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Geospatial Object Detection Through Topological Data Analysis

Meirman Syzdykbayev, PhD
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Geospatial object detection plays a key role in geospatial data analysis and is used in a variety of
applications. Geospatial objects can be detected through computer vision and machine learning
(ML) models and algorithms by focusing on geometrical and/or contextual information. There are
challenges with geospatial object detection models and algorithms including geospatial data noise,
geospatial data labeling, and feature representation. In addition to geometrical and contextual
information, geospatial datasets contain topological information, which is often not considered for
detection. The hypothesis in this thesis is that incorporating information on the shape of a
geospatial objects, i.e., topological information, may address these challenges and improve
detection accuracy. One way to incorporate topological information, along with geometrical or
contextual information, is by using methods from topological data analysis such as Persistent
Homology (PH) and Mapper.

The research in this thesis is focused on the development of methods that utilize topological
information to detect geospatial objects. Explored in this research is incorporation of topological
information into two geospatial object detection methods, knowledge-based, where topological
information is merged with geometrical and contextual information, and ML-based, where
topological information is transformed into a multichannel image as an additional feature. To test
the results of these two methods after topological information is incorporated into them, their

performances were evaluated by detecting landslide boundaries.



The main contributions of this research are evaluation of PH in the detection of landslides
using LiDAR data; development of an algorithm to extract linear terrain features from digital
terrain models; development of a topological knowledge-based geospatial object detection
method; development of a topological ML-based geospatial object detection method; and

development two algorithms to transform topological information into a multichannel image.
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1.0 Introduction

1.1 Problem Statement

The increasing volume of geospatial data continues to surpass the processing capabilities
of current computing systems. The McKinsey Global Institute reports that the accumulation of
geospatial data reached around 1 petabyte in 2009, with an annual growth rate of 20% (Lee &
Kang, 2015). This data, sourced from various platforms at impressive frequency, presents unigque
challenges necessitating rigorous study and examination. This includes studies related to data
storage, quality assurance, analysis, and visualization (Praveen, Babu, & Rama, 2016). Dealing
with this vast amount of geospatial data requires processing data more efficiently and with
advanced analytical skills and tools.

Geospatial object detection plays a key role in geospatial data analysis and is used in a
variety of applications, such as natural hazards monitoring, agriculture, and urban management,
among others (Wang et al., 2022). The main task of geospatial object detection is to determine if
a geospatial dataset includes objects of interest and locate their positions in the dataset and on the
Earth’s surface (Long, Gong, Xiao, & Liu, 2017). Current geospatial object detection approaches
can be categorized into four types (Cheng & Han, 2016): template matching-based, knowledge-
based, object-based image analysis, and ML-based. Of these four, this thesis focuses on
knowledge-based detection and ML-based detection approaches because our two proposed
geospatial object detection methods fit into these types.

The knowledge-based geospatial object detection approach translates the geospatial object

detection task into hypothesis testing by establishing different knowledge and rules. There are two



types of information used in hypothesis testing: geometrical and contextual. The hypothesis testing
based on geometrical information uses knowledge about the geometrical characteristics of the
geospatial object and the hypothesis testing based on contextual information employs relationships
between geospatial objects and the background environment (Cheng & Han, 2016).

The ML-based geospatial object detection approach identifies classes of geospatial objects
and provides their locations in the form of bounding boxes. This approach also includes ML-based
instance segmentation which identifies classes of geospatial objects and provides their locations at
a pixel level (Hafiz & Bhat, 2020). With an increase in the number of ML models and the
expansion of geospatial benchmark datasets with labels (Helber, Bischke, Dengel, & Borth, 2019;
Van Etten, Lindenbaum, & Bacastow, 2018), using ML models to detect geospatial objects has
become popular, mainly due to the fact that recent ML-based geospatial object detection methods
have achieved significant improvements (Hoeser, Bachofer, & Kuenzer, 2020; Hoeser & Kuenzer,
2020).

The term ‘geospatial object’ refers to the generalized form of landscape objects, such as
water bodies, landslides, forests, and grasslands (Cheng & Han, 2016). Geospatial objects contain
unclear boundaries and are part of the background environment, a reference to geospatial objects
located in neighboring regions that do not belong to the class of the object of interest. Current
geospatial object detection approaches suffer from several challenges such as scalability, which
occurs due to large variations in size and shape of geospatial objects and occlusion, background
clutter, illumination, and shadow, which may stem from the data collection process (Pham,
Courtrai, Friguet, Lefévre, & Baussard, 2020; Pun, Xia, & Lee, 2018; L. Zhou, Pan, Wang, &

Vasilakos, 2017).



In this thesis we address the three following challenges out of those identified by Zhou et

al., (2017) :

Data noise. Noise can be introduced to traditional physics-based or ML models due to data
sparsity issues, missing or inaccurate values, and outliers. Geospatial datasets typically
contain noise due to various factors such as properties of remote sensing sensors and
environmental, among other factors. For example, noise caused by environmental factors
in satellite images can be caused by the presence of cirrus clouds (Qiu, Zhu, & Woodcock,
2020).

Data labeling. Geospatial data labeling is a time-consuming and laborious process that
needs expert knowledge in the geoinformatics field. To cope with this challenge, several
alternative solutions, such as crowdsourcing, and special ML methods, such as active,
transfer, and semi-supervised learning, have been developed (Settles, 2012). In addition,
having complete and correct ground truth data will allow us properly evaluate performance
of traditional physics-based models as well.

Feature representation and selection. The process of selecting and aggregating different
subsets of features at various levels, also known as feature engineering. The performance
of traditional physics-based or ML models in geospatial object detection is dependent on
the choice of the geospatial data representation or features. The selection of appropriate
features is necessary when building models with improved performance. However, like
geospatial data labeling, geospatial feature engineering is a laborious process that needs

expert knowledge (Bengio, Courville, & Vincent, 2013).



1.2 Topological Data Analysis

Topological data analysis (TDA) is a field that has emerged from research in computational
topology and data analytics (Chazal & Michel, 2021). Given a dataset as a set of points, TDA
studies the structure and can give information about the shape, i.e., topological information, which
includes shape of the geospatial object of interest. In comparison to the geometrical information
in a dataset that is localized and more rigid, topological information in a dataset is multi-scale and
global (Hensel, Moor, & Rieck, 2021). TDA includes various methods, the two most important of
which are Persistent Homology (PH) and Mapper (Chazal & Michel, 2021). PH can obtain
topological information from a dataset by studying the corresponding data connections and gaps.
In addition, PH can describe the complicated structures of a dataset, such as loops and voids, that
are not visible with other geometrical-based methods (Otter et al., 2017). Mapper can obtain
topological information by representing a dataset using a graph (Singh et al., 2007). PH and
Mapper are based on topological concepts, where large-scale distances are ignored but nearness
between points are preserved.

PH has demonstrated its effectiveness in increasing ML-based model accuracy (Hensel et
al., 2021). Currently, many works seek to use outputs of PH to achieve a fundamentally different
view of datasets. These works are mostly focused on representing topological information with
structured features that can be used as input features in ML models (Pun et al., 2018). With these
works, the term ‘topological machine learning’ (Topological ML) has lately begun to appear as a
field at the intersection of TDA and ML (Hensel et al., 2021). However, one shortcoming of current
Topological ML models is that they do not take advantage of information about the location of the
subset of points that form topological information in their representations. In other words, the

representations in current Topological ML models can be used to state whether the dataset contains
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a circle or not with no information about the locations of the subset of points that form the circle.
Information about the locations of the subset of points that form topological information can be
vital in tasks such as object detection.

Focusing on the shape of geospatial objects is one of the key steps to improve geospatial
data analysis (LU et al., 2019). For example, the set of images in Figure 1.1 shows the shapes of
geospatial objects such as lakes, landslide boundaries, and rivers. The set of points for each
geospatial object in the figure was sampled from satellite images at different scales. Through these
points, one can see that in addition to geometrical properties, geospatial datasets have unique
shapes and contain topological information. This topological information is often not considered

in geospatial data analysis.

a

Figure 1.1 Geospatial objects with unique shapes: (a) the Great Lakes, shown as separate clusters of points;
(b) a boundary of a landslide, shown as separate clusters of points with a circular shape; (c) a river, shown as

a cluster of points with a straight-line shape



1.3 Proposed Research

This thesis explores the hypothesis that integrating topological information, which
describes the shape of a geospatial dataset, can address the existing challenges in geospatial object
detection and enhance detection accuracy. To test this hypothesis, three research questions are
posed:

Research Question 1 (RQ1): Do filters based on topological information applied to

candidate polygons resulted from PH improve geospatial object detection accuracy?

Research Question 2 (RQ2): Do filters based on combined topological, geometrical, and
contextual information improve accuracy of topological knowledge-based (Topological

KB) geospatial object detection methods?

Research Question 3 (RQ3): Can topological information derived from a geospatial
dataset be represented such that:
e the output of the representation is a three-dimensional array or a multichannel
image that can be input to ML-based geospatial object detection methods,
e the representation is not sensitive to geospatial data noise, and
e the representation, which includes location of the subset of points that form

topological information, improve object detection accuracy?



1.4 Contributions

The thesis’s contributions are:

e An evaluation of PH in the detection of landslides using LiDAR data.

e An algorithm to extract linear terrain features (LTFs) from Light Detection and Ranging
(LiDAR)-derived digital terrain model (DTM).

e A Topological KB geospatial object detection method that utilizes topological information
in addition to geometrical and contextual information.

e A Topological ML based geospatial object detection method where topological
information is used as an additional input feature to ML models.

e Two algorithms to transform topological information into a multichannel image.

1.5 Thesis Structure

Chapter 2 presents an overview of current geospatial object detection approaches and TDA.
Chapter 3 outlines the entire proposed research and the three research questions that will be
addressed in subsequent chapters. In Chapter 4, RQ1, by examining the capabilities of PH applied
to LiDAR data on landslides, is addressed. Chapter 5 presents a new algorithm for extracting LTFs.
Chapter 6 addresses RQ2 by developing and evaluating a Topological KB geospatial object
detection method. Chapter 7 addresses RQ3 by developing and evaluating a Topological ML.
Chapter 8 provides conclusions and limitations of the thesis along with possible future research

directions.



2.0 Background

This chapter provides an overview of two geospatial object detection approaches and TDA,

including PH and Mapper.

2.1 Geospatial Object Detection

Geospatial datasets can be analyzed to detect geospatial objects of interest in them and
locate their positions. Cheng & Han, (2016) divided object detection approaches into four
categories: template matching-based, knowledge-based, object-based image analysis (OBIA-
based), and ML-based. Of these four categories, our proposed geospatial object detection methods
belong to knowledge-based object detection and ML-based object detection approaches, both of

which are detailed further below.

2.1.1 Knowledge-Based Object Detection

The knowledge-based object detection approach, which includes various methods,
transforms the geospatial object detection problem into the hypothesis-testing problem by creating
different knowledge and rules (Cheng & Han, 2016). Hypothesis testing in current methods is
based on geometrical information and contextual information (Figure 2.1). Knowledge-based
object detection methods that employ geometrical information encode prior knowledge into shape

models. For example, farmlands have straight boundaries and specific sizes. Hence, a hypothesis



is that this geometrical information, i.e., boundary properties and sizes, can be used to detect
farmlands. Knowledge-based object detection methods that use contextual information employ the
relationships between geospatial objects and their background environment. In other words, the
context is knowledge about how geospatial objects interact with their neighboring regions and
other geospatial objects. For example, a hypothesis about landslides, which are located on a
specific slope, is that the existence and degree of a slope can be utilized as a clue for landslide
detection. Martha, Kerle, Van Westen, Jetten, & Kumar, (2011) detected landslides by creating
rules based on prior knowledge about landslides. First, they identified candidate landslides, then
performed a selection based on rules using geometrical and contextual information. In short, the
main idea of knowledge-based object detection methods is to transform knowledge about detected
geospatial objects to detection rules. If the rules are too general, they will cause false positives,

otherwise, if the rules are too specific, they will cause false negatives (Cheng & Han, 2016).

Knowledge and rules —){ Hypotheses testing H Post-processing ]—)[ Detection results ]
establishment

Geometric information ‘ Hypotheses generation

‘ Context information ‘

Input image

Figure 2.1 Knowledge-based object detection pipeline (Cheng & Han, 2016)

2.1.2 ML-Based Object Detection

The ML-based object detection approach, which includes various ML methods, uses
features and labels to train a classifier that captures vital information from the input dataset. The
inputs to the classifier are multichannel images and the outputs are predicted labels and boundaries

of the geospatial objects (Cheng & Han, 2016). ML-based object detection methods provide



classes of objects and location of each object in the form of bounding boxes (Figure 2.2a). Existing
ML-based object detection methods are of two types: region proposal-based and regression-based
(Li, Wan, Cheng, Meng, & Han, 2020).

Region proposal-based object detection methods consist of two steps. The first step creates
a series of candidate regions that could include geospatial objects. The second step classifies the
candidate regions into object classes or background environments and additionally fine-tune the
coordinates of the bounding boxes (Li et al., 2020). Regression-based methods, designed to
identify an object's location, address the task as a regression problem. In comparison with region
proposal-based methods, regression-based methods apply one-stage object detectors and do not
need to create candidate regions. For that reason, regression-based methods are efficient and
simple (Li et al., 2020).

Besides ML-based object detection methods, ML-based instance segmentation methods
provide classes of geospatial objects and locations of the detected geospatial objects at a pixel level
(Figure 2.2b) (Hafiz & Bhat, 2020). In other words, the instance segmentation methods are applied
to predict the mask and the class for each geospatial object in an input dataset. The difference
between instance segmentation and semantic segmentation is that in semantic segmentation every
pixel in the image is marked into a category class while in instance segmentation every pixel in
the image is marked into instances of multiple categories. In other words, if an image contains
several objects of one category, for example, several lakes, in semantic segmentation the pixel
values for all lakes will be marked as "lake" while in instance segmentation the pixel values for

each will be marked as "lake_1","lake 2", etc.
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Figure 2.2 ML-based methods: (a) results of the ML-based object detection method; (b) results of the ML-

based instance segmentation method

2.2 Topological Data Analysis

TDA encompasses a collection of effective algorithms that can be used for the investigation
and quantification of the shape and structure of datasets to answer questions in a specific domain
(Chazal & Michel, 2021). Instead of using only statistical descriptors in the analysis, that can
mislead when analyzing objects with different shapes (Figure 2.3) (Matejka & Fitzmaurice, 2017),
TDA analyzes data in a fundamentally unique way by exploring the underlying shape (Chazal &
Michel, 2021). The two widely used methods in TDA are PH and Mapper; the theory and

mathematics behind these two methods are presented in Appendix A.

11



o X Mean: 54.26
S Y Mean: 47.83
o et |G X SD : 16.76
Y SO : 26.93
Corr. : -0.08
“ * o on
E > u d ‘\.‘- = ..:‘ I ;
’ “, P ; ™, ‘H"-\Q > I=|’ ¥ "o 3
s T v
T, oz = .hl-.' "." '$ -...p' C :i' ,‘f
£ Cw v for o
0 .. ':u..*‘ N . » 1
A - Co
::, ; oAt e, et oy, & ‘ f =
; " .:._l-. ?\_'.‘ . - [ . i :
b, i h . - LI
] ; K ; ]
¥ i LT y
5 # e LT ': ! 2
-L;‘ g e o - Dor
a o Al "* "’l: " " f a
- . . TN . 3 "A"
v i & d . 1 &
. ¢
‘.’. & § 1 _“,j s \l
ol ¥ Y
""l-.ull'" . 37 4 Vo 2 . L3

Figure 2.3 The point set datasets: each point set has different shape, but has same statistical descriptors

(mean, standard deviation, and Pearson's correlation) (Matejka & Fitzmaurice, 2017)

PH is applied to obtain topological information from data by studying the corresponding
data connections and gaps (Otter et al., 2017). PH utilizes all three properties of simplicial
complexes (see Appendix A) to derive topological information at different dimensions. Chazal &
Michel, (2021) presented the basic PH pipeline with four steps as follows (Figure 2.4) to derive
topological information from a given dataset:

1. Input to PH a finite set of points with corresponding distance information (Carlsson, 2009).

The distance metric depends on the application, and the choice of the correct metric is

12



essential. For example, protein data metrics can be measured in nanometers, and metrics

for satellite image analysis can be measured in meters.

2. Construct a nested sequence of simplicial complexes from the set of points using different

values of .

3. Derive topological information from the nested sequence of simplicial complexes. This
step consists of two functions:

A. homology group returns topological information given the simplicial complex that was
constructed using r.

B. persistent homology utilizes homology group with a different value of r, and records
each change. In other words, when r is changed, the topological information associated
with the newly created simplicial complexes is also changed, and this second function
records these changes.

4. Use the extracted topological information as a feature or descriptor for the dataset to assist
in better understanding the dataset. This topological information can be visualized or can

be used as a feature in ML models.

Input Data Constructing Simplicial Del’lvmg Topploglcal ‘
Finite set of points) Complexes Information Interpretation
(Finite pomnis (Alpha complexes) (Barcodes)

Figure 2.4 PH pipeline (Chazal & Michel, 2021)

Mapper is based on the idea of preserving information at close distances and discarding
information on large distances. In comparison with PH, where a series of nested subcomplexes is

created and analyzed to derive topological information, Mapper is designed to produce a single
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low-dimensional simplicial complex in a graph from which information about the underlying data
can be extracted (Singh et al., 2007). The input to Mapper, similar to PH, is a set of points P;
detailed information about Mapper can be found in (Ristovska & Sekuloski, 2019; Singh et al.,

2007).

2.3 Topological ML

Topological ML uses topological features as input which includes information about the
shape. The most common representations of output of PH are persistence diagrams (PD) and
barcodes. A PD is a plot with the birth and death times (Figure 2.5a), and the barcode is a series
of lines, one for each feature, stretching from birth to death times (Figure 2.5b). However, PD and
barcodes are not structured and cannot be used directly as input data to ML models (Otter et al.,
2017; Pun et al., 2018). To use output of PH, i.e., topological information, as input data to ML
models, the information needs to be converted into structured features; detailed information about
how topological information is converted into structured features for Topological ML can be found
in Hensel et al., 2021; Pun et al., (2018). Below, we discuss some ways of converting topological

information into structured features as input to ML models.
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Figure 2.5 The output of PH: (a) PD, (b) barcode

A simple way of using topological information in ML models is summary statistics, such
as total persistence, mean, median, and standard deviation of a persistence diagram (Pereira & De
Mello, 2015; Syzdykbayev & Karimi, 2020). These representations are useful in simple ML
models, but they are often not directly applicable to complex ML models and require more
expressive representations. Hensel et al., (2021) discussed two methods that help use topological
information as input to ML models: vector-based and kernel-based. Of these two methods, we
focus on vector-based methods because they are used to transform topological information into a
multichannel image in this thesis. Vector-based methods transform topological information into
vectors of different dimensions. The most common vector-based methods are persistence
landscape (Bubenik, 2015) and persistence images (Adams et al., 2017).
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Persistence landscape is a vector representation of topological information (Bubenik,

2015). To calculate persistence landscape, first, a rotation of persistence diagram needs to be

performed (Figure 2.6a and Figure 2.6b). Next, the persistence landscape can be calculated by
using the following equation:

Ak, t) = kmax{fp,a)(®)}ier (2.1)
where
fw,a)(t) = max {0O,min {t — b,d — t}}

(2.2)
and kmax is the k-th largest value of f, 4)(t) (Bubenik, 2015). In other words, persistence

landscapes involve computing the area of influence of each point in a persistence diagram. The

basis of the k-th persistence landscape can be formed by using a connected shaded region with at
least k intersections (Figure 2.6c)
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Figure 2.6 Persistence landscape: (a) PD, (b) rotated PD, (c) persistence landscape

The idea of persistence images is to convert a PD into vectors while maintaining an
interpretable connection to the original persistent diagram. In comparison to persistence

landscapes, persistence images transform a diagram into a matrix. As its name states, this

representation can be represented as a single-channel image (Adams et al., 2017). To get
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persistence images similar to persistence landscapes, first, a transformation needs to be performed
on a persistent diagram (Figure 2.7a) from birth-death pairs into birth-persistence coordinates (X,
y), where x = b and y = d- b (Figure 2.7b). Each point is then represented by a Gaussian function

g, centered at (x,y):

p_deweo-a?) (23)

202

glx,y) =

2mo?

Then for each birth-death pair, a persistence surface needs to be computed:

p(x,y) = L f(0y) gi(x, ) (2.4)
where the weight function f(x,y) is necessary to account for the diagonal and f(x,y) =
(V/Ymax), Where y.... is the maximum value of the filtration parameter used in the original
persistence calculation. Next, the persistence surface p is transformed into the persistence image

by discretizing it into a grid and integrating persistence surface p into a grid (Figure 2.7¢).
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Figure 2.7 Persistence image (a) PD, (b) rotated PD, (c) persistence image (Adams et al., 2017)

17



3.0 Proposed Research

This thesis is focused on testing the hypothesis that integrating topological information,
which describes the shape of a geospatial object, can overcome the challenges with existing
geospatial object detection approaches and enhance detection accuracy. To test this hypothesis,

research that addresses three research questions is proposed.

3.1 Geospatial Object Detection: PH-Based Method

In Chapter 4, we explore the role of topological information in detecting geospatial objects by

addressing the following research question:

RQL1: Do filters based on topological information applied to candidate polygons resulted

from PH improve geospatial object detection accuracy?

We will conduct experiments where PH is used to detect landslides, characterized by circular

structures. The contributions of Chapter 4 are:

e Development of a PH-based method designed specifically to be used on LiDAR-derived
DTM to detect landslides.

e Evaluation of the PH-based method on detecting landslides.

There are different geospatial objects that have clear circular structures such as craters or

hurricanes and we selected landslides for the following reasons:
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e Landslides are potentially catastrophic geologic events that can take lives, cause economic
loss, and have a negative environmental impact.

e Boundaries of existing landslides are usually acquired manually by using remote sensing
datasets such as satellite imagery or LIDAR, a time-consuming and labor-intensive process.
While there are automatic and semi-automatic techniques available for landslide detection,
these techniques often come with their own set of limitations and do not guarantee high
accuracy across diverse terrains and conditions.

e Landslides leave discernible signs on the landscape, such as altered slope shape, position,

or surface appearance (see Figure 3.1).
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Figure 3.1 LiDAR-derived 1-meter DTM shaded relief map from Pennsylvania with annotations identifying
morphological expressions of landslides (Syzdykbayev et al., 2020b)
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3.2 New LTFs Extraction Algorithm

In Chapter 5, we present a new LTFs extraction algorithm considering that LTFs are
required to create PH results, i.e., candidate polygons, and that current LTFs extraction algorithms
have shortcomings. This new algorithm emulates the human ability to perceive and decipher
terrain feature information through perceptual cues like light angles, shadows, patterns, and
textures. Such cues, rooted in shaded relief which offers a visual portrayal of real-world terrain,
are instrumental in pinpointing terrain features, especially linear ones as highlighted by
Syzdykbayev et al., (2020a). The contributions of Chapter 5 are:

e Development of a new LTFs extraction algorithm.
e Evaluation of a new LTFs extraction algorithm using synthetically-generated and real-

word datasets.

3.3 Geospatial Object Detection: Topological KB Method

In Chapter 6, we explore the role of topological information on knowledge-based geospatial object

detection methods by addressing the following research question:

RQ2: Do filters based on combined topological, geometrical, and contextual information

improve accuracy of Topological KB geospatial object detection methods?

We will conduct a set of experiments where topological, geometrical, and contextual information
is used as input in a Topological KB geospatial object detection method for selecting candidate

polygons. The contributions of Chapter 6 are:
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e Development and evaluation of a Topological KB geospatial object detection method that
uses topological information alongside geometrical and contextual information.

e Creation of a list of geometrical- and contextual-based rules tailored for landslide detection
using the Topological KB geospatial object detection method.

e An in-depth analysis to identify the specific rule from the created list that is best suited for
landslide detection. This is achieved through extensive experimentation, applying all

possible rules to ascertain the most effective one for landslide detection.

3.4 Geospatial Object Detection: Topological ML-Based Method

In Chapters 7, we explore the role of topological information, represented as features, in ML-based

geospatial object detection methods by addressing the following research question:

RQ3: Can topological information derived from a geospatial dataset be represented such

that:

e the output of the representation is a three-dimensional array or a multichannel image
that can be input to ML-based geospatial object detection methods,

e the representation is not sensitive to geospatial data noise, and

o the representation, which includes location of the subset of points that form topological

information, improve object detection accuracy?

We will develop algorithms to transform topological information into a multichannel image and
conduct experiments where the multichannel image is used as a feature for a Topological ML

geospatial object detection method. The contributions of Chapter 7 are:
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Development of a new Topological ML geospatial object detection method, where
topological information is harnessed as an auxiliary input feature.
Development of two new algorithms designed to transform topological information into a

multichannel image.
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4.0 Geospatial Object Detection: PH-Based Method

4.1 Methodology

The method for geospatial object detection using PH takes data in the form of LiDAR-
derived DTM as input and produces the boundaries of detected geospatial objects as output. The
method uses only one type of information, topological, and follows the workflow shown in Figures
4.1 and 4.2. The first step of the workflow involves extracting linear features from DTM. The
second step involves creating candidate polygons from the LTFs using PH. The third step involves
selecting candidate polygons, from those found by PH, whose boundaries satisfy the detection

rules that are based only on topological information.
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Figure 4.1 Workflow of the PH method of geospatial object detection
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Figure 4.2 Workflow of the PH method of geospatial object detection, illustrated with images representing

data at each step

4.1.1 Extracting LTFs from DTM

The process of extracting linear features, often referred to as "edge detection” or "line-
finding", is frequently used in computer vision (Szeliski, 2010a). Linear features typically form
the boundary lines between areas of different textures, intensities, or colors in an image. These
lines usually highlight rapid intensity changes within a small region of the image and are crucial
for conveying significant visual information such as shapes of objects. They often provide essential
semantic cues related to surface alterations, depth transitions, changes in surface reflectance, and
illumination discontinuities (Szeliski, 2010a)

Morphological expressions of landslides can be characterized as a collection of small LTFs

such as ridges and scarps (Figure 3.1) and extracting them from DTM would identify landslide
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boundaries. Considerable research has been conducted on detection of terrain morphology features
including ridges and scarps. Rana (2006) proposed a curvature-based semi-automated iterative
channel and ridge identification algorithm that is simple and provides reliable results. The
algorithm can identify ridges and scarps but requires determination of a threshold value (Curvature
1). Pirotti & Tarolli, (2010) applied multiplication of the standard deviation as a threshold value
to identify ridges and channels (Curvature 2). Jasiewicz & Stepinski, (2013) proposed a new
algorithm to identify landform elements called "Geomorphon". This algorithm does not require a
threshold value and is based on the principle of pattern recognition.

To extract LTFs related to landslides, a LIDAR-derived DTM was used as input. As in any
computer vision (CV) based object detection task, the accuracy of any LTFs extraction algorithm
depends on the DTM pixel size. Another parameter is the number of smoothing iterations. With a
high number of smoothing iterations, LTFs may be averaged out and treated as flat surfaces,
without smoothing iterations, geospatial data noise in DTM can increase false-positive rates,
resulting in extracting LTFs that do not exist (see Figures 4.2 b1 and c1). To address these issues,
we conducted an experiment where different pixel sizes and various numbers of smoothing
iteration were used in Curvature 1, Curvature 2, and Geomorphon LTFs extraction algorithms. The

total number of combined parameters used in the experiment is 54, as shown in Table 4.1.
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Figure 4.3 (a) shaded relief surface, (b1) curvature of the surface with pixel size 5 meters, (b2) curvature of
the surface with 5 times smoothing iterations and with pixel size 5 meters, (c1, c2) extracted LTFs overlaying

the curvature of the surface (Syzdykbayev et al., 2020b)

Table 4.1 Parameters used in the experiment

Parameter name Parameters
DTM pixel size 1m, 5m, 10m
Smoothing iteration 0, 2, 5, 10, 15, 20
Curvature using a threshold (Rana, 2006) (Curvature 1)
LTFs extraction Curvature using a threshold calculated from the multiplication of
algorithm standard deviation (Pirotti & Tarolli, 2010) (Curvature 2)

Geomorphon (Jasiewicz & Stepinski, 2013)

The difference between Curvature 1 and Curvature 2 algorithms is in how their threshold

values to derive LTFs are obtained. For Curvature 1 the threshold value was manually set for each
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study area. For Curvature 2 the threshold value was calculated by using a standard deviation of the

all-pixel values (Pirotti & Tarolli, 2010).

4.1.2 Creating Candidate Polygons through PH

In the second step of the workflow, each of the 54 extracted LTFs was separately converted
into a set of points and used as input to PH, as shown in Figure 4.3 (c1, c2). The output of PH is a
set of points with topological information that includes the birth and death times of connected
components and circles. This topological information is visualized in a PD, as presented in Figure
4.4 (a), and shows the birth time (Figure 4.4 b, light blue) and death time (Figure 4.4 c, dark blue)

of the detected circle.

Alpha complex persistence diagram

Figure 4.4 (a) persistence diagram of the points, (b) birth time (appearance) of the circles (light blue), (c)

death time of the circle (dark blue) (Syzdykbayev et al., 2020b)
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4.1.3 Selection Based on Topological Information

In the third step of the workflow, rules based on topological information were created to
select landslide boundaries. Landslides typically have a circular shape and come in various sizes.
LTFs are formed around a landslide boundary, and these LTFs usually are not connected (Figure
4.4 b). The detection rules are based on threshold values for birth time and lifetime. The birth time
value is associated with the distance between LTFs that form landslide boundaries, and the lifetime
value is associated with the size and shape of a landslide.

According to Cheng & Han, (2016) in object detection, if rules and threshold values are
too general, they will cause false positives; on the other hand, if rules are too specific, they will
cause false negatives. Since landslides have various sizes, the rules created to detect large
landslides will fail to detect small landslides. The three rules created to identify landslides based
on size are as follows:

e Small landslides with a small distance between LTFs (Figure 4.5 a), meaning that the
threshold value that was set for both the lifetime of the circle and the distance between
points that create the circle are small.

e Medium landslides with medium birth times and lifetimes, see Figure 4.5 (b).

e Large landslides with large birth times and lifetimes, see Figure 4.5 (c).
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Figure 4.5 Detected landslides: (a) small, (b) medium, and (c) large. All overlaid-on landslides from landslide

inventory maps (Syzdykbayev et al., 2020b)

4.2 Datasets and Study Area

The input dataset used in the experiment was LiDAR-derived DTM. Airborne LIDAR is a
remote-sensing method that is used to acquire digital representations of a topographic surface.
LiDAR can penetrate terrain that is covered in vegetation and thus can provide quantitative
descriptions of a topographic surface in heavily vegetated areas (Figures 4.6 a and b). This ability
provides an advantage over other methods, such as optical aerial or satellite images, which are
based on visual understanding and are not able to penetrate vegetation canopy (Figure 4.6 c) and
is specifically important when attempting to detect landslides in heavily vegetated areas (Guzzetti
etal., 2012a). DTM is derived from LiDAR using filters to remove all the points that do not return
from the ground, since DTM is a bare-earth representation of a terrain that does not include natural

or man-made objects, such as vegetation and buildings (Figure 4.6 a).
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a b c

Figure 4.6 a) LiDAR-derived 1-meter DTM, b) shaded relief derived from DTM, and c) RGB satellite image

of the same area (Syzdykbayev et al., 2020b)

The output of the experiment, detected landslides, was compared to a landslide inventory
map, which is a collection of recorded locations of landslides with additional information such as
date of occurrence and types of landslides (Guzzetti et al., 2012b).

The experiment was conducted in five study areas. The criteria for selection of the study
areas were high landslide density, availability of LIDAR data, and availability of a landslide
inventory map. The study areas are located in four states, Pennsylvania, Oregon, Colorado, and
Washington in which both LIiDAR data and a landscape inventory map in the regions with high
landslide susceptibility exist (Figure 4.7). The dataset for each study area was obtained from the
respective state government official website for Pennsylvania, Oregon, Colorado, and Washington.
Most of the data is open source, except for the data for Colorado, which requires a formal request

to download data.
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Figure 4.7 Landslide susceptibility maps in four states and for five study areas: Pennsylvania, Oregon,

Colorado, and Washington (Syzdykbayev et al., 2020b)

Table 4.2 Characteristics of study areas (Syzdykbayev et al., 2020b)

Study Area | Study Area | Study Area | Study Area | Study Area
1 2 3 4 5

Location 41°12'39"N | 45°34'0"N | 39°10'44.6"N | 45°42'0"N | 47°36'28"N
(latitude, 76°03'44"W | 123°11'0"W | 107°50'58"W | 122°53'0"W | 122°20'6"W
longitude)
State Pennsylvania | Oregon Colorado Oregon Washington
Area 25,572,981 135,587,076 | 167,225,478 | 134,963,016 | 216,603,450
(square meters)
Landslide Area | 2,140,041 26,283,520 | 42,828,063 61,104,222 | 21,470,606
(square meters)
Percentage of 8.37% 19.38% 25.61% 45.27% 9.91%
Landslide Area
Number of 7 738 206 1664 783
Landslides
Elevation range | from 151 from 48 from 1,985 from 7 from 0
(meters) to 471 to 548 to 3,174 to 521 to 159
Slope range from 0 from O from O from O from 0
(degrees) t0 71.8 t0 84.22 to 74.7 t0 89.41 to 88.6
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Table 4.3 Characteristics of input data (Syzdykbayev et al., 2020b)

| Study Area 1| Study Area 2 | Study Area 3 | Study Area4 [Study Area 5
LIDAR (or LIDAR derived DTM)
Acquisition | 2006 - 2008 | 2007 2015 - 2016 2007 2000-2005
time
Pennsylvania | State of Colorado State of Puget Sound
Spatial Data | Oregon Geological Oregon LiDAR
S Access Department of | Survey Department of | Consortium
ource
Geology and Geology and
Mineral Mineral
Industries Industries
Horizontal | 1 meter 1 meter 1 meter 1 meter 1.8 meters
ground
resolution
Existing landslides
Acquisition | 2019 2019 2015 2019 2017
time
(Karimi et Gales Creek Colorado Dixie Washington
al., 2019) quadrangle Geological Mountain State
Oregon’s Survey quadrangle Department
Source State-V\_/ide Oregon’_s of Natural
Landslide State-wide Resources
Information Landslide web portal
Database Information
Database
Detecting Compiling Compiling Compiling Compiling
visually landslide landslide landslide landslide
LiDAR- inventory data | information inventory data | inventory
derived created by digitized from | created by data through
DTM. using LIDAR | 1:24 000- using LIDAR | different
Acquisition | Mimics and protocol | scale maps and protocol | methods and
method protocol by | by Burns et published in by Burns et scales
Burnsetal., | al., (2008) geologic al., (2008)
(2008) hazard maps
of Colorado

Study Area 1, marked with a blue pin in Figure 4.7 and shown also in Figure 4.8, is located
in Luzerne County, Pennsylvania (latitude 41°12'39”N and longitude 76°03'44"W). In an area of

25,572,981 square meters, there are seven identified landslides, and the combined area of mapped
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landslides is 2,140,041 square meters. The elevation ranges from 151 meters to 471 meters, with
a standard deviation of 100 meters. The slope inclination in the area ranges from 0 to 71 degrees
(Table 4.2). The input data for Study Area 1, LIDAR data for Pennsylvania from 2006 to 2008,
are publicly available through Pennsylvania Spatial Data Access (Access, n.d.). The data on
existing landslides were obtained from the landslide inventory database for north-eastern

Pennsylvania (Table 4.3).
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Figure 4.8 Study Area 1(Pennsylvania) with locations of manually identified landslides (Syzdykbayev et al.,

2020b)

Study Area 2, marked with a red pin in Figure 4.7 and shown also in Figure 4.9, is located
in Oregon (latitude 45°34'0"N and longitude 123°11'0"W). The total area is 135,587,076 square
meters. There are 738 documented landslides, and the combined area of mapped landslides is

26,283,520 square meters. The elevation ranges from 48 meters to 548 meters, with a standard
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deviation of 110 meters. The slope inclination in the area ranges from 0 to 84 degrees (Table 4.2).
The data for Study Area 2 and Study Area 4 were obtained from the State of Oregon Department
of Geology and Mineral Industries public file transfer protocol (FTP) site. The data on existing
landslides were obtained from Oregon's Statewide Landslide Information Database (Burns &

Madin 2009)
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Figure 4.9 Study Area 2 (Oregon) with locations of previously mapped landslides (Syzdykbayev et al., 2020b)
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Study Area 3, marked with a green pin in Figure 4.7 and shown also in Figure 4.10, is
located in Mesa County, Colorado (latitude 39°10'44.6"N and longitude 107°50'58.0"W). The total
area is 167,225,478 square meters. There are 206 documented landslides, and the combined area
of landslides is 42,828,063 square meters. The elevation ranges from 1,985 meters to 3,174 meters,
with a standard deviation of 269 meters. The slope inclination in the area ranges from 0 to 74
degrees (Table 4.2). The data for Study Area 3 was obtained by request/permission from the
Colorado Geological Survey (CGS). The data on existing landslides with scarps and deposits were

obtained from the CGS web portal (Table 4.3).
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Figure 4.10 Study Area 3 (Colorado) with locations of previously mapped landslides (Syzdykbayev et al.,

2020D)
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Study Area 4, marked with a yellow balloon in Figure 4.7 and shown also in Figure 4.11,
is located in Oregon (latitude 45°42'0"N and longitude 122°53'0"W). The total area is 134,963,016
square meters. There are 1,664 documented landslides and the combined area of mapped landslides
IS 61,104,222 square meters. The elevation ranges from 7 meters to 521 meters, with a standard

deviation of 123 meters. The slope inclination in the area ranges from 0 to 89 degrees (Table 4.2).
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Figure 4.11 Study Area 4 (Oregon) with locations of previously mapped landslides (Syzdykbayev et al.,

2020D)
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Study Area 5, marked with a purple balloon in Figure 4.7 and shown also in Figure 4.12,
is located in Washington (latitude 47°36'28"N and longitude 122°20'6"W). The total area is
216,603,450 square meters. There are 783 documented landslides, and the combined area of
mapped landslides is 21,470,606 square meters. The elevation ranges from 0 meters to 159 meters,
with a standard deviation of 39 meters. The slope inclination in the area ranges from 0 to 88 degrees
(Table 4.2). The data for Study Area 5 was obtained from the Puget Sound LiDAR Consortium.
The data on existing landslides were obtained from the Washington State Department of Natural

Resources web portal (Table 4.3).
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Figure 4.12 Study Area 5 (Washington) with locations of previously mapped landslides (Syzdykbayev et al.,

2020b)
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4.3 Experiment

To address RQ1, we designed an experimentation to detect geospatial objects, which
includes a comparative analysis of the results, the established ground truth, and the findings of the
knowledge-based method proposed by Bunn et al., (2019). We used the results from study areas
located in Oregon (Study Area 2 and Study Area 4) for comparison since the same study areas
were used in Bunn et al., (2019).

Bunn et al., (2019) introduced a method known as Scarp ldentification and Contour
Connection Method (SICCM) for landslide detection. SICCM is a two-step process that can utilize
LiDAR-derived DTM as input data. The first step, scarp identification, involves the detection of
landslide scarp lines. This detection is facilitated by applying a threshold value, which is
determined through rules that utilize contextual information. The second step, deposit mapping,
identifies landslide deposits. This identification is carried out by applying rules based on the
geometrical information of the previously identified scarp lines. In essence, SICCM leverages both
geometrical and contextual information from the terrain data to systematically detect and map
landslides.

We used accuracy, precision, recall, Cohen’s Kappa coefficient, and F-1 score as validation

metrics.

Accuracy = Lty
Y = TP TN+ P AN (4.1)
Precision = (4.2)

TP + FP
Recall = —— (4.3)

TP + FN
Cohen’s Kappa coefficient = Fe= Pexp
PP 1= Pexp (4.9)
where

P. = Accuracy
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p = (TP + FN)<(TP + FP) + (FP + TN)+(FN + TN) (4.5)
exp — sqrt(TP + TN + FN + FP)

2xPrecisionx* Recall
F,Score = (4.6)

Precision + Recall

TP stands for true positive; TN stands for true negative; FP stands for false positive; FN
stands for false negative. Precision is the ratio of correctly detected areas to all detected areas.
Recall is the ratio of correctly detected areas to all existing areas. Accuracy is a measure of how
detection was correct overall. Cohen’s Kappa coefficient (Cohen, 1960; Tsangaratos & Ilia, 2016)
is a measure of agreement between detection and reality or a measure of how the result is
significantly better than random (Jensen, 1996). The results of these evaluations, based on different
pixel sizes, smoothing iterations, and LTFs algorithms across the five study areas, are presented in

Figures 4.14 - 4.22.

4.3 Results

Detected landslides were compared to landslide inventory maps in all five study areas. For
each study area, the above-mentioned three LTFs extraction algorithms, several smoothing
iterations, and different pixel sizes were applied, and accuracy, precision, recall, Cohen’s Kappa
coefficient, and F1 score evaluation metrics were calculated. Table 4.4 shows the results of these

metrics with the highest Cohen’s Kappa coefficient.
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Table 4.4 LTFs extraction algorithms, confusion matrix values, number of existing, detected, and intersected

landslides, accuracy, precision, recall, F1 score, and Cohen’s Kappa coefficient for each study area

(Syzdykbayev et al., 2020b)

Study Study Study Area = Study Study
Area l Area 2 3 Area 4 Area 5
LTFs extraction Curvature  Curvature  Geomorphon Curvature  Curvature
algorithm 2 1 2 2
Pixel size 5 meters 1 meter 1 meter 1 meter 10 meters
Number of smoothing 5 2 5 15 1
iterations
True positive 5.17% 12.55% 14.51% 29.2% 6.%
False Positive 17.16% 22.21% 34.82% 14.66% 20.06%
False Negative 3.22% 6.54% 11.37% 15.96% 2.33%
True negative 74.44% 58.68% 39.28% 40.16% 71.59%
Accuracy 0.79 0.71 0.53 0.69 0.77
Precision 0.23 0.36 0.29 0.66 0.22
Recall 0.61 0.66 0.56 0.64 0.72
F1 score 0.33 0.46 0.38 0.65 0.34
Cohen’s Kappa 0.24 0.29 0.07 0.38 0.25
coefficient

For Study Area 1 in Pennsylvania, 55 polygons with the highest Cohen’s Kappa coefficient
that were deemed potential locations of existing landslides were detected, as shown in Figure 4.13.
The highest Cohen’s Kappa coefficient was derived by Curvature 2 (see Table 4.4), with a pixel
size of 5 meters and with 5 smoothing iterations as shown in Figure 4.14 (k). The accuracy,
precision, and recall are 0.79, 0.23, and 0.61, respectively. The Cohen’s Kappa coefficient is 0.24,

which indicates fair agreement (Landis & Koch, 1977).
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Figure 4.13 Locations of detected and mapped landslides; Study Area 1: Pennsylvania (Syzdykbayev et al.,

2020D)
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Figure 4.14 Results of the three LTFs extraction algorithms with different pixel sizes and smoothing

iterations as a measure of accuracy, precision, recall, and Cohen’s Kappa coefficient; Study Area 1:

Pennsylvania (Syzdykbayev et al., 2020b)
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For Study Area 2 in Oregon, 1514 polygons with the highest Cohen’s Kappa coefficient
that were deemed potential locations of existing landslides were detected, as shown in Figure 4.15.
The highest Cohen’s Kappa coefficient was derived by using Curvature 1 (see Table 4.4), with a
pixel size of 1 meter and with 2 smoothing iterations, as shown in Figure 4.16 (j). The accuracy,
precision, and recall are 0.71, 0.36, and 0.66, respectively. The Cohen’s Kappa coefficient is 0.29,

which indicates fair agreement (Landis & Koch, 1977).
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Figure 4.15 Locations of detected and mapped landslides; Study Area 2: Oregon (Syzdykbayev et al., 2020b)
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Figure 4.16 Results of the three LTFs extraction algorithms with different pixel sizes and smoothing

iterations as a measure of accuracy, precision, recall, and Cohen’s Kappa coefficient; Study Area 2: Oregon

(Syzdykbayev et al., 2020b)
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For Study Area 3 in Colorado, 494 polygons with the highest Cohen’s Kappa coefficient
that were deemed potential locations of existing landslides were detected, as shown in Figure 4.17.
The highest Cohen’s Kappa coefficient was derived by using Geomorphon (see Table 4.4), with a
pixel size of 1 meter and with 5 smoothing iterations, as shown in Figure 4.18 (j). The accuracy,
precision, and recall are 0.53, 0.29, and 0.56, respectively. The Cohen’s Kappa coefficient is 0.07,

which indicates slight or no agreement (Landis & Koch, 1977).

39°16'15"N

¢
¢
39°16'15"N

Study Area 3

|| Legend
4 | - True Negative
!‘ § - True Positive

False Positive

- False Negative
|:| Study Area

39°14'10"N

39°14'10"N

L An
,v;. pe .

" High : 74.70
W Low: 0

F

n

] = 0 075 15

3,* Kilometers

39"125"N

39°10'0"'N

39°100"N

07°5255'W 107°5050°W T07°4845'W T07°4640W To7 4435w

Figure 4.17 Locations of detected and mapped landslides; Study Area 3: Colorado (Syzdykbayev et al.,
2020b)
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Figure 4.18 Results of the three LTFs extraction algorithms with different pixel sizes and smoothing

iterations as a measure of accuracy, precision, recall, and Cohen’s Kappa coefficient; Study Area 3: Colorado

(Syzdykbayev et al., 2020b)
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For Study Area 4 in Oregon, 1514 polygons with the highest Cohen’s Kappa coefficient
that were deemed potential locations of existing landslides were detected, as shown in Figure 4.19.
The highest Cohen’s Kappa coefficient was derived by using Curvature 2 (see Table 4.4), with a
pixel size of 1 meter and with 15 smoothing iterations, as shown in Figure 4.20 (k). The accuracy,
precision, and recall are 0.69, 0.66, and 0.64, respectively. The Cohen’s Kappa coefficient is 0.38,

which indicates fair agreement (Landis & Koch, 1977).
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Figure 4.19 Locations of detected and mapped landslides; Study Area 4: Oregon (Syzdykbayev et al., 2020b)
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Figure 4.20 Results of the three LTFs extraction algorithms with different pixel sizes and smoothing

iterations as a measure of accuracy, precision, recall, and Cohen’s Kappa coefficient; Study Area 4: Oregon

(Syzdykbayev et al., 2020b)
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For Study Area 5 in Washington, 5274 polygons with the highest Cohen’s Kappa
coefficient that were deemed potential locations of existing landslides were detected, as shown in
Figure 4.21. The highest Cohen’s Kappa coefficient was derived by using Curvature 2 (see Table
4.4), with a pixel size of 10 meters and with 1 smoothing iteration, as shown in Figure 4.22 (k).
The accuracy, precision, and recall are 0.77, 0.22, and 0.72, respectively. The Cohen’s Kappa

coefficient is 0.25, which indicates fair agreement (Landis & Koch, 1977).
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iterations as a measure of accuracy, precision, recall, and Cohen’s Kappa coefficient; Study Area 5:
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4.4 Discussion

The results of the experiment indicate that the accuracy, precision, recall, and Cohen’s
Kappa coefficient vary depending on the study area, LTFs extraction algorithm, pixel size, and
smoothing iteration (Table 4.4). For Study Areas 1 and 5, the highest accuracy was 0.91, and
occurred when large pixel sizes and several smoothing iterations were used (Figures 4.14 and
4.22). Study Area 2 had the highest Cohen’s Kappa coefficient, 0.29, and the accuracy score was
0.80. Study Area 3 had the lowest Cohen’s Kappa coefficient, 0.07, and had the highest percentage
of false positives, 35%.

It is worth mentioning that the area of landslides and the area of background environment
are not equal. This property of the input dataset creates a foreground-to-background imbalance
problem (Oksuz et al., 2020) which happens when number of positives and number of negatives
are extremely unequal, hence impairing detection accuracy. Therefore, the high accuracy value
can be misleading. For example, for Study Area 1, the accuracy of 0.91 with high smoothing
iterations and both small and large pixel sizes (Figure 4.14 (a,b,c)) could be due to the fact that the
unbalanced data detects fewer landslides increasing the values of TN and decreasing the values of
FP. With a pixel size of 10 meters and 20 smoothing iterations, the accuracy dropped from 0.9 to
0, because no landslides were detected, see Figure 4.14 (c).

Pixel size and number of smoothing iterations affect the results of LTFs extraction
algorithms. A large pixel size and a large number of smoothing iterations will result in a decrease
in the number of detected landslides. This trend can be seen from the recall graph where the recall
score drops with the increase in pixel size and number of smoothing iterations (see Figures 4.14,

4.16, 4.18 (g, h, i)).
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In summary, the experiment showed that landslide boundaries can be detected by using
only topological information at different scales. The overall low accuracy is due to a combination
of the following factors:

e type and location of landslides,

e accuracy of landslide map inventories used for evaluation, and

e existence of FP (see Table 4.4)

FP were caused by two reasons. The first is that the LTFs extraction algorithm was sensitive
to the geospatial data noise that originated during the process of deriving DTM from LiDAR data.
The noise can be addressed by using a larger pixel size and a large number of smoothing iterations.
However, this solution will cause data loss where, in addition to the noise, LTFs around small
landslides can also disappear. To address this issue, we developed a new LTFs extraction algorithm
that does not need threshold values (see Chapter 5). The second reason is that there exist other
objects (geospatial or man-made) that have circular shapes similar to those of landslides. Examples
of such objects are craters or farm areas. Such objects were also detected in the experiment and
caused FP. To address this issue, we present a Topological KB geospatial object detection method

(see Chapter 6).
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5.0 New LTFs Extraction Algorithm

In Chapter 4, we demonstrated that it is feasible to generate candidate polygons using PH,
thereby detecting geospatial objects by selecting from these candidate polygons, relying solely on
topological information embedded in them. However, the results indicated a considerable number
of false positives in certain study areas. Consequently, we postulated the following future research
direction (Syzdykbayev et al., 2020b):

“Considering the importance of accurately determining ridges and scarps for detection of

landslides, one future work is to take a convolutional filters approach and apply it to DTM.”

5.1 Methodology

We developed a new LTFs extraction algorithm that detects terrain linear features by using
shaded relief, controlling the altitude and azimuth of the illumination source, and implementing
edge detection filters. The algorithm is called Shade-relief and takes a DTM as input and returns
an image with LTFs. Figure 5.1 shows the steps of Shade-relief. The first step involves applying
shaded relief to a DTM using several altitudes and azimuth parameters. The second step involves
applying edge detection filters, shown in Equation 5.1, to each azimuth variable to obtain lines
between shaded and non-shaded areas. The third step involves removing LTFs that do not persist
under slight (+ 44°) azimuth shifts. The fourth step involves combining outputs of all azimuth

parameters into one image by summing images and classifying the outcome.
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Figure 5.1 The steps of Shade-relief LTFs extraction algorithm

In Step 1, the shaded relief operation by Horn (1981) was used, where a different azimuth
orientation was applied to the input DTM eight times. These azimuth orientations were north (0°),
northeast (45°), east (90°), southeast (135°), south (180°), southwest (225°), west (270°), and

northwest (315°). The slopes p and g are computed in two directions in each cell:

[(zo + zg+27) — (23 + 75 + 21)]
8d
[(zg + 26 +23) — (27 + 274 + 21)]
8d
where d is the distance between pixel centers and z; is the height at location i (Figure 5.2 a).

(5.1)

(5.2)

Next, these values were converted into a reflectance value by using an appropriate reflectance

map R (Horn, 1981):

1

5@ + a)
Vb + (B + @)
. _ (Pop + 409)

V@§ + a8)

N (5.3)

R(p,q) =

N =

(5.4)
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1

where py = %and Q= —7

for a light source at a standard cartographic position, with

an azimuth angle of 315° and an altitude of 45° for the illumination source (Figure 5.2 b).

Parameters a and b allow for control of the intensity of gray values for horizontal continuous

surfaces for visualization purposes, (Horn, 1981) recommended a = 0 and b =

Slks

Z1 z2 Z3

Z4 | 25 | Z6 ) (% g
z7 | z8 | 29
leld] pig [a] o s

a b

Figure 5.2 (a) 3 * 3 cell window representation of a surface; (b) illustration of light source altitude (45°) and

azimuth (315°) angles (Syzdykbayev et al., 2020a)

Since the goal was to identify lines that serve as illumination boundaries, shaded areas with
values equal to O were highlighted. Consequently, the output of the reflectance map was

reclassified by using the following equation (Figure 5.3c):

0,forx = 0} (55)

fij () = {1_ forx >0

Step 2 involves applying edge detection filters shown in Equation 5.6 on each reclassified
shaded relief operation. These filters were chosen based on a specific azimuth orientation that
could be used for border (edge) detection in eight azimuthal orientations (Cesar & da Fontoura
Costa, 1995). For example, to detect terrain features from shaded relief with an azimuth of 45°,

filter F,c was used. For shaded relief with an azimuth of 90°, filter Fy, was used, and so on. The
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results of using filter Fy, (Equation 5.6) that captures border lines where a light source for the

shaded relief coming from azimuth 90° are shown in Figure 5.3.

0 0 -1 0 0 O 1 0 O 0 1 0
Fis =90 0 0 Foo=91 0 —1¢ Fi35=90 0 0 Figg=0 0 O

1 0 O 0 0 O 0 0 -1 0 -1 0

0 0 1 0 0 O -1 0 O 0 -1 0 (56)
Fpo5 =70 0 Op Fp70=9—1 0 1p F335=30 0 O Fyj360=90 0 0

-1 0 O 0 0 O 0 0 1 0 1 0

a

d

Figure 5.3 (a) DTM of synthetically-generated lines, (b) shaded relief (azimuth: 90° and altitude: 0°) of
synthetically-generated DTM, (c) reclassification results, (d) filter Fqq results overlaid on DTM

(Syzdykbayev et al., 2020a)

Step 3 involves removing LTFs that do not persist under slight ( 44°) azimuth shifts. This
operation is needed to remove false LTFs. For flatter terrain or terrain that has a shape that
resembles a cone or half-sphere, Shade-relief detected spur lines in fixed (every 45°) directions
(Figure 5.4a). To remove false LTFs, two tasks were implemented. In the first task, for each
azimuth orientation, Steps 1 and 2 were repeated by shifting azimuth orientation to +44°. This is

the maximum allowable azimuth value because filters were designed to be compatible with
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specific shaded relief that is performed every 45°. If the value exceeds +44°, these filters will not
be able to capture border lines for specific shaded relief. Several experiments with different
azimuth values were performed and the results show that smaller values lead to a higher rate of
false spur line detection (the results of these experiments are presented in the discussion section).
The output of this task is three images with terrain features (T'F) for each azimuth degree; the main
azimuth degree TF; and two additional created images are TF;_,, and TF;,,,. For example, if
i = 45° then three images, TF, , TF,s5, and TFgq, would be created. In the second task, for each
azimuth degree, true terrain features that persist under slight azimuth changes were selected. The

selection was performed by using Equation 5.7:

TF; true = (TFi_44 + TF; + TFi144) (5.7)
(0, forx =1
TF,,  (x) = { s 1 } (5.8)

By applying this equation, the true terrain features that persist under slight azimuth changes
received a high weight (pixel value), whereas false spur lines did not persist under slight azimuth
changes and had a pixel value equal to 1 (Figure 5.4b). Thus, by deleting values that were equal to

1, false spur lines were removed (Figure 5.4c).
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Figure 5.4 DTM of cone overlaid with (a) borderline 45°, (b) addition of three borderlines 1°, 45°, 89°, and (c)

detected terrain features (peak) (Syzdykbayev et al., 2020a)

Step 4 involves combining the outputs of all azimuth parameters into one image by
summing all corresponding pixels of all images and classifying the outcome. After using filters
and removing falsely detected spur lines, images with LTFs from eight azimuth orientations were
generated. In other words, each image contains LTFs extracted from a specific azimuth orientation.
To obtain LTFs from all azimuth orientations, these eight images were combined resulting in one
image with a maximum pixel value equal to 8 and a minimum pixel value equal to 0.

TFiota = 2513 TF, i_true (5.9)

From the results, a pixel whose value was smaller than 2 was considered to be noise and

pixels with values larger than 2 were classified as LTFs.

linear terrain features for x > 2 } (5.10)

TFeotai(x) = { noise forx <2
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5.2 Datasets

A synthetically-generated DTM and a real-world DTM were used as input for Shade-relief,
Geomorphon, Curvature, and Probabilistic, and their performances were compared. The use of
synthetically-generated datasets for this experiment is grounded in several reasons: (a) non-
existent pre-established datasets for LTFs; (b) flexibility to create unique shapes and construct a
variety of scenarios, enabling a thorough evaluation of the LTFs extraction algorithms; and (c)
possibility of predefining knowledge for the ground truth, known number, length, and location of
extracted LTFs, providing a reliable benchmark for assessing algorithmic performance.

The synthetically-generated DTM included common shapes such as cone (Figure 5.5), half-
sphere (Figure 5.6), square pyramid (Figure 5.7), and two terrains with known straight and curved
LTFs. Each of these terrains has seven (Figure 5.8) and eight (Figure 5.9) separate LTFs,
respectively, with a different level of sharpness. These datasets were generated by using the World
Machine Basic (World Machine, n.d.) software. For the real-world DTM, two locations were used:
the southern half of the Lackawanna synclinorium to the southeast of the city of Wilkes-Barre in
Luzerne County, Pennsylvania (latitude 41° 10° 25 N and longitude —75° 54°1” W) and Crater
Lake in Klamath County, Oregon (latitude 42°95’ N and longitude 122°10" W). The input data for
the first location was obtained from Pennsylvania Spatial Data Access (Access, n.d.). The input
data for the second location were obtained from the State of Oregon Department of Geology and
Mineral Industries public file transfer protocol (FTP) site. The LTFs from these real-world data

were manually extracted.
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5.3 Experiment

For evaluation, the performance of Shade-relief was compared with the performances of
Geomorphon (Jasiewicz & Stepinski, 2013), Curvature (Pirotti & Tarolli, 2010), and Probabilistic
(X. Zhou et al., 2019). Both synthetically-generated and real-world datasets were used in these
comparisons.

Geomorphon uses the principle of pattern recognition to classify landforms from DTM
(Jasiewicz & Stepinski, 2013). It detects common local morphological elements such as flats,
peaks, ridges, shoulders, spurs, slopes, hollows, footslopes, valleys, and pits, using the concept of
local ternary patterns (Liao, 2010). To extract these local ternary patterns, instead of using a fixed
size neighborhood, Geomorphon uses a neighborhood with a size and shape suitable for the local
topography. Hence, it can identify landforms at various spatial scales and is computationally
efficient (Jasiewicz & Stepinski, 2013).

Curvature extracts LTFs by creating surface curvatures and uses a certain threshold; a
multiplication of the curvature’s standard deviation. This algorithm includes a combination of the
first derivative of an elevation, which is slope, and the second derivative, which is curvature.
Curvature is one of the basic terrain parameters and is commonly used in terrain analysis (Pirotti
& Tarolli, 2010). It defines the orientation of a slope and quantifies morphologies, where a positive
pixel value of the output image is convex and a negative pixel value is concave; a ridge pixel has
a positive value, while a channel has a negative value (Rana, 2006).

Probabilistic extracts LTFs by using aspects and slopes that are derived from DTM. This
algorithm uses contextual information and multiple neighborhood analysis in combination with a

probability model to extract LTFs (X. Zhou et al., 2019).
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5.4 Results

Extracted LTFs were compared to true LTFs in both synthetically-generated and real-world
datasets. For each dataset, accuracy, precision, recall, and Cohen’s Kappa coefficient evaluation
metrics were calculated. Tables 5.1 and 5.2 show the results of these metrics. Overall, the results
show that Shade-relief outperformed all three other algorithms. Specifically, Shade-relief more
often resulted in the highest evaluation metric values, such as Cohen’s Kappa coefficient,
suggesting that it outperformed, or was at the very least competitive against, the other three

algorithms.

5.4.1 Synthetically-generated Dataset

Table 5.1 shows the evaluation metrics of the results on synthetically-generated dataset
produced by Shade-relief and those produced by Geomorphon, Curvature, and Probabilistic and

compared to known terrain features.

Table 5.1 Cohen’s Kappa coefficient, accuracy, precision, recall for a synthetically-generated dataset with

each algorithm’s results compared to known terrain features (Syzdykbayev et al., 2020a)

Dataset Algorithm  Cohen’s Kappa Accuracy Precision Recall
Shade-relief 0.133 0.999 0.071 1
Cone Geomorphon 0.0003 0.978 0.0001 1
Curvature 0.011 0.9993 0.005 1
Probabilistic 0.0097 0.9992 0.004 1
Shade-relief 0.333 0.999 0.2 1
Half sphere Geomorphon 0.0003 0.979 0.0001 1
Curvature —0.0007 0.993 0 0
Probabilistic —0.0007 0.999 0 0
Square Pyramid Shade-relief 1 1 1 1
Geomorphon 0.589 0.997 0.979 0.422
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For the synthetically-generated dataset, the number, length, and location of the terrain

features were already known. Shapes such as a cone or half-sphere have only one peak that can be

extracted as one point, as shown in Figures 5.5 and 5.6.

For the conical shape (Figure 5.5), all four algorithms were able to detect the known peak,

though with varying levels of success, resulting in a recall value of 1 (Table 5.1). The area

representing a detected peak from Curvature and Probabilistic was much larger, Cohen’s Kappa

coefficients were 0.011 and 0.009, respectively (Table 5.1). Geomorphon correctly detected the

location of the peak. However, it falsely detected LTFs and since the area of falsely detected LTFs

was large, Cohen’s Kappa coefficient is 0.0003 (Table 5.1). In comparison with the other three

algorithms, the area representing a detected peak by Shade-relief was smaller, with Cohen’s Kappa

coefficient at 0.133.
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Figure 5.5 Synthetically-generated conical topographic dataset with only one peak (dark blue pixel) and no

spurs or ridges. Outputs of the four terrain feature detection algorithms overlaid on the DTM and shown at

two different scales (Syzdykbayev et al., 2020a)

For the half-sphere shape (Figure 5.6), Shade-relief had the highest values for Cohen’s

Kappa coefficient at 0.333 (Table 5.1). Both Shade-relief and Geomorphon were able to detect the

peak with a recall value of 1 (Table 5.1), while Curvature and Probabilistic failed to detect the

peak (Figure 5.6). Similarly with the conical shape, Geomorphon falsely detected LTFs that do not

exist in the dataset, with Cohen’s Kappa coefficient at 0.0003 (Table 5.1).
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Figure 5.6 Synthetically-generated half-sphere topographic dataset with only one peak (dark blue pixel) and

no spurs or ridges. Outputs of the four terrain feature detection algorithms overlaid on the DTM and shown

at two different scales (Syzdykbayev et al., 2020a)

For the square pyramid shape (Figure 5.7), all four algorithms were able to detect LTFs

accurately with a recall value of 1. Comparing the results of all four algorithms with the manually-

extracted known features shows that Shade-relief and Curvature had a value of 1 for all four

metrics, while Geomorphon had a particularly low Cohen’s Kappa coefficient (0.589) and recall

(0.422) and Probabilistic had a low Cohen’s Kappa coefficient (0.497) and precision (0.334)

(Table 5.1).
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Figure 5.7 Synthetically-generated square pyramid topographic dataset with only one peak and four ridges
radiating out from the peak (dark blue pixels). Outputs of the four terrain feature extraction algorithms

overlaid on the DTM and shown at two different scales (Syzdykbayev et al., 2020a)

The DTM derived from synthetically-generated terrain with seven LTFs (straight ridges)
of equal length (Figure 5.8) exhibits variation from sharp ridges to curved LTFs. Comparing the
results of the four algorithms against the known features (Table 5.1) shows that Curvature had the
highest Cohen’s Kappa coefficient (0.691), accuracy (0.995), and precision (0.671), while Shade-
relief had the highest recall. Overall, all four algorithms had a high (>0.9) accuracy, and Cohen’s

Kappa coefficient (0.653) for Shade-relief was similar to that of Curvature’s results (0.671).
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Figure 5.8 Synthetically-generated topographic dataset with seven straight ridges exhibiting a decreasing
peak sharpness from left to right. Dark blue pixels represent known ridges that were equal in length for all
seven ridges. Outputs of the four terrain feature extraction algorithms overlaid on the DTM and shown at

two different scales (Syzdykbayev et al., 2020a)
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The DTM derived from terrain with eight curvilinear LTFs (Figure 5.9) also exhibits
variation from sharp to curved LTFs. Comparing the results of the four algorithms against the
known features (Table 5.1) shows that Shade-relief outperformed the other three algorithms on all
metrics, with a high Cohen’s Kappa coefficient (0.735), accuracy (0.994), and precision (0.972),
except for recall, for which Geomorphon had the highest value (0.99). However, the recall for both

Shade-relief (0.972) and Geomorphon (0.99) was high.
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Figure 5.9 Synthetically-generated topographic dataset with seven curvilinear ridges exhibiting a decreasing
peak sharpness from left to right. Dark blue pixels represent known ridges that were equal in length for all
seven ridges. Outputs of the four terrain feature extraction algorithms overlaid on the DTM and shown at

two different scales (Syzdykbayev et al., 2020a)
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5.4.2 Real-world Dataset

For the real-world data, two regions with different patterns of terrain features were selected.
The first is a linear topographic system south of Wilkes-Barre, Pennsylvania that is part of the
Ridge and Valley Province. The second is a radial topographic system for Crater Lake, Oregon
(Figure 5.10). For these two regions, there is no known baseline, so LTFs were manually extracted
to be used as a baseline. Table 5.2 shows the accuracy, precision, recall, and Cohen’s Kappa
coefficient (evaluation metrics) of the results for the real-world datasets produced by Shade-relief

and the three other algorithms and compared to manually-extracted terrain features.
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Figure 5.10 Real-world datasets with manually extracted LTFs (Syzdykbayev et al., 2020a)
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Table 5.2 Cohen’s Kappa coefficient, accuracy, precision, recall for a real-world dataset with each

algorithm’s results compared to manually extracted LTFs (Syzdykbayev et al., 2020a)

Dataset Algorithm  Cohen’s Kappa Accuracy Precision Recall
Shade-relief 0.056 0.940 0.063 0.125

: Geomorphon 0.007 0.811 0.026 0.209
Wilkes-Barre |~ vature 0.061 0951 0073 01
Probabilistic 0.058 0.944 0.066 0.117

Shade-relief 0.115 0.961 0.109 0.172

Crater Lake Geomorphon 0.123 0.905 0.088 0.481
Curvature 0.116 0.968 0.126 0.138

Probabilistic 0.113 0.927 0.86 0.333

For Wilkes-Barre (Figure 5.11), a comparison of the results of the four algorithms against
the manually-extracted LTFs shows a similar pattern where Geomorphon had the lowest values
for all four metrics (Table 5.2). Curvature resulted in the highest values of Cohen’s Kappa
coefficient (0.061), accuracy (0.951), and precision (0.073), while Geomorphon had the highest

recall (0.209) value.
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Figure 5.11 Wilkes-Barre, 3D representation, outputs of the four terrain features extraction algorithms

overlaid on manually-extracted terrain features and DTM (Syzdykbayev et al., 2020a)
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For the topographic dataset of Crater Lake (Figures 5.12 and 5.13), there was far more
variability in the results. Comparing the results of the four algorithms against the manually-
extracted features shows that Geomorphon had the highest Cohen’s Kappa coefficient (0.123) and
recall (0.481) (Table 5.2). Shade-relief, Probabilistic, and Curvature resulted in identical
evaluation metric values where Cohen’s Kappa coefficient is equal to 0.115, 0.113, and 0.116,

respectively.
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Figure 5.12 Crater Lake, 3D representation, outputs of the four terrain features extraction algorithms

overlaid on the DTM, with a distinction between feature types where possible (Syzdykbayev et al., 2020a)
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Figure 5.13 Crater Lake, 3D representation, outputs of the four terrain features extraction algorithms

overlaid on manually-extracted terrain features and the DTM (Syzdykbayev et al., 2020a)

5.5 Discussion

Extraction of LTFs based on geo-morphometry and DTM is a challenging process. The
main drawbacks of existing LTFs extraction algorithms are that they are sensitive to the threshold
value or can have FP. The results of the four algorithms were compared against the manually-
extracted linear features using specific metrics (see Tables 5.1 and 5.2). The performance of each
algorithm depends on factors such as dataset used, synthetically-generated or real-world data, and

type of terrain.
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The results of the synthetically-generated dataset (Table 5.1) show that Shade-relief more
often resulted in the highest evaluation metric values, suggesting that it outperforms, or is at the
very least competitive against, the other three comparable algorithms. In one instance, for a
synthetically-generated square pyramid (Figure 5.7), Shade-relief and Curvature both precisely
identified four ridges, Geomorphon identified ridges in every other pixel, and Probabilistic
identified what should have been a 1-pixel width linear feature as having a 3-pixel width. In one
complex synthetically-generated ridge systems (Figures 5.8 and 5.9), Shade-relief, Probabilistic,
and Geomorphon were able to identify all known features. Curvature failed to detect more rounded
topographic ridges, likely due to a limiting threshold value, which in this case is a multiple of the
curvature’s standard deviation. For Curvature, more rounded ridges/peaks resulted in a wider line
or larger circle representing the detected features. In the half-sphere example (Figure 5.6),
Curvature completely failed to detect the peak, which is why Cohen’s Kappa coefficient is so close
to 0 (Table 5.1). It should be noted that in Curvature the multiplication of the curvature’s standard
deviation was used as a threshold to extract LTFs. The threshold value is sensitive to the smoothing
filters because smoothing decreases noise in the DTM that affects the derivative values of the DTM
(Rana, 2006). For complex real-world data, an optimal threshold value is usually determined
through a manual process where the value is iteratively selected and compared either visually or
by checking against a known dataset; this process was used in Pirotti & Tarolli, (2010),
Syzdykbayev et al., (2020b), and X. Zhou et al., (2019), and showed that an optimal threshold
value is two times the curvature’s standard deviation.

For the real-world datasets (Figures 5.10-5.13), Curvature resulted in the highest Cohen’s
Kappa coefficient, accuracy, and precision (Table 5.2). However, Shade-relief and Probabilistic

both had values in a narrow range compared to Curvature’s results. This suggests that Curvature,
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Probabilistic, and Shade-relief all perform similarly and that Geomorphon results include far too
many poorly detected (incomplete) and FP terrain features.

The main difference between Shade-relief and Geomorphon is that the former can detect
spurs with higher accuracy compared with the latter. Geomorphon tends to fail when applied to a
dataset with multiple topographic expressions (from smooth to highly variable). In order to further
test FP spurs that were generated by Geomorphon, the input DTM was rotated by 10° to the west
and east. The detected spurs from Geomorphon did not change their direction even after rotation

(Figure 5.14).
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Figure 5.14 Raster image (representing Crater Lake) was rotated by 10° to the west and east and overlaid

with the ridges, spurs, and peaks detected by Geomorphon (Syzdykbayev et al., 2020a)
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The high accuracy of spurs detection by Shade-relief is due to the removal of the detected
features that do not persist under slight azimuth changes. An experiment was conducted with
several azimuth values (Figures 5.15 and 5.16), and it was revealed that without a slight azimuth

change, the spur lines detected by Shade-relief were identical to the spur lines detected by

Geomorphon.
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Figure 5.15 Synthetically-generated conical DTM with only one peak with 3D representation (left image) and
the outputs of Shade-relief with different azimuth values overlain on the DTM (four right images)

(Syzdykbayev et al., 2020a)
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Figure 5.16 Crater Lake DTM with 3D representation (top left image) and the outputs of Shade-relief with

different azimuth values overlaid on the DTM (top four right and four bottom images) (Syzdykbayev et al.,

2020a)
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6.0 Geospatial Object Detection: Topological KB Method

In chapter 4, we demonstrated that it is feasible to generate candidate polygons using PH,
thereby detecting geospatial objects by selecting from these polygons, relying solely on topological
information embedded in them. However, the results indicated a moderate number of FP in certain
study areas. Consequently, we postulated the following research direction (Syzdykbayev et al.,
2020b):

“Another future work is to compare and analyze the result of this current work with the

result of an extended version of the proposed PH where it takes fused data from LiDAR and
other datasets, such as NDVI, visual/NIR satellite imagery, apparent thermal inertia, vegetative

cover, bedrock lithology, and/or soil types to detect landslides.”

6.1 Methodology

We developed a Topological KB method where we use additional topological information
along with geometrical and contextual information on candidate polygons derived from PH. The
method is designed to tackle RQ2 by reframing the geospatial object detection challenge into a
hypothesis testing problem. This transformation involves formulating various knowledge
structures and rules using information about the detected geospatial object. Figure 6.1 illustrates
the modification to the knowledge-based approach by Cheng & Han, (2016) with the integration

of topological information alongside geometrical and contextual information.
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Figure 6.1 Topological KB method

Our method takes LIiDAR-derived DTM data as input and the process is illustrated in

Figure 6.2 and in Figure 6.3. First, we extract LTFs from DTM and then, using PH, form candidate

polygons from these LTFs. The last step involves applying rules for detection which are based on

topological, geometrical, and contextual information.

Input Data Step 1 Step 2 Step 3 Output
DTM derived Extracting _, Creating candidate 2:::2::, ?ctzelzlzif:: ;(t Boundaries of
from LiDAR linear polygons using the g sl geospatial

. information .
point cloud features PH tool objects
(Algorithm 1) | Creating detection rules ‘

Figure 6.2 Workflow of the Topological KB geospatial object detection method

6.1.1 Using Topological, Geometrical, and Contextual Information for Detection Rules

Before formulating detection rules, it is essential to derive and embed topological,

geometrical, and contextual information for each candidate polygon. We performed a

comprehensive literature review to find works where the knowledge-based approach was used to

detect landslides and compiled a list of landslide detection rules (Table 6.1). From this list, we
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selected and implemented the rules in each information category that are common in most works

(Table 6.2).

Table 6.1 List of works on landslide detection rules

Parameter

(Martha et al.,
2010

(Martha et al.,
2011)

(Holbling et al.,

2012)

(Liu etal., 2012)

(Rau et al., 2013)

(Blaschke et al.,

2014)

(Althuwaynee et
al., 2014)

(Hong et al.,
2015)

(Mezaal et al.,
2017)

(Fanos et al.,
2018)

(Bunn et al.,
2019)

(Bachaetal.,
2020)
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NDVI

(pixel value: >0. | >0.1 >0.1 | >0.17 <1
min: -1 and 12 8 8 6

max: 1)

The topological information, which can be obtained and embedded into candidate polygons using

PH, includes:

1. Birth time of the circle, denoting the instance when topological information starts to

emerge.

2. Death time of the circle, denoting the moment when topological information ceases to exist.

3. Lifetime of the circle, denoting the interval between the birth time and the death time.

The geometrical information, which can be obtained and embedded into candidate polygons using

tools like Geographic Information Systems (GIS), includes:

1. Size, overall magnitude, or dimensions of a geospatial object.

2. Ratio between length and width of a geospatial object, a measure of the object's proportion

or aspect ratio.

The contextual information, which can also be derived and embedded into candidate polygons

using GIS tools, includes:

1. The slope of a region, the angle or steepness of the terrain.

2. Roughness of a terrain, a measure of the terrain's irregularity or complexity.

3. Normalized Difference Vegetation Index (NDVI) score of a region, an indicator of live

green vegetation density and health.
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Table 6.2 List of geometrical and contextual rules implemented to detect landslides

Information Parameter Rules Derived form
Slope
Context (degrees: min:0 and
max: 90) 12-72 LiDAR
NDVI
(pixel value: min: -1
and max: 1) 0.12-0.75 Satellite image
Surface  roughness
(index value min: 0
and higher) 0.12-2 LiDAR
Geometrical Length/width (unit) | 0.27-3 Candidate polygons
Based on existing
Area (meters) landslide properties Candidate polygons

Figure 6.3 Workflow of the Topological KB geospatial object detection method with visualization of each step
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6.2 Datasets and Experiment

The characteristics of the input data for the experiment are shown in Table 4.1. A DTM
offers a bare-earth depiction of the terrain, devoid of natural or artificial elements such as
vegetation or buildings. The output of the experiment, detected landslides, were compared against
landslide inventory maps which record landslide locations along with supplementary data,
including occurrence dates and landslide types (Guzzetti et al., 2012b).

We conducted experiments to test our Topological KB. The results were evaluated by
comparing them with the ground truth, the results of the work by (Syzdykbayev et al., 2020b),
where only topological filters were used on candidate polygons, and the findings of the knowledge-
based method implemented by Bunn et al (2019) who introduced a method known as SICCM for
landslide detection. The same five study areas described in Chapter 4 were used in the experiment
(see Figure 4.7 and Table 4.2).

Three experiments were conducted as follows:

e Experiment 1: Using no filters, only raw, unfiltered candidate polygons.

e Experiment 2: Using only geometrical and contextual information as filters on
candidate polygons.

e Experiment 3: Using topological information alongside geometrical and contextual

information.

These experiments collectively provided a holistic view of the implications of different
filtering approaches in the task of geospatial object detection.
We ran three LTFs algorithms (Shade-relief, Curvature, Geomorphon) on three different

pixel sizes and used six smoothing iterations (Table 6.3). Furthermore, to identify the most
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effective geometrical and contextual information, we undertook a comprehensive analysis of all
possible subsets. This analysis encompassed cases ranging from utilization of all possible
combinations of geometrical and contextual information with and without addition of topological
information.

The total number of comparisons were: 3 (LTFs extraction algorithm) * 3 (pixel size) *6

(Smoothing iteration) * 4! (Geometrical information) * 6! (Contextual information) = 933120

Table 6.3 Parameters used in the experiment

Parameter name Parameters

DTM pixel size Im, 5m, 10m

Smoothing iteration 0, 2,5, 10,15, 20

LTFs extraction Shade-relief (Syzdykbayev et al., 2020a), Curvature (Pirotti &
algorithm Tarolli, 2010), Geomorphon (Jasiewicz & Stepinski, 2013)
Topological Birth of the circle, Lifetime of the circle

information

Geometrical Min length-width ratio of the candite polygon, Max Min length-
information width ratio of the candite polygon, Min area, Max area.
Contextual Min slope, Max slope, Min TRI, Max TRI, Min NDVI, Max NDVI
information

6.3 Results

Detected landslides were compared to landslide inventory maps and with the results of the
work by (Syzdykbayev et al., 2020b), in all five study areas. In addition, for Study Areas 2 and 4,
the results were also compared with the results of the work by Bunn et al. (2019). The three LTFs
extraction algorithms, six smoothing iterations, and different three-pixel sizes were applied, and

accuracy, precision, recall, Cohen’s Kappa coefficient, and F-1 score evaluation metrics were
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calculated. Table 6.4. shows the results of these metrics with the highest F-1 score for each study

area.

Table 6.4 LTFs extraction algorithms, number of existing, detected, and intersected landslides, accuracy,

precision, recall, Cohen’s Kappa coefficient and F1 score for each study area

Study Area | Study Area | Study Study Study
1 2 Area3 | Area4 Area 5
LTFs extraction Geomorphon | Geomorphon | Shade- | Curvature | Curvature
algorithm relief
Pixel size 1 1 1 5 5
Number of smoothing | 1 10 20 5 1
iterations
Accuracy 0.95 0.66 0.47 0.59 0.97
Precision 0.38 0.33 0.28 0.51 0.36
Recall 0.80 0.86 0.85 0.82 0.58
Cohen’s Kappa 0.50 0.31 0.12 0.24 0.43
coefficient
F1 Score 0.52 0.48 0.43 0.64 0.45

Findings for Study Area 1:

e Experiment 1: The best F1 score (0.34) was obtained with pixel sizes of 5 using Shade-
relief (Figure 6.4 (b)). Compared with Syzdykbayev et al., (2020c), the unfiltered results
were superior at a pixel size of 1 (Figure 6.4 (a)) but deteriorated at pixel size 5 (Figure 6.4
(b)). Results with pixel size 10 lacked consistency across smoothing iterations (Figure 6.4
(©).

e Experiment 2: An F1 score peak of 0.5248 was observed at pixel size 1 using Geomorphon
(Figure 6.4 (d)). When compared with Syzdykbayev et al., (2020c), a Topological KB
geospatial object detection method outperformed in all configurations except for the pixel

size of 10 subjected to 20 smoothing iterations (Figures 6.4 (d, e, f)).
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e Experiment 3: The highest F1 score was 0.5247, again at a pixel size of 1 (Figure 6.4 (g)).
Compared with Syzdykbayev et al., (2020c), this combined approach outperformed solely

at pixel size 1 (Figures 6.4 (g, h, 1)).

In summary, the most favorable results for Study Area 1 were obtained when only
geometrical and contextual filters were applied to pixel size of 1 and with Geomorphon (Figure
6.4 (d)). From the original set of 10 rules (comprising 4 geometrical and 6 contextual rules), a
subset of 7 rules (consisting of 2 geometrical and 5 contextual rules) was chosen to attain these

results (Table 6.5).
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Study Area 1, Pixel Size 10, No Filter
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Figure 6.4 Results of the three LTFs extraction algorithms with different pixel sizes, smoothing iterations and

three evaluations as a measure of F1 score; Study Area 1: Pennsylvania
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Table 6.5 List of geometrical and contextual rules used to obtain the highest F1 score; Study Area 1:

Pennsylvania

Information Parameter Rules Rules Used
Slope 12-72 12-72
Context NDVI 0.12-0.75 0.12-0.75
Surface roughness 0.12-2 0-2
Geometrical Length/width 0.27-3 0-3
Area 261-9746736 0-9746736

Findings for Study Area 2:

Experiment 1: The F1 score peaked at 0.39 with a pixel size of 10 using Curvature (Figure
6.5 (c)). When compared with Bunn et al. (2019), F1 scores for a Topological KB
geospatial object detection method were consistently lower across all pixel sizes (Figures
6.5 (a, b, ¢)). Against Syzdykbayev et al., (2020c), we observed reduced F1 scores at pixel
sizes 1 and 5, while the results closely matched at pixel size 10 (Figures 6.5 (a, b, c)).
Experiment 2: The highest F1 score reached 0.48 at pixel size 1 with Geomorphon (Figure
6.5 (d)). When compared with Bunn et al. (2019), results across all pixel sizes were closely
matched, with a slight edge in a Topological KB geospatial object detection method in
some instances (Figures 6.5 (d, e, f)). Against Syzdykbayev et al., (2020c), we matched
their F1 scores at pixel sizes 1 and 5 but surpassed them at pixel size 10 (Figures 6.5 (d, e,
f)).

Experiment 3: The highest F1 score was 0.47 at pixel size 10 using Geomorphon (Figure
6.5 (g)). In comparison with both Bunn et al. (2019) and Syzdykbayev et al., (2020c),
outcomes of a Topological KB geospatial object detection method were closely matched

for pixel sizes 1 and 5 but lagged at pixel size 10 (Figures 6.5 (g, h, i)).
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In summary, the most favorable results for Study Area 2 were obtained when only
geometrical and contextual filters were applied to pixel sizes of 1 and with Geomorphon (Figure
6.5 (d)). From the original set of 10 rules (comprising 4 geometrical and 6 contextual rules), a
subset of 5 rules (consisting of 1 geometrical and 4 contextual rules) was chosen to attain these

results (Table 6.6).
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Study Area 2, Pixel Size 1, No Filter

Study Area 2, Pixel Size 5, No Filter

Study Area 2, Pixel Size 10, No Filter
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Figure 6.5 Results of the three LTFs extraction algorithms with different pixel sizes, smoothing iterations and

three evaluations as a measure of F1 score; Study Area 2: Oregon
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Table 6.6 List of geometrical and contextual rules used to obtain the highest F1 score; Study Area 2: Oregon

Information Parameter Rules Rules Used

Slope
Context (degrees: min:0 and
max: 90) 12-72 12-72

NDVI
(pixel value: min: -1
and max: 1) 0.12-0.75 0-0.75

Surface roughness
(index value min: 0

and higher) 0.12-2 0-2
Geometrical Length/width (unit) 0.27-3 0-o00
Area (meters) 261-12443892 261 - oo

Findings for Study Area 3:

e Experiment 1: An optimal F1 score of 0.40 was achieved at pixel size 1 using Geomorphon
(Figure 6.6 (a)). Compared with Syzdykbayev et al., (2020c), the absence of filters in this
study showed improved results at pixel size 1 (Figures 6.6 (a, b, c)).

e Experiment 2: The highest F1 score achieved was 0.43, observed at pixel size 1 when
employing Shade-relief (Figure 6.6 (d)). Results comparison with Syzdykbayev et al.,
(2020c) indicated that using geometrical and contextual filters improved results across all
pixel sizes and smoothing iterations (Figures 6.6 (d, e, f)).

e Experiment 3: The highest F1 score observed was 0.42 at pixel size 1 (Figure 6.6 (g)).
When compared with the results of Syzdykbayev et al., (2020c), the use of this combined

filter approach led to better results, but exclusively at pixel size 1 (Figures 6.6 (g, h, i)).

In summary, the best results for Study Area 3 were achieved when only geometrical and

contextual filters were applied to pixel sizes of 1 and with Shade-relief (Figure 6.6 (d)). From the
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original set of 10 rules (comprising 4 geometrical and 6 contextual rules), a subset of 9 rules

(consisting of 3 geometrical and 6 contextual rules) was chosen to attain these results (Table 6.7).
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Figure 6.6 Results of the three LTFs extraction algorithms with different pixel sizes, smoothing iterations and

three evaluations as a measure of F1 score; Study Area 3: Colorado
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Table 6.7 List of geometrical and contextual rules used to obtain the highest F1 score; Study Area 3:

Colorado
Information Parameter Rules Rules Used

Slope

Context (degrees: min:0 and
max: 90) 12-72 0-72
NDVI
(pixel value: min: -1
and max: 1) 0.12-0.75 0.12-0.75
Surface roughness
(index value min: 0
and higher) 0.12-2 0.12-2

Geometrical Length/width (unit) 0.27-3 0-3

Area (meters)

1377-6231540

1377-6231540

Findings for Study Area 4:

e Experiment 1: The optimal F1 score was 0.63 at pixel size 5 using Geomorphon (Figure
6.7 (b)). Compared with Bunn et al. (2019), this experiment consistently yielded a higher
F1 score across all cases. When compared with Syzdykbayev et al., (2020c), F1 score was

lower for pixel sizes 1 and 10, but closely matched their results at pixel size 5 (Figures 6.7

(a b, ©)).

e Experiment 2: The highest F1 score of 0.64 was observed at pixel size 5 using Curvature
(Figure 6.7 (e)). When compared with Bunn et al. (2019), F1 score was higher across all
pixel sizes. Comparing with Syzdykbayev et al., (2020c), the results indicated a lower F1

score at pixel sizes 1 and 10, while the score at pixel size 5 was almost identical to their

findings (Figures 6.7 (d, e, f)).
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e Experiment 3: An F1 score of 0.63 was achieved at pixel size 1 using Geomorphon (Figure
6.7 (9)). Compared with Bunn et al. (2019), the scores were higher for pixel sizes 1 and 5
but lower for pixel size 10. When compared with Syzdykbayev et al., (2020c), the scores

at pixel size 5 were similar, while the results for pixel sizes 1 and 10 were lower (Figures

6.7 (9, h, 1)).

In summary, the most favorable results for Study Area 4 were obtained when only
geometrical and contextual filters were applied to pixel sizes of 5 and with Curvature (Figure 6.7
(e)). From the original set of 10 rules (comprising 4 geometrical and 6 contextual rules), a subset
of 5 rules (consisting of 2 geometrical and 3 contextual rules) was chosen to attain these results

(Table 6.8).
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Figure 6.7 Results of the three LTFs extraction algorithms with different pixel sizes, smoothing iterations and

three evaluations as a measure of F1 score; Study Area 4: Oregon
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Table 6.8 List of geometrical and contextual rules used to obtain the highest F1 score; Study Area 4: Oregon

Information Parameter Rules Rules Used

Slope
Context (degrees: min:0 and
max: 90) 12-72 0-72

NDVI
(pixel value: min: -1
and max: 1) 0.12-0.75 0-0.75

Surface roughness
(index value min: 0

and higher) 0.12-2 0.12 -0
Geometrical Length/width (unit) 0.27-3 0-3
Area (meters) 18- 314297870 0- 314297870

Findings for Study Area 5:

e Experiment 1: Optimal F1 scores of 0.07 were achieved with pixel sizes of 10 using Shade-
relief. In comparison with Syzdykbayev et al., (2020c), all results were inferior regardless
of pixel size or smoothing iterations (Figure 6.8 (a, b, c)).

e Experiment 2: The best F1 scores, reaching 0.45, were observed at pixel size 5, employing
Curvature (Figure 6.8 (e)). When compared with Syzdykbayev et al., (2020c), the inclusion
of geometrical and contextual filters resulted in enhanced outcomes across all pixel sizes
and smoothing iterations (Figure 6.8 (d, e, f)).

e Experiment 3: Peak F1 scores of 0.41 were observed at pixel size 1 with Curvature (Figure
6.8 (g)). Compared with Syzdykbayev et al., (2020c), the combined filtering approach led

to improved results across all pixel sizes and smoothing iterations (Figure 6.8 (g, h, 1)).

In summary, the most favorable results for Study Area 5 were obtained when only
geometrical and contextual filters were applied to pixel sizes of 5 and with Curvature (Figure 6.8
(e)). From the original set of 10 rules (comprising 4 geometrical and 6 contextual rules), a subset
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of 4 rules (consisting of 1 geometrical and 3 contextual rules) was chosen to attain these results

(Table 6.9).
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Figure 6.8 Results of the three LTFs extraction algorithms with different pixel sizes, smoothing iterations and

three evaluations as a measure of F1 score; Study Area 5: Washington
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Table 6.9 List of geometrical and contextual rules used to obtain the highest F1 score; Study Area 5:

Washington
Information Parameter Rules Rules Used

Slope

Context (degrees: min:0 and
max: 90) 12-72 12-72
NDVI
(pixel value: min: -1
and max: 1) 0.12-0.75 0-0.75

Surface roughness
(index value min: 0

and higher) 0.12-2 0-o0
Geometrical Length/width (unit) 0.27-3 0-o0
Area (meters) 137- 5689077 0-5689077

6.4 Discussion

Our analysis discerns a notable trend relating to pixel size and number of smoothing
iterations: as the pixel size increases from 1 to 10 and the smoothing iterations are augmented,
there is a corresponding decrease in F1 score. This observation can be intuitively understood when
considering the impact of increased pixel size and smoothing iterations on the quality and detail
of the landslide boundary information. Increasing pixel size and number of smoothing iterations
is analogous to reducing the resolution of the image or applying a strong blurring effect. In the
context of geospatial object detection, this can be likened to examining a landscape from a greater
distance or through a foggy lens. While larger pixel sizes and more smoothing iterations simplify
the image and can aid in the detection of large-scale patterns or structures, they also hide the finer
details that are often critical for accurate object detection. In the case of landslide detection, the

intricate details of landslide boundaries, which often contain key indicators of landslide's
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characteristics and potentially its causes, are lost when viewed at lower resolutions. Consequently,
while larger pixel sizes and increased smoothing iterations might expedite the processing and
analysis of geospatial data, our results highlight the inherent trade-off between the simplification
of data and the preservation of crucial details. Our findings underscore the importance of carefully
selecting pixel size and number of smoothing iterations in geospatial object detection tasks.
Striking a balance between data simplification for efficiency and preservation of detail for
accuracy is key to optimizing the results of such analyses.

Analyzing the results of the three sets of experiments conducted in each of the five study
areas, we observe that Experiment 2, using filters based on only geometrical and contextual
information, shows better results in comparison with Experiment 1, not using any filters. The
reason for this performance improvement becomes clear when we examine the limitations of the
first experiment, which inherently carries a high risk of generating FP. Without applying filters,
all polygons possessing a circular shape are identified as detected geospatial objects, leading to an
overestimation of the actual object count. Experiment 2’s results are also better than Experiment
3’s results. The exceptions are a few cases where the outcomes from Experiments 2 and 3 are close
(as shown in Figure 6.6 (d, g)). The underlying factor here is that Experiment 3 incorporates
topological filters, i.e., birth and lifespan of circles, which correlate with the size of the circle, a
characteristic already accounted for in the geometrical selection phase of Experiment 2.

With these results it can be concluded that using geometrical and contextual filters applied
on candidate polygons yields the highest accuracy. Using filters with combined topological
geometrical and contextual information did not improve accuracy, but rather increased the
complexity of the detection rules, potentially obstructing object detection. Importantly, it is worth

mentioning that the candidate polygons were derived using topological properties. In essence,
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topological information from the raw input played a crucial role in deriving these candidate
polygons.

Our comparative analysis with prior studies yields promising outcomes. When compared
with the knowledge-based method utilized in the work by Bunn et al. (2019), our method shows
superior results in both Study Areas 2 and 4. Similarly, when these results are compared against
the results from the work by Syzdykbayev et al., (2020c), which exclusively employed filters based
only on topological information on candidate polygons, we observe an improvement in all study
areas with one exception, Study Area 4. In Study Area 4, our results are closely aligned with the
results of the work by Syzdykbayev et al., (2020c). The slight discrepancy underscores the inherent
complexity of geospatial analysis and attests to the necessity of employing diverse, complementary

strategies in different contexts to optimize outcomes.

Table 6.10 Results of Topological KB method, Syzdykbayev et al., (2020c), and Bunn et al. (2019) in each

study area
Study Areal | Study Area | Study Area3 | Study Area | Study Area
2 4 5

Title Chapter 6: Geospatial Object Detection: Topological KB Method

F1 score 0.52 0.48 0.43 0.64 0.45
Title Chapter 4: Geospatial Object Detection: PH-Based Method

(Syzdykbayev et al., 2020b).

F1 score 0.334 0.466 0.382 0.65 0.337
Title Bunn et al. (2019)

F1 score | 047 | | 053 |
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7.0 Geospatial Object Detection: Topological ML-Based Method

Including additional spectral channels beyond the conventional Red, Blue, and Green
(RGB) is an emerging and prevalent practice in ML models, particularly in geospatial object
detection tasks utilizing remote sensing datasets. Using diverse spectral bands provides a richer,
more detailed representation of the Earth's surface, enhancing the discriminatory power of
algorithms in identifying specific features or objects. With multispectral and hyperspectral remote
sensing, the addition of channels like Near-Infrared (NIR), Shortwave Infrared (SWIR), and
others, helps in capturing subtle differences that are indistinguishable in the traditional RGB space
(Wieland et al., 2023). The heterogeneity of spectral reflectance across various land cover types,
vegetation health statuses, water bodies, or built-up areas, can be effectively captured with a
broader spectral range, leading to improved detection accuracy.

The fusion of Digital Elevation Models (DEM), slope, other derivatives, and landform
boundaries, can create a useful combination for enhancing the precision and accuracy of ML
models in geospatial object detection tasks (Wieland et al., 2023). DEM and slope provide critical
topographical insights, enabling models to differentiate between varying landforms and land uses
based on terrain height and gradient information. Other derivatives, such as aspect, curvature, or
ruggedness, supplement these data by offering further details on surface characteristics, assisting
in the interpretation of complex landform processes and patterns (Wieland et al., 2023).
Implementing edge detection, particularly using a Laplacian filter, can introduce another level of
precision in geospatial object detection (Tchinda et al., 2021). The Laplacian filter is a second-
order derivative operator known for its proficiency in highlighting areas of rapid intensity change
in an image, which typically correspond to edges or boundaries (Szeliski, 2010b). These can be
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leveraged to delineate distinct ecological zones, transition areas, or human-made features,
providing valuable contextual information to help ML algorithms in feature extraction and object
identification (Xiao et al., 2021).

By integrating these edges or boundaries derived from Laplacian filter onto the existing
spectral and topographic data, we introduce another dimension to our model. This enhancement
allows the model to account for sharp changes or gradients that are typical of boundary areas
(Wieland et al., 2023). This integration can lead to a richer, more nuanced understanding of the
geospatial landscape, thereby enhancing the capability of ML models.

In this research task, we incorporate PH and Mapper, as an additional channel into existing
multichannel layer, as both are expected to enhance the detection and representation of geospatial
boundaries derived from the outputs of Laplacian filter. PH is proficient at highlighting boundaries
that exhibit circular patterns, thereby capturing geographic transitions that might be overlooked by
traditional edge detection methods. Mapper provides a graph-based visualization of area
boundaries, offering a detailed and intuitive understanding of the geographical context, and
unveiling the intricacies of the terrain. Both PH and Mapper rely on area boundaries derived from
Laplacian filter on RGB image, offering unique capabilities to interpret these boundaries with
greater precision and context.

To address RQ3 (see Chapter 3), we present a Topological ML-based geospatial object

detection method focused on the shape and location of geospatial objects in geospatial datasets.
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7.1 Methodology

The proposed method transforms topological information, derived by using PH and
Mapper, into a three-dimensional array, i.e., a multichannel image while preserving its location by
a subset of points. The multichannel image can be represented in a three-dimensional array and
combined directly with ML models with a CNN architecture. In other words, multichannel images
with topological information are used as feature inputs to ML-based models to detect geospatial
objects. The workflow of the method is shown in Figure 7.1. The first step of the workflow
involves extracting topological information by using PH and Mapper. The second step involves
implementing algorithms that transform the extracted topological information into a multichannel
image. The third step involves implementing Topological ML to detect geospatial objects where

the input feature is a multichannel image derived from the second step.

Input Data Step 1 Step 2 Step 3 Output

Transform outputs of PH tool
into multichannel image

Image —> Extracting topological —> (Algorithm 2) —> Implementing —> Boundaries of
information using topological geospatial
Mapper and PH tools Transform outputs of Mapper ML objects
tool into multichannel image
(Algorithm 3)

Figure 7.1 Workflow of the Topological ML-based geospatial object detection method

7.1.1 Extracting Topological Information from PH and Mapper

There are many ways to convert an image into a set of points such as using threshold values

or extracting linear features. With threshold values, a binary image is created where nonzero values
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are converted into a set of points (Tymochko, Munch, Dunion, Corbosiero, & Torn, 2020) and to
be able to focus on boundaries of geospatial objects, an LTFs extraction algorithm is needed. If
the input data isa DTM, an LTFs extraction algorithm is implemented (Syzdykbayev et al., 2020a).
If the input data is an RGB image, or a multichannel satellite image, an edge detection algorithm,
commonly used in CV, such as Gauss (Laplacian) filters (Szeliski, 2010b), is implemented.
Before using a set of points in PH and Mapper as input, the coordinates of the set of points,
which are in geographic coordinate system, must be transformed into a cartesian coordinate system
where the origin is the upper left corner of the input image. This transformation allows us to keep
track of the location of topological information and to overlay points onto images with
corresponding coordinates. Next, PH and Mapper are applied to the set of points to derive
topological information. For PH, the location of the subsets of points are derived and stored in
addition to the topological information. For Mapper, the location of the nodes and the number of
points inside each cluster in addition to the general information about the graph is derived and

stored.

7.1.2 Transforming Topological Information into a Multichannel Image

Both ML-based object detection and ML-based instance segmentation methods achieve
good performance in detecting geospatial objects. However, both are based on CNN architecture
and require a multichannel image as an input (Cheng & Han, 2016; Hafiz & Bhat, 2020). We
transformed topological information derived by using PH and Mapper into a multichannel image
while preserving the location of the subset of points that form topological information. Such a
transformation requires the shape of the multichannel image identical to the size of the input image.
Since the outputs of PH and Mapper are different, we implemented two algorithms, one to
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transform the output of PH into a multichannel image (Algorithm 1), and one to transform the
output of Mapper into a multichannel image (Algorithm 2).

Algorithm 1 transforms the output of PH, specifically connected components and circles,
into a multichannel image (Figure 7.2). The general logic of Algorithm 1 is to keep track of the
subset of points along with topological information. First, an empty multichannel image, and two
threshold values are initialized, one for maximum number of channels in the multichannel image,
and the other for minimum lifetime value. The size of each channel of the empty image is equal to
the size of the input image, and the number of channels is equal to the first threshold value. The
output of PH is sorted as lifetime value. Each point in the subset of points (dimension, birth time,
death time, lifetime) outputted by PH (shown in Figure 7.2 a) is overlaid onto the first channel of
the empty image with corresponding coordinates (Figure 7.2 b). If the points in a subset of points
intersect, each point in the subset is overlaid onto the next channel. The set of pixel values of an
empty image that are overlaid with the subset of points represent topological information such as

birth time or lifetime.

a b

Figure 7.2 Algorithm 1: (a) set of points with four circles and PD with subset of points that form topological

information (b) multichannel image with topological information
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Algorithm 1 : Transform outputs of PH tool into a multichannel image
Input:
M, < Outputs of the PH tool where d is a dimension;
Output:
L. + Multichannel image where ¢ is a number of channel;
Initialize:
overlap() < Overlap set of points into image L.;
cmazx < maximum number of channels;
I'min < minimum lifetime size;
d+ 0;
while d > 1 do
My + sort(My);
i+ 1;
I,[ S .'\1,[_,‘:
while M, # empty or lmin > lifetime(l;) do
c+ 1
overlapped < False;
while overlapped = True or cmax > ¢ do
if I; exists in L. then
| c—c+1;
else
L. + overlap(14, L);
M, +remove I; from My;
te—1+1;
overlapped < True;

end
end
end
d—d+1;
end

The output of Algorithm 2 is a graph with no overlapped nodes or edges (Figure 7.3). First,
an empty multichannel image is initialized, where the shape of each channel is equal to the shape
of the input image. Next, each node and each edge of the graph is overlaid onto an empty image
with corresponding coordinates (Figure 7.3 b). The set of pixel values of an empty image that are
overlaid with nodes or edges represent information such as degree values of nodes or lengths of

edges (Figure 7.3 b).
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Mapper: Betweenness
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a b

Figure 7.3 : Algorithm 2: (a) set of points with four circles and a graph that was created using Mapper (b)

multichannel image with topological information

Algorithm 2: Transform outputs of Mapper tool into a multichannel image

Input:
G + Graph: outputs of the Mapper tool;
Output:
L. + Multichannel image where ¢ is a number of channel;
Initialize:
overlapV () « Overlap node into image L.;
overlapE() + Overlap edge into image L,;
V' « List of nodes in G ;
E + List of edges in G ;
1+ 1;
c+ 1;
while V' # empty do
v+ Vi
L. « overlapV (v, L.);
V; <—remove v from V;:
1+ 1;
end
7+ 1;
c 4+ 2;
while E # empty do
e+ Ej;
L. + overlapE(e, L.);
E; +remove e from Ej;
JeJ+ L
end
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7.2 Datasets

To address RQ3, the derived multichannel image was used as a feature input to the ML-
based instance segmentation method. We used a geospatial dataset from the LandSlide4Sense
competition provided by the Institute of Advanced Research in Artificial Intelligence
(LandSlide4Sense, n.d.) as input.

The Landslide4Sense dataset is derived from a diverse set of landslide-affected areas
around the world from 2015 through 2021(LandSlide4Sense, n.d.). The dataset consists of training,
validation, and test sets containing around 3799 image patches. These image patches consist of
input images and labels. All bands in the dataset are resized to the resolution of ~10m per pixel.
The labels are masked with landslide boundaries where each label has 128 x 128 pixels. The input
images are multi-source satellite imagery with 14 channels that include (see Figure 7.4):

e Multispectral data from Sentinel-2 (B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12)

(see Table 7.1)

e Slope and DEM data from ALOS PALSAR

111



Table 7.1 Sentinel-2 Spectral Bands: Channel Specifications and Descriptions

Channels | Pixel size Wavelength Description

Bl 60 m 443 nm Ultra Blue (Coastal and Aerosol)
B2 10m 490 nm Blue

B3 10 m 560 nm Green

B4 10m 665 nm Red

B5 20m 705 nm Visible and Near Infrared (VNIR)
B6 20m 740 nm Visible and Near Infrared (VNIR)
B7 20m 783 nm Visible and Near Infrared (VNIR)
B8 10 m 842 nm Visible and Near Infrared (VNIR)
B8a 20m 865 nm Visible and Near Infrared (VNIR)
B9 60 m 940 nm Short Wave Infrared (SWIR)

B10 60 m 1375 nm Short Wave Infrared (SWIR)

B11 20m 1610 nm Short Wave Infrared (SWIR)

B12 20m 2190 nm Short Wave Infrared (SWIR)

The dataset was divided into training (2849) and testing (950) sets where training set was
used to train segmentation model and testing set was used to evaluate model’s performance. In

order to train the model, PyTorch, an open-source ML framework (Paszke et al., 2019) was used.
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a b

Figure 7.4 (a) multichannel satellite imagery and (b) label pair (mask) of the geospatial dataset from the

LandSlide4Sense competition (LandSlide4Sense, n.d.)

7.3 Experiment

We experimented with training and testing of various ML models under diverse parameters
and differing numbers of input channels (see Table 7.2). To ensure comprehensive model learning
and generalization, we trained each model iteration for a total of 300 epochs. In the ML-based
segmentation model, we utilized UNET as the encoder, VGG11 as the decoder, and Jaccard Loss

as the loss function. The models were not pretrained.
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Table 7.2 Experimental setups and configurations for image encoding and decoding

Encoder | Decoder | Loss Number | Channel Name Number of
Name Name function of Channels
Epochs

UNET | VGG11 | Jaccard 300 RGB 3
Loss

UNET | VGG11 | Jaccard 300 RGB, Slope, DEM 5
Loss

UNET | VGG11 | Jaccard 300 ALL Channels 14
Loss

UNET |VGGI11 | Jaccard 300 RGB, + Edge 3
Loss

UNET | VGG11 | Jaccard 300 RGB, Slope, DEM+ Edge 6
Loss

UNET | VGG11 | Jaccard 300 ALL Channels +Edge 15
Loss

UNET | VGG11 | Jaccard 300 RGB + PH 7
Loss

UNET | VGG11 | Jaccard 300 RGB, Slope, DEM + PH 9
Loss

UNET | VGG11 | Jaccard 300 ALL Channels+ PH 18
Loss

UNET | VGG11 | Jaccard 300 RGB + Mapper 7
Loss

UNET | VGG11 | Jaccard 300 RGB, Slope, DEM + Mapper 9
Loss

UNET | VGG11 | Jaccard 300 ALL Channels + Mapper 18
Loss

UNET | VGG11 | Jaccard 300 RGB + PH + Mapper 11
Loss

UNET | VGG11 | Jaccard 300 RGB, Slope, DEM+ PH + Mapper | 13
Loss

UNET | VGG11 | Jaccard 300 ALL Channels + PH + Mapper 22
Loss

UNET | VGG11 | Jaccard 300 ALL Channels + PH + Mapper + | 23
Loss Edge

Our methodology specifically leverages three types of information derived from the source

data, divided into distinct subsets. The first subset solely consists of RGB (Red, Blue, and Green)
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channels, providing a baseline performance with just the primary color channels. The second
subset extends this to include topographic features, namely, slope and DEM data, in addition to
RGB channels, as depicted in Figure 7.5. Lastly, we used a more comprehensive approach by
utilizing all available channels from the source data as model inputs. It is important to note that
these scenarios do not involve any embedding of additional information into the source data. They
provide a comprehensive understanding of how inclusion of different data subsets as inputs affects
the performance of ML models in geospatial object detection tasks. In this first part of the
experiment, rather than augmenting the source data, we focused on experimenting with various
subsets of it. The outcomes of these experiments provide insights into both the advantages and
potential limitations of incorporating increasingly complex input data into the models.

The second part of the experiment is anchored on the above three subsets of multichannel
images. We performed several additions into each subset of multichannel image by incorporating
diverse layers of information into the source data. These layers, sourced from Laplacian filter, PH,
and Mapper, are described as follows:

e Laplacian Filter is a single-channel addition emphasizing area boundaries. The effects

of this layer and its contribution are visualized in Figure 6.5.

e PH contains a four-channel layer. The primary function of this layer is to accentuate

areas marked by circular boundaries, revealing underlying topological nuances.

e Mapper contains a four-channel layer. This layer provides a graph-based perspective

of the area boundaries, offering a unique analytical angle.

e Combining the outputs of PH and Mapper results in an eight-channel layer.

Overall, we executed 16 experiments (Table 7.2), each adding complexity and depth layers

to the geospatial object detection task. The results of these experiments provide valuable insights
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into the impact of these layered augmentations on the performance of the ML models, and how

they contribute to the efficacy and accuracy of geospatial object detection.
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Figure 7.5 RBG, slope and DEM subsets of the source data
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The performances of predicted images against ground truth provided by LandSlide4Sense
competition were evaluated by using four common validation metrics: accuracy, precision, recall,
and F1 score. In addition, F1 score was used to find a winner in the LandSlide4Sense competition.
Hence, by using F1 score, we can compare results of the Topological ML-based method with the
winners of the LandSlide4Sense competition. We only show the results of F1 score and the results

of the other validation metrics are available in Appendix C.

7.4 Results

Our experimental design aimed to provide a comprehensive understanding of how the
inclusion of different data subsets, specifically adding layers with topological information, as
inputs affects the performance of ML models in geospatial object detection tasks. We conducted

16 distinct sets of evaluations, and the results are shown in Table 7.3 and in Figure 7.6.
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Table 7.3 Experimental configurations and F1 scores for encoder-decoder models after 300 Epochs

Encoder | Decoder | Loss Channel Name Number | F1 score | F1 score
Name Name function of of of Test set
Channels | Training | after 300
set after | epochs
300
epochs
UNET VGG11 | Jaccard RGB 3
Loss 0.805 0.627
UNET | VGG11 | Jaccard RGB, Slope, DEM 5
Loss 0.771 0.694
UNET VGG11 | Jaccard ALL Channels 14
Loss 0.749 0.717
UNET | VGG11 | Jaccard RGB, + Edge 4
Loss 0.788 0.628
UNET | VGG11 | Jaccard RGB, Slope, DEM+ | 6
Loss Edge 0.792 0.678
UNET | VGGI11 | Jaccard ALL Channels +Edge | 15
Loss 0.792 0.717
UNET VGG11 | Jaccard RGB + PH 7
Loss 0.779 0.623
UNET | VGG11 | Jaccard RGB, Slope, DEM + | 9
Loss PH 0.804 0.666
UNET VGG11 | Jaccard ALL Channels+ PH | 18
Loss 0.767 0.717
UNET | VGG11 | Jaccard RGB + Mapper 7
Loss 0.813 0.601
UNET | VGG11 | Jaccard RGB, Slope, DEM + | 9
Loss Mapper 0.774 0.684
UNET VGG11 | Jaccard ALL Channels + |18
Loss Mapper 0.790 0.717
UNET | VGG11 | Jaccard RGB + PH + Mapper | 11
Loss 0.812 0.604
UNET | VGG11 | Jaccard RGB, Slope, DEM+ | 13
Loss PH + Mapper 0.807 0.662
UNET | VGG11 | Jaccard ALL Channels + PH | 22
Loss + Mapper 0.794 0.721
UNET VGG11 | Jaccard ALL Channels + PH | 23
Loss + Mapper + Edge 0.775 0.716
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7.5 Discussion

From the analysis presented in Figure 7.6, two notable trends can be observed in the testing results:

e Horizontal Trend: Across all cases, there is a consistent increase in F1 score from left to
right on the testing set. This upward trend signifies that the inclusion of additional channels
like DEM, slope, NIR, and SNIR effectively enhances the detection accuracy of geospatial
objects.

e Vertical Trend: When observing the results from top to bottom, F1 scores remain
unchanged. This stability indicates that while the addition of channels such as DEM, slope,
NIR, and SNIR improves accuracy, the incorporation of extra layers like Laplacian filter
and those with topological information does not provide a corresponding increase in

detection accuracy.

Further insights into the effectiveness of topological layers were gained through an in-
depth analysis of a selected image from the testing set, processed after 300 training epochs and
presented in Figure 7.7 (a, d, g, j). In these images, the modeling was performed using only RGB
data, with and without additional layers such as Laplacian filter and topological layers, and without
including features such as DEM, slope, NIR, or SNIR. Upon careful examination of these images,
distinctive patterns emerged, illuminating the nuanced impact of incorporating topological layers
into the model. The contrast between the images with and without these topological enhancements
offers a tangible demonstration of how specific layers interact with the underlying RGB data,
casting new light on the potential value of topological information in the detection and

characterization of geospatial objects.

122



With topological layers, the positional results were able to accentuate the exact location of
loops present in the RGB image, even if it was generalized in the mask (Figure 7.7 Q).
Comparatively, in the absence of the topological layer, the model failed to highlight the loops and
instead, merely attempted to conform to the mask results (Figure 7.7 a). This observation
emphasizes that the inclusion of topological layers contributes to a more precise representation of
detected objects' shapes, particularly when those objects possess an internal void or hole. The
analysis illustrates the intricate relationship between different layers and channels, emphasizing
the complexity of geospatial object detection. While certain additional channels prove beneficial,
the use of topological layers, despite their capacity to refine object shapes, does not necessarily

translate to improved overall detection accuracy.
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Figure 7.7 RGB image and predicted results of the model after 300 epochs of training

In addition to the previously discussed trends and findings, it is crucial to acknowledge the
characteristics and limitations of the dataset used, which was derived from Sentinel-2 imagery. A
notable constraint of this dataset is the absence of specific geographical coordinates. This
limitation poses challenges in unequivocally determining whether the geospatial features identified
by the ML models are indeed landslides.

During the experiments, detailed in Appendix B, it was observed that the trained models
sometimes incorrectly classified bare earth areas as landslides. This misclassification can be

attributed to the nature of the training labels, where landslides are consistently depicted as bare

128



earth regions. Consequently, the models learned to associate this specific characteristic with
landslides. When topological layers were incorporated into the models, a distinct pattern emerged.
The models tended to focus on identifying and delineating the boundaries of circular features
within the terrain, based on the premise that certain landslides exhibit circular patterns, albeit their
specific shapes often generalized in the training labels. As a result, the labels may not accurately
represent the intricate circular details within the actual landslide boundaries (refer to Figure 7.7
for illustration).

This methodology presents an additional challenge. There exist bare earth areas that
inherently contain circular features but are not classified as landslides (as indicated in the labels).
The ML models trained with topological information layers tend to identify these areas as potential
landslides due to their circular content and bare earth texture, leading to false positives (as
exemplified in Figure 7.8). These observations underscore the complexity of applying ML models
to detect geospatial objects, particularly when dealing with datasets that lack detailed geographic
coordinates and when using labels that may oversimplify or misrepresent the terrain's true
characteristics. The findings also highlight the potential of topological information in improving
detection accuracy, while simultaneously revealing the challenges in differentiating between true

landslides and similar-looking geographical features.
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Figure 7.8 RGB image and predicted results of the model after 300 epochs of training

In this chapter, we investigated the potential enhancement of geospatial object detection
accuracy through the utilization of multichannel images in ML models, which include topological
information and its location. The central hypothesis posited that integrating topological
information into ML-based models could improve object detection accuracy, giving rise to specific
research questions focused on the output, sensitivity, and representation of topological

information.
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8.0 Conclusions, Limitations, and Future Research

8.1 Conclusions

This thesis addresses the pressing challenges in geospatial object detection, particularly the
escalating volume of geospatial data and the need for more effective processing. The main
hypothesis in this thesis is that incorporating topological information in knowledge-based and ML-
based methods will detect geospatial objects more accurately than when such information is not
used. Three research questions guide the exploration in this thesis and PH-based, Topological KB,
and ML-based geospatial object detection methods were developed and evaluated. Three sets of
experiments, each addressing one of the three research questions, were conducted. The results from
the experiments are:

e First, (in Chapter 4) we conducted a series of experiments where PH-based geospatial
object detection method is used to detect landslides. We derived candidate polygons using
PH and implemented filters based on topological information. In this experiment, we got
better results than existing methods, though we did encounter FP. This observation led us
to introduce additional filters.

e Second (in Chapter 6) we conducted a set of experiments where Topological KB geospatial
object detection method is used to detect landslides. In this method, topological,
geometrical, and contextual information was used for selecting candidate polygons. In this
experiment, we observed that the integration of geometrical and contextual information

into candidate polygons, that were derived based on their topological features using PH,
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led to enhancements in accuracy but the accuracy was not improved by incorporating
topological information.

e Third (in Chapter 7) we conducted a set of experiments by integrating topological
information as an additional channel into multichannel image. Then we trained and tested
various ML models under diverse parameters and differing numbers of input channels. In
this experiment, we observed that in Topological ML, integration of topological
information did not improve accuracy, but it has the potential to highlight object
boundaries, adding a layer of precision to the detected objects, a fact that becomes

particularly pronounced when the object possesses unique topological characteristics.

In summary, the test of the hypothesis indicates that incorporating new topological
information, beyond the topological information embedded in the process of PH, does not improve
detection accuracy of geospatial objects. This was evidence from the results of all experiments

conducted by using PH, Topological KB, and Topological ML for detection of landslides.

8.2 Contributions

This thesis makes several contributions to the field of geospatial object detection:

1. Demonstrated the effectiveness of PH-based methods in detecting landslides, with an emphasis
on integrating topological filters for improved accuracy.

2. Developed a novel LTFs extraction algorithm that is based on human perception of terrain.

3. Explored a Topological KB geospatial object detection method that uses combined topological,

geometrical, and contextual information.
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4. Explored the integration of topological information as an additional channel in ML models,
highlighting its potential in improving object boundary precision.

5. Developed algorithms for transforming topological data into a multichannel image format
suitable for ML applications.

6. Provided a thorough evaluation of the developed methods, offering insights into the role and

impact of topological information in geospatial object detection.

8.3 Limitations

The thesis’s limitations are:

1. The benchmarking approaches utilized to evaluate our proposed methods were suboptimal. In
the Topological KB geospatial object detection method, we primarily relied on historical
landslide locations furnished by official sources. Several of these locations were sourced from
digitized historical landslide maps. Such a process introduces potential errors at various stages,
such as during the original map creation and subsequent digitization.

2. The masks provided for the LandSlide4Sense competition posed challenges in evaluating the
true capabilities of topological data. For instance, as illustrated in Figure 7.7, while our
topological approach was adept at identifying distinct landslide boundaries, the masks used for
assessing accuracy were rather generalized. This became evident, especially when topological
information could detect unique features like holes within landslides which were not
acknowledged by the generalized competition masks.

3. Our experiments were constrained using geometrical- and contextual-based rules that were

tailored for specific study areas. These rules, derived from a literature review, represent just a
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fraction of the potential detection methodologies. Numerous alternative rules have been cited
across various papers, but we were unable to incorporate them owing to a lack of requisite

data.

8.4 Future Research

While this thesis explored the use of topological information in geospatial object detection
methods, the scope of exploration and experimentation can be further expanded. Highlighted

below are some prospective research directions based on the work and findings of this thesis:

1. A pivotal direction for future research is revisiting the experiment presented in Chapter 6. By
securing a more optimal ground truth dataset, we can better understand the efficacy of our
methodologies and validate our findings further.

2. Current LTFs extraction algorithms have shown potential but also revealed areas for
refinement. Leveraging ML models could offer a more effective algorithm for deriving LTFs.
Additionally, such models can be tailored to potentially minimize noise and reduce FP rates.

3. Diverse rules, methodologies adapted from varied sources, and experimentation with new
detection parameters to achieve improved geospatial object detection results will need to be
explored.

4. In the realm of Topological ML, a promising avenue is the design of ML models that can
inherently derive topological information from a provided image. Instead of relying on pre-
existing topological information in a multichannel image, these models would generate

topological layers automatically.
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Appendix A Computation of PH and Mapper

Appendix A.1 Simplicial Complexes

Simplicial complex and its properties are utilized to derive topological information using
the PH. The construction of the simplicial complex from geospatial data is discussed in the next
section. Simplicial complexes are used to approximate complicated shapes. They highlight the
structure of the data and the underlying topological information at different scales (Salnikov,
Cassese, & Lambiotte, 2018). In other words, to get information about the shape of the object,
instead of using every element of the object, the object can be sampled by using a set of points
which then they are used to construct simplicial complexes. Formally, a simplicial complex K is a
topological object that is constructed as a union of points, line segments, triangles, tetrahedra, and
higher-dimensional geometrical objects. The building block of a simplicial complex is a simplex
(simplices if plural). A simplex is an analog of a point, line segment, and triangle. The dimension
d of a simplex (d-simplex) is identified by the number of elements in the set (Otter et al., 2017).
For example, if a simplex consists of two elements, its dimension d is equal to 1, if a simplex
consists of three elements its dimension d is equal to 2, and so on. More information about
simplicial complexes can be found in (Edelsbrunner & Harer, 2022; Hatcher, 2005; Otter et al.,
2017; Salnikov et al., 2018).

In general, a d-simplex, called gy, is the convex hull of d + 1 linearly independent vertices
which exist in a d-dimensional Euclidean space. A 0-simplex, gy, is a point consisting of one
vector {v,}; a 1-simplex, oy, consisting of two vectors {v,, v, } connected by a line segment; a 2-

simplex, a,, consisting of three vectors {v,, v;, v, } connected by a three-line segment or a triangle;
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a 3 -simplex, a3, consisting of four vectors {v,, v;, v,, v3} connected by four triangles or a

tetrahedron (Appendix Appendix Figure ), and so on.

V3
V2
Yo Vo Vi Vo vi Vo V2
V1
0-simplex 1-simplex 2-simplex 3-simplex (tetrahedron)

(point) (line) (triangle)

Appendix Figure 1 Example of simplices

The simplex has boundaries called the faces of a simplex. A face of d- simplex ay, is a
sub-simplex o, where f < d, is the simplex generated by a subset of the vertices of o,. For that
reason, if one of the vertices v; from d-simplex is deleted, the face of the d-simplex will be created.

d — simplex = {v, ....,v4}
(d — 1) — simplex = {v,, ... 7, ..., v4}
For example, the face of a triangle (2-simplex or o) that consists of vertices {v,, v,, v,} can be a

line 1-simplex (a,) {v,, 77, v, } and determined by the remaining vertices {v,, v,}. The symbol 7;

means that v; was removed from the set.

A simplicial complex K is a collection of the above-mentioned simplices, but these
simplices need to be combined in a certain way that is based on specific conditions (Salnikov et

al., 2018):
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e If asimplicial complex K contains simplex o, then every face of a simplex ¢ also belongs
to K
e If any two simplices g, and o, in K intersect g, No, and a,No,=@, then their intersection

is a common face of both ¢; and o,

In other words, there are no missing building blocks in simplicial complex K. For example,

simplicial complex K shown in Appendix Figure 2 should contain the following vertices:

K ={{vo, 1,3 ), (Vo, V1), Vo, V2), (V1, V2), V2, V3), (2, Va), V3, Va), (Vo). V1), (V2), (V3), (Va)}

V1

V2 V4

Vo V3

Appendix Figure 2 Simplicial complexes K

Simplicial complexes have specific properties that will allow us to derive topological
information. These properties are the orientation of simplicial complexes, breaking into chain

groups, and boundary operations.

Orientation of simplicial complexes. Each simplex in the simplicial complex has a property,
orientation, which is defined by the order of its vertices. If a d-simplex has a fixed orientation, d-
simplex will be denoted as oriented simplex “a. The oriented simplex has a specific property. The

property is that switching two vertices inside the d-simplex introduces a minus sign, for example,

[UOI (41 iv2] = _[UOlvz lvl]
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and simplicial complexes with different orders are not equal. Using this property, the d-simplex
with integer coefficients can be added (Salnikov et al., 2018). In a way, one can think of an oriented
simplex as representing an action. For example, “a; [v,, v4] represents moving from v, to v, so
moving from v, to v, and then from v, to v,, is the same as adding the two movements, which is

equal to staying in one place:

[vo, V1] + [v1, Vo] = [vg, V1] — [V, 1] = 0
From the above information, an oriented simplicial complex is a simplicial complex K with
oriented simplices and denoted by K. For example, oriented simplicial complex K (Appendix
Figure a) contains the following vertices:

K= {[vo, v1,v2], [vo, v1], [vo, 2], [V1, V2], [v2, V3], [V2, V4], V3, v4l, [Va, vs], [vol, [v4], [v2],

[vs], [val}

Breaking into chain groups. A simplicial complex can be divided into groups of simplices with

similar dimensions. In other words, each group is composed of a set of all d-simplices (Salnikov

et al., 2018). For example, a simplicial complex Kcan be divided into several chain groups
(Appendix Figure 3) and for any group, the d-th chain group is the sum of simplexes inside each

chain group.

C,(K) = [vo, v1, v,] (Appendix Figure 3b)

C1(K) [vo, v1], [v1, v2], [V, vol, [V, v3], [v3, val, [va, v2] (Appendix
Figure 3c)

Co(ﬁ) = [vol, [v1], [v2], [v3], [va] (Appendix Figure 3d)
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V1

Appendix Figure 3 ((a) an oriented simplicial complex K; (b) Chain group C, a set of 2-simplices; (c) €, a set

Boundary operations. There are several properties of simplicial complexes that are related to
the sign of every other face. The equation to calculate the boundary of a simplex can be written as

follows:

For example, using the equation presented above, the boundary of the 2-simplex, a triangle, can

v Vo @i V1
Vi @i V2
v e » V2 @il V0
V2 @l V3
v y Vs @i V4
0

Vi @il V2

a K b: C,(K) c: ¢, (K)

of 1-simplices; (d) C, a set of 0-simplices

k

(3 = Z(—ni o, B0

i=0

be calculated as follows (Appendix Figure 4):
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Il
IS
i
SRS
S
+ |
S
v
SRS
el
+ + t
<SS
S
<
p—
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9([vo, v1,v2])=
([v1, 2]+ [v2, vol+[vo, v1])

Vi Vi — Yo Vi

»

Appendix Figure 4 Boundary operation on 2-simplex
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The second property is that in the chain group the boundary of the boundary is equal to 0 (Equation

A.2) and the boundary of the 0-simplex gy is equal to O:

0?2 =0andd, =0 (A.2)
For example, the boundary of the boundary of the 2-simplex, a triangle (Appendix Figure 4), can
be calculated as follows:
0% ([v, v1, v,1)=0([v1, vo]+[v, Vo |+ Vo, V1])=(+v1 -V, +v,-v9Hv4-v,)= 0
The third property is that the boundary of the chain group C; is included inside chain group

C4—1. Using these properties, the simplicial complex chain can be written as the following:
Cgs1 = C4—>Ci_qu.. 2 Cy >0 (A.3)

For example, if d = 2, the boundaries of triangle CZ(I?) (Figure 2.6b) are included inside Cl(l?)

that are lines (Figure 2.6¢), and the boundary of the point C, (I?) is equal to 0.

Appendix A.2 Construction of Simplicial Complexes from Geospatial Datasets

To construct simplicial complexes from a geospatial dataset, two tasks must be performed:
(1) convert the geospatial dataset into a set of points with corresponding distance information and
(2) select a simplicial complex type. There are different types of simplicial complex, each with
different properties. The common simplicial complexes are Cech complex, Vietoris-Rips (VR)
complex, alpha complex, and witness complex (Pun et al., 2018). We will discuss two more
common simplicial complexes that are used in the computation of PH (Otter et al., 2017). These

two complexes are VR complex and alpha complex. We discuss these two complexes because the
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VR complex is simple and practical to explain, and the alpha complex is computationally efficient
and is used in experimentation (see Chapter 4).

VR complex is a complex that is practical from a computational standpoint and explanation
(Zomorodian, 2010). To construct VR complex from a set of points P, first, each point is initialized
as 0-complex. Then, a parameter r as the radius of the circle that is created around each point
should be defined (Appendix Figure 5a). Next, for all subsets in the set of points, if the distance
between two points is less than 2r, these points are connected and create a line segment. If the
pairwise distance between three points is less than 2r, these three points create a triangle, and so
on. VR complex is calculated by using the following equation (Zomorodian, 2010):

VR,.(P) = {o € P |distance(v;,v;) < 2r,v; #v; €0} (A.4)

In other words, first circles with a radius of  around each point are created. Then, if these
circles intersect, simplices with these points will be created (Appendix Figure 5b).

Alpha complex relies on a distance parameter r and is restricted by a Voronoi diagram 1,
(Pun et al., 2018). A Voronoi diagram divides an area with a set of points P into polygons where
each polygon contains exactly one point P; and every point inside each polygon is closer to the
point P;. Alpha complex is calculated by using the following equation (Aurenhammer, 1991):

A;(P) = {o c P|distance(v;,v;) <2r n V,} (A.5)

In other words, the VVoronoi diagram allows for the restriction of the dimension d-simplices based
on the dimension of the input geospatial set of points (Appendix Figure 5c).
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Appendix Figure 5 Simplicial complex construction: (a) set of points with a circle around each point with a

radius of r; (b) a VR complex created from the set of points; (c) an Alpha complex created from the set of

points

Appendix A.3 Persistent Homology

PH is applied to obtain topological information from data by studying the corresponding

data connections and gaps (Otter et al., 2017). PH utilizes all three above discussed properties of

simplicial complexes to derive topological information at different dimensions. To derive

topological information from a given dataset, Chazal & Michel, (2021) presented the basic pipeline

with four steps as follows (Appendix Figure 6).

1.

Input to the PH a finite set of points with corresponding distance information (Carlsson,
2009). The distance metric depends on the application, and the choice of the correct metric
is essential. For example, protein data metrics can be measured in nanometers, and metrics
for satellite image analysis can be measured in meters.

Construct a nested sequence of simplicial complexes from the set of points using different

values of r (Equation A.10).
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3. Derive topological information from the nested sequence of simplicial complexes. This
step consists of two functions:

C. homology group returns topological information given the simplicial complex that was
constructed using the r.

D. persistent homology utilizes homology group with a different value of r, and records
each change. In other words, if the parameter r is changed, the topological
information associated with the newly created simplicial complexes will change as
well, and this second function records these changes.

4. Use the extracted topological information as a feature or descriptor for the dataset to assist
in better understanding the dataset. This topological information can be visualized or can

be a feature used in ML models.

Input Data Constructing Simplicial Del‘lqug Topploglcal .
Finite set of points) Complexes Information Interpretation
(Finite pomnis (Alpha complexes) (Barcodes)

Appendix Figure 6 PH pipeline (Chazal & Michel, 2021)

Homology group. In general, computing homology groups involve identifying holes in a
specific dimension d in each oriented simplicial complex K, where holes in dimension 0 are
connected components (Otter et al., 2017). To compute homology groups, two operations need to
be performed. The first operation is identifying all cycles in the given chain group C,. These cycles

are identified by selecting simplices whose boundary is equal to 0 and defined as:

Zy=ker(94)={o € C4(K)|0(c)=0} (A.6)

In other words, all circles that exist in chain group C,(K) should be identified.
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The second operation is identifying boundaries of Cd+1(1?), defined as:

By = im(4+1) = {9(0| 0 € Capr(K)} (A7)

From the relation between Z; and By, every element of B, is an element of Z;. B; and Z; contain
all the necessary information to compute the holes in K. Intuitively, the cycles that exist in C (I?)

but are not the boundaries of Cd+1(f3) are holes in the d dimension of K can be calculated using

the following equation:

H, = Za (A.8)

Bg
Finally, to use outputs of the homology group, Betti numbers g that carry topological information

need to be derived.

Betti number is the number of holes that exist in a specific chain group C,. For example, the Betti

numbers from small dimensions have geometric interpretations:

o ﬁo(l? ): connected components
e Bi(K): circles in two-dimensional space

o [32(1?): voids in three-dimensional space

Persistent homology. The construction of simplicial complexes is dependent on the value of
parameter r. If parameter r is equal to 0, every point is isolated (Appendix Figure 7a), and B, (K)
will be equal to the number of points and ﬁl(l?) and ﬂz(ﬁ) will be 0. With a large value of the

parameter r, ﬁo(l?) will be 1 and every point will be connected (Appendix Figure 7d). Identifying
the correct value of parameter r is vital to extract the topological information of the data. For

example, in the set of points shown in Appendix Figure 7 (a), if parameter r is set to 1, two small
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circles are created (Appendix Figure 7b). However, if parameter r is set to 2, two small circles
disappear, and one large circle is created. PH uses all possible values of parameter r and captures
how the homology of the complexes K changes as the value of parameter r increases, and it detects

the features that ‘persist’ across changes in the values of parameter r.

To track these changes, a nested sequence of simplicial complexes K, called filtered simplicial
complexes, is required, and can be defined as:
I?ocl?lc-l?icl_(}c---cl?lzl? (A.10)
A filtration complex is a sequence of simplicial complexes generated by continuously
increasing the parameter r (Appendix Figure 7). In other words, a series of VR or Alpha complexes
I?i with different values of the parameter r can be constructed from a set of points and can be

defined as:

0<i<j<li
where [ is the largest value of parameter r. Then, homology can be applied to record changes in

Betti numbers S, with function f; ;,while the value of parameter  changes from i to j. The function
can be written by using the following equation:
fij H(K) — H(K) (A.11)
and this function records the following features:
e Homology groups that are born at i
e Homology groups that persist fromi — j

e Homology groups that die at j

Each homology class can be identified with a birth time and a death time. Features that are

born and die soon after, are often considered to be topological noise, whereas features that persist
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for an extended period are considered to be true features of the underlying structure (Appendix

Figure 7c).
- 0JONO
. . ® ®
. * . . * . @ .) ./\_—>
. . . . (’)®® Cp\.)
a b c d
L I_()l,r:() L I_<)2,r =1 o I?3,I‘=2 L 1?4,T'=00
o Bo(K)=18 o Bo(K)=12 o Bo(K)=1 o Bo(K)=1
e Bi(K)=0 e Bi(K)=2 e pi(K)=1 e Bi(K)=0

Appendix Figure 7 A nested sequence of simplicial complex K: (a) simplicial complex with parameter r = 0;
(b) simplicial complex with parameter r = 1; (c) simplicial complex with parameter r = 2; (d) simplicial

complex with parameter r = oo

A nested sequence of simplicial complex K: (a) simplicial complex with parameter r = 0; (b)
simplicial complex with parameter r = 1; (c) simplicial complex with parameter r = 2; (d)

simplicial complex with parameter r = oo

Appendix A.4 Mapper

Mapper is based on topological ideas where a notion of closeness is preserved but large distances
can be discarded. In comparison with the PH, where a series of nested subcomplexes were created
and analyzed to derive topological information, Mapper is designed to produce a single low-

dimensional simplicial complex, in a graph, from which information about the underlying data can
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be extracted (Singh et al., 2007). The input to the Mapper, similar to the PH, is a set of points P.
More information about Mapper can be found in (Ristovska & Sekuloski, 2019; Singh et al., 2007).

The computation of the Mapper consists of three steps (Singh et al., 2007):

1. Mapping an input set of points into a lower-dimensional space by implementing a function

f, called ‘filter’, that maps a set of points into a set of real numbers:

f(P) =R (A.12)
If the higher dimensional dataset is given, the dimension needs to be reduced using
dimensionality reduction algorithms such as Isomap, PCA, or t-SNE (Van Der Maaten,

Postma, & Van den Herik, 2009).

2. Constructing a cover U of the space, in the form of a set of overlapping intervals that have
same length. A cover U of f(P) is an indexed set of open sets endowed with the standard
topological rule such that:

re =\ Ju (AL3)
i€l
where [ is the number of covers and the topological rule states that the union of all covers
should contain all the points. In other words, after mapping a set of points into real
numbers, the whole area needs to be covered with polygons where the union of all polygons
should include all points (Appendix Figure 8). This requires the selection of two
parameters: the dimension of the cover and the overlapping interval. For example, the set
of points in Appendix Figure 8 (a) can be divided by using the overlapped blocks in

Appendix Figure 8(b) or by using the overlapped squares in Appendix Figure 8 (d).
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3. Selecting parameters and implementing a clustering method to cluster points inside each
cover patch U;. For clustering, the density-based spatial clustering of applications with
noise (DBSCAN) algorithm can be used since the number of clusters inside each cover
patch U; is unknown (Schubert, Sander, Ester, Kriegel, & Xu, 2017). Once the points are
clustered, each cluster is converted into nodes and an edge between each pair of nodes with

overlapped points is created (Appendix Figure 8c, e).
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Appendix Figure 8 Step-by-step computation of Mapper: (a) set of points P; (b) set of
points in divided using overlapped blocks; (c) a graph, the output of the Mapper created by
using overlapped blocks; (d) set of points in divided by using overlapped grids; (e) a graph,
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Appendix B Additional Experiments

Appendix B.1 Topological KB Method: Candidate Polygon Selection via ML Models

In Chapter 6, we highlighted the feasibility of generating candidate polygons using the PH.
This method aids in identifying geospatial objects from these polygons, leveraging embedded
topological, geometrical, and contextual information. However, implementing this method
necessitates a comprehensive set of rules and domain-specific knowledge about the objects being
detected. In the context of this thesis, we focused on landslides as our target geospatial objects.
Through an extensive literature review, we derived a specific set of rules. During our evaluation,
the identified landslides were cross-referenced with a ground truth, which pinpointed the locations
of existing landslides.

From our exploration in Chapter 6, we delved into the process of generating candidate
polygons using PH and embedding geometrical and contextual information into each candidate
polygon. This initiated further experimentation: we hypothesized the deployment of ML models
in formulating detection rules, when applied to a set of candidate polygons enriched with
embedded geometrical and contextual information and benchmarked against a recognized ground
truth, will significantly improve the accuracy of geospatial object detection.

In other words, if we have candidate polygons derived from PH with embedded
geometrical and contextual information and ground truth, can we convert these problems into ML
classification problem and detect geospatial objects. We conducted experiments with the following

steps:
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Using the boundaries of the study area and ground truth polygons, we generated random
polygons of varying sizes in regions void of landslides (Appendix Figure 9).

. Geometrical and contextual information were embedded into these non-landslide polygons for
each study area.

. Similarly, we embedded geometrical and contextual information into the landslide polygons,
using them as our ground truth.

Both sets of polygons were combined, and individual labels were assigned: '0' for non-landslide
polygons and '1' for landslide polygons (Appendix Figure 10).

. With the geometric and contextual data paired with their labels, we trained our ML model.

. We employed the trained ML model to classify the candidate polygons, sourced from the PH
and augmented with embedded geometrical and contextual information.

. The experiment's outcomes were evaluated against the ground truth. We leveraged the same

evaluation metrics that were introduced in Chapter 6 for consistency and precision.
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Appendix Figure 9 Study Area 1 with Generation for Non-Landslide polygons
U v W X Y Z AA AB AC AD AE AF AG AH Al
VARIANCE_N MEAN_FLOW MEDIAN_FLO MIN_FLOW_ MAX_FLOW_ RANGE_FLO VARIANCE_F STD_FLOW_D

1ovi STD_NDVI _DIR W_DIR DIR DIR W DIR LOW DIR IR Width Length  Ratio PX _SIZE [TTER VALUE

1 0.002153617 0.046407081 26.93244506 25.05882835 5.805775547 67.02630615| 61.12053061| 143.6535962 11.98555782 444.4741 1067.094 2.400801 10 10 1
3 0.003881 0.062297669 15.62088053 16 1 128 127. 143.6598362 11.98581813 487.5254 720.092 1.477035 1 3 1
5 0.000996612 0.031569161 15.23971715  15.4348197 1 91.76817322 90.76817322 143.661902 11.9855043 19904 2079.933 1.044986 1 10 0
3 0.000251191 0.015849009 5.544485487 2.387126684 1 94.37561798 93.37561798 143.6710525 11.98628602 306.9459 1194.441 3.891373 5 1 0
L 0.000108258  0.01040471 38.34770485 32 32 64 32 143.6857468 11.98689896 94.70747 399.9548 4.223054 10 10 1
7 0.002303745 0.047997342 9.011320438 4 1 123.6469116 1226469116 143.7164637 11.98818017 702.2464 962.8333 1.371076 5 2 0
3 8.91E-05 0.00943632  124.244524 128 64 128 64 143.7423647 1198926039 79.97486 147.2453 1.841145 5 20 1
3 5.54E-05 0.007442999 117.2968161 121.6400566 75.14147186 128 52.85852814 143.7651191  11.9902093 27.063 50.83403 1.878359 10 15 1
3 0.000554357 0.023544792 40.28805551 36.23727036 22.95874023 64 4104125977 143.7725031 1199051722 89.88769 160.8895 1.789895 10 20 1
3 0.000313866 0.017834306 15.24586818 16 1 64 63 143.8099851 11.9920801 234.6459 738.5267 3.14741 1 2 0
3 4.08E-05 0.006384907 34.53256605 32 15.28532696 64 48.71467304 143.8229527 11.99262076 63.58731 116.9901 1.839834 10 5 1
L 0.005557662 0.074549729  13.5729639 14.53873062 1 49.30163193 48.30163193 143.8468897 11.99361871 252.6578 522.0702 2.066313 5 20 0
L 0.000707354 0.026596123 25.20829412 23.86627293 8 63.71922684 55.71922684 143.8548566 11.99395084 86.48135 163.3542 1.833395 1 1 1
2 1.956-05 0.004410691 37.15379361 32 16.64076042 64 47.35523958 143.8576083 11.99406555 58.82152 68.77607 1.149688 1 2 1
1 0.003115621 0.055817747 9.518971435 7.428722143 1 128 127 143.8718094 1199465753 2071.857 2562.741 1.23693 1 2 0
3 7.246-05 0.008507839 54.75835251 63.02868462 32 64 32 143.8741038 1199475318 65.43472 164.509 2.514093 5 2 1
5 0.004214336 0.064922535 11.90060007 8 1 64 63 143.8754039 11.99480737 1534.199 2737.995 1.784641 5 10 1
3 0.000968761 0.031124933 18.78826102 16 4.903298378 64 59.09670162 143.8890826 11.99537755 385.9802 704.7145 1.825779 10 1 0
3 6.73e-05 0.008202154 21.54914762 16 16 79.78343201 63.78343201 143.8971035 1199571188 217.5234 244.2537 1122854 1 1 0
L 3.87E-05 0.006224415 34.34363239 32 16 64 43 143.9346853 11.99727827 63.58731 116.9901 1.839834 5 10 1
1 0.000785499 0.028026752 5.992017685 4 1 128 127 143.9396619 11.99748565 2378.513 2382.061 1.001492 5 20 0
3 0.006322574 0.079514617 9.528903576 6.704287529 1 B80.76741791 79.76741791 143.970268 11.9987611 1435.077 2361.673 1.645677 1 20 0
3 0.000431226 0.022163609 37.75385361 32 32 64 32 143.9798759 11.99916147 275.8479 353.3214 1.280856 5 20 1
L 0.001010808 0.031793211 38.02465818 32 17.37189102 96.79283905 79.42094803 143.9884355 11.99951814 120.8736 152.815 1.264255 10 2 1
2 0.001304253 0.036114443 58.43200104 64 32 64 32 144.0072615 12.00030236 449.3352 735.6596 1.637218 10 1 1
L 0.000412114 0.020300581 24.87659272 20.14800167 8.755339622 63.53682327 54.78148365 144.0091315 12.00038047 118.308 239.9571 2.028241 10 1 1
3 0.000237166 0.015400179 19.06407192 16 1 8257609558 81.57609558 144.0591888 12.00246595 510.3216 954.3751 1.870144 1 5 1
3 6.41E-05 0.008008168 7.626841576 1 1 54.26298904 53.26298904 144.1093786 12.00455658 40.33185 52.96811 1.313307 10 20 1
2 0.002138111 0.046239708 6.459014304 4 1 113.3390656 112.3390656 144.1229622 12.00512233 477502 573.7382 1.201541 10 15 0
7 0.002675285 0.051723156 9.860842638 5.625402927 1 128 127 144.1410106 12.005874 2728396 3697.543 1.355208 10 15 0
L 0.000337515 0.018371576 27.74302601 23.3089323 16 62.59264374 46.55264374 144.144853 12.00603402 88.33139 218.5433 2.474129 10 20 1
1 0.003385277 0.058183137 36.97190266 32 16 64 48 144.1536774 12.00640152 222.4971 307.6145 1.382555 1 1 1
L 0.000421267 0.020524799 6.590555125 4 1 128 127 1442016609 12.0083996 261.3311 396.3771 1.516762 1 1 1
3 0.001248481 0.035333993 3.522553873 2 1 128 127 144.2502038 12.01042063 102.7355 513.5941 4.999187 1 10 1
3 0000257022 0.01603192 23.7990239 19.53090763 3.295101881 64 00.70489812 144.2520751 12.01049854 277.0772 3027192 1.092545 5 2 1

Appendix Figure 10 Table with combined polygons and with assigned labels: *0* for non-landslide polygons
and '1' for landslide polygons
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Appendix Table 1 Results of the: (Syzdykbayev et al., 2020b) and Topological KB geospatial object detection
method and ML models for each studied area

Study Areal | Study Area | Study Area3 | Study Area | Study Area
2 4 5

Title Geospatial Object Detection: Topological KB Method (Chapter 6)

F1 score 0.52 0.48 0.43 0.64 0.45
Title Geospatial Object Detection: PH-Based Method (Syzdykbayev et al., 2020b) or

(Chapter 4)

F1 score 0.334 0.466 0.382 0.65 0.337
Title Candidate Polygon Selection via ML Models (Appendix B)

F1 score 044 | 041 | 036 | 059 | 0.42

The utilization of ML models in geospatial object detection demonstrated notable potential,
although certain limitations were observed during the experimentation phase. The assessment of
accuracy, specifically measured using the F1 score, highlighted both the strengths and limitations
of the ML models (Table B.1). It is important to emphasize that the goal of these experiments was
to explore the feasibility of deriving detection rules through ML models, leading to valuable
insights for future research endeavours. In evaluating the accuracy outcomes, a comparison was
drawn with two distinct geospatial object detection methods: a knowledge-based method utilizing
only topological information, and a novel method combining topological, geometrical, and
contextual information. This analysis aimed to understand the relative performance of the ML
method across different study areas and detection methodologies.

Interestingly, the ML-based method exhibited favourable outcomes in certain contexts.
Specifically, for Study Area 1 and Study Area 5, the ML-based method yielded superior results in

terms of accuracy, as evidenced by the F1 score (Table B.1). These results align with the
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hypothesis that ML-based method can detect geospatial objects more accurately compared to PH-
based methods that rely solely on topological information. Conversely, a different trend emerged
when assessing the performance of the ML-based method across the other study areas (Table B.1).
In these cases, the PH-based method utilizing topological information surpassed the ML-based
method in terms of accuracy. This observation raises questions about the adaptability and
generalizability of ML-based method to different geographical contexts. Furthermore, when
compared to the Topological KB geospatial object detection method, which integrates both
topological and additional information (geometrical and contextual), the ML-based method fell
short in all instances (Table B.1). This suggests that while ML-based method offer promise, there
is still room for refinement and innovation in terms of incorporating various types of data to
achieve optimal geospatial object detection accuracy.

However, it is crucial to acknowledge the limitations that were encountered throughout the
experiments. First, the labelling of landslide and non-landslide polygons presented challenges. The
generation of non-landslide polygons in areas without confirmed ground truth might have
introduced uncertainties (Appendix Figure 9). Additionally, the balanced number of non-landslide
polygons generated for training, in contrast to the limited number of actual landslide polygons,
could have influenced the model's ability to generalize effectively. Three distinct ML models were
employed in the experiments: Logistic Regression, Decision Tree, and Random Forest. It is worth
noting that Random Forest yielded the most promising results among these models.

In conclusion, this series of experiments provided valuable insights into the feasibility of
utilizing ML-based method for deriving detection rules in geospatial object detection. While the
ML-based method highlighted its potential in certain cases, the results underscore the importance

of refining methodologies, optimizing model parameters, and adapting methods to diverse
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geographical settings. The limitations identified pave the way for future research to address these
challenges, enabling the development of more robust and accurate geospatial object detection

methods.
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Appendix B.2 Detection of Geospatial Objects in 5 Study Areas Using Topological ML-
Based Methods

In Chapter 7, our focus shifted towards exploring the potential improvement in the
accuracy of geospatial object detection. This enhancement was pursued through the integration of
multichannel images, effectively incorporating topological information along with the precise
location of a subset of points that constitute this information. Our experiment involved training
ML models using a dataset sourced from the LandSlide4Sense competition (LandSlide4Sense,
n.d.). This dataset encompasses a diverse collection of images and associated labels derived from
landslide-affected regions across the globe spanning from 2015 to 2021. The input images
employed in this study consist of multichannel satellite imagery, comprising 14 channels.

Building upon our existing work, we posed a new experiment idea to guide our
investigation. With our focus on the dataset already preprocessed and models pretrained in Chapter
7 using the LandSlide4Sense dataset, we aimed to evaluate the accuracy of our Topological ML-
based object detection approach. This evaluation involved a direct comparison between
Topological KB geospatial object detection results, which were previously explored in Chapter 4
and Chapter 6. Hence, we hypothesized that ML models specifically trained on the
LandSlide4Sense dataset can proficiently identify landslides within the identical five study regions
previously scrutinized in Chapter 4 and Chapter 6, using Sentinel-2 data from the same origin.

Our objective revolved around determining the efficacy of the Topological ML-based
approach in detecting landslides within study areas where geospatial objects had been detected
using Topological KB methods. This comparison aimed to discern the relative strengths and
limitations of the two distinct detection methodologies: the Topological ML-based method versus

the Topological KB method. Our overarching goal was to gain a comprehensive understanding of
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how each method performs in varied scenarios. We conducted experiments with the following

steps:

Multispectral Sentinel-2 data for each of the study areas were obtained from the

'‘Copernicus Open Access Hub' (Appendix Figure 11).

e Slope and DEM data was derived from LiDAR point clouds that we already used in
chapters 3 and 5.

e The pixel size was set to 10 meters per pixel, and all datasets were merged into a
comprehensive 14-channel dataset (combining 12 Sentinel-2 channels, slope, and DEM
data).

e The entire image was divided into smaller tiles, each comprising 128 x 128 pixels
(Appendix Figure 12), to use the same pretrained models from Chapter 7.

e Building on the methodology from Chapter 7, topological information was derived and
incorporated as an additional channel for each tile.

e Pretrained models from Chapter 7were utilized to predict landslide locations for each tile.

e The results were evaluated using the ground truth data applied in Chapter 4 and Chapter 6

(Appendix Figure 13).
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Appendix Figure 11 Location of the Study Area 2 and Study Area 4 overlaid on Sentinel 2 RGB dataset
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Appendix Figure 12 a) boundaries of Study Area 4; b) boundaries of Study Area 4 splatted into 128*128-pixel

tiles

In general, the utilization of pretrained models across the five study areas from previous
chapters yielded suboptimal results when compared to both the Topological KB methods presented
in Chapters 4 and 6, as well as the ML-based method discussed in Chapter 7. The primary factors
contributing to this diminished accuracy can be summarized as follows:

e In the PH- based and Topological KB methods described in Chapters 3 and 5, a range of
pixel sizes, including 1m, 5m, and 10m, were employed as input data. It was observed that,
in most cases, the best results were achieved when utilizing a 1m pixel size.

e The PH- based and Topological KB methods in Chapters 4 and 6 utilized DTM as input,
which involved the removal of vegetation cover from the data. In contrast, Chapter 6

employed DEM for training ML models.
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e All five study areas encompassed various man-made objects such as farmlands, residential
properties, and roads. However, the input data used in the ML models did not consistently
account for these objects, potentially impacting detection accuracy.

e The ML models in Chapter 7 were primarily designed to detect new landslides. In contrast,
the PH- based and Topological KB methods in Chapters 4 and 6, as well as the ground

truth data associated with them, included both new and historical landslide instances.

The analysis of our experiment results reveals some interesting findings. Specifically, the
best performance among the pretrained models was achieved by the model that incorporated all
channels, including topological layers, as evident in Table B.1 and Appendix Figure 13. However,
upon closer examination of the detected images, we observed a peculiar behaviour in which the
ML model classified areas of bare ground located on slopes as landslides, as illustrated in
Appendix Figure 14. It's noteworthy that Study Area 4 contained numerous farmlands, which often
consist of bare ground (as shown in Appendix Figure 12). This characteristic of the landscape may
have influenced the model's predictions.

Furthermore, we encountered an unexpected behaviour when using a model that included
a Laplace edge layer, generated using Laplacian filters (Table B.2). Surprisingly, the results were
close to 0, implying that the pretrained models did not detect any landslides. To ensure the integrity
of our analysis, we conducted a thorough examination of the input data, which was found to be
identical to the data used in Chapter 7.

These observations highlight the complexity of geospatial object detection tasks,
particularly when dealing with diverse and dynamic landscapes. The misclassification of ground
without trees on slopes as landslides underscores the importance of refining model training and

considering landscape-specific features. Additionally, the unexpected performance of the model
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with the Laplace edge layer suggests the need for further investigation into the impact of specific

layers or filters on detection accuracy.

Appendix Table 2 Results:

F1 score predicted landslides for each study area and for each input source

combination
Channel Name Number | F1score: | F1score: | F1score: | F1score: | F1 score:
of Study Study Study Study Study
Channels | Area 1l Area 2 Area 3 Area 4 Area b
RGB 3 0 0.01374 | 0.004276 | 0.002903 | 0.015358
RGB, Slope, DEM 5 0 0.042692 | 0.040054 | 0.06964 | 0.00235
ALL Channels 14 0.007004 | 0.045756 | 0.190421 | 0.248038 | 0.044559
RGB, + Edge 3 0 0 0 0 0
RGB, Slope, DEM+ |6
Edge 0 0 0 0 0
ALL Channels +Edge 15 0 0 0 0 0
RGB + PH 7 0 0.032708 | 0.049151 | 0.102132 | 0.01797
RGB, Slope, DEM +PH | 9 0.001578 | 0.037394 | 0.161145 | 0.115284 | 0.027007
ALL Channels+ PH 18 0.007303 | 0.026593 | 0.086071 | 0.18366 | 0.030836
RGB + Mapper 7 0 0.025089 | 0.007133 | 0.007617 | 0.016659
RGB, Slope, DEM + |9
Mapper 0 0 0 0 0
ALL Channels + |18
Mapper 0.023706 | 0.058016 | 0.164046 | 0.210576 | 0.047265
RGB + PH + Mapper 11 0 0.025775 | 0.010013 | 0.007808 | 0.009319
RGB, Slope, DEM+ PH | 13
+ Mapper 0.022914 | 0.04247 | 0.157138 | 0.134353 | 0.029659
ALL Channels + PH + | 22
Mapper 0.025275 | 0.049643 | 0.137493 | 0.221471 | 0.047054
ALL Channels + PH + | 23
Mapper + Edge 0.01104 | 0.060779 | 0.163014 | 0.257606 | 0.047733
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Appendix Figure 13 Study Area 4: Landslides Detected Using ML Models Trained on Datasets including

ALL Channels, PH, Mapper, and Edge, Overlayed with Ground Truth
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a | b

Appendix Figure 14 a) satellite image of Study Area 4; b) satellite image of Study Area 4 overlaid Landslides

Detected Using ML Models Trained on Datasets including ALL Channels, PH, Mapper, and Edge
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Appendix C Additional Validation Metrics for Chapter 7 Experiments

Appendix Table 3 Experimental configurations and Accuracy outcomes for encoder-decoder models after 300

Epochs
Encoder | Decoder | Loss Channel Name Number | F1 score | F1 score
Name Name function of of of Test set
Channels | Training | after 300
set after | epochs
300
epochs
UNET | VGGI11 | Jaccard RGB 3
Loss 0.991 0.983
UNET | VGGI11 | Jaccard RGB, Slope, DEM 5
Loss 0.990 0.986
UNET VGG11 | Jaccard ALL Channels 14
Loss 0.989 0.986
UNET | VGGI11 | Jaccard RGB, + Edge 3
Loss 0.991 0.983
UNET | VGGI11 | Jaccard RGB, Slope, DEM+ | 6
Loss Edge 0.991 0.985
UNET | VGG11 | Jaccard ALL Channels +Edge | 15
Loss 0.991 0.987
UNET | VGGI11 | Jaccard RGB + PH 7
Loss 0.990 0.982
UNET | VGGI11 | Jaccard RGB, Slope, DEM + | 9
Loss PH 0.991 0.985
UNET VGG11 | Jaccard ALL Channels+ PH | 18
Loss 0.989 0.987
UNET | VGG11 | Jaccard RGB + Mapper 7
Loss 0.992 0.982
UNET | VGGI11 | Jaccard RGB, Slope, DEM + | 9
Loss Mapper 0.990 0.985
UNET VGG11 | Jaccard ALL Channels + |18
Loss Mapper 0.991 0.987
UNET VGG11 | Jaccard RGB + PH + Mapper | 11
Loss 0.992 0.982
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UNET | VGG11 | Jaccard RGB, Slope, DEM+ | 13

Loss PH + Mapper 0.991 0.984
UNET | VGG11 | Jaccard ALL Channels + PH | 22

Loss + Mapper 0.991 0.987
UNET VGG11 | Jaccard ALL Channels + PH | 23

Loss + Mapper + Edge 0.990 0.987

Appendix Table 4 Experimental configurations and precision outcomes for encoder-decoder models after 300

Epochs
Encoder | Decoder | Loss Channel Name Number | F1 score | F1 score
Name Name function of of of Test set
Channels | Training | after 300
set after | epochs
300
epochs
UNET | VGGI11 | Jaccard RGB 3
Loss 0.819 0.651
UNET | VGGI11 | Jaccard RGB, Slope, DEM 5
Loss 0.781 0.694
UNET VGG11 | Jaccard ALL Channels 14
Loss 0.749 0.708
UNET | VGGI11 | Jaccard RGB, + Edge 3
Loss 0.804 0.654
UNET | VGGI11 | Jaccard RGB, Slope, DEM+ | 6
Loss Edge 0.805 0.686
UNET | VGG11 | Jaccard ALL Channels +Edge | 15
Loss 0.796 0.712
UNET | VGGI11 | Jaccard RGB + PH 7
Loss 0.792 0.637
UNET | VGGI11 | Jaccard RGB, Slope, DEM + | 9
Loss PH 0.822 0.692
UNET | VGG11 | Jaccard ALL Channels+ PH | 18
Loss 0.768 0.719
UNET VGG11 | Jaccard RGB + Mapper 7
Loss 0.833 0.638
UNET | VGGI11 | Jaccard RGB, Slope, DEM + | 9
Loss Mapper 0.788 0.704
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UNET VGG11 | Jaccard ALL Channels + |18

Loss Mapper 0.797 0.717
UNET | VGG11 | Jaccard RGB + PH + Mapper | 11

Loss 0.829 0.631
UNET | VGGI11 | Jaccard RGB, Slope, DEM+ | 13

Loss PH + Mapper 0.824 0.686
UNET VGG11 | Jaccard ALL Channels + PH | 22

Loss + Mapper 0.799 0.733
UNET VGG11 | Jaccard ALL Channels + PH | 23

Loss + Mapper + Edge 0.780 0.721

Appendix Table 5 Experimental configurations and recall outcomes for encoder-decoder models after 300

Epochs
Encoder | Decoder | Loss Channel Name Number | F1 score | F1 score
Name Name function of of of Test set
Channels | Training | after 300
set after | epochs
300
epochs
UNET VGG11 | Jaccard RGB 3
Loss 0.792 0.608
UNET | VGGI11 | Jaccard RGB, Slope, DEM 5
Loss 0.762 0.694
UNET VGG11 | Jaccard ALL Channels 14
Loss 0.752 0.728
UNET | VGG11 | Jaccard RGB, + Edge 3
Loss 0.773 0.606
UNET | VGGI11 | Jaccard RGB, Slope, DEM+ | 6
Loss Edge 0.780 0.674
UNET | VGG11 | Jaccard ALL Channels +Edge | 15
Loss 0.790 0.723
UNET VGG11 | Jaccard RGB + PH 7
Loss 0.768 0.611
UNET | VGG11 | Jaccard RGB, Slope, DEM + | 9
Loss PH 0.788 0.645
UNET VGG11 | Jaccard ALL Channels+ PH | 18
Loss 0.766 0.717
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UNET VGG11 | Jaccard RGB + Mapper 7

Loss 0.794 0.571
UNET | VGGI11 | Jaccard RGB, Slope, DEM + | 9

Loss Mapper 0.762 0.667
UNET VGG11 | Jaccard ALL Channels + |18

Loss Mapper 0.784 0.719
UNET VGG11 | Jaccard RGB + PH + Mapper | 11

Loss 0.796 0.581
UNET | VGGI11 | Jaccard RGB, Slope, DEM+ | 13

Loss PH + Mapper 0.791 0.643
UNET | VGG11 | Jaccard ALL Channels + PH | 22

Loss + Mapper 0.789 0.711
UNET | VGG11 | Jaccard ALL Channels + PH | 23

Loss + Mapper + Edge 0.771 0.713
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