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Abstract 

Geospatial Object Detection Through Topological Data Analysis 

 

Meirman Syzdykbayev, PhD 

 

University of Pittsburgh, 2023 

 

Geospatial object detection plays a key role in geospatial data analysis and is used in a variety of 

applications. Geospatial objects can be detected through computer vision and machine learning 

(ML) models and algorithms by focusing on geometrical and/or contextual information. There are 

challenges with geospatial object detection models and algorithms including geospatial data noise, 

geospatial data labeling, and feature representation. In addition to geometrical and contextual 

information, geospatial datasets contain topological information, which is often not considered for 

detection. The hypothesis in this thesis is that incorporating information on the shape of a 

geospatial objects, i.e., topological information, may address these challenges and improve 

detection accuracy. One way to incorporate topological information, along with geometrical or 

contextual information, is by using methods from topological data analysis such as Persistent 

Homology (PH) and Mapper. 

The research in this thesis is focused on the development of methods that utilize topological 

information to detect geospatial objects. Explored in this research is incorporation of topological 

information into two geospatial object detection methods, knowledge-based, where topological 

information is merged with geometrical and contextual information, and ML-based, where 

topological information is transformed into a multichannel image as an additional feature. To test 

the results of these two methods after topological information is incorporated into them, their 

performances were evaluated by detecting landslide boundaries. 
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The main contributions of this research are evaluation of PH in the detection of landslides 

using LiDAR data; development of an algorithm to extract linear terrain features from digital 

terrain models; development of a topological knowledge-based geospatial object detection 

method; development of a topological ML-based geospatial object detection method; and 

development two algorithms to transform topological information into a multichannel image. 
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1.0 Introduction 

1.1 Problem Statement 

The increasing volume of geospatial data continues to surpass the processing capabilities 

of current computing systems. The McKinsey Global Institute reports that the accumulation of 

geospatial data reached around 1 petabyte in 2009, with an annual growth rate of 20% (Lee & 

Kang, 2015). This data, sourced from various platforms at impressive frequency, presents unique 

challenges necessitating rigorous study and examination. This includes studies related to data 

storage, quality assurance, analysis, and visualization (Praveen, Babu, & Rama, 2016). Dealing 

with this vast amount of geospatial data requires processing data more efficiently and with 

advanced analytical skills and tools.  

Geospatial object detection plays a key role in geospatial data analysis and is used in a 

variety of applications, such as natural hazards monitoring, agriculture, and urban management, 

among others (Wang et al., 2022). The main task of geospatial object detection is to determine if 

a geospatial dataset includes objects of interest and locate their positions in the dataset and on the 

Earth’s surface (Long, Gong, Xiao, & Liu, 2017). Current geospatial object detection approaches 

can be categorized into four types (Cheng & Han, 2016): template matching-based, knowledge-

based, object-based image analysis, and ML-based. Of these four, this thesis focuses on 

knowledge-based detection and ML-based detection approaches because our two proposed 

geospatial object detection methods fit into these types.   

 The knowledge-based geospatial object detection approach translates the geospatial object 

detection task into hypothesis testing by establishing different knowledge and rules. There are two 
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types of information used in hypothesis testing: geometrical and contextual. The hypothesis testing 

based on geometrical information uses knowledge about the geometrical characteristics of the 

geospatial object and the hypothesis testing based on contextual information employs relationships 

between geospatial objects and the background environment (Cheng & Han, 2016). 

The ML-based geospatial object detection approach identifies classes of geospatial objects 

and provides their locations in the form of bounding boxes. This approach also includes ML-based 

instance segmentation which identifies classes of geospatial objects and provides their locations at 

a pixel level (Hafiz & Bhat, 2020). With an increase in the number of ML models and the 

expansion of geospatial benchmark datasets with labels (Helber, Bischke, Dengel, & Borth, 2019; 

Van Etten, Lindenbaum, & Bacastow, 2018), using ML models to detect geospatial objects has 

become popular, mainly due to the fact that recent ML-based geospatial object detection methods 

have achieved significant improvements (Hoeser, Bachofer, & Kuenzer, 2020; Hoeser & Kuenzer, 

2020).  

The term ‘geospatial object’ refers to the generalized form of landscape objects, such as 

water bodies, landslides, forests, and grasslands (Cheng & Han, 2016). Geospatial objects contain 

unclear boundaries and are part of the background environment, a reference to geospatial objects 

located in neighboring regions that do not belong to the class of the object of interest. Current 

geospatial object detection approaches suffer from several challenges such as scalability, which 

occurs due to large variations in size and shape of geospatial objects and occlusion, background 

clutter, illumination, and shadow, which may stem from the data collection process (Pham, 

Courtrai, Friguet, Lefèvre, & Baussard, 2020; Pun, Xia, & Lee, 2018; L. Zhou, Pan, Wang, & 

Vasilakos, 2017).  
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In this thesis we address the three following challenges out of those identified by Zhou et 

al., (2017) :  

• Data noise. Noise can be introduced to traditional physics-based or ML models due to data 

sparsity issues, missing or inaccurate values, and outliers. Geospatial datasets typically 

contain noise due to various factors such as properties of remote sensing sensors and 

environmental, among other factors. For example, noise caused by environmental factors 

in satellite images can be caused by the presence of cirrus clouds (Qiu, Zhu, & Woodcock, 

2020).  

• Data labeling. Geospatial data labeling is a time-consuming and laborious process that 

needs expert knowledge in the geoinformatics field. To cope with this challenge, several 

alternative solutions, such as crowdsourcing, and special ML methods, such as active, 

transfer, and semi-supervised learning, have been developed (Settles, 2012). In addition, 

having complete and correct ground truth data will allow us properly evaluate performance 

of traditional physics-based models as well.  

• Feature representation and selection. The process of selecting and aggregating different 

subsets of features at various levels, also known as feature engineering. The performance 

of traditional physics-based or ML models in geospatial object detection is dependent on 

the choice of the geospatial data representation or features. The selection of appropriate 

features is necessary when building models with improved performance. However, like 

geospatial data labeling, geospatial feature engineering is a laborious process that needs 

expert knowledge (Bengio, Courville, & Vincent, 2013). 
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1.2 Topological Data Analysis 

Topological data analysis (TDA) is a field that has emerged from research in computational 

topology and data analytics (Chazal & Michel, 2021). Given a dataset as a set of points, TDA 

studies the structure and can give information about the shape, i.e., topological information, which 

includes shape of the geospatial object of interest. In comparison to the geometrical information 

in a dataset that is localized and more rigid, topological information in a dataset is multi-scale and 

global (Hensel, Moor, & Rieck, 2021). TDA includes various methods, the two most important of 

which are Persistent Homology (PH) and Mapper (Chazal & Michel, 2021). PH can obtain 

topological information from a dataset by studying the corresponding data connections and gaps. 

In addition, PH can describe the complicated structures of a dataset, such as loops and voids, that 

are not visible with other geometrical-based methods (Otter et al., 2017). Mapper can obtain 

topological information by representing a dataset using a graph (Singh et al., 2007). PH and 

Mapper are based on topological concepts, where large-scale distances are ignored but nearness 

between points are preserved.  

PH has demonstrated its effectiveness in increasing ML-based model accuracy (Hensel et 

al., 2021). Currently, many works seek to use outputs of PH to achieve a fundamentally different 

view of datasets. These works are mostly focused on representing topological information with 

structured features that can be used as input features in ML models (Pun et al., 2018). With these 

works, the term ‘topological machine learning’ (Topological ML) has lately begun to appear as a 

field at the intersection of TDA and ML (Hensel et al., 2021). However, one shortcoming of current 

Topological ML models is that they do not take advantage of information about the location of the 

subset of points that form topological information in their representations. In other words, the 

representations in current Topological ML models can be used to state whether the dataset contains 
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a circle or not with no information about the locations of the subset of points that form the circle. 

Information about the locations of the subset of points that form topological information can be 

vital in tasks such as object detection.    

Focusing on the shape of geospatial objects is one of the key steps to improve geospatial 

data analysis (Lü et al., 2019). For example, the set of images in Figure 1.1 shows the shapes of 

geospatial objects such as lakes, landslide boundaries, and rivers. The set of points for each 

geospatial object in the figure was sampled from satellite images at different scales. Through these 

points, one can see that in addition to geometrical properties, geospatial datasets have unique 

shapes and contain topological information. This topological information is often not considered 

in geospatial data analysis.  

 

    

    

a b c d 

Figure 1.1 Geospatial objects with unique shapes: (a) the Great Lakes, shown as separate clusters of points; 

(b) a boundary of a landslide, shown as separate clusters of points with a circular shape; (c) a river, shown as 

a cluster of points with a straight-line shape 
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1.3 Proposed Research 

This thesis explores the hypothesis that integrating topological information, which 

describes the shape of a geospatial dataset, can address the existing challenges in geospatial object 

detection and enhance detection accuracy. To test this hypothesis, three research questions are 

posed: 

Research Question 1 (RQ1): Do filters based on topological information applied to 

candidate polygons resulted from PH improve geospatial object detection accuracy?  

Research Question 2 (RQ2): Do filters based on combined topological, geometrical, and 

contextual information improve accuracy of topological knowledge-based (Topological 

KB) geospatial object detection methods? 

Research Question 3 (RQ3): Can topological information derived from a geospatial 

dataset be represented such that: 

• the output of the representation is a three-dimensional array or a multichannel 

image that can be input to ML-based geospatial object detection methods, 

• the representation is not sensitive to geospatial data noise, and 

• the representation, which includes location of the subset of points that form 

topological information, improve object detection accuracy? 
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1.4 Contributions 

The thesis’s contributions are: 

• An evaluation of PH in the detection of landslides using LiDAR data. 

• An algorithm to extract linear terrain features (LTFs) from Light Detection and Ranging 

(LiDAR)-derived digital terrain model (DTM). 

• A Topological KB geospatial object detection method that utilizes topological information 

in addition to geometrical and contextual information. 

• A Topological ML based geospatial object detection method where topological 

information is used as an additional input feature to ML models.  

• Two algorithms to transform topological information into a multichannel image. 

1.5 Thesis Structure 

Chapter 2 presents an overview of current geospatial object detection approaches and TDA. 

Chapter 3 outlines the entire proposed research and the three research questions that will be 

addressed in subsequent chapters. In Chapter 4, RQ1, by examining the capabilities of PH applied 

to LiDAR data on landslides, is addressed. Chapter 5 presents a new algorithm for extracting LTFs. 

Chapter 6 addresses RQ2 by developing and evaluating a Topological KB geospatial object 

detection method. Chapter 7 addresses RQ3 by developing and evaluating a Topological ML. 

Chapter 8 provides conclusions and limitations of the thesis along with possible future research 

directions. 
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2.0 Background 

This chapter provides an overview of two geospatial object detection approaches and TDA, 

including PH and Mapper.  

2.1 Geospatial Object Detection 

Geospatial datasets can be analyzed to detect geospatial objects of interest in them and 

locate their positions. Cheng & Han, (2016) divided object detection approaches into four 

categories: template matching-based, knowledge-based, object-based image analysis (OBIA-

based), and ML-based. Of these four categories, our proposed geospatial object detection methods 

belong to knowledge-based object detection and ML-based object detection approaches, both of 

which are detailed further below. 

2.1.1 Knowledge-Based Object Detection  

The knowledge-based object detection approach, which includes various methods, 

transforms the geospatial object detection problem into the hypothesis-testing problem by creating 

different knowledge and rules (Cheng & Han, 2016). Hypothesis testing in current methods is 

based on geometrical information and contextual information (Figure 2.1). Knowledge-based 

object detection methods that employ geometrical information encode prior knowledge into shape 

models. For example, farmlands have straight boundaries and specific sizes. Hence, a hypothesis 
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is that this geometrical information, i.e., boundary properties and sizes, can be used to detect 

farmlands. Knowledge-based object detection methods that use contextual information employ the 

relationships between geospatial objects and their background environment. In other words, the 

context is knowledge about how geospatial objects interact with their neighboring regions and 

other geospatial objects. For example, a hypothesis about landslides, which are located on a 

specific slope, is that the existence and degree of a slope can be utilized as a clue for landslide 

detection. Martha, Kerle, Van Westen, Jetten, & Kumar, (2011) detected landslides by creating 

rules based on prior knowledge about landslides. First, they identified candidate landslides, then 

performed a selection based on rules using geometrical and contextual information. In short, the 

main idea of knowledge-based object detection methods is to transform knowledge about detected 

geospatial objects to detection rules. If the rules are too general, they will cause false positives, 

otherwise, if the rules are too specific, they will cause false negatives (Cheng & Han, 2016). 

 

 

Figure 2.1 Knowledge-based object detection pipeline (Cheng & Han, 2016) 

2.1.2 ML-Based Object Detection 

The ML-based object detection approach, which includes various ML methods, uses 

features and labels to train a classifier that captures vital information from the input dataset. The 

inputs to the classifier are multichannel images and the outputs are predicted labels and boundaries 

of the geospatial objects (Cheng & Han, 2016). ML-based object detection methods provide 



 
 

10 

classes of objects and location of each object in the form of bounding boxes (Figure 2.2a). Existing 

ML-based object detection methods are of two types: region proposal-based and regression-based 

(Li, Wan, Cheng, Meng, & Han, 2020).  

Region proposal-based object detection methods consist of two steps. The first step creates 

a series of candidate regions that could include geospatial objects. The second step classifies the 

candidate regions into object classes or background environments and additionally fine-tune the 

coordinates of the bounding boxes (Li et al., 2020). Regression-based methods, designed to 

identify an object's location, address the task as a regression problem. In comparison with region 

proposal-based methods, regression-based methods apply one-stage object detectors and do not 

need to create candidate regions. For that reason, regression-based methods are efficient and 

simple (Li et al., 2020).  

Besides ML-based object detection methods, ML-based instance segmentation methods 

provide classes of geospatial objects and locations of the detected geospatial objects at a pixel level 

(Figure 2.2b) (Hafiz & Bhat, 2020). In other words, the instance segmentation methods are applied 

to predict the mask and the class for each geospatial object in an input dataset. The difference 

between instance segmentation and semantic segmentation is that in semantic segmentation every 

pixel in the image is marked into a category class while in instance segmentation every pixel in 

the image is marked into instances of multiple categories. In other words, if an image contains 

several objects of one category, for example, several lakes, in semantic segmentation the pixel 

values for all lakes will be marked as "lake" while in instance segmentation the pixel values for 

each will be marked as "lake_1","lake_2", etc. 
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a b 

Figure 2.2 ML-based methods: (a) results of the ML-based object detection method; (b) results of the ML-

based instance segmentation method 

2.2 Topological Data Analysis 

TDA encompasses a collection of effective algorithms that can be used for the investigation 

and quantification of the shape and structure of datasets to answer questions in a specific domain 

(Chazal & Michel, 2021). Instead of using only statistical descriptors in the analysis, that can 

mislead when analyzing objects with different shapes (Figure 2.3) (Matejka & Fitzmaurice, 2017), 

TDA analyzes data in a fundamentally unique way by exploring the underlying shape (Chazal & 

Michel, 2021). The two widely used methods in TDA are PH and Mapper; the theory and 

mathematics behind these two methods are presented in Appendix A. 
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Figure 2.3 The point set datasets: each point set has different shape, but has same statistical descriptors 

(mean, standard deviation, and Pearson's correlation) (Matejka & Fitzmaurice, 2017) 

 

PH is applied to obtain topological information from data by studying the corresponding 

data connections and gaps (Otter et al., 2017). PH utilizes all three properties of simplicial 

complexes (see Appendix A) to derive topological information at different dimensions. Chazal & 

Michel, (2021) presented the basic PH pipeline with four steps as follows (Figure 2.4) to derive 

topological information from a given dataset: 

1. Input to PH a finite set of points with corresponding distance information (Carlsson, 2009). 

The distance metric depends on the application, and the choice of the correct metric is 
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essential. For example, protein data metrics can be measured in nanometers, and metrics 

for satellite image analysis can be measured in meters.  

2. Construct a nested sequence of simplicial complexes from the set of points using different 

values of 𝑟 .  

3. Derive topological information from the nested sequence of simplicial complexes. This 

step consists of two functions: 

A.  homology group returns topological information given the simplicial complex that was 

constructed using 𝑟.  

B. persistent homology utilizes homology group with a different value of 𝑟, and records 

each change. In other words, when 𝑟 is changed, the topological information associated 

with the newly created simplicial complexes is also changed, and this second function 

records these changes. 

4. Use the extracted topological information as a feature or descriptor for the dataset to assist 

in better understanding the dataset. This topological information can be visualized or can 

be used as a feature in ML models. 

 

 

Figure 2.4 PH pipeline (Chazal & Michel, 2021) 

 

Mapper is based on the idea of preserving information at close distances and discarding 

information on large distances. In comparison with PH, where a series of nested subcomplexes is 

created and analyzed to derive topological information, Mapper is designed to produce a single 
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low-dimensional simplicial complex in a graph from which information about the underlying data 

can be extracted (Singh et al., 2007). The input to Mapper, similar to PH, is a set of points 𝑃; 

detailed information about Mapper can be found in (Ristovska & Sekuloski, 2019; Singh et al., 

2007).  

2.3 Topological ML 

Topological ML uses topological features as input which includes information about the 

shape. The most common representations of output of PH are persistence diagrams (PD) and 

barcodes. A PD is a plot with the birth and death times (Figure 2.5a), and the barcode is a series 

of lines, one for each feature, stretching from birth to death times (Figure 2.5b). However, PD and 

barcodes are not structured and cannot be used directly as input data to ML models (Otter et al., 

2017; Pun et al., 2018). To use output of PH, i.e., topological information, as input data to ML 

models, the information needs to be converted into structured features; detailed information about 

how topological information is converted into structured features for Topological ML can be found 

in Hensel et al., 2021; Pun et al., (2018). Below, we discuss some ways of converting topological 

information into structured features as input to ML models. 
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a b 

Figure 2.5 The output of PH: (a) PD, (b) barcode 

 

A simple way of using topological information in ML models is summary statistics, such 

as total persistence, mean, median, and standard deviation of a persistence diagram (Pereira & De 

Mello, 2015; Syzdykbayev & Karimi, 2020). These representations are useful in simple ML 

models, but they are often not directly applicable to complex ML models and require more 

expressive representations. Hensel et al., (2021) discussed two methods that help use topological 

information as input to ML models: vector-based and kernel-based. Of these two methods, we 

focus on vector-based methods because they are used to transform topological information into a 

multichannel image in this thesis. Vector-based methods transform topological information into 

vectors of different dimensions. The most common vector-based methods are persistence 

landscape (Bubenik, 2015) and persistence images (Adams et al., 2017). 
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Persistence landscape is a vector representation of topological information (Bubenik, 

2015). To calculate persistence landscape, first, a rotation of persistence diagram needs to be 

performed (Figure 2.6a and Figure 2.6b). Next, the persistence landscape can be calculated by 

using the following equation: 

𝜆(𝑘, 𝑡) =  𝑘𝑚𝑎𝑥{𝑓(𝑏𝑖𝑑𝑖)
(𝑡)}𝑖∈𝐼 (2.1) 

where 

𝑓(𝑏,𝑑)(𝑡) = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {𝑡 − 𝑏, 𝑑 − 𝑡}} (2.2) 

and 𝑘𝑚𝑎𝑥 is the 𝑘-th largest value of 𝑓(𝑏,𝑑)(𝑡) (Bubenik, 2015). In other words, persistence 

landscapes involve computing the area of influence of each point in a persistence diagram. The 

basis of the 𝑘-th persistence landscape can be formed by using a connected shaded region with at 

least 𝑘 intersections (Figure 2.6c).  

 

 

 

 

 

a b c 

Figure 2.6 Persistence landscape: (a) PD, (b) rotated PD, (c) persistence landscape 

 

The idea of persistence images is to convert a PD into vectors while maintaining an 

interpretable connection to the original persistent diagram. In comparison to persistence 

landscapes, persistence images transform a diagram into a matrix. As its name states, this 

representation can be represented as a single-channel image (Adams et al., 2017). To get 

bookmark://Figure2_13/
bookmark://Figure2_13/
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persistence images similar to persistence landscapes, first, a transformation needs to be performed 

on a persistent diagram (Figure 2.7a) from birth-death pairs into birth-persistence coordinates (x, 

y), where 𝑥 = 𝑏 and 𝑦 = 𝑑–𝑏 (Figure 2.7b). Each point is then represented by a Gaussian function 

𝑔, centered at (𝑥, 𝑦): 

 

𝑔(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒

−(
[(𝑥−𝑏)2+(𝑦−𝑑)2]

2𝜎2 )
  

(2.3) 

Then for each birth-death pair, a persistence surface needs to be computed:   

𝑝(𝑥, 𝑦) =  ∑ 𝑓(𝑥, 𝑦) 𝑔𝑖(𝑥, 𝑦)𝑁
𝑖=1   (2.4) 

where the weight function 𝑓(𝑥, 𝑦)  is necessary to account for the diagonal and 𝑓(𝑥, 𝑦) =

(𝑦/𝑦𝑚𝑎𝑥), where 𝑦𝑚𝑎𝑥 is the maximum value of the filtration parameter used in the original 

persistence calculation. Next, the persistence surface 𝑝 is transformed into the persistence image 

by discretizing it into a grid and integrating persistence surface 𝑝 into a grid (Figure 2.7c). 

 

  
 

a b c 

Figure 2.7 Persistence image (a) PD, (b) rotated PD, (c) persistence image (Adams et al., 2017) 
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3.0 Proposed Research 

This thesis is focused on testing the hypothesis that integrating topological information, 

which describes the shape of a geospatial object, can overcome the challenges with existing 

geospatial object detection approaches and enhance detection accuracy. To test this hypothesis, 

research that addresses three research questions is proposed. 

3.1 Geospatial Object Detection: PH-Based Method 

In Chapter 4, we explore the role of topological information in detecting geospatial objects by 

addressing the following research question:  

RQ1: Do filters based on topological information applied to candidate polygons resulted 

from PH improve geospatial object detection accuracy?  

We will conduct experiments where PH is used to detect landslides, characterized by circular 

structures. The contributions of Chapter 4 are: 

• Development of a PH-based method designed specifically to be used on LiDAR-derived 

DTM to detect landslides. 

• Evaluation of the PH-based method on detecting landslides. 

There are different geospatial objects that have clear circular structures such as craters or 

hurricanes and we selected landslides for the following reasons:  
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• Landslides are potentially catastrophic geologic events that can take lives, cause economic 

loss, and have a negative environmental impact.  

• Boundaries of existing landslides are usually acquired manually by using remote sensing 

datasets such as satellite imagery or LiDAR, a time-consuming and labor-intensive process. 

While there are automatic and semi-automatic techniques available for landslide detection, 

these techniques often come with their own set of limitations and do not guarantee high 

accuracy across diverse terrains and conditions.  

• Landslides leave discernible signs on the landscape, such as altered slope shape, position, 

or surface appearance (see Figure 3.1).  

 

 

Figure 3.1 LiDAR-derived 1-meter DTM shaded relief map from Pennsylvania with annotations identifying 

morphological expressions of landslides (Syzdykbayev et al., 2020b) 
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3.2 New LTFs Extraction Algorithm 

In Chapter 5, we present a new LTFs extraction algorithm considering that LTFs are 

required to create PH results, i.e., candidate polygons, and that current LTFs extraction algorithms 

have shortcomings. This new algorithm emulates the human ability to perceive and decipher 

terrain feature information through perceptual cues like light angles, shadows, patterns, and 

textures. Such cues, rooted in shaded relief which offers a visual portrayal of real-world terrain, 

are instrumental in pinpointing terrain features, especially linear ones as highlighted by 

Syzdykbayev et al., (2020a). The contributions of Chapter 5 are: 

• Development of a new LTFs extraction algorithm. 

• Evaluation of a new LTFs extraction algorithm using synthetically-generated and real-

word datasets. 

3.3 Geospatial Object Detection: Topological KB Method 

In Chapter 6, we explore the role of topological information on knowledge-based geospatial object 

detection methods by addressing the following research question:  

RQ2: Do filters based on combined topological, geometrical, and contextual information 

improve accuracy of Topological KB geospatial object detection methods? 

We will conduct a set of experiments where topological, geometrical, and contextual information 

is used as input in a Topological KB geospatial object detection method for selecting candidate 

polygons. The contributions of Chapter 6 are: 
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• Development and evaluation of a Topological KB geospatial object detection method that 

uses topological information alongside geometrical and contextual information. 

• Creation of a list of geometrical- and contextual-based rules tailored for landslide detection 

using the Topological KB geospatial object detection method. 

• An in-depth analysis to identify the specific rule from the created list that is best suited for 

landslide detection. This is achieved through extensive experimentation, applying all 

possible rules to ascertain the most effective one for landslide detection. 

3.4 Geospatial Object Detection: Topological ML-Based Method 

In Chapters 7, we explore the role of topological information, represented as features, in ML-based 

geospatial object detection methods by addressing the following research question:  

RQ3: Can topological information derived from a geospatial dataset be represented such 

that: 

• the output of the representation is a three-dimensional array or a multichannel image 

that can be input to ML-based geospatial object detection methods, 

• the representation is not sensitive to geospatial data noise, and 

• the representation, which includes location of the subset of points that form topological 

information, improve object detection accuracy? 

We will develop algorithms to transform topological information into a multichannel image and 

conduct experiments where the multichannel image is used as a feature for a Topological ML 

geospatial object detection method.  The contributions of Chapter 7 are: 
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• Development of a new Topological ML geospatial object detection method, where 

topological information is harnessed as an auxiliary input feature. 

• Development of two new algorithms designed to transform topological information into a 

multichannel image. 
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4.0 Geospatial Object Detection: PH-Based Method 

4.1 Methodology 

The method for geospatial object detection using PH takes data in the form of LiDAR-

derived DTM as input and produces the boundaries of detected geospatial objects as output. The 

method uses only one type of information, topological, and follows the workflow shown in Figures 

4.1 and 4.2. The first step of the workflow involves extracting linear features from DTM. The 

second step involves creating candidate polygons from the LTFs using PH. The third step involves 

selecting candidate polygons, from those found by PH, whose boundaries satisfy the detection 

rules that are based only on topological information.  
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Figure 4.1 Workflow of the PH method of geospatial object detection 
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Figure 4.2 Workflow of the PH method of geospatial object detection, illustrated with images representing 

data at each step 

 

4.1.1 Extracting LTFs from DTM 

The process of extracting linear features, often referred to as "edge detection" or "line-

finding", is frequently used in computer vision (Szeliski, 2010a). Linear features typically form 

the boundary lines between areas of different textures, intensities, or colors in an image. These 

lines usually highlight rapid intensity changes within a small region of the image and are crucial 

for conveying significant visual information such as shapes of objects. They often provide essential 

semantic cues related to surface alterations, depth transitions, changes in surface reflectance, and 

illumination discontinuities (Szeliski, 2010a) 

Morphological expressions of landslides can be characterized as a collection of small LTFs 

such as ridges and scarps (Figure 3.1) and extracting them from DTM would identify landslide 
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boundaries. Considerable research has been conducted on detection of terrain morphology features 

including ridges and scarps. Rana (2006) proposed a curvature-based semi-automated iterative 

channel and ridge identification algorithm that is simple and provides reliable results. The 

algorithm can identify ridges and scarps but requires determination of a threshold value (Curvature 

1). Pirotti & Tarolli, (2010) applied multiplication of the standard deviation as a threshold value 

to identify ridges and channels (Curvature 2). Jasiewicz & Stepinski, (2013) proposed a new 

algorithm to identify landform elements called "Geomorphon". This algorithm does not require a 

threshold value and is based on the principle of pattern recognition. 

To extract LTFs related to landslides, a LiDAR-derived DTM was used as input. As in any 

computer vision (CV) based object detection task, the accuracy of any LTFs extraction algorithm 

depends on the DTM pixel size. Another parameter is the number of smoothing iterations. With a 

high number of smoothing iterations, LTFs may be averaged out and treated as flat surfaces, 

without smoothing iterations, geospatial data noise in DTM can increase false-positive rates, 

resulting in extracting LTFs that do not exist (see Figures 4.2 b1 and c1). To address these issues, 

we conducted an experiment where different pixel sizes and various numbers of smoothing 

iteration were used in Curvature 1, Curvature 2, and Geomorphon LTFs extraction algorithms. The 

total number of combined parameters used in the experiment is 54, as shown in Table 4.1. 
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Figure 4.3 (a) shaded relief surface, (b1) curvature of the surface with pixel size 5 meters, (b2) curvature of 

the surface with 5 times smoothing iterations and with pixel size 5 meters, (c1, c2) extracted LTFs overlaying 

the curvature of the surface (Syzdykbayev et al., 2020b) 

 

Table 4.1 Parameters used in the experiment 

Parameter name Parameters 

DTM pixel size 1m, 5m, 10m 

Smoothing iteration 0, 2, 5, 10, 15, 20 

LTFs extraction 

algorithm 

Curvature using a threshold (Rana, 2006) (Curvature 1) 

Curvature using a threshold calculated from the multiplication of 

standard deviation (Pirotti & Tarolli, 2010) (Curvature 2) 

Geomorphon (Jasiewicz & Stepinski, 2013)  

 

The difference between Curvature 1 and Curvature 2 algorithms is in how their threshold 

values to derive LTFs are obtained. For Curvature 1 the threshold value was manually set for each 
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study area. For Curvature 2 the threshold value was calculated by using a standard deviation of the 

all-pixel values (Pirotti & Tarolli, 2010).  

4.1.2 Creating Candidate Polygons through PH 

In the second step of the workflow, each of the 54 extracted LTFs was separately converted 

into a set of points and used as input to PH, as shown in Figure 4.3 (c1, c2). The output of PH is a 

set of points with topological information that includes the birth and death times of connected 

components and circles. This topological information is visualized in a PD, as presented in Figure 

4.4 (a), and shows the birth time (Figure 4.4 b, light blue) and death time (Figure 4.4 c, dark blue) 

of the detected circle.  

 

   
a b c 

Figure 4.4 (a) persistence diagram of the points, (b) birth time (appearance) of the circles (light blue), (c) 

death time of the circle (dark blue) (Syzdykbayev et al., 2020b) 
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4.1.3 Selection Based on Topological Information 

In the third step of the workflow, rules based on topological information were created to 

select landslide boundaries. Landslides typically have a circular shape and come in various sizes. 

LTFs are formed around a landslide boundary, and these LTFs usually are not connected (Figure 

4.4 b). The detection rules are based on threshold values for birth time and lifetime. The birth time 

value is associated with the distance between LTFs that form landslide boundaries, and the lifetime 

value is associated with the size and shape of a landslide.  

According to Cheng & Han, (2016) in object detection, if rules and threshold values are 

too general, they will cause false positives; on the other hand, if rules are too specific, they will 

cause false negatives. Since landslides have various sizes, the rules created to detect large 

landslides will fail to detect small landslides. The three rules created to identify landslides based 

on size are as follows: 

• Small landslides with a small distance between LTFs (Figure 4.5 a), meaning that the 

threshold value that was set for both the lifetime of the circle and the distance between 

points that create the circle are small. 

• Medium landslides with medium birth times and lifetimes, see Figure 4.5 (b). 

• Large landslides with large birth times and lifetimes, see Figure 4.5 (c).  



 
 

30 

 

Figure 4.5 Detected landslides: (a) small, (b) medium, and (c) large. All overlaid-on landslides from landslide 

inventory maps (Syzdykbayev et al., 2020b) 

4.2 Datasets and Study Area 

The input dataset used in the experiment was LiDAR-derived DTM. Airborne LiDAR is a 

remote-sensing method that is used to acquire digital representations of a topographic surface. 

LiDAR can penetrate terrain that is covered in vegetation and thus can provide quantitative 

descriptions of a topographic surface in heavily vegetated areas (Figures 4.6 a and b). This ability 

provides an advantage over other methods, such as optical aerial or satellite images, which are 

based on visual understanding and are not able to penetrate vegetation canopy (Figure 4.6 c) and 

is specifically important when attempting to detect landslides in heavily vegetated areas (Guzzetti 

et al., 2012a). DTM is derived from LiDAR using filters to remove all the points that do not return 

from the ground, since DTM is a bare-earth representation of a terrain that does not include natural 

or man-made objects, such as vegetation and buildings (Figure 4.6 a). 
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a b c 

Figure 4.6 a) LiDAR-derived 1-meter DTM, b) shaded relief derived from DTM, and c) RGB satellite image 

of the same area (Syzdykbayev et al., 2020b) 

 

The output of the experiment, detected landslides, was compared to a landslide inventory 

map, which is a collection of recorded locations of landslides with additional information such as 

date of occurrence and types of landslides (Guzzetti et al., 2012b). 

The experiment was conducted in five study areas. The criteria for selection of the study 

areas were high landslide density, availability of LiDAR data, and availability of a landslide 

inventory map. The study areas are located in four states, Pennsylvania, Oregon, Colorado, and 

Washington in which both LiDAR data and a landscape inventory map in the regions with high 

landslide susceptibility exist (Figure 4.7). The dataset for each study area was obtained from the 

respective state government official website for Pennsylvania, Oregon, Colorado, and Washington. 

Most of the data is open source, except for the data for Colorado, which requires a formal request 

to download data. 
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Figure 4.7 Landslide susceptibility maps in four states and for five study areas: Pennsylvania, Oregon, 

Colorado, and Washington (Syzdykbayev et al., 2020b) 

 

Table 4.2 Characteristics of study areas (Syzdykbayev et al., 2020b) 

 Study Area 

1 

Study Area 

2 

Study Area 

3 

Study Area 

4 

Study Area 

5 

Location  

(latitude, 

longitude) 

41°12′39″N  

76°03′44″W 

45°34′0″N  

123°11′0″W 

39°10'44.6"N  

107°50'58"W 

45°42′0″N 

122°53′0″W 

47°36′28″N 

122°20′6″W 

State Pennsylvania Oregon Colorado Oregon Washington 

Area  

(square meters) 

25,572,981 135,587,076 167,225,478 134,963,016 216,603,450 

Landslide Area 

(square meters) 

2,140,041 26,283,520 42,828,063 61,104,222 21,470,606 

Percentage of 

Landslide Area  

8.37% 19.38% 25.61% 45.27% 9.91% 

Number of 

Landslides 

7 738 206 1664 783 

Elevation range 

(meters) 

from 151     

to 471 

from 48     

to 548  

from 1,985      

to 3,174 

from 7       

to 521 

from 0       

to 159 

Slope range 

(degrees) 

from 0         

to 71.8 

from 0       

to 84.22 

from 0         

to 74.7 

from 0       

to 89.41 

from 0       

to 88.6 
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Table 4.3 Characteristics of input data (Syzdykbayev et al., 2020b) 

 Study Area 1 Study Area 2 Study Area 3 Study Area 4 Study Area 5 

LIDAR (or LIDAR derived DTM) 

Acquisition 

time 

2006 - 2008 2007 2015 - 2016 2007 2000-2005 

Source 

Pennsylvania 

Spatial Data 

Access 

State of 

Oregon 

Department of 

Geology and 

Mineral 

Industries 

Colorado 

Geological 

Survey 

State of 

Oregon 

Department of 

Geology and 

Mineral 

Industries 

Puget Sound 

LiDAR 

Consortium 

Horizontal 

ground 

resolution 

1 meter 1 meter 1 meter 1 meter 1.8 meters 

Existing landslides 

Acquisition 

time 

2019 2019 2015 2019 2017 

Source 

(Karimi et 

al., 2019) 

Gales Creek 

quadrangle 

Oregon’s 

State-wide 

Landslide 

Information 

Database 

Colorado 

Geological 

Survey 

Dixie 

Mountain   

quadrangle 

Oregon’s 

State-wide 

Landslide 

Information 

Database 

Washington 

State 

Department 

of Natural 

Resources 

web portal 

 

 

Acquisition 

method 

Detecting 

visually 

LiDAR-

derived 

DTM. 

Mimics 

protocol by 

Burns et al., 

(2008) 

Compiling 

landslide 

inventory data 

created by 

using LiDAR 

and protocol 

by Burns et 

al., (2008) 

Compiling 

landslide 

information 

digitized from 

1:24 000-

scale maps 

published in 

geologic 

hazard maps 

of Colorado 

Compiling 

landslide 

inventory data 

created by 

using LiDAR 

and protocol 

by Burns et 

al., (2008) 

Compiling 

landslide 

inventory 

data through 

different 

methods and 

scales 

 

Study Area 1, marked with a blue pin in Figure 4.7 and shown also in Figure 4.8, is located 

in Luzerne County, Pennsylvania (latitude 41°12′39″N and longitude 76°03′44″W). In an area of 

25,572,981 square meters, there are seven identified landslides, and the combined area of mapped 
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landslides is 2,140,041 square meters. The elevation ranges from 151 meters to 471 meters, with 

a standard deviation of 100 meters. The slope inclination in the area ranges from 0 to 71 degrees 

(Table 4.2). The input data for Study Area 1, LiDAR data for Pennsylvania from 2006 to 2008, 

are publicly available through Pennsylvania Spatial Data Access (Access, n.d.). The data on 

existing landslides were obtained from the landslide inventory database for north-eastern 

Pennsylvania (Table 4.3). 

 

 

Figure 4.8 Study Area 1(Pennsylvania) with locations of manually identified landslides (Syzdykbayev et al., 

2020b) 

 

Study Area 2, marked with a red pin in Figure 4.7 and shown also in Figure 4.9, is located 

in Oregon (latitude 45°34′0″N and longitude 123°11′0″W). The total area is 135,587,076 square 

meters. There are 738 documented landslides, and the combined area of mapped landslides is 

26,283,520 square meters. The elevation ranges from 48 meters to 548 meters, with a standard 
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deviation of 110 meters. The slope inclination in the area ranges from 0 to 84 degrees (Table 4.2). 

The data for Study Area 2 and Study Area 4 were obtained from the State of Oregon Department 

of Geology and Mineral Industries public file transfer protocol (FTP) site. The data on existing 

landslides were obtained from Oregon's Statewide Landslide Information Database (Burns & 

Madin 2009) 

 

 

Figure 4.9 Study Area 2 (Oregon) with locations of previously mapped landslides (Syzdykbayev et al., 2020b) 
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Study Area 3, marked with a green pin in Figure 4.7 and shown also in Figure 4.10, is 

located in Mesa County, Colorado (latitude 39°10'44.6"N and longitude 107°50'58.0"W). The total 

area is 167,225,478 square meters. There are 206 documented landslides, and the combined area 

of landslides is 42,828,063 square meters. The elevation ranges from 1,985 meters to 3,174 meters, 

with a standard deviation of 269 meters. The slope inclination in the area ranges from 0 to 74 

degrees (Table 4.2). The data for Study Area 3 was obtained by request/permission from the 

Colorado Geological Survey (CGS). The data on existing landslides with scarps and deposits were 

obtained from the CGS web portal (Table 4.3). 

 

 

 

Figure 4.10 Study Area 3 (Colorado) with locations of previously mapped landslides (Syzdykbayev et al., 

2020b) 
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Study Area 4, marked with a yellow balloon in Figure 4.7 and shown also in Figure 4.11, 

is located in Oregon (latitude 45°42′0″N and longitude 122°53′0″W). The total area is 134,963,016 

square meters. There are 1,664 documented landslides and the combined area of mapped landslides 

is 61,104,222 square meters. The elevation ranges from 7 meters to 521 meters, with a standard 

deviation of 123 meters. The slope inclination in the area ranges from 0 to 89 degrees (Table 4.2). 

 

 

Figure 4.11 Study Area 4 (Oregon) with locations of previously mapped landslides (Syzdykbayev et al., 

2020b) 
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Study Area 5, marked with a purple balloon in Figure 4.7 and shown also in Figure 4.12, 

is located in Washington (latitude 47°36′28″N and longitude 122°20′6″W). The total area is 

216,603,450 square meters. There are 783 documented landslides, and the combined area of 

mapped landslides is 21,470,606 square meters. The elevation ranges from 0 meters to 159 meters, 

with a standard deviation of 39 meters. The slope inclination in the area ranges from 0 to 88 degrees 

(Table 4.2). The data for Study Area 5 was obtained from the Puget Sound LiDAR Consortium. 

The data on existing landslides were obtained from the Washington State Department of Natural 

Resources web portal (Table 4.3). 
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Figure 4.12 Study Area 5 (Washington) with locations of previously mapped landslides (Syzdykbayev et al., 

2020b) 
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4.3 Experiment 

To address RQ1, we designed an experimentation to detect geospatial objects, which 

includes a comparative analysis of the results, the established ground truth, and the findings of the 

knowledge-based method proposed by Bunn et al., (2019). We used the results from study areas 

located in Oregon (Study Area 2 and Study Area 4) for comparison since the same study areas 

were used in Bunn et al., (2019).  

Bunn et al., (2019) introduced a method known as Scarp Identification and Contour 

Connection Method (SICCM) for landslide detection. SICCM is a two-step process that can utilize 

LiDAR-derived DTM as input data. The first step, scarp identification, involves the detection of 

landslide scarp lines. This detection is facilitated by applying a threshold value, which is 

determined through rules that utilize contextual information. The second step, deposit mapping, 

identifies landslide deposits. This identification is carried out by applying rules based on the 

geometrical information of the previously identified scarp lines. In essence, SICCM leverages both 

geometrical and contextual information from the terrain data to systematically detect and map 

landslides. 

We used accuracy, precision, recall, Cohen’s Kappa coefficient, and F-1 score as validation 

metrics.  

Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
(4.1) 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(4.2) 

 

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(4.3) 

 

Cohen’s Kappa coefficient = 
𝑃𝑐− 𝑃𝑒𝑥𝑝

1− 𝑃𝑒𝑥𝑝
 

 
(4.4) 

where  

𝑃𝑐 = Accuracy 
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𝑃𝑒𝑥𝑝 = 
((𝑇𝑃 + 𝐹𝑁)∗(𝑇𝑃 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑁)∗(𝐹𝑁 + 𝑇𝑁)

𝑠𝑞𝑟𝑡(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃)
 (4.5)  

𝐹1𝑆𝑐𝑜𝑟𝑒  = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
  (4.6)  

TP stands for true positive; TN stands for true negative; FP stands for false positive; FN 

stands for false negative. Precision is the ratio of correctly detected areas to all detected areas. 

Recall is the ratio of correctly detected areas to all existing areas. Accuracy is a measure of how 

detection was correct overall. Cohen’s Kappa coefficient (Cohen, 1960; Tsangaratos & Ilia, 2016) 

is a measure of agreement between detection and reality or a measure of how the result is 

significantly better than random (Jensen, 1996). The results of these evaluations, based on different 

pixel sizes, smoothing iterations, and LTFs algorithms across the five study areas, are presented in 

Figures 4.14 - 4.22.  

4.3 Results 

Detected landslides were compared to landslide inventory maps in all five study areas. For 

each study area, the above-mentioned three LTFs extraction algorithms, several smoothing 

iterations, and different pixel sizes were applied, and accuracy, precision, recall, Cohen’s Kappa 

coefficient, and F1 score evaluation metrics were calculated. Table 4.4 shows the results of these 

metrics with the highest Cohen’s Kappa coefficient.  
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Table 4.4 LTFs extraction algorithms, confusion matrix values, number of existing, detected, and intersected 

landslides, accuracy, precision, recall, F1 score, and Cohen’s Kappa coefficient for each study area 

(Syzdykbayev et al., 2020b) 

  Study 

Area 1 

Study 

Area 2 

Study Area 

3 

Study 

Area 4 

Study 

Area 5 

LTFs extraction 

algorithm 

Curvature 

2 

Curvature 

1 

Geomorphon Curvature 

2 

Curvature 

2 

Pixel size 5 meters 1 meter 1 meter 1 meter 10 meters 

Number of smoothing 

iterations   

5 2 5 15 1  

True positive  5.17% 12.55% 14.51%  29.2% 6.% 

False Positive 17.16% 22.21% 34.82%  14.66% 20.06% 

False Negative   3.22% 6.54% 11.37%  15.96% 2.33% 

True negative  74.44% 58.68% 39.28%  40.16% 71.59% 

Accuracy 0.79 0.71 0.53  0.69  0.77 

Precision  0.23 0.36 0.29  0.66  0.22 

Recall  0.61 0.66 0.56  0.64  0.72 

F1 score 0.33  0.46  0.38  0.65 0.34 

Cohen’s Kappa 

coefficient 

0.24 0.29 0.07  0.38  0.25 

 

For Study Area 1 in Pennsylvania, 55 polygons with the highest Cohen’s Kappa coefficient 

that were deemed potential locations of existing landslides were detected, as shown in Figure 4.13. 

The highest Cohen’s Kappa coefficient was derived by Curvature 2 (see Table 4.4), with a pixel 

size of 5 meters and with 5 smoothing iterations as shown in Figure 4.14 (k). The accuracy, 

precision, and recall are 0.79, 0.23, and 0.61, respectively. The Cohen’s Kappa coefficient is 0.24, 

which indicates fair agreement (Landis & Koch, 1977). 
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Figure 4.13 Locations of detected and mapped landslides; Study Area 1: Pennsylvania (Syzdykbayev et al., 

2020b) 
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Figure 4.14 Results of the three LTFs extraction algorithms with different pixel sizes and smoothing 

iterations as a measure of accuracy, precision, recall, and Cohen’s Kappa coefficient; Study Area 1: 

Pennsylvania (Syzdykbayev et al., 2020b) 
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For Study Area 2 in Oregon, 1514 polygons with the highest Cohen’s Kappa coefficient 

that were deemed potential locations of existing landslides were detected, as shown in Figure 4.15. 

The highest Cohen’s Kappa coefficient was derived by using Curvature 1 (see Table 4.4), with a 

pixel size of 1 meter and with 2 smoothing iterations, as shown in Figure 4.16 (j). The accuracy, 

precision, and recall are 0.71, 0.36, and 0.66, respectively. The Cohen’s Kappa coefficient is 0.29, 

which indicates fair agreement (Landis & Koch, 1977). 

 

 

Figure 4.15 Locations of detected and mapped landslides; Study Area 2: Oregon (Syzdykbayev et al., 2020b) 
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Figure 4.16 Results of the three LTFs extraction algorithms with different pixel sizes and smoothing 

iterations as a measure of accuracy, precision, recall, and Cohen’s Kappa coefficient; Study Area 2: Oregon 

(Syzdykbayev et al., 2020b) 
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For Study Area 3 in Colorado, 494 polygons with the highest Cohen’s Kappa coefficient 

that were deemed potential locations of existing landslides were detected, as shown in Figure 4.17. 

The highest Cohen’s Kappa coefficient was derived by using Geomorphon (see Table 4.4), with a 

pixel size of 1 meter and with 5 smoothing iterations, as shown in Figure 4.18 (j). The accuracy, 

precision, and recall are 0.53, 0.29, and 0.56, respectively. The Cohen’s Kappa coefficient is 0.07, 

which indicates slight or no agreement (Landis & Koch, 1977).  

 

 

Figure 4.17 Locations of detected and mapped landslides; Study Area 3: Colorado (Syzdykbayev et al., 

2020b) 
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Figure 4.18 Results of the three LTFs extraction algorithms with different pixel sizes and smoothing 

iterations as a measure of accuracy, precision, recall, and Cohen’s Kappa coefficient; Study Area 3: Colorado 

(Syzdykbayev et al., 2020b) 
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For Study Area 4 in Oregon, 1514 polygons with the highest Cohen’s Kappa coefficient 

that were deemed potential locations of existing landslides were detected, as shown in Figure 4.19. 

The highest Cohen’s Kappa coefficient was derived by using Curvature 2 (see Table 4.4), with a 

pixel size of 1 meter and with 15 smoothing iterations, as shown in Figure 4.20 (k). The accuracy, 

precision, and recall are 0.69, 0.66, and 0.64, respectively. The Cohen’s Kappa coefficient is 0.38, 

which indicates fair agreement (Landis & Koch, 1977). 

 

 

Figure 4.19 Locations of detected and mapped landslides; Study Area 4: Oregon (Syzdykbayev et al., 2020b) 
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Figure 4.20 Results of the three LTFs extraction algorithms with different pixel sizes and smoothing 

iterations as a measure of accuracy, precision, recall, and Cohen’s Kappa coefficient; Study Area 4: Oregon 

(Syzdykbayev et al., 2020b) 
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For Study Area 5 in Washington, 5274 polygons with the highest Cohen’s Kappa 

coefficient that were deemed potential locations of existing landslides were detected, as shown in 

Figure 4.21. The highest Cohen’s Kappa coefficient was derived by using Curvature 2 (see Table 

4.4), with a pixel size of 10 meters and with 1 smoothing iteration, as shown in Figure 4.22 (k). 

The accuracy, precision, and recall are 0.77, 0.22, and 0.72, respectively. The Cohen’s Kappa 

coefficient is 0.25, which indicates fair agreement (Landis & Koch, 1977). 

 

 

Figure 4.21 Locations of detected and mapped landslides; Study Area 5: Washington (Syzdykbayev et al., 

2020b) 
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Figure 4.22 Results of the three LTFs extraction algorithms with different pixel sizes and smoothing 

iterations as a measure of accuracy, precision, recall, and Cohen’s Kappa coefficient; Study Area 5: 

Washington (Syzdykbayev et al., 2020b) 
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4.4 Discussion  

The results of the experiment indicate that the accuracy, precision, recall, and Cohen’s 

Kappa coefficient vary depending on the study area, LTFs extraction algorithm, pixel size, and 

smoothing iteration (Table 4.4). For Study Areas 1 and 5, the highest accuracy was 0.91, and 

occurred when large pixel sizes and several smoothing iterations were used (Figures 4.14 and 

4.22). Study Area 2 had the highest Cohen’s Kappa coefficient, 0.29, and the accuracy score was 

0.80. Study Area 3 had the lowest Cohen’s Kappa coefficient, 0.07, and had the highest percentage 

of false positives, 35%.  

It is worth mentioning that the area of landslides and the area of background environment 

are not equal. This property of the input dataset creates a foreground-to-background imbalance 

problem (Oksuz et al., 2020) which happens when number of positives and number of negatives 

are extremely unequal, hence impairing detection accuracy. Therefore, the high accuracy value 

can be misleading. For example, for Study Area 1, the accuracy of 0.91 with high smoothing 

iterations and both small and large pixel sizes (Figure 4.14 (a,b,c)) could be due to the fact that the 

unbalanced data detects fewer landslides increasing the values of TN and decreasing the values of 

FP. With a pixel size of 10 meters and 20 smoothing iterations, the accuracy dropped from 0.9 to 

0, because no landslides were detected, see Figure 4.14 (c).  

Pixel size and number of smoothing iterations affect the results of LTFs extraction 

algorithms. A large pixel size and a large number of smoothing iterations will result in a decrease 

in the number of detected landslides. This trend can be seen from the recall graph where the recall 

score drops with the increase in pixel size and number of smoothing iterations (see Figures 4.14, 

4.16, 4.18 (g, h, i)).  
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In summary, the experiment showed that landslide boundaries can be detected by using 

only topological information at different scales. The overall low accuracy is due to a combination 

of the following factors: 

• type and location of landslides, 

• accuracy of landslide map inventories used for evaluation, and 

• existence of FP (see Table 4.4) 

FP were caused by two reasons. The first is that the LTFs extraction algorithm was sensitive 

to the geospatial data noise that originated during the process of deriving DTM from LiDAR data. 

The noise can be addressed by using a larger pixel size and a large number of smoothing iterations. 

However, this solution will cause data loss where, in addition to the noise, LTFs around small 

landslides can also disappear. To address this issue, we developed a new LTFs extraction algorithm 

that does not need threshold values (see Chapter 5). The second reason is that there exist other 

objects (geospatial or man-made) that have circular shapes similar to those of landslides. Examples 

of such objects are craters or farm areas. Such objects were also detected in the experiment and 

caused FP. To address this issue, we present a Topological KB geospatial object detection method 

(see Chapter 6).  
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5.0 New LTFs Extraction Algorithm 

In Chapter 4, we demonstrated that it is feasible to generate candidate polygons using PH, 

thereby detecting geospatial objects by selecting from these candidate polygons, relying solely on 

topological information embedded in them. However, the results indicated a considerable number 

of false positives in certain study areas. Consequently, we postulated the following future research 

direction (Syzdykbayev et al., 2020b):  

“Considering the importance of accurately determining ridges and scarps for detection of 

landslides, one future work is to take a convolutional filters approach and apply it to DTM.” 

5.1 Methodology 

We developed a new LTFs extraction algorithm that detects terrain linear features by using 

shaded relief, controlling the altitude and azimuth of the illumination source, and implementing 

edge detection filters. The algorithm is called Shade-relief and takes a DTM as input and returns 

an image with LTFs. Figure 5.1 shows the steps of Shade-relief. The first step involves applying 

shaded relief to a DTM using several altitudes and azimuth parameters. The second step involves 

applying edge detection filters, shown in Equation 5.1, to each azimuth variable to obtain lines 

between shaded and non-shaded areas. The third step involves removing LTFs that do not persist 

under slight (± 44◦) azimuth shifts. The fourth step involves combining outputs of all azimuth 

parameters into one image by summing images and classifying the outcome. 
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Figure 5.1 The steps of Shade-relief LTFs extraction algorithm 

In Step 1, the shaded relief operation by Horn (1981) was used, where a different azimuth 

orientation was applied to the input DTM eight times. These azimuth orientations were north (0°), 

northeast (45°), east (90°), southeast (135°), south (180°), southwest (225°), west (270°), and 

northwest (315°). The slopes 𝑝 and 𝑞 are computed in two directions in each cell: 

 

𝑝 =
[(𝑧9  +  𝑧8 + 𝑧7) − (𝑧3  +  𝑧2 + 𝑧1)]

8𝑑
 (5.1) 

𝑞 =
[(𝑧9  +  𝑧6 + 𝑧3) − (𝑧7  +  𝑧4 + 𝑧1)]

8𝑑
 (5.2) 

where 𝑑 is the distance between pixel centers and 𝑧𝑖 is the height at location 𝑖 (Figure 5.2 a). 

Next, these values were converted into a reflectance value by using an appropriate reflectance 

map 𝑅 (Horn, 1981): 

 

𝑅(𝑝, 𝑞) =
1

2
 + 

1
2 (�́�  +  𝑎)

√𝑏2  +  (�́�  +  𝑎)2 
  (5.3) 

�́� =
(𝑝0𝑝 + 𝑞0𝑞)

√(𝑝0
2  +  𝑞0

2)
 (5.4) 
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where 𝑝0 = 
1

√2
 and 𝑞0 = −

1

√2
 for a light source at a standard cartographic position, with 

an azimuth angle of 315° and an altitude of 45° for the illumination source (Figure 5.2 b). 

Parameters 𝑎 and 𝑏 allow for control of the intensity of gray values for horizontal continuous 

surfaces for visualization purposes, (Horn, 1981) recommended 𝑎 = 0 and 𝑏 =
1

√2
. 

 

 
 

a b 

Figure 5.2 (a) 3 * 3 cell window representation of a surface; (b) illustration of light source altitude (45°) and 

azimuth (315°) angles (Syzdykbayev et al., 2020a) 

 

Since the goal was to identify lines that serve as illumination boundaries, shaded areas with 

values equal to 0 were highlighted. Consequently, the output of the reflectance map was 

reclassified by using the following equation (Figure 5.3c): 

𝑓𝑖𝑗(𝑥) = {
0, 𝑓𝑜𝑟 𝑥 = 0 
1, 𝑓𝑜𝑟 𝑥 > 0 

} (5.5) 

Step 2 involves applying edge detection filters shown in Equation 5.6 on each reclassified 

shaded relief operation. These filters were chosen based on a specific azimuth orientation that 

could be used for border (edge) detection in eight azimuthal orientations (Cesar & da Fontoura 

Costa, 1995). For example, to detect terrain features from shaded relief with an azimuth of 45°, 

filter F45 was used. For shaded relief with an azimuth of 90°, filter F90 was used, and so on. The 
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results of using filter 𝐹90  (Equation 5.6) that captures border lines where a light source for the 

shaded relief coming from azimuth 90◦ are shown in Figure 5.3. 

 

𝐹45 = {
0 0 −1
0 0 0
1 0 0

}  𝐹90 = {
0 0 0
1 0 −1
0 0 0

}  𝐹135 = {
1 0 0
0 0 0
0 0 −1

} 𝐹180 ={
0 1 0
0 0 0
0 −1 0

}  

𝐹225 = {
0 0 1
0 0 0

−1 0 0
}  𝐹270 = {

0 0 0
−1 0 1
0 0 0

}  𝐹315 = {
−1 0 0
0 0 0
0 0 1

}  𝐹0/360 ={
0 −1 0
0 0 0
0 1 0

} 

(5.6) 

 

 

 

Figure 5.3 (a) DTM of synthetically-generated lines, (b) shaded relief (azimuth: 90° and altitude: 0°) of 

synthetically-generated DTM, (c) reclassification results, (d) filter  𝑭𝟗𝟎 results overlaid on DTM 

(Syzdykbayev et al., 2020a) 

 

Step 3 involves removing LTFs that do not persist under slight (± 44◦) azimuth shifts. This 

operation is needed to remove false LTFs. For flatter terrain or terrain that has a shape that 

resembles a cone or half-sphere, Shade-relief detected spur lines in fixed (every 45°) directions 

(Figure 5.4a). To remove false LTFs, two tasks were implemented. In the first task, for each 

azimuth orientation, Steps 1 and 2 were repeated by shifting azimuth orientation to ±44°. This is 

the maximum allowable azimuth value because filters were designed to be compatible with 
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specific shaded relief that is performed every 45°. If the value exceeds ±44°, these filters will not 

be able to capture border lines for specific shaded relief. Several experiments with different 

azimuth values were performed and the results show that smaller values lead to a higher rate of 

false spur line detection (the results of these experiments are presented in the discussion section). 

The output of this task is three images with terrain features (𝑇𝐹) for each azimuth degree; the main 

azimuth degree  𝑇𝐹𝑖  and two additional created images are 𝑇𝐹𝑖−44 and 𝑇𝐹𝑖+44. For example, if 

𝑖 = 45° then three images, 𝑇𝐹1 , 𝑇𝐹45, and 𝑇𝐹89, would be created. In the second task, for each 

azimuth degree, true terrain features that persist under slight azimuth changes were selected. The 

selection was performed by using Equation 5.7:  

𝑇𝐹𝑖_𝑡𝑟𝑢𝑒 =  ( 𝑇𝐹𝑖−44 + 𝑇𝐹𝑖 + 𝑇𝐹𝑖+44) (5.7) 

𝑇𝐹𝑖_𝑡𝑟𝑢𝑒
(𝑥) = {

0, 𝑓𝑜𝑟 𝑥 = 1 
1, 𝑓𝑜𝑟 𝑥 > 1 

} (5.8) 

By applying this equation, the true terrain features that persist under slight azimuth changes 

received a high weight (pixel value), whereas false spur lines did not persist under slight azimuth 

changes and had a pixel value equal to 1 (Figure 5.4b). Thus, by deleting values that were equal to 

1, false spur lines were removed (Figure 5.4c). 
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Figure 5.4 DTM of cone overlaid with (a) borderline 45°, (b) addition of three borderlines 1°, 45°, 89°, and (c) 

detected terrain features (peak) (Syzdykbayev et al., 2020a) 

 

 Step 4 involves combining the outputs of all azimuth parameters into one image by 

summing all corresponding pixels of all images and classifying the outcome. After using filters 

and removing falsely detected spur lines, images with LTFs from eight azimuth orientations were 

generated. In other words, each image contains LTFs extracted from a specific azimuth orientation. 

To obtain LTFs from all azimuth orientations, these eight images were combined resulting in one 

image with a maximum pixel value equal to 8 and a minimum pixel value equal to 0.  

𝑇𝐹𝑡𝑜𝑡𝑎𝑙 = ∑  𝑇𝐹𝑖_𝑡𝑟𝑢𝑒

8
1            (5.9) 

From the results, a pixel whose value was smaller than 2 was considered to be noise and 

pixels with values larger than 2 were classified as LTFs. 

𝑇𝐹𝑡𝑜𝑡𝑎𝑙(𝑥) = {
𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑒𝑟𝑟𝑎𝑖𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  𝑓𝑜𝑟 𝑥 > 2 

𝑛𝑜𝑖𝑠𝑒 𝑓𝑜𝑟 𝑥 ≤ 2
} (5.10) 
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5.2 Datasets 

A synthetically-generated DTM and a real-world DTM were used as input for Shade-relief, 

Geomorphon, Curvature, and Probabilistic, and their performances were compared. The use of 

synthetically-generated datasets for this experiment is grounded in several reasons: (a) non-

existent pre-established datasets for LTFs; (b) flexibility to create unique shapes and construct a 

variety of scenarios, enabling a thorough evaluation of the LTFs extraction algorithms; and (c) 

possibility of predefining knowledge for the ground truth, known number, length, and location of 

extracted LTFs, providing a reliable benchmark for assessing algorithmic performance. 

The synthetically-generated DTM included common shapes such as cone (Figure 5.5), half-

sphere (Figure 5.6), square pyramid (Figure 5.7), and two terrains with known straight and curved 

LTFs. Each of these terrains has seven (Figure 5.8) and eight (Figure 5.9) separate LTFs, 

respectively, with a different level of sharpness. These datasets were generated by using the World 

Machine Basic (World Machine, n.d.) software. For the real-world DTM, two locations were used: 

the southern half of the Lackawanna synclinorium to the southeast of the city of Wilkes-Barre in 

Luzerne County, Pennsylvania (latitude 41° 10’ 25” N and longitude −75° 54’1” W) and Crater 

Lake in Klamath County, Oregon (latitude 42°95′ N and longitude 122°10′ W). The input data for 

the first location was obtained from Pennsylvania Spatial Data Access (Access, n.d.). The input 

data for the second location were obtained from the State of Oregon Department of Geology and 

Mineral Industries public file transfer protocol (FTP) site. The LTFs from these real-world data 

were manually extracted.  
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5.3 Experiment 

For evaluation, the performance of Shade-relief was compared with the performances of 

Geomorphon (Jasiewicz & Stepinski, 2013), Curvature (Pirotti & Tarolli, 2010), and Probabilistic 

(X. Zhou et al., 2019). Both synthetically-generated and real-world datasets were used in these 

comparisons.  

Geomorphon uses the principle of pattern recognition to classify landforms from DTM 

(Jasiewicz & Stepinski, 2013). It detects common local morphological elements such as flats, 

peaks, ridges, shoulders, spurs, slopes, hollows, footslopes, valleys, and pits, using the concept of 

local ternary patterns (Liao, 2010). To extract these local ternary patterns, instead of using a fixed 

size neighborhood, Geomorphon uses a neighborhood with a size and shape suitable for the local 

topography. Hence, it can identify landforms at various spatial scales and is computationally 

efficient (Jasiewicz & Stepinski, 2013).  

Curvature extracts LTFs by creating surface curvatures and uses a certain threshold; a 

multiplication of the curvature’s standard deviation. This algorithm includes a combination of the 

first derivative of an elevation, which is slope, and the second derivative, which is curvature. 

Curvature is one of the basic terrain parameters and is commonly used in terrain analysis (Pirotti 

& Tarolli, 2010). It defines the orientation of a slope and quantifies morphologies, where a positive 

pixel value of the output image is convex and a negative pixel value is concave; a ridge pixel has 

a positive value, while a channel has a negative value (Rana, 2006).  

Probabilistic extracts LTFs by using aspects and slopes that are derived from DTM. This 

algorithm uses contextual information and multiple neighborhood analysis in combination with a 

probability model to extract LTFs (X. Zhou et al., 2019). 
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5.4 Results 

Extracted LTFs were compared to true LTFs in both synthetically-generated and real-world 

datasets. For each dataset, accuracy, precision, recall, and Cohen’s Kappa coefficient evaluation 

metrics were calculated. Tables 5.1 and 5.2 show the results of these metrics. Overall, the results 

show that Shade-relief outperformed all three other algorithms. Specifically, Shade-relief more 

often resulted in the highest evaluation metric values, such as Cohen’s Kappa coefficient, 

suggesting that it outperformed, or was at the very least competitive against, the other three 

algorithms.  

5.4.1 Synthetically-generated Dataset  

Table 5.1 shows the evaluation metrics of the results on synthetically-generated dataset 

produced by Shade-relief and those produced by Geomorphon, Curvature, and Probabilistic and 

compared to known terrain features.  

 

Table 5.1 Cohen’s Kappa coefficient, accuracy, precision, recall for a synthetically-generated dataset with 

each algorithm’s results compared to known terrain features (Syzdykbayev et al., 2020a) 

Dataset Algorithm Cohen’s Kappa Accuracy Precision Recall  

Cone 

Shade-relief 0.133 0.999 0.071 1 

Geomorphon  0.0003 0.978 0.0001 1 

Curvature 0.011 0.9993 0.005 1 

Probabilistic 0.0097 0.9992 0.004 1 

Half sphere 

Shade-relief 0.333 0.999 0.2 1 

Geomorphon  0.0003 0.979 0.0001 1 

Curvature −0.0007 0.993 0 0 

Probabilistic −0.0007 0.999 0 0 

Square Pyramid 
Shade-relief 1 1 1 1 

Geomorphon  0.589 0.997 0.979 0.422 
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Curvature 1 1 1 1 

Probabilistic 0.497 0.993 0.334 0.994 

Lines 

Shade-relief 0.653 0.992 0.488 1 

Geomorphon  0.137 0.931 0.081 0.863 

Curvature 0.691 0.995 0.671 0.7165 

Probabilistic −0.0072 0.985 0 0 

Lines Curved 

Shade-relief 0.735 0.994 0.594 0.972 

Geomorphon  0.133 0.898 0.079 0.99 

Curvature 0.274 0.982 0.216 0.404 

Probabilistic 0.225 0.981 0.18252 0.326 

 

For the synthetically-generated dataset, the number, length, and location of the terrain 

features were already known. Shapes such as a cone or half-sphere have only one peak that can be 

extracted as one point, as shown in Figures 5.5 and 5.6.  

For the conical shape (Figure 5.5), all four algorithms were able to detect the known peak, 

though with varying levels of success, resulting in a recall value of 1 (Table 5.1). The area 

representing a detected peak from Curvature and Probabilistic was much larger, Cohen’s Kappa 

coefficients were 0.011 and 0.009, respectively (Table 5.1). Geomorphon correctly detected the 

location of the peak. However, it falsely detected LTFs and since the area of falsely detected LTFs 

was large, Cohen’s Kappa coefficient is 0.0003 (Table 5.1). In comparison with the other three 

algorithms, the area representing a detected peak by Shade-relief was smaller, with Cohen’s Kappa 

coefficient at 0.133.  
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Figure 5.5 Synthetically-generated conical topographic dataset with only one peak (dark blue pixel) and no 

spurs or ridges. Outputs of the four terrain feature detection algorithms overlaid on the DTM and shown at 

two different scales (Syzdykbayev et al., 2020a) 

 

For the half-sphere shape (Figure 5.6), Shade-relief had the highest values for Cohen’s 

Kappa coefficient at 0.333 (Table 5.1). Both Shade-relief and Geomorphon were able to detect the 

peak with a recall value of 1 (Table 5.1), while Curvature and Probabilistic failed to detect the 

peak (Figure 5.6). Similarly with the conical shape, Geomorphon falsely detected LTFs that do not 

exist in the dataset, with Cohen’s Kappa coefficient at 0.0003 (Table 5.1).  
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Figure 5.6 Synthetically-generated half-sphere topographic dataset with only one peak (dark blue pixel) and 

no spurs or ridges. Outputs of the four terrain feature detection algorithms overlaid on the DTM and shown 

at two different scales (Syzdykbayev et al., 2020a) 

 

For the square pyramid shape (Figure 5.7), all four algorithms were able to detect LTFs 

accurately with a recall value of 1. Comparing the results of all four algorithms with the manually-

extracted known features shows that Shade-relief and Curvature had a value of 1 for all four 

metrics, while Geomorphon had a particularly low Cohen’s Kappa coefficient (0.589) and recall 

(0.422) and Probabilistic had a low Cohen’s Kappa coefficient (0.497) and precision (0.334) 

(Table 5.1).  
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Figure 5.7 Synthetically-generated square pyramid topographic dataset with only one peak and four ridges 

radiating out from the peak (dark blue pixels). Outputs of the four terrain feature extraction algorithms 

overlaid on the DTM and shown at two different scales (Syzdykbayev et al., 2020a) 

 

The DTM derived from synthetically-generated terrain with seven LTFs (straight ridges) 

of equal length (Figure 5.8) exhibits variation from sharp ridges to curved LTFs. Comparing the 

results of the four algorithms against the known features (Table 5.1) shows that Curvature had the 

highest Cohen’s Kappa coefficient (0.691), accuracy (0.995), and precision (0.671), while Shade-

relief had the highest recall. Overall, all four algorithms had a high (>0.9) accuracy, and Cohen’s 

Kappa coefficient (0.653) for Shade-relief was similar to that of Curvature’s results (0.671).  



 
 

68 

 

Figure 5.8 Synthetically-generated topographic dataset with seven straight ridges exhibiting a decreasing 

peak sharpness from left to right. Dark blue pixels represent known ridges that were equal in length for all 

seven ridges. Outputs of the four terrain feature extraction algorithms overlaid on the DTM and shown at 

two different scales (Syzdykbayev et al., 2020a)  
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The DTM derived from terrain with eight curvilinear LTFs (Figure 5.9) also exhibits 

variation from sharp to curved LTFs. Comparing the results of the four algorithms against the 

known features (Table 5.1) shows that Shade-relief outperformed the other three algorithms on all 

metrics, with a high Cohen’s Kappa coefficient (0.735), accuracy (0.994), and precision (0.972), 

except for recall, for which Geomorphon had the highest value (0.99). However, the recall for both 

Shade-relief (0.972) and Geomorphon (0.99) was high.  
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Figure 5.9 Synthetically-generated topographic dataset with seven curvilinear ridges exhibiting a decreasing 

peak sharpness from left to right. Dark blue pixels represent known ridges that were equal in length for all 

seven ridges. Outputs of the four terrain feature extraction algorithms overlaid on the DTM and shown at 

two different scales (Syzdykbayev et al., 2020a) 
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5.4.2 Real-world Dataset 

For the real-world data, two regions with different patterns of terrain features were selected. 

The first is a linear topographic system south of Wilkes-Barre, Pennsylvania that is part of the 

Ridge and Valley Province. The second is a radial topographic system for Crater Lake, Oregon 

(Figure 5.10). For these two regions, there is no known baseline, so LTFs were manually extracted 

to be used as a baseline. Table 5.2 shows the accuracy, precision, recall, and Cohen’s Kappa 

coefficient (evaluation metrics) of the results for the real-world datasets produced by Shade-relief 

and the three other algorithms and compared to manually-extracted terrain features. 

 

 

Figure 5.10 Real-world datasets with manually extracted LTFs (Syzdykbayev et al., 2020a) 
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Table 5.2 Cohen’s Kappa coefficient, accuracy, precision, recall for a real-world dataset with each 

algorithm’s results compared to manually extracted LTFs (Syzdykbayev et al., 2020a) 

Dataset Algorithm Cohen’s Kappa Accuracy Precision Recall  

Wilkes-Barre 

Shade-relief 0.056 0.940 0.063 0.125 

Geomorphon  0.007 0.811 0.026 0.209 

Curvature 0.061 0.951 0.073 0.1 

Probabilistic 0.058 0.944 0.066 0.117 

Crater Lake 

Shade-relief 0.115 0.961 0.109 0.172 

Geomorphon  0.123 0.905 0.088 0.481 

Curvature 0.116 0.968 0.126 0.138 

Probabilistic 0.113 0.927 0.86 0.333 

 

For Wilkes-Barre (Figure 5.11), a comparison of the results of the four algorithms against 

the manually-extracted LTFs shows a similar pattern where Geomorphon had the lowest values 

for all four metrics (Table 5.2). Curvature resulted in the highest values of Cohen’s Kappa 

coefficient (0.061), accuracy (0.951), and precision (0.073), while Geomorphon had the highest 

recall (0.209) value.  
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Figure 5.11 Wilkes-Barre, 3D representation, outputs of the four terrain features extraction algorithms 

overlaid on manually-extracted terrain features and DTM (Syzdykbayev et al., 2020a) 
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For the topographic dataset of Crater Lake (Figures 5.12 and 5.13), there was far more 

variability in the results. Comparing the results of the four algorithms against the manually- 

extracted features shows that Geomorphon had the highest Cohen’s Kappa coefficient (0.123) and 

recall (0.481) (Table 5.2). Shade-relief, Probabilistic, and Curvature resulted in identical 

evaluation metric values where Cohen’s Kappa coefficient is equal to 0.115, 0.113, and 0.116, 

respectively. 
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Figure 5.12 Crater Lake, 3D representation, outputs of the four terrain features extraction algorithms 

overlaid on the DTM, with a distinction between feature types where possible (Syzdykbayev et al., 2020a) 
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Figure 5.13 Crater Lake, 3D representation, outputs of the four terrain features extraction algorithms 

overlaid on manually-extracted terrain features and the DTM (Syzdykbayev et al., 2020a) 

5.5 Discussion 

Extraction of LTFs based on geo-morphometry and DTM is a challenging process. The 

main drawbacks of existing LTFs extraction algorithms are that they are sensitive to the threshold 

value or can have FP. The results of the four algorithms were compared against the manually-

extracted linear features using specific metrics (see Tables 5.1 and 5.2). The performance of each 

algorithm depends on factors such as dataset used, synthetically-generated or real-world data, and 

type of terrain. 
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The results of the synthetically-generated dataset (Table 5.1) show that Shade-relief more 

often resulted in the highest evaluation metric values, suggesting that it outperforms, or is at the 

very least competitive against, the other three comparable algorithms. In one instance, for a 

synthetically-generated square pyramid (Figure 5.7), Shade-relief and Curvature both precisely 

identified four ridges, Geomorphon identified ridges in every other pixel, and Probabilistic 

identified what should have been a 1-pixel width linear feature as having a 3-pixel width. In one 

complex synthetically-generated ridge systems (Figures 5.8 and 5.9), Shade-relief, Probabilistic, 

and Geomorphon were able to identify all known features. Curvature failed to detect more rounded 

topographic ridges, likely due to a limiting threshold value, which in this case is a multiple of the 

curvature’s standard deviation. For Curvature, more rounded ridges/peaks resulted in a wider line 

or larger circle representing the detected features. In the half-sphere example (Figure 5.6), 

Curvature completely failed to detect the peak, which is why Cohen’s Kappa coefficient is so close 

to 0 (Table 5.1). It should be noted that in Curvature the multiplication of the curvature’s standard 

deviation was used as a threshold to extract LTFs. The threshold value is sensitive to the smoothing 

filters because smoothing decreases noise in the DTM that affects the derivative values of the DTM 

(Rana, 2006). For complex real-world data, an optimal threshold value is usually determined 

through a manual process where the value is iteratively selected and compared either visually or 

by checking against a known dataset; this process was used in Pirotti & Tarolli, (2010), 

Syzdykbayev et al., (2020b), and X. Zhou et al., (2019), and showed that an optimal threshold 

value is two times the curvature’s standard deviation.  

For the real-world datasets (Figures 5.10–5.13), Curvature resulted in the highest Cohen’s 

Kappa coefficient, accuracy, and precision (Table 5.2). However, Shade-relief and Probabilistic 

both had values in a narrow range compared to Curvature’s results. This suggests that Curvature, 
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Probabilistic, and Shade-relief all perform similarly and that Geomorphon results include far too 

many poorly detected (incomplete) and FP terrain features. 

The main difference between Shade-relief and Geomorphon is that the former can detect 

spurs with higher accuracy compared with the latter. Geomorphon tends to fail when applied to a 

dataset with multiple topographic expressions (from smooth to highly variable). In order to further 

test FP spurs that were generated by Geomorphon, the input DTM was rotated by 10° to the west 

and east. The detected spurs from Geomorphon did not change their direction even after rotation 

(Figure 5.14). 

 

 

Figure 5.14 Raster image (representing Crater Lake) was rotated by 10° to the west and east and overlaid 

with the ridges, spurs, and peaks detected by Geomorphon (Syzdykbayev et al., 2020a) 
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The high accuracy of spurs detection by Shade-relief is due to the removal of the detected 

features that do not persist under slight azimuth changes. An experiment was conducted with 

several azimuth values (Figures 5.15 and 5.16), and it was revealed that without a slight azimuth 

change, the spur lines detected by Shade-relief were identical to the spur lines detected by 

Geomorphon. 

 

 

Figure 5.15 Synthetically-generated conical DTM with only one peak with 3D representation (left image) and 

the outputs of Shade-relief with different azimuth values overlain on the DTM (four right images) 

(Syzdykbayev et al., 2020a) 
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Figure 5.16 Crater Lake DTM with 3D representation (top left image) and the outputs of Shade-relief with 

different azimuth values overlaid on the DTM (top four right and four bottom images) (Syzdykbayev et al., 

2020a)  
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6.0 Geospatial Object Detection: Topological KB Method 

In chapter 4, we demonstrated that it is feasible to generate candidate polygons using PH, 

thereby detecting geospatial objects by selecting from these polygons, relying solely on topological 

information embedded in them. However, the results indicated a moderate number of FP in certain 

study areas. Consequently, we postulated the following research direction (Syzdykbayev et al., 

2020b):  

“Another future work is to compare and analyze the result of this current work with the 

result of an extended version of the proposed PH where it takes fused data from LiDAR and 

other datasets, such as NDVI, visual/NIR satellite imagery, apparent thermal inertia, vegetative 

cover, bedrock lithology, and/or soil types to detect landslides.” 

6.1 Methodology 

We developed a Topological KB method where we use additional topological information 

along with geometrical and contextual information on candidate polygons derived from PH. The 

method is designed to tackle RQ2 by reframing the geospatial object detection challenge into a 

hypothesis testing problem. This transformation involves formulating various knowledge 

structures and rules using information about the detected geospatial object. Figure 6.1 illustrates 

the modification to the knowledge-based approach by Cheng & Han, (2016) with the integration 

of topological information alongside geometrical and contextual information. 



 
 

82 

 

Figure 6.1 Topological KB method 

 

Our method takes LiDAR-derived DTM data as input and the process is illustrated in 

Figure 6.2 and in Figure 6.3. First, we extract LTFs from DTM and then, using PH, form candidate 

polygons from these LTFs. The last step involves applying rules for detection which are based on 

topological, geometrical, and contextual information.  

 

 

Figure 6.2 Workflow of the Topological KB geospatial object detection method 

6.1.1 Using Topological, Geometrical, and Contextual Information for Detection Rules 

Before formulating detection rules, it is essential to derive and embed topological, 

geometrical, and contextual information for each candidate polygon. We performed a 

comprehensive literature review to find works where the knowledge-based approach was used to 

detect landslides and compiled a list of landslide detection rules (Table 6.1). From this list, we 
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selected and implemented the rules in each information category that are common in most works 

(Table 6.2). 

Table 6.1 List of works on landslide detection rules 
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The topological information, which can be obtained and embedded into candidate polygons using 

PH, includes: 

1. Birth time of the circle, denoting the instance when topological information starts to 

emerge. 

2. Death time of the circle, denoting the moment when topological information ceases to exist. 

3. Lifetime of the circle, denoting the interval between the birth time and the death time. 

The geometrical information, which can be obtained and embedded into candidate polygons using 

tools like Geographic Information Systems (GIS), includes: 

1. Size, overall magnitude, or dimensions of a geospatial object. 

2. Ratio between length and width of a geospatial object, a measure of the object's proportion 

or aspect ratio. 

The contextual information, which can also be derived and embedded into candidate polygons 

using GIS tools, includes: 

1. The slope of a region, the angle or steepness of the terrain. 

2. Roughness of a terrain, a measure of the terrain's irregularity or complexity. 

3. Normalized Difference Vegetation Index (NDVI) score of a region, an indicator of live 

green vegetation density and health. 
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Table 6.2 List of geometrical and contextual rules implemented to detect landslides 

Information Parameter   Rules Derived form  

 

Context 

Slope  

(degrees: min:0 and 

max: 90) 12 – 72  LiDAR 

NDVI  

(pixel value: min: -1 

and max: 1) 0.12 - 0.75 Satellite image  

Surface roughness 

(index value min: 0 

and higher) 0.12 - 2 LiDAR 

Geometrical Length/width (unit) 0.27 - 3  Candidate polygons  

Area (meters) 

Based on existing 

landslide properties  Candidate polygons 

 

 

 

Figure 6.3 Workflow of the Topological KB geospatial object detection method with visualization of each step 
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6.2 Datasets and Experiment 

The characteristics of the input data for the experiment are shown in Table 4.1. A DTM 

offers a bare-earth depiction of the terrain, devoid of natural or artificial elements such as 

vegetation or buildings. The output of the experiment, detected landslides, were compared against 

landslide inventory maps which record landslide locations along with supplementary data, 

including occurrence dates and landslide types (Guzzetti et al., 2012b).  

We conducted experiments to test our Topological KB. The results were evaluated by 

comparing them with the ground truth, the results of the work by (Syzdykbayev et al., 2020b), 

where only topological filters were used on candidate polygons, and the findings of the knowledge-

based method implemented by Bunn et al (2019) who introduced a method known as SICCM for 

landslide detection. The same five study areas described in Chapter 4 were used in the experiment 

(see Figure 4.7 and Table 4.2).  

Three experiments were conducted as follows:  

• Experiment 1: Using no filters, only raw, unfiltered candidate polygons. 

• Experiment 2: Using only geometrical and contextual information as filters on 

candidate polygons.  

• Experiment 3: Using topological information alongside geometrical and contextual 

information.  

These experiments collectively provided a holistic view of the implications of different 

filtering approaches in the task of geospatial object detection. 

We ran three LTFs algorithms (Shade-relief, Curvature, Geomorphon) on three different 

pixel sizes and used six smoothing iterations (Table 6.3). Furthermore, to identify the most 
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effective geometrical and contextual information, we undertook a comprehensive analysis of all 

possible subsets. This analysis encompassed cases ranging from utilization of all possible 

combinations of geometrical and contextual information with and without addition of topological 

information. 

The total number of comparisons were: 3 (LTFs extraction algorithm) * 3 (pixel size) *6 

(Smoothing iteration) * 4! (Geometrical information) * 6! (Contextual information) = 933120 

 

Table 6.3 Parameters used in the experiment 

Parameter name Parameters 

DTM pixel size  1m, 5m, 10m 

Smoothing iteration 0, 2, 5, 10, 15, 20 

LTFs extraction 

algorithm 

Shade-relief (Syzdykbayev et al., 2020a), Curvature (Pirotti & 

Tarolli, 2010), Geomorphon (Jasiewicz & Stepinski, 2013) 

Topological 

information  

Birth of the circle, Lifetime of the circle  

Geometrical 

information  

Min length-width ratio of the candite polygon, Max Min length-

width ratio of the candite polygon, Min area, Max area.  

Contextual 

information 

Min slope, Max slope, Min TRI, Max TRI, Min NDVI, Max NDVI 

   

 

6.3 Results 

Detected landslides were compared to landslide inventory maps and with the results of the 

work by (Syzdykbayev et al., 2020b), in all five study areas. In addition, for Study Areas 2 and 4, 

the results were also compared with the results of the work by Bunn et al. (2019). The three LTFs 

extraction algorithms, six smoothing iterations, and different three-pixel sizes were applied, and 

accuracy, precision, recall, Cohen’s Kappa coefficient, and F-1 score evaluation metrics were 
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calculated. Table 6.4. shows the results of these metrics with the highest F-1 score for each study 

area.  

 

Table 6.4 LTFs extraction algorithms, number of existing, detected, and intersected landslides, accuracy, 

precision, recall, Cohen’s Kappa coefficient and F1 score for each study area 

  Study Area 

1 

Study Area 

2 

Study 

Area 3 

Study 

Area 4 

Study 

Area 5 

LTFs extraction 

algorithm 

Geomorphon Geomorphon Shade-

relief 

Curvature Curvature 

Pixel size 1 1 1 5 5 

Number of smoothing 

iterations   

1 10 20 5 1 

Accuracy 0.95 0.66 0.47 0.59 0.97 

Precision  0.38 0.33 0.28 0.51 0.36 

Recall  0.80 0.86 0.85 0.82 0.58 

Cohen’s Kappa 

coefficient 

0.50 0.31 0.12 0.24 0.43 

F1 Score 0.52 0.48 0.43 0.64 0.45 

 

Findings for Study Area 1:  

• Experiment 1: The best F1 score (0.34) was obtained with pixel sizes of 5 using Shade-

relief (Figure 6.4 (b)). Compared with Syzdykbayev et al., (2020c), the unfiltered results 

were superior at a pixel size of 1 (Figure 6.4 (a)) but deteriorated at pixel size 5 (Figure 6.4 

(b)). Results with pixel size 10 lacked consistency across smoothing iterations (Figure 6.4 

(c)). 

• Experiment 2: An F1 score peak of 0.5248 was observed at pixel size 1 using Geomorphon 

(Figure 6.4 (d)). When compared with Syzdykbayev et al., (2020c), a Topological KB 

geospatial object detection method outperformed in all configurations except for the pixel 

size of 10 subjected to 20 smoothing iterations (Figures 6.4 (d, e, f)). 
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• Experiment 3: The highest F1 score was 0.5247, again at a pixel size of 1 (Figure 6.4 (g)). 

Compared with Syzdykbayev et al., (2020c), this combined approach outperformed solely 

at pixel size 1 (Figures 6.4 (g, h, i)). 

In summary, the most favorable results for Study Area 1 were obtained when only 

geometrical and contextual filters were applied to pixel size of 1 and with Geomorphon (Figure 

6.4 (d)). From the original set of 10 rules (comprising 4 geometrical and 6 contextual rules), a 

subset of 7 rules (consisting of 2 geometrical and 5 contextual rules) was chosen to attain these 

results (Table 6.5). 
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Figure 6.4 Results of the three LTFs extraction algorithms with different pixel sizes, smoothing iterations and 

three evaluations as a measure of F1 score; Study Area 1: Pennsylvania 
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Table 6.5 List of geometrical and contextual rules used to obtain the highest F1 score; Study Area 1: 

Pennsylvania 

Information Parameter   Rules  Rules Used  

 

Context 

Slope 12 - 72 12 - 72 

NDVI 0.12 - 0.75 0.12 - 0.75 

Surface roughness 0.12 - 2 0 - 2 

Geometrical Length/width  0.27 - 3  0 - 3 

Area 261-9746736 0-9746736 

 

Findings for Study Area 2:  

• Experiment 1: The F1 score peaked at 0.39 with a pixel size of 10 using Curvature (Figure 

6.5 (c)). When compared with Bunn et al. (2019), F1 scores for a Topological KB 

geospatial object detection method were consistently lower across all pixel sizes (Figures 

6.5 (a, b, c)). Against Syzdykbayev et al., (2020c), we observed reduced F1 scores at pixel 

sizes 1 and 5, while the results closely matched at pixel size 10 (Figures 6.5 (a, b, c)). 

• Experiment 2: The highest F1 score reached 0.48 at pixel size 1 with Geomorphon (Figure 

6.5 (d)). When compared with Bunn et al. (2019), results across all pixel sizes were closely 

matched, with a slight edge in a Topological KB geospatial object detection method in 

some instances (Figures 6.5 (d, e, f)). Against Syzdykbayev et al., (2020c), we matched 

their F1 scores at pixel sizes 1 and 5 but surpassed them at pixel size 10 (Figures 6.5 (d, e, 

f)). 

• Experiment 3: The highest F1 score was 0.47 at pixel size 10 using Geomorphon (Figure 

6.5 (g)). In comparison with both Bunn et al. (2019) and Syzdykbayev et al., (2020c), 

outcomes of a Topological KB geospatial object detection method were closely matched 

for pixel sizes 1 and 5 but lagged at pixel size 10 (Figures 6.5 (g, h, i)). 
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 In summary, the most favorable results for Study Area 2 were obtained when only 

geometrical and contextual filters were applied to pixel sizes of 1 and with Geomorphon (Figure 

6.5 (d)). From the original set of 10 rules (comprising 4 geometrical and 6 contextual rules), a 

subset of 5 rules (consisting of 1 geometrical and 4 contextual rules) was chosen to attain these 

results (Table 6.6). 
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Figure 6.5 Results of the three LTFs extraction algorithms with different pixel sizes, smoothing iterations and 

three evaluations as a measure of F1 score; Study Area 2: Oregon 
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Table 6.6 List of geometrical and contextual rules used to obtain the highest F1 score; Study Area 2: Oregon 

Information Parameter   Rules  Rules Used  

 

Context 

Slope  

(degrees: min:0 and 

max: 90) 12 - 72 12 - 72 

NDVI  

(pixel value: min: -1 

and max: 1) 0.12 - 0.75 0 - 0.75 

Surface roughness  

(index value min: 0 

and higher) 0.12 - 2 0 - 2 

Geometrical Length/width (unit) 0.27 - 3  0 - ∞ 

Area (meters) 261-12443892 261 - ∞ 

 

Findings for Study Area 3:  

• Experiment 1: An optimal F1 score of 0.40 was achieved at pixel size 1 using Geomorphon 

(Figure 6.6 (a)). Compared with Syzdykbayev et al., (2020c), the absence of filters in this 

study showed improved results at pixel size 1 (Figures 6.6 (a, b, c)). 

• Experiment 2: The highest F1 score achieved was 0.43, observed at pixel size 1 when 

employing Shade-relief (Figure 6.6 (d)). Results comparison with Syzdykbayev et al., 

(2020c) indicated that using geometrical and contextual filters improved results across all 

pixel sizes and smoothing iterations (Figures 6.6 (d, e, f)). 

• Experiment 3: The highest F1 score observed was 0.42 at pixel size 1 (Figure 6.6 (g)). 

When compared with the results of Syzdykbayev et al., (2020c), the use of this combined 

filter approach led to better results, but exclusively at pixel size 1 (Figures 6.6 (g, h, i)). 

In summary, the best results for Study Area 3 were achieved when only geometrical and 

contextual filters were applied to pixel sizes of 1 and with Shade-relief (Figure 6.6 (d)). From the 
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original set of 10 rules (comprising 4 geometrical and 6 contextual rules), a subset of 9 rules 

(consisting of 3 geometrical and 6 contextual rules) was chosen to attain these results (Table 6.7). 

   
a b c 

   
d e f 

   

g h i 

Figure 6.6 Results of the three LTFs extraction algorithms with different pixel sizes, smoothing iterations and 

three evaluations as a measure of F1 score; Study Area 3: Colorado 
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Table 6.7 List of geometrical and contextual rules used to obtain the highest F1 score; Study Area 3: 

Colorado 

Information Parameter   Rules  Rules Used  

 

Context 

Slope  

(degrees: min:0 and 

max: 90) 12 - 72 0 - 72 

NDVI  

(pixel value: min: -1 

and max: 1) 0.12 - 0.75 0.12 - 0.75 

Surface roughness  

(index value min: 0 

and higher) 0.12 - 2 0.12 - 2 

Geometrical Length/width (unit) 0.27 - 3  0 - 3 

Area (meters) 1377-6231540 1377-6231540 

 

 

Findings for Study Area 4:  

• Experiment 1: The optimal F1 score was 0.63 at pixel size 5 using Geomorphon (Figure 

6.7 (b)). Compared with Bunn et al. (2019), this experiment consistently yielded a higher 

F1 score across all cases. When compared with Syzdykbayev et al., (2020c), F1 score was 

lower for pixel sizes 1 and 10, but closely matched their results at pixel size 5 (Figures 6.7 

(a, b, c)). 

• Experiment 2: The highest F1 score of 0.64 was observed at pixel size 5 using Curvature 

(Figure 6.7 (e)). When compared with Bunn et al. (2019), F1 score was higher across all 

pixel sizes. Comparing with Syzdykbayev et al., (2020c), the results indicated a lower F1 

score at pixel sizes 1 and 10, while the score at pixel size 5 was almost identical to their 

findings (Figures 6.7 (d, e, f)). 
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• Experiment 3: An F1 score of 0.63 was achieved at pixel size 1 using Geomorphon (Figure 

6.7 (g)). Compared with Bunn et al. (2019), the scores were higher for pixel sizes 1 and 5 

but lower for pixel size 10. When compared with Syzdykbayev et al., (2020c), the scores 

at pixel size 5 were similar, while the results for pixel sizes 1 and 10 were lower (Figures 

6.7 (g, h, i)). 

 In summary, the most favorable results for Study Area 4 were obtained when only 

geometrical and contextual filters were applied to pixel sizes of 5 and with Curvature (Figure 6.7 

(e)). From the original set of 10 rules (comprising 4 geometrical and 6 contextual rules), a subset 

of 5 rules (consisting of 2 geometrical and 3 contextual rules) was chosen to attain these results 

(Table 6.8). 
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Figure 6.7 Results of the three LTFs extraction algorithms with different pixel sizes, smoothing iterations and 

three evaluations as a measure of F1 score; Study Area 4: Oregon 
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Table 6.8 List of geometrical and contextual rules used to obtain the highest F1 score; Study Area 4: Oregon 

Information Parameter   Rules  Rules Used  

 

Context 

Slope  

(degrees: min:0 and 

max: 90) 12 - 72 0 - 72 

NDVI  

(pixel value: min: -1 

and max: 1) 0.12 - 0.75 0 - 0.75 

Surface roughness  

(index value min: 0 

and higher) 0.12 - 2 0.12 - ∞ 

Geometrical Length/width (unit) 0.27 - 3  0 - 3 

Area (meters) 18- 314297870 0- 314297870 

 

Findings for Study Area 5:  

• Experiment 1: Optimal F1 scores of 0.07 were achieved with pixel sizes of 10 using Shade-

relief. In comparison with Syzdykbayev et al., (2020c), all results were inferior regardless 

of pixel size or smoothing iterations (Figure 6.8 (a, b, c)). 

• Experiment 2: The best F1 scores, reaching 0.45, were observed at pixel size 5, employing 

Curvature (Figure 6.8 (e)). When compared with Syzdykbayev et al., (2020c), the inclusion 

of geometrical and contextual filters resulted in enhanced outcomes across all pixel sizes 

and smoothing iterations (Figure 6.8 (d, e, f)). 

• Experiment 3: Peak F1 scores of 0.41 were observed at pixel size 1 with Curvature (Figure 

6.8 (g)). Compared with Syzdykbayev et al., (2020c), the combined filtering approach led 

to improved results across all pixel sizes and smoothing iterations (Figure 6.8 (g, h, i)). 

 In summary, the most favorable results for Study Area 5 were obtained when only 

geometrical and contextual filters were applied to pixel sizes of 5 and with Curvature (Figure 6.8 

(e)). From the original set of 10 rules (comprising 4 geometrical and 6 contextual rules), a subset 
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of 4 rules (consisting of 1 geometrical and 3 contextual rules) was chosen to attain these results 

(Table 6.9). 
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Figure 6.8 Results of the three LTFs extraction algorithms with different pixel sizes, smoothing iterations and 

three evaluations as a measure of F1 score; Study Area 5: Washington 
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Table 6.9 List of geometrical and contextual rules used to obtain the highest F1 score; Study Area 5: 

Washington 

Information Parameter   Rules  Rules Used  

 

Context 

Slope  

(degrees: min:0 and 

max: 90) 12 - 72 12 - 72 

NDVI  

(pixel value: min: -1 

and max: 1) 0.12 - 0.75 0 - 0.75 

Surface roughness  

(index value min: 0 

and higher) 0.12 - 2 0 - ∞ 

Geometrical Length/width (unit) 0.27 - 3  0 - ∞ 

Area (meters) 137- 5689077 0-5689077 

6.4 Discussion 

Our analysis discerns a notable trend relating to pixel size and number of smoothing 

iterations: as the pixel size increases from 1 to 10 and the smoothing iterations are augmented, 

there is a corresponding decrease in F1 score. This observation can be intuitively understood when 

considering the impact of increased pixel size and smoothing iterations on the quality and detail 

of the landslide boundary information. Increasing pixel size and number of smoothing iterations 

is analogous to reducing the resolution of the image or applying a strong blurring effect. In the 

context of geospatial object detection, this can be likened to examining a landscape from a greater 

distance or through a foggy lens. While larger pixel sizes and more smoothing iterations simplify 

the image and can aid in the detection of large-scale patterns or structures, they also hide the finer 

details that are often critical for accurate object detection. In the case of landslide detection, the 

intricate details of landslide boundaries, which often contain key indicators of landslide's 
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characteristics and potentially its causes, are lost when viewed at lower resolutions. Consequently, 

while larger pixel sizes and increased smoothing iterations might expedite the processing and 

analysis of geospatial data, our results highlight the inherent trade-off between the simplification 

of data and the preservation of crucial details. Our findings underscore the importance of carefully 

selecting pixel size and number of smoothing iterations in geospatial object detection tasks. 

Striking a balance between data simplification for efficiency and preservation of detail for 

accuracy is key to optimizing the results of such analyses. 

Analyzing the results of the three sets of experiments conducted in each of the five study 

areas, we observe that Experiment 2, using filters based on only geometrical and contextual 

information, shows better results in comparison with Experiment 1, not using any filters. The 

reason for this performance improvement becomes clear when we examine the limitations of the 

first experiment, which inherently carries a high risk of generating FP. Without applying filters, 

all polygons possessing a circular shape are identified as detected geospatial objects, leading to an 

overestimation of the actual object count. Experiment 2’s results are also better than Experiment 

3’s results. The exceptions are a few cases where the outcomes from Experiments 2 and 3 are close 

(as shown in Figure 6.6 (d, g)). The underlying factor here is that Experiment 3 incorporates 

topological filters, i.e., birth and lifespan of circles, which correlate with the size of the circle, a 

characteristic already accounted for in the geometrical selection phase of Experiment 2.  

With these results it can be concluded that using geometrical and contextual filters applied 

on candidate polygons yields the highest accuracy. Using filters with combined topological 

geometrical and contextual information did not improve accuracy, but rather increased the 

complexity of the detection rules, potentially obstructing object detection. Importantly, it is worth 

mentioning that the candidate polygons were derived using topological properties. In essence, 
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topological information from the raw input played a crucial role in deriving these candidate 

polygons. 

Our comparative analysis with prior studies yields promising outcomes. When compared 

with the knowledge-based method utilized in the work by Bunn et al. (2019), our method shows 

superior results in both Study Areas 2 and 4. Similarly, when these results are compared against 

the results from the work by Syzdykbayev et al., (2020c), which exclusively employed filters based 

only on topological information on candidate polygons, we observe an improvement in all study 

areas with one exception, Study Area 4. In Study Area 4, our results are closely aligned with the 

results of the work by Syzdykbayev et al., (2020c). The slight discrepancy underscores the inherent 

complexity of geospatial analysis and attests to the necessity of employing diverse, complementary 

strategies in different contexts to optimize outcomes. 

 

Table 6.10 Results of Topological KB method, Syzdykbayev et al., (2020c), and Bunn et al. (2019) in each 

study area 

 
Study Area 1 Study Area 

2 

Study Area 3 Study Area 

4 

Study Area 

5 

Title Chapter 6: Geospatial Object Detection: Topological KB Method 

F1 score 0.52 0.48 0.43 0.64 0.45 

Title Chapter 4: Geospatial Object Detection: PH-Based Method 

(Syzdykbayev et al., 2020b). 

F1 score 0.334 0.466 0.382 0.65 0.337 

Title Bunn et al. (2019) 

F1 score  0.47  0.53  
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7.0 Geospatial Object Detection: Topological ML-Based Method 

Including additional spectral channels beyond the conventional Red, Blue, and Green 

(RGB) is an emerging and prevalent practice in ML models, particularly in geospatial object 

detection tasks utilizing remote sensing datasets. Using diverse spectral bands provides a richer, 

more detailed representation of the Earth's surface, enhancing the discriminatory power of 

algorithms in identifying specific features or objects. With multispectral and hyperspectral remote 

sensing, the addition of channels like Near-Infrared (NIR), Shortwave Infrared (SWIR), and 

others, helps in capturing subtle differences that are indistinguishable in the traditional RGB space 

(Wieland et al., 2023). The heterogeneity of spectral reflectance across various land cover types, 

vegetation health statuses, water bodies, or built-up areas, can be effectively captured with a 

broader spectral range, leading to improved detection accuracy.  

The fusion of Digital Elevation Models (DEM), slope, other derivatives, and landform 

boundaries, can create a useful combination for enhancing the precision and accuracy of ML 

models in geospatial object detection tasks (Wieland et al., 2023). DEM and slope provide critical 

topographical insights, enabling models to differentiate between varying landforms and land uses 

based on terrain height and gradient information. Other derivatives, such as aspect, curvature, or 

ruggedness, supplement these data by offering further details on surface characteristics, assisting 

in the interpretation of complex landform processes and patterns (Wieland et al., 2023). 

Implementing edge detection, particularly using a Laplacian filter, can introduce another level of 

precision in geospatial object detection (Tchinda et al., 2021). The Laplacian filter is a second-

order derivative operator known for its proficiency in highlighting areas of rapid intensity change 

in an image, which typically correspond to edges or boundaries (Szeliski, 2010b). These can be 
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leveraged to delineate distinct ecological zones, transition areas, or human-made features, 

providing valuable contextual information to help ML algorithms in feature extraction and object 

identification (Xiao et al., 2021). 

By integrating these edges or boundaries derived from Laplacian filter onto the existing 

spectral and topographic data, we introduce another dimension to our model. This enhancement 

allows the model to account for sharp changes or gradients that are typical of boundary areas 

(Wieland et al., 2023). This integration can lead to a richer, more nuanced understanding of the 

geospatial landscape, thereby enhancing the capability of ML models.  

In this research task, we incorporate PH and Mapper, as an additional channel into existing 

multichannel layer, as both are expected to enhance the detection and representation of geospatial 

boundaries derived from the outputs of Laplacian filter. PH is proficient at highlighting boundaries 

that exhibit circular patterns, thereby capturing geographic transitions that might be overlooked by 

traditional edge detection methods. Mapper provides a graph-based visualization of area 

boundaries, offering a detailed and intuitive understanding of the geographical context, and 

unveiling the intricacies of the terrain. Both PH and Mapper rely on area boundaries derived from 

Laplacian filter on RGB image, offering unique capabilities to interpret these boundaries with 

greater precision and context.  

To address RQ3 (see Chapter 3), we present a Topological ML-based geospatial object 

detection method focused on the shape and location of geospatial objects in geospatial datasets.  
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7.1 Methodology 

The proposed method transforms topological information, derived by using PH and 

Mapper, into a three-dimensional array, i.e., a multichannel image while preserving its location by 

a subset of points. The multichannel image can be represented in a three-dimensional array and 

combined directly with ML models with a CNN architecture. In other words, multichannel images 

with topological information are used as feature inputs to ML-based models to detect geospatial 

objects. The workflow of the method is shown in Figure 7.1. The first step of the workflow 

involves extracting topological information by using PH and Mapper. The second step involves 

implementing algorithms that transform the extracted topological information into a multichannel 

image. The third step involves implementing Topological ML to detect geospatial objects where 

the input feature is a multichannel image derived from the second step.  

 

 

Figure 7.1 Workflow of the Topological ML-based geospatial object detection method 

 

7.1.1 Extracting Topological Information from PH and Mapper 

There are many ways to convert an image into a set of points such as using threshold values 

or extracting linear features. With threshold values, a binary image is created where nonzero values 
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are converted into a set of points (Tymochko, Munch, Dunion, Corbosiero, & Torn, 2020) and to 

be able to focus on boundaries of geospatial objects, an LTFs extraction algorithm is needed. If 

the input data is a DTM, an LTFs extraction algorithm is implemented (Syzdykbayev et al., 2020a). 

If the input data is an RGB image, or a multichannel satellite image, an edge detection algorithm, 

commonly used in CV, such as Gauss (Laplacian) filters (Szeliski, 2010b), is implemented. 

Before using a set of points in PH and Mapper as input, the coordinates of the set of points, 

which are in geographic coordinate system, must be transformed into a cartesian coordinate system 

where the origin is the upper left corner of the input image. This transformation allows us to keep 

track of the location of topological information and to overlay points onto images with 

corresponding coordinates. Next, PH and Mapper are applied to the set of points to derive 

topological information. For PH, the location of the subsets of points are derived and stored in 

addition to the topological information. For Mapper, the location of the nodes and the number of 

points inside each cluster in addition to the general information about the graph is derived and 

stored.  

7.1.2 Transforming Topological Information into a Multichannel Image 

Both ML-based object detection and ML-based instance segmentation methods achieve 

good performance in detecting geospatial objects. However, both are based on CNN architecture 

and require a multichannel image as an input (Cheng & Han, 2016; Hafiz & Bhat, 2020). We 

transformed topological information derived by using PH and Mapper into a multichannel image 

while preserving the location of the subset of points that form topological information. Such a 

transformation requires the shape of the multichannel image identical to the size of the input image. 

Since the outputs of PH and Mapper are different, we implemented two algorithms, one to 
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transform the output of PH into a multichannel image (Algorithm 1), and one to transform the 

output of Mapper into a multichannel image (Algorithm 2).  

Algorithm 1 transforms the output of PH, specifically connected components and circles, 

into a multichannel image (Figure 7.2). The general logic of Algorithm 1 is to keep track of the 

subset of points along with topological information. First, an empty multichannel image, and two 

threshold values are initialized, one for maximum number of channels in the multichannel image, 

and the other for minimum lifetime value. The size of each channel of the empty image is equal to 

the size of the input image, and the number of channels is equal to the first threshold value. The 

output of PH is sorted as lifetime value. Each point in the subset of points (dimension, birth time, 

death time, lifetime) outputted by PH (shown in Figure 7.2 a) is overlaid onto the first channel of 

the empty image with corresponding coordinates (Figure 7.2 b). If the points in a subset of points 

intersect, each point in the subset is overlaid onto the next channel. The set of pixel values of an 

empty image that are overlaid with the subset of points represent topological information such as 

birth time or lifetime.  

 

  

a b 

Figure 7.2 Algorithm 1: (a) set of points with four circles and PD with subset of points that form topological 

information (b) multichannel image with topological information 
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The output of Algorithm 2 is a graph with no overlapped nodes or edges (Figure 7.3). First, 

an empty multichannel image is initialized, where the shape of each channel is equal to the shape 

of the input image. Next, each node and each edge of the graph is overlaid onto an empty image 

with corresponding coordinates (Figure 7.3 b). The set of pixel values of an empty image that are 

overlaid with nodes or edges represent information such as degree values of nodes or lengths of 

edges (Figure 7.3 b).  
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a b 

Figure 7.3 : Algorithm 2: (a) set of points with four circles and a graph that was created using Mapper (b) 

multichannel image with topological information 
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7.2 Datasets 

To address RQ3, the derived multichannel image was used as a feature input to the ML-

based instance segmentation method. We used a geospatial dataset from the LandSlide4Sense 

competition provided by the Institute of Advanced Research in Artificial Intelligence 

(LandSlide4Sense, n.d.) as input. 

The Landslide4Sense dataset is derived from a diverse set of landslide-affected areas 

around the world from 2015 through 2021(LandSlide4Sense, n.d.). The dataset consists of training, 

validation, and test sets containing around 3799 image patches. These image patches consist of 

input images and labels. All bands in the dataset are resized to the resolution of ~10m per pixel. 

The labels are masked with landslide boundaries where each label has 128 x 128 pixels. The input 

images are multi-source satellite imagery with 14 channels that include (see Figure 7.4): 

• Multispectral data from Sentinel-2 (B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12) 

(see Table 7.1) 

• Slope and DEM data from ALOS PALSAR 
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Table 7.1 Sentinel-2 Spectral Bands: Channel Specifications and Descriptions 

Channels Pixel size Wavelength Description 

B1 60 m 443 nm Ultra Blue (Coastal and Aerosol) 

B2 10 m 490 nm Blue 

B3 10 m 560 nm Green 

B4 10 m 665 nm Red 

B5 20 m 705 nm Visible and Near Infrared (VNIR) 

B6 20 m 740 nm Visible and Near Infrared (VNIR) 

B7 20 m 783 nm Visible and Near Infrared (VNIR) 

B8 10 m 842 nm Visible and Near Infrared (VNIR) 

B8a 20 m 865 nm Visible and Near Infrared (VNIR) 

B9 60 m 940 nm Short Wave Infrared (SWIR) 

B10 60 m 1375 nm Short Wave Infrared (SWIR) 

B11 20 m 1610 nm Short Wave Infrared (SWIR) 

B12 20 m 2190 nm Short Wave Infrared (SWIR) 

 

The dataset was divided into training (2849) and testing (950) sets where training set was 

used to train segmentation model and testing set was used to evaluate model’s performance. In 

order to train the model, PyTorch, an open-source ML framework (Paszke et al., 2019) was used. 
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a b 

Figure 7.4 (a) multichannel satellite imagery and (b) label pair (mask) of the geospatial dataset from the 

LandSlide4Sense competition (LandSlide4Sense, n.d.) 

7.3 Experiment 

We experimented with training and testing of various ML models under diverse parameters 

and differing numbers of input channels (see Table 7.2). To ensure comprehensive model learning 

and generalization, we trained each model iteration for a total of 300 epochs. In the ML-based 

segmentation model, we utilized UNET as the encoder, VGG11 as the decoder, and Jaccard Loss 

as the loss function. The models were not pretrained.  
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Table 7.2 Experimental setups and configurations for image encoding and decoding 

Encoder 

Name 

Decoder 

Name  

Loss 

function 

Number 

of 

Epochs 

Channel Name Number of 

Channels 

UNET  VGG11 Jaccard 

Loss 

300 RGB  3 

UNET  VGG11 Jaccard 

Loss 

300 RGB, Slope, DEM 5 

UNET  VGG11 Jaccard 

Loss 

300 ALL Channels 14 

UNET  VGG11 Jaccard 

Loss 

300 RGB, + Edge 3 

UNET  VGG11 Jaccard 

Loss 

300 RGB, Slope, DEM+ Edge 6 

UNET  VGG11 Jaccard 

Loss 

300 ALL Channels +Edge 15 

UNET  VGG11 Jaccard 

Loss 

300 RGB + PH 7 

UNET  VGG11 Jaccard 

Loss 

300 RGB, Slope, DEM + PH 9 

UNET  VGG11 Jaccard 

Loss 

300 ALL Channels+ PH 18 

UNET  VGG11 Jaccard 

Loss 

300 RGB + Mapper 7 

UNET  VGG11 Jaccard 

Loss 

300 RGB, Slope, DEM + Mapper 9 

UNET  VGG11 Jaccard 

Loss 

300 ALL Channels + Mapper 18 

UNET  VGG11 Jaccard 

Loss 

300 RGB + PH + Mapper 11 

UNET  VGG11 Jaccard 

Loss 

300 RGB, Slope, DEM+ PH + Mapper 13 

UNET  VGG11 Jaccard 

Loss 

300 ALL Channels + PH + Mapper 22 

UNET  VGG11 Jaccard 

Loss 

300 ALL Channels + PH + Mapper + 

Edge 

23 

 

Our methodology specifically leverages three types of information derived from the source 

data, divided into distinct subsets. The first subset solely consists of RGB (Red, Blue, and Green) 
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channels, providing a baseline performance with just the primary color channels. The second 

subset extends this to include topographic features, namely, slope and DEM data, in addition to 

RGB channels, as depicted in Figure 7.5. Lastly, we used a more comprehensive approach by 

utilizing all available channels from the source data as model inputs. It is important to note that 

these scenarios do not involve any embedding of additional information into the source data. They 

provide a comprehensive understanding of how inclusion of different data subsets as inputs affects 

the performance of ML models in geospatial object detection tasks. In this first part of the 

experiment, rather than augmenting the source data, we focused on experimenting with various 

subsets of it. The outcomes of these experiments provide insights into both the advantages and 

potential limitations of incorporating increasingly complex input data into the models. 

The second part of the experiment is anchored on the above three subsets of multichannel 

images. We performed several additions into each subset of multichannel image by incorporating 

diverse layers of information into the source data. These layers, sourced from Laplacian filter, PH, 

and Mapper, are described as follows: 

• Laplacian Filter is a single-channel addition emphasizing area boundaries. The effects 

of this layer and its contribution are visualized in Figure 6.5. 

• PH contains a four-channel layer. The primary function of this layer is to accentuate 

areas marked by circular boundaries, revealing underlying topological nuances. 

• Mapper contains a four-channel layer.  This layer provides a graph-based perspective 

of the area boundaries, offering a unique analytical angle. 

• Combining the outputs of PH and Mapper results in an eight-channel layer. 

Overall, we executed 16 experiments (Table 7.2), each adding complexity and depth layers 

to the geospatial object detection task. The results of these experiments provide valuable insights 
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into the impact of these layered augmentations on the performance of the ML models, and how 

they contribute to the efficacy and accuracy of geospatial object detection. 
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Figure 7.5 RBG, slope and DEM subsets of the source data 
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The performances of predicted images against ground truth provided by LandSlide4Sense 

competition were evaluated by using four common validation metrics: accuracy, precision, recall, 

and F1 score. In addition, F1 score was used to find a winner in the LandSlide4Sense competition. 

Hence, by using F1 score, we can compare results of the Topological ML-based method with the 

winners of the LandSlide4Sense competition. We only show the results of F1 score and the results 

of the other validation metrics are available in Appendix C.  

7.4 Results 

Our experimental design aimed to provide a comprehensive understanding of how the 

inclusion of different data subsets, specifically adding layers with topological information, as 

inputs affects the performance of ML models in geospatial object detection tasks. We conducted 

16 distinct sets of evaluations, and the results are shown in Table 7.3 and in Figure 7.6.  
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Table 7.3 Experimental configurations and F1 scores for encoder-decoder models after 300 Epochs 

Encoder 

Name 

Decoder 

Name  

Loss 

function 

Channel Name Number 

of 

Channels 

F1 score 

of 

Training 

set after 

300 

epochs 

F1 score 

of Test set 

after 300 

epochs 

UNET  VGG11 Jaccard 

Loss 

RGB  3 

0.805 0.627 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM 5 

0.771 0.694 

UNET  VGG11 Jaccard 

Loss 

ALL Channels 14 

0.749 0.717 

UNET  VGG11 Jaccard 

Loss 

RGB, + Edge 4 

0.788 0.628 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM+ 

Edge 

6 

0.792 0.678 

UNET  VGG11 Jaccard 

Loss 

ALL Channels +Edge 15 

0.792 0.717 

UNET  VGG11 Jaccard 

Loss 

RGB + PH 7 

0.779 0.623 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM + 

PH 

9 

0.804 0.666 

UNET  VGG11 Jaccard 

Loss 

ALL Channels+ PH 18 

0.767 0.717 

UNET  VGG11 Jaccard 

Loss 

RGB + Mapper 7 

0.813 0.601 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM + 

Mapper 

9 

0.774 0.684 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + 

Mapper 

18 

0.790 0.717 

UNET  VGG11 Jaccard 

Loss 

RGB + PH + Mapper 11 

0.812 0.604 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM+ 

PH + Mapper 

13 

0.807 0.662 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + PH 

+ Mapper 

22 

0.794 0.721 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + PH 

+ Mapper + Edge 

23 

0.775 0.716 
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(a) RGB (b) RGB, Slope, DEM (c) ALL Channels 

   

(d) RGB, + Edge (e) RGB, Slope, DEM+ 

Edge 

(f) ALL Channels +Edge 

   

(g) RGB + PH (h) RGB, Slope, DEM + PH (i) ALL Channels+ PH 
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(j) RGB + Mapper (k) RGB, Slope, DEM + 

Mapper 

(l) ALL Channels + 

Mapper 

   

(m) RGB + PH + Mapper (n) RGB, Slope, DEM+ PH 

+ Mapper 

(o) ALL Channels + PH + 

Mapper 

  

 

  (p) ALL Channels + PH + 

Mapper + Edge 

Figure 7.6 Graph with F1 score of training and testing results for each epoch 
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7.5 Discussion 

From the analysis presented in Figure 7.6, two notable trends can be observed in the testing results: 

• Horizontal Trend: Across all cases, there is a consistent increase in F1 score from left to 

right on the testing set. This upward trend signifies that the inclusion of additional channels 

like DEM, slope, NIR, and SNIR effectively enhances the detection accuracy of geospatial 

objects. 

• Vertical Trend: When observing the results from top to bottom, F1 scores remain 

unchanged. This stability indicates that while the addition of channels such as DEM, slope, 

NIR, and SNIR improves accuracy, the incorporation of extra layers like Laplacian filter 

and those with topological information does not provide a corresponding increase in 

detection accuracy.  

Further insights into the effectiveness of topological layers were gained through an in-

depth analysis of a selected image from the testing set, processed after 300 training epochs and 

presented in Figure 7.7 (a, d, g, j). In these images, the modeling was performed using only RGB 

data, with and without additional layers such as Laplacian filter and topological layers, and without 

including features such as DEM, slope, NIR, or SNIR. Upon careful examination of these images, 

distinctive patterns emerged, illuminating the nuanced impact of incorporating topological layers 

into the model. The contrast between the images with and without these topological enhancements 

offers a tangible demonstration of how specific layers interact with the underlying RGB data, 

casting new light on the potential value of topological information in the detection and 

characterization of geospatial objects.  
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With topological layers, the positional results were able to accentuate the exact location of 

loops present in the RGB image, even if it was generalized in the mask (Figure 7.7 g). 

Comparatively, in the absence of the topological layer, the model failed to highlight the loops and 

instead, merely attempted to conform to the mask results (Figure 7.7 a). This observation 

emphasizes that the inclusion of topological layers contributes to a more precise representation of 

detected objects' shapes, particularly when those objects possess an internal void or hole. The 

analysis illustrates the intricate relationship between different layers and channels, emphasizing 

the complexity of geospatial object detection. While certain additional channels prove beneficial, 

the use of topological layers, despite their capacity to refine object shapes, does not necessarily 

translate to improved overall detection accuracy. 

 

 

(a) RGB 
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(b) RGB, Slope, DEM 

 

(c) ALL Channels 

 

(d) RGB, + Edge 

 

(e) RGB, Slope, DEM+ Edge 
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(f) ALL Channels +Edge 

 

(g) RGB + PH 

 

(h) RGB, Slope, DEM + PH 
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(i) ALL Channels+ PH 

 

(j) RGB + Mapper 

 

(k) RGB, Slope, DEM + Mapper 
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(l) ALL Channels + Mapper 

 

(m)RGB + PH + Mapper 

 

(n) RGB, Slope, DEM+ PH + Mapper 
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(o) ALL Channels + PH + Mapper 

 

(p) ALL Channels + PH + Mapper + Edge 

Figure 7.7 RGB image and predicted results of the model after 300 epochs of training 

 

In addition to the previously discussed trends and findings, it is crucial to acknowledge the 

characteristics and limitations of the dataset used, which was derived from Sentinel-2 imagery. A 

notable constraint of this dataset is the absence of specific geographical coordinates. This 

limitation poses challenges in unequivocally determining whether the geospatial features identified 

by the ML models are indeed landslides. 

During the experiments, detailed in Appendix B, it was observed that the trained models 

sometimes incorrectly classified bare earth areas as landslides. This misclassification can be 

attributed to the nature of the training labels, where landslides are consistently depicted as bare 
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earth regions. Consequently, the models learned to associate this specific characteristic with 

landslides. When topological layers were incorporated into the models, a distinct pattern emerged. 

The models tended to focus on identifying and delineating the boundaries of circular features 

within the terrain, based on the premise that certain landslides exhibit circular patterns, albeit their 

specific shapes often generalized in the training labels. As a result, the labels may not accurately 

represent the intricate circular details within the actual landslide boundaries (refer to Figure 7.7 

for illustration). 

This methodology presents an additional challenge. There exist bare earth areas that 

inherently contain circular features but are not classified as landslides (as indicated in the labels). 

The ML models trained with topological information layers tend to identify these areas as potential 

landslides due to their circular content and bare earth texture, leading to false positives (as 

exemplified in Figure 7.8). These observations underscore the complexity of applying ML models 

to detect geospatial objects, particularly when dealing with datasets that lack detailed geographic 

coordinates and when using labels that may oversimplify or misrepresent the terrain's true 

characteristics. The findings also highlight the potential of topological information in improving 

detection accuracy, while simultaneously revealing the challenges in differentiating between true 

landslides and similar-looking geographical features. 
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(a) ALL Channels  

 

(b) ALL Channels + PH + Mapper + Edge 

Figure 7.8 RGB image and predicted results of the model after 300 epochs of training 

 

In this chapter, we investigated the potential enhancement of geospatial object detection 

accuracy through the utilization of multichannel images in ML models, which include topological 

information and its location. The central hypothesis posited that integrating topological 

information into ML-based models could improve object detection accuracy, giving rise to specific 

research questions focused on the output, sensitivity, and representation of topological 

information. 
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8.0 Conclusions, Limitations, and Future Research  

8.1 Conclusions 

This thesis addresses the pressing challenges in geospatial object detection, particularly the 

escalating volume of geospatial data and the need for more effective processing. The main 

hypothesis in this thesis is that incorporating topological information in knowledge-based and ML-

based methods will detect geospatial objects more accurately than when such information is not 

used. Three research questions guide the exploration in this thesis and PH-based, Topological KB, 

and ML-based geospatial object detection methods were developed and evaluated. Three sets of 

experiments, each addressing one of the three research questions, were conducted. The results from 

the experiments are:  

• First, (in Chapter 4) we conducted a series of experiments where PH-based geospatial 

object detection method is used to detect landslides. We derived candidate polygons using 

PH and implemented filters based on topological information. In this experiment, we got 

better results than existing methods, though we did encounter FP. This observation led us 

to introduce additional filters.  

• Second (in Chapter 6) we conducted a set of experiments where Topological KB geospatial 

object detection method is used to detect landslides. In this method, topological, 

geometrical, and contextual information was used for selecting candidate polygons. In this 

experiment, we observed that the integration of geometrical and contextual information 

into candidate polygons, that were derived based on their topological features using PH, 
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led to enhancements in accuracy but the accuracy was not improved by incorporating 

topological information.  

• Third (in Chapter 7) we conducted a set of experiments by integrating topological 

information as an additional channel into multichannel image. Then we trained and tested 

various ML models under diverse parameters and differing numbers of input channels. In 

this experiment, we observed that in Topological ML, integration of topological 

information did not improve accuracy, but it has the potential to highlight object 

boundaries, adding a layer of precision to the detected objects, a fact that becomes 

particularly pronounced when the object possesses unique topological characteristics. 

In summary, the test of the hypothesis indicates that incorporating new topological 

information, beyond the topological information embedded in the process of PH, does not improve 

detection accuracy of geospatial objects. This was evidence from the results of all experiments 

conducted by using PH, Topological KB, and Topological ML for detection of landslides. 

8.2 Contributions 

This thesis makes several contributions to the field of geospatial object detection: 

1. Demonstrated the effectiveness of PH-based methods in detecting landslides, with an emphasis 

on integrating topological filters for improved accuracy. 

2. Developed a novel LTFs extraction algorithm that is based on human perception of terrain. 

3. Explored a Topological KB geospatial object detection method that uses combined topological, 

geometrical, and contextual information. 
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4. Explored the integration of topological information as an additional channel in ML models, 

highlighting its potential in improving object boundary precision. 

5. Developed algorithms for transforming topological data into a multichannel image format 

suitable for ML applications. 

6. Provided a thorough evaluation of the developed methods, offering insights into the role and 

impact of topological information in geospatial object detection. 

8.3 Limitations 

The thesis’s limitations are: 

1. The benchmarking approaches utilized to evaluate our proposed methods were suboptimal. In 

the Topological KB geospatial object detection method, we primarily relied on historical 

landslide locations furnished by official sources. Several of these locations were sourced from 

digitized historical landslide maps. Such a process introduces potential errors at various stages, 

such as during the original map creation and subsequent digitization. 

2. The masks provided for the LandSlide4Sense competition posed challenges in evaluating the 

true capabilities of topological data. For instance, as illustrated in Figure 7.7, while our 

topological approach was adept at identifying distinct landslide boundaries, the masks used for 

assessing accuracy were rather generalized. This became evident, especially when topological 

information could detect unique features like holes within landslides which were not 

acknowledged by the generalized competition masks. 

3. Our experiments were constrained using geometrical- and contextual-based rules that were 

tailored for specific study areas. These rules, derived from a literature review, represent just a 



 
 

134 

fraction of the potential detection methodologies. Numerous alternative rules have been cited 

across various papers, but we were unable to incorporate them owing to a lack of requisite 

data. 

8.4 Future Research 

While this thesis explored the use of topological information in geospatial object detection 

methods, the scope of exploration and experimentation can be further expanded. Highlighted 

below are some prospective research directions based on the work and findings of this thesis: 

1. A pivotal direction for future research is revisiting the experiment presented in Chapter 6. By 

securing a more optimal ground truth dataset, we can better understand the efficacy of our 

methodologies and validate our findings further. 

2. Current LTFs extraction algorithms have shown potential but also revealed areas for 

refinement. Leveraging ML models could offer a more effective algorithm for deriving LTFs. 

Additionally, such models can be tailored to potentially minimize noise and reduce FP rates. 

3. Diverse rules, methodologies adapted from varied sources, and experimentation with new 

detection parameters to achieve improved geospatial object detection results will need to be 

explored. 

4. In the realm of Topological ML, a promising avenue is the design of ML models that can 

inherently derive topological information from a provided image. Instead of relying on pre-

existing topological information in a multichannel image, these models would generate 

topological layers automatically.  
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Appendix A Computation of PH and Mapper 

Appendix A.1 Simplicial Complexes 

Simplicial complex and its properties are utilized to derive topological information using 

the PH. The construction of the simplicial complex from geospatial data is discussed in the next 

section. Simplicial complexes are used to approximate complicated shapes. They highlight the 

structure of the data and the underlying topological information at different scales (Salnikov, 

Cassese, & Lambiotte, 2018). In other words, to get information about the shape of the object, 

instead of using every element of the object, the object can be sampled by using a set of points 

which then they are used to construct simplicial complexes. Formally, a simplicial complex 𝐾 is a 

topological object that is constructed as a union of points, line segments, triangles, tetrahedra, and 

higher-dimensional geometrical objects. The building block of a simplicial complex is a simplex 

(simplices if plural). A simplex is an analog of a point, line segment, and triangle. The dimension 

𝑑 of a simplex (𝑑-simplex) is identified by the number of elements in the set (Otter et al., 2017). 

For example, if a simplex consists of two elements, its dimension 𝑑 is equal to 1, if a simplex 

consists of three elements its dimension 𝑑 is equal to 2, and so on. More information about 

simplicial complexes can be found in (Edelsbrunner & Harer, 2022; Hatcher, 2005; Otter et al., 

2017; Salnikov et al., 2018).  

In general, a 𝑑-simplex, called 𝜎𝑑, is the convex hull of 𝑑 + 1 linearly independent vertices 

which exist in a 𝑑-dimensional Euclidean space. A 0-simplex, 𝜎0, is a point consisting of one 

vector {𝑣0}; a 1-simplex, 𝜎1, consisting of two vectors {𝑣0, 𝑣1} connected by a line segment; a 2-

simplex, 𝜎2, consisting of three vectors {𝑣0, 𝑣1, 𝑣2} connected by a three-line segment or a triangle; 
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a 3 -simplex, 𝜎3, consisting of four vectors {𝑣0, 𝑣1, 𝑣2, 𝑣3} connected by four triangles or a 

tetrahedron (Appendix Appendix Figure ), and so on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
0-simplex 

(point) 

1-simplex 

(line) 

2-simplex 

(triangle) 

3-simplex (tetrahedron) 

Appendix Figure 1 Example of simplices 

 

The simplex has boundaries called the faces of a simplex. A face of 𝑑- simplex 𝜎𝑑, is a 

sub-simplex 𝜎𝑓, where 𝑓 < 𝑑, is the simplex generated by a subset of the vertices of 𝜎𝑑. For that 

reason, if one of the vertices 𝑣𝑖 from 𝑑-simplex is deleted, the face of the 𝑑-simplex will be created.  

𝑑 − simplex = {𝑣0, … . , 𝑣d}  

(𝑑 − 1) − simplex =  {𝑣0, … 𝑣�̂� … , 𝑣d}  

For example, the face of a triangle (2-simplex or 𝜎2) that consists of vertices {𝑣0, 𝑣1, 𝑣2} can be a 

line 1-simplex (𝜎1) {𝑣0, 𝑣1̂, 𝑣2 } and determined by the remaining vertices {𝑣0, 𝑣2}. The symbol 𝑣1̂ 

means that 𝑣1 was removed from the set.  

A simplicial complex 𝐾 is a collection of the above-mentioned simplices, but these 

simplices need to be combined in a certain way that is based on specific conditions (Salnikov et 

al., 2018):   
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• If a simplicial complex 𝐾 contains simplex 𝜎, then every face of a simplex 𝜎 also belongs 

to 𝐾 

• If any two simplices 𝜎1 and 𝜎2 in 𝐾 intersect 𝜎1∩𝜎2 𝑎𝑛𝑑 𝜎1∩𝜎2=∅, then their intersection 

is a common face of both 𝜎1 and 𝜎2 

In other words, there are no missing building blocks in simplicial complex 𝐾. For example, 

simplicial complex 𝐾 shown in Appendix Figure 2 should contain the following vertices: 

𝐾 ={〈𝑣0, 𝑣1, 𝑣2 〉, 〈𝑣0, 𝑣1〉, 〈𝑣0, 𝑣2〉, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉, 〈𝑣2, 𝑣4〉, 〈𝑣3, 𝑣4〉, 〈𝑣0〉, 〈𝑣1〉, 〈𝑣2〉, 〈𝑣3〉, 〈𝑣4〉} 

 

 

Appendix Figure 2 Simplicial complexes K 

 

Simplicial complexes have specific properties that will allow us to derive topological 

information. These properties are the orientation of simplicial complexes, breaking into chain 

groups, and boundary operations.  

Orientation of simplicial complexes. Each simplex in the simplicial complex has a property, 

orientation, which is defined by the order of its vertices. If a 𝑑-simplex has a fixed orientation, 𝑑-

simplex will be denoted as oriented simplex  𝜎⃗⃗⃗  . The oriented simplex has a specific property. The 

property is that switching two vertices inside the 𝑑-simplex introduces a minus sign, for example,  

[𝑣0,  𝒗𝟏 , 𝒗𝟐] =  −[𝑣0, 𝒗𝟐 , 𝒗𝟏] 
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and simplicial complexes with different orders are not equal. Using this property, the 𝑑-simplex 

with integer coefficients can be added (Salnikov et al., 2018). In a way, one can think of an oriented 

simplex as representing an action. For example,  𝜎1⃗⃗⃗⃗  ⃗ [𝑣0, 𝑣1] represents moving from 𝑣0 to 𝑣1, so 

moving from 𝑣0 to 𝑣1 and then from 𝑣1 to 𝑣0, is the same as adding the two movements, which is 

equal to staying in one place:  

[𝑣0, 𝑣1] + [𝑣1, 𝑣0] = [𝑣0, 𝑣1] − [𝑣0, 𝑣1] = 0 

From the above information, an oriented simplicial complex is a simplicial complex 𝐾 with 

oriented simplices and denoted by �⃗⃗� . For example, oriented simplicial complex �⃗⃗�  (Appendix 

Figure a) contains the following vertices: 

 𝐾⃗⃗  ⃗= {[𝑣0, 𝑣1, 𝑣2], [𝑣0, 𝑣1], [𝑣0, 𝑣2], [𝑣1, 𝑣2], [𝑣2, 𝑣3], [𝑣2, 𝑣4], [𝑣3, 𝑣4], [𝑣4, 𝑣5], [𝑣0], [𝑣1], [𝑣2], 

[𝑣3], [𝑣4]} 

Breaking into chain groups. A simplicial complex can be divided into groups of simplices with 

similar dimensions. In other words, each group is composed of a set of all 𝑑-simplices (Salnikov 

et al., 2018). For example, a simplicial complex �⃗⃗� can be divided into several chain groups 

(Appendix Figure 3) and for any group, the 𝑑-th chain group is the sum of simplexes inside each 

chain group. 

𝐶2(�⃗⃗� ) =  [𝑣0, 𝑣1, 𝑣2] (Appendix Figure 3b) 

𝐶1(K⃗⃗ ) =  [𝑣0, 𝑣1], [𝑣1, 𝑣2], [𝑣2, 𝑣0], [𝑣2, 𝑣3], [𝑣3, 𝑣4], [𝑣4, 𝑣2] (Appendix 

Figure 3c) 

𝐶0(K⃗⃗ ) =  [𝑣0], [𝑣1], [𝑣2], [𝑣3], [𝑣4] (Appendix Figure 3d) 
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a:  𝐾⃗⃗  ⃗ b: 𝐶2(�⃗⃗� ) c: 𝐶1(�⃗⃗� ) d: 𝐶0(�⃗⃗� ) 

Appendix Figure 3 ((a) an oriented simplicial complex �⃗⃗⃗� ; (b) Chain group 𝑪𝟐 a set of 𝟐-simplices; (c) 𝑪𝟏 a set 

of 𝟏-simplices; (d) 𝑪𝟎 a set of 𝟎-simplices 

 

Boundary operations. There are several properties of simplicial complexes that are related to 

the sign of every other face. The equation to calculate the boundary of a simplex can be written as 

follows: 

𝜕( 𝜎⃗⃗⃗  ) =  ∑(−1)𝑖 (𝑣0 , … 𝑣�̂�, … 𝑣𝑘 )

𝑘

𝑖=0

 

 

(A.1) 

For example, using the equation presented above, the boundary of the 2-simplex, a triangle, can 

be calculated as follows (Appendix Figure 4): 

 𝜕([𝑣0, 𝑣1, 𝑣2]) = (−1)0[𝑣0̂ , 𝑣1, 𝑣2] + (−1)1[𝑣0 , 𝑣1̂ , 𝑣2 ] + (−1)2[𝑣0 , 𝑣1, 𝑣2̂] 
                         =  [𝑣1, 𝑣2] − [𝑣0, 𝑣2] + [𝑣0, 𝑣1] 
                         =  [𝑣1, 𝑣2] + [𝑣2, 𝑣0] + [𝑣0, 𝑣1] 
 

 

 

 

𝜕([𝑣0, 𝑣1, 𝑣2])= 

([𝑣1, 𝑣2]+ [𝑣2, 𝑣0]+[𝑣0, 𝑣1]) 

 

Appendix Figure 4 Boundary operation on 2-simplex 
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The second property is that in the chain group the boundary of the boundary is equal to 0 (Equation 

A.2) and the boundary of the 0-simplex 𝜎0 is equal to 0: 

𝜕2  = 0 and 𝜕0 = 0 (A.2) 

For example, the boundary of the boundary of the 2-simplex, a triangle (Appendix Figure 4), can 

be calculated as follows: 

𝜕2([𝑣0, 𝑣1, 𝑣2])=𝜕([𝑣1, 𝑣2]+[𝑣2, 𝑣0]+[𝑣0, 𝑣1])=(+𝑣1-𝑣2+𝑣2-𝑣0+𝑣0-𝑣1)= 0 

The third property is that the boundary of the chain group 𝐶𝑑 is included inside chain group 

 𝐶𝑑−1. Using these properties, the simplicial complex chain can be written as the following: 

𝐶𝑑+1 → 𝐶𝑑  → 𝐶𝑑−1 ……  → 𝐶0 → 0 (A.3) 

 

For example, if 𝑑 = 2, the boundaries of triangle 𝐶2(�⃗⃗� ) (Figure 2.6b) are included inside 𝐶1(�⃗⃗� ) 

that are lines (Figure 2.6c), and the boundary of the point 𝐶0(�⃗⃗� ) is equal to 0.  

 

Appendix A.2 Construction of Simplicial Complexes from Geospatial Datasets 

To construct simplicial complexes from a geospatial dataset, two tasks must be performed: 

(1) convert the geospatial dataset into a set of points with corresponding distance information and 

(2) select a simplicial complex type. There are different types of simplicial complex, each with 

different properties. The common simplicial complexes are Čech complex, Vietoris-Rips (VR) 

complex, alpha complex, and witness complex (Pun et al., 2018). We will discuss two more 

common simplicial complexes that are used in the computation of PH (Otter et al., 2017). These 

two complexes are VR complex and alpha complex. We discuss these two complexes because the 
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VR complex is simple and practical to explain, and the alpha complex is computationally efficient 

and is used in experimentation (see Chapter 4).   

VR complex is a complex that is practical from a computational standpoint and explanation 

(Zomorodian, 2010). To construct VR complex from a set of points 𝑃, first, each point is initialized 

as 0-complex. Then, a parameter 𝑟 as the radius of the circle that is created around each point 

should be defined (Appendix Figure 5a). Next, for all subsets in the set of points, if the distance 

between two points is less than 2𝑟, these points are connected and create a line segment. If the 

pairwise distance between three points is less than 2𝑟, these three points create a triangle, and so 

on. VR complex is calculated by using the following equation (Zomorodian, 2010): 

𝑉𝑅𝑟(𝑃) = {𝜎 ⊆  𝑃 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣𝑖 , 𝑣𝑗) ≤ 2𝑟, 𝑣𝑖  ≠ 𝑣𝑗  ∈ 𝜎 } (A.4) 

In other words, first circles with a radius of 𝑟 around each point are created. Then, if these 

circles intersect, simplices with these points will be created (Appendix Figure 5b). 

Alpha complex relies on a distance parameter 𝑟 and is restricted by a Voronoi diagram 𝑉𝑝 

(Pun et al., 2018). A Voronoi diagram divides an area with a set of points 𝑃 into polygons where 

each polygon contains exactly one point 𝑃𝑖 and every point inside each polygon is closer to the 

point 𝑃𝑖. Alpha complex is calculated by using the following equation (Aurenhammer, 1991): 

𝐴𝑟(𝑃) = {𝜎 ⊆  𝑃|𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣𝑖 , 𝑣𝑗) ≤ 2𝑟 ∩ 𝑉𝑝 } (A.5) 

In other words, the Voronoi diagram allows for the restriction of the dimension 𝑑-simplices based 

on the dimension of the input geospatial set of points (Appendix Figure 5c). 
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a b c 

Appendix Figure 5 Simplicial complex construction: (a) set of points with a circle around each point with a 

radius of r; (b) a VR complex created from the set of points; (c) an Alpha complex created from the set of 

points 

 

 

Appendix A.3 Persistent Homology 

PH is applied to obtain topological information from data by studying the corresponding 

data connections and gaps (Otter et al., 2017). PH utilizes all three above discussed properties of 

simplicial complexes to derive topological information at different dimensions. To derive 

topological information from a given dataset, Chazal & Michel, (2021) presented the basic pipeline 

with four steps as follows (Appendix Figure 6).  

1. Input to the PH a finite set of points with corresponding distance information (Carlsson, 

2009). The distance metric depends on the application, and the choice of the correct metric 

is essential. For example, protein data metrics can be measured in nanometers, and metrics 

for satellite image analysis can be measured in meters.  

2. Construct a nested sequence of simplicial complexes from the set of points using different 

values of 𝑟 (Equation A.10).  
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3. Derive topological information from the nested sequence of simplicial complexes. This 

step consists of two functions: 

C.  homology group returns topological information given the simplicial complex that was 

constructed using the 𝑟.  

D. persistent homology utilizes homology group with a different value of 𝑟, and records 

each change. In other words, if the parameter 𝑟 is changed, the topological 

information associated with the newly created simplicial complexes will change as 

well, and this second function records these changes. 

4. Use the extracted topological information as a feature or descriptor for the dataset to assist 

in better understanding the dataset. This topological information can be visualized or can 

be a feature used in ML models. 

 

 

Appendix Figure 6 PH pipeline (Chazal & Michel, 2021) 

 

Homology group. In general, computing homology groups involve identifying holes in a 

specific dimension 𝑑 in each oriented simplicial complex �⃗⃗� , where holes in dimension 0 are 

connected components (Otter et al., 2017). To compute homology groups, two operations need to 

be performed. The first operation is identifying all cycles in the given chain group 𝐶𝑑. These cycles 

are identified by selecting simplices whose boundary is equal to 0 and defined as: 

𝑍𝑑=𝑘𝑒𝑟(𝜕𝑑)= {𝜎 ∈ 𝐶𝑑(�⃗⃗� )|𝜕(𝜎)=0} (A.6) 

In other words, all circles that exist in chain group 𝐶𝑑(�⃗⃗� ) should be identified. 
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The second operation is identifying boundaries of 𝐶𝑑+1(�⃗⃗� ), defined as: 

𝐵𝑑 = 𝑖𝑚(𝜕𝑑+1) = {𝜕(𝜎| 𝜎 ∈ 𝐶𝑑+1(�⃗⃗� )} (A.7) 

From the relation between 𝑍𝑑 and 𝐵𝑑, every element of 𝐵𝑑 is an element of 𝑍𝑑. 𝐵𝑑 and 𝑍𝑑 contain 

all the necessary information to compute the holes in �⃗⃗� . Intuitively, the cycles that exist in 𝐶𝑑(�⃗⃗� ) 

but are not the boundaries of 𝐶𝑑+1(�⃗⃗� ) are holes in the 𝑑 dimension of �⃗⃗�  can be calculated using 

the following equation:  

 𝐻𝑑 = 
𝑍𝑑

𝐵𝑑
    (A.8) 

Finally, to use outputs of the homology group, Betti numbers 𝛽 that carry topological information 

need to be derived.  

𝛽𝑑(�⃗⃗� ) = 𝑑𝑖𝑚(𝐻𝑑) (A.9) 

Betti number is the number of holes that exist in a specific chain group 𝐶𝑑. For example, the Betti 

numbers from small dimensions have geometric interpretations:  

• 𝛽0(�⃗⃗� ): connected components 

• 𝛽1(�⃗⃗� ): circles in two-dimensional space 

• 𝛽2(�⃗⃗� ): voids in three-dimensional space 

Persistent homology. The construction of simplicial complexes is dependent on the value of 

parameter 𝑟. If parameter 𝑟 is equal to 0, every point is isolated (Appendix Figure 7a), and 𝛽0(�⃗⃗� ) 

will be equal to the number of points and 𝛽1(�⃗⃗� ) and 𝛽2(�⃗⃗� ) will be 0. With a large value of the 

parameter 𝑟,  𝛽0(�⃗⃗� ) will be 1 and every point will be connected (Appendix Figure 7d). Identifying 

the correct value of parameter 𝑟 is vital to extract the topological information of the data. For 

example, in the set of points shown in Appendix Figure 7 (a), if parameter 𝑟 is set to 1, two small 
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circles are created (Appendix Figure 7b). However, if parameter 𝑟 is set to 2, two small circles 

disappear, and one large circle is created. PH uses all possible values of parameter 𝑟 and captures 

how the homology of the complexes �⃗⃗�  changes as the value of parameter 𝑟 increases, and it detects 

the features that ‘persist’ across changes in the values of parameter 𝑟. 

 To track these changes, a nested sequence of simplicial complexes �⃗⃗� , called filtered simplicial 

complexes, is required, and can be defined as: 

�⃗⃗� 0 ⊂ �⃗⃗� 1 ⊂ · �⃗⃗� 𝑖 ⊂ �⃗⃗� 𝑗 ⊂ · · · ⊂ �⃗⃗� 𝑙  = �⃗⃗�  (A.10) 

A filtration complex is a sequence of simplicial complexes generated by continuously 

increasing the parameter 𝑟 (Appendix Figure 7). In other words, a series of VR or Alpha complexes 

�⃗⃗� 𝑖 with different values of the parameter 𝑟 can be constructed from a set of points and can be 

defined as:  

0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑙  

where 𝑙 is the largest value of parameter 𝑟. Then, homology can be applied to record changes in 

Betti numbers 𝛽𝑑 with function 𝑓𝑖,𝑗,while the value of parameter 𝑟 changes from 𝑖 to 𝑗. The function 

can be written by using the following equation: 

𝑓𝑖,𝑗 : 𝐻(�⃗⃗� 𝑖) → 𝐻(�⃗⃗� 𝑗) (A.11) 

and this function records the following features:  

• Homology groups that are born at 𝑖 

• Homology groups that persist from 𝑖 → 𝑗 

• Homology groups that die at 𝑗 

Each homology class can be identified with a birth time and a death time. Features that are 

born and die soon after, are often considered to be topological noise, whereas features that persist 



   
 

 
 

153 

for an extended period are considered to be true features of the underlying structure (Appendix 

Figure 7c). 

 

 
  

 

a 

• �⃗⃗� 1, 𝑟 = 0 

• 𝛽0(�⃗⃗� ) = 18 

• 𝛽1(�⃗⃗� ) = 0 

b 

• �⃗⃗� 2, r = 1 

• 𝛽0(�⃗⃗� ) = 12  

• 𝛽1(�⃗⃗� ) = 2 

c 

• �⃗⃗� 3, r = 2 

• 𝛽0(�⃗⃗� ) = 1  

• 𝛽1(�⃗⃗� ) = 1 

d 

• �⃗⃗� 4, 𝑟 = ∞ 

• 𝛽0(�⃗⃗� ) = 1  

• 𝛽1(�⃗⃗� ) = 0 

Appendix Figure 7 A nested sequence of simplicial complex �⃗⃗⃗� : (a) simplicial complex with parameter 𝒓 = 𝟎; 

(b) simplicial complex with parameter 𝒓 = 𝟏; (c) simplicial complex with parameter 𝒓 = 𝟐; (d) simplicial 

complex with parameter 𝒓 = ∞ 

 

A nested sequence of simplicial complex �⃗⃗� : (a) simplicial complex with parameter 𝑟 = 0; (b) 

simplicial complex with parameter 𝑟 = 1; (c) simplicial complex with parameter 𝑟 = 2; (d) 

simplicial complex with parameter 𝑟 = ∞ 

Appendix A.4 Mapper  

Mapper is based on topological ideas where a notion of closeness is preserved but large distances 

can be discarded. In comparison with the PH, where a series of nested subcomplexes were created 

and analyzed to derive topological information, Mapper is designed to produce a single low-

dimensional simplicial complex, in a graph, from which information about the underlying data can 
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be extracted (Singh et al., 2007). The input to the Mapper, similar to the PH, is a set of points 𝑃. 

More information about Mapper can be found in (Ristovska & Sekuloski, 2019; Singh et al., 2007). 

The computation of the Mapper consists of three steps (Singh et al., 2007): 

1. Mapping an input set of points into a lower-dimensional space by implementing a function 

𝑓, called ‘filter’, that maps a set of points into a set of real numbers:  

𝑓(𝑃) = 𝑅   (A.12) 

If the higher dimensional dataset is given, the dimension needs to be reduced using 

dimensionality reduction algorithms such as Isomap, PCA, or t-SNE (Van Der Maaten, 

Postma, & Van den Herik, 2009). 

2. Constructing a cover 𝑈 of the space, in the form of a set of overlapping intervals that have 

same length. A cover 𝑈 of 𝑓(𝑃) is an indexed set of open sets endowed with the standard 

topological rule such that: 

 𝑓(𝑃) = ⋃𝑈𝑖

𝑖 ∈𝐼

  (A.13) 

where 𝐼 is the number of covers and the topological rule states that the union of all covers 

should contain all the points. In other words, after mapping a set of points into real 

numbers, the whole area needs to be covered with polygons where the union of all polygons 

should include all points (Appendix Figure 8). This requires the selection of two 

parameters: the dimension of the cover and the overlapping interval. For example, the set 

of points in Appendix Figure 8 (a) can be divided by using the overlapped blocks in 

Appendix Figure 8(b) or by using the overlapped squares in Appendix Figure 8 (d).  
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3. Selecting parameters and implementing a clustering method to cluster points inside each 

cover patch 𝑈𝑖. For clustering, the density-based spatial clustering of applications with 

noise (DBSCAN) algorithm can be used since the number of clusters inside each cover 

patch 𝑈𝑖 is unknown (Schubert, Sander, Ester, Kriegel, & Xu, 2017). Once the points are 

clustered, each cluster is converted into nodes and an edge between each pair of nodes with 

overlapped points is created (Appendix Figure 8c, e).  
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a 

  

b c 

 
 

d e 

Appendix Figure 8 Step-by-step computation of Mapper: (a) set of points P; (b) set of 

points in divided using overlapped blocks; (c) a graph, the output of the Mapper created by 

using overlapped blocks; (d) set of points in divided by using overlapped grids; (e) a graph, 
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Appendix B Additional Experiments 

Appendix B.1 Topological KB Method: Candidate Polygon Selection via ML Models 

In Chapter 6, we highlighted the feasibility of generating candidate polygons using the PH. 

This method aids in identifying geospatial objects from these polygons, leveraging embedded 

topological, geometrical, and contextual information. However, implementing this method 

necessitates a comprehensive set of rules and domain-specific knowledge about the objects being 

detected. In the context of this thesis, we focused on landslides as our target geospatial objects. 

Through an extensive literature review, we derived a specific set of rules. During our evaluation, 

the identified landslides were cross-referenced with a ground truth, which pinpointed the locations 

of existing landslides. 

From our exploration in Chapter 6, we delved into the process of generating candidate 

polygons using PH and embedding geometrical and contextual information into each candidate 

polygon. This initiated further experimentation:  we hypothesized the deployment of ML models 

in formulating detection rules, when applied to a set of candidate polygons enriched with 

embedded geometrical and contextual information and benchmarked against a recognized ground 

truth, will significantly improve the accuracy of geospatial object detection. 

In other words, if we have candidate polygons derived from PH with embedded 

geometrical and contextual information and ground truth, can we convert these problems into ML 

classification problem and detect geospatial objects. We conducted experiments with the following 

steps: 
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1. Using the boundaries of the study area and ground truth polygons, we generated random 

polygons of varying sizes in regions void of landslides (Appendix Figure 9). 

2. Geometrical and contextual information were embedded into these non-landslide polygons for 

each study area. 

3. Similarly, we embedded geometrical and contextual information into the landslide polygons, 

using them as our ground truth. 

4. Both sets of polygons were combined, and individual labels were assigned: '0' for non-landslide 

polygons and '1' for landslide polygons (Appendix Figure 10). 

5. With the geometric and contextual data paired with their labels, we trained our ML model. 

6. We employed the trained ML model to classify the candidate polygons, sourced from the PH 

and augmented with embedded geometrical and contextual information. 

7. The experiment's outcomes were evaluated against the ground truth. We leveraged the same 

evaluation metrics that were introduced in Chapter 6 for consistency and precision. 
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Appendix Figure 9 Study Area 1 with Generation for Non-Landslide polygons 

 

 

Appendix Figure 10 Table with combined polygons and with assigned labels: '0' for non-landslide polygons 

and '1' for landslide polygons 
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Appendix Table 1 Results of the: (Syzdykbayev et al., 2020b) and Topological KB geospatial object detection 

method and ML models for each studied area 

 
Study Area 1 Study Area 

2 

Study Area 3 Study Area 

4 

Study Area 

5 

Title Geospatial Object Detection: Topological KB Method (Chapter 6) 

F1 score 0.52 0.48 0.43 0.64 0.45 

Title Geospatial Object Detection: PH-Based Method (Syzdykbayev et al., 2020b) or 

(Chapter 4) 

F1 score 0.334 0.466 0.382 0.65 0.337 

Title Candidate Polygon Selection via ML Models (Appendix B) 

F1 score 0.44 0.41 0.36 0.59 0.42 

 

 

The utilization of ML models in geospatial object detection demonstrated notable potential, 

although certain limitations were observed during the experimentation phase. The assessment of 

accuracy, specifically measured using the F1 score, highlighted both the strengths and limitations 

of the ML models (Table B.1). It is important to emphasize that the goal of these experiments was 

to explore the feasibility of deriving detection rules through ML models, leading to valuable 

insights for future research endeavours. In evaluating the accuracy outcomes, a comparison was 

drawn with two distinct geospatial object detection methods: a knowledge-based method utilizing 

only topological information, and a novel method combining topological, geometrical, and 

contextual information. This analysis aimed to understand the relative performance of the ML 

method across different study areas and detection methodologies. 

Interestingly, the ML-based method exhibited favourable outcomes in certain contexts. 

Specifically, for Study Area 1 and Study Area 5, the ML-based method yielded superior results in 

terms of accuracy, as evidenced by the F1 score (Table B.1). These results align with the 
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hypothesis that ML-based method can detect geospatial objects more accurately compared to PH-

based methods that rely solely on topological information. Conversely, a different trend emerged 

when assessing the performance of the ML-based method across the other study areas (Table B.1). 

In these cases, the PH-based method utilizing topological information surpassed the ML-based 

method in terms of accuracy. This observation raises questions about the adaptability and 

generalizability of ML-based method to different geographical contexts. Furthermore, when 

compared to the Topological KB geospatial object detection method, which integrates both 

topological and additional information (geometrical and contextual), the ML-based method fell 

short in all instances (Table B.1). This suggests that while ML-based method offer promise, there 

is still room for refinement and innovation in terms of incorporating various types of data to 

achieve optimal geospatial object detection accuracy. 

However, it is crucial to acknowledge the limitations that were encountered throughout the 

experiments. First, the labelling of landslide and non-landslide polygons presented challenges. The 

generation of non-landslide polygons in areas without confirmed ground truth might have 

introduced uncertainties (Appendix Figure 9). Additionally, the balanced number of non-landslide 

polygons generated for training, in contrast to the limited number of actual landslide polygons, 

could have influenced the model's ability to generalize effectively. Three distinct ML models were 

employed in the experiments: Logistic Regression, Decision Tree, and Random Forest. It is worth 

noting that Random Forest yielded the most promising results among these models.  

In conclusion, this series of experiments provided valuable insights into the feasibility of 

utilizing ML-based method for deriving detection rules in geospatial object detection. While the 

ML-based method highlighted its potential in certain cases, the results underscore the importance 

of refining methodologies, optimizing model parameters, and adapting methods to diverse 
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geographical settings. The limitations identified pave the way for future research to address these 

challenges, enabling the development of more robust and accurate geospatial object detection 

methods. 
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Appendix B.2 Detection of Geospatial Objects in 5 Study Areas Using Topological ML-

Based Methods 

In Chapter 7, our focus shifted towards exploring the potential improvement in the 

accuracy of geospatial object detection. This enhancement was pursued through the integration of 

multichannel images, effectively incorporating topological information along with the precise 

location of a subset of points that constitute this information. Our experiment involved training 

ML models using a dataset sourced from the LandSlide4Sense competition (LandSlide4Sense, 

n.d.). This dataset encompasses a diverse collection of images and associated labels derived from 

landslide-affected regions across the globe spanning from 2015 to 2021. The input images 

employed in this study consist of multichannel satellite imagery, comprising 14 channels.  

Building upon our existing work, we posed a new experiment idea to guide our 

investigation. With our focus on the dataset already preprocessed and models pretrained in Chapter 

7 using the LandSlide4Sense dataset, we aimed to evaluate the accuracy of our Topological ML-

based object detection approach. This evaluation involved a direct comparison between 

Topological KB geospatial object detection results, which were previously explored in Chapter 4 

and Chapter 6. Hence, we hypothesized that ML models specifically trained on the 

LandSlide4Sense dataset can proficiently identify landslides within the identical five study regions 

previously scrutinized in Chapter 4 and Chapter 6, using Sentinel-2 data from the same origin. 

Our objective revolved around determining the efficacy of the Topological ML-based 

approach in detecting landslides within study areas where geospatial objects had been detected 

using Topological KB methods. This comparison aimed to discern the relative strengths and 

limitations of the two distinct detection methodologies: the Topological ML-based method versus 

the Topological KB method. Our overarching goal was to gain a comprehensive understanding of 



 
 

164 

how each method performs in varied scenarios. We conducted experiments with the following 

steps: 

• Multispectral Sentinel-2 data for each of the study areas were obtained from the 

'Copernicus Open Access Hub' (Appendix Figure 11). 

• Slope and DEM data was derived from LiDAR point clouds that we already used in 

chapters 3 and 5. 

• The pixel size was set to 10 meters per pixel, and all datasets were merged into a 

comprehensive 14-channel dataset (combining 12 Sentinel-2 channels, slope, and DEM 

data). 

• The entire image was divided into smaller tiles, each comprising 128 x 128 pixels 

(Appendix Figure 12), to use the same pretrained models from Chapter 7. 

• Building on the methodology from Chapter 7, topological information was derived and 

incorporated as an additional channel for each tile. 

• Pretrained models from Chapter 7were utilized to predict landslide locations for each tile. 

• The results were evaluated using the ground truth data applied in Chapter 4 and Chapter 6 

(Appendix Figure 13). 
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Appendix Figure 11 Location of the Study Area 2 and Study Area 4 overlaid on Sentinel 2 RGB dataset 
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a b 

Appendix Figure 12 a) boundaries of Study Area 4; b) boundaries of Study Area 4 splatted into 128*128-pixel 

tiles 

 

In general, the utilization of pretrained models across the five study areas from previous 

chapters yielded suboptimal results when compared to both the Topological KB methods presented 

in Chapters 4 and 6, as well as the ML-based method discussed in Chapter 7. The primary factors 

contributing to this diminished accuracy can be summarized as follows: 

• In the PH- based and Topological KB methods described in Chapters 3 and 5, a range of 

pixel sizes, including 1m, 5m, and 10m, were employed as input data. It was observed that, 

in most cases, the best results were achieved when utilizing a 1m pixel size. 

• The PH- based and Topological KB methods in Chapters 4 and 6 utilized DTM as input, 

which involved the removal of vegetation cover from the data. In contrast, Chapter 6 

employed DEM for training ML models. 
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• All five study areas encompassed various man-made objects such as farmlands, residential 

properties, and roads. However, the input data used in the ML models did not consistently 

account for these objects, potentially impacting detection accuracy. 

• The ML models in Chapter 7 were primarily designed to detect new landslides. In contrast, 

the PH- based and Topological KB methods in Chapters 4 and 6, as well as the ground 

truth data associated with them, included both new and historical landslide instances. 

The analysis of our experiment results reveals some interesting findings. Specifically, the 

best performance among the pretrained models was achieved by the model that incorporated all 

channels, including topological layers, as evident in Table B.1 and Appendix Figure 13. However, 

upon closer examination of the detected images, we observed a peculiar behaviour in which the 

ML model classified areas of bare ground located on slopes as landslides, as illustrated in 

Appendix Figure 14. It's noteworthy that Study Area 4 contained numerous farmlands, which often 

consist of bare ground (as shown in Appendix Figure 12). This characteristic of the landscape may 

have influenced the model's predictions. 

Furthermore, we encountered an unexpected behaviour when using a model that included 

a Laplace edge layer, generated using Laplacian filters (Table B.2). Surprisingly, the results were 

close to 0, implying that the pretrained models did not detect any landslides. To ensure the integrity 

of our analysis, we conducted a thorough examination of the input data, which was found to be 

identical to the data used in Chapter 7. 

These observations highlight the complexity of geospatial object detection tasks, 

particularly when dealing with diverse and dynamic landscapes. The misclassification of ground 

without trees on slopes as landslides underscores the importance of refining model training and 

considering landscape-specific features. Additionally, the unexpected performance of the model 
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with the Laplace edge layer suggests the need for further investigation into the impact of specific 

layers or filters on detection accuracy. 

 

Appendix Table 2 Results: F1 score predicted landslides for each study area and for each input source 

combination 

Channel Name Number 

of 

Channels 

F1 score: 

Study 

Area 1 

F1 score: 

Study 

Area 2 

F1 score: 

Study 

Area 3 

F1 score: 

Study 

Area 4 

F1 score: 

Study 

Area 5 

RGB  3 0 0.01374 0.004276 0.002903 0.015358 

RGB, Slope, DEM 5 0 0.042692 0.040054 0.06964 0.00235 

ALL Channels 14 0.007004 0.045756 0.190421 0.248038 0.044559 

RGB, + Edge 3 0 0 0 0 0 

RGB, Slope, DEM+ 

Edge 

6 

0 0 0 0 0 

ALL Channels +Edge 15 0 0 0 0 0 

RGB + PH 7 0 0.032708 0.049151 0.102132 0.01797 

RGB, Slope, DEM + PH 9 0.001578 0.037394 0.161145 0.115284 0.027007 

ALL Channels+ PH 18 0.007303 0.026593 0.086071 0.18366 0.030836 

RGB + Mapper 7 0 0.025089 0.007133 0.007617 0.016659 

RGB, Slope, DEM + 

Mapper 

9 

0 0 0 0 0 

ALL Channels + 

Mapper 

18 

0.023706 0.058016 0.164046 0.210576 0.047265 

RGB + PH + Mapper 11 0 0.025775 0.010013 0.007808 0.009319 

RGB, Slope, DEM+ PH 

+ Mapper 

13 

0.022914 0.04247 0.157138 0.134353 0.029659 

ALL Channels + PH + 

Mapper 

22 

0.025275 0.049643 0.137493 0.221471 0.047054 

ALL Channels + PH + 

Mapper + Edge 

23 

0.01104 0.060779 0.163014 0.257606 0.047733 
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Appendix Figure 13 Study Area 4: Landslides Detected Using ML Models Trained on Datasets including 

ALL Channels, PH, Mapper, and Edge, Overlayed with Ground Truth 
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a b 

Appendix Figure 14 a) satellite image of Study Area 4; b) satellite image of Study Area 4 overlaid Landslides 

Detected Using ML Models Trained on Datasets including ALL Channels, PH, Mapper, and Edge 
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Appendix C Additional Validation Metrics for Chapter 7 Experiments 

Appendix Table 3 Experimental configurations and Accuracy outcomes for encoder-decoder models after 300 

Epochs 

Encoder 

Name 

Decoder 

Name  

Loss 

function 

Channel Name Number 

of 

Channels 

F1 score 

of 

Training 

set after 

300 

epochs 

F1 score 

of Test set 

after 300 

epochs 

UNET  VGG11 Jaccard 

Loss 

RGB  3 

0.991 0.983 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM 5 

0.990 0.986 

UNET  VGG11 Jaccard 

Loss 

ALL Channels 14 

0.989 0.986 

UNET  VGG11 Jaccard 

Loss 

RGB, + Edge 3 

0.991 0.983 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM+ 

Edge 

6 

0.991 0.985 

UNET  VGG11 Jaccard 

Loss 

ALL Channels +Edge 15 

0.991 0.987 

UNET  VGG11 Jaccard 

Loss 

RGB + PH 7 

0.990 0.982 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM + 

PH 

9 

0.991 0.985 

UNET  VGG11 Jaccard 

Loss 

ALL Channels+ PH 18 

0.989 0.987 

UNET  VGG11 Jaccard 

Loss 

RGB + Mapper 7 

0.992 0.982 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM + 

Mapper 

9 

0.990 0.985 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + 

Mapper 

18 

0.991 0.987 

UNET  VGG11 Jaccard 

Loss 

RGB + PH + Mapper 11 

0.992 0.982 
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UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM+ 

PH + Mapper 

13 

0.991 0.984 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + PH 

+ Mapper 

22 

0.991 0.987 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + PH 

+ Mapper + Edge 

23 

0.990 0.987 

 

 

Appendix Table 4 Experimental configurations and precision outcomes for encoder-decoder models after 300 

Epochs 

Encoder 

Name 

Decoder 

Name  

Loss 

function 

Channel Name Number 

of 

Channels 

F1 score 

of 

Training 

set after 

300 

epochs 

F1 score 

of Test set 

after 300 

epochs 

UNET  VGG11 Jaccard 

Loss 

RGB  3 

0.819 0.651 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM 5 

0.781 0.694 

UNET  VGG11 Jaccard 

Loss 

ALL Channels 14 

0.749 0.708 

UNET  VGG11 Jaccard 

Loss 

RGB, + Edge 3 

0.804 0.654 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM+ 

Edge 

6 

0.805 0.686 

UNET  VGG11 Jaccard 

Loss 

ALL Channels +Edge 15 

0.796 0.712 

UNET  VGG11 Jaccard 

Loss 

RGB + PH 7 

0.792 0.637 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM + 

PH 

9 

0.822 0.692 

UNET  VGG11 Jaccard 

Loss 

ALL Channels+ PH 18 

0.768 0.719 

UNET  VGG11 Jaccard 

Loss 

RGB + Mapper 7 

0.833 0.638 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM + 

Mapper 

9 

0.788 0.704 
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UNET  VGG11 Jaccard 

Loss 

ALL Channels + 

Mapper 

18 

0.797 0.717 

UNET  VGG11 Jaccard 

Loss 

RGB + PH + Mapper 11 

0.829 0.631 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM+ 

PH + Mapper 

13 

0.824 0.686 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + PH 

+ Mapper 

22 

0.799 0.733 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + PH 

+ Mapper + Edge 

23 

0.780 0.721 

 

 

Appendix Table 5 Experimental configurations and recall outcomes for encoder-decoder models after 300 

Epochs 

Encoder 

Name 

Decoder 

Name  

Loss 

function 

Channel Name Number 

of 

Channels 

F1 score 

of 

Training 

set after 

300 

epochs 

F1 score 

of Test set 

after 300 

epochs 

UNET  VGG11 Jaccard 

Loss 

RGB  3 

0.792 0.608 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM 5 

0.762 0.694 

UNET  VGG11 Jaccard 

Loss 

ALL Channels 14 

0.752 0.728 

UNET  VGG11 Jaccard 

Loss 

RGB, + Edge 3 

0.773 0.606 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM+ 

Edge 

6 

0.780 0.674 

UNET  VGG11 Jaccard 

Loss 

ALL Channels +Edge 15 

0.790 0.723 

UNET  VGG11 Jaccard 

Loss 

RGB + PH 7 

0.768 0.611 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM + 

PH 

9 

0.788 0.645 

UNET  VGG11 Jaccard 

Loss 

ALL Channels+ PH 18 

0.766 0.717 
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UNET  VGG11 Jaccard 

Loss 

RGB + Mapper 7 

0.794 0.571 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM + 

Mapper 

9 

0.762 0.667 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + 

Mapper 

18 

0.784 0.719 

UNET  VGG11 Jaccard 

Loss 

RGB + PH + Mapper 11 

0.796 0.581 

UNET  VGG11 Jaccard 

Loss 

RGB, Slope, DEM+ 

PH + Mapper 

13 

0.791 0.643 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + PH 

+ Mapper 

22 

0.789 0.711 

UNET  VGG11 Jaccard 

Loss 

ALL Channels + PH 

+ Mapper + Edge 

23 

0.771 0.713 
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