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Explainable Course Recommendation: Connecting College Education to

Knowledge and Careers Through Skills

Hung Kim Chau, PhD

University of Pittsburgh, 2024

Academic choice and exploration are essential aspects of undergraduate education in

the United States, allowing students to select courses with minimal restrictions. However,

students often face challenges in navigating the complex academic landscape, hindered by

limited information, insufficient guidance, and an overwhelming number of choices. Time

constraints from the academic calendar and high demand for popular courses make a thor-

ough evaluation of options difficult. Although academic institutions provide career guidance

counselors or advisers, the number of advisers is still limited. Course recommendation sys-

tems aim to offer personalized suggestions based on students’ academic backgrounds, prefer-

ences, skills, and career goals. However, there is a lack of research on students’ perceptions of

recommendations and the provision of explanations to help them evaluate course relevance.

Moreover, the majority of course recommender systems concentrate only on the context of

learning in higher education. Despite the importance of career goals, none have attempted

to establish a connection between learning and work by incorporating job information into

course recommendation and explanation.

This dissertation explores the development of an advanced course recommendation sys-

tem in higher education, linking academic courses to career paths using deep learning and

natural language processing techniques. It begins by examining various methods for repre-

senting and recommending courses, utilizing institutional big data and combining content-

based and collaborative models for better performance. A central aspect of this dissertation

is the development of skill-based explanations for course recommendations. This is achieved

by employing a deep concept extraction model that utilizes BERT and BI-LSTM-CRF ar-

chitectures. This model effectively extracts concepts from course descriptions, enhancing the

recommendation process. Using this concept extraction model, I investigate the impact of

skill-based explanations in a serendipitous course recommendation system, which was tested
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using the AskOski system at the University of California, Berkeley. The findings indicate

that these explanations not only increase user interest, particularly in courses with high

unexpectedness, but also bolster decision-making confidence. To achieve greater personal-

ization in course recommendations, the future of this field extends beyond academics by

incorporating insights from the job market to align with students’ career aspirations. This

dissertation introduces an innovative approach for integrating skill-related data into course

recommendation systems, effectively bridging the gap between academic pursuits and career

aspirations. Finally, I develop an explainable, personalized course recommendation system

that incorporates insights from the job market. This system tailors course suggestions based

on students’ academic histories and career preferences. Its objective is to enhance course

exploration in higher education, assisting students in navigating their educational paths and

acquiring the essential skills required for their chosen majors and future careers. A user

study conducted at the University of Pittsburgh demonstrates that the recommendations

were generally perceived as valuable, with explanations playing a pivotal role in aiding stu-

dents to assess their interest in the recommended courses. This underscores the significance

of integrating skill-related data and explanations into educational recommendation systems.
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1.0 INTRODUCTION

1.1 Motivation

Education plays a critical role in economic growth and social progress by supporting

the upward mobility of individuals [1] and strengthening America’s position of leadership

in the global economy [2]. College degrees are generally associated with higher potential

lifetime earnings, larger professional networks, and more adaptable careers [1, 3]. However,

there are several indications that higher education is not successfully uplifting everyone.

The symptoms include inconsistent student achievement, barriers for students who want to

transfer from 2-year community colleges to 4-year degree-granting universities [4, 5], high

drop-out rates (i.e., exit before degree completion) [6], and unsatisfactory career outcomes 1

(e.g., graduates are unemployed and underemployed) [7, 8]. According to the National

Center for Education Statistics (NCES) in 2019,2 roughly 40% of individuals who enroll in

a four-year postsecondary program do not finish their degree within six years.

Academic exploration and choice are fundamental to undergraduate education in the

United States, as colleges and universities allow students to select many of their courses

with minimal restrictions [4]. In particular, multidisciplinary and liberal arts majors value

and require broad intellectual exposure to various fields of knowledge. However, critics of

the elective model argue that it poses risks to students who navigate a complex academic

landscape with limited information and insufficient guidance [9]. Risks are particularly pro-

nounced at community colleges with “cafeteria style” curriculums and minimal information

about the sequential relationships between courses, educational pathways, and occupational

goals [4]. Even at selective 4-year colleges with ample advising, the level of guidance is still

limited with a national adviser-to-student ratio of one to 400 [10].

The centrality of the elective process to the organization of U.S. undergraduate educa-

tion poses the difficulties that students face when making decisions about courses including

1Employment and Unemployment Rates: https://nces.ed.gov/programs/coe/indicator cbc.asp
2Undergraduate retention and graduation rates. https://files.eric.ed.gov/fulltext/ED594978.pdf
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an abundance of choices, insufficient information, incomparable alternatives, and students’

limited familiarity with making academic decisions [4, 11]. These challenges are especially

profound for disadvantaged groups including low-income, minority, and first-generation col-

lege students who may have limited access to college networks. In addition, time constraints

imposed by the academic calendar and registration period, and high demand for popular

courses render a comprehensive evaluation of all available options a formidable task.

Academic institutions are often equipped with career guidance counselors or advisers

who possess a considerable amount of experience in the field, the number of advisers is still

limited though [10]. However, the dynamic nature of curriculum reviews and the need to

modify course structures necessitates that these advisors acquire proficiency in all forthcom-

ing changes. While faculty advisers possess deep knowledge in their specific area of research,

they may sometimes become overly focused or biased toward their field of study. On the

other hand, non-faculty academic advisers have a broader familiarity with various courses,

but this may come at the expense of depth. Additionally, the task of academic advising

demands considerable investment of time and mental effort and is frequently overwhelmed

by a deluge of student inquiries, due to the surge in both student enrollment and course

offerings.

Despite these issues, there is a shortage of course guidance and information systems to

support advisers and students in higher education. An example of a deployed system is

Stanford’s CARTA platform which is designed to enable students to search for and view

detailed information on specific courses. For each course, the platform surfaces historical

grade distributions, course sequences and evaluations, and common courses taken before

and after a course [12, 13]. Another example is the Degree Planner3 at the University of

Pittsburgh. The system is designed to help students stay on track, make informed decisions,

and achieve timely graduation while minimizing scheduling conflicts and maximizing their

academic experience. It provides access to degree requirements, course offerings, prerequi-

sites, and options for customizing the course plan based on individual preferences, goals,

and course availability. Although both systems could help students effectively plan their

course schedules, they lack a personalized guidance mechanism to assist students in explor-

3https://www.registrar.pitt.edu/degree-planner
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ing courses that align with their interests and career objectives.

As technology has made it easier to collect and analyze large amounts of educational

data, it has allowed for more in-depth exploration of student behavior in a variety of con-

texts including course enrollment [14, 15, 16]. Course recommendation systems are gaining

popularity in educational institutions due to their ability to enhance the learning experience

of students and augment the support provided by academic advisors. These systems aim

to provide personalized suggestions based on students’ academic backgrounds, preferences,

skills, and career goals, thus facilitating informed decision-making. Moreover, by suggesting

courses that match students’ skills and interests, a recommendation system can potentially

contribute to better academic performance and overall success, which ultimately leads to

better student retention and graduation rates, and job opportunities.

One of the early studies on course recommendation is CourseAgent [17], a community-

based recommender system. CourseAgent uses a social navigation approach to offer course

recommendations by leveraging students’ evaluations of a course’s relevance to their career

goals. In essence, it utilizes course ratings provided by students after completing courses

to help future students identify the most relevant courses for their needs. Parameswaran

et al. [18] developed a course recommender system called CourseRank that used two main

components; i.e., students’ expressed major preferences and courses they have taken in the

past to make recommendations. Additionally, CourseRank considered the requirements and

constraints existing for the recommended courses and recommended sets of courses rather

than just individual courses.

In recent years, deep learning has gained a considerable amount of interest in course

recommendations. One notable example is the implementation of the AskOski system at

the University of California, Berkeley, which leverages historical enrollment data and a

collaborative-based mechanism with deep learning to recommend relevant courses across

the campus tailored to individual students’ interests. Furthermore, it integrates with the

campus degree audit system to offer personalized course suggestions that address the unful-

filled graduation requirements of the students [19]. Jiang et al. [15] developed an innovative

recommendation system based on recurrent neural networks, designed to provide course

suggestions aimed at preparing students for specific target courses. This system takes into
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account the students’ estimated prior knowledge and their zone of proximal development to

generate personalized recommendations.

Although the popularity of course recommendations has increased, there is a lack of

research that considers human factors. Specifically, few studies have focused on how students

perceive recommendations and the provision of human-understandable explanations to aid

them in better evaluating the relevance of courses. This issue is particularly significant

when students are faced with high-stakes and complex decisions regarding course selection.

Students must weigh the opportunity cost of selecting one course over another, and a negative

experience in an introductory-level course may deter them from pursuing an entire field of

study [20]. Simply reading the course titles or descriptions provided in course catalogs may

not be sufficient for students to select their preferences. Providing more information about

recommended courses, including why they are recommended and how they match students’

skills and interests, could equip them better to evaluate the utility of recommended courses,

be more confident in making decisions, and less likely to dismiss them due to unfamiliarity.

This is particularly important for serendipity-focused course recommendation systems [21],

which aim to recommend courses that are unexpected or novel yet still relevant and thus

likely to be adopted by students. Additionally, providing explanations could increase user

perception of system transparency and build trust, leading to an increased perception of

relevance and acceptance of recommendations [22, 23].

Moreover, The future of course recommendations isn’t just about suggesting what to

study, but also integrating insights from the job market. By doing this, students can see

the real-world applicability of their courses. Yet, the current course recommender systems

concentrate only on the context of learning in higher education. They utilize students’ en-

rollment history, declared majors, prerequisite information (either explicitly or implicitly),

or course requirements to suggest relevant courses for students to achieve success in col-

lege (e.g., better student retention and graduation rates). One of the primary objectives

for students attending college is to secure a desirable job and establish adaptable careers

in the future. Existing studies either support students in selecting courses (course recom-

mendation) or assist graduates in finding jobs (job recommendation). There is a disconnect

between work and learning in the US; higher education can fail to meet the skill demands of
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the labor market, and graduates may struggle to get their dream jobs. Notwithstanding the

importance of career goals, to the best of my knowledge, none have attempted to establish a

connection between learning and work by incorporating job information into course recom-

mendations and explanations. Many professionals acquire skills through higher education

that subsequently shape their careers. Discrepancies between skills demanded, taught, and

researched have been identified by analyzing job advertisements, course syllabi, and research

publications in Computer Science [24].

Furthermore, knowledge and skills have consistently emerged as pivotal elements in var-

ious educational AI systems and computational socio-economic research over the past few

decades. The literature provides a broad spectrum of definitions for skills, encompassing

conceptual knowledge, which pertains to the understanding of fundamental concepts, ideas,

and principles underlying a specific domain or subject, as well as procedural knowledge,

which relates to the expertise in executing specific tasks. For instance, in studies like those

by [24, 25], the term ‘skill’ is employed to denote keywords, concepts, or topics in a domain,

such as ‘Experiments,’ ‘Data Warehousing,’ or ‘Machine learning.’ Conversely, in works like

those by [26, 27, 28], the term ‘skill’ is used to describe workplace activities, such as ‘op-

erating computer systems’ or ‘writing computer programming code.’ In the context of this

dissertation, I will adopt a comprehensive view of skills, utilizing the term to encompass

various forms of knowledge, including concepts that are automatically extracted from course

descriptions and workplace activities as defined by the U.S. Department of Labor.

Skills not only enable recommender systems to make reasonable decisions but also serve as

one of the most intuitive ways to explain the content of documents. Most of the content-based

methods for course recommendation simply use bag-of-word (BOW) representation for course

matching, resulting in the limitation of using those simplistic single words for presenting

and explaining recommended courses [21, 29, 30]. Comprehensive keyphrases could help to

improve the recommendation and, more importantly, better communicate the underlying

semantics. Keyphrases have been successfully employed to explain recommendations [31, 32,

33] and have demonstrated potential in improving user comprehension compared to unigrams

[34, 35]. Skills can be identified from course catalog descriptions and job postings [24]. The

capacity to connect courses to jobs through skills can empower recommender systems to
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guide students towards specific courses they could take to acquire the necessary skills for

their future careers, or skills that may, for instance, increase their income. In addition, this

connection can support stakeholders, from a macro perspective (such as policymakers), to

implement appropriate modifications for their institutions in response to the changing and

evolving skills in the recent labor market.

1.2 Main Directions of Work and Contributions

This dissertation addresses the challenges previously outlined by examining the relation-

ship between higher education and career paths. It focuses on knowledge extraction, course

recommendation, and the importance of providing explanations for these recommendations.

The research highlights the value of delivering personalized course suggestions that consider

students’ academic histories, preferences, skills, and career goals. By including skill-based

justifications for these suggestions, the study aims to improve user engagement and the

adaptability of the course recommendation process. Furthermore, this dissertation intro-

duces an innovative method for incorporating skill-related data into course recommendation

systems, effectively connecting academic endeavors with career objectives. Ultimately, this

work seeks to enhance the course selection experience for students, guiding them in their ed-

ucational journey and equipping them with the vital skills necessary for their chosen majors

and future professions.

As a preliminary work [36], I explored various methods for representing and recommend-

ing higher education courses using natural language processing and deep learning. Collab-

orating with researchers at the University of Berkeley, we found that institutional big data

can address course articulation issues. We used two datasets from a 4-year university and

a 2-year community college, incorporating course enrollments and descriptions. We applied

word2vec [37] to enrollment sequences and content-based models using course catalog de-

scriptions. Our analysis revealed promising results, with the content-based model performing

as well as or better than the collaborative model. Combining both models produced even

better results, indicating the collaborative model’s additional valuable information. In addi-
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tion, our second study [38] delved into the realm of explanation within course recommender

systems. We tested three distinct explanation strategies employing unigrams: ‘inferred’ key-

words, ‘anchored’ keywords, and ‘taken’ keywords. Our user study findings indicated that

leveraging students’ prior knowledge was an effective strategy in generating explanations.

However, it was also noted that relying solely on unigram-based skills was insufficient for

crafting effective explanations.

The insights gained from these two studies have been instrumental in shaping my disser-

tation, which focuses on the development of skill-based explanations for course recommen-

dations. To facilitate this, I have developed an advanced concept extraction model capable

of distilling concepts from course descriptions. Skills are now represented as concepts, rather

than unigrams as in the preliminary study. My method treats concept extraction as a se-

quence labeling task and leverages cutting-edge deep learning architectures, namely BERT

and BI-LSTM-CRF. This model has been trained on various public datasets, and I have

employed a stacking ensemble technique to enhance its efficacy. The results underscore the

efficiency of the combined BERT and BI-LSTM-CRF models in extracting concepts from

course descriptions. Furthermore, expert evaluations affirm the high quality of the concepts

extracted, highlighting the model’s potential for real-world applications in the educational

domain.

With the effective deep concept extractor, I am able to pioneer skill-based explanations

in a deep learning-based course recommendation system for higher education. I investigate

the impact of skill-based explanations on a serendipitous course recommendation system. I

use the AskOski system4 at the University of California, Berkeley, which is powered by the

adaptation PLAN-BERT of BERT4Rec [39], a state-of-the-art deep neural network model

for top N recommendation. The serendipitous course recommendation system aims to rec-

ommend courses that are unexpected yet still relevant, with the expectation that students

will be more likely to adopt the recommendations. Maximizing both aspects is challeng-

ing, especially in the university setting where unexpected, yet still relevant, courses might

be found in departments outside of the student’s disciplinary focus. These courses might

employ unfamiliar terminology in their catalog descriptions, making them less appealing to

4https://askoski.berkeley.edu/
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students. In this context, my hypothesis suggests that augmenting course recommendations

with explanations can improve the value of the recommendation. Specifically, I propose that

providing students with more information about a course and why it is recommended will

equip them to assess its utility more effectively and reduce the likelihood of ignoring it due to

unfamiliarity. To test this hypothesis, I conduct a user study using the AskOski system, in

collaboration with the CAHL lab at the University of California, Berkeley. While our overall

findings didn’t show a clear impact of the explanation on course recommendations gener-

ated by PLAN-BERT, they did reveal a significant increase in participant interest in courses

that exhibited high levels of unexpectedness under the proposed diversification strategy. It

is apparent that individuals who received explanatory information had a positive attitude

toward the usefulness of these explanations in influencing their interest in the recommen-

dations. Furthermore, the study uncovered another crucial aspect: the significant role of

explanations in bolstering users’ confidence in their decision-making process. Consequently,

this reduced their tendency to provide ‘neutral’ opinions. A thorough statistical analysis

highlighted a noteworthy interaction between participants’ major declaration status and the

presence of explanations. Specifically, among participants who had not declared a major,

the absence of explanations was linked to an increase in their likelihood to express neutral

opinions, and this difference was statistically significant.

In our previous study, we utilized students’ enrollment histories to find relevant courses,

diversified by department information, and enhanced it with concepts extracted from course

descriptions for explanation. While the future of course recommendations extends beyond

academics and incorporates insights from the job market to benefit students’ careers, a crit-

ical question arises: Do the concepts derived from course descriptions truly align with the

skills sought after in the labor market? I aim to go beyond that and pursue more personaliza-

tion for course recommendations that will be useful for students’ future careers. Therefore, I

am motivated to build an explainable recommendation system that aligns academic courses

with real-world career goals. However, none has established a connection between college

courses and graduates’ careers via skills. This leads me to examining how the granular work-

place activities designed and produced by the U.S. Department of Labor to describe the US

workforce (i.e., O*NET Detailed Work Activity (DWA) taxonomy) could frame the knowl-
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edge offered in a course, field-of-study and university, thereby connecting higher education

to work. I apply word embeddings [37] and document similarity techniques from natural

language processing to represent each DWA and syllabus as continuous vectors distributed

in the same pre-trained language embedding space. Language embedding models enable

me to describe the semantic similarity between two textual documents or sentences; here, I

compare syllabus course descriptions to DWAs. As a result, syllabi are represented based

on their relationships with the DWAs (called the DWA-based syllabus representation). This

skill-based course representation framework is assessed through two predictive tasks: firstly,

forecast the evolution of taught skills in fields of study, and secondly, predicting variations

in graduates’ earnings. The findings demonstrate that integrating workplace skills into the

course model effectively extracts features crucial for these prediction tasks. Consequently,

this approach holds promise for creating explainable, personalized course recommendation

systems.

With the promising outcomes of these skill and course representation methods and the

effective tools we have developed, the ultimate goal of my dissertation is to develop an ex-

plainable personalized course recommendation system that incorporates job information and

skills to improve student achievement and career prospects. This system aims to guide stu-

dents to specific courses that will equip them with the necessary skills for their future careers.

It tailors course suggestions based on students’ enrollment history and career preferences and

provides explanations for the recommendation. The study is the first of its kind to utilize ac-

tual job information for career-oriented explainable course recommendations using advanced

NLP techniques. It aims to assist users in making well-informed decisions and increase their

trust and acceptance of recommendations. Additionally, this research investigates the two

distinct approaches for representing skills within course recommendation systems. The first

approach involves the automatic extraction of concepts from course descriptions using the

developed deep concept extractor which also employs in the first study on explainable course

recommendations. On the other hand, the second approach relies on O*NET DWAs that

are manually constructed by experts to describe work in the US labor market. These DWAs

are used to build the aforementioned knowledge framework, which connects college courses

to graduates’ careers. I developed a career-oriented explainable course recommender mech-
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anism and conducted a user study at the School of Computing and Information, University

of Pittsburgh. Both recommender systems showed promising results, as indicated by user

feedback. Participants generally considered the suggestions valuable and showed interest in

enrolling in the recommended courses. Furthermore, the explanation was shown to have a

positive effect on the recommendation.

In summary, the majority of participants found the recommendations useful. They ex-

plicitly agreed or strongly agreed that the explanations provided were instrumental in helping

them gauge their interest in the courses recommended. This highlights the vital role of in-

tegrating skill-related data into the system. Furthermore, it emphasizes the significance of

providing explanations in educational recommendation systems.

1.3 Research Questions

My dissertation systematically investigates four primary research questions that encom-

pass diverse domains including exploring the association between higher education and grad-

uate career, knowledge extraction, course recommendation, and explanation. A comprehen-

sive elaboration of the underlying motivations is provided in Section 1.1. In this section, I

briefly explain the rationale behind posing each research question and explicate how each

question contributes to the investigation of course recommendations and explanations in

college education.

[RQ 1] Is it possible to develop an effective, automatic concept extraction

model for course descriptions without requiring manually labeled data for skill-

based explainable course recommendations? This question highlights the challenges in

building educational taxonomies and ontologies from text. Manual construction of ontologies

is an extremely time- and cost-consuming process. Automatically constructing ontologies is a

complex task that necessitates advanced technology in related fields, such as natural language

processing or text mining, along with training labels. The current performance of existing

automatic keyphrase and concept extraction methods remains underwhelming, particularly

in educational domains where annotated training data is scarce, also making it difficult to
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scale and keep updated. Enhancing automatic concept extraction is not only beneficial for

immediate downstream tasks such as student modeling and content-based course recom-

mendations and explanations, but it also represents a step forward in achieving the goal of

automatic educational ontology construction. Developing automatic concept extractors that

do not rely on manually labeled data for model training could potentially enable the scaling

of proposed recommendation and explanation approaches while simultaneously facilitating

the maintenance and updating of domain knowledge.

[RQ 2] Do skill-based explanations help to improve serendipitous course rec-

ommendation systems? As explained earlier, serendipity-focused course recommendation

systems aim to suggest courses that are unexpected or novel, while still maintaining rele-

vancy. Achieving this balance can be quite challenging. By providing explanations for the

recommended courses using complete, comprehensive skills achieved from RQ1, students are

better equipped to assess their utility more efficiently and are less likely to dismiss these

suggestions due to unfamiliarity.

[RQ 3] Can the granular workplace activities designed and produced by the

Department of Labor to describe the US workforce be utilized to represent

courses in college education – connecting work and learning? This question estab-

lishes a foundation for connecting colleague education to jobs. A labor market information

system where work skills are shared across entities, connecting education to work, could help

students know what skills they need, educators know what skills to instruct for, employers

know what skills workers have, and policymakers more effectively impact workforce develop-

ment. Increasingly personalized course recommendations can identify relevant topics based

on students’ predefined career goals (e.g., maximizing job opportunities in Business Intel-

ligent Analytics). For instance, recommending Computer and Information Science courses

that incorporate “Prompt Engineering” skills may proactively equip today’s students to meet

the growing demand for Business Intelligent Analytics in the labor market.

[RQ 4] Are explainable career-oriented course recommendations using job

information effective in helping students explore courses relevant to their career

goals? This question is the main focus of my dissertation, which examines the effectiveness of

a novel course recommendation system that utilizes actual job information to guide students
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Figure 1: The dissertation structure answering the four research questions.

in selecting courses relevant to their career goals. Drawing on findings from course modeling

methods explored in one of my preliminary works and RQ3, I will demonstrate how to connect

courses to jobs through skills in order to develop a course recommender system. Furthermore,

the ability to extract skills from text, as addressed in RQ1, enables me to experiment with

the skill-based explanation for course recommendations. I will also evaluate the impact of

course recommendations that are based on career goals, as well as the explanations provided,

on student experiences in course selection within higher education.

1.4 Dissertation Organization

The chapters in my dissertation are organized as follows:

Chapter 2 presents a thorough literature review on the background and related works

of my dissertation including automatic concept extraction, course recommendation, and

explainable recommendation.

Chapter 3 reports my preliminary investigations into various methods for representing
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and recommending courses in higher education using natural language processing and deep

learning techniques. I examine the usefulness of institutional big data sources, including

course enrollments for a collaborative-based approach and course catalog descriptions for

several content-based approaches. These course representation models are evaluated using

a course-to-course articulation dataset from a 4-year University of California and a 2-year

California Community College. The second part of the chapter presents an early investigation

into explanation in serendipity-enhanced course recommender systems. We use unigrams as

skill components and provide three types of explanations for the recommended courses. We

conducted a user study at the University of California, Berkeley, to evaluate the effectiveness

of our proposed explanation approaches.

Chapter 4 (RQ1) presents a deep learning methodology for extracting fine-grained

skills presented directly in course descriptions without requiring manually labeled course

data for model training. I approach concept extraction from course descriptions as a se-

quence labeling task with the state-of-the-art deep learning architectures, BERT and BI-

LSTM-CRF. I train multiple concept extraction models on several public datasets and then

apply a stacking ensemble technique to improve model effectiveness. I conduct an offline

evaluation with a small set of 50 course descriptions. The performance of the models is

measured in terms of precision, recall, and F1 score. In addition to the offline evaluation,

an expert evaluation is conducted to ensure the quality of extracted concepts for course

recommendation applications.

Chapter 5 (RQ2) presents the design of skill-based explanations for serendipitous

course recommendation systems. The system aims to provide students with comprehensive

information about a course, including how it aligns with their prior knowledge and the novel

knowledge it offers, students will be better equipped to evaluate its relevance and more

confident in making choices. This chapter also describes an online user study conducted

in collaboration with the CAHL lab at the University of California, Berkeley, utilizing the

AskOski system powered by PLAN-BERT. PLAN-BERT is an adaptation of BERT4Rec, a

state-of-the-art deep neural network model for top-N recommendations.

Chapter 6 (RQ3) introduces a framework for connecting higher education to work using

the Detailed Work Activities (DWAs) designed and produced by the U.S. Department of
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Labor to describe the US workforce. This framework represents course syllabi based on their

relationships with the DWAs, referred as the DWA-based course representation. First, using

earnings of graduates from the College Scorecard earnings data from the U.S. Department

of Education, I demonstrate how differences in taught skills both within and between college

majors correspond to earnings differences among recent graduates. Furthermore, I utilize

the co-occurrence of taught skills across all of academia to predict the skills that will be

taught in a major moving forward.

Chapter 7 (RQ4) introduces the framework for a personalized course recommender

system that focuses on career orientation and skill-based explanations. The system aims to

assist students in exploring courses that provide them with the knowledge and skills necessary

for their future careers. It suggests courses based on the student’s enrollment history and

career preferences and provides explanations for the recommendations. I develop two recom-

mender engines, one using DWA skill taxonomy, and the other using the concepts extracted

from the course descriptions. This chapter also presents a user study with undergraduate

students at the School of Computing and Information, University of Pittsburgh, to validate

the importance of job information in course recommendations and test the hypothesis that

explanations can improve user perception of recommendations.

Chapter 8 summarizes the key findings and conclusions derived from all the studies

and analyses. Within this chapter, I will articulate the profound contributions that my

dissertation brings to the forefront of the field. Additionally, I will discuss the limitations

encountered during the research and outline promising avenues for future investigations.
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2.0 RELATED WORK

2.1 Automatic Concept Extraction

The task of keyphrase extraction is to automatically extract a set of representative

phrases from a document that concisely summarizes its content. Compared to named entities,

keyphrases are more abstract, usually have vague definitions, and are heavily domain-specific,

which makes it hard to obtain large-scale, high-quality annotated datasets to train and eval-

uate machine learning models. Nonetheless, it is important in many NLP systems including

information retrieval, machine translation and recommendation. Automatic keyphrase ex-

traction has been extensively studied and applied in many domains such as scientific articles,

educational materials and bio-medical documents. There is a wide range of approaches such

as rule-based, supervised learning, unsupervised learning or deep neural networks. Typi-

cally, automatic keyphrase extraction systems consist of two parts: (1) preprocessing data

and extracting a list of candidate keyphrases using lexical patterns and heuristics; and (2)

determining which of these candidates are correct keyphrases based on some ranking scores

or trained classifiers. Other systems attempted keyphrase extraction as a sequence labeling

task to capture long-term dependencies and semantic relationships of words.

Feature-based keyphrase extraction: The goal of extracting the candidate keyphrase

list is to obtain all potential candidates while keeping the number of candidates as small as

possible. Several studies extract candidates from words with certain part-of-speech (POS)

tags [40, 41, 42, 43]. Others extract n-grams with simple filtering rules [44, 45] or only allow

those matching Wikipedia article titles [46, 47]. More complex approaches extract noun

phrases and apply predefined lexico-syntactic patterns [48, 49]. The next step is to score

each candidate based on some features that indicate how likely that candidate is a keyphrase

in the given document. Typical features for a feature-based keyphrase extraction system

include; for example, statistical features (e.g., term frequency, inverse document frequency),

positional features, linguistic features, context features, and external resources. Machine

learning approaches to this scoring task can be grouped into supervised or unsupervised:
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Unsupervised learning approaches: Mihalcea and Tarau [40] and Bougouin et al.

[41] propose graph-based approaches that consider a candidate keyphrase as important if it

is related to a large number of candidates and those candidates are also important in the

document. Candidates and the relations between them form a graph for the input document.

A graph-based ranking (e.g., PageRank) is applied to give a score to each node. Finally,

the top-ranked candidates are selected as keyphrases for the input document. Unsupervised

topic-based clustering methods [42, 47] attempt to group semantically similar candidates in

a document as topics. Keyphrases are then selected based on the centroid of each cluster or

the importance of each topic.

Supervised learning approaches: commonly frame this task as binary classification

using logistic regression, SVM, tree-based models etc. A variety of features have been used

for training supervised classification models including statistics-based features, title-based

features, linguistics-based features or external resources such as Wikipedia [50, 51, 52, 53, 54].

Sequence tagging-based keyphrase extraction: Recent studies attempted to frame

keyphrase extraction as a sequence labeling task similar to part-of-speech tagging and se-

quence tagging-based NER to capture long-term dependencies and semantic relationships of

words. Bhaskar et al. [55] is one of the very first studies using a feature-based CRF model to

extract keyphrases in scientific articles. More recently, deep neural-based sequence tagging

techniques [56] applied to POS tagging and NER tasks have been adopted to keyphrase

extraction problems [57, 58]. These supervised and semi-supervised techniques have been

showing improvements over the traditional state-of-the-art methods. They make use of trans-

fer learning techniques from pre-trained language models, overcome the burden of the feature

engineering step and are more robust and flexible to employ in different domains. Park and

Caragea [59] use pre-trained language models BERT and SciBERT with intermediate task

transfer learning such as sequence tagging related tasks (e.g., POS tagging) to mitigate the

lack of large amounts of labeled data. To improve extraction models beyond language mod-

eling, the latest work on deep learning-based keyphrase extraction in open web domain has

leveraged and incorporated visual features (e.g., position, font size or style) with ELMO and

BERT language models into the same network for prediction [60, 61]. Another DL approach

built a deep keyphrase generation with an encoder-decoder framework [62]. They applied an
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RNN-based generative model to predict keyphrases.

Educational concept extraction: While many general keyphrase-extraction approaches

exist, few have focused on an educational domain and almost none have considered course

syllabus corpus. There are a number of projects that apply book concepts to achieve a

specific target; for example, building concept hierarchies for textbooks [46] or separating

prerequisite and outcome concepts [63]. However, they did not focus on advanced concept

extraction and instead use existing data [63] or lightweight extraction approaches such as

using Wikipedia titles and books’ table of contents or index [46, 64, 65]. A related line

of work has focused on building educational ontology from texts. Manual construction of

ontologies is an extremely time-consuming and costly process [66, 67]. Automatically con-

structing ontology is a complicated task that requires advanced technology in related areas,

such as natural language processing or text mining. It requires the recognition of not only

concepts described in texts but also the relationships between them. The attempts to build

ontologies from texts usually use existing technologies, such as NLPs or simple heuristic

rules, to extract ontological concepts; for example, Shamsfard and Barforoush [66] use a

simple morphological and syntactic analysis to extract primary concepts in Persian texts;

Zouaq et al. [68] use a Stanford parser and KEA, a simple keyphrase extraction method,

Wong et al. [67] summarize a list of studies using different strategies (e.g., statistics-based,

linguistics-based or logic-based); Conde et al. [69] consider index items from a book as do-

main topics; and litewi [70] combines several unsupervised term extraction approaches and

uses Wikipedia to provide additional information. However, to the best of my knowledge,

the performance of existing automatic term and concept extraction methods remains un-

derwhelming, especially in educational domains. Improving automatic keyphrase extraction

is not only useful for immediate downstream tasks such as student modeling in intelligent

textbooks and course recommendations, but is also a step forward in accomplishing the task

of automatic educational-ontology construction.

FACE [71], a supervised feature-based machine learning method for automatic concept

extractions from textbooks, is proposed and evaluated with a newly constructed dataset. The

model is engineered and experimented with a highly encompassing feature set for machine

learning to extract the annotated concepts; the feature set spans both linguistic features
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and features encoding relative corpus statistics. It is systematically evaluated and compared

with a number of keyword extraction models proposed in the literature. The results show

that FACE outperforms several traditional state-of-the-art keyphrase extraction methods.

Figure 2: Given a course catalog description that contains a chunk of texts, the task of

concept extraction is to identify a list of concepts presented in the description. This example

shows the description of a Machine Learning course and a concept extractor expected to

provide a list of concepts that represent the content of the course.

Although, the FACE framework shows promising results for intelligent textbooks. How-

ever, labeling data to train traditional supervised concept extraction models is very time-

consuming and error-prone [72], especially for a large, multi-subjects corpus like course

syllabi. Moreover, course descriptions do not have the rich structures as textbooks, rather

just contain a chunk of unstructured texts (see Figure 2). We need a more general frame-

work that is able to intrinsically capture the semantic and syntactic structures of concepts

mentioned in a sentence or paragraph of a course description. There are several techniques

and resources are shared and overlap between named-entity recognition (NER) and concept

extraction. The advance of deep learning and transfer learning in NLP makes it possible

to apply advanced sequence tagging and labeling models such as Bi-directional Long Short

Term Memory with Conditional Random Field (Bi-LSTM-CRF) or Bidirectional Encoder

Representations from Transformers (BERT), which have shown great success for NER, to

concept extraction for course syllabi. In this thesis, I will build concept extraction mod-

els for course descriptions using Bi-LSTM-CRF [56] and BERT [73] with pre-trained word

embeddings and language models.
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2.2 Course Recommendation

Course recommendation is an area within personalized, adaptive systems that has re-

cently attracted much attention from researchers. Course recommendation systems have

become an essential component of higher education, especially in the context of multidisci-

plinary and Liberal Arts programs, where students are often faced with a vast array of course

options to choose from with limited guidance. Based on a survey conducted on 81 students

at Kyushu University, Japan, the main underlying reasons for student’s course selection in-

clude interest, high-grade, learning goal and career plan, social aspect, and popularity. The

primary objective of these systems is to offer personalized course suggestions that meet stu-

dents’ academic backgrounds, preferences, learning and career goals. By doing so, course

recommendation systems can enhance the overall learning experience and contribute to im-

proved academic outcomes and job opportunities for students. However, the reasons behind

course selection are manifold and there are challenges in building such course guidance and

information systems [74, 75]. The problems related to course selection can differ significantly

depending on the context and specific circumstances. For instance, students are often faced

with a wide range of courses to choose from, which can lead to difficulties if they possess lim-

ited knowledge about the various options available. Moreover, the course selection process

should ideally consider individual student’s career preferences in order to provide tailored

recommendations that equip them with necessary skills for their future jobs. Furthermore,

it is important for a course recommendation system to adapt to changes in course content

and structures and the unique circumstances of individual students. This may include up-

dates to course curricula, new course offerings, or shifts in a student’s academic focus or

interests. Additionally, academic institutions often present complex course structures, with

some courses featuring overlapping content or requiring prerequisite courses to be completed

beforehand.

For next course recommendation, studies utilized students’ preferences, interests and

performance [76, 77, 78], students’ assessment of course relevance and ratings [17, 79, 80],

course content [81, 29, 82], and sequential enrollment histories [83, 19, 84] to employ pre-

dictive models. The early course recommendation systems primarily relied on content-based
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filtering and collaborative filtering methods.

Content-based recommender systems use the features and attributes of items to

provide personalized recommendations to users. These systems typically rely on the similar-

ity between items to suggest relevant content based on a user’s preferences, interests, or past

behavior. Course content-based recommender systems used the similarity between course

features (i.e., descriptions and subject areas) and student preferences (e.g., majors and pre-

vious course subjects) to make recommendations. Some studies used student input query

as an approximate for their subject interest, and returned a list of recommended courses in

the Information Retrieval fashion. While Gulzar et al. [81] enhanced the recommendation

list by using the knowledge of a Computer Science ontology, Morsomme and Alferez [82]

showed a warning for courses too advanced based the student’s past performances and pro-

vided suitable preparatory courses. Other content-based methods used course features such

as the subject area, the contents, the professors and the competencies, each course content is

represented as a word frequency vector; and cosine similarity is applied to the course vectors

to find similar courses to those the students have already taken [29, 85]. Course categories

were also utilized in content-based systems. Students’ preferences and interests are esti-

mated based on the categories of the courses they took in the past, represented as preference

vectors. Based on the preference vectors and the student’s majors, the user interest-based

scores of the courses taken by similar students were computed and used to make recommen-

dations to the target student along with the information about the timing and popularity

of courses, and predicted performance of students Ma et al. [78]. K-Nearest Neighbor and

Näıve Bayes classifiers were used to design a content-based recommender system by Neamah

and El-Ameer [86]. The authors built students’ user profiles based on their prior knowledge

and actions such as enrolling and rating courses, and compared the user profiles with course

attributes to generate recommended courses. Other studies also utilized course catalog de-

scriptions [21, 30, 36]. The course description is simply represented with a bag-of-words

model. These course vectors with word frequency or td-idf are used to find the similarity

between courses.

Collaborative filtering-based recommendation systems, on the other hand, pre-

dict user preferences based on their similarity to other users. These systems analyze the
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behavior of many users and identify patterns or similarities in their choices, preferences, and

interests. The collaborative filtering algorithm collects user preferences data from a dataset

and identifies users with similar preferences to the target user. It then suggests items that

those similar users have liked or preferred in the past, to the target user. Ray and Sharma

[76] presented one of the early works that extended the collaborative filtering approach to

develop a course recommendation system. Their approach involved utilizing past student

performance data to predict grades for elective courses. Specifically, the authors applied both

user-based and item-based collaborative filtering techniques for recommending courses. The

results demonstrated the potential of collaborative filtering in developing course recommen-

dations. Houbraken et al. [87] also utilized the grades of a large group of students to discover

course-competency requirements and student-competency levels using matrix decomposition.

The authors showed that hidden features are responsible for observed grades, which are then

translated into human understandable competencies by matching computed values to ex-

pert input. Their approach also enabled personalized study planning and student guidance

through grade prediction for unobserved student-course combinations. Backenköhler et al.

[88] proposed a collaborative filtering-based course recommendation system that combined

grade prediction from student course performance data with statistical methods based on

course orderings. The model aimed to capture the expected performance and preparedness

of students for a given course, allowing for meaningful course recommendations for both new

and senior students.

Instead of using past course performance data, Elbadrawy and Karypis [89] utilized

course enrollment history and the popularity of courses. They experimented with various

techniques, including neighborhood-based user collaborative filtering, matrix factorization,

and popularity-based ranking, to address the task of ranking the top N courses. The au-

thors analyzed the enrollment patterns and demonstrated the impact of student and course

academic features on these patterns. To account for this, they established multi-granularity

groups for both students and courses. The authors incorporated these groups into their

user collaborative filtering, matrix factorization, and popularity ranking algorithms. The

results indicated that incorporating these groups led to lower grade prediction errors and

more accurate top N course rankings. Only using course enrollment data, Houbraken et al.
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[87] presented a Markov-based collaborative filtering model for course recommendation to

students based on the sequence of courses they have taken in the previous semesters. The

proposed model incorporated the dynamics of student course-taking behavior and provided

personalized course recommendations to students at each semester. In contrast, Bakhshi-

nategh et al. [80] proposed a course recommendation system for students based on their

“graduate attributes”, which are values that students develop throughout their studies. The

system utilized a collaborative filtering algorithm, where students rate the improvement in

their graduate attributes after completing a course, and then recommended courses taken by

other students who rated similarly. The authors experimented with the proposed method us-

ing a synthetic dataset and demonstrated the importance of considering the time dimension

of student ratings for more accurate recommendations.

Knowledge-based recommender systems utilize explicit knowledge about the user’s

preferences and the characteristics of items to generate personalized recommendations to

users. Unlike other types of recommender systems that rely on user data and behavior,

a knowledge-based recommender system typically relies on domain expertise, ontologies,

taxonomies, or other knowledge representation techniques to make recommendations. These

systems can provide more explainable and interpretable recommendations, as they take into

account explicit user preferences and domain knowledge. Knowledge-based systems are often

combined with other approaches to improve the recommendation. In their work, Ibrahim

et al. [90] presented a framework for a personalized course recommendation system that

utilizes a hybrid-filtering approach and is based on ontologies. The goal of this system

was to improve both the efficiency and user satisfaction of the recommendation process

by integrating information from multiple sources, and by utilizing a hierarchical ontology

similarity measure to provide students with appropriate recommendations. Gulzar et al. [81]

integrated both content-based and knowledge-based methodologies in the development of

their course recommender system. They developed an ontology to model knowledge for the

Computer Science domain. Utilizing this ontology, the system was able to search for relevant

courses and improve the accuracy of recommendations in response to students’ query inputs.

Other hybrid course recommender systems aim to integrate the benefits of content-

based and collaborative signals with expert knowledge, ultimately resulting in more accurate
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and personalized recommendations. Bydžovská [77] incorporated various factors into their

course recommendation system, such as course popularity, courses taken by students with

similar profiles, and courses chosen by the student’s friends (which highlights the social nav-

igation aspect). This system offered recommendations for selective and optional courses,

taking into account students’ abilities, knowledge, interests, and available time slots in their

schedules. Furthermore, the system provided cautionary alerts regarding challenging courses

and reminded students of their mandatory academic duties. Esteban et al. [85] proposed a

hybrid approach that combines collaborative filtering and content-based filtering. Their ap-

proach utilizes multiple criteria related to both student and course information to recommend

the most suitable courses to students. To optimize the performance of their recommender

system, they employed a genetic algorithm that automatically discovered the optimal con-

figuration, including the most relevant criteria and configuration parameters. Morsy and

Karypis [91] proposed grade-aware recommendation techniques that take into account the

predicted grades of students when recommending courses. In one of their approaches, the

authors leveraged collaborative-based recommendation methods and combined them with

grade prediction models to enhance the accuracy of course rankings. In their study, Pardos

et al. [36] explored various methods for representing courses, including collaborative-based

models (i.e., course2vec) and content-based models (such as bag-of-words models with term

frequency and TF-IDF, as well as word2vec). The authors then assessed the effectiveness

of each model using course-to-course articulation data from two institutions. The results

indicated that the combination of the course2vec and DescVec models yielded superior per-

formance, outperforming all other models.

Other traditional recommendation methods were also applied to course recom-

mender systems. Xu et al. [92] introduced a methodology including two algorithms: a

forward-search backward-induction algorithm that selects course sequences to decrease the

time required for graduation while considering prerequisite requirements and course avail-

ability, and a multi-armed bandit algorithm that recommends a course sequence to both

decrease graduation time and increase overall academic performance. The system dynami-

cally learned how students with different contextual backgrounds perform for given course

sequences, and then recommended an optimal course sequence for new students. Scholars
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Walk proposed in [84] was a random-walk-based approach that captures the sequential re-

lationships between the different courses. The system leveraged both the “wisdom of the

crowd” and students’ prior course histories to generate a short list of recommended courses

for the upcoming semester. The experimental evaluation conducted by the authors demon-

strated that Scholars Walk outperformed other collaborative filtering and popularity-based

approaches. CourseAgent was a community-based system for recommending courses. It

was developed by leveraging course ratings provided by a community of students [17]. By

using this approach, the system transformed the process of course rating into a valuable

activity for users, helping them to better track their progress toward their career goals.

As a result, CourseAgent provided students with useful rating information about courses

to consider when enrolling. Non-model-based course recommender systems were also intro-

duced; for instance, displaying analytics to students drawn from aggregate course evaluations

[12], or presenting scheduling interfaces for accommodating course enrollment requirements

[93]. Parameswaran et al. [18] focused on degree requirements and constraint satisfaction as

priorities for the recommendation.

Deep learning-based recommender systems have gained immense popularity in the

field of course recommendations in recent years. Jiang et al. [15] developed a novel recurrent

neural network-based recommendation system for suggesting courses to help students prepare

for target courses of interest, personalized to their estimated prior knowledge background

and zone of proximal development. Wong [94] proposed a solution that also used recurrent

neural networks to develop a sequence based course recommender to deal with challenges

including sequence and concurrency, constraints, context and concept drift. In their work,

Pardos et al. [19] leveraged a combination of course catalog descriptions, student enrollment

histories, and student grades to develop a neural network-based system for personalized

course guidance. Specifically, they implemented recurrent neural networks and skip-gram

models to enhance the scrutability of the system. This approach was shown as an evolution

of content tagging and provided a means for the recommender system to balance inferred

user preferences with those explicitly specified by the user. A recent study [95] introduced

PLAN-BERT, a model that utilized Bidirectional Encoder Representations from Transformer

(BERT) to support consecutive basket recommendation with pre-specified future reference
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items. Through their empirical analysis, the authors highlight the value of pre-specified

reference items in addressing the cold start problem. Furthermore, their findings suggested

that PLAN-BERT’s bidirectional self-attention architecture outperforms both BiLSTM and

a UserKNN baseline in effectively utilizing past sequence information. Furthermore, the

authors demonstrated that incorporating user and item features offers substantial benefits,

particularly for students in later years of study.

Although course recommendation has gained considerable attention, limited research has

focused on human factors, such as human-understandable explanations, and different dimen-

sions of recommendation systems, such as novelty and serendipity. This issue is particularly

significant when students are faced with high-stakes and complex decisions regarding course

selection. One proposed design for a serendipitous university course recommendation system

is presented in [21]. The authors experimented with a variety of algorithms and found that

context-based models performed best on offline validation tasks. However, these models un-

derperformed compared to a simple bag-of-words model on student measures of serendipity.

Providing more information about recommended courses, including why they are recom-

mended and how they match students’ skills and interests, could better equip the students

to evaluate the utility of recommended courses and reduce the likelihood of dismissing them

due to unfamiliarity. This is particularly important for serendipity-focused course recom-

mendation systems, which aim to recommend courses that are unexpected or novel yet still

relevant, and thus likely to be adopted by students.

Furthermore, to the best of my knowledge, no previous studies have attempted to incor-

porate job information into course recommendation and explanation.

2.3 Explainable Recommendation

Explaining the mechanisms of recommendation algorithms is a rapidly evolving area of

research in explainable AI. The goal of explainable recommendation systems is to not only

provide users or system designers with recommendation results but also to provide expla-

nations for why certain items are recommended. As one of the most user-centered types
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of AI systems, recommender systems face the challenge of maintaining user trust and sat-

isfaction [96]. Recommender systems often behave like a “black box”, particularly those

employing deep neural networks [19]. These systems present recommendations to users

without providing a rationale for selecting recommendations [97]. Concerns about the inter-

pretability and explainability of recommendation algorithms have been raised, particularly

as researchers have started to apply more advanced and complicated algorithms, such as La-

tent Factor Models and Deep Learning, to improve the statistical accuracy of these systems

in offline settings (e.g., rating prediction tasks). By providing explanations and justifications

for recommendations, transparency, persuasiveness, effectiveness, trustworthiness, and user

satisfaction of recommender systems can be improved.

Some of the earliest studies on explainable recommendations focused on foundational

concepts. For example, Schafer et al. [98] described how recommender systems improve

E-commerce sales by suggesting items that users are already familiar with, leading to the

development of item-based collaborative filtering. Herlocker et al. [99] proposed a model

for explanations based on user surveys to understand their conceptual model of the rec-

ommendation process in MovieLens. Additionally, Sinha and Swearingen [100] emphasized

the importance of transparency in recommender systems, rather than just focusing on the

system’s statistical accuracy.

In the late 2000s, as recommender systems became more complex and were applied to

a wider range of fields, there was an increase in research on recommendation explanation

[101, 102, 103, 104]. These studies aimed to enhance recommender systems with the abil-

ity to provide explanations, which were shown to increase user perception of transparency

[105] and build trust [106]. This increased trust led to a greater acceptance and percep-

tion of the relevance of recommendations [22, 23]. The promising results of early research

on explanations encouraged a large body of follow-up work, which has been summarized in

[107, 108, 109].

Modern explainable recommendation systems aim to develop models that not only gen-

erate high-quality recommendations but also provide intuitive explanations. These expla-

nations can be categorized based on a variety of factors, such as display styles, reasoning

models, paradigms, sources of knowledge, and explanatory goals. In particular, there are
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several important explanatory goals, including Transparency, Scrutability, Trust, Persua-

siveness, Effectiveness, Efficiency, and Satisfaction [110, 107, 109]. Recognizing the broad

diversity of explanation styles has led to research comparing different types of explanations

for the same recommendations [111, 112, 113].

The original research on explaining recommendations primarily focused on model-intrinsic

approaches, which aim to develop interpretable models that have transparent decision-

making mechanisms, thus providing natural explanations for the model decisions. This

approach aims to explain how models suggest items and has been studied extensively in the

literature [33, 99, 114, 115, 116]. However, a growing sub-stream of research has shifted

towards model-agnostic approaches, also known as post-hoc explanations or justifications.

Post-hoc explanations focus on developing an explanation model to generate explanations af-

ter a decision has been made, rather than revealing the process of recommendation. Further-

more, some justification models have been developed to address the challenges of black-box

models, whose internal behavior is difficult to interpret, by specifying why the system pro-

vides certain recommendations. This approach has been studied in various contexts, such as

in trust-based recommender systems [106] and tag-based explanations [105]. Post-hoc expla-

nations have become increasingly important with the rise of deep recommender systems based

on neural network mechanisms, which are notoriously difficult to explain [117, 118, 119].

To address this issue, Ni et al. [117] proposed a pipeline to identify justification candi-

dates and built aspect-based user personas and item profiles from massive corpora of reviews.

They also proposed two generation models to improve generation quality and diversity. The

experiments conducted on two real-world datasets show that the models are capable of gen-

erating convincing and diverse justifications. Shmaryahu et al. [120] introduced post-hoc

explanations for complex model recommendations using simple methods, such as simple col-

laborative filtering and content-based approaches. The study showed that users accept these

explanations and react positively to simple and concise explanations, even if they do not

fully explain the mechanism leading to the generated recommendations. A framework for

generating post-hoc natural language justifications for recommendations was proposed in

[121]. The authors used user reviews to build an explanation that was independent of the

underlying recommendation model. Three different implementations of the framework were
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presented, each with increasing complexity: the first used NLP and sentiment analysis to

identify relevant aspects discussed in the reviews; the second introduced automatic aspect

extraction and text summarization; and the last implementation generated context-aware

justifications by learning a lexicon for each contextual setting. The framework was validated

through three user studies, which showed that it made the recommendation process more

transparent, engaging, and trustworthy for users. Mauro et al. [122] proposed a novel justifi-

cation approach that uses service models to extract experience data from reviews concerning

all the stages of interaction with items and organize the justification of recommendations

around those stages. In a user study, the approach was compared with state-of-the-art base-

lines, and participants evaluated the service-based justification models higher for perceived

user awareness support, interface adequacy, and satisfaction. The study also suggested the

investigation of personalization strategies to suit diverse interaction needs.

In recent years, the field of recommendation explanation has garnered increasing interest;

however, the majority of the research conducted has been within the context of e-commerce,

with only a limited focus on the education domain. Zhou et al. [123] discussed a study on

using hierarchical reinforcement learning induced pedagogical policies combined with human-

authored explanations to improve student-system interaction in terms of their engagement

and autonomy. The study found that reinforcement learning decisions can be paired with

explanations to achieve better outcomes than using either one alone. Barria-Pineda et al.

[124] discussed the use of explainable educational recommendations in a personalized prac-

tice system for Introductory Java Programming course. The study examined how students

use recommendations and explanations and assessed their impact on the educational process.

Two types of explanations were presented to justify the recommendation of the next learn-

ing activity. The authors evaluated the effectiveness of these explainable recommendations

in a semester-long classroom study, analyzing their impact on various aspects of student

behavior and performance. Takami et al. [125] introduced a simple explanation generator

using Bayesian Knowledge Tracing (BKT) models to generate explanations for a quiz rec-

ommender system. The explanation generator classified recommended quizzes into distinct

feature types based on the values of the BKT model parameters. Subsequently, it generated

explanation texts corresponding to each category, which were manually created by a human
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teacher. To assess the impact of explanations on the recommender system, the authors car-

ried out a user study involving summer vacation assignments given to high school students.

Comparing the click counts of recommended quizzes with and without explanations, the

study found that the number of clicks was significantly higher for quizzes with explanations.

One of the pioneering studies conducted by Ma et al. [74] discussed explanations in course

recommendation systems. The authors aimed to investigate the factors influencing students’

course selection in universities with the intention of gaining insight into student perceptions,

attitudes, and needs. This understanding could facilitate the employment of data-driven

methodologies for recommending courses and explaining recommendations in the context

of university environments. Upon analyzing the survey data, they identified that course

interestingness, career objectives, and academic performance were among the most significant

factors in course selection. However, the study lacked a comprehensive evaluation of the

impact of explanation in course recommendations. One study by Yu et al. [38] explored ways

of familiarizing students with recommendations by providing explanations designed with

varying levels of personalization in a serendipitous course recommender system. They used

unigrams to represent knowledge components in the descriptions of anchor courses, target

courses, and taken courses. However, keyphrases may better communicate the underlying

semantics, as unigrams may not have sufficient ability to convey the meaning encapsulated in

course descriptions. It may not be easy for students to interpret the meaning of single words,

especially technical, without context. Keyphrases have been successfully used to explain

recommendations [31, 32, 33] and have shown promise in improving user comprehension

over unigrams [34, 35].
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3.0 PRELIMINARY WORK

In this chapter, I report my preliminary investigations into various methods for represent-

ing and articulating courses in higher education applying natural language processing and

deep learning methods. I assess the value of large-scale institutional data sources, such as

course enrollments for a collaborative approach and course catalog descriptions for multiple

content-based strategies. These course representation models are evaluated using a dataset

of course-to-course articulation from a 4-year University of California and a 2-year California

Community College. The latter part of the chapter explores an early investigation into the

role of explanation in serendipity-enhanced course recommendation systems. We employ

unigrams as skill components and offer three types of explanations for the suggested courses.

A user study at the University of California, Berkeley, is conducted to gauge the efficacy

of the explanation on the course recommendation. These studies were conducted under the

mentorship and guidance of Dr. Zach Pardos and in collaboration with his students.

3.1 Data-Assistive Course-to-Course Articulation Using Machine Translation

Higher education at scale, such as in the California public post-secondary system, has

promoted upward socioeconomic mobility by supporting student transfer from 2-year com-

munity colleges to 4-year degree granting universities. Among the barriers to transfer is

earning enough credit at 2-year institutions that qualify for the transfer credit required by

4-year degree programs. Defining which course at one institution will count as credit for an

equivalent course at another institution is called course articulation, and it is an intractable

task when attempting to manually articulate every set of courses at every institution with one

another. In collaboration with researchers at the University of Berkeley, California, we study

a methodology towards making tractable this process of defining and maintaining articula-

tions by leveraging the information contained within historic enrollment patterns and course

catalog descriptions. We provide a proof-of-concept analysis using data from a 4-year and

30



2-year institution to predict articulation pairs between them, produced from machine trans-

lation models and validated by a set of 65 institutionally pre-established course-to-course

articulations.

As this study lays the groundwork for subsequent chapters on course representation and

recommendation, it is essential to explain the comprehensive methods and insights derived

from this research.

3.1.1 Introduction

Course articulation has been the bridge that connects programs from different levels of

higher education to one another, forming pathways to achievement focused on equity of

access. Across the United States, there is evidence that these pathways have been under-

performing. Around 45% of the 20 million students entering higher education in the United

States begin their post-secondary experience at 2-year public institutions [126]. A 2010

US Department of Education survey of 19,000 “Beginning Postsecondary Students” (BPS)

found that 81.4% of community college students had aspirations of transferring to earn a

4-year degree [127]. Data on 852,439 public community college students, collected by the

National Student Clearinghouse (NSC); however, found that only 13% had earned a 4-year

degree in six years after beginning at a community college [128]. The picture looks better

for those in the study who successfully transferred, with 42% of these students having com-

pleted their 4-year degree. Course articulation, or a lack of it, is not the primary culprit

for these low outcomes; however, it is likely not an insignificant source either. Evidence of

this is an analysis of the BPS data from the US Government Accounting Office’s (GAO) in

which it is estimated that 42% of credit earned at the community college level is lost upon

transfer to a 4-year institution [129]. Much of this loss is due to switching majors or earning

an excess of general credit before declaring a major, though it is estimated that a portion

is due to lack of articulation and that a 20% increase in 4-year degree attainment, among

transfers, can be expected if those articulations existed [130]. The impact of insufficient ar-

ticulation on student rates of successful transfer has not been quantified, but a recent spate

of state and national efforts to define additional pathways suggest that it has been an im-
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portant factor [131, 132, 133]. These observations serve as mounting evidence that providing

more comprehensive articulations can help improve transfer success through greater credit

mobility.

Articulations at the degree level are often created by state mandate, with courses being

developed at the 2-year and 4-year institutions in unison, or one modeled after the other,

and with collaboration between faculty at both. Outside of these degree level articulations

are those made on a course-by-course basis. In this case, there is a significant bottleneck

of human resources committed to processing and validating requests for articulation. Each

campus typically has a designated articulation officer, or chief instructional officer [134].

This person is responsible for receiving articulation requests, choosing which to consider, and

then beginning the process of validation by conferring with the instructor of record at the

other institution by way of its respective articulation officer. A diagram of the articulation

process in the California public post-secondary system [135] is depicted in Figure 3. If

only considering articulation of courses from one of the 115 2-year California Community

Colleges (CC) to courses at the nine 4-year University of California (UC) campuses, there

are 63M pairs (1,000*7,000) to consider, assuming1 a catalog of 1,000 courses at the CC

and 7,000 at each UC. This number can be reduced if assuming there always exists a clear

department-to-department mapping between institutions, which is not always the case, and

that courses are only considered for articulation within the mapped-to department. In this

case, the lower bound number of course pairs to consider is 35,000 (20*35*50) assuming

an average of 20 courses per department at the CC, 35 courses per department at the UC,

and 50 departments at the CC articulating only to a single respective department at the

UC. This number increases significantly when considering and maintaining articulation to

the 23 institutions in California’s State University System and articulation to the other

114 community colleges, necessary for lateral (CC-to-CC) transfer. The intractability of

effectively curating an articulation database with a manual process increases exponentially

when considering articulation to out-of-state or private institutions. The GAO estimates

that 94% of credits are lost when transferring from a public to private institution [129].

1These numbers are assumed based on counts extrapolated from our dataset consisting of enrollments
from one UC and one CC
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In this paper, we posit that institutional big data have been an underutilized source that

can be leveraged towards combating the bleak combinatorics of course-to-course articulation.

We investigate the utility of these sources using the two datasets of course enrollments and

course descriptions, one from a 4-year University of California campus (referred to as UC1)

and one from a 2-year California Community College (referred to as CC1). Recent work has

found that analysis of enrollment sequences using word2vec approaches can embed courses

into a space of semantic structure [19] similar to the space words are embedded into based

on their word contexts in a corpus [37]. We build on this finding to test if a translation can

be learned between the course spaces of two different institutions, just as it has been learned

between the word spaces of two different languages [136].

3.1.2 Datasets

3.1.2.1 UC1 dataset

Our UC1 dataset consists of 7,487 courses in 179 departments taken between 2008 and

2017 at the Berkeley campus of the University of California. We inherit pre-trained vectors

for each course from the authors of prior work [19]. These continuous valued vectors are 229

dimensions in length trained from 4.8 million enrollments from 164,196 students using a skip-

gram model and tested against a validation set of within-institution course credit restrictions

(i.e., equivalencies) curated by the university. Details of this training is explained later in the

models section of this paper. Also found in this dataset are the plain-text catalog description

of each course. The average length of a UC1 course description is 325 words and there are

489 descriptions with fewer than 10 words.

3.1.2.2 CC1 dataset

Our CC1 dataset consists of 1,000 courses in 53 departments taken between 2013 and

2018 at Laney Community College of Oakland, located six miles south of UC Berkeley.

This is a novel dataset for which no prior models had been trained. The average length of

CC1 course descriptions is 27 and there are 62 descriptions which have less than 10 words.
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Figure 3: Diagram of the process for course articulation in the University of California

system, sourced directly from the California Articulation Policies and Procedures Handbook.

The process for course-to-course articulation can be seen by following the left side of the flow

diagram.
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Table 1: Course articulation samples from assist.org. Multiple CC1 courses denote that both

must be taken to count towards the UC1 course credit.

UC1’s course CC1’s course(s)

AFRICAM5B AFRAM 31

ASAMST20A ASAME 45A; ASAME 45B

ASAMST20C NO COURSE ARTICULATED

Additionally, this dataset contains 298,174 enrollments, and their semester and year, made

by 58,716 students.

3.1.2.3 Validation set

We use the existing set of course articulations between UC1 and CC1 to evaluate the

predicted articulations of our models. These articulation pairs were screen scraped and man-

ually enumerated from assist.org2, the official information system for looking-up articulations

within the California public post-secondary system. The system lists the articulations that

exist between the two institutions with respect to each major offered at CC1. The total

number of articulation pairs extracted was 65. Given our goal of proposing new potential

articulations, we also curated a list of major satisfying courses at UC1 for which there were

no respective articulated courses at CC1. There were 184 such UC1 courses. Table 1 shows

samples from this course articulation dataset.

3.1.3 Models

In this section, I present several models for course representation from which to predict

the similarity between courses at the two institutions. I will also describe the application of

machine translation as a linear transformation from a source course vector space (i.e., UC1)

2These articulations were kept current up until 2017. A new system, with updated articulations, is
expected within the year.
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to a target course vector space (i.e., CC1). This technique is applied to our course2vec based

course representations.

3.1.3.1 Collaborative-based model (course2vec)

We use an adaptation of word2vec applied to course enrollment sequences as described

in prior work [19, 137]. The data are prepared by enumerating course enrollment sequences

per student with the enrollment sequence consisting of course ID tokens (e.g., ECON 141)

sequenced in the order in which the student took the courses. Courses taken in the same

semester are serialized by randomizing their within-semester order. A skip-gram is then

applied to these sequences exactly as it would be applied to sequences (or sentences) of

words in a language context to produce continuous vectors for each course. Prior work has

found that these vectors, learned from enrollment sequences, encode information about the

topic of the course, as well as latent attributes such as its mathematical rigor and the most

common major of students taking the course [137]. For the UC1 dataset, these vectors were

pre-trained and inherited from the authors of that prior work. For CC1, we train course

vectors, sweeping the hyper-parameters of vector size and window size and perform model

selection based on the leave-one-out predictive performance on our articulation validation set,

described in detail in a later section. There is a threat of overfit in this approach; however,

we consider it to be minor given course2vec is an unsupervised process and a limited number

of hyper-parameter combinations are used with which to generate candidates for model

selection.

3.1.3.2 Content-based models

Course catalog description is the source of similarity data used by this class of models.

We consider three different course representations utilizing these data; simple bag-of-words,

TF-IDF, and an average of the respective word vectors of words in the description using a

pre-trained word embedding.

a. BOW with term-frequency. In our simple bag-of-words (BOW) model, each course

is represented as a vector of the length of the total unique words in all courses across both

36



UC1 and CC1. The values in a course’s vector are zeros unless the word of the corresponding

position in the vector has occurred in the description, in which case the frequency of this

word in the description is used. Similarity between courses can be calculated using cosine

similarity of their respective BOW. We applied a few filters to course descriptions before

constructing the BOW of courses for both institutions. First, we filtered out non-words

(e.g., course numbers) from the descriptions. Second, we removed the top 100 most frequent

words (e.g., course, student, credit) from all descriptions. After filtering, we were left with

a vocabulary of 14,316 across all descriptions.

b. TF-IDF. The simple BOW model assigns word frequencies as weights to words.

However, if a word appears frequently in most of the courses, it will not help to differentiate

between courses, nor help in identifying which are truly similar. We consider a TF-IDF

(term frequency-inverse document frequency) representation to address this issue, assigning

a weight to a particular term t in a course description d. As a result, instead of representing

a course description as a vector of word frequencies, each dimension of the vector is a real-

valued TF-IDF weight (wt,d), calculated as following:

wt,d = (1 + log(tft,d))× log10
N

dft
(1)

in which,

• tft,d: frequency of term t in course description d

• dft: number of course descriptions in which term t appears

• N : number of course descriptions in the collection

c. Word2vec (DescVec). There is a large disparity in the length of descriptions

between UC1 (325 words) and CC1 (27 words). Anticipating that this may introduce noise

into the process of finding similar courses based on description, we decided to attempt to

ameliorate this issue by representing both institution’s course descriptions using a pre-trained

public word embedding provided by the seminal word2vec work [37, 138]. This embedding

was trained on 100 billion words from Google News with a vector size of 300 dimensions.

To represent course vectors using this word embedding, we average over all the vectors of

the words appearing in the course descriptions after applying the same pre-processing as
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described in the above BOW sections. This approach, which we refer to as DescVec, is

anticipated to have the added benefit of still finding similarity between courses if they use

different, but synonymous words.

3.1.3.3 Model combination

The content-based and collaborative-based course representations are produced from en-

tirely different sources of information about courses and are likely to pose their own benefits

and deficits. The content-based models represent the content of the course as described

by the instructor; however, the description can become out of date and a course can be

described in an overly brief or generic way. In comparison, the course2vec models use stu-

dent enrollment behaviors to inform the representation of a course. Because of this, they

may contain important information about the course known by students (e.g., which are the

courses with a reputation for being easy) but not expressed by the instructor in the descrip-

tion. Conversely, course2vec representations may suffer from noise in the case of courses

with low enrollment (a minimum enrollment of 15 was set in the model) and also will suffer

from courses that have recently changed their content considerably from historic offerings.

In order to allow these two models to contribute their complementary benefits, we add a

model to our evaluations which is a combination of the DescVec model and the course2vec

model. The combining process is as follows:

1. Source course vector concatenation. Firstly, the source course vectors are transformed

to the target course embedding space through a machine translating process detailed in

the next section. We then concatenate the translated source course vectors with their

respective DescVec course vectors (see the upper concatenation in Figure. 4).

2. Target course vector concatenation. No translation is needed. We only concatenate the

target course vector with its respective DescVec course vector (see the lower concatena-

tion in Figure. 4).
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Figure 4: Process of translating a UC1 course2vec vector to the CC1 space and concatenating

it with its DescVec vector for matching to a concatenated CC1 course vector via cosine

similarity.
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3.1.3.4 Machine Translation

For the course2vec model, UC1 course vector set and CC1 course vector set are learned

separately; thus, they do not share the same coordinate frame of reference and their embed-

dings are subsequently different. Moreover, the dimensions of the two vector spaces are not

the same. We can not directly calculate the similarity between two course vectors coming

from two different spaces. However, a linear translation between skip-gram embeddings can

be learned as demonstrated by Mikolov at el. [136] that showed that the same concepts

(e.g., animals) in different languages have similar relative geometric arrangements in their

embeddings. By applying the linear translation of scaling and rotation, a reasonable map-

ping between the two language spaces could be found based on a small set of preexisting

word translation pairs. This is the key idea behind the parallel we draw to course embed-

ding translation where we base the learning of this translation of two institution embedding

spaces on a small set of preexisting course articulation pairs.

Regression-based translation. Since we anticipate that the same courses in different

institutions are likely to have similar geometric arrangements in their respective institution’s

embeddings, the transformation from one vector embedding space to another can be expected

to be linear. We perform a general linear regression with the input vector s ∈ Rn and the

output vector t ∈ Rm, in which n and m are the sizes of the dimensions of the source

vector space and target vector space, respectively. The goal of our model is to minimize the

differences between the translated source course vectors and target course vectors in the N

articulation pairs. The optimization problem is described as follows:

mintrans

N∑
i=1

dist(trans(si), ti) (2)

The function trans is used to translate a course vector from the source embedding space

to the target embedding space using the optimized weights W and biases b (also called

translation matrix M ) obtained from the regression model. The dist function is the loss

function in the regression model. We use cosine proximity and mse loss functions to train

our models, discussed more in section “Cosine vs Euclidean”. Stochastic gradient descent is

used as the optimizer to fit the model to our data. After translating a course vectors from
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the source embedding space to the target embedding space, the translated course vector

now has the same number of dimensions as all the target course vectors, allowing it to be

compared with target course vectors using metrics such as cosine similarity and Euclidean

distance.

3.1.3.5 Articulation Prediction

The goal of our methodology is that, given a course c in one institute, we would like to

predict an ordered list of courses in another institute that are most similar to c. With the

course representations and machine translated vectors in-hand, we can compute the similarity

or distance between two courses from different institutions. The course articulation process

is described as following:

1. Represent all courses by one of the course representation models.

2. Translate the source course vector s through the machine translation process if the

vector was produced by the course2vec or combined model. Otherwise, use the original

representation of the source course vector (i.e., content-based models).

3. Compute the cosine similarity (Equation 3) or Euclidean distance (Equation 4) between

the source course vector (or the translated source course vector) and all the course vectors

in the target institute.

4. Rank the target institute courses based on their similarity or distance scores, and choose

the top k (e.g., 10) courses for articulation recommendation.

3.1.4 Evaluation

In this section, I discuss how we validate our models, which includes choosing the hyper

parameters for CC1’s course2vec model, choosing between cosine similarity and Euclidean

to find similar courses, and considering the difference in performance of our articulation

predictions if we limit predictions to a similar department at the target institution.

Since our validation set only contained 65 labelled articulation pairs, we use a leave-one-

out cross-validation. We use the metric of recall @ k to evaluate prediction performance.

This means that, for each of the 65 pairs, given the UC1 course in the pair, we obtain the
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top k ranked CC1 courses from the articulation prediction process explained in the previous

section. The recall is calculated based on the percentage of correct CC1 courses that fall

within the top k. This metric was chosen because of the anticipated scenario where we

generate an articulation report to the articulation officer of CC1. This report will not show

just one suggested CC1 course per unarticulated UC1 course, but rather a list of suggestions.

The k in recall @ k represents the length of this hypothetical list and the recall metric

represents the percentage of the 65 lists of length k that included the true articulation(s) in

them.

3.1.4.1 Parameter search

The two most crucial hyper-parameters of the skip gram model are vector size v and

window size w. Modification of the vector size is a way to tune the granularity with which

regularities are produced in the feature space. Different languages and dataset sizes will

require different vector size settings to achieve the same granularity. It is desirable for the

granularity of both course vector sets to be at the same level for the feature mapping to be

effective. We therefore conduct a minimal hyper parameter search of the CC1 course2vec

model. We start with the pre-trained course vectors from UC1. Then, we sweep a small

range of vector sizes and window sizes for CC1’s course2vec by optimizing the leave-one-out

recall performance described in the above section. We chose recall @ 5 as the k used for

optimization as this was an ad-hoc estimate for a reasonable length list of courses for an

articulation officer to consider. This process of hyper-parameter tuning went as follow:

1. For each of the 27 parameter sets, we run course2vec 20 times to learn different CC1

course vectors based on different random model initializations

2. Obtain the average recall @ 5 from leave-one-out cross validation described above for

each CC1 course vector set

3. Average over the recalls @ 5 of all the 20 course vector sets for particular parameter sets

4. Select the parameter set with the best average recall performance

The result from Figure 5 shows that, within the 27 parameter sets, the vector size 20 and

window size 5 achieved the best perform w.r.t recall @ 5. Therefore, we chose these values
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to train the final CC1 course vector set.

Figure 5: Recall performance @ 5 with different sets of course2vec vector sizes and window

sizes for training CC1 vectors. The error bars represent 95% confidence intervals, obtained

by running each model 20 times.

3.1.4.2 Cosine vs Euclidean

Given vector-space course representations, if vectors come from the same original space,

it is effective to directly calculate their distances using cosine or Euclidean distances. On the

other hand, vectors coming from different spaces need to be mapped to the same space by the

proposed method explained in Section 3.1.3.4. After the transformation, we can calculate

their distances.

- Cosine similarity: measure the similarity between two non-zero vectors x and y by

computing the cosine of the angle between them.
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cosine similarity(x,y) =
x.y

∥x∥ ∥y∥
=

∑n
i=1 xiyi√∑n

i=1 xi
2
√∑n

i=1 yi
2

(3)

- Euclidean distance: measure the straight-line distance between two points in Euclidean

space.

Euclidean distance(x,y) =

√√√√ n∑
i=1

(xi − yi)2 (4)

Depending on which distance metric is used for evaluation, matching to an appropriate

loss function used to optimize the problem defined in Equation 2 may be called for. If cosine

similarity is used to evaluate, we can use cosine proximity as the loss function, and mean

squared error (mse) as the loss function in the case of Euclidean as the evaluation metric.

3.1.4.3 Department filtering

It is intuitive to think that course articulation pairs should be in equivalent departments

across colleges (e.g., a course offered by Mathematics department at UC1 should be articu-

lated to a course offered by Mathematics department at CC1). We therefore also compare

the performance of the best model to its department filtering version. However, among the

65 articulation pairs, there are 2 pairs that come from departments that were not mapped

to one another in the department mapping conducted by the authors. These were STAT2 to

MATH13 and NUSCTX10 (Nutritional Sciences and Toxicology) to BIOL28 (Biology). In

order to have a fair comparison for with and without department filtering data, we excluded

these two pairs, leaving us with 63 articulation pairs for that evaluation.

3.1.5 Results

In this section, I present the articulation prediction performance of the different models

and present visualizations of the course embeddings for intuition. For the course2vec model

and combined model, as we obtained from our development experiments, the performances

of models trained with mse loss function were worse than the ones trained with cosine loss
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function. Therefore, I only report the results for the models trained with cosine loss functions

(see Figure 6).

Figure 6: Recall comparison of the different models trained with cosine proximity loss func-

tion @ k.

In addition to the recall performances @ k, I also report the rank of the true articulated

course in our prediction results. The median and mean rank across the 65 articulation

predictions is reported, as well as the standard deviation of ranks (see Table 2).

Observations:

• Although slim, the BOW model with TF-IDF shows consistent improvement over the

term-frequency BOW model across values of k.

• Among the content-based models, the DescVec model performs best, overall.

• The course2vec model performs substantially worse than the content-based models on

recall @ 5 but then matches their performance for all other values of k. It also can be

observed from Table 2 that, while having a higher median rank, the course2vec model’s
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Table 2: Course articulation ranking validation from the different course representations.

Course

Representation

Median

Rank

Mean

Rank

Std of

Rank

Bag of words 3.0 59.12 173.28

TF-IDF 3.0 57.01 177.65

DescVec 3.0 21.06 57.94

course2vec 6.0 17.74 33.65

course2vec+DescVec 2.0 7.94 15.73

mean and std are lower than the content-based models, suggesting that it has fewer poor

performing outliers.

• The combined model (course2vec + DescVec), which leveraged the strength of both the

content-based and collaborative-based models, shows the best performance across all

values of k and among all the rank metrics.

Figure 7 shows the difference in performance between the combined model with and

without department filtering. The performance of the model with department filtering brings

recall @ 5 up above 80%. An interpretation of this result is that if the model were to produce

a set of five CC1 course articulation suggestions for each one of ten chosen UC1 courses, eight

of those sets of ten suggestions can be expected to contain an appropriate articulation course.

Visual inspection of course2vec models. We visually inspect the CC1 and UC1

course2vec models to investigate if similar geometric regularities can be seen as they have

been in visualization of language translation models [136]. We use PCA to reduce the

course2vec vectors to 2-dimensions, then zoom into the the Computer Science departments

of each visualization to compare the relative positions of courses with articulations between

UC1 and CC1. As we can see from Figure 8, the 2D course vectors obtained from the skip-

gram models show a similar, but not perfectly so, geometric arrangements of articulated

courses. Computer Science was picked because courses within that department performed
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Figure 7: Recall comparison of the CourseVec + DescVec model with and without depart-

ment filtering.

well on the articulation task and produced a PCA visualization that underscores why the

course2vec representations learned from course enrollments alone can be effective.

Moreover, we also inspect the course representations for all courses at each institution,

this time using t-Stochastic Neighborhood Embedding [139] to reduce the course2vec+DescVec

representations to 2-dimensions. The t-SNE algorithm is chosen in this case because it is gen-

erally better at retaining global embedding structure than PCA. This visualization (Figure

9) reveals a few regularities in the relative department-level positions of the two institutions

as well as a tight grouping of courses by department, also observed in [137]. The deparments

of Chemistry, Engineering, Civ Eng, Architecture, African American Studies, and American

Studies can be seen as appearing in clockwise order in both institutions, underscoring why

the representations learned from course enrollments by course2vec alone, rival the informa-

tion contained in course descriptions.
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Figure 8: Distributed vector representations of Computer Science courses in UC1 and CC1.

The four course vectors are reduced to two dimensions using PCA in each of the institu-

tions. UC1 includes Structure and Interpretation of Computer Programs (COMPSCI61A),

Data Structures (COMPSCI61B), C++ for Programmers (COMPSCI9F) and JAVA for Pro-

grammers (COMPSCI9G). CC1 includes Structure and Interpretation of Computer Programs

(CIS 61), the combination of Object Oriented Programming Using C++ (CIS 25) and Data

Structures and Algorithms (CIS 27), Object Oriented Programming Using C++ (CIS 25)

and Java Programming Language I (CIS 36A).
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Figure 9: t-SNE scatter plots of courses obtained from the course2vec+DescVec models.

The color of the points represent the departments and the text annotations represent the

names of the departments which have sufficient courses and direct mappings between UC1

and CC1.
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3.1.6 Discussion

We found that a simple word2vec approach to articulation, DescVec, performed equal

to or better than the experimental course2vec machine translation model. However, the

experimental model was shown to contain novel useful information in addition to what

was found in the course description based DescVec model. This was made evident by the

performance of the concatenation of the course2vec model vectors with the DescVec vectors

which performed meaningfully better than any other model in our recall @ k metric for all

values of k. It also performed between 30% and 50% better than the second best model in

median, mean, and std. rank metrics and was therefore used to produce the articulation

report.

The primary barrier to adoption of this methodology is sharing of enrollment data.

It is a challenge to successfully approach institutions with a request to share this type

of data. In order for this endeavor to be successful, it may take the support of existing

centralized data repositories, such as the assist.org system, operated by the UC Office of the

President (UCOP), or national data collectors such as the National Student Clearinghouse or

Department of Ed. A secondary barrier to adoption is the degree to which this data-assistive

method is accepted into the socio-technical system of course articulation. If the method is

seen as a threat to articulation officers’ jobs, as AI is increasingly seen as to many jobs, it

will be difficult to integrate with the articulation officer as the point of contact. Direct-to-

student suggestion of articulation candidates for them to petition may be more fruitful in

this case.

While our study focused on these methods used to identify new articulations, out of

date articulations may be just as important to identify. Transfer students receiving credit

for courses that do not well enough prepare them for the material that will be encountered

upon transfer are also harmful to student success. The methods described could just as

well be used to identify the existing articulations with the lowest articulation scores, for

re-consideration.

50



3.1.7 Limitations and Future Work

A limiting factor to the potential success of a report generated for UC1 to CC1 artic-

ulation is that CC1 is what is known as a “common feeder school” to UC1, meaning that

it is a top source of transfer students for UC1. This means that articulations between the

two institutions may be near saturation levels. A limitation of the course2vec approach is

that a course must have an enrollment history in order to receive an embedding. This would

rule out courses which are being offered for the first time as candidates for articulation to

or from. In this case, a content-based model would need to be defaulted to. The primary

limitation of the machine translation method is that it relies on existing articulations to

learn the translation, ruling out the method for application to institution pairs for which

no articulations exist, which are by definition the most in need of articulation. Again, the

content-based methods could be applied in these cases and promising unsupervised language

translation methods [140] may become candidates for overcoming a lack of existing articula-

tions to train on. Faculty currently consider factors such as the difficulty of the source course

and its syllabus when deciding to accept a proposed articulation. Future enhancements to

the content-based models could include parsed syllabus information and data from the LMS.

Were it available, test questions and their grading or even graded student answers might

further provide a means for automatically scoring the match in difficulty between courses at

different institutions. These data are available in MOOC datasets, and thus the emerging

articulation context of MOOC micro-credentials3 and their mapping to accredited degree

programs is already halfway to a tenable context for this approach.

3.2 Orienting Students to Course Recommendations Using Three Types of

Explanation

An emerging challenge in course recommender systems is explaining to students why they

have been recommended particular courses. In the context of a university, it can be valuable

3https://www.edx.org/micromasters
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for a recommender system to introduce students to courses they may have not otherwise

taken but which are still relevant to them. This is a collaboration with the CAHL lab at the

University of California, Berkeley. I will summarize the methods and study results in the

next sections, more details can be found in [38].

3.2.1 Methods

Our course recommendation scenario is based on showing courses relevant to a “favorite”

course chosen by a student from their course history. We evaluated two different course

recommendation models in this study: one using BOW course representations, and the other

using a concatenation of BOW and multi-factor course2vec with instructor and department

features (referred to as the best analogy model, proposed by Pardos and Jiang [21]). Both

methods of representing courses are described in detail in [38], and both use cosine similarity

to the favorite course to find recommendations. Serendipitous recommendations require

user-perceived unexpectedness. In both models, we attempt to generate unexpectedness by

diversifying recommendations, showing a maximum of one course per department in the

results and excluding the department of the favorite course.

For producing explanations, our hypothesis is that by adding more information about a

course, some of it personalized, including the reasons for its recommendation, students will

become more familiar with the course, potentially increasing its success. We refer to the

favorite course chosen by the student as an anchor course and the courses recommended by

the system as target courses. The three proposed methods for explaining course suggestions

are described (details can be found in [38]) as follows:

Inferred Keywords: A course may be recommended based on latent features not de-

scribed in its official catalog description. To help students understand the recommendation,

these latent features can be added as part of an explanation. A method using course2vec vec-

tors is applied to extract keywords from enrollments [141]. Once the model is trained, a soft-

max probability distribution is used to find high probability words predicted by course2vec

that are not in the course description. These words are treated as the course’s inferred

keywords.
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Anchored Keywords: To help students understand recommendations, explaining the

relation between the recommended target courses and the anchor course is important. This

is achieved by showing overlapping keywords between them. Unigrams are extracted from

both course descriptions, with the course title and inferred keywords of the target course in-

cluded. After preprocessing and filtering, an intersection operation is applied to find common

keywords. These intersected keywords are then sorted by probability for explanation.

Anchored Keywords = (Tt ∪ Td ∪ Ti) ∩ Ad (5)

In which, Tt is the keywords in the target course title, Td is the keywords in the target course

description, Ti is the inferred keywords of the target course, and Ad is the keywords in the

anchor course description.

Taken Keywords: The final explanation approach relates target course recommenda-

tions to keywords from courses the student has taken in the past. By retrieving the student’s

enrollment history and producing keywords for those courses. The taken course keywords

and target course keywords are preprocessed, intersected, and sorted by probability for ex-

planation.

Taken Keywords = (Tt ∪ Td ∪ Ti) ∩ Bd (6)

Where Tt, Td, and Ti are the same as the previous equation. And Bd is the keywords in the

description of the taken courses.

3.2.2 User Study

3.2.2.1 Study Design

The goals of the study are to understand and improve the unexpectedness, successfulness,

serendipity, and novelty of serendipitous course recommender systems in higher education

using different recommendation models and explanation strategies proposed in the previ-

ous sections. To evaluate the effects of these factors, we designed a user study to collect

students’ ratings of recommendations along various measures. Once the study began, each

student was randomly assigned to one of the ten experimental conditions (see Table 3).
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Participants were asked to select a favorite course they had taken before as input for the

recommender. After choosing the favorite course, the system displayed five sorted courses

from different departments. The display information of the recommended courses included

the course catalog description, and, depending on the condition the participant was assigned

to, the system would show them inferred keywords of the recommended courses, keywords

in common with the selected favorite course (anchored keywords), or keywords in common

with the courses they took in previous semesters (taken keywords), or all of them together.

After examining the suggested courses based on their favorite course, students were asked

to rate the recommendations based on their agreement with the following statements (used

in [21]) on a 5-point Likert scale, from 1 (Strongly Disagree) to 5 (Strongly Agree):

1. This course was unexpected.

2. I am interested in taking this course.

3. I did not know about this course before.

These questionnaires help to measure different dimensions of recommendations. We

consider the first statement as unexpectedness, and the second statement as successfulness,

where students express their interest in taking the suggested course. Novelty is measured by

the third statement. Shani and Gunawardana [142] defines serendipity as the combination

of unexpectedness and successfulness. In our case, we use the mean of unexpectedness and

successfulness as our measure of serendipity.

3.2.2.2 Study Results

We received a total of 329 ratings from 67 students consisting of freshmen (50), sopho-

mores (10), juniors (1), and seniors (6). The participants were fully engaged in the study

and spent a significant amount of time examining the recommendations and explanations.

The rating results of the ten conditions are shown in Table 3. Each row is the average

rating results of all students assigned to a specific condition. For example, for the BOW

model without any explanation (1A), 3.571 and 2.771 are the average values of 35 stu-

dents’ course ratings on the first two questions (i.e., unexpectedness and successfulness. The

serendipity rating is 3.171, average ratings of unexpectedness and successfulness. Finally,
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the average rating of novelty is 3.714 for condition 1A. Among all ten conditions, the 4A

(BOW + showing keyword overlap with courses taken before) achieved the highest ratings

for unexpectedness (3.700) and novelty (3.900). Condition 3B scored the highest rating of

3.046 for successfulness, while serendipity received the best rating of 3.300 from condition

4B.

Table 3: Average student ratings of individual course recommendations from the user study

broken out by model used to generate course recommendations, method used to generate

the explanations, and rating construct.

As we can see from Fig. 10 (A), unexpectedness, successfulness and novelty outcomes

received average ratings from 2.75 and above (out of 5), where Novelty was the highest

(3.400). This suggests that our design for recommendations and explanations has reasonable

effects on these outcomes. There was no significant difference between BOW and Analogy

models’ results except for on the Novelty measure (see Table 4). The BOW model had a

higher impact on the novelty of recommendations in this study. It has much higher mean

and median ratings compared to those from the Analogy model (Fig. 10 (B)). In addition,

we ran an analysis to test differences between without-explanation and with-explanation

(where all the three types of explanations are considered) on the outcomes and found no

significant differences, which points out that different types of explanations affect users in

different ways.
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Figure 10: Student ratings for the four outcomes are presented as box plots. Middle lines

represent the median ratings, while triangles represent the mean ratings. (A) presents the

overall rating from all the students, and (B) presents the ratings separated by recommenda-

tion model types (BOW and Analogy).

Table 4: The impacts of the recommendation models and explanation strategies according

to OLS regression.

Unexpectedness Successfulness

Variable Coefficient P-value Coefficient P-value

Analogy Model -0.0759 0.595 -0.1039 0.431
Inferred Keyword -0.1982 0.180 -0.1293 0.327
Anchored Keyword -0.3501 0.013 (*) 0.2873 0.037 (*)
Taken Keyword 0.4161 0.006 (**) 0.1182 0.442

Serendipity Novelty

Variable Coefficient P-value Coefficient P-value

Analogy Model -0.0899 0.292 -0.5240 0.001 (**)
Inferred Keyword -0.1637 0.063 -0.4454 0.011 (*)
Anchored Keyword -0.0314 0.722 0.2275 0.161
Taken Keyword 0.2671 0.005 (**) 0.3701 0.039 (*)

* p-value<0.05, ** p-value<0.01
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To better understand the effects of the recommendation models and different explanation

methods (independent variables) on the measures; unexpectedness, successfulness, serendipity

and novelty of recommended items, we ran robust Ordinary Least Squares (OLS) regressions

for each of the measures (dependent variables). The number of observations (N ) was 329. For

each observation, the binary independent variables (i.e., model, inferred keywords, anchored

keywords and taken keywords) got value 0 or 1 depending on what condition they belonged

to; solid black circles (in Table 3) indicate which features were present. The results in Table

4 explain that:

• The Analogy model surprisingly had a negative effect on the measures when compared

to the base (BOW) model in the regression, which means that the BOW model achieved

better results in this study even though most of them are not statistically significant.

We also see the differences between the mean and median ratings of the two models in

Figure 10 (B). For the novelty measure, the Analogy model had the largest magnitude

impact (among the variables) with a coefficient of -0.524 and statistical significance with

p-value of 0.001.

• Inferred Keyword method also negatively affected the measures. The difference was

statistically significant for novelty with the coefficient -0.4454 and with the p-value 0.011.

It also had a moderately negative impact on serendipity with the p-value 0.063. The

explanations from this method were worse than those from Anchored Keyword and Taken

Keyphrase methods in helping students perceive the novelty of recommended items.

• Anchored Keyword method had a significantly positive impact on successfulness with

a coefficient of 0.2873 and p-value of 0.037 but a negative impact on unexpectedness

with a coefficient of -0.3501 and p-value 0.013. This result agrees with the known trade-

off between the successfulness and unexpectedness factors of recommendations. The

Anchored keywords helped to explain the relationships (i.e., shared topics) between a

student’ favorite course and a recommended course. When shown more connections

between a favorite course and a recommended one, students were less surprised about

the recommendation.

• Interestingly, the Taken Keyword method statistically significantly positively affected

three out of the four measures, including the main serendipity measure. The coefficients
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were 0.4161, 0.2671, and 0.3701 with p-values of 0.008, 0.004 and 0.037 for unexpectedness,

serendipity and novelty, respectively. Showing taken keywords from the courses students

already took improved the unexpectedness of recommendations. The Taken Keyword

strategy is the only one that had a significant impact on serendipity, which comes from

the positive impacts of the method on unexpectedness and successfulness, two measures

difficult to simultaneously increase.

3.3 Discussion and Conclusion

We consider this work as the first attempt to understand and improve unexpectedness,

successfulness, serendipity, and novelty in higher education course recommender systems

using explanations. Three novel explanation strategies were introduced, including two per-

sonalized ones using students’ course history. These explanations were integrated into course

recommendations to help students understand the recommendations and improve their per-

ceptions of serendipity.

We conducted a user study with 67 students, where students were assigned to a random

explanation condition and asked to rate recommendations. We found that explaining recom-

mendations using keywords from courses the student had taken increased all measures and

significantly improved serendipity. The only strategy that significantly improved success-

fulness was based on the keywords in the student’s chosen favorite course, although it also

decreased unexpectedness. The largest negative effect was observed in the analogy model

on the novelty measure. Further work is needed to understand the aspects of the models

responsible for differences in perceptions.

The study suggests that appealing to students’ prior knowledge can be effective in gen-

erating personalized explanations. The magnitude of the results could be further improved

by using keyphrases instead of unigrams for the explanations since unigrams may not have

sufficient ability to communicate meaning encapsulated in course descriptions. It may not

be easy for students to interpret the meaning of single words, especially technical, without

context. The complete keyphrases could better communicate the underlying semantics and
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have been already used successfully to explain recommendations [31, 32, 33] and have shown

promise in improving user comprehension [143, 144] over unigrams [34, 35].

59



4.0 AUTOMATIC CONCEPT EXTRACTION FOR COURSE

DESCRIPTION WITH DEEP LEARNING

Knowledge and skills have consistently been recognized as critical components in many

educational AI systems over the past few decades. Not only do skills assist recommender

systems in making informed decisions, but displaying skills is also one of the most intu-

itive ways to explain the content of documents. The absence of a standardized knowledge

base describing more granular concepts and skills in higher education and the labor market

underscores the urgent need to construct a knowledge base capable of standardizing and en-

hancing our understanding of how educational foundations influence future careers and the

skills of individuals. As a step toward the goal of automated educational ontology construc-

tion, this chapter proposes a deep learning methodology to extract fine-grained concepts

(referred to as ‘skills’ discussed in Chapter 1, Section 1.1) presented directly in educational

documents, specifically course catalog descriptions, without the need for manually labeled

data for training. This enables the investigation of the impact of skill-based explanations on

course recommendations in higher education in the subsequent chapters.

4.1 Introduction

Transfer learning is developed to address the challenge of using representations that

are first pre-trained on large quantities of unannotated data and then further adapted to

guide other downstream tasks. A recent trend in transfer learning is to utilize self-supervised

learning on extensive general datasets with deep neural networks to obtain a general-purpose

pre-trained model that captures the intrinsic structure of the data. Deep learning not only

achieves great performance but also has the advantages of transfer learning and learning

feature representations from scratch (e.g., word embeddings). This pre-trained model can

be fine-tuned to a specific task with a particular dataset, which has been demonstrated to be

highly effective in natural language processing (NLP) [145, 146] and computer vision [147].
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This approach is also effective for fine-tuning deep learning models with limited or weak

labels on downstream tasks [148].

Deep neural network models for sequence tagging with Convolutional Neural Network

(CNN), Recurrent Neural Networks (RNN) and Transformers which brought some break-

throughs in NLP systems with pre-trained distributed vector representations for characters

and words, and neural language models. These deep neural models and architectures are

able to successfully perform sequence tagging tasks based on inferred features and semantic

and syntactic information of languages from pre-trained embeddings and language models.

They are robust and easy to adapt to different sequence labeling tasks, avoiding the bur-

den of manually engineering features for specific domains and applications. These models

have been successfully applied to NER tasks and have been recently shared with keyphrase

extraction tasks [56, 149].

To approach concept extraction from course descriptions as a sequence labeling task with

deep learning, it can be formally stated the same as a NER task. Let d = {x1, x2, ..., xn}

be an input sequence of n words, where xt present the tth token. The task is to infer their

hidden class labels Y = {kB, kI , kO}, where kB means xt is the beginning of a keyphrase, kI

means xt is the inside of a keyphrase, and kO means xt is not a part to a keyphrase.

Domain adaptation is a machine learning technique that aims to improve the performance

of a model trained on a source domain, when the distribution of the target domain is different,

yet related. In general, domain adaptation utilizes labeled data from one or more source

domains to perform similar tasks in a target domain [150, 151]. The effectiveness of domain

adaptation depends on the degree of relatedness between the source and target domains. In

deep domain adaptation, the goal is to make use of the highly transferable features learned

by DNNs to improve the adaptation of the model to the target domain. This involves fine-

tuning the model on the target domain, while preserving the transferable representations

learned by the DNN on the source domain. This allows the model to generalize better to

the target domain and improve its performance.

The fine-tuning process in deep domain adaptation typically involves adapting the pa-

rameters of the model’s later layers while keeping the earlier layers fixed. This is because the

lower layers of DNNs usually capture more transferable features that are relevant across dif-
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ferent domains, while higher layers capture domain-specific features. Therefore, fine-tuning

only the later layers allows the model to adapt to the target domain while maintaining

the transferable representations learned from the source domain. Depending on the data

availability from the target domain, domain adaptation can be applied with supervised,

semi-supervised, and unsupervised approaches [151].

In this study, I train concept extraction models for different types of documents such

as Wikipedia articles, abstracts of scientific articles, and textbook sections. Then, these

models are directly adapted to extract concepts (representing ‘skills’ discussed in Chapter 1,

Section 1.1) in another type of document that is course description. The assumption is that

the source distributions of the input “domains” are similar enough to the distribution of the

target “domain” so that we can utilize the models trained on the source documents directly

to the target course description without necessitating specific domain adaption techniques.

In this chapter, I will first present the two most popular deep neural architectures and how

they can be used for concept tagging tasks. I then describe in detail the data, implementation

and model performances on a test set and expert judgement. Finally, I conclude the chapter

with a discussion.

4.2 Deep Neural Architectures for Concept Extraction

4.2.1 Bi-LSTM-CRF

Bidirectional LSTM-CRF (Bi-LSTM-CRF) models, one of the latest techniques for se-

quence tagging, are first presented in [56]. Different modified versions of the models have been

proposed in recent years, models with static word embeddings [152], models with contex-

tual embeddings [153], models with additional character embeddings [153, 154, 155], models

adding language model (LM) embeddings [156], and models with task-aware neural lan-

guage model [155]. Some of these models have been adapted to keyphrase extraction mainly

for scientific articles; [57] uses the Bi-LSTM-CRF model with fixed word embeddings and

character embeddings, and [58] uses the Bi-LSTM-CRF model with contextual embeddings.
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These studies show the benefits and improvement of keyphrase extraction compared to state-

of-the-art unsupervised and supervised models.

The standard Bi-LSTM-CRF model for keyphrase extraction consists of three main com-

ponents [155] (see Fig. 11).

Figure 11: Bi-LSTM-CRF architecture adaption for concept extraction.

Embedding Layer: word and character-level embeddings are trained purely on unan-

notated sequence data from a text corpus. While word embeddings capture syntactic and se-

mantic regularities in language, character embeddings provide additional information about

the underlying style and structure of word; for example, it can mimic Shakespeare’s writ-

ing and generate sentences of similar styles, or even master the grammar of programming

languages (e.g., XML, LATEX, and C) and generate syntactically correct codes. Both the

embeddings help to improve many NLP tasks including sequence tagging. The one-hot vec-

tor of an input word wt is mapped to a fixed-size dense vector (the concatenation of character

and word embeddings) xt in this layer.

• Word embeddings : different pre-trained word embeddings could be applied in this layer:

fixed word embeddings such as Glove, FastText, Word2Vec, and contextual embeddings

such as ELMo, BERT.
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• Character embeddings : in addition to regular word embeddings, representations of words

can be constructed using representations of the characters they are composed. This

could be helpful, especially for languages in which the spellings of words are sensitive.

Character embeddings can be trained with Bi-LSTM [153, 155] or CNN [154]

Bi-LSTM Layer: LSTMs [157] are recurrent neural networks that deal with vanishing

and exploding gradient problems with the use of gated architectures. Bidirectional LSTMs

(Bi-LSTM) are a generalization of LSTMs that capture long-distance dependencies between

words in both directions. For the keyphrase extraction task, I have access to both past and

future input features for a given time, I can thus utilize a bidirectional LSTM network (Fig.

11). In doing so, I can efficiently make use of past features (via forward states) and future

features (via backward states) for a specific time frame, which is more robust and efficient

compared to manually engineered features that need to define a specific context window in

traditional classification (e.g., SVM) or sequence tagging (e.g., CRF).

The concatenation of character and word embeddings xt is the input for this layer, thus

d is represented as a sequence of vectors x = {x1, x2, ..., xn}. The corresponding class labels

are y = {y1, y2, ..., yn}, where yi ∈ Y . A Bi-LSTM is used to encode sequential relations

between the word representations. A LSTM unit consists of four main components: input

gate (it), forget gate (ft), memory cell (ct), and output gate (ot), which are defined as below:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf )

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

ht = ot ⊙ tanh(ct)

(7)

In which, σ denotes the sigmoid function, tanh is the hyperbolic tangent function, and

⊙ is an element-wise dot product. W and b are model parameters that are estimated during

training, and ht is the hidden state.
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The input vector xt goes through LSTM units in both directions, creating two hidden

state vectors: (
−→
ht) and (

←−
ht) capturing in formation from words before and after xt, respec-

tively. The concatenation of these two vectors represents the semantics and dependencies of

xt in the context of the input text.

←→
ht = [

−→
ht ;
←−
ht ] (8)

An affine transformation to map the output from the Bi-LSTM to the class space in the

CRF layer: ft = Wa

←→
ht , where Wa is a matrix of size |Y |×2l and l = |

−→
ht |. The score outputs

from the Bi-LSTM f = {f1, f2, ..., fn} serve as input to a CRF layer.

CRF Networks: There are two different ways to make use of neighbor tag information

in predicting current tags. The first is to predict a distribution of tags for each time step and

then use beam-like decoding to find optimal tag sequences, maximum entropy classifier [158]

and Maximum entropy Markov models (MEMMs) [159]. The second approach is to focus

on sentence level instead of individual positions, thus leading to Conditional Random Fields

(CRF) models [160] (Fig. 11). CRFs are discriminative probabilistic models which has been

successfully used in many sequence labeling tasks. [56] combined CRF with deep learning

models, which has been shown to improve the performance of many sequence labeling tasks.

In a CRF layer, the score of an output label sequence is:

s(f, y) =
n∑
t

τyt−1,yt + ft,yt (9)

τ is a transition matrix where τi,j represents the transition score from class yt−1 to yt. The

likelihood for a labeling sequence is generated by exponentiating the scores and normalizing

over all possible output label sequences.

During inference, CRFs use the Viterbi algorithm to efficiently find the optimal sequence

of labels.
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4.2.2 BERT

Another popular deep learning model for keyphrase extraction is the Bidirectional En-

coder Representations from Transformers (BERT) model. BERT [73], a pre-trained deep

neural network model, uses multi-layer bidirectional transformers to pre-train representa-

tions for language models from large unlabeled text. Fine-tuning the BERT model has been

shown to achieve state-of-the-art performance on a variety of natural language processing

tasks such as language understanding, text classification, question answering and NER. Its

ability to capture the contextual meaning of words and phrases makes it particularly effective

for keyphrase extraction [149, 161].

BERT, a language representation model, utilizes a Transformer architecture [162] that

uses stacked self-attention and point-wise, fully connected layers for both the encoder and

decoder. Specifically, the encoder reads the input text, which is a sequence of tokens, and

the decoder produces a prediction for the task at hand. The BERT’s attention mechanism

enables the model to learn contextual relationships between words in the text. Since BERT

focuses on generating a language representation model, it utilizes only the encoder part. In

this process, the input tokens are projected into embedding vectors and are subsequently pro-

cessed through deep neural network architectures. For a given token, its input representation

is constructed by summing the corresponding token, segment, and position embeddings.

• Token embeddings : WordPiece embeddings with a 30,000 token vocabulary. A [CLS]

token is added to the input word tokens at the beginning of the first sentence and a

[SEP] token is used to differentiate the sentences.

• Segment embeddings : A marker indicating Sentence A or Sentence B is added to each

token. This enables the encoder to differentiate between sentences.

• Positional embeddings : To signify the position of each token within the sentence, a

positional embedding is incorporated.

Fundamentally, the Transformer utilizes a layer that maps sequences to sequences, re-

sulting in an output sequence of vectors that correspond on a one-to-one basis with the input

tokens at the same index. BERT does not aim to predict the subsequent word within the
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sentence like traditional language models. The pre-training process for BERT leverages the

following two strategies.

• Masked Language Model : deep bidirectional model is strictly more powerful than either

a left-to-right model or the shallow concatenation of a left-to-right and a right-to-left

model. Unfortunately, standard conditional language models can only be trained left-to-

right or right-to-left, since bidirectional conditioning would allow each word to indirectly

“see itself”. The idea is simply to mask some percentage of the input tokens at random,

and then predict those masked tokens, based on the context provided by the other non-

masked words in the sequence. Out of the random 15% of all tokens in each sequence

selected for masking in the pre-trained BERT models: 80% of the tokens are actually

replaced with the [MASK] token; 10% of the time tokens are replaced with a random

token; 10% of the time tokens are left unchanged. This setting helps to mitigate the issue

of a mismatch between pre-training and fine-tuning, because the [MASK] token does not

appear during the fine-tuning process.

• Next Sentence Prediction: according to [73], many crucial downstream natural language

processing tasks, such as Question Answering (QA) and Natural Language Inference

(NLI), require a deep understanding of the relationship between two given sentences.

However, this relationship is not explicitly captured by traditional language modeling

techniques. To address this issue, the training process of BERT includes a next sentence

prediction task, which helps the model learn to comprehend the relationship between

two given sentences. During training, BERT is fed with pairs of input sentences and

learns to predict whether the second sentence is the next sentence in the original text.

BERT separates the two input sentences using a special [SEP] token as mentioned earlier.

Specifically, the model is trained on pairs of input sentences at a time, where 50% of the

time the second sentence comes after the first one (labeled as IsNext) and 50% of the

time it is a random sentence from the full corpus (labeled as NotNext). BERT is then

required to predict whether the second sentence is random or not, with the assumption

that the random sentence will be disconnected from the first sentence. Although this

task is simple, it is highly beneficial for both QA and NLI tasks.
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BERT is pre-trained on a combination of the BooksCorpus dataset, which contains ap-

proximately 800 million words, and the English Wikipedia, which contains approximately

2.5 billion words. The pre-training process of BERT combines the Masked Language Model

and the Next Sentence Prediction tasks to minimize the combined loss function of the two

strategies, helping BERT to capture rich contextual representations of words and sentences

that can be fine-tuned for specific downstream tasks.

Fine-tuning BERT for downstream tasks is a straightforward process due to the self-

attention mechanism in the Transformer architecture. The self-attention mechanism allows

BERT to model various downstream tasks involving single text or text pairs by replacing

the appropriate inputs and outputs. For token-level tasks, such as sequence tagging and

question answering, the token representations obtained from the output layer are fed into a

neural network layer, while for classification tasks such as entailment or sentiment analysis,

the token representation of [CLS] is utilized.

The use of transfer learning in deep language models such as BERT, which enables the

learning of feature representations similar to computer vision, allows for highly effective fine-

tuning of downstream tasks. To perform concept extraction on course descriptions, I adopt

the BERT architecture. The token representations obtained from BERT’s output layer are

used as inputs for a token classification task where each token is classified into one of three

classes (i.e., O, B-CON and I-CON ).

Figure 12 illustrates how the BERT architecture is fine-tuned for the concept extraction

task. The token representations obtained from the BERT model are transformed into features

that can be used for classification. The process of fine-tuning BERT for concept extraction is

highly effective due to the ability of BERT to learn meaningful representations of the input

text.
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Figure 12: BERT architecture adaption for concept extraction.

4.3 Experiments and Results

4.3.1 Training Datasets

To overcome the problem of manually labeling data for course descriptions, I apply the

notion of domain adaption to train the concept extraction models on source datasets close

to the target course description, with expert-annotated labels or weak labels. Specifically,

several existing labeled datasets in the academic and educational domains will be used to

train models to extract concepts for course descriptions.

Introduction to Information Retrieval (IIR) dataset1: contains a section-level

concept index for the first 16 chapters of the book “Introduction to Information Retrieval”

(IIR) [163]. For each section (the lowest-level unit in the Table Of Contents) of the textbook,

the dataset provides a list of essential concepts mentioned in that section. The dataset

1https://github.com/PAWSLabUniversityOfPittsburgh/Concept-Extraction
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Table 5: Statistics of the IIR dataset

Characteristic

Number of chapters 16
Number of sections 86

Number of all concepts 3175
Number of 1-grams 1121 (35.31%)
Number of 2-grams 1565 (49.29%)
Number of 3-grams 422 (13.29%)
Number of 4-grams 58 (1.83%)
Number of 5+6-grams 9 (0.28%)

Number of all unique concepts 1543
Number of unique 1-grams 278 (18.02%)
Number of unique 2-grams 871 (56.45%)
Number of unique 3-grams 330 (21.39%)
Number of unique 4-grams 55 (3.56%)
Number of unique 5+6-grams 9 (0.58%)

is annotated by three experts. Before the start of the process, the annotators received

training and passed a test that focused on the understanding of the task, the “codebook”

of annotation rules, and the annotation interface. Every week, three experts focused on

completing annotations for one chapter (i.e., all sections that belonged to the chapter). After

finishing an annotation session, they discussed the cases in which their annotations disagreed,

made the final decision for the concept list, and, if necessary, added new “codebook” rules

to help increase the agreement in the future. Throughout this process, the inter-annotator

proportion agreement among the three annotators before discussion had gradually increased

from 0.25 to 0.68 at week 3 and 0.9 at the end of the whole annotation process. The statistics

of the dataset are shown in Table 5.

KP20K2: one of the largest datasets in scientific keyphrase studies developed by Rui

at el. [62]. It contains the titles, abstracts, and keyphrases of 554,133 scientific articles in

the Computer Science domain from various online digital libraries, including ACM Digital

Library, ScienceDirect, Wiley, and Web of Science etc.

2https://github.com/memray/seq2seq-keyphrase
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Wikipedia: the largest dataset in this study. It contains Wikipedia articles including

page topics which can be used to filter data to train domain-specific concept extractors. For

instance, I select 636,917 articles in, e.g., Computer Science, Information Science, Artificial

Intelligence, Information Retrieval and Machine Learning to train models to extract concepts

in Computer and Information-related course descriptions. The weak concept labels for each

Wikipedia article are cultivated using page categories, bold texts, and phrases linked to

another article [164, 165].

4.3.2 Implementation Details

Various models are trained with Bi-LSTM-CRF and BERT architectures using three

different training datasets separately and two training settings (i.e., uncased texts and cased

texts). In total, there are six main models trained for each architecture, plus a combined

model that combines the outputs of the six models together:

• uncased-iir : model trained with IIR dataset in the uncased setting

• cased-iir : model trained with IIR dataset in the cased setting

• uncased-kp20k : model trained with KP20K dataset in the uncased setting

• cased-kp20k : model trained with KP20K dataset in the cased setting

• uncased-wiki : model trained with Wikipedia dataset in the uncased setting

• cased-wiki : model trained with Wikipedia dataset in the cased setting

• combined-all : model combines the output of each of the above models together

One effective technique for improving the performance of machine learning models is to

use an ensemble of multiple models rather than a single model to make predictions. Each

model in the ensemble is referred to as a base learner. Ensemble is the algorithm of choice

for many winning teams in machine learning competitions. There are three approaches

to creating an ensemble: bagging, boosting, and stacking. Stacking involves training base

learners on the training data and then creating a meta-learner that combines the outputs of

the base learners to produce the final predictions. The combined-all model in this study is

particularly a stacking ensemble model consisting of six base learners. To generate concept

predictions from a given text (i.e., a course description), the final prediction is computed
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as the combination of all the outputs from the base learners. If two concepts, which are

outputs from the base models, are adjacent or overlapping, they are concatenated into a new

concept. All the trained models are available on this Github repository.3

The implementation of Bi-LSTM-CRF models is based on the version4 presented in [57]

at the sentence level. The character embeddings of 30 dimensions are obtained by training

additional Bi-LSTM networks along with the main model. For the word embeddings, the

Glove pre-trained word embeddings of 100 dimensions5 are used. A 300-dimensional hidden

layer of LSTM units is used for both the character-level embedding model and the main

model. The models are trained using mini-batch stochastic gradient descent with momentum.

The batch size, learning rate and decay ratio are set to 10, 0.015 and 0.05, respectively. The

dropout strategy is also applied to avoid over-fitting and gradient clipping of 5.0 to increase

the model’s stability.

For BERT models, a distilled version (DistilBERT) is used. It is smaller, faster, cheaper

and lighter, yet achieves competitive performances compared to the original architecture

[166].

4.4 Model Performances

To evaluate and compare the performance among the models, I created a test set in-

cluding 50 randomly selected course descriptions. I manually annotate concept labels for

each of the course descriptions. The trained models are evaluated using standard keyphrase

extraction metrics on this set of 50 course descriptions.

Table 6 shows the performance of two different models, BERT and BI-LSTM-CRF, for

concept extraction. The performance is measured in terms of precision, recall, and F1 score

for three different training datasets (i.e., IIR, KP20K and Wikipedia) and two training

settings (i.e., case and uncased). The combined-all row represents the performance of the

stacking ensemble models which combines the outputs of the six based models for each of

3https://github.com/HungChau/course-concept-extraction
4https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
5https://nlp.stanford.edu/projects/glove/
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Table 6: Model performance summary of BERT and BI-LSTM-CRF on a task of concept

extraction for course descriptions.

BERT BI-LSTM-CRF

precision recall f1 precision reall f1

uncased-iir 0.738 0.269 0.394 0.773 0.256 0.385

cased-iir 0.726 0.281 0.405 0.844 0.208 0.334

uncased-kp20k 0.515 0.195 0.283 0.714 0.111 0.193

cased-kp20k 0.537 0.217 0.309 0.570 0.148 0.236

uncased-wiki 0.629 0.259 0.367 0.797 0.285 0.420

cased-wiki 0.608 0.248 0.352 0.809 0.313 0.452

combined-all 0.733 0.556 0.633 0.799 0.503 0.617

BERT + BI-LSTM-CRF

precision recall f1

deep-concept-extractor 0.758 0.625 0.685

the deep architectures separately. The last row of the table shows the performance of all

BERT and BI-LSTM-CRF models combined on a test set. The best performing model for

each dataset and metric (or overall) is highlighted in bold.

As can be seen from Table 6, in terms of F1 score, BERT demonstrates superior perfor-

mance on IIR and KP20K datasets, while BI-LSTM-CRF performs better on the Wikipedia

dataset. The stacking ensemble model exhibits the best performance in terms of F1 score,

regardless of the architecture employed, with the BERT ensemble model surpassing the

BI-LSTM-CRF ensemble model. The best performance across all three metrics, namely pre-

cision (0.758), recall (0.625), and F1 score (0.685), is achieved by combining the BERT and

BI-LSTM-CRF models.

Here is an example of concepts extracted from an actual Algorithm course at Pitt. The

yellow-highlighted phrases represent the concepts extracted by the combined model.

“This course emphasizes the study of the basic data structures of computer science

( stacks , queues , trees , lists ) and their implementations using the java language in-

cluded in this study are programming techniques which use recursion , reference variables ,

and dynamic memory allocation . Students in this course are also introduced to various

searching and sorting methods and also expected to develop an intuitive understanding of
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Table 7: Expert evaluation dataset statistics

Number of course descriptions 50

Average number of words per description 72.0

Average number of extracted concepts per description 12.64

Number of extracted concepts 632

Number of unique extracted concepts 519

the complexity of these algorithms ...”

4.5 Expert Evaluation

In addition to the offline evaluation on a test set, I also conduct an expert evaluation

to ensure the quality of extracted concepts for course recommendation applications. I hire

two PhD students who specialize in Computing and Information Science. To begin the

evaluation, I randomly sample 50 course descriptions in SCI. For each description, I apply

the trained model to extract concepts in the text. The two experts are then provided with the

course descriptions and a list of extracted concepts for each course. The experts are asked to

rate each extracted concept as either good or not good for the corresponding course. Table

7 summarizes the statistics of the evaluation dataset.

Table 8 presents the results of the expert evaluation conducted to measure the perfor-

mance of the deep-concept-extractor model. The table reports four metrics: macro accuracy,

micro accuracy, proportional agreement, and Kappa agreement. Macro accuracy measures

the accuracy of the experts’ evaluations at a high level for all the course descriptions together,

while micro accuracy measures the average accuracy at an individual course level. The re-

sults show that both experts have high levels of agreement with the concepts extracted by

the model, with macro accuracy ranging from 90.51% to 90.98%, and micro accuracy ranging

from 89.54% to 90.43%. Furthermore, the proportional agreement between the two experts

was 92.88%, indicating that they agreed on their assessments most of the time. Finally, the
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Table 8: The result of the expert evaluation.

Metric Expert 1 Expert 2 Both Experts

Macro accuracy 90.98% 90.51% 87.18%

Micro accuracy 90.43% 89.54% 86.09%

Proportional agreement – – 92.88%

Kappa agreement – – 0.57

table reports the Kappa agreement between the two experts, which measures the level of

agreement between them beyond what would be expected by chance. The Kappa agreement

between both experts was 0.57, indicating a good level of agreement. Overall, the results of

the expert evaluation illustrate that the two experts frequently agree with the outputs of the

concept extraction model. Consequently, the combined BERT and BI-LSTM-CRF models

will be employed to extract concepts from descriptions for explainable course recommenda-

tion systems in the next chapters.

4.6 Summary and Discussion

In this chapter, I applied several machine learning techniques to build a concept ex-

traction model for course descriptions without manually labeled data for training. Transfer

learning has proven to be a valuable approach in addressing the challenge of using represen-

tations that are first pre-trained on large quantities of unannotated data and then adapted

to guide other downstream tasks, which has been demonstrated to be highly effective even

with limited or weak labels. Deep neural network models for sequence tagging with var-

ious architectures, such as CNNs, RNNs, and Transformers, have brought breakthroughs

in NLP systems. I approached concept extraction from course descriptions as a sequence

labeling task with the state-of-the-art deep learning architectures, BERT and BI-LSTM-

CRF. I trained the concept extraction models on several public datasets, and then stacked

them together as an ensemble model for concept extraction to improve model effectiveness.
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The final model is directly adapted to extract concepts in another type of document, such

as course descriptions, without requiring specific domain adaptation techniques. It’s worth

noting that this straightforward domain adaptation approach works better if the source and

target distributions of the input “domains” are close to each other. However, employing

specific strategies such as supervised or semi-supervised domain adaptation could lead to

enhanced performance.

I conducted an evaluation and comparison of BERT and BI-LSTM-CRF models, for

concept extraction using standard keyphrase extraction metrics on a set of 50 course de-

scriptions. The performance of the models was measured in terms of precision, recall, and

F1 score for three different training datasets and two training settings. The stacking ensem-

ble model showed the best performance in terms of F1 score, regardless of the architecture

employed, with the BERT ensemble model surpassing the BI-LSTM-CRF ensemble model.

The best performance across all three metrics was achieved by combining the BERT and

BI-LSTM-CRF models.

In addition to the offline evaluation, an expert evaluation was conducted to ensure the

quality of extracted concepts for course recommendation applications. The results showed

that both experts had high levels of agreement with the concepts extracted by the model.

The proportional agreement between the two experts was 92.88%, indicating that they agreed

on their assessments most of the time. Finally, the Kappa agreement between both experts

was 0.57, indicating a good level of agreement.

Overall, the results of the study demonstrate that the combined BERT and BI-LSTM-

CRF models can be effectively employed to extract concepts from descriptions for explainable

course recommendation systems. The expert evaluation further validates the quality of the

extracted concepts, indicating the potential for practical applications of the models in the

field of education.
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5.0 SKILL-BASED EXPLANATIONS FOR SERENDIPITOUS COURSE

RECOMMENDATION

The efficacy of course recommender systems is increasingly dependent on their ability to

clarify to students the reasons behind specific course suggestions. Within a university set-

ting, it can be valuable for these systems to expose students to courses they might not have

considered, yet are still relevant to them. A challenge arises when students find it difficult

to judge the relevance of unfamiliar courses. Our preliminary findings, detailed in Section

3.2, indicate the potential benefits of providing course recommendations with explanations;

especially utilizing students’ prior knowledge could be an effective way to craft explanations.

However, unigram skills failed to provide effective explanations. This chapter suggests that

enriching course recommendations with skill-based justifications can improve the system’s

value. The deep concept extractor developed in Chapter 4 enables me to extract concepts

(representing ‘skills’ discussed in Chapter 1, Section 1.1) to pioneer skill-based explanations

in a deep learning-based serendipitous course recommendation system for higher education.

By delivering in-depth information about a course alongside its rationale for recommenda-

tion, students are better positioned to assess its relevance. This could potentially decrease

the tendency towards neutral opinions and reduce the likelihood of students overlooking a

course due to unfamiliarity. To validate this hypothesis, I conducted a user study using

the AskOski system, in collaboration with the CAHL lab led by Dr. Zach Pardos at the

University of California, Berkeley, and our collaborator, Run Yu.

5.1 Introduction

In recent years, the realm of course recommendation has seen a surge in interest, with

deep learning emerging as a prominent player. One notable example of this trend is the

AskOski system at the University of California, Berkeley. This innovative system harnesses

historical enrollment data and employs a collaborative approach, strengthened by deep learn-
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ing, to offer course recommendations that are tailored to the unique interests of individual

students across the campus. Furthermore, it integrates with the campus degree audit system

to offer personalized course suggestions that address the unfulfilled graduation requirements

of the students.

The serendipitous course recommendation system aims to recommend courses that are

unexpected or novel yet still relevant. The underlying hypothesis is that students are more

likely to accept such recommendations. Yet, this task presents significant challenges, particu-

larly within a university setting. In this context, relevant but unexpected courses may belong

to departments outside of a student’s primary field of study, and their course descriptions

may employ unfamiliar terminology, potentially making them less likely to be adopted by

students. Previous research, as demonstrated in our study [38], underscores the effectiveness

of catering to students’ prior knowledge by providing personalized explanations. However, it

is posited that the efficacy of these explanations can be further enhanced by using keyphrases

instead of unigrams. Unigrams, single words devoid of context, may struggle to convey the

full meaning encapsulated in course descriptions, particularly in cases where technical ter-

minology is utilized. Keyphrases, on the other hand, have shown promise in improving user

comprehension over unigrams, as they are better equipped to communicate the underlying

semantics [34, 35, 143, 144].

In this context, I hypothesize that augmenting course recommendations with skill-based

explanations could substantially enhance measures within higher education course recom-

mender systems. Specifically, I propose that by furnishing students with comprehensive

information about a course, including how it aligns with their prior knowledge and the

novel knowledge it offers, students will be better equipped to evaluate its relevance, be more

confident in making decisions and be less likely to dismiss it based on unfamiliarity. In

collaboration with the CAHL lab at the University of California, Berkeley, we conduct an

online user study at the same institution, leveraging the AskOski system powered by PLAN-

BERT, an adaptation of BERT4Rec, which is a state-of-the-art deep neural network model

for top-N recommendation [39].

In this chapter, I will begin by providing a concise overview of PLAN-BERT, the deep

learning-based course recommendation engine integrated into the AskOski system, which
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has been developed by the CAHL lab. Subsequently, I will describe the explanation method,

elucidate the study’s experimental procedures and analyses in detail, and discuss its contri-

bution, limitation, and future direction to conclude the chapter.

5.2 Recommendation Method

In the realm of recommendations, course recommendation for exploration could be con-

sidered as the top N item recommendation problem. Early works on this type of rec-

ommender system predominantly utilized content-based or collaborative-based approaches.

Some of these models leverage course representation models (e.g., skill -based or course2vec),

as discussed in previous sections, to generate recommendations. To consider time or order

information, state-of-the-art technologies employ deep sequential models such as Recurrent

Neural Networks or transformer-based models like BERT. Deep learning has gained a con-

siderable amount of interest in numerous research areas such as natural language processing

(NLP), speech recognition and computer vision. This surge in interest is not only due to

their remarkable performance but also due to their inherent capability of transfer learning

and crafting feature representations from scratch. Deep neural networks are also composite

in the sense that multiple neural building blocks can be composed into a single big differen-

tiable function and trained in an end-to-end manner. This is the key advantage when coping

with content-based recommendations and inevitable when modeling users and items, where

multi-modal data is ubiquitous. Deep learning models have successfully been applied to

top N recommendation problem and shown to be superior over the traditional approaches.

Consequently, to curate a list of potential courses to recommend to students based on their

course enrollment history, we use BERT4Rec [39], a leading model for top-N recommen-

dations. PLAN-BERT [95] (adapted from BERT) has recently been studied and evaluated

for multi-semester course recommendation. Its bidirectional self-attention design is more

effective at utilizing past sequence information compared to both BiLSTM and a UserKNN

baseline. Additionally, PLAN-BERT incorporates student characteristics (such as major, di-

vision, and department) and course attributes (such as subject and department) to enhance
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personalization and enhance the quality of recommendations. The online study demon-

strated that PLAN-BERT has practical potential to assist students as they navigate the

complexities of higher education. Consequently, we use a modified version of PLAN-BERT

(refer to Figure 13) to generate a list of course suggestions for a specific semester.

Training Process: in order to efficiently train the BERT architecture with sequential

data, we will apply the Masked Language Model, a masking technique in NLP. We will

employ percentage sampling to pre-train PLAN-BERT to learn the contextual embeddings

of courses by predicting the original IDs of the masked courses based only on their left and

right contexts. The input format for BERT to learn course embeddings, for example, is:

[c1, c2, c3, c4, c5, c6, c7]
randomly−−−−−→

mask
[c1, [mask]1, c3, c4, c5, [mask]2, c7]

At the main training stage, we will fine-tune PLAN-BERT on the next item prediction

task. The courses in the latest historical semester will be masked for prediction (see Figure

13.A). In this way, the trained model can learn the relationship between past and future

courses.

Diversifying Recommendations: Among the institutional values of a large multidis-

ciplinary university is to expose students to not solely complementary knowledge but also

different viewpoints expressed through courses. It helps students expand their learning and

collaboration and experience various intellectual schools of thought across the university.

The goal of our course recommendation is to help students improve awareness of course

options and explore courses they may find interesting but which have been relatively unex-

plored by those with similar course selections to them in the past. To achieve this goal and

counteract the filter bubble issue of collaborative filtering based recommendation models, we

diversify course suggestions by allowing only one result per department [21, 38], produced

by PLAN-BERT.
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Figure 13: A) Student course enrollment history for training PLAN-BERT: before the in-

ference time is the input and courses after the inference time are masked as the prediction

targets; each column represents a semester in the student enrollment history; blue cells rep-

resents enrolled courses; and striped cells are enrolled courses in the latest historical semester

and masked for prediction. B) BERT architecture for next course prediction task using stu-

dent course enrollment histories and major information. The position embeddings can be

encoded as relative semesters elapsed since the student began.

5.3 Explanation Method

One of the primary objectives of this study is to investigate how providing explanations

or justifications impacts and enhances user responses to the recommendations generated

by the method described in the previous section. Preliminary results from a prior study

[38] indicated that presenting students with prior knowledge (i.e., skills shared between
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the suggested course and the courses the student has taken) was an effective method for

generating personalized explanations that led to increased average ratings across all outcome

measures. Furthermore, presenting multi-gram skills instead of unigrams in explanations

could potentially further enhance the recommendation outcomes. Unigrams may not have

sufficient capacity to convey the nuanced meanings encapsulated in course descriptions. It

can be challenging for students to interpret the meaning of individual words, especially

technical terms. Therefore, we will utilize multi-gram concepts (representing ‘skills’ discussed

in Chapter 1, Section 1.1), extracted by the trained model presented in Chapter 4, to provide

these explanations.

The methodology. Our approach to providing explanations consists of two key as-

pects: (1) establishing connections between the target course recommendation and skills

from courses the student has previously taken, and (2) unveiling novel skills that are taught

in the target course. Consequently, the explanation for a recommended course will consist

of two separate lists of skills, offering the student both familiar knowledge they have already

acquired and new knowledge they have yet to encounter. The two lists of skills are defined

as follows:

Learned Skills = St ∩ (
⋃
c∈C

Sc) (10)

New Skills = St − (
⋃
c∈C

Sc) (11)

Where St is the set of extracted skills for the target recommended course’s description,

Sc is the set of extracted skills for a taken course’s description, and C is the list of courses

the student has taken in the past.

Skill ranking: To assess the relevance of an extracted skill to the target course, I

compute the relationship, denoted as rc(s), between the skill and the course. First, each skill

and course description are represented as embedding vectors with 768 dimensions, utilizing

the all-mpnet-base-v2 version of SBERT. Subsequently, I calculate the relationship (0 <=

rc(s) <= 1) using cosine similarity. This cosine score is employed to rank the list of skills,

with the top N skills selected to construct the explanation.
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Skill matching: two skills could be semantically equivalent but may have different word

forms (e.g., K-Means Clustering and K-Means Algorithm). Exact string matching could

lead to missing overlapping skills between the target course and a taken course. Therefore, I

employ a soft matching approach, utilizing cosine similarity between two embedding vectors

representing the two skills. These embedding vectors are derived from SBERT. Two skills

are considered a match if their cosine similarity (r(s1, s2)) exceeds 0.85. Note that this

heuristic threshold is chosen based on experimental analysis with the SBERT’s embeddings.

This threshold could be relaxed depending on specific applications or adjusted for different

types of embeddings.

5.4 Study Experiments

This section outlines the implementation of the proposed skill-based explanation for

serendipitous course recommendation at at the University of California, Berkeley. To assess

its effectiveness, we conducted a online user study involving undergraduate students, solic-

iting their insights on multiple dimensions. The study aims to empirically investigate the

hypothesis that enhancing course recommendations with explanations can empower students

to more effectively assess the relevance of suggested courses. This augmentation is antici-

pated to reduce the prevalence of neutral opinions and mitigate the likelihood of students

disregarding recommendations due to unfamiliarity.

5.4.1 Implementation Details

PLAN-BERT underwent retraining using enrollment history data up to Fall 2022. From

the initial pool of 20,282 courses, we excluded 553 courses with inadequate descriptions

(i.e., fewer than 7 words), resulting in a refined collection of 20,729 courses available for

recommendations across all majors. Using student enrollment data and major information

as inputs, PLAN-BERT ranks these courses for each student’s recommendation. The final

recommendations comprise the top 5 courses from 5 distinct departments, ensuring a diverse

83



selection for students. The final five recommended courses are shown to participants in a

random order.

To extract the skills encapsulated within these courses, I employed the concept extraction

model detailed in Chapter 4. This process entailed post-processing, including the removal

of generic skills such as ‘homework’, ‘student’ and ‘seminar’, skills containing more than

5 words, as well as the consolidation of singular and plural forms of skills. After post-

processing, on average, there are 6.5 extracted skill per course.

Both individual skills and course descriptions are transformed into embedding vectors

with 768 dimensions, utilizing the all-mpnet-base-v2 version of SBERT. Subsequently, I

calculated the relationships between skills and courses (0 ≤ rc(s) ≤ 1) via cosine similarity.

This cosine score is used to rank the list of skills associated with the course.

To provide insightful explanations for each course recommendation, I employ the skill

matching methodology described earlier, comparing the target course with the courses the

student has previously taken. This approach identifies the top 7 acquired skills and the top 7

new skills,1 which are then presented to the student alongside the course recommendations,

offering valuable insights and aiding in informed decision-making.

5.4.2 User Study

Procedures. This study is conducted online through the AskOski system at the Uni-

versity of California, Berkeley. Student participants are required to enroll for a minimum

of two semesters to take part in the study. They are randomly assigned to one of the two

between-subject conditions (Explanation). The study begins with participants logging into

the AskOski system using their Berkeley credentials. Upon accessing the system, partici-

pants are presented with the study’s introduction. Subsequently, they are presented with

a curated list of five course recommendations. These recommendations are tailored based

on the participant’s past course history, major information, as well as the course history

of “similar” students. Each course recommendation includes the course ID and title, the

description of the course, skill-based explanation (available only for participants in the Ex-

1The actual number of skills shown to the subject may be less than 7, depending on how many skills are
in the course and how many skills are matched.
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Figure 14: A demonstration of a recommended item with no explanation (group C1) through

the AskOski system.

planation conditions), and a survey questionnaire consisting of multiple-choice questions (see

Fig. 14 and 15). Participants are requested to thoroughly review each of the five course rec-

ommendations and respond to a series of questions regarding their preferences and feedback

for each recommended course. In total, each participant is expected to evaluate and provide

feedback on all five recommended courses.

Participants. A total of 53 participants were recruited for this study through a com-

bination of social media and email advertisements. Eligibility for participation was limited

to undergraduate students at the University of California, Berkeley, who had completed a

minimum of two semesters. Among the recruited participants, 28 were assigned to the ex-

planation condition, and 25 were in the no-explanation one. These participants come from a

diverse array of academic backgrounds, encompassing fields such as Computer Science, Data

Science, Economics, Statistics, and Media Studies, among others. The study was designed

to be completed within 30 - 45 minutes. Each participant received a $20 Amazon gift card

upon the successful completion of the study.

Design and Analysis. The study is designed as a between-subjects study to measure

the effect of explanation on the serendipitous course recommendation w.r.t success, unex-
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Figure 15: A demonstration of a recommended course for with skill-based explanation (group

C2) through the AskOski system. The explanation shows the top 7 learned concepts as well

as the top 7 novel concepts offered by the course.
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pectedness and novelty. There are two between-subject conditions (Explanation): No-Exp

(C1) vs. Exp (C2).

I collected the following measures:

• Q1. Success (Interest): Participants respond to the statement “I am interested in

taking this course.” [167, 21, 38] on a 5 point Likert scale from 1=Strongly Disagree

to 5=Strongly Agree (see Fig. 14).

• Q2. Unexpectedness: Participants respond to the statement “I was surprised that the

system picked this course to recommend to me.” [168] on a 5 point Likert scale from

1=Strongly Disagree to 5=Strongly Agree (see Fig. 14).

• Q3. Novelty: Participants respond to the statement “I have never seen or heard

about this course before.” [167] on a 5-point Likert scale from 1=Strongly Disagree

to 5=Strongly Agree (see Fig. 14).

• Q4. Explanation Effectiveness: Participants respond to the statement “This expla-

nation helps me determine how interested I am in taking this course.” [105] on a 5

point Likert scale from 1=Strongly Disagree to 5=Strongly Agree (see Fig. 15).

• Q5. Usefulness of Concepts: Participants respond to the statement “The explanation

helps me better understand how the course relates to my field of study.” on a 5-point

Likert scale from 1=Strongly Disagree to 5=Strongly Agree (see Fig. 15).

In our study, each participant evaluate several recommended items. Considering repeated

measurements made by the same participant as independent could potentially result in a

violation of correlated errors [169, 170]. To tackle this problem, I employ Generalized Linear

Mixed Models for the analyses. These models consider that the ratings are provided by

the same users, treating them as random effects, and permitting the estimation of error

correlations stemming from the repeated measurements.

5.4.3 Results

Interestedness. When comparing the baseline model, representing only the intercept,

with the random intercept model, which accounts for variations among different participants,
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the findings revealed statistically significant disparities in intercepts across participants. Con-

sequently, we incorporated participant random effects into the main analysis. As illustrated

in Figure 16, it is generally observed that participants in the Exp conditions (M = 2.78, N =

140) display slightly less interest in enrolling in the recommended courses compared to those

in the No-Exp conditions (M = 2.8, N = 125). Our statistical analysis further indicates that

there is a significant variation in intercepts across participants concerning the relationship

between the provision of an explanation and participants’ interest in taking the course, SD

= 0.42 (95% CI: 0.25, 0.71), = χ2(1) = 5.108, p = .02. However, the explanation itself does

not appear to have a significant effect on participants’ level of interest in enrolling in the

course, b = -0.021, t(51)=0.11, p = 0.91.

Unexpectedness. Likewise, when comparing the results of the baseline model (i.e.,

only the intercept) and the random intercept model (which accounts for variations among

participants), the results showed statistically significant variations in intercepts across par-

ticipants. As a result, the random effects of the participants are included in the primary

analysis. As shown in Fig. 17, in general, participants perceive the recommendations as

highly unexpected; participants in Exp conditions (M = 3.39, N = 140) show similar level

of unexpectedness about the recommendations compared to those in No-Exp conditions (M

= 3.4, N = 125). From the statistical analysis, the results show that the relationship between

explanation and the unexpectedness of the course showed significant variance in intercepts

across participants, SD = 0.47 (95% CI: 0.31, 0.72), = χ2(1) = 9.905, p = .001. However,

the explanation has no significant effect on how surprisingly the participants perceive the

course, b = -0.014, t(51)=0.074, p = 0.94.

Novelty. Similarly, there are statistically significant variations in intercepts across par-

ticipants, which were included in the primary analysis as a random effect. Fig. 18 shows

that participants generally perceive the recommendations as highly novel, with an average

rating of 3.54 out of 5. Participants in the Exp conditions (M = 3.44, N = 140) perceive

the recommended courses as slightly less novel compared to those in the No-Exp conditions

(M = 3.65, N = 125). From the statistical analysis, the results show that the relationship

between explanation and the novelty of the course exhibits significant variance in intercepts

across participants, SD = 0.58 (95% CI: 0.39, 0.86), = χ2(1) = 12.46, p = .004. Having
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Figure 16: (a) Proportional distribution of user responses to the statement ‘I am interested

in taking this course.’, comparing those with Explanation (exp) and Without Explanation

(no-exp). Ratings: 1 - ‘Strong Disagree’, 2 - ‘Disagree’, 3 - ‘Neutral’, 4 - ‘Agree’, 5 - ‘Strong

Agree’. (b) A graph displaying the distribution of ratings in response to research question Q1

for the two conditions, with the median indicated by red lines and the average represented

by green circles.
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Figure 17: (a) Proportional distribution of user responses to the statement ‘I was surprised

that the system picked this course to recommend to me.’, comparing those with Explanation

(exp) and Without Explanation (no-exp). Ratings: 1 - ‘Strong Disagree’, 2 - ‘Disagree’, 3 -

‘Neutral’, 4 - ‘Agree’, 5 - ‘Strong Agree’. (b) A graph displaying the distribution of ratings

in response to question Q2 for the two conditions, with the median indicated by red lines

and the average represented by green circles.

90



explanations slightly decreases the level of novelty perceived by participants, but it is not

statistically significant, b = -0.205, t(51)=0.902, p = 0.371.

Serendipity. Similar to the preliminary investigation described in Section 3.2 of Chap-

ter 3, we evaluated serendipity by computing the mean of user-perceived unexpectedness

and success [142, 38]. In our primary analysis, we also factored in statistically significant

variations in intercepts among participants, treating them as random effects. As depicted

in Figure 19, it’s evident that, on the whole, participants in the Exp conditions (M =

3.08, N = 140) exhibited a similar level of serendipity regarding the recommendations com-

pared to those in the No-Exp conditions (M = 3.1, N = 125). Our statistical analysis

showed significant variance in intercepts among participants in the relationship between

explanations and the level of serendipity of the course, SD = 0.33 (95% CI: 0.24, 0.46),

= χ2(1) = 21.20, p < .0001. Yet, explanations had no impact on participants’ perception of

the serendipity of the course, with a coefficient of b = -0.017, t(51)=0.15, p = 0.881.

Assessing serendipity poses a formidable challenge. While existing literature suggests

that it can be approximated as the mean of user-perceived unexpectedness and success,

it is imperative to acknowledge that highly unexpected items often yield lower perceived

relevance. Our study supports this observation, as we found a notable negative relationship of

-0.39 between relevance and unexpectedness, suggesting that subjects tend to prefer courses

that are less likely to provide surprises. However, it is noteworthy that items characterized

by both high unexpectedness and high relevance are the ones most valued by users.

To investigate further into the impact of explanations on user perception of recommen-

dation interest across varying levels of unexpectedness, we categorized the 5-point Likert

scale ratings of unexpectedness into ‘low’ (comprising ‘Strongly Disagree’ and ‘Disagree’)

and ‘high’ (comprising ‘Strongly Agree’ and ‘Agree’) unexpectedness, with neutral ratings

excluded from the analysis. As depicted in Figure 20, our findings indicate that, in compar-

ison to courses with low unexpectedness, courses with high unexpectedness elicited reduced

interest from participants. Specifically, when a course presented lower levels of unexpected-

ness, participants in the absence of explanations demonstrated a 0.234-point higher interest

in pursuing the course. While this suggests that providing additional information about a

course (including its potential knowledge benefits) may prompt subjects to realize its limited
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Figure 18: (a) Proportional distribution of user responses to the statement ‘I have never seen

or heard about this course before.’, comparing those with Explanation (exp) and Without

Explanation (no-exp). Ratings: 1 - ‘Strong Disagree’, 2 - ‘Disagree’, 3 - ‘Neutral’, 4 - ‘Agree’,

5 - ‘Strong Agree’. (b) A graph displaying the distribution of ratings in response to question

Q3 for the two conditions, with the median indicated by red lines and the average represented

by green circles.
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Figure 19: (a) Proportional distribution of the average ratings of questions Q1 and Q2 as a

measure for serendipity. Original ratings of Q1 ad Q2: 1 - ‘Strong Disagree’, 2 - ‘Disagree’,

3 - ‘Neutral’, 4 - ‘Agree’, 5 - ‘Strong Agree’. (b) A graph displaying the distribution of the

average ratings of questions Q1 and Q2 for the two conditions, with the median indicated

by red lines and the average represented by green circles.
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utility, this effect did not reach statistical significance (p-value = 0.445). Conversely, when

a course exhibited high levels of unexpectedness, participants provided with explanations

displayed a 0.22-point increase in their interest in taking the course. This effect also did

not achieve statistical significance (p-value = 0.304). Nevertheless, it is noteworthy that

explanations facilitated a more informed assessment of the course’s utility and reduced the

likelihood of its dismissal due to unfamiliarity.

Explanation. In accordance with the findings presented in Figure 21, it is evident that

participants who were provided with explanatory information expressed a favorable disposi-

tion towards the utility of these explanations in influencing their interest in the recommen-

dations (mean = 3.46, N = 265). Notably, a significant majority of respondents endorsed

either ‘Agree’ or ‘Strongly Agree’ in response to this assertion. This implies that the provi-

sion of explanations serves as a valuable resource for participants, affording them a deeper

understanding of the recommendations, which in turn facilitates informed decision-making.

When being asked about how well the explanations assist participants in understanding the

course’s relevance to their field of study, it’s clear that participants, as a whole, hold a fairly

neutral position on this issue. The average rating of 3.04 out of 5 (N = 265) indicates a lack

of strong agreement on whether the explanations effectively clarify how the course aligns

with their academic interests.

5.4.4 A deeper analysis - Does explanation improve confidence in making de-

cisions?

The hypothesis posits that when subjects are provided with explanations, they are bet-

ter equipped to assess the utility of recommendations, feel more confident in their decision-

making, and are less likely to give a neutral rating to an item. This would suggest that

explanations play a pivotal role in guiding their choices by helping them discern their prefer-

ences. Additionally, as students who have not yet declared their majors (a majority in their

early program) may possess less knowledge about courses and have more options to choose

in comparison to those who have already declared their majors, we anticipate the presence

of an interaction effect between the declaration of a major and the provision of explanations.
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Figure 20: Proportional distribution of user responses to the statement ‘I am interested in

taking this course.’ across different Unexpectedness levels and Explanation conditions: High

Unexpectedness with Explanation (high * exp), High Unexpectedness without Explanation

(high * no-exp), Low Unexpectedness with Explanation (low * exp), and Low Unexpectedness

without Explanation (low * no-exp). Ratings: 1 - ‘Strong Disagree’, 2 - ‘Disagree’, 3 -

‘Neutral’, 4 - ‘Agree’, 5 - ‘Strong Agree’.
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Figure 21: Frequency distribution of user responses to the statement ‘This explanation helps

me determine how interested I am in taking this course.’.

96



Strongly Disagree Disagree Neutral Agree Strongly Agree
Ratings

0

5

10

15

20

25

30

35

40

45

Fr
eq

ue
nc

y

10

40

34

47

9

"The explanation helps me better understand 
how the course relates to my field of study."

N = 265, M = 3.04
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Consequently, it is expected that explanations will have varying impacts on students with

undeclared majors as opposed to those with declared majors. To achieve this, I first convert

the original ratings (on a 5-point Likert scale) to neutral ratings (i.e., ‘Yes’ for a rating of 3

(‘Neutral’) and ‘No’ for all other ratings).

There are 53 participants in our study, coming from diverse academic backgrounds (refer

to Appendix B, Table 13 for details). Out of this group, 15 individuals have not yet declared

their majors. The distribution of ‘Neutral’ ratings is displayed in Figure 23, segmented into

four distinct categories based on major declaration and the presence of an explanation. Our

analysis reveals a compelling additive interaction effect between the declaration of a major

and the provision of explanations. Specifically, subjects in the ‘Exp’ groups consistently

exhibit a reduced tendency to provide ‘Neutral’ opinions. Similarly, individuals in the de-

clared major groups also display a decreased inclination toward ‘Neutral’ ratings. Notably,

those participants who have not yet declared their majors and do not receive explanations

exhibit the highest percentage of ‘Neutral’ ratings (36.7%), significantly higher than those

who receive explanations (16.3%).

Our statistical analysis revealed a noteworthy interaction effect between the declaration

of a major and the provision of explanations, yielding a p-value of 0.017. Upon further

examination of the impact of explanations on participants belonging to declared and unde-

clared major groups, our findings showed that among participants with a declared major,

the presence of explanations did not influence their neutral opinion significantly, as indicated

by a p-value of 0.618. In contrast, for participants without a declared major, the absence

of explanations was associated with a 0.20-point increase in their neutral opinion, and this

difference was statistically significant, with a p-value of 0.0006.

We also examined the ‘Neutral’ ratings for questions Q1 and Q2, as Q3 was excluded

due to its minimal percentage of neutral responses. Notably, participants who have yet to

declare their majors and who did not receive explanations showed the highest percentages

of ‘Neutral’ ratings: 40.0% for Q1 and 42.2% for Q2 (refer to Appendix B, Fig. 59 and

60). For Q1, the data revealed that participants without a declared major were 0.20 points

more likely to choose a neutral stance in the absence of explanations. This trend approached

statistical significance with a p-value of 0.06, possibly affected by a smaller sample size. For
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Q2, these participants exhibited a 0.14-point increase in neutrality without explanations,

although it was not significant with a p-value of 0.2. Overall, for both questions, the absence

of explanations led those without a declared major to be more inclined to rate as ‘Neutral.’

This was statistically significant with p-values of 0.01 for Q1 and 0.003 for Q2, respectively.

5.5 Summary and Discussion

This chapter presents the design of skill-based explanations within the realm of serendip-

itous course recommendation systems. The system aims to provide students with compre-

hensive insights into courses, encompassing their alignment with existing knowledge and the

acquisition of novel skills. This, in turn, empowers students to evaluate a course’s relevance

more effectively and increases their confidence when making choices.

To enhance user comprehension beyond the confines of mere unigrams, which is one of the

limitations in my preliminary work discussed in Section 3.2, I have trained a skill extraction

model presented in Chapter 4. This model effectively extracts multi-gram skills from the

course catalog descriptions, thereby improving the communication of underlying semantics.

In a collaborative effort with the CAHL lab at the University of California, Berkeley, we

embarked on an exploration of the impact of skill-based explanations on a serendipitous

course recommendation system. This exploration was conducted through an online user

study at the same institution, using the capabilities of the AskOski system, powered by

PLAN-BERT — an advanced deep neural network model well-known for its excellence in

top-N course recommendation, enriched with a diversification strategy [21, 38].

Our study stands as one of the pioneering efforts to examine the influence of skill-based

explanations on serendipitous course recommendations within higher education. While our

overall findings did not show a clear impact of the explanation on the recommendations

produced by PLAN-BERT, under the proposed diversification strategy, they did reveal a no-

table increase in participant interest for courses that exhibited high levels of unexpectedness.

This boost amounted to a significant 0.22-point increment in interest when explanations were

provided. It is clearly apparent that individuals who received explanatory information dis-
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Figure 23: Distribution of ‘Neutral’ ratings among four groups based on the interactions

between major (declared vs. undeclared) and the presence of an explanation (vs. no expla-

nation): declared * exp (N=285), declared * no-exp (N=285), undeclared * exp (N=135),

undeclared * no-exp (N=90). The ‘Neutral’ ratings are aggregated from the responses to

the three primary research questions: Q1, Q2, and Q3. The percentage of ‘Neutral’ ratings

is 16.22% (129 ‘Neutral’ ratings of 795).
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played a positive attitude towards the usefulness of these explanations in influencing their

interest in the recommendations. Importantly, a substantial majority of respondents either

‘Agreed’ or ‘Strongly Agreed’ with this assertion.

Furthermore, our research revealed another important aspect: the significant impact of

explanations in strengthening users’ confidence in their decision-making process. Conse-

quently, this reduced their inclination to provide ‘neutral’ opinions. A detailed statistical

analysis highlighted a compelling interaction between participants’ major declaration status

and the presence of explanations. Specifically, among participants who did not declare a ma-

jor, the absence of explanations was associated with a 0.20-point increase in their likelihood

to express neutral opinions, and this difference was statistically significant.

In essence, our research underscores the pivotal role that skill-based explanations can

play in elevating the user experience within serendipitous course recommendation systems.

These insights have profound implications for the design and refinement of such systems in

higher education contexts.

Our recommendation and explanation approach has several limitations that require at-

tention in future research. PLAN-BERT has demonstrated its ability to effectively utilize

past sequence information, and the incorporation of user and item features has yielded sig-

nificant benefits. However, it is important to note that our approach to diversifying the

recommendation list, applied atop PLAN-BERT’s output, is intuitive yet relatively simplis-

tic. In an effort to enhance students’ awareness of course options and encourage exploration

of courses they may find interesting but which have been relatively unexplored, we limited

recommendations to one course per department. However, this constraint had the potential

to introduce irrelevant course suggestions, as, in the context of academic course offerings,

some departments naturally share stronger connections with related disciplines, while oth-

ers may have fewer neighboring fields. To address this issue, future studies should consider

relaxing the constraint and establishing a certain relevance threshold for course recommen-

dations. If a course from a department fails to meet this threshold, multiple courses from

the same department can then be recommended.

Another avenue for enhancing recommendation diversity and optimizing for serendipity

is to frame the problem as a multi-task/multi-label optimization problem during the rec-
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ommender system’s training phase [171, 172]. This approach allows the recommendation

engine to simultaneously optimize for both relevance and unexpectedness, striking a balance

and effectively constraining them to achieve a unique, non-dominated solution. To imple-

ment this, the collection of labels for the unexpectedness of relevant courses is imperative

for training the models.

Moreover, while this study did not conclusively demonstrate the impact of providing

explanations on the course recommendations, it is still possible that detailed insights into why

specific courses are recommended — and how they align with students’ abilities and interests

— could enable students to better understand the value of these suggestions. Doing so may

decrease the likelihood of students overlooking courses simply because they are unfamiliar

with them, thus increasing the serendipity factor of recommendations. The efficacy of such

explanations might differ based on the student’s academic field and progression. Exploring

these factors further can enhance the recommendation. Interestingly, our study did find that

explanations positively influenced interest in unexpected courses, especially among students

who have not yet chosen a major. Future research might prioritize this demographic to

amplify the sample size and achieve more robust conclusions.

Furthermore, this between-subjects experiment comprised only 53 participants with di-

verse academic backgrounds. Within this group, 15 individuals had not yet declared their

majors. Consequently, we encountered challenges in effectively controlling for variations

in the fields of study when examining the influence of recommendation and explanation

strategies. Specifically, we were unable to assess the distinct impacts of these strategies on

different student groups, such as those pursuing specific academic disciplines or those with

declared majors versus those who were undeclared. To mitigate this limitation and enhance

the generalizability of our findings, future research could consider expanding the sample

size in between-subjects studies. This step would contribute to more robust and reliable

results by allowing for a more comprehensive analysis of the effects of recommendation and

explanation strategies across various academic disciplines and student categories.

Finally, in this study, we solely experimented with skills extracted from course catalog

descriptions as knowledge components to represent the course for explanation. While this is a

conventional approach for content-based methods and has been employed in numerous prior

102



studies, an alternative approach involves representing courses based on their relationship

with individual skills. This approach could be more robust across various skill taxonomies,

such as extracted concepts and O*NET DWAs developed by the U.S. Department of Labor

to describe the U.S. workforce. Consequently, applying this course modeling approach and

experimenting with different skill types to generate explanations for course recommendations

represents a potential avenue for future research. In addition, the future of course recom-

mendations isn’t just about suggesting what to study but also integrating insights from the

job market. By doing this, students can see the real-world applicability of their courses. The

skills imparted in higher education need to resonate with market demands. Bridging this

gap ensures students are not only educated but also employable.
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6.0 CONNECTING HIGHER EDUCATION TO WORKPLACE

ACTIVITIES AND EARNINGS

In the previous study, we leveraged student enrollment sequences to identify relevant

courses, diversified by department information, and enriched them with concepts extracted

from course descriptions for explanation. The future of course recommendations extends

beyond academics, incorporating job market insights for students’ careers. My goal is to go

even further and pursue greater personalization in course recommendations that will be ben-

eficial for students in their future careers. However, do the concepts extracted from course

descriptions truly align with the skills demanded in the labor market? In this chapter, I

analyze a large novel corpus of over one million syllabi from over eight hundred bachelor’s

degree-granting U.S. educational institutions to connect the material taught in higher ed-

ucation to the detailed work activities (also referred to as ‘skill’ discussed in Chapter 1,

Section 1.1) in the U.S. economy, as reported by the U.S. Department of Labor. I propose a

novel knowledge framework that incorporates the granular workplace activities into course

syllabi. Through a comprehensive evaluation involving two predictive tasks, this framework

has proven to be highly effective in extracting essential features for accurate predictions.

This research project was undertaken in partnership with Dr. Sarah Bana and Dr. Morgan

Frank. In Chapter 7, I will demonstrate how this course modeling method can be applied

to build explainable course recommendation systems that focus on skills and careers, aiming

to help students discover courses that align with their career goals and equip them with the

necessary knowledge and skills.

6.1 Introduction

Education plays a critical role in economic growth and social progress. College degrees

are generally associated with higher potential lifetime earnings, larger professional networks,

and more adaptable careers [1, 3]. Higher education is a major part of US workforce de-
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velopment but information on the skills and expertise taught during higher education re-

main absent—even as recent research highlights the critical role of skills in shaping labor

trends [173, 174, 28]. However, most empirical work relies on coarse labor distinctions, such

as college major and institutional information (e.g., school brands), to explain these occupa-

tional trends [175, 176, 177, 178]. While useful, these coarse educational and labor categories

may hide further insights into the skills of “high-skilled” workers that contribute to positive

career outcomes [179].

Many workers acquire skills through higher education that shape their careers. Studies

have shown that social-cognitive skills and sensory-physical skills are correlated to high- and

low-wage occupations, respectively, and that skill polarization divides workers with and with-

out higher education [26]. Discrepancies between skills demanded, taught, and researched

have been identified by applying textual matching techniques to job advertisements, course

syllabi, and research publications in Computer Science [24]. These analyses of skills reveal

gaps between the workforce and educational/training systems. Understanding the sources

of these gaps, across all fields of study, may improve curriculum design, inform educational

policy, and improve student outcomes when they enter the workforce.

In this work, I analyze the recently available Open Syllabus Project (OSP) dataset, which

contains over 1.4 million course syllabi from more than 3,000 US colleges and universities from

2008 to 2017. While relatively new, this data source has proven useful for modeling higher

education. For example, one study quantified the skill (mis-)alignment between academic

research, industry, and educational offerings in data science and data engineering [24]. They

used Burning Glass (BG) skill taxonomy and applied matching techniques to extract skills

appearing in job titles and descriptions, course syllabi, and publication titles and abstracts.

Another study proposed a new measure for the “education-innovation gap” using the textual

similarity between course syllabi and academic journals to model the dissemination of frontier

knowledge into college classrooms while relating these dynamics to students’ graduation rates

and incomes [180].

This work is the first attempt to connect workplace activities to higher education through

course syllabi; here, I use the granular workplace activities designed and produced by the

U.S. Department of Labor (i.e., O*NET Detailed Work Activity (DWA) taxonomy described
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in Section Materials) to explain the underlying knowledge structures across college majors

(i.e., fields of study (FOS)) and among US universities. I use word embeddings to represent

textual documents [181, 36], and explore different distance metrics to measure the similarity

of two embedded skill vectors. Consequently, I am able to apply agglomerative hierarchical

clustering techniques to the DWA-based vector representations of FOS and universities to

discover their clusters. Hierarchical clustering [182] produces a nested sequence of clusters,

and the hierarchy of clusters enables me to explore clusters at any level of detail without the

need of identifying a specific number of topics as would be the case with K-means clustering

techniques. Motivated by the principle of relatedness [183], I model the relationships between

pairs of skills across academia to forecast how skills change over time. Based on the out-

of-sample earnings prediction evaluation with 5-fold cross validation, I also discover that

differences in acquired skills help to explain the variance of graduates’ earnings. The results

offer an approach that connects college education to future careers. These insights may

enable educational policy and academic programs to adapt to the skill dynamics in the

labor market. For example, information systems that bridge between higher education and

workforce skill data may inform updates to course design that prepare students with the

necessary skills for their desired careers.

In summary, this study attempts to answer the following research questions:

• Q1. Can the granular workplace activities used by the Department of Labor to describe

the US workforce also distinguish between different college majors and institutions?

• Q2. How do the DWAs taught in a curriculum or field of study evolve over time? Can the

relationships between pairs of skills across all of academia help to predict skill evolution?

• Q3. Do the differences in taught skills during higher education predict graduates’ earn-

ings? Similarly, do differences in taught skills within college majors correspond to earn-

ings differences of recent graduates?

In the next section, I describe multiple datasets that enable me to answer the aforemen-

tioned research questions. I then describe my methodology in detail, present my analysis

and discuss its implications and potential weaknesses to conclude the chapter.
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6.2 Materials

Open Syllabus Project Dataset1 is one of the largest corpora of syllabi in the world.

As of October of 2019, it contains over eight million syllabi, collected from 5,381 colleges and

universities, including over three million syllabi taught at 3,186 US institutions. OSP’s fields-

of-study classifier draws heavily from the Classification of Instructional Programs (CIP) tax-

onomy used by the National Center for Education Statistics to determine the academic field

of study (e.g., Economics, Business, Computer Science) best associated with each syllabus.

It includes 62 fields of study. Each syllabus has a unique identifier and the text assignment

data including a description of its content, a list of references and recommended readings,

and course requirements (such as assignments and exams). Syllabi can be directly mapped

to graduation and enrollment statistics from the US Department of Education’s Integrated

Postsecondary Education Data System (IPEDS). Syllabi are annotated with metadata in-

cluding the institution, department, and academic year associated with the course. I extract

and concatenate course titles, course descriptions and learning objectives from syllabi’s tex-

tual data to create “course descriptions.” More details can be found in Appendix A, Section

A.1. I limit the data from 2008 and 2017 (the ten most recent years in OSP), resulting in

roughly 1.4 million syllabi representing college courses from 1,481 institutions. More about

courses statistics per year and/or per field of study (FOS) can be found in Appendix A,

Fig. 57 and 58.

O*NET Detailed Work Activity (DWA) Taxonomy2. O*NET is designed and

produced by the U.S. Department of Labor/Employment and Training Administration. The

O*NET database allows snapshots of the relationships between occupations and skills. It

has 2070 DWAs (e.g., “develop methods of social or economic research.”, “design integrated

computer systems.”, “design public or employee health programs.”) representing specific

work activities performed across a small to moderate number of occupations within a job

family. For example, the occupations with related activities to DWA “design public or em-

ployee health programs.” include “Preventive Medicine Physicians”, “Occupational Health

1https://opensyllabus.org (OSP)
2https://www.onetonline.org/help/online/dwa

107



and Safety Specialists”, “Occupational Health and Safety Technicians”, “Dietitians and Nu-

tritionists”, and “Dentists, General”.

Integrated Postsecondary Education Data System3 (IPEDS) is the core postsec-

ondary education data collection program of the U.S. Department of Education’s National

Center For Education Statistics (NCES). It annually collects information from all providers

of postsecondary education, including public institutions, private nonprofit institutions, and

private for-profit institutions, in fundamental areas such as enrollment, program completion

and graduation rates. Providing data is required for any institution that applies for or par-

ticipates in any Federal financial assistance program. IPEDS also includes a wide range of

information about institution and institution groups, such as Degree-granting status, Institu-

tional category, and Carnegie classifications. The Carnegie Classification, or more formally,

the Carnegie Classification of Institutions of Higher Education,4 is a framework for cate-

gorizing all accredited, degree-granting institutions in the United States. It is designed to

group colleges and universities based on their research activities.

College Scorecard5 is a U.S. Department of Education data initiative providing trans-

parency and consumer information related to individual institutions of higher education and

individual fields of study (e.g., majors) within those institutions. College Scorecard provides

information about post-college earnings including median earnings of graduates working and

not enrolled after completing the highest credential in their first and second years for the two

graduation cohorts of years 2016 and 2017. I only use the first year earnings of graduates. I

process the data for Baccalaureate colleges and universities, and create the mapping between

College Scorecard CIP code and OSP CIP code (the mapping can be found in this GitHub

folder6). As a result, I obtain 9007 earnings records for 832 institutions in 54 fields-of-study.

3https://nces.ed.gov/ipeds/
4https://carnegieclassifications.iu.edu/
5https://data.ed.gov/
6https://github.com/HungChau/OSP-connect-higher-education/tree/main/cip code mapping
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6.3 Methods and Results

6.3.1 Modeling course syllabi with workplace skills

Are the workplace activities tracked by the US Department of Labor robust and effective

in describing the knowledge in higher education? The O*NET database is produced by the

US Bureau of Labor Statistics and details the labor market trends of workplace skills and

activities by occupation. Specifically, detailed work activities (DWAs) are elements in the

O*NET database that provide information about occupations’ labor requirements. This data

has been used to analyze several labor market dynamics including job polarization [26, 184]

and the economic resilience of cities [173, 185]. Although O*NET relates occupations to

skills in the workforce, similar data is not reported for educational programs even though

many high-skilled workers obtain skills in college before entering the workforce.

I bridge this gap by detecting O*NET’s detailed work activities from syllabus course

descriptions. Each syllabus in the OSP data contains a description of the course content, a

list of references and recommended readings, and course requirements, such as assignments

and exams. Given a syllabus, I extract the course’s title, description, and learning objectives

from the text and concatenate them to form the course descriptions (details are in Appendix

A, Section A.1.1). I apply word embeddings [37] and document similarity techniques

from natural language processing to represent each DWA and syllabus as continuous vectors

distributed in the same pre-trained language embedding space. Language embedding models

enable me to describe the semantic similarity between two textual documents or sentences;

here, I compare syllabus course descriptions to DWAs. I choose pre-trained fastText word

embeddings from [186], which is constructed from all Wikipedia pages in 2017, the UMBC

webbase corpus, and the statmt.org news data. I choose these word embeddings because the

semantic diversity of Wikipedia and news articles should capture the semantic diversity of

topics taught across FOS. This model has been used in several applications [187, 188, 189],

and achieves better performance than simple bag-of-words and TF-IDF [36]. I compute the

relationship (0 <= rs(dwa) <= 1) between a syllabus s and a DWA by comparing their word

embedding vector representations with soft cosine measure [190] (details are in Appendix

109



A, Section A.1.2). As a result, syllabi are represented based on their relationships with the

DWAs (called the DWA-based syllabus representation). I provide an example of the most

and least prevalent DWAs detected for a political science syllabus at Harvard University in

2013 (see Figure 24A).

In addition to course descriptions, syllabi are annotated with metadata about where and

when the course was taught. Metadata includes the institution, department/major/FOS, and

academic year. OSP’s field classifier is trained and tested on the IPEDS 2010 CIP taxonomy

to determine the academic field (i.e., FOS) best associated with each syllabus. This enables

me to calculate the relationship between each pair of DWAs based on the co-occurrence of

dwa1 and dwa2 in any set of course syllabi S; for example, the set of all syllabi within a

given FOS, simf (dwa1, dwa2) for f ∈ FOS, or across all of academia, sim(dwa1, dwa2). I

experiment with various semantic distance metrics to compute DWA relationships through

syllabi including Jaccard similarity, Cosine similarity, Euclidean distance, and Manhattan

distance (see Appendix A, Section A.2). I find Jaccard similarity to be the most predictive

and I present those results in the main text. It is worth noting that relationships between

two DWAs can be directly computed by measuring the cosine similarity of their embedding

vectors. However, this approach measuring a static relationship between DWAs fails to dis-

tinguish the dynamics of how one DWA relates to another locally (i.e., within a FOS or a

university) and globally (i.e., across all of academia) over time, which will be discussed in

Section 6.3.3. For example, social skills and computer programming skills may be seman-

tically different but co-taught as complementary skills across syllabi (e.g., computational

social science, social network analysis, or econometrics).

The syllabus-DWA relationships (rs(dwa)) also enable me to model a FOS f and a

university u in terms of their relationship to each of the DWAs according to, respectively,

rf (dwa) =
1

|Sf |
∑
s∈Sf

rs(dwa) and ru(dwa) =

∑
f∈FOS

∑
s∈Sf,u

αf,u · rs(dwa)

∑
f∈FOS

αf,u · |Sf,u|
. (12)

These relevance scores are a measure of how strongly the skill (i.e., dwa) is represented in a

field or university. While rf (dwa) (the relevance score of the dwa to FOS f ) is the average
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Figure 24: The work activities inferred syllabi reveal key differences among universities and

fields of study. (A) An example political science syllabus from Harvard University and the

activities that are most and least strongly associated with its course description. DWA-

syllabus similarity scores range from 0 (not detected) to 1 (strongly detected). (B) The

DWAs that most significantly distinguish Accounting syllabi from Medicine syllabi. (C)

The DWAs that most strongly separate MIT syllabi from Harvard syllabi. (D) The DWAs

that most strongly separate Special Focus 4-Year Medical Schools syllabi from Engineering

Schools syllabi. More examples can be found in Appendix A, Figures 46, 47, 48, & 49.
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over the similarity scores of that DWA across s ∈ Sf , ru(dwa) (the relevance score of the

dwa to university u) is the mean similarity score of that DWA across syllabi weighted by the

estimated graduation rates (αf,u) of the syllabus’s field of study at that university. In the

absence of course enrollment data, I use graduation rates for each FOS at each university to

approximate the number of students who learn from each syllabus. Sf represents all of the

syllabi within a given FOS f , and Sf,u represents all of the syllabi within a given FOS at a

university u.

These tools enable me to compare pairs of syllabi, FOS, or universities based on their

most common DWAs. I publish the DWA similarities by different metrics, DWA scores for

each FOS and for each university by year from 2008 to 2017 in a Github repository.7 Specifi-

cally, I compare entities of the same type (e.g., one FOS to another) by subtracting its DWA

vector representation from the other’s and rank the resulting vector in descending order. I

visualize the top 15 DWAs of each entity that contribute most to the difference of the pair

in Figures 24B, 24C & 24D. For example, the DWAs “refer patients to other healthcare

practitioners or health resources” and “administer basic health care or medical treatments”

most strongly distinguish Medicine from Accounting, while “analyze budgetary or account-

ing data” and “analyze business or financial data” identify Accounting from Medicine (see

Fig. 24B). Similarly, I compare pairs of universities based on their taught DWAs. As an ex-

ample, “design integrated computer systems” and “design alternative energy systems” most

strongly distinguish Massachusetts Institute of Technology (MIT) from Harvard University,

while “forecast economic, political, or social trends” and “develop financial or business plans”

more strongly identify Harvard from MIT (see Fig. 24C). These results match my intuition

as MIT is the world-leading engineering university and Harvard is in the top ten universities

in each social science area according to U.S. News rankings. Building on this, I can group

universities based on their Carnegie classification to identify the major differences in taught

DWAs. I compare Medical Schools to Engineering Schools in Fig. 24D. More examples can

be found in Appendix A, Figures 46, 47, 48, & 49.

7https://github.com/HungChau/OSP-connect-higher-education
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6.3.2 Identifying Field-of-Study and university clusters

Do DWAs capture the focal knowledge offered by an academic field or a university? To

further compare education among FOS, I use agglomerative hierarchical clustering on DWA-

based vector representations of each FOS. Hierarchical clustering [182] produces a nested

sequence of clusters like a tree (also called a dendrogram). Agglomerative clustering builds

the dendrogram from the bottom level, and merges the most similar (or nearest) pair of clus-

ters at each level to go one level up. Hierarchical clustering can take any form of distance or

similarity function, and the hierarchy of clusters enables me to explore clusters at any level

of detail without the need of picking a number of topics k as would be the case with K-means

clustering. Pairs of FOS are similar if they are associated with similar types of work activi-

ties. For instance, Accounting is clustered together with Business and Marketing ; Medicine

is clustered together with Nursing, Nutrition, Health Technician, Dentistry and Veterinary

Medicine; the STEM cluster includes Mathematics, Physics, Astronomy, Biology, Earth Sci-

ences, Atmospheric Sciences and Chemistry ; and the Social Science cluster includes Social

Work, Political Science, History, Sociology, Women Studies, Anthropology and Religion (see

Fig. 25).

Similarly, I compare all US universities in my data set using agglomerative hierarchical

clustering performed on the weighted DWA-based vector representation of each institution in

Figure 26. I see that similar universities are clustered together. For example, The University

of Texas Medical Branch, The University of Texas Health Science Center, and Oregon Health

and Science University are clustered together. Although our dataset contains a large number

of universities, I select a subset of Ivy Plus universities and universities from various IPEDS

Carnegie Classifications to visualize in Figure 26. I filter out universities that have less than

100 syllabi or were missing syllabi in any year from 2008 to 2017. Carnegie classifications

are mostly recovered by the clusters (see colors in Fig. 26). Additionally, engineering schools

like California Institute of Technology, Massachusetts Institute of Technology, and Carnegie

Mellon University, are clustered together. Similarly, liberal arts schools including Cornell

University, Harvard University, and University of Pennsylvania are clustered together.
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Figure 25: The similarity of FOS based on the prevalence of DWAs in syllabi from within

those fields. The dendrogram and heatmap show similar FOS clustered together based on

their DWA-vector representations.

114



Special Focus Four-Year: Arts, Music & Design Schools
Ivy Plus
Special Focus Four-Year: Medical Schools & Centers
Special Focus Four-Year: Faith-Related Institutions
Special Focus Four-Year: Engineering Schools

Ivy Universities + Special Focus Four-Year Groups

Hebrew College
Calvary Bible College
St. Louis Christian College
Baptist Missionary Association Theological Seminary
Austin Graduate School of Theology
Cornell University
Georgetown University
Northwestern University
University of Pennsylvania
Columbia University
University of Southern California
University of Virginia
Harvard University
New York University
University of California Los Angeles
University of Michigan Ann Arbor
Emory University
University of Wisconsin Madison
Tufts University
Dartmouth College
Yale University
The University of Texas Medical Branch
The University of Texas Health Science Center at San Antonio
Oregon Health & Science University
University of the Arts
Berklee College of Music
Pratt Institute-Main
Duke University
Brown University
University of Chicago
University of California, Berkeley
Johns Hopkins University
Princeton University
California Institute of Technology
Georgia Institute of Technology
Stanford University
Rose Hulman Institute of Technology
Carnegie Mellon University
South Dakota School of Mines and Technology
Boston University
Massachusetts Institute of Technology

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Correlation

Figure 26: The similarity of universities based on the graduation-weighted prevalence of

DWAs offered in their course syllabi. The dendrogram and heatmap reveal the hierarchical

clustering of the Ivy Plus group and Special Focus Four-Year groups from the Carnegie

Classification 2018 based on DWA vector representations.
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6.3.3 Predicting the change in taught skills

How do the DWAs taught in a field of study evolve over time? In particular, which

new skills or topics will emerge in a field’s syllabi? Forecasting these educational trends

enables proactive course design by educators and could inform educational incentives from

policymakers. Here, I use the principle of relatedness [183] to hypothesize that DWAs that

occur together across all of higher education are more likely to be co-taught within a given

FOS in the future. If correct, then modeling the relationships between pairs of DWAs

across all of academia should forecast the introduction of new topics within a FOS even if

that topic has not been part of that FOS historically. As an illustrative example, although

largely absent from Economics syllabi today, machine learning may become more common in

Economics because Economics already teaches linear regression which is commonly taught

as an example of machine learning in Computer Science courses. As a more specific example

from my data, DWAs that relate to machine learning, such as “analyze website or related

online data to track trends or usage” may become more prevalent in Economics syllabi

moving forward (e.g., in studies of online job postings [24, 191]).

I test our hypothesis using OSP data to predict which DWAs become important in a

FOS (f). I use the relevance scores (rf (dwa)) calculated from the syllabi of each FOS in two

different years (i.e., 2008 and 2017). I recast this problem as predicting the score difference

(∆r) of a DWA between the two years:

∆rdwa,f = r2017f (dwa)− r2008f (dwa) (13)

I also perform classification analysis for predicting DWAs becoming important in future,

which can be found in Appendix A, Section A.3.2. I run several ordinary least squares

(OLS) regressions to predict ∆rdwa,f using the relevance scores of the dwa to FOS f (rf (dwa))

and various models of inter-DWA relationships (described in Section Modeling course syllabi

with workplace skills). As a baseline, I first consider Model 1 using only the current relevance

scores of DWA within each FOS with FOS fixed effects (denoted λf ) according to

∆rdwa,f = β0 + β1r
2008
f (dwa) + λf . (14)
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Next, I additionally include a variable representing the co-occurrence of DWAs across syllabi

within a FOS (denoted Rf ) to create Model 2

∆rdwa,f = β0 + β1r
2008
f (dwa)+

β2


∑

dwa′∈DWA

simf (dwa, dwa′)r2008f (dwa′)

|DWA|


︸ ︷︷ ︸

Rf

+λf
(15)

and yet another similar Model 3 using DWA pair co-occurrences across syllabi from every

FOS (denoted R)

∆rdwa,f = β0 + β1r
2008
f (dwa)+

β2


∑

dwa′∈DWA

sim(dwa, dwa′)r2008f (dwa′)

|DWA|


︸ ︷︷ ︸

R

+λf .
(16)

Model 4 includes an interaction term between DWA’s relevance score within a FOS (i.e.,

Rf ) and DWA pair co-occurrences within that FOS according to

∆rdwa,f = β0 + β1r
2008
f (dwa) + β2Rf + β3

(
r2008f (dwa) ∗Rf

)
+ λf (17)

and, in Model 5, using DWA pair co-occurrence across all FOS

∆rdwa,f = β0 + β1r
2008
f (dwa) + β2R + β3

(
r2008f (dwa) ·R

)
+ λf (18)

As robustness checks, I run Models 2, 3, 4 & 5 with the two different methods and four

distance metrics aforementioned in Section Modeling course syllabi with workplace skills for

computing the DWA relationships. Although I could compare DWA pairs based solely on

their semantic similarity using their word embedding vectors, this approach would miss DWA

pairs that capture complementary topics. For example, Models 2 and 3 would be identical

to Models 4 and 5, respectively. The results (see Appendix A, Section A.3.1) show that

modeling DWA relationships based on their co-occurrence in syllabi with Jaccard similarity
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yields the best performances across all the models involving inter-DWA relationships. I

discuss these results in the chapter.

I compare model performance using root mean squared error (RMSE) with 5-fold cross-

validation in Figure 27 (R-squared metric is reported in Appendix A, Figure 56A). First,

including variables representing DWA relationships decreases RMSE (i.e., Model 2 (R2 =

0.231) & Model 3 (R2 = 0.239) are statistically significantly better than Model 1 (R2 =

0.191)). Second, measuring DWA co-occurrences across all of academia (i.e., using R) instead

of only within a single FOS (i.e., using Rf ) improves model predictions. Specifically, Model

3 (R2 = 0.239) outperforms Model 2 (R2 = 0.231) and Model 5 (R2 = 0.244) outperforms

Model 4 (R2 = 0.231).

These results suggest that FOS educational trends within a FOS correspond to global

educational trends across all of academia. In particular, this evidence supports our hypoth-

esis that DWAs tend to be co-taught more within a given FOS if they are bundled together

across all of higher education (e.g., Computer Science may increasingly teach “analyze green

technology design requirements” since it is commonly taught with “identify information tech-

nology project resource requirements” in other FOS including Engineering). Although Model

4 does not outperform Model 2, including the interactions between current DWA relevance

scores and the average of the proximity of global DWA relationships does yield a significant

improvement (i.e., Model 5 outperforms Model 3). In conclusion, the best performing model

is Model 5 which leverages the information about the current score of the DWA, their re-

lationships with other DWAs across academia, and the interaction of these two variables.

Model 5 improves 3.3 percent (27.5 percent) in terms of RMSE (R-squared) over Model 1,

which only uses the 2008 DWA relevance scores. Therefore, I train Model 5 using the entire

data, and use it to predict the relevance scores of DWAs in a FOS nine years later. Table 9

shows some examples of DWAs that became important within a FOS —in terms of ranking

DWAs—in nine years. The full list of DWAs that are predicted to increase their ranks by

at least five units and ranked in the top 50 in 9 years can be found in the aforementioned

Github repository.
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Figure 27: Workplace activities detected from syllabi predicting teaching dynam-

ics within a field of study. I perform 5-fold cross-validation and repeat 40 times (i.e.,

200 trials in total) for each model and measure RMSE by the resulting model applied to

the test set. Asterisks indicate the statistically significant difference between two models’

performances with Bonferroni correction. Predicting the importance of DWAs changing in

nine years (2008 vs. 2017). As a baseline, model 1 only considers the current DWA score

and FOS fixed effects. The other models consider the relationships between DWAs, and how

they interact with each other to predict how they may change in future.
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Table 9: Examples of DWAs that are predicted to increase their ranks in 9 years in particular

fields. I only select DWAs that are ranked in the top 50 in future. The full list of predicted

DWAs can be found in the same GitHub folder.

Field-of-Study Detailed Work Activity Rank (2017) Rank (2026)

Computer Science
analyze green technology design requirements. 40 33

apply information technology to solve business or other applied problems. 46 40

Economics
evaluate plans or specifications to determine technological or environmental implications. 37 27

develop marketing plans or strategies for environmental initiatives. 58 50

Journalism
gather information about work conditions or locations. 37 24

prepare scientific or technical reports or presentations. 48 42

Medicine
develop healthcare quality and safety procedures. 28 23

operate laboratory equipment to analyze medical samples. 65 50

Physics
develop procedures for data entry or processing. 43 33

develop performance metrics or standards related to information technology. 41 34

6.3.4 Predicting graduate earnings

Do detected DWAs predict the variation in graduates’ earnings? Most—if not all—

educational programs aim to provide students with the skills and abilities to successfully

enter the workforce (e.g., to gain employment and maximize earnings). Most empirical work

relies on coarse labor distinctions such as college major and institutional information (e.g.,

school brands) to correlate to graduate earnings [176, 192, 193, 178], but none have provided

insights into the skills students learn that could contribute to their future earnings. My

analysis of DWAs in university course syllabi provides the first data set connecting taught

skills to students’ earnings after graduation. I collect earnings of graduates from the College

Scorecard earnings data from the U.S. Department of Education. Though large, the OSP

course syllabus data is not distributed evenly across fields-of-study and institutions. Some

fields and institutions have much fewer course syllabi. Thus, to sufficiently estimate work

activities taught in a FOS at a university, I limit earnings records for FOS (in an institute)

that have at least 10 course syllabi; and perform the Kolmogorov-Smirnov statistical test

to make sure the remaining earnings records representative for the entire population of the
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field at the institute (more details on the selection process and criteria are in Appendix A,

Section A.4). I build several OLS regression models to predict average graduate earnings

across FOS (f) at a university (u) based on the relevance scores of the DWAs across fields

(DWA) and within field (FOS*DWA), FOS fixed effects (FOS ), school brands (i.e., school

ranks8 if available) fixed effects (RANK), and geography fix effects (GEO). Due to the

limited availability of earnings data, I use groups of 10 ranks (i.e., 1-10, 10-20) for national

universities and 15 ranks (i.e., 1-15, 15-30) for liberal arts colleges. For geographical features,

I group universities together based on their divisions9 (e.g., New England Division, West

North Central Division). These groups are represented using indicator variables in the

regression analyses.

To avoid model over-fitting, I perform 5-fold cross-validation and LASSO feature selec-

tion on the models that include DWA features. LASSO [194] is one of the most popular

methods for feature selection; it minimizes the residual sum of squares subject to the sum

of the absolute value of coefficients being less than a constant. This constraint tends to

“regularize” large models by producing some 0 coefficients when variables are co-linear. In

other words, the penalty factor determines how many features are retained; using cross-

validation to choose the penalty factor helps ensure that the model will generalize well to

future data samples. As a result, I find that DWAs improve predictions of graduate incomes

(see Fig. 28 for RMSE metric and Appendix A, Figure 56B for R-squared metric accord-

ing to 5-fold cross-validation). Including DWAs improves predictions of earnings compared

to FOS fixed effects (i.e., smaller RMSE). Also, R2 = 0.684 of the DWA model is signif-

icantly better than that of FOS model R2 = 0.677). Controlling for university rankings

and geography further improves the FOS model (i.e., FOS+RANK+GEO (R2 = 0.757)

model is significantly better than FOS (R2 = 0.677) model). But combining DWA vari-

ables with RANK and GEO variables and FOS fixed effects yields even further improvement

(FOS+RANK+GEO+DWA model (R2 = 0.761) is statistically significantly better than that

of FOS+RANK+GEO model). This evidence suggests that some of the information about

8Historical U.S. News and World report rankings are compiled by Andy Reiter and available at
https://andyreiter.com/datasets/

9U.S. Geographic Levels are available at https://www.census.gov/programs-surveys/economic-
census/guidance-geographies/levels.html
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graduate earnings represented in university rankings is also encoded in the DWA variables

(e.g., a LASSO regression model containing DWA variables accounts for 48% of the variation

in college rankings; year and FOS fixed effects account for 7.9%). Finally, the best model

(FOS+RANK+FOS*DWA) is found when I allow DWA variables to interact with FOS fixed

effects which suggests that different DWAs correspond to earnings variation in different FOS

(R2 = 0.779). The geographic variables also help to improve the best model’s performance

but are not significant (R2 = 0.782).

6.3.5 Within Field-of-Study skill variation and the earnings of recent college

graduates

Do differences in taught skills within college majors correspond to earnings differences of

recent graduates? To study how DWAs relate to the earnings of graduates of a specific field of

study, I perform separate regression analyses for each FOS with at least 100 institution-year

observations. I employ LASSO feature selection for DWAs and report model performance

using 40 independent trials of 5-fold cross-validation to mitigate over-fitting. The remaining

DWAs are used to predict earnings. As can be seen from Figure 29, the DWA+GEO models

perform significantly better than the baseline GEO models in terms of RMSE. Due to the

limited earnings data within FOS to perform cross-validation, the school ranking is omitted;

the baseline models only include geographic variables (GEO). I obtain similar performance

when alternatively using the model variance explained (R2) (see Appendix A, Figure 56C).

This result again shows that the DWAs complement the FOS information by increasing

the share of the earnings explained by the model and improving the model’s predictions.

However, DWA+GEO model performance varies across FOS. For example, the DWA+GEO

model improves 27.2% RMSE over the GEO model for Business compared to a more mod-

est improvement of 4.2% for Psychology. Although O*NET DWAs improve predictions in

general, this varied performance across FOS could be because DWAs represent key skills

and activities better in some FOS than in others. Nevertheless, our methodology shows

that using granular workplace skills helps to identify important features contributing to the

earnings of graduates beyond course educational and labor categories.
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Figure 28: Workplace activities detected from syllabi predicting median first-

year earnings of college graduates across fields of study. I perform 5-fold cross-

validation and repeat 40 times (i.e., 200 trials in total) for each model and measure RMSE

by the resulting model applied to the test set. Asterisks indicate the statistically significant

difference between the two models’ performances with Bonferroni correction. As a baseline,

I consider the FOS, school ranking, and geographic fixed effects to predict earnings.
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Figure 29: Workplace activities detected from syllabi predicting median first-year

earnings of college graduates within a field of study. I perform 5-fold cross-validation

and repeat 40 times (i.e., 200 trials in total) for each model and measure RMSE by the

resulting model applied to the test set. The baseline GEO model only includes geographic

variables. The performances of the DWA+GEO models are statistically significantly better

than the GEO models with the p-values < 0.05 for all of the reported FOS (the school

ranking is omitted due to the limited earnings data).
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Identifying DWAs that correspond to increased earnings after graduation could inform

students’ course selection based on the demand for skills in the labor market. To demon-

strate this, I analyze the regression of FOS Business as an example. After performing 5-fold

cross-validation on the model determined by LASSO feature selection, there are 57 DWAs

remaining. Based on our statistical regression analysis, the 57 DWA features are able to

explain 69.2% of the variance of the earnings in Business. Among those, 10 DWAs have sig-

nificant coefficients with the p-values below 0.05. DWAs “complete documentation required

by programs or regulations,” “evalutate program effectiveness,” and “advise others on career

or personal development” are positively associated with earnings while “conduct health or

safety training programs” is negatively associated with earnings (regression coefficients esti-

mated with pvalue < 0.01 in each case). The list of DWAs that have significant coefficients

for all the 10 FOS can be found in Appendix A, Table 12. The full list of all the selected

DWAs including the coefficients and statistics can be found in this GitHub folder.10

6.4 Discussion

Knowledge, skills, and abilities shape workers’ careers, and so, quantifying their sources

may impact workforce development and our understanding of the labor market. Largely,

higher education is a source of skill acquisition for many middle and high-skilled jobs in

America. However, there is a disconnect between work and learning in the US; higher

education can fail to meet the skill demands of the labor market thus creating “skill gaps”

across the country. A labor market information system where work skills are shared across

entities, connecting education to work, could help students know what skills they need,

educators know what skills to instruct for, employers know what skills workers have, and

policymakers more effectively impact workforce development. This chapter demonstrates a

methodology to bridge material taught in U.S. colleges and universities with the detailed

work activities (DWAs) used by the Department of Labor to describe the US workforce.

This creates new opportunities to track changes in the evolution of higher education and

10https://github.com/HungChau/OSP-connect-higher-education/tree/main/selected DWAs
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workforce development; for example, the emergence of DWAs within the syllabi of a field

of study (FOS), or major, corresponds to the co-occurrence of DWA pairs across all of

academia (see Fig. 27). As an illustrative example, discussions of green technology design

requirements may become more prominent in Computer Science programs because they go

hand-in-hand with information technology project resource requirements, commonly taught

in courses across academia. Educators, educational policy, and course recommendation

systems could use these insights to design educational programs and to advise students

towards the classes offering the experience that will be most valuable for their career goals.

Following our example, proactive curriculum design might include green technology topics

to prepare students for jobs in Computer Science.

However, it is likely not the case that every FOS will teach every skill or ability, in part,

because labor market incentives for specific DWAs vary by industry, region, and employer.

Thus, insights into the course topics that correspond to increased, or decreased, earnings

after graduation (see Fig. 29 for example) may increase the relevance of an educational pro-

gram or policy and increase students’ success when they enter the workforce. For example,

academic programs might grow to include new high-demand skills while decreasing emphasis

on outdated topics. Such insights could inform goal -based learning [195] in course recommen-

dation systems while improving explanations of recommendations. Increasingly personalized

course recommendations can identify relevant topics based on students’ predefined goals

(e.g., maximizing job earnings). For example, recommending Business courses that include

“complete documentation required by programs or regulations” work activities might proac-

tively prepare today’s students to meet the growing demand for Business Analytics in the

labor market.

This study has a few limitations. This study demonstrates how novel syllabus data

and natural language processing (NLP) techniques can connect labor market data to higher

education by predicting the change in taught skills within a FOS and linking DWAs to

graduate earnings. Future work might build on my study by analyzing the causal implications

of skill-level adjustments to course content. In particular, my study’s approach is unable

to address selection bias when students choose a university in which to enroll. However

future work may study natural experiments that overcome this barrier. Potential examples
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include the hiring, firing, or retirement of new faculty, the creation of a new school or

department, the emergence of a large employer (e.g., resulting from new tax credit), or

large donations focused on specific learning outcomes. For example, future work might

augment my analysis of graduate’s recent earnings with other career outcome measures. Our

analysis of the College Scorecard earnings data is limited to only two graduation cohorts and

similar Post-Secondary Employment Outcomes data is limited to only a few institutions.

Furthermore, I only consider earnings one year after graduation, which may not capture

the full career trajectory [196]. However, future analysis involving workers’ resumes will

enable direct connections between workers’ educational foundations during college and their

career dynamics (e.g., worker adaptability, tenure, and mobility) in addition to earnings.

Similarly, job postings analysis might compare employer demands to the DWAs detected

in our study thus identifying the most or least adaptive educational programs (e.g., [24]).

Future research along this dimension will offer new insights into the sources and sinks of the

high-skilled workers that shape job polarization [26] and urbanization today [174, 185].

I have demonstrated, using mean cohort level graduate earnings, that there is already

detectable variation in earnings based on skills taught in courses offered. My approach has

focused on outcomes for groups of graduates (e.g., by major or university). Future work

with alternative data might investigate variations in labor market outcomes for individuals.

For example, students studying the same major could take different courses offered, thus

learning different skills. Whether the course selection by individual students leads to different

occupations and different earnings, and how much learned skills could explain individual

career variation are interesting questions left to be discovered. One challenge in undertaking

such research is the availability and accessibility of this type of datasets at scale due to

privacy concerns. Further, my analyses focused on students with bachelor’s degrees, but

future work might study the skills of graduate education or the undergraduate education

that lead to graduate school admission.

My study relied on simple off-the-shelf techniques in combination with novel data sources,

but future work might expand my methods with more sophisticated approaches. For exam-

ple, this study used pre-trained static word embeddings and standard document similarity

techniques to detect work activities from syllabi, but more complex NLP techniques could
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yield further insights. Static word embeddings are a powerful tool for capturing syntac-

tic and semantic regularities in language, but each word is represented by a single vector

regardless of context. That is, all senses of a polysemous word have to share the same rep-

resentation. Contextualized word representations, such as Transformer-based embeddings,

overcome those issues and have yielded significant improvements on many NLP tasks. Addi-

tionally, my study relies on the O*NET taxonomy used by the US Department of Labor to

describe labor market trends. These granular DWAs reveal core differences between courses,

fields and universities. For example, DWA relevance scores improved predictions of graduate

earnings within many fields of study, but not all. This suggests that “skill” differences may

impact the effectiveness of college education (in terms of earnings) but O*NET DWAs may

not be the most precise taxonomy to describe the granular level of knowledge expressed in

courses. This is in part because O*NET data is not designed to describe higher education,

but to describe workers. There is no standard knowledge base describing more granular

concepts and skills in higher education and the labor market. This highlights an urgent need

for future educational research that builds a knowledge base that could standardize and ad-

vance insights into how educational foundations shape workforce development and the skills

of workers. With the advances of text mining methods, one could extract skills described in

course syllabi and job postings, and align those skills to connect educational content with

the demands of the labor market. There are some existing job skill taxonomies to describe

job postings’ requirements such as BG’s or LinkedIn’s proprietary skill taxonomies. Börner

et al. (2018) analyze course syllabi and BG’s job postings focusing on areas of Data Science

and Data Engineering. They use BG’s skill taxonomy instead of the one used by the U.S.

Bureau of Labor Statistics to analyze skill discrepancies between research, education and

jobs. Modeling job postings with NLP techniques has also been shown to be useful in un-

derstanding wage premia [25]. Although my study focuses on the work side of job seeking,

I acknowledge that the demand from the employer side is also important to understand the

holistic picture from skill offerings in higher education to skill demands in the labor mar-

ket; which could benefit many applications such as identifying potential curricular gaps or

recommending courses to meet jobs’ requirements.

Increasingly, researchers and policymakers use workers’ skills and abilities to describe
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labor market outcomes in addition to workers’ educational attainment based on their occu-

pation [28]. However, similar data and methods are only just being developed and applied

to workforce development and, in particular, to higher education. This study offers an ap-

proach and a methodology to connect higher education to workplace skills thus enabling new

strategies for course recommendation, curriculum design, and education policy that prepare

students to meet their career goals.

In summary, I introduce a proof-of-concept method that bridges the gap between work-

place skills and those imparted through higher education. This innovative approach involves

the creation of modeling course syllabi that intricately align with real-world work activities.

By doing so, it enables us to accurately forecast educational trends and predict the future

earnings of graduates. This method holds the potential to revolutionize the way we approach

education and career preparation, offering a pathway to create personalized course recom-

mendation systems that are both explainable and tailored to individual needs. It opens

doors to more informed and adaptable educational information systems, empowering stu-

dents to make informed choices and institutions to better meet the evolving demands of the

job market.
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7.0 CAREER-ORIENTED EXPLAINABLE COURSE

RECOMMENDATION

With compelling results emerging from our course representation methods detailed in

Chapter 6 and the concept extraction model for course descriptions outlined in Chapter

4, the objective of this chapter is to design an explainable, personalized course recommen-

dation system that aligns with students’ career aspirations. Additionally, this study seeks

to compare two distinct approaches for skill representation within course recommendation

systems: concepts automatically extracted from course descriptions, as detailed in Chapter

4, and O*NET DWAs manually constructed by experts to describe work in the US labor

market, as discussed in Chapter 6. This system is the first to incorporate job information

and skills to enhance student achievement and future career prospects. Its goal is to guide

students toward specific courses that will equip them with the necessary skills for their de-

sired careers. The system tailors course suggestions based on students’ enrollment histories

and career preferences while also providing explanations for its recommendations. To assess

the effectiveness of the proposed design, I will deploy the system and conduct a user study

involving undergraduate students from the School of Computing and Information at the

University of Pittsburgh.

7.1 Introduction

In today’s dynamic and competitive job market, students face the formidable challenge

of choosing the right courses that align with their career aspirations. The importance of

this academic decision cannot be overstated, as it directly impacts their future employability

and success. Recognizing this critical need, this research aims to create an innovative and

essential tool—the explainable, personalized course recommender system. This system aims

to guide students on a tailored educational journey that not only aligns with their career

preferences but also equips them with the requisite knowledge and skills demanded by their
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chosen profession.

Fundamentally, my research embarks on a pioneering quest to bridge the gap between

college education and the job market, focusing on the pivotal concept of unified skills. By

harnessing these skills as the fundamental building blocks, the course recommender system

will provide students with course recommendations that are both insightful and easily under-

standable. The system leverages a student’s course enrollment history, assuming they have

already taken courses for at least one semester, in conjunction with their career preferences

to curate a personalized list of courses. Each course recommendation is accompanied by a

skill-based explanation of how it contributes to the acquisition of skills essential for their

future career.

This study is underpinned by three primary objectives:

1. Proposal of an Approach for Unified Skills-Based Explainable Course Rec-

ommendation: I will introduce an innovative approach that utilizes unified skills to

enable explainable course recommendations. This approach seeks to establish a direct

link between the educational sphere and the job market, thereby empowering students

to make informed decisions about their academic journey.

2. Evaluation of the Utility of Job Information in Enhancing Course Recom-

mendations: I will assess the impact of incorporating job market information on the

quality of course recommendations. By leveraging job-related data, I aim to enhance

the precision and relevance of our recommendations, thus ensuring that students receive

guidance that is both forward-looking and aligned with industry needs.

3. Validation of the Value of Explanation in Enhancing User Perception: I will

investigate the efficacy of providing explanations alongside course recommendations. My

research seeks to validate that these explanations not only aid users in making more

informed choices but also foster acceptance of the recommendations, thereby enhancing

the overall user experience.

To the best of my knowledge, this study represents a pioneering effort in the realm

of career-oriented, explainable course recommendation, uniquely leveraging real-world job

information. I will deploy an explainable course recommendation engine using course de-
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scriptions sourced from the School of Computing and Information at the University of Pitts-

burgh, O*NET datasets, and job postings from Burning Glass Technology. Subsequently, I

will conduct a user study with undergraduate students at the School of Computing and In-

formation, University of Pittsburgh, to validate the importance of job information in course

recommendations and test the hypothesis that explanations could improve user perception

of recommendations.

In this chapter, I will first present how to apply the course modeling method described in

Chapter 6 to represent courses and jobs through the unified skills; which serves as the foun-

dation for the career-oriented explainable course recommendation system. Subsequently, I

will provide comprehensive insights into the recommendation and explanation method, share

details of the study experiments and analyses, and finally discuss the study’s contribution,

limitations and potential future directions to conclude the chapter.

7.2 Skill-based Document Representation

Similar to the way course syllabi are represented based on their relationships with the

DWAs discussed in Chapter 6, I generalize it to model documents (i.e., course descriptions

or job postings) based on their relationships with skills (i.e., Concepts or DWAs). Instead

of using the pre-trained fastText word embeddings, I utilize Sentence BERT (SBERT) [197]

for generating state-of-the-art text embeddings. SBERT is a modified version of the pre-

trained BERT network that employs Siamese and triplet network architectures to generate

semantically meaningful text embeddings, allowing for direct comparison through cosine

similarity. I obtain the embedding vectors of 768 dimensions from the all-mpnet-base-v2

version1 of SBERT for each document d and each skill s, and then compute their relationship

(0 ≤ rd(s) ≤ 1) using cosine similarity.

Skills: Discussed in Chapter 1, Section 1.1, these are described as knowledge and exper-

tise in higher education and the labor market in the social economic research community.

It has been used in recent studies to universally describe courses, scientific articles and jobs

1https://www.sbert.net/docs/pretrained models.html
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[24, 26, 27]. In this work, I will use the term skills to represent different types of knowledge

including extracted concepts (or Concepts) from texts (e.g., support vector machine) and

O*NET DWAs (e.g., develop methods of social and economic research). Skills are considered

atomic units of learning and labor. I will use skills to represent courses, jobs and occupations

to guide recommendation and explanation.

Career Categories: a list of careers in the domain of Computing and Information is

defined based on O*NET Career Taxonomy and Burning Glass Specialty. Each career is a

combination of an occupation and a specialty such as a career in Web Developers occupation

with PHP Develope specialty.

• O*NET Career and Occupation2: used by the Department of Labor to describe work

in the US labor market, including 24 occupations related to Computer and Informa-

tion Science; e.g., Web Developers, Computer Hardware Engineers, Business Intelligence

Analysts.

• Burning Glass Specialty : each job posting in the BG dataset has information about

O*NET occupations and specialties defined by BG technologies. There are 145 BG

specialties linked to 24 O*NET occupations. Though it is not a one-to-one mapping,

a specialty could be considered as a sub-category of an O*NET occupation; e.g., spe-

cialties Data Analyst (Finance) and Data Analyst (Healthcare) in occupation Business

Intelligence Analysts, specialties .NET Developer / Engineer and Back End Developer /

Engineer in occupation Web Developers.

Course Representation. To represent a course c, I use its catalog description as an

input for SBERT to obtain an embedding vector. Similarly, each skill s in a fixed set of skills

is represented by an embedding of the same dimension. Then I compute the relationships

between each of the skills and the course rc(s). As a result, courses are represented based on

their relationships with the skills (called the skill -based course representation); Vc : r
|S|
s ; rs ≡

rc(s) ∈ [0, 1], explaining how strongly the skill s ∈ S associated to the course description c;

S is the set of skills (i.e., Concepts or DWAs). Lastly, the vector Vc is transformed into the

unit norm form,
∑

s∈S(rs) = 1.

2https://www.onetonline.org/find/career?c=0&g=Go
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A B

Figure 30: An example of a Network Security course at the University of Pittsburgh and the

skills that are most and least strongly associated with its description. (A) Concept-inferred

course representation. (B) DWA-inferred course representation.

Job Representation. Since I do not have access to actual job posting descriptions

in the Burning Glass dataset, I use the BG skills associated with each job posting as an

approximation of its description. I get the embedding vector for each of the BG skills

associated with the job using SBERT, and then averaging those vectors to obtain a vector

representation for the job. As a result, the job vector also has the same 768 dimensions as the

skill vectors do. From now, I model the skill-based job representation via job-skill relationship

rj(s) the same way for the course presentation described above; Vj : r
|S|
s ; rs ≡ rj(s) ∈ [0, 1],

explaining how strongly the skill s ∈ S associated to the job j; S is the same set of skills.

The job vector Vj is finally normalized to the unit norm form,
∑

s∈S(rs) = 1.

Representation Adjustment. One of the issues with the current representation ap-

proach with either type of skill is not handling ubiquitous skills across courses within a major

or jobs within a career; for example, DWAs “Identifying Objects” and “Communicating with

Supervisors and Peers”, and Concepts “Data analytics” and “Data and analytics”. Thus, I
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A B

Figure 31: An example of Machine Learning Engineer job posting in Burning Glass dataset

and the skills that are most and least strongly associated with its approximate description.

(A) Concept-inferred job representation. (B) DWA-inferred job representation.
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focus on skills that are “overexpressed” in a course or job and penalize skills that are ubiq-

uitous. First, I calculate the revealed comparative advantage (RCA) or “location quotient”

[26, 198] of each skill s in a document d (i.e., a course or job) according to

rcad(s) =
rd(s)/

∑
s′∈S rd(s

′)∑
d′∈D rd′(s)/

∑
d′∈D,s′∈S rd′(s

′)
(19)

This technique has been used in a variety of applications, including analyzing the polarization

of workplace skills [26], identifying the key exports of nations [198], and finding the primary

sectors in urban areas [199]. Courses (or jobs) could be distinguishable from each other

according to their “effective use” of skills. According to [26]; the effective use of skills is

defined using e(d, s) = 1 if rca(d, s) > 1, and e(d, s) = 0 otherwise. Therefore, I adjust

the vector representation of a course Vc : r
|S|
s , with rs = 0 if e(c, s) = 0; and a job Vj :

r
|S|
s , with rs = 0 if e(j, s) = 0. Figure 30 shows an example of the most and least prevalent

skills detected for a Network Security course at the University of Pittsburgh. Figure 31

shows an example of the most and least prevalent skills detected for a Machine Learning

Engineer job in the BG dataset.

Career Representation. Similar to the way I represent a field-of-study and a univer-

sity using their relationships to each of the DWAs via course syllabi (described in Chapter

6). The job-skill relationships (rj(s)) help to model a career ca in terms of its relationship

to each of the skills according to

rca(s) =
1

|Jca|
∑
j∈Jca

rj(s) (20)

These relevance scores are a measure of how strongly the skill s is represented in a career;

rca(s) (the relevance score of the skill s to the career ca) is the average over the similarity

scores of that skill across job j ∈ Jca (which represents all of the jobs within a given career

ca). Figure 32 shows an example of the most and least prevalent skills detected for the career

in Web Developers occupation and PHP Developer specialty using the BG job data.
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A B

Figure 32: An example of the career in Web Developers occupation and PHP Developer

specialty using the BG job data and the skills that are most and least strongly associated

with its job posting descriptions. (A) Concept-inferred course representation. (B) DWA-

inferred course representation.
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7.3 Recommendation Method

In this study, a career pathway is defined by O*NET occupations and BG specialties

described above. Students can provide their career preferences by selecting an occupation

(e.g., Web Developers) and a specialty (e.g., Back End Developer / Engineer). Based on

their preferences and course enrollment histories, the system is designed to recommend a list

of courses the student should consider to obtain the necessary skills for their future career.

The explainable career-oriented course recommendation system is designed as follows (and

see Figure 33):

1. First, represent each course in the student enrollment history as a continuous vector

described above: Vc : r
|S|
s .

2. Create the student skill profile as a continuous vector Vp : r
|S|
s ; rs = max(rc∈Cp(s)) (Cp

is the list of courses in the student enrollment history); rc(s) is how strongly skill s

associated with course c; rc(s) = 0 when skill s is not associated with any course in the

enrollment history; S is the set of skills (i.e., Concepts or DWAs).

3. From the student’s input preferred career (O*NET occupation + BD Specialty), retrieve

the list of jobs that belong to the career. Represent each job as a vector Vj by averaging all

the vector representations of the jobs linked to the career, Vca (presented in the previous

section).

4. Calculate the required -skill vector that contains information about skills needed for the

career but the student has not learned yet or has not learned enough, Vre : r
|S|
s ; rs =

max(0, rca(s) − rp(s)); where rca(s) and rp(s) are how strongly skill s associated with

career ca and student profile p, respectively; rs = 0 if career ca does not require skill s

or the student has already mastered the skill.

5. Finally, generate a list of recommended courses by minimizing the objective function

that is defined as the distance between the target course Vtc and the required skill vector

Vre for the preferred career.

dist(Vtc, Vre) =

√√√√ |S|∑
s

min(0, rtc(s)− rre(s))2 (21)
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Figure 33: The design of an explainable career-oriented course recommendation engine using

student course enrollment history and job posting data.

rtc(s) is how strongly skill s associated with target course tc; rre(s) is a required level of

skill s the student needs to master for the career; dist(Vtc, Vre) = 0 means that the target

course tc provides all the remaining knowledge that the student needs for their preferred

career. The smaller the distance dist(Vtc, Vre), the closer the student is ready for their

career.

7.4 Explanation Method

Besides evaluating the effectiveness of the proposed career-oriented course recommenda-

tion methods, my goal is to examine how explanation affects the way users respond to the

recommendation. Thus, I will generate skill-based explanations for each of the courses in

the recommendation list based on three sources of information: (1) student prior knowledge,

(2) skills the target course offers, and (3) skills needed for the occupation in the preferred

career.

My approach to recommendation explanation is to connect skills required for the career

to target course recommendations. The explanation will include information about required
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skills that the student has not learned yet or learned enough. The set of explaining skills

(Se) is defined as following:

Se = Sre ∩ Stc (22)

Where Sre is the list of skills that the student has yet to master or requires further

improvement in proficiency, and Stc is the list of skills offered by the target course tc. Given

se ∈ Se, 0 < se = min(rre(se), rtc(se)) <= 1. The explanation displays the top 10 skills in

Se.

Diversify the set of explaining skills: concepts extracted from the course descriptions

could be similar to each other or describe the same topics such as K-Means Clustering and

K-Means Algorithm. To improve the explanation with extracted concepts, the diversification

process is aimed to provide a diverse set of skills used for explanation by removing concepts

that are too similar to those already in the current explaining skill set. Since DWAs, which

are manually constructed by experts, are considered a diverse set of skills to describe work in

the US labor market, this process does not apply to the explanation with DWAs. Algorithm

1 shows the process of diversifying the list of explaining skills.

7.5 Study Experiments

This section outlines the implementation of the proposed explainable course recommen-

dation at the School of Computing and Information, University of Pittsburgh. I conducted

a survey-based user study with students to gather their feedback on various aspects. The

study aims to validate the importance of job information in course recommendations and test

my hypothesis that explanation is helpful in improving user perception on recommendations.

7.5.1 Implementation Details

I collected all the lecture courses offered or required by the School of Computing and

Information at University of Pittsburgh. The courses with insufficient description (i.e., less
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Algorithm 1 Generating a diversified list of skills for explanation

explaining skill list = []

threshold = 0.85 //between 0 and 1, the higher the less diversified

for se in sorted(Se):

flag = False

for si in explaining skill list:

if cosine similarity(se, si) >= threshold:

flag = True

break

if flag==False:

explaining skill list.append(se)

if len(explaining skill list)==10:

break

return explaining skill list

than 15 words ) are removed from the collection, resulting in 209 courses. I use the trained

concept extraction model (presented in Chapter 4) to extract all the concepts in these courses.

After post-processing including removing generic concepts such as ‘cs’, ‘sci’, ‘infsci’, con-

cepts containing more than 5 words and combining singulars and plurals of the concepts,

there are 1491 concepts remaining. For the BG dataset, I collect 77,624 jobs from the

O*NET occupations related to computing and information science including ‘Bioinformatics

Scientists’, ‘Biostatisticians’, ‘Computer Hardware Engineers’, ‘Computer and Information

Research Scientists’, ‘Data Scientists’, ‘Robotics Engineers’ and the occupations in ‘Informa-

tion Technology’, ‘Information Technology; Information Technology’ O*NET Career Clus-

ters. Jobs that have less than 5 BG associated skills and no specialty are removed from the

collection. To sufficiently estimate the skills required in a career, I only select careers that

have at least 20 job postings. As a result, 67,238 jobs, 24 O*NET occupations and 145 BG

specialties are obtained (see Table 10).

I implemented two recommender systems, one for Concept skills and the other for DWA

skills. In the Concept system, courses, jobs, and careers are represented as continuous
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Table 10: The summary of data used in career-oriented course recommendation

Number of SCI lecture courses 209

Number of extracted concepts from the course descriptions 1491

Number of O*NET DWAs 2070

Number of Computing & Information-related jobs in BG 67238

Number of O*NET occupations 24

Number of BG specialties 145

vectors with 1491 dimensions, corresponding to the number of concepts. Similarly, in the

DWA system, courses, jobs, and careers are represented as continuous vectors with 2070

dimensions, reflecting the number of DWAs.

7.5.2 User Study

Procedures. This study is conducted online using the Qualtrics Survey system at Uni-

versity of Pittsburgh. The student subjects are required to provide a list of courses they

already took and passed and their preferred career (by choosing an O*NET occupation and

then a BG specialty). They are randomly assigned to one of the two between-subject condi-

tions (Explanation), and each subject participates in both the two within-subject conditions

(Skill). The subjects participate in two separate sessions for two within-subject conditions.

The sessions are held three days apart, and during each session, participants are shown a list

of five course recommendations based on their past course history, career goals, and the skill

condition (i.e., DWA or CON) they are assigned to. The recommendations are presented

through Qualtrics, and include information about the selected occupation and specialty,

course ID and title, a description of the course, skill-based explanation (only for Explana-

tion conditions) and a survey questionnaire with multiple choice questions. Participants are

asked to carefully review the recommendations and answer a series of questions. In total,

each participant will evaluate and provide feedback on ten recommended courses.

Participants. I recruited 52 participants via email advertisements from their advi-

sors and ad flyers at SCI buildings. Participation is limited to undergraduate students at
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Figure 34: A recommended item for no explanation (C1 & C3) via Qualtrics.

SCI, University of Pittsburgh and having completed at least one semester. Six participants

dropped after the background information collection or the first session, remaining 46 sub-

jects for final analyses. Among the subjects, 24 are in the Explanation conditions and 22 are

in the Non Explanation ones. The subjects include 19 freshmen, 14 sophomores, 10 juniors

and 3 seniors. The entire study takes about 45 - 60 minutes. Each participant is paid 20

USD after completing the study.

Design and Analysis. The study is designed as a mixed between- and within-subjects

study to measure: (1) The success and unexpectedness of the two recommendation methods;

and (2) The effectiveness of explanation on the recommendation w.r.t success and unexpect-

edness. There are four groups C1, C2, C3 and C4:

• Within-subject conditions (Skill): DWA (C1 & C2) vs. Concept (C3 & C4)

• Between-subject conditions (Explanation): NoExp (C1 & C3) vs. Exp (C2 & C4)

I collected the following measures:

• All conditions:
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Figure 35: A recommended item for with skill-based explanation (C2 & C4) via Qualtrics.

(A) The explanation shows the top 10 DWAs offered by the course and required for the

student’s career. (B) The explanation shows the top 10 concepts offered by the course and

required for the student’s career.
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– Q1. Success (Interest): Participants respond to the statement “I am interested

in taking this course.” [167, 21, 38] on a 5 point Likert scale from 1=Strongly

Disagree to 5=Strongly Agree (for each course recommendation) (see Fig. 34).

– Q2. Unexpectedness: Participants respond to the statement “I was surprised that

the system picked this course to recommend to me.” [168] on a 5 point Likert scale

from 1=Strongly Disagree to 5=Strongly Agree (for each course recommendation)

(see Fig. 34).

• Explanation conditions (C2 & C4):

– Q3. Explanation: Participants respond to the statement “The explanation below

the course description helps me determine how interested I am in taking this

course.” [32] on a 5 point Likert scale from 1=Strongly Disagree to 5=Strongly

Agree (for each course recommendation) (see Fig. 35).

– Q4. Skill Quality Comparison: At the end of the study, participants respond

to the two statements “Compare the two systems, which type of skills helps me

better understand how the recommended courses relate to my field of study and

selected career?” and “Compare the two systems, which type of skills describes

the content of the recommended courses better?” on a 5 point Likert scale from

1=Much Better to 5=Much Worse.

– Q5. Skill Quantity: in addition to the main measures, at the end of each session,

participants are asked to respond to the statement “The system presents to you

a list of 10 skills to explain the recommendations. The number of skills is:” on

three options: Too Few, Good or Too Many. They can also provide a number of

skills they think are sufficient for them to assess the recommendations.

In this study, each participant rates multiple items during the session. Treating repeated

measurements on the same participant as independent could potentially lead to a violation

of correlated errors [169, 170]. To address this issue, I use Generalized Linear Mixed Models

for the primary analyses. These models take into account that the ratings come from the

same users, incorporating them as random effects and allowing for the estimation of error

correlations resulting from repeated measurements. For the comparison questions (i.e., Q4

and Q5), I use paired t-tests for analysis.
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7.5.3 Results

Interestedness. Comparing the baseline model (i.e., only the intercept) and the random

intercept model (i.e., for different participants), the results showed statistically significant

variance in intercepts across participants, χ2(2) = 52.61, p < .0001. Therefore, the partic-

ipant random effects are included in the main analysis. As depicted in Fig. 36 and 37, in

general, the participants in Concept conditions (M = 3.74, N = 230) show a higher interest

in taking the recommended courses compared to those in DWA conditions (M = 3.62, N =

230). Similarly, the participants in Exp conditions (M = 3.77, N = 240) show higher interest

in taking the recommended courses compared to those in NoExp conditions (M = 3.58, N

= 220). Those in condition C4 (Concept + Explanation) (M = 3.87, N = 120) show the

highest interest. From the statistical analysis, the results show that the relationship between

skill type and interest in taking the course showed significant variance in intercepts across

participants, SD = 0.54 (95% CI: 0.41, 0.71), = χ2(2) = 52.61, p < .0001. The explanation

has a positive effect on how interested participants are in taking the course but it is not

significant, b = 0.19, t(44) = 1.01, p = 0.32. There is a positive impact of Concept over

DWA on the interestedness but not significant either, b = 0.12, t(45) = 1.22, p = 0.23. The

effect of providing explanations for both skill types is positive, but not statistically signifi-

cant. Additionally, there is no significant interaction between skill type and the presence of

an explanation.

It’s possible that the study was underpowered. The lack of a significant effect in the

explanation group could be because the effect size was medium or smaller, requiring a larger

sample size than the 46 participants in the study. Additionally, the between-subjects condi-

tion often requires more participants. Furthermore, students in the no-explanation condition

may have rated the recommendations relatively high because they agreed with them, but

they may not have realized what they were missing without the explanation. If they had

participated in both conditions, they could have compared the conditions, potentially leading

to a more significant difference. This within-subjects setting could help to remove potential

subject variability and allow for direct comparison of conditions; the interaction, however,

may not be realistic. In addition, the participants in the Concept conditions showed a greater
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Figure 36: Proportional distribution of user responses to the statement ‘I am interested

in taking this course.’ across different skill-explanation conditions: Concept system without

Explanation (CON-no), Concept system with Explanation (CON-yes), DWA system without

Explanation (DWA-no), and DWA system with Explanation (DWA-yes). Ratings: 1 - ‘Strong

Disagree’, 2 - ‘Disagree’, 3 - ‘Neutral’, 4 - ‘Agree’, 5 - ‘Strong Agree’.
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interest in taking the recommended courses compared to those in the DWA conditions. This

may be because the concepts are directly extracted from the course descriptions, resulting

in a course representation that is closer to the content of the course. As a result, the rec-

ommendations are more relevant to the participants’ interests and preferences, leading to

greater interest in taking the courses.

Unexpectedness. Likewise, when comparing the results of the baseline model (which

only includes the intercept) to the random intercept model (which accounts for variations

among participants), it was found that there was a statistically significant difference in the

intercepts across participants, χ2(2) = 98.92, p < .0001. As a result, the random effects

for the participants are included in the primary analysis. As depicted in Fig. 38 and

39, in generally, the participants in DWA conditions (M = 2.78, N = 230) demonstrated

higher levels of surprise about the course recommendations when compared to those in CON

conditions (M = 2.56, N = 230). Similarly, the participants in Exp conditions (M = 2.86,

N = 240) showed higher levels of surprise about the recommendations when compared to

those in NoExp conditions (M = 2.46, N = 220). The highest levels of surprise were found

among participants in the C2 condition (DWA + Explanation) (M = 3.02, N = 120). The

statistical analysis reveals that there is significant variation in intercepts among participants

regarding the relationship between skill type and surprise with the recommendation, SD =

0.66 (95% CI: 0.51, 0.85), = χ2(2) = 98.92, p < .0001. The explanation has a positive impact

on participant’s surprise with the recommendation, but it’s not statistically significant, b =

0.40, t(44) = 1.82, p = 0.075. However, for the between-subjects DWA conditions (C1 and

C2), the explanation has a statistically significant positive effect on the recommendation, b

= 0.49, t(44) = 2.24, p = 0.031. Furthermore, the study finds a significant positive impact

of DWAs over extracted concepts on the level of surprise, b = 0.23, t(45) = 2.44, p = 0.018.

With the explanation, participants in the DWA condition reported a significantly higher

level of surprise compared to those in the Concept condition, b = 0.32, t(23) = 2.62, p =

0.015.

According to the result, providing an explanation has a positive effect on the outcome,

with statistical significance observed for the DWA skill type and near-significance across

both skill types. As the recommendations from the Concept system demonstrate higher

148



CON-no CON-yes DWA-no DWA-yes
skill-explanation Condition

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ra
tin

g

"I am interested in taking this course."

skill
CON
DWA

Figure 37: Graph illustrating the ratings in response to the statement ‘I am interested in

taking this course.’ across four conditions: Concept system without Explanation (CON-no),

Concept system with Explanation (CON-yes), DWA system without Explanation (DWA-no),

and DWA system with Explanation (DWA-yes). The red lines indicate the median ratings,

while the green circles depict the average ratings.
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relevance, as previously described, they are generally less surprising to participants com-

pared to those from DWAs, regardless of whether an explanation is given. The impact of

providing an explanation is statistically significant. The knowledge captured by DWAs may

not be immediately apparent or easily recognized. DWAs may be more effective in selecting

unexpected courses, which could have either a positive or negative effect on the resulting

recommendation.

Explanation. Like previous measures, the results of the statistical analysis showed a

statistically significant difference among participants in the relationship between the skill

type and the usefulness of explanation in helping users’ decision on accepting the recom-

mendation, SD = 0.31 (95% CI: 0.20, 0.47), χ2(2) = 27.02, p < .0001. As shown in Fig. 40,

participants who received explanations from either skill type agreed that the explanation

helped in determining their interest in the recommendation (M = 4.26, N = 240). There

was no significant difference between DWA skill type (M = 4.27, N = 120) and Concept

skill type (M = 4.26, N = 120) in terms of their effect, b = 0.01, t(23) = 0.10, p = 0.921.

Nevertheless, the explanation is beneficial for students to gain more insight into the recom-

mendation, which helps them make an informed decision. As a result, this could potentially

lead to an increase in user trust and the acceptance rate towards recommendations.

Skill Quality Comparison. As demonstrated in Fig. 41 and 42, the majority of

participants favored the DWA-based explanation over the Concept-based explanation. For

the first question, 14 out of 22 participants rated the DWA system as better or much better

than the Concept system, while only 4 participants rated the opposite. The two-tailed paired

T-test results indicated that the DWA system is significantly better than the Concept one

with M = -0.55, p = 0.05 (on a normalized rating scale of -2 to 2). Similarly, for the second

question, 13 out of 22 participants rated the DWA system as better or much better than

the Concept system, while only 3 participants rated the latter better. The two-tailed paired

T-test showed that the DWA system is significantly better than the Concept system with M

= -0.64, p = 0.01.

Both types of skills approximately describe the course based on their relevance. While

concepts are automatically extracted from the course descriptions, some may be semantically

similar but treated as distinct entities, such as ‘data analytics’ and ‘data and analytics’. This
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Figure 38: Proportional distribution of user responses to the statement ‘I was surprised that

the system picked this course to recommend to me.’ across different skill-explanation con-

ditions: Concept system without Explanation (CON-no), Concept system with Explanation

(CON-yes), DWA system without Explanation (DWA-no), and DWA system with Explana-

tion (DWA-yes). Ratings: 1 - ‘Strong Disagree’, 2 - ‘Disagree’, 3 - ‘Neutral’, 4 - ‘Agree’, 5 -

‘Strong Agree’.
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Figure 39: Graph illustrating the ratings in response to the statement ‘I was surprised that

the system picked this course to recommend to me.’ across four conditions: Concept system

without Explanation (CON-no), Concept system with Explanation (CON-yes), DWA system

without Explanation (DWA-no), and DWA system with Explanation (DWA-yes). The red

lines indicate the median ratings, while the green circles depict the average ratings.
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Figure 40: Proportional distribution of user responses to the statement ‘The explanation

below the course description helps me determine how interested I am in taking this course.’

across different skill conditions with explanations: Concept system with Explanation (CON-

yes), and DWA system with Explanation (DWA-yes). Ratings: 1 - ‘Strong Disagree’, 2 -

‘Disagree’, 3 - ‘Neutral’, 4 - ‘Agree’, 5 - ‘Strong Agree’.
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"Compare the two systems, which type of skills helps me better understand
 how the recommended courses relate to my field of study and selected career?"

Figure 41: Frequency distribution of skill comparisons between the DWA system and the

CON system, indicating their relevance to recommended courses for specific fields of study

and careers.
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Figure 42: Frequency distribution of skill comparisons between the DWA system and the

CON system in terms of how well they describe the content of recommended courses.
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approach may result in less diversity and overlapping semantics. Conversely, DWAs are a

diverse set of skills curated by human experts to describe work in the US labor market. To

address this limitation, I have proposed an approach (described in Algorithm 1) to diver-

sify the list of explaining concepts. However, the diversity threshold is manually selected

and fixed, limiting its effectiveness. To improve the diversity of the concept set, a more

rigorous process for fine-tuning the threshold is necessary. Additionally, applying clustering

techniques to group similar concepts can create concept clusters that enhance the vector

representation, resulting in more effective concept-based explanations.

Skill Quantity. The recommendation explanation aims to connect the skills required

for the career to target course recommendations. It features a list of skills that the student

has not acquired or mastered. The top ten most important skills are presented to the stu-

dent along with a description of the courses. To determine the effectiveness of presenting

ten skills, participants were asked to rate the number of skills as Too Few, Good, or Too

Many. The results in Fig 43 indicate that the majority of participants believe that ten skills

are a sufficient number for the explanation. A higher percentage of participants agreed with

concept-based explanation (70.8%) than those with DWA-based explanation (66.7%). How-

ever, some participants expressed a desire for more concepts, with 8.3% rating the number

as too few. This may be due to the fact that DWAs tend to be longer in length, with an

average of 6 words compared to 2 for concepts. In the written feedback, the majority of

the participants stated that five to ten skills are sufficient for them to evaluate the recom-

mendations, with seven being the most common suggestion. By optimizing the production

of our explainable course recommender, I can present the top seven most crucial skills as

the default view, while providing students with the option to expand the list for a more

comprehensive view. Ideally, the system would be designed to dynamically adapt to the

individual preferences of each user, thereby providing a personalized and relevant experience

by presenting the most useful information for their unique needs.
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Figure 43: Percentage distribution of user responses to the statement ‘The system presents

to you a list of 10 skills to explain the recommendations. The number of skills is:’, comparing

between the CON system and the DWA system.

7.6 Summary and Discussion

In the preceding chapters, we have developed insights into skill-based explanation and

effective methods for modeling courses. Building on this foundation, this chapter introduces

a novel personalized and explainable course recommender system to help students explore

courses that will provide them with the knowledge and skills required for their future ca-

reers. The system recommends courses based on the student’s enrollment history and career

preferences and provides explanations for the recommendations. I apply the approach that

connects college education to job markets presented in Chapter 6, and evaluate the usefulness

of job information in course recommendations, and validate the effectiveness of explanation

in improving user perception of recommendations. The study is the first of its kind to use ac-

tual job information for career-oriented explainable course recommendations using advanced

NLP techniques, and it is expected to help users make better decisions and increase their
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trust and acceptance of recommendations. This study also compares two different models for

representing skills: concepts automatically extracted from course descriptions, as detailed

in Chapter 4, and O*NET DWAs manually constructed by experts to describe work in the

US labor market, as discussed in Chapter 6. Both recommender models yielded promising

results, as indicated by user feedback. Participants generally found the recommendations

helpful and expressed interest in taking the recommended courses. For instance, a partici-

pant stated, “The assigned courses were very interesting and intriguing and I will consider

taking all of them.”. Additionally, the explanations positively impacted the recommenda-

tion. The majority of subjects explicitly agreed or strongly agreed that the explanations

helped them determine their level of interest in the recommended courses.

In comparing the two types of skills, the Concept system tended to provide more relevant

recommendations to users, whereas the DWA system tended to introduce an element of

surprise to the recommendations. However, subjects explicitly expressed a preference for the

DWA system over the Concept system, stating that it helped them better understand how

the recommended courses related to their field of study and preferred career, and provided a

more detailed description of the course content. For example, one participant stated, “I liked

the skill explanations that went into a little more detail, such as those in the DWA system.”

Interestingly, another participant suggested that including both systems could “get the best

of both worlds!”.

My recommendation and explanation approach has several limitations that need to be

addressed for future research. The recommender systems are shown to be able to iden-

tify courses that align with students’ interests and needs. However, they do not currently

account for course level or order, potentially leading to suboptimal recommendations. To

address this issue, incorporating prerequisite information can improve recommendations. Ad-

vanced recommender engines such as deep sequential models or Transformer-based models

like PLAN-BERT have the ability to learn the intrinsic order of courses based on students’

enrollment patterns. Moreover, advanced placement credits and equivalent courses (e.g.,

CMPINF0401 and CS0008) are not considered when generating recommendations; as a re-

sult, students receive a course recommendation that is relevant but not useful. Incorporating

these features in real-world applications could significantly enhance the quality of recommen-
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dations. Secondly, in order to enhance the clarity and effectiveness of the explanations with

extracted concepts, the diversification process, as detailed in Algorithm 1, is aimed to pro-

vide a diverse set of skills used for explanation by removing concepts that are too similar to

those already in the current explaining skill set. However, it’s important to highlight that

the diversity of the concept set may be constrained by the predefined threshold used in the

study’s algorithm. To overcome this issue, a more rigorous threshold fine-tuning process can

be implemented to increase the diversity of the concept set. Another approach could apply

clustering techniques to group similar concepts to enhance the vector representation, leading

to more effective concept-based explanations.

There are also several limitations in the user study. It is worth noting a potential

limitation related to the sample size in the between-subjects experiment, which consisted

of only 46 subjects. As such, the study may have lacked sufficient power to justify the

real effect of the explanation on the recommendation, at least for the measures of overall

success and unexpectedness. The within-subjects conditions, on the other hand, eliminates

the between-participant variability, thereby fewer participants needed to attain an adequate

level of statistical power. Nonetheless, despite randomizing the order in which participants

saw the conditions and separating the two sessions three days apart, potential carryover

effects may persist. To address these limitations, future research could consider a larger

sample size for between-subjects studies to provide more robust and reliable results. Lastly,

due to constraints on data availability and resources, my study focused only on undergraduate

students in the School of Computing and Information. Future research could consider to

generalize for all majors within the institute and for graduate students to provide more

robust results.

Finally, due to data availability and resource constraints, my study focused only on un-

dergraduate students within the School of Computing and Information. To enhance the

generalizability of our findings, it is imperative for subsequent research endeavors to en-

compass a broader range of majors within the institute, including graduate students. This

comprehensive approach will provide a more comprehensive and substantiated set of results.
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8.0 CONCLUSIONS, DISCUSSION AND FUTURE WORK

In this chapter, I will begin by summarizing the key findings and conclusions derived

from all the studies and analyses. I will then articulate the significant contributions that

my dissertation makes to the field. Following this, I will discuss limitations and avenues for

future research.

8.1 Summary & Contribution

In this dissertation, I tackle the challenges surrounding academic decision-making and

course exploration within higher education, while also addressing the disconnect between

learning and work in the U.S. Leveraging the cutting-edge technologies of machine learn-

ing and deep learning, I have proposed several approaches for modeling courses and jobs.

These approaches serve as the foundation for the development of advanced course guidance

and educational information systems, designed to assist students in choosing courses that

seamlessly align with their individual interests, abilities, educational trajectories, and career

aspirations.

Automatic concept extraction with deep learning. Taking a step toward the am-

bitious goal of automated educational ontology construction, I have undertaken the develop-

ment of a concept extraction model for course descriptions, devoid of manual data labeling

for training. I approached concept extraction from course descriptions as a sequence labeling

task, leveraging state-of-the-art deep learning architectures, namely BERT and BI-LSTM-

CRF. These models were trained on various publicly available datasets and subsequently

consolidated into an ensemble model for concept extraction, aimed at improving overall

model efficacy. Crucially, this final model is flexible to extract concepts from diverse docu-

ment types, such as course descriptions, without necessitating specialized domain adaptation

techniques.

I conducted a comprehensive assessment and comparison of BERT and BI-LSTM-CRF
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models for concept extraction, employing widely recognized keyphrase extraction metrics.

Remarkably, the stacking ensemble model consistently delivered the highest performance

based on the F1 score, regardless of the architectural approach employed. Notably, the

BERT ensemble model outperformed the BI-LSTM-CRF ensemble model in this regard. The

most superior performance across all metrics was achieved by combining the BERT and BI-

LSTM-CRF models. Furthermore, I conducted an expert evaluation to gauge the quality of

the concepts extracted, particularly for their application in course recommendation systems.

The results indicated that both experts exhibited a high level of consensus in their assessment

of the concepts extracted by the model, with a proportional agreement of 92.88%, signifying

strong agreement between them. Moreover, the Kappa agreement between the two experts

was 0.57, suggesting a good level of agreement. In summary, the study’s findings demonstrate

the effectiveness of using a combination of BERT and BI-LSTM-CRF models for concept

extraction from descriptions in the context of explainable course recommendation systems.

The expert evaluation further validates the quality of the extracted concepts, highlighting

the practical applicability of these models in the education field.

Explanation for serendipitous course recommendation. I investigated the impact

of skill-based explanations on a serendipitous course recommendation system. This system’s

primary objective is to furnish students with comprehensive insights into available courses,

encompassing their alignment with existing knowledge and the acquisition of new skills. This,

in turn, empowers students to evaluate a course’s relevance more effectively and increases

their confidence when making choices. I utilized the trained concept extraction model to

extract multi-gram skills from course catalog descriptions. In a collaborative effort with the

CAHL lab at the University of California, Berkeley, we embarked on an in-depth exploration

of the impact of skill-based explanations within this serendipitous course recommendation

system. This investigation was conducted through an online user study at the same in-

stitution, utilizing the capabilities of the AskOski system, powered by PLAN-BERT—an

advanced deep neural network model, further enriched with a diversification strategy.

Our study represents a pioneering effort in scrutinizing the effect of skill-based explana-

tions on serendipitous course recommendations in higher education. While our overarching

findings did not conclusively demonstrate a clear impact of the explanation on PLAN-BERT’s
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recommendations, they did reveal a noteworthy surge in participant interest in courses that

exhibited high levels of unexpectedness. It is evident that individuals who received explana-

tory information displayed a favorable attitude towards the utility of these explanations in

influencing their interest in the recommendations. Furthermore, our research uncovered an-

other crucial aspect: the substantial impact of explanations in bolstering users’ confidence in

their decision-making processes. Consequently, this reduced their inclination to provide ‘neu-

tral’ opinions. A detailed statistical analysis illuminated a compelling interaction between

participants’ major declaration status and the presence of explanations. Specifically, among

participants who had not declared a major, the absence of explanations was significantly

associated with an increase in their likelihood to express neutral opinions.

Connecting higher education to workplace activities and earnings. I have

developed an effective methodology that bridges the gap between the curriculum taught in

colleges and universities across the United States and the detailed work activities (DWAs) as

defined by the Department of Labor to characterize the American workforce. This innovative

approach opens up new avenues for tracking the ever-evolving landscape of higher education

and workforce development. For instance, the emergence of DWAs within the syllabi of a

field of study (FOS), or major, corresponds to the co-occurrence of DWA pairs across all

of academia. These insights can prove invaluable to educators, policymakers, and course

recommendation systems as they seek to craft educational programs that align closely with

students’ career goals.

However, it’s important to recognize that not every FOS will cover every skill or ability.

This discrepancy arises from the varying labor market demands for specific DWAs, which can

differ significantly by industry, region, and employer. Consequently, understanding which

course topics correlate with increased or decreased post-graduation earnings can significantly

enhance the relevance of educational programs and policies. This, in turn, enhances students’

success as they transition into the workforce. For example, academic programs could adapt to

include new high-demand skills while reducing emphasis on outdated topics. These insights

could revolutionize goal-based learning within course recommendation systems, leading to

more personalized and effective recommendations. By identifying relevant topics based on

students’ predefined objectives, such as maximizing post-graduation earnings, we can proac-
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tively equip students with the skills (e.g., “Prompt Engineering”) needed to meet the growing

demand for roles like Software Engineering or Business Intelligence Analytics in the labor

market.

While DWAs offer a means to bridge the gap between work and learning, they also

reveal profound distinctions across various courses, fields of study, and universities. For

instance, the relevance scores of DWAs have enhanced our ability to predict graduate earn-

ings within many fields, though not universally across all disciplines. It is worth noting

that the ONET*DWAs may not provide the most precise taxonomy for characterizing the

nuanced knowledge embedded in different courses. This limitation arises, in part, because

ONET data primarily serves to delineate workers’ attributes rather than higher education

programs. The absence of a standardized knowledge base describing more granular concepts

and skills in higher education and the labor market underscores the urgent need for future

educational research. This research should strive to construct a knowledge base capable of

standardizing and enhancing our understanding of how educational foundations influence

workforce development and the skills of individuals.

Career-oriented course recommendation with explanation. With compelling re-

sults emerging from our course representation methods and the concept extraction model

for course descriptions, I have pioneered the development of a personalized and explainable

course recommendation system. This system aims to empower students in their journey

to explore courses that align with their future career aspirations, equipping them with the

requisite knowledge and skills. By leveraging students’ enrollment history and career pref-

erences, our innovative system provides tailored course recommendations while also offering

comprehensive explanations for these suggestions.

This study marks a significant milestone as it leverages real job-related data to enable

explainable course recommendations through advanced Natural Language Processing tech-

niques. This approach is expected to enhance user decision-making, instill trust, and foster

acceptance of the recommendations. Notably, my research also explore the comparison of two

distinct skill representation models: concept-based (Concept) and O*NET DWAs (DWA).

Feedback from participants underscores the system’s efficacy, with users expressing the value

of the recommendations and a keen interest in enrolling in the suggested courses. Further-
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more, the provision of explanations has been a key driver of recommendation acceptance. A

substantial majority of respondents explicitly agreed that these explanations aided them in

assessing their interest in the recommended courses. When comparing the two skill represen-

tation models, the Concept system excels in offering more relevant recommendations, while

the DWA system introduces an element of surprise. Remarkably, despite this difference, par-

ticipants voiced a preference for the DWA system. They found it to be more informative in

illustrating how recommended courses align with their academic and career goals, providing

a detailed course content overview.

Contributions. In summary, my thesis makes valuable contributions to multiple re-

search domains within the fields of computational social science and artificial intelligence in

education. These contributions encompass the interconnection of higher education and grad-

uate career pathways, the extraction of knowledge, the provision of course recommendations,

and the generation of insightful explanations.

• Leveraging cutting-edge deep learning architectures, I have developed a concept extrac-

tion model for educational documents (e.g., course catalog descriptions). This endeavor,

aimed at automating the construction of educational ontologies, could enhance course

guidance and educational information systems, and standardize insights into how edu-

cational foundations shape workforce development and the skills of workers. The evalu-

ation results demonstrate the model’s ability to efficiently extract concepts from course

descriptions and highlight the quality and reliability of the extracted concepts, confirm-

ing the practical applicability of these models in the field of education. Notably, this

model has successfully been employed to extract skills for two distinct explainable course

recommendation systems in this thesis.

• By using the trained concept extraction model to extract multi-gram skills from course

catalog descriptions, I contribute to a pioneering effort aimed at investigating the impact

of skill-based explanations on a Transformer-based course recommendation system in

higher education. The outcomes of our user study highlight a substantial increase in

participant interest in courses that exhibited high levels of unexpectedness. Participants

displayed a positive attitude towards the value of these explanations in shaping their

interest in the recommendations. Additionally, the research showed a pivotal insight:
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the influential role of explanations in bolstering the confidence of participants who had

not yet declared a major in their decision-making process.

• This thesis represents a pioneering effort in bridging the gap between workplace activi-

ties and higher education. We analyze a large, novel, extensive dataset comprising over

one million syllabi from more than eight hundred bachelor’s degree-granting institutions

in the United States to establish connections between the curriculum taught in higher

education and the detailed work activities outlined by the US Department of Labor. Our

unified information system connecting workplace skills to the skills taught during higher

education holds the potential to enhance the workforce development of highly-skilled

individuals, provide valuable insights into educational programs and course recommen-

dation systems regarding future trends, and enable employers to quantify the skill profiles

of potential candidates.

• Finally, through our course representation methods and the concept extraction model for

course descriptions, I have led the way in developing a personalized and explainable course

recommendation system, with a focus on career alignment and skill-based explanations.

This innovative system is designed to empower students on their educational journey by

helping them discover courses that align with their future career goals while providing

them with the necessary knowledge and skills. My research represents a pioneering effort

in the field, as it is the first to utilize real job information for career-focused, explainable

course recommendations. The results from the user study have been highly promising,

as indicated by positive user feedback. These findings pave the way for future research

endeavors aimed at harnessing job data and skill-based explanations to enhance course

recommendations within higher education.

8.2 Discussion, Limitations & Future Work

My dissertation inevitably presents certain limitations due to constraints in methodology,

resources, and current technological capabilities. Acknowledging these limitations is crucial

not only for providing a comprehensive understanding of the study’s scope but also for guid-
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ing future research directions. In this section, I outline the primary limitations encountered

during this research and provide recommendations for future work. These insights aim to

pave the way for subsequent studies to further build upon our findings for improvement and

investigate deeper into areas not yet explored.

Automatic knowledge extraction. Over the past few decades, it has consistently been

demonstrated that skills play a vital role in numerous educational AI systems. Not only skills

help recommender systems in making sound recommendations but also display skills is one of

the most intuitive ways to explain the documents. The lack of a standardized knowledge base

for higher education and the job market underscores the need for one to better understand

how education influences careers and individual skills. In this thesis, I have embarked on

the development of a cutting-edge concept extraction model for educational documents.

Employing state-of-the-art deep learning architectures, I have conducted a comprehensive

evaluation of the model’s capability to efficiently extract concepts from course descriptions.

The evaluation results robustly demonstrate the model’s effectiveness in this task, shedding

light on the quality and reliability of the extracted concepts. This affirmation solidifies

the practical applicability of these models within the field of education. Nonetheless, it is

important to note that this achievement represents only the initial stride toward the ultimate

objective of automating the construction of educational ontologies.

The construction of educational ontologies presents a multifaceted challenge, demand-

ing not only the recognition of concepts within textual documents but also the extraction

of relationships, the construction of hierarchical structures, and the disambiguation of con-

cepts [66, 67]. With the emergence of Large Language Models [200, 201], there is a sub-

stantial promise for advancing the field. These LLMs exhibit remarkable capabilities in

generalization across a wide range of tasks through multi-task training and unified encod-

ing, underpinned by their comprehensive understanding of linguistic intricacies, semantics,

and contextual nuances. The vast training data that LLMs are exposed to empowers them

to identify and extract information with higher accuracy and contextual relevance, such as

ChatGPT 1. Additionally, with the advent of instruction fine-tuning techniques, recent stud-

ies [202, 203, 204] have shown significant progress in information extraction using LLMs.

1https://openai.com/blog/chatgpt
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This progress underscores the potential of LLMs to play a pivotal role in automating the

construction of educational ontologies. Consequently, further research and exploration of

LLMs in this context hold the promise of transforming the task of automatic educational

ontology construction from aspiration to reality.

Connecting college education to career through detailed work activities. In

my dissertation, I have successfully presented a proof-of-concept that harnesses the power

of innovative syllabus data and cutting-edge natural language processing (NLP) techniques.

This approach facilitates the crucial connection between labor market data and higher educa-

tion by effectively predicting the evolution of skills taught within a Field of Study (FOS) and

establishing a correlation between Detailed Work Activities (DWAs) and graduate earnings.

To extend and strengthen the findings of this study, there is a rich landscape of potential

future research avenues. One notable direction is the exploration of causal relationships,

particularly with regard to skill-level adjustments influencing course content. It is essential

to acknowledge that my current study cannot fully address the selection bias inherent in

students’ university enrollment choices. However, future investigations could leverage nat-

ural experiments to overcome this limitation. These experiments might include analyzing

the effects of significant events such as the appointment or retirement of faculty members,

the creation of a new academic department, the rise of a prominent employer due to fiscal

incentives, or substantial donations targeting specific educational results that could serve as

potent avenues of exploration.

Additionally, my investigation into the College Scorecard earnings data is confined to

merely two graduation cohorts. Likewise, the Post-Secondary Employment Outcomes data

encompasses only a select number of institutions. The scope of my research only includes

earnings up to a year post-graduation, potentially missing out on longer-term career pro-

gressions [196]. A more comprehensive approach would be to integrate workers’ resume

data, forging direct links between workers’ educational foundations during college and their

subsequent career trajectories. Such an approach would encapsulate dimensions like worker

adaptability, job tenure, mobility, and more. Another exciting avenue for future exploration

lies in the analysis of job postings. Comparing employer demands to the DWAs identified in

our study can help pinpoint the educational programs that are most or least adaptive. This
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comparative analysis, as demonstrated in previous studies (e.g., [24]), promises to shed light

on the evolving landscape of high-skilled workers and their impact on job polarization and

urbanization [26, 174, 185].

In my research, I have also demonstrated the presence of discernible variations in graduate

earnings at the cohort level, highlighting the influence of skills imparted through educational

courses. My methodology has primarily concentrated on assessing the outcomes for various

groups of graduates, such as those categorized by their majors or universities. While this

approach provides valuable insights, future research could delve deeper into the nuances of

labor market outcomes at the individual level. For instance, within the same major, stu-

dents often select different courses, thereby acquiring distinct skill sets. This variation in

course selection may, in turn, lead to divergent career paths and income levels. The intrigu-

ing questions that remain unanswered revolve around the extent to which individual course

choices shape occupational trajectories and earnings, and the degree to which acquired skills

contribute to the observed variations in career outcomes. These are compelling areas for

further investigation. However, it’s important to acknowledge that conducting such research

presents certain challenges. One significant obstacle is the availability and accessibility of

datasets suitable for studying individual-level outcomes, as privacy concerns surrounding

personal data continue to grow. Overcoming these privacy barriers will be crucial for ad-

vancing our understanding of these issues. Furthermore, my analyses have primarily focused

on graduates with bachelor’s degrees. Future research could extend its scope to explore the

skills cultivated during graduate education or even investigate the influence of undergraduate

education on the path to graduate school admission. By broadening the scope of inquiry

in this way, we can gain a more comprehensive understanding of the relationship between

education, skills, and career outcomes at all levels of academic attainment.

Skill-based explanation for course recommendation. The central focus of my

thesis centers on the enhancement of course recommendation systems in higher education

through the incorporation of explanations. The discussion of my first study highlights sev-

eral limitations that warrant attention in future research. Although PLAN-BERT has proven

its effectiveness in leveraging past sequence information, and the incorporation of user and

item features to generate recommendations, it’s essential to recognize that our strategy for
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diversifying the recommendation list, applied on top of PLAN-BERT’s output, is relatively

simplistic. We currently limit recommendations to one course per department, which may

lead to the inclusion of irrelevant course suggestions. In the context of academic course offer-

ings, some departments naturally share stronger connections with related disciplines, while

others may have fewer connections. To address this concern, future studies should consider

relaxing this constraint and establishing a relevance threshold for course recommendations.

If a course from a department fails to meet this threshold, multiple courses from the same

department can then be recommended.

Another avenue for enhancing recommendation diversity and optimizing for serendipity

is to frame the problem as a multi-task/multi-label optimization problem during the recom-

mender system’s training phase [171, 172]. This approach allows the recommendation engine

to simultaneously optimize for both relevance and unexpectedness, striking a balance and

effectively constraining them to achieve a unique, non-dominated solution. To implement

this, collecting labels for the unexpectedness of relevant courses is imperative for training

the models.

Furthermore, although this study did not conclusively establish the influence of providing

explanations on the course recommendation systems, it leaves open the possibility that

offering comprehensive insights into why specific courses are suggested and how they align

with students’ abilities and interests could enhance students’ comprehension of the value of

these recommendations. The effectiveness of such explanations may vary depending on a

student’s academic field and stage of progression. Further exploration of these factors has

the potential to refine the system’s design. Notably, our study did identify a positive impact

of explanations on generating interest in unexpected courses, particularly among students

who have not yet declared a major. Future research efforts may prioritize this demographic

to expand the sample size and draw more robust conclusions.

In this study, I chose to exclusively employ skills extracted from course catalog descrip-

tions as the primary knowledge components for course representation in our explanations.

While this approach is conventional for content-based methods and has been employed in

numerous prior studies, an alternative approach involves representing courses based on their

relationship with individual skills. This alternative approach has demonstrated its effec-
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tiveness and yielded promising results, as elaborated in Chapters 6 and 7. Notably, it

has proven robust across various skill taxonomies, including O*NET DWAs and extracted

concepts. Consequently, the exploration of this course modeling approach, along with ex-

perimentation with various skill types for generating explanations in serendipitous course

recommendations, stands as a promising avenue for future research.

My second study represents a pioneering effort within the field, leveraging real job-related

data to facilitate career-oriented course recommendations and explanations. By doing so, I

aim to bolster the adaptability of serendipitous course recommendations, thereby fostering

a more holistic course exploration experience for students. The promising results derived

from my user studies lay a strong foundation for future research endeavors in this domain.

However, it is essential to acknowledge several limitations identified in my first course recom-

mendation study, which must be addressed in subsequent research. While the recommender

systems demonstrated the capacity to identify courses aligning with students’ interests and

needs, they fell short in accounting for the course level or sequence, potentially resulting

in suboptimal recommendations. To rectify this issue, integrating prerequisite information

into the recommendation process holds the potential to significantly improve the quality

of recommendations. Advanced recommender engines, such as deep sequential models or

Transformer-based models, possess the capability to discern the intrinsic course order based

on students’ enrollment patterns. Additionally, overlooking advanced placement credits and

equivalent courses in the recommendation process can lead to relevant but ultimately un-

helpful recommendations. Incorporating these features into real-world applications could

substantially enhance recommendation quality.

Furthermore, the threshold fine-tuning process employed in my study might have lim-

ited the diversity of the concept set for explanation. To overcome this limitation, a more

rigorous threshold fine-tuning process could be implemented to increase the diversity of the

concept set. Alternatively, employing clustering techniques to group similar concepts could

enhance vector representations, resulting in more effective concept-based explanations. This

underscores the significance of the educational ontology discussed earlier, as it can play a piv-

otal role in improving various downstream applications, including but not limited to course

recommendation and explanation.
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Another limitation of my research lies in the sample size of the between-subjects ex-

periments, consisting of only 46 subjects for the first study and 53 subjects for the second

study. This constraint may have affected the study’s statistical power, potentially obscuring

the true impact of explanations on the recommendation. To mitigate this limitation, future

research endeavors should consider a larger sample size to yield more robust and reliable

results. It is also important to note that my studies primarily focused on the use of ex-

planations to enhance recommendation effectiveness. Future studies can explore the utility

of explanations in other dimensions, such as Transparency, Trust, Persuasiveness, and Sat-

isfaction [110, 107, 109]. Investigating these aspects could broaden our understanding of

the potential impact of explanations in the realm of recommender systems, offering a more

comprehensive perspective on their influence.

Lastly, while user experiments that involve collecting feedback through questionnaires

are a prevalent technique for assessing the user experience in recommender systems [170],

they come with inherent limitations. The subjective nature of user preferences, influenced

by mood, personal biases, or external factors, can distort the data, leading to a misrepre-

sentation of their actual preferences. Moreover, human preferences are often complex and

multidimensional, which might not be adequately captured by simplistic questionnaire re-

sponses. Additionally, users may struggle to express their preferences accurately, resulting

in incomplete or misleading data. There’s also the tendency for users to answer question-

naires in a manner they perceive as expected, favorable, or socially acceptable, rather than

truthfully, especially in cases where subjects claim to like suggested courses but don’t fol-

low through with enrollment. To enhance the evaluation method, tracking students’ course

enrollment records could provide a more accurate measure of the effectiveness of recommen-

dations. This approach, however, comes with its own set of challenges, including privacy

concerns and other factors influencing students’ decisions, like schedule conflicts or course

demand. Despite the limitations of the current evaluation approach, introducing students to

interesting and relevant courses still can be beneficial, as it informs them and aids in making

more informed decisions regarding course selection.

Large language models. In this dissertation, I apply natural language processing

methods across all the studies, encompassing aspects of document representation, knowl-
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edge extraction, recommendation systems, and explanation generation. In its early stages,

Large Language Models (LLMs), most notably ChatGPT developed by OpenAI, have played

a transformative role in the technology industry and research landscape.2 Their profound

impact stems from their extraordinary capacity for generalization across a diverse spec-

trum of tasks, achieved through multi-task training and unified encoding. This capability is

grounded in their comprehensive understanding of linguistic intricacies, semantics, and con-

textual nuances. It is clear that leveraging the power of LLMs, particularly through effective

prompting and instruction fine-tuning, holds immense potential for enhancing the methods

employed in this research. LLMs can be strategically integrated into intermediate tasks to

improve downstream tasks. Alternatively, they can be directly employed for downstream

tasks, such as providing user and item details and prompting Language Models to create

explanations. One notable avenue of improvement lies in leveraging embeddings generated

by LLMs, such as the OpenAI embeddings [205], which have shown promise in enhancing

vector representations [206]. These augmented representations offer significant benefits in

the domains of course, job, and skill analysis. They can contribute to more accurate skill

detection and comparison, facilitate relationship calculations, and ultimately enhance the

functionality of educational information systems. Moreover, they can help elevate the qual-

ity of course recommendations and the overall explainability of the system. Furthermore, the

potential of LLMs extends to aiding educational ontology development by either curating

training datasets or directly querying LLMs for relationship determinations. For instance,

Figures 44 & 45 demonstrate using ChatGPT 4.0 for concept relation detection. Such strate-

gies could be pivotal in refining the skill diversification process, leading to more nuanced,

skill-centric explanations in higher education course recommendations.

In essence, the incorporation of LLMs, like ChatGPT, holds immense potential for ad-

vancing the field of natural language processing and its applications, particularly within the

scope of this dissertation. As these models continue to evolve, they are poised to play an

increasingly pivotal role in shaping the future of technology and research.

2https://hbr.org/2023/06/discovering-where-chatgpt-can-create-value-for-your-company
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Figure 44: This example demonstrates using ChatGPT 4.0 interface for concept relation

detection without explanation.
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Figure 45: This example demonstrates using ChatGPT 4.0 interface for concept relation

detection with explanation.
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Appendix A Connecting Higher Education to Workplace Activities and

Earnings

A.1 OSP Data Processing

The OSP dataset contains roughly 3 million syllabi in the US. Each syllabus has multiple

attributes. These include: a unique syllabus ID, the probability it is a syllabus (this is due

to the automated process with which syllabi were originally scraped), the year, the FOS

(and corresponding level of certainty of being that FOS), the institution, the location of

the institution (latitude/longitude), the language, as well as metadata on the process (e.g.,

method used to collect the syllabus info). Our analysis only used a small subset of these,

hence the potential for significant further study.

A.1.1 The Identification of Course Descriptions

There is a multi-stage process to identify course descriptions from the raw syllabus data.

To begin, the text associated with each syllabus includes multiple elements. Some are useful

(e.g., course objectives, course descriptions, outline of the class), and others are less so (e.g.,

office hour times, contact details, administrative information). The first task is to keep the

former (i.e., the elements that contribute to an understanding of the content taught in the

class), and to exclude the latter.

Each syllabus text in the dataset is structured with multiple headings, including “Overview”,

“About the course”, “Course content”, “Description”, “Course outline”, “Outcome”, “Ob-

jective”, “Aim”, and “Goal”. We begin by splitting the syllabus text into these groups (using

roughly a dozen ‘useful’ headings), so that we end up with text under each such heading.

After some processing (e.g., removing duplicate text and pieces of text that are too similar:

we use SequenceMatcher from the difflib (Python) library and do not include text that has a

similarity ¿ 0.8 with another already-added text). The concatenation of these groups forms

the “course description” of the syllabus. Note, this method is imperfect due to the noise and
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complication of the format texts in OSP: there is text that is not being captured and likely

small amounts of irrelevant administrative information included. However, our hypothesis

is that the administrative text (e.g., “Office hours are between 3-5pm on Thursdays”) is

‘neutral’ and does not influence the DWA analysis that follows. There is clearly scope for

improvement with this process with more advanced natural language processing techniques,

but we do believe the outcome of this process is efficient for our following analyses and do

not cause misleading results.

A.1.2 The Language Embeddings to Compute DWA Syllabus Similarity

Once the text has been cleaned, the next process is to generate a vector to represent

each DWA, using a Wikipedia-trained word embeddings (fasttext-wiki-news-subwords-300 )

in Gensim language models1.

As the first step, we tokenize each DWA in the full list of 2070 DWAs. This tokenized list

is used to create a (genism.corpora) dictionary. Then, we take that dictionary of DWAs to run

bag-of-words (BOWs) on the tokenized syllabus text. We also generate the (genism.models)

‘word embedding similarity index’ from the pre-trained embeddings we used (trained on

Wikipedia pages). Then, we create a sparse term similarity matrix between the language

model similarity index and the dictionary based off of DWAs. We generate one final index

by taking the soft cosine similarity between that similarity matrix and the bag-of-words

representation of DWAs.

Once the initial processing has occurred, we move to analyzing each syllabus text in

turn. First, we take the processed syllabus text and tokenize it a BOWs representation

(removing words like days of the week, months, and common words like “http”, “hour”,

“assignment”, “college”, “university”, “emails”, etc.). Using the final generated similarity

index, we calculate the soft cosine similarities [190] between the BOWs representations of

the DWAs and the syllabus. As a result, each syllabus is represented as a vector of 2070

dimensions, showing how strongly each of the 2070 DWAs is associated with the course

description. With this representation of course syllabi, we now can easily compute the

1https://github.com/RaRe-Technologies/gensim-data
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relationship between each pair of course syllabi, representations of FOS and universities and

so on.

A B

M
ost strongly associated 

w
ith syllabus

Least strongly associated 
w

ith syllabus

M
ost strongly associated 

w
ith syllabus

Least strongly associated 
w

ith syllabus

Figure 46: (A) An example accounting syllabus and the activities that are most and least

strongly associated with its course description; and (B) An example computer science syl-

labus and the activities that are most and least strongly associated with its course descrip-

tion. The course description and learning objectives are extracted and embedded into a

pre-trained language space. DWA syllabus similarity scores (from 0 to 1 ) are calculated for

each detailed workplace activity against the syllabus.
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A B

Figure 47: (A) The DWAs that most significantly distinguish Engineering syllabi from Busi-

ness syllabi. (B) The DWAs that most significantly distinguish Political Science syllabi from

Computer Science syllabi.

A B

Figure 48: (A) The DWAs that most strongly separate Carnegie Mellon University syllabi

from University of Pittsburgh syllabi. (B) The DWAs that most strongly separate Oregon

Health & Science University syllabi from Berklee College of Music syllabi.
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Figure 49: (A) The DWAs that most strongly separate Medical Degree-Granting Schools syl-

labi from Non-Medical Degree-Granting Schools syllabi. (B) The DWAs that most strongly

separate Special Focus 4-Year Faith-Related Schools syllabi from Business & Management

Schools syllabi.
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A.2 Distance Metric Correlation

To calculate DWA relationships, we experiment two different methods: (1) Direct -

compute directly the cosine similarity of the embedding vectors; and (2) via course syllabi -

based on the co-occurrence of dwa1 and dwa2 in course syllabi. For the second method, we

experiment with four different similarity and distance metrics: Cosine similarity, Euclidean

distance, Manhattan distance and Jaccard similarity. Figure 50 shows the correlations of

these methods and distance metrics.

Figure 50: The correlation matrix of the two methods and four distance metrics to calculate

DWA relationships.

180



A.3 Predicting Educational Trends

A.3.1 Comparing Distance Metrics

For robustness checks, we run Models 2, 3, 4 & 5 (explained in the main manuscript)

with two different methods and four distance metrics for computing the DWA relationships.

The first method (called Direct) computes the DWA relationships by directly measuring the

Cosine similarity of their language embedding vectors. This approach measures a static re-

lationship between DWAs and can not distinguish the dynamics of how one DWA relates to

another locally (i.e., within a FOS or a university) and globally (i.e., across all of academia).

The second method calculates the relationship between each pair of DWAs based on the

co-occurrence of the two DWAs in course syllabi. The relationships can be measured lo-

cally as well as globally. We experiment with four different distance metrics for the second

method: Cosine similarity (Cosine), Euclidean distance (Euclidean), Manhattan distance

(Manhattan) and Jaccard similarity (Jaccard).

Figure 51 and 52 show the RMSE and R-Squared performance comparisons of these

methods and distance metrics for each of the models involving inter-DWA relationships. As

can be seen from the figures, Jaccard performs best consistently across all the models. Second

from the best is Cosine similarity metric. Direct method fails to distinguish the dynamics

of how one DWA relates to another locally and globally; as the results, for the best model

(i.e., Model 5), it performs worst among all the variations. On the other hand, the global

relationships captured by Manhattan and Euclidean help them surpass Direct performances.
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Figure 51: Workplace activities detected from syllabi predicting teaching dynam-

ics within a field of study and earnings of college graduates. We perform 5-fold

cross-validation and repeat 40 times (i.e., 200 trials in total) for each model and measure

RMSE by the resulting models applied to the test set. Asterisks indicate the statistically

significant difference between the two models’ performances with Bonferroni correction. (A)

Predicting the importance of DWAs changing in 10 years (2008 vs. 2017). (A), (B), (C)

and (D) show the performance comparisons of different distance metrics calculating DWA

relationships for Models 2, 3, 4 and 5, respectively.
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Figure 52: Workplace activities detected from syllabi predicting teaching dynam-

ics within a field of study and earnings of college graduates. We perform 5-fold

cross-validation and repeat 40 times (i.e., 200 trials in total) for each model and measure

the variance explained (i.e., R2) by the resulting models applied to the test set. Asterisks

indicate the statistically significant difference between the two models’ performances with

Bonferroni correction. (A) Predicting the importance of DWAs changing in 10 years (2008

vs. 2017). (A), (B), (C) and (D) show the performance comparisons of different distance

metrics calculating DWA relationships for Models 2, 3, 4 and 5, respectively.
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A.3.2 Classification Analysis

In addition to the regression analysis for educational trends presented in the main text, we

perform a classification analysis for this problem. The task is to predict which DWAs become

“important” in the future, meaning those DWAs are not considered important at the current

time but potentially are important in future (10 years later). This helps to understand how

fields of study evolve over time, enabling proactive course design by educators and informing

educational incentives from policy makers.

“Important” DWAs are the DWAs that are the most prevalent ones for a FOS. DWA (a)

is labeled as “important” in a FOS (f) when it satisfies the condition below:

rf (dwa) >= µf + 2 ∗ σf (23)

Where µf and σf are the mean and the standard deviation of the relationships between

the DWAs and the FOS, respectively. On average, there are around 59 and 58 “important”

DWAs per FOS in 2008 and 2017, respectively. The number of DWAs that are important in

2017 but not important in 2008 is 15. These DWAs are positive labels in our classification

analysis.

We build a logistic regression model to classify whether a DWA is important (1) or

not (0). We use the information about the current propensity score of the DWA and its

relationships with currently important DWAs calculated with the Jaccard similarity metric.

Based on the principle of relatedness [183], our assumption is that skills co-taught with

currently important skills are likely to become more important in future. To evaluate how

well the model performs, we report the ROC curves and AUC scores for each individual FOS

(see Figure 53). Since there is an unbalance in number of data points in the two classes

(0 vs. 1), we, in addition, measure the model performance in terms of precision, recall and

F1-score at top N (see Figure 54).
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Figure 53: ROC curves of the important-DWA classification model for each individual FOS.

The legends display the field name, the numbers of important DWAs, and the AUC scores.
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Figure 54: Precision, recall and F-scores of the important-DWA classification model at top

N. Macro performance is calculated when considering the prediction for all FOS together;

while micro performance is the average performance of each of individual FOS.
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A.4 Selection of Graduate Earnings Records

College Scorecard Earnings provides transparency and consumer information related to

individual institutions of higher education and individual fields of study within those institu-

tions. We only process earnings records for Baccalaureate colleges and universities. We map

College Scorecard CIP codes to OSP CIP codes. As a result, each earnings record includes

the field name and institution information. There are 9007 graduate earnings records in 54

fields-of-study at 832 institutions.

To understand how workplace activities extracted from course syllabi contribute to the

earnings of graduates. We aggregate DWAs from the course syllabi taught in individual

academic fields at specific institutions. Those DWAs are the features to predict graduate

earnings presented in the main text. Though large, the OSP course syllabus data is not

distributed evenly across fields-of-study and institutions. Some fields and institutions have

much fewer course syllabi. Thus, to sufficiently estimate work activities taught in a FOS

at a university, we limit earnings records for FOS (in an institution) that have at least 10

course syllabi. As a result, we obtain 2872 earnings records in 47 FOS at 347 institutions.

Furthermore, we select FOS that have at least 30 earnings records across institutions for

prediction tasks, resulting in the remaining 2601 earnings records in 26 FOS at 343 institu-

tions (see Table 11 for details of numbers of observations of FOS in our analysis before and

after filtering).

It is possible that a subset of earnings records of a FOS does not effectively represent the

distribution of the entire population. We perform the Kolmogorov-Smirnov (KS) statistical

test to make sure the remaining earnings records representative for the entire population of

the field at the institute. If the remaining earnings observations pass the KS test (p-value

> 0.05), we will keep that FOS for the earnings prediction analyses. As an example, Figure

55 plots the distribution of median earnings of graduates in Business against a number of

syllabi. Table 11 shows the p-values of the KS test for the FOS in our “Within Field-of-Study

Skill Variation and the Earnings of Recent College Graduates” analysis in the main text.
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Kolmogorov Smirnov test (p-value=0.716 (>0.05))

Figure 55: Kolmogorov-Smirnov (KS) statistical test for the subset of median earnings of

graduates in Business. The subset distribution passes the test with the p-value = 0.716 (>

0.05). For visualization purposes, we use the natural logarithm of the number of the syllabi

on the x-axis. The data points are on the red line and the right of the red line belongs to

the selected subset used in our analysis.

188



Table 11: Numbers of earnings records of the top ten FOS that have passed the Kol-

mogorov–Smirnov test with the p− values < 0.05.

Field-of-Study
Number of records

(after filtering)

Number of records

(before filtering)

P-value

(Kolmogorov–Smirnov test)

Business 246 683 0.716

Computer Science 198 640 0.06

Biology 181 563 0.89

Psychology 173 539 0.742

Mathematics 142 399 0.53

English Literature 135 526 0.81

Political Science 132 424 0.981

Education 122 424 0.419

Media / Communications 119 375 0.737

Accounting 109 224 0.542
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p <= 0.05*, p <= 0.01**, p <= 0.001***

Figure 56: Workplace activities detected from syllabi predicting teaching dynam-

ics within a field of study and earnings of college graduates. We perform 5-fold

cross-validation and repeat 40 times for each model and measure the variance explained

(i.e., R2) by the resulting model applied to the test set. Asterisks denote significant dif-

ferences between model performances with Bonferroni correction. (A) Predicting changing

DWAs’ importance over 10 years (2008 vs. 2017). Model 1 considers current DWA scores

and FOS fixed effects as a baseline, while other models explore DWAs’ relationships via Jac-

card similarity. (B) Predicting median earnings of graduates across all FOS using FOS and

RANK fixed effects as the baseline. (C) Predicting median earnings within FOS, with mean

earnings as the baseline. DWA models outperform baseline models with p− values < 0.001

across all FOS. R2 < 0 occurs in cross-validation when the model overfits or encounters

outlier issues.
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Table 12: DWAs that have significant coefficients in the OLS regression analysis of the

Earnings of Recent College Graduates.

Field-of-Study Detailed Work Activity Coefficient P-value

Business

advise others on career or personal development. 1.647 0.00957
complete documentation required by programs or regulations. 1.805 0.00238
conduct health or safety training programs. -2.674 0.00005
direct criminal investigations. -2.175 0.00546
evaluate program effectiveness. 2.392 0.00002
explain project details to the general public. -1.62 0.01865
explain use of products or services. -1.702 0.0421
position construction forms or molds. 2.434 0.04461
research methods to improve food products. 1.514 0.01467
review laws or regulations to maintain professional knowledge. -1.25 0.04926

Computer Science
estimate labor or resource requirements for forestry, fishing, or
agricultural operations.

-1.509 0.0367

explain technical medical information to patients. -1.536 0.0097

Biology

coordinate personnel recruitment activities. -2.101 0.00095
direct technical activities or operations. -1.714 0.0174
plant greenery to improve landscape appearance. -2.294 0
prepare outgoing mail. 1.898 0.04589
test characteristics of materials or structures. 0.906 0.03263

Psychology

diagnose neural or psychological disorders. 0.635 0.04753
distribute instructional or library materials. 1.213 0.03618
evaluate patient functioning, capabilities, or health. 1.931 0.00049
plan menu options. 1.621 0.01161
refer clients to community or social service programs. -0.973 0.01262
select resources needed to accomplish tasks. -1.44 0.03091

Mathematics
conduct diagnostic tests to determine patient health. -0.869 0.04136
schedule activities or facility use. -0.965 0.03244
teach online courses. -1.019 0.02433

English Literature
adjust routes or speeds as necessary. -1.504 0.021
design energy production or management equipment or sys-
tems.

1.875 0.01623

Political Science – – –

Education
design integrated computer systems. 1.024 0.02689
teach social science courses at the college level. 0.526 0.02646

Media/Communications
confer with managers to make operational decisions. 1.911 0.00424
review art or design materials. 1.137 0.02602
serve on institutional or departmental committees. 1.751 0.00426

Accounting

advise others on career or personal development. 3.863 0
develop artistic or design concepts for decoration, exhibition,
or commercial purposes.

-1.803 0.00111

make decisions in legal cases. 1.35 0.02197
participate in staffing decisions. 1.664 0.03567
process animal carcasses. -1.113 0.02748
promote educational institutions or programs. -1.738 0.01258
promote environmental sustainability or conservation initia-
tives.

-2.167 0.03087
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Figure 57: Course statistics per year in OSP data.

192



20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Year

Accounting
Agriculture

Anthropology
Architecture

Astronomy
Atmospheric Sciences
Basic Computer Skills

Basic Skills
Biology

Business
Chemistry

Chinese
Classics

Computer Science
Cosmetology

Criminal Justice
Culinary Arts

Dance
Dentistry

Earth Sciences
Economics
Education

Engineering
English Literature

Film and Photography
Fine Arts

Fitness and Leisure
French

Geography
German

Health Technician
Hebrew
History

Japanese
Journalism

Law
Library Science

Linguistics
Marketing

Mathematics
Mechanic / Repair Tech

Media / Communications
Medicine

Military Science
Music

Nursing
Nutrition

Philosophy
Physics

Political Science
Psychology

Public Safety
Religion

Sign Language
Social Work

Sociology
Spanish

Theatre Arts
Theology

Transportation
Veterinary Medicine

Women's Studies

Fi
el

d 
Na

m
e

Number of Courses

5000

10000

15000

20000

Figure 58: Course statistics per year and per FOS in OSP data.
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Appendix B Course Recommendation

Table 13: Summary of Majors of Participants.

Majors Number of Subjects

‘Letters & Sci Undeclared’ 15

‘Molecular & Cell Biology’ 3

‘Mechanical Engineering’ 3

‘L&S Computer Science’ 3

‘Electrical Eng & Comp Sci’ 2

‘Chemistry’ 2

‘L&S Public Health’ 2

‘Bioengineering’ 2

‘Industrial Eng & Ops Rsch’ 1

‘Molecular Environ Biology’ 1

‘Media Studies’ 1

‘Mathematics’ 1

‘L&S Data Science’ 1

‘Integrative Biology’ 1

‘Info & Data Science-MIDS’ 1

‘Applied Mathematics’, ‘L&S Computer Science’ 1

‘Engineering Physics’ 1

‘Economics’ 1

‘Economics’, ‘L&S Data Science’ 1

‘Economics’, ‘L&S Data Science’, ‘L&S Ops Research & Mgmt Sci’ 1

‘Economics’, ‘French’, ‘History’, ‘Philosophy’ 1

‘Economics’, ‘Electrical Eng & Comp Sci’, ‘L&S Data Science’ 1

‘EECS/MSE Joint Major’ 1

‘Cognitive Science’ 1

‘Cognitive Science’, ‘L&S Computer Science’ 1

‘Civil Engineering’ 1

‘Business Administration’ 1

‘Business Administration’, ‘Electrical Eng & Comp Sci’ 1

‘Statistics’ 1
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Figure 59: Distribution of ‘Neutral’ ratings for the statement ‘I am interested in taking

this course.’ among four groups based on the interactions between major (declared vs.

undeclared) and the presence of an explanation (vs. no explanation): declared * exp (N=95),

declared * no-exp (N=95), undeclared * exp (N=45), undeclared * no-exp (N=30). The

‘Neutral’ ratings are aggregated from the responses to the three primary research questions:

Q1, Q2, and Q3. The percentage of ‘Neutral’ ratings is 19.24% (51 ‘Neutral’ ratings of 265).
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Figure 60: Distribution of ‘Neutral’ ratings for the statement ‘I was surprised that the sys-

tem picked this course to recommend to me.’ among four groups based on the interactions

between major (declared vs. undeclared) and the presence of an explanation (vs. no ex-

planation): declared * exp (N=95), declared * no-exp (N=95), undeclared * exp (N=45),

undeclared * no-exp (N=30). The percentage of ‘Neutral’ ratings is 22.26% (59 ‘Neutral’

ratings of 265).
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[77] Hana Bydžovská. Course enrollment recommender system. In Mingyu Feng
Tiffany Barnes, Min Chi, editor, Proceedings of the 9th International Conference on
Educational Data Mining, pages 312–317, Raleigh, NC, USA, 2016. International Ed-
ucational Data Mining Society.

[78] Boxuan Ma, Yuta Taniguchi, and Shin’ichi Konomi. Course recommendation for
university environment. In Educational Data Mining, pages 460–466, 2020.

[79] Narimel Bendakir and Esma Aimeur. Using association rules for course recommen-
dation. AAAI Workshop Technical Report, 2006.

[80] Behdad Bakhshinategh, Gerasimos Spanakis, Osmar R Zaiane, and Samira ElAtia. A
course recommender system based on graduating attributes. In International Confer-
ence on Computer Supported Education, pages 347–354, 2017.

204



[81] Zameer Gulzar, A. Anny Leema, and Gerard Deepak. Pcrs: Personalized course
recommender system based on hybrid approach. Procedia Computer Science, 125:518–
524, 2018. ISSN 1877-0509. The 6th International Conference on Smart Computing
and Communications.
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[88] Michael Backenköhler, Felix Scherzinger, Adish Kumar Singla, and Verena Wolf.
Data-driven approach towards a personalized curriculum. EasyChair Preprints, 2018.

[89] Asmaa Elbadrawy and George Karypis. Domain-aware grade prediction and top-n
course recommendation. In Proceedings of the 10th ACM Conference on Recommender
Systems, pages 183–190, 2016.

[90] Mohammed E. Ibrahim, Yanyan Yang, David L. Ndzi, Guangguang Yang, and Mur-
tadha Al-Maliki. Ontology-based personalized course recommendation framework.
IEEE Access, 7:5180–5199, 2018. doi: 10.1109/ACCESS.2018.2889635.

[91] Sara Morsy and George Karypis. Will this course increase or decrease your gpa?
towards grade-aware course recommendation. ArXiv, abs/1904.11798, 2019.

205



[92] Jie Xu, Tianwei Xing, and Mihaela van der Schaar. Personalized course sequence
recommendations. IEEE Transactions on Signal Processing, 64(20):5340–5352, 2016.
doi: 10.1109/TSP.2016.2595495.

[93] Zhen Li, David Tinapple, and Hari Sundaram. Visual planner: Beyond prerequisites,
designing an interactive course planner for a 21st century flexible curriculum. In CHI
’12 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’12, page
1613–1618, New York, NY, USA, 2012. Association for Computing Machinery. ISBN
9781450310161.

[94] Chris Wong. Sequence based course recommender for personalized curriculum plan-
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Supervised learning of universal sentence representations from natural language infer-
ence data. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 670–680, Copenhagen, Denmark, September 2017. Asso-
ciation for Computational Linguistics.

[146] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in
translation: Contextualized word vectors. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page 6297–6308, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

[147] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’14, page 3320–3328,
Cambridge, MA, USA, 2014. MIT Press.

[148] Xianjie Shen, Yinghan Wang, Rui Meng, and Jingbo Shang. Unsupervised deep
keyphrase generation. Proceedings of the AAAI Conference on Artificial Intelligence,
36(10):11303–11311, Jun. 2022.

[149] Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, and Degui Zhi. Med-bert: pretrained
contextualized embeddings on large-scale structured electronic health records for dis-
ease prediction. NPJ digital medicine, 4(1):86, May 2021. ISSN 2398-6352. doi:
10.1038/s41746-021-00455-y.

[150] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocom-
puting, 312:135–153, 2018. ISSN 0925-2312.

[151] Garrett Wilson and Diane J. Cook. A survey of unsupervised deep domain adaptation.
ACM Trans. Intell. Syst. Technol., 11(5), jul 2020. ISSN 2157-6904.

[152] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. Neural architectures for named entity recognition. In Proceed-
ings of the 2016 Conference of the North American Chapter of the Association

211



for Computational Linguistics: Human Language Technologies, pages 260–270, San
Diego, California, June 2016. Association for Computational Linguistics. URL
https://aclanthology.org/N16-1030.

[153] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 2227–2237, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics.

[154] Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional LSTM-
CNNs-CRF. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1064–1074, Berlin, Germany,
August 2016. Association for Computational Linguistics.

[155] Liyuan Liu, Jingbo Shang, Xiang Ren, Frank F. Xu, Huan Gui, Jian Peng, and
Jiawei Han. Empower sequence labeling with task-aware neural language model. In
32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pages 5253–5260. AAAI
Press, 2018.

[156] Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. Semi-
supervised sequence tagging with bidirectional language models. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1756–1765, Vancouver, Canada, July 2017. Association for
Computational Linguistics.

[157] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with
deep recurrent neural networks, 2013.

[158] Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In
Conference on Empirical Methods in Natural Language Processing, 1996.

[159] Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum entropy
markov models for information extraction and segmentation. In Proceedings of the
Seventeenth International Conference on Machine Learning, ICML ’00, page 591–598,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072.

[160] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings
of the Eighteenth International Conference on Machine Learning, ICML ’01, page
282–289, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN
1558607781.

[161] Yansen Wang, Zhen Fan, and Carolyn Rose. Incorporating multimodal information
in open-domain web keyphrase extraction. In Proceedings of the 2020 Conference

212

https://aclanthology.org/N16-1030


on Empirical Methods in Natural Language Processing (EMNLP), pages 1790–1800,
Online, November 2020. Association for Computational Linguistics.

[162] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez,  L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[163] Mengdi Wang, Hung Chau, Khushboo Thaker, Peter Brusilovsky, and Daqing He.
Knowledge annotation for intelligent textbooks. Technology knowledge and learning,
28:1–22, 2023.

[164] Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R. Voss, and Jiawei Han. Au-
tomated phrase mining from massive text corpora. IEEE Transactions on Knowledge
and Data Engineering, 30(10):1825–1837, 2018. doi: 10.1109/TKDE.2018.2812203.

[165] Behnam Rahdari, Peter Brusilovsky, Khushboo Thaker, and Jordan Barria-Pineda.
Knowledge-driven wikipedia article recommendation for electronic textbooks. In
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