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Recently, Convolutional Neural Networks (CNNs) are continuously achieving state-of-the-art

results in numerous machine-learning tasks. While having impressive performance, the size of

current models is also exploding. Motivated by efficient inference, many researchers have been de-

voted to reducing the storage and computational costs of state-of-the-art models. Channel pruning

emerges as a promising solution to reduce the size of the model, and it can achieve acceleration

without any post-processing steps. Current channel pruning methods are either time-consuming

(reinforcement learning, greedy search, etc.) or depend on fixed criteria of channels resulting in

poor results.

In this dissertation work, we propose new methods from the perspective of gradient-guided

pruning. We then formulate the pruning problem as a constrained discrete optimization problem.

Our discrete model compression work aims to solve this constrained problem by using differen-

tiable gates and propagating gradients through a straight-through estimator. We further improve

the results in network pruning via performance maximization by adding a performance prediction

loss into the constrained optimization problem. The search for sub-networks is then directly guided

by the accuracy of a sub-network. The improvement of supervision leads to better pruning results.

On top of previous works, we propose to further improve our algorithms from different per-

spectives. The first perspective is to disentangle width and importance for finding the optimal

model architecture. From this end, we propose to use an importance generation network and a

width generation network to generate the importance and width for each layer. Another challenge

in previous works is the huge gap between the model before and after network pruning. To miti-

gate this gap, we first learn a target sub-network during the model training process, and then we

use this sub-network to guide the learning of model weights through partial regularization. Based

on the success of previous static pruning methods, we further incorporate dynamic pruning for

storage-efficient dynamic pruning.
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1.0 Introduction

Convolutional Neural Networks (CNNs) have accomplished great success in many machine

learning and computer vision tasks [83, 122, 123, 129, 3]. To deal with real-world applications,

recently, the design of CNNs has become more and more complicated in terms of width, depth,

etc. [83, 130, 46, 69]. Although these complex CNNs can attain better performance on benchmark

tasks, their computational and storage costs increase dramatically. As a result, a typical application

based on CNNs can easily exhaust an embedded or mobile device due to its enormous costs. Given

such costs, the application can hardly be deployed on resource-limited platforms. To tackle these

problems, many methods [43, 42] have been devoted to compressing the original large CNNs into

compact models. Among these methods, weight pruning and structural pruning are two popular

directions.

Unlike weight pruning or sparsification, structural pruning, especially channel pruning, is an

effective way to truncate the computational cost of a model because it does not require any post-

processing steps to achieve actual acceleration and compression. Many existing works [112, 88]

try to solve this problem by using certain criteria of channels. Although these criteria like L2 norm

or importance score are not hard to calculate, they often can not achieve satisfactory results. One of

the reasons is that the criterion of each channel is considered separately, and connections between

channels are omitted. Another line of research approaches this problem by using reinforcement

learning [50] or evolutionary strategies [102]. These methods often achieve better results but with

significantly higher costs.

To obtain efficiency and high performance at the same time, we proposed new methods from

the perspective of gradient-guided pruning. We formulate the pruning problem as a constrained

discrete optimization problem. Our work discrete model compression [31] aims to solve this con-

strained problem by using differentiable gates and propagating gradients through a straight-through

estimator. We further improve the results in network pruning via performance maximization [30]

by adding a performance prediction loss into the constrained optimization problem. The search

for sub-networks is then directly guided by the accuracy of a sub-network. The improvement of

supervision leads to better pruning results. Compared to existing works, the efficiency is largely
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improved due to fast gradient-based search.

On top of previous works, we propose to improve our algorithms from different perspectives.

The first perspective is to disentangle the learning of model width and channel importance [33].

From this end, we propose to use two different models to generate the importance and the number

of channels for each layer. The previous one-shot pruning method creates a large gap between the

model before and after pruning. To tackle this problem, we introduce a novel partial regularization

technique [36] to align model weights and the discovered sub-network during the training process,

which can produce a high performance sub-network and reduce the gap between the sub-network

and the original model. In addition, unlike soft-pruning methods, all model structures are used

for training. The partial regularization term contains a partial group lasso regularization on se-

lected weights, and other weights remain intact without modifications. An architecture generator

is trained to select which weights should be aligned, and it is also updated during the training

process. Our partial regularization formulation is related to partial regularization in lasso [106].

Inspired by the nonmonotone proximal gradient (NPG) method used in [106], we also use a prox-

imal gradient method to solve the partial regularization problem in our setting. Standing on the

success of our previous static pruning methods, we further incorporate dynamic pruning into con-

sideration and we propose a novel channel pruning method, which unifies both dynamic and static

pruning. Dynamic and static sub-networks are connected by evaluating the static sub-network

through dynamic sub-networks instead of training them in parallel.

The organization of this dissertation is as follows: we will first introduce the basic framework

of our work: ”Discrete Model Compression”, then we introduce how to incorporate additional

supervision for pruning: ”Network Pruning via Performance Maximization” and ”Disentangled

Differentiable Network Pruning” in Chapter 3 and Chapter 4. We further discuss ”Structural Align-

ment for Network Pruning through Partial Regularization” and ”BilevelPruning: Unified Dynamic

and Static Channel Pruning for Convolutional Neural Networks” in Chapter 5 and Chapter 6.
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2.0 Discrete Model Compression

2.1 Background

Convolutional Neural Networks (CNNs) have achieved great success in computer vision tasks [83,

122, 123, 129, 3]. With more and more sophisticated GPU support on CNNs, the complexity of

CNN grows dramatically from several layers [83, 130] to hundreds of layers [46, 69]. Although

these complex CNNs can achieve strong performance on vision tasks, there is an unavoidable

growth of the computational cost and model parameters. Such a huge computational burden pro-

hibits the model from being deployed on mobile devices and resource-limited platforms. Even if

the model can be deployed on mobile devices, the battery will be depleted quickly due to huge

computational costs. To tackle such problems, many efforts [43, 42] have been devoted to getting

compact sub-networks from the original computational heavy model.

Structural pruning, especially channel pruning, is an efficient way to reduce computational

cost since it doesn’t require any post-processing steps to acquire acceleration. One of the most

challenging parts of structural pruning is how to deal with the natural discrete configuration of

channels in each layer. Many existing works [107, 119] try to solve this problem by relaxing dis-

crete values to continuous values. However, such relaxation may lead to a biased estimation of the

corresponding pruning criterion, since you can’t completely remove the impact of channels with

small importance value. Some other methods [103, 112] use the estimation of channel importance

to decide whether to prune a channel, nonetheless, the relative importance of a channel can be

changed due to the choice of the sub-network. Recently, discrimination-aware pruning [154] has

been proposed to explore the impact of discriminative power on channel pruning. Although this

method considers the discriminative power of CNNs by adding classifiers on intermediate layers,

it does not consider CNN as a whole, which may result in sub-optimal compression results.

To deal with these challenges, we propose a new method of using the discrete gate to turn

off or turn on certain channels. By doing so, we can always get the exact model output given

different sub-network architectures. Thanks to the precise output estimation of a sub-network, our

method is able to consider the discriminative power of a complete sub-network. At the same time,
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we do not take the magnitude of a channel into consideration, the global discriminative power

is the only criterion. Moreover, we propose an efficient optimization method to obtain the sub-

network. Although directly optimizing discrete variables is often non-smooth non-convex and

NP-hard, our optimization method can circumvent these difficulties by using the straight-through

estimator (STE) [2].

Automatic Model Compression (AMC) [50] is a pioneering method using the discrete channel

setting, which is optimized by reinforced learning [65, 63]. Different from AMC, our method

is guided by gradients of the loss function when exploring sub-networks from the original CNN.

Our method can obtain a sub-network efficiently due to its differentiable nature. On the ImageNet

dataset, our method can discover a high performance sub-network satisfying a given budget within

2% of time for regular training (finetuning time is excluded). From this perspective, our method is

also related to differentiable architecture search (DARTS) [99].

Our main contributions are summarized as follows:

1) To compress a model, we apply the discrete gate on each channel, which ensures that the output

from any sub-networks is correct and unbiased.

2) We use STE to enable back-propagation through discrete variables. To further enlarge the

search space of sub-networks, we replace the discrete gate with its stochastic version.

3) To ensure we can get the model with the given computational budget, we further propose

resource regularization when exploring potential sub-networks.

4) Extensive experimental results show that our method achieves state-of-the-art results on CI-

FAR10 and ImageNet with ResNet and MobileNetV2.

2.2 Related Works

Model compression recently has drawn a lot of attention from the compute vision community.

In general, current model compression methods can be separated into the following four categories:

weight pruning, structural pruning, weight quantization, and knowledge distillation [52].

Weight pruning eliminates model parameters without any assumption on the structure of weights.

One of the early works [43] uses L1 or L2 magnitude as criterion to remove weights. Under this

4



setting, parameters lower than a certain threshold are removed, and weights with small magnitude

are considered not important. A systematic DNN weight pruning framework [149] has been pro-

posed by using alternating direction method of multipliers (ADMM) [5, 59, 64]. Different from

the aforementioned works, SNIP [85] updates the importance of weights by backpropagating gra-

dients from the loss function. Lottery ticket hypothesis [22] is another very interesting weight

pruning algorithm, which manifests that small high-performance sub-networks exist within the

overparameterized large network at initialization time. Different from the lottery ticket hypothesis,

in rethinking the value of network pruning [104], they argue that fine-tuning a pre-trained model

is not necessary and show that the pruned model with random initialization achieves better perfor-

mance. he major drawback of weight level pruning is that they often require a specially designed

sparse matrix multiplication library to achieve acceleration.

Different from weight pruning, structural pruning provides a natural way to reduce computa-

tional costs. The development of structural pruning is similar to weight pruning in that channels

with low magnitude are often regarded as not important [88]. Similar to the idea of magnitude

pruning, Group Lasso [140] is also applied on CNNs to structurally make channels or filters to

have all 0 values, thus those channels can be safely removed. GrOWL [148] focuses on ex-

ploring inter-channel relations on top of sparsity and argues that similar channels can share the

same weights. The following researches show that weights with small magnitude could be impor-

tant [105], and it’s difficult for channels under L1 regularization to achieve exact zero values. To

compensate for this, they propose to get exact zero values for each channel by using explicit L0

regularization [105]. Besides simply using channel magnitude as pruning standards, other methods

utilize batchnorm to achieve a similar target, since batchnorm [71] is an indispensable component

in recent neural network designs [46, 69]. For each channel, batchnorm uses a scaling factor γ to

adjust the magnitude of corresponding feature maps. To achieve the goal of channel pruning, γ

is regularized to be sparse and γ fell below a predefined threshold will be set to 0 during model

pruning [103]. Other works related to this idea include [143, 70, 77]. Unlike previous methods

relying on the magnitude of channels, discrimination-aware pruning [154] utilizes local discrimi-

native power to help channel pruning. AMC [50] achieves the goal of channel pruning in a discrete

setting by taking advantage of reinforcement learning. Collaborative channel pruning [119] fo-

cuses on pruning channels by utilizing Taylor expansion of the loss function. Our method belongs
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to this category, the major difference between our method and previous model pruning methods

is that our method strictly uses the discrete setting of channels while it can be optimized through

gradient descent.

Weight quantization is another direction for model compression, which focuses on reducing

the numerical precision of weights from 32-bit float point value to low bit value. Binary con-

nects [14] and binary neural network [121] push the full precision weight to binary weight values,

making the model weights become binary values. The connection between our method and weight

quantization is that both of them use STE to estimate the gradient for discrete values.

Besides the aforementioned methods, there are works from other directions. There is a range of

methods that focus on pruning weights [111] or structures [115] by utilizing uncertainty in weights.

EigenDamge [134] can achieve structural pruning by using a Kronecker-factored eigenbasis. Sin-

gular value decomposition [56] is popular for compressing language models. Token merging and

pruning [78] are widely used for transformers.

2.3 Proposed Method

2.3.1 Notations

To better describe the proposed approach, we first define some notations. The feature map of

each layer can be represented by Fl ∈ ℜCl×Wl×Hl where Cl is the number of channels, Wl and Hl

are height and width of the current feature map. Fl,c is the feature map of c-th channel from l-th

layer. The mini-batch dimension of the feature map is ignored to simplify notations. Throughout

the paper, w.p. means with probability. 1 = [1, . . . , 1]T is a vector with all ones. sign(·) is the

popular sign function.

2.3.2 Differentiable Discrete Gate

In this paper, to incorporate the discrete nature of channel pruning, we explicitly consider using

discrete-valued gates to represent the opening or closing of a channel. The discrete gate function
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can be described as follows:

g(θ) =

 1 if θ ∈ [0.5, 1],

0 if θ ∈ [0, 0.5),
(2-1)

where θ ∈ [0, 1] is a learnable parameter in our setting. The discrete gate function is applied after

the output feature map of a layer:

FF̂l,c = g(θl,c) · Fl,c, (2-2)

where FF̂l,c is the feature map after pruning.

Since the binary gate function is not differentiable, STE [2] is used to enable gradient calcula-

tion, which can be described as follows:

∂L
∂θ

=
∂L

∂g(θ)
, (2-3)

where L is the loss function. Here, the backward propagation of g(θ) can be understood as an

identity function within a certain range. If θ ̸∈ [0, 1], the gradient will not be calculated, and the θ

will be clipped to range [0, 1].

In fact, there are some limitations of the deterministic discrete gate function. For example,

once the g(θ) of certain channels become 0, then these channels probably remain pruned, and

they may never be selected as candidate channels. To compensate for such situations, we further

propose the stochastic discrete gate to ensure gates with θ lower than 0.5 can be considered as can-

didate channels again. Specifically, the stochastic discrete gate is achieved by applying stochastic

rounding:

g(θ) =

 1 w.p. θ

0 w.p. 1− θ
(2-4)

where θ is within [0, 1] to satisfy the definition of probability. From this definition, we can see that

a channel always has a chance to be sampled if θ ̸= 0. Since our method uses the discrete setting,

sampling from the stochastic discrete gate is equivalent to sampling a sub-network.
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2.4 Model Compression as Constrained Optimization

There are many different ways to represent the pruning objective for model compression. In

this paper, we mainly focus on the following channel pruning problem:

min
Θ

L(f(x;W ,Θ), y)

s.t. 1Tg − p1TC = 0

g ∈ {0, 1}n,

(2-5)

where g = (g1, . . . , gL) is a vector containing all gate values, gl = [g(θl,1), . . . , g(θl,Cl
)]T is the

vector containing gate values in l-th layer, Θ are the parameters of discrete gates following the

definition in section 2.3.2, W is the model parameters, p is a predefined threshold working as the

pruning rate, and C = (C1, · · · , CL). Here, 1Tg is the sum of all gate values, which represents

the number of remaining channels, n is the total number of gates, and 1TC is the total number of

channels. Note that not all layers are included in Eq. (6-5), and the vector g and C only contain

layers that are used for pruning. There are several remarks on this pruning objective: 1) The

pruning of channels only depends on the discriminate power of its own, channel magnitude is

irrelevant during model pruning; 2) There exists no layer-wise hyper-parameter, only a global

hyper-parameter is used to control pruning rate; 3) During training of the parameters for the gate

function, model parameters W are fixed.

Under this setting, the major advantage of the discrete gate setting is that the impact of pruned

channels is precisely reflected in the value of the loss function. If the gates are relaxed in continuous

values, then it doesn’t possess such good property. In addition, the continuous relaxed gate function

causes severe difficulty in solving the optimization problem defined in Eq. (6-5).

For simplicity, we replace the equality constraint with a regularization term and redefine the

optimization problem as follows:

min
Θ

F(Θ) := L(f(x;W ,Θ), y) + λR(1Tg, p1TC), (2-6)

where R(·, ·) is the specific regularization function used, which can be a typical regression loss

function such as MAE or MSE. In practice, both MAE and MSE are not used, we will talk about

8



the choice of R(·, ·) later. The constraint g ∈ {0, 1}n is absorbed into the optimization problem

due to the definition of the discrete gate (Eq. (6-1) and (6-4)).

Recently, there has been increasing interest in reducing the float point operations (FLOPs) in

model pruning literature. The definition used in Eq. (6-6) along with the definition of the determin-

istic discrete gate in Eq. (6-1) can easily transform the pruning rate constraint in Eq. (6-5) to FLOPs

constraint. Recall that for a single convolution layer l with one sample, the FLOPs calculation can

be down as follows:

(FLOPs)l = kl · kl ·
cl−1

Gl

· cl · wl · hl, (2-7)

where kl is the kernel size, Gl is the number of groups, cl−1 and cl are the number of input and output

channels, wl and hl are width and height, (FLOPs)l is the FLOPs of l-th layer. By replacing cl and

cl−1 with gl and gl−1, we get a new representation of FLOPs while searching for sub-networks:

(FLOPs) ̂(FLOPs)l = kl · kl ·
1Tgl−1

Gl

· 1Tgl · wl · hl, (2-8)

Then combining Eq. (5-7), Eq. (6-8) with Eq. (6-6), the original R(1Tg, p1TC) is replaced by the

FLOPs regularzation:

R(T̂ , pT ), (2-9)

where T̂ =
L∑
l=1

(FLOPs) ̂(FLOPs)l and T =
L∑
l=1

(FLOPs)l are remained FLOPs and total FLOPs of

the model. Note that we still use p as the only global hyper-parameter to represent the remaining

fractions of the FLOPs. By incorporating FLOPs regularization and the objective in Eq. (6-6), we

can prune the model to arbitrary levels of FLOPs.

2.4.1 Choice of the Regularization Loss

In order to train the parameters of gates properly, the value of the regularization term should

be decreased to near 0 in the early stage of gate training, and remain near 0 for the rest of the

training process. The reason we want to keep the regularization term near 0 for most time is to

ensure the algorithm have enough time to discover the best possible sub-architecture with the given

constraint. Regular regression loss like MAE and MSE can’t satisfy this requirement, since their
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gradient is either constant or decreasing when close to 0. To overcome this issue, we propose the

following regularization loss:

Rlog(x, y) = log(|x− y|+1). (2-10)

The plot of gradient and value of this function is shown in Fig. 2. The benefit of this function is

that when x is close to target y, the gradient will increase and keep x close to the target value y.

The loss function is not differentiable at the point x = y by definition, but sub-gradient can be used

here which has been implemented in major deep learning frameworks. In practice, the Eq. (6-10)

works well for the appropriate choice of λ, on the contrary, MAE and MSE often fail to keep the

value of the regularization term close to 0.

2.4.2 Symmetric Weight Decay

To further expand search space, we propose a symmetric weight decay on the weights of gates,

which is inspired by the subgradient of the regularization loss:

∂Rlog

∂θl,c
=

 ηl · 1

|T̂−pT |+1 ·
T̂−pT

|T̂−pT | , if T̂ ̸= pT

0, if T̂ = pT
(2-11)

where ηl = k2
l ·

1T gl−1

Gl
·wl ·hl. Eq. (A.1) indicates that Rlog works like weight decay with different

decay values for each layer while the decay value is also different for each training iteration. Since

the impact of Rlog on θ can be expressed by weight decay, the stochasticity of the gates can be

increased in a similar way.

Based on the above arguments, we can explore larger search spaces by applying symmetric

weight decay on each θl,c. The goal of doing this is to slow down the pace of gate parameters to

become deterministic (approach 0 or 1). As a result, the search space is enlarged:

θl,c = θl,c − βsign(θl,c − 0.5), (2-12)

where β is the hyper-parameter to control the strength of weight decay.
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2.5 Our DMC Algorithm

We have introduced the core idea of our method, and the discrete model compression (DMC)

algorithm is presented in Algorithm 1. During freezing trainable parameters, the batchnorm run-

ning statistics are also frozen. It should be emphasized again that the gate learning process is

isolated from the training of the model parameters. In this way, we can prune any pre-trained mod-

els without modifications. In the calculation of L, the sub-networks are drawn from the stochastic

discrete gate. When calculating FLOPs regularization and during model pruning, the deterministic

version of the gate is used. Both stochastic and deterministic calculations share the same θl,c. Our

method also has the potential to be applied to cross-modal tasks [81, 29, 87, 86] and graph neural

networks [152].

2.6 Experiments

2.6.1 Settings

2.6.1.1 Implementation Detail

We use CIFAR-10 [82] and ImageNet [15] to verify the performance of our method. Our

method only requires one hyperparameter p to control the FLOPs budget. For all experiments,

we use resource regularization with Rlog defined in Eq. (6-10). As a result, p decides how much

FLOPs are preserved for each experiment. λ decides the regularization strength in our method.

We choose λ = 4 in all CIFAR-10 experiments and λ = 8 for all ImageNet experiments. For

CIFAR-10, we compare with other methods on ResNet-56 and MobileNetV2. For ImageNet, we

select ResNet-34, ResNet50, ResNet101 and MobileNetV2 as our target models. The reason we

choose these models is because that ResNet [46] models and MobileNetV2 [126] are much harder

to prune than earlier models like AlexNet [83] and VGG [130]. For CIFAR-10 models, we train it

from scratch following the code from PyTorch examples. After pruning the model, we finetune the

model for 160 epochs using SGD with start learning rate 0.1, weight decay 0.0001 and momentum

0.8, the learning rate is multiplied by 0.1 at epoch 80 and 120. For ImageNet models, we directly
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use the pre-trained models released from pytorch [117]. After pruning, we finetune the model for

100 epochs using SGD with start learning rate 0.01, weight decay 0.0001 and momentum 0.9, and

the learning rate is scaled by 0.1 at epoch 30, 60 and 90. For MobileNetV2 on ImageNet, we

choose weight decay as 0.00004 which is usd in the original paper [126]. Both CIFAR-10 and

ImageNet finetuning hyperparameters are similar to those used in Collaborative Channel Pruning

(CCP) [119]. During gate training, we choose the β of symmetric weight decay (Eq. (2-12)) as

0.0001. We randomly choose 2, 500 and 10, 000 samples as the dataset for training gate (Dgate)

for CIFAR-10 and ImageNet separately. We didn’t create a standalone validation set for training

gate in order to directly use pre-trained models. In the gate training process, we use ADAM [79]

optimizer with a constant learning rate 0.001 and train gate parameters for 300 epochs. All the

codes are implemented with pytorch [117]. The experiments are conducted on a machine with 4

Nvidia Tesla P40 GPUs.

2.6.1.2 Placement of Gate

. Where to put gates is a crucial problem to best approximate the output from actual sub-

networks when corresponding channels are pruned. Following the settings in NAS works [99,

155], we regard Conv-BN-Relu as a complete block, thus the gates are always placed after Relu

activation functions. To better simulate the results of a sub-network, we place two individual

gates for a bottleneck block in a ResNet. For MobileNetV2, we place two gates in an inverted

residual block, and the two gates share the same set of parameters due to the nature of depth-wise

convolution. Details are shown in Fig. 3. Following the above settings, outputs from sampled

sub-networks can well approximate the outputs from the actual compact network.
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Table 1: Comparison results on CIFAR-10 dataset with ResNet-56 and MobileNetV2. ∆-Acc

represents the performance changes before and after model pruning. +/- indicates increase or

decrease compared to baseline results. WM represents width multiplier used in the original design

of MobileNetV2, this result is from DCP [154] paper.

Method Architecture Baseline Acc Pruned Acc ∆-Acc Pruned FLOPs

Channel Pruning [51]

ResNet-56

92.80% 91.80% -1.00% 50.0%

AMC [50] 92.80% 91.90% -0.90% 50.0%

Pruning Filters [88] 93.04% 93.06% +0.02% 27.6%

Soft Prunings [48] 93.59% 93.35% -0.24% 52.6%

DCP [154] 93.80% 93.59% -0.31% 50.0%

DCP-Adapt [154] 93.80% 93.81% +0.01% 47.0%

CCP [119] 93.50% 93.42% -0.08% 52.6%

DMC(ours) 93.62% 93.69% +0.07% 50.0%

WM* [154]

MobileNetV2

94.47% 94.17% -0.30% 26.0%

DCP [154] 94.47% 94.69% +0.22% 26.0%

DMC(ours) 94.23% 94.49% +0.26% 40.0%

2.6.2 Results on CIFAR-10

In Tab. 1, we show all the comparison results on CIFAR-10. For ResNet-56, our method

performs much better than early methods [51, 50, 88, 48]. Specially, when compared with Soft

Pruning, our method is better than their results by 0.31% on ∆-Acc given similar pruned FLOPs

(52.6% vs 50%). Discrimination-aware pruning utilizes local discrimination criteria when pruning

the model. Our method outperforms DCP [154] by 0.38% on ∆-Acc with the same pruned FLOPs.

Moreover, our method outperforms DCP-adapt (a stronger version of DCP) by 0.06% give similar

pruned FLOPs. Collaborative filter pruning [119] is one of the most recent works on channel prun-

ing which considers the correlation between different weights when applying Taylor expansion on

the loss function. Our method still outperforms their result by 0.15% on ∆-Acc. Such observation

may indicate that our method also implicitly considers weights correlation during the search for
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optimal sub-network. For MobileNetV2, our method outperforms DCP by 0.04% on ∆-Acc, while

pruning 14% more FLOPs than DCP. This shows that global discrimination-aware is better than

local discrimination-aware.

2.6.3 Results on ImageNet

In Tab. 23, we present all the comparison results on ImageNet. All results are adopted from

their original papers except for ThiNet on MobileNetV2. To establish a high-quality baseline,

the comparison methods are mainly chosen from recently published papers. Specially, DCP [154],

CCP [119], IE [112], FPGM [49] and GAL [98] are from this category. Such high-quality baselines

can help us better understand the benefit of using discrete channel settings.

For ResNet-34, our method can prune 43.4% FLOPs while only resulting in 0.73% and 0.31%

performance drops on Top-1 accuracy and Top-5 accuracy separately. FPGM prunes slightly less

FLOPs compared with our method (41.1% vs 43.3%), however, it causes larger damage to the final

performance than our method (0.56% worse with Top-1 accuracy and 0.23% worse with Top-5

accuracy). The other two methods only prune a small amount of FLOPs (around 25%). Our method

has a lower Top-1 accuracy compared with IE, but we prune 1.8 times as much FLOPs as IE. For

ResNet-50, our method achieves the best ∆-Acc Top-1 and ∆-Acc Top-5 accuracy compared with

all other methods. Among all comparison methods, CCP has the smallest performance gap with

our method. Specifically, our DMC algorithm outperforms the state-of-the-art pruning algorithm

CCP by 0.14% at Top-1 accuracy with slightly more pruned FLOPs (55.0% vs 54.1%). For other

comparison methods, our DMC algorithm has advantages on Top-1 accuracy varying from 0.26%

to 3.55%.

For ResNet-101, our method also achieves the best ∆-Acc Top-1 and ∆-Acc Top-5 accuracy.

Moreover, our DMC algorithm prunes a much larger amount of FLOPs than all the other methods

(56% vs 47% the second largest). After pruning 56% of FLOPs, the pruned ResNet-101 only has

3.43 GFLOPs which is even less than the vanilla ResNet-50 (4.09 GFLOPs). At such a high prun-

ing rate for FLOPs, the performance of pruned ResNet-101 even increases by 0.03% and 0.04%

for Top-1 and Top-5 accuracy respectively. For MobileNet-V2, our method largely increases the

results obtained by DCP. With similar amount of pruned FLOPs (46% vs 44.7%), DMC outper-
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forms DCP by 2.38% and 1.94% for ∆-Acc Top-1 and ∆-Acc Top-5 accuracy. Such significant

improvement further shows that the global discrimination-aware pruning utilized in our method

has obvious advantages when compared with local discrimination-aware pruning utilized in DCP.

Global discrimination-aware is a direct consequence of discrete channel settings introduced in our

algorithm.

We further plot the channel configurations for each layer of ResNet-50 and MobileNetV2 after

pruning in Fig. 4. Since early layers often have a large impact on FLOPs, most early layers are

aggressively pruned. But there are some exceptions, layer-1 and layer-8 have a much higher pre-

served number of channels compared to adjacent layers in ResNet-50. Similar observations hold

for layer-3 and layer-6 in MobileNetV2. These layers are regarded as important components in our

method.

2.6.4 Impact of Gate Placement

In Tab. 3, we show how gate placement impacts the performance of the pruned model. 1-Gate

represents removing gates with the dashed line in Fig 3. 2-Gate and 2-Gate-Shared are the original

settings described in section 2.6.1. From this table, we can see that precise estimation of sub-

network performance results in improvements in the final model (+0.29% on Top-1 for ResNet,

+0.64% on Top-1 for MobileNetV2). This experiment clearly shows that the discrepancy between

the precise and imprecise estimation of sub-network during gate training.

2.6.5 Understanding the Training of Discrete Gates

We draw related figures about the gate training process in Fig. 5. Four experiments are con-

ducted given different values of p from 0.35 to 0.8 on CIFAR-10 with ResNet-56. Fig. 5 (a)-(d)

show the test performance along with regularization loss. It’s quite clear that there are two stages

for gate training. In the first stage, the test accuracy of the sub-network sharply drops, at the same

time, regularization loss drops too. In the second stage, regularization loss is near 0, the test per-

formance continues to increase until the end of the training process. This shows that our DMC

algorithm can consistently find sub-networks with better performance. Fig. 5 (e)-(h) show the

progress of pruning rate for different layers. We can see the pruning rate of a layer dramatically
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decreases at the beginning. However, within the process of the second training stage, some pruned

channels of certain layers are recovered. This observation shows that our method indeed explores

the search space instead of stacking at a trivial solution with a fixed sub-network. In Fig.5 (i)-(l),

we plot the value of s =
∑L

l=1

∑Cl
c=1 |θl,c−0.5|
n

. This value can roughly measure whether the discrete gate

is inclined to deterministic (θ is close to 0 or 1) or stochastic (θ is close to 0.5). At the beginning of

training, s dramatically drops, depicting that increased stochasticity when sampling a sub-network.

After training for a while, there is a turning point that the gates start to become more deterministic.

This is mainly because that the information from the samples is utilized to reduce the stochasticity

and make it more confident towards the final sub-network.

2.7 Conclusions

In this paper, we proposed an effective discrete model compression method to prune CNNs

given certain resource constraints. By turning deterministic discrete gate to stochastic discrete

gate, moreover, our method can explore larger search space of sub-networks. To further enlarge

the space, we introduced the symmetric weight decay on the gate parameters inspired by the fact

that regularization loss can be regarded as weight decay. Our method also benefits from the exact

estimation of sub-networks’ outputs because of a combination of the precise placement of gates

and the discrete setting. Extensive experiments results on ImageNet and CIFAR-10 show that our

method outperforms state-of-the-art methods.
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Figure 1: The gate training process of the proposed method. A sub-network is sampled according

to Eq. (6-4). Then θ is optimized through STE with gradient descent. At the next iteration, the

sub-network is sampled with the updated θ.

(a) function value of the regularization (b) gradients of the regularization

Figure 2: The values and gradients of the resource regularization, y is set to 0 for better visualiza-

tion.
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Algorithm 1: Discrete Model Compression
input: dataset for training gate, Dgate; remaining rate of FLOPs, p; regularization

hyper-parameter, λ; symmetric weight decay parameter β; gate training epochs num-E;

pre-trained model f .

Freeze W and batchnorm parameters in f .

Initialize all θl,c to 1.

for e := 1 to num-E do
shuffle(Dgate)

foreach x, y in Dgate do
1. forward calculation: min

Θ
F(Θ) = L(f(x;W ,Θ), y) + λRlog

2. calculate gradient w.r.t θl,c.

3. update each θl,c by ADAM optimizer.

4. apply symmetric weight decay on θl,c defined in Eq. (2-12).

5. clip each θl,c to [0,1].

end

end

return model f with the final Θ.
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Figure 3: Gate placement for different architectures. (a) Bottleneck Block for ResNet. (b) Inverted

Residual Block for MobileNetV2.
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Table 2: Comparison results on ImageNet dataset with ResNet-34, ResNet-50, ResNet-101 and

MobileNetV2. ∆-Acc represents the performance changes before and after model pruning. +/-

indicates increase or decrease compared to baseline results. ThiNet on MobileNetV2 results are

from DCP [154] paper.

Method Architecture Baseline Top-1 Acc Baseline Top-5 Acc ∆-Acc Top-1 ∆-Acc Top-5 Pruned FLOPs

Pruning Filters [88]

ResNet-34

73.23% - -1.06% - 24.8%

Soft Prunings [48] 73.93% 91.62% -2.09% -1.92% 41.1%

IE [112] 73.31% - -0.48% - 24.2%

FPGM [49] 73.92% 91.62% -1.29% -0.54% 41.1%

DMC(ours) 73.30% 91.42% -0.73% -0.31% 43.4%

Soft Pruning [48]

ResNet-50

76.15% 92.87% -1.54% -0.81% 41.8%

IE [112] 76.18% - -1.68% - 45%

FPGM [49] 76.15% 92.87% -1.32% -0.55% 53.5%

GAL [98] 76.15% 92.87% -4.35% -2.05% 55.0%

DCP [154] 76.01% 92.93% -1.06% -0.61% 55.6%

CCP [119] 76.15% 92.87% -0.94% -0.45% 54.1%

DMC(ours) 76.15% 92.87% -0.80% -0.38% 55.0%

Rethinking [143]

ResNet-101

77.37% - -2.10% - 47.0%

IE [112] 77.37% - -0.02% - 39.8%

FPGM [49] 77.37% 93.56% -0.05% 0.00% 41.1%

DMC(ours) 77.37% 93.56% +0.03% +0.04% 56.0%

ThiNet* [108]

MobileNetV2

70.11% - -6.40% -4.60% 44.7%

DCP [154] 70.11% - -5.89% -3.77% 44.7%

DMC(ours) 71.88% 90.29% -3.51% -1.83% 46.0%

(a) ResNet-50 (b) MobileNetV2

Figure 4: Networks discovered by our method from ResNet-50 and MobileNetV2. Dashed line

indicates channel number changes in the original model.
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Table 3: Performance of pruned models given different gate settings on ImageNet.

Gate Setting Architecture Top-1 Acc Top-5 Acc Pruned FLOPs

1-Gate
ResNet-50

75.06% 92.41% 55.2%

2-Gate 75.35% 92.49% 55.0%

1-Gate
MobileNetV2

67.73% 88.14% 45.3%

2-Gate-Shared 68.37% 88.46% 46.0%

21



(a) 35% FLOPs (b) 50% FLOPs (c) 65% FLOPs (d) 80% FLOPs

(e) 35% FLOPs (f) 50% FLOPs (g) 65% FLOPs (h) 80% FLOPs

(i) 35% FLOPs (j) 50% FLOPs (k) 55% FLOPs (l) 80% FLOPs

Figure 5: (a)-(d): Test set performance and regularization loss with the progress of gate training.

(e)-(h): Pruning rate on different layers with the progress of gate training. (i)-(l): Evolution of gate

randomness during the progress of gate training.
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3.0 Network Pruning via Performance Maximization

3.1 Background

Convolutional Neural Networks (CNNs) have demonstrated great successes in many computer

vision and machine learning applications, like classification [83], detection [122, 123], action

recognition [129] and self-driving cars [3]. To achieve better performances on these tasks, the

design of CNNs becomes more and more complex in terms of depth and width [130, 46, 69] since

AlexNet [83]. However, the huge consumption of computing power and memory footprint prevents

these complex CNNs to be deployed on embedded or mobile devices. To overcome this problem,

model compression emerges as a promising solution to get a compact sub-network from the orig-

inal model. Popular model compression techniques include weight pruning [43], quantization [7],

structural pruning [88] and so on.

Channel pruning, which belongs to structural pruning, effectively reduces FLOPs and memory

footprint from the original model without any post-processing steps. On the contrary, weight

pruning or quantization usually requires specifically designed software or hardware to achieve

actual acceleration. As a result, we aim to develop a novel model compression method for channel

pruning.

In the context of channel pruning, a sub-network with high accuracy is believed as a good

candidate for the final solution [50, 102]. To find such a sub-network, many existing channel

pruning approaches [77, 145, 154] use the classification loss as guidance. However, the classifica-

tion loss is not always a good approximation to the accuracy, which is also termed as loss-metric

mismatch [58]. To tackle this problem, we train a performance prediction network to predict the

accuracy of sub-networks. We then guide the search of sub-networks by directly maximizing the

accuracy. In addition, we do not abandon the classification loss (usually, cross-entropy loss), and

both classification loss and performance maximization are considered in the final pruning problem

defined in Eq. 3-8, which is inspired by the idea of multi-objective learning. The rationale behind

this is that both the classification loss and performance maximization provide useful but different

information for pruning, and merging them will lead to better results.
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The training of the performance prediction network has several difficulties. How to collect

samples for training this network is not clear. Random sampling often produces trivial sub-

networks (performance near-random guessing). To get meaningful sub-networks, we start from

the original network and prune it to the given budget using a differentiable pruning approach. We

can directly use the sub-network and mini-batch accuracy as a sample to train the performance pre-

diction network during this pruning process. However, only using the latest sub-network will lead

to catastrophic forgetting [24], where the performance prediction network may forget the infor-

mation about previous sub-networks. To tackle this issue, we use an episodic memory module to

collect samples along the pruning trajectory. Directly using these samples is problematic since the

accuracy distribution of these samples is far from uniform. This problem is solved by re-sampling

these samples. With above techniques, the performance prediction network is incrementally trained

during the pruning process. After the performance prediction network visits enough samples and

is confident enough, it is then put into the pruning process to provide additional supervision for

channel pruning. Since the training of the performance prediction network and pruning proceed

simultaneously, there is no extra cost.

Our main contributions can be summarized as follows:

1) We propose a novel channel pruning method for CNNs by directly maximizing the accuracy of

sub-networks. To the best of our knowledge, this is the first paper to consider the problem of

loss-metric mismatch for network pruning.

2) We train a performance prediction network, and use it as a proxy of accuracy metric for sub-

networks. Our method further leverages the benefits from both performance maximization and

classification loss to guide search of sub-networks.

3) Extensive experimental results show that our method can achieve the state-of-the-art perfor-

mance with ResNet, MobileNetV2, and ShuffleNetV2+ on ImageNet and CIFAR-10.
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3.2 Related Works

3.2.1 Model Compression

Weight pruning. Weight pruning tries to eliminate weights from the original model. Early

works either add sparsity induced penalty on the weights [139] or remove weights based on the

sensitivity [84, 76]. A more recent weight pruning work [43] prunes weights according to their

L2 or L1 norms. Another work by Dong et al. [18] explored weight pruning based on second

derivative information. Other weight pruning methods include data-driven pruning [54], varia-

tional dropout [111], utilizing determinantal point process [110] and so on. Different from the

above works, the lottery ticket hypothesis [22] argues that there exist good sub-networks within

a randomly initialized large network. Follow up works [23, 114] show that this claim can be ex-

tended to different architectures and datasets. While weight pruning achieves many good results

when compressing a neural network, the saving in terms of computational cost is not optimal since

the sparse weight matrices cannot be efficiently utilized by modern hardware.

Structural pruning. Structural pruning aims to remove redundant structures such as filters,

channels, or layers. Unlike weight pruning, structural pruning can reduce inference time without

specialized hardware or software support. Given a pre-trained model, filter pruning [88] removes

filters based on their L1 norms. Soft filter pruning [48] keeps all filters during training but re-

sets least important ones (smaller norm). These two methods use group norms to indicate the

importance of structures. Sparse structure selection [70] adds learnable scaling factors to prune

neurons or layers with the sparsity regularization. Discrimination-aware pruning [154] considers

both classification loss and norms to guide the pruning of the model. Gate decorator [145] inserts

learnable factors for each channel and then uses Taylor expansion of the loss to estimate the global

importance. Operation-aware pruning [75] makes a joint consideration of batchnorm and ReLU

operations and learns differentiable masks for individual channels. These methods all use clas-

sification loss to help the structural pruning. Automatic model compression (AMC) [50] adapts

reinforcement learning for structural pruning. With reinforcement learning, model accuracy can

be directly used in reward function to guide the pruning process. Metapruning [102] utilizes a

hypernet to predict the weights of sub-networks, and it then applies the evolutionary search for
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Figure 6: The flowchart of performance maximization process. A sub-network is first sampled

from differentiable gates. The performance prediction network is then used as a proxy to maximize

the accuracy of sub-networks.

pruning. With an evolutionary search, accuracy is directly used as guidance.

Differentiable pruning approaches [75, 145, 77, 32] are more efficient and easy to train com-

pared to reinforcement learning or evolutionary search. However, it can not use the accuracy to

guide pruning due to the accuracy metric is not differentiable. The mismatch of accuracy and clas-

sification loss may lead to inferior performance. To leverage the benefits from both sides, we aim

to maximize the accuracy of sub-networks within a differentiable pruning framework.

3.2.2 Performance Prediction

To our best knowledge, predicting the performance of a neural network is not well studied

within the context of model compression. There exist several works to predict the accuracy of a

neural network based on some different conditions. A recent work [133] tries to connect the model

accuracy with the weights of the model. With simple statistics of weights, accuracy predictors

can correctly rank neural networks by their performance. In [74], they use margin distributions of

multiple layers to predict the generalization gaps of neural networks. A more related work [72]

trains an accuracy predictor for neural architecture search (NAS) to include both architecture in-

formation and characterization of the dataset-difficulty. Training an accuracy predictor for NAS is

quite time-consuming, and every network has to be trained from scratch to provide its accuracy.
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We do not want to spend so much computational cost for acquiring these samples. To save costs

and get meaningful sub-networks, we prefer to collect sub-networks in-place during the pruning

process.

3.3 Network Pruning via Performance Maximization

3.3.1 Notations

To better describe our approach, necessary notations are introduced first. In a CNN, the feature

map of i-th layer can be represented by Fi ∈ RCi×Wi×Hi , i = 1, . . . , L, where Ci is the number

of channels, Wi and Hi are height and width of the current feature map, L is the number of layers.

The mini-batch dimension of feature maps is ignored to simplify notations. 1(·) is the indicator

function. ⊙ is the element-wise product.

3.3.2 Generate Sub-networks

As we discussed previously, directly sampling sub-networks often produces trivial results, es-

pecially when pruning rate is high. To train a performance prediction network for channel pruning,

we do not need all sub-networks. Suppose the FLOPs of the original model is Ttotal and the pruning

rate is p, we are interested in sub-networks with FLOPs from pTtotal to Ttotal. Sub-networks with

FLOPs lower than pTtotal are discarded since they do not satisfy FLOPs constraint. As a result,

we prefer to generate meaningful sub-networks with certain FLOPs as training samples for the

performance prediction network.

We start to generate these sub-networks by pruning the original model to the target FLOPs

pTtotal. To achieve this, we first introduce the basic differentiable pruning algorithm. We use

differentiable gates to characterize a channel. For ith layer, gates are defined as:

oi = 1/(1 + e−(wi+s)/τ)), (3-1)

where 1/(1 + e−x) is a sigmoid function, oi ∈ RCi and oi ∈ [0, 1], wi ∈ RCi are learnable

parameters of this gate, s is sampled from Gumbel distribution: s ∈ Gumbel(0, 1), and τ is a
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hyperparameter to control sharpness. oi here is continuous, to precisely generate sub-networks, we

further round it to 0 or 1:

ai = 1oi>
1
2
(oi), (3-2)

where ai ∈ {0, 1}Ci . Since the indicator function 1(·) is not differentiable, we use straight-through

estimator [2] to calculate gradients. The differentiable gate in Eq. 3-1 and Eq. 3-2 uses Gumbel-

Solftmax [73] technique to approximate Bernoulli distribution. Although there are alternative

techniques to approximate Bernoulli distribution, we found that the difference is not significant.

To prune channels of a CNN, we apply gates on the feature map Fi:

F̂i = ai ⊙Fi, (3-3)

where ai is expanded to the same size of Fi. The optimization of the pruning process is given by:

min
w

L(f(x; a,Θ), y) +R(T (a), pTtotal), (3-4)

where w contains all learnable weights of gates defined in Eq. (3-1). Here a is a vector represent-

ing the structure of a CNN: a = cat(a1, · · · , ai, · · · , aL), i = 1, · · · , L, T (a) is the FLOPs defined

by the sub-network structure a, x, y are input images and labels, f(·; a,Θ) here is a CNN param-

eterized by Θ, and its structure is decided by a. R(T (a), pTtotal) = log(max(T (a), pTtotal)/pTtotal)

is the regularization term to push sub-networks to reach the target FLOPs.

During the optimization of Eq. 3-4, many sub-networks with different structures a are gener-

ated. If accuracy q is calculated based on a given a mini-batch, we can have a pair of sample (a, q)

representing a sub-network and its accuracy. Although the mini-batch accuracy may not be a good

proxy of the true accuracy, we have a starting point at least.
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3.3.3 Performance Prediction Network

Once we have (a, q), we can train a neural network to predict the performance given the

structure of a sub-network. We firstly define the performance prediction network: qpred = PN(a).

PN(·) is the proposed performance prediction network. We use the sigmoid function as the output

activation, and qpred is in the range between 0 and 1.

The performance prediction network is composed of fully-connected layers and GRU [12];

the detailed settings are listed in the supplementary materials. In short, fully-connected layers

transform each layer’s structure vector into a compact representation, and GRU is used to connect

different layers. We use GRU since ai−1 and ai have implicit dependence. By doing so, the

performance prediction network has the potential to capture complex interactions within a sub-

network.

The optimization of PN is a regression problem, we use mean absolute error loss (MAE) to

optimize it:

min
wP

LP = |q − PN(a)|, (3-5)

where wP is the weights of the performance prediction network. The target q is also normalized

within [0, 1] to facilitate the training.

3.3.4 Episodic Memory Module

The early version of this work directly utilizes the sub-network from the current iteration to

train the performance prediction network. However, we found that it only deteriorates the pruning

process. After carefully examining the results, the performance prediction network can hardly

predict early sub-networks. This phenomena is known as catastrophic forgetting [24]. To overcome

this issue, we need to periodically replay previous sub-networks. We further propose an episodic

memory module to remember early sub-networks. The episodic memory is defined as: EM =

(A,Q), where A ∈ Rm×K and Q ∈ RK , m is the length of vector a and K is the current size of

the episodic memory. When adding one sub-network to the episodic memory, K is increased by 1,

and K is smaller than Kmax.

As we mentioned before, mini-batch accuracy is not a good estimation of the accuracy. On the

other hand, the computational cost is too expensive if we use the whole training dataset to calculate
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the accuracy. To leverage efficiency and precision, we collect sub-networks and corresponding

mini-batch accuracy for every c iterations to construct an enhanced representation of sub-networks.

The enhanced representation of sub-networks is:

ā = 1a> 1
2
(
1

c

c∑
i=1

ai), q̄ =
1

c

c∑
i=1

qi. (3-6)

Within certain iterations, sub-networks produced by Eq. 3-1 and Eq. 3-2 are similar, due to the

nature of differentiable pruning. Thus, using (ā, q̄) as a sample is reasonable. If c is too large, then

above arguments are not valid, and the enhanced representation is useless. We do not calculate

gradient when collecting sub-networks.

Suppose we already have K sub-networks in the episodic memory module, then the EM is

updated by: 
Ai = ā, i = argmin

i
|Qi − q̄| if K = Kmax,

AK+1 = ā otherwise.
(3-7)

ā is the sub-network defined in Eq. 3-6, the update of Q is done in a similar way. When K < Kmax,

the update of episodic memory is a simple insert process. When K = Kmax, we replace the item in

the episodic memory with the closest accuracy to the current sample. In fact, most of sub-networks

during the pruning process have similar performance after the target FLOPs is met. As a result, we

use Kmax to encourage the diversity of sub-networks.

3.3.5 Imbalanced Accuracy Distribution

In Fig. 7, we plot the empirical distribution of the accuracy from sub-networks during the

pruning process. In the figure, the accuracy is concentrated around 84. To prevent the performance

prediction network from providing trivial solutions and making it converge faster, we re-sample the

sub-networks according to their accuracy. All sub-networks are split into N groups according to Q

with equal margin 1
N−1

(max(Q)−min(Q)). Then, we count sub-networks in each group and re-

sample them according to the inverse of their count. This is equivalent to create N pseudo-classes

and conduct re-sampling.
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Figure 7: Empirical distribution of the accuracy from sub-networks collected during the pruning

process. The results are based on ResNet-56 on CIFAR-10.

3.3.6 Performance Maximization

After having a relative confident performance prediction network, we start to maximize the

performance for searching better sub-networks. The performance of a sub-network can be repre-

sented as PN(a), thus we can maximize PN(a) as a proxy of accuracy. max
w

PN(a) is equivalent to

min
w

1

PN(a)
. To stabilize the training, we optimize the follwing problem instead: min

w
log( 1

PN(a)
).

The overall optimization problem is shown in the following equation:

min
w

J (w) =L(f(x; a,Θ), y) + γ(K,LP) · log(
1

PN(a)
)

+ λR(T (a), pTtotal), (3-8)

where γ(K,LP) is a function to reflect the confidence of the performance prediction network and it

is used to automatically control the magnitude of log( 1

PN(a)
), λ is used to control the magnitude

of the regularization, and the other terms are introduced in Eq. 3-4. γ(K,LP) is defined as: γ(K,LP) =

1K≥Kmax
4

(K) · (1 − Lp)
2, and the range of γ(K,LP) is [0, 1]. Usually, lower LP indicates higher

confidence of PN(·). However, the training of PN is an incremental learning task, LP maybe

unreliable until PN visits enough samples.

Although there exists loss-metric mismatch, the information from the loss function and per-

formance maximization still has some overlaps. Since we already use the classification loss, it’s

desirable to acquire unique information from performance maximization. To achieve this, we make
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Algorithm 2: Network Pruning via Performance Maximization
Input: D, p, λ, E, f , Kmax, c, bP.
Initialization: initialize w; randomly initialize wP for PN. initialize K = 0
for e := 1 to E do

shuffle(D)
for a mini-batch (x, y) in D do

1. generate a structure vector a from Eq. 3-1 and Eq. 3-2 and its accuracy q
2. update the sub-network according to Eq. 3-6.
3. update EM with Eq. 3-7 and K every c iterations.
if K > bP then

4. update wp with Eq. 3-5 with a mini-batch sampled from EM.
end
5. calculate gradients for w by backpropagation through Eq. 3-8.
6. modify gradients according to Eq. 3-9.
7. update w with ADAM.

end
end
return w.

the gradients orthogonal to each other. Let giL = ∂L
∂wi

represents the gradient from the classifica-

tion loss of ith layer, and giP =
∂ log( 1

PN(a)
)

∂wi
be the gradient from performance maximization. The

modified gradients from these two terms are:

gi = giL + ĝiP, (3-9)

where giP is decomposed to two parts: giP = ĝiP + ḡiP, ĝiP ⊥ giL, and ḡiP has the same direction with

giL.

The overall algorithm is shown in Alg. 2. The process of performance maximization is shown

in Fig. 6. The explanation of inputs is listed here: D: dataset, p: pruning rate of FLOPs, λ is

introduced in Eq. 3-8, E: number of trainig epochs, f : the pre-trained CNN, Kmax and c: hyper-

parmeters for episodic memory, and bP: mini-batch size when training PN. As shown in Alg. 2, we

perform channel pruning and training of PN simultaneously with little extra computational cost.

The calculation of gP and updates of wP is much cheaper compared to gL. The problem in Eq. 3-8

simultaneously minimizes classification loss and maximizes accuracy of sub-networks, thus better

aligns loss and accuracy. Given the complexity of the problem, solely using the classification loss

or performance maximization may lead to sub-optimal results. Moreover, the information from

two perspectives is different, and we can achieve a better result by merging them.
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Table 4: Comparison on the accuracy changes (∆-Acc) and reduction in FLOPs of various channel

pruning algorithms on CIFAR-10. +/- indicates increase/decrease compared to baselines.

Method Architecture Baseline Acc Pruned Acc ∆-Acc ↓ FLOPs

AMC [50]

ResNet-56

92.80% 91.90% -0.90% 50.0%

SFP [48] 93.59% 93.35% -0.24% 52.6%

DCP [154] 93.80% 93.81% +0.01% 47.0%

CCP [119] 93.50% 93.42% -0.08% 52.6%

HRank [96] 93.26% 92.17% -0.09% 50.0%

Pruning Criterion [47] 93.59% 93.24% -0.35% 52.6%

NPPM(ours) 93.04% 93.40% +0.36% 50.0%

WM [154]

MobileNetV2

94.47% 94.17% -0.30% 26.0%

DCP [154] 94.47% 94.69% +0.22% 26.0%

NPPM(ours) 94.23% 94.75% +0.52% 47.0%

The proposed PN shares certain properties of the value function [80]. In the context of rein-

forcement learning, the value function is trained along the way of exploring the search space. The

PN is also trained when searching sub-networks. However there exists some obvious differences.

A value function is generally used in a Markov Decision Process, aiming to reduce the variance

of gradient-based policy optimization methods but giving no direct guidance. While our method

considers a stochastic optimization problem, the PN directly guides the search of sub-networks.

3.4 Experiments

3.4.1 Implementation Details

In the experiment section, our method is dubbed as NPPM (Network Pruning via Performance

Maxmization). We use CIFAR-10 [82] and ImageNet [15] to verify the performance of our method,

as they are used in many model compression works.
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On CIFAR-10, we evaluate our method on ResNet-56 and MobileNetV2. For ImageNet,

ResNet-34/50/101 [46], MobileNetV2 [126] and ShuffleNetV2+ [109, 125] are used for evalua-

tion. ShuffleNetV2+ is an improved version of ShuffleNetV2 which has similar performance with

MobileNetV3 [53]. These models are generally harder to prune compared with AlexNet or VGG.

We use p to decide how much FLOPs should be removed, the detailed choices of p are listed in

supplementary materials. We choose λ = 2 used in Eq. 3-8 for all experiments.

We train ResNet-56 and MobileNetV2 on CIFAR-10 from scratch following pytorch examples.

After pruning, we finetune the model for 200 epochs using SGD with a start learning rate 0.01,

weight decay 0.0001, and momentum 0.9. The learning rate is decayed to 0.01 and 0.001 at epoch

100 and 150. One benefit of our method is that we can directly prune pre-trained models. Thus, we

use pre-trained models released from pytorch or their official implementation on ImageNet. After

pruning, we finetune ResNet models for 100 epochs using SGD with a start learning rate 0.01,

and the learning rate is multiplied by 0.1 at epoch 30, 60 and 90. For MobileNetV2 on ImageNet,

we use cosine annealing scheduler with a start learning rate 0.01 and also finetune for 100 epochs

following their original paper [126]. For ShuffleNetV2+, we decay the learning rate at every step

and finetune for 100 epochs with a start learning rate 0.1 following the original settings [109, 125]

too.

When training w and wP, we use ADAM [79] optimizer with a constant learning rate 0.001

and train them for 200 epochs. To produce a near all-one vector for a, w is initialized to 3. The

training is conducted on a subset of the whole dataset. We use 2,500 and 10,000 samples for

CIFAR-10 and ImageNet separately. A stand-alone validation set is not necessary; subsets come

from the training set directly. We set Kmax and c as 500 and 5 on both datasets. The mini-batch

size is 64, 128, and 512 for the performance prediction network, CIFAR-10, and ImageNet. All

codes are implemented with pytorch [118]. The experiments are conducted on a machine with 4

Nvidia Tesla P40 GPUs.

3.4.2 CIFAR-10 Results

In Tab. 7, we present the results of ResNet-56 and MobileNetV2 on CIFAR-10. Our method

has the best ∆-Acc with ResNet-56. After pruning, our method improves the baseline performance

by 0.36%. Our method is better than the second best DCP by 0.35% in terms of ∆-Acc with
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similar FLOPs (ours 50% vs. DCP 47%). The advantage of our method is quite obvious when

comparing with other methods. HRank and Pruning Criterion are two recent methods, and our

method can achieve better accuracy and ∆-Acc than these two methods. For MobileNetV2 on

CIFAR-10, our method can prune 47% of FLOPs, and the accuracy is improved by 0.52%. Our

method prunes most FLOPs and achieves the best accuracy. Compared with DCP, our method

prunes 21% more FLOPs and still achieves better accuracy. The results of CIFAR-10 show that

performance maximization can improve network pruning.

3.4.3 ImageNet Results

We present all results for ImageNet in Tab. 8. The FLOPs of the original models are 3.68G,

4.12G and 7.85G for ResNet-34, ResNet-50 and ResNet-101. The FLOPs of MobileNetV2 and

ShuffleNetV2+(Small) are 314M and 156M. Compared to CIFAR-10, ImageNet is more reliable

when evaluating model compression methods.

ResNet-34: With ResNet-34, our method can achieve the best top-1 accuracy by pruning 44% of

FLOPs. Our method largely outperforms FPGM and SFP when pruning similar FLOPs (44.0%

vs. 41.1%). Specifically, the pruned top-1 accuracy is 1.17% and 0.38% higher than SFP and

FPGM separately, and similar observations hold for other measurements, like ∆ Top-1 accuracy.

IE and Pruning Filters prune around 24% FLOPs. Usually, pruned Top-1 accuracy is higher with

a smaller amount of pruned FLOPs. Our method can prune 20% more FLOPs and still achieves

better performance than IE. In short, our method prunes more FLOPs with less performance drop

on ResNet-34.

ResNet-50: ResNet-50 is a very popular model when evaluating pruning algorithms. Thus, more

comparison methods are listed. Our approach can prune 56.0% of FLOPs with marginally per-

formance loss on top-1 and top-5 accuracy (0.19% and 0.12% separately). LeGR can achieve the

second best result on pruned top-1 accuracy, and our method prunes 14% more FLOPs with less

accuracy drop (0.26% and 0.21% higher on pruned Top-1 acc and ∆ Top-1 acc). GBN and SCP

have similar performance with ∆ Top-1 accuracy, and their performance is higher than other com-

parison methods with similar FLOPs. Our approach can outperform GBN and SCP by at least

0.43% with ∆ Top-1 accuracy. Overall speaking, pruning methods guided by the classification

loss [145, 75, 154] have better results than rest approaches. On top of the classification loss, our
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method utilizes information from performance maximization. The superb performance on ResNet-

50 again demonstrates the effectiveness of the proposed performance maximization.

ResNet-101: ResNet-101 is a parameter-heavy model, and it is easier to prune compared to

ResNet-34 and ResNet-50. With the same pruning rates of ResNet-50 (remove 56% FLOPs), our

method can achieve 77.83%/93.77% Top-1/Top-5 accuracy, which is even higher than the origi-

nal model (+0.46%/+0.21% with ∆ Top-1/∆ Top-5). IE and FPGM can prune around 40% of

FLOPs with little accuracy drops. Compared with these methods, our approach can prune 16%

more FLOPs (around 1.3G FLOPs) while achieving performance gain. Moreover, the FLOPs of

the pruned model from our method has fewer FLOPs than the original ResNet-34 and ResNet-50

(pruned ResNet-101: 3.46G, ResNet-34/ResNet-50: 3.68G/4.12G.)

MobileNetV2: MobileNetV2 is a computationally efficient model, which makes it harder to prune.

All methods prune around 30% of FLOPs. AMC, LeGR, and MetaPruning have a clear advantage

over the uniform baseline, but they are worse than Greedy Pruning. Our method outperforms

Greedy Pruning by 0.42% with Top-1 accuracy.

ShuffleNetV2+: ShuffleNetV2+ is a highly efficient model with a similar performance to Mo-

bileNetV3. On ShuffleNetV2+, we compare our method against uniform pruning and DG (dif-

ferentiable gate in Eq. 3-4). DG can be seen as a variant of our method without performance

maximization. Our method is better than uniform pruning by 1.14% on Top-1 accuracy. By

directly comparing our method and DG, we can see that performance maximization helps the

search of sub-networks and results in 0.44% improvements. The results on ShuffleNetV2+ and

MobileNetV2 show that performance maximization improves the quality of sub-networks for both

parameter-heavy models and computation-efficient models.

3.4.4 Analysis and Discussion

To provide a deeper understanding of our method, we plot the predictions from PN and the sim-

ilarity between layer-wise gradients from two losses: simi =
(giL)

T (giP)

∥giL∥∥g
i
P∥

in Fig. 9. To plot predictions

from PN, we sample 100 sub-networks in EM and calculate the accuracy on the sub-set. From

Fig. 9 (e)∼(h), we can see that the predicted performance closely matches the actual accuracy,

which demonstrates that the information from PN is trustworthy. From the results of Fig. 9 (a)∼(d),

it’s obvious that the gradients from the classification loss and PN are different (max(simi) < 0.55),
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the similarity becomes smaller when the dataset becomes more complex. These results show that

the performance prediction network can provide different and reliable information to help search

for sub-networks. Another interesting observation is that later layers often have smaller gradient

similarity, showing that they are more sensitive to performance maximization.

In Fig 13 (a), we plot the results of different settings. PM w/o GM represents using PM without

gradient modification, and DG represents differentiable gate again. Obviously, PM can achieve the

best performance during the search of sub-networks. λ does not have strong impacts on the results,

but if λ is too large, it may hinder the pruning process.

There is an ongoing debate on whether finetuning is useful when pruning neural networks [104].

Our results (Tab. 6) show that finetuning is necessary to achieve ideal performance on computation

efficient models. The margin between finetuning and training from scratch is clear, demonstrating

that both sub-network architecture and pre-trained weights are essential.

3.5 Conclusion

In this paper, we studied how to simultaneously achieve low loss value and high accuracy

when searching for sub-networks. By using an episodic memory module and re-sampling tech-

niques, we are able to train a performance prediction network in-place during pruning, which also

saves computational resources. By utilizing information from the classification loss and perfor-

mance maximization, our method is able to find good sub-networks during pruning. Extensive

experiments on CIFAR-10 and ImageNet demonstrate that our method achieves state-of-the-art

results.

37



Table 5: Comparison on the Top-1/Top-5 accuracy changes (∆ Top-1/Top-5) and reduction in

FLOPs of various channel pruning algorithms on ImageNet. +/- indicates increase/decrease com-

pared to baselines.

Method Architecture Pruned Top-1 Pruned Top-5 ∆ Top-1 ∆ Top-5 ↓ FLOPs FLOPs

Pruning Filters [88]

ResNet-34

72.17% - -1.06% - 24.8% 2.77G

SFP [48] 71.84% 89.70% -2.09% -1.92% 41.1% 2.17G

IE [112] 72.83% - -0.48% - 24.2% 2.79G

FPGM [49] 72.63% 91.08% -1.29% -0.54% 41.1% 2.16G

NPPM(ours) 73.01% 91.30% -0.29% -0.12% 44.0% 2.06G

DCP [154]

ResNet-50

74.95% 92.32% -1.06% -0.61% 55.6% 1.83G

CCP [119] 75.21% 92.42% -0.94% -0.45% 54.1% 1.89G

MetaPruning [102] 75.40% - -1.20% - 51.2% 2.01G

GBN [145] 75.18% 92.41% -0.67% -0.26% 55.1% 1.85G

HRank [96] 74.98% 92.33% -1.17% -0.54% 43.8% 2.32G

Hinge [90] 74.70% - -1.40% - 54.4% 1,88G

DSA [116] 74.69% 92.45% -1.33% -0.80% 50.0% 2.06G

SCP [75] 75.27% 92.30% -0.62% -0.68% 54.3% 1.88G

LeGR [9] 75.70% 92.70% -0.40% -0.20% 42.0% 2.39G

NPPM(ours) 75.96% 92.75% -0.19% -0.12% 56.0% 1.81G

Rethinking [143]

ResNet-101

77.37% - -2.10% - 47.0% 4.16G

IE [112] 77.35% - -0.02% - 39.8% 4.72G

FPGM [49] 77.32% 93.56% -0.05% 0.00% 41.1% 4.80G

NPPM(ours) 77.83% 93.77% +0.46% +0.21% 56.0% 3.46G

MobileNetV2 0.75 [126]

MobileNetV2

69.80% 89.60% -2.00% -1.40% 30.0% 220M

AMC [50] 70.80% - -1.00% - 30.0% 220M

MetaPruning [102] 71.20% - -0.80% - 30.7% 217M

LeGR [9] 71.40% - -0.40% - 30.0% 220M

Greedy Pruning [144] 71.60% - -0.40% - 30.0% 220M

NPPM(ours) 72.02% 90.26% +0.02% -0.12% 29.7% 221M

Uniform

ShuffleNetV2+(Small)

71.92% 90.61% -2.18% -1.09% 23.1% 120M

DG 72.62% 91.00% -1.48% -0.70% 23.8% 119M

NPPM(ours) 73.06% 91.10% -1.04% -0.60% 25.0% 117M
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(a) (b)

Figure 8: (a): Test accuracy of sub-networks given different pruning settings. (b): Test accuracy

of sub-networks given different choice of λ. Both experiments are on CIFAR-10 with ResNet-56

Table 6: Difference between finetuning and training from scratch for our method.

Setting Architecture Pruned Top-1 Pruned Top-5 ∆ Top-1 ∆ Top-5

Finetune
ShuffleNetV2+(Small)

73.06% 91.10% -1.04% -0.60%

Scratch 72.32% 90.86% -1.78% -0.84%

Finetune
MobileNetV2

72.02% 90.26% +0.02% -0.12%

Scratch 71.14% 89.71% -0.86% -0.67%
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(a) ResNet-56 (b) ResNet-50 (c) MobileNetV2 (d) ShuffleNetV2+

(e) ResNet-56 (f) ResNet-50 (g) MobileNetV2 (h) ShuffleNetV2+

Figure 9: (a)∼(d): Gradient similarity between different losses. Shaded area shows standard de-

viation. (e)∼(h): Predicted accuracy and actual accuracy for some sub-networks. ResNet-56 is

evaluated on CIFAR-10 and rest models are on ImageNet.
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4.0 Disentangled Differentiable Network Pruning

4.1 Background

Convolutional Neural Networks (CNNs) have accomplished tremendous success in various

computer vision tasks [83, 122, 123, 129, 3]. To deal with real-world applications, recently, the

design of CNNs has become more and more complicated in terms of width, depth, etc. [83, 130,

46, 69]. These complex CNNs can attain better performance on benchmark tasks, but their compu-

tational and storage costs increase dramatically. As a result, a typical application based on CNNs

can quickly exhaust an embedded or mobile device due to its enormous costs. Given such costs,

the application can hardly be deployed on resource-limited platforms. To tackle these problems,

many researches [43, 42] have been devoted to compressing the original large CNNs into compact

models. Among these methods, weight pruning and structural pruning are two popular topics for

model compression.

Unlike weight pruning or sparsification, structural pruning, especially channel pruning, is an

effective way to truncate the computational cost of a model because it does not require any post-

processing steps to achieve actual acceleration and compression. Many existing works [77, 145, 32,

75] try to discover compact sub-networks by optimizing a regularized loss function through differ-

entiable operations. Usually, the width of a layer and the importance of each channel are entangled

in this setting since they use one learnable parameter to characterize each channel. Specifically, the

FLOPs or parameter constraints implicitly restrict the search space of the pruned model. On the

other hand, search based pruning algorithms (through reinforcement learning [50], evolutionary

algorithms [102] and so on) can directly generate the width of each layer with flexible importance

definition, which leads to competitive performance. However, the costs of search based method is

usually more expansive.

Previous differentiable pruning methods [77, 145, 32, 75] entangle width and importance, lim-

iting the potential search space of sub-networks. To tackle this problem, we aim to disentangle

the learning of width and importance, and consequently make pruning more flexible. The dis-

entanglement of pruning can be understood as using independent parameterization for channel
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importance and layer width. To achieve this, we first observe that the width of a certain layer can

be represented by k of the top-k operation. Inspired by the definition of top-k, we then relax the

hard equality constraint used in previous works to a soft regularization term, where k and impor-

tance scores can be optimized separately. By doing so, we partially disentangle the importance and

width of a layer for pruning. Under our setting, the choices of channel importance become more

flexible compared to previous works. Additionally, the width k of each layer can be generated

directly, which shares similar property of search based algorithms. Following previous works, we

also formulate the channel pruning problem as a constrained optimization problem, which can be

efficiently optimized through regular SGD methods. Compared to differentiable pruning meth-

ods [77, 145, 32, 75], our method disentangles the learning of width and channel importance,

which potentially enlarge the search space. Compared to search based algorithms [50, 102], our

method provides a way to efficiently generate and optimize width without additional costs.

To make the learning efficient, we further parameterize the importance and width by using

two neural networks. We use an importance generation network to capture inter-channel and inter-

layer relationships. Similarly, a width generation network is used to generate the width of each

layer. A soft constraint term is then used to connect importance and width. With these techniques,

our method can outperform state-of-the-art pruning methods on CIFAR-10 and ImageNet datasets.

Our contributions can be summarized as:

1) We aim to disentangle the learning of width and importance for differentiable channel pruning,

which is achieved by relaxing the equality constraint derived by the definition of the top-k

operation. By relaxing the equality constraint, width and importance can be parameterized

independently. We also extend the discrete top-k masks to soft top-k masks with a smoothstep

function allowing custom width for soft windows.

2) To improve the learning efficiency, we parameterize the importance of each channel and width

of each layer by using neural networks. The importance generation network is used to cap-

ture inter-channel and inter-layer relationships. The width generation network shares similar

intuition.

3) Extensive experiments on CIFAR-10 and ImageNet show that our method can outperform

existing channel pruning methods on ResNets and MobileNetV2/V3.
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4.2 Related Works

Recently, model compression has drawn a lot of attention from the community. Weight pruning

and structural pruning are two popular directions.

4.2.1 Weight Pruning

Weight pruning eliminates redundant connections without assumptions on the structures of

weights. Weight pruning methods can achieve a very high compression rate while they need spe-

cially designed sparse matrix libraries to achieve acceleration and compression. As one of the

early works, [43] proposes to use L1 or L2 magnitude as the criterion to prune weights and connec-

tions. SNIP [85] updates the importance of each weight by using gradients from the loss function.

Weights with lower importance will be pruned. Lottery ticket hypothesis [22] assumes there exist

high-performance sub-networks within the large network at initialization time. Besides one-shot

pruning, repeated pruning and fine-tuning can lead to better performance but with larger costs. In

rethinking network pruning [104], they challenge the typical model compression process (training,

pruning, fine-tuning) and argue that fine-tuning is not necessary. Instead, they show that training

the compressed model from scratch with random initialization can obtain better results.

4.2.2 Structural Pruning

One of the previous works [88] in structural pruning uses the sum of the absolute value of

kernel weights as the criterion for filter pruning. Instead of directly pruning filters based on mag-

nitude, structural sparsity learning [140] is proposed to prune redundant structures with Group

Lasso regularization. On top of structural sparsity, GrOWL regularization is applied to make sim-

ilar structures share the same weights [148]. One of the problems when using Group Lasso is

that weights with small values could still be important, and it is difficult for structures under Group

Lasso regularization to achieve exact zero values. As a result, [105] proposes to use explicit L0 reg-

ularization to make weights within structures have exact zero values. Besides using the magnitude

of structure weights as a criterion, other methods utilize the scaling factor of batchnorm to achieve

structure pruning, since batchnorm [71] is widely used in recent neural network designs [46, 69].
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A straightforward way to achieve channel pruning is to make the scaling factor of batchnorm to

be sparse [103]. If the scaling factor falls below a certain threshold, the channel will be removed.

Structure sparse selection [70] extends the idea of using scaling factors to more structures, like

an entire layer. Another line of research formulates pruning as a constrained optimization prob-

lem [77, 145, 32, 75, 150, 25], and they use learnable parameters (also called gate parameters)

to control each channel. These parameters are differentiable in their setting, which enables an

efficient end-to-end optimization process. Though these methods have succeeded in channel prun-

ing, the width of each layer and the importance of each channel are entangled, limiting the search

space. Besides using gates, Collaborative channel pruning [119] tries to prune channels by using

Taylor expansion. Greedy forward selection [144] is proposed to find good sub-networks, which

starts from an empty network and greedily adds important channels from the original network.

In Automatic Model Compression (AMC) [50], they use policy gradient to update the policy net-

work. This policy network is then used to generate the width of each layer. MetaPruning [102]

uses a hypernet to generate parameters for sub-networks, and evolutionary algorithms are utilized

to find the best configuration (width) of sub-networks. Our method can generate width directly like

MetaPruning and AMC. In addition, our method can be optimized more efficiently through regular

stochastic gradient methods.

4.2.3 Other Methods

Besides weight and channel pruning methods, there are works from other perspectives, includ-

ing bayesian pruning [111, 115], weight quantization [14, 121], pruning for fairness [151], and

knowledge distillation [52].

4.3 Proposed Method

4.3.1 Preliminary

To better describe our proposed approach, necessary notations are introduced first. In a CNN,

the feature map of lth layer can be represented by Fl ∈ ℜCl×Wl×Hl , l = 1, . . . , L, where Cl is the
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Figure 10: Flowchart of our proposed method. Importance score generator gs and width generator

gk are used to generate the importance score and width. We then use them to generate the mask

vector a, and it is used to produce the sub-network architecture. The network is pruned according

to a. Finally, gk and gs are optimized by minimizing the loss function.

number of channels, Hl and Wl are height and width of the current feature map, L is the number

of layers. The mini-batch dimension of feature maps is ignored to simplify notations. sigmoid(·)

is the sigmoid function. round(·) rounds inputs to nearest integers. 1(·) is the indicator function.

Usually, differentiable channel pruning algorithms aim to solve the following problem:

min
Θ

J (Θ) = L(f(x; Θ,W), y) + λR(Θ), (4-1)

where x, y are input samples and their labels. W , L, and R are model weights, loss functions, and

regularization functions on parameters or FLOPs. Θ are learnable parameters to decide whether

to prune the channel. There are many ways to characterize a channel, such as Gumbel-sigmoid

approximation [73], shape function [77], and so on. R is the regularization function to control the

number of channels or FLOPs of each layer. Our method aims to disentangle the learning of width

and channel importance. As a result, Θ will be reparameterized into two variables: importance

scores s and layer width k. How to achieve such a disentanglement will be detailed in this section.
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4.3.2 Top-k Operation

In this section, we will introduce how to parameterize the width of a layer. Let us denote the

importance score vector for each channel of a layer as s = [s1, . . . , sCl
]. Suppose we need to select

k most importance channels out of Cl channels, we can use a top-k mask vector a, which is given

by:

ai =

1 if si is a top-k element in S,

0 otherwise.
(4-2)

The process of selecting top-k channels is a natural way for channel pruning, and k represents

the width of this layer. The relationship between k and ai can be represented by the following

equation:

k =

Cl∑
i=1

ai. (4-3)

Gradients with respect to k through Eq. 6-2 are not defined. Except Eq. 6-2, we can use an

alternative surrogate to represent k:

k =
1

Cl

Cl∑
i=1

1
si>s0

(si), (4-4)

where s0 is a value between kth and k + 1th value, and the indicator function 1
si>s0

(·) returns 1 if

si > s0, otherwise it returns 0. Here, to unify the learning of different layers, we abuse the notation

k to represent the normalized version of k ∈ [0, 1]. If we enforce the hard equality defined in Eq. 6-

3, it still entangles the learning of importance and width. We then replace it with a regularization

term:

C(k, s) = ∥k − 1

Cl

Cl∑
i=1

sigmoid((s̄i − s̄0)/t)∥2, (4-5)

which does not enforce a hard constraint and s̄ is the unnormalized importance score (outputs

before the final activation of gs defined in Eq. 4-8). We also relax the indicator function with the

sigmoid function of temperature t to facilitate gradient calculations. In practice, we let s̄0 = 0,

so that the importance score will match k automatically. The gradients with respect to k can be

obtained by utilizing this regularization term, and the width of each layer can be optimized using
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Figure 11: Soft relaxation vs. naive binary mask. In this figure, we choose Cl = 64, γ = 20,

Clk = 40. Solid line represent the continuous function. Square dots represent the actual values

taken by the vector ã.

SGD or other stochastic optimizers. Finally, we achieve pruning by inserting the vector a to the

feature map Fl:

F̂l = a⊙Fl, (4-6)

where F̂l is the pruned feature map, ⊙ is the element-wise product, and a is first resized to have

the same size of Fl.

4.3.3 Soft Top-k Operation with Smoothstep Function

When performing the discrete top-k operation, we place 1 to the first k elements of ã. Simi-

larly, we use a smoothstep function [45] to generate values for soft relaxed ã:

Smoothstep(x) =



0, if x ≤ −γ/2 + Clk,

− 2
γ3 (x− Clk)

3 + 3
2γ
(x− Clk) +

1
2
,

if − γ/2 + Clk ≤ x ≤ γ/2 + Clk,

1, if x ≥ γ/2 + Clk.

(4-7)

In smoothstep function, γ controls the width of the soft relaxation. Clk represents the center of the

soft relaxation. Outside [−γ/2 +Clk, γ/2 +Clk], smoothstep function performs binary rounding.
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We provide the comparison between smoothstep function and naive binary masks in Fig. 11. The

value of ãi = Smoothstep(i). The soft version of a can be obtained by a = P T ã. Here, we abuse

the notation of ã and a for the soft relaxed mask vector.

To satisfy Eq. 6-2, we need Clk ≈
∑

ai. As a result, the center of the soft window should be at

Clk. Other functions like sigmoid(·) can also interpolate between [0, 1]. We chose the smoothstep

function since it provides an easy way to control the width of soft relaxation. If Clk is close to

Cl (when k is close to 1), the soft range of ã is not symmetric anymore on k. We adjust γ to

round(Cl − Clk) to ensure Clk ≈
∑

ai.

Binary values are often used to control the opening or closing of a channel. However, it is

better to use soft relaxed values in certain circumstances. We apply soft relaxation on the mask

vector a for several reasons. In practice, it is hard for us to generate k with discrete values, and

discrete constraints on kCl dramatically increase the difficulty of optimization. Thus, the generated

k is within [0, 1]. If only binary values are used, then kCl = 9.1 and kCl = 8.5 will produce the

same a. Soft relaxation can produce unique a when kCl = 9.1 or kCl = 8.5. Another benefit of

soft relaxation is that we can evaluate more channels compared to the discrete settings. Let us first

reindex the vector s as s̃ based on the monotone decreasing order of s, then s̃ = P s, where P is a

permutation matrix. Since a and s have one-to-one correspondence, sorting a according to s can

be represented as ã = Pa.

4.3.4 Generating Width and Importance Score

To provide importance score s for each channel, we use a neural network gs to learn it from

the dataset:

S = gs(xs,Θs), (4-8)

where S = (s1, · · · , sL) is the collection of all scores across different layers, Θs are learnable

parameters of gs, and xs is the input of gs. Before training, we generate xs randomly, and it is

kept fixed during training. We can also use a learnable xs, which results in similar performance.

Previous pruning methods often use a single parameter to control each channel, which can not

obtain inter-channel and inter-layer relationships. As a result, gs is designed to be composed with

GRU [10] and fully connected layers. Basically, we use GRU to capture inter-layer relationships,
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Algorithm 3: Disentangled Differentiable Network Pruning
Input: D, p, λ, ρ, E, f ,
Freeze W in f .
Initialization: initialize xs and xk for gs and gk; randomly initialize Θs and Θk

for e := 1 to E do
shuffle(D)
for a mini-batch (x, y) in D do

1. generate the width of each layer k from gk by using Eq. 4-9
2. generate the importance score of each layer S from gs using Eq. 4-8.
3. produce the soft mask vector ã with Eq. 4-7, and obtain a = P T ã
4. calculate gradients for Θs :

∂J
∂Θs

= ∂L
∂Θs

+ ρ ∂C
∂Θs

and Θk : ∂J
∂Θk

= λ ∂R
∂Θk

+ ρ ∂C
∂Θk

separately.
5. update Θk and Θs with ADAM.

end
end
Pruning the model with resulting gk and gs, and finetune it.

and fully connected layers are for inter-channel relationships. The additional computational costs

introduced by gs is trivial, and it has little impact on the training time. Since S is not directly

involved in the forward computation, we use straight-through gradient estimator [2] to calculate

the gradients of it: ∂J
∂s

= ∂J
∂a

. We also want to emphasize that it’s crucial to use simgoid(·) as the

output activation for gs. Using absolute values [127] or other functions incurs much larger errors

when estimating the gradients. This is probably because simgoid(·) better approximates binary

values.

We also use a neural network gk to generate the width for each layer:

k = gk(xk,Θk), (4-9)

where xk is the input to gk, Θk are parameters for gk, and k = [k1, · · · , kL] is a vector contains

width of all layers. The output activate function is the sigmoid function again, since we need to

restrict the range of k ∈ [0, 1]. gk is composed of fully connected layers. In addition, like xs, xk is

also generated randomly, and it is kept fixed when training gk.
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4.3.5 The Proposed Algorithm

With techniques introduced in previous sections, we can start to prune the network. The net-

work pruning problem in our setting can be formulated as the following problem:

min
Θk,Θs

J (Θk,Θs) ={L(f(x;A,W), y) + λR(T (k), pTtotal)

+ ρC(k,S)} (4-10)

where (x, y) is the input sample and its corresponding label, f(x;A,W) is a CNN parameter-

ized by W and controlled by A = [a1, · · · , aL], R is the FLOPs regularization term, T (k) is the

FLOPs of the current sub-network, p is the pruning rate, Ttotal is the total prunable FLOPs, J is the

overall objective function, C(k,S) is defined in Eq. 6-4, and ρ, λ are hyper-parameters for C, R

separately. We let R(x, y) = log(max(x, y)/y), which can quickly push R to approach 0. Our

objective function defined in Eq. 4-10 can be optimized efficiently by using any stochastic gra-

dient optimizer. Using learnable importance scores produces quite strong empirical performance.

If a better learning mechanism for importance score is designed, it can also be merged into our

algorithm.

The overall algorithm is given in Algorithm 3. The input of Algorithm 3 are D: a dataset for

pruning, p: the pruning rate defined in Eq. 4-10, λ and ρ: hyper-parameter for R and C, f : a neural

network to be pruned and E: the number of pruning epochs. In order to facilitate pruning, we

usually choose D as a subset of the full training set. In step 4 of Algorithm 3, the gradients of

Θk and Θs are calculated separately because of C. This operation brings marginal computational

burden since C and R are not depend on input samples. The fine-tuning process is very time-

consuming. As a result, we use the performance of a sub-network within the pre-trained model

to represent its quality. This setup is used in many pruning methods, like AMC [50], and we

freeze weights W during pruning. When performing actual pruning, we round Clkl to its nearest

integer, and soft relaxation is not used. Instead, we use Eq. 6-1 to generate a, which ensures that

a ∈ {0, 1}. Like previous differentiable pruning works, our method can be directly applied to

pre-trained CNNs, which are flexible to use. The overall flowchart of our method is shown in

Fig. 10.
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4.4 Connections to Previous Works

In this section, we will discuss the differences and connections of our methods compared to

previous works. To connect our method with previous work, we can use an equality constraint to

replace the regularization term in Eq. 4-10:

min
k,S

J (k,S) = L(f(x; a,W), y) + λR(T (k), pTtotal),

s.t. kl =
1

Cl

Cl∑
i=1

1
sli>0.5

(sli), l = 1, · · · , L. (4-11)

Here, we do not use gk and gs to simplify the analysis, and we also let sl0 = 0.5 since we

use sigmoid activation functions for gs. Eq. 4-11 is closely related to Eq. 4-1. If we insert
1
Cl

∑Cl

i=1 1
sli>0.5

(sli) to every kl in T (k), we almost recover Eq. 4-1. Compared to Eq. 4-10, Eq. 4-11

is more restrictive since it reduces the number of parameters for pruning one layer from Cl + 1

to Cl, which is equivalent to saying that disentangled pruning provides an extra degree of free-

dom compared to previous works. This may explain why using independent parameterization for

importance and width achieves better empirical performance than previous works. Also note that

Eq. 4-11 corresponds to set ρ to ∞ in Eq. 4-10, and k is no longer a validate variable. If we

let ρ = 0, we have completely disentangled k and S. But in this situation, the resulting k will

be a trivial solution because it only depends on R. From this perspective, the proposed method

in Eq. 4-10 actually interpolates between previous differentiable pruning works and the complete

disentangled formulation.

4.5 Experiments

4.5.1 Settings

Similar to many model compression works, CIFAR-10 [82] and ImageNet [15] are used to

evaluate the performance of our method. Our method uses p to control the FLOPs budget. The

detailed choices of p are listed in the supplementary materials. The architectures of gs and gk are
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Table 7: Comparison results on CIFAR-10 dataset with ResNet-56 and MobileNetV2. ∆-Acc

represents the performance changes before and after model pruning. +/- indicates increase or

decrease compared to baseline results.

Method Architecture Baseline Acc Pruned Acc ∆-Acc ↓ FLOPs

AMC [50]

ResNet-56

92.80% 91.90% −0.90% 50.0%

DCP [154] 93.80% 93.81% +0.01% 47.0%

CCP [119] 93.50% 93.42% −0.08% 52.6%

HRank [96] 93.26% 93.17% −0.09% 50.0%

LeGR [9] 93.90% 93.70% −0.20% 53.0%

DDNP (ours) 93.62% 93.83% +0.21% 51.0%

Uniform [154]

MobileNetV2

94.47% 94.17% −0.30% 26.0%

DCP [154] 94.47% 94.69% +0.22% 26.0%

MDP [39] 95.02% 95.14% +0.12% 28.7%

SCOP [132] 94.48% 94.24% −0.24% 40.3%

DDNP (ours) 94.58% 94.81% +0.23% 43.0%

also provided in supplementary materials. γ in Eq. 4-7 is chosen as round(0.1Cl). γ then depends

on layer width Cl, and it empirically works well.

Within the experiment section, our method is called DDNP (Disentangled Differentiable for

Network Pruning). For CIFAR-10, we compare with other methods on ResNet-56 and Mo-

bileNetV2. For ImageNet, we select ResNet-34, ResNet-50, MobileNetV2 and MobileNetV3

small as our target models. The reason we choose these models is because that ResNet [46],

MobileNetV2 [126] and MobileNetV3 [53] are much harder to prune than earlier models like

AlexNet [83] and VGG [130].

λ decides the regularization strength in our method. We choose λ = 2 in all CIFAR-10 exper-

iments and λ = 4 for all ImageNet experiments. We choose ρ = 2 and t = 0.4 for both datasets.

For CIFAR-10 models, we train ResNet-56 and MobileNet-V2 from scratch following PyTorch

examples. After pruning, we finetune the model for 160 epochs using SGD with a start learning

rate of 0.1, weight decay 0.0001, and momentum 0.9. For ImageNet models, we directly use the

pre-trained models released from pytorch [118]. After pruning, we finetune the model for 100

epochs using SGD with an initial learning rate of 0.1, weight decay 0.0001, and momentum 0.9.
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For MobileNetV2 on ImageNet, we choose weight decay as 0.00004 and use an initial learning rate

of 0.05 with cosine annealing learning rate scheduler, which is the same as the original paper [126].

Most settings for MobileNetV3 small are the same as MobileNetV2. The difference is that weight

decay is reduced to 0.00001 following the original setting [53].

For training gk and gs, we use ADAM [79] optimizer with a constant learning rate of 0.001

and train them for 200 epochs. We start pruning from the whole network. To achieve this, we add

a constant bias to the sigmoid function in gk, and we set it to 3.0. We randomly sample 2, 500

and 25, 000 samples from CIFAR-10 and ImageNet, and they are used as the pruning subset D

in Algorithm 3. In the experiments, we found that a separate validation set is not necessary. All

samples in D come from the original training set. All codes are implemented with pytorch [118].

4.5.2 CIFAR-10

We present comparison results on CIFAR-10 in Tab. 7. On ResNet-56, our method achieves

the largest performance gain (+0.21% ∆-Acc) compared to other baselines. All methods prune

around 50% of FLOPs, and LeGR has the largest pruning rate. At this pruning rate, our method has

obvious advantages compared to other methods. Specifically, our method is 0.20% better than DCP

regarding ∆-Acc. Although DCP has the second best ∆-Acc, it has the lowest FLOPs reduction

rate. CCP and HRank have similar pruning rates and performance, and our method outperforms

them by around 0.30% in terms of ∆-Acc. LeGR prunes more FLOPs than our method, but it has

a much lower ∆-Acc (−0.20% vs. +0.21%).

For MobileNetV2, our method achieves the best ∆-Acc and prunes most FLOPs (+0.23%

∆-Acc and 43% FLOPs). SCOP prunes slightly less FLOPs, and the performance of SCOP is

also lower than our method (−0.24% vs. +0.23% regarding ∆-Acc). Our method and DCP have

similar performance, but our method prunes 17% more FLOPs. In summary, the CIFAR-10 results

demonstrate that our method is an effective way for network pruning.

4.5.3 ImageNet Results

The ImageNet results are given in Tab. 8. We present both base and pruned Top-1/Top-5

accuracy in the table.
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ResNet-34. Our method achieves the best ∆ Top-1 and ∆ Top-5 accuracy with ResNet-34. IE

performs the second best regarding ∆ Top-1/∆ Top-5, but it prunes much less FLOPs compared

to other baselines. SCOP, FPGM, IE, and our method have similar pruning rates. SCOP has the

largest FLOPs reduction rate, but the FLOPs gap between our method and SCOP is quite marginal

(only 0.6%). Given similar pruning rates, our method outperforms other baselines by at least 0.41%

in terms of ∆ Top-1 accuracy.

ResNet-50. For ResNet-50, our method achieves the best pruned Top-1/Top-5 accuracy, and the

reduction of FLOPs is also obvious. DCP prunes most FLOPs among all comparison baselines.

Our method is 0.84% better than DCP regarding ∆ Top-1 accuracy while only removing 0.6%

less FLOPs than it. The gap between GBN and CC is around 0.09%, and they outperform other

baselines. Our method further improves the result of GBN and CC by 0.43% and 0.32% with ∆

Top-1 accuracy. CC has the second best performance, but our method prunes 2% more FLOPs than

it. Notably, our method achieves no loss on Top-5 accuracy (+0.02%). Also notice that CC con-

siders both channel pruning and weight decomposition, introducing extra performance efficiency

trade-off.

MobileNetV2. MoibleNetV2 is a computationally efficient model by design that is harder to prune

than ResNets. With this architecture, all methods prune similar FLOPs within ranges between

29.5% to 30.7%. Our method obtains 72.20%/90.51% Top-1/Top-5 accuracy after pruning, and

both of them are better than all the other methods. Compared to the second best method GFS [144],

the Top-1/∆ Top-1 accuracy of our method is 0.60%/0.65% higher than it. MetaPruning prunes

most FLOPs, but the performance is lower than our method by a large margin. AGMC improves

the results of AMC, but the improvement is not very significant.

MobileNetV3 small. MobileNetV3 small is a tiny model with FLOPs of around 64M. The uniform

baseline prunes most FLOPs which is 3.1% and 2.1% higher than GFS and our method, but the

absolute FLOPs difference is small (Uniform: 47M; GFS: 49M; Ours: 48.3M). Our method has

significant advantages on MobileNet-V3 small, and it is 1.23%/1.06% better than GFS on Top-

1/∆ Top-1 accuracy. GFS greedily selects neurons with the largest impact on the loss starting

from an empty set, and it performs well across multiple architectures. They argue that forward

selection is better than backward elimination with greedy selection. On the contrary, in our setting,

disentangled pruning can successfully discover good sub-networks starting from the whole model,
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especially for compact architectures. The superior performance of our method demonstrates the

advantage of disentangled pruning.

4.5.4 Impacts of Different Settings

In this section, we will demonstrate the effectiveness of different design choices.

We first build a differentiable pruning (DP) baseline by using the Gumbel-sigmoid function.

We then compare DP with our method in Fig. 13 (a,e). Our method outperforms DP when p = 0.5

and p = 0.35. The advantage becomes obvious when the pruning rate is large (p = 0.35). This

observation suggests that our method can discover better sub-networks than DP across different

pruning rates. We also visualize the layer-wise width in Fig. 12. An interesting observation is

that, with different p, the relative order of width changes (like the first and second blocks) with our

method.

In Fig. 13 (b,f), we verify the effectiveness of soft top-k defined in section 4.3.3. The hard

setting refers to set γ = 0 in Eq. 4-7. From the figure, we can see that soft top-k operation achieves

better performance than the hard version. Moreover, when the pruning rate is large, the effect of

soft top-k becomes more clear (gap around 5%). These results suggest soft top-k is preferred when

disentangling the learning of width and importance.

In Fig. 13 (c,g), we present results by varying the architecture of gs. We can see that full gs

(GRU+FC) has the best performance, followed by FC and channel-wise importance score. The

learning of importance may become difficult when we use disentangled pruning (probably due

to gradient calculations with STE), and naive parametrization (one parameter per channel) lacks

enough capacity to efficiently capture inter-channel and inter-layer relationships. Using a model

with a larger capacity enables fast learning.

Finally, we compare different output functions of gs in Fig. 13. We compare three different

output functions: sigmoid function, absolute function, and square function. Recall that we use s

and s̄ to represent the importance score and unnormalized importance score (outputs before the

final activation of gs). As a result, the importance score with sigmoid function, absolute function,

and square function is defined as s = sigmoid(s̄), sAF =| s̄ | and sSF = s̄2. From Fig. 13, it is

clear that sigmoid(·) has the best performance, which indicates that better alignment in the forward
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pass helps improve the quality of gradients when learning importance scores.

4.6 Conclusion

In previous differentiable pruning works, width and channel importance are entangled during

the pruning process. Such a design is straightforward and easy to use, but it restricts the potential

search space during the pruning process. To overcome this limitation, we propose to prune neural

networks by disentangling width and importance. To achieve such a disentanglement, we propose

to relax the hard constraint used in previous methods to a soft regularization term, allowing inde-

pendent parametrization of width and importance. We also relax hard top-k to soft top-k with the

smoothstep function. We further use an importance score generation network and a width network

to facilitate the learning process. Moreover, the design choices are empirically verified for our

method. The experimental results on CIFAR-10 and ImageNet demonstrate the strength of our

method.
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Table 8: Comparison results on ImageNet dataset with ResNet-34, ResNet-50, ResNet-101 and

MobileNetV2. ∆-Acc represents the performance changes before and after model pruning. +/-

indicates an increase or decrease compared to baseline results.

Method Architecture Base/Pruned Top-1 Base/Pruned Top-5 ∆ Top-1 ∆ Top-5 ↓ FLOPs

SFP [48]

ResNet-34

73.93%/71.84% 91.62%/89.70% −2.09% −1.92% 41.1%

IE [112] 73.31%/72.83% -/- −0.48% - 24.2%

FPGM [49] 73.92%/72.63% 91.62%/91.08% −1.29% −0.54% 41.1%

SCOP [132] 73.31%/72.62% 91.42%/90.98% −0.69% −0.44% 44.8%

DDNP (ours) 73.31%/73.03% 91.42%/91.23% −0.28% −0.19% 44.2%

DCP [154]

ResNet-50

76.01%/74.95% 92.93%/92.32% −1.06% −0.61% 55.6%

CCP [119] 76.15%/75.21% 92.87%/92.42% −0.94% −0.45% 54.1%

MetaPruning [102] 76.60%/75.40% -/- −1.20% - 51.2%

GBN [145] 75.85%/75.18% 92.67%/92.41% −0.67% −0.26% 55.1%

HRank [96] 76.15%/74.98% 92.87%/92.33% −1.17% −0.54% 43.8%

LeGR [9] 76.10%/75.30% -/- −0.80% - 54.0%

SCOP [132] 76.15%/75.26% 92.87%/92.53% −0.89% −0.34% 54.6%

GReg [135] 76.13%/75.36% -/- −0.77% - 56.7%

SRR [138] 76.13%/75.11% 92.86%/92.35% −1.02% −0.51% 55.1%

CC [92] 76.15%/75.59% 92.87%/92.64% −0.56% −0.13% 52.9%

DDNP (ours) 76.13%/75.89% 92.86%/92.90% −0.24% + 0.04% 55.0%

Uniform [126]

MobileNetV2

71.80%/69.80% 91.00%/89.60% −2.00% −1.40% 30.0%

AMC [50] 71.80%/70.80% -/- −1.00% - 30.0%

AGMC [146] 71.80%/70.87% -/- −0.93% - 30.0%

MetaPruning [102] 72.00%/71.20% -/- −0.80% - 30.7%

GFS [144] 72.00%/71.60% -/- −0.40% - 30.0%

DDNP (ours) 72.05%/72.20% 90.39%/90.51% +0.15% +0.12% 29.5%

Uniform [53]

MobileNetV3 small

67.50%/65.40% -/- −2.10% - 26.6%

GFS [144] 67.50%/65.80% -/- −1.70% - 23.5%

DDNP (ours) 67.67%/67.03% 87.40%/86.94% −0.64% −0.46% 24.5%
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(a) (b)

Figure 12: (a) and (b): Layer-wise width for two different pruning rates: p = 0.5/0.35. We

compare DDNP with differentiable pruning (DP) in both figures.
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(a) DP baseline
(p = 0.5)

(b) Soft/Hard
(p = 0.5)

(c) gs architecture (p =
0.5)

(d) Output functions (p =
0.5)

(e) DP baseline
(p = 0.35)

(f) Soft/Hard
(p = 0.35)

(g) gs architecture (p =
0.35)

(h) Output functions (p =
0.35)

Figure 13: (a,e): Comparisons of our method and the diferentiable pruning (DP) baseline. (b,f):

Comparisons of the soft and hard settings for the top-k operation. (c,g): Performance during

pruning when using different architectures of gs. (d,h): Performance during pruning when using

different output functions of gs. We run each setting three times and use shaded areas to represent

variance. All experiments are done on CIFAR-10 with ResNet-56.
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5.0 Structural Alignment for Network Pruning through Partial Regularization

5.1 Background

Convolutional Neural Networks (CNNs) have achieved many successes in different computer

vision tasks [83, 122, 123, 129, 3, 19, 40]. To tackle real-world challenges, recent CNNs [83, 130,

46] become larger and larger regarding width, depth, etc. With such capacities, CNNs can obtain

better performance on different benchmarks at the cost of computational and storage burdens.

At the same time, with the recent developments of mobile and embedded devices, the demand

for deploying CNNs on these devices has increased dramatically. However, there is a natural

conflict between the size of CNNs and the hardware capability of these devices. To overcome

these challenges, many works [43, 42] try to reduce the size of CNNs, and make them possible to

be deployed on edge devices.

There are many directions to reduce the size of CNNs. Among them, weight pruning and

structural pruning are two popular topics. Structural pruning, especially channel pruning, is more

friendly to hardware than weight pruning since no post-processing steps are required to acquire

savings in computational and storage costs. Thus, our paper focuses on channel pruning for CNNs.

Many existing one-shot pruning works [119, 145, 32, 112, 50, 30] prune trained models directly.

No matter what method is used, there will be a significant gap between the selected sub-network

and the pruned model. Such a gap creates difficulties in regaining performance during the fine-

tuning process. On the other hand, soft pruning methods [48, 75] softly remove structures during

the training process, which can produce good results with a shorter fine-tuning process. However,

soft pruning methods generally perform worse than typical one-shot pruning methods, probably

because the weight space is restricted during the training process because of soft pruning.

To tackle the above problems, we introduce a novel partial regularization technique to align

model weights and the discovered sub-network during the training process, which can produce

a high performance sub-network and reduce the gap between the sub-network and the original

model. In addition, unlike soft-pruning methods, all model structures are used for training. The

partial regularization term contains a partial group lasso regularization on selected weights, and
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other weights remain intact without modifications. An architecture generator is trained to select

which weights should be aligned, and it is also updated during the training process. Our par-

tial regularization formulation is related to partial regularization in lasso [106]. Inspired by the

nonmonotone proximal gradient (NPG) method used in [106], we also use a proximal gradient

method to solve the partial regularization problem in our setting. Note that our method dynam-

ically changes which channels should be put in the partial regularization. As a result, we add

a scalar to balance the regularization strength for different layers because the number of pruned

channels is different for them. To maximally keep the capacity of the original model, we insert the

partial regularization in the middle of the training process. This is because weights are vulnerable

to pruning at the early training stage, and the FLOPs regularization will dominate updates of the

architecture generator, which can create bad sub-networks and mislead the training process. Fi-

nally, we update model weights and the architecture generator periodically, and they are connected

by the partial regularization term during training. To maintain similar training efficiency as the

original model, we only use a small portion of samples to train the architecture generator. Thus,

there is only a small overhead compared to the original training process. Our method successfully

finds performant sub-networks from the original model with these techniques. In summary, the

contributions of this paper can be summarized as follows:

1) We propose to align the sub-network in the original model with the final pruned model through

partial regularization. By structural alignment, the gap between the selected sub-network and

the pruned model is largely reduced, which naturally improves the performance of the pruned

model.

2) We use an architecture generator parameterized by neural networks to select the proper sub-

network structure and guide the partial regularization. Inspired by partial regularization in

lasso [106], we propose to solve the partial regularization problem via proximal gradients,

which facilitate the alignment process.

3) Empirical results show that the sub-network discovered by our method performs much better

than the one-shot pruning setting. Extensive experiments on CIFAR-10 and ImageNet show

that our method outperforms existing channel pruning methods on ResNets and MobileNet-V2.
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5.2 Related Works

Weight-Level Pruning. Weight pruning removes redundant connections based on individual

weights. High compression rates can be achieved by weight pruning, but they can not directly

achieve acceleration, and specially designed sparse matrix libraries are required. One of the early

works [43] proposes to measure the importance of weights with their L1 or L2 magnitude, and

unimportant weights are removed. Instead of magnitude, SNIP [85] updates the importance of

each weight by using gradients from the loss function. SNIP can be used at the initialization time.

The assumption of the Lottery ticket hypothesis [22] suggests that there exist sparse sub-networks

(winning tickets) that can achieve the performance of the full model. In addition, with repeated

training and fine-tuning, it can achieve better results. On the other hand, rethinking network prun-

ing [104] argues that the learned topology from pruning algorithms is the key to achieving better

performance. In addition, weight rewinding [124] shows that resetting weights to values from the

middle training process can also produce good results. Similar to weight rewinding, our method

does not modify weight training at the beginning, the partial regularization is inserted in the middle

training process.

Structural-Level Pruning. Different from weight pruning, structural pruning is more friendly

to hardware since it requires little or no post-processing steps to achieve acceleration. Similar to

weight pruning, one of the early structural pruning methods [88] measure the importance of fil-

ters by using the sum of the absolute value of kernel weights. Besides using the magnitude to

measure channel or filter importance, other methods utilize the scaling factor of batchnorm [71] to

indicate which channels are important because batchnorm [71] is popular for the design of recent

CNNs [46, 126]. To prune channels, Liu et al. [103] apply the sparse regularization to the scaling

factors of batchnorm, and the channel will be pruned if the corresponding scaling factor is small.

Structure sparse selection [70] introduces scaling factor to specific structures, such as neurons,

groups, or residual blocks, and the sparsity regularization is applied to these structures. Structures

with small values will also be removed. Another line of research formulates channel pruning as a

constrained optimization problem [77, 145, 32, 75, 150], and learnable parameters are used to con-

trol each channel. These parameters are end-to-end differentiable, which is amenable to gradient

based optimization methods. Our method is also related to these researches. Different from these
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methods, the learning of sub-networks accomplishes the training of model weights in our method.

In addition, we use partial regularization to promote the selected sub-network, which reduces the

gap between the pruned model and the sub-network. Besides using gates, Automatic Model Com-

pression (AMC) [50] uses policy gradient to update the policy network. This policy network is

then used to decide the left width of each layer. Collaborative channel pruning [119] prunes chan-

nels by exploiting inter-channel dependency. Greedy forward selection [144] starts from an empty

network and greedily adds Important channels from the full model. MetaPruning [102, 91] uses a

hypernet to generate parameters for sub-networks, and evolutionary algorithms are utilized to find

the best sub-networks. MetaPruning shows that pruning should accomplish trained model weights.

Besides these pruning methods, regularization based pruning methods can also be applied to

structural pruning. Previous works [140, 90] use group sparsity to prune different structures. In

addition to structural sparsity, structural sharing is considered in other works [148, 35]. Our method

relates to regularization based methods; however, the formulation of our partial regularization only

aligns selected channels dynamically, and other weights are intact.

Other Related Works. Besides the above-mentioned methods, there are works from other

perspectives, including bayesian pruning [111, 115], weight quantization [14, 121], and knowledge

distillation [52].

5.3 Proposed Method

5.3.1 Overview

Before introducing our method, we first describe notations and provide an overview of our

method. In a CNN, the feature map of lth layer can be represented by Fl ∈ ℜCl×Wl×Hl , l =

1, . . . , L, where Cl is the number of channels, Hl and Wl are height and width of the current

feature map, L is the number of layers. Similarly, the weights of lth layer can be written as

Wl ∈ ℜCl×Cl−1×kl×kl , and kl is the kernel size of this layer. The mini-batch dimension of feature

maps is ignored to simplify notations.

The core motivation of our proposed method is to reduce the gap between the selected sub-
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network from the original model and the pruned model. To achieve this goal, we need two

processes. First, we need to choose the desired sub-network from the original model, and this

sub-network should also be updated when model weights are trained during the learning process.

Secondly, we use the sub-network to guide the partial regularization term, which is used to de-

cide which weights should be regularized. In addition, partial regularization should not be fixed to

accommodate the changes in the selected sub-network.

5.3.2 Learning the Sub-network

We use an Architecture Generator Network (AGN) to generate the desired sub-network archi-

tecture v ∈ {0, 1}N , where 0 or 1 is used to depict the removal or keep of a channel, and N is the

total number of channels from all layers. The large parameterization space of AGN can facilitate

the learning of sub-network structures. To generate v, the following equation is used:

v = AGN(Θ), (5-1)

and AGN is composed of gated recurrent unit (GRU) [11] and dense layers. In addition, Gumbel-

Sigmoid [73] with STE [2] are used to produce the final binary vector v, and they are placed after

the output of dense layers. More details of AGN are provided in the supplementary materials.

Once we have v, we can apply it to the feature maps to produce a sub-network. The feature

map of the lth layer is then modified as follows:

FF̂l = vl ⊙Fl, (5-2)

where ⊙ is element-wise multiplication, vl is the architecture vector of lth layer, and vl is resized

to have the same size of Fl. The feature map Fl is from the output of the activation function. The

overall loss function for generating the desired sub-network is as follows:

min
Θ

Jθ(Θ) := L(f(x;W ,v), y) + λRFLOPs(T (v), pTtotal) (5-3)

where T (v) is the current FLOPs decided by the vector v, Ttotal is the total FLOPs of the original

model, p ∈ (0, 1] is a hyperparameter deciding the remaining fraction of FLOPs, λ is the hyper-

parameter controlling the strength of FLOPs regularization, f(x;W ,v) is a CNN parameterized
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by W and the sub-network structure is determined by the architecture vector v, L is the task

loss function and RFLOPs is the regularization term for FLOPs. The regularization term RFLOPs

is RFLOPs(x, y) = log(max(x, y)/y). With Eq. 6-3, we can find promising sub-networks when

training the AGN and model weights periodically.

5.3.3 Partial Regularization

Given a sub-network v obtained from AGN, we can then reduce the gap between the sub-

network and the pruned model and thus increase its performance. We can formulate the optimiza-

tion problem with partial regularization as follows:

min
W

Jw(W) := L(f(x;W), y) + γRw(W), (5-4)

where Rw is the partial regularization term, and γ controls the strength of the partial regularization.

Rw has the following form:

Rw(W) =
L∑
l=1

∑
i∈Sl

N̂l

N̂
∥Wl[i,:,:,:]∥GL, (5-5)

where N̂l =
∑

1 − vl, N̂ =
∑

1 − v and Sl = {i | if vl[i] = 0}. Sl contains the indices of

pruned channels which are decided by AGN. N̂l

N̂
is a scalar to adjust the regularization strength

given different layers. The numerator N̂l is the number of pruned channels of the lth layer, and the

denominator N̂ is the number of pruned channels from all layers. It is easy to see that
∑L

l=1
N̂l

N̂
=

1. ∥x∥GL is the norm of grouped weights for Group Lasso, and ∥x∥GL=

√∑|x|
i=1 x

2
i where |x|

represents the number of elements in x. In Eq. 6-5, we assume the corresponding layer is pruned

across the output dimension. If it is pruned across the input dimension, we have
∑

i∈Sl
∥Wl[:,i,:,:]∥GL.

The goal of using Group Lasso for our partial regularization is to reduce the distance between

the dense model and the pruned model, other suitable functions may also be useful, but we found

that the partial regularization with Group Lasso already produces good results. Another benefit

of the partial regularization Rw is that it will not penalize weights that are not pruned. By doing

so, we can avoid the problem of overpenalizing all weights’ magnitude. In addition, v is updated

during the training process, and Rw will dynamically regularize weights. As a result, v can flexibly

change instead of falling into a fixed sub-network during the optimization process.
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Algorithm 4: Structural Alignment for Network Pruning
Input: D, DAGN ,p, λ, γ, E, Estart,
Initialization: initialize W and θ.
for e := 1 to E do

/* Optimizing model weights. Freeze Θ of the AGN. */
for a mini-batch (x, y) in D do

1. calculate the gradients w.r.t model weights: ∇WL.
2. update model weights using any stochastic optimizer.
3. if if e ≥ Estart then

generate v from the AGN by using Eq. 6-1.
apply the proximal gradient step following Eq. 6-8.

end
/* Optimizing Θ of the AGN. Freeze model weights W. */
if if e ≥ Estart then

for a mini-batch (x, y) in DAGN do
1. generate v from the AGN by using Eq. 6-1 and apply it to the model.
2. calculate gradients w.r.t to J in Eq. 6-3: ∇ΘJθ

3. update the AGN with ADAM
end

end
Pruning the model with resulting v, and fine-tuning it.

5.3.4 Proximal Gradients for Partial Regularization

Eq. 6-5 has a similar formulation of the partial regularization of lasso [106]. In [106], the re-

lated optimization problem is solved via a nonmonotone proximal gradient (NPG) method. How-

ever, NPG requires frequent evaluation of the loss function to ensure the loss value after proximal

gradients is less or equal to the loss value before the update. With CNNs, the costs of NPG are too

large due to frequent loss evaluations. As a result, we use a one-step proximal gradient update to

solve the problem defined in Eq. 6-4.

The proximal operator of Rw is defined as:

proxγRw
(x) = arg min

y
γRw(y) +

1

2
∥x− y∥2. (5-6)

In Eq. 6-6, ∥x − y∥2 defines the sum of the square difference between x and y. We denote model

weights after tth update as W t, and W t+1 can be obtained by:

W t+1 = proxαt+1γRw
(u(W t, αt+1)), (5-7)
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where u(W t, αt+1) is an update rule that can be applied for many algorithms, and αt+1 is the

learning rate at the current step. Take SGD as an example, u(W t, αt+1) = W t −αt+1∇WtL. With

Eq. 6-6 and Eq. 5-7, model weights W can then be updated with proximal gradients.

We now present the analytical solution to Eq. 6-6, so that model weights can be efficiently

updated. From the structure of Rw, we know that channels with indices i ∈ Sl will be regularized.

This is equivalent to not regularizing channels if i ̸∈ Sl. Consequently, we have the following form

of the proximal gradient operator:

proxαγRw
(Wl) =



Wl[i,:,:,:]

∥(1−vl)⊙Wl∥2
max

(
0,− N̂l

N̂
αγ

+∥(1− vl)⊙Wl∥2
)
, if i ∈ Sl,

Wl[i,:,:,:], if i ̸∈ Sl.

(5-8)

In Eq. 6-8, we omit the step notation t to simplify the notations, and we still assume Wl is pruned

along the output dimension. In this equation, it is easier to see that N̂l

N̂
can balance the regularization

strength given different layers. Due to the property of our proposed partial regularization, the term

∥(1 − vl) ⊙Wl∥2 also changes dynamically, since N̂l is changed after updates of the AGN. As a

result, if no adjustment is applied, no matter how large or small N̂l is, only a constant value 1
L
αγ

will be used for the soft-thresholding, max(0, ∥(1−vl)⊙Wl∥2− 1
L
αγ), in all circumstances, which

is not reasonable. To accompany the changes of vl, and consequently N̂l, we use N̂l

N̂
to dynamically

balance the soft-thresholding parameter between different layers. With Eq. 6-8, we can efficiently

update W with our proposed partial regularization.

5.3.5 Network Pruning via Structural Alignment

We present the algorithm of our method in Algorithm. 4. In Algorithm. 4, D is the training

dataset; DAGN is a sub-dataset within D and it is used to train AGN; p decides how much FLOPs

is preserved and it described in section 5.3.2; γ and λ are hyperparameters to control the strength

of RFLOPs and Rw; E is the total number of epochs; Estart is the start epoch to train AGN and apply

Rw when optimizing model weights. Note that, to reduce the overhead brought by training AGN,

we only use a small sub-set sampled from D. As we discussed in section 5.1, we need to set a

start epoch for AGN and Rw. If we apply Rw when training starts (Estart = 0), it will largely
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restrict the final performance of the whole model before pruning. Instead, we can have deserved

results if we start partial regularization in the middle of the training process. The reason for this

problem can come from several perspectives. For example, at the beginning of the training, the

classification loss can not produce accurate guidance for pruning since weights are not trained

properly. Consequently, it will produce a bad sub-network, and following this sub-network only

gives even worse results.

We summarize our method in Fig. 14. The inference path when training model weights and the

AGN are different, and they are connected by partial regularization, which is different from current

one-shot pruning and soft pruning methods. With this design, model weights are not directly

affected by the sub-network architecture, which creates a smooth transition for the selected sub-

network before and after pruning.

5.4 Experiments

5.4.1 Settings

We use CIFAR-10 [82] and ImageNet [15] to evaluate the performance of our method. Our

method requires one hyper-parameter p to control the FLOPs budget. The detailed choices of

p are listed in supplementary materials. We choose ResNets [46] and MobileNet-V2 [126] for

comparison. For CIFAR-10, we compare our method with other methods on ResNet-56 and Mo-

bileNetV2. For ImageNet, we select ResNet-34, ResNet-50, ResNet-101, and MobileNetV2 as our

target models.

We set λ in Eq. 6-3 to 4.0 for all models and datasets. Similarly, we set γ to 0.0005 for all

settings. We set Estart at 20% of the total training epochs. Detailed numbers of Estart are listed in

supplementary materials. The range of Estart is quite large, which is hard to be explored thoroughly.

The current setting already provides good results, but better settings may also exist. To reduce

the training costs of the AGN, we random sample 5% of samples from the original dataset for

constructing DAGN. With this setup, the additional costs are less than 5% of the original training

costs. We train the parameters Θ of the AGN using ADAM [79] with a start learning rate 0.001.

Besides the training of the AGN, we follow the standard training recipe of ResNets for both CIFAR-
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10 and ImageNet. For MobileNet-V2, We follow the training settings in their original paper [126].

After training, we prune the model by using the sub-network generated from the AGN. The fine-

tuning settings are similar to the training setting. Due to space limitations, details of training and

fine-tuning are also presented in supplementary materials. In the experimental section, our method

is abbreviated as SANP: Structural Alignment for Network Pruning.

5.4.2 CIFAR-10 Results

The results of CIFAR-10 are presented in Tab. 9. For ResNet-56, our method achieves the best

performance (in terms of ∆-Acc) compared to other methods. Specifically, our method outper-

forms the second best method GNN-RL by 0.22% regarding ∆-Acc (SANP +0.32% vs. GNN-RL

+0.10%) when pruning similar FLOPs (SANP 52.0% vs. GNN-RL 54.0%). Our method also out-

performs HRank and DMC by 0.25% and 0.41% separately (DMC +0.07% and HRank −0.09%).

The gap between other methods and our method is even larger. For MobileNet-V2, our method

prunes most FLOPs (46.0%) and achieves the best performance (∆-Acc: +0.45%). Compared to

the second best method, DMC, our method prunes 6% more FLOPs and outperforms it by 0.19%.

SCOP also prunes 40% FLOPs, and the gap between our method and SCOP is even larger (0.69%

better in terms of ∆-Acc). The uniform setting and DCP prunes around 26% FLOPs, but the

performance is still worse than our method.

5.4.3 ImageNet Results

All results for the ImageNet dataset are shown in Tab. 10.

ResNet-34. Our method achieves 73.43% Top-1 accuracy and 91.48% Top-5 accuracy, which is

better than the baseline by 0.19% and 0.16% for Top-1/Top-5 accuracy separately. At the same

time, our method removes 44.1% FLOPs, which is on par with other methods. It is obvious that

the advantage of our method is clear compared to other methods. Our method prunes similar

FLOPs to SCOP and DMC. However, the ∆ Top-1 Acc of our method is 0.88% and 0.92% better

than SCOP and DMC, respectively, and we have similar observations for ∆ Top-5 Acc (0.60%

and 0.47% better than SCOP and DMC). Taylor has the second best ∆ Top-1 Acc, but the pruned

FLOPs is much lower than our method (ours: 44.1% vs. Taylor: 24.2%). The advantage of our

69



method compared to FPGM is more obvious.

ResNet-50. Our method achieves 76.47% Top-1 accuracy and 93.00% Top-5 accuracy, which is

also better than the baseline Top-1/Top-5 accuracy. The second best method, CHIP, removes 48.7%

FLOPs while maintaining the original performance. Our method outperforms CHIP by 0.41% in

terms of the ∆ Top-1 accuracy while pruning near 8% more FLOPs. NPPM is a strong baseline for

ResNet-50, our method outperforms by 0.60% in ∆ -Top-1 Acc. GNN-RL and Random-Pruning

are two recent pruning works. Our method outperforms them by 2.23% and 1.16% separately,

while our method prunes more FLOPs. PHP, DCP, CCP, and DMC have similar ∆-Top 1 accuracy.

The gap between our method and these methods ranges from 1.21% to 1.47% regarding ∆-Top 1

accuracy. The advantage of our method compared to the rest methods is more apparent.

ResNet-101. Our method achieves 78.14% Top-1 accuracy and 94.00% Top-5 accuracy, which

is 0.61% and 0.29% better than the baseline Top-1 and Top-5 accuracy. Although DMC prunes a

little bit more FLOPs, it only achieves 77.41% Top-1 accuracy after pruning which is 0.73% lower

than our method. FPGM, Taylor, and PFP remove less than 50% FLOPs. Our method prunes at

least 10% more FLOPs and still has an advantage in terms of ∆-Top 1 accuracy (from 0.66% to

1.55%).

MobileNet-V2. MobileNet-V2 is generally harder to prune compared to ResNets. All compari-

son methods on MobileNet-V2 remove around 30% FLOPs. Our method achieves 72.05% Top-1

accuracy and 90.37% Top-5 accuracy, which is 0.14% and 0.07% better than the baseline Top-

1 and Top-5 accuracy. Given the similar pruning rate, our method is 1.15%, 0.94%, 1.11% and

1.14% higher than Random-Pruning, MetaPruning CC, and AMC separately regarding ∆-Top-1

Acc. MetaPruning prunes most FLOPs, but the performance is much lower than our method. In

short, our method can also be applied to lightweight CNNs, like MobileNet-V2.

5.4.4 Analysis of Our Method

The effectiveness of partial regularization. To verify whether our proposed partial regularization

is effective, we plot the average channel norm of different groups within each block for ResNet-

56 and MobileNet-V2 on CIFAR-10. The results are shown in Fig. 15. The average channel

norm for the group with partial regularization and without partial regularization are obtained by
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1

N̂l

∑
i∈Sl

∥Wl[i,:,:,:]∥GL and 1

Cl−N̂l

∑
i ̸∈Sl

∥Wl[i,:,:,:]∥GL separately. Weights with partial regularization

are effectively aligned. On the contrary, weights without partial regularization are lightly affected,

which justifies the strength of our proposed partial regularization.

The impact of λ. We study the impact of λ when training the AGN, and we plot the test accuracy

and RFLOPs in Fig. 17a and Fig. 17e. From the figures, we can see that if λ is too large, it will have

negative impacts on learned sub-networks. Otherwise, our method is robust to λ,

The effect of AGN. In Fig. 17b and Fig. 17f, we plot the test accuracy when learning the AGN

given different pruning rates. We construct a Simple baseline, which parameterizes each channel

by using one learnable parameter. We can see that when the parameterization space shrinks, the

performance of learned sub-networks will be affected severely. In addition, the learning is slower,

and the best sub-network performance is also much worse than using AGN.

The effect of Estart. In the method section, we argue that inserting partial regularization in the

middle training process is beneficial. We plot the results of Estart = 0 and Estart = 40 in Fig. 17c

and Fig. 17g. In general, they can find sub-networks with similar performance, but Estart = 0 is

worse than Estart = 40 when the pruning rate is large (p = 0.35). More importantly, the full model

accuracy of Estart = 0 is 92.96% (average across different runs), which is around 0.50% worse than

Estart = 40, which suggests that using partial regularization at the beginning will limit the capacity

of the full model.

The effect of different setups. We construct two additional baselines to see how partial regu-

larization helps to produce a better sub-network within the full model. The One-Shot baseline

directly trains the AGN on the pre-trained model. The w/o Partial Regularization baseline set

γ = 0, and the rest settings are the same as our method. The related results are shown in Fig. 17d

and Fig. 17h. From these figures, we can see that partial regularization always produces the best

sub-network from the full model. In addition, ‘w/o partial regularization’ is worse than the one-

shot setting. This is probably because it is hard to capture the changes of model weights without

partial regularization, which makes the training of AGN much harder than the rest settings. More

comparisons on the ImageNet dataset. To further show how our method improves the one-shot

setting, we present the sub-network performance before and after fine-tuning for one-shot and par-

tial regularization settings in Fig. 16 and Tab. 11. From Fig. 16, we can see that partial regulariza-

tion still produces better sub-networks on ImageNet, and it is around 10% better in terms of Top-1
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accuracy than the one-shot setting for different models. The advantage of partial regularization

naturally extends to results after fine-tuning, as shown in Tab. 11.

5.5 Conclusion

In this paper, we investigate how partial regularization helps to produce a better sub-network

for network pruning. Specifically, our method uses AGN to guide partial regularization across the

training process. We further provide an efficient way to update model weights through proximal

gradients. With these designs, partial regularization effectively reduces the gap between the sub-

network within the full model and the pruned model. Our method then starts from a better sub-

network, thus resulting in a better final pruned model. Extensive experimental results on CIFAR-10

and ImageNet show the effectiveness of our method.
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Figure 14: Overview of the proposed method. The AGN generates the sub-network to guide

the partial regularization during the training process of model weights. The AGN is trained by

evaluating sub-networks on a sub-set from the whole dataset. Both model weights and AGN are

trained in an end-to-end differentiable manner.

Table 9: Comparison of results on CIFAR-10. ∆-Acc represents the performance changes relative

to the baseline, and +/− indicates an increase/decrease, respectively.

Architecture Method Baseline Acc Pruned Acc ∆-Acc Pruned FLOPs

ResNet-56

DCP-Adapt [154] 93.80% 93.81% +0.01% 47.0%

SCP [75] 93.69% 93.23% −0.46% 51.5%

FPGM [49] 93.59% 92.93% −0.66% 52.6%

SFP [48] 93.59% 92.26% −1.33% 52.6%

FPC [47] 93.59% 93.24% −0.25% 52.9%

HRank [96] 93.26% 92.17% −0.09% 50.0%

DMC [32] 93.62% 92.69% +0.07% 50.0%

GNN-RL [147] 93.49% 93.59% +0.10% 54.0%

SANP (ours) 93.49% 93.81% + 0.32% 52.0%

MobileNetV2

Uniform [154] 94.47% 94.17% −0.30% 26.0%

DCP [154] 94.47% 94.69% +0.22% 26.0%

DMC [32] 94.23% 94.49% +0.26% 40.0%

SCOP [132] 94.48% 94.24% −0.24% 40.3%

SANP (ours) 94.52% 94.97% +0.45% 46.0%
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(a) ResNet-56. (b) MoibleNet-V2.

Figure 15: (a) and (b): the average norm of channels with or without partial regularization for

ResNet-56 and MobileNet-V2.

74



Table 10: Comparison results on ImageNet with ResNet-34/50/101 and MobileNet-V2.

Architecture Method Baseline Top-1 Acc Baseline Top-5 Acc ∆ Top-1 Acc ∆ Top-5 Acc Pruned FLOPs

ResNet-34

FPGM [49] 73.92% 91.62% −1.29% −0.54% 41.1%

Taylor [112] 73.31% - −0.48% - 24.2%

DMC [32] 73.30% 91.42% −0.73% −0.31% 43.4%

SCOP [132] 73.31% 91.42% −0.69% −0.44% 44.8%

SANP (ours) 73.24% 91.32% +0.19% +0.16% 44.1%

ResNet-50

DCP [154] 76.01% 92.93% −1.06% −0.61% 55.6%

CCP [119] 76.15% 92.87% −0.94% −0.45% 54.1%

FPGM [49] 76.15% 92.87% −1.32% −0.55% 53.5%

ABCP [97] 76.01% 92.96% −2.15% −1.27% 54.3%

DMC [32] 76.15% 92.87% −0.80% −0.38% 55.0%

SCOP [132] 76.15% 92.87% −0.89% −0.34% 54.6%

PFP [94] 76.13% 92.86% −0.92% −0.45% 44.0%

CHIP [131] 76.15% 92.87% +0.00% +0.04% 48.7%

NPPM [30] 76.15% 92.87% −0.19% +0.12% 56.0%

Random-Pruning [89] 75.83% 92.92% −0.75% −0.40% 51.0%

GNN-RL [147] 76.10% - −1.82% − 53.0%

SANP (ours) 76.06% 92.86% + 0.41% + 0.17% 56.2%

ResNet-101

FPGM [49] 77.37% 93.56% −0.05% 0.00% 41.1%

Taylor [112] 77.37% - −0.02% - 39.8%

DMC [32] 77.37% 93.56% +0.04% +0.03% 56.0%

PFP [94] 77.37% 93.56% −0.94% −0.44% 45.1%

SANP (ours) 77.53% 93.71% + 0.61% + 0.29% 55.4%

MobileNet-V2

Uniform [126] 71.80% 91.00% −2.00% −1.40% 30.0%

AMC [50] 71.80% - −1.00% - 30.0%

CC [92] 71.88% - −0.97% - 28.3%

MetaPruning [102] 72.00% - −0.80% - 30.7%

Random-Pruning [89] 71.88% - −1.01% - 29.1%

SANP (ours) 71.91% 90.30% + 0.14% + 0.07% 29.1%
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(a) (b)

Figure 16: Top-1 and Top-5 accuracy after pruning given different settings.

Table 11: Performance of pruned models given different pruning settings on ImageNet.

Settings Architecture Baseline Top-1 Acc ∆ Top-1 Acc Pruned FLOPs

One-Shot
ResNet-34

73.31% −0.50% 44.0%

SANP 73.24% +0.19% 44.1%

One-Shot
ResNet-50

76.13% −0.57% 56.0%

SANP 76.06% +0.41% 55.2%

One-Shot
MobileNetV2

71.88% −0.42% 29.3%

SANP 71.91% +0.07% 29.1%
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17: (a, e): the impact of λ in RFLOPs. (b, f): the effect of the architecture of AGN. (c, g):

the effect of Estart. (d, h): the effect of different setups. Experiments are conducted on CIFAR-10

with ResNet-56 and p = 0.5 (a,b,c,d,e) and p = 0.35 (f,g,h).
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6.0 BilevelPruning: Unified Dynamic and Static Channel Pruning for Convolutional

Neural Networks

6.1 Background

Convolutional neural networks (CNNs) have recently achieved great successes in many ma-

chine learning and computer vision tasks [83, 122, 123, 129, 3]. Despite the remarkable perfor-

mance, the computational and storage costs of most CNNs are quite expensive due to their complex

architectures. Such costs have become the major bottleneck to deploying CNNs on portable devices

with limited resources (e.g., memory, CPU, energy). To solve this problem, many researchers focus

on how to truncate the costs of deep models effectively. These researches can be summarized into

several directions, such as weight pruning [43], weight quantization [7], structural pruning [88],

matrix decomposition [16] and so on. Among these approaches, channel pruning, which belongs to

structural pruning, is a promising way to effectively reduce computational and storage costs since

other methods often require additional post-processing steps to acquire actual compression. Thus,

this work focuses on investigating the channel pruning technique.

A series of channel pruning approaches [51, 108, 154] use different criteria to evaluate the

importance of each channel, and the redundant (less important) channels are pruned. These ap-

proaches are also called static channel pruning. The benefit of static channel pruning is that

unessential channels are permanently removed, which saves both storage and computational costs.

However, the model capacity of static pruning is restricted by using a fixed sub-network. Some

more recent works [37, 100] try to select important channels based on inputs and intermediate

feature maps at inference time, and they belong to dynamic channel pruning. Given different in-

puts, different sub-networks are dynamically selected, which largely improves the model capacity.

Most existing dynamic pruning methods preserve all channels to ensure the model has the largest

capacity. Compared to static pruning, dynamic pruning methods often achieve better performance

but at the cost of requiring extra storage space.

As mentioned in recent storage efficient dynamic pruning work [6], the large storage costs of

most dynamic pruning methods prohibit them from being deployed in resource-limited portable
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devices. To save storage costs for dynamic pruning, storage efficient pruning [6] heuristically

combines static and dynamic channel pruning by using reinforcement learning. The final pruned

model is obtained by combining the outputs of both static and dynamic pruning through a hand-

designed function. Channels with low importance are permanently removed. Although this ap-

proach achieves good results, there are several drawbacks. First, the sub-networks from dynamic

and static pruning in their method are treated separately. In their work, static sub-networks are

not considered when conducting dynamic pruning and vice versa, which generally hurts the per-

formance. Moreover, the learning of position and importance of remaining channels are also sep-

arated. Second, they use a hand-designed function to fuse dynamic and static pruning results,

leading to sub-optimal performance due to the lack of the learning process.

To tackle the aforementioned problems, we propose a new model to integrate static and dy-

namic pruning. To naturally form relationships between static and dynamic sub-networks, we look

for the best static sub-network by evaluating dynamic sub-networks. We then integrate the learn-

ing of static and dynamic sub-networks by using bi-level optimization. Moreover, the static sub-

network is never evaluated directly, and it’s only implicitly trained through dynamic sub-networks.

Such a setup ensures that dynamic sub-networks fully utilize their static counterpart. Our new

formulation integrates dynamic and static channel pruning, leading to a better trade-off between

storage costs and dynamic flexibility. Specifically, the limited model capacity in static pruning is

compensated by dynamic pruning, and the extra storage costs in dynamic pruning are also reduced

by static pruning. As a result, our model enjoys the benefits of both static and dynamic pruning,

and their shortcomings are compensated by each other. The final pruning results are also learned

in an end-to-end fashion without handcrafted functions.

In our method, the selection of channels for both dynamic and static pruning is based on

differentiable gates, and they can be optimized through backpropagation. Under this setting, we

can apply parameter constraints on the static sub-network and FLOPs constraints on dynamic sub-

networks. Previous dynamic pruning works [100, 6] often require hyper-parameters to implicitly

specify the computational budget and/or the trade-off between dynamic and static pruning. But

our method can set them directly, which is an additional benefit of our method.

In summary, the major contributions of our method can be summarized as follows:

• We propose a novel channel pruning method, which unifies both dynamic and static pruning.
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Dynamic and static sub-networks are connected by evaluating the static sub-network through

dynamic sub-networks instead of training them in parallel.

• We integrate static and dynamic pruning by formulating them as a bi-level optimization prob-

lem. By doing so, our method enjoys benefits from both static and dynamic pruning. In

addition, we present an efficient method for optimizing the matrix-vector product in bi-level

optimization.

• The experimental results on CIFAR-10 and ImageNet datasets suggest that our method achieves

state-of-the-art performance compared to existing dynamic and static pruning methods.

6.2 Related Works

6.2.1 Regular Pruning

Weight pruning. Weight pruning aims to eliminate redundant parameters. An early work [139]

prunes model weights based on minimum description length. Optimal brain damage [84] and sur-

geon [44] utilize second-order information to remove connections. The drawback is that the com-

putation of second-order derivatives is expensive. More recently, Han et al. [43] propose to prune

weights based on their magnitude. Magnitude pruning is very efficient, and the cost of comput-

ing L1 or L2 magnitude is negligible. Regular network pruning approaches follow a three-stage

pipeline: training, pruning, and fine-tuning. Zhang et al. [104] raise questions about such stan-

dard procedure and argue that the sub-network architecture obtained by pruning is more valuable

than the remaining weights. They also show that retraining sub-networks from scratch is enough

to recover the performance. On the other hand, the lottery ticket hypothesis (LTH) [22] shows

that good sub-networks exist at the initialization stage. A series of works [124, 113] related to

LTH extend this work to larger datasets and more complicated architectures. Another line of re-

search [153, 120] shows that training masks on top of untrained models can also lead to ideal

performance. The model after weight pruning has much less parameters but it requires sparse

matrix libraries or specific hardware to achieve actual savings in storage and computational costs.

Structural Pruning. Structural pruning tries to remove certain structures in a deep model,
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such as kernels, channels, layers, and so on. In contrast to weight pruning, structural pruning can

accelerate inference speed and save storage costs without additional effort. Filter pruning [88]

tries to prune filters from CNNs that are having small effects on the outputs. Similar to magnitude

pruning, the importance of each filter is measured by L1 or L2 norm of the filter, and L1 norm per-

forms better in their settings. Unlike filter pruning, soft filter pruning [48] does not remove filters

during training, and they instead reset these filters and put them into training again. Network slim-

ming [?] uses L1 sparsity regularization on scaling factors of channels from batch normalization

layers, and channels with small scaling factors are removed. Sparse structural selection [70] ex-

tends network slimming to more structures, including layers. Discrimination-aware pruning [154]

not only considers the norms of channels but also uses classification loss to identify unimportant

channels. Automatic model compression [50] applies reinforcement learning (RL) for structural

pruning. RL is used since it can better cooperate with the discrete nature of structural pruning.

Greedy pruning [144] starts from an empty model and adds connections that reduce the loss value

most. Static pruning methods directly reduce storage costs, but the pruned model is fixed leading

to limited model capacity.

The static pruning part of our method has a close connection to structural pruning approaches.

However, unlike the aforementioned approaches, the static sub-network is not directly evaluated;

instead, the static sub-network can be viewed as the backbone model for dynamic sub-networks.

6.2.2 Dynamic Pruning

Regular pruning methods are designed to find a fixed sub-network for all inputs. On the other

hand, dynamic pruning aims to provide different sub-networks for different inputs, which increases

the model capacity given the same inference budget. Runtime neural pruning [95] treats dynamic

pruning for different layers as a Markov decision process and uses reinforcement learning for

training. SkipNet [137] uses a gating module to skip convolution blocks based on previous feature

maps dynamically. The dynamic skipping problem is formulated as a sequential decision-making

problem, which is jointly solved by reinforcement and supervised learning. Adaptive neural net-

works [4] adaptively select the components of a deep model based on the input examples. They

also introduce an early exit mechanism to further reduce computational costs. In feature boosting
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and suppression [37], they propose to skip unimportant input and output channels dynamically.

They use Lasso regularization to introduce sparsity on the runtime channel importance.

Besides pruning, some works utilize the power of dynamic computation to improve the design

of CNNs. CondConv [142] replace traditional convolutions with learned specialized convolutional

kernels for each input. Dynamic convolution [8] applies input-dependent attention on multiple

convolution kernels, which drastically improves the model capacity.

Most aforementioned works need to keep the full model to achieve the best performance. To

reduce storage costs, storage efficient dynamic pruning [6] introduces static pruning along with

dynamic pruning to reduce storage costs. Our method also aims to save storage costs while main-

taining dynamic flexibility. But unlike storage-efficient pruning, we explicitly consider integrating

static and dynamic pruning, which leads to a better trade-off. Our method is also closely related to

bi-level optimization methods and other optimization techniques [68, 67, 61, 66, 60, 38, 62].

6.3 Proposed Method

6.3.1 Notations

To better illustrate our method, we first introduce some necessary notations. In a CNN, the

feature map of i-th layer can be represented by Fi ∈ RB×Ci×Wi×Hi , i = 1, . . . , L, where B is the

mini-batch size, Ci is the number of channels, Wi and Hi are the width and height of the current

feature map, L is the number of layers. ⊙ is the element-wise product. We use σ(x) = 1
1+e−x to

represent the sigmoid function. ⌊·⌉ is used to represent rounding to the nearest integer.

6.3.2 Static and Dynamic Settings

For static pruning, we can use a 0-1 vector to indicate whether to prune a channel or not. To

produce such vectors, we use the following function:

gs = ⌊vs⌉, vs = σ((θs + µ)/τ), (6-1)
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Figure 18: The flowchart of the proposed method. In the figure, we first conduct static pruning

followed by dynamic pruning. Instead of naively combining static pruning and dynamic pruning,

we formulate the pruning problem as a bi-level optimization problem to unify static and dynamic

pruning. The whole process is differentiable, which allows efficient gradient based optimization.

where gs ∈ RCi is the static pruning vector, µ ∼ Gumbel(0, 1), τ is the temperature hyper-

parameter, and θs ∈ RCi are learnable parameters for static pruning. vs is a continuous vector, we

further round it to its nearest neighbor gs. The rounding function is not differentiable, we solve

this problem by using the straight-through estimator [2] to calculate gradients. Now we have the

binary vector gs for static pruning. The generation of gs can be seen as using the straight-through

Gumbel-sigmoid [73] trick to approximate Bernoulli distribution.

We can use similar formulations for dynamic pruning and consider feature maps from the

i− 1th layer. The detailed formulation can be written as:

gd = ⌊vd⌉, vd = σ((h(Fi−1; θd) + µ)/τ), (6-2)

where gd ∈ RB×Ci is the dynamic pruning vector, and h(·; θd) is a routing function parameterized

by θd to dynamically select channels, the rest settings are the same as static pruning. The rout-

ing function h(·; θd) is composed of global average pooling followed by squeeze and excitation

(SE) [55], which is suggested by FBS [37]. By using SE, we can save parameters when some

layers in a model are too wide (like later layers of MobileNet-V2).

After we have gs, the resulting feature map obtained by static pruning can be represented as:

F̃i = gs ⊙Fi (6-3)
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where F̃i is the pruned feature map by applying gs, and gs is first expanded to have the same

dimension of Fi. After having F̃i, we can regard it as the new base feature map, and apply dynamic

pruning on it:

F̂i = gd ⊙ F̃i. (6-4)

where F̂i is the dynamically pruned feature map, gd is also first expanded to have the same dimen-

sion of F̃i and conduct element-wise product. We can then remove channels from Wi based on

F̂i. One can also use a more sophisticated method to specify the relationships between static and

dynamic pruning. For example, one can directly multiply gs along with the output dimension of

the weight matrix θd of the routing function. However, we found that such modifications do not

provide any benefits.

6.3.3 Unified Dynamic and Static Pruning

Since all operations of static and dynamic pruning are differentiable, we can formulate the

static pruning problem as follows:

min
Θs

L(f(x; Θs,Θd), y) + λRp(Tp(Θs), ppT̂p), (6-5)

where Θs is the collection of all learnable parameters θs for static pruning, T̂p is the number of

all prunable parameters, Tp(Θs) is the remained number of parameters decided by the static sub-

network, Rp is the regularization term to reduce the number of parameters to a predefined threshold

pp, x, y are input samples and their labels, f(·; Θs,Θd) is a sub-network from the whole network

and it is parameterized by Θs and Θd, and L is the cross-entropy loss for classification. We omit

the model weights W , since we fix W in f(·; Θs,Θd) during the pruning stage. Similarly, the

dynamic pruning problem can be defined as:

min
Θd

L(f(x; Θs,Θd), y) + λRr(Tr(Θd), prT̂r) + γRd(vd), (6-6)

where Θd is the collection of all θd, T̂r is the total prunable FLOPs of the model, Tr(Θd) is the

average FLOPs of B dynamic sub-networks, Rr is the regularization term to push average FLOPs

of dynamic sub-networks to the corresponding threshold pr, γ is the hyper-parameter for Rd, and
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Rd is a regularization term to prevent dynamic sub-networks from collapsing to a single trivial

solution. We define Rd(vd) as follows:

Rd(vd) =
1

L

L∑
i=1

∥vid − v̄id∥−1
2 , (6-7)

where vid is the continuous dynamic vector of ith layer, and v̄id =
1
B

∑
vid is the average of dynamic

vectors from the current layer. We use continuous vid instead of discrete gid. Because the variance

of gid could be very small for early layers (also pointed out in [142]), which results in instability

and difficulty when optimizing Eq. 6-7.

To reduce the number of hyper-parameters, we use the same λ for both Rr and Rp. Given the

objective function in Eq. 6-4 and Eq. 6-5, we can see that the static sub-network is not directly

evaluated, and it is used as the new backbone model for dynamic pruning.

We have the objective functions to conduct static and dynamic pruning; a natural question is

how to train them together? We can simply put Eq. 6-5 and Eq. 6-6 together and optimize them

using gradient descent. However, such a process will make the training of static and dynamic

pruning interfere with each other, which will hurt the pruning result (shown in supplementary

materials). Alternatively, we can optimize Eq. 6-5 and Eq. 6-6 iteratively, but doing so can not

integrate static and dynamic pruning, and training of static and dynamic pruning are separated.

To unify the training of dynamic and static sub-networks, we can consider the following bi-

level optimization [13] problem:

min
Θd

L(f(x; Θ∗
s,Θd), y) + λRr(Tr(Θd), prT̂r) + γRd(vd)

s.t. Θ∗
s = argminΘs

L(f(x; Θs,Θd), y) + λRp(Tp(Θs), ppT̂p),

(6-8)

where the outer problem is to find good dynamic sub-networks based on the optimal static sub-

network, and the inner problem is getting the optimal static sub-network. The formulation of

the problem in Eq. 6-8 also appeared in gradient-based hyperparameter optimization [21, 1] and

differentiable neural architecture search [99].

The inner problem in Eq. 6-8 is not easy to solve since how to generate dynamic sub-networks

without learning is unclear. A naive random sampling of dynamic sub-networks only produces

trivial results. We then approximate Θ∗
s by training one step, and it has been proven effective

in previous works [1, 99]. Multi-step approximation can also be used, but it will dramatically
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increase the computational costs since one has to perform backpropagation through multiple time

steps. As a result, we chose to use the one-step approximation. To simplify notations, we use

L(Θs,Θd) = L(f(x; Θs,Θd), y) for the following derivations. Let us first define the update rule u

for Θs: Θ
′
s = u(Θs, η), and η is the learning rate. Take SGD as an example, the update rule of Θs

is Θ′
s = u(Θs, η) = Θs − η(∇ΘsL(Θs,Θd) + λ∇ΘsRp). We then approximate Θ∗

s with Θ
′
s, and

the gradient with respect to Θd is:

∇Θd
L(Θ∗

s,Θd) + λ∇Θd
Rr + γ∇Θd

Rd

≈ ∇Θd
L(Θs − η(∇ΘsL(Θs,Θd) + λ∇ΘsRp),Θd)

+ λ∇Θd
Rr + γ∇Θd

Rd

= ∇Θd
L(Θ′

s,Θd)− η∇2
Θd,Θs

L(Θs,Θd)∇Θ′
s
L(Θ′

s,Θd)

+ λ∇Θd
Rr + γ∇Θd

Rd.

(6-9)

where the last equality is obtained by applying the chain rule. Note that, we use Θ′
s to approximate

Θ∗
s, and the second line of Eq. 6-9 is an approximated solution instead of an analytical solution. At

first glance, the final gradient contains a costly matrix-vector product. However, we will show that

the second-order derivative is just the multiplication of two first-order terms. Let’s take a specific

layer i as an example, we first rearrange Eq. 6-3 and Eq. 6-4: F̂i = gi ⊙ Fi, and gi = gis ⊙ gid, we

have:

∇2
θid,θ

i
s
L(θis, θid) =∇θid

(∇giL(θis, θid)∇θis
gi)

=∇θid
(∇giL(θis, θid)((∇θis

gis)⊙ gid))

=∇giL(θis, θid)(∇θis
gis · ∇θid

gid).

(6-10)

To simplify derivation, θid is flattened as a vector, and we omit all transpose notations. The result of

Eq. 6-10 indicates that the second-order term is just the multiplication of two Jacobians matrices

followed by ∇giL(θis, θid), which is more efficient than using finite difference approximation for the

matrix-vector product [128, 99]. The calculation of the Jacobians matrix is also simple since the

computation of gis and gid only includes simple operations like matrix multiplications and element-

wise functions. With Eq. 6-9 and Eq, 6-10, we always update Θd by taking Θs into consideration,

which is ignored in storage efficient pruning [6]. The calculation of the Jacobians matrix is listed

in the supplementary materials. In practice, we use the Adam optimizer [79] instead of SGD. The
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Algorithm 5: Unified Dynamic and Static Channel Pruning
Input: dataset for pruning: Dprune; remained rate of FLOPs and parameters: pr and pp;

hyper-parameter: λ and γ; training epochs for pruning: Eprune; pre-trained CNN: f .

Initialization: initialize Θd randomly; initialize Θs uniformly; freeze W in f .

for e := 1 to Eprune do

for a mini-batch (x, y) in Dprune do
1. produce static and dynamic vectors: gs and gd. (Eq. 6-1 and 6-2)

2. calculate gradients w.r.t Θs from Eq. 6-5.

3. update Θs by Adam optimizer.

4. calculate gradients w.r.t Θd (Eq. 6-9 and Eq. 6-10).

5. update Θd by Adam optimizer.

end

end

Get f ′ by pruning f based on gs.

Return f ′ for fine-tuning.

derivation of gradients w.r.t Θd given the Adam optimizer is also provided in the supplementary

materials.

6.3.4 The Overall Algorithm

We follow the three-stage procedure of regular pruning methods: training, pruning, and fine-

tuning. During pruning, Θs and Θd are learned; pruned Θd and W are trained during fine-tuning.

After we obtain static and dynamic sub-networks by solving the problem in Eq. 6-8, we perma-

nently remove channels with 0 in gs, which also saves costs for fine-tuning. As a result, only a

static sub-network that is important to dynamic sub-networks is persevered for finetuning. The rest

parts of the model are removed to achieve the goal of saving memory costs. The corresponding

channels in the dynamic routing function h(·) are also removed. The fine-tuning loss can be written

as:

min
Θd,W

L(f ′(x; Θd,W), y) + λRr(Tr(Θd), prT̂r) + γRd(vd), (6-11)
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Table 12: Comparison of the accuracy changes (∆-Acc), reduction in FLOPs, and the number

of parameters of various channel pruning algorithms on CIFAR-10. ‘+/-’ of ∆-Acc indicates in-

crease/decrease compared to baselines. ‘-’ in ‘↓ #Params’ indicates increase of parameters.

Method Architectures Dynamic Base Acc Acc ∆-Acc ↓FLOPs ↓ #Params

FBS [37]

CifarNet

✓ 91.37% 89.88% -1.49% 74.6% -11.0%

SEP-A [6] ✓ 92.07% 91.23% -0.84% 74.5% 22.0%

SEP-B [6] ✓ 92.07% 91.42% -0.65% 74.5% -31.0%

UDSP (ours) ✓ 92.36% 91.89% -0.47% 75.1% 20.1%

AMC [50]

ResNet-56

✗ 92.80% 91.90% -0.90% 50.0% -

FPGM [49] ✗ 93.59% 92.93% -0.66% 52.6% -

HRank [96] ✗ 93.26% 93.17% -0.21% 50.6% 42.4%

DSA [116] ✗ 93.13% 92.91% -0.22% 52.2% -

SEP [6] ✓ 93.12% 93.44% +0.32% 50.0% 19.8%

UDSP (ours) ✓ 93.12% 93.78% +0.66% 50.1% 20.0%

where f ′ is the pruned model with around ppT̂p parameters. Here, we abuse notations Θd and

W to represent weights after static pruning, and they are different from the original weights. We

only modify the feature maps during fine-tuning, which takes advantage of mini-batch training.

During the evaluation, we dynamically prune the channels. For both pruning and fine-tuning, we

choose Rr(x, y) = Rp(x, y) = log(max(x, y)/y). Typically, regular regression loss functions, like

MAE and MSE, can be used for Rr and Rp, but they can hardly achieve target values for some

architectures like MobileNet-V2. We insert gs and gd after the Conv-Bn-ReLU block and before

the next convolution layer for pruning, which can accurately reflect the pruned model. The overall

algorithm of our method is provided in Alg. 5. The whole process of our method is summarized in

Fig. 18.

6.4 Experiments

6.4.1 Settings

In the experiment section, we call our method UDSP (Unified Dynamic and Static channel

Pruning). We use CIFAR-10 [82] and ImageNet [15] to verify the performance of our method, as
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most previous pruning works use these datasets.

On CIFAR-10, we use CifarNet following several dynamic pruning works [6, 37]. Besides

CifarNet, we also test our method on ResNet-56. For ImageNet, we evaluate our method on

ResNets [46] and MobileNet-V2 [126]. pp and pr are used to decide how much FLOPs and pa-

rameters to be pruned. Detailed settings of pp and pr are provided in the supplementary materials.

λ and γ in Eq. 6-5 and Eq. 6-6 are set to 2.0 and 0.1 separately for all models and datasets. τ

in Eq. 6-1 and Eq. 6-2 is set to 0.4. Other implementation details are given in the supplementary

materials.

6.4.2 CIFAR-10 Results

We present CIFAR-10 results in Tab. 24. For CifarNet, all comparison methods are dynamic.

From Tab. 24, we can see that our method can outperform other comparison methods with similar

pruned FLOPs. Compared to FBS, our method saves 27.9% of parameters (79.9% vs. 111%

#Params compared to the original model) while achieving 1.02% improvements with ∆-Acc. SEP-

A has similar parameter savings as our method, but the ∆-Acc is 0.37% lower than our method.

SEP-B keeps all channels, and our method still outperforms it by 0.18% with ∆-Acc. Moreover,

our method only uses 60.9% parameters of SEP-B.

We compare our method with both static and dynamic pruning methods on ResNet-56. All

comparison methods reduce around 50% FLOPs. Our approach has similar pruning rates of FLOPs

and parameters as SEP, but our method performs better than SEP by 0.34%. HRank achieves the

best performance among static pruning methods. Static pruning methods prune more parameters

compared to dynamic pruning methods, but the performance of our method is 0.87% higher than

HRank in terms of ∆-Acc. In summary, our method achieves a better trade-off between storage

costs and performance than SEP [6].

6.4.3 ImageNet Results

On the ImageNet dataset, we use ResNet-18, ResNet-34, ResNet-50, and MobileNet-V2 to

evaluate the performance of different methods. All results are shown in Tab. 13. The results of

other comparison baselines are directly adapted from their original paper following the common
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practice.

ResNet-18. For static pruning methods, DSA [116] achieves the best performance. The ∆

Top-1 accuracy of our method is 0.83% higher than DSA, and our method prunes 10.2% more

FLOPs. This result suggests that dynamic pruning still has advantages when the model capacity

is reduced to some extent. FBS and CGNN use additional parameters for dynamic pruning. Our

method outperforms FBS and CGNN by 2.26% and 0.79% in terms of ∆ Top-1 accuracy separately.

In addition, our method prunes 11.5% more FLOPs than CGNN and saves 20% of parameters.

Finally, our method is better than SEP by 0.75% in terms of ∆ Top-1 accuracy, while both methods

prune similar FLOPs and parameters.

ResNet-34. IE [112] performs better than other static pruning methods, but it prunes less

FLOPs and parameters. Our method has similar parameters and performance as IE, but we can

prune 27.7% more FLOPs than IE. Our method saves 20% parameters and performs better than

CGNN by 0.71% in terms of ∆ Top-1 accuracy, and both methods prune similar FLOPs.

ResNet-50. For ResNet-50, We compare several recent state-of-the-art pruning methods. Our

method outperforms ResRe by 0.54% and 0.50% in terms of Top-1 and ∆ Top-1 accuracy. The gap

between other methods and our method is more obvious. 3DP explores pruning in 3 dimensions,

which allows a more flexible trade-off. Our method is better than 3DP by 0.61% regarding Top-1

accuracy, indicating that our method can achieve similar flexibility. In addition, our method prunes

most FLOPs, and we can also reduce storage costs to some extent (25.0% reduction). DepGrah

and DTP are recently proposed static pruning methods, our UDSP still has a clear advantage when

it comes to these baselines.

MobileNet-V2. AMC, MetaPruning and MobileNet-V2 0.75 all remove around 30% FLOPs.

MetaPruning achieves the lowest accuracy lost. Our method prunes around 6% more FLOPs than

MetaPruning, and performs better (0.52% and 0.44% higher with Top-1 and ∆ Top-1 accuracy).

Our method and GSS prune a similar amount of FLOPs, and the ∆ Top-1 accuracy of our method

is higher than GSS by 0.64%. In addition to FLOPs reduction, our method can also remove around

15.3% of parameters.

In summary, our method provides a larger model capacity compared to static pruning methods,

and the storage costs are reduced compared to dynamic pruning methods. Moreover, our method

achieves a better trade-off between storage costs and performance than SEP, indicating that inte-
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grating dynamic and static pruning is important for pruning.

6.4.4 Analysis of Different Settings

To understand different design choices and hyper-parameter settings, we provide additional

analysis in this section. In Fig. 19(a,b), we plot the loss value and model accuracy given different

pruning settings. We can see that bi-level optimization outperforms iterative training with both

accuracy and loss values, which suggests that integrating dynamic and static pruning is beneficial.

We also show the difference between the finetuned model in Tab. 14, and we can draw similar

conclusions.

In Fig. 19(c), we provide the accuracy after pruning (before fine-tuning) given different γ. A

too-large γ usually hurts the performance, and γ around 0.1 provides relatively good results.

In Fig. 19(d), we fix pr = 0.5, and plot the accuracy after pruning given different percentages

of remaining parameters (pp). We can see that the performance does not decrease a lot when we

keep more than 75% of parameters. We further present results when pruning more parameters

after finetuning in Tab 15. When pruning 30% of parameters (UDSP2), the performance of our

method does not decrease too much. However, there is a large performance drop when pruning

40% of parameters. Under this setting (UDSP1), the parameter reduction of our method is similar

to the static pruned model from HRank, and the dynamic flexibility is largely restricted. These

observations suggest that, under the same FLOPs pruning rate, our method can maintain a good

trade-off between dynamic flexibility and storage costs until the pruning rate for parameters is

similar to static pruning methods.

In Fig. 20, we plot the value of regularization losses and model accuracy given different choices

of λ. From the figure, it can be seen that our method is robust to different choices of λ. A lower λ

can lead to a little better final performance, but the difference is small.

In Fig. 21, we plot the final architectures of ResNet-56 and CifarNet for our method and SEP.

Our method tends to preserve more channels when the width of the original model changes. Later

layers often have more dynamic flexibility, probably because they are less penalized by the FLOPs

constraint Rr. This figure also suggests that our method does not collapse into a single static

solution. For both CifarNet and ResNet-56, SEP does not fully utilize the capacity of early layers,

especially on ResNet-56. These results justify why our method can outperform SEP. This also

91



suggests that a more sophisticated interaction (bi-level optimization) between static and dynamic

sub-networks is crucial to achieving good results.

6.5 Conclusion

In this paper, we study the problem of how to integrate dynamic and static pruning. We explic-

itly formulate the static and dynamic pruning problems as a new bi-level optimization task such

that two types of models can complement each other. We further improve the efficiency of the cost

matrix-vector product in the bi-level pruning problem. The superior performance of our method on

CIFAR-10 and ImageNet datasets suggests that our method is a promising solution for integrating

dynamic and static channel pruning.
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Table 13: Comparison of the accuracy changes (∆ Top-1), reduction in FLOPs, and the number of

parameters of various channel pruning algorithms on ImageNet.

Method Architectures Dynamic Pruned Top-1 ∆ Top-1 ↓ FLOPs ↓ #Params

AMC [50]

ResNet-18

✗ 66.63% -3.13% 50.0% 24.0%

FPGM [49] ✗ 68.41% -1.87% 41.5% 28.0%

DSA [116] ✗ 68.61% -1.11% 40.0% -

FBS [37] ✓ 68.17% -2.54% 49.5% -12.0%

CGNN [57] ✓ 67.95% -1.07% 38.7% -

SEP [6] ✓ 68.73% -1.03% 48.5% 19.0%

UDSP (ours) ✓ 69.48% -0.28% 50.2% 20.0%

SFP [48]

ResNet-34

✗ 71.84% -2.09% 41.1% -

FPGM [49] ✗ 72.63% -1.29% 41.5% 28.9%

IE [112] ✗ 72.83% -0.48% 22.3% 21.1%

CGNN[57] ✓ 72.40% -1.10% 50.4% -

UDSP (ours) ✓ 72.91% -0.39% 50.0% 20.0%

SCOP[132]

ResNet-50

✗ 75.26% -0.89% 54.6% 51.8%

GFP[101] ✗ 76.42% -0.37% 51.0% 55.8%

3DP[136] ✗ 75.90% -0.25% 53.0% 50.0%

ResRe[17] ✗ 75.97% -0.12% 56.1% -

DepGraph [20] ✗ 75.97% -0.12% 51.18% -

DTP[93] ✗ 75.55% -0.58% 56.7% -

UDSP (ours) ✓ 76.51% +0.38% 58.4% 25.0%

MobileNet-V2 0.75 [126]

MobileNet-V2

✗ 69.80% -2.00% 30.0% 24.8%

AMC [50] ✗ 70.80% -1.10% 30.0% 17.2%

MetaPruning [102] ✗ 71.20% -0.60% 30.9% -

GSS [144] ✗ 71.20% -0.80% 36.0% 22.9%

UDSP (ours) ✓ 71.72% -0.16% 36.6% 15.3%
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(a) Loss (b) Accuracy (c) Impact of γ (d) Impact of pp

Figure 19: (a,b): Comparison of loss and accuracy given different training settings. Mean and

variance are provided by running the experiment 3 times. (c) Impact of γ during the pruning

process. (d) Impact of ps during the pruning process. All results are obtained with ResNet-56 on

CIFAR-10.

(a) Rp Loss (b) Rr Loss (c) Accuracy

Figure 20: The regularization losses and model accuracy given different choices of λ. Mean and

variance are provided by running the experiment 3 times.
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(a) CifarNet (SEP) (b) CifarNet (Ours) (c) ResNet-56 (SEP) (d) ResNet-56 (Ours)

Figure 21: The resulting architectures of ResNet-56 and CifarNet on CIFAR-10 with our method

and SEP. We plot the probability of using each channel, and the probability is calculated on the

whole test dataset. Channels with dashed lines are permanently removed.

Table 14: Comparisons between different pruning settings of our algorithm on ResNet-56 for the

CIFAR-10 dataset.

Bi-level Acc ∆-Acc ↓ FLOPs ↓ #Params

✗ 93.55% +0.43% 50.0% 20.3%

✓ 93.78% +0.66% 50.1% 20.0%

Table 15: Comparisons given different pruning rates for #Params with ResNet-56 on CIFAR-10.

Settings Base Acc Acc ∆-Acc ↓FLOPs ↓ #Params

UDSP1 93.12% 93.32% +0.20% 50.0% 40.0%

UDSP2 93.12% 93.64% +0.52% 50.1% 30.0%

UDSP3 93.12% 93.78% +0.66% 50.1% 20.0%

95



7.0 Conclusion

In this dissertation, we propose several new methods to compress CNNs. We first build a

differentiable optimization framework for pruning CNNs given certain resource constraints. By

turning the deterministic discrete gate into the stochastic discrete gate, moreover, our method can

explore a larger search space of sub-networks. To further enlarge the space, we introduced the

symmetric weight decay on the gate parameters inspired by the fact that regularization loss can be

regarded as weight decay. Our method also benefits from the exact estimation of sub-networks’

outputs because of a combination of the precise placement of gates and the discrete setting. We then

incorporated accuracy as the additional supervision signal where we studied how to simultaneously

achieve low loss value and high accuracy when searching for sub-networks. By using an episodic

memory module and re-sampling techniques, we are able to train a performance prediction network

in-place during pruning, which also saves computational resources. By utilizing information from

the classification loss and performance maximization, our method is able to find good sub-networks

during pruning.

In previous works, width and channel importance are entangled during the pruning process.

Such a design is straightforward and easy to use, but it restricts the potential search space dur-

ing the pruning process. To overcome this limitation, we propose to prune neural networks by

disentangling width and importance. To achieve such a disentanglement, we propose to relax

the hard constraint used in previous methods to a soft regularization term, allowing independent

parametrization of width and importance. We also relax hard top-k to soft top-k with the smooth-

step function. We further use an importance score generation network and a width network to

facilitate the learning process. Furthermore, based on the previous observation that there is a huge

gap between models before and after model compression, we proposed partial regularization to

produce a better sub-network for network pruning. Specifically, our method uses AGN to guide

partial regularization across the training process. We further provide an efficient way to update

model weights through proximal gradients. With these designs, partial regularization effectively

reduces the gap between the sub-network within the full model and the pruned model. Our method

then starts from a better sub-network, thus resulting in a better final pruned model. On top of
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the previous static pruning settings, We propose a new bi-level optimization based model to nat-

urally integrate the static and dynamic channel pruning. By doing so, our method enjoys benefits

from both sides, and the disadvantages of dynamic and static pruning are reduced. Our method

can be further applied to tasks like learning kernel sizes [26], generative models [27], federated

learning [34], training sparse model from scratch [141], reinforcement learning with partial regu-

larization [28], etc.

All these methods achieved or surpassed the state-of-art result at the current time, showing the

incredible strength of our novel pruning algorithms. In addition, all these methods require minimal

additional computational resources to find the proper sub-network, which shows the efficiency of

our methods. The efficiency and effectiveness of our methods show great potential to be used on

large foundational vision, vision-language, and language models.
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A.1 DMC: Derivation of Regularization Gradient

The detail derivation of regularization gradient is given below if T̂ ̸= pT :

∂Rlog

∂θl,c
=

1

|T̂ − pT |+1
· T̂ − pT

|T̂ − pT |
· ∂

∑L
l=1 (FLOPs) ̂(FLOPs)l

∂θl,c

=
1

|T̂ − pT |+1
· T̂ − pT

|T̂ − pT |

·k2
l ·

1Tgl−1

Gl

· wl · hl ·
∂1Tgl

∂θl,c

= ηl ·
1

|T̂ − pT |+1
· T̂ − pT

|T̂ − pT |
· ∂g(θl,c)

∂θl,c

= ηl ·
1

|T̂ − pT |+1
· T̂ − pT

|T̂ − pT |
,

where ηl = k2
l ·

1T gl−1

Gl
·wl·hl .The result of the second line is due to the definition of (FLOPs) ̂(FLOPs)l

and (FLOPs) ̂(FLOPs)l = kl · kl · 1T gl−1

Gl
· 1Tgl · wl · hl. The result of the fourth line is because of

STE: ∂g(θl,c)

θl,c
= 1, if θl,c ∈ [0, 1]. If T̂ = pT , then Rlog = 0, and 0 can be used as the subgrident of

this point. Thus, we have the sub-gradient given in the paper:

∂Rlog

∂θl,c
=

 ηl · 1

|T̂−pT |+1 ·
T̂−pT

|T̂−pT | , if T̂ ̸= pT

0, if T̂ = pT

A.2 Choice of p for DMC

Table 16: Choice of p for ImageNet models. p is the remained FLOPs divided by the total FLOPs

Architecture ResNet-34 ResNet-50 ResNet-101 MobileNetV2

p 0.55 0.38 0.42 0.50

In this section, we will give the detailed number of p. In a CNN, we do not prune the first layer,

the last layer, and residual connections in ResNet. As a result, the actual remaining FLOPs may

not equal to p. We list the choice of p for ImageNet models in Tab. 16. For CIFAR-10 models, the

unpruned FLOPs are quite small, thus, p is the same as the remained fraction of FLOPs.
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A.3 DMC: Acceleration

The CPU run time of different models is shown in Tab. 17. The input is a mini-batch of 4

images.

Table 17: CPU time for different ImageNet Models. The time is measured in milliseconds.

Architecture ResNet-34 ResNet-50 ResNet-101 MobileNetV2

Original Time (ms/batch) 113.5 195.7 331.5 106.8

Pruned Time (ms/batch) 81.4 126.2 205.4 67.5

Improvement (%) 28.3% 35.5% 38.0% 36.8%

Pruned FLOPs (%) 43.4% 55.0% 56.0% 46.0%

A.4 DMC: Discussion of Difference between Proposed Method and Trainable Gate [77]

In trainable gate (TG) [77], they propose to turn the non-differentiable gate into a differentiable

gate inspired by [41]. They add a perturbation to the gate function to make it differentiable. Our

method, on the other hand, does not modify the gate function and uses STE to handle gradient

calculation. Thus, the approach of making the gate differentiable is different. Moreover, in their

framework, the gate calculation is deterministic. Consequently, they can not sample sub-networks

as we do. Their work also applies a form of constraint to limit the resources of the pruned neural

network.

A.5 DMC: More Results

In Fig. 23, we plot the accuracy and classification loss on the test dataset given two settings:

using performance maximization (PN) and differential gates (DG). From this figure, we can see

that PN can outperform DG on test accuracy during pruning, but the difference in classification

loss is much smaller. In summary, our method can achieve lower classification loss and higher
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Figure 22: Left: More Pruning Settings. Right: PN Loss. Results are from CIFAR-10 with ResNet-

56.

accuracy. At some points, even if the classification losses are close, the difference in accuracy can

be larger than 1%, indicating that the classification loss is not always a good proxy for accuracy.

To verify the effectiveness of GRU, we add a comparison baseline for the linear regression (LR)

model in Fig. 22-Left. Using PN is better than LR, we hypothesize that LR may omit hierarchical

information of different layers while PN can capture it using GRU. The training loss of the PN is

shown in Fig. 22-Right, which is quite stable.

A.6 Choice of p for NPPM

The choice of p can be analytically calculated. Let Tall be the overall FLOPs of a CNN, and

Ttotal is the total prunable FLOPs. Suppose we want to remove 50% of FLOPs, then pTtotal = 0.5Tall,

and p = 0.5
Tall
Ttotal

. The detailed p is listed in Tab. 26.

A.7 NPPM: Orthogonal Projection of Gradients

Recall that giL = ∂L
∂wi

represents the gradient vector from the classification loss of ith layer, and

let giP =
∂ log( 1

PN(a)
)

∂wi
be the gradient vector from performance maximization. The projection of giP
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(a) (b) (c) (d)

Figure 23: (a, b): Accuracy and classification loss given different settings with ResNet-56. (c, d):

Accuracy and classification loss given different settings with MobileNetV2. Both experiments are

done on CIFAR-10. Shaded areas represent variance from 5 runs.

onto giL is ḡiP =
(giL)

T (giP)

∥giL∥2
giL, and

ĝiP = giP −
(giL)

T (giP)

∥giL∥2
giL, (0-1)

is orthogonal to giL. Thus, we have giP = ḡiP + ĝiP.

A.8 NPPM: Structure of the Performance Prediction Network

The structure of the performance prediction network is shown in Tab. 21, where FC is a fully-

connected layer, and Avg averages of the outputs of all steps of GRU and i = 1, · · · , L.

A.9 DDNP: Choice of p Given Different Datasets and Architectures.

We present the choice of p for all experiments in Tab 26. For ResNet-50, p is set to 0.38 when

we prune 55.0% FLOPs, and p is set to 0.31 when we prune 62.0% FLOPs (results in Tab. 23)
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Table 18: Choice of p.

Dataset Architecture p

CIFAR-10
ResNet-56 0.50

MobileNetV2 0.55

ImageNet

ResNet-34 0.50

ResNet-50 0.38

ResNet-101 0.42

MobileNetV2 0.63

ShuffleNetV2+ 0.70

A.10 DDNP: Architectures of gs and gk.

The architecture of gs is shown in Tab. 21. The forward calculation of gs is:

ol, hl = GRU(xsl, hl−1)

s̄l = FCl(ol),
(0-2)

s̄l is the importance score before the final output function. In most experiments, we use the sigmoid

function to produce the final importance score: sl = sigmoid(s̄l). The experiments in Figure

4 (d,b) of the main text employees two other types of output functions, and they are absolute value

functions (used in weight pruning papers [127]): sAF =| s̄ | and square function: sSF = s̄2.

We also present the architecture of gk in Tab. 22. Here, we use k̄ to represent outputs before

normalization. Given a certain layer l, the final kl is obtained by:

kl = sigmoid(k̄l + b), (0-3)

where b is a positive constant to ensure we start pruning from a whole network, and b = 3.0 for all

experiments. This is also discussed in section 5.1 of the main text.
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Table 19: The structure of PN used in our method.

Inputs ai, i=1,· · ·, L

FCi(Ci, 16), BN,ReLU

GRU(16, 16),Avg

FC(16, 1), sigmoid

Table 20: Choice of p for different models. p is the remained FLOPs divided by the total FLOPs.

Dataset CIFAR-10 ImageNet

Architecture ResNet-56 MobileNet-V2 ResNet-34 ResNet-50 MobileNet-V2 MobileNet-V3 small

p 0.48 0.56 0.55 0.38/0.31 0.67 0.75

A.11 DDNP: Additional Experiments

The test accuracy and normalized resource loss given different λ during training are shown in

Fig. 24 (a,b). These figures show that a small λ may hinder the pruning process since the pruned

model can not reach target FLOPs. Using a larger λ can solve this problem.

We also study the impact of ρ in Fig. 24 (c). We can see that the test accuracy of the pruned

model is pretty low when ρ = 0, since learning of importance and width are completely disentan-

gled. The performance of pruning also increases when we increase ρ. But if we use a too large

ρ, the performance decreases, indicating that entangling width and importance reduce pruning

flexibility.

In Fig. 24 (d), we present more settings for pruning. “Fix S” means that importance s is fixed,

and only the second term and third term of Eq. (9) are used. In this setting, data is no longer

used for pruning, and L1 norm is used as the channel importance. “Fix k” represents that width

k is fixed, and all kl are set to 0.5 since they are no longer learnable. “Channel-wise-ks” means

that we use scalar parameterization (one variable per-channel and per-layer) for both width and

importance. From the figure, we can see that parameterization for both channel importance and
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Table 21: The architecture of gs used in

our method.

Inputs xsl, l = 1, · · · , L

GRU(64,128), WeightNorm, ReLU

FCl(128,Cl), WeightNorm, l = 1, · · · , L

Outputs s̄l, l = 1, · · · , L

Table 22: The architecture of gk used in

our method.

Inputs xk,

FCl(32, 64), WeightNorm, ReLU

FCl(64,L), WeightNorm

Outputs k̄ = [k̄1, · · · , k̄L]

width can impact the pruning results, and the parameterization of channel importance has a larger

impact. Moreover, “Fix S” or “Fix k” largely restrict the learning flexibility.

In Fig. 24 (e), we present the difference between learnable inputs and fixed inputs for gk and

gs. For fixed inputs, we randomly generate xs and xk (in Tab. 21 and Tab. 22) before pruning and

fix them during pruning. For learnedable inputs, we just randomly initialize xs and xk and include

them as learnable parameters during pruning. Learnable inputs and fixed inputs do not have large

differences.

In Tab. 23, we present additional results for ResNet-50 when the FLOPs pruning rate is larger

(around 62%). Compared with state-of-the-art methods like CHIP [131] and CC [92], our method

outperforms them with similar FLOPs pruning rates. The advantage of our method compared to

HRank [96] is more obvious.

At last, we measure the additional costs brought by the importance and width generation net-

works with ResNet-56 on CIFAR-10 and ResNet-50 on ImageNet. On CIFAR-10, we measure

the running time by averaging the time costs of the last 10 epochs. For ResNet-56, with scalar

parameterization, the running time is 0.136 second/iteration. With importance and width gener-

ation networks, the time the running time is 0.143 second/iteration. On ImageNet, we measure

the running time by averaging the time costs for the last 5 epochs. with scalar parameterization,

the running time is 1.08 second/iteration. With importance and width generation networks, the

running time is 1.15 second/iteration. From these results, we can see that the additional costs are

trivial.
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A.12 SANP: Implementation Details

We list more details of the implementation in this section. To train the base model on CIFAR-

10, we follow the standard training PyTorch training examples. The models are trained for 200

epochs, and the learning rates are 0.1, 0.01, and 0.001 for the first 100 epochs, 100 to 150 epochs,

and 150 to 200 epochs. We select SGD as the optimizer with a momentum of 0.9 and weight

decay of 10−4. After pruning, we finetune the model for 160 epochs using similar optimization

hyperparameters. The learning rates for finetuning are 0.1, 0.01, and 0.001 for the first 80 epochs,

80 to 120 epochs, and 120 to 160 epochs.

For ResNet models on ImageNet, we train the model for 90 epochs following the standard Py-

Torch ImageNet training script. The learning rates are 0.1, 0.01, and 0.001 for the first 30 epochs,

30 to 60 epochs, and 60 to 90 epochs. Still, SGD is selected as the optimizer with momentum of

0.9 and weight decay of 10−4. For MobileNet-V2, we train the model for 150 epochs with the cos-

annealing learning rate and a start learning rate of 0.045, and weight decay 4× 10−5 as mentioned

in their original paper [126]. For each model on ImageNet, we fine-tune them for 100 epochs. The

learning rate schedule and the start learning rate are the same as the training of the based model.

Except that when fine-tuning ResNets, we set the learning rate to 0.0001 for 90 to 100 epochs. We

also list p and Estart in Tab. 24. As mentioned in the paper, we set Estart to around 20% of the total

training time.

As we discussed in the paper, AGN is composed of dense layers and GRUs, and now we

present the architecture of AGN in Tab. 25. In Tab. 25, z ∈ ℜL×32 is the input to the AGN, and z

is initially sampled from a normal distribution, and it is then fixed during training. Outputs ol are

continuous values. We use the following equation to covert it into vl:

vl = round(sigmoid((ol + g + b)/τ)), (0-4)

where sigmoid(·) is the sigmoid function, round(·) is the rounding function, g is sampled from

Gumbel distribution (g ∼ Gumbel(0, 1)), b is a constant value to make sure pruning starts from

the whole model, and τ is the temperature hyper-parameter. As shown in Eq. 0-4, straight-through

Gumbel-Sigmoid [73] are used to produce the final binary vector v. The function of AGN can
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also be understood as translating z into the final architecture vector v. For all experiments, we set

τ = 0.4 and b = 3.0.Note that the additional training costs of our method are trivial compared to the original training

process, mainly because we only train AGN in a small sub-dataset of the whole dataset. Take

MobileNet-V2 as an example, its average model training time is 976 seconds per epoch, and the

average AGN training time is 95 seconds per epoch. The overhead is around 10% of the original

training time.

A.13 SANP: Regularization with Blocks

Recent CNN designs often use a block as a building block. In the paper, we do not explicitly

talk about this setup to simplify notations. Usually, we group vl based on the definition of blocks,

and L is the total number of unique vl, and it could be different from the actual number of layers.

To avoid conflicts, we rewrite vl as vk, and k = 1, · · · , K, and K is the total number of unique vk

(a single vk can be used for multiple layers along different dimension). Let us use the basic block

from ResNets as an example. With this setting, Rw can be written as:

Rw(W) =
B∑
j=1

∑
i∈Sk

N̂k

N̂
(∥Wupper

j [i,:,:,:]
∥GL+∥W lower

j [:,i,:,:]
∥GL), (0-5)

where k is the corresponding index of vk for the jth block, and B is the total number of blocks.

For the upper layer in the jth block, the regularization is applied on the output dimension, and

the regularization is applied on the input dimension for the lower layer in the jth block. The

formulation of Eq. 0-5 can be easily extended to other block types, such as the bottleneck block in

ResNets and the inverted residual block in MobileNet-V2.

A.14 SANP: Different Choices of γ

In this section, we want to discuss the impact of γ and how it affects the performance of the

whole model. We plot the related results in Fig. 25. From the figure, we can see that when we

increase γ, we can get a better sub-network during the training process. However, it also negatively
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affects the full model performance, as shown in Fig. 25b. The full model accuracy provides the

baseline before pruning. ∆-Acc often increases when we have a better sub-network, but if the

baseline accuracy is too low, the final fine-tuned accuracy will also be worse. On CIFAR-10, this

happens when we use γ ≥ 1× 10−3 (a better ∆-Acc but a worse final accuracy). On the ImageNet

dataset, we also find that when γ = 5 × 10−4, we can get a similar baseline accuracy with better

sub-network accuracy. We can probably use a larger γ to get better ∆ Top-1 accuracy, but it will

create weaker baselines, which is not a good practice for fair comparisons.

A.15 SANP: Stability of Sub-network Architectures

In our paper, we apply soft regularization when training model weights. One problem is that

if the sub-network architecture changes frequently, then most weights will be penalized, which

brings a trivial difference between penalizing all weights. To investigate this problem, we plot

the hamming distance between the sub-network architecture of two consecutive epochs in Fig. 26.

We can see that the hamming distance will be smaller than 0.05 after around 10 epochs, and the

hamming distance will continuously decrease after 20 epochs. This observation suggests that the

sub-network architecture becomes more and more stable after 20 epochs. Even if some weights

are wrongly penalized at the beginning, they still have enough time to recover their magnitudes.

A.16 UDSP: Implementation Details

We train ResNet-56 and CifarNet on CIFAR-10 from scratch following pytorch [118] exam-

ples. For ImageNet models, we can directly use pre-trained models from Pytorch, since our method

is able to prune any pre-trained models.

To improve efficiency, we only use part of the dataset for pruning. We randomly sample 5,000

and 50,000 images from CIFAR-10 and ImageNet as Dprune in Alg. 5. Adam [79] optimizer is used

to train both Θs and Θd, and the training lasts for 200 epochs with mini-batchsize 256. The start

learning rate and weight decay are set to 10−3 and 10−4, and the learning rate is decayed to 10−4
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at epoch 160. We initialize all Θs to 3.0 to ensure most initial gs are 1.0, which means that static

pruning starts from the whole network.

On CIFAR-10, we finetune the model for 160 epochs by using the Adam optimizer with a start

learning rate 10−3. The learning rate is changed to 10−4 at epoch 80, and it is further reduced to

10−5 at epoch 120. Following storage efficient pruning [6], we continue to use the Adam optimizer

on ImageNet models. After pruning, we finetune ResNet models for 100 epochs with a start

learning rate 10−3. The learning rate is then decayed to 10−4 at epoch 30, and it is further decayed

to 10−5 and 10−6 at epoch 60 and epoch 90. For MobileNet-V2, we also use the Adam optimizer

and finetune it for 100 epochs. We use the cos-annealing learning rate scheduler following their

original setting [126]. The mini-batch size and weight decay are 256 and 10−4 for both CIFAR-

10 and ImageNet models. All codes are implemented with pytorch [118]. The experiments are

conducted on a machine with 4 Nvidia Tesla P40 GPUs.

A.17 UDSP: Negative Impacts of Joint Training

In section 3.3 of the main text, we argue that joint training of dynamic and static pruning will

interfere with each other. In Fig. 27, we present the comparison results between joint training

and iterative training. We can see that joint training lacks exploration during learning and its

performance is lower than the iterative baseline.

A.18 UDSP: Derivation of Gradients w.r.t Θd from Adam

In Eq. 9 of our paper, we provide the gradients w.r.t Θd when updating Θs with SGD, since

it’s simple and easy to follow. In practice, SGD can hardly achieve satisfactory performance when

dealing with discrete values. As a result, we use Adam to update Θs. As a result, we will show

how to calculate the gradients of Θd under the Adam optimizer. We show the update rule of Θs in

Al. 6, we omit timestep t of Θs to simplify notations. We focus on the first term in Eq. 9, and the
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Algorithm 6: Update Θs with Adam
Input: η, β1, β2 ∈ (0, 1], ϵ ≥ 0: learning rate and decay rate for ADAM.

Initialize m0, n0, t = 0

Update rule at step t:

mt = β1mt−1 + (1− β1)(∇ΘsL(Θs,Θd) + λ∇ΘsRp)

nt = β2nt−1 + (1− β2)(∇ΘsL(Θs,Θd) + λ∇ΘsRp)
2

m̂t = mt/(1− βt
1)

n̂t = nt/(1− βt
2)

Θ′
s = u(Θs, η) = Θs − ηm̂t/(

√
n̂t + ϵ)

gradient w.r.t Θd is:

∇Θd
L(Θ∗

s,Θd)

≈∇Θd
L(Θs − ηm̂t/(

√
n̂t + ϵ),Θd)

=∇Θd
L(Θ′

s,Θd)− η∇2
Θd,Θs

L(Θs,Θd)((
β̂1

2(
√
n̂t + ϵ)

− β̂2m̂t(∇ΘsL(Θs,Θd) + λ∇ΘsRp)

2(n̂t + ϵ
√
n̂t)2

)∇Θ′
s
L(Θ′

s,Θd)),

(0-6)

where β̂1 =
1−β1

1−βt
1
, β̂2 =

1−β2

1−βt
2
. The derivation in Eq. 0-6 is a little bit complicated compared to the

SGD update, but it is still the result of the chain rule.

A.19 UDSP: Calculation of Jacobian Matrix

Recall that we need to calculate ∇θis
gis ·∇θid

gid in Eq. 10. Let us first focus on the element-wise

function gis = ⌊vis⌉ and vis = σ((θis + µ)/τ), and we have:

∇θis
gis = I∇θis

vis = ∇θis
vis, (0-7)

where the identity matrix I comes from using straight-through estimator, ∇θis
vis = diag(ais), and

ais =
1
τ
σ((θis + µ)/τ)(1− σ((θis + µ)/τ)).
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To simplify derivation, we assume linear transformation is used in the routing function h(·)

instead of SE, and θid ∈ RCi×Ci−1 . Under this setting, we have h(Fi−1; θd) = θdF̄i−1, and F̄i−1 =

GAP(Fi−1) is the result of global average pooling (GAP). We also let zi = h(Fi−1; θd) Similarly,

∇θid
gid can be calculated as follows:

∇θid
gid = ∇ziv

i
s∇θid

zi, (0-8)

where ∇ziv
i
s = diag(aid), and aid = 1

τ
σ((zi + µ)/τ)(1 − σ((zi + µ)/τ)). The last term ∇θid

zi ∈

RCi×Ci×Ci−1 (mini-batch dimension is omitted) is the Jacobin matrix of matrix-vector product w.t.r

to θid. (∇θid
zi)[:,j,k] =

[
0 · · · (F̄i−1)k · · · 0

]⊺
, and (F̄i−1)k is at the jth element of the vector. The

above result is obtained by applying the chain rule on the matrix-vector product. As a result, the

calculation of ∇θid
zi is just rearranging F̄i−1 to the right position, which is not expansive.

We first vectorize ∇θid
gid ∈ RCi×CiCi−1 , and we have ∇θis

gis ∈ RCi×Ci . The computation of

(∇θis
gis · ∇θid

gid) ∈ RCi×CiCi−1×Ci can be written as:

(∇θis
gis · ∇θid

gid)[p,:,:] = ((∇θis
gis)

⊺
[p,:](∇θid

gid)[p,:])
⊺. (0-9)

A.20 UDSP: Selections of pr and pp

We present the choices of pr and pp in Tab. 26. The choices of pr and pp are not hard to

calculate. Let T all
p be the number of all parameters given a CNN, and T̂p is the total number of

prunable parameters. If we want to remove 20% of parameters, then ppT̂p = 0.8T all
p . Finally,

pp = 0.8T all
p /T̂p. Similar calculations can be applied on pr.
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(a) Test Acc given λ (b) R Loss given λ (c) Effect of ρ

(d) More settings (e) Different inputs

Figure 24: (a,b): Test accuracy and normalized R loss during training given different λ. (c):

Test accuracy given different slection of ρ. (d): Impact to pruning with additional settings. (e):

Learnable inputs vs. fixed inputs. We run each setting three times and use shaded areas to represent

variance. All experiments are done on CIFAR-10 with ResNet-56.

Method Base/Pruned Top-1 Base/Pruned Top-5 ∆ Top-1 ∆ Top-5 ↓ FLOPs

HRank [96] 76.15%/ 71.98% 92.87%/91.01% −4.17% −1.86% 62.1%

CC [92] 76.15%/ 74.54% 92.87%/92.25% −1.61% −0.62% 62.7%

CHIP [131] 76.15%/ 75.26% 92.87%/92.53% −0.89% −0.34% 62.8%

DDNP (ours) 76.13%/75.56% 92.86%/92.68% −0.57% −0.18% 62.0%

Table 23: Additional results with ResNet-50 on ImageNet when pruning more FLOPs.
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Table 24: Choices of p and Estart for different models.

Architecture Dataset p Estart

ResNet-56
CIFAR-10

0.48 40

MobileNet-V2 0.54 40

ResNet-34

ImageNet

0.54 18

ResNet-50 0.37 18

ResNet-101 0.41 18

MobileNet-V2 0.65 30

Table 25: The architecture of AGN.

Input z

GRU(32,64)→ LayerNorm→ GeLU

Densel(64, Cl)→Outputs ol, l = 1, · · · , L

(a) (b)

Figure 25: (a) The sub-network performance during training with different γ. (b) Performance of

the whole model given γ. All experiments are conducted on CIFAR-10 with ResNet-56.
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Figure 26: Hamming Distance between sub-network architecture during the training process. This

experiment is conducted on CIFAR-10 with ResNet-56.

(a) Loss (b) Accuracy

Figure 27: (a,b): Comparison of loss and accuracy given joint and iterative training. Mean and

variance are provided by running the experiment 3 times.
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Table 26: Choice of pr and pp.

Dataset Architecture pr pp

CIFAR-10
ResNet-56 0.50 0.80

CifarNet 0.75 0.50

ImageNet

ResNet-18 0.45 0.75

ResNet-34 0.45 0.75

ResNet-50 0.36 0.70

MobileNet-V2 0.60 0.80
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	19. (a,b): Comparison of loss and accuracy given different training settings. Mean and variance are provided by running the experiment 3 times. (c) Impact of  during the pruning process. (d) Impact of ps during the pruning process. All results are obtained with ResNet-56 on CIFAR-10.
	20. The regularization losses and model accuracy given different choices of . Mean and variance are provided by running the experiment 3 times.
	21. The resulting architectures of ResNet-56 and CifarNet on CIFAR-10 with our method and SEP. We plot the probability of using each channel, and the probability is calculated on the whole test dataset. Channels with dashed lines are permanently removed.
	22. Left: More Pruning Settings. Right: PN Loss. Results are from CIFAR-10 with ResNet-56.
	23. (a, b): Accuracy and classification loss given different settings with ResNet-56. (c, d): Accuracy and classification loss given different settings with MobileNetV2. Both experiments are done on CIFAR-10. Shaded areas represent variance from 5 runs.
	24. (a,b): Test accuracy and normalized R loss during training given different . (c): Test accuracy given different slection of . (d): Impact to pruning with additional settings. (e): Learnable inputs vs. fixed inputs. We run each setting three times and use shaded areas to represent variance. All experiments are done on CIFAR-10 with ResNet-56. 
	25. (a) The sub-network performance during training with different . (b) Performance of the whole model given . All experiments are conducted on CIFAR-10 with ResNet-56.
	26. Hamming Distance between sub-network architecture during the training process. This experiment is conducted on CIFAR-10 with ResNet-56.
	27. (a,b): Comparison of loss and accuracy given joint and iterative training. Mean and variance are provided by running the experiment 3 times.
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