
Cholla-MHD: An Exascale-Capable Magnetohydrodynamic Extension to the

Cholla Astrophysical Simulation Code

by

Robert V. Caddy

Bachelor of Science, Purdue University, 2016

Master of Science, Bowling Green State University, 2018

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2024

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Robert V. Caddy

It was defended on

April 1st 2024

and approved by

Evan E. Schneider, University of Pittsburgh, Department of Physics and Astronomy

Rachel Bezanson, University of Pittsburgh, Department of Physics and Astronomy

Carles Badenes, University of Pittsburgh, Department of Physics and Astronomy

Ayres Freitas, University of Pittsburgh, Department of Physics and Astronomy

Tiziana Di Matteo, Carnegie Mellon University, Department of Physics

ii

Copyright © by Robert V. Caddy

2024

iii

Cholla-MHD: An Exascale-Capable Magnetohydrodynamic Extension to the

Cholla Astrophysical Simulation Code

Robert V. Caddy, PhD

University of Pittsburgh, 2024

We present an extension of the massively parallel, GPU native, astrophysical hydrody-

namics code Cholla to magnetohydrodynamics (MHD). Cholla solves the ideal MHD equa-

tions in their Eulerian form on a static Cartesian mesh utilizing the Van Leer + Constrained

Transport integrator, the HLLD Riemann solver, and reconstruction methods at second and

third order. Cholla’s MHD module can perform ≈ 260 million cell updates per GPU-second

on an NVIDIA A100 while using the HLLD Riemann solver and second order reconstruction.

The inherently parallel nature of GPUs combined with increased memory in new hardware

allows Cholla’s MHD module to perform simulations with resolutions ∼ 5003 cells on a sin-

gle high end GPU (e.g. an NVIDIA A100 with 80GB of memory). We employ GPU direct

MPI to attain excellent weak scaling on the exascale supercomputer Frontier, while using

74,088 GPUs and simulating a total grid size of over 7.2 trillion cells. A suite of test prob-

lems highlights the accuracy of Cholla’s MHD module and demonstrates that zero magnetic

divergence in solutions is maintained to round off error. We also present new testing and

continuous integration tools using GoogleTest, GitHub Actions, and Jenkins that have made

development more robust and accurate and ensure reliability in the future.

iv

Table of Contents

Preface . xi

1.0 Background . 1

1.1 Numerical Magnetohydrodynamics in Astrophysics 1

1.1.1 Supercomputers and the Advent of Accelerators 1

1.1.2 Eulerian vs. Lagrangian Methods 2

1.1.3 Introduction to Finite-Volume Methods 3

1.1.3.1 Hydrodynamics . 3

1.1.3.2 Magnetohydrodynamics . 6

1.2 Existing Galaxy Simulations . 11

1.3 Scientific Software Best Practices . 13

1.3.1 Testing Scientific Software . 13

1.3.2 Static Analysis of Scientific Codes 15

1.3.3 Automatic Code Formatting . 15

1.4 Summary . 15

2.0 Introduction . 17

3.0 Methods . 21

3.1 Magnetohydrodynamics . 21

3.2 The VL+CT Integrator . 23

3.2.1 Step 1: Compute the Time Step . 24

3.2.2 Step 2: First Order Reconstruction 25

3.2.3 Step 3: First Riemann Solve . 26

3.2.4 Step 4: Compute the Constrained Transport Electric Field 26

3.2.5 Step 5. Perform the Half Time-step Update 29

3.2.6 Step 6. Half Time-step Second Order Reconstruction 31

3.2.7 Step 7. Second Riemann Solve . 32

3.2.8 Step 8. Compute the Constrained Transport Electric Fields 32

v

3.2.9 Step 9. Perform the Full Time-step Update 33

3.2.10 Step 10. Increment the Time by ∆t 33

3.3 Implementation on GPUs . 34

3.3.1 Memory bandwidth constraints . 34

3.3.2 Performance portability . 35

3.3.3 GPU reductions . 36

4.0 MHD Tests . 37

4.1 Accuracy Tests . 37

4.1.1 Linear Wave Convergence . 37

4.1.2 Circularly Polarized Alfvén Wave 38

4.1.3 Advecting Field Loop . 40

4.1.4 MHD Riemann Problems . 42

4.1.4.1 Brio & Wu Shock Tube . 43

4.1.4.2 Dai & Woodward Shock Tube 45

4.1.4.3 Ryu & Jones 1a Shock Tube 47

4.1.4.4 Ryu & Jones 4d Shock Tube 47

4.1.4.5 MHD Einfeldt Strong Rarefaction 47

4.1.5 MHD Blast Wave in a Strongly Magnetized Medium 47

4.1.6 Orszag-Tang Vortex . 51

4.2 MHD Performance Tests . 53

5.0 Automated Testing & Continuous Integration 57

5.1 Unit Testing Framework . 57

5.2 Extensions for Cholla . 58

5.2.1 Floating Point Comparisons . 58

5.2.2 System Tests . 59

5.3 Automated Testing . 60

6.0 Summary . 62

6.1 Application of Cholla MHD . 63

Appendix. HLLD MHD Riemann Solver . 66

A.1 Compute Acoustic & Contact Wave Speeds 66

vi

A.1.1 Computing SL and SR . 67

A.1.2 Computing S∗
L and S∗

R . 67

A.1.3 Computing SM . 68

A.2 Determine the State . 68

A.3 Compute & Return the Fluxes . 68

A.3.1 FL or FR State . 68

A.3.2 F ∗
L or F ∗

R State . 69

A.3.3 F ∗∗
L or F ∗∗

R State . 70

Bibliography . 72

vii

List of Tables

1 The directions used here are relative to the internal workings of the HLLD

solver. Since the HLLD solver is inherently 1D we run it once for each

of the faces of a cell. So in the case where the solver is running in the

Y direction the solver’s Y field is actually the Z field and the solver’s Z

field is actually the X field, cyclically extended for the Z direction. . . . 27

2 The L/R subscripts indicate that it is the left/right state. Bx is always

the same in both states. 44

viii

List of Figures

1 A single cell in a hydrodynamic finite-volume simulation. Average val-

ues of the conserved variables, U , are cell-centered while the fluxes are

centered on the faces of the cell. 5

2 A single cell in a MHD finite-volume simulation. Average values of

the conserved variables hydrodynamic variables, ρ, v⃗, and E, are cell-

centered while the magnetic fields, in blue, and fluxes are centered on

the faces of the cell. The electric fields, also in blue, are centered on the

cell edges. 10

3 The seven MHD waves with the Riemann solver states labelled. 11

4 2D slices in all three planes showing the location of the fluxes, edge

electric fields, and derivatives. Based on Figure 5 of [106]. 30

5 Linear Wave Convergence of all four MHD waves using PLM and PPM

reconstruction. script link . 39

6 Circularly Polarized Alfvén Wave Convergence using PLM and PPM

reconstruction. script link . 40

7 Evolution of tilted spherical magnetic field loop through two full periods

using PPMC reconstruction. Mean of B2 normalized to the initial value

as a function of time (left) and the maximum divergence in the domain

as a function of time (right). script link 42

8 Cross sections of the spherical advecting field loop magnetic energy den-

sity at t = 0.0 and one period. The first and second panels show a slice

centered on the loop through the plane of symmetry. The third and

fourth panels show a slice along the x− z plane. Note that these figures

utilize PLMC reconstruction as PPMC introduced spurious oscilations

in the direction of advection. script link 43

9 The Brio & Wu Shock Tube solution [13]. script link 45

ix

https://github.com/bcaddy/caddy-et-al-2023/blob/a5d284c28192e6ae8b0c09e82f75a36456cf0ca6/python/linear-wave-convergence.py
https://github.com/bcaddy/caddy-et-al-2023/blob/a5d284c28192e6ae8b0c09e82f75a36456cf0ca6/python/circularly-polarized-alfven-convergence.py
https://github.com/bcaddy/caddy-et-al-2023/blob/a5d284c28192e6ae8b0c09e82f75a36456cf0ca6/python/advecting-field-loop.py
https://github.com/bcaddy/caddy-et-al-2023/blob/c7902cfed2ae307727d6f623ab29b8c6b4921480/python/advecting-field-loop.py
https://github.com/bcaddy/caddy-et-al-2023/blob/4c9c5ef905902e54e50943d0a261bd5b08342225/python/shock-tubes.py

10 Dai & Woodward Shock Tube (also called Ryu & Jones 2a) solution

[25, 95]. script link . 46

11 Ryu & Jones 1a Shock Tube solution [95]. script link 48

12 Ryu & Jones 4d Shock Tube solution [95]. script link 49

13 MHD Einfeldt Strong Rarefaction solution [30]. script link 50

14 Contour plot of the MHD blast wave test at t = 0.2. 30 evenly spaced

contours are shown in an x − y slice through the center of the domain.

script link . 51

15 Contour plot of the Orszag-Tang Vortex at t = 0.5. Thirty evenly spaced

contours are shown for each plot in an x− y slice through the center of

the domain. script link . 52

16 Weak scaling performance of Cholla MHD. When running on a single

GPU Cholla updates 2.04 × 108 cells per second per GPU; the largest

run with 74,088 GPUs updates 1.67 × 108 cells per second per GPU, a

weak scaling efficiency of 82.2%. The 74,088 GPU run updates a total

of 1.24 × 1013 cells per second. script link 55

17 Strong scaling performance of Cholla MHD with a problem size of 4593

cells. script link . 56

x

https://github.com/bcaddy/caddy-et-al-2023/blob/4c9c5ef905902e54e50943d0a261bd5b08342225/python/shock-tubes.py
https://github.com/bcaddy/caddy-et-al-2023/blob/4c9c5ef905902e54e50943d0a261bd5b08342225/python/shock-tubes.py
https://github.com/bcaddy/caddy-et-al-2023/blob/4c9c5ef905902e54e50943d0a261bd5b08342225/python/shock-tubes.py
https://github.com/bcaddy/caddy-et-al-2023/blob/4c9c5ef905902e54e50943d0a261bd5b08342225/python/shock-tubes.py
https://github.com/bcaddy/caddy-et-al-2023/blob/8f5051180971c6d63423db42e05c3d1fa1ec9785/python/blast-wave.py
https://github.com/bcaddy/caddy-et-al-2023/blob/8f5051180971c6d63423db42e05c3d1fa1ec9785/python/orszag-tang-vortex.py
https://github.com/bcaddy/caddy-et-al-2023/blob/5bcde40653b1a376f7424eb0ccdc412608978157/python/scaling_plots.py
https://github.com/bcaddy/caddy-et-al-2023/blob/c7902cfed2ae307727d6f623ab29b8c6b4921480/python/scaling_plots.py

Preface

Acknowledgements

RVC thanks Alwin Mao, Helena Richie, Orlando Warren, Kyle Felker, and Seth Cook

for many helpful discussions. Special thanks to Daniel Perrefort at the Center for Research

Computing for his help in setting up and maintaining the Jenkins environment for our auto-

mated testing. This research was supported in part by the University of Pittsburgh Center

for Research Computing, RRID:SCR 022735, through the resources provided. Specifically,

this work used the H2P cluster, which is supported by NSF award number OAC-2117681.

This research also used resources of the Oak Ridge Leadership Computing Facility, which is a

DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725, using

Frontier CAAR allocations CSC380 and AST181. E.E.S. acknowledges support from NASA

TCAN grant 80NSSC21K0271, NASA ATP grant 80NSSC22K0720, StScI grant HST-AR-

16633.001-A, and the David and Lucile Packard Foundation (grant no. 2022-74680).

With the exceptions of Chapter 1 and the Appendix, this dissertation has been submitted

for publication in the Astrophysical Journal. Reproduced with permission of the copyright

owners.

xi

1.0 Background

This dissertation is primarily concerned with two topics: adding magnetohydrodynamics

(MHD) to the hydrodynamics code Cholla[98] and the implementation of several different

scientific software best practices into Cholla. With these changes, Cholla now has the ca-

pacity to more accurately model astrophysical phenomenons such as galactic outflows. The

advent of exascale supercomputers such as Frontier combined with high-performing simula-

tion codes like Cholla will allow us to model the universe in unprecedented detail.

1.1 Numerical Magnetohydrodynamics in Astrophysics

Numerical modeling has become a critical and all-encompassing tool in modern astro-

physics. Complex numerical models underpin nearly all modern astrophysics in theory and

observation alike. Simulations are an especially powerful tool for theoretical astrophysics as

it is often impossible to conduct the necessary experiments in a laboratory. The simulation

codes in astrophysics commonly model hydrodynamics, often with additional physics such as

radiation, conduction, magnetic fields, cosmic rays, general relativity, self gravity, star for-

mation, stellar feedback, AGN feedback, etc. As such a wide variety of codes and methods

have been developed to answer questions ranging from the dynamics of stars to cosmological

structure.

1.1.1 Supercomputers and the Advent of Accelerators

Astrophysical hydrodynamics codes are complex and computationally demanding, es-

pecially with the inclusion of additional physics such as radiative transfer. These codes

typically require computers with performance in the hundreds of teraFLOPS or higher for

simulations to run in reasonable amounts of times and cutting edge simulations require hun-

dreds or thousands of petaFLOPS. To meet these high computational demands we must

1

rely on supercomputers. Until the early 2000’s the primary ways of making supercomputers

faster was to increase clock speeds and increase the number of processors. However, these

ever-higher clock speeds also pushed the power density to over 10W/cm2 by the late 1990’s

and 10 times that by 2010[63, 66]. These high power densities, several times higher than

a hot plate, forced a transition in the early 2000’s to multi-core processors and then to

accelerators such as GPUs due to their higher efficiency. These accelerators have become

ubiquitous in the world of supercomputing. At the time of writing, all but one of the top 10

fastest supercomputers in the world get the majority of their performance from accelerators

in the form of GPUs1 and the one exception, Fugaku, uses custom CPUs that essentially

have integrated accelerators.

GPUs function significantly differently than CPUs. Where a modern CPU has 4-128

cores, modern HPC (High Performance Computing) GPUs have well over 10,000 cores. These

cores however are much smaller and simpler than their CPU counterparts, mostly intended

for performing many mathematical operations in parallel. GPU cores also must operate

in lock step in groups of 32 or 642 in a Single Instruction/Multiple Data paradigm where

each core performs the same operation on a different set of data. This makes GPUs ideal

for performing grid-based hydrodynamical simulations, where we need to perform the same

operations on every one of billions, or even trillions, of cells. GPUs are especially well suited

to MHD codes due to the computational cost and high arithmetic intensity of such codes.

1.1.2 Eulerian vs. Lagrangian Methods

The two most common numerical techniques in astrophysics for solving compressible

fluid equations are Smoothed Particle Hydrodynamics (SPH) and Eulerian grid codes. SPH

is a Lagrangian method that discretizes the fluid in mass in the form of particles; these

fluid particles are then evolved in their own rest frame. Eulerian codes instead discretize

the fluid in space with many cells that are assigned the average properties of the fluid

within that cell. The flux of the various fluid properties is then computed through each

cell interface and those fluxes are used to evolve the fluid values within each cell. SPH

1https://www.top500.org
2The exact number of threads that have to operate in lock step depends on the GPU vendor

2

https://www.top500.org

does an excellent job of automatically allocating resolution in high density regions where

it is usually needed most, is less susceptible to round-off error in high mach flows, and

more easily maintains hydrostatic equilibrium. To achieve this same adaptive resolution,

grid-based codes must utilize complex AMR (adaptive mesh refinement) schemes that lead

to additional complexity. Grid-based codes, however, do a better job of modeling shocks

and conserving fluid fluxes across the domain[108]. Since many astrophysical phenomena

exhibit strong and complex shocks that drive much of the dynamics, grid-based codes are

an excellent choice for astrophysical modeling. Their regular data structures also make load

balancing and efficiently using many-core architectures much easier.

Grid-based codes are also especially adept at MHD. Their regular structure is conducive

to the field nature of magnetic fields and regular grids make divergence-free methods like

constrained transport tractable to implement. Hybrid SPH and grid-based methods also

exist, notably in the GIZMO and AREPO codes [59, 104]. These methods do accomplish

many of their goals of combining the strengths of both Eulerian and Lagrangian codes.

However, they are very complex with significant computational overhead. Additionally, their

often non-uniform grid structures often make constrained transport intractable to implement.

1.1.3 Introduction to Finite-Volume Methods

1.1.3.1 Hydrodynamics

Eulerian finite-volume methods are based on discretizing the simulation volume into

elements called cells. Each cell is assigned the average value for the conserved fluid quantities

within the volume of that cell. These quantities, density(ρ), momentum density(ρv⃗), energy

density(E), and magnetic field density(B⃗) are then evolved. In hydrodynamics the energy is

the sum of the kinetic and internal energies E = ρ
(
1
2
v⃗2 + e

)
where e is the internal energy.

The Euler equations written in terms of the conserved variables are:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

∂ρv

∂t
+ ∇ · (ρv ⊗ v + PI) = 0 (2)

3

∂E

∂t
+ ∇ · ((E + P)v) = 0 (3)

where P is the pressure and I is the identity tensor. When coupled with an equation of

state these equations can be solved; we use the ideal gas equation of state P = ρ(γ − 1)e

where γ is the adiabatic index and ϵ is the internal energy density. Equation 1 describes

the conservation of mass, equation 2 describes the conservation of momentum, equation 3

describes the conservation of energy.

In practice, these equations are used in their vector form, where U and W are the

conserved and primitive variables respectively:

U =

ρ

vx

vy

vz

E

,W =

ρ

vx

vy

vz

P

. (4)

The conservation equations, in Cartesian coordinates, can then be rewritten as

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0 (5)

where F , G, and H are the vectors of fluxes in the x, y, and z direction respectively and

are given by

F =

ρvx

ρv2x + P

ρvxvy

ρvxvz

vx (E + P)

(6)

4

G =

ρvy

ρvyvx

ρv2y + P

ρvyvz

vy (E + P)

(7)

H =

ρvz

ρvzvx

ρvzvy

ρv2z + P

vz (E + P)

. (8)

The arrangement of these quantities on a given cell can be seen in Figure 1.

Figure 1: A single cell in a hydrodynamic finite-volume simulation. Average values of the

conserved variables, U , are cell-centered while the fluxes are centered on the faces of the cell.

The fluxes are computed using a Riemann solver. The Riemann problem is an initial

conditions problem where a system of conservation equations can be solved exactly if the

initial conditions are a piecewise constant function with a single discontinuity. This exact

situation is found at the interface between any two cells. A variety of Riemann solvers exist.

5

Cholla implements the Exact[109], Roe[94], HLL (Harten–Lax–van Leer)[54], and HLLC

(Harten–Lax–van Leer contact)[5] Riemann solvers for hydrodynamics.

These fluxes can then be combined to update the conserved quantities using equation

Un+1
i,j,k = Un

i,j,k −
∆t

∆x

(
F n

i+1/2,j,k − F n
i−1/2,j,k

)
−∆t

∆y

(
Gn

i+1/2,j,k −Gn
i−1/2,j,k

)
−∆t

∆z

(
Hn

i+1/2,j,k −Hn
i−1/2,j,k

)
.

(9)

where the n superscript indicates the time step and the i, j, k subscripts indicate the cell

position; the ±1/2 terms indicate the location of the cell face at ±1/2 a cell width.

1.1.3.2 Magnetohydrodynamics

The ideal MHD formalism is much the same as the hydrodynamic formalism with the

inclusion of the magnetic fields and the induction equation (equation 13) which serves as

the magnetic field’s conservation equation and encodes the divergence-free condition. Ideal

MHD makes several approximations:

• Local thermodynamic equilibrium

• In the plasma there is a local, instantaneous relation between electric field and current

density

• The plasma is electrically neutral.

• no electrical resistance, i.e. perfect conductivity

• The plasma is fully ionized

Details of the method implemented can be found in Section 3.1. The ideal MHD Euler

equations are:

∂ρ

∂t
+ ∇ · (ρv) = 0 (10)

∂ρv

∂t
+ ∇ · (ρv ⊗ v −B ⊗B + PTI) = 0 (11)

6

∂E

∂t
+ ∇ · ((E + PT)v + B(B · v)) = 0 (12)

∂B

∂t
−∇× (v ×B) = 0 (13)

where PT ≡ P + 1
2
(B ·B) is the total pressure, and E is the total energy per unit volume

E ≡ ϵ + 1
2
ρ(v · v) + 1

2
(B ·B). We adopt units in which the magnetic permeability µ0 = 1.

Rewriting these equations into their vector forms:

U =

ρ

vx

vy

vz

E

Bx

By

Bz

,W =

ρ

vx

vy

vz

P

Bx

By

Bz

. (14)

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0. (15)

Where the fluxes are:

F =

ρvx

ρv2x + PT −B2
x

ρvxvy −BxBy

ρvxvz −BxBz

vx (E + pT) −Bx (v ·B)

0

Byvx −Bxvy

Bzvx −Bxvz

(16)

7

G =

ρvy

ρvyvx −ByBx

ρv2y + PT −B2
y

ρvyvz −ByBz

vy (E + PT) −By (v ·B)

Bxvy −Byvx

0

Bzvy −Byvz

(17)

H =

ρvz

ρvzvx −BzBx

ρvzvy −BzBy

ρv2z + PT −B2
z

vz (E + PT) −Bz (v ·B)

Bxvz −Bzvx

Byvz −Bzvy

0

. (18)

The induction equation requires that the magnetic field be divergence free, i.e. the

Universe does not contain magnetic monopoles. However, not all numerical methods for

evolving the MHD equations maintain this constraint. In many particle-based schemes, for

example, magnetic divergence is generated and is removed at each step, a method commonly

known as divergence cleaning [27]. Divergence cleaning is popular because it is simple and

couples well to particle-based methods – it essentially functions by computing the divergence

regularly and subtracting it away. Divergence cleaning is also computationally cheaper than

numerical methods that maintain a divergence-free solution by construction, but typically

leads to divergence errors on the level of a few percent [27, 85, 114]. While this error is

small it could lead to unphysical solutions. Divergence cleaning is also commonly used for

grid-based codes. However, a more accurate method for evolving the magnetic fields exists

for grid based codes.

The other primary method for evolving the magnetic field is constrained transport (CT).

8

Constrained transport is formally divergence free by construction, and when implemented

numerically it typically results in divergence errors on the order of machine round off error

[31, 38, 106, 105, 123, 1]. This is accomplished by tracking magnetic fields on a staggered,

face centered grid rather than using cell-centered averages. These face centered values are

used in conjunction with Riemann fluxes to calculate edge centered electric fields, and those

electric fields are used to update the magnetic field; this arrangement can be seen in Figure

2. Thus, the trade-off for a divergence-free method is significant additional algorithmic

complexity and associated computational expense.

The edge centered electric fields are computed using the magnetic fluxes from the Rie-

mann solver and their derivatives. An example of this for the electric field in the z direction

is shown in Equation 19

Ez,i−1/2,j−1/2,k =
1

4

(
Ez,i−1/2,j,k + Ez,i,j−1/2,k + Ez,i−1/2,j−1,k + Ez,i−1,j−1/2,k

)
+

∆y

8

((
∂Ez
∂y

)
i−1/2,j−1/4,k

+

(
∂Ez
∂y

)
i−1/2,j−3/4,k

)

+
∆x

8

((
∂Ez
∂x

)
i−1/4,j−1/2,k

+

(
∂Ez
∂x

)
i−3/4,j−1/2,k

)
.

(19)

These electric fields are then used to update the magnetic fields through the use of Faraday’s

Law (∇ × E⃗ = −∂tB⃗). Since the divergence of a curl is zero this means that as long as

the initial magnetic fields are divergence free then the update to them will maintain that

divergence free status.

Bn+1
x,i−1/2,j,k = Bn

x,i−1/2,j,k +
∆t

∆z

(
En
y,i−1/2,j,k+1/2 − En

y,i−1/2,j,k−1/2

)
−∆t

∆y

(
En
z,i−1/2,j+1/2,k − En

z,i−1/2,j−1/2,k

) (20)

Bn+1
y,i,j−1/2,k = Bn

y,i,j−1/2,k +
∆t

∆x

(
En
z,i+1/2,j−1/2,k − En

z,i−1/2,j−1/2,k

)
−∆t

∆z

(
En
x,i,j−1/2,k+1/2 − En

x,i,j−1/2,k−1/2

) (21)

Bn+1
z,i,j,k−1/2 = Bn

z,i−1/2,j,k +
∆t

∆y

(
En
x,i,j+1/2,k−1/2 − En

x,i,j−1/2,k−1/2

)
− ∆t

∆x

(
En
y,i+1/2,j,k−1/2 − En

y,i−1/2,j,k−1/2

)
.

(22)

9

Figure 2: A single cell in a MHD finite-volume simulation. Average values of the conserved

variables hydrodynamic variables, ρ, v⃗, and E, are cell-centered while the magnetic fields,

in blue, and fluxes are centered on the faces of the cell. The electric fields, also in blue, are

centered on the cell edges.

MHD also requires a new Riemann solver since none of the existing Riemann solvers

in Cholla support magnetic fields. Riemann solvers rely on the speed of the various hy-

drodynamic, or magnetohydrodynamic, waves to select the state that a given interface is

occupying. The chosen state determines the exact method used to calculate the flux through

that interface. Hydrodynamics has three waves, the left and right moving sound/acoustic

waves and the contact discontinuity/entropy wave. MHD in contrast has seven waves as

shown in Figure 3. The contact discontinuity remains but the sound waves are split into

the fast and slow magnetosonic waves and a new magnetic wave, the Alvén wave, is intro-

duced. These new waves require either extensive modifications to existing Riemann solvers

or an entirely new Riemann solver to account for them. We chose to implement the pop-

ular HLLD (Harten–Lax–van Leer Discontinuities) Riemann solver which is detailed in the

Appendix. This Riemann solver was chosen due to its high level of accuracy and stability

across a wide range of parameters. The HLLD Riemann solver is similar in structure to the

existing HLLC Riemann solver, and in the presence of zero magnetic fields it mathemati-

10

cally reduces to the HLLC Riemann solver. Despite the similarities to the HLLC solver the

HLLD Riemann solver includes the MHD fast, Alfvén, and entropy waves.. However, like

the HLLC Riemann solver, the HLLD Riemann solver is an approximate Riemann solver

and one of the primary approximations is that it makes is neglecting the slow magnetosonic

wave. Nonetheless, the tests is Section 4 show that it can accurately approximate the slow

magnetosonic wave (see Section 4.1.1) and even slow switch-on shocks (see the Ryu & Jones

4D shock tube in Section 4.1.4).

t

x

L*

L

L** L***
R***

R**
R*

R

Fast wave

Fast wave

Slow wave

Slow wave

Contact discontinuity

Alfvén wave

Alfvén wave

Figure 3: The seven MHD waves with the Riemann solver states labelled.

1.2 Existing Galaxy Simulations

In this section, a brief review of recent MHD galaxy simulations is given. Leveraging

state-of-the-art computational techniques and increasingly powerful resources, these simu-

lations illuminate the complex interplay between gas dynamics, magnetic fields, and stellar

processes within galaxies. From the formation of galactic magnetic fields to their influence

on star formation, galactic outflows, and accretion onto supermassive black holes, MHD sim-

ulations provide a framework for understanding the underlying physics driving the observed

properties of galaxies across cosmic time. The examples have been chosen to give a broad

overview and not to focus on a single subtopic.

Ntormousi et al. 2020 [79] demonstrated the α−ω dynamo in a global galaxy simulation

for the first time. They utilized the RAMSES code which uses constrained transport to

11

maintain zero divergence. They simulated a 100kpc3 with a coarse resolution of 2563 and six

levels of refinement to achieve an effective resolution of 40963 (≈ 24pc) in the most refined

regions. They demonstrated that the α−ω dynamo is capable of amplifying a magnetic field

by a factor of ∼ 100 within 500 Myr. They did not include stellar feedback or cosmic rays

and their simulations generate magnetic field ∼ 100 times weaker than observed magnetic

fields.

Van de Voort et al. 2021 [114] studied the overall impact of magnetic fields on the CGM

of a 1012M⊙ halo mass galaxies. They utilized the moving mesh code AREPO which uses the

Powell 8-wave scheme to control magnetic divergence. Since AREPO uses an unstructured

Voronoi mesh for the gas a mass per cell rather than specific cell size is targeted for mesh

refinement. They targeted a mass of 5.44M⊙ baryon mass, 2.94M⊙ dark matter mass, and

a maximum volume of 1kpc3 within 1.2 virial radii of the center of the simulated galaxy.

They did not list the highest effective resolution or refinement levels used. They found that

including magnetic fields has no impact on many of the bulk properties such as the stellar

masses, ISM masses, and SFR but that including magnetic fields does increase the mass of

the AGN, resulting in a more disk dominated galaxy, and making the CGM more filamentary

and more collimated (amongst other effects). The major limitations of their simulations are:

low resolution and no cosmic rays. If included, both of these could have led to stronger and

more impactful magnetic fields.

Farcy et al. 2022 [33] studied the effect of cosmic rays on galaxy dynamics when coupled

with stellar radiation and supernovae. They utilized the RAMSES-RT radiation-MHD

code which uses constrained transport to maintain zero divergence and the Global Lax-

Friedrichs intercel flux function to advect the photon fluid with a reduced speed of light. They

used simulation boxes with widths of 150, 300, and 600kpc depending on galaxy mass and

maximum resolutions of 9, 9, and 18pc respectively and minimum resolutions of 2.34, 2.34,

and 4.68kpc. While not explicitly stated in the paper this works out to coarse resolutions of

643, 1283, and 1283 respectively with highest effective resolutions of just over ∼ 16k3, ∼ 33k3,

∼ 33k3 and 8 levels of mesh refinement. While their figures show excellent resolution in the

disk, the resolution in the CGM is only sufficient for resolving structure on the largest

scales. They found that including cosmic rays results in thicker disks with a smoother

12

ISM, stronger and colder galactic outflows, and that the effects are highly sensitive to the

diffusion coefficient used in the cosmic ray model. While they include cosmic rays, radiation,

and stellar feedback the resolution in the CGM is too coarse to resolve any dynamics outside

of the areas nearest the disk.

1.3 Scientific Software Best Practices

The second major component of this dissertation is the adoption and implementation of

several scientific software best practices by the Cholla development team. My work in this

area has been primarily concerned with the technical implementation of these best practices

when applicable along with spearheading some of the more complex topics such as testing;

details can be found in Chapter 5.

As discussed in Section 1.1, software pervades every part of modern astronomy and has

been growing ever more critical. This trend is not limited to astronomy but is consistent

across most scientific disciplines. Scientists typically spend 30% or more of their time devel-

oping software but are primarily self-taught [53, 92]. This often means that they have not

been exposed to the tools, techniques, and best practices required for writing high-quality

scientific software. While software is often a tool every bit as important as laboratory equip-

ment, scientists often do not know how reliable their software is[56, 55].

To address some of these concerns I, along with the rest of the Cholla development team,

have worked to implement many of the recommendations in Wilson et al. 2014 and Wilson

et al. 2017[119, 120]. The main best practices that I have worked on implementing are:

the integration of a testing framework, automated testing, static analysis, and automated

formatting.

1.3.1 Testing Scientific Software

A cornerstone of writing any software, scientific or not, is testing that software to ensure

that it operates correctly. In scientific software, this is often done in a manual and very

13

labor-intensive manner. In a simulation code like Cholla this might look like:

1. Determine a set of test problems/initial conditions with known analytical or numerical

solutions.

2. Run each of those problems one-by-one manually.

3. Process the outputs of each problem into a human readable/understandable form through

plotting, statistical analysis, etc. This is typically a lossy process that is insensitive to

small changes.

4. Compare the human-readable results to the known correct results and determine if they

are correct. Depending on the problem, this is often done by eye which is not incredibly

precise.

This process is often too time-consuming to be done very often and as such is only done

rarely. Consequently, software bugs can often be undetected for extended periods of time.

This can directly impact scientific results.

In comparison, a testing framework can run tests in a few minutes, and often completely

unattended. Due to this convenience, they can be frequently and easily utilized during

the development process where they are the most impactful to the accuracy of the final

result. Additionally, a broader, more comprehensive suite of tests can be run. These may

include tests that the developer might not have the familiarity or confidence to run manually

themselves. Instead of only being able to test the entire code at once (a “system test”), which

makes bugs difficult to localize, testing frameworks make it possible to test individual sub-

components with reasonable ease. These more focused tests can make it much easier to

localize errors, massively speeding up the debugging process.

Tests that can be run rapidly and have their results checked by the computer also enable

the tests to be fully automated and run on a schedule or on new code before it is merged

into the code base. This helps ensure that the new code is correct and does not have any

unintended side effects that can impact other portions of the code.

My work in integrating a testing framework and automated testing into Cholla is de-

scribed in detail in Chapter 5.

14

1.3.2 Static Analysis of Scientific Codes

Static analysis is the analysis of the source code of a program without executing that

program. It is typically done using automated tools such as Pylint3 or Clang-Tidy4. These

tools excel at finding issues in a code base that are easy for humans to make and difficult

for them to find. As these tools have evolved they can also be used to check that certain

coding standards are met, such as enforcing a specific casing type on variables names which

can reduce the cognitive load when reading code[67, 9].

Research has shown that scientific codes contain many issues that are detectable through

static analysis[55] and so integrating static analysis tools into scientific code bases is an

efficient way to detect and mitigate issues within the code base.

1.3.3 Automatic Code Formatting

In much the same way that consistent variable naming can reduce the cognitive load on

the people working on a code base, having standard formatting has similar benefits [67, 9].

People however are not very good at maintaining consistent formatting. Formatting code

would require memorizing hundreds of rules and then implementing them perfectly without

fail, an impossible task for a human. Tasks like this however are perfect for computers and

easy to do automatically with modern software infrastructure. Automated code formatting

is easy to implement with significant benefits to developers.

1.4 Summary

Magnetic fields are important in a variety of astrophysical phenomena such as stellar

and galactic dynamics [20, 7, 12]. Implementing MHD into Cholla will allow us to create

simulations with unprecedented resolution and accuracy. While computationally demand-

ing, grid-based methods of implementing MHD are well-situated to take advantage of the

3https://pypi.org/project/pylint/
4https://clang.llvm.org/extra/clang-tidy/

15

https://pypi.org/project/pylint/
https://clang.llvm.org/extra/clang-tidy/

massively parallel nature of GPUs and new exascale supercomputers. At the time of writing

Cholla is the only exascale-capable MHD code that utilizes the more accurate constrained

transport method for maintaining the zero-divergence condition. The addition of the vari-

ous scientific software best practices, especially automated testing, allows us to develop and

expand Cholla in the future with greater confidence in the correctness and accuracy of the

results.

16

2.0 Introduction

Over the past decade it has become increasingly clear that magnetohydrodynamics

(MHD) plays a significant role in a variety of astrophysical phenomena [e.g. 20, 7, 77, 50,

61, 10, 78, 26, 112, 90, 12]. Magnetic fields couple to gas both directly through plasma

interactions with the magnetic field, and indirectly through cosmic ray transport [e.g. 89,

42, 19, 16, 117, 122, 43, 80, 116], anisotropic conduction [e.g. 121, 51, 102, 41, 82, 15], and

other physical effects.

Many studies have focused on the role of magnetic fields in galaxy evolution and have

provided intriguing hints as to the possible effects of magnetic fields in galaxy dynamics

[101, 3, 46, 83, 60, 118]. Different simulations employing different numerical methods show

varying impacts of magnetic fields, ranging from magnetic fields being largely irrelevant on

large scales to magnetic fields being critically important in determining the evolution and

structure of the interstellar medium (ISM), modifying galactic feedback, and influencing the

structure of the circumgalactic medium (CGM) [72, 29, 65, 52, 84, 4]. One factor in this

uncertainty is the effect of numerical resolution on MHD simulations – galactic magnetic

fields are likely amplified by a turbulent dynamo, which operates over a large dynamic range

[71, 8, 40, 18, 12]. The accuracy with which the dynamo is captured thus depends on both the

numerical method that is employed as well as the resolution. Thus, a simple way to extend

the dynamic range captured in an MHD simulation is by employing very high resolution

MHD simulations – simulations that are now possible thanks to recent developments in

hardware, numerical algorithms, and software.

Modern numerical methods for MHD are sophisticated and robust, but even with highly

optimized codes, MHD simulations remain very computationally expensive [107]. This com-

putational expense is a result of the high number of floating point calculations required by

modern finite-volume methods and the heavy memory bandwidth demands of MHD codes

[48]. In addition, MHD turbulent dynamos operate across a large dynamic range, from the

full scale of a galaxy all the way down to a few parsecs or smaller, five or more orders of

magnitude spatially [87, 88, 79, 36]. As a result, high resolution simulations are critical in

17

order to accurately capture the effects of magnetic fields in astrophysical simulations.

This need has driven a push to develop MHD codes that can take advantage of modern

computer architectures [e.g. 97, 1, 123, 100, 69, 17, 58, 47]. Very large, high resolution

MHD simulations require supercomputers to run due to their high computational cost. The

primary source of computational power in most new supercomputers is Graphics Processing

Units (GPUs)1. For example, of the top ten supercomputers named in the November 2023

Top500 list, only one - Fugaku - does not rely on GPUs for the majority of its performance.2

The ubiquity of GPUs in modern supercomputers thus necessitates the development of GPU-

based astrophysical MHD simulation codes.

The induction equation implies a simple constraint; it requires that the magnetic field be

divergence free, i.e. the Universe does not contain magnetic monopoles. However, achieving

this constraint numerically is not trivial, and several methods have been developed. Among

these are the Powell 8 Wave scheme, which adds an additional source term to the induction

equation and uses an 8 wave Riemann solver with the 8th wave corresponding to the magnetic

divergence [91]; vector potential/projection methods, which project the magnetic field into

the scalar and vector potential and then perform a cleaning step to reduce the divergence

to zero by solving a Poisson equation [11, 96, 24, 110]; divergence cleaning methods, which

operate by modifying the system of conserved equations with corrections that dissipate and

propagate out the magnetic divergence [27, 73]; and constrained transport (CT), which

evolves face-centered values of the magnetic field and updates them using the electromotive

forces [31]. We have chosen to implement the CT method in Cholla due to its overall accuracy,

because the algorithm pairs well with static structured grids, and because the computational

efficiency of GPUs is a good match to the algebraic complexity of CT.

Constrained transport is formally divergence free, and when implemented numerically it

typically results in divergence errors on the order of machine round off error [31, 38, 106, 105,

123, 1]. This is accomplished by tracking magnetic fields on a staggered, face centered grid

rather than using cell-centered averages. These face centered values are used in conjunction

with Riemann fluxes to calculate edge centered electric fields, and those electric fields are

1https://www.top500.org/lists/top500/2023/11/
2Fugaku employs custom CPUs that utilize vector processors similar to GPUs for much of its performance.

18

https://www.top500.org/lists/top500/2023/11/

used to update the magnetic field. Thus, the trade-off for a divergence-free method is

significant additional algorithmic complexity and associated computational expense, which

can make the method more challenging to implement in a particle based scheme or when

using unstructured meshes.

The Cholla code (Computational Hydrodynamics On paraLLel Architectures) [98] is

a fixed grid, finite volume hydrodynamics code for astrophysics that was designed to run

natively on GPU-based supercomputers. It employs an unsplit 3D hydrodynamics integrator

based on the Van Leer predictor-corrector method [32, 115] and was designed to be extended

to MHD using constrained transport [31]. This work presents the MHD extension of Cholla.

Our MHD implementation largely follows the Van Leer + Constrained Transport (VL+CT)

method presented in [105] with modifications for GPUs. It also uses an HLLD Riemann

solver [75] and includes second [105] and third [34] order reconstruction in the characteristic

variables [106]. We also highlight implementation choices that are particularly relevant to

solving these equations on GPUs.

The extension of Cholla to include MHD allows the simulation of previously unreachable

domains. The VL+CT integrator provides high accuracy results with divergences that are

zero to round off error. Given current memory constraints, the code is fast enough that

a ∼ 4593 cell MHD simulation can be run on a single AMD MI250X Graphics Compute

Die (GCD) (logically a single GPU), allowing high resolution simulations to be run with

only a small number of local resources. In addition, Cholla scales up to power of the largest

available supercomputers, enabling simulations up to 19, 2783 ≈ 7.2 trillion cells on Frontier 3,

the world’s first exascale supercomputer. This will allow MHD simulations of entire galaxies

with a constant resolution of a few parsecs per cell, turbulent box simulations with many

trillions of cells, or many thousands of lower resolution simulations to be computed rapidly.

For example, with approximately the same computing resources used to evolve a 19, 2783

simulation one could run thousands of 2, 0003-cell simulations, enabling entire parameter

studies with resolutions comparable to current cutting edge CPU-based simulations.

One potential application of Cholla-MHD would be a very high resolution global galaxy

simulation. Cholla-MHD enables simulations with resolutions approaching a single parsec

3https://www.olcf.ornl.gov/frontier/

19

https://www.olcf.ornl.gov/frontier/

which could help answer questions about the galactic dynamo [71, 8, 40, 18, 12], dynamics

within the CGM [7, 113], turbulence in the CGM [86], and the impact of cosmic rays on

acceleration of cold clouds in galactic outflows[62].

In addition to requiring complex algorithms to produce accurate results, modern community-

developed simulation codes like Cholla require robust testing and software-development in-

frastructure to maintain their reliability. This work also presents the implementation of an

automated testing/continuous integration (CI) pipeline for Cholla. CI tools have expanded

rapidly in functionality and popularity over the last 20 years and their usefulness in scientific

software is well established [6, 119, 120]. Particularly in the last 5 years with the advent

of GitHub Actions, Jenkins, and similar easily accessible and cheap (or even free) tools, CI

pipelines have become much more straightforward to set up and run even for small groups

and individuals. We present our implementation of testing and CI that is designed to be

straightforward and scalable from a single GPU all the way up to an exascale machine.

The outline of this paper is as follows. In Chapter 3, we describe our implementation of

the VL+CT algorithm in detail along with the modifications we made to efficiently run on

GPUs. In Chapter 4, we demonstrate the correctness and accuracy of Cholla on a suite of

MHD test problems. We also describe Cholla’s performance and weak scaling behavior on

up to 74,088 GPUs using Frontier. In Chapter 5, we discuss the new continuous integration

and automated testing framework. We conclude in Chapter 6. Most figure captions end with

the phrase “script link” which hyperlinks to the version of the python script which generated

that figure. These scripts, and the associated GitHub repository, have sufficient information

to reproduce the figures shown in this paper.

20

3.0 Methods

3.1 Magnetohydrodynamics

Cholla solves the ideal MHD equations in their conserved Eulerian form using a finite

volume method [44]. These equations neglect all dissipative processes, including finite vis-

cosity, electrical resistivity, and thermal conductivity. These approximations are reasonable

when simulating regions of with very high Reynolds numbers as is common in many astro-

physical problems. We note that although we neglect these additional processes at present,

the methods implemented here are fully compatible with future extensions to include addi-

tional physics that depends on magnetic fields, such as anisotropic conduction, cosmic ray

transport, or non-ideal MHD effects.

The ideal MHD equations are:

∂ρ

∂t
+ ∇ · (ρv) = 0 (23)

∂ρv

∂t
+ ∇ · (ρv ⊗ v −B ⊗B + PTI) = 0 (24)

∂E

∂t
+ ∇ · ((E + PT)v + B(B · v)) = 0 (25)

∂B

∂t
−∇× (v ×B) = 0 (26)

where ρ is density, v = (vx, vy, vz) is the velocity vector, t is time, B = (Bx, By, Bz) is the

magnetic field, I is the identity tensor, PT ≡ P + 1
2
(B ·B) is the total pressure, and E is

the total energy per unit volume E ≡ ϵ+ 1
2
ρ(v · v) + 1

2
(B ·B). We adopt units in which the

magnetic permeability µ0 = 1.

Equation 23 describes the conservation of mass, equation 24 describes the conservation

of momentum, equation 25 describes the conservation of energy, and equation 26 is the

induction equation, which describes the divergence free condition. Cholla uses an ideal gas

21

equation of state which is P ≡ ϵ(γ − 1) where γ is the adiabatic index and ϵ is the internal

energy density.

In practice these equations are used in their vector form, where U and W are the

conserved and primitive variables respectively:

U =
[
ρ, ρvx, ρvy, ρvz, E, Bx, By, Bz

]
(27)

W =
[
ρ, vx, vy, vz, P, Bx, By, Bz,

]
. (28)

The conservation equations, in Cartesian coordinates, can then be rewritten as

∂U

∂t
+

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= 0 (29)

where Fx, Fy, and Fz are the vectors of fluxes in the x, y, and z direction respectively and

are given by

Fx =

ρvx

ρv2x + PT −B2
x

ρvxvy −BxBy

ρvxvz −BxBz

vx (E + pT) −Bx (v ·B)

0

Byvx −Bxvy

Bzvx −Bxvz

(30)

Fy =

ρvy

ρvyvx −ByBx

ρv2y + PT −B2
y

ρvyvz −ByBz

vy (E + PT) −By (v ·B)

Bxvy −Byvx

0

Bzvy −Byvz

(31)

22

Fz =

ρvz

ρvzvx −BzBx

ρvzvy −BzBy

ρv2z + PT −B2
z

vz (E + PT) −Bz (v ·B)

Bxvz −Bzvx

Byvz −Bzvy

0

. (32)

3.2 The VL+CT Integrator

To integrate these equations in Cholla, we implement the VL+CT (Van Leer plus Con-

strained Transport) integrator introduced in [105], along with the HLLD Riemann solver

described in [75]. Many of the equations were first described in the context of the constrained-

transport extension to the corner-transport upwind (CTU) method [21] described in 2D [38]

and 3D [39] for the Athena MHD code [106]. Our specific implementation of the piecewise

parabolic method follows [34], which is itself an extension of the original PPM method pre-

sented by [22]. The VL+CT integrator is very similar in structure to the MUSCL-Hancock

integrator [115, 32, 109], though with significant new additions for Constrained Transport

(CT). We note that this is now the default integrator used in Cholla, as we have found it to

be more robust than the CTU algorithm described in [98].

Constrained transport treats the magnetic field as a surface averaged quantity centered at

cell interfaces rather than a volume averaged, cell centered quantity like the hydro variables;

i.e. a staggered grid. Each face stores only the magnetic field perpendicular to that face,

i.e. the x, i + 1/2, j, k face stores the Bx,i+1/2,j,k magnetic field. At each time step, the

magnetic field is then updated using edge averaged electric fields computed from the magnetic

flux returned by the Riemann solver. Updating the magnetic field with the electric field

automatically fulfills the divergence free condition for magnetic fields, assuming that the

23

initial conditions are also divergence free.

A brief overview of the algorithm for a single time step using the VL+CT integrator is

as follows; more detailed discussion of each step is presented in the following subsections.

1. Compute the time step, ∆t.

2. Reconstruct interface states using a piecewise constant method (PCM) approximation.

3. Solve the Riemann problem on every interface using the PCM interface states.

4. Compute the edge centered electric fields.

5. Update the t = n conserved variables to t = n + ∆t/2 using the computed fluxes and

electric fields.

6. Reconstruct interface states using a piecewise linear method (PLM) or piecewise parabolic

method (PPM) approximation.

7. Solve the Riemann problem on every interface using the higher order reconstructed in-

terface states.

8. Recompute the edge centered electric fields.

9. Update the t = n conserved variables to t = n + ∆t using the half time step fluxes and

electric fields

3.2.1 Step 1: Compute the Time Step

The first step is to compute the time step. Cholla implements uniform time steps across

the grid, so this is the minimum crossing time of any wave in any cell multiplied by a Courant

factor to maintain the Courant–Friedrichs–Lewy condition [23]:

∆t = CCFL min

(
∆x

| vnx,i,j,k | +cnf,i,j,k
,

∆y

| vny,i,j,k | +cnf,i,j,k
,

∆z

| vnz,i,j,k | +cnf,i,j,k

)
, (33)

where ∆t is the time step, CCFL ≤ 0.5 is the CFL number, | vnl,i,j,k | is the magnitude of the

velocity in the l direction velocity in the i, j, k cell, and cnf is the fast magnetosonic wave-

speed computed using cell centered values. The method is formally accurate at CCFL = 0.5,

though that is an estimate[105]. We have found empirically that the method is not stable

at CCFL = 0.5 but is stable at CCFL = 0.51. The fast and slow magnetosonic speeds are

1Typically we use CCFL = 0.3 to improve the accuracy of the operator splitting

24

cf,s =

√√√√γp+ | B |2 ±
√

(γp + | B |2)2 − 4γpB2
x

2ρ
(34)

where the + option corresponds to the fast magnetosonic speed, and − to the slow.

Equation 33 computes the minimum crossing time of a wave in a specific cell. A global

reduction is then performed to find the minimum in the entire grid; that minimum is used

as the time step ∆t. This reduction is done primarily on the GPU followed by an MPI

ALL REDUCE. Because GPUs programming methods are inherently parallel, GPU reduc-

tions are not trivial and their performance is sensitive to the method used. Details of our

reduction method are discussed in section 3.3.

The cell-centered magnetic field is computed with a direct average of the face centered

values:

Bn
x,i,j,k, =

1

2

(
Bn

x,i+1/2,j,k + Bn
x,i−1/2,j,k

)
Bn

y,i,j,k, =
1

2

(
Bn

y,i,j+1/2,k + Bn
y,i,j−1/2,k

)
Bn

z,i,j,k, =
1

2

(
Bn

z,i,j,k+1/2 + Bn
z,i,j,k−1/2

) (35)

These cell-centered values for the magnetic field are used several times throughout the in-

tegrator. In CPU-based codes it is typically more efficient to compute these cell centered

magnetic fields once and save them, since traditional CPU-based codes are typically com-

pute limited. Cholla is generally limited instead by GPU memory, so we recompute the

cell-centered values when they are needed rather than permanently allocating the associated

memory.

3.2.2 Step 2: First Order Reconstruction

Reconstructing the interface states at first order, or the piecewise constant method

(PCM), is done by setting the primitive interface states values to the same value as the

cell:

W L,i+1/2 = WR,i−1/2 = W i (36)

25

where W L/R,i±1/2 is the state on the left or right side of the cell. Although Cholla evolves the

conserved variables, primitive variables are typically used for interface reconstruction since

they are required by the Riemann solver used to compute the fluxes. In higher order spatial

reconstructions we also use the characteristic variables derived from the primitive variables.

Although PCM is too diffusive to be used on its own in both reconstruction steps,

we note that that mode is excellent for debugging. Here, it offers a computationally-

inexpensive way to calculate first-order fluxes, which will be used for the “predictor” step

of this predictor-corrector algorithm[115, 105]. Most higher order methods revert to PCM

near large discontinuities[68].

3.2.3 Step 3: First Riemann Solve

The next step is to solve the Riemann problem with the first order interface states. To do

this, we employ the HLLD Riemann solver introduced in [75]. Because we have implemented

the Riemann solver exactly as described in [75] we do not reproduce all the details here. The

longitudinal magnetic field does not require reconstruction and can be used directly since

it is stored at the face. The transverse fields (i.e. the fields parallel to the interface) are

reconstructed from the cell centered average (computed as shown in section 3.2.1), then

reconstructed using PCM identically to other fields.

The magnetic fluxes returned by the Riemann solver are the face centered electric fields

[see section 5.3 of 106]. For clarity, we list in Table 1 the correlation between flux and electric

field.

3.2.4 Step 4: Compute the Constrained Transport Electric Field

The next step is to calculate the constrained transport electric field. These fields are

line averaged along each cell vertex. These line averaged fields are constructed by averaging

the face centered electric fields from the previous step, and their slopes. Equation 37 is

used to reconstruct these line averaged electric fields; only the equation for the z-direction

is presented, the equations for the other directions can be found by cyclic permutation. The

equations for computing the other directions are obtained by substituting out the z index

26

Magnetic Flux to Face Centered Electric Field.

HLLD Solve Direction Magnetic Flux Eqn. as a Cross Product Electric Field

X VxBy −BxVy (V ×B)z −εz

X VxBz −BxVz −(V ×B)y εy

Y VxBy −BxVy (V ×B)z −εx

Y VxBz −BxVz −(V ×B)y εz

Z VxBy −BxVy (V ×B)z −εy

Z VxBz −BxVz −(V ×B)y εx

Table 1: The directions used here are relative to the internal workings of the HLLD solver.

Since the HLLD solver is inherently 1D we run it once for each of the faces of a cell. So in

the case where the solver is running in the Y direction the solver’s Y field is actually the Z

field and the solver’s Z field is actually the X field, cyclically extended for the Z direction.

27

with x or y and changing the derivatives appropriately.

Ez,i−1/2,j−1/2,k =
1

4

(
Ez,i−1/2,j,k + Ez,i,j−1/2,k + Ez,i−1/2,j−1,k + Ez,i−1,j−1/2,k

)
+

∆y

8

((
∂Ez
∂y

)
i−1/2,j−1/4,k

+

(
∂Ez
∂y

)
i−1/2,j−3/4,k

)

+
∆x

8

((
∂Ez
∂x

)
i−1/4,j−1/2,k

+

(
∂Ez
∂x

)
i−3/4,j−1/2,k

) (37)

Ez,i−1/2,j−1/2,k is the line averaged electric field; the first four terms on the right are the

face averaged electric fields, and the four derivative terms are the derivatives of those fields

in the direction towards the edge, details of which are in Equation 39. Figure 4 shows the

spatial relationships between the derivatives and the relevant edge states and reference fields.

Each edge requires 4 derivatives and they are computed as differences between a reference

state and an edge state.

Technically, constrained transport uses the magnetic flux as the conserved variable and

EMF (ElectroMotive Force) to update it. However, because those values only differ from the

magnetic flux density (i.e. the magnetic field) and the electric field respectively by factors

of unit length either can be treated as the conserved variable, the same way either density

or mass can be evolved in the hydro fields [106]. As such we use the magnetic field and

electric field to evolve the grid. Electric fields have the proper units to evolve the magnetic

flux density, B, whereas EMF has the proper units to evolve the magnetic flux.

On any face there are two non-zero electric fields; both transverse to the face. The

component that is used to calculate the field along a given edge is the component that is

parallel to that edge; i.e. if the edge points along the z-direction then the field pointing

along the z-direction is used, not the field in the x or y direction.

The derivatives from Equation 37 are computed using the upwinded slope as follows

28

(
∂Ez
∂y

)
i−1/2,j−1/4,k

=

(
∂Ez
∂y

)
i−1,j−1/4,k

for vx,i−1/2 > 0

(
∂Ez
∂y

)
i,j−1/4,k

for vx,i−1/2 < 0

1
2

((
∂Ez
∂y

)
i−1,j−1/4,k

+
(

∂Ez
∂y

)
i,j−1/4,k

)
otherwise

(38)

where, for example, the derivatives are given by

(
∂Ez
∂y

)
i,j−1/4,k

= 2

(
Ez,i,j−1/2,k − Eref

z,i,j,k

∆y

)
. (39)

Eref
z,i,j,k, is the cell centered reference field. This reference field is computed with the following

cross product

Eref,n
i,j,k = −

(
vn
i.j.k ×Bn

i.j.k

)
. (40)

3.2.5 Step 5. Perform the Half Time-step Update

We first update the density, momenta, and energy, but not the magnetic fields, using the

standard conservative update equation and the first-order fluxes from Step 3:

U
n+1/2
i,j,k = Un

i,j,k −
∆t

∆x

(
F n

x,i+1/2,j,k − F n
x,i−1/2,j,k

)
−∆t

∆y

(
F n

y,i,j+1/2,k − F n
y,i,j+1/2,k

)
−∆t

∆z

(
F n

z,i,j,k+1/2 − F n
z,i,j,k+1/2

)
.

(41)

We then update the magnetic field using the electric fields computed in Step 4:

B
n+1/2
x,i−1/2,j,k = Bn

x,i−1/2,j,k +
∆t

∆z

(
En
y,i−1/2,j,k+1/2 − En

y,i−1/2,j,k−1/2

)
−∆t

∆y

(
En
z,i−1/2,j+1/2,k − En

z,i−1/2,j−1/2,k

) (42)

29

εx,i,j−1/2,k−1/2

(∂ε
∂y)

i,j−1/4,k−1/2

(∂ε
∂y)

i,j−3/4,k−1/2

(∂ε
∂z)

i,j−1/2,k−1/4
(∂ε

∂z)
i,j−1/2,k−3/4

Fi,j,k−1/2

Fi,j−1,k−1/2

Fi,j−1/2,kFi,j−1/2,k−1

εref
x,i,j,k

εref
x,i,j−1,kεref

x,i,j−1,k−1

εref
x,i,j,k−1

Z

Y

 direction EMFX

εy,i−1/2,j,k−1/2

(∂ε
∂z)

i−1/2,j,k−1/4

(∂ε
∂z)

i−1/2,j,k−3/4

(∂ε
∂x)

i−1/4,j,k−1/2(∂ε
∂x)

i−3/4,j,k−1/2

Fi−1/2,j,k

Fi−1/2,j,k−1

Fi,j,k−1/2Fi−1,j,k−1/2

εref
y,i,j,k

εref
y,i,j,k−1εref

y,i−1,j,k−1

εref
y,i−1,j,k

X

Z

 direction EMFY

εz,i−1/2,j−1/2,k

(∂ε
∂y)

i−1/2,j−1/4,k

(∂ε
∂y)

i−1/2,j−3/4,k

(∂ε
∂x)

i−1/4,j−1/2,k(∂ε
∂x)

i−3/4,j−1/2,k

Fi−1/2,j,k

Fi−1/2,j−1,k

Fi,j−1/2,kFi−1,j−1/2,k

εref
z,i,j,k

εref
z,i,j−1,kεref

z,i−1,j−1,k

εref
z,i−1,j,k

X

Y

 direction EMFZ

Figure 4: 2D slices in all three planes showing the location of the fluxes, edge electric fields,

and derivatives. Based on Figure 5 of [106].

B
n+1/2
y,i,j−1/2,k = Bn

y,i,j−1/2,k +
∆t

∆x

(
En
z,i+1/2,j−1/2,k − En

z,i−1/2,j−1/2,k

)
−∆t

∆z

(
En
x,i,j−1/2,k+1/2 − En

x,i,j−1/2,k−1/2

) (43)

30

B
n+1/2
z,i,j,k−1/2 = Bn

z,i−1/2,j,k +
∆t

∆y

(
En
x,i,j+1/2,k−1/2 − En

x,i,j−1/2,k−1/2

)
− ∆t

∆x

(
En
y,i+1/2,j,k−1/2 − En

y,i−1/2,j,k−1/2

)
.

(44)

3.2.6 Step 6. Half Time-step Second Order Reconstruction

Step 5 results in first order time-averaged values for the cell-centered conserved variables

and face-centered magnetic fields. To make the integration second-order in time, we need to

perform a “corrector” step. First, we perform a higher order interface reconstruction. The

method shown here is for Piecewise Linear Method (PLM), reconstruction. Cholla currently

implements piecewise constant, piecewise linear, and piecewise parabolic reconstruction, with

limiting in the characteristic variables, for MHD. The piecewise parabolic method that Cholla

utilizes is discussed in detail in [34]. Using the third order piecewise parabolic method for

spatial reconstruction does typically give slightly more accurate results at a given resolution

compared to PLM, but since the method is formally second order it does not improve the

overall order of convergence. Note that at a given face only the transverse components of

the electric field need to be reconstructed. The longitudinal component is already given at

the face.

The steps of the PLM update are:

1. Compute the primitive variables from the conserved variables.

2. Compute the left, right, centered, and Van Leer differences in the primitive variables

δW L,i = Wi −Wi−1 (45)

δWR,i = Wi+1 −Wi (46)

δW C,i =
Wi+1 −Wi−1

2
(47)

δW V L,i =

2WL,iWR,i

WL,i+WR,i
, if W L,iWR,i > 0

0, otherwise

(48)

3. Project the slopes into the characteristic variables, a, using the eigenvectors listed in

the appendix of [106]. Note that to maintain mathematical consistency we use the

31

eigenvectors of the wi cell for all four slopes and the later projection back to primitive

variables.

4. Apply monotonicity constraints to the characteristic differences to ensure that the re-

construction is total variation diminishing (TVD). We use the following limiter, given in

[68]:

δam,i =

sgn(aC,i) min(2|aL,i|, 2|aR,i|, |aC,i|, |aV L,i|), if aL,iaR,i > 0

0, otherwise

(49)

5. Project the limited characteristic slopes, δam, back into the primitive variables, δWm,

using the eigenvectors.

6. Compute the interface states W L,i+1/2 and WR,i−1/2:

W L,i+1/2 = W i +
δWm,i

2

WR,i−1/2 = W i −
δWm,i

2

(50)

where W L/R,i±1/2 is the state on the left or right side of the cell and δWm,i is the monoton-

ically limited primitive slope. Limiting can be done in the primitive variables by skipping

steps 3 and 5 and replacing the characteristic slopes in Equation 49 with their primitive

counterparts.

3.2.7 Step 7. Second Riemann Solve

Solve the Riemann problem for each interface again using the higher order interface states

computed in step 6.

3.2.8 Step 8. Compute the Constrained Transport Electric Fields

Repeat step 3, but using the fluxes from the second Riemann solve and the half time

step MHD variables computed in Step 5.

32

3.2.9 Step 9. Perform the Full Time-step Update

Update the cell-centered hydro variables from t = n to t = n + ∆t using the conserved

update equation and the second order fluxes computed in Step 7:

Un+1
i,j,k = Un

i,j,k −
∆t

∆x

(
F

n+1/2
x,i+1/2,j,k − F

n+1/2
x,i−1/2,j,k

)
− ∆t

∆y

(
F

n+1/2
y,i,j+1/2,k − F

n+1/2
y,i,j+1/2,k

)
− ∆t

∆z

(
F

n+1/2
z,i,j,k+1/2 − F

n+1/2
z,i,j,k+1/2

)
.

(51)

Update the face-centered magnetic field using the electric fields calculated in Step 8:

Bn+1
x,i−1/2,j,k = Bn

x,i−1/2,j,k +
∆t

∆z

(
En+1/2
y,i−1/2,j,k+1/2 − En+1/2

y,i−1/2,j,k−1/2

)
−∆t

∆y

(
En+1/2
z,i−1/2,j+1/2,k − En+1/2

z,i−1/2,j−1/2,k

) (52)

Bn+1
y,i,j−1/2,k = Bn

y,i,j−1/2,k +
∆t

∆x

(
En+1/2
z,i+1/2,j−1/2,k − En+1/2

z,i−1/2,j−1/2,k

)
−∆t

∆z

(
En+1/2
x,i,j−1/2,k+1/2 − En+1/2

x,i,j−1/2,k−1/2

) (53)

Bn+1
z,i−1/2,j,k = Bn

z,i−1/2,j,k +
∆t

∆y

(
En+1/2
x,i,j+1/2,k−1/2 − En+1/2

x,i,j−1/2,k−1/2

)
− ∆t

∆x

(
En+1/2
y,i+1/2,j,k−1/2 − En+1/2

y,i−1/2,j,k−1/2

)
.

(54)

3.2.10 Step 10. Increment the Time by ∆t

Increment the time by ∆t. Additional physics modules are added in an operator-split

fashion after this point (chemistry, radiation transport, etc.), after which all MPI communi-

cation is done to exchange the ghost/halo cells that surround each MPI rank’s subdomain.

33

3.3 Implementation on GPUs

3.3.1 Memory bandwidth constraints

While the implementation of MHD on GPUs is similar to the implementation on CPUs,

there are some crucial differences, especially regarding data handling and movement. Com-

pared to CPUs, GPUs have higher memory bandwidth and extremely high FLOPS, but

limited memory capacity and limited functionality due to their fundamentally SIMD (Single

Instruction Multiple Data) nature. Also, while GPU memory bandwidth is higher on the

whole, due to their parallel nature GPUs can request many more values from memory at

once, meaning GPU-based codes are often still memory bandwidth bound.

This leads to some implementation choices that may seem counter-intuitive. For example,

while an optimized CPU-based code may compute the cell-centered magnetic fields once and

then save them to memory, Cholla recomputes them in each function call where they are

required. Similarly, Cholla does not store the primitive variables, only the conserved ones,

and recomputes the primitive variables as needed. This approach reduces global memory

usage by not storing an entire second grid. It also generally reduces memory bandwidth

requirements, since often both the conserved and primitive variables are needed within a

function, but only one set needs to be loaded.

Another potential source of memory bandwidth optimization is fusing functions together.

By combining multiple GPU kernels into one, different functions can share data without a

write/read cycle to global memory. For example, we have implemented this in Cholla by

combining the first order reconstruction and Riemann solver kernels, since each interface

that is reconstructed is only used in the next Riemann solve, and does not need to be used

later in the integrator. Fusing the PCM “reconstruction” into the Riemann solver led to a

∼ 10% improvement in overall runtime. However, fusing the PLMC reconstruction into the

Riemann solver actually slowed the code down by ∼ 10 − 15%. This slowdown is caused by

the increased register usage of the new, larger kernel, which in turn reduced overall GPU

occupancy. Thus, the trade-off between reducing global memory accesses and increasing

register usage is not always straightforward to determine, and we have found that it depends

34

on compiler optimizations which can vary between platforms, as well.

Another major challenge in GPU computing is CPU-to-GPU bandwidth which is much

lower than GPU memory bandwidth. To address this problem, Cholla now keeps as much

data as possible in the GPU memory instead of moving it to and from main system memory,

in contrast with previous versions of the code. Although it has always been a GPU-native

code, historically Cholla used an extreme version of the “offload” model of GPU program-

ming, keeping the “primary” data (like conserved variable arrays) in CPU memory, and

copying that data to the GPU to carry out computations before copying it back each time

step. Although this approach originally had the advantage of allowing larger grid sizes to be

computed on a single GPU when GPU memory sizes were extremely limited, as GPUs have

gotten dramatically faster and their memory capacity has increased over the last decade,

these full-grid copies between CPU and GPU memory would now dominate the simulation

run time. In addition, most new supercomputers, such as Frontier, have GPUs that are

directly connected to the network, so direct off-node GPU-to-GPU MPI communication is

now possible. Between these two factors it is much more efficient to store all the simulation

data on the GPU, and only move it back to the CPU for i/o operations. In the new version

of Cholla described in this work, all computations are carried out on the GPU, and MPI

communication proceeds directly from GPU memory buffers. The only functions that remain

on the CPU are the setting of the initial conditions, which only occurs once, and reading

and writing output files.At the time of writing, the HDF5 library does not support writing

files directly from GPU memory.

3.3.2 Performance portability

Cholla is written in C++ and CUDA, the C++ extension developed by NVIDIA. How-

ever, CUDA code can only be compiled using NVIDIA’s compiler nvcc for NVIDIA GPUs.

Thus, with the advent of AMD-based supercomputers like Frontier, the problem of code

portability becomes relevant. We approached this problem in two ways. First, AMD has

developed HIP, a cross platform equivalent to CUDA, which can be compiled using their

hipcc to target either NVIDIA or AMD hardware. Although porting Cholla’s CUDA code

35

to HIP did not prove challenging due to the extreme similarity between the two platforms,

rewriting the entire code base in HIP has the drawback of making it impossible to compile on

systems with NVIDIA GPUs that do not have HIP installed. Thus, we chose to employ a less

invasive modification: we introduced a header file (gpu.hpp) which uses C++ preprocessor

macros to convert between CUDA and HIP versions of functions at compile time. When

building the code, the user merely has to specify whether the compilation should use hipcc

or nvcc, and the code is compiled into HIP or CUDA accordingly. This method also has the

advantage of continuing to allow us to maintain a single code-base written in CUDA.

3.3.3 GPU reductions

There are several places in Cholla where a grid wide reduction must be performed. The

primary example is the calculation of the time step, which requires finding the minimum

crossing time in the full simulation grid. While CPU and MPI based reductions are rel-

atively simple to implement, often through library calls, the inherently parallel nature of

the GPU programming model makes GPU based reductions somewhat more complex. For

GPU reductions in Cholla, we use a method similar to that described by NVIDIA2 which

describe the challenges of a GPU reduction well. This reduction method uses atomics for the

final level of reduction. While this method is straightforward to implement in HIP, at the

time of writing, CUDA does not support floating point atomicMax. To work around this we

have adopted a method from the RAPIDS cuML library3 which, with some encoding, uses

the integral atomicMax. Overall this method performs slightly faster than Cholla’s previous

hybrid GPU+CPU reduction for the number of elements we typically encounter. Primarily

though, it is much simpler to use and performs dramatically better as the number of elements

increases.

2https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
3https://github.com/rapidsai/cuml/blob/dc14361ba11c41f7a4e1e6a3625bbadd0f52daf7/cpp/

src_prims/stats/minmax.cuh

36

https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://github.com/rapidsai/cuml/blob/dc14361ba11c41f7a4e1e6a3625bbadd0f52daf7/cpp/src_prims/stats/minmax.cuh
https://github.com/rapidsai/cuml/blob/dc14361ba11c41f7a4e1e6a3625bbadd0f52daf7/cpp/src_prims/stats/minmax.cuh

4.0 MHD Tests

In this Chapter, we show the results of a suite of test problems that demonstrate the

accuracy, robustness and performance of Cholla MHD. We have included many problems

that are common in the literature and specifically selected tests that are challenging for the

integrator and, when possible, have quantifiable measures of correctness for comparison to

other methods and codes. All of these problems are also included in our automated test

suite as either accuracy and/or regression system tests (see Chapter 5 for details). Section

4.1 discusses tests for accuracy, while Section 4.2 discusses the performance and scaling of

Cholla MHD.

4.1 Accuracy Tests

4.1.1 Linear Wave Convergence

The propagation of the four MHD linear waves provides an excellent quantitative measure

of the accuracy of a numerical MHD method. Our linear wave tests use a periodic domain

of 1.0 × 1.0 × 1.0 and a resolution of N × 16 × 16 where N goes from 16 to 512 in powers of

2. The wave equation is

q = q + ARw sin
2πx

λ
, (55)

where q is the conserved variable, q is the mean background state, A = 10−6 is the amplitude

of the wave, Rw is the right eigenvector in conserved variables for the wave mode w, x is

the position, and λ = 1 is the wavelength of the wave. The adiabatic index γ is 5/3 and the

background state is: ρ = 1.0, vx = vy = vz = 0 (except for the contact wave where vx = 1),

P = 1/γ, Bx = 1, By = 1.5, and Bz = 0. The right eigenvectors for this state are given in

Appendix A of [39].

The wave propagates for one period, after which the error is computed between the

37

initial and final state. First we compute the L1 norm, which is the absolute difference for

each conserved variable between the initial and final state:

δqs =
1

nxnynz

∑
i,j,k

| qfi,j,k,s − qii,j,k,s |, (56)

where qs is a specific conserved variable. We then compute the L2 norm of this vector of L1

norms as

|| δq ||=
√∑

s

(δqs)
2. (57)

These L2 errors are plotted in Figure 5 for both the PLM and PPM reconstructions. The

results are comparable to the results in [105] and demonstrate the expected second order

convergence. Using PPM improves the accuracy of the solution by approximately an order

of magnitude at any given resolution, but maintains the second order convergence due to

the second order nature of the integrator. We have implemented these tests in all three

directions with the waves moving in the positive or negative directions and find identical

results.

4.1.2 Circularly Polarized Alfvén Wave

The circularly polarized Alfvén wave is a non-linear wave that tests a code’s accuracy in

the non-linear regime with the quantitative benefits of a regular wave test [111]. The tests

use a periodic domain of 3.0× 1.5× 1.5 and a resolution of 2N ×N ×N where N goes from

8 to 256 in powers of 2. The wave is initialized at an oblique angle the grid, making this a

fully 3D test.

In a coordinate system aligned with the movement of the wave, the initial conditions are

ρ = 1.0, P = 0.1, vx = (0,−1) for traveling or standing waves respectively, vy = A sin 2πx
λ

,

vz = A cos 2πx
λ

, Bx = 1.0, By = A sin 2πx
λ

, and Bz = A cos 2πx
λ

, where the amplitude of the

wave A = 0.1 and the wavelength λ = 1.0. These coordinates are then transformed with the

rotation

38

101 102 103

10 10

10 9

10 8

10 7

L2
 E

rro
r

Slow Magnetosonic Wave
PLMC
PPMC
O(∆x2)

101 102 103

10 10

10 9

10 8

10 7

Fast Magnetosonic Wave
PLMC
PPMC
O(∆x2)

101 102 103

Resolution

10 10

10 9

10 8

10 7

L2
 E

rro
r

Alfvén Wave
PLMC
PPMC
O(∆x2)

101 102 103

Resolution

10 10

10 9

10 8

10 7

Entropy Wave
PLMC
PPMC
O(∆x2)

Figure 5: Linear Wave Convergence of all four MHD waves using PLM and PPM reconstruc-

tion. script link

x′ = x cosα cos β − y sin β − z sinα cos β

y′ = x cosα sin β + y cos β − z sinα sin β

z′ = x sinα + z cosα

39

https://github.com/bcaddy/caddy-et-al-2023/blob/a5d284c28192e6ae8b0c09e82f75a36456cf0ca6/python/linear-wave-convergence.py

with sinα = 2/3 and sin β = 1/
√

5. This ensures the domain is fully periodic through the

boundaries and the wave can travel (or stand) indefinitely. The magnetic fields are initialized

with the vector potential to ensure initial divergence is zero to round off. The waves are then

run for a single period and the L2 norm of the L1 error vector is plotted in Figure 6 using

the same method as in Section 4.1.1. It is interesting to note that the accuracy improvement

of PPM versus PLM seen for the linear waves is absent in this non-linear test.

These Alfvén waves are subject to a parametric instability [28], which should not be

present for these initial conditions. However, the truncation error will result in small varia-

tions in the magnetic pressure which drives low amplitude compression waves [106].

101 102 103

Resolution

10 4

10 3

10 2

10 1

L2
 E

rro
r

Standing Alfvén Wave
PLMC
PPMC
O(∆x2)

101 102 103

Resolution

10 4

10 3

10 2

10 1 Traveling Alfvén Wave
PLMC
PPMC
O(∆x2)

Figure 6: Circularly Polarized Alfvén Wave Convergence using PLM and PPM reconstruc-

tion. script link

4.1.3 Advecting Field Loop

The advecting field loop test consists of a tilted spherical current loop which travels

across the domain at an oblique angle to the grid. This test requires particularly accurate

balancing of the non-zero components of the induction equation. It also has zero magnetic

40

https://github.com/bcaddy/caddy-et-al-2023/blob/a5d284c28192e6ae8b0c09e82f75a36456cf0ca6/python/circularly-polarized-alfven-convergence.py

field outside the spherical current loop; as the current loops moves across the grid those cells

that are no longer in the loop should return to zero to within round off error. It is also a

good test of the dissipation of the magnetic field, as the magnetic pressure should remain

constant.

The initial conditions for this test are most easily described using the magnetic vector

potential, which is the vector quantity whose curl equals the magnetic field, B = ∇ × A.

The background state is ρ = 1.0, P = 1.0, vx = 1.0, vy = 1.0, vz = 2.0, Bx = 0, By = 0, and

Bz = 0.

In the central region the state is given by the following vector potential, which we have

chosen such that Ax = 0:

Ay = Az =

A (R− r) , for r < R

0, otherwise

(58)

where r is the Euclidean distance from the center of the domain, R = 0.3, and the amplitude

A = 10−3. Note that since the vector potential is along the vertices of the cells, Ay and

Az will never have the same value at the same position as they are not stored at identical

positions. The test is conducted on a grid of N×N×2N cells for N = (32, 64, 128, 256) with

a periodic domain of 1.0×1.0×2.0 centered at zero and evolved for two periods; tmax = 2.0.

Figure 7 shows the mean of cell centered B2, normalized to the initial value, in order to

demonstrate the convergence of the dissipation rate. The dissipation rate is comparable to

those found in the literature [106] and improves at approximately first order. Figure 7 also

shows the maximum divergence in the domain as a function of time. Throughout the entire

evolution it remains near round off and, after an initial rise, remains fairly constant. The

zero magnetic field region outside of the current loop also remains near zero throughout the

entire evolution of the problem. Figure 8 shows cross sections of the loop initial conditions

and after one period with a resolution of 128× 128× 256 cells. The shape is well maintained

with minimal dissipation.

41

0.0 0.5 1.0 1.5 2.0
Time

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
No

rm
ali

ze
d
〈 B

2
〉 E

vo
lut

ion

N=32
N=64
N=128
N=256

0.0 0.5 1.0 1.5 2.0
Time

10 17

10 16

10 15

Di
ve

rg
en

ce

N=32
N=64
N=128
N=256

Figure 7: Evolution of tilted spherical magnetic field loop through two full periods using

PPMC reconstruction. Mean of B2 normalized to the initial value as a function of time

(left) and the maximum divergence in the domain as a function of time (right). script link

4.1.4 MHD Riemann Problems

The typical Riemann problem setup uses a domain with a discontinuity at the midpoint

between two different states. As the problem evolves in time, the waves propagate along

characteristics such that the solution evolves self-similarly in time. All of Riemann problems

shown in this section employ a domain of 1 × 1 × 1 and resolution of 512 × 16 × 16 and

are run until the tmax which is specified for that particular problem. We use parabolic

reconstruction with limiting in the characteristic variables unless otherwise noted. All have

been run in all three spatial directions with both possible orientations of the two states and

achieved identical results. The details of each left and right state are given in Table 2.

42

https://github.com/bcaddy/caddy-et-al-2023/blob/a5d284c28192e6ae8b0c09e82f75a36456cf0ca6/python/advecting-field-loop.py

t= 0.0 t= 1.0 t= 0.0 t= 1.0

Figure 8: Cross sections of the spherical advecting field loop magnetic energy density at

t = 0.0 and one period. The first and second panels show a slice centered on the loop

through the plane of symmetry. The third and fourth panels show a slice along the x − z

plane. Note that these figures utilize PLMC reconstruction as PPMC introduced spurious

oscilations in the direction of advection. script link

4.1.4.1 Brio & Wu Shock Tube

Figure 9 shows the Brio & Wu Shock Tube [13] which is a staple test of MHD codes. This

Riemann problem is essentially the Sod shock tube [103] with a magnetic field. However,

this shock tube is an excellent stress test for PPM reconstruction, as methods higher than

second order tend to create large oscillations in the solution due to the slowly moving shock

waves. We have implemented both the PPM reconstruction algorithm used in the VL+CT

integrator from the method described in [106] as well as the method described in [34], and

find that the latter significantly reduces oscillations for this test. With PPM reconstruction,

we find oscillations in the solution when limiting in either the primitive or characteristic

variables. No oscillations are present when using PLM reconstruction.

43

https://github.com/bcaddy/caddy-et-al-2023/blob/c7902cfed2ae307727d6f623ab29b8c6b4921480/python/advecting-field-loop.py

Riemann Problem Initial Conditions.

Riemann Problem γ tmax Bx ρL PL vx,L vy,L vz,L By,L Bz,L

Brio & Wu 2 0.1 0.75 1 1 0 0 0 1 0

Dai & Woodward 5
3

0.2 2√
4π

1.08 0.95 1.2 0.01 0.5 3.6√
4π

2√
4π

Ryu & Jones 1a 5
3

0.08 5√
4π

1 20 10 0 0 5√
4π

0

Ryu & Jones 4d 5
3

0.16 0.7 1 1 0 0 0 0 0

Einfeldt Rarefaction 1.4 0.16 0 1 0.45 -2 0 0 0.5 0

Riemann Problem ρR PR vx,R vy,R vz,R By,R Bz,R

Brio & Wu 0.125 0.1 0 0 0 -1 0

Dai & Woodward 1 1 0 0 0 4√
4π

2√
4π

Ryu & Jones 1a 1 1 -10 0 0 5√
4π

0

Ryu & Jones 4d 0.3 0.2 0 0 1 1 0

Einfeldt Rarefaction 1 0.45 2 0 0 0.5 0

Table 2: The L/R subscripts indicate that it is the left/right state. Bx is always the same

in both states.

44

0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0
ρ

0.0 0.5 1.0

0.25

0.50

0.75

1.00

P
ga
s

0.0 0.5 1.0

1.0

1.5

2.0

E

0.0 0.5 1.0
0.2

0.0

0.2

0.4

0.6

V
x

0.0 0.5 1.0
1.5

1.0

0.5

0.0
V
y

0.0 0.5 1.0
0.4

0.2

0.0

0.2

0.4

V
z

0.0 0.5 1.0
Position

0.4

0.6

0.8

1.0

1.2

B
x

0.0 0.5 1.0
Position

1.0

0.5

0.0

0.5

1.0

B
y

0.0 0.5 1.0
Position

0.4

0.2

0.0

0.2

0.4
B
z

Figure 9: The Brio & Wu Shock Tube solution [13]. script link

4.1.4.2 Dai & Woodward Shock Tube

Figure 10 shows the Dai & Woodward Shock Tube (also called Ryu & Jones 2a) [25, 95]

which produces all seven possible MHD waves. From left to right they are: fast shock, Alfvén

45

https://github.com/bcaddy/caddy-et-al-2023/blob/4c9c5ef905902e54e50943d0a261bd5b08342225/python/shock-tubes.py

wave, slow shock, contact discontinuity, slow shock, Alfvén wave, and fast shock. This makes

it an excellent laboratory for checking that the full spread of wave modes are well resolved.

0.0 0.5 1.0
1.0

1.2

1.4

1.6

ρ

0.0 0.5 1.0
1.00

1.25

1.50

1.75

P
ga
s

0.0 0.5 1.0
2.5

3.0

3.5

4.0

4.5

E
0.0 0.5 1.0

0.0

0.5

1.0

V
x

0.0 0.5 1.00.2

0.1

0.0

0.1

0.2

V
y

0.0 0.5 1.0
0.0

0.2

0.4

V
z

0.0 0.5 1.0
Position

0.2

0.4

0.6

0.8

1.0

B
x

0.0 0.5 1.0
Position

1.0

1.2

1.4

1.6

B
y

0.0 0.5 1.0
Position

0.5

0.6

0.7

0.8

B
z

Figure 10: Dai & Woodward Shock Tube (also called Ryu & Jones 2a) solution [25, 95].

script link

46

https://github.com/bcaddy/caddy-et-al-2023/blob/4c9c5ef905902e54e50943d0a261bd5b08342225/python/shock-tubes.py

4.1.4.3 Ryu & Jones 1a Shock Tube

Figure 11 shows the Ryu & Jones 1a Shock Tube solution [95] which is a less common

test for MHD codes. However, in our experience, it is an excellent problem for debugging

due to its relatively simple structure, which is easy to examine manually. The lack of any

spikes and the presence of multiple types of strong shocks also make it a good diagnostic

test for over/undershoot of the solution near discontinuities.

4.1.4.4 Ryu & Jones 4d Shock Tube

Figure 12 shows the Ryu & Jones 4d Shock Tube solution [95] which features a switch-

on slow shock. Switch-on waves increase the strength of the transverse magnetic field while

reducing the thermal pressure to maintain energy conservation. This is a simplified example

of a type of magnetic field amplification and as such it is important to demonstrate that a

code can replicate it accurately. A switch-off wave does the inverse.

4.1.4.5 MHD Einfeldt Strong Rarefaction

Figure 13 shows the MHD Einfeldt Strong Rarefaction test [30] which creates a strong

outflow and central vacuum state. The diverging solution leads to an extremely strong and

fast rarefaction where the energy is dominated by kinetic energy and as such can often reveal

challenges for finite-volume methods with near-vacuum states, since some Riemann solvers

will return unphysical solutions with negative density or negative internal energy. High

values of the outflow velocity (Vout ≥ 3) can also lead to spurious oscillations in the solution.

Vout = 2 was chosen for this test [74]. Cholla performs well on this test with no spurious

oscillations or unphysical negative values.

4.1.5 MHD Blast Wave in a Strongly Magnetized Medium

Blast waves in different forms are excellent tests for hydrodynamics and MHD codes.

They combine strong shocked flows, smooth flows, and, in MHD, strong magnetic fields.

The results are qualitative rather than quantitative, but thoroughly test the robustness of

47

0.0 0.5 1.0
1

2

3

ρ

0.0 0.5 1.0
0

50

100

150

P
ga
s

0.0 0.5 1.0
50

100

150

200

E

0.0 0.5 1.0
10

5

0

5

10

V
x

0.0 0.5 1.0
0.4

0.2

0.0

0.2

0.4
V
y

0.0 0.5 1.0
0.4

0.2

0.0

0.2

0.4

V
z

0.0 0.5 1.0
Position

1.0

1.2

1.4

1.6

1.8

B
x

0.0 0.5 1.0
Position

2

3

4

5

B
y

0.0 0.5 1.0
Position

0.4

0.2

0.0

0.2

0.4
B
z

Figure 11: Ryu & Jones 1a Shock Tube solution [95]. script link

the algorithm and are excellent regression tests for automated testing (see Chapter 5). For

this test we use β = 0.2; like [105], we find instabilities if β is decreased by a factor of 10.

The background state is ρ = 1.0, P = 0.1, vx = 0.0, vy = 0.0, vz = 0.0, Bx = 1/
√

2,

By = 1/
√

2, Bz = 0.0, and the over pressure region is a central sphere of size R = 0.1

48

https://github.com/bcaddy/caddy-et-al-2023/blob/4c9c5ef905902e54e50943d0a261bd5b08342225/python/shock-tubes.py

0.0 0.5 1.0

0.4

0.6

0.8

1.0
ρ

0.0 0.5 1.0
0.2

0.4

0.6

0.8

1.0

P
ga
s

0.0 0.5 1.0

1.2

1.4

1.6

E

0.0 0.5 1.0
0.0

0.1

0.2

0.3

V
x

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8
V
y

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

V
z

0.0 0.5 1.0
Position

0.2

0.4

0.6

0.8

1.0

1.2

B
x

0.0 0.5 1.0
Position

0.00

0.25

0.50

0.75

1.00

B
y

0.0 0.5 1.0
Position

0.0

0.2

0.4
B
z

Figure 12: Ryu & Jones 4d Shock Tube solution [95]. script link

which has P = 10.0. The test is then run on a domain of 1 × 1.5 × 1 with a resolution of

200 × 300 × 200 cells until t = 0.2. Figure 14 shows contours of the density and magnetic

energy fields in an x−y slice through the center of the domain. The contours are smooth and

symmetric and show clear elongation of the blast wave rarefaction parallel to the magnetic

49

https://github.com/bcaddy/caddy-et-al-2023/blob/4c9c5ef905902e54e50943d0a261bd5b08342225/python/shock-tubes.py

0.0 0.5 1.00.00

0.25

0.50

0.75

1.00
ρ

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

P
ga
s

0.0 0.5 1.0
0

1

2

3

E

0.0 0.5 1.0
2

1

0

1

2

V
x

0.0 0.5 1.0
0.4

0.2

0.0

0.2

0.4
V
y

0.0 0.5 1.0
0.4

0.2

0.0

0.2

0.4

V
z

0.0 0.5 1.0
Position

0.4

0.2

0.0

0.2

0.4

B
x

0.0 0.5 1.0
Position

0.0

0.2

0.4

B
y

0.0 0.5 1.0
Position

0.4

0.2

0.0

0.2

0.4
B
z

Figure 13: MHD Einfeldt Strong Rarefaction solution [30]. script link

field. The blast wave propagates slowly parallel to the magnetic field but much more rapidly

perpendicular to the magnetic field.

50

https://github.com/bcaddy/caddy-et-al-2023/blob/4c9c5ef905902e54e50943d0a261bd5b08342225/python/shock-tubes.py

Density Magnetic Energy

Figure 14: Contour plot of the MHD blast wave test at t = 0.2. 30 evenly spaced contours

are shown in an x− y slice through the center of the domain. script link

4.1.6 Orszag-Tang Vortex

The Orszag-Tang vortex is a standard 2D MHD test from [81]. While it does not provide

a quantitative measure of accuracy like the linear wave tests or a test of the robustness of

the method like the MHD blast wave, it does have a very complex flow that is sensitive to

changes in the integrator, making it ideal for regression testing.

The test was conducted on a periodic domain of 1×1×1 with a resolution of 192×192×192

cells until t = 0.5 with the following initial conditions: ρ = 25/ (36π), P = 5/ (12π), vx =

sin 2πy, vy = − sin 2πx, vz = 0.0, Ax = 0.0, Ay = 0.0, Az = (B0/4π) (cos 4πx + 2 cos 2πy),

51

https://github.com/bcaddy/caddy-et-al-2023/blob/8f5051180971c6d63423db42e05c3d1fa1ec9785/python/blast-wave.py

with B0 = 1
√

4π. The results, plotted in Figure 15, can be compared directly to Figure 22

in [106] as a qualitative check for correctness of the flow structure.

Density Magnetic Energy

Gas Pressure Specific Kinetic Energy

Figure 15: Contour plot of the Orszag-Tang Vortex at t = 0.5. Thirty evenly spaced contours

are shown for each plot in an x− y slice through the center of the domain. script link

52

https://github.com/bcaddy/caddy-et-al-2023/blob/8f5051180971c6d63423db42e05c3d1fa1ec9785/python/orszag-tang-vortex.py

4.2 MHD Performance Tests

Given that Cholla is a massively parallel code, its scaling properties warrant discussion.

Our primary focus is on weak scaling rather than strong scaling, since good weak scaling

enables much larger problems to be simulated, while strong scaling can lead to reducing the

number of cells per GPU to the point where the whole GPU cannot be utilized, which will

significantly impact performance. Results of our weak scaling tests are shown in Figure 16,

while strong scaling is shown in Figure 17.

All of the weak scaling tests shown were performed with a slow magnetosonic wave

perturbation (described in Section 4.1.1), periodic boundary conditions, in double precision,

and with 4593 cells per MPI rank; each rank is assigned one GPU. We employ the second

order piecewise linear reconstruction method with limiting in the characteristic variables.

The wave is evolved for 100 time steps (a wall-clock time of ∼ 45 seconds) and the resulting

time per step is averaged over the total number of time steps, excluding setup and tear

down time. Strong scaling tests are performed with the same problem, though the wave is

run through one full period, ∼ 6100 time steps to ensure that it runs for a non negligible

wall-clock time when large numbers of GPUs are utilized. The strong scaling test uses 4593

cells, the most we can fit on a single MI250X GCD.

Our scaling tests were performed on the Frontier Supercomputer at the Oak Ridge Lead-

ership Computing Facility. Frontier utilizes AMD MI250X GPUs, each of which contains

two Graphics Compute Dies (GCDs) that largely function as separate GPUs and can be

treated as such in software. Thus, for the sake of clear comparison to other systems, we will

refer to each GCD as a single GPU for the remainder of this paper.

On Frontier Cholla updates 2.36 × 108 cells per second per GPU when running with a

single GPU. The single-GPU performance is comparable on NVIDIA hardware: an NVIDIA

V100 GPU achieved 160 million cell updates per second, and an A100 achieved 259 million

cell updates per second. On 74,088 GPUs, nearly the entirety of Frontier, Cholla performs

1.89 × 108 cell updates per second per GPU, with a weak scaling efficiency of 82.2%. The

74,088 GPU run updated a total of 1.40×1013 cells per second on a total grid size of 19, 2783

cells. This performance is comparable to other similar optimized GPU codes (see e.g. Figures

53

9 and 10 in [47]).1

Cholla’s strong scaling performance (Figure 17) is close to ideal up to 32 GPUs (80%

strong scaling efficiency) and does not drop below 50% until 256 GPUs. Strong scaling

plateaus at around 512 GPUs, where the problem size per GPU is 583 cells. Running with

a typical number of cells (1283 − 2563) to balance wall-time versus efficiency, we suffer at

most a ≈ 55% drop in efficiency. (In this strong scaling plot the closest problem size to 1283

is the 64 GPU test, which has 1153 cells per GPU and a strong scaling efficiency of 67.2%)

With a single MPI rank there is negligible communication overhead as no halo cells need

to be exchanged between GPUs; the only boundary update required is to copy halo cell values

from one location in GPU memory to another. This update is very fast, and accounts for

∼ 0.6% of total runtime on a single rank. As the number of ranks grows the MPI overhead

quickly stabilizes at around 15ms with a moderate increase when running on the full size of

Frontier. Perhaps most importantly, the VL+CT integrator scales almost perfectly and takes

up most of the time on each time step, dominating over the MPI communication time by

nearly a factor of 10. The very slightly imperfect weak scaling of the integrator, which has no

MPI communication, is due to GPU-to-GPU variance; as the number of GPUs increases the

standard deviation in runtime for a single time step increases. Since all processes must wait

for the slowest one to complete before beginning the next boundary exchange, this naturally

leads to a few percent decrease in efficiency on these scales. Overall these tests demonstrate

that Cholla has excellent weak scaling up to the full size of Frontier, over 74,000 GPUs.

1Note that the weak scaling plots in [47] are normalized to single node performance, not single GPU
performance, and they report performance for a 2nd order hydrodynamic solver, not MHD.

54

101 103 105

Number of GPUs
0%

20%

40%

60%

80%

100%

W
ea

k S
ca

lin
g

Ef
fic

ien
cy

101 103 105

Number of GPUs

0

20

40

60

80

100

120

M
illi

se
co

nd
s /

 25
6

3
 C

ell
s /

 G
PU

Total runtime (excluding initialization)
MPI Communication
MHD Integrator

Figure 16: Weak scaling performance of Cholla MHD. When running on a single GPU Cholla

updates 2.04 × 108 cells per second per GPU; the largest run with 74,088 GPUs updates

1.67 × 108 cells per second per GPU, a weak scaling efficiency of 82.2%. The 74,088 GPU

run updates a total of 1.24 × 1013 cells per second. script link

55

https://github.com/bcaddy/caddy-et-al-2023/blob/5bcde40653b1a376f7424eb0ccdc412608978157/python/scaling_plots.py

100 101 102 103

Number of GPUs

100

101

102

103

Sp
ee

du
p

(v
s.

sin
gle

 G
PU

)

Total Runtime (excluding initialization)
Ideal Scaling

Figure 17: Strong scaling performance of Cholla MHD with a problem size of 4593 cells.

script link

56

https://github.com/bcaddy/caddy-et-al-2023/blob/c7902cfed2ae307727d6f623ab29b8c6b4921480/python/scaling_plots.py

5.0 Automated Testing & Continuous Integration

As Cholla has continued to grow in complexity, and with the continued addition of large

new physics modules like MHD that require changes to much of the code base, the need

for a more robust, automated testing system has become increasingly apparent. Several

challenges exist in implementing such a system for Cholla - not only must the testing system

accommodate GPU hardware, but it must also work on large parallel systems like Frontier.

We have addressed this need in three primary steps: 1) Choosing a testing framework for

unit tests, 2) Writing the software tools needed to extend that testing framework for Cholla’s

needs, and 3) adding automated testing as part of a continuous integration (CI) pipeline

that runs whenever anyone submits a pull request to the Cholla GitHub repository. This

Chapter describes the implementation of our automated testing and continuous integration

framework.

Taken together, the ability to add tests for any part of the code and their automated

running on every pull request has meant that new features are faster and easier to add to

Cholla with confidence. Errors or changes that may otherwise break older code are often

caught by the tests before they ever make it into the code base.

5.1 Unit Testing Framework

Three main kinds of tests are needed for scientific code bases: unit tests, integration

tests, and system tests (also called “end-to-end” tests). Unit tests check a single “unit” of

code, i.e. a single function, class method, data structure, etc. Integration tests check how

units of code operate together; for example, a test of the HLLD solver is an integration test

because the solver internally calls many different functions and uses multiple different data

structures. System tests check the entire code base, often with a simple test problem like

a Riemann problem or linear wave, and verify that the entire program produces the correct

output.

57

We chose GoogleTest1 for the unit testing framework due to its large number of features,

general popularity, and relative ease of use. Another primary requirement was a testing

framework that supports “death tests”, i.e. tests that check if the internals of the test

crash/segfault/etc. Since Cholla, like many high performance computing (HPC) codes, han-

dles errors by reporting those errors and then exiting, a testing framework that can handle

code crashes without crashing the tests as well is critical. GoogleTest is available already

built on many HPC systems and, if it is not available, can be built as an optional part of

the test running script.

5.2 Extensions for Cholla

Two primary extensions were required for fully testing Cholla: a robust method for

comparing floating point numbers and a way to run system tests.

5.2.1 Floating Point Comparisons

In order to run either unit tests or system tests, the code must have a robust method

for comparing floating point numbers for equality. Comparing floating point numbers for

equality is notoriously challenging and generally the exact comparison method that should

be used varies by application[45, 76]2. Absolute comparisons (|a − b| < X) work well for

small numbers, but with larger numbers the difference between two successive floats can

be much larger than a typical value for X and therefore a different comparison method is

required. We chose a hybrid method of both an absolute comparison and a Units in Last

Place (ULP) comparison. A ULP comparison determines how many representable floating

point numbers there are between any two floats. By default the hybrid method we employ

first performs an absolute check, |a− b| < 10−14. This number was chosen as we found that

typical differences in the Sod Shock Tube solution when comparing results with different

hardware and compilers resulted in differences of ∼ 5 × 10−15. After the absolute check a

1https://github.com/google/googletest
2https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

58

https://github.com/google/googletest
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

ULP check is performed with a maximum allowed error of 4. If either check passes then

the numbers are deemed to be “equal”. Having a robust method to compare floating point

numbers is critical since the output of a code is not guaranteed to be bitwise identical when

the code is compiled with different compilers, run on different systems, etc.

5.2.2 System Tests

GoogleTest provides most of the tools required to run unit and integration tests, but

validating the results of an entire system test requires additional infrastructure. Running a

system test requires launching the program to test with correct initial conditions, checking

that the program did not crash, loading both the generated data to test and the fiducial

data, then comparing those two data sets. In order to perform system tests with Cholla, we

added a class that performs all of the required tasks, which include launching Cholla with

any number of MPI ranks as well as comparing the results against fiducial data. To facilitate

running across a wide range of MPI ranks and on clusters with queue systems, the class is

designed to allow system tests to be run in different modes: one can either launch Cholla and

save the results, compare already existing test data to fiducial data, or do both. This enables

the user to run Cholla on many thousands of ranks then later launch a separate job to make

the actual comparison. We have found that on up to 10,000 ranks, with small simulation

grids (typically < 643 cells) per rank the latter comparison only takes a few minutes on a

single CPU core. Most of the time, however, both steps can be run within the same job,

since large tests with many ranks are not required for most development work.

Two primary methods of comparison are used to determine the success of a system test.

These are either a direct cell-by-cell comparison of the results for each field using the floating

point comparison tools described above (Section 5.2.1), or a calculation of the L2 norm of the

L1 error vector as described in Section 4.1.1. The cell-by-cell comparison is quite accurate,

but can be fragile on some complex tests if a small number of cells have errors that are

slightly larger than typical, which can lead to false failures when comparing results between

systems or compilers. The L2 norm method is less fragile to small errors in a handful of cells,

but is generally less sensitive, so we only use it on the tests where it is required, namely the

59

MHD blast wave (subsection 4.1.5) and advecting field loop (subsection 4.1.3).

5.3 Automated Testing

To ensure that these tests are run regularly and all new code is tested we have made the

existing tests as easy to run as possible, and we require that they are all run automatically on

each pull request. To facilitate this, Cholla’s build directory includes a script which performs

all required setup, installs GoogleTest (if requested), builds Cholla, and then runs all the

tests. The script also includes a function that combines all of these into a single function

call for ease of use, for example, if a user is running tests manually (say, prior to submitting

a PR).

Implementing automated testing for HPC codes is not always an easy task. Automated

tests are an aspect of Continuous Integration (CI) – the practice of automating the addition

of code changes and additions from a team of developers into a software project. Cholla is

currently designed to run on CUDA or HIP capable GPUs, so GPU hardware is required in

order to incorporate continuous integration (CI), something that few current CI services offer

at a reasonable cost for academic users. Many of Cholla’s physics modules are turned on and

off at compile time, which presents another challenge, since not all code will be tested for

every compilation configurations. Similarly, we need to be able to ensure that Cholla works

properly on both AMD and NVIDIA GPUs, which require different compilation targets. This

means that there is no single binary file that contains all of Cholla. Instead we have multiple

“builds” that each require testing. While this does result in a high performance executable

that only contains the necessary code, it makes testing the code much more complex due to

the number of possible build configurations.

Our solution to these issues was to use a mix of two different systems. When a pull request

is submitted to the Cholla GitHub repository several jobs are launched: A GitHub Actions3

job to check code formatting, a GitHub Actions matrix job to build all the HIP/AMD builds

3https://github.com/features/actions

60

https://github.com/features/actions

using a Docker container, and a Jenkins4 matrix job running on local hardware that runs

the CUDA/NVIDIA builds, tests, and static analyzers. Thus, every common configuration

of Cholla is built with both CUDA and HIP on every pull request and the CUDA builds are

also tested to ensure that no existing or new tests fail.

4https://www.jenkins.io

61

https://www.jenkins.io

6.0 Summary

We have presented the MHD extension to Cholla, a massively parallel, GPU native,

astrophysical simulation code. MHD in Cholla uses the Van Leer plus Constrained Transport

MHD integrator (VL+CT) [105], the HLLD Riemann solver [75], and includes multiple

high order reconstruction methods to model numerical solutions to the Eulerian ideal MHD

equations on a static mesh.

We showed the modifications required to implement MHD on GPUs compared to CPUs

and discussed challenges working within the limits of GPUs in Section 3.3. One major chal-

lenge was moving computational work and data storage from the CPU to the GPU. Previous

versions of Cholla did some of the computation on the CPU and used CPU memory to ef-

fectively expand GPU memory. This required regularly copying data between the CPU and

the GPU which became a performance bottleneck. The current version of Cholla maintains

all the data, and the vast majority of the work, on the GPU which has led to a considerable

speedup. As demonstrated in Section 4.2, these optimizations combined with the highly par-

allel nature of GPUs make MHD in Cholla extremely fast, with 259 million cell updates per

GPU-second when running on a single NVIDIA A100. Cholla also demonstrates excellent

weak scaling, and achieves a weak scaling efficiency of 80% when scaled up to 74,088 GPUs

on Frontier which utilizes AMD MI250X GPUs; with a total of 14.0 trillion cell updates per

second (see Figure 16).

We have also presented a suite of canonical MHD tests in Chapter 4. These tests demon-

strate the accuracy of Cholla across a broad range of problems. They also demonstrate

that the VL+CT MHD algorithm does an excellent job of maintaining the divergence free

condition even in highly challenging settings.

To accommodate the increasing complexity of Cholla and facilitate multiple simultaneous

development efforts, we have also added a structured testing framework, described in Chapter

5. This framework is based on GoogleTest, augmented with custom testing tools. This

approach enables running tests that range from single function unit tests to massively parallel

system tests across the scale of an entire cluster within the same framework. We have further

62

integrated these tests with GitHub Actions to run formatting, static analysis, and builds with

various physics configurations along with Jenkins running on local resources.

Cholla is free and open source software available at https://github.com/cholla-hydro/

cholla. In general, Cholla is designed to be flexible and modular, and can be run with or

without the new MHD module. In addition, the Cholla framework can easily accommodate

additional physics modules in the future, some of which are in progress. We welcome new

development efforts, and hope that this work will be a resource for the broader astrophysics

simulation community.

6.1 Application of Cholla MHD

One potential application of Cholla-MHD is to perform a series of global galaxy sim-

ulations similar to the CGOLS suite[99] but with the inclusion of MHD. The goal would

be to study how magnetic draping of cold clouds in the CGM impacts their survival, size,

velocity, and overall dynamics of the CGM. Magnetic draping is when an object, in this case

a cold cloud, moves super-Alfénically through a magnetic field and sweeps up a substantial

magnetic layer which is “draped” over the cloud. This strong magnetic layer can inhibit

thermal conduction and mixing, potentially allowing a draped cloud to survive much longer

in a hot wind. While this phenomenon has been studied in idealized cloud-wind simulations

[2, 49, 14, 57] and, very recently, in cosmological simulations [93], it has never been studied

in high resolution in galactic outflow simulations. The results of cloud-wind simulations

depend strongly on the initial orientation of the magnetic field. In Cholla-MHD simulations

the magnetic fields in the clouds would not be set as part of the initial conditions but would

instead arise organically through the dynamics of the disk and CGM, leading to much more

realistic launching conditions of the outflows. While the cosmological simulations have sim-

ilar in situ magnetic field orientations, their physical resolution is much lower due to the

larger regions being simulated. We would be able to run a 1 trillion cell simulation while

utilizing approximately half to 2/3rds of Frontier, which would allow us to simulate cloud

launching and the impact of magnetic draping with realistic in situ magnetic fields and very

63

https://github.com/cholla-hydro/cholla
https://github.com/cholla-hydro/cholla

high resolution in the CGM. The initial conditions we would follow the CGOLS initial con-

ditions with the addition of a magnetic field. The CGOLS simulations initial conditions

are:

• Domain: (Lx, Ly, Lz) = (10kpc, 10kpc, 20kpc)

• Disk: A disk of isothermal gas at 104K with an exponential surface density of profile and

a central surface density of 150M⊙pc−2

• Halo Gas: A hot static halo in hydrostatic equilibrium

• Gravity: A constant gravitational potential for the dark matter halo using the Navarro-

Frenk-White profile

• Magnetic Fields: Varying depending on the simulation in the suite. See below.

In addition to MHD we would use several of the other physics modules in Cholla to

accurately simulate a galaxy; namely:

• Feedback: A stellar feedback model based on Kim & Ostriker 2015 [64] which injects

energy or momentum into the ISM.

• Gravity: In addition to the static dark matter gravitational potential, an FFT based self

gravity for the baryonic gas. This is a major departure from the CGOLS simulations

which utilize a static potential for both the dark matter and the baryonic gas.

• Cooling: A simple radiative cooling model based on Cloudy [35]

• Dual Energy: Given the extremely high velocities of gas in the outflow, tracking the

internal energy of the gas separately from its kinetic energy significantly improves accu-

racy.

We could then run a suite of simulations with various magnetic field strengths and

morphologies to examine the impact on the morphology and dynamics of the CGM: A

“baseline” or “control” simulation run with MHD turned on but with the magnetic field set

to zero to compare the versions with magnetic fields to and two simulations with magnetic

fields. Both simulations with magnetic fields would have initial magnetic field with a strength

similar to what is observed in starburst galaxies like M82, ≈ 50 − 100µG. The first MHD

simulation would have a a simple initial magnetic field with the field perpendicular to the

64

disk. We do not expect the initial strength or morphology of the initial magnetic field to

have a significant impact on the morphology or relative growth rate of the magnetic field

after the first ≈ 25Myrs of evolution [70, 37]. However, we are interested in studying the

dynamics of an evolved galaxy, not the evolution of the galaxy, and those dynamics can be

significantly impacted by the dynamics in the first ≈ 25Myrs of a simulation. As such we

would want to run a second simulation with a turbulent initial magnetic field and contrast

it with the simple magnetic field to see if the initial conditions of the magnetic field have a

significant impact. These simulations would allow us to examine the role of magnetic fields

in galactic outflows and specifically what the impact, if any, magnetic draping plays in cloud

survival, growth, acceleration, and morphology.

65

Appendix HLLD MHD Riemann Solver

This is a brief summary of the HLLD Riemann solver I implemented into Cholla. The

HLLD Riemann solver was originally introduced in [75] and since then has become the stan-

dard Riemann solver for MHD. It is very similar in structure to the existing HLLC Riemann

solver with the inclusion of magnetic fields and the additional MHD waves that they bring.

Note that this is an approximate Riemann solver and one of the primary approximations is

that it neglects the slow magnetosonic wave. Nonetheless, the tests is Section 4 show that

it can accurately approximate the slow magnetosonic wave (see Section 4.1.1) and even slow

switch-on shocks (see the Ryu & Jones 4D shock tube in Section 4.1.4).

The HLLD Riemann solver operates in one of six states, the left/right states, the

left/right star states, and the left/right double star states. Throughout this discussion

the state of a specific variable will be indicate with an subscript to indicate left/right, no

superscript to indicate the non-star state, a single asterisk superscript to indicate the star

state, and a double asterisk superscript to indicate the double star state, all other variable

definitions are consistent with earlier definitions.

A.1 Compute Acoustic & Contact Wave Speeds

The first step is to compute the SL, S
∗
L, SM , S∗

R, andSR wave speeds. These wave speeds

are approximations to the speeds of the left and right moving fast magnetosonic waves (SL

and SR), the left and right moving Alfvén wave speeds (S∗
L and S∗

R), and the speed of the

contact wave (SM). These wave speeds are used to choose the state of the Riemann solver

which in turn determines the correct fluxes.

66

A.1.1 Computing SL and SR

We can use either of the below approximations for SL and SR (there are other options

as well, these were just the two given in [75]).

SL = min(λmin(U⃗L), λmin(U⃗R)) (59)

SR = max(λmax(U⃗L), λmax(U⃗R)) (60)

Where λmin is the smallest eigenvalue and λmax is the largest.

or

SL = min(vx,L, vx,R) − max(cf,L, cf,R) (61)

SR = max(vx,L, vx,R) + max(cf,L, cf,R) (62)

Where cf,L and cf,R are the fast magnetosonic wave speeds in the left and right cells

respectively. In Cholla we use Equations 61 and 62 to compute the approximate wave

speeds as we have founds them slightly more stable and simpler to implement.

A.1.2 Computing S∗
L and S∗

R

Note that the second term is the Alfvén speed in the star state.

S∗
L = SM − | Bx |√

ρ∗L
(63)

S∗
R = SM +

| Bx |√
ρ∗R

(64)

where

ρ∗k = ρk
Sk − vx,k
Sk − SM

(65)

67

A.1.3 Computing SM

SM =
ρRvx,R (SR − vx,R) − ρLvx,L (SL − vx,L) + pTL

− pTR

ρR (SR − vx,R) − ρL (SL − vx,L)
(66)

A.2 Determine the State

Use the equation below with the wave speeds to determine the state of the Riemann solver

and the next three sections handle the non-star, star, and double star states respectively.

F⃗HLLD =

F⃗L if 0 < SL

F⃗ ∗
L if SL ≤ 0 < S∗

L

F⃗ ∗∗
L if S∗

L ≤ 0 < SM

F⃗ ∗∗
R if SM ≤ 0 < S∗

R

F⃗ ∗
R if S∗

R ≤ 0 ≤ SR

F⃗R if SR < 0

(67)

A.3 Compute & Return the Fluxes

A.3.1 FL or FR State

This is the region outside of the fast magnetosonic wave. The fluxes are:

68

F⃗k =

ρkvx,k

ρkv
2
x,k + pT,k −B2

x,k

ρvx,kvy,k −Bx,kBy,k

ρvx,kvz,k −Bx,kBz,k

0

By,kvx,k −Bx,kvy,k

Bz,kvx,k −Bx,kvz,k

vx,k (Ek + pT,k) −Bx,k

(
v⃗k · B⃗k

)
.

(68)

A.3.2 F ∗
L or F ∗

R State

This is the region between the fast magnetosonic waves and the Alfvén waves. These

fluxes are more complicated and require the use of the fluxes from the non-star state as well.

The algorithm is exactly the same for the left and right star states so the subscript k is used

to indicate R or L.

F⃗ ∗
k = F⃗k + Sk

(
U⃗∗
k − U⃗k

)
(69)

and we find the components of U⃗∗
k with the following equations. ρ∗k was already computed

when finding S∗
k and v∗x,k = SM .

Pressure is a bit more complicated. [75] show that, under their assumptions, p∗T,L =

p∗∗T,L = p∗T,R = p∗∗T,R = p∗T = p∗∗T

p∗T = pT,L + ρL (SL − vx,L) (SM − vx,L) = pT,R + ρR (SR − vx,R) (SM − vx,R) (70)

They also note that

p∗T =
ρRpTL

(SR − vx,R) − ρLpTR
(SL − vx,L) + ρLρR (SR − vx,R) (SL − vx,L) (vx,R − vx,L)

ρR (SR − vx,R) − ρL (SL − vx,L)
.

(71)

And so

69

E∗
k =

Ek (Sk − vx,k) − pT,kvx,k + p∗TSM + Bx

(
v⃗k · B⃗k − v⃗∗k · B⃗∗

k

)
Sk − SM

. (72)

We can find the y and z components of v⃗ and B⃗ with the following equations. Note

these equations can give a term that is 0
0

if SM = vx,k, Sk = vx,k ± cf,k, By,k = Bz,k = 0, and

B2
x ≥ γpk. If this is the case then there is no shock across Sk, so set v⃗∗k = v⃗k, By,k = Bz,k = 0,

ρ∗k = ρk, and p∗T,k = pT,k.

v∗j,k = vj,k −BxBj,k
SM − vx,k

ρk (Sk − vx,k) (Sk − SM) −B2
x

(73)

B∗
j,k = Bj,k

ρk (Sk − vx,k)2 −B2
x

ρk (Sk − vx,k) (Sk − SM) −B2
x

(74)

Note that the denominators are the same.

A.3.3 F ∗∗
L or F ∗∗

R State

This is the region between the Alfvén waves and the contact discontinuity (entropy wave).

These fluxes require the fluxes from both the previous steps. The algorithm is exactly the

same for the left and right star states so the subscript k is once again used to indicate R or

L.

F⃗ ∗∗
k = F⃗ ∗

k + S∗
k

(
U⃗∗∗
k − U⃗∗

k

)
(75)

We already know some of the state variables from previous computations

v∗∗x,k = SM (76)

p∗∗T = p∗T (77)

ρ∗∗k = ρ∗k (78)

So all we need to compute directly is v∗∗y , v∗∗z , B∗∗
y , B∗∗

z , and E∗∗
k

70

v∗∗j =
v∗j,L
√

ρ∗L + v∗j,R
√
ρ∗R +

(
B∗

j,R −B∗
j,L

)
sign (Bx)√

ρ∗L +
√

ρ∗R
(79)

B∗∗
j =

B∗
j,R

√
ρ∗L + B∗

j,L

√
ρ∗R +

(
v∗j,R − v∗j,L

)√
ρ∗Lρ

∗
Rsign (Bx)√

ρ∗L +
√

ρ∗R
(80)

Note that the denominators are the same as is one of the coefficients in each term in the

numerator.

Lastly we compute the energy (the minus and plus correspond to the L and R side

respectively)

E∗∗
k = E∗

k ∓
√

ρ∗k

(
v⃗∗k · B⃗∗

k − v⃗∗∗k · B⃗∗∗
k

)
sign (Bx) (81)

71

Bibliography

[1] Ann Almgren, Maria Sazo, John Bell, Alice Harpole, Max Katz, Jean Sexton, Donald
Willcox, Weiqun Zhang, and Michael Zingale. CASTRO: A Massively Parallel Com-
pressible Astrophysics Simulation Code. Journal of Open Source Software, 5(54):2513,
October 2020.

[2] W. E. Banda-Barragán, E. R. Parkin, C. Federrath, R. M. Crocker, and G. V. Bick-
nell. Filament formation in wind-cloud interactions - I. Spherical clouds in uniform
magnetic fields. Monthly Notices of the Royal Astronomical Society, 455(2):1309–1333,
January 2016.

[3] W. E. Banda-Barragán, E. R. Parkin, C. Federrath, R. M. Crocker, and G. V. Bicknel.
Filament formation in wind-cloud interactions - I. Spherical clouds in uniform mag-
netic fields. Monthly Notices of the Royal Astronomical Society, 455(2):1309–1333,
2016. Publisher: Oxford University Press.

[4] Wladimir Banda-Barragán, Christoph Federrath, Roland Crocker, and Geoffrey Bick-
nell. Filament formation in wind-cloud interactions. II. Clouds with turbulent density,
velocity, and magnetic fields. MNRAS, 473:3454–3489, June 2017.

[5] Paul Batten, Nicholas Clarke, Claire Lambert, and Derek M Causon. On the choice
of wavespeeds for the hllc riemann solver. SIAM Journal on Scientific Computing,
18(6):1553–1570, 1997.

[6] K. Beck. Embracing change with extreme programming. Computer, 32(10):70–77,
1999.

[7] Rainer Beck. Magnetic fields in spiral galaxies. The Astronomy and Astrophysics
Review, 24(1):4, December 2016.

[8] Rainer Beck, Axel Brandenburg, David Moss, Anvar Shukurov, and Dmitry Sokoloff.
GALACTIC MAGNETISM: Recent Developments and Perspectives. Annual Review
of Astronomy and Astrophysics, 34(1):155–206, September 1996.

[9] Dave Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. To camelcase or
under score. In 2009 IEEE 17th International Conference on Program Comprehension,
pages 158–167, 2009.

[10] Roger Blandford, David Meier, and Anthony Readhead. Relativistic jets from active
galactic nuclei. Annual Review of Astronomy and Astrophysics, 57(1):467–509, 2019.

[11] Jeremiah U Brackbill and Daniel C Barnes. The effect of nonzero ∇·b on the numerical
solution of the magnetohydrodynamic equations. Journal of Computational Physics,
35(3):426–430, 1980.

72

[12] Axel Brandenburg and Evangelia Ntormousi. Galactic dynamos. Annual Review of
Astronomy and Astrophysics, 61(1):561–606, 2023.

[13] M Brio and C C Wu. An Upwind Differencing Scheme for the Equations of Ideal
Magnetohydrodynamics. JOURNAL OF COMPUTATlONAL PHYSICS, 75:40–422,
1988.

[14] Marcus Brüggen, Evan Scannapieco, and Philipp Grete. The Launching of Cold
Clouds by Galaxy Outflows. V. The Role of Anisotropic Thermal Conduction. The
Astrophysical Journal, 951(2):113, July 2023.

[15] Marcus Brüggen, Evan Scannapieco, and Philipp Grete. The Launching of Cold
Clouds by Galaxy Outflows. V. The Role of Anisotropic Thermal Conduction. The
Astrophysical Journal, 951(2):113, July 2023.

[16] Tobias Buck, Christoph Pfrommer, Rüdiger Pakmor, Robert J J Grand, and Volker
Springel. The effects of cosmic rays on the formation of Milky Way-mass galax-
ies in a cosmological context. Monthly Notices of the Royal Astronomical Society,
497(2):1712–1737, September 2020.

[17] D. Bégué, A. Pe’er, G.-Q. Zhang, B.-B. Zhang, and B. Pevzner. cuHARM: A New
GPU-accelerated GRMHD Code and Its Application to ADAF Disks. The Astrophys-
ical Journal Supplement Series, 264(2):32, February 2023.

[18] Yann Carteret, Abhijit B. Bendre, and Jennifer Schober. Observational Signatures of
Galactic Turbulent Dynamos, August 2022. arXiv:2208.14178 [astro-ph].

[19] T K Chan, D Kereš, P F Hopkins, E Quataert, K-Y Su, C C Hayward, and C-A
Faucher-Giguère. Cosmic ray feedback in the FIRE simulations: constraining cosmic
ray propagation with GeV γ-ray emission. Monthly Notices of the Royal Astronomical
Society, 488(3):3716–3744, September 2019.

[20] Paul Charbonneau. Solar dynamo theory. Annual Review of Astronomy and Astro-
physics, 52(1):251–290, 2014.

[21] Phillip Colella. Multidimensional upwind methods for hyperbolic conservation laws.
Journal of Computational Physics, 87(1):171–200, March 1990.

[22] Phillip Colella and Paul R Woodward. The Piecewise Parabolic Method (PPM) for
gas-dynamical simulations. Journal of Computational Physics, 54(1):174–201, April
1984.

[23] R Courant, K Friedrichs, and H Lewyt. On the Partial Difference Equations of Math-
ematical Physics. IBM Journal, March 1967.

[24] Robert K. Crockett, Phillip Colella, Robert T. Fisher, Richard I. Klein, and Christo-
pher F. McKee. An unsplit, cell-centered godunov method for ideal mhd. Journal of
Computational Physics, 203(2):422–448, 2005.

73

[25] Wenlong Dai and Paul R Woodward. On The Diverrgence-Free Condition and Conser-
vation Laws in Numerical Simulations for Supersonic Magnetohydrodynamic Flows.
THE ASTROPHYSICAL JOURNAL, 494:317–335, 1998.

[26] Shane W. Davis and Alexander Tchekhovskoy. Magnetohydrodynamics simulations of
active galactic nucleus disks and jets. Annual Review of Astronomy and Astrophysics,
58(1):407–439, 2020.

[27] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg.
Hyperbolic Divergence Cleaning for the MHD Equations. Journal of Computational
Physics, 175(2):645–673, January 2002.

[28] L. Del Zanna, M. Velli, and P. Londrillo. Parametric decay of circularly polarized
Alfvén waves: Multidimensional simulations in periodic and open domains. Astronomy
& Astrophysics, 367(2):705–718, February 2001.

[29] C. L. Dobbs and D. J. Price. Magnetic fields and the dynamics of spiral galaxies:
Magnetic fields and spiral galaxies. Monthly Notices of the Royal Astronomical Society,
383(2):497–512, December 2007.

[30] B Einfeldt, C D Munz, P L Roe, and B Wgreen. On Godunov-Type Methods near
Low Densities. JOURNAL OF COMPUTATIONAL PHYSICS, 92:213–295, 1991.

[31] Charles R Evans and John F Hawley. Simulation of Magnetohydrodynamic Flows: A
Constrained Transport Model. Astrophysical Journal, 332:659–677, 1988.

[32] S. A. E. G. Falle. Self-similar jets. Monthly Notices of the Royal Astronomical Society,
250(3):581–596, June 1991.

[33] Marion Farcy, Joakim Rosdahl, Yohan Dubois, Jérémy Blaizot, and Sergio Martin-
Alvarez. Radiation-magnetohydrodynamics simulations of cosmic ray feedback in disc
galaxies. Monthly Notices of the Royal Astronomical Society, 513(4):5000–5019, 04
2022.

[34] Kyle Gerard Felker and James Stone. A fourth-order accurate finite volume method
for ideal MHD via upwind constrained transport. Journal of Computational Physics,
375:1365–1400, December 2018. arXiv:1711.07439 [astro-ph, physics:physics].

[35] Gary J Ferland, RL Porter, PAM Van Hoof, RJR Williams, NP Abel, ML Lykins,
Gargi Shaw, William J Henney, and PC Stancil. The 2013 release of cloudy. Revista
mexicana de astronomı́a y astrof́ısica, 49(1):137–163, 2013.

[36] Alisa K. Galishnikova, Matthew W. Kunz, and Alexander A. Schekochihin. Tear-
ing instability and current-sheet disruption in the turbulent dynamo, October 2022.
arXiv:2201.07757 [astro-ph, physics:physics].

74

[37] Enrico Garaldi, Rüdiger Pakmor, and Volker Springel. Magnetogenesis around the
first galaxies: the impact of different field seeding processes on galaxy formation.
Monthly Notices of the Royal Astronomical Society, 502(4):5726–5744, 01 2021.

[38] Thomas A. Gardiner and James M. Stone. An unsplit Godunov method for ideal
MHD via constrained transport. Journal of Computational Physics, 205(2):509–539,
May 2005. Publisher: Academic Press Inc.

[39] Thomas A. Gardiner and James M. Stone. An unsplit Godunov method for ideal MHD
via constrained transport in three dimensions. Journal of Computational Physics,
227(8):4123–4141, April 2008. Publisher: Academic Press Inc.

[40] Frederick A. Gent, Mordecai-Mark Mac Low, Maarit J. Käpylä, and Nishant K. Singh.
Small-scale Dynamo in Supernova-driven Interstellar Turbulence. The Astrophysical
Journal Letters, 910(2):L15, April 2021.

[41] Philipp Girichidis, Thorsten Naab, Stefanie Walch, Micha l Hanasz, Mordecai-
Mark Mac Low, Jeremiah P. Ostriker, Andrea Gatto, Thomas Peters, Richard
Wünsch, Simon C. O. Glover, Ralf S. Klessen, Paul C. Clark, and Christian Baczynski.
LAUNCHING COSMIC-RAY-DRIVEN OUTFLOWS FROM THE MAGNETIZED
INTERSTELLAR MEDIUM. The Astrophysical Journal, 816(2):L19, January 2016.

[42] Philipp Girichidis, Christoph Pfrommer, Michal Hanasz, and Thorsten Naab. Spec-
trally resolved cosmic ray hydrodynamics – I. Spectral scheme. Monthly Notices of the
Royal Astronomical Society, page stz2961, November 2019. arXiv:1909.12840 [astro-
ph].

[43] Philipp Girichidis, Christoph Pfrommer, Rüdiger Pakmor, and Volker Springel.
Spectrally resolved cosmic rays: II – Momentum-dependent cosmic ray diffusion
drives powerful galactic winds. Monthly Notices of the Royal Astronomical Society,
510(3):3917–3938, January 2022. arXiv:2109.13250 [astro-ph].

[44] Sergei K. Godunov and I. Bohachevsky. Finite difference method for numerical com-
putation of discontinuous solutions of the equations of fluid dynamics. Matematičeskij
sbornik, 47(89)(3):271–306, 1959.

[45] David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM computing surveys (CSUR), 23(1):5–48, 1991.

[46] Robert J. J. Grand, Facundo A. Gómez, Federico Marinacci, Rüdiger Pakmor, Volker
Springel, David J. R. Campbell, Carlos S. Frenk, Adrian Jenkins, and Simon D. M.
White. The Auriga Project: the properties and formation mechanisms of disc galaxies
across cosmic time. Monthly Notices of the Royal Astronomical Society, page stx071,
January 2017.

[47] Philipp Grete, Joshua C. Dolence, Jonah M. Miller, Joshua Brown, Ben Ryan, An-
drew Gaspar, Forrest Glines, Sriram Swaminarayan, Jonas Lippuner, Clell J. Solomon,

75

Galen Shipman, Christoph Junghans, Daniel Holladay, James M. Stone, and Luke F.
Roberts. Parthenon – a performance portable block-structured adaptive mesh refine-
ment framework. The International Journal of High Performance Computing Appli-
cations, 37(5):465–486, September 2023. arXiv:2202.12309 [astro-ph].

[48] Philipp Grete, Forrest W. Glines, and Brian W. O’Shea. K-Athena: A Performance
Portable Structured Grid Finite Volume Magnetohydrodynamics Code. IEEE Trans-
actions on Parallel and Distributed Systems, 32(1):85–97, January 2021.

[49] Asger Grønnow, Thor Tepper-Garćıa, Joss Bland-Hawthorn, and Filippo Fraternali.
The role of the halo magnetic field on accretion through high-velocity clouds. Monthly
Notices of the Royal Astronomical Society, 509(4):5756–5770, February 2022.

[50] J.L. Han. Observing Interstellar and Intergalactic Magnetic Fields. Annual Review
of Astronomy and Astrophysics, 55(1):111–157, August 2017.

[51] M. Hanasz, H. Lesch, T. Naab, A. Gawryszczak, K. Kowalik, and D. Wóltański.
COSMIC RAYS CAN DRIVE STRONG OUTFLOWS FROM GAS-RICH HIGH-
REDSHIFT DISK GALAXIES. The Astrophysical Journal, 777(2):L38, October 2013.

[52] Micha l Hanasz, Dominik Wóltański, and Kacper Kowalik. GLOBAL GALACTIC DY-
NAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS.
The Astrophysical Journal, 706(1):L155–L159, November 2009.

[53] Jo Erskine Hannay, Carolyn MacLeod, Janice Singer, Hans Petter Langtangen, Diet-
mar Pfahl, and Greg Wilson. How do scientists develop and use scientific software?
In 2009 ICSE Workshop on Software Engineering for Computational Science and En-
gineering, pages 1–8, 2009.

[54] Amiram Harten, Peter D Lax, and Bram van Leer. On upstream differencing and
godunov-type schemes for hyperbolic conservation laws. SIAM review, 25(1):35–61,
1983.

[55] L. Hatton. The T-experiments: errors in scientific software, pages 12–31. Springer
US, Boston, MA, 1997.

[56] L. Hatton and A. Roberts. How accurate is scientific software? IEEE Transactions
on Software Engineering, 20(10):785–797, 1994.

[57] Fernando Hidalgo-Pineda, Ryan Jeffrey Farber, and Max Gronke. Better Together:
The Complex Interplay Between Radiative Cooling and Magnetic Draping. Monthly
Notices of the Royal Astronomical Society, October 2023.

[58] John K Holmen, Philipp Grete, and Veronica G Melesse Vergara. Early Experiences
on the OLCF Frontier System with AthenaPK and Parthenon-Hydro. In CUG Con-
ference Proceedings, Helsinki, Finland, May 2023.

76

[59] Philip F. Hopkins. A new class of accurate, mesh-free hydrodynamic simulation meth-
ods. Monthly Notices of the Royal Astronomical Society, 450(1):53–110, June 2015.

[60] Philip F Hopkins, T K Chan, Shea Garrison-Kimmel, Suoqing Ji, Kung-Yi Su,
Cameron B Hummels, Dušan Kereš, Eliot Quataert, and Claude-André Faucher-
Giguère. But what about...: cosmic rays, magnetic fields, conduction, and viscosity in
galaxy formation. Monthly Notices of the Royal Astronomical Society, 492(3):3465–
3498, March 2020.

[61] Victoria M. Kaspi and Andrei M. Beloborodov. Magnetars. Annual Review of As-
tronomy and Astrophysics, 55(1):261–301, 2017.

[62] Philipp Kempski, Drummond B Fielding, Eliot Quataert, Alisa K Galishnikova,
Matthew W Kunz, Alexander A Philippov, and Bart Ripperda. Cosmic ray transport
in large-amplitude turbulence with small-scale field reversals. Monthly Notices of the
Royal Astronomical Society, 525(4):4985–4998, 09 2023.

[63] Fatima Khan, Muhammad Pasha, and Shahid Masud. Advancements in microproces-
sor architecture for ubiquitous ai—an overview on history, evolution, and upcoming
challenges in ai implementation. Micromachines, 12:665, 06 2021.

[64] Chang-Goo Kim and Eve C Ostriker. Momentum injection by supernovae in the
interstellar medium. The Astrophysical Journal, 802(2):99, 2015.

[65] Chang-Goo Kim and Eve C. Ostriker. VERTICAL EQUILIBRIUM, ENERGETICS,
AND STAR FORMATION RATES IN MAGNETIZED GALACTIC DISKS REGU-
LATED BY MOMENTUM FEEDBACK FROM SUPERNOVAE. The Astrophysical
Journal, 815(1):67, December 2015.

[66] Manish Kumar. Dynamic power dissipation analysis in cmos vlsi circuit design with
scaling down in technology. Journal of Active and Passive Electronic Devices, pages
55–61, 10 2020.

[67] Stanley Letovsky. Cognitive processes in program comprehension. Journal of Systems
and Software, 7(4):325–339, 1987.

[68] Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cam-
bridge university press, 2002.

[69] M. T. P. Liska, K. Chatterjee, D. Issa, D. Yoon, N. Kaaz, A. Tchekhovskoy, D. Van Ei-
jnatten, G. Musoke, C. Hesp, V. Rohoza, S. Markoff, A. Ingram, and M. Van Der Klis.
H-AMR: A New GPU-accelerated GRMHD Code for Exascale Computing with 3D
Adaptive Mesh Refinement and Local Adaptive Time Stepping. The Astrophysical
Journal Supplement Series, 263(2):26, December 2022.

77

[70] Federico Marinacci and Mark Vogelsberger. Effects of simulated cosmological magnetic
fields on the galaxy population. Monthly Notices of the Royal Astronomical Society:
Letters, 456(1):L69–L73, 11 2015.

[71] Sergio Martin-Alvarez, Julien Devriendt, Adrianne Slyz, and Romain Teyssier. A
three-phase amplification of the cosmic magnetic field in galaxies. Monthly Notices of
the Royal Astronomical Society, 479(3):3343–3365, September 2018.

[72] Sergio Martin-Alvarez, Adrianne Slyz, Julien Devriendt, and Carlos Gómez-Guijarro.
How primordial magnetic fields shrink galaxies. Monthly Notices of the Royal Astro-
nomical Society, 495(4):4475–4495, July 2020.

[73] Andrea Mignone and Petros Tzeferacos. A second-order unsplit Godunov scheme
for cell-centered MHD: The CTU-GLM scheme. Journal of Computational Physics,
229(6):2117–2138, March 2010.

[74] Francesco Miniati and Daniel F. Martin. Constrained-transport magnetohydrodynam-
ics with adaptive mesh refinement in CHARM. Astrophysical Journal, Supplement
Series, 195(1), July 2011.

[75] Takahiro Miyoshi and Kanya Kusano. A multi-state HLL approximate Riemann solver
for ideal magnetohydrodynamics. Journal of Computational Physics, 208(1):315–344,
September 2005. Publisher: Academic Press Inc.

[76] Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-Pierre Jean-
nerod, Vincent Lefevre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, Serge
Torres, et al. Handbook of floating-point arithmetic. Springer, 2018.

[77] Thorsten Naab and Jeremiah P. Ostriker. Theoretical Challenges in Galaxy Forma-
tion. Annual Review of Astronomy and Astrophysics, 55:59–109, December 2017.

[78] Valery M. Nakariakov and Dmitrii Y. Kolotkov. Magnetohydrodynamic waves in the
solar corona. Annual Review of Astronomy and Astrophysics, 58(1):441–481, 2020.

[79] Evangelia Ntormousi, Konstantinos Tassis, Fabio Del Sordo, Francesca Fragkoudi,
and Rüdiger Pakmor. A dynamo amplifying the magnetic field of a Milky-Way-like
galaxy. Astronomy & Astrophysics, 641:A165, September 2020.

[80] A. Nuñez-Castiñeyra, I. A. Grenier, F. Bournaud, Y. Dubois, F. R. Kamal Youssef,
and P. Hennebelle. Cosmic-ray diffusion and the multi-phase interstellar medium in
a dwarf galaxy. I. Large-scale properties and γ-ray luminosities, May 2022.
arXiv:2205.08163 [astro-ph].

[81] S. A. Orszag and C. M. Tang. Small-scale structure of two-dimensional magnetohy-
drodynamic turbulence. Journal of Fluid Mechanics, 90:129–143, January 1979.

78

[82] R. Pakmor, C. Pfrommer, C. M. Simpson, and V. Springel. GALACTIC WINDS
DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN
DISK GALAXIES. The Astrophysical Journal, 824(2):L30, June 2016.

[83] Rüdiger Pakmor, Facundo A. Gómez, Robert J. J. Grand, Federico Marinacci, Chris-
tine M. Simpson, Volker Springel, David J. R. Campbell, Carlos S. Frenk, Thomas
Guillet, Christoph Pfrommer, and Simon D. M. White. Magnetic field formation in
the Milky Way like disc galaxies of the Auriga project. Monthly Notices of the Royal
Astronomical Society, 469(3):3185–3199, August 2017.

[84] Rüdiger Pakmor and Volker Springel. Simulations of magnetic fields in isolated disc
galaxies. Monthly Notices of the Royal Astronomical Society, 432(1):176–193, June
2013.

[85] Rüdiger Pakmor, Freeke van de Voort, Rebekka Bieri, Facundo A Gómez, Robert
J J Grand, Thomas Guillet, Federico Marinacci, Christoph Pfrommer, Christine M
Simpson, and Volker Springel. Magnetizing the circumgalactic medium of disc galax-
ies. Monthly Notices of the Royal Astronomical Society, 498(3):3125–3137, September
2020.

[86] Viraj Pandya, Drummond B. Fielding, Greg L. Bryan, Christopher Carr, Rachel S.
Somerville, Jonathan Stern, Claude-André Faucher-Giguère, Zachary Hafen, Daniel
Anglés-Alcázar, and John C. Forbes. A unified model for the coevolution of galaxies
and their circumgalactic medium: The relative roles of turbulence and atomic cooling
physics. The Astrophysical Journal, 956(2):118, oct 2023.

[87] Vladimir I. Pariev and Stirling A. Colgate. A Magnetic Alpha-Omega Dynamo in
Active Galactic Nuclei Disks: I. The Hydrodynamics of Star-Disk Collisions and Ke-
plerian Flow. The Astrophysical Journal, 658(1):114–128, March 2007. arXiv: astro-
ph/0611139.

[88] Vladimir I. Pariev, Stirling A. Colgate, and John M. Finn. A Magnetic Alpha-Omega
Dynamo in Active Galactic Nuclei Disks: II. Magnetic Field Generation, Theories
and Simulations. The Astrophysical Journal, 658(1):129–160, March 2007. arXiv:
astro-ph/0611188.

[89] Christoph Pfrommer, Rüdiger Pakmor, Christine M. Simpson, and Volker Springel.
Simulating Gamma-Ray Emission in Star-forming Galaxies. The Astrophysical Jour-
nal, 847(2):L13, September 2017.

[90] A. Philippov and M. Kramer. Pulsar magnetospheres and their radiation. Annual
Review of Astronomy and Astrophysics, 60(1):495–558, 2022.

[91] Kenneth G. Powell. An Approximate Riemann Solver for Magnetohydrodynamics,
pages 570–583. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

79

[92] Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu Huang, Hanjun
Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh, Stephen Beard, Taewook Oh,
Matthew Zoufaly, David Walker, and David I. August. A survey of the practice of
computational science. In State of the Practice Reports, SC ’11, New York, NY, USA,
2011. Association for Computing Machinery.

[93] Rahul Ramesh, Dylan Nelson, Drummond Fielding, and Marcus Brüggen. Zooming
in on the circumgalactic medium with gible: the topology and draping of magnetic
fields around cold clouds, 2024.

[94] Philip L Roe. Approximate riemann solvers, parameter vectors, and difference
schemes. Journal of computational physics, 43(2):357–372, 1981.

[95] Dongsu Ryu and T W Jones. Numerical Magnetohydrodynamics in Astrophysics:
Algorithms and Tests for One-Dimensional Flow. The Astrophysical Journal, 422:228–
258, March 1995.

[96] Dongsu Ryu, TW Jones, and Adam Frank. Numerical magnetohydrodynamics in
astrophysics: Algorithm and tests for multidimensional flow. Astrophysical Journal,
452(2):785–796, 1995.

[97] Hsi-Yu Schive, John A ZuHone, Nathan J Goldbaum, Matthew J Turk, Massimo
Gaspari, and Chin-Yu Cheng. gamer-2: a GPU-accelerated adaptive mesh refine-
ment code – accuracy, performance, and scalability. Monthly Notices of the Royal
Astronomical Society, 481(4):4815–4840, December 2018.

[98] Evan E. Schneider and Brant E. Robertson. Cholla: A new massively parallel hy-
drodynamics code for astrophysical simulation. Astrophysical Journal, Supplement
Series, 217(2):24, 2015. Publisher: IOP Publishing.

[99] Evan E. Schneider and Brant E. Robertson. Introducing CGOLS: The cholla galactic
outflow simulation suite. The Astrophysical Journal, 860(2), March 2018. Publisher:
arXiv.

[100] Swapnil Shankar, Philipp Mösta, Steven R. Brandt, Roland Haas, Erik Schnetter,
and Yannick de Graaf. GRaM-X: A new GPU-accelerated dynamical spacetime
GRMHD code for Exascale computing with the Einstein Toolkit, November 2022.
arXiv:2210.17509 [astro-ph, physics:gr-qc].

[101] Min-Su Shin, James M Stone, and Gregory F Snyder. THE MAGNETOHYDRODY-
NAMICS OF SHOCK-CLOUD INTERACTION IN THREE DIMENSIONS. APJ,
680:336–348, 2008.

[102] Christine M. Simpson, Rüdiger Pakmor, Federico Marinacci, Christoph Pfrommer,
Volker Springel, Simon C. O. Glover, Paul C. Clark, and Rowan J. Smith. THE ROLE
OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS.
The Astrophysical Journal, 827(2):L29, August 2016.

80

[103] Gary A Sod. A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws. Journal of Computational Physics, 27(1):1–31, April
1978.

[104] Volker Springel, Rüdiger Pakmor, and Rainer Weinberger. AREPO: Cosmological
magnetohydrodynamical moving-mesh simulation code. Astrophysics Source Code
Library, record ascl:1909.010, September 2019.

[105] James M. Stone and Thomas Gardiner. A simple unsplit Godunov method for mul-
tidimensional MHD. New Astronomy, 14(2):139–148, 2009.

[106] James M Stone, Thomas A Gardiner, Peter Teuben, John F Hawley, and Jacob B
Simon. ATHENA: A NEW CODE FOR ASTROPHYSICAL MHD. The Astrophysical
Journal Supplement Series, 178:137–177, 2008.

[107] James M. Stone, Kengo Tomida, Christopher J. White, and Kyle G. Felker. The
Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrody-
namic Solvers. The Astrophysical Journal Supplement Series, 249(1):4, June 2020.

[108] Romain Teyssier. Grid-based hydrodynamics in astrophysical fluid flows. Annual
Review of Astronomy and Astrophysics, 53(1):325–364, 2015.

[109] Eleuteruio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics
Third Edition. Springer, 2009.

[110] Manuel Torrilhon. Locally divergence-preserving upwind finite volume schemes
for magnetohydrodynamic equations. SIAM Journal on Scientific Computing,
26(4):1166–1191, 2005.

[111] Gábor Tóth. A general code for modeling mhd flows on parallel computers: Versatile
advection code. In Yutaka Uchida, Takeo Kosugi, and Hugh S. Hudson, editors,
Magnetodynamic Phenomena in the Solar Atmosphere: Prototypes of Stellar Magnetic
Activity, pages 471–472. Springer Netherlands, Dordrecht, 1996.

[112] J. Trujillo Bueno and T. del Pino Alemán. Magnetic field diagnostics in the solar
upper atmosphere. Annual Review of Astronomy and Astrophysics, 60(1):415–453,
2022.

[113] Jason Tumlinson, Molly S. Peeples, and Jessica K. Werk. The Circumgalactic Medium.
Annual Review of Astronomy and Astrophysics, 55:389–432, August 2017. Publisher:
Annual Reviews Inc.

[114] Freeke van de Voort, Rebekka Bieri, Rüdiger Pakmor, Facundo A. Gómez, Robert
J. J. Grand, and Federico Marinacci. The effect of magnetic fields on properties
of the circumgalactic medium. Monthly Notices of the Royal Astronomical Society,
501(4):4888–4902, January 2021. arXiv:2008.07537 [astro-ph].

81

[115] Bram Van Leer. Upwind and High-Resolution Methods for Compressible Flow: From
Donor Cell to Residual-Distribution Schemes. In 16th AIAA Computational Fluid Dy-
namics Conference, Orlando, Florida, April 2006. American Institute of Aeronautics
and Astronautics.

[116] Maria Werhahn, Philipp Girichidis, Christoph Pfrommer, and Joseph Whittingham.
Gamma-ray emission from spectrally resolved cosmic rays in galaxies. Monthly
Notices of the Royal Astronomical Society, 525(3):4437–4455, September 2023.
arXiv:2301.04163 [astro-ph].

[117] Maria Werhahn, Christoph Pfrommer, Philipp Girichidis, and Georg Winner. Cosmic
rays and non-thermal emission in simulated galaxies – II. γ-ray maps, spectra, and
the far-infrared–γ-ray relation. Monthly Notices of the Royal Astronomical Society,
505(3):3295–3313, June 2021.

[118] Benjamin D. Wibking and Mark R. Krumholz. The global structure of magnetic fields
and gas in simulated Milky Way-analogue galaxies. arXiv:2105.04136 [astro-ph], May
2021. arXiv: 2105.04136.

[119] Greg Wilson, D A Aruliah, C Titus Brown, Neil P Chue Hong, Matt Davis, Richard T
Guy, Steven H D Haddock, Kathryn D Huff, Ian M Mitchell, Mark D Plumbley, Ben
Waugh, Ethan P White, and Paul Wilson. Best Practices for Scientific Computing.
PLOS Biology, 12(1):7, 2014.

[120] Greg Wilson, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex Nederbragt, and
Tracy K. Teal. Good enough practices in scientific computing. PLOS Computational
Biology, 13(6):e1005510, June 2017.

[121] H.-Y. K. Yang, M. Ruszkowski, P. M. Ricker, E. Zweibel, and D. Lee. THE
FERMI BUBBLES: SUPERSONIC ACTIVE GALACTIC NUCLEUS JETS WITH
ANISOTROPIC COSMIC-RAY DIFFUSION. The Astrophysical Journal, 761(2):185,
December 2012.

[122] Kotaro Yoshida, Shuichi Matsukiyo, Kesuke Shimokawa, Haruichi Washimi, and
Tohru Hada. Trajectory Analysis of Galactic Cosmic Rays Invading into the He-
liosphere. The Astrophysical Journal, 916(1):29, July 2021.

[123] M. Zingale, A. S. Almgren, M. Barrios Sazo, J. B. Bell, K. Eiden, A. Harpole, M. P.
Katz, A. J. Nonaka, D. E. Willcox, and W. Zhang. The Castro AMR Simulation
Code: Current and Future Developments. Journal of Physics: Conference Series,
1623(1):012021, September 2020.

82

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1 The directions used here are relative to the internal workings of the HLLD solver. Since the HLLD solver is inherently 1D we run it once for each of the faces of a cell. So in the case where the solver is running in the Y direction the solver's Y field is actually the Z field and the solver's Z field is actually the X field, cyclically extended for the Z direction.
	2 The L/R subscripts indicate that it is the left/right state. Bx is always the same in both states.

	List of Figures
	1 A single cell in a hydrodynamic finite-volume simulation. Average values of the conserved variables, U, are cell-centered while the fluxes are centered on the faces of the cell.
	2 A single cell in a MHD finite-volume simulation. Average values of the conserved variables hydrodynamic variables, , , and E, are cell-centered while the magnetic fields, in blue, and fluxes are centered on the faces of the cell. The electric fields, also in blue, are centered on the cell edges.
	3 The seven MHD waves with the Riemann solver states labelled.
	4 2D slices in all three planes showing the location of the fluxes, edge electric fields, and derivatives. Based on Figure 5 of stoneathena2008.
	5 Linear Wave Convergence of all four MHD waves using PLM and PPM reconstruction. script link
	6 Circularly Polarized Alfvén Wave Convergence using PLM and PPM reconstruction. script link
	7 Evolution of tilted spherical magnetic field loop through two full periods using PPMC reconstruction. Mean of B2 normalized to the initial value as a function of time (left) and the maximum divergence in the domain as a function of time (right). script link
	8 Cross sections of the spherical advecting field loop magnetic energy density at t=0.0 and one period. The first and second panels show a slice centered on the loop through the plane of symmetry. The third and fourth panels show a slice along the x-z plane. Note that these figures utilize PLMC reconstruction as PPMC introduced spurious oscilations in the direction of advection. script link
	9 The Brio & Wu Shock Tube solution briowu1988. script link
	10 Dai & Woodward Shock Tube (also called Ryu & Jones 2a) solution daiwoodward1998, ryujones1995. script link
	11 Ryu & Jones 1a Shock Tube solution ryujones1995. script link
	12 Ryu & Jones 4d Shock Tube solution ryujones1995. script link
	13 MHD Einfeldt Strong Rarefaction solution einfeldt1991. script link
	14 Contour plot of the MHD blast wave test at t=0.2. 30 evenly spaced contours are shown in an x-y slice through the center of the domain. script link
	15 Contour plot of the Orszag-Tang Vortex at t=0.5. Thirty evenly spaced contours are shown for each plot in an x-y slice through the center of the domain. script link
	16 Weak scaling performance of Cholla MHD. When running on a single GPU Cholla updates 2.04108 cells per second per GPU; the largest run with 74,088 GPUs updates 1.67108 cells per second per GPU, a weak scaling efficiency of 82.2%. The 74,088 GPU run updates a total of 1.241013 cells per second. script link
	17 Strong scaling performance of Cholla MHD with a problem size of 4593 cells. script link

	Preface
	1.0 Background
	1.1 Numerical Magnetohydrodynamics in Astrophysics
	1.1.1 Supercomputers and the Advent of Accelerators
	1.1.2 Eulerian vs. Lagrangian Methods
	1.1.3 Introduction to Finite-Volume Methods
	1.1.3.1 Hydrodynamics
	1.1.3.2 Magnetohydrodynamics

	1.2 Existing Galaxy Simulations
	1.3 Scientific Software Best Practices
	1.3.1 Testing Scientific Software
	1.3.2 Static Analysis of Scientific Codes
	1.3.3 Automatic Code Formatting

	1.4 Summary

	2.0 Introduction
	3.0 Methods
	3.1 Magnetohydrodynamics
	3.2 The VL+CT Integrator
	3.2.1 Step 1: Compute the Time Step
	3.2.2 Step 2: First Order Reconstruction
	3.2.3 Step 3: First Riemann Solve
	3.2.4 Step 4: Compute the Constrained Transport Electric Field
	3.2.5 Step 5. Perform the Half Time-step Update
	3.2.6 Step 6. Half Time-step Second Order Reconstruction
	3.2.7 Step 7. Second Riemann Solve
	3.2.8 Step 8. Compute the Constrained Transport Electric Fields
	3.2.9 Step 9. Perform the Full Time-step Update
	3.2.10 Step 10. Increment the Time by dt

	3.3 Implementation on GPUs
	3.3.1 Memory bandwidth constraints
	3.3.2 Performance portability
	3.3.3 GPU reductions

	4.0 MHD Tests
	4.1 Accuracy Tests
	4.1.1 Linear Wave Convergence
	4.1.2 Circularly Polarized Alfvén Wave
	4.1.3 Advecting Field Loop
	4.1.4 MHD Riemann Problems
	4.1.4.1 Brio & Wu Shock Tube
	4.1.4.2 Dai & Woodward Shock Tube
	4.1.4.3 Ryu & Jones 1a Shock Tube
	4.1.4.4 Ryu & Jones 4d Shock Tube
	4.1.4.5 MHD Einfeldt Strong Rarefaction

	4.1.5 MHD Blast Wave in a Strongly Magnetized Medium
	4.1.6 Orszag-Tang Vortex

	4.2 MHD Performance Tests

	5.0 Automated Testing & Continuous Integration
	5.1 Unit Testing Framework
	5.2 Extensions for Cholla
	5.2.1 Floating Point Comparisons
	5.2.2 System Tests

	5.3 Automated Testing

	6.0 Summary
	6.1 Application of Cholla MHD

	Appendix. HLLD MHD Riemann Solver
	A.1 Compute Acoustic & Contact Wave Speeds
	A.1.1 Computing SL and SR
	A.1.2 Computing SL* and SR*
	A.1.3 Computing SM

	A.2 Determine the State
	A.3 Compute & Return the Fluxes
	A.3.1 FL or FR State
	A.3.2 FL* or FR* State
	A.3.3 FL** or FR** State

	Bibliography

