
Title Page

Optimal Entanglement Distillation Policies for Bipartite Quantum Switches

by

Vivek Kumar

Bachelors in Technology, Manipal Institute of Technology, 2019

Masters of Science in Information Science, University of Pittsburgh, 2023

Submitted to the Graduate Faculty of the

School of Computing and Information in partial fulfillment

of the requirements for the degree of

Master of Science in Information Science

University of Pittsburgh

2023

 ii

UNIVERSITY OF PITTSBURGH

School of Computing and Information

This thesis was presented

by

Vivek Kumar

It was defended on

November 28, 2023

and approved by

Kaushik P Seshadreesan, Assistant Professor, Department of Information and Networked

Systems

David Tipper, Professor, Department of Information and Networked Systems

Alan Andrew Scheller-Wolf, Professor, Tepper School of Business, Carnegie Mellon University

Thesis Advisor: Kaushik P Seshadreesan, Assistant Professor, Department of Information and

Networked Systems

 iii

2023Committee Membership Page

Copyright © by Vivek Kumar

2023

iv

Abstract

Optimal Entanglement Distillation Policies for Bipartite Quantum Switches

Vivek Kumar, MSIS

University of Pittsburgh, 2023

In an entanglement distribution network, the function of a quantum switch is to generate

elementary entanglement with its clients followed by entanglement swapping to distribute

end-to-end entanglement of sufficiently high fidelity between clients. The threshold on

entanglement fidelity is any quality-of-service requirement specified by the clients as

dictated by the application they run on the network.

We consider a discrete-time model for a quantum switch that attempts generation

of fresh elementary entanglement with two clients in each time step in the form of

maximally entangled qubit pairs, or Bell pairs, which succeed probabilistically; the

successfully generated Bell pairs are stored in noisy quantum memories until they can be

swapped. We focus on establishing the value of entanglement distillation of the stored

Bell pairs prior to entanglement swapping in presence of their inevitable aging, i.e.,

decoherence: For a simple instance of a switch with two clients, exponential decay of

entanglement fidelity, and a well-known probabilistic but heralded two-to-one distillation

protocol, given a threshold end-to-end entanglement fidelity, we employ Markov Decision

Process and Reinforcement Learning to find optimal policies.

v

With these combined methodologies, our goal is to pinpoint the optimal action

policy—whether it's waiting, distilling, or swapping—that can effectively maximize

throughput. We compare the switch's performance under the optimal distillation-enabled

policy with that excluding distillation.

Whereas the MDP framework helps model the problem in a coarse-grained form

(discrete observation state space), and solving the MDP provides exact optimal policies,

the Reinforcement Learning-based approach allows us to consider a more fine-grained

model (continuous observation state space) and provides approximate but improved

optimal policies. Simulations of the two policies demonstrate the improvements that are

possible in principle via optimal use of distillation with respect to average throughput,

average fidelity, and jitter of end-to-end entanglement, as functions of fidelity threshold.

Our work thus helps capture the role of entanglement distillation in mitigating the effects

of decoherence in a quantum switch in an entanglement distribution network, adding to

the growing literature on quantum switches.

 vi

Table of Contents

Preface .. xi

1.0 Introduction ... 1

1.1 Thesis Outline .. 4

2.0 General Concepts ... 6

2.1 Quantum States ... 6

2.1.1 Qubits .. 6

2.1.2 Entanglement ... 7

2.1.3 The Density Operator .. 9

2.1.4 Fidelity ... 10

2.1.5 Werner States ... 11

2.1.6 Decoherence .. 12

2.2 Quantum Repeaters ..12

2.2.1 Entanglement Swapping ... 14

2.3 Quantum Switch ...16

2.3.1 Entanglement Distillation: Bennett Protocol .. 17

2.4 Markov Decision Process ...20

vii

2.4.1 Value Iteration .. 23

2.4.2 Policy Iteration ... 24

2.5 Reinforcement Learning ..27

2.5.1 Deep Reinforcement Learning ... 28

2.5.1.1 Value Function Approximation ..28

2.5.1.2 Action-Value Function Approximation ...29

2.5.1.3 Policy Function Approximation ..31

2.5.2 Invalid Action and Invalid Action Masking .. 32

2.5.3 Proximal Policy Optimization Algorithm .. 33

2.5.4 Sparse Reward Issue During Application of Reinforcement Learning 35

2.5.5 Random Network Distillation ... 37

3.0 Bipartite Switch M odel .. 41

3.1 Base Model ..41

3.2 Bipartite Switch Model for MDP Framework ...45

3.2.1 States .. 46

3.2.2 Actions .. 47

3.2.3 Transition Probability... 49

3.2.4 Rewards .. 50

viii

3.3 Bipartite Switch Model for Reinforcement Learning Framework51

3.3.1 States .. 52

3.3.2 Actions .. 53

3.3.3 Rewards .. 53

4.0 Bipartite Switch M odel Solution .. 56

4.1 Using MDP ...56

4.2 Using Reinforcement Learning ..57

5.0 Results ... 59

5.1 MDP Results ...60

5.2 RL Results ..64

6.0 Conclusions .. 66

Bibliography ... 68

ix

List of Tables

Table 1: Sample Transition Function Table ... 56

 x

List of Figures

Figure 2-1: Entanglement Swap ... 16

Figure 2-2: Bennett Protocol For Distillation. ... 18

Figure 2-3: Graphs showing resultant 𝑭𝟏𝟐 after distillation 19

Figure 2-4: Iterative process defining M arkov Decision Processes. 22

Figure 2-5: Flowchart describing Policy Iteration Algorithm 26

Figure 2-6: Sparse Rewards Grid World vs Dense Rewards Grid World 36

Figure 2-7: Schematic of RND algorithm ... 40

Figure 3-1: A schematic of quantum switch with two users 43

Figure 3-2: Schematic for switch model simulation 44

Figure 3-3: Plot of 𝜿 ... 54

Figure 5-1: Average Throughput vs Fidelity Threshold 60

Figure 5-2: Average Fidelity vs Fidelity Threshold 61

Figure 5-3: Jitter vs Fidelity Threshold ... 63

Figure 5-4: Average Throughput vs Fidelity Threshold for RL M odel 64

 xi

Preface

I am thankful for the guidance of my advisor Kaushik Seshadreesan and the support

from Alan Scheller-Wolf and Sridhar Tayur in the completion of this research. I would

also like to acknowledge my co-author Nitish Kumar Chandra for his contributions.

This research was partly supported by the University of Pittsburgh Center for

Research Computing, RRID:SCR_022735, and the HTC cluster supported by NIH award

number S10OD028483.

This research was funded by NSF Award 2134891 project QuanNeCQT under the

Convergence Accelerator program (sub-award from University of Maryland).

Finally, my gratitude goes to my parents and family for their unwavering support.

 1

1.0 Introduction

The prospective quantum internet [1] represents a global-scale network of

interconnected quantum computers, sensors, and devices, marking a significant

development in the ongoing second quantum revolution [2]. It will coexist with the current

classical internet, primarily enhancing security through quantum cryptography [3]

methods like quantum key distribution [4]. Additionally, it will support distributed

quantum information processing [5], [6], and secure delegated quantum computation [7],

[8] in the cloud, addressing limitations of the existing classical internet.

One of the main challenges in implementing entanglement-based quantum

networks within the quantum internet is establishing quantum entanglement reliably

across long distances at high speeds. This difficulty arises because quantum signals

degrade exponentially with transmission distance [9] – [11]. Quantum repeaters [12] – [14]

play a crucial role in addressing this challenge by amplifying quantum signals using

quantum sources, memories, detectors, and logic, enabling the distribution of higher-

quality entanglement at improved rates.

In addition to quantum repeaters, quantum switches play a vital role in the

advancement of quantum networks. A quantum switch essentially functions as a quantum

repeater, enhancing the rate of dependable quantum transmissions passing through it.

Moreover, it possesses the capability to manage quantum communications among multiple

users, allowing the redirection of quantum transmission flows within the network. This

functionality enables the establishment of large-scale quantum networks with diverse

topologies [15].

2

It is important to note that the measurements involved in entanglement swapping

are generally probabilistic in nature. When successful, these measurements result in the

establishment of end-to-end entanglement between the clients. The decisions made by the

quantum switch are guided by a switching policy designed to optimize specific metrics,

while also considering the quality-of-service requirements specified by its clients, such as

a minimum threshold fidelity for end-to-end entanglement.

Various models and policies for quantum switches in entanglement distribution

networks have been explored. These models include switches serving bipartite

entanglement [16], [17] through Bell-state measurements, switches facilitating multipartite

entanglement using Greenberger-Horne-Zeilinger (GHZ) basis measurements [18] on link-

level entanglement [19], and hybrid switches that handle both scenarios [20]. Some studies

consider the impact of decoherence on link-level entanglement, incorporating finite lifetime

quantum memories [16], [17].

While certain models focus on static metrics like sum throughput, independent of

client demands [5], [16], [17], [20], others take into account client requests for various types

of end-to-end entanglement. They aim to optimize request service rates by prioritizing

requests to prevent backlogs from growing indefinitely [21], [22]. Recent research also

delves into a quantum switch model for continuous variable quantum encodings,

considering request rates, queue stability, and the polarities of elementary entanglement

to enhance end-to-end entanglement rates [23] – [25].

In a recent study, a switch model was examined where multiple noisy link-level

Bell pairs are generated per client and last only one time step. It explored the use of

nested two-to-one probabilistic but heralded entanglement distillation [26], [27] to surpass

a fidelity threshold on end-to-end entanglement [28]. The study compared the performance

 3

of distilling elementary entanglement followed by entanglement swap with entanglement

swap followed by end-to-end entanglement distillation.

This work focuses on a simplified switch model in an entanglement distribution

network with two clients and bipartite qubit entanglement distribution. The primary

objective is to evaluate the impact of distillation in mitigating decoherence effects. Link

level entanglement with clients are modeled as "Bell pairs", which refer to two-qubit

maximally entangled states that are retained over multiple time steps, potentially

experiencing decoherence as they await pairing with link-level counterparts. During this

waiting period, entanglement distillation between noisy Bell pairs across each link is

considered to maintain link quality.

Two approaches have been explored, a Markov Decision Process (MDP) framework

within a discrete-time model and a Reinforcement Learning based approach to account

for continuous state spaces. Both techniques account for probabilistic creation of link-level

entanglement, finite buffers for links that limits the number of Bell pairs that can be

stored along a link, and the option for two-to-one entanglement distillation between Bell

pairs on the same link to enhance fidelity. Since this operation carries a risk (both links

can be lost with non-zero probability), the techniques determine the optimal action policy

to balance benefits and risks. Numerical simulations are used to compare the performance

of this switch with one that does not allow distillation, assessing average throughput and

jitter of end-to-end entanglement generation concerning a target entanglement fidelity

threshold.

All code has been written in python and the libraries used are mentioned in

subsequent sections according to when they were utilized.

 4

1.1 Thesis Outline

This document is organized as follows. To begin with, Chapter 2 delves into several

key concepts that serve as the foundation for the later parts of the thesis. This includes

concepts like entanglement, distillation, quantum repeaters, and quantum switches. We

also provide a thorough examination of the fundamental principles underpinning quantum

networking. This encompasses topics such as qubit state noise, fidelity, entanglement

distillation, entanglement swapping, and quantum memory. Finally, we discuss the

concepts that will allow us to formulate the switch model as a Markov Decision Process

(MDP) and Reinforcement Learning (RL) problem.

The rest of the thesis describes finding and analyzing optimal policies that

maximize the throughput of quantum switch involving two users and serving bipartite

end-to-end entanglement by taking one of three available actions: wait, entanglement

swap, entanglement distillation.

Chapter 3 defines the model of our switch for both the MDP and RL framework.

It is essential to note that even though both frameworks solve the same switch model, the

observation state spaces are different. Solving MDPs are a computationally intractable

problem for large state spaces and hence we use it to solve states which are elementally

discrete. RL lends itself to more conveniently solve continuous state spaces. This change

in observation spaces makes it pertinent to modify the actions using different

implementation strategies while programming.

In Chapter 4, we move forward with solving both our MDP and RL formulations.

Our work used both approaches of solving MDPs, i.e., value iteration and policy iteration.

The results showed that policy iteration proved to be a much more efficient method. The

result is a csv file detailing the action that should be taken for each possible state. The

 5

inability of MDPs to solve large state spaces entails assumptions to discretize the states.

This prevents the solution and framework to be representative of reality. We also explain

our attempt to involve Reinforcement Learning (RL) so as to mitigate this issue. RL

brings with itself certain problems for complex models that need to be addressed, namely

presence of invalid actions and sparse rewards. These issues and their resolutions are

discussed in length in this chapter.

The results and conclusions detailed in Chapter 5 and 6 provide evidence that

including distillation as a prospective action for switches indeed helps in increasing the

throughput for both the MDP and RL model. It’s relation to jitter and average fidelity

achieved over multiple fidelity thresholds is also discussed for the MDP model.

6

2.0 General Concepts

In this chapter, we will introduce some of the common concepts used throughout

the thesis. These concepts will be quite general but will be put into a more specific context

in the subsequent chapters. There will not be given an introduction to the fundamentals

of quantum information theory and reinforcement learning and, if necessary, the reader is

referred to books by Isaac Chuang and Michael Nielsen [29], Mark M. Wilde [30] and

Richard S. Sutton [31].

2.1 Quantum States

Quantum states are the foundational elements in quantum mechanics, capturing

the behavior of particles and systems at the quantum level. They introduce inherent

uncertainty and superposition, giving rise to unique phenomena. Additionally, concepts

like entanglement, noise, and fidelity play crucial roles in defining and understanding the

properties and behavior of quantum states.

2.1.1 Qubits

The qubit, a quantum counterpart to the classical bit used for binary information

representation, can be described mathematically as a two-dimensional complex vector

space, where |0⟩ and |1⟩ vectors form the computational basis. These two states

correspond to orthogonal states, such as "spin up" and "spin down".

 7

In quantum computation, the foundation lies in applying quantum logic to

transform the joint quantum state of multiple qubits. Universal sets of quantum logic

gates, comprise single and two-qubit gates, which can be employed to construct any

quantum computation [29]. A prime example of such a set includes single-qubit rotations

and the CNOT gate. The CNOT gate, a two-qubit gate, facilitates the transformation.

 |0⟩𝑎|0⟩𝑏 → |0⟩𝑎|0⟩𝑏 , |0⟩𝑎|1⟩𝑏 → |0⟩𝑎|1⟩𝑏,

 |1⟩𝑎|0⟩𝑏 → |1⟩𝑎|1⟩𝑏 , |1⟩𝑎|1⟩𝑏 → |1⟩𝑎|0⟩𝑏, (2.1)

where the qubit with subscript a is referred to as the control qubit and the other is called

the target qubit.

The key distinction between a classical bit and a qubit lies in the nature of the

physical qubit, governed by the principles of quantum mechanics. Consequently, a qubit

doesn't always follow a definite path of either being in state |0⟩ or |1⟩; instead, it can exist

in a superposition of these states. A general qubit state, |𝜓⟩, can be expressed as:

 |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩. (2.2)

Here, |𝛼|2 (or |𝛽|2) represents the probability of measuring the qubit in state |0⟩|0⟩ (or

|1⟩|1⟩), and |𝛼|2 + |𝛽|2 = 1. The capacity to exist as a superposition of two orthogonal

states is a pivotal advantage of employing quantum systems for information processing.

2.1.2 Entanglement

Entanglement extends the superposition principle to encompass multiple qubits.

When the joint state of two qubits exists in an equal superposition between two orthogonal

states, it is termed a maximally entangled state. This state can be expressed as:

8

|𝜓+⟩ =
1

√2
(|0⟩𝑎|1⟩𝑏 + |1⟩𝑎|0⟩𝑏), (2.3)

where |0⟩𝑎 (|0⟩𝑏) refers to qubit a (b) being in state 0. Now, if we consider a continuous

supply of these states and perform repeated measurements on the two qubits, we find an

interesting behavior. Both qubits have an equal chance (50-50) of being in either state |0⟩

or |1⟩ after measurement. However, there is the strong anti-correlation between the states

of the two qubits. That is, whenever qubit a is measured in state |0⟩, qubit b is

simultaneously found in state |1⟩, and vice versa. Moreover, remarkably, the anti-

correlation persists even if qubits a and b are measured in any basis, as long as they both

are measured in same basis. It is important to emphasize that the anti - correlation

remains consistent, regardless of the physical distance separating the two qubits. In a

somewhat intriguing manner, the two qubits jointly decide to assume opposite states upon

measurement, as their combined state exists in superposition before measurement. This

type of correlation lacks a classical equivalent and is the foundation for phenomena like

quantum teleportation [32]. The state described in Equation (2.3) is just one of the four

possible maximally entangled two-qubit states, commonly referred to as such, with the

other three states being

|𝜓−⟩ =
1

√2
(|0⟩𝑎|1⟩𝑏 − |1⟩𝑎|0⟩𝑏), (2.4)

|ϕ±⟩ =
1

√2
(|0⟩𝑎|0⟩𝑏 ± |1⟩𝑎|1⟩𝑏). (2.5)

Note, that entanglement can in general exist for an arbitrary number of qubits,

e.g., the GHZ states,
1

√2
(|0⟩|0⟩… |0⟩ + |1⟩|1⟩… |1⟩) are examples of multi-qubit, entangled

states.

 9

2.1.3 The Density Operator

The density operator, also referred to as the density matrix (when represented as

a matrix) is a fundamental concept in quantum mechanics, particularly important in the

contexts of statistical mixtures of states.

As we have seen in the previous sections, in quantum mechanics, the state of a

system is typically described by a wave function, which is a solution to the Schrödinger

equation. This wave function 𝜓 is described in Equation (2.2) as a general qubit state and

it gives complete information about the system's state. However, in many cases, especially

in quantum statistical mechanics and quantum information theory, we might not have

complete information about the system's state or the system might be a mixture of several

states. In such cases, the density operator becomes a useful tool.

This leads us to define a pure state and a mixed state before explaining density

operator in detail.

A pure state represents a quantum system in a specific, well-defined state, |𝜓⟩.

This state provides complete information about the system's quantum state. An example

of a pure state is an electron in a hydrogen atom occupying a specific energy level. The

key characteristic of a pure state is that it exhibits coherent superposition as seen in

Equation (2.2), meaning the state can be a combination of several basis states with specific

probability amplitudes.

On the other hand, a mixed state represents a statistical ensemble of several

different states, each with a certain probability. Unlike a pure state, a mixed state does

not have a single wave function describing it. Instead, it is characterized by a set of states

and their respective probabilities. A mixed state arises in situations where there is

uncertainty or lack of information about which particular pure state the system is in. This

10

can happen, for example, due to noise. E.G., decoherence, where a quantum system

interacts with its environment, leading to a loss of coherent superposition.

With these concepts in mind, we can define the density operator (or density matrix)

in quantum mechanics, which is a more general way to describe the state of a quantum

system, encompassing both pure and mixed states. The density operator, denoted as 𝜌, is

particularly useful because it can handle situations where a system is in a superposition

of states (pure state) or when there is uncertainty about its state (mixed state).

For a pure state |𝜓⟩, the density operator is defined as:

 𝜌 = |𝜓⟩|⟨𝜓|, (2.6)

which is the outer product of the state vector with its conjugate transpose. This

representation captures the complete information of the pure state.

In the case of a mixed state, where the system is in a state |𝜓𝑖⟩ with probability

𝑝𝑖, the density operator is a weighted sum of the outer products of each state:

 𝜌 = ∑ 𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖|𝑖 , (2.7)

with the condition that ∑ 𝑝𝑖𝑖 = 1, to ensure that the total probability is conserved. The

density operator provides a unified framework to describe both pure and mixed states.

2.1.4 Fidelity

Fidelity is a crucial concept in quantum information theory, used to quantify how

close or similar two quantum states are to each other. This measure is especially important

in the context of quantum computing, quantum communication, and other quantum

technologies, where maintaining the integrity of quantum states is paramount.

 11

For pure states, fidelity between two states 𝜌 = |𝜓⟩⟨𝜓| and 𝜎 = |𝜙⟩⟨𝜙| can be

defined by the following equation:

 𝐹(𝜌, 𝜎) = |⟨𝜓||𝜙⟩|
2
. (2.8)

For mixed states, the fidelity is defined in a more complex way, involving the

square root of the density matrices:

 𝐹(𝜌, 𝜎) = (𝑇𝑟√√𝜌𝜎√𝜌)

2

. (2.9)

If one of the states is pure and the other is mixed, the fidelity simplifies to:

 𝐹(𝜌, 𝜎) = ⟨𝜓|𝜎|𝜓⟩. (2.10)

2.1.5 Werner States

Werner states are a specific class of quantum states in quantum mechanics,

particularly relevant in the study of quantum entanglement. They were introduced by

Reinhard Werner in 1989 to explore the distinctions between quantum entanglement and

classical correlations. Werner states are important for understanding fundamental aspects

of quantum mechanics, including nonlocality, separability, and quantum information

theory.

Werner states are defined for bipartite systems, meaning systems that consist of

two parts, typically referred to as part A and part B. These states are especially significant

in the context of two-qubit systems, where each qubit is a two-level quantum system (akin

to a quantum version of a bit).

The general form of a Werner state 𝜌𝐴𝐵 for a two-qubit system can be written as:

12

𝜌𝐴𝐵 = 𝐹|𝜙
+⟩⟨𝜙+|𝐴𝐵 +

1−𝐹

3
(|𝜙−⟩⟨𝜙−|𝐴𝐵 + |𝜓

+⟩⟨𝜓+|𝐴𝐵 + |𝜓
−⟩⟨𝜓−|𝐴𝐵), (2.11)

where 𝐹 = 𝑇𝑟(𝜌𝐴𝐵|𝜙
+⟩⟨𝜙+|𝐴𝐵), 1 ≥ 𝐹 ≥ 0, captures the fidelity of the Werner state with

the target Bell state |𝜙+⟩. The states |𝜙+⟩, |𝜙−⟩, |𝜓+⟩ and |𝜓−⟩ states are given by

Equations (2.3), (2.4) and (2.5).

2.1.6 Decoherence

Decoherence is the process by which a quantum system loses its quantum

coherence. In quantum mechanics, coherence refers to the property of quantum

superposition, where a quantum system can be in multiple states simultaneously.

Decoherence is typically caused by the interaction of the quantum system with its

environment.

In our work, we model decoherence by dropping the fidelity of entanglements

exponentially with time, i.e.,

.

 𝐹(𝑚) = 𝑒−𝛼𝑚. (2.12)

Here 𝛼 is a decoherence parameter, and governs the resultant fidelity due to decoherence

after 𝑚 discrete timesteps.

2.2 Quantum Repeaters

The concept of entanglement plays a pivotal role in quantum communication. For

example, entanglement can be used to transfer quantum states from point A to B via the

 13

quantum teleportation protocol [29],[30]. Entanglement also enables quantum key

distribution (QKD) protocols between distant entities, commonly referred to as Alice and

Bob, as noted in references [33],[34]. Entanglement-based QKD involves repeatedly

distributing halves of entangled pairs to Alice and Bob, resulting in each party amassing

a large number of qubits. Through strategically measuring these qubits in various bases

and communicating their measurement strategies, Alice and Bob can derive a confidential

key for encryption and decryption. This technique's efficacy lies in the sensitivity of the

entangled qubits' correlations to interference. Should an eavesdropper attempt to glean

information by measuring the qubits in transit, this disturbance would be detectable. Alice

and Bob can safeguard against such intrusions by analyzing a select portion of their qubits,

thus gauging the extent of information potentially accessed by an eavesdropper. This

approach underpins the creation of exceptionally secure communication channels, as

highlighted in [34].

Extending entanglement over substantial distances is key to realizing quantum

communication over large distances, however this presents considerable challenges due to

quantum information's inherent vulnerability to noise. To establish entanglement between

two remote parties, a quantum signal, such as a single photon in a specific quantum state,

is typically transmitted. However, the likelihood of photon loss grows exponentially with

the distance if no intervening signal processing mechanisms are in place [35]. This issue

leads to a steep decrease in the rate of entanglement distribution as distance increases. In

classical communication, repeater stations are employed to amplify and clarify signals for

further transmission. Quantum communication adopts a similar architecture, but with a

critical distinction: amplifying a quantum signal would entail interaction, introducing

noise that deteriorates the quantum information [36], [37]. To overcome this, quantum

repeaters utilize shorter distance-scale link-level entanglement generation and the

14

phenomenon of entanglement swapping. In entanglement swapping, entanglement is

teleported from one station to the next, effectively bypassing direct signal loss [35], [38].

2.2.1 Entanglement Swapping

To begin with, quantum repeaters break down the total distance into smaller

segments known as elementary links. Within these links, entanglement is generated via

the direct transmission of a quantum signal (as depicted in Figure 2-1). The process of

establishing entanglement usually involves flying qubits and is often probabilistic in

nature. To accommodate this, quantum memories are utilized to store the quantum

information in stationary qubits until entanglement is successfully achieved in adjacent

links.

Once entanglement is established in two neighboring links, it is then swapped by

performing a Bell state measurement on one qubit from each pair (refer Fig. 2.1). A Bell

state measurement projects a two-qubit state onto one of the four Bell states. This task

requires some ingenuity, as a simple measurement of individual qubit states is insufficient

and will not differentiate between |𝜓±⟩ and |𝜙±⟩. A CNOT gate followed by single qubit

measurements can be used for this purpose.

To understand this mathematically, consider two adjacent links containing Bell

states |𝜓+⟩𝑎𝑏 and |𝜓−⟩𝑎𝑏, with qubits 𝑎 and 𝑏 in the first link, and 𝑐 and 𝑑 in the second.

The combined state of both links can be expressed as:

|𝜓+⟩𝑎𝑏|𝜓
+⟩𝑐𝑑 =

1

2
(|𝜓+⟩𝑏𝑐|𝜓

+⟩𝑎𝑑 − |𝜓
−⟩𝑏𝑐|𝜓

−⟩𝑎𝑑 + |𝜙
+⟩𝑏𝑐|𝜙

+⟩𝑎𝑑 − |𝜙
−⟩𝑏𝑐|𝜙

−⟩𝑎𝑑). (2.13)

Therefore, by conducting a Bell state measurement on qubits b and c and relaying the

outcome to the locations of qubits 𝑎 and 𝑑, we can implement specific single qubit

rotations to achieve the targeted Bell state between qubits 𝑎 and 𝑑. Essentially,

 15

entanglement is transferred to qubits 𝑎 and 𝑑 through a local Bell measurement on b and

c, the transmission of a classical signal (the measurement result), and local single qubit

rotations. This process eliminates the need for a quantum signal to be sent between qubits

𝑎 and 𝑑. This method is repeated until entanglement is successfully established across the

chain of repeaters that span the entire distance.

For Werner States described in Section 2.1.5, with fidelities 𝐹1 and 𝐹2 with respect to

|𝜙2⟩, the resultant fidelity upon entanglement swapping is given by:

___________________________________𝐹12 =

(4𝐹1 − 1)(4𝐹2 − 1)
3 + 1

4
. __________________________(2.14)

16

Figure 2-1: Entanglement Swap. The entire distance is broken down into smaller sections. In

these sections, entanglement is achieved via the direct transfer of a quantum signal. By

executing Bell measurements, this entanglement is transferred over increased distances. The

measurements' results are then sent to the final stations, where they adjust with specific

single qubit rotations. It's crucial to acknowledge that this repeater system relies on quantum

memories, which are used to store and handle these signals.

2.3 Quantum Switch

A quantum switch is a device in quantum networks that efficiently routes quantum

signals and establishes end-to-end entanglement among users as per their requirements.

This capability enables more precise and user-specific quantum communication pathways

within the network. In our work, the quantum switch also incorporates the process of

entanglement distillation, enhancing its functionality.

17

Specifically, we employ the Bennett, two-to-one entanglement distillation protocol

within the switch. This protocol involves using two pairs of less entangled qubits to

produce a single pair with higher entanglement. The process is akin to filtering out

quantum noise, improving the quality of entanglement at the expense of reducing the

number of entangled pairs. The integration of this process makes the quantum switch not

just a router of quantum information but also an enhancer of its quality.

2.3.1 Entanglement Distillation: Bennett Protocol

Entanglement distillation is a technique used to convert a number of low-quality,

noisy entangled states into a smaller number of entangled states with higher quality.

Specifically, for a pair of Werner states, 𝜌𝐴1𝐵1 and 𝜌𝐴2𝐵2, each characterized by fidelities

𝐹1 and 𝐹2. Bennett et al. [39] proposed a notable protocol for entanglement distillation.

This method is recognized for its probabilistic nature and the clear indication (heralding)

of its success or failure.

The protocol operates by executing CNOT operations, refer Figure 2-2. A1 and B1

act as control qubits, and A2 and B2 serve as target qubits. Following this, A2 and B2

are measured in the computational basis. The process is deemed successful if the

measurements of A2 and B2 are the same, and it fails if they differ. The likelihood of the

protocol's success is calculated by the formula:

𝑝𝑠𝑢𝑐𝑐 =
8

9
𝐹1𝐹2 −

2

9
(𝐹1 + 𝐹2) +

5

9
. (2.15)

 If the protocol is successful, it yields a Werner state with an improved fidelity

described by:

 18

 𝐹12 =
1

𝑝𝑠𝑢𝑐𝑐
(
10

9
𝐹1𝐹2 −

1

9
(𝐹1 + 𝐹2) +

1

9
). (2.16)

Through entanglement distillation, it is possible to achieve entanglement fidelities

in a quantum network that surpass specific quality of service benchmarks, albeit at the

cost of utilizing numerous link-level entanglements of typically lower fidelity. Additionally,

the probabilistic nature of such protocols introduces an element of unpredictability,

moving away from deterministic approaches.

Figure 2-3 shows the resultant fidelity values on success of distillation using

Bennett protocol for individual fidelities between 0.7 and 1.

Figure 2-2: Bennett Protocol For Distillation.

19

Figure 2-3: Graphs showing resultant 𝑭𝟏𝟐 after distillation

20

2.4 M arkov Decision Process

Markov Decision Processes (MDPs) offer a structured approach for modeling

decision-making in environments where outcomes are influenced by both random factors

and the actions of a decision-maker. It is an iterative process where an agent observes an

environment in state 𝑠𝑡, takes an action 𝑎𝑡, and receives a reward 𝑟𝑡+1, refer Figure 2-4.

The action changes the state from 𝑠𝑡 to 𝑠𝑡+1. Central to the concept of MDPs are several

key components: states, actions, transition functions, reward functions, discount factors,

and policies. In the context of near-term quantum networking, an MDP was recently

employed to determine policies for optimal elementary entanglement generation [40]

States in an MDP represent the various conditions or configurations in which the

system can exist, encapsulating all relevant information for decision-making. Actions are

the choices or maneuvers that can be taken in each state, leading to transitions between

states. The transition function, typically denoted as 𝑇(𝑠, 𝑎, 𝑠′), quantifies the probability

of moving from one state to another given a specific action, capturing the stochastic nature

of the environment.

The reward function, expressed as 𝑅(𝑠, 𝑎, 𝑠′), assigns a numerical value to each

transition, providing immediate feedback on the desirability of an action taken in a

particular state. This function is fundamental, as it directs the decision-making process

towards favorable outcomes by quantifying the immediate success or failure of actions.

The discount factor, represented by 𝛾, is a value between 0 and 1 that balances

the importance of immediate versus future rewards. It is a crucial parameter in computing

 21

the expected return, ensuring the convergence of the sum of future rewards. A higher 𝛾

places greater emphasis on future rewards, influencing the long-term strategy of the

decision-making process.

Policies in an MDP, denoted as 𝜋(𝑎|𝑠), dictate the behavior of an agent by

specifying the probability of choosing an action in a given state. The aim is to identify an

optimal policy that maximizes the cumulative reward.

The Value Function, 𝑉𝜋(𝑠), is a key concept that reflects the expected total reward

that an agent can accumulate over time, starting from a state 𝑠 and following a policy 𝜋.

It is defined as:

 𝑉𝜋(𝑠) = 𝔼𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1 | 𝑆𝑡 = 𝑠]
∞
𝑘=0 . (2.17)

Here the expectation in case of stochastic processes is calculated by using the

transition probability function wherein now,

 𝑅𝑡+𝑘+1 = ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′) x 𝑅𝑡+𝑘+1(𝑠, 𝜋(𝑠), 𝑠
′)𝑠′ .

Building on this, the Q-value Function, 𝑄𝜋(𝑠, 𝑎), considers both the state and the

action, representing the expected return of taking an action 𝑎 in state 𝑠 and then following

the policy 𝜋. It is formulated as:

 𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎].
∞
𝑘=0 (2.18)

Lastly, the Advantage Function, 𝐴𝜋(𝑠, 𝑎) , measures the relative benefit of a specific

action over the average action at a state under the given policy. It is defined as:

 𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠). (2.19)

22

These elements collectively establish the framework of MDPs, enabling the analysis

and formulation of optimal decision-making strategies in uncertain and dynamic

environments.

We can use Value Iteration or Policy Iteration to solve an MDP formulation to

obtain a final optimal policy. In our work we have chosen policy iteration to solve our

model since it gave the best and fastest results after numerous trial and error iterations.

Figure 2-4: Iterative process defining M arkov Decision Processes.

23

2.4.1 Value Iteration

Value iteration is one of the two primary algorithms used in Markov Decision

Processes (MDPs) to find an optimal policy. It leverages the framework of states, actions,

transition probabilities, reward functions, and the discount factor mentioned in the

previous section to iteratively improve the estimation of the optimal policy.

The core idea of value iteration is to repeatedly update the value of each state

under the current policy until these values converge to a stable set, indicative of an

optimal policy. The algorithm proceeds using following steps:

Step 1

Initialization: Start by initializing the value of all states, typically to zero. This is the

initial value function, 𝑉0(𝑠) for all states 𝑠.

Step 2

Iteration: At each iteration 𝑘, update the value of each state based on the expected

return of taking each possible action from that state and then following the current policy.

This is done using the Bellman optimality equation, which provides a recursive way to

update the values:

 𝑉𝑘+1(𝑠) = max
𝑎𝜖𝐴

∑ 𝑇(𝑠, 𝑎, 𝑠′)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝑘(𝑠
′)]𝑠′𝜖𝑆 . (2.20)

Here, 𝑉𝑘+1 is the updated value of state 𝑠 at iteration 𝑘 + 1, max
𝑎𝜖𝐴

 is the maximum

value over all possible actions 𝑎 in the action set 𝐴.

Step 3

24

Convergence Check: The process is repeated until the change in value function between

iterations is below a predetermined threshold, indicating convergence.

Step 4

Policy Extraction: Once the value function has converged, the optimal policy 𝜋∗(𝑎|𝑠)

can be extracted. For each state 𝑠, the optimal action 𝑎∗ is chosen as the one that

maximizes the expected return:

 𝑎∗ = arg max
𝑎𝜖𝐴

∑ 𝑇(𝑠, 𝑎, 𝑠′)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉∗(𝑠′)]𝑠′𝜖𝑆 . (2.21)

If a = a* for all states then, 𝜋∗(𝑎|𝑠) is called the optimal policy. Here, 𝑉∗(𝑠′) is the final

converged value of state 𝑠′.

Value iteration thus systematically improves the estimation of the value function,

eventually converging to the optimal values that reflect the maximum expected return

from each state. This forms the basis for determining the optimal policy in an MDP,

effectively solving the decision-making problem.

2.4.2 Policy Iteration

Policy iteration is another method used in Markov Decision Processes (MDPs) for

finding an optimal policy. Unlike value iteration, which focuses on the values of states,

policy iteration alternates between policy evaluation and policy improvement steps to

converge on an optimal policy.

The algorithm involves the following steps:

Step 1

25

Initialization: Begin with an arbitrary policy 𝜋0, which is a mapping from states to

actions.

Step 2

Policy Evaluation (Critic): For the current policy 𝜋𝑘, calculate the value function

𝑉𝜋𝑘(𝑠) for each state 𝑠. This is done by solving the set of linear equations given by the

Bellman expectation equation for each state:

 𝑉𝜋𝑘(𝑠) = ∑ 𝑇(𝑠, 𝜋𝑘(𝑠), 𝑠
′)[𝑅(𝑠, 𝜋𝑘(𝑠), 𝑠

′) + 𝛾𝑉𝜋𝑘(𝑠′)]𝑠′𝜖𝑆 . (2.22)

Here, 𝑇(𝑠, 𝜋𝑘(𝑠), 𝑠
′) is the probability of transitioning from state 𝑠 to state 𝑠′ under

action 𝜋𝑘(𝑠), 𝑅(𝑠, 𝜋𝑘(𝑠), 𝑠
′) is the reward for this transition.

Step 3

Policy Improvement (Actor): Once the value function for the current policy is known,

improve the policy by choosing actions that maximize the expected utility for each state.

The new policy 𝜋𝑘+1 is obtained by:

 𝜋𝑘+1(𝑠) = arg max
𝑎𝜖𝐴

∑ 𝑇(𝑠, 𝑎, 𝑠′)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋𝑘(𝑠′)].𝑠′𝜖𝑆 (2.23)

This step updates the policy by making it greedy with respect to the current value

function.

Step 4

Convergence Check: The algorithm repeats the policy evaluation and improvement

steps until the policy remains unchanged after an improvement step, indicating

convergence to the optimal policy.

26

Policy iteration is characterized by its two-phase approach: first evaluating how good the

current policy is (policy evaluation), and then using this information to find a better policy

(policy improvement). The process ensures that the policy is continually updated to be

more optimal, converging eventually to an optimal policy that maximizes the expected

return from each state in the MDP. This method is particularly useful when the policy

space is smaller or more structured, making the process of policy improvement more

straightforward compared to the value space in value iteration. Figure 2-5 provides a

pictorial explanation of this iterative process.

Figure 2-5: Flowchart describing Policy Iteration Algorithm

27

2.5 Reinforcement Learning

Reinforcement Learning (RL) is a pivotal area in the field of machine learning and

artificial intelligence, concerned with the development of algorithms and methodologies

that enable an agent to learn optimal behaviors through interactions with its environment.

Characterized by a trial-and-error approach, RL focuses on the agent’s ability to make

sequential decisions, aiming to maximize some notion of cumulative reward over time.

Central to RL is the concept of the agent-environment interaction. The agent,

situated within an environment, is tasked with learning to perform actions that yield the

most favorable outcomes, typically quantified in terms of rewards. The modelling of the

problem is still formalized within the framework of Markov Decision Processes (MDPs),

providing a structured representation of the decision-making problem. RL applies

techniques to solve so that it is tractable for large state spaces. The agent’s objective is

to discover a policy—a mapping from states to actions—that maximizes the expected sum

of discounted rewards, known as the return.

RL algorithms are generally categorized into three primary approaches: value-

based, policy-based, and model-based methods. Value-based methods, such as Q-learning

and Deep Q-Networks (DQNs), focus on estimating the value of actions in each state,

guiding the agent towards high-reward strategies. Policy-based methods, exemplified by

Policy Gradients and Proximal Policy Optimization (PPO), directly learn the policy that

dictates the agent’s actions. Model-based methods attempt to model the dynamics of the

environment, using this model to plan and make decisions.

The learning process in RL can be either model-free, where the agent learns solely

from the rewards received without any knowledge of the environment’s dynamics, or

model-based, where the agent constructs a model of the environment to guide its decision-

28

making process. Model-free methods are typically simpler and more widely applicable, as

they do not require explicit modeling of the environment, which can be complex or

infeasible in many real-world scenarios.

Exploration and exploitation are two fundamental aspects of RL. Exploration

involves the agent trying new actions to discover their effects, essential for acquiring new

knowledge. Exploitation involves using the knowledge the agent has already acquired to

make the best decisions. Balancing exploration and exploitation are a critical challenge in

RL, as excessive exploration can lead to suboptimal immediate performance, while

excessive exploitation can prevent the discovery of more rewarding actions.

2.5.1 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) extends traditional reinforcement learning by

employing deep neural networks to approximate critical functions. These approximations

are central to enabling DRL algorithms to handle complex, high-dimensional

environments.

In DRL, the functions, denoted as 𝑓(𝑠, 𝑎, 𝜃) and parameterized by neural network

weights 𝜃, estimates the expected return of taking action 𝑎 in state 𝑠. The goal is to learn

a function that can predict the quality of each action given the current state. We will

next look at some of the critical functions that can be approximated using DRL.

2.5.1.1 Value Function Approximation

The Value Function, denoted as 𝑉(𝑠; 𝜃) , where 𝜃 represents the parameters of a

neural network, is an estimate of the expected return from a given state 𝑠. In DRL, this

29

function is approximated using deep learning techniques to handle complex state spaces

that traditional methods may struggle with.

The learning process involves adjusting the parameters 𝜃 to minimize the difference

between the predicted value 𝑉(𝑠; 𝜃) and the actual return. The return 𝐺𝑡, which is the

cumulative discounted reward from state 𝑠, is a crucial component in this process. The

loss function for value function approximation is typically formulated as a mean squared

error loss:

𝐿(𝜃) = 𝔼𝑠~𝑆[(𝑉(𝑠; 𝜃) − 𝐺𝑡)
2]. (2.24)

Here 𝐺𝑡 is computed as:

 𝐺𝑡 = ∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0 . (2.25)

The return 𝐺𝑡 is a key concept in reinforcement learning, representing the total discounted

reward that an agent can expect to accumulate, starting from a time step 𝑡. It’s calculated

as the sum of rewards that the agent receives in the future, discounted by the factor 𝛾 at

each time step.

2.5.1.2 Action-Value Function Approximation

In DRL, the action-value function, denoted as 𝑄(𝑠, 𝑎; 𝜃) and parameterized by

neural network weights 𝜃, estimates the expected return of taking action 𝑎 in state 𝑠. The

goal is to learn a function that can predict the quality of each action given the current

state.

An example of this approach is found in Deep Q-Networks (DQNs). DQNs aim to

minimize a loss function that measures the difference between the current estimated action

values and the ‘target’ action values. The following steps are followed to achieve this:

 30

Step 1

Approximation with Neural N etworks: A deep neural network, parameterized

by weights 𝜃, is used to approximate the Q-function. This network, 𝑄(𝑠, 𝑎; 𝜃), takes a

state 𝑠 and action 𝑎 as inputs and outputs an estimate of the Q-value for that state-action

pair.

Step 2

Training the N etwork: The training of this neural network involves adjusting

the parameters 𝜃 to minimize the difference between the network’s Q-value predictions

and the ‘target’ Q-values, which represent more accurate estimates of the true Q-values.

The loss function used for this purpose in DQN is often the mean squared error between

the predicted Q-values and the target Q-values. For a batch of experiences 𝑠, 𝑎, 𝑟′ 𝑎𝑛𝑑 𝑠′

sampled from the replay buffer, the loss function is:

 𝐿(𝜃) = 𝔼𝑠,𝑎,𝑟′,𝑠′~𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [(𝑦 − 𝑄(𝑠, 𝑎; 𝜃))
2
]. (2.26)

Where 𝑦 is the target Q-value, given by:

 𝑦 = 𝑟 + 𝛾max
𝑎′
𝑄(𝑠′, 𝑎′; 𝜃−), (2.27)

where 𝜃− are the parameters of a separate target network, and 𝑠′ is the subsequent state.

In DQN, a technique called ‘fixed Q-targets’ is employed, where the target Q-values

are calculated using a separate network with parameters 𝜃−. This target network is

periodically updated with the weights of the main Q-network. This approach stabilizes

the training by providing consistent targets during iterative updates.

Step 3

31

Policy Derivation: The policy is derived using Q-function. In DQN, an 𝜖-greedy

policy is often used, where with probability 𝜖 a random action is chosen (exploration),

and with probability 1 − 𝜖, the action with the highest estimated Q-value is chosen

(exploitation).

Action-value function approximation using deep neural networks thus enables

handling of environments with high-dimensional state and action spaces, facilitating the

learning of effective policies in complex and diverse scenarios.

2.5.1.3 Policy Function Approximation

In DRLs the policy 𝜋(𝑎 ∣ 𝑠; 𝜃), is a mapping using neural networks which are

parameterized by 𝜃, from 𝑠 to 𝑎. In policy gradient methods, 𝜋(𝑎 ∣ 𝑠; 𝜃), itself is directly

approximated. The objective is to maximize the expected return by adjusting the policy

parameters 𝜃, often employing gradient ascent on the expected return.

The objective function in policy gradient methods, denoted as 𝐽(𝜃), represents the

expected return which is the expectation of 𝐺(𝑡) given by Equation (2.22). The gradient

of this objective with respect to the policy parameters 𝜃 is given by:

 ∇𝜃𝐽(𝜃) = 𝔼𝑠~𝑆,𝑎~𝜋[𝑙𝑜𝑔𝜋(𝑎|𝑠; 𝜃)𝐺𝑡]. (2.28)

This equation indicates that the policy is adjusted in the direction that increases

the probability of actions that lead to higher returns.

Policy gradient methods are particularly advantageous in scenarios where the

action space is high-dimensional or continuous, as they can directly model complex policy

structures and provide more nuanced control over actions compared to value-based

methods. We use a variant of Policy gradient method called Proximal Policy Optimization

(PPO) for modelling our work as an RL problem.

32

2.5.2 Invalid Action and Invalid Action M asking

In Reinforcement Learning (RL), the problem of invalid actions arises when the

agent selects an action that is not feasible or permissible in the current state of the

environment. This issue is particularly prevalent in environments where the set of valid

actions varies depending on the state. For instance, in a board game like chess, the valid

moves depend heavily on the current configuration of the board and the rules of the game.

Choosing an invalid move (like moving a piece in a way not allowed by the game’s rules)

would not be a meaningful action for the agent to take. It can significantly impede the

learning process if not properly managed. We observed this issue in our work when

utilizing RL since possible actions are heavily dependent upon the current state of the

switch.

To address this issue, a technique called invalid action masking is employed. This

technique involves modifying the learning algorithm to ensure that the agent only

considers valid actions at each decision point. There are several ways to implement this:

1. M odifying the Action Space: This method involves dynamically adjusting the

action space based on the current state. While this approach is conceptually

straightforward, it can be complex to implement, as it requires the action space to

be redefined at every time step.

2. M asking Invalid Actions: A more common approach is to apply a mask to the

action probabilities generated by the agent. The agent computes the probability of

taking each possible action, but before making a final decision, the probabilities

corresponding to invalid actions are set to zero. The remaining probabilities are

then normalized to sum to one. This procedure ensures that the agent only selects

from the set of valid actions.

33

3. Penalizing Invalid Actions: Alternatively, the agent is allowed to choose invalid

actions but receives a negative reward or penalty when it does so. This approach

is simpler in terms of implementation but can slow down the learning process as

the agent might need to experiment with actions to understand their validity.

4. Rule-based Preprocessing: A rule-based system can preprocess the state

information to determine valid actions. This filtered set of actions is then passed

to the RL agent for decision-making.

Invalid action masking is crucial in environments where the action space is large

or complex and the validity of actions is highly state-dependent. By focusing the agent’s

learning on valid actions, the training becomes more efficient, leading to improved

performance and quicker convergence.

2.5.3 Proximal Policy Optimization Algorithm

Proximal Policy Optimization (PPO) is an advanced policy gradient method in

Reinforcement Learning (RL), widely recognized for its effectiveness and simplicity in

implementation. Developed by Schulman et al. [41], PPO addresses some of the key

challenges in policy optimization, particularly those related to the stability and efficiency

of training.

Traditional policy gradient methods update the policy by taking steps proportional

to the gradient of the expected return. However, large updates can lead to unstable

training and poor performance. PPO introduces a novel approach to control the size of

policy updates, aiming for a balance between making significant progress and maintaining

training stability.

 34

The central idea of PPO is to limit the change in the policy at each update, ensuring

that the new policy is not too far from the old one. This is achieved by modifying the

objective function that the algorithm maximizes. PPO uses a clipped surrogate objective

function, which penalizes changes to the policy that move the probability ratio away from

1 by more than a specified threshold, denoted as 𝜀 (epsilon).

The objective function 𝐽(𝜃) is replaced in PPO by:

 𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝔼̂𝑡 [min(𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡], (2.29)

 𝑟𝑡(𝜃) is the probability ratio
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
, (2.30)

where 𝜋𝜃𝑜𝑙𝑑 and 𝜋𝜃 are the old and new policies, respectively. 𝐴̂𝑡 is an estimator of the

advantage function (refer Equation 2.19), at time 𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) ensures that

the ratio between the new and old policies remains within the interval [1 − 𝜖, 1 + 𝜖].

 𝔼̂𝑡 is used to estimate the average value of the clipped objective across a batch of

experiences. This approach allows the algorithm to work with real-world samples, enabling

it to learn and optimize policies from actual interactions with the environment.

The use of the clipping mechanism in the objective function prevents the policy

from changing too drastically, which helps in maintaining training stability. The PPO

algorithm alternates between sampling data through interaction with the environment

using the current policy and optimizing the clipped surrogate objective function using

stochastic gradient ascent.

One of the vital reasons we use PPO in our work other than its performance

benefits for our model is the fact that, as of current status (December, 2023), PPO can

be implemented using Invalid Action Masking technique using stablebaselines3-contrib

 35

python package. This is important to our work, as involving invalid action masking

improves results on our switch model.

2.5.4 Sparse Reward Issue During Application of Reinforcement Learning

The sparse reward issue is a significant challenge in the application of

Reinforcement Learning (RL). In many RL problems, especially in complex environments,

an agent may receive feedback (rewards) infrequently or only in specific situations. This

sparsity of rewards can greatly hinder the learning process, as the agent struggles to

understand which actions lead to successful outcomes.

We can see in Figure 2-6 that if we apply RL to a simple grid world problem [15],

for the first figure we will face the issue of sparse rewards, as we are getting only one high

reward if reach the goal. In contrast the model will have no issues learning an optimal

strategy in the second figure, as highly intermittent rewards act as feedback to guide its

learning process.

One of the primary challenges associated with sparse rewards is the problem of

delayed feedback. In environments with sparse rewards, an agent might need to take a

series of actions before receiving any meaningful reward. This delay complicates the task

of associating specific actions with their consequences, leading to a complex credit

assignment problem where it becomes challenging to pinpoint which actions were crucial

for achieving success. Additionally, sparse rewards can hinder effective exploration. Since

rewards are few and far between, the agent may not have sufficient motivation to explore

different strategies, potentially leading to a suboptimal policy.

Sparse rewards also lead to sample inefficiency, requiring a larger number of

interactions with the environment for the agent to learn effectively. This can be

36

particularly problematic in real-world scenarios where each interaction can be costly or

time-consuming.

Figure 2-6: Sparse Rewards Grid World vs Dense Rewards Grid World

There are multiple methods of mitigating this issue. Some of the major ones and

which we are using or tried for our work are the following:

1. Reward Shaping: This involves modifying the reward structure of the

environment to make it more informative. Supplementary rewards are added to

guide the agent’s learning, though this requires careful design to avoid introducing

biases.

2. Intrinsic M otivation: Here, agents are provided with internal rewards that

encourage exploration, such as rewards for discovering new states or significant

changes in the environment.

37

3. Curriculum Learning: This technique involves gradually increasing the

complexity of the learning task, starting from simpler scenarios with more frequent

rewards and progressing to more challenging ones.

4. Random Network Distillation: It addresses the challenge of sparse rewards and

encourages efficient exploration. RND provides a mechanism for intrinsic

motivation, incentivizing an agent to explore its environment more thoroughly

using a pair of target – predictor neural networks for incentivizing exploration.

2.5.5 Random Network Distillation

Random Network Distillation (RND) [42] is an approach in reinforcement learning

for encouraging exploration, especially in environments where rewards are sparse. The

method revolves around two neural networks: a fixed, randomly initialized target network

𝑓 and a trainable predictor network 𝑓. Both networks take the state (or observation) 𝑠 as

input and output a vector. The core idea is to use the prediction error of 𝑓 in estimating

𝑓 as an intrinsic reward for the agent.

The target network 𝑓 is defined as 𝑓(𝑠; 𝜃𝑡𝑎𝑟𝑔𝑒𝑡), where 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 are the parameters

(weights) of the network, initialized randomly and kept constant throughout the training

process.

The predictor network 𝑓 is defined as 𝑓(𝑠; 𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟), where 𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 are the

trainable parameters of the network.

The intrinsic reward 𝑟𝑖𝑛𝑠𝑡𝑟𝑖𝑛𝑠𝑖𝑐 at each state 𝑠 is computed based on the mean

squared error between the outputs of these two networks:

𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐(𝑠) = || 𝑓(𝑠; 𝜃𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑓(𝑠; 𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟)||
2

. (2.31)

38

During training, the agent receives this intrinsic reward in addition to any extrinsic

rewards from the environment. The intrinsic reward is high in states where the predictor

network’s output significantly differs from the target network’s output, indicating novel

or less explored states. As the predictor network learns to approximate the target network

over repeated visits to the same states, the intrinsic reward diminishes, encouraging the

agent to explore new areas.

The training objective for the predictor network is to minimize the prediction error,

which is typically formulated as a loss function 𝐿:

 𝐿(𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟) = 𝔼𝑠~𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡[𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐]. (2.32)

By continuously updating 𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 to minimize this loss using batch optimization,

the predictor network becomes better at mirroring the target network’s output, thereby

reducing the intrinsic reward for states it has already explored and promoting exploration

of new states. Refer Figure 2-7.

Optimizing 𝐿(𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟) using batch optimization use following steps:

Step 1

Data Collection: In RND, as the agent interacts with its environment, it collects

data comprising states, actions, rewards, and possibly other relevant information.

This data is typically stored in an experience replay buffer or a similar data

structure.

Step 2

Batch Formation: An optimization batch is formed by sampling a subset of this

data. The batch size is a predefined parameter that determines how many data

39

points (experiences) are included in each batch. The choice of batch size can affect

both the efficiency and effectiveness of the learning process.

Step 3

Training the Predictor Network: The primary use of the optimization batch

in RND is to train the predictor network. The network learns to predict the output

of the fixed, randomly initialized target network based on the input states. The

optimization batch provides the necessary input-output pairs (states and

corresponding target network outputs) for this training.

Step 4

Calculating the Loss: The predictor network’s parameters are updated by

minimizing a loss function. In RND, this is typically the mean squared error

between the predictor network’s outputs and the target network’s outputs for the

given states in the batch:

 𝐿(𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟) =
1

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
[∑ 𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑏𝑎𝑡𝑐ℎ]. (2.33)

Step 5:

Gradient Descent: The loss calculated from the optimization batch is used to

perform a gradient descent step, adjusting the predictor network’s parameters

𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 to reduce the prediction error.

||. ||2 represents the squared Euclidean norm of a vector. The Euclidean norm, often

simply called the norm, is a measure of the length (or magnitude) of a vector in

Euclidean space. In the RND framework, when we calculate the intrinsic reward

𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐. We are essentially measuring the squared distance between the outputs

40

of the target network 𝑓 and the predictor network 𝑓. This squared distance acts as

an intrinsic reward signal for the agent, indicating how different the current state

is from those it has previously encountered. The squaring operation here ensures

that the reward is always non-negative and emphasizes larger differences more than

smaller ones.

Figure 2-7: Schematic of RN D algorithm

This method of using prediction error as an intrinsic reward has been shown to

significantly improve exploration in reinforcement learning, particularly in environments

where extrinsic rewards are rare or misleading.

41

3.0 Bipartite Switch Model

Building upon the foundational concepts outlined in the previous sections, this

segment is dedicated to elucidating the formulation of our model, specifically designed for

determining optimal policies for our quantum switch model. This part of the discussion

will focus exclusively on the model’s formulation.

Our model is rooted in the framework of Markov Decision Processes (MDP), which

provides a systematic approach to modeling decision-making in environments where

outcomes are partly stochastic and partly under the control of a decision-maker, in this

case, the switch. The MDP framework is characterized by its sets of states, actions, and

rewards, along with transition probabilities that dictate the dynamics of the system. It

will be later extended to account for solution using Reinforcement Learning Methods.

The formulation of our model does not yet delve into the solution methods, such

as specific reinforcement learning algorithms or optimization techniques. Instead, it sets

the stage by clearly defining the problem within the MDP framework, ensuring that the

switch’s decision-making process is structured in a way that aligns with the goal of

maximizing throughput of end-to-end entanglement.

3.1 Base M odel

We consider the simplest case of a quantum switch with just two clients, as

illustrated in the schematic in Figure 3-1. The clients periodically attempt to establish a

single link-level entanglement in the form of Bell pairs with the switch at a pre-defined

42

rate 𝑅𝑐𝑙𝑜𝑐𝑘 =
1

𝑇𝑐𝑙𝑜𝑐𝑘
 per unit time step of the switch, where 𝑇𝑐𝑙𝑜𝑐𝑘 is the duration of a time

step (that can be set to 1 without loss of generality).The attempts succeed with

probabilities 𝜆1, 𝜆2, respectively.

The function of the switch is to connect successfully generated link-level Bell pairs

with the two clients. However, it can do so only when:

1. They are available with both clients.

2. The resulting state after entanglement swapping at the switch can yield a

Bell pair of entanglement fidelity higher than a target threshold 𝐹𝑡ℎ.

Until then, Bell pairs that are successfully generated with any one of the two clients

alone are stored in quantum memory.

The link-level Bell pairs are modeled as Werner states. When stored in quantum

memory, the Werner state fidelity is modeled to decay exponentially with time (starting

from 𝐹 = 1 at time 𝑡 = 0).

Additionally, the link-level Bell pairs are discarded as unusable after a certain,

finite number of time steps, 𝑚∗ , i.e., time 𝑡 = 𝑚∗ (when the fidelity reaches a cutoff

fidelity 𝐹∗). In other words, for a link-level Bell pair of age 𝑚 𝜖 (0, 1, 2...., 𝑚∗) the

resultant fidelity is given by Equation (2.12)

Since fidelity 𝐹 < ½, would imply a separable state, a possible value for the fidelity

cutoff is 𝐹∗ = ½. However, more generally, for any cutoff fidelity 𝐹∗ of a link-level Bell

pair, and any given positive integer m* the value of the decoherence parameter is:

 𝛼 =
− 𝑙𝑛(𝐹∗)

𝑚∗ . (2.34)

43

The switch functions as follows: Given one or many successfully generated link-

level Bell pairs among the two clients, if there are pairs on both sides, the switch can

either connect any pair from one client directly with any one of the Bell pairs of the other

client that are stored and active, or when equipped with the option of entanglement

distillation, perform probabilistic entanglement distillation between any pair of stored

link-level Bell pairs. We assume that at the start of each timestep the new pairs arrive (if

successful) and after this up to one action (swap/distill) can be performed in the same

timestep.

Figure 3-1: A schematic of quantum switch with two users (A, B) is depicted above. The

thicker dotted line represents a newer elementary link, exhibiting higher fidelity compared to

the thinner line, which has lower fidelity.

44

The length of the LLE buffer size is represented by 𝑞𝑙𝑒𝑛𝑔𝑡ℎ
𝑖 , where 𝑖 represents the

user to which the buffer belongs. E.g., referring to Figure 3-1, user A has 𝑞𝑙𝑒𝑛𝑔𝑡ℎ
1 = 7 and

user B has 𝑞𝑙𝑒𝑛𝑔𝑡ℎ
2 = 7. We take the liberty to define only 𝑞𝑙𝑒𝑛𝑔𝑡ℎ if it is same for all users.

The model is simulated in Python and in summary, the simulation follows the steps

as represented in Figure 3-2.

Figure 3-2: Schematic for switch model simulation

45

3.2 Bipartite Switch Model for M DP Framework

In this work, we use the MDP formulation to identify optimal policies for

distributing end to end Bell pairs by connecting randomly generated elementary Bell pairs

in a quantum switch having two clients, with and without the option of entanglement

distillation. In particular, we derive policies that optimize the end-to-end throughput of

Bell pairs that exceed any given entanglement fidelity threshold, 𝐹𝑡ℎ𝑟𝑒𝑠ℎ.

In developing an optimal policy within the framework of a Markov Decision Process

(MDP) for a quantum switch, our approach necessitates the adoption of several

foundational assumptions. These assumptions are integral to the conceptualization and

computational feasibility of the MDP model.

1. Probability of Entanglement Swap Success:

• We posit that the probability of successful entanglement swap operations, denoted

as 𝑞, is unity. This assumption is valid in scenarios involving Bell measurements

conducted on matter-based quantum memories, such as trapped ion qubits [43] and

NV centers in diamond qubits [44], [45]. These scenarios demonstrate the possibility

of achieving entanglement swaps with a success probability approaching one.

2. M emory Capacity of the Quantum Switch:

• As explained in previous section, the memory capacity is constrained to store a

maximum of 𝑞𝑙𝑒𝑛𝑔𝑡ℎ
𝑖 elementary Bell pairs for each client.

3. Temporal Constraints on Actions and Link Generation:

• It is assumed that both the actions executed by the switch and the generation of

probabilistic links are completed within discrete unit time steps.

46

4. State Space Discretization:

• To maintain computational tractability, the state space within the MDP is

discretized. It comprises a finite series of states, each corresponding to the

entanglement fidelities linked with the ages of elementary Bell pairs, expressed as

{0, 1, 2, ..., m*}.

• Incorporating the full spectrum of potential fidelities, particularly those emerging

from entanglement distillation actions, would lead to an untenable expansion of

the state space. Therefore, the fidelity of each newly distilled Bell pair is mapped

to the nearest corresponding age in the MDP state space.

Given these constraints, the model is approximate. Solving the MDP provides a

policy that is optimal for this approximate model. To empirically validate the model and

its policy implications, simulations employing actual fidelity values of Bell pairs are

conducted. These simulations are crucial for evaluating the practical efficacy of the

proposed policy, particularly in metrics such as network throughput, average fidelity, and

jitter.

3.2.1 States

The state space of our MDP formulation of the quantum switch (not to be confused

with quantum states) most generally consists of combinations (tensor products) of 𝑁 –

dimensional age vectors associated with 𝑁 𝜖 𝑍≥ elementary Bell pairs generated by client

A with the quantum switch and 𝑀 – dimensional age vectors associated with 𝑀 𝜖 𝑍≥

elementary Bell pairs of client B, where these vectors are of the form [𝑚1,𝑚2, 𝑚3……],

with 𝑚𝑖 𝜖 [0,1,2……𝑚
∗] being the age of the 𝑖𝑡ℎ elementary Bell pair. We assume that all

elementary Bell pairs have same cut-off age, i.e., 𝑚𝑖
∗ = 𝑚∗.

 47

We denote the state vector at any time 𝑡 as 𝑆𝑡 = [𝑚1,𝑚2, 𝑚3…… ,𝑚𝑁]𝐴,

[𝑚1, 𝑚2, 𝑚3…… ,𝑚𝑀]𝐵, and the set of MDP states by 𝑆.

The state of the switch is represented by list of queues, one queue reserved for each

user. A possible state of the switch/environment with 𝑞𝑙𝑒𝑛𝑔𝑡ℎ = 3 and at time 𝑡 for discrete

time can be:

𝑠(𝑡) = [[2,1,1], [2,0]].

Here we have a switch whose user A has a full queue where one LLE has an age of

2 timesteps and the other two have the same age of 1. User B only has two LLEs in its

queue and hence is partially filled. The ages are 2 and 0, i.e., one LLE was created 2

timesteps ago while the other is freshly made and did not have time to decohere, hence

having a fidelity of 1.

3.2.2 Actions

Given an MDP state, the switch performs actions based on a policy. The list of

possible actions that could feature in a policy of a quantum switch enabled with

entanglement distillation are 𝒜 = {𝑎1, 𝑎2, 𝑎3}:

1. 𝑎1 is the action in which the switch decides to wait out the time-step in

order for more link-level Bell pairs to be generated. This is equivalent to no

action being performed.

2. 𝑎2 is the action in which entanglement swap operation of elementary Bell

pairs of the two clients are performed. This action if successful, generates

end-to-end entanglement between clients A and B. If multiple swaps are

possible this action also entails choosing which pairs to attempt to swap.

48

3. 𝑎3 describes the action of entanglement distillation of two elementary Bell

pairs. If and when successful, this action leads to creation of an elementary

Bell pair of improved fidelity. This action is performed to counter the effect

of decoherence at the cost of sacrificing some elementary Bell pairs. If

multiple distillations are possible this action also entails choosing which

pairs to attempt to distill.

Actions possible to a switch for both discrete and continuous state spaces are the

following:

1. Wait: The switch refrains from taking any action in this timestep. All LLEs

present decohere by 1 timestep and their resultant fidelity is given by

Equation (2.31).

2. Distill: The switch decides to choose from available LLEs of queues

belonging to same users. They are distilled and generate LLE

probabilistically with new fidelity given by the Equations (2.14) and (2.15).

In our work, the switch performs 2-1 distillation according to Bennett

Protocol as explained in Section 2.3.1, but can distill 2 links from each user

in the same time step. If the distillation fails, all participating LLEs are lost.

3. Swap: The switch chooses 1 LLE from each user and swaps them. The

resultant fidelity is given by Equation (2.14)

The actions are also represented as a list of numbers for each queue, representing

choice of links.

E.G. An action for distilling for a state 𝑠(𝑡) = [[2,1,1], [2,0]] can be:

𝑎(𝑡) = [[2,1], []].

49

This means the switch is choosing to distill LLE of age 2 and one of the other LLE of age

1 from user A, and deciding to do nothing for user B, thus decohering it’s links.

Similarly, an action of swap can be represented by:

𝑎(𝑡) = [[2], [0]].

Here the switch decides to swap the LLE of age 2 from user A with the freshly generated

LLE of User B.

3.2.3 Transition Probability

𝑃 is a state transition probability matrix, where 𝑃𝑠𝑠′
𝑎 = 𝑃[𝑆𝑡+1 = 𝑠

′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

is the probability of transitioning from state s to s 0 when an action a ∈ A is applied on

the initial state and probabilistic link level entanglement is attempted: In a unit time step,

first probabilistic link-level entanglement with each client occurs; either or both may

succeed or fail. Then the switch action is taken.

For each state, 𝑠, action, 𝑎 and resultant state final state after increasing timestep,

𝑠′, and both sources providing LLEs successfully, the transition probability is given by:

𝑃𝑠𝑠′
𝑎 = {

𝜆1 × 𝜆2 , 𝑓𝑜𝑟 𝑤𝑎𝑖𝑡
𝜆1 × 𝜆2 × 𝑝𝑠𝑢𝑐𝑐 , 𝑓𝑜𝑟 𝑑𝑖𝑠𝑡𝑖𝑙𝑙
𝜆1 × 𝜆2 × 𝑞 𝑓𝑜𝑟 𝑠𝑤𝑎𝑝

. (2.35)

In case if one or both sources fail to provide LLEs, 𝑃𝑠𝑠′
𝑎 in case of failures will be

calculated by replacing 𝜆1 by 1 − 𝜆1, and 𝜆2 by 1 − 𝜆2.

 50

3.2.4 Rewards

In our quantum switch model, formulated within a Markov Decision Process

(MDP), the reward function is a crucial aspect that drives the decision-making process.

This function, defined as 𝑟: 𝑆 × 𝐴 → ℝ, maps the transition from a current state 𝑠 to a

subsequent state 𝑠′ with an action 𝑎 from the set 𝐴. The immediate reward for being in

state 𝑠 and executing action 𝑎 is denoted as 𝑟𝑎(𝑠). It's important to note that in our

model, the generation of probabilistic links is a continuous process unaffected by the

switch's actions. Additionally, in scenarios involving probabilistic rewards, 𝑟𝑎(𝑠) may be

representative of an expected value.

For the action 𝑎1, which implies 'no action', the reward function 𝑟𝑎1(𝑠) is zero.

This aligns with situations where the switch decides to passively wait, not engaging in

any active operations.

The reward function for 𝑎2, 𝑟𝑎2(𝑠) is zero as our metric is the creation of end-to-

end entanglement links using entanglement swaps. While distillation alone does not create

these links, it can move to a state which is more likely to perform entanglement swaps in

future. This preparation is evaluated through the MDP.

The reward function for 𝑎3, i.e., entanglement swap between two elementary Bell

pairs, say between the 𝑖𝑡ℎ Bell pair with client A denoted by 𝐴𝑖, and the 𝑘𝑡ℎ Bell pair

with client B denoted by 𝐵𝑘, of fidelities 𝐹𝑖 and 𝐹𝑘, respectively, resulting in end-to-end

entanglement is:

 𝑟𝑎3(𝑠) = 𝑞 × 𝐹𝑖𝑘 = {
0, 𝐹𝑖𝑘 < 𝐹𝑡ℎ
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (2.36)

51

where, 𝑞 is the success probability of the entanglement swap operation, and 𝐹𝑖𝑘 is

given by Equation (2.14) with 𝐹1 = 𝐹𝑖 , 𝐹2 = 𝐹𝑘 and 𝐹𝑡ℎ is the fidelity threshold for the

end-to-end entanglement link.

3.3 Bipartite Switch Model for Reinforcement Learning Framework

In the course of developing our Markov Decision Process (MDP) model for the

quantum switch, we confronted the challenge inherent in solving MDPs with extensive

state spaces. Given the computational complexity and intractability of solving MDPs with

large state spaces, we were compelled to introduce certain assumptions to maintain a finite

and manageable state space.

These assumptions constrain the model's capacity to accurately represent the

complexities of a real-world quantum switch. The simplifications made to keep the state

space finite led to a more abstracted portrayal of the switch's behavior and operational

dynamics.

Introducing RL to solve the problem is beneficial, because it allows us to transition

from a discrete to a continuous state space. This is because RL algorithms, especially

those using function approximation techniques, can generalize across similar states. This

property is invaluable in continuous spaces where it is impractical to learn a value or

policy for every possible state explicitly. Instead, the RL agent learns to infer values or

policies for unseen states based on its learning from experienced states.

This change in the working framework brings with itself certain implementational

changes to the state, action and reward formulation. The basic model remains the same

52

as that of the MDP formulation, with all parameters remaining unchanged. The ability

to work with continuous state spaces allows us to relax the State Space Discretization

Assumption.

For creating the model, so as to be able to train RL algorithms on it, we used

Gymnasium. It is an open-source Python library which is specifically designed for

developing and comparing reinforcement learning (RL) algorithms. We used it to create

a custom environment having all the functionalities of the switch described in Section 3.1.

3.3.1 States

Reinforcement Learning gives us the flexibility to work with continuous state

spaces and hence now the states are not represented by age of the LLEs, but rather their

actual fidelities. This leads us to be able to relax the State Space Discretization assumption

and letting us use the actual fidelity of a resultant LLE after distillation.

Now the state space of our formulation of the quantum switch consists of

combinations of 𝑁 – dimensional fidelity vectors associated with 𝑁 𝜖 ℝ≥ elementary Bell

pairs generated by client A with the quantum switch and 𝑀 – dimensional fidelity vectors

associated with 𝑀 𝜖 ℝ≥ elementary Bell pairs of client B, where these vectors are of the

form [𝑓1, 𝑓2, 𝑓3……], with 𝑓𝑖 𝜖 (𝐹
∗, 1] being the fidelity of the 𝑖𝑡ℎ elementary Bell pair. 𝐹∗

is the fidelity threshold.

We denote the state vector at any time 𝑡 as 𝑆𝑡 = [𝑓1, 𝑓2, 𝑓3…… , 𝑓𝑁]𝐴,

[𝑓1, 𝑓2, 𝑓3…… , 𝑓𝑀]𝐵, and the set of states by 𝑆.

From an implementation point of view, we model the states using Box datatype

in Gymnasium. It aligns perfectly with our definition of states as combinations of fidelity

vectors.

53

3.3.2 Actions

There is fundamentally no change in the representation of actions when compared

to our MDP formulation, but since MDP was formulated using python and RL framework

is formulated using Gymnasium, we have to look for proper data structures to represent

our actions.

For the algorithms we are using for solving the RL environment (PPO augmented

with RND), there was no appropriate data structure available in Gymnasium. As a

workaround we used discrete space in Gymnasium to model our actions. This is done by

externally generating a dictionary and mapping discrete values to all available action

choices represented in Section 3.2.2 as key – value pairs, and then solving the RL to choose

actions from that mapping. These actions are then used to simulate the switch.

3.3.3 Rewards

The rewards are modelled differently than mentioned in Section 3.2.4. This is since

we need to use various techniques to mitigate for sparse reward issue faced by our RL

model.

As explained in Section 2.5.4, sparse rewards are a hindrance to RL training. In

our case, it is caused because we only give feedback to the agent with a reward when

Swap is done and resultant fidelity is above 𝐹𝑡ℎ𝑟𝑒𝑠ℎ. This kind of swap is a novel action

for our switch model and hence causes low feedback from the environment. If not

mitigated, the agent learns to wait for a freshly generated LLE on both sides and swap

them as soon as they are available. The low feedback dissuades the agent to explore new

states and actions and hence it outputs a trivial policy. To solve this, we use a mixture of

RND, (refer Section 2.5.5) and Curriculum Learning (refer Section 2.5.4).

54

The resultant reward is same as the MDP for Wait (𝑎1) and Swap (𝑎3), but differs

considerably for Distillation (𝑎2). The new reward for doing distillation at state 𝑠 is

 𝑟𝑎2(𝑠) = rintrinsic(𝑠) + 𝐹12(
1

1 + 𝑒−5(1−𝑥)

⏞
𝜅

). (2.37)

Let’s look at Equation (2.37) carefully. 𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐(𝑠) is the intrinsic reward we are getting

for exploring new states using RND, refer Section 2.5.5 and Equation (2.31). 𝐹12 is the

resultant fidelity after distillation succeeds, given by Equation (2.16). If distillation fails

𝐹12 is 0, thus we get only reward for exploring a new state. The term labelled as 𝜅 is used

as a tunable parameter to enable curriculum learning.

If we plot the 𝜅 vs 𝑥, we get the following graph:

Figure 3-3: Plot of 𝜿

 55

Looking at Figure 3-3, we can see that as we increase 𝑥, the value of 𝜅 follows an

𝑆 shape. This is important for curriculum learning as now we can train the RL algorithm

and increase value of 𝑥 as our current iteration number increases. This will allow us to

initially give high importance to 𝐹12 but as we see the model performing well, we can

increase the value of 𝑥 to stop adding 𝐹12 to our reward.

We need to incrementally reduce the involvement of 𝐹12 by increasing 𝑥 because

our final motivation is to increase the throughput of the switch and that is mainly

dependent upon SWAP that generates high fidelity end-to-end entanglements. Giving too

much importance on 𝐹12 will make the agent start doing distillation indiscriminately, thus

veering us away from our end goal

56

4.0 Bipartite Switch Model Solution

After framing our model according to both MDP and Reinforcement Learning

formulation we will now solve it to find the optimal policy and their characteristics.

4.1 Using M DP

We use the Policy Iteration method described in Section 2.4.2 to generate the final

optimal policy using our MDP switch formulation. But first we need to describe our

Transition Function for all (𝑠, 𝑎, 𝑠′) tuples, so as to be able to calculate the value function

for each state using Equation (2.17).

A sample Transition Function table after calculating probability of all (𝑠, 𝑎, 𝑠′)

tuples using Equation (2.35) is given in Table 1:

Table 1: Sample Transition Function Table

Initial States Action Choice of Links Link Gen Final State Transition Probability

[[2,1], [1,0]] Swap [1, 2] All Fail [[], [1]] 0.09

[[2,1,0], [1,0]] Wait None All Fail [[2,1], [2,1]] 0.09

[[2,1], [1,0]] Swap [2, 1] All Fail [[2], [2]] 0.09

[[2,1], [1,0]] Distill Succeeds [[1, 2], [1, 2]] All Succeed [[0], [0]] 0.480

57

After the Transition Function table is generated, we use transition probability

values and the rewards to calculate 𝑉(𝑠) of each state. apply Policy iteration and generate

the optimal policy.

To solve the MDP formulation, we run 40,000 iterations of Policy Iteration

Algorithm for 𝐹𝑖𝑑𝑡ℎ𝑟𝑒𝑠ℎ intervals of 0.05, from 0.7 to 0.95. The model that we solved had

the following values of the parameters:

λ1 = λ2 = 0.7; m∗ = 3; 𝐹∗ = 0.85; 𝑞𝑙𝑒𝑛𝑔𝑡ℎ = 3.

4.2 Using Reinforcement Learning

To solve the RL model, we use an RND augmented PPO algorithm. The PPO

algorithm uses an estimator of the Advantage Function in Equation (2.29). As explained

in Section 2.4 and Equation 2.19, the advantage function uses the expected discounted

reward in its formulation through the use of value function and Q-value function.

We use the reward defined in Equation (2.37) which also consists of the RND

formulated 𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 to calculate the advantage function, which further down the line is

used by PPO algorithm in its loss function in Equation (2.29).

stablebaselines3-contrib is used to run an algorithm called maskedPPO. This

algorithm is the same as PPO but implicitly applies Invalid Action Masking described in

Section 2.5.2 using python functions that provide the algorithm with a list of invalid states

at each time step of the iteration.

We use the default neural network parameters as the policy parameters for

𝜋(𝑎 ∣ 𝑠; 𝜃) when using PPO. The default neural network in Stable Baselines' PPO is a

 58

Multi-Layer Perceptron (MLP) with two hidden layers. Each hidden layer has 64 neurons

and uses rectified linear unit (ReLU) activation functions. This default neural network

can be changed.

We have kept the predictor and target neural networks the same as that of the

default PPO neural network, except for the target, the parameters are assigned randomly.

We run 80,000 iterations for each fidelity threshold from 0.7 to 1.0 at intervals of

0.025. The value of 𝑥 in Equation (2.37) is increased as the KL-Divergence between two

batches of iterations goes below 0.05. This directs the agent towards slowly getting 0

rewards for distillation so that it learns to distill solely on the basis of throughput

achieved.

59

5.0 Results

After solving the MDP and RL models, we simulated the switch's operation using

the corresponding optimal policies for 10,000 timesteps. We have analyzed the optimal

policies generated for MDP framework and the RL framework. We have also modelled the

case when distillation is not allowed, and compared the optimal polices generated in both

cases.

The results for MDP are plotted for three key metrics: average throughput, average

fidelity, and jitter against fidelity which varies from 0.7 to 0.95. Average throughput

represents the number of end-to-end entanglement links above the fidelity threshold;

average fidelity represents the average quality of these end-to-end entanglement links.

Finally, jitter is the standard deviation of the time between successive end-to-end

entanglements across all time steps.

The same plot is generated for RL framework too but only for average throughput.

 60

5.1 M DP Results

Figure 5-1: Average Throughput vs Fidelity Threshold for cutoff age 𝒎∗ = 3, link

generation probabilities 𝝀𝟏 = 𝝀𝟐 = 𝟎. 𝟕, cutoff fidelity 𝑭∗ = 𝟎. 𝟖𝟓, storage capacity of

quantum memory, 𝒒𝒍𝒆𝒏𝒈𝒕𝒉 = 3 for policies with and without entanglement distillation that

optimize the end-to-end entanglement throughput.

Figure 5-1, shows the average throughput versus the fidelity threshold for the model

with distillation (blue curve) and without (orange curve).

At lower fidelities, the policy obtained through MDP that allows for distillation vs

the one that does not, i.e., only based on entanglement swaps, yield the same average

throughput. This is because entanglement swaps of low fidelity (decohered) elementary

links can still generate an end-to-end link that meets the low required fidelity threshold.

61

As the fidelity threshold increases, the optimal policy with distillation outperforms

the policy that doesn't allow distillation, as not every pair of swaps can produce an end-

to-end entanglement exceeding the threshold. The reason behind this is that only

entanglement swaps between the established highest fidelity (i.e., age 0) links can lead to

end-to-end entanglements surpassing the fidelity threshold, thereby providing no benefit

for distillation. Thus, at intermediate target thresholds distillation, while it does not yield

any end-to-end entanglement links itself, it enables the system to preserve fidelity of aging

links, which yields greater throughput in the future.

Figure 5-2: Average Fidelity vs Fidelity Threshold for cutoff age 𝒎∗ = 3, link generation

probabilities 𝝀𝟏 = 𝝀𝟐 = 𝟎. 𝟕, cutoff fidelity 𝑭∗ = 𝟎. 𝟖𝟓, storage capacity of quantum memory,

𝒒𝒍𝒆𝒏𝒈𝒕𝒉 = 3 for policies with and without entanglement distillation that optimize the end -to-

end entanglement throughput.

 62

The graph in Figure 5-2 shows the relationship between average fidelity and fidelity

threshold for two different policies. The policy that allows distillation is optimized to

achieve higher throughput rather than fidelity.

As a result, it tends to produce more end-to-end entanglements, as shown in Figure

5-1. However, this policy does not take into account the quality of the end-to-end links,

as long as they meet the fidelity threshold. On the other hand, the policy that does not

allow distillation always performs entanglement swaps to ensure high-quality links.

Consequently, we observe that the average fidelity of the policy that does not distill is

higher than the one where distillation is allowed.

63

Figure 5-3: Jitter vs Fidelity Threshold for cutoff age 𝒎∗ = 3, link generation probabilities

𝝀𝟏 = 𝝀𝟐 = 𝟎. 𝟕, cutoff fidelity 𝑭∗ = 𝟎. 𝟖𝟓, storage capacity of quantum memory, 𝒒𝒍𝒆𝒏𝒈𝒕𝒉 = 3 for

policies with and without entanglement distillation that optimize the end -to-end

entanglement throughput.

The plotted graph in Figure 5-3 shows the relationship between jitter and fidelity

threshold. It reinforces the message that following an optimal policy which allows for

distillation is superior to the one without distillation as it leads to a slightly lower

interarrival time. Therefore, it can be inferred that the use of distillation in the optimal

policy results in improved performance compared to policies that do not allow for

distillation.

64

5.2 RL Results

Figure 5-4: Average Throughput vs Fidelity Threshold for RL M odel for cutoff age 𝒎∗ = 3,

link generation probabilities 𝝀𝟏 = 𝝀𝟐 = 𝟎. 𝟕, cutoff fidelity 𝑭∗ = 𝟎. 𝟖𝟓, storage capacity of

quantum memory, 𝒒𝒍𝒆𝒏𝒈𝒕𝒉 = 3 for policies with and without entanglement distillation that

optimize the end-to-end entanglement throughput.

In Figure 5-4, we can see that allowing distillation makes the switch perform at

much higher throughput for fidelity thresholds between 0.90 – 0.95.

But there is still a glaring concern regarding the policy between fidelity thresholds

0.86 - 0.90. We can see that the orange curve for the simulation where distillation is not

allowed is considerably higher than the blue for these thresholds. This is undesirable since

65

not allowing distillation should never realistically increase the throughput more than when

allowing distillation.

This is because the action space, when we allow distillation completely contains

the action space when distillation is not allowed. So, in worst case scenario they should

perform equally. This is simply means that our RL algorithm could not handle the

increased state and action space when distillation is allowed for thresholds 0.86 – 0.90,

and could not get trained properly.

Hence, we require some more work in hyperparameter tuning and modelling of the

RL model. Nevertheless, the switches performance between 0.90 – 0.95 thresholds is

encouraging.

66

6.0 Conclusions

In conclusion, our work provides a framework to generate and analyze optimal

switching policies for a quantum network using MDP and RL frameworks. It shows that

including distillation as an option for a quantum switch in a network can increase the

throughput of end-to-end entanglement distribution. The plots of the three metrics

indicate that the policy with quantum distillation performs better as compared to the

policy with no distillation over a certain range of fidelity thresholds. However, beyond a

threshold of 0.95, both policies have same values across all three metrics. This is because

the policy with quantum distillation provides no advantage at such high fidelity

thresholds. The RL model needs involved hyperparameter tuning to get the most optimal

policy at all fidelity thresholds.

Future work can include more complex protocols could be considered, where a

higher n number of elementary Bell pairs are transformed into a higher fidelity but fewer

k (k < n) number of elementary Bell pairs [36]– [39]. Also, within two-to-one distillation

protocols, nested distillation [28], [40], i.e., multi-stage protocols aimed at enhancing the

fidelity of entangled links, could be considered.

Our model has so far considered scenarios with only two clients. Future work could

investigate scenarios where the switch must generate end to-end bipartite entanglement

for three or more users as well as multipartite entanglement.

These results were presented at IEEE QCE 2023 (to appear in proceedings) [46],

[47]

All code and documentation will be available at https://github.com/vivek-

kumar9696/OptimalEntanglementDistillationPoliciesQuantumSwitches-

https://github.com/vivek-kumar9696/OptimalEntanglementDistillationPoliciesQuantumSwitches-
https://github.com/vivek-kumar9696/OptimalEntanglementDistillationPoliciesQuantumSwitches-

 67

68

Bibliography

[1] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the

road ahead,” Science, vol. 362, no. 6412, Oct. 2018

[2] J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum

revolution,” Philos. Trans. A Math. Phys. Eng. Sci., vol. 361, no. 1809, pp. 1655–1674,

Aug. 2003.

[3] S. Pirandola, U. L. Andersen, L. Banchi, and others, “Advances in quantum

cryptography,” Advances in optics, 2020.

[4] M. Mehic, M. Niemiec, S. Rass, J. Ma, M. Peev, A. Aguado, V. Martin, S.

Schauer, A. Poppe, C. Pacher, and M. Voznak, “Quantum key distribution: A networking

perspective,” ACM Comput. Surv., vol. 53, no. 5, pp. 1–41, Sep. 2020.

[5] G. Vardoyan, M. Skrzypczyk, and S. Wehner, “On the quantum performance

evaluation of two distributed quantum architectures,” SIGMETRICS Perform. Eval. Rev.,

vol. 49, no. 3, pp. 30–31, Mar. 2022.

[6] R. Van Meter and S. J. Devitt, “The path to scalable distributed quantum

computing,” Computer, vol. 49, no. 9, pp. 31–42, Sep. 2016

[7] E. Kashefi and A. Pappa, “Multiparty delegated quantum computing,”

Cryptogr. Commun., vol. 1, no. 2, p. 12, Jul. 2017.

[8] J. F. Fitzsimons, “Private quantum computation: an introduction to blind

quantum computing and related protocols,” npj Quantum Information, vol. 3, no. 1, pp.

1–11, Jun. 2017.

69

[9] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental limits of

repeaterless quantum communications,” Nat. Commun., vol. 8, p. 15043, Apr. 2017.

[10] K. Azuma, A. Mizutani, and H.-K. Lo, “Fundamental rate-loss trade-off for

the quantum internet,” Nat. Commun., vol. 7, p. 13523, Nov. 2016.

[11] M. Takeoka, S. Guha, and M. M. Wilde, “Fundamental rate-loss tradeoff for

optical quantum key distribution,” Nat. Commun., vol. 5, p. 5235, Oct. 2014

[12] S. Muralidharan, L. Li, J. Kim, N. Lutkenhaus, M. D. Lukin, and ¨ L. Jiang,

“Optimal architectures for long distance quantum communication,” Sci. Rep., vol. 6, p.

20463, Feb. 2016.

[13] W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, “Inside quantum

repeaters,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 3, pp. 78–90, May 2015.

[14] S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W.

Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A,

vol. 92, no. 2, p. 022357, Aug. 2015.

[15] R. Van Meter, Quantum Networking. John Wiley & Sons, May 2014.

[16] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the exact analysis of an

idealized quantum switch,” SIGMETRICS Perform. Eval. Rev., vol. 48, no. 3, pp. 79–80,

Mar. 2021.

[17] ——, “On the stochastic analysis of a quantum entanglement switch,” ACM

SIGMETRICS Performance Evaluation Review, vol. 47, no. 2, pp. 27–29, 2019.

[18] M. A. Nielsen, I. Chuang, and L. K. Grover, “quantum computation and

quantum information,” Am. J. Phys., vol. 70, no. 5, pp. 558–559, May 2002.

 70

[19] P. Nain, G. Vardoyan, S. Guha, and D. Towsley, “On the analysis of a

multipartite entanglement distribution switch,” Proc. ACM Meas. Anal. Comput. Syst.,

vol. 4, no. 2, pp. 1–39, Jun. 2020.

[20] G. Vardoyan, P. Nain, S. Guha, and D. Towsley, “On the capacity region of

bipartite and tripartite entanglement switching,” ACM Transactions on Modeling and

Performance Evaluation of Computing Systems, vol. 8, no. 1-2, pp. 1–18, 2023.

[21] W. Dai, A. Rinaldi, and D. Towsley, “The capacity region of entanglement

switching: Stability and zero latency,” in 2022 IEEE International Conference on Quantum

Computing and Engineering (QCE). IEEE, 2022, pp. 389–399.

[22] T. Vasantam and D. Towsley, “Stability analysis of a quantum network with

Max-Weight scheduling,” Jun. 2021.

[23] I. Tillman, T. Vasantam, and K. P. Seshadreesan, “A continuous variable

quantum switch,” in 2022 IEEE International Conference on Quantum Computing and

Engineering (QCE). IEEE, 2022, pp. 365–371.

[24] I. J. Tillman, A. Rubenok, S. Guha, and K. P. Seshadreesan, “Supporting

multiple entanglement flows through a continuous-variable quantum repeater,” Mar. 2022.

[25] K. P. Seshadreesan, H. Krovi, and S. Guha, “Continuous-variable quantum

repeater based on quantum scissors and mode multiplexing,” Phys. Rev. Research, vol. 2,

no. 1, p. 013310, Mar. 2020.

[26] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W.

K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy

channels,” Phys. Rev. Lett., vol. 76, pp. 722–725, Jan 1996. [Online]. Available:

https://link.aps.org/doi/10. 1103/PhysRevLett.76.722

https://link.aps.org/doi/10.%201103/PhysRevLett.76.722

 71

[27] W. Dur, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters ¨ based

on entanglement purification,” Phys. Rev. A, vol. 59, pp. 169–181, Jan 1999. [Online].

Available: https://link.aps.org/doi/10. 1103/PhysRevA.59.169

[28] N. K. Panigrahy, T. Vasantam, D. Towsley, and L. Tassiulas, “On the capacity

region of a quantum switch with entanglement purification,” arXiv preprint

arXiv:2212.01463, 2022.

[29] Nielsen, Michael A., and Isaac L. Chuang. Quantum computation and quantum

information. Cambridge university press, 2010.

[30] Wilde, Mark M. Quantum information theory. Cambridge university press,

2013.

[31] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An

introduction. MIT press, 2018.

[32] Charles H. Bennett, Gilles Brassard, Claude Cr´epeau, Richard Jozsa, Asher

Peres, and William K. Wootters. Teleporting an unknown quantum state via dual classical

and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895–1899, 1993. doi:

10.1103/PhysRevLett.70.1895.

[33] Artur K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev.

Lett., 67:661–663, 1991. doi: 10.1103/PhysRevLett.67.661.

[34] Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J. Cerf, Miloslav

Duˇsek, Norbert L¨utkenhaus, and Momtchil Peev. The security of practical quantum

key distribution. Rev. Mod. Phys., 81:1301–1350, 2009. doi: 10.1103/RevModPhys.

81.1301.

https://link.aps.org/doi/10.%201103/PhysRevA.59.169

 72

[35] H.-J. Briegel, W. D¨ur, J. I. Cirac, and P. Zoller. Quantum repeaters: The role

of imperfect local operations in quantum communication. Phys. Rev. Lett., 81: 5932–5935,

1998. doi: 10.1103/PhysRevLett.81.5932.

[36] D. Dieks. Communication by epr devices. Physics Letters A, 92:271 – 272,

1982. doi: DOI:10.1016/0375-9601(82)90084-6.

[37] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature,

299:802, 1982. URL http://dx.doi.org/10.1038/299802a0

[38] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller. Long-distance quantum

communication with atomic ensembles and linear optics. Nature, 414:413–418, 2001. doi:

10.1038/35106500.

[39] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W.

K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy

channels,” Phys. Rev. Lett., vol. 76, pp. 722–725, Jan 1996. [Online]. Available:

https://link.aps.org/doi/10. 1103/PhysRevLett.76.722

[40] S. Khatri, “On the design and analysis of near-term quantum network

protocols using markov decision processes,” AVS Quantum Science, vol. 4, no. 3, p. 030501,

2022.

[41] Schulman, John, et al. "Proximal policy optimization algorithms." arXiv

preprint arXiv:1707.06347 (2017).

[42] Burda, Yuri, et al. "Exploration by random network distillation." arXiv

preprint arXiv:1810.12894 (2018).

[43] L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped

ions,” Rev. Mod. Phys., vol. 82, no. 2, pp. 1209–1224, Apr. 2010.

http://dx.doi.org/10.1038/299802a0
https://link.aps.org/doi/10.%201103/PhysRevLett.76.722

73

[44] H. Yan, Y. Zhong, H.-S. Chang, A. Bienfait, M.-H. Chou, C. R. Conner, E.

Dumur, J. Grebel, R. G. Povey, and A. N. Cleland, “Entanglement ´ purification and

protection in a superconducting quantum network,” Phys. Rev. Lett., vol. 128, no. 8, p.

080504, Feb. 2022.

[45] Z.-Q. Yin, W. L. Yang, L. Sun, and L. M. Duan, “Quantum network of

superconducting qubits through an optomechanical interface,” Phys. Rev. A, vol. 91, no.

1, p. 012333, Jan. 2015.

[46] Kumar, V., Chandra, N. K., Seshadreesan, K. P., Scheller-Wolf, A., & Tayur,

S. (2023). Optimal Entanglement Distillation Policies for Quantum Switches. arXiv

preprint arXiv:2305.06804.

[47] Kumar, V., Chandra, N. K., Scheller-Wolf, A., Tayur, S., & Seshadreesan, K.

P. (2023). “Optimal Entanglement Distillation Policies for Quantum Switches using

Markov Decision Process and Reinforcement Learning” (in preparation).

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Preface
	1.0 Introduction
	1.1 Thesis Outline

	2.0 General Concepts
	2.1 Quantum States
	2.1.1 Qubits
	2.1.2 Entanglement
	2.1.3 The Density Operator
	2.1.4 Fidelity
	2.1.5 Werner States
	2.1.6 Decoherence

	2.2 Quantum Repeaters
	2.2.1 Entanglement Swapping
	Figure 2-1: Entanglement Swap. The entire distance is broken down into smaller sections. In these sections, entanglement is achieved via the direct transfer of a quantum signal. By executing Bell measurements, this entanglement is transferred over inc...

	2.3 Quantum Switch
	2.3.1 Entanglement Distillation: Bennett Protocol
	Figure 2-2: Bennett Protocol For Distillation.
	Figure 2-3: Graphs showing resultant ,𝑭-𝟏𝟐. after distillation

	2.4 Markov Decision Process
	Figure 2-4: Iterative process defining Markov Decision Processes.
	2.4.1 Value Iteration
	2.4.2 Policy Iteration
	Figure 2-5: Flowchart describing Policy Iteration Algorithm

	2.5 Reinforcement Learning
	2.5.1 Deep Reinforcement Learning
	2.5.1.1 Value Function Approximation
	2.5.1.2 Action-Value Function Approximation
	2.5.1.3 Policy Function Approximation

	2.5.2 Invalid Action and Invalid Action Masking
	2.5.3 Proximal Policy Optimization Algorithm
	2.5.4 Sparse Reward Issue During Application of Reinforcement Learning
	Figure 2-6: Sparse Rewards Grid World vs Dense Rewards Grid World

	2.5.5 Random Network Distillation
	Figure 2-7: Schematic of RND algorithm

	3.0 Bipartite Switch Model
	3.1 Base Model
	Figure 3-1: A schematic of quantum switch with two users (A, B) is depicted above. The thicker dotted line represents a newer elementary link, exhibiting higher fidelity compared to the thinner line, which has lower fidelity.
	Figure 3-2: Schematic for switch model simulation

	3.2 Bipartite Switch Model for MDP Framework
	3.2.1 States
	3.2.2 Actions
	3.2.3 Transition Probability
	3.2.4 Rewards

	3.3 Bipartite Switch Model for Reinforcement Learning Framework
	3.3.1 States
	3.3.2 Actions
	3.3.3 Rewards
	Figure 3-3: Plot of 𝜿

	4.0 Bipartite Switch Model Solution
	4.1 Using MDP
	Table 1: Sample Transition Function Table

	4.2 Using Reinforcement Learning

	5.0 Results
	5.1 MDP Results
	Figure 5-1: Average Throughput vs Fidelity Threshold for cutoff age ,𝒎-∗. = 3, link generation probabilities ,𝝀-𝟏. =,𝝀-𝟐. = 𝟎.𝟕, cutoff fidelity ,𝑭-∗. = 𝟎.𝟖𝟓, storage capacity of quantum memory, ,𝒒-𝒍𝒆𝒏𝒈𝒕𝒉. = 3 for policies with and w...
	Figure 5-2: Average Fidelity vs Fidelity Threshold for cutoff age ,𝒎-∗. = 3, link generation probabilities ,𝝀-𝟏. =,𝝀-𝟐. = 𝟎.𝟕, cutoff fidelity ,𝑭-∗. = 𝟎.𝟖𝟓, storage capacity of quantum memory, ,𝒒-𝒍𝒆𝒏𝒈𝒕𝒉. = 3 for policies with and wit...
	Figure 5-3: Jitter vs Fidelity Threshold for cutoff age ,𝒎-∗. = 3, link generation probabilities ,𝝀-𝟏. =,𝝀-𝟐. = 𝟎.𝟕, cutoff fidelity ,𝑭-∗. = 𝟎.𝟖𝟓, storage capacity of quantum memory, ,𝒒-𝒍𝒆𝒏𝒈𝒕𝒉. = 3 for policies with and without entan...

	5.2 RL Results
	Figure 5-4: Average Throughput vs Fidelity Threshold for RL Model for cutoff age ,𝒎-∗. = 3, link generation probabilities ,𝝀-𝟏. =,𝝀-𝟐. = 𝟎.𝟕, cutoff fidelity ,𝑭-∗. = 𝟎.𝟖𝟓, storage capacity of quantum memory, ,𝒒-𝒍𝒆𝒏𝒈𝒕𝒉. = 3 for polici...

	6.0 Conclusions
	Bibliography

