally, 

administrators and instructors may be able to better serve disadvantaged students’ instructional 

needs in diverse schools (Dee, & Penner, 2016) and value diversity and equity (Lewis, & Diamond, 

2015) than schools with homogeneous SES, race/ethnicity, and prior achievement distributions, 

and therefore facilitate the overall accessibility of advanced learning opportunities. 

Overall, the first part of this chapter explores school-to-school variation in course-taking 

levels in the era of curriculum intensification. Most importantly to the associations between level-

related measures of tracking and school composition, I identified a set of consistent relationships 

between school-mean achievement and course-taking level, supporting a technical-functional view 

of curriculum tracking. Considering a rising trend of mean course-taking, I argue that technical-

functional factors are strong predictors of course-taking level and tracking inclusiveness, as the 

relationships have not declined in later decades. Moreover, I found that schools with diverse 

distributions of SES, race/ethnicity, and, to a lesser extent, achievement tend to have higher mean-

level of course taking. This result may suggest that diverse schools, in general, are able to better 

increase students’ overall awareness of schooling and serve the instructional needs of 

disadvantaged students.  

Concerning the inequalities maintained and generated due to tracking, consistent with prior 

studies (e.g., Domina, & Saldana, 2012; Domina et al., 2016; Klugman, 2013), this study finds 

some evidence that high-SES schools maintain their advantages in providing higher-level course-
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taking experiences. This result supports a theoretical perspective of status competition which 

summarizes a set of complicated organizational and socio-political processes (Collins, 1979; 

Ehrenreich, 1989) that push greater competition among elite students and their families. Yet, the 

associations between factors related to status competition and course-taking level have decreased 

over recent decades.  

3.4.2 Tracking Structure 

Using the same set of sampled schools from NCES’s high school longitudinal studies, 

Chapter 3 further examines the associations between school composition and a set of measures 

concerning the essential structure of school tracking systems. These measures include the variance 

of course taking, tracking selectivity, scope, and mobility, which speak to realized tracking 

practices that both constrain learning opportunities (greater selectivity and scope), and provide 

more flexibility (mobility). By relating the tracking structure of a school with its compositional 

characteristics and explaining the associations with social theories of tracking, this analysis helps 

trace fundamental sources of organizational variation in tracking practices and provides more 

insights into the inequality-generating processes of a school due to tracking. Moreover, this 

analysis adds to the ongoing debate on tracking, which concerns both the pedagogical need to align 

students’ abilities with appropriate instruction and the generative effects of tracking on social 

inequality (e.g., Hanselman et al., 2022; Hirschl, & Smith, 2023; Lewis, & Diamond, 2015).  

Table 3.24 Symbol-based Summary of the Changing Effects of School Composition on Various Measures of 

Tracking Structure 

 
Achievement 

Diversity and Size 

School-mean Status 

Level 

School SES and Race 

Diversity 

1. Variance of Math 

Sequence ▼ ▼ × 
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2. Math Selectivity ▲ ▲ × 
3. Math-Science Scope ■ ■ ■ 
4. Math-English Scope × × × 
5. Math Downward 

Mobility ▼ × × 
6. Math Upward Mobility ■ ▲ ▲ 
7. Variance of Science 

Sequence ■ ▼ × 
8. Science Selectivity × ■ × 
9. Science-English Scope × ▼ ■ 
10. Science Upward 

Mobility ■ ▲ ▲ 

Legend: 

× No effect over the period 1982-2013, on average 

▲ Effects rose over the period 1982-2013 

■ Stable effects over the period 1982-2013 

▼ Effects decreased over the period 1982-2013 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

3.4.2.1 Functional View of Tracking 

Technical-functional theories of tracking speak to an “appropriate”, or a “responsive” 

pedagogical approach in coping with a diverse distribution of students’ ability and readiness within 

a school. Consistent with prior studies concerning the technical-functional logic of tracking (Kelly, 

& Price, 2011; Long et al., 2012), I find that schools with higher achievement heterogeneity, on 

average, tend to have greater variation in math and science Course Sequence Level and math 

tracking selectivity, over the course of this study. Functional theories of tracking suggest a 

pedagogical consideration that tracking creates a skill-homogeneous learning environment where 

instruction can better match students’ needs (Hallinan, 1994). Central to the theory-testing, here 

in this analysis, I conclude that the associations of achievement heterogeneity with the variation in 
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course-taking level and Math tracking selectivity support an apparent functional consideration of 

tracking. The strength of this association, however, is relatively weak. Although expected by 

theories, science selectivity does not appear to be related to skill heterogeneity, indicating some 

other forces may somewhat drive up the selection processes. The non-finding may also be 

attributed to a measurement error specific to science selectivity where math achievement was used 

to create the measure of science selectivity (due to omission of science achievement data in some 

NCES studies). Moreover, the cohort-interaction models indicate a decreasing trend in the effects 

of such functional considerations on the variance of math course-taking level, whereas the effects 

on math selectivity increase. 

In addition to any associations between achievement heterogeneity and the structure of 

tracking, empirical evidence concerning school size may support a technical-functional 

consideration of tracking. As theorized by Hallinan (1994), larger schools may be able to better 

serve students’ instructional needs by having more flexible schedules and greater capacity for 

diverse curriculum, if schools embrace the functional logic of curriculum tracking. In contrast to 

that positive view (of providing a better fit with student readiness), Hanselman et al. (2022) argue 

that larger schools face greater pressures from diverse student populations 28 , and thus such 

pressures may motivate schools to promote differentiated instruction (creating perhaps 

unnecessary stratification). Likewise, Kelly and Price (2011) find that school size is positively 

related to the overall elaboration of school tracking systems. In this analysis, I find little 

relationship between school size and measures of tracking structure (there is a small statistically 

 

28 In Table 3.2, I show that there are weak to moderate correlations between school size (Grade 9 to Grade 12) and 

various measures of school heterogeneity, including achievement, SES and race heterogeneity.  
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sig relationship with the variance in science course taking, but no similar relationship in math, and 

no relationship with any other measure of structure).    

Regarding the association between tracking scope and achievement heterogeneity (e.g., 

Tables 3.13, and 3.14), this is not the most compelling or relevant functional analysis of scope. To 

explore a more pertinent functional determinant of tracking scope, I run a set of ancillary model 

estimations of math-science tracking scope using a measure of correlated achievement in math and 

science.29 As argued by Lucas and Berends (2002), correlated ability contributes to much of the 

correlation across different subjects; that is, the functional view of tracking may suggest that 

tracking scope between Math and science course taking is responsive to the correlation between 

Math and science achievement, rather than just the distribution of Math achievement. Due to the 

availability of science achievement scores, I only run this ancillary analysis for the 1992 cohort. 

Table 3.26 summarizes both baseline association model and partial association models. As shown 

in Table 3.26, Model 1, tracking scope between math and science is positively associated with the 

achievement correlation. Later in partial association models, the relationship between scope and 

correlated achievement remains significantly positive, after considering school-level covariates 

and school composition related to conflict forces. This ancillary analysis provides some evidence 

that, at least in the 1992 cohort, math-science tracking scope is appropriate to cross-subject 

achievement similarity and may thus support a functional view of promoting corequisites between 

math and science. Comparing this ancillary analysis with the main analysis that contains the entire 

 

29 To generate achievement correlation between math and science, I used “forvalue” command in STATA to loop the 

calculation of correlation for each school. Schools with less than three sampled students were directly excluded from 

this calculation. For this ancillary analysis only, I didn’t create imputed dataset to handle missing value.  
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sampled schools, the ancillary models reported in Table 3.26 consider the achievement correlation 

as a more apparent functional view of promoting greater tracking scope, and thus after considering 

the achievement correlation, these models may provide better insights into the associations 

between conflict forces and tracking scope. 

Table 3.25 Summary of Ancillary Model Estimation of School-level Math and Science Tracking Scope using 

achievement correlation, school size, status-competition related variables, and measures of heterogeneity, 

Cohort of 1992 (n = 1050 schools; School-level Covariates includes sample percentage of white students, 

school sectors, urbanicity, geographic region, student-teacher ratio, and average daily instruction hours) 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Functional Factor      

1. Achievement 

Correlation 

.153*** .111* .123* .107* .110* 

 
(.043) a (.047) (.050) (.047) (.050) 

2. School Size  .002 .003 .002 .003 

  (.002) (.002) (.002) (.002) 

Status Competition      

3. School-mean 

Achievement 

  -.002  -.003 

   (.003)  (.003) 

4. School-mean SES   -.016  -.011  
  (.031)  (.031) 

5. Percentage of 

White 

  -.021  -.013 

 
  (.046)  (.047) 

6. Percentage of non-

free lunch 

  .030  .024 

 
  (.057)  (.056) 

Heterogeneity 

Measures 

     

7. SES Heterogeneity    .136* .158*  
   (.060) (.062) 

8. Shannon Index of 

Race Diversity 

   .000 .001 

 
   (.030) (.032) 

School Covariates No Yes Yes Yes Yes 

R-squared .016 .106 .110 .114 .120 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 
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2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

As an outcome, as with scope, associations with course taking mobility may be more 

difficult to interpret. As theorized in early literature (e.g., Rosenbaum, 1976), schools with higher 

level mobility might be conceptualized as “responsive” to changing student achievement, 

engagement, and motivation. In this analysis, I argue that the level of track mobility per se, 

especially upward mobility, rather than associations with school composition, speaks to the 

functional logic of tracking, as schools offer more flexibility to match students’ 

achievement/ability to track placement. While I don’t specifically examine an individual student’s 

experience of track mobility, this analysis finds, on average, US high schools create 3% and 1.3% 

more opportunities of upward mobility every decade for math and science course taking, 

respectively. Consistent with Rosenbaum (1976) and Lucas (1999, pp. 87), this analysis argues 

that moving students upwardly is still extremely rare among US high schools, even in the 2013 

cohort.  

Concerning the inferential limitations, in interpreting the results, I should note that the 

realized tracking practices do not directly speak to tracking policies, and thus a functional logic of 

tracking may not motivate specific policy implementation processes. For example, tracking 

selectivity measures the extent to which students’ track placements rely on their prior achievement, 

and may further imply schools’ overall emphasis on readiness when enrolling. However, its 

association with achievement heterogeneity does not specifically point to policy-making 

processes. The interpretations of these findings should also be aware of the complexity of 

organizational processes, such as schools’ response to curriculum policies or school professionals 

influencing school ethos about curriculum tracking, that shape the school tracking systems. As 
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argued earlier, here in this section I consider the aggregated school compositional characteristics 

as a contextual effect that motivates schools to promote tracked instruction based on students’ 

abilities. Additionally, it’s also worthwhile to note that not every pair of relationship between 

achievement heterogeneity/school size and tracking structure supports a functional logic of 

tracking, such as the associations with tracking scope between STEM and ELA and track mobility, 

as these dimensions of tracking structure reflect a more apparent conflict force of tracking. As 

such, the interpretation of theorized technical-functional logic of tracking should be restricted to 

dimensions that reflect the basic pedagogical logic of tracking. 

 I should note that while a technical-functional process of tracking certainly speaks to an 

instructional preference for grouping students by ability level, such theoretical perspective does 

not necessarily consider the complex effects of skill-homogenous instruction on students’ learning 

outcomes. Recent studies have found both positive (e.g., Penner et al., 2015) and negative (e.g., 

Domina et al., 2019), and even mixed (e.g., Nomi, & Raudenbush, 2016) effects of placing students 

into skill-homogenous classrooms.30  Therefore, in this analysis, I argue that the associations 

between tracking structure and skill heterogeneity only suggest a technical-functional 

consideration of tracking held by school administrators and teachers (Clotfelter et al., 2015; 

Gamoran, 2004), and may not necessarily further imply that students would benefit from skill-

homogenous classes.  

 

30 Much of recent research on this topic has focused on the effect of de-tracking policies on educational outcomes 

where de-tracking efforts create skill-heterogenous classrooms. Here I transform the effect of skill-heterogenous into 

the effect of skill-homogenous to facilitate my argument.  
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Overall, both baseline and partial-association models concerning the technical-functional 

pathways of tracking show that the basic form of inequality in STEM course taking (the variance) 

and Math Selectivity are related to a conceptualization scale of functionalism. The cohort-

interaction models further indicate that the basic form of STEM inequality in course taking become 

less associated with technical-functional logic of tracking in later decades, whereas the relationship 

between Math Selectivity and functionalism becomes an even stronger concern in later decades 

that motivates the US high schools to adopt rigorous course enrollment processes. Recall that 

earlier in this study, I find a stable technical-functional motivation that relates to level-related 

measures of tracking. Thus, in general, this chapter reveals that a rational and logical way to 

continuing provide students with rigorous instructions and expose students to differentiated 

curricular remains predominant in US high school curriculum systems. This analysis also provides 

some evidence that promoting greater scope between math and science is related to functional 

logic of tracking, at least for the 1992 cohort. The associations between school composition 

concerning functionalism and STEM-ELA scope and mobility, however, are not central to theory 

testing. While it might be difficult to explain the fundamental technical-functional logic of track 

mobility, this analysis argues that the level of mobility per se indicates that the US track mobility 

become more logical in later decades.  

3.4.2.2 Conflict forces and tracking 

Prior sociology research on tracking describes two general processes that generate 

inequality across students of different family backgrounds: 1) students enjoy educational 

advantages in high-track learning environments (Farkas et al., 2005; Gamoran, 1987; Kelly, & 

Carbonaro, 2012; Van Houtte, 2004) and 2) high-SES families have an advantage in accessing 

high-track courses (Kelly, 2004; Lareau, 2011; Hanselman et al., 2022). This study contributes to 
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this argument by pointing to a tension between rational considerations of tracking and conflict 

forces of differentiation, disentangling these effects at the school level, and identifying patterns of 

inequality in specific dimensions of tracking. Tracking of course creates skill-homogeneous 

classrooms that may benefit instruction, but this analysis argues school-to-school differences in 

tracking structure may exist that go beyond functional explanations, and are explained in part by 

conflict mechanisms.  

3.4.2.2.1 Status Competition Processes of Tracking  

This section examines the extent to which dimensions of school tracking structure are 

responsive to school composition related to status competition processes (i.e., school-mean 

achievement and status level). Consistent with Kelly and Price (2011), this analysis finds that, on 

average, schools with a higher overall status level (higher school-mean SES and more non-poor 

and white students) tend to have larger variation in math course sequence levels, and to promote 

greater STEM tracking selectivity, over the course of this study. In particular, both unconditional 

models (Tables 3.10 and 3.11) and time-pooled partial association models (Tables 3.15 and 3.16) 

show that schools with a greater share of non-poor students tend to have larger within-school 

differences in math sequence and math and science tracking selectivity. Additionally, I find some 

evidence that math and science selectivity are positively related to percent white (Table 3.15, 

Model 2) and school-mean SES (Table 3.16, Model 2), respectively. As explained by status 

competition theories of tracking, the findings in this study might be explained by intra-group 

competition among students in high-SES schools that generate a more elaborated set of tracking 

practices. Theoretically, such competition processes reflect the preferences of pursuing 

competitive education among middle-class families (Useem, 1991) due to a “fear of falling” 

(Ehrenreich, 1989), and may further speak to a more complicated set of socio-political processes 
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that shape the school tracking systems. For example, high-SES parents actively seek to promote 

differentiated course-taking environments (Alon, 2009; Welner, & Burris, 2006) and schools may 

respond to such external pressures (Domina et al., 2016).  

Concerning forces of status competition that are associated with tracking scope, this 

analysis does not find strong evidence to support the theoretical link between school-mean status 

levels (school-mean SES, percent white and non-poor students) and scope. First, both baseline 

association models (Tables 3.10 and 3.11) and time-pooled partial association models with 

summary scales (Tables 3.13 and 3.14) show no positive relationships between scope and school 

composition related to status competition. Second, I examine the status competition process 

considering a more apparent functional view of promoting greater scope in ancillary analysis. As 

shown in Table 3.26, math-science tracking scope does not appear to link to any measures of status 

competition (Model 3 and Model 5), net of correlated achievement. The results reported in 

ancillary models support the main analysis in Tables 3.13 and 3.14.  

Moreover, findings regarding school composition and tracking selectivity resonates with 

theoretical works on Effectively Maintained Inequality (EMI) framework (e.g., Klugman, 2013; 

Lucas, 2001; Domina et al., 2016) where maintaining and producing distinctions are theorized as 

effective approaches to preserve social advantages. In this study, I find that the link between status 

competition and math tracking selectivity is getting even stronger in more recent decades when 

rigorous courses are increasingly accessible; the corollary link with science tracking selectivity 

remains stable in the 2013 cohort. I therefore argue that, in the era of curriculum intensification, 

promoting greater STEM tracking selectivity may have become an effective organizational 

approach for elite groups to maintain their advantages in taking rigorous courses.  
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Overall, both baseline and partial association models show that the variance of math 

sequence and STEM tracking Selectivity are related to conceptualization scale of status 

competition, indicating an apparent intra-group conflict force that increase the dispersion of the 

opportunity to learn. It’s worthwhile to note that Table 3.13, Model 1 also shows that the effect of 

functionalism is larger than the status competition scale. 31 The cohort-interaction models further 

show that status competition process increasingly relates to STEM tracking selectivity, whereas 

the variance of math sequence becomes less related to status competition forces. Recall that earlier 

in this chapter, concerning level-related measures of tracking, I argue that a general competitive 

environment among elite students may force up the overall course-taking level. This section adds 

that the competition environment relates to both more rigorous instruction and higher 

differentiated curricular. To further conceptualize this conflict process, concerning both level-

related and tracking structure measures, I argue that this competition process speaks to both 

explicit within-school intra-group competition that relates to the differentiation, and a more general 

competition that motivates high-SES parents and students to actively seek advanced courses. 

3.4.2.2.2 Opportunity Hoarding Processes of Tracking 

This section further examines the extent to which opportunity hoarding processes explain 

the school-to-school differences in dimensions of tracking structure. Opportunity hoarding 

theories of tracking describe an inequality-generating process among different social groups in 

which the access to valuable learning opportunities is heightened for students from advantaged 

families. Considering the model estimation results, in this analysis, I argue that the forces of 

opportunity hoarding may in fact exert lesser pressures on promoting more elaborated tracking 

 

31 Because both scales are standardized, I am able to compare those two effects of conceptualization scales.  
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systems than status competition processes, as I find that most dimensions of tracking structure 

don’t show consistent positive relationships with measures of school heterogeneity across models. 

In particular, while I find that, in baseline association models (Tables 3.10 and 3.11), both the 

variance of math and science course sequence and science selectivity have positive relationships 

with SES heterogeneity, these associations generally become non-significant later in partial 

association models (both in summary models reported in Tables 3.13 and 3.14 and in more-

saturated models reported in Tables 3.15 and 3.16). Some other associations between tracking and 

measures of heterogeneity, however, do not directly examine the opportunity hoarding theory. In 

this analysis, I find that level-related measures and upward mobility are unexpectedly related to 

measures of heterogeneity. I then argue that heterogeneity may exert positive forces that “opens 

up” more learning opportunities.  

I then briefly compare this analysis with earlier studies on opportunity hoarding. In his 

seminal book on tracking structure, Samuel Lucas (1999, pp.69-71) described a similar 

relationship between scope and SES diversity and then attributed this link to both individual 

actions of middle-class families to obtain high-track course-taking experiences (e.g., negotiating 

with teachers and administrators and requesting higher track placement for their kids, see Lewis, 

& Diamond, 2015) and collective political actions to preserve a highly-differentiated school 

tracking system (e.g., pushing back de-tracking policies or exerting external pressures on 

differentiated system, see Domina et al., 2016). Lucas’ (1999) analysis of tracking scope pointed 

to mixed consequences of the efforts of dismantling overarching tracking programs and promoting 

subject-specific enrollment. Yet, in this analysis, I don’t particularly find evidence that supports 

an opportunity hoarding process of tracking.  
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3.4.2.2.3 Conceptualizing Track Mobility 

Among these model estimation results, the associations between track mobility and school 

composition do not specifically support the conflict sources of within-school tracking and instead 

have ambiguous conceptualizations of track mobility. First, this analysis finds that both the status 

competition within high-SES groups and a more general competition process between social 

groups are related to more upward mobility and less downward mobility. Thus, the conflict sources 

of within-school tracking that are originally theorized as constraints of learning opportunities may 

in fact have positive effect on providing more flexible tracking system. Yet, considering an overall 

aggregated structure of between-school inequality, both forms of mobility at least partially capture 

the extent to which school tracking systems benefit advantaged students in general and constrain 

the learning opportunities of low-SES students. In this study, I show that STEM upward mobility 

is increasingly associated with school-mean SES and percent non-poor. Relatedly, this study also 

finds that low-SES schools tend to track down more students than high-SES schools. These results 

indicate that the practices of moving up students over time and opening up more learning 

opportunities in fact benefit students from socio-economically advantaged schools and may reflect 

schools’ overall emphasis on academic press. Importantly to theorizing track mobility, this result 

may indicate that conflict forces of tracking that are traditionally considered as sources of inter- 

and intra-group inequality may have more ambiguous (both positive and negative) effects of 

learning opportunities.  

3.4.3 Implications and Limitation 

Overall, Chapter 3 provides a systematic understanding of how and why US high school 

STEM tracking systems vary across schools, and how the sources of that variation have changed 
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over recent decades. By connecting various organizational dimensions of tracking with basic 

measures of school composition, this study helps trace the fundamental sources of the key 

dimensions of schools’ curriculum tracking systems. As an overall picture, this study finds clear 

evidence that school-to-school differences in tracking systems follow a fundamental functional 

logic of differentiation. Yet, results capturing the forces of status competition show that the US 

school tracking system also creates socio-economically disproportionate access to high-quality 

learning opportunities. Thus, I argue that this study points to the tension, and the reality created by 

that tension, between the pedagogical needs to align students’ abilities with appropriate instruction   

and the generative effects of tracking on social inequality. One of the clearest implications is that 

research on curriculum tracking should continue to theorize tracking as due to a plural set of 

mechanisms and social forces. For example, research on the effects of tracking on social inequality 

should employ a full set of functional factors as statistical control if plausible effects are to be 

identified. Furthermore, this study provides more insights into the inequality-generating processes 

from tracking. In particular, this analysis argues that promoting greater STEM tracking selectivity 

in elite schools is an apparent organizational approach through which middle-class and elite 

families prioritize learning opportunities, in the ear of curriculum intensification.  

Further research on related topics utilizing nationally representative data and educational 

administration data should be aware of the major limitations of the current study. First, the 

measures of tracking generated from transcript data do not directly speak to specific curriculum 

policies nor schools’ guidance/impact of/on enrollment. Thus, the analytical framework used here 

can only inform policy implementation indirectly. Second, nationally representative data may have 

limited inferential ability to the effect of single policy change since tracking is a complicated and 

inter-correlated phenomenon; it’s less likely to disentangle the effect of a single policy in such 
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research setting. Moreover, future research may expand this analysis by considering the effects of 

various organizational approaches of tracking on educational outcomes and educational inequality; 

that is, such research may bridge the conceptual links between social processes, learning 

opportunities, and educational attainment. Such research setting may further identify the extent to 

which tracking practices both provide appropriate instruction and generate social inequality. 

Additionally, doing so will provide new insights into the definition of “functional” consideration 

of tracking; that is, to what extent the functionally-driven instructional context may benefit various 

educational outcomes, including achievement and attainment. Overall, this analysis contributes to 

the enduring question of just how functional curriculum tracking really is?  It’s logical that schools 

promote differentiated learning environments in response to diverse student populations, in 

particular, in the era of curriculum intensification. Yet, it’s crucial to acknowledge that the 

extensive inequality in learning opportunities may arise when this functional tailoring of tracking 

system moves away from an “appropriate” level.  
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4.0 Social Determinants of School-to-school Differences in Opportunity to Learn, A Cross-

national Study 

4.1 Introduction 

Cross-national empirical studies of educational inequality address an important research 

question: to what extent do the organizational features of school systems affect inequality in 

education outcomes? The research speaks to a basic concern that both policymakers and parents 

would like to know; that particular characteristics of school systems (e.g., the way that students 

are selected and grouped) may result in variation in achievement and have consequences for 

enlarging inequality in educational outcomes. In understanding outcomes of educational systems, 

researchers have examined how the level of inequality in achievement is related to the degree to 

which education systems stratify students through different opportunity to learn (e.g., Brunello, & 

Checchi, 2007; Hanushek, & Wößmann, 2006; Montt, 2011). Yet, what leads to stratified 

Opportunity to Learn in the first place and where are the explanations for stratified OTL in a given 

country likely to stem? In this analysis, I consider school-to-school differences in opportunity to 

learn as a major form of stratification of OTL in cross-national setting because between-school 

tracking is predominant in many different countries.  

An important theoretical frame for this chapter, taken from classic theories of social 

stratification, is that there is a basic evolution of social inequality as countries develop, with certain 

developmental factors first increasing then decreasing inequality writ-large (e.g., both directly and 

through mechanisms such as the share of urban residents in a country), so the degree of inequality 

in schooling and other aspects of society can be understood as a departure from that “natural” 
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trend. Much as the recent school effects literature in the summer-learning paradigm (Downey, 

2020) helps frame and focus social and educational policy on the sources of test-score inequality 

that really matter, school-to-school differences in opportunity to learn should be understood in the 

context of the fundamental social forces that shape educational systems. 

Following a similar theorical paradigm of curriculum tracking considered in previous 

chapters, this chapter further explores the functional and conflict sources of school-to-school 

differences in opportunity to learn. A school system may produce inequality in opportunity to learn 

in a functional way, as a result of variation in school academic readiness; that is, the school-to-

school differences in opportunity to learn may fit the distribution of average academic readiness 

of each school. On the other hand, school systems may also produce excessive and dysfunctional 

inequality such as a tracking system that benefits high-SES students by allocating more learning 

opportunities. Therefore, understanding the reason behind the origin of such inequality may enable 

us to disentangle the total observed inequality in opportunity to learn. Finally, this chapter 

discusses the role of education policies concerning stratification and standardization in moderating 

the effect of social inequality on school-to-school differences in Opportunity to Learn. 

Using a large cross-national sample with 278 observations across 67 countries/regions, 

dating from 1995 to 2019, this empirical study contributes to the existing cross-national studies of 

educational inequality in several ways. First, this study traces the fundamental origin of inequality 

in Opportunity to Learn across countries; that is, inequality in OTL is responsive to the basic 

evolution of social inequality as countries develop. The extent to which schools differ in 

Opportunity to Learn provided then can be attributed to both functional and conflict dimensions. 

Second, this analysis utilizes actual curricular content measured in TIMSS and is even more 

focused on the content of instruction and learning than studies focusing on course/program 
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provision (although specific content is closely linked with course taking). Third, this study 

advocates a comprehensive consideration of country-level developmental factors in cross-national 

studies of educational inequality.  

4.2 Literature Review 

4.2.1 Cross-national studies on educational inequality 

Studies of the institutional structure of educational systems focus on how education is 

organized for selection and allocation (i.e., how education systems stratify students through 

differential opportunity to learn), which in turn induces variation in various educational outcomes 

(e.g., Bol et al., 2014; Brunello, & Checchi, 2007; Buchmann, & Dalton, 2002; Buchmann, & 

Park, 2009; Chmielewski, Dumout, & Trautweinl, 2013; Parker et al., 2016; Van de Werfhorst, & 

Mijs, 2010). Closely related to the present study, foundational research has focused on 

characterizing curriculum tracking systems and capturing baseline country-to-country variation in 

tracking systems (e.g., Broaded, 1997; VanHoutte, 2004). 

In his comprehensive empirical work, Montt (2011) established an overarching framework 

for understanding educational inequalities in the cross-national setting. In particular, Montt (2011) 

examined the extent to which two important dimensions of educational systems, inequality in 

opportunity to learn and the intensity of schooling were related to differences in achievement 

inequality across countries, net of variation in family background, using PISA 2006 data. The 

framework speaks to the important role of reducing inequality in Opportunity to Learn in 

decreasing the total achievement inequality and equalizing the educational inequality due to SES 
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heterogeneity, in the cross-national setting. Among his indicators of opportunity to learn, between-

school tracking practices were found to be related to inequality in achievement. Specifically, more 

tracking programs and earlier tracking, measured at the country level, were associated with greater 

inequality in achievement, after controlling for intensity of schooling and SES distribution. 

Although not the main focus of this chapter, Montt (2011) also considered variation in school 

physical resources and instructional resources as measures of inequality in Opportunity to Learn. 

Montt (2011) provides a compelling conceptual framework that establishes the theoretical link 

between variation in Opportunity to Learn and achievement inequality, an important form of 

educational inequality that both educators and policy makers care about (e.g., Coleman, 1966), in 

a cross-national research setting.  

Consistent with Montt (2011), Hanushek and Wößmann (2006) found a similar association 

between inequality in achievement and tracking practice at the national level. Using PIRLS (for 

4th grade data) and TIMSS (for 8th grade data) data, Hanushek and Wößmann (2006) found that 

countries experienced a greater increase in achievement inequality from 4th grade to 8th grade with 

highly differentiated secondary education systems, after controlling for inequality in achievement 

at 4th grade. The gain in achievement inequality was less dramatic among countries with less-

differentiated secondary school systems. Huang (2009) found that high achieving students enjoyed 

mathematics achievement gains at the expense of achievement loss among low achievers in 

countries with greater tracking selectivity (measured as skill homogeneity). Although Huang’s 

(2009) results were not precisely similar to Montt (2011) or Hanushek and Wößmann (2006), 

Huang (2009) showed that more intensive tracking at the country level may have enlarged pre-

existing achievement gaps between high-achievers and low-achievers. Overall, educational 
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systems with a greater degree of explicit stratification induce greater inequality in achievement 

where different students are selected and allocated to different instructional contexts. 

Another set of empirical studies focuses less on the total variance in educational outcomes, 

and instead on the degree to which educational systems stratify students from different social 

origins (e.g., Ammermüller, 2005; Marks, 2005; Brunello, & Checchi, 2007; Buchmann, & Park, 

2009). Brunello and Checchi (2007) examined how the effect of family background on various 

educational outcomes is moderated by stratification, measured as the duration of between-school 

differentiation within each educational system, using ECHP, ISSP, IALS, and PISA 2003 datasets. 

They found that the inequality in educational achievement and post-secondary enrollment induced 

by family background increased with greater duration of tracking (Brunello, & Checchi, 2007). 

They also found that the advantage of wealthier families on long-term educational outcomes (i.e., 

job income) was reduced as the length of tracking increased. In Buchmann and Park’s (2009) study 

of the relationship between stratification and educational expectations in highly differentiated 

educational systems using PISA 2003, they examined two critical stratification processes to 

unpack the moderation effect of stratification on perpetuating and exacerbating SES inequality. 

First, they found that social origins were strongly related to track placement which was, in highly 

differentiated school systems, different types of schools. Second, they found that the types of 

schools that students attended were related to students’ educational expectations. High SES 

students were more likely to enroll in academically oriented schools and thus had higher 

educational expectations and a better chance to realize those expectations. 

Overall, research on country-level stratification systems indicate that: more highly 

elaborated between-school tracking practices are associated with greater inequality in 

achievement growth. However, although these studies are consistent with conflict-based theories 
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of schooling (where e.g., high-SES students take advantage of tracked systems), they do not 

actually show that the tracking policies and practices are motivated by, and/or generated from 

conflict-based social forces. Moreover, such studies fail to explicitly address the functional and 

dysfunctional sources of inequality in opportunity to learn specific, measured curricular content, 

which will be the primary focus of this study.  

4.2.2 Developmental stage, social inequality, and variation in Opportunity to Learn 

In Kuznets’ (1955) pioneering analysis of historical trend data from Great Britain, 

Germany and the US, he found an inverted U-shape relationship between income inequality 

(measured by the GINI coefficient) and country developmental stage (measured as GDP per 

Capita); that is, as countries developed (i.e., approaching advanced industrial societies), income 

inequality first increased, and then declined. Kuznets’ (1955) analysis innovatively created an 

important framework that linked social inequality with a country’s developmental stage. This 

framework was later expanded to identify the relationships between income inequality and various 

social developmental/structural factors beyond just GDP and GDP per capita.  

In the late 1990s, François Nielsen and Arthur Alderson (1995) revisited Kuznets’ 

framework and proposed an “internal development” model to understand the relationship between 

inequality and development 32  (Nielsen, 1994; Nielsen, & Alderson, 1995;1997; Alderson, & 

Nielson, 1999). They argued that country developmental stage should be understood in a more 

systematic way; that is, internal development factors should be isolated and emphasized to 

 

32 In additional to cross-national analyses, this model has been applied to single-country analyses, such as studies 

using US data (e.g., Partridge, 2005) 
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understand their role in generating social inequality as countries developed. The internal-

development framework considers three major processes through which a country’s development 

generates income inequality. First, this model identifies both between- and within- sector 

inequality as the labor force shifts from the agricultural sector to the industrial sector as countries 

develop as an important source of inequality. Both sector dualism (capturing income inequality 

due to between-sector disparities) and the size of the agricultural sector (capturing income 

inequality within sectors) are considered in this process. Second, this model considers the role of 

rapid population growth in producing excessive labor supply, which in turn produces income 

inequality. Third, the internal-development model regards the spread of secondary education as 

producing an increased supply of skilled labor which may ultimately contribute to a decrease in 

income inequality.  

It’s also worthwhile to note that subsequent studies using the internal-development 

framework focus on the modification of existing processes and adding new inequality-generating 

processes to understand the trends in the relationship between development and income inequality 

in the post-2000s era. For example, in a recent study on revisiting internal-development 

framework, Clark (2020) proposed several modifications on the original internal-development 

framework, including using sector pluralism to consider all three major employment sectors 

(agriculture, industry, and services), and replacing secondary enrollment with tertiary education 

enrollment to better reflect the supply structure of skilled labors. Clark (2020) also considered the 

female political participation rate, as the gender structure of political elites may shape the resources 

distribution. In the current study, I adopt the modification of tertiary education instead of 

secondary education, to better reflect the labor force structure in the current era (which will also 

avoid the confusion of using secondary education enrollment to understand how secondary 
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education resources are distributed). But I stick to the definition and measurement of labor force 

shifts in the original framework since a binary measure of social dualism may better capture the 

most salient relationship between social inequality and educational inequality.  

Both Kuznets’ (1955) original analysis and the internal-development model of inequality 

(Nielsen, 1994; Nielsen, & Alderson, 1995) focus on the most essential relationships concerning 

development and income inequality. Can this framework be expanded to educational outcomes 

and be used to understand the relationships between developmental stage, social inequality, and 

capacity to equitably allocate educational resources (i.e., Opportunity to Learn)? Much as Cole’s 

(2018) recent empirical study on political inequality applies the internal-development framework 

to examine the relationship among development, social inequality (notably income inequality), 

and inequality in political power, it may be useful to understanding educational systems. In this 

study, I argue that the internal-development framework is useful to systematically explore the 

relationship between the nature of society in a country and various educational outcomes and to 

trace the fundamental sources of educational inequality through development and social inequality. 

The basic level of educational inequality (i.e., variation in Opportunity to Learn in this study) 

is hypothesized to be responsive to the social distribution of economic and human resources 

, after considering the generative effects of internal-development factors on basic social 

inequality (H 4-1). Figure 4.1 portrays this baseline model.  

 

Figure 4.1 Baseline model of school-level variation in Opportunity to Learn 
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In this baseline model, developmental stage is related to basic social inequality, and social 

inequality in turn produces the variation in school-to-school differences in Opportunity to Learn. 

The relationship between social inequality (Box 2, which includes income inequality and unequal 

distribution of population) and variation in school-level opportunity to learn (Box 3) within each 

country is indicated with Path A1, net of countries’ actual developmental stage (Box 1) measured 

by three constructs from the internal-development framework. This model is helpful to trace the 

fundamental sources of educational inequality and identify which countries have greater, lesser, or 

“appropriate” inequality than anticipated/predicted from this model. For example, if the social and 

economic resources are clustered in urban areas in a country, it’s supposed that the distribution of 

education resources also follows that pattern. Moreover, this baseline model establishes the 

conceptual framework for later analysis where I consider functional- and conflict-based 

explanations for between-school tracking.  

4.2.3 Functional and Conflict sources of Inequality in Opportunity to Learn 

The baseline model (Figure 4.1) is useful for examining the relationships between 

developmental stage, social inequality, and school-level variation in Opportunity to Learn across 

countries, and to identify any apparent excessive educational inequality. Yet, educational systems 

often purposefully induce variation in course taking at the school-level, in the form of between-

school tracking, under a functional logic of tracking, and Figure 4.1 does not capture that process. 

Even more importantly, Figure 4.1 is missing any measure of achievement that might be 

functionally-related to between-school tracking, and helps to then reveal remaining, 

“dysfunctional” sources of tracking. To further unpack the functional vs. dysfunctional pathways, 

therefore, I again build on the literature on school-to-school differences in tracking in the US 
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setting. In Kelly and Price’s (2011) empirical work on examining the relationship between school 

compositional characteristics and school-to-school differences in school tracking policies, they 

examined both functional and conflict sources of tracking that motivated school-to-school 

variations in tracking policies. Functional forces are identified by the associations between 

dimensions of tracking and achievement heterogeneity. After adjusting for these functional factors, 

they then identified conflict forces, where various measures of school composition were 

hypothesized to motivate more elaborated tracking systems.  

Here, I build on Kelly and Price’s approach, but with less specificity. Technical-functional 

theory suggests that tracking systems enable teachers to match instruction (e.g., material, academic 

richness, and pace) to students’ skill and target their instruction to an ability-homogeneous groups 

of students (Hallinan, 1994; Oakes, 1992). In the cross-national setting, functional explanations 

for variation in school-level Opportunity to Learn would suggest that schools structure course 

offerings to match students’ readiness (specifically, achievement prior to secondary education). 

Therefore, in this study, I characterize the school-to-school differences in Opportunity to Learn in 

a country attributable to variation in school-mean academic readiness as functional. In contrast, 

conflict theories of tracking posit that advantaged students maintain their advantages through 

school tracking systems. For example, opportunity hoarding theory describes the inter-group 

conflict between, in one case, high-SES families and working/poor families. That is, students from 

high-SES families limit access to high-track curriculum to maintain their own advantage (e.g., 

Oakes, & Lipton, 1992; Wells, & Oakes, 1996). Status competition describes the competition for 

better educational attainment and labor force success within middle-class and high-SES families 

to maintain their advantages (Baker, & Stevenson, 1986). While it’s empirically difficult to 

explicitly explore these two conflict-related theories in a cross-national setting due to data 
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limitations, conflict theories suggest that, in general, after accounting for the more functional effect 

of variation in school readiness, the remaining relationship between social inequality and 

educational inequality indicates a dysfunctional pathway (A2). Figure 4.2 shows the model with 

both functional and dysfunctional pathway. 

 

 

As such, based on the analysis of the literature and proposed frameworks, I hypothesized 

that, if the variation in school-level Opportunity to Learn is motivated by functional forces, 

school-to-school differences in opportunity to learn will be explained by variation in school 

readiness/prior achievement, controlling for social inequality measures (H4-2a). 

Alternatively, after considering functional forces, if the observed school-to-school differences in 

Opportunity to Learn are related to conflict mechanisms, I would expect greater social inequality 

to be related to school-to-school differences in Opportunity to Learn (H4-2b).  

Figure 4.2 Tracing functional and dysfunctional pathways using baseline model of school-level 

variation in Opportunity to Learn 
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4.2.4 Education policies and practices as moderators: The role of stratification and 

standardization 

Early studies on the relationship between education and social stratification provide a 

comparative framework of how differences in educational systems lead to differences in the way 

in which students are sorted into the labor force (e.g., Kerckhoff, 2001; Maurice et al., 1986; 

Müller, & Karle, 1993). Alan Kerckhoff conducted important work in this area, building off classic 

studies by Turner (1960) and others. Educational systems that differ in dimensions, such as 

stratification and standardization, vary in “capacity to structure” education trajectories (Kerckhoff, 

2001). For example, In Germany, school type is clearly associated with students’ post-secondary 

trajectories and student’ occupational destinations are highly predictable once they are allocated 

into secondary education (Allmendinger, 1989; Kerckhoff, 2001), whereas the American 

comprehensive school system is known as a less explicitly stratified educational system where 

students’ future trajectories are not explicitly mapped to enrollment in a given type of secondary 

school. 

The moderation effects of stratification and standardization policies on relationships 

between family background and educational outcomes has been studied empirically. For example, 

Brunello and Checchi (2007) found that inequality in educational attainment and post-secondary 

enrollment induced by family background increased with the practice of stratification (measured 

as the duration of between-school tracking practice). Studies on the relationship between 

standardization and educational inequality, however, find that standardization has a 

counterbalancing effect on the relationships among between-school tracking, social origins, and 

inequalities in educational outcomes (e.g., Ayalon, & Gamoran, 2000; Bol et al., 2014; Horn, 2009; 
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Park, 2008). Park (2008), for example, found that standardization (e.g., national college entrance 

examination) reduced the effect of social origins on achievement inequality.  

In this study, I argue that Kelly and Price’s framework of educational inequality can also 

be used to understand the role of stratification and standardization policies in producing school-

to-school differences in Opportunity to Learn. Specifically, I hypothesize that stratification 

policies (e.g., longer tracking, early tracking, applying gate-keeper courses) will exacerbate 

the effect of social inequality on variation in school-level Opportunity to Learn, while 

standardization policies (e.g., national entrance/exit examination, or national curriculum 

standards) will attenuate this effect instead (H4-3). Figure 4.3 illustrates this hypothesis, 

focusing on the direct effect of social inequality after accounting for variation in school readiness, 

the more obviously dysfunctional path from social inequality to opportunity to learn. 

 

Figure 4.3 Final model of school level variation in Opportunity to Learn 

It’s worthwhile to note that due to data limitations, available measures of stratification and 

standardization are not fine-grained, making this moderation analysis weaker and more uncertain 

than the remainder of the model elements shown in Figure 4.2.  
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4.3 Analytic Strategy 

4.3.1 Measurement 

4.3.1.1 Dependent Measure 

In this analysis, I consider school-to-school differences in Opportunity to learn to capture 

the country-level inequality in OTL. To measure the overall Opportunity to Learn at the school 

level, I calculate school-mean course-taking experiences. The measurement of student course-

taking opportunity is a coding scheme that is built upon individual course-taking reports from the 

Trends in International Mathematics and Science Study (TIMSS). The goal for coding the 

difficulty level of math and science course taking is first to designate a difficulty level for each 

topic taught, and then produce a cumulative measure of math and science course taking at 8th grade. 

Because the TIMSS dataset does not include transcript data, the measurement of student course-

taking experiences relies on teacher-reported curricular topic lists for each participating student. 

4.3.1.1.1 Curricular Topic Coding 

For 8th grade math curricular topics, I match each topic to an equivalent grade level 

according to a widely used curricular standard in the US, the Common Core Mathematics 

Standards (CCMS). Curricular topics coded as high-level math topics are usually taught in senior 

middle school classrooms, such as simultaneous equations or concepts of irrational numbers. The 

mid-level math topics (e.g., simple linear equations or basic statistics) are taught in entry-level 

middle school math classes. TIMSS also surveyed some basic mathematics topics that are taught 

before middle schools and not common in middle school math classes (e.g., computing with whole 

numbers). I coded these topics as low-level math curricular topics. Alternatively, I also consider 
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middle school Algebra topics as a major mathematics domain discussed in many middle school 

education literatures. Thus, in the subsequent analysis, I create an alternative measure of algebra 

topics individually and discuss related results in robustness analysis.  

Different in some respects from math topics, science curricular topics are not necessarily 

associated with a given grade level, especially at the middle school level. Therefore, instead of 

assigning a difficulty level based on grade level, the science topics code captures how deeply 

students have learned content during middle school. To determine the topic code for each topic, I 

first refer to Science Content Domain documents provided by the TIMSS team. Each topic is 

further described in this document by several specific learning objectives which enable me to 

identify how deep each topic requires students to achieve. To further understand the cognitive skill 

involved in each topic, I consulted an expert on science education and modified the topic codes if 

I initially over-estimated or under-estimated the difficulty of cognitive skills involved during 

instruction. Low-level science curricular topics are defined as introductory level science concepts 

with no high cognitive skill requirement, such as major taxonomic groups of organisms, the 

classification of the properties of matter, or energy forms. Middle-level science topics require the 

ability to apply scientific knowledge, such as the structure and function of major organs and organ 

systems, chemical changes, or physical changes. Finally, classes that instruct high-level science 

topics usually involve advanced level of cognitive skills, including the synthesis, analysis, and 

evaluation of science concepts and scientific principles. For example, the structure and function of 

cells, the role of electrons in chemical bonds, or forces and motions are classified as high-level 

science curricular topics.  
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Because TIMSS gradually modified surveyed curricular topic lists over time, I thus use 

three different versions of coding schemes to assign topic codes to teacher-reported curricular 

topics. See Appendix C for the complete coding process of individual curricular topic coding.  

4.3.1.1.2 Student-level measures of course-taking experience 

Each student is then assigned to a Curricular Experience (CE) code based on their overall 

course-taking richness and difficulty. To achieve this measurement goal, with teacher-level data, 

I first examine whether each surveyed curricular topic is taught in their classrooms. TIMSS asked 

teachers to report the extent to which each curricular topic is covered in the middle school 

classrooms. Teachers select a response from the following options, (1) topic is mostly taught 

before 8th grade33, (2) topic is mostly taught at 8th grade, or (3) topic is not taught in middle school 

or just introduced. In this analysis, I consider that students are exposed to curricular topics if their 

teachers report that these topics are taught mostly at or before 8th grade (i.e., option 1 or 2). Second, 

I link teacher survey results to student files using the TIMSS Link files and examine whether 

students are exposed to each individual curricular topic. Depending on school curriculum systems, 

students may stay in one and only math/science classroom or experience different classes 

throughout middle school. Thus, multiple teachers may report curricular topics for a student in 

TIMSS. In this analysis, I consider that students are exposed to curricular topics if at least one 

teacher reports that topics are taught before or at 8th grade. Finally, as the final measure of students’ 

 

33 In some surveyed counties, 8th grade is not the final year of middle school. In this case, questionnaire is modified to 

corresponding grade level (e.g., 9th grade) that is applied to certain country. Here in this measurement, I always 

measure whether the topic is taught at or before the final year of middle school.  



 167 

overall course-taking experience, I calculate the percentage of high-level34 math and science topics 

learned, respectively, as the CE codes. This percentage represents the proportion of high-level 

topics learned out of the total number of high-level curricular topics surveyed in TIMSS. The 

percentage of high-level curricular topics learned considers both richness and difficulty of student 

course-taking experiences throughout middle schools. 35  Alternatively, I also calculate the 

percentage of high-level Algebra topics learned throughout middle schools. 

To examine the school-to-school differences in Opportunity to Learn for each country, I 

aggregate student level data to the school level (mean), then calculate the variance of the school-

mean CE code (MCE and SCE) for each country. I also calculate the country-mean pairwise school 

differences in math and science CD code by averaging the difference between each possible pair 

of schools for each country. Average pairwise differences capture the expected difference in the 

school mean CE between two randomly selected schools within a country. These pairwise 

differences are used for descriptive purposes, where they have a more intuitive expression than the 

variance. 

 

34 I also calculate the percentage of mid-level and above topics learned. However, schools on average expose a lot 

more students to mid- and high-level curricular topics than to just high-level topics, creating less variation across 

schools. Schools on average expose more than 75% students to mid- and high- level curricular topics as opposed to 

below 60% student to high-level topics. Thus, I choose to use percentage of high-level topics learned as a main DV.  

35 I realize that due to the existence of three different versions of curricular topic coding schemes, the amount of total 

high-level curricular topics may differ across cohorts. Thus, I expect some unexpected year-to-year fluctuation within 

countries. I therefore argue that year-fixed effect is useful to control some of these variation.  
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4.3.1.2 Independent Measure 

For independent variables, I consider four main categories of predictors: (1) internal-

development factors, (2) basic measures of social inequality, (3) school-to-school differences in 

school academic readiness (which is functionally related to school-to-school differences in course 

taking), and (4) country-level stratification and standardization policies. The internal-development 

process is captured by development of the non-agricultural sector, higher education expansion, 

and the natural population increase rate. The basic level of social inequality is measured using 

income inequality (GINI coefficient) and a measure of rural/urban duality. School-to-school 

differences in school readiness are measured by the variance in students’ prior achievement. And 

finally, educational policy is measured by three sets of dummy variables that capture the extent to 

which a country mandates academic-based promotion, curriculum tracking, and high-stake 

examinations. The full description of independent variables is listed in Table 4.1 

Table 4.1 Description of independent measures 

IVs Description  

Internal Developmental Factors  

GDP per capita  The GDP per capita in constant 2010 US dollar. Dataset is drawn from the 

World Bank. 

Labor shift from agricultural sector 

(%) 

Labor shift is calculated as the difference between the percentage of the 

population in rural areas and the share of agriculture, forestry, and fishing 

as a percent of GDP. i.e., how impactful is the rural economy compared to 

its population share Both population data and GDP data are drawn from 

the World Bank. 

Size of non-agricultural sector (%) Size of non-agricultural sector is measured as the share of population that 

do not live in rural area.  

Tertiary education enrollment rate 

(%) 

Tertiary education enrollment rate is derived from the World Bank. 

Natural population increase rate 

(per 1,000 people) 

Natural rate of population increase is calculated as the difference between 

crude birth rate and crude death rate. Both datasets are drawn from the 

World Bank. 

Social Inequality Measures 

Income GINI coefficient GINI coefficient of income inequality for each country. Data is derived 

from the World Bank. 

Index of inequality of rural 

population distribution 

Measured as Index of inequality/variation of rural population distribution. 

This index measures the inequality of the distribution of rural population 

(in percentage 𝑝). i.e. countries with a high or low percentage of the 

population in rural areas are less affected by the dichotomy between 

urban/suburban and rural life. Countries in the process of shifting from 
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rural to urban residency have a higher degree of variation in residency. 

The index is calculated as 𝑝 ∗ (1 − 𝑝). 

Variance in Prior Achievement 

Variance in prior achievement  Calculated school-level variance in math std. achievement test scores, 

administered at the start of 8th grade from TIMSS datasets. 

Educational Policy 

Academic-based promotion before 

8th grade 

National policy on the promotion/retention based on academic progress 

before the end of 8th grade. Dummy variable.  

Sorting students before 8th grade National policy using student achievement to assign students to classes 

before the end of 8th grade. Dummy variable. 

High-stake exams before 8th grade This variable measures whether a national educational authority 

administers examinations that have high-stakes consequence for 

individual students (such as entry to a higher school system, and/or 

exiting/graduating from school) before the end of 8th grade. Dummy 

variable. 

Other School-level Controls  

Number of computers (deviation 

from country mean) 

The variance of number of computers (in the unit of 10 computers) 

Index of inequality/variation of 

concentrated economic 

disadvantage in schools 

This index measures the inequality/variation of concentrated economic 

disadvantage in the percentage of schools having more than 50% of poor 

students. The index is calculated as 𝑝 ∗ (1 − 𝑝) such that countries with a 

high or low proportion of poor schools have greater homogeneity in 

school poverty environment 

Year Variable 

Year  The year in which TIMSS was conducted. 1-1995, 2- 1999, 3- 2003, 4- 

2007, 5-2011, 6-2015, 7-2019 

4.3.2 Statistical Analyses  

I run a series of Generalized Multilevel Linear Models (GMLM) with the Gamma 

distribution and logarithmic transformation of independent variable to estimate the school-to-

school differences in OTL. I use the Gamma distribution and logarithm transformation to address 

the positively skewed distribution of the variance of school-mean Curricular Experience (CE) 

(Montt, 2011). The first model examines the relationship between socio-economic disparities 

within countries and school-to-school differences in OTL, controlling for internal-development 

factors (development of non-agricultural sector, educational expansion, population growth, and 

economic development). The stage 1 model has the general form, 

log (𝜎𝑗𝑡
2) = 𝛼0 + 𝛽𝑇𝑡 + 𝛾𝑋𝑗𝑡 + 𝜃𝐷𝑗𝑡 + 휀𝑗𝑡 + 𝜏𝑗 



 170 

Where 𝜎𝑗𝑡
2  are school-to-school differences in OTL measures (variance of school-mean MCE and 

SCE) for country j at year t. 𝑇𝑡 is a year indicator. 𝑋𝑗𝑡 is a set of time-varying measures describing 

country j’s developmental stage at year t. 𝐷𝑗𝑡  indicates a set of measures of social inequality 

measures for country j at year t. The estimation of coefficient 𝜃 explores the baseline sources of 

variation in school-level opportunity to learn adjusting for developmental stage.  

The second model adds the key covariate related to functional explanations for variation in 

OTL, the variance of school-mean achievement ( 𝑍𝑗𝑡  is a time-varying variable indicating 

heterogeneity of school academic readiness for country j at year t). The stage 2 model has the form,  

log (𝜎𝑗𝑡
2) = 𝛼0 + 𝛽𝑇𝑡 + 𝛾𝑋𝑗𝑡 + 𝜃𝐷𝑗𝑡 + 𝛿𝑍𝑗𝑡 + 휀𝑗𝑡 + 𝜏𝑗 

𝛿 explores the main functional source of variation in school-level opportunity to learn using a 

single indicator of functionalism. Finally, the third model considers the moderation effects of 

country-level stratification and standardization policies. It has the form (𝑃𝑗𝑡 are education policy 

indicators at country j at year t.),  

log (𝜎𝑗𝑡
2) = 𝛼0 + 𝛽𝑇𝑡 + 𝛾𝑋𝑗𝑡 + 𝜃𝐷𝑗𝑡 + 𝛿𝑍𝑗𝑡 + 𝜌𝐷𝑗𝑡 × 𝑃𝑗𝑡 + 𝑃𝑗 + 휀𝑗𝑡 + 𝜏𝑗 

The cross-product term 𝐷𝑗𝑡 × 𝑃𝑗𝑡 capture the interaction between social inequality measures and 

educational policy. 𝜌 indicates whether the policies measured here moderate the effect of social 

stratification in producing school-to-school differences in Opportunity to Learn. 

In addition to the multilevel modeling analysis, I consider a set of ancillary statistical 

analyses to support the results from the main analysis. I estimate a series of population-average 

models using the Generalized Estimating Equation (GEE) approach (Hubbard et al., 2010), 

emphasizing country-to-country differences in OTL inequality rather than differences within and 

between countries over time. Population-average models with GEE account for the within-country 

year-to-year correlation structure (i.e., the heterogeneity within each country due to year-to-year 
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variation) but do not explicitly model the country-specific random effects over years. Instead, the 

model focuses on estimating the average country-level effects, with the assumption that the 

country-level independent variables have constant effects on dependent variables. Population-

average models with GEE are useful here to support the main analysis because the vast majority 

of the overall variance in important predictors lies between countries and does not vary greatly 

between years.36  

I also make some modifications to the analytic sample before running model estimations. 

First, I exclude countries that failed to capture the variation in dependent measure, curricular 

topics. Under this definition, Algeria, Austria, Bosnia and Herzegovina, Moldova, 37  and the 

Russian Federation,38 are excluded from model estimations, yielding a new sample size of 278 

observations across 67 counties.39 Second, I use both simple imputation techniques and external 

data sources to deal with the missing data occurring among independent measures. For countries 

whose data are completely missing from the World Bank databases, I rely on statistics from each 

country’s Bureau of Statistics. For example, I use data from the Directorate General of Budget, 

Accounting, and Statistics of Taiwan and Ministry of the Interior, ROC to acquire their economic 

and population data (e.g., GINI, birth and death rates, and rural population). I also visited the 

 

36 In this analysis, I only consider population-average models with GEE approach as robustness check as this model 

greatly reduces the sample size.  

37 For example, Bosnia and Herzegovina, and Moldova surveyed STEM topics in teacher survey, but failed to capture 

any variation in school-mean MCD and SCD.  

38 Russian Federation did not include instructed math topics in teacher surveys.  

39 Czechoslovakia (only 1995) is also excluded from the model estimation, but both Slovak Republic and Czechia are 

included in this sample.  
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Palestinian Central Bureau of Statistics (PCBS) website for their complete developmental data. 

More commonly, countries only lack data for certain years. I use simple imputation to fill in year-

missing data by calculating the mean of neighboring years. For example, Egypt is missing a tertiary 

education rate in 2019, but has the information for 2018 and 2021. I therefore use the mean of the 

2018 rate and the 2021 rate as the best guess of the 2019 rate.  

4.4 Results 

4.4.1 Descriptive Statistics 

To understand the baseline inequality in course taking, I first descriptively examine the 

country-to-country differences in inequality in Opportunity to Learn, including the variance of 

school-mean math and science Curricular Experience (CE) and the country-mean of average 

pairwise differences in school-mean MCE and SCE.40 Using TIMSS 2019 as an example, Figures 

4.4 and 4.5 report the average pairwise differences in school-mean MCE and SCE, respectively, 

for the 2019 cohort. As shown in Figure 4.4, among 39 sampled countries and regions from TIMSS 

2019, Malaysia, France, Singapore, and Hong Kong have the lowest school-to-school differences 

 

40  Statistically speaking, the average pairwise differences perform similarly with the variance of Curricular 

Experience. Yet, later in this analysis, I choose to use the variance of school-mean Curricular Experience because (1) 

the variance functional regression fits better with the interpretation under logarithmic transformation and (2) the 

variance captures greater amount of variation in school-mean opportunity to learn provide than the pairwise 

differences.  
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in Math opportunity to learn with an approximately 10 percentage point difference in school-mean 

percentage of high-level math topics learned between two randomly selected schools. Schools 

from Turkiye, Chile, England, and South Africa, on the other hand, have the highest school-to-

school differences in Math opportunity to learn with approximately a 30-percentage point 

difference in school-mean percentage of high-level math topics learned.41 Figure 4.5 reports the 

pairwise analysis results of school-mean science Curricular Experience (CE) for the 2019 cohort. 

Among 39 sampled countries in TIMSS 2019, schools from Japan, Finland, Taiwan, Morocco have 

the lowest pairwise differences in school-mean science Curricular Experiences (around 10 

percentage points differences) whereas schools from England, Chile, South Africa and Saudi 

Arabia experience the highest school-to-school differences in science OTL (around 25 to 30 

percentage points differences). 42 

 

41 As a reference, the weighted grand-mean of school-mean percentage of high-level math topics learned across all 

sampled schools for the 2019 cohort is 60.2%. A 30 percentage-point difference in Math CE between two random 

selected schools is almost half of the grand-mean of school-mean MCE. 

42 The weighted grand-mean of school-mean percentage of high-level science topics learned across all sampled schools 

for the 2019 cohort is 69.9%.  
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Figure 4.4 Pair-wise differences in school-mean percentage of Math topics learned (TIMSS 2019) 

 

Figure 4.5 Pair-wise differences in school-mean percentage of Science topics learned (TIMSS 2019) 

To further examine the amount of country-mean learning opportunities provided and 

inequality in OTL generated for each country, I plot the scatterplot of country-mean OTL against 

inequality in OTL for the 2019 cohort as an example. As shown in Figure 4.6, the vertical dashed 
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line indicates the grand mean of inequality in Math OTL and horizontal dashed line represents the 

grand mean of country-mean Math learning opportunities. Among all sampled countries in TIMSS 

2019, Malaysia, Singapore, Hungary, Indonesia, Israel, and the US, on average, provide students 

with rich learning opportunities while maintaining relatively low-level of inequality in school-

mean Math OTL. France, Iran, Lithuania, and Finland maintain a low-level of inequality in OTL, 

but their mean Math OTL provided is below average. Note that no sampled country has high- or 

low-level country-mean Math OTL while exhibiting extremely great inequality in OTL. England, 

Armenia, and South Africa, to name a few, provide above-average Math OTL, but exhibit a 

moderate-to-high level of inequality in Math OTL. Figure 4.7 examines the country-mean and 

inequality in Science OTL. As shown in Figure 4.7, Finland, Turkiye, Romania, Kuwait, and 

Malaysia have high country-mean Science OTL, while maintaining low-level of inequality in 

OTL. Some other countries, such as Hungary, The US, Jordan, Lithuania, and Saudi Arabia, also 

have high-level Science OTL provided to students, but exhibiting moderate level inequality in 

Science OTL. The associations between level of inequality and country-mean level of Curricular 

Experience, however, do not appear to be significant in both figures.  
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Figure 4.6 Inequality in School-mean Math OTL and Country-mean School-level OTL (TIMSS 2019) 

 

Figure 4.7 Inequality in School-mean Science OTL and Country-mean School-level OTL (TIMSS 2019) 
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Next, I descriptively examine the overall year-to-year and between-country variation in 

inequality in STEM OTL by plotting the side-by-side boxplot of the variance of school-mean math 

and science Curricular Experience (CE) over years. Examining the year-to-year variation, as 

shown in Figure 4.8, the variance of school-mean MCE is relatively stable across cohorts as most 

cohort-specific mean and median estimates are close to a .2 level. The within-year between country 

variation in dependent variables, on the other hand, is greater in early cohorts. This is likely due 

to greater variability involved in assigning students CE codes for the 1995 and 1999 cohorts.43 

Figure 4.9 reports the side-by-side boxplots of science DV. Looking at the year-to-year variation 

in cohort-specific median, the variances of school-mean SCE are stable across recent five cohorts, 

whereas the 1995 and 1999 cohorts show greater fluctuations across cohorts. The within-year 

between-country variation is also greater within the 1995 and 1999 cohorts than within the later 

five cohorts.  

 

43 There are more surveyed curricular topics in the TIMSS 1995 and 1999 studies than later studies, creating more 

variability across schools.  
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Figure 4.8 Side-by-Side Boxplot of School-to-school differences in Math OTL 

 

Figure 4.9 Side-by-Side Boxplot of School-to-school differences in Science OTL 
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4.4.2 Model Estimation Results  

Tables 4.2 to 4.5 report the model estimation results concerning country-level inequality 

in math and science opportunity to learn, using Generalized Multilevel Linear Models and 

population-average models with GEE approaches. Tables 4.2 and 4.3 report generalized multilevel 

models exploring the sources of variation in Math and Science Curriculum Experiences (MCE and 

SCE), respectively, with the Gamma distribution and logarithmic transformation, using (1) country 

internal-development factors, (2) basic measures of social inequality, (3) school-to-school 

differences in average school readiness, and (4) country-level education policies concerning both 

stratification and standardization. Tables 4.4 and 4.5 then report results from population-average 

models which serve as robustness check in later analysis.  

Table 4.2 Multilevel models: Country variance of school-mean Mathematics Curriculum Experience (MCE) 

as a function of internal development, social inequality, functionalism, and educational policy (Country-level 

covariates includes inequality in school resources, teacher quality, and geographic regions) 

 
Model 1  Model 2 Model 3  Model 4 Model 5 

Year -.001 -.003 -.006 -.015 .006 

  (.009) a (.008) (.012) (.011) (.013) 

Internal Development Factors      

Labor shift from agricultural 

sector (%) 

  -.005 -.005 .002 

    (.004) (.004) (.008) 

Size of non-agricultural sector 

(%) 

  .011~ .017* .069** 

   (.006) (.008) (.019) 

Natural population increase rate 

(per 1,000 people) 

  .011** .016** .007 

    (.004) (.005) (.005) 

Tertiary education enrollment 

rate (%) 

  -.048** -.033* -.110** 

    (.013) (.012) (.030) 

GDP per capita (unit: 1000 US$)   .001 .002* .002~ 

    (.001) (001) (.001) 

Social Inequality Measures      

Index of inequality of rural 

population distribution 

(Standardized) 

 .028** .140* .177* .110** 

   (.007) (.068) (.078) (.034) 

Income GINI coefficient  .005 .020 .033 .007 
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   (.023) (.023) (.022) (.022) 

GINI Square   -.000 -.000 -.000 -.000 

  (.000) (.000) (.000) (.000) 

Functionalism      

School-to-school differences in 

prior math achievement 

(standard deviation) 

   .092*** .101*** 

    (.017) (.022) 

Educational Policy      

Academic-based Promotion 

Policies  

    .031 

     (.059) 

Promotion × inequality of rural 

population distribution 

    -.013 

     (.058) 

Within-school sorting Policies      -.033* 

     (.016) 

Sorting × inequality of rural 

population distribution 

    .156** 

     (.044) 

High-stake Exam before 8th 

grade 

    

.132 

     (.112) 

High-stake Exam × inequality of 

rural population distribution 

    -.058~ 

     (.033) 

Country-level Covariates No No Yes Yes Yes 

      

𝜎𝜖
2 .016 .015 .014 .012 .012 

𝜎𝜇
2 .015 .011 .010 .007 .007 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

Table 4.3 Multilevel models: Country variance of school-mean Science Curriculum Experience (SCE) as a 

function of internal development, social inequality, functionalism, and educational policy (Country-level 

covariates includes inequality in school resources, teacher quality, and geographic regions) 

 
Model 1  Model 2 Model 3  Model 4 Model 5 

Year .000 -.002 -.008 -.007 -.000 

  (.001) a (.011) (.012) (.013) (.016) 

Internal Development Factors      

Labor shift from agricultural 

sector (%) 

  -.002 -.002 .003 

    (.006) (.006) (.009) 

Size of non-agricultural sector 

(%) 

  -.016 -.016 -.017 

   (.019) (.018) (.017) 

Natural population increase rate 

(per 1,000 people) 

  .008* .018* .012** 

    (.004) (.008) (.004) 

Tertiary education enrollment 

rate (%) 

  .012 .001 .002 

    (.012) (.001) (.002) 
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GDP per capita (unit: 1000 US$)   .000 .006* .001 

    (.001) (.002) (.001) 

Social Inequality Measures      

Index of inequality of rural 

population distribution 

(Standardized) 

 .009 .085** .088* .104~ 

   (.006) (.028) (.038) (.063) 

Income GINI coefficient  .012 .022 .022 .007 

   (.015) (.020) (.021) (.011) 

GINI Square   -.000 -.000 -.000 -.000 

  (.000) (.000) (.000) (.000) 

Functionalism      

School-to-school differences in 

prior science achievement 

(standard deviation) 

   .053* .052* 

    (.021) (.025) 

Educational Policy      

Academic-based Promotion 

Policies  

    .038 

     (.064) 

Promotion × inequality of rural 

population distribution 

    -.015 

     (.012) 

Within-school sorting Policies      -.007 

     (.012) 

Sorting × inequality of rural 

population distribution 

    -.094 

     (.087) 

High-stake Exam before 8th 

grade 

    

.043 

     (.055) 

High-stake Exam × inequality of 

rural population distribution 

    -.038 

     (.031) 

Country-level Covariates No No Yes Yes Yes 

      

𝜎𝜖
2 .021 .021 .021 .021 .016 

𝜎𝜇
2 .007 .005 .005 .002 .001 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

4.4.2.1 Hypothesis 4-1: The role of social inequality in generating educational inequality 

I begin by examining the first Hypothesis of this chapter. Hypothesis 4-1 considers the 

intra-relationships among (1) a country’s internal-development factors, (2) basic social 

inequalities, and (3) inequality in learning opportunities. In the baseline conceptual model depicted 

in Figure 4.1, a country’s developmental stage produces the variation in basic social inequality, 
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and social inequality in turn generates the inequality in opportunity to learn. After considering the 

generative processes of internal-development factors on social inequality (the evolution of social 

inequality), Hypothesis 4-1 states that the level of inequality in OTL should be responsive to basic 

forms of social inequality (Path A1 in Figure 4.1).  

Models 2 and 3 from Tables 4.2 and 4.3 explicitly address this hypothesis. Model 2 only 

examines the extent to which variation in inequality in OTL is explained by basic social inequality, 

including urban/rural duality and income inequality, whereas Models 3 further considers all 

internal-development factors that are in the model. As shown in Table 4.2, Model 2, among two 

key elements of basic social inequality, the urban/rural duality is positively associated with the 

variance of school-mean MCE, whereas the partial effect of income inequality beyond urban/rural 

duality is not significant. Further in Model 3, I show that after considering internal-development 

factors, urban/rural duality remain positively associated with the variance of school-mean MCE, 

supporting that the level of inequality in OTL may be responsive to the basic social inequality, net 

of a country’s development stage. Concerning the effect size in this baseline framework (Figure 

4.1), Model 3 shows that a one standard deviation increase in urban/rural duality is related to a 

15% increase in the variation in school-mean MCE (𝑒 .140 − 1 = 15.02%), without considering 

the joint effect carried through income inequality. It is worthwhile to note that Model 3 also shows 

some direct effects of development stage on the level of inequality in OTL (Figure 4.1, Box 1 to 

Box 3). For example, the development of the non-agricultural sector and the increase of population 

are both positively associated with the level of inequality in OTL, while the expansion of tertiary 

education helps reduce the inequality in Math OTL as it has negative association with the DV.  

Table 4.3, Models 2 and 3 report the results of the inequality of Science OTL using the 

same model specification. However, Model 2 fails to show the basic associations between social 
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inequality and the variation of school-mean Science Curricular Experiences. Yet, after considering 

all internal-development factors in Model 3, I find a positive association between urban/rural 

duality and the science DV, providing some evidence that a country’s level of inequality in STEM 

Opportunity to Learn is in fact responsive to basic social inequality, net of the evolution of social 

inequality due to development.  

4.4.2.2 Hypothesis 4-2: Functional sources of school-to-school differences in OTL: 

Variation in school readiness  

Next, I further explore the functional and conflict sources of inequality in OTL. Following 

the empirical work by Kelly and Price (2011), I argue that Path A1 in Figure 4.1 may ambiguously 

mix the technical-functional rationale and conflict forces of curriculum differentiation, and should 

be identified individually. Hypothesis 4-2 states that if the variation in school readiness/prior 

achievement in Box 4 can explain most of the relationship between social inequality and variation 

in school-level Opportunity to Learn (Path C), then the level of educational inequality is better 

characterized as reflecting technical-functional considerations. If, however, after controlling for 

this functional pathway, we can still observe significant relationships between social inequality 

and variation in school-level Opportunity to Learn, path A2 can be characterized as reflecting 

conflict processes. 

Model 4 from Tables 4.2 and 4.3 explicitly address this empirical consideration by adding 

a key functional determinant of tracking, school-to-school differences in prior achievement, to 

Model 3. As shown in Table 4.2, Model 4, school-to-school differences in prior math achievement 

is positively associated with the variance of school-mean MCE, indicating an apparent technical-

functional explanation of school-to-school differences in learning opportunities. Concerning the 

effect size, a one standard deviation increase in school-to-school differences in prior math 
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achievement is related to a 9.6% increase in the school-to-school differences in math OTL. Yet, 

even considering this basic functional mechanism, Model 4 still shows a positive association 

between the basic social inequality and math DV, indicating some conflict forces that might 

motivate between-school curriculum tracking. While weaker in effect sizes, Table 4.3, Model 4 

also shows a positive association between functionalism and inequality in Science OTL. The 

remaining relationship between social inequality and inequality in OTL is still positive, after 

considering the key functional factor. Overall, both math and science results provide some 

evidence that the between-school tracking may in fact be motivated by both technical-functional 

and conflict sources.  

4.4.2.3 Hypothesis 4-3: Stratification and standardization policies as moderator 

Lastly, this analysis explores moderation effects of major educational policies. Such 

moderation effects are often addressed in cross-national studies (e.g., Park, 2008) that consider 

how various educational stratification and standardization policies impact the basic relationship 

between social inequality and educational inequality (Figure 4.3). In Figure 4.2, I disentangle the 

relationship between social inequality and inequality in OTL into a technical-functional pathway 

(Path C) and a conflict pathway (Path A2). I thus argue that the test of moderation effect of 

educational policies should be conducted on the remaining relationship between social inequality 

and inequality in OTL (i.e., the conflict pathway), rather than the total association (i.e., Path A1). 

Hypothesis 4-3 states that practicing stratification policies (i.e., early sorting and gate-keeper 

courses) may exacerbate the effect of social inequality on inequality in OTL, while practicing 

standardization policies (i.e., national entrance examinations) may attenuate this effect instead.  

Model 5 from Tables 4.2 and 4.3 explore Hypothesis 4-3 by adding the interaction terms 

between social inequality and dummy indicators of educational policies. As shown in Table 4.2, 



 185 

Model 5, the interaction term between urban/rural duality and the dummy indicator of national 

policy using student achievement to sort students before the end of 8th grade is positively 

associated with the variance of school-mean MCE, indicating an exacerbation effect of 

stratification policies on the relationship between social inequality and educational inequality. In 

particular, the effect of urban/rural duality on the variation in school-mean MCD among countries 

with national-level within-school sorting policies are 16.9% (𝑒 .156 − 1 = 16.9%) higher than the 

effects among countries without such policies. On the other hand, the interaction term between 

urban/rural duality and the dummy indicator of national examinations that have high-stakes 

consequence for individual students before the end of 8th grade has a significant negative effect 

on the dependent variable, instead indicating an attenuation effect of country-level 

standardization policy on the relationship between urban/rural duality and the variation in STEM 

OTL. Referencing model-based calculations, a country with high-stake examinations, on average, 

has a 5.6% decrease in the effect of urban/rural duality on the variation in math OTL than a country 

without high-stake exams. The interaction terms between these policies and social inequality, 

however, shows no moderation effect on the Science DV. It’s worthwhile to note that the 

measurement of educational policy in this analysis relies on country-level curriculum 

questionnaires, even as policy implementation may vary within countries in important ways. 

Therefore, the analysis in this sub-section is influenced by that measurement error.  

4.4.3 Robustness Analysis 

In this analysis, I consider two sets of robustness analysis to support the main analysis. 

First, to support the estimations of important country-to-country differences in the variation in 

STEM OTL, I explicitly model the country-specific effect of country-level composition by running 
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a series of population-average models with GEE estimator. Population-average models explore 

average country-level effects, with the assumption that the country-level independent variables 

have constant effects on dependent variables across years. Table 4.4, Models 1 and 2 summarize 

the population-average model estimation of the variation in school-mean MCE and SCE, 

respectively, using the full model specification in Tables 4.2 and 4.3. In general, population-

average model estimation results are similar to the results from multilevel modeling. First, in 

supporting Hypothesis 4-1, I find positive associations between urban/rural duality and the 

variance of school-mean MCE and SCE, net of internal-development factors. Considering 

Hypothesis 4-2, in this robustness analysis, I find evidence that supports both functionalism and 

conflict pathways of between-school curriculum tracking in this cross-national setting. While the 

evidence that support Hypothesis 4-3 may be less apparent, I find that education policies 

concerning early sorting and high-stake examination appear to moderate the associations between 

school-to-school differences and social inequality, net of a country’s development stage and 

functional pathways of tracking.  

Table 4.4 Robustness Check using Population Average Models: Country variance of school-mean 

Mathematics Curriculum Experience (MCE) and Science Curriculum Experience (SCE) as a function of 

internal development, social inequality, functionalism, and educational policy (Country-level covariates 

includes inequality in school resources, teacher quality, and geographic regions) 

 
Model 1: Math CE Model 2: Science CE 

Year .005 .001 

  (.013) (.001) 

Internal Development Factors   

Labor shift from agricultural 

sector (%) 

.005 .003 

  (.007) (.010) 

Size of non-agricultural sector 

(%) 

.084* -.006 

 (.038) (.008) 

Natural population increase rate 

(per 1,000 people) 

.007* .013** 

  (.003) (.004) 
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Tertiary education enrollment 

rate (%) 

-.131** .002 

  (.035) (.001) 

GDP per capita (unit: 1000 US$) .002~ .001 

  (.001) (.001) 

Social Inequality Measures   

Index of inequality of rural 

population distribution 

(Standardized) 

.077** .139** 

  (.028) (.024) 

Income GINI coefficient .015* .009 

  (.008) (.012) 

GINI Square  -.000 -.000 

 (.000) (.000) 

Functionalism   

School-to-school differences in 

prior math/science achievement 

(standard deviation) 

.104*** .049* 

 (.022) (.023) 

Educational Policy   

Academic-based Promotion 

Policies  

.026 .034 

 (.060) (.061) 

Promotion × inequality of rural 

population distribution 

.007 -.005 

 (.005) (.052) 

Within-school sorting Policies  -.067** -.026* 

 (.013) (.011) 

Sorting × inequality of rural 

population distribution 

.117* .072 

 (.054) (.074) 

High-stake Exam before 8th 

grade 

-.015 

.044 

 (.044) (.052) 

High-stake Exam × inequality of 

rural population distribution 

-.059* .042 

 (.029) (.047) 

   

Country-level Covariates Yes Yes 

 

Second, I model an alternative dependent measure concerning the percentage of high-level 

Algebra topics learned (as opposed to all math topics) as a function of internal-development stages, 

social inequality, functionalism, and education policies. Table 4.5, Model 2 shows that the country-

level variance of school-mean percentage of high-level Algebra topics learned is positively 

associated with both measures of social inequality (income inequality and urban/rural duality), net 

of a country’s development stage. Model 3 further examines the Hypothesis 4-2 and supports that 
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the alternative math DV is also positively related to both functional and conflict sources of 

between-school tracking. Concerning Hypothesis 4-3, this alternative analysis only supports the 

exacerbation effect of early-sorting policies on the relationship between social inequality and 

educational inequality. 

Table 4.5 Robustness Check using Multilevel Models: Alternative measures, country variance of school-mean 

percentage of high-level Algebra topics learned as a function of internal development, social inequality, 

functionalism, and educational policy (Country-level covariates includes inequality in school resources, 

teacher quality, and geographic regions) 

 
Model 1 Model 2 Model 3 Model 4 

Year .016 .015 .007 .012 

  (.011) (.013) (.012) (.012) 

Internal Development Factors     

Labor shift from agricultural 

sector (%) 

 .006 .005 .006 

   (.007) (.007) (.009) 

Size of non-agricultural sector 

(%) 

 .017* .017* .061** 

  (.008) (.008) (.018) 

Natural population increase rate 

(per 1,000 people) 

 .016*** .016** .009~ 

   (.004) (.005) (.005) 

Tertiary education enrollment 

rate (%) 

 -.033* -.020* -.080*** 

   (.015) (.008) (.016) 

GDP per capita (unit: 1000 US$)  .001 .002~ .004** 

   (.001) (.001) (.001) 

Social Inequality Measures     

Index of inequality of rural 

population distribution 

(Standardized) 

.011 .040* .081* .111* 

  (.013) (.013) (.041) (.049) 

Income GINI coefficient .012 .038* .032* .024 

  (.008) (.013) (.015) (.026) 

GINI Square  -.000 -.000 -.000 -.000 

 (.000) (.000) (.000) (.000) 

Functionalism     

School-to-school differences in 

prior math achievement 

(standard deviation) 

  .079** .103** 

   (.028) (.034) 

Educational Policy     

Academic-based Promotion 

Policies  

   .083 

    (.066) 

Promotion × inequality of rural 

population distribution 

   -.024 
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    (.064) 

Within-school sorting Policies     .138 

    (.168) 

Sorting × inequality of rural 

population distribution 

   .209* 

    (.102) 

High-stake Exam before 8th 

grade 

 

 

 .082 

    (.059) 

High-stake Exam × inequality of 

rural population distribution 

   -.030 

    (.027) 

Country-level Covariates No Yes Yes Yes 

4.5 Discussion and Conclusions 

Following a similar theorical paradigm of curriculum tracking considered in Chapter 3, this 

empirical chapter investigates the social determinants of school-to-school differences in math and 

science course-taking experiences, a key component of Opportunity to Learn (OTL), in a cross-

national setting using a large cross-national sample with 278 observations across 67 countries, 

dating from 1995 to 2019. Drawing on basic theoretical perspectives of social inequality and 

educational stratification, this chapter proposes a conceptual framework that helps trace the 

fundamental sources of educational inequality. The framework incorporates traditional 

developmental theories of the evolution of inequality and social theories of curriculum tracking 

and advocates a comprehensive consideration of country-level development and social 

stratification processes in cross-national studies of educational inequality. 

Concerning Hypothesis 4-1, this chapter first examines the association between basic social 

inequality and inequality in Opportunity to Learn. The internal-development framework describes 

the way in which the pattern of basic social inequality (i.e., unequal distribution of income and 

population) evolves as a country develops. This analysis then finds that the unequal distribution of 



 190 

learning opportunities at the country level follows a similar pattern of the basic social inequality, 

even after considering the generative effect of internal development on the basic social inequality. 

Specifically, this analysis explores two different forms of basic social inequality, income 

inequality and urban/rural duality, which both contribute to the overall conceptualization of basic 

social inequality. The main model estimation results reported in Table 4.2 and 4.3 indicate that 

urban/rural duality, as an important form of social inequality, is significantly positively associated 

with inequality in opportunity to learn. Yet, the remaining partial effect that is carried through 

income inequality is only positive but not significant in main models. Later in ancillary models 

reported in Table 4.5, I find that both forms of social inequality are significantly associated with 

inequality in math (mainly concerning algebra topic levels) opportunity to learn. 

This Chapter further draws attention to social theories of curriculum tracking which speaks 

to both a fundamental technical-functional logic of tracking and conflict forces that are related to 

maintaining and producing more differentiated course-taking experiences. Theories of tracking 

help unpack the equivocal link between social inequality and inequality in learning opportunities; 

that is, the design and practices of school curriculum systems may bear the pedagogical 

consideration of teaching students with unequal distribution of school readiness, but school 

tracking systems may in fact favor high-SES and other advantaged social groups (see also 

discussion in Chapter 3). 

Concerning the technical-functional sources of tracking, this chapter examines the way in 

which school-to-school differences in opportunity to learn is responsive to school-to-school 

differences in school readiness. Hypothesis 4-2a states that if a country’s school tracking system 

relates to a functional logic, school-to-school differences of opportunity to learn may follow the 

distribution of academic readiness/prior achievement at the school level. Consistent with 
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Hypothesis 4-2a, this study finds a strong positive association between school-to-school 

differences in school-mean math and science opportunity to learn and between-school prior 

achievement disparity, which speaks to a clear technical-functional pathway of between-school 

tracking. Concerning the effect size, recall that a one standard deviation increase in school-to-

school differences in prior math achievement is related to nearly a 10% increase in school-to-

school differences in opportunity to learn.  

However, this study finds a strong positive association between social inequality and 

school-to-school differences in opportunity to learn, even after considering the unequal 

distribution of school readiness. This result implies a set of conflict forces that are related to 

educational inequality in this cross-national setting. Previously in Chapter 3, I discussed a broad 

array of socio-political processes that both motivated high-SES families and exerted external 

pressures for schools to explicitly promote differentiated curricular systems. While a cross-

national research setting may not enable a micro-level analysis of complicated organizational 

processes of curriculum differentiation, this analysis emphasizes likely conflict sources of school-

to-school differences in opportunity to learn.  

Relatedly, this study also examines the role of educational standardization and stratification 

policies in moderating the effect of conflict forces on school-to-school differences in OTL. While 

limited by data quality, this analysis finds evidence that, to some extent, supports Hypothesis 4-3. 

I find that policies concerning stratification, in the form of promoting early sorting, exacerbate the 

association between inequality in OTL and social inequality. Early sorting policies use students’ 

measured achievement to determine school placements. Because students’ school readiness is so 

tied to their family background, promoting early sorting based on academic achievement will 

exacerbate the role of family background in determining school placements. On the other hand, 



 192 

this analysis finds that standardization, in the form of high-stake examinations, attenuates the 

strong link between social inequality and inequality in OTL. High-stake examinations are used in 

many Asian countries, where country/province/state-level prescribed curriculum standards are in 

place. Standardized testing policies may push schools to implement a similar curricular system, 

regardless of students’ average readiness and family background.  

This chapter resonates with the 4th United Nations’ Sustainable Development Goal (SDG) 

concerning inclusive and equitable education for all. This Sustainable Development Goal primarily 

focuses on ensuring that all children complete “free, equality and quality” primary and secondary 

education, with extended target of eliminating educational inequality due to between-group 

disparities (e.g., rural/urban and bottom/top wealth disparities, see also UN-SDG, Target 4.1 and 

4.4). As documented by the United Nations, in 2019, only one third of and one sixth of countries 

or territories achieved urban/rural and bottom/top wealth parity in primary school completion, 

respectively. Regarding post-secondary enrollment, virtually no countries or territories achieved 

rural/urban and wealth parity (see also UN website, Goal 4 Progression). This analysis contributes 

to the examination of educational inequality globally by creating measures of and exploring 

inequality in opportunity to learn, an important component of education inequality. In particular, 

this analysis argues that the valuable STEM learning opportunities still disproportionately benefit 

students with advantaged backgrounds, with the consideration of developmental stages and 

functional considerations, an often-ignored conceptual source of differentiation in learning 

opportunities.  

To interpret the findings, I should note that the results are derived from a cross-national 

sample with only 278 country-year observations, and the interpretation should not go beyond a 

country-level framework. For example, this analysis does not demonstrate the way in which 
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individual schools create within-school between-classroom or even within-classroom curriculum 

differentiation. Limited by data quality, this analysis does not explicitly consider the actual level 

of learning opportunities that each student received during middle schools. The topic codes utilized 

in this analysis involve more measurement error compared to other commonly used measures of 

learning opportunities, such as transcript-based measures in previous chapters. The actual effect 

size of the associations examined in this analysis may be larger since the measurement error 

involved in DVs bias the estimation downwardly. The “unbiased” relationship between inequality 

in school-mean opportunity to learn and key predictors may be in fact even more positive than 

estimated in Tables 4.2 and 4.3. It’s also worth noting that, although I examine the moderation 

effects of policies, this analysis does not explicitly advocate that countries should implement any 

single educational policies solely in order to mitigate inequality in OTL, such as promoting high-

stake exams to reduce the role of social inequality in generating inequality in OTL. 

Future research that aims to examine inequality in opportunity to learn and to promote 

education equity globally may further explore the realized unequal distribution of learning 

opportunities at the school and student level. This may include collecting more nuanced course-

taking data, creating more reliable measurement schemes of students’ course-taking and 

instruction experiences, and more explicit modeling strategies. Regarding future research that 

utilizes the theoretical framework in this study, they may extend the existing framework to explore 

more complex conceptual models. For example, this framework can be further applied to examine 

the role of inequality in opportunity to learn in creating inequality in educational attainment, with 

a more systematic consideration of developmental stages, social inequality, and functional logics. 

Future research that focuses on cross-national tracking may also further examine the role of policy 

trends and emphasis of equitable education and learning opportunities. Doing so may require 



 194 

intensive data collection processes of country-, state/province/district-, and school- level 

curriculum policy design and implementation.  

Chapter 4 presents a conceptual framework that can be used to systematically understand 

the relationships among country development, social inequality, and curriculum tracking in cross-

national research settings. While inferentially limited, this framework helps identify and 

conceptualize the technical-functional and conflict sources of between school tracking which are 

often less-emphasized in cross-national studies. 
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5.0 Chapter 5. Conclusion 

Ever since the comprehensive school model was introduced in the early 1920s, US high 

school curriculum systems have started to arouse waves of debates and reforms that tackle the 

design of curriculum tracking. To systematically understand curriculum tracking, and the results 

of this dissertation study, it might be helpful here to pose two questions about tracking and the 

larger context of schooling. Fundamentally, tracked curriculum systems seek to provide students 

with an “appropriate” level of instruction that benefits their learning due to technical pedagogical 

considerations. In the aggregate or collectively, curriculum differentiation may also be functionally 

responsive to the development of a society, much as the early design of the US comprehensive 

high schools promoted differentiated programs to meet the society’s needs of both vocational and 

academic education (Wraga, 2000). But have school tracking systems gone too far away from the 

technical-functional considerations towards disproportionately benefiting a small group of 

students? On the other hand, tracking occurs within the context of ongoing efforts to promote equal 

and high-quality education for all students, which has improved overall educational achievement 

and attainment and reduced overall educational inequality (e.g., Gamoran, 2004). But might these 

efforts have promoted changes in curriculum tracking that ignore the instructional needs of 

different students and create too many or too little challenges for students with various levels of 

readiness? Although I can’t fully answer these questions about what an ideal tracking system 

should look like, or what caused the trends seen in the data, this dissertation study examines various 

social theories of tracking and hopes to draw attention to a more systematic understanding of 

curriculum tracking.  
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In this dissertation, I find much evidence of the positive logic of tracking and functionalism. 

First, the descriptive analysis of NCES datasets reveals that over the period of 1982-2013, US high 

schools increasingly provided STEM learning opportunities and promoted more students to higher-

level STEM courses. For example, school-mean math sequence levels rose by almost 70% from 

1982 to 2013, while math inclusiveness went up by 155% over the same period of time. Moreover, 

the standard deviation of school-mean math sequence level and inclusiveness have both become 

smaller in later decades. Thus, US high schools not only provide more opportunity to learn in math, 

but also vary less across schools in more recent decades. Levels of science course taking and 

inclusiveness have increased by 65% and 263%, respectively. Relatedly, descriptive analysis of 

the structure of tracking shows that US high school STEM curriculum systems have become less 

selective and more flexible. Collectively, although not directly investigated here, these results 

imply that US high schools, in general, are positioned to provide more STEM learning 

opportunities for students from diverse backgrounds. 

Second, when the relationship between level-related measures of tracking and school 

composition is examined, this dissertation study reveals more evidence of the positive logic of 

tracking. I find strong evidence that level-related measures of course taking have stable 

relationships with relevant measures of achievement, a rational and logical consideration affecting 

patterns of course taking. Under a functional logic, we would expect schools to provide higher-

level courses for students with advanced readiness. This analysis also finds a stable association 

between various measures of school heterogeneity and level-related measures of course taking, 

indicating that diverse schools also tend to have higher school-mean course-taking levels. This 

result may speak to a general competition among all students, not just high-SES students, that may 

drives up the overall level of course taking. Moreover, although this analysis shows a positive 
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association between school-mean SES and course taking levels, indicating that high-SES parents 

and students actively seek advanced courses, this relationship has become generally weaker in later 

decades.  

Finally, analyses of how school composition affects the organizational dimensions 

(structure) of tracking also reveal a functional logic. I find a strong technical-functional logic in 

the relationship between measures of achievement and the variance of STEM course taking, as 

well as Math Selectivity. Moreover, the relationship between Math Selectivity and functional 

predictors has become even stronger in recent decades. This may indicate that schools are 

responsive to heterogeneity in student academic readiness when designing differentiated 

curriculum systems. Overall, considering all evidence of functionalism, this study reveals rational 

and logical means of providing students with rigorous instruction, and of exposing students to 

differentiated curricular settings, remain important in US high school curriculum systems.  

However, this dissertation study also finds some evidence, reflecting negatively on tracking 

systems, that US high school tracking systems are not fully functional. First, although the mean 

level of STEM course taking has increased, I find larger school-to-school differences in science 

course taking and Inclusiveness in later decades. Second, this analysis shows that the variance of 

both student math sequences and STEM tracking Selectivity are related to measures of school 

composition that indicate processes of status competition may be at work. Furthermore, the 

compositional measures that likely generate status competition are increasingly associated with 

STEM tracking selectivity over the period of this analysis. In all, in higher-SES school contexts I 

find more rigorous course taking, but also more differentiated, and more selective course taking.  

If these associations reflect status competition processes, the result is both more inequality (in the 

form of increased differentiation/variation in course taking), but perhaps also more motivation in 
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these school contexts for parents and students to actively seek advanced courses.  As in prior 

research (Kelly & Price, 2011), I find very little evidence to support an opportunity hoarding view 

of tracking. 

In addition to the positive and negative trends, associations, and changes in associations 

summarized thus far, I find that much about how schools differentiate students’ course taking 

remains unexplained. First, the correlational analysis shows that the various organizational 

dimensions of tracking considered in this study do not go tightly hand-in-hand with each other. 

This result departs from prior studies of tracking policies (Kelly, & Price, 2011) that found much 

higher inter-dimensional correlations between dimensions of tracking and used the formative 

construct of “the overall elaboration of tracking” to describe school-to-school variation in tracking 

systems. This inconsistency may be due to the fact that the actual realized measures of tracking 

considered in this analysis reveal more variation across schools than curriculum policies and 

guidelines. Yet, the measures of realized tracking structure likely also involve more measurement 

error (including sampling error). Moreover, in the multivariate models , the amount of variation in 

tracking structures across schools that is explained is generally quite low, leaving a large amount 

of unexplained variation. 

Finally, in Chapter 4, I extend the framework used in Chapter 3, to investigate another form 

of curriculum differentiation, between-school tracking, in a cross-national setting. In this chapter, 

I first model the generative effect of basic social inequality on tracking, net of internal-

development processes. Similar to Chapter 3, Chapter 4 then considers between-school 

achievement heterogeneity as a key functional factor, identifying the remaining association 

between social inequality and tracking that can more narrowly be attributed to conflict forces. In 

this chapter, I find that both functional and conflict pathways are related to greater school-to-school 
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differences in learning opportunity. The theoretical framework in Chapter 4, although limited 

inferentially by the lack of richer measures of opportunity to learn, serves as an important reference 

for future research that explicitly examines inequality in opportunity to learn. 
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Appendix A Coding Process for Course Sequence Codes used in NCES Chapter 

The coding of Mathematic Course Sequence (MCS) codes starts with assigning ten-level 

individual math course code to each course. As shown in Appendix Table 1, 1 represents math 

courses whose difficulty or requirement were lower than algebra I. These could be some informal 

math course or introductory courses for math in general. 2 represents algebra I or other courses 

with equal difficulty or requirement. Any algebra I sequence course is coded as 2 as well (i.e. 

algebra I part 1 and part 2 are both coded with 2). 3 represents geometry or other equal courses. 4 

represents courses that are harder than Algebra 1 or equal courses but are not at the same level as 

Algebra 2. This code also includes courses that apply knowledge from Algebra 1 or other equal 

courses but not knowledge from Algebra II or higher-level courses. Courses coded with 4 are 

courses that transit from 1-3 to 5 or higher. 5 represents Algebra II or other equal courses. 6 

represents applied math elective courses that include any course that may apply theories or 

knowledge from algebra II and/or geometry courses. Although these courses are based on prior 

courses, courses that are only based on pre-algebra or algebra I are not included. The intention for 

adding applied math elective code is to distinguish those students who finish algebra II and 

geometry and turn to other courses that apply knowledge they have learned from students who 

stop after finishing algebra II and geometry. 7 represents Algebra III and other higher-level algebra 

courses like number theory. 8 represents trigonometry and mathematic analysis courses. 9 

represents Calculus and other equal courses that are based on pre-calculus, trigonometry, or 

algebra III. Finally, 10 represents courses that are harder than calculus. These may include higher 

level calculus courses, applied calculus courses that are based on calculus.  
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NCES uses the Classification of Secondary School Courses (CSSC) to classify courses 

transcribed from the 1982 (HS&B), 1992 (NELS:88), and 2002 (ELS:2002) cohorts, and the 

School Courses for the Exchange of Data (SCED) to classify courses from the 2013 cohort 

(HSLS:09). See Appendix Table 2 for complete individual mathematic course codes with SCED 

codes and Appendix Table 3 for individual math course codes with CSSC codes. The Mathematic 

Course Sequence (MCS) codes capture cumulative course-taking experiences and start with 1–less 

than algebra I and end with 9–calculus or higher. Students with higher MCS values have deeper, 

and richer mathematic learning experiences than students with lower values. The full cumulative 

Mathematics Course Taking codes are shown in Table 2.1 from main text. 

Appendix Table 1 Ten-level individual math course code 

Individual math code Description 

1 less than Algebra 1 

2 Algebra 1 

3 Geometry 

4 Transition  

5 Algebra 2 

6 Applied math elective 

7 Algebra 3 and equal 

8 Trigonometry and equal 

9 Calculus and equal  

10 Higher than “Calculus” 

 

Appendix Table 2 Complete individual mathematic course codes using SCED codes 

Course name SCED code 
Indiv. 

Code 
Course name SCED code 

Indivi. 

Code 

Informal Mathematics  02001 1 

Mathematic 

Analysis/Analytic 

Geometry 1 

02108 8 

General Mathematics 02002 1 Elementary Functions 2 02109 8 

Particular Topics in 

Foundation Mathematics 
02003 1 Pre-Calculus  02110 8 

Mathematics (early childhood 

education) 
02028 no obs3 Linear Algebra 4 02111 9 

Mathematics (pre-

kindergarten) 
02029 no obs Linear Programming 5 02112 9 
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Mathematics (kindergarten) 02030 no obs Abstract Algebra 6 02113 9 

Mathematics (grade 1) 02031 no obs Calculus  02121 9 

Mathematics (grade 2) 02032 no obs Multivariate Calculus 7 02122 10 

Mathematics (grade 3) 02033 no obs Differential Calculus 8 02123 10 

Mathematics (grade 4) 02034 no obs AP Calculus AB 9 02124 9 

Mathematics (grade 5) 02035 no obs AP Calculus BC 10 02125 10 

Mathematics (grade 6) 02036 no obs 
Particular Topics in 

Calculus 11 02126 9 

Mathematics (grade 7) 02037 no obs IB Mathematical Studies12 02131 8 

Mathematics (grade 8) 02038 no obs IB Mathematics 13 02132 8 

Mathematics—General  02039 no obs 
IB Further Mathematics—

HL 14 02134 8 

Foundation Mathematics—

Independent Study  
02047 1 

IB Mathematics, Middle 

Years Program15 02135 7 

Foundation Mathematics—

Other  
02049 1 Finite Mathematics 02136 no obs 

Pre-Algebra  02051 1 Mathematical Modeling 02137 no obs 

Algebra I 02052 2 
College Mathematics 

Preparation 
02138 no obs 

Algebra I—Part 1  02053 2 
Particular Topics in 

Analytic Mathematics  
02141 7 

Algebra I—Part 2  02054 2 
Analytic Mathematics—

Other  
02149 7 

Transition Algebra 16 02055 4 
General Applied 

Mathematics 17 02151 4 

Algebra II  02056 5 
Occupationally Applied 

Mathematics 18 02152 4 

Algebra III  02057 7 Technical Mathematics 19 02153 6 

Particular Topics in Algebra20 02058 4 Business Mathematics 21 02154 6 

Integrated Mathematics I 02062 no obs 
Business Mathematics 

with Algebra 22 02155 6 

Integrated Mathematics II 02063 no obs 
Computer Mathematics 

with Algebra 23 02156 4 

Integrated Mathematics III 02064 no obs Consumer Mathematics24 02157 1 

Integrated Mathematics IV 02065 no obs Probability and Statistics  02201 7 

Algebra—Other 25 02069 Dep. 
Inferential Probability and 

Statistics  
02202 7 

Informal Geometry  02071 1 AP Statistics  02203 9 

Geometry  02072 3 

Particular Topics in 

Probability and Statistics 
26 

02204 6 

Analytic Geometry27 02073 6 Statistics 02205 no obs 
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Principles of Algebra and 

Geometry 28 02074 6 

Probability and 

Statistics—Independent 

Study  

02207 no obs 

Particular Topics in 

Geometry29 02075 3 
Probability and 

Statistics—Other 30 02209 Dep. 

Geometry—Other 31 02079 3 History of Mathematics  02991 1 

Number Theory32 02101 7 
Mathematics—Test 

Preparation33 02993 6 

Discrete Mathematics34 02102 9 
Mathematics Proficiency 

Development 35 02994 Dep. 

Trigonometry  02103 8 Mathematics—Aide 36 02995 Dep. 

Mathematic Analysis  02104 8 
Mathematics—

Supplemental37 02996 Dep. 

Trigonometry/Mathematic 

Analysis  
02105 8 

Mathematics—

Independent Study38 02997 6 

Trigonometry/Algebra  02106 8 
Mathematics—Workplace 

Experience 39 02998 5 

Trigonometry/Analytic 

Geometry  
02107 7 Mathematics—Other  02999 Dep. 

   Undefined  02061 Dep. 

Foot Note: 

1 Mathematic Analysis/Analytic Geometry prepares students eventually qualified in Calculus courses. 

2 Elementary Functions prepares students eventually qualified in Calculus courses. 

3 There is no observation on HSLS Transcript Students Course File. 

4,5 Linear algebra and linear programming require students to finish pre-calculus or equal courses. 

6 Abstract Algebra requires students to finish pre-calculus or equal courses. 

7,8 Multivariate Calculus and Differential Calculus include topics that are based on calculus. In the meanwhile, to 

justify this coding level, I examined typical trajectories of students who took these two courses and found that 

students usually took Calculus and/or AP Calculus AB before these two courses if Multivariate Calculus or 

Differential Calculus was not the only calculus course they had ever taken.  

9 Students usually took AP Calculus AB after Calculus if AP Calculus AB was not the only calculus course they had 

ever taken. However, according to course descriptions, AP Calculus AB shared the similar topics as Calculus 

including derivatives, differentiation, integration, the definite and indefinite integral, and applications of calculus. 

10 Students usually took AP Calculus BC after Calculus and/or AP Calculus AB. In the meanwhile, in addition to 

topics covered by AP Calculus AB, AP Calculus BC covers parametric, polar, and vector functions; applications of 

integrals; and polynomial approximations and series, including series of constants and Taylor series. 

11 To identify this coding level, I examined typical trajectory of students who took this course and found that 

students usually took Particular Topics in Calculus independently (i.e. Particular Topics in Calculus was usually the 

only calculus course students took if they chose to take Particular Topics in Calculus). I coded this course as equal as 

Calculus because, in some scenarios, Particular Topics in Calculus is the replacement course for Calculus.  

12,13 These two IB courses prepare students to take IB math studies at standard level. Courses includes topics from 

algebra III, number theories, and trigonometry, but only introductory level calculus. 

14 This IB course prepare students to take IB math studies at higher level. Course topics include Calculus and other 

high-level topics. 

15 Instead of preparing student to take IB exam, IB Mathematics, Middle Years Program is built on a framework of 

five branches of mathematics: number, algebra, geometry and trigonometry, statistics and probability, and discrete 

mathematics. The program encourages students to develop an understanding of mathematical reasoning and 



 204 

processes, the ability to apply mathematics. Students usually took this course on 9th grade and 10th grade (84.7% of 

students took Middle Year Program on 9th grade and/or 10th grade). As a contrast, students usually took IB 

Mathematics or IB Mathematics studies on 11th or 12th grade (78.4% and 89.3% of students took these two IB 

courses on 11th and/or 12th grade, respectively). Therefore, I coded Middle Year Program one level lower than IB 

Mathematics or IB Mathematics. 

16 Transition Algebra courses review and extend algebra and geometry concepts for students who have already 

taken Algebra I and Geometry. Although, similar to Algebra II where students usually took it on 10th and/or 11th 

grade (77.8%), students usually took Transition Algebra after 9th grade (88.5%), Transition Algebra did not 

sufficiently apply knowledge harder than Algebra I series or Geometry. Therefore, I coded Transition Algebra as “4- 

transition”. 

17,18 General Applied Mathematics and Occupationally Applied Mathematics applied knowledge from Algebra I 

and used these skills in specific fields. However, similar to Transition Algebra, these two courses did not apply 

knowledge and skills from Algebra II or equal courses. Therefore, these two courses should belong to 4. 

19,21,22 Technical Mathematics, Business Mathematics, and Business Mathematics with Algebra sufficiently 

applied basic principles from Algebra I, Algebra II and Geometry. I code these three courses as “applied math 

elective” because, although they combine principles of Algebra and geometry, they do not adequately provide solid 

theoretical background as pre-calculus does. 

20 Particular Topics in Algebra built upon topics from pre-Algebra and Algebra I and examine specific topics such 

as linear equations or rational numbers. More than half of students usually took this course before 10th grade 

(56.8%). Compare to Algebra II where only less than 10% of students took Algebra II before 10th grade (7.8%), I 

coded Particular Topics in Algebra as “4-between Algebra I and Algebra II” 

23 Intended for students who have attained the objectives of Algebra I, Computer Mathematics with Algebra courses 

include a study of computer systems and programming and use the computer to solve mathematics problems. 

However, this course did not applied knowledge higher than Algebra I. 

24 Consumer Mathematics only applied knowledge from pre-Algebra such as arithmetic using rational numbers, 

measurement, ratio and proportion, and basic statistics to consumer problems and situations. Therefore, I coded this 

course as pre-Algebra.d 

25 The level of Algebra-other depended on individual courses that students had taken. For example, Algebra Lab for 

ninth graders, or College Algebra and Intermediate Algebra for 12th graders both belonged to Algebra-Other.  

26 Particular Topics in P&S usually covered topics such as elementary statistic and general statistic topics. 

Therefore, I coded this course one level lower than Statistic. 

27,28 These courses apply basic principles from algebra I, and algebra II into studying of geometry. I code these two 

courses as “applied math elective” because, although they combine principles of Algebra and geometry, they do not 

adequately provide solid theoretical background as pre-calculus does. 

29 Out of 680 students who took Particular Topics in Geometry, 490 students (72.0%) took this course as the only 

geometry course along four-year high school as the replacement of general Geometry and/or advanced level 

geometry courses. Therefore, I coded this course as a transition level course (4).  

30 The category of P&S-Other contained courses for different levels of students. For example, there were 

introductory statistic courses for 10th grade, and advanced statistic, college statistic, and advanced mathematical 

decision making for 12th grade. 

31 Unlike Algebra-Other with diversified content for students in different grades, student usually took Geometry-

Other before 11th grade (70.3%). As a contrast, 80.2% of students took Geometry before 11th grade. Out of 370 

students who took Geometry-Other, 250 students (67.4%) took this course as the only geometry course along their 

four-year high school as the replacement of general Geometry and/or advanced level geometry courses. Therefore, I 

coded this course as a transition level course (4). 

32 This course reviews the properties and uses of integers and prime numbers which prepare students with higher 

level course, Discrete Mathematics. Part of theories in this course may be covered in Algebra III. 

33 This course prepares students with test skills in PSAT, SAT and ACT. Topics include knowledge in algebra I and 

II and geometry. 

34 Discrete Mathematics is built upon Algebra III and Number theory which is a higher-level course. 

35-37 The level of these three courses are hard to be decided because the content of these courses depends on grade 

level.  
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38 Students usually took this independent study (70.1%) after 10th grade. The goal of this course was to expand their 

expertise in a particular application, to explore a topic in greater detail, or to develop more advanced skills based on 

courses they had taken on first two years. However, this independent study was not necessarily the subsequent 

course of Algebra III and other higher level courses. Therefore, I coded this course as an elective math course.  

39 Mathematics—Workplace Experience was not usually part of math sequence (i.e. students might take calculus at 

11th grade and then take Mathematics—Workplace Experience at 12th grade for other reasons). Therefore, although 

more than 60% of students took Mathematics—Workplace Experience after 10th grade, it’s hard to decide the level 

of Mathematics—Workplace Experience based on trajectories. According to course description, there was not a solid 

math inquiry associated with this course, Mathematics—Workplace Experience set cooperatively by the student, 

teacher, and employer. Therefore, I coded this course as a transition level course.  

 

Appendix Table 3 Complete individual mathematic course codes using CSSC codes 

CSSC Code Course Title 
Individual 

Code 

270101 Mathematics 7 1 1 

270102 Mathematics 7, Accelerate 2 1 

270103 Mathematics 8 1 1 

270104 Mathematics 8, Accelerated 2 1 

270105 Unused Code Unused 

270106 Mathematics 1, General 1 1 

270107 Mathematics 2, General 2 2 1 

270108 Science Mathematics 3 4 

270109 Mathematics in the Arts 1 

270110 Mathematics, Vocational 4 4 

270111 Technical Mathematics 5 6 

270112 Mathematics Review 6 Manually  

270113 Mathematics Tutoring 7 1 

270114 Consumer Mathematics 8 1 

270100 Mathematics, Other General Manually 

270200 Actuarial Sciences, Other Manually 

270300 Applied Mathematics, Other Manually 

270401 Pre-Algebra 1 

270402 Algebra 1, Part 1 2 

270403 Algebra 1, Part 2 2 

270404 Algebra 1 2 

270405 Algebra 2 5 

270406 Geometry, Plane 3 

270407 Geometry, Solid 3 

270408 Geometry 3 

270409 Geometry, Informal 1 

270410 Algebra 3 7 

270411 Trigonometry 8 

270412 Analytic Geometry 9 8 
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270413 Trigonometry and Solid Geometry  8 

270414 Algebra and Trigonometry 10 8 

270415 Algebra and Analytic Geometry 8 

270416 Analysis, Introductory 11 8 

270417 Linear Algebra 12 9 

270418 Calculus and Analytic Geometry 9 

270419 Calculus 9 

270420 Calculus 9 

270421 Mathematics 1, Unified Manually 

270422 Mathematics 2, Unified Manually 

270423 Mathematics 3, Unified Manually 

270424 Mathematics, Independent Study 13 7 

270425 Geometry, Part 1 3 

270426 Geometry, Part 2 3 

270427 Unified Math 1, Part 1 Manually 

270428 Unified Math 1, Part 2 Manually 

270429 Pre-IB Geometry 3 

270430 Pre-IB Algebra 2/Trigonomery 7 

270431 IB Math Methods 1 14 8 

270432 IB Math Studies 1 15 8 

270433 IB Math Studies 2 16 8 

270434 IB Math Studies/Calculus 9 

270435 AP Calculus CD 17 10 

270436 Discrete Math 18 8 

270437 Finite Math 19 8 

270400 Pure Mathematics, Other Manually 

270511 Statistics 7 

270521 Probability 7 

270531 Probability and Statistics 7 

270532 AP Statistics 8 

270500 Statistics, Other 7 

270601 Basic Math 1 20 2 

270602 Basic Math 2 21 2 

270603 Basic Math 3 22 2 

270604 Basic Math 4 23 2 

279900 Mathematics, Other Manually 

Foot Note: 

1 These courses prepare students with basic knowledge of numbers and computational skills. 

2 These courses prepare students to take high school Algebra I, serving as “pre-algebra” 

3 Science Mathematics applies knowledge from Algebra I, but doesn’t reach Algebra II level.  

4 Vocational Mathematics applies knowledge from Algebra I and uses these skills in specific fields. However, this 

course doesn’t apply knowledge and skills from Algebra II or equal courses. Therefore, this course should belong to 

level 4. 
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5 Technical Mathematics applies basic principles from Algebra I, Algebra II (such as numerical trigonometry) and 

Geometry. I code this course as “applied math elective” because, although it combines principles of Algebra and 

geometry, it does not adequately provide solid theoretical background as pre-calculus does. 

6 This course provides students with college entrance exam preparation. Since the college entrance exam varies 

across students, I will code this course manually.  

7 Mathematics tutoring provides low-level of math knowledge tutoring.  

8 Consumer Mathematics only applies knowledge from pre-Algebra such as arithmetic using rational numbers, 

measurement, ratio and proportion, and basic statistics to consumer problems and situations. 

9 This course applies basic principles from Algebra III and trigonometry into studying of geometry.  

10 Most topics covered in this course are in Algebra III (e.g., complex numbers and theory of equations). 

11 This course is a pre-calculus level course.  

12 Linear algebra requires students to finish pre-calculus or equal courses. 

13 This independent study is an advanced course focusing on number theory. The number theory reviews the 

properties and uses of integers and prime numbers which prepare students with higher level course, Discrete 

Mathematics. Part of theories in this course may be covered in Algebra III. 

14,15,16 These three IB courses prepare students to take IB math studies at standard level. Courses includes topics 

from algebra III, number theories, and trigonometry, but not introductory level calculus. 

17 Students usually took AP Calculus CD after Calculus and/or AP Calculus AB. In the meanwhile, in addition to 

topics covered by AP Calculus AB, AP Calculus CD covers parametric, polar, and vector functions; applications of 

integrals; and polynomial approximations and series, including series of constants and Taylor series. 

18 Discrete Mathematics is built upon Algebra III and Number theory which is a higher-level course, but not as high 

as Calculus  

19 Finite Math applies knowledge of probability, and Algebra III, and is usually compared with pre-calculus.  

20-23 These four courses cover the basic Algebra knowledge.  

 

Different from individual math course codes, there are inherent categories associated with 

science courses, i.e., biology, chemistry, physics, or other science courses. Therefore, comparing 

the difficulties of courses, it’s equally important to count how many different types of science 

courses students have taken. For instance, students who have taken both physics and chemistry 

courses have more science learning experience than students who only take chemistry courses. 

Therefore, we added another individual code, apart from codes for difficulty level (code 2), to 

indicate the category of science courses (code 1). The description of two individual science courses 

code is shown in Appendix Table 4. Similar to individual math course code, I manually assign the 

two individual science course codes to each science course in HSLS transcript using SCED and 

science courses in HS&B, NELS, and ELS using CSSC. See Tables A5 and A6 for complete 

individual science codes. 
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To capture students’ cumulative science course taking pattern, we assign each student a 

code according to their course-taking file. To consider the importance of both how many different 

types of science courses and how deep students have taken during their high school, we combine 

the two codes by counting how may “big-threes” (i.e. Biology, Chemistry, and Physics) student 

have taken and attaching “higher-level courses (higher than 3 on set 2 code) or not”. The final five-

level cumulative science course taking codes are shown in Table 2 in the main text.  

Appendix Table 4 Individual science course codes 

Code 1  

Science course category code Description  

1 Biology Category 

2 Chemistry Category 

3 Physics Category 

4 Other Category, any combination course  

  

Code 2  

Science course difficulty level code Description  

1 Course provides basic concepts on specific field  

2 Course is based on level 1 course, providing a more detailed 

understanding on specific field, or introduction to a sub-field 

3 Course provides an in-depth study on a specific sub-filed 

4 Course provides a higher-level comprehensive study of specific 

field  

5 In addition to level 4, course requires higher-level interdisciplinary 

knowledge to finish 

 

Appendix Table 5 Individual science course codes 

Course name SCED Code Code 1 Code 2 

Earth Science  03001 4 1 

Geology 1 03002 4 2 

Environmental Science  03003 4 1 

Astronomy  03004 4 1 

Marine Science  03005 4 1 

Meteorology  03006 4 1 

Physical Geography 2 03007 4 2 

Earth and Space Science  03008 4 1 

Particular Topics in Earth Science 03009 4 1 

Earth/Space Science (prior-to-secondary) 03010 4 1 

Physical Science (prior-to-secondary) 03011 4 1 

Energy and the Environment 03012 4 1 
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Earth Science—Independent Study 03047 4 1 

Earth Science—Workplace Experience  03048 4 1 

Earth Science—Other  03049 4 1 

Biology  03051 1 1 

Biology—Advanced Studies 3 03052 1 2 

Anatomy and Physiology 4 03053 1 2 

Anatomy 5 03054 1 3 

Physiology  03055 1 3 

AP Biology 6 03056 1 4 

IB Biology 7 03057 1 4 

Botany 8 03058 1 2 

Genetics 9 03059 1 2 

Microbiology 10 03060 1 2 

Zoology 11 03061 1 2 

Conceptual Biology  03062 1 1 

Particular Topics in Biology  03063 1 1 

Regional Biology 03064 1 1 

IB Sports, Exercise, and Health Science 12 03065 1 2 

PLTW Principles of Biomedical Science 13 03066 1 3 

PLTW Human Body Systems 14 03067 1 3 

PLTW Medical Interventions 15 03068 1 3 

Nutrition Science 03069 1 2 

PLTW Biomedical Innovation 03070 1 3 

Biology—Independent Study 03097 1 1 

Biology—Workplace Experience  03098 1 1 

Biology—Other  03099 1 1 

Chemistry  03101 2 1 

Chemistry—Advanced Studies 16 03102 2 2 

Organic Chemistry 17 03103 2 3 

Physical Chemistry 18 03104 2 5 

Conceptual Chemistry  03105 2 1 

AP Chemistry 19 03106 2 4 

IB Chemistry 20 03107 2 4 

Particular Topics in Chemistry  03108 2 1 

Chemistry—Independent Study  03147 2 1 

Chemistry—Workplace Experience  03148 2 1 

Chemistry—Other  03149 2 1 

Physics  03151 3 1 

Physics—Advanced Studies  03152 3 2 

Principles of Technology 03153 3 2 

AP Physics C 21 03156 3 5 

IB Physics 22 03157 3 5 

Life Science 03158 1 1 
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Physical Science  03159 3 1 

Conceptual Physics  03161 3 1 

Particular Topics in Physics  03162 3 1 

AP Physics C: Electricity and Magnetism 23 03163 3 5 

AP Physics C: Mechanics 24 03164 3 5 

AP Physics 1 25 03165 3 4 

AP Physics 2 26 03166 3 4 

Physics—Independent Study  03197 3 1 

Physics—Workplace Experience  03198 3 1 

Physics—Other  03199 3 1 

Integrated Science  03201 4 1 

Unified Science  03202 4 1 

Applied Biology/Chemistry  03203 4 1 

Technological Inquiry  03204 4 1 

Origins of Science  03205 4 1 

IB Design Technology 27 03206 4 3 

AP Environmental Science 28 03207 4 3 

IB Environmental Systems and Societies 29 03208 4 3 

Aerospace  03209 4 2 

Science, Technology and Society  03210 4 1 

Technical Science  03211 4 1 

Scientific Research and Design  03212 4 1 

IB Sciences, Middle Years Program 03213 4 1 

Forensic Laboratory Science 03214 no obs  

Science (early childhood education) 03228 no obs  

Science (pre-kindergarten) 03229 no obs  

Science (kindergarten) 03230 no obs  

Science (grade 1) 03231 no obs  

Science (grade 2) 03232 no obs  

Science (grade 3) 03233 no obs  

Science (grade 4) 03234 no obs  

Science (grade 5) 03235 no obs  

Science (grade 6) 03236 no obs  

Science (grade 7) 03237 no obs  

Science (grade 8) 03238 no obs  

Science—General 03239 no obs  

Life and Physical Sciences—Proficiency 

Development  
03994 4 1 

Life and Physical Sciences—Aide  03995 4 1 

Life and Physical Sciences—Supplemental 03996 4 1 

Life and Physical Sciences—Independent Study  03997 4 1 

Life and Physical Sciences—Workplace 

Experience  
03998 4 1 
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Life and Physical Sciences—Other  03999 4 1 

Footnote: 

1. Geology courses provide an in-depth study of the forces that formed and continue to affect the earth’s surface. 

2. Knowledge for Physical Geography is based on Earth science and Marine science that examine the physical 

environment place on human development. 

3. This course usually taken after a comprehensive initial study of biology, Biology—Advanced Studies courses 

cover biological systems in more detail. 

4. This course usually taken after a comprehensive initial study of biology, Anatomy and Physiology courses present 

the human body and biological systems in more detail. 

5. Anatomy courses present an in-depth study of the human body and biological system. Students usually took this 

course after anatomy and physiology 

6. Adhering to the curricula recommended by the College Board and designed to parallel college-level introductory 

biology courses, AP Biology courses emphasize four general concepts: evolution; cellular processes (energy and 

communication); genetics and information transfer; and interactions of biological systems. 

7. IB Biology courses prepare students to take the International Baccalaureate Biology exams at either the standard 

or higher level. 

8.9.10.11. These four courses provide students with a understanding of general concepts of specific sub-field 

12. Although this is an IB course, this course provides students with standard level of understanding of this sub-

field. 

13.14.15. These three PLTW courses provide students with in-depth understanding of specific sub-field based on the 

knowledge from physiology and genetics. 

16. This course usually taken after a comprehensive initial study of chemistry, Chemistry—Advanced Studies 

courses cover chemical properties and interactions in more detail. 

17. Organic Chemistry courses involve the study of organic molecules and functional groups. Usually taken after 

advanced studies.  

18. This is an interdisciplinary course. Usually taken after completing a calculus course, Physical Chemistry courses 

cover chemical kinetics, quantum mechanics, molecular structure, molecular spectroscopy, and statistical mechanics. 

19. This AP course requires high school chemistry and algebra II.  

20. This IB course provides students with higher level of understanding in Chemistry.  

21. AP Physics C in a combination course of Physics C: Electricity and Magnetism and Physics C: Mechanics and 

requires calculus to resolve problems.  

22. IB Physics requires calculus. 

23.24. See note 21 

25.26 Unlike AP C, these two AP courses are algebra-based physics, can’t be coded as higher-level interdisciplinary 

course.  

27.28.29 Although these three AP/IB courses provide comprehensive study of specific field, they don’t provide a 

higher-level understanding of sub-field as AP chemistry or physics does. 

 

Appendix Table 6 Complete individual science course codes using CSSC codes 

CSSC Code Course Title Code 1 Code 2 

260111 Science 7 1 1 

260121 Biology, Basic 1 1 1 

260122 Biology, Basic 2 1 1 

260131 Biology, General 1 1 2 

260132 Biology, General 2 1 3 
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260141 Biology, Honors 1 1 3 

260142 Biology, Advanced 1 3 

260143 Pre-IB Biology 1 3 

260144 IB Biology 2 1 3 

260145 IB Biology 3 1 4 

260146 AP Biology 1 4 

260151 Field Biology 1 2 

260161 Genetics 1 3 

260171 Biopsychology 1 3 

260181 Biology Seminar 1 4 

260100 Biology, Other General 1 Manually 

260211 Biochemistry 1 5 

260200 Biochemistry and Biophysics, Other 1 5 

260311 Botany 1 2 

260300 Botany, Other 1 2 

260411 Cell Biology 1 4 

260400 Cell and Molecular Biology, Other 1 5 

260511 Microbiology 1 4 

260500 Microbiology, Other 1 4 

260611 Ecology 1 3 

260621 Marine Biology 1 2 

260622 Marine Biology, Advanced 1 3 

260631 Anatomy 1 3 

260600 
Miscellaneous Specialized Areas, Life Sciences, 

Other 
1 Manually 

260711 Zoology 1 2 

260721 Zoology, Vertebrate 1 2 

260731 Zoology, Invertebrate 1 2 

260741 Animal Behavior 1 2 

260751 Physiology, Human 1 2 

260752 Physiology, Advanced 1 3 

260761 Pathology 1 2 

260771 Comparative Embryology 1 2 

260700 Zoology, Other 1 2 

269900 Life Sciences, Other 1 Manually 

300111 Science, Unified 4 Manually 

300112 College Pre-Science Skills 4 1 

300121 Science Study, Independent 4 1 

300131 Outdoor Education 4 1 

300100 Biological and Physical Sciences, Other 4 Manually 

400111 Science 8 3 1 

400121 Physical Science 3 2 
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400131 Chemistry and Physics Laboratory Techniques 3 2 

400141 Physical Science, Applied 3 2 

400100 Physical Sciences, Other General 3 2 

400211 Astronomy 3 2 

400200 Astronomy, Other 3 2 

400300 Astrophysics, Other 3 2 

400411 Meteorology 3 2 

400400 Atmospheric Sciences and Meteorology, Other 3 2 

400511 Chemistry, Introductory 2 1 

400521 Chemistry 1 2 2 

400522 Chemistry 2 2 3 

400523 Pre-IB Chemistry 1 2 3 

400524 IB Chemistry 2 2 3 

400525 IB Chemistry 3 2 4 

400526 AP Chemistry 2 4 

400531 Geology (Organic Biochemistry) 2 4 

400541 Physical Chemistry 2 5 

400551 Consumer Chemistry 2 1 

400561 Chemistry, Independent Study 2 2 

400500 Chemistry, Other 2 Manually 

400611 Earth Science 4 2 

400621 Earth Science, College Preparatory 4 3 

400622 AP Environmental Science 4 4 

400631 AP Environmental Science 4 4 

400632 Geology - Field Studies 4 2 

400641 Mineralogy 4 2 

400600 Geological Sciences, Other 4 2 

400711 Oceanography 4 2 

400700 Miscellaneous Physical Sciences, Other 3 Manually 

400811 Physics, General 3 1 

400821 Physics 1 3 2 

400822 Physics 2 3 3 

400823 IB Physics 3 4 

400824 AP Physics B 3 4 

400825 AP Physics C: Mechanics 3 5 

400826 AP Physics C: Electricity/Magnetism 3 5 

400831 Physics 2 without Calculus 3 4 

400841 Electricity and Electronics Science 3 3 

400851 Acoustics 3 3 

400800 Physics, Other 3 Manually 

400911 Rocketry and Space Science 3 2 
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400900 Planetary Science, Other 3 2 

401011 Aerospace Science 3 2 

409900 Physical Sciences, Other 3 Manually 

 

Finally, ELA track placement is simply measured as the most rigorous ELA courses taken 

during high school. Students who completed at least one Enriched/advanced, Honors, or College 

level ELA course are labeled as high track; students who only completed Basic/remedial or 

General level ELA course are labeled as low track. This binary measure captures the basic variation 

in ELA course taking across students and is only used to calculate tracking scope. The individual 

course track placement is listed in Appendix Table 7. Appendix Table 7 also provides side-by-side 

comparison of course classification using both CSSC and SCED codes.  

Appendix Table 7 Complete individual ELA track placement using both CSSC and SCED codes 

CSSC 

Code 

SCED 

Code 
CSSC Course Title(s) Rigor 

Track 

Placement 

230106 01001 
English 1, Below Grade Level; English 9, 

Basic; Communication Skills, Non-College 
B Low 

230107 01001 English 1; English 9, Average G Low 

230108 01001 English 1, Honors; English 9, Honors H High 

230161 01001 English Skills 1 for Visually Impaired G Low 

230165 01001 Pre-IB English 1 (grade 9) G Low 

230109 01002 English 2, Below Grade Level; English 10, Basic B Low 

230110 01002 English 2; English 10, Average G Low 

230111 01002 English 2, Honors; English 10, Honors H High 

230162 01002 English Skills 2 for Visually Impaired G Low 

230166 01002 Pre-IB English 2 (grade 10) G Low 

230112 01003 English 3, Below Grade Level; English 11, Basic B Low 

230113 01003 English 3; English 11, Average G Low 

230114 01003 English 3, Honors; English 11, Honors H High 

230163 01003 English Skills 3 for Visually Impaired G Low 

230167 01003 Pre-IB English 3 (grade 11) G Low 

230115 01004 English 4, Below Grade Level; English 12, Basic B Low 

230116 01004 English 4; English 12, Average G Low 

230117 01004 English 4, Honors; English 12, Honors H High 

230164 01004 English Skills 4 for Visually Impaired G Low 

230170 01005 AP English Language and Composition E High 
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230171 01006 AP English Literature and Composition E High 

230168 01007 IB English 4 (grade 11 or 12) E High 

230169 01007 IB English 5 (grade 12) E High 

160121 01008 
English as a Second Language 1; TESOL, 

Beginning 
G Low 

160122 01008 
English as a Second Language 2; TESOL, 

Intermediate 
G Low 

160123 01008 English as a Second Language 3; TESOL, G Low 

160124 01008 English as a Second Language, Skills Lab B Low 

160125 01008 Transitional English B Low 

520103 01009 English/Language Arts EMH B Low 

520203 01009 English/Language Arts EH B Low 

520301 01009 English/Language Arts Deaf B Low 

542011 01009 Functional Language Arts 1 B Low 

542019 01009 Functional Language Arts 1, not for credit B Low 

542021 01009 Functional Language Arts 2 B Low 

542029 01009 Functional Language Arts 2, not for credit B Low 

542031 01009 Functional Language Arts 3 B Low 

542039 01009 Functional Language Arts 3, not for credit B Low 

542041 01009 Functional Language Arts 4 B Low 

542049 01009 Functional Language Arts 4, not for credit B Low 

562300 01009 Special Education Language Arts B Low 

562322 01009 Resource Room English 2 (Special Education) B Low 

562329 01009 Resource Writing, not for credit B Low 

230101 01035 English 7 - Middle School Level G Low 

230102 01035 
English 7, Honors; English 7, Above Grade Level - 

Middle School Level 
H High 

230103 01036 
English 8, Below Grade Level - Middle School 

Level 
B Low 

230104 01036 
English 8; English 8, Average - Middle School 

Level 
G Low 

230105 01036 
English 8, Honors; English 8, Above Grade Level - 

Middle School Level 
H High 

230152 01053 English, Real Life Problem Solving G Low 

230700 01054 Literature, American, Other G Low 

230711 01054 American Literature; Selected American G Low 

230181 01055 Integrated English/History 1 (English) G Low 

230182 01055 Integrated English/History 2 (English) G Low 

230183 01055 Integrated English/History 3 (English) G Low 

450881 01055 Integrated English/History 1 (History) G Low 

450882 01055 Integrated English/History 2 (History) G Low 

450883 01055 Integrated English/History 3 (History) G Low 

230800 01056 Literature, English, Other G Low 

230811 01056 British Literature Survey; Major British G Low 



 216 

230821 01056 Shakespeare; Ages of Man; Political G Low 

230831 01056 Modern British Writer G Low 

230841 01056 Victorian Literature G Low 

230851 01056 Satire, Modern British G Low 

230861 01056 Arthurian Legend; Once and Future G Low 

230871 01056 Medieval Literature G Low 

230118 01058 World Literature; Modern Classical Literature G Low 

230311 01058 Comparative Literature; Comparisons in G Low 

230125 01059 Bible as Literature; Literature of the G Low 

230151 01060 Seminar on an Author G Low 

230127 01061 Drama, Introduction G Low 

230128 01061 World Drama G Low 

230129 01061 Plays, Modern Survey G Low 

230130 01061 Novels G Low 

230131 01061 Short Story; Short Narrative; Short G Low 

230132 01061 Mysteries G Low 

230133 01061 Poetry G Low 

230134 01061 Rock Poetry G Low 

230135 01061 Humor; Let's Laugh; American Humor G Low 

230136 01061 Biography; Autobiography; Famous G Low 

230137 01061 Non-Fiction G Low 

230138 01061 
Science Fiction; Literature of the Mysterious; 

Fiction and Fantasy 
G Low 

230155 01061 Children's Literature & Fantasy G Low 

230741 01061 Folklore, American G Low 

230119 01062 Renaissance Literature; Man in a New World G Low 

230120 01062 Romanticism; Man and Nature G Low 

230121 01062 Realism G Low 

230122 01062 Literature, Contemporary; G Low 

230200 01062 Classics, Other G Low 

230211 01062 Mythological Literature, Greek and G Low 

230761 01063 State Writers; Regional Writers G Low 

230771 01063 Western Literature; Frontier Literature G Low 

230123 01064 Irish Literature G Low 

230124 01064 Russian Literature G Low 

230141 01064 Ethnic Literature; Minority Literature G Low 

230142 01064 Women in Literature G Low 

230150 01064 Nobel Prize Authors G Low 

230321 01064 Latin American Authors/Literature G Low 

230721 01064 
Black Literature; Literature of Black America; Afro 

American Literature 
G Low 

230751 01064 Indian Literature; American Indian G Low 
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230781 01064 Mexican American Literature G Low 

300721 01064 Women's Studies in Literature G Low 

230126 01065 Mythology and Fable; Mythology and G Low 

230139 01065 Themes in Literature; War and Peace; G Low 

230140 01065 Literature of Human Values G Low 

230143 01065 Sports through Literature G Low 

230144 01065 Occult Literature; Supernatural G Low 

230145 01065 Protest Literature G Low 

230146 01065 Youth and Literature; Adolescent G Low 

230147 01065 Heroes G Low 

230148 01065 Utopias G Low 

230149 01065 Death G Low 

230731 01065 American Dream in Literature; American G Low 

380211 01065 Religion and Literature G Low 

231215 01066 Speed Reading G Low 

231216 01066 Advanced Reading and Study Skills; G Low 

320111 01066 Speed Reading (Changed to 23.1215) G Low 

231217 01067 Reading Improvement G Low 

231212 01068 Reading Development 2 G Low 

231213 01068 Reading Development 3 G Low 

231214 01068 Reading Development 4 G Low 

320109 01068 Reading Development 1 (Changed to G Low 

231211  23.1211) G Low 

320110 01068 Reading Development 2 (Changed to G Low 

542101 01068 Functional Reading B Low 

542109 01068 Functional Reading, not for credit B Low 

562310 01068 Special Education Reading B Low 

562311 01068 Resource Reading B Low 

562319 01068 Resource Reading, not taken for credit B Low 

230153 01097 Reading, Independent Study G Low 

230300 01099 Comparative Literature, Other G Low 

230403 01099 Writing About Literature G Low 

230401 01103 Composition, Expository; Writing G Low 

230500 01104 Creative Writing, Other G Low 

230511 01104 Creative Writing 10; Creative Writing 1 G Low 

230512 01104 Creative Writing 11; Creative Writing 2, G Low 

230513 01104 Creative Writing 12 G Low 

230154 01105 Research Technique; Writing and G Low 

231100 01105 Technical and Business Writing, Other G Low 

231111 01105 Technical English G Low 

562320 01139 Special Education Writing - Middle School Level B Low 
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230402 01147 

Writing Laboratory; Writing Skills Workshop; 

Composition, Advanced Computer Assisted 

Writing Instruction 

G Low 

230521 01147 Creative Writing, Independent Study G Low 

230400 01149 Composition, Other G Low 

230404 01149 
Vocabulary; Fun With Words; College Vocabulary 

Skill Building; Word Power 
G Low 

230405 01149 Spelling G Low 

230531 01149 Journal Writing G Low 

231011 01151 Public Speaking; Communications, G Low 

231023 01152 Speech 3 (Changed to 23.1024) G Low 

231024 01152 Advanced Speech E High 

231025 01153 Debate G Low 

231031 01153 Debate Practicum Contract G Low 

230414 01155 Interpersonal Communication G Low 

231311 01156 Functional English 1; Correlated G Low 

231312 01156 Functional English 2; Correlated G Low 

231313 01156 Functional English 3; Correlated G Low 

231314 01156 Functional English 4; Correlated G Low 

320118 01156 English, Functional (Changed to B Low 

542051 01156 Functional Vocational English B Low 

542059 01156 Functional Vocational English, not for B Low 

542201 01156 Functional Oral Communication B Low 

542209 01156 Functional Oral Communication, not for B Low 

542301 01156 Functional Writing B Low 

542309 01156 Functional Writing, not for credit B Low 

230415 01199 Word Study - Remedial G Low 

231000 01199 Speech, Debate, and Forensics, Other G Low 

320115 01199 Word Study, Remedial (Changed to G Low 

230406 01201 Grammar 7; Language Structure 7 - G Low 

230407 01201 Grammar 8; Language Structure 8 - G Low 

230408 01201 Grammar 9; Language Structure 9 G Low 

230409 01201 Grammar 10; Language Structure 10; G Low 

230410 01201 
Grammar 11; Language Structure 11; Grammar 

Review 11, College Preparation 
G Low 

230411 01201 Grammar 12; Language Structure 12; G Low 

230412 01202 Etymology; Wordsearch; Word Clues G Low 

230611 01202 Linguistics; Language and Thought; G Low 

231401 01997 English, Independent Study G Low 

230100 01999 English, Other General G Low 

230156 01999 Vocational English G Low 

230413 01999 Handwriting; Penmanship G Low 

230600 01999 Linguistics (includes Phonetics, G Low 
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230900 01999 Rhetoric, Other G Low 

231315 01999 Transitional English G Low 

239900 01999 Letters/English, Other G Low 

320113 01999 

Language, Developmental (Changed to 16.0125 for 

non-English speakers and 23.1311-23.1314 for 

English speakers) 

G Low 
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Appendix B Supplementary Tables from Chapter 3.0 

Appendix Table 8 Time-pooled Model Estimation of School-level Variance of Math Sequence within the 

School using functionally-related variables, status-competition related variables, and measures of 

heterogeneity, 1982-2013 (n = 3620 schools; School-level Covariates includes sample percentage of white 

students, school sectors, urbanicity, geographic region, student-teacher ratio, and average daily instruction 

hours) 

 
Model 1 Model 2  Model 3 Model 4 Model 5 Model 6 

Functional Factor       

1. Achievement 

Heterogeneity 

.206***   .221*** .207*** .217*** 

 
(.030) a   (.032) (.032) (.033) 

2. School Size .005   .001 .007 .001 

 (.008)   (.008) (.008) (.009) 

Status Competition       

3. School-mean 

Achievement 

 -.010  -.029~  -.026 

  (.015)  (.015)  (.016) 

4. School-mean SES  .093  .083  .064  
 (.198)  (.200)  (.203) 

5. Percentage of 

White 

 -.272  -.142  -.224 

 
 (.353)  (.362)  (.381) 

6. Percentage of non-

free lunch 

 1.755***  1.838***  1.802*** 

 
 (.362)  (.365)  (.366) 

Heterogeneity 

Measures 

      

7. SES Heterogeneity   .878*  .345 .373  
  (.406)  (.407) (.425) 

8. Shannon Index of 

Race Diversity 

  -.006  -.287 -.195 

 
  (.177)  (.185) (.203) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .059 .057 .044 .077 .060 .074 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 
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of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 

 

Appendix Table 9 Cohort-Interaction Model Estimation of the Trends of School-level Variance of Math 

Sequence within the School using functionally-related variables, status-competition related variables, and 

measures of heterogeneity, 1982-2013 (n = 3620 schools; School-level Covariates includes sample percentage 

of white students, school sectors, urbanicity, geographic region, student-teacher ratio, and average daily 

instruction hours) 

 
Model 1 Model 2  Model 3 Model 4 Model 5 Model 6 

Cohort (centered at 

1992 cohort) 

.300 1.425~ -.104 .908 .398 .824 

 (.217) a (.738) (.219) (.759) (.277) (.779) 

Functional Factor       

1. Achievement 

Heterogeneity 

.310***   .303*** .297*** .290*** 

 
(.035)   (.037) (.036) (.038) 

2. Achievement 

Heterogeneity × Cohort 

-.083***   -.073** -.082** -.075** 

 (.025)   (.027) (.026) (.027) 

3. School Size .005   .000 .003 -.002 

 (.009)   (.009) (.009) (.009) 

4. School Size × Cohort -.003   -.003 -.007 -.006 

 (.006)   (.006) (.006) (.006) 

Status Competition       

5. School-mean 

Achievement 

 .026  .002  .000 

  (.016)  (.017)  (.017) 

6. School-mean 

Achievement × Cohort 

 -.042**  -.022  -.023 

  (.015)  (.015)  (.015) 

7. School-mean SES  .272  .383~  .402~  
 (.205)  (.206)  (.208) 

8. School-mean SES × 

Cohort 

 -.419*  -.550**  -.573** 

  (.178)  (.176)  (.180) 

9. Percentage of White  -.430  -.472  -.378 

  (.370)  (.379)  (.395) 

10. Percentage of White 

× Cohort 

 -.225  -.140  .037 

 
 (.187)  (.195)  (.229) 

11. Percentage of non-

free lunch 

 1.171**  .919*  .908* 

  (.439)  (.436)  (.439) 

12. Percentage of non-

free lunch × Cohort 

 .793**  .788**  .725* 

 
 (.303)  (.300)  (.302) 

Opportunity Hoarding       

13. SES Heterogeneity   1.154**  .474 .662 

   (.425)  (.421) (.437) 

14. SES Heterogeneity 

× Cohort 

  -.574~  -.355 -.144 
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  (.327)  (.327) (.341) 

15. Shannon Index of 

Race Diversity 

  .347  .149 .049 

   (.218)  (.221) (.235) 

16. Shannon Index of 

Race Diversity × Cohort 

  .193  .232 .254 

 
  (.136)  (.146) (.175) 

School Covariates Yes Yes Yes Yes Yes Yes 

R-squared .085 .077 .060 .104 .088 .104 

a. Robust Standard errors in parentheses 

*** p<.001, ** p<.01, * p<.05, ~ p<.1 

NOTE: Sample size is rounded to the nearest 10 as required by NCES. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School and Beyond 

Longitudinal Study of 1980 Sophomores (HS&B-So: 80/82), “Base-year Survey, First Follow-up Survey, High School 

Transcript Study”; U.S. Department of Education, National Center for Education Statistics, National Education 

Longitudinal Study of 1988 (NELS: 88/92), “Base-year Survey, First Follow-up Survey, High School Transcript Study, 

1992.”; U.S. Department of Education, National Center for Education Statistics, Education Longitudinal Study of 

2002 (ELS: 2002/2004), “Base-year Survey, First Follow-up Survey, High School Transcript Study”; U.S. Department 

of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09/13), 

“Base-year Survey, First Follow-up Survey, 2013 Update Survey, High School Transcript Collection”. 



 223 

Appendix C Coding Process for Curricular Experience Codes used in TIMSS Chapter 

Appendix Table 10 8th Grade Mathematics Topics Coding (TIMSS 2015, 2019) 

Subject/Domain Topic Taught Equivalent Grade 

Level  

Difficulty Code 

Number     

BTBM21AA Computing with whole numbers 5th Grade 1 

BTBM21AB Comparing and ordering rational numbers 7th Grade 2 

BTBM21AC Computing with rational numbers (fractions, 

decimals, and integers) 

7th Grade 2 

BTBM21AD Concepts of irrational numbers 8th Grade 3 

BTBM21AE Problem solving involving percents or 

proportions 

7th Grade 2 

Algebra    

BTBM21BA Simplifying and evaluating algebraic 

expressions 

6h Grade 2 

BTBM21BB Simple linear equations and inequalities 6th Grade 2 

BTBM21BC Simultaneous (two variables) equations 8th Grade 3 

BTBM21BD Numeric, algebraic, and geometric patterns or 

sequences (extension, missing terms, 

generalization of patterns) 

5th Grade 1 

BTBM21BE Representation of functions as ordered pairs, 

tables, graphs, words, or equations 

8th Grade  3 

BTBM21BF Properties of functions (slopes, intercepts, etc.) 8th Grade  3 

Geometry    

BTBM21CA Geometric properties of angles and geometric 

shapes (triangles, quadrilaterals, and other 

common polygons) 

5th Grade  1 

BTBM21CB Congruent figures and similar triangles 8th Grade  3 

BTBM21CC Relationship between three-dimensional shapes 

and their two-dimensional representations 

7th Grade  2 

BTBM21CD Using appropriate measurement formulas for 

perimeters, circumferences, areas, surface 

areas, and volumes 

7th Grade  2 

BTBM21CE Points on the Cartesian plane 5th Grade  1 

BTBM21CF Translation, reflection, and rotation 8th Grade  3 

Data and Chance    

BTBM21DA Characteristics of data sets (mean, median, 

mode, and shape of distributions) 

6th Grade  2 

BTBM21DB Interpreting data sets (e.g., draw conclusions, 

make predictions, and estimate values between 

and beyond given data points) 

7th Grade  2 
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BTBM21DC Judging, predicting, and determining the 

chances of possible outcomes 

7th Grade  2 

 

Appendix Table 11 8th Grade science topics coding (TIMSS 2015, 2019) 

Subject Topic Taught Difficulty 

Code 

Biology Differences among major taxonomic groups of organisms (plants, animals, 

fungi, mammals, birds, reptiles, fish, amphibians) 

1 

 Major organs and organ systems in humans and other organisms 

(structure/function, life processes that maintain stable bodily conditions) 

2 

 Cells, their structure and functions, including respiration and photosynthesis 

as cellular processes 

3 

 Life cycles, sexual reproduction, and heredity (passing on of traits, inherited 

versus acquired/learned characteristics) 

1 

 Role of variation and adaptation in survival/extinction of species in a 

changing environment (including fossil evidence for changes in life on Earth 

over time) 

1 

 Interdependence of populations of organisms in an ecosystem (e.g., energy 

flow, food webs, competition, predation) and factors affecting population 

size in an ecosystem 

3 

 Human health (causes of infectious diseases, methods of infection, 

prevention, immunity) and the importance of diet and exercise in 

maintaining health 

1 

Chemistry   

 Classification, composition, and particulate structure of matter (elements, 

compounds, mixtures, molecules, atoms, protons, neutrons, electrons)  
2 

 Physical and chemical properties of matter 1 

 Mixtures and solutions (solvent, solute, concentration/dilution, effect of 

temperature on solubility) 

3 

 Properties and uses of common acids and bases 2 

 Chemical change (transformation of reactants, evidence of chemical change, 

conservation of matter, common oxidation reactions – combustion, rusting, 

tarnishing)  

2 

 The role of electrons in chemical bonds 4 

Physics   

 Physical states and changes in matter (explanations of properties in terms of 

movement and distance between particles; phase change, thermal expansion, 

and changes in volume and/or pressure)  

2 

 Energy forms, transformations, heat, and temperature  1 

 Basic properties/behaviors of light (reflection, refraction, light and color, 

simple ray diagrams) and sound (transmission through media, loudness, 

pitch, amplitude, frequency)  

3 
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 Electric circuits (flow of current; types of circuits - parallel/series) and 

properties and uses of permanent magnets and electromagnets)  
3 

 Forces and motion (types of forces, basic description of motion, effects of 

density and pressure)  
4 

Earth 

Science  

  

 Earth’s structure and physical features (Earth’s crust, mantle, and core; 

composition and relative distribution of water, and composition of air)  
1 

 Earth’s processes, cycles, and history (rock cycle; water cycle; weather 

versus climate; major geological events; formation of fossils and fossil fuels)  

2 

 Earth’s resources, their use and conservation (e.g., renewable/nonrenewable 

resources, human use of land/soil, water resources)  
1 

 Earth in the solar system and the universe (phenomena on Earth - day/night, 

tides, phases of moon, eclipses, seasons; physical features of Earth compared 

to other bodies)  

2 

 

Appendix Table 12 8th Grade Mathematics Topics Coding (TIMSS 2003, 2007, 2011) 

Subject/Domain Topic Taught Equivalent Grade 

Level  

Difficulty 

Code 

Number     

 Computing with whole numbers 5th Grade 1 

 Concepts of fractions and computing with 

fractions 

7th Grade 2 

 Concepts of decimals and computing with 

decimals 

7th Grade 2 

 Representing, comparing, ordering, and 

computing with integers 

6th Grade 2 

 Problem solving involving percents or 

proportions 

7th Grade 2 

Algebra    

 Numeric, algebraic, and geometric patterns 

or sequences (extension, missing terms, 

generalization of patterns) 

5th Grade 1 

 Simplifying and evaluating algebraic 

expressions 

6h Grade 2 

 Simple linear equations and inequalities 6th Grade  2 

 Simultaneous (two variables) equations 8th Grade  3 

 Representation of functions as ordered 

pairs, tables, graphs, words, or equations 

8th Grade  3 

Geometry    
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 Geometric properties of angles and 

geometric shapes (triangles, quadrilaterals, 

and other common polygons) 

5th Grade  1 

 Congruent figures and similar triangles 8th Grade  3 

 Relationship between three-dimensional 

shapes and their two-dimensional 

representations 

7th Grade  2 

 Using appropriate measurement formulas 

for perimeters, circumferences, areas, 

surface areas, and volumes 

7th Grade  2 

 Points on the Cartesian plane 5th Grade  1 

 Translation, reflection, and rotation 8th Grade  3 

Data and Chance    

 Reading and displaying data using tables, 

pictographs, bar graphs, pie charts, and 

line graphs 

6th Grade  2 

 Interpreting data sets (e.g., draw 

conclusions, make predictions, and 

estimate values between and beyond given 

data points) 

7th Grade  2 

 Judging, predicting, and determining the 

chances of possible outcomes 

7th Grade  2 

 

Appendix Table 13 8th Grade science topics coding (TIMSS 2003, 2007, 2011) 

Subject Topic Taught Difficulty 

Code 

Biology Major organs and organ systems in humans and other organisms 

(structure/function, life processes that maintain stable bodily conditions) 

2 

 Cells and their functions, including respiration and photosynthesis as cellular 

processes 

3 

 Reproduction (sexual and asexual) and heredity (passing on of traits, 

inherited versus acquired/learned characteristics) 

1 

 Role of variation and adaptation in survival/extinction of species in a 

changing environment 

1 

 Interdependence of populations of organisms in an ecosystem (e.g., energy 

flow, food webs, competition, predation) and the impact of changes in the 

physical environment on populations (e.g., climate, water supply) 

3 

 Reasons for increase in world’s human population (e.g., advances in 

medicine, sanitation), and the effects of population growth on the 

environment 

2 
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 Human health (causes of infectious diseases, methods of infection, 

prevention, immunity) and the importance of diet and exercise in 

maintaining health 

1 

Chemistry   

 Classification, composition, and particulate structure of matter (elements, 

compounds, mixtures, molecules, atoms, protons, neutrons, electrons)  
2 

 Mixtures and solutions (solvent, solute, concentration/dilution, effect of 

temperature on solubility)  
3 

 Properties and uses of common acids and bases  2 

 Chemical change (transformation of reactants, evidence of chemical change, 

conservation of matter, common oxidation reactions – combustion, rusting, 

tarnishing)  

2 

Physics   

 Physical states and changes in matter (explanations of properties in terms of 

movement and distance between particles; phase change, thermal expansion, 

and changes in volume and/or pressure)  

2 

 Energy forms, transformations, heat, and temperature  1 

 Basic properties/behaviors of light (reflection, refraction, light and color, 

simple ray diagrams) and sound (transmission through media, loudness, 

pitch, amplitude, frequency)  

3 

 Electric circuits (flow of current; types of circuits - parallel/series) and 

properties and uses of permanent magnets and electromagnets)  
3 

 Forces and motion (types of forces, basic description of motion, effects of 

density and pressure)  
4 

Earth 

Science  

  

 Earth’s structure and physical features (Earth’s crust, mantle, and core; 

composition and relative distribution of water, and composition of air)  

1 

 Earth’s processes, cycles, and history (rock cycle; water cycle; weather 

versus climate; major geological events; formation of fossils and fossil fuels)  
2 

 Earth’s resources, their use and conservation (e.g., renewable/nonrenewable 

resources, human use of land/soil, water resources)  
1 

 Earth in the solar system and the universe (phenomena on Earth - day/night, 

tides, phases of moon, eclipses, seasons; physical features of Earth compared 

to other bodies)  

2 

 

Appendix Table 14 8th Grade Mathematics Topics Coding (TIMSS 1995, 1999) 

Subject/Domain Topic Taught Equivalent Grade 

Level  

Difficulty Code 

Number     

BTBMTT01 Whole numbers – including place values, 

factorization and operations 

5th Grade  1 
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BTBMTT06 Relationships between common and 

decimal fractions, ordering of fractions 

7th Grade  2 

BTBMTT03 Computations with common fractions 7th Grade  2 

BTBMTT11 Simple computations with negative numbers 7th Grade  2 

BTBMTT10 Computations with percentages and 

problems involving percentages 

7th Grade  2 

Algebra    

BTBMTT28 Simple algebraic expressions 6h Grade  2 

BTBMTT30 Solving simple equations 6th Grade  2 

BTBMTT31 Solving simple inequalities 8th Grade  3 

BTBMTT27 Number patterns and simple relations 5th Grade  1 

BTBMTT20 Coordinates of points on a given straight line 8th Grade  3 

Geometry    

BTBMTT21 Simple two dimensional geometry – angles 

on a straight line, parallel lines, 

triangles and quadrilaterals 

5th Grade  1 

BTBMTT22 Congruence and similarity 8th Grade  3 

BTBMTT24 Visualization of three-dimensional shapes 7th Grade  2 

BTBMTT18 Volume of rectangular solids – 

i.e., Volume = length × width × height 

7th Grade  2 

BTBMTT19 Cartesian coordinates of points in a plane 5th Grade  1 

BTBMTT23 Symmetry and transformations 

(reflection and rotation) 

8th Grade  3 

Data and Chance    

BTBMTT32 Representation and interpretation of data 

in graphs, charts, and tables 

6th Grade  2 

BTBMTT33 Arithmetic mean 7th Grade  2 

BTBMTT34 Simple probabilities – understanding 

and calculations 

7th Grade  2 

 

Appendix Table 15 8th Grade science topics coding (TIMSS 1995, 1999) 

Subject Topic Taught Difficulty 

Code 

Biology   

BTBSTT06 Human bodily processes (metabolism, respiration, digestion) 2 

BTBSTT08 Biology of plant and animal life (diversity, structure, life processes, life 

cycles) 

1 

BTBSTT10 Reproduction, genetics, evolution, and speciation 2 

BTBSTT09 Interactions of living things (biomes and ecosystems, interdependence) 3 

BTBSTT07 Human nutrition, health, and disease 1 

Chemistry   

BTBSTT11 Classification of matter (elements, compounds, solutions, mixtures) 2 

BTBSTT12 Structure of matter (atoms, ions, molecules, crystals) 3 

BTBSTT13 Chemical reactivity and transformations (definition of chemical change, 2 
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oxidation, combustion) 

BTBSTT14 Energy and chemical change (exothermic and endothermic reactions, 

reaction rates) 

4 

Physics   

BTBSTT15 Physical properties and physical changes of matter (weight, mass, states of 

matter, boiling, freezing) 

2 

BTBSTT18 Heat and temperature 1 

BTBSTT19 Wave phenomena, sound, and vibration 3 

BTBSTT17 Energy types, sources, and conversions (chemical, kinetic, electric, 

light energy; work and efficiency) 

4 

BTBSTT16 Subatomic particles (protons, electrons, neutrons) 2 

BTBSTT21 Electricity and magnetism 3 

BTBSTT22 Forces and motion (types of forces, balanced/unbalanced forces, fluid 

behavior, speed, acceleration) 

4 

Earth 

Science  

  

BTBSTT01 Earth’s physical features (layers, landforms, bodies of water, rocks, soil) 1 

BTBSTT02 Earth’s atmosphere (layers, composition, temperature, pressure) 2 

BTBSTT03 Earth processes and history (weather and climate, physical cycles, plate 

tectonics, fossils) 

1 

BTBSTT04 Earth in the solar system and the universe (interactions between Earth, sun, 

and moon; relationship to planets and stars) 

2 
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