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1.0. INTRODUCTION

If an experimenter can identify independent elements to which var-
ious treatments have been assigned at random, then he may argue that dif-
ferences observed among treatment categories are due either to chance alone
or to the combined effect of chance and the different treatments., If the
observed differences‘would seldom occur by chance alone, then he may infer
that the differences are, at least in part; the effects of treatments. A
cause and effect relation between treatments and observations is thereby
inferred and the logic of this inference is not disturbed by the fact that
the composition of one treatment group differs from another in many aspects.

The purely observational study, on the other hand, is not subject
to such simple interpretation. A population may be categorized according
to some charécteristic and differences may be observed among the categories.
But any claim of a cause and effect relation may be challenged. For, in
general, the randomization of categories to population elements, or of ele-
ments to categories, is absent. Observed differences among categories,
that is, observed associations, may be considered to be due not to the char-
acteristics on which the categories are based but to the varied composition
of the categories with respect to other characteristics.

Is not experimentation preferred to observational studies? Possibly
yves, when there is a choice between the two. But usually there is no choice.
This is particularly true in the study of man. While genetic traits may be
in part the result of random forces, how do we randomize race or age to indi-

viduals, or socio-economic status, religion, place of birth, social customs,



and so forth? Granted that certain volunteer groups can sometimes be
obtained for the experimental trial of therapeutic agents, or of some
other kind of treatment, these groups are not the population of ultimate
interest. The conditions under which the demonstration of a causal rela-
tion, through controlled experimentation, is feasible are usually not the
conditions under which we seek to establish, ultimately, a causal relation,
Consequently, even those experiments among volunteer or selected gréups
musf be bolstered by observatiqnal‘étudies of the population.

A cause and effect mechanism cennot be divorced from the condi-
tions under which it is operative. In the experimental framework, the
effect of a treatment is established only with reference to the materials
and conditions of the experiment., If one were to sub-classify the experi-
mental elements according to some characteristic and determine the effect
of treatments within such sub-classes, he would often find that the effects
of a given treatment varied with the sub-class of elements tested. Simi-
larly, in the observational study, the association between a characteristic
and an observation may often vary among sub-classes of the population under
study, whether or not this association be causal. Some mechanisms, such as
those based on Newton's laws of motion or those based on fundamental genetic
principles, may operate under very general circumstances, but for the most
part the conditions under which a cause operates in a predictable fashion
are fairly specific, and it may be said that a causal mechanism is under-
stood only to the extent that the conditions under which it is operative are
known., For example, few, if any, persons would argue that infection by a
specific virus is not the cause of clinically identifiable poliomyelitis.

Yet in the United States, only about one in a hundred infections results in



a clinically recognized Casc.l The conditions under which the virus causes
clinical illness must be quite limited. As another example, if high speed
on the roadway is accepted as a cause of accidents, it must also be granted
that in most cases of speeding an accident does not occur; only in particular
circumstances does an accident occur. Similarly, when we say heavy exertion
causes heart failure, or that the bite of a mosquito causes yellow fever,

and so forth, we realize that this is only true sometimes, and that the
cause is understood only to the extent that we can specify the conditions
under which it actually produces the stated effect.

If a causal relation has been demonstrated experimentally, then the
function which an observational study of a population may serve is to deter-
mine under what conditions, if any, the effects are seen in the population.
If experimental evidehce is not available, because experimentation is not
feasible or merely because experimentation has not been done, then the
function of an observational study may be to test a causal hypothesis. In
either case, determination of those conditions in the population under
which the cause or hypothesized cause is operative is of prime importance.
Consequently, the observer can never be satisfied to view the simple associa-
tion of one variable with another. He must view the association under a
wide variety of circumstances in the population under study. In other words,
he must be concerned with partial association.

In theory, one may sub-classify a universe with respect to as many
conditions as he chooses and examine the association between two variables

within each of the sub-classes. But in practice, the degree of sub-classi-

: Maxcy, K. F., " Preventive lledicine and Public Health ", Apple-
ton-Century-Crofts, Inc., 8th ed., N. Y., 1956.
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fication is limited by the number of observations which are available:
one soon reaches a stege of sub-classification beyond which a large number
of sub-classes either contain no observations or contain so few observa-
tions that neasurements of association within the sub-classes are practi-
cally meaningless when they are assessed on a probabilistic basis, HNever—
theless, the need for taking account of a large number of conditioning
variables remains., For example, it is not enough to measure the associa-
tion between smoking and lung cancer in a sample from the population. It
is of prime importance that the association be measured after adjusting
for the conditioning influence of age, race, sex, socio-economic status,
rural-urban status, occupational history, and other variables which may be
thought to have a bearing on the incidence of lung cancer or on the smoking
habits of the population. If there be an association of smoking with lung
cancer, one wishes to know how many of such other variables, considered as
conditions (rather than consequences of smoking), may be taken into account
before the association is destroyed. On the other hand, if there be no
strong simple association, one wishes to know whether a strong association
would emerge if enough conditions were taken into account.

Similar problems are met when the development of illness in house-
holds is studied. 1t is a fundamental proposition that the health of an
individual is determined by the interaction of his biological constitution
with his environment, social as well as physical. The household ranks high
in the social environment of the individual, and it is therefore reasonable
to suppose that household stresses influence the health of its individual
members. In particular, illness in one member can itself be viewed as a
household stress which influences the health of other members. One of the

most obvious of such influences is that of communicable disease. Less



clear is the chain of events proceding from a chronic disease stress in

the household. Indeed, the household health consequences of a non-commun-
icable health stress may be manifold. The practical purpose of the present
study -is to examine those consequences in relation to that stress. Simply
stated, the question is asked: does a household member with a non-communi-
cable health problem increase the chances of subsequent health problems
among the initially healthy members. This problem will be taken up in the
first section to follow. In the course of analysis, it will become evi—
dent that a simple measure of association does not adequately answer the
question. Conditioning factors will have to be taken into account: the
household size, the sex distribution of its members, and age distribution.
In addition, some account will have to be taken of the conditions under
which the survey data were obtained: interviewer characteristics and sample
strata. Among the many problems of analysis which will be met, one of the
most difficult will involve the small frequencies which fall into the class
categories. Thus our study will be faced with the problem of multiple
conditioning variables.

This problem of multiple variables is often shunted aside by the
investigator: he makes a decision that some variables are more important
than others; he picks and chooses among the many factors which rise to mind
to arrive at three or four. The data are classified, then analyzed on the
basis of this restricted number of variables. Concurrently, the investi-
gator assumes, or rather hopes, that the disturbing influence of other var-
iables is negligible. Now it is true that we can never hope to account for
all conceivable conditioning factors, for they are unlimited in number.
However, it should be clear that the technique which can account for a

larger number of variables than customary classification techniques is to



be desired.

Multiple correlation, and, more generally, multivariate analysis
and path analysis are well established techniques for handling several
variables when examining partial relations. But they are not completely
applicable to examining partial association in a manifold. Before applying
them, one is forced to designate categories of all classes by quantities.
Now the quantity is not, in general, a perfect representation of a category.
Consequently, the absence of relation between quantities representative of
categories of two factors is not full evidence of the absence of relation
between the factors. Further, quantities applied to categories are neces-
sarily discrete variables. But measures of significance associated with
these techniques depend upon the assumption that continuous, normally
distributed variables are involved. “Therefore, significance levels applied
to relations between discrete variables must be viewed as approximate, and
the closeness of the approximation is often in doubt.

The analysis of variance is more generally applicable to the
study of partial aésociation in a manifold, provided that a dependent factor
be numerically represented. Yet this technique is used relatively infre-
quently or applied only to a limited extent in observational studies. This
is in contrast with the almost universal application of analysis of variance
techniques in the statistical treatment of experiments. The reason for this
is not that there is any difference between the ultimate goals of experi-
mentation and observational studies, nor that randomization of treatments
can be performed in experiments. Rather, analysis of variance is often
discarded as an analytical tool for the study of survey data because the
solutions of the least squares equations are much more time-consuming when

orthogonality is absent, i.e. when conditioning factors are correlated with



each other due to an imbalance in cell frequencies. The great majority of
experimental designs are orthogonal; surveys almost always are not orthogonal
with respect to all the factors among which it may be desired to study asso-
ciations. However, with the advent of the electronic computer, the objection
that solution of the least squares equations of the analysis of variance is
too time-consuming is less valid.

Again, the classical tests of significance for the analysis of
variance depend on the assumption of a normally distributed error or resid-
ual. If the dependent variable is a set of numerical values which are asso-
ciated with two or more categories of the dependent factor, this assumption
can never be precisely true. Nevertheless, Pitman, Welch, and others, have
shown, in the experimental setting, that significance tests based on the
normality'assumption'are rather close approximations to exact randomization
tests when several observations in each category and several categories of

29094 Consequently, it should not be

the dependent variable are involved.,
surprising if the analysis of variance becomes a more popular analytical
tool for the statistical estimation of partial association from survey data.
But the raw material of the analysis of variance is a numerical
variable. When dealing with association in a two-factor contingency table

or more generally with partial association in a manifold, it would seem to

be more appropriate to approach the problem with the tabled frequencies as

2 Pitmen, BE. J. G., "Significance tests which may be applied to
samples from any populations III. the analysis of variance test", Biometrika,
V29, pp. 322-335, 1937.

3 Welch, B. L., "On the z-test in randomized blocks and latin squares",
Biometrika, V29, pp. 21-52, 1937.

4 Eden, T. and Yates, F., "On the validity of Fisher's z test when
applied to an actual sample of non-normal data", J. of Agric. Science, V23,
pp. 8-17, 1933.




the starting point. This has been done for the two-factor contingency
table. In 1936, H. Hotelling defined canonical variates. In relation to
contingency tables, they are sets of scores, representing the categories
of each factor, such that the correlation between the two sets is a

5

maximum, a stationary value, or a minimum. In 1940, R. A. Pisher described
an iterative method for arriving at stationary values of scores for the
categories of a two-factor contingency table. The factors were eye color
and hair color. Choosing arbitrary scores to represent the categories of
eye color, scores for hair color were determined which maximized the correl-
ation between the two sets of scores; using the hair color scores, new scores
for eye color were determined which maximized the correlation, and this

. alternating procedure was continued until the two sets of scores stabi-
lized.6 In 1941, K. Maung was able to show that, in any g by h contin-
gency table, g = h, there exist (h - 1) canonical correlations and that

they correspond to all the maximum and minimum values of the product-
moment correlations between all possible scores assigned to the categories
of the two factors. He showed in detail a direct method for determining

the correlations and the corresponding scores. Further, he showed that the
sum of squares of the correlations was equal to chi-square divided by the

: s : 2.
total number of observations, i. e. Pearson's mean square contingency, ¢ s

In 1952, E. J. Williams presented a paper dealing with tests of significance

> Hotelling, H., "Relations between two sets of variates", Biometrika,
V28, pp. 321-377, 1936.

of Eugenics, V10, pp. 422-429, 1940,

7 Maung, K., "Measurement of association in a contingency table with
special reference to the pigmentation of hair and eye colour of Scottish
school children", Annals of Eugenics, V11, pp. 189-223, 1941.




of cancnical relations applied to contingency tables. As introductory
material, he presented a clear summary of the concepts and techniques
discussed above; further, he gave a generalization of Lancaster's method
of partitioning the chi-square of a contingency table into component parts.8’9
These studies by Hotelling, Fisher, Maung, and Williams take classi-
fied frequencies as their starting point. In contrast to this, the analysis
of variance, as customarily conceived, has its roots in a measured variable.
The distinction is basic. We learn to classify things first. We cannot
number until we first know how to classify. We cannot measure without
using numbers. Thus the assignment of scores to the categories of contingency
tables in order to describe a relation is basic. Being basic, it is the
more general approach. In fact, Williams, et al., have shown that for two-
factor tables the least squares formulae used in the analysis of variance
is a particular case of the formulae for maximum correlation scores. When
at least one of the two factors is a dichotomy, or when arbitrary scores
are assigned to one of the two factors, the maximum correlation scores for
the remaining factor are equivalent to least squares effects.
Now the maximum correlation score technique has been applied only
to two-factor contingency tables. But in practical survey work it has
been emphasized that multiple factors must be considered. Therefore, it is
our intention to show that the maximum correlation scores technique can be
applied to multiple factor classifications. Least squares formulae will be

shown to bear the same equivalence to maximum correlation score formulae

- Williams, E. J., "Use of scores for the analysis of association
in contingency tables", Biometrika, V39, pp. 274-289, 1952.

) Lancaster, H. 0., "The derivation and partition.o:f‘X2 in certain
discrete distributions", Biometriks, V36, pp. 117-129, 1949.
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for the multiple factor classification as exists for the two-factor classi-
fication. Instead of a two-factor contingency table, a multi-factor table
will be considered in which there are several independent factors and in
which there is one dependent factor. The general case of determining scores
for all factors will not, however, be considered; instead, attention will
be restricted to the case for which the dependent factor is either a
dichotomy or a classification whose categories can be represented by
quantitative characters. No such restriction will be placed on the inde-
pendent factors. It will be shown that the scores developed in this approach
may be interpreted as the partial effects of the factor categories. A chi-
square test of significance of effects will be proposed. This proposal
will be tested on the basis of empirical results of sampling from known
populations, using the IBM 650 computer for this work.

But we must not lose sight of the practical problem which has
created the need for such theoretical development. That is the problem
which was underscored in the opening paragraphs: extending the number of
variables which can be handled in the analysis of survey data. In the
following section which deals with the stress of household health problems,
we shall attempt to illustrate the technique for extending the number of
variables and to show how this technique is integrated into the general
analytical method. In subsequent sections the theoretical development

of the ftechnique is taken up.



2,0. HEALTH PROBLEMS AS AN INDICATOR

OF SUBSEQUENT HEALTH PROBLEMS IN THE HOUSEHOLD

Do health problems 'run' in households? Few persons will contest
that-some diseases do. Communicable disease is a notable example: it is
reasonable to believe that transmission of a biological agent of disease
from one household member to another, in general, is more easily accom-
plished than direct ftransmission to persons outside the household., It
is also granted that some hereditary diseases, such as diabetes, may tend
to cluster in households. In addition, poor housing conditions and other
environmental stresses common to all members may be responsible for the
clustering of health problems in households. Again, the psychiatrist may
relate the development of mental illness to household tensions. Further,
‘accident-prone' persons, those who have 'too many' accidents, may very
well cause injury to others in the household. And, finally, it may be
that chronic disease in one member sometimes induces tensions among
other members, leading to diseases of varied kinds. All these examples of
familial aggregation illustrate the generally held idea that illness in
one member of a household implies an increased tendency for illness to be
present in other members. It is not the intent of the present study
either to substantiate or to disprove this. Rathér, the relation of
household health problems as a whole to antecedent non-communicable health
problems in the household is to be investigated.

The distinction may be made clear by comparing our study to a study

by Downes, "Illness in the Chronic Disease Family".lO The data were

19 Downes, J., "Illness in the chronic disease family", American
Journal of Public Health, V32, pp. 589-600, 1942.

11
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compiled from monthly interviews of families in the Eastern Health Dis-
trict of Baltimore, from mid-1939 to mid-1940. Individuals who had no
chronic disease were divided into two groups: Group I, those having, and
Group II, those not having, a chronically ill person in the immediate
family. The illness rate for Group I was found to be greater than that
for Group II. This finding indicates that a sort of familial aggregation
of health problems was present in the families which were indexed by the
presence of a chronically ill person. Determination of the presence of
chronic disease and other illness was, however, concurrent., It is not
known, in general, whether chronic disease existed first, followed by an
increase of illness in other household members, or whether chronic dis—
ease merely occurred more often in households characterized by a high
general illness rate.

The study we are about to take up is oriented differently. Rather
than just chronic disease problems, all kinds of non-communicable house~-
hold health problems which occur during a one-year interval are the index
of a household health stress. Households with health problems in the follow-
ing year, occurring to members who had no health problem in the first year,
are studied in relation to that stress. The object of interest is antedated
by the stress. Under this approach, concurrent familial aggregation does
not contribute to the relation. Rather, present health problems are viewed,
sometimes as an indicator, sometimes as a cause of household health problems
in the future.

It seems reasonable to expect that, because of familial aggregation,
a positive relation between antecedent and subsequent health problems
should exist in households taken from the general population. Nevertheless,

it should be pointed out that the truth of this hypothesis does not follow
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necessarily. This is because a selective, negative force is actuated by
every occurrence of a health prob;em stress. In our ignorance of all the
manifold conditions under which health problems develop, we can say that
some- persons in a household are more susceptible to illness than others.
If the more susceptible persons come down with illness in a given interval
of time, then the less susceptible persons remain. These less susceptible
persons constitute a 'preferred risk'. It is therefore entirely possible
that the selective, negative force of disease within the household, due

to differences in susceptibility of its members, may balance or outweigh
the supposed familial aggregation of illness, due either to characteristic
differences of households within the community or to the stress which a
health problem sets up in the household. The resultant of these opposing
tendencies may vary under different conditions. In this event, it becomes
important not only to examine the overall relation of household health
problems in a population, but also to study how this relation changes
under various circumstances.

In the study we teke up here, the simple relation between ante-
cedent and subsequent household health problems is investigated first.
Then certain characteristics, i. e. size, average age and sex distribution
of the household, which from g priori consideration influence selection
within the household, are teken into account. Also, certain circumstances
in respect to the sample design, i. e. stratification and interviewer
characteristics, are taken into account. The customary classification
techniques are found to be inadequate in accounting for all these variables.
The new technique developed in subsequent sections is employed. After
adjustment for household size, average age, and sex distribution as well

as stratum and interviewer characteristics by this technique, the adjusted
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relation of household health problems can be interpreted. Following this,
the question of household health problems as a cause of subsequent health
problems is investigated. This is done by analysis of the variation of
the adjusted household health problem relation among size-age-sex specific
groups of households. Statistical properties of measures of partial
association, developed in the later sections of this work, are applicable

in that analysis.

2.1l. Source and Limitations of the Data

The material for this study comes from a survey of a district of
Pittsburgh, Pennsylvania. In July 1951, the Graduate School of Public
Health, University of Pittsburgh, conducted a survey of some 3000 house-
holds in the central portion of the Arsenal Health District of the Pittsburgh
Health Department. The area sampled by the survey comprised 22 of the 194
census tracts in the city and had a total population of about 80,000. On
the basis of average monthly rental data, households in the study area were
Judged to be well below the rest of the city in income level. One of the
principal objectives of the study was to measure the health characteristics
of households in the area by means of personal interview of responsible
members of the selected households.

A detailed discussion of the sampling design is given by Horvitz.ll
Some of the main features are described below. The 468 blocks in the
district were classified into three strata, according to the number of

dwelling units occupied (1940): Stratum I, 100 or more; Stratum II, 50 and

- Horvitz, D. G., "Sampling and field procedures of the Pitts-
burgh Morbidity Survey", Public Health Reports, V67, pp. 1003-1012, 1952.
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less than 100; Stratum III, less than 50. The primary sampling unit within
each stratum was the block. For each selected block a proportion of the
dwelling units in that block was chosen for interview. The block sampling
ratios and dwelling unit sampling ratios within a given block were so
chosen that each dwelling unit in the entire study area had an equal chance
(approx. 2/15) of entering the sample. Both blocks and dwelling units
within blocks were selected by systematic sampling with a random start.
(For illustrative purposes in the preliminary analysis, the sample data
are treated as a simple random sample; but in the refined analysis account
is taken of the classification into three strata.) In June 1952, approxi-
mately one year later, the same households as were selected in 1951 were
interviewed again, unless the household had moved or refused to cooperate
in the second survey.

The response problem was given particular attention in the design
of the first interview. Horvitz relates that there were 18 enumerators.
Ten were male medical students, two were female medical students, one was
a female worker experienced in health surveys, and 5 were non-medical
female college students. Through the assignment of interviewers to blocks
in a random fashion, differences in response, according to interviewers,
could be assessed. Horvitz concludes, from a study of illness rates in
relation to interviewer groups, that there was conclusive evidence of
differences in illness rates elicited by the various interviewers, differ-
ences not ascribable to chance. (Consequently, our analysis adjusts for
certain interviewer characteristics as well as for strata.)

One important limitation of the data, as for most survey data, is
non-response. Table 1 shows that, of 2957 households initially selected

for interview, 166 failed to cooperate in the first interview; another 220
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Table 1

An Account of Non-respondent and Excluded Households

Total Households Initially Selected for Interview: 2957
Less: Failed to Cooperate, lst Interview - 166
Non-respondent, 2nd Interview -
Failed to cooperate 220
Moved away 251 4T
Total Non-response, Either Interview: 637
Households for which Some Data Available from Both Surveys: 2320
Less: Information Incomplete for One or More Members - 49
Households for which Complete Data Available from Both Surveys: 2eat

Less Exclusions:

No Members Free of Health Problem in lst Year - 58

Communicable Disease Present at 1st Interview - i

Total Exclusions: 129
Total Households Available for Analysis: 2142

which cooperated in the first failed to do so in the second. An additional
251 households moved after first interview and were lost from observation.
For 49 of the remaining households, information on one or more members is
incomplete. This leawes 2271 households for which complete information is
available from both surveys. Of these, there are 58 in which no members
were free of health problems as of the first interview. An additional 71
households are excluded from the analysis because communicable disease was
present at first interview. Thus, we are left with 2142 of an original
2957 selected households. In a strict statistical sense, then, the results
of this study are not generalized to include those households in the commun-
ity,

(a) which would not have cooperated,
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(b) which would have moved,
(c) which would have failed to give certain pertinent information,
(d) which would have no members initially free of health problems,
or (e) which would have reported a communicable disease at the first
interview. It is noted, however, that communicable disease in the second
year is not excluded as a sequel to non-communicable health stress in the
firsit.
A further limitation of the data is that their accuracy is limited

to the accuracy of respondents' recall.

2,2 Definitions

In order to analyze the problem in specific terms, certain measures
must be defined. And, as Ciocco puts it, "The important point to keep in
mind is that the criteria (for classification) adopted and the resulting
classifications have an important bearing on the interpretations to be drawn
from the findings."12 Consequently, it is doubly important that the defini-
tions which follow be made clear at the outset.
2.21. Household

A household is consisted of a number of persons living at a common
dwelling unit. In the great majority of cases, the household is equivalent
to a family, or a single person living alone, but there are a few cases for
which more than one family, or several unrelated persons constitute a

household.

- Ciocco, A., Densen, P., and Horvitz, D., "On the association
between health and social problems in the population", The Milbank Memorial
Fund Quarterly, V31, pp. 265-290, 1953.
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2.22. A Person with a Health Problem
A person with a health problem is:

one with a reported physical impairment or chronic disease
existing within one year prior to interview;
one reported hospitalized at any time in the year prior to
interview, except hospitalization for delivery without
complications, and except for routine check-up;
or, one reported to be semi-ambulatory or confined to bed for any
interval during the month prior to interview.

This definition is made in view of the limitations of the survey. It was

felt that respondents could not give accurate histories of illness beyond

one month prior to interview, except for hospitalization and chronic illness.

This definition of a person with a health problem conforms closely to that
adopted in earlier studies based on the Arsenal Survey.13
2.25. A person with a communicable disease
A person With a communicable disease is any reported person with
a health problem who, in the month prior to interview, had an illness
coded (International Statistical Classification of Diseases, Injuries and
Causes of Death, 6th Revision, 1948):
001-138 infective and parasitic,
4T70-475 acute upper respiratory infection,
480-483 influenza,
490-493 pneumonia.
2.24. Age of person
The age of a person is taken as the reported age in years to last
birthday prior to first interview.
2.25. A Propositus

A propositus is a reported person, over one year of age at first

interview, who had no health problem during the first year, and who did

2B 0



19

not leave the household in the second year, except by reason of death or

illness.

2.5. Preliminary Analysis

In this preliminary enalysis, the second year health problem rate
for propositi is studied. The rates are compared for propositi from house-
holds with, versus those from households without, a first year health stress.
A negative relation is observed; that is, the second year health problem
rate is greater for propositi from households without initial health stress.
This is true, despite the fact that an overall familial aggregation of
health problems is observed in the first year. It is shown that these two
findings are not contradictory, that the difference may be explained as
due to greater negative selective forces acting on the serial (one-year
time lagged) relation than on the concurrent (aggregation within first year)
relation. Attention is then turned to the household as the unit of analysis.
That part of the household consisting of propositi (a propositus household)
is studied. Two groups of propositus household, those indexed by the
existence or non-existence of a household health problem in the first year,
are compared. Again a negative relation is found: relatively more propositus
households which were free of a household health stress in the first year
developed health problems in the second year. The measure of the strength
of this relation is taken as R, the product-moment correlation between
health status in the first year and health status in the second year. It
is shown that R is an adjusted difference in second year health problem
rates between the two groups of propositus households. This observed nega-
tive relation is significant on the.l% level, which indicates that an

overall preponderance of negative forces existed in the population.
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2.31. Comparison of Propositi in Households, I, Without and, II, With
First Year Health Problems

Although the individual propositus is not, in a strict statistical
seﬁse, the proper unit for analysis, it may be informative to compare
individual propositi in households having a first year health problem with
propositi in households free of first year problems. Table 2 shows this

comparison.

Table 2

Number of Health Problems and Health Problem Rate
in the Second Year for Propositi in Households,
I, Without and, II, With a Health Problem in the First Year

Household Status Number of No. of 2nd Year 2nd Year Health
1st Year Propositi Health Problems Problem Rate

: for Propositi  (Hlth. Pbs. per
100 Propositi)

I Without Hlth.Pbs. 4809 1632 339

II With Hlth. Pbs. 1796 052 59 7

On a relative basis, the propositi of Group I experienced the higher rate
of health problems, 33.9, as compared to the 30.7 rate for propositi of
Group II. This is an observed negative relation, quite different from
the positive relation of chronic disease to concurrent health problems
Seen by Downes.

It is emphasized, however, that the negative relation seen here
is not contradictory to Downes' finding, nor is it contradictory to the
general idea that there is familial aggregation of illness. This is because
any familial aggregation which may have been present in the first year does
not, in itself, contribute to the serial, that is the one-year time lagged,

relation seen in Table 2. Consider, as a simplified hypothetical example
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of aggregation, the following. Suppose we are dealing only with 100 house-
holds of size three. Also, taking a rather obvious illustration of familial
aggregation, suppose that first year household health problems occurred

only in pairs in 50 of the households. Table 3 indicates this situation.

Table 3

Hypothetical Distribution of Number of Members (X)
with First Year Health Problems,
for Households of Size S = 3

No. of Persons with Hlth. Pbs. Total No. of
in the Household, lst Year Households
(%) < {a)
0 4 2 )
Frequency of |
Households (f) 20 Ov 20 0 100

As the measure of familial aggregation, we take the observed variance of

X (the number of persons with health problems) in ratio to the variance

in X which would be expected if health problems were distributed randomly
to individuals; this we shall call the coefficient of familial aggregation.
If the coefficient is greater than 1, then there is an observed familial
aggregation; if less than 1, then there is an observed dis-aggregation. In
the present hypothetical case, there are 50 x 2 = 100 persons with health
problems out of a total of 100 x 3 = 300 persons. Then the overall propor-
tion of persons with health problems is P = 100/300 = 1/3. If these persons
had been distributed by chance, then the expected distribution would be

the terms of the binomial, (P + Q)S, which, in this case, is (1/3 + 2/3)3.
The variance of this expected distribution would be Ve = SE0 = 3(1/3)(2/3) =
2/3. Actually, the observed variance, VO, as calculated from Table 3 is:
V.= (C£x/n) - (£x/n)? =(50 x 22/100) - (50 x 2/100)° =2 - 1 = 1. The
ratio of observed to expected variance is therefore 1 + 2/3 = 1.5. This

ratio greatly exceeds one; hence there is a strong observed familial
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aggregation.

Now in the foregoing situation there are 50 propositi from the house~
holds with first year health problems and 150 propositi from households
without first year health problems. If, say, 1/5th of each of the two
propositus groups come down with a health problem in the second year, then
the health problem rate for each propositus group is 20 per 100 propositi,
and no serial relation exists. Thus, the mere existence of familial aggre-
gation in the first year tells us nothing, necessarily, of the serial
relation.

These same considerations apply to the more complex case with which
we are dealing, in which households of warious size are involved. Table 4
shows the distribution of number of persons with first year health problems
in households of siée 394y seey 11, as observed in the Arsenal data, From
the data for each household size, an estimate of the proportion of persons
with health problems, Pi’ is made in the sam» manner as illustrated for
Table 3. (However, a correction is made for the fact that households in which
all members have a health problem are excluded%4 see exclusions, Table 1.)
Then the variance,(Vo)i, of the_observed distribution of X is computed and
divided by the variance, (Ve)i, of the expected distribution of X to form
the coefficient of familial aggregation, Ai, in the same fashion as illus-
trated for Table 3. (Again, a correction is made because of the truncated
diétributions.) Households of size 1 and 2 are omitted because the observed

coefficient of aggregation must always be unity for those cases.

4 For a method of estimating P when the frequencies in the extreme
class of binomial distributions are unknown, see:
i, C. C., "Segregation of recessive offspring", Methods in lMedical
Research, V6, pp. 3-16, The Year Book Publishers, Inc., Chicago, 1954.
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Table 4

Distribution of Number of Members with First Year Health Problems,
Expected Chance Distribution, and Coefficient of Familial Aggregation,
for Size-Specific Groups of Households*

Household |Total No.‘ Observed andr(ﬁxpected) ﬁo; of ; d%é: Exp. Coetlif,

Size | of Hh., |Members with lst Year Health Problems| Var.’Var. of

(x) Agg.

e B awmmere
415 149 130 X X X Wty

3 694 |(s01) (242) (48) X X X% / as0 | 1437

|

281 126 24 1 X 9.6 el

G 48 L oasilian (o3) (1) %t & / 567 | 1400
! 156 68 10 2 0 X S

51 P8Ry o) ) 0o b0 / 567 | 102

e 50 6 0 1 0 s 40 ;

6 28 el () () Ga) ) o) lan | 9|
o8 12 6 o 0 «536

7 A L5 (16) (8.5) (2.5) () (.0) / ees | +60

-9 9~ 1 e n +610 |

e 200 1 (9.6) (T.4)(25) () (1) (o0) /oa0 |+
4 o 2 0 0 0 Aaully

? 7| 40y Gt () L) L) el Gpa | S

2 1 0 0 0 i 4,32 |

20 ¢ el e /1,08 | 3432
4 2 0O 0 0 0 0222

B | Slusng L ) o e

* Households in which all members have health problems are omitted, per Table 1.

In general, when observed frequencies exceed the expected at the
extreme values of X, aggregation is present; when observed frequencies tend
to cluster about the center, dis-aggregation is present, For the 694 house-
holds of size three, strong aggregation is present, A = 1,37, while only
very 8light or no aggregation is present for households of size four and
five, Households of larger size tend to show dis-aggregation, with the

exception of the four households of size 10. But the frequencies for the
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larger sized households, seven and up, are quite small and fluctuations in
the observed coefficient of aggregation can be expected to be large. The
aggregation picture is really dominated by households of size 3 through 6,
these constituting the great majority of households. As an overall, sum-
mary measure of aggregation in the whole sample, we take the average coef-
ficient of aggregation, A =Zni(vo)i£ni(ve)i' This is the ratio of
observed varience to expected variance, averaged over all sizes of house-
hold, with number of households as weights. In our case, Aave = 15163
thus, overall, there is a moderate familial aggregation of health problems
in the first year.
Summarizing thus far, an overall negative serial relation is observed
(Table 2) in spite of the fact that an overall familial aggregation is
observed in the first &ear (Table 4). This is because the serial relation
is subject not only to familial forces but also to others. We may hypothe-
size two kinds of such forces, positive and negative:
(1) positive

a) familial - the fact that some households had health
problems in the first year may be the result of poor housing, poor social
environment, genetic traits, etc., acting in common upon all members of
such households; the households free of problems the first year may be in
a relatively safe environment; then, from such familial forces, we may
expect the propositi in the households with initial health stress to exper-
ience a higher rate of second year health problems than the other group of
propositi;

b) direct causal - the occurrence of health problems may

act as a stress tending, on average, to cause future health problems in

propositi in households containing such stress; again, this would tend to
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show up as a positive relation;
(2) negative

a) selective - propositi in households with first year
health problems did not come down with health problems for as much as a
full year, when confronted with the same positive familial and directly
causal forces as less healthy members; this may mean that these propositi
have individual characteristics which meke them less susceptible to health
problem stresses than the propositi in households without first year
health problems; in this event, a negative serial relation tends to be
present;

b) direct causal - it is conceivable that the occurrence
of health problems in some members of the household acts to change the
mode of life of the'remaining propositi such that propositi are exposed
to less risk of health problems in the future; in this case, health problems
would constiﬁute a negative force on the propositi.

Probably a mixture of all these tendencies is at play in the actual
population, but apparently negative forces outweigh the positive forces,

producing the observed negative relation seen in Table 2.

2.2, Comparison of Households, I, Without and, II, With First Year Health
Problems

Now we turn from the individual propositi as the analytical units
to the household. The household was the sample element in the survey. Hence
statistical measures of significance are more valid when the household,
rather than the individual propositus, is considered to be the analytical
unit, Purthermore, the analysis is concerned with the household health prob-

lem relation for various classes of households rather than for classes of
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individuals.

In order that the customary definition of a household, given in
2.21, be distinguished from that part of the household consisting of pro-
posifi only, the latter is defined as a propositus household, Table 5 is
a four-fold classification of propositus households according to health

problem status in the first year and in the second year.,

Table 5

Four-fold Classification of Households According to Household
Health Problem Status at First Interview and Propositus
Household Health Problem Status at Second Interview

Second Interview Total

Mirst Interview [No Hlth. Pb. Hlth. Pb. Households
in Prop. Hh. dn-RProp, Hh{

1. No Household|

| ain, P | 600 882 1482
II. Household |
sl 321 339 660
Total ! 921 1221 2142

Households

It is first noted that, while only 660 households were found with
health problems in the first interview, 1221, nearly twice as many, proposi-
tus households had health problems in the second interview. At first glance,
this information would appear rather surprising, since persons with health
problems in the first interview do not contribute to the count of health
problems in propositus households in the second year. Other things being
equal, it would be expected that the number of propositus households with
health problems in the second year would be something less than 660, However,
this apparently large increase can be explained as due, for the most part,
to differential response in the two interviews. The questionnaire used in

the first interview contained only general questions about the occurrence of
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health problems, whereas in the second survey a long list of specified
illnesses was presented on the questionnaire. This revision in procedure
was apparently successful in improving respondent recall of illness. Of
course, other factors are at play to create a difference in health problems
for the two periods; actual illnesses, as distinguished from reported illness,
may have been at different levels in the two years, for propositi are a
full year older at time of second interview, epidemics may have had greater
influence in the population in the second year, and so forth. However, it
seems that these other factors could explain only a minor part of the increase,
and that this large increase illustrates the magnitude of the problem of
differential response.
Now attention is directed to a comparison of propositus households
free of first year health stress (Group I) with those subjected to first
year health stress (Group II). Rather than choosing the simple difference
between proportion of households with second year health problems as a meas-
ure of the comparison, we choose the product-moment correlation, R = )(/h,
as the measure of relation. In 3.6 it will be shown that, for interpretative
purposes,
R=(p, - pl)wé'q'/pq e

where (p2 - pl) is the difference in proportion of Group II
and Group I households, resp., with second year health problems,

and p is the proportion of all households with second yearﬁl
health problems, (g = 1 - p),

and p' is the proportion of all households with a first
year health problem stress, (q' =1 - p').

Thus the product~moment correlation is the simple difference between propor-

tions, (p2 - pl), adjusted by the factor vp'q'/pq.
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The denominator,-fga; of the adjusting factor may be termed the
'inherent' variability of rates due to the level of 12 and p2. This is
becagse p is a weighted average of 2] and p2. Now p describes a binomial
universe with standard deviation of +/pg. Then, when (p, = pl) is divided
by {pq, the result is a standardized difference in proportions. For a given
difference in proportions, (p2 - pl), a stronger relation is indicated when
the average of these two proportions is far from .5 than when the average is
near to .5. For example, if the difference between P, and Py i3 W1y &
stronger relation is indicated when p = .2 than when p = .5, as

(p, = p))/4P3 = «1/.4 = .25 in the first instance,

and (p2 - pl)/VBE = .1/.5 = .20 in the second instance.
This standardized difference in proportions, standardized by the inherent
variability attached to the average level of the proportions, is multiplied by the
numerator,-vﬁTET, of the adjusting factor. 'I'he numerator term is a maximum
when half of the households fall in each of the two categories being com—
pared, and decreases uniformly as the number of households in one category
increases beyond .5 of the total number of households. Thus, when a given
standardized difference in proportions is observed between two equal sized
groups sampled from the population, a‘stronger relation is considered to
be indicated than when the majority of elements falls in one category and a
few in the other., This weighting can be rationalized on the basis of a
selection principle. Classification into two categories constitutes a 'selec-
tion' of cases for each category. Now, a criterion for selection which
produces a relatively few elements in one category, as compared to a criterion
which produces approximately équal numbers of elements in each category,
would be expected to produce larger differences more often. Thus, the factor,

vYp'q', standardizes for inherent variability of differences between P, and Py
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due to unequal size of categories.

In summary, the adopted measure of relation, R, is a difference in
rates, adjusted for inherent variability in the rates due to differences in
category size, and due to the average level of the rates.

Now with reference to Table 5, (p, - p,) = (539/660) - (882/1482) =
2513 = 595 = -.082, or -8.2%. When this difference is adjusted by the fac-

,%660[21422§1482§21&2§ A ¢
D) T = i
tor, 4% q /pq =[(1221/2142) (921/2142 _/.933, the adjusted difference in

proportions, that is the product-moment correlation, is

= -.082(.933)= =.077, or ~7.T%.

Thus, with households as the unit of analysis, the serial relation is nega-
tive, as previously found for the serial relation based on individual propos—
iti as the analytical unit. Again, the sample reflects that the net influence
of familial, selective and direct causal forces, described in detail in 2.31,
is negative. But how confident are we that this negative relation existed
in the population from which the sample was taken? To answer this question,
we must know the distributional properties of R. In section 3.0, the proper-—
ties of the maximum correlation in the general two-factor contingency table
are reviewed. In the particular case of the four-fold table, such as Table
5, it is shown that the maximum correlation reduces to the product-moment
correlation, R, and that R is approximately normally distributed, with var-
iance, l/h, where n is the sample size. Then, testing the observed R against
the null hypothesis,

(R = 0)A41/n = R = y2142(~,077) = -3.57.
Referring this value, -3.57, to & normal table, we find that a value as
great or greater would occur by chance less than one time in a thousand under
repetitive sampling, if there were no relation in the population. Thus we

can infer with a high degree of confidence that a negative serial relation
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truly existed in the Arsenal population.

As stated before, we can attribute this negative relation to an
excess of negative forces. Discarding, for the moment, the possibility that
there is a preponderance of negative direct causal forces, this suggests
that the negative relation can be explained by a preponderance of selective
forces. In the next sub-section, certain selective and familial forces are
specified. Some of those forces can be taken into account by sub-classifi-
cation of the Arsenal sample data. But there are others which cannot be
taken into account by further sub-classification because too small frequen-
cies in the ultimate categories would be encountered. In order to take all
specified forces into account, a new measure of partial serial relation is
used. This measure is quite analogous to the simple measure, R, above. Its
distributional properties are also found to be approximately normal. Conse-
quently, tests of significance, similar to that applied in the above prelim-—

inary analysis, can be applied in that more refined analysis.

2.4. The Serial Relation, Adjusted for Various Conditioning Factors
Adjustment for the influence of conditioning factors is taken up

here., The specific factors are household size, average age, sex distribu-
tion, atratum and interviewer characteristics. It is desired to obtain the
serial relation of household health problems for sub-groups of households which
are comparable in all five of the above respects. The traditional way to
accomplish this is to classify the sample data according to all five factors
and to compute the serial relation within each ultimate size-age-sex-stratum-
interviewer-specific category. But it is found, because of the size of the

available sample, that the ultimate category frequencies would be much too
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small. In a majority of ultimate categories, there would be no frequencies
present; thus, not even a measure of serial relation could be computed for
these categories. Furthermore, in the remaining categories for which a meas-
ure could be computed, the frequencies would be so small that the computed
serial relations would be practically meaningless when assessed on a proba-
bilistic basis.

Therefore two essentially different techniques for adjusting the
serial correlation are employed. The first is the traditional classification:
the data are classified according to household size, average age and sex
distribution, Uost of the ultimate size-age-sex categories contain frequen-
cies which are fairly large, 30 or more. But classification stops here. In
order to further adjust for stratum and interviewer characteristics, the sec-
ond, new; technique is applied. For this new technique, each ultimate size-
age-sex category containing 30 or more frequencies is treated as a sample from
the corresponding size-age-sex specific sub-population. Within each of these
categories a partial serial relation is computed. The computation of this
partial serial relation is accomplished by applying the results of the theo-
retical development in subsequent sections of this work, sections 4 and 5.
The partial serial relation is the serial relation which exists after the
influence of stratum and interview characteristics is adjusted for. The pro-
cedure for adjustment is quite analogous to the balancing procedure carried
out in the ordinary factorial experimental design; the only difference is
that the factorial experimental design usually adjusts for conditioning
influences by balancing the number of observations taken at each level of
the factors, whereas in our case, we must take the observations from the popu-
lation as they come. The disturbing influence of conditioning factors is

adjusted, not through controlling the number of observations taken, but through
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correcting the observed relation for the influence of the unbalanced fre-
quencies. This adjustment technique is the formal equivalent of the familiar
least squares analysis in experimental work. However, the approach differs
from least squares in two respects, one conceptual, the other practical. Con-
ceptually, the technique is founded on the principle of maximizing the squared
correlation between scores assigned to the categories of contingency tables,
rather than minimizing the squared error for a continuous variable. Prac-
tically, the method differs from the usual straight-forward application of
the least-squares formulae in that an adjustment for continuity is applied

to all the frequencies used in the computation formulae. This adjustment

for continuity comes from the development in section 5; there it is shown,

by actual experimental trial on the IBM 650 computer, that an adjustment is
necessary to increase the validity of measures of partial relation based on
least-squares formulae.

Thus, the adjustment procedure combines two different techniques:
first, classification as far as possible; then, mathematical adjustment of
remaining conditioning factors. The partial, i. e. adjusted, serial relations
in each ultimate category of the classification systems are then combined (aver-
aged) to produce a single, overall, serial relation adjusted for all the con-
ditioning variables. Conceptually, this adjusted serial relation is based
on comparisons of households only in comparable size, age, sex, stratum and
interviewer groups. From the known statistical properties of the size-age-
sex specific relations, as determined in section 5 of this work, the signi-
ficance of the overall adjusted serial relation can be assessed, and an

inference can be made,
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2+.41. Choice of Conditioning Variables to be Taken into Account

The very process of a health problem coming into existence creates
a selective negative force on the serial relation of household health problems.
The following illustration which considers selection involving the factors,
household size, age and sex distribution, is over-simplified, but, being such,
emphasizes this selective force.

First, let us suppose that, ceteris paribus, two persons constitute

a greater exposure to health problems than does one person, that health
problems occur more often to older persons than younger persons, and that
the adult female has health problems more often than the adult male.
Now consider two households composed of three individuals, father,

mother and daughter, aged 40, 40, and 16, resp. In household number I,
suppose no one ﬁas a health problem in the first year. In household number
II, suppose mother has a health problem in the first year. Then the propositi
of household I are: 1 father, age 40

2 mother, age 40

3 daughter, age 16.
Thus there are three propositi; their average age is 32; and they are pre-

dominantly (2/3) female. In household II, due to mother having a health

problem, the propositi are: 1 father, age 40
2 daughter, age 16.

Here there are only two propositi; their average age is 28; and the female
does not predominate.

Consider now the likelihood, ceteris paribus, of a second year health

problem occurring to one or more propositi in each household:
(1) by reason of there being more propositi in household I
than in II, the likelihood of a health problem occurring to at least one of

the three propositi in I is greater than that for at least one of the two
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propositi in II;

(2) the average age of propositus household I is greater than
for propositus household II, there being two 40 year olds in the former to
.one 40 year old in the latter; then, since it is assumed that health problems
occur more often to older persons, propositus household I is more likely to
have a second year health problem than propositus household II, because of
the age difference brought about by occurrence of the first year health
problem;

(3) propositus household I has a predominance of females while
II does not; I has an adult female propositus, II does not; then, assuming
it is true that the adult female more often has a health problem than the adult
male, household I is again more likely to have a second year health problem
than household II.

The influence of each of these factors, size, age, sex, is shown here
to be the result of the very process of a health problem having occurred.
Each of these factors illustrates the selective process which occurs due to
differences among the individuals within the household.

Now, we can turn about and say that size, age and sex distribution
can also be positive familial forces rather than negative selective forces.
Thus, consider household III, comprised of five females, average age 40, and
household IV, comprised of a married couple, average age 30. Then household
III is more likely to have a first year health problem because,

(1) there are more individuals at risk,

(2) the individuals at risk are older,

(3) a greater proportion of females is at risk.

Further, if the more likely event occurs, household III does have a first

year health problem, while IV does not. Then propositus household IIT will
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still have the greater likelihood of a second year health problem because
the household III propositi are still

(1) greater in number,

(2) older,

(3) more predominantly female.
This, then, illustrates that differences in size, age and sex distribution
may tend to create a positive serial relation. But isn't this line of rea-—
soning contradictory to the former? Not at all., For in the latter illustra-
tion, differences among households, not differences among individuals, account
for the positive force. In the former illustration, differences among indi-
viduals within households, not differences among households, account for
the negative force.

If, then, we classify propositus households so that comparisons are
made only for households of comparable size, age and sex distribution, we
should be removing sources of both negative and positive nature. If the
serial relation becomes more negative, after such adjustment for size, age
and sex, then a greater positive (familial) force than a negative (selective)
force should have been removed, and vice versa.

There are additional factors of classification, the influence of
which it would appear desirable toxadjust in this study. These relate to
the conditions under which the survey was carried out, and they are, firstly,
strata, and secondly, interviewer characteristics.

Adjustment is made for strata, by the 3-category classification,

I 100 or more dwelling units per block,
II 50 and less than 100 units per block,
III less than 50 units per block.

There are two reasons for adjusting the serial relation for possible influences
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of strata: firstly, to bring the analysis more into line with the sampling
design, as described in. 2.l1; secondly, to account for a factor with socio-
economic overtones, since blocks with larger numbers of dwelling units in
the Arsenal Health District may, in general, be associated with lower socio-
economic status. Thus, a presumed positive familial force due to socio-
economic status is partly removed by classification on this factor.
Finally, it has been mentioned that Horvitz found differences in

response attributable in part to interviewer characteristics in the first
interview. Of the 18 enumerators in the first interview,

ten were male medical students - group A,

two were female medical students - group B,

one was a female non-student - group C,

five were female non-medical students - group D.
In the second survey, all sixteen interviewers were male medical students,
group A. In the analysis which follows, groups A and B are combined and
groups C and D are combined. The resultant two groups, AB and CD, are
nearly confounded for sex and type of school. That is, in group AB, the
interviewers are medical students, predominantly male, while in group CD
the interviewers are predominantly non-medical students and are female,
Therefore, by the use of only two categories of interviewer, AB and CD,
the small categories, B and C, are eliminated, but sex and type of school
are both fairly well preserved. Then adjustment on the basis of this classi-
fication should account for most of the possible spurious influence of both
interviewer sex and type of school on the serial relation of household

health problems.,
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2.42. The Serial Relation, Adjusted for Propositus Household Size, Average
Age, and Sex Distribution, and Adjusted for Stratum and Interviewer Charac-
teristics

Classification of propositus households by size, age and sex yields

the frequencies shown in Table 6.

Table 6

Classification of Propositus Households According to
Size, Average Age and Sex Distribution

Age in  Sex Size
Years Dist.*
(.A_VB.) x 2 &) 4 5&U.p
15-29 M 21 135 104 143 158
P Voo w0
= M 20 12490 i 0E 51
el 5 19 w7 3] B
M e 9 s 15
ek o e T e
M o179 Pl 10 4
Dy e i s
Total 2847603 581 . 355 359

* F denotes propositus household in which the females predominate,
M denotes that in which half or more of the members are males,

Frequencies of 30 and above are underlined. Some of the interrelationships

of size, age and sex are evident in this table: propositus households of lar-
ger sizes are very rare in the older age groups; predominantly female proposi-
tus households are rare in the younger age groups. The underlined frequencies
total 1904; the remainder total 238. Thus almost 9Q% of the sample is repre-
sented in the 22 underlined categories, while the remaining 10% is distributed
among the 18 other categories. The analysis which follows ignores the latter

rare categories because the statistical properties of the measures of partial



38

association within them are probably not well approximated by the method
developed in subsequent sections, and because, numerically, these categor-
ies are relatively unimportant in the population. Also it is believed
better to discard these categories rather than to combine them with other
neighboring categories in a more gross classification system. For example,
it is believed better to discard the 21 female households of size one in the
15-29 year age group rather than to produce extreme heterogeneity of cate-
gories, with consequent difficulties in interpretation, by putting these
21 households in the same category as the 135 predominantly male households
of size two in the 15-29 year age group.

The frequency in each of the size-age-sex specific categories of
Table 6 can be considered as a sample from each corresponding size-age-sex
specific sub-population of the Arsenal District. Then, a four-fold table
of household health status in first and second year can be constructed for
each such category, in the same manner as Table 5 was constructed for the
sample as a whole. For example, take the category of propositus households
of size one, average age 30-44, not predominantly female. (In this particu-
lar case we are dealing with individual male propositi between the ages of
30 and 44, incl.) From Table 6, there are 30 such households in the sample.
When classified on health problem status, first and second year, these 30
households are distributed as shown in Table 7. Just as for Table 5, the
product-moment correllation, R, can be calculated for Table 7. This is,

R = (p, - py)¥b'a'/pq = (1/5 - 9/270/(27)(3)/(20)(10) = o.

However, this measure of serial relation, while being specific for size, age

and sex categories, has not been adjusted for the influence of stratum and
interviewer characteristics. Furthermore, the sample size, 30, is no longer

very large; therefore, the serial relation should also be adjusted for continuity.
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Table 7

Four-fold Classification of Propositus Households of Size One,
Average Age 30-44, Male, According to Household Health Status
at First Interview and Propositus Household Health
Status at Second Interview

First Interview Second Tnferview Total No.

No- Hiith,: Pb.- Hlthe Phi of Hh.
in Prop. Hhe' in Prop, Hh,

No Hh, Hlth. Pb. 2 1 | 3
Hh. Hlth. Pb. 18 9 o
Total No. of Hh. 20 10 30

The detailed procedure to adjust Table 7 for the possible spurious
influence of stratum and interviewer characteristics, as well as for conti-
nuity, is illustrated in 5.9. For present purposes, only the results of
such adjustments are presented, Table 8.

Table 8
Four-fold Classification of Propositus Households of Size One,
Average Age 30-44, Male, According to Health Status at
at First and Second Interview;

'Frequencies' Adjusted for Stratum and Interviewer
Characteristics, as well as for Continuity

THinat Tnbarcton Second Interview 1 Total No.
No Hlth. Pb. Hlth. Pb, | of Hn.
inm Prop. Hh.7 in Prop,  Hid

No Hh. Hlth. Pb. 2,13 o6 ] %.39

Hh. Hlth. Pb. 7.7 8.90 26,61

Total No. of Hh.| 19.84 10.16 30,00

Now the partial serial association, having been adjusted for stratum and

interviewer characteristics, and adjusted for continuity, is

it

(1.26/3.39 - 8.90/26.61)4(3.39) (26.61)/(19.84)(10.16)

-.025, or -2.5%.

]
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This compares with an unadjusted R of 0.0%.

Similarly, all the adjusted serial relations are computed for the
22 size-age-sex specific categories in which the frequency of households
equals or exceeds 30, These adjusted relations are shown in rank order in

Table 9.

Table 9

Rank Ordered Partial Serial Relation (r,‘) of Household Health
Problems, Adjusted for Stratum and Interviewer Group, and
Adjusted for Continuity, for Size-Age-Sex ()
Categories of Propcsitus Households

o T, Size Age Sex ¢ 0
I -.322 3 45-54 N )
2 -.208 4 30-44 M 96
5 -.175 Séup 30-44 M 57
4 -.114 25 H8epis M 179
5 -+109 5. 11529 P LT
6 -.085 5&up 15-29 F 92
7 -.074 3 15-29 M 104
8 =046 2 45-54 M 97
9 -.043 2 30-44 M 124

10 -.043 S56up 15-29 M 158

17 —.040 2 15=205 =N 455

12 -+038 3 30-44 M 99

13 -.025 1 30-44 M 30

14 +.000 1l 45-54 F 36

15 +,013 3 45-54 F 42

16 +.029 4 1529 F 54

17 +.038 o 558upit T 35

18 +.045 e shaup 1 52

19 ++052 1= ohémpc B T2

20 +.078 3 30-44 F a7

21 +4101 5up 30-44 F 45

22 +.196 4 15-29 N 143

In section 5 it will be shown that each of such adjusted, or partial,

Serial relations has an approximately normal sampling distribution, with
variance equal to l/n“, the reciprocal of the total frequency in the size-
age-sex specific category. Note that these statistical properties are essen—

tially the same as for R, the unadjusted serial relation for large samples.
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These properties are applied to the present analysis in the various tests
of significance and confidence intervals which ensue.

Now an overall measure of the adjusted serial relation of household
health problems in the Arsenal Health District can be obtained. This is
done by averaging the 22 size-age-sex specific relations according to the
formulas

Tave =£Enun‘éz£“ i
2 s is a weighted average of the 22 values of r,, with the n_ as weights.
This turns out to be

T e = —+035 = =3.5%.
This overall measure is the adjusted difference between the rate of second
year health problems for propositus households, I, with, versus those, II,
without, a first year health stress. Conceptually, this means that only
households of the same size, the same average age class, the same class of
sex distribution, the same stratum and seen by the same class of interviewer,
enter into the comparison of health problem rates for the propositus house-
holds of groups I and II. This adjusted comparison of rates, -3.5%, is not
found to be significant on the 5% level. (For detailed illustration of the
computation of Te . and of the test of significance, see 5.10.) It is re-
called that the unadjusted relation, R, is -7.7% and is significant on the
0.1% level (2.%2). This significant unadjusted relation has been explained‘
as due to an excess of negative selective forces. Since the adjusted rela-
tion is less negative, this means that a net negative force has been removed
by adjustment for household size, age, sex, stratum and interviewer char-
acteristics. The 95% confidence estimate of the strength of the partial

serial relation which existed in the Arsenal population is: -8.0% to +1.1%.

(See illustration, 5.10.) Therefore, we can infer that, overall, the
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remaining unspecified positive and negative forces on the serial relation

nearly balanced each other in the Arsenal population.

2.5+ First Year Health Problems as a Cause of Second
Year Heélth Problems in the Household

In the introduction, section 1.0, it was pointed out that any
causal interpretation of observational material, such as we are dealing with
here, is subject to question. But it was also stated that, often, one of the
prime purposes of the survey is to test a causal hypothesis and to see how
the effects of the supposed cause vary under different circumstances.

In the present analysis, we have adjusted in one way or another for
five conditioning factors: household size, average age, sex distribution,
stratum and interviewer characteristics. This is probably a mininum of
conditioning variables which should be specified and accounted for before
entertaining the causal hypothesis thgt health problems in the first year
constitute a stress leading on average to increased second year health
problems in the household. There is no argument with those readers who
would not wish to entertain a direct causal hypothesis of this nature with-
out specifying and adjusting for other conditioning variables. For example,
there might be good reason to adjust for factors such as occupation, race,
and health history of propositi. Or again, some readers would wish to class-
ify the health problems by diagnosis before bringing a causal interpretation
to any part of the analysis. The first point we are making here is that the
framework in which a person is willing to entertain a causal hypothesis is
subjective; it varies from person to person. Therefore, using observational
data, we would not attempt either to 'prove' or 'disprove' the existence of

a cause to the satisfaction of all, or even necessarily to a few, readers.
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A second point which we are making is that, most often, for any causal hypo-
thesis to be credible, a large number of conditioning variables must be
taken into account in one way or another. The methods developed in subse-
quent sections of this work provide a beginning for extending the number

of conditioning variables taken into account by the analytical procedure.
The present analysis illustrates these methods.

Then, as a working hypothesis, we assume that first year health
problems can be a cause of second year health problems. We have already
seen in 2.42 that there is no significant serial relation in the sample as
a whole, when adjusted for the five specified conditioning factors; this
carries the interpretation that, if first year health problems are a cause
of subsequent health problems in the household, such a relation does not
show up in the population as a whole. But we may also test the variation in
effects of first year health problems under varying conditions, If signifi-
cant patterns of variation in these effects, i. e. in the partial serial
relations of Table 9, are found, then these can be given a causal inter-
pretation, in the framework which has been chosen. No attempt is made to
secure general agreement that first year health problems are directly
resﬁonsible for such patterns of variation, if they exist. General agreement
could only be achieved by a whole series of studies by various investigators,
at various times, in various human populations. Rather, the objective of
the present analysis is less ambitious: to determine whether patterns of
variation in the serial relation are consistent with a causal hypothesis.

The investigation of variations in the partial serial relations under
varying conditions, i. e. for varying size, age, and sex categories shown in
Table 9, is divided into three parts:

(1) a test of the overall variation of the 22 size-age-sex
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specific adjusted serial relations - if this variation is greater than
could reasonably be expected by chance alone, then it is likely that some-
thing other than chance has caused it; such a finding would be consistent
with the hypothesis that health problems, under certain circumstances related
to household size, age, and sex, exert a stronger force than under othé¥
such circumstances;
(2) a test of a specific a priori hypothesis which anticipates
a greater force in certain size-age-sex specific categories than in others;
this test, if significant against the null alternative, would directly
substantiate the hypothesis;
(3)_@ posteriori scrutiny of the variations in serial relation

in an attempt to abstract a meaningful, unifying pattern of variation -
such a pattern would furnish a new causal hypothesis which could be tested
in future surveys; the degree of belief, or credibility, in such an a poster-
iori finding, if one exists, would depend on the 'significance' of the
pattern and on the level of residual variation left unexplained by the a
posteriori hypothesis.
2.51. The Overall Variation of the 22 Size-Age-Sex Specific Adjusted Serial
Relations

The 22 serial relations in Table 9 show variation; they range from
-.322 to +,196, with a concentration of values about -.040, The question is:
is this variation consistent with the level of variation which would be seen
if the 22 relations had been randomly selected from a common universe; or is
this variation greater than could reasonably be expected on just a chance
basis.

A test of significance which answers the above question is readily

available. Since each vﬁ;qx is approximately normally distributed with
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variance equal to one, the sum of squared deviations of r, from T each
weighted by ny is

Zn,‘r“2 e - , Where n =)ng .

ave
On the hypothesis that the population serial relations are the same for
all 22 size-age-sex groups, the above expression is distributed approxi-
mately as a chi-square with 21 degrees of freedom. In the present case, the
computed chi-square value is

)(2 = 22,34 - 2,27 = 20.07. (See illustration, 5.10, for
detailed computations,)
On referring this to a chi-square distribution with 21 degrees of freedom,
it is found that an observed value of 20.07 or more would occur slightly
more than half the time in repeated random sampling. Thus the observed
level of vaiiation, 20.07, is very close to the value, 21,00, which would
be expected in random sampling.

On the basis of this test, then, the variations of the serial
relations in Table 9 are much the same as would be expected by chance alone.
This is one indication that the net resultant of familial, selective and
direct causal forces is practically the same, no matter which category of
households we may choose. However, in the following sub-section, there
remains to be made an g priori test of a specific causal hypothesis. If
that hypothesized relation should prove significant, then a certain amount
of credence can be assigned to a direct causal interpretation, as distin-
guished from an interpretation based on familial or selective influences.
This is so for two reasons:

(l) a significant pattern of variation will have been found
through & priori direct causal considerations, rather than familial or

Selective considerations;
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(2) because the level of variation is already low, any residual
variation left over as unexplained by the causal hypothesis will be non-
significant; being such, this would lend substance to the interpretation that
the net resultant of familial and selective forces is practically the same
in every size-age-sex category.

For it would indeed seem to be a rare coincidence if the pattern of variation
due to familial and selective forces were to match so closely the pattern
predicated by direct causal considerations.
2.52. Test of the Specific Causal Hypothesis

If the mechanism through which a cause produces an effect is clearly
understood, then there is little difficulty in specifying the hypothesized
variations of effects under varying circumstances. However, we must admit
in the present case that the causal mechanism is not clearly understood;
consequently, the choice of a specific hypothesis with respect to variations
in effects is difficult. Without doubt the specific hypothesis we make here
is not the 'best' which could possibly be made, and is probably somewhat at
variance with what another investigator might choose on a priori grounds.
Perhaps, in situations like this, it would be helpful to poll several experts
on the subject in an attempt to arrive at some mutually agreeable viewpoint.
Therefore, it is with some misgivings that the following hypothesis is presented.
Nevertheless, it will serve to illustrate the rigorous kind of test which
this author believes is necessary to meke, if a causal conclusion is to be
taken seriously. To meet the test, four criteria should be satisfied:

(1) a fairly large number of varying conditions should be
available for analysis, giving effects an opportunity to manifest themselves
in various ways;

(2) an a priori hypothesis about the kinds and level of varia-
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tion under the varying conditions should be specified;

(3) the a priori hypothesis should account for a significant
amount of variation;

(4) the residual variation, after removal of variation 'ex-
plained' by the hypothesis, should be low enough to be assigned to chance
fluctuation; that is, residual variation should not be significantly large.
Failure to meet any one of these four criteria would, this author believes,
favor a non-causal interpretation of any associatién which might be seen.

The stress of non-communicable health problems in mind causes an
alteration of some kind in the lives of the propositi. This alteration in
activities and responses may or may not result in a health problem for a
given propositus. By reason of the stress, some propositi may escape a
health préblem, while others may acquire one, while still others may escape
one problem and acquire another, and the health problem status of still
others may be completely unaffected by the stress. Evidently, the mechan-
ism of response is manifold. Consequently it is quite impossible to specify
any single mechanism. We can, however, specify those conditions under which
we hypothesize a greater average respthe than under other conditions.

One of the conditions available for analysis is household size. It
Seems reasonable to expect that, if health problems constitute a stress, this
stress should be greater if borne by a single propositus than if by more
than one person. Therefore, it is hypothesized that the serial relation
should increase in a positive direction as household size decreases.

Secondly, age is a conditioning variable. The stress in mind, it
Seems reasonable, would not be so great for younger, more flexible propositi
than for the older propositi. Then the relation should increase with in-

Creasing average age of propositi.
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Finally, sex distribution is a conditioning variable. If most of
the propositi are females, then the existence of a health problem stress
may well cause a greater ghange in the lives of the propositi than if more
males were present in the household. For example, in a husband and wife
household, if the husband comes down with serious illness, it may be neces-
sary for the wife to change from housewife to breadwinner, and the transi-
tion may result in health problems for the wife. Also, the female is often
more dependent on other members of the household for her sense of security;
if illness in the household disturbs that sense of security, health problems
may result.

In order to account for these three hypothesized influences, we
assign a value to the various categories of household size, age and sex, in
accord #ith the hypothesis; a high value reflects an hypothesized high ser—
ial relation, while a low value reflects a supposed lower serial relation.
These are as follows:

Size Value Age  Value Sex Value

1 4 15-29 O M 0
2 2 30-44 1 F 4
5 a 45-54 2
4 0 558up 4

5&up 0

These values represent the relative importance put on each category of the
conditioning factors, as well as the relative importance between factors.
For a household of given size, age and sex distribution, the appropriate
values are added together to yield an index score for the hypothesized level
of the serial relation. For example, in propositus households of size one,
age 60, female, a total score of 4 + 4 + 4 = 12 is given; and so on. Table
10 shows the index score, together with observed serial relation, for each

of the 22 categories being tested.
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Table 10

Comparison of Causal Hypothesis (Index Score) with
Observed Partial Serial Relation for Size-Age-Sex
Specific Groups of Propositus Households

& Size Age Sex Do aler (q*) Tox
1 S5éup 15-29 M 158 0 -.043
2 4. - 15=29 U 143 0 +.196
3 4 30-44 N 96 1 ~.208
4 S&up 30-44 N 511 1 -e175
5 5 =2 N 104 L =074
6 2 IB=2 N R 195 2 -.040
i 3 30-44 N g5 2 -+.038
8 3 45-54 M 55 3 -.322
9 2 30-44 M 124 ) =043
10 S&up  1B5=29 B e 4 -.085
LI 2 45-54 M 9T 4 -.046
12 4 509" R 54 4 +.029
13 5 el i 1Lk 5 -.109
14 1 30-44 " 30 5 -.025
15 S&up 30-44 F 45 B +4101
16 2% 5o%up M 179 6 -.114
17 3  30-44 F St 6 +4078
18 5 45-54 F 42 7t +.013
19 g Bhgups il o) 8 +045
20 Sl Shdup >0 g +.038
21 1 45-54 F 36 10 ++000
22 1o Shkup -l 2 12 +.052

By inspection of Table 10, there appears to be some degree of
agreement between hypothesis and observation. For the lower index scores,
5 and below, negative serial relations predominate, while for the index
scores higher than 5, positive relations predominate. The most serious
exceptions seem to be the +.196 relation observed for an index score of O,
and the very low -.322 observed for a score of 3.

The degree of agreement is more easily grasped from Figure 10,

which is a plot of the serial relations, as a function of the corres-

Ty
ponding index scores, Cx. Perfect agreement would be indicated if each of
the plotted points fell along a straight line with positive slope. The

least-squares regression line plotted on the graph indicates that, on aver-

age, the slope is indeed positive, indicating some measure of agreement.
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Figure 10

Serial Relation, Txs @S a Function of Index Score, Gk
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But the Scatter of boints about the line is relatively great in comparison.
to the Slope of the line. Hence thig graphic representation indicates that
the agreement of hypothesis with observation is not very strong. By the

Procedures illustrated in detail in 5.10, we may apply a test of 8ignificance
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to the amount of agreement, as determined by the slope of the regression
line in relation to the variability in the observed serial relations. It
is found that the slope, +.00333, is far from being significantly great; a
slope this great or greater would occur 33 times in a 100 by chance alone.
Thus, the hypothesis does not account for a significant amount of variation
in the serial relations.

Also by the test illustrated in 5.10, the residual variation (the
variation of the serial relation about the line of regression) is well
within the realm of chance variation.

How, then, does the causal hypothesis measure up to the four test
criteria specified above? Taken one by one:

(1) effeéts have an opportunity to manifest themselves differ-
ently in 22 sub-groups of the population, varying with respect to house-
hold size, average age, and sex distribution; then the first criterion is
met;

(2) the second criterion is met, since an a priori causal
hypothesis has been constructed;

(3) the third criterion is not met, for the hypothesis has
not accounted for a significant amount of variation in effects;

(4) the residual variation can be assigned to chance fluctua-
tions; thus the fourth criterion is met.

Failure to meet the third criterion, then, enables us to conclude
that a causal relation between household health problems in the first year
and the second year has not been substantiated. Failure to meet any one of

the four criteria would have been interpreted in a similar way.
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2,53+ A Posteriori Analysis of the Partial Serial Relation

The truth of an a posteriori relation discovered by the analyst
may be seriously questioned; those relations which lack all form or pattern
are most vulnerable in this respect. Thus, if the highest serial correla-
tion in Table 9, +.196, is compared with the lowest, -.322, the difference
between them is 'significant'; but this is no basis whatever for concluding
that there was a difference between the serial relations for the two popula-
tion categories to which these measures apply. For in any large set of
measures from a single population, such 'significant! differences would
almost always be found; and they would be meaningless. Further, the exis-
tence of such differences in measurements is hardly an adequate basis for
the formulation of hypotheses for future testing. Rather, a degree of
credibility can be assigned to a posteriori findings only when observed
variations are consistent with some unifying rule. There seems to be no
gsingle method which can be applied to find such patterns in sets of data;
it seems that this is more a matter of trial and error. In the present
case, several attempts to find a pattern of some kind among the size-age-
sex categories were made. Rather than burden the reader with an account of
all these attempts to 'explain' the variations of the data on an a poster-
iori basis, it should suffice to present the one 'significant' pattern
which has been found.

The one pattern found to be of significance is based on household
sex distribution. In Table 9, it is seen that only two of the 13 negative
serial relations are for predominantly female households, while seven of
the nine positive relations are for predominantly female households. 4n
inspection of the table shows that the two female groups which show negative

correlations are in the very young category, age 15-29. It can be assumed



25

that several of the households in these two groups contain very young child-
ren and, therefore, that female children happen to predominate, Also, among
the positive correlations, there are only two male categories. One of these,
which happens to be the highest positive correlation, is for a household in
the 15-29 age category. Now if it is argued that the stress, if any, of
health problems is not differentially active in the young males and females,
but only in older persons, then a comparison on sex distribution would be
more sensitive if the very young households were omitted. When such compari-
son is made, the average relation for male households, of age groups older
than 15-29, is -.094. For predominantly female households, older than 15-29,
the average relation is +.054. The difference, .148, is found to be signifi-
cant on the 3% two-tailed level. (See illustration, 5.10.) Furthermore,
the residual variation is neither significantly high nor significantly low.
How shall we interpret this a posteriori finding? We were unable
to formulate, a priori, the correct causal hypothesis; that is, the relation
has not been put to the test as a predictor. Then, certainly, to apply a
causal interpretation would be premature. But even an interpretation of
the finding as a measure of true association in the population, with no
attempt to discriminate between familial, selective, or direct causal forces,
is not valid. For, as has been previously pointed out, in almost any series
of observations a 'significant' relation can be found if we only look long
enough for one., However, the fact remains that of the 9 groups of adult
male households 8 showed negative serial relations; and of the 6 groups of
adult female households, all 6 showed positive serial relations. This is a
fact which ought not to be dismissed lightly. For to do so would be to

throw away a possibly rewarding hypothesis.
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While we cannot dignify the a posteriori finding as a conclusion, we
can offer this finding as an a priori hypothesis in future studies. Strictly,
this would not constitute a causal hypothesis as it stands. For the finding
may well have been due to familial and selective influences. However, the
finding is in general agreement with causal considerations., Then it would
be an adequate causal hypothesis if it were used in future studies as a
part of an hypothesis which would predict variations under new varying con-
ditions (suchAas varying diagnosis, varying health history of propositi,
etc.).

But, as for now, we cannot discriminate between a causal or merely
associative finding. Moreover, as for now, we cannot discriminate between
whether or not this finding is a chance event. All we can say is that, in
view of the a posteriori significance of the finding, and in view of the
fact that residual variation left unexplained by the finding is neither too
high nor too low to be ascribed to chance, it is a plausible hypothesis for

future study.

2.6. Conclusion

It has been shown that the serial, or one-year time-lagged, relation
is determined not only by familial forces but also selective and direct
causal forces. In the Arsenal Health District Survey of 1951-1952, the net
resultant of these forces was negative. That is, a significantly greater
proportion of households without first year health problems, as compared to
those with first year health problems, acquired new health problems in the
Second year.

But when households comparable on the basis of size, average age,

sex distribution, stratum, and type of interviewer were compared, the serial
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relation was found not to be significantly negative. Thus, the above
gpecified conditioning factors account for the significantly negative over-
all serial relation.

Variations in the serial relation among size, age and sex groups
was no more than would be expected of a set of randomly chosen relations.
Purthermore, a specific causal hypothesis with respect to variations among
these groups was not substantiated. Therefore, a cause and effect relationm,
as distinguished from associative familial and selective relations, was not
demonstrated. Nor was any association between the serial relation and house-
hold size, age or sex distribution demonstrated to exist in the Arsenal
District.

However, on an ‘a posteriori basis, it was found that all the predomi-
nantly female adult households (average age over 29) showed a positive
serial relation, while all but one of the remaining adult households showed
a negative serial relation. This latter finding is not a conclusion, but
rather -points to the future investigation of a new causal hypothesis: that
adult females, or adult households containing a majority of females, are
particularly susceptible to ill effects from the non-communicable health
problems of other household members,

This brings to an end the present study of the serial relation of
health problems in households. But there remains to be shown that the var-
ious measures in this illustrative analysis do have the statistical proper-
ties which have been applied to the analysis. This more abstract develop-

ment is taken up in subsequent sections.



3.0, TESTS OF ASSOCIATION IN A TWO-FACTOR CONTINGENCY TABLE

The two-factor (g 5 h) contingency table is considered in this
section. From generalized measures of association, we proceed to discuss
the partitioning of chi-square when one of the factors is quantified and the
further partitioning when both factors are quantified. Also, proceeding
from the general case of the (g x h) table, the particular cases of the
(g x 2) table and the (2 x 2) table are discussed in detail in order to
illustrate the meaning of the general approach in terms of these frequently

occurring situations.

3.1l. Definition of Symbols

The general two-factor contingency table is presented in Table 11.

Table 11

The (g x h) Contingency Table

Y
i 2 2 E | n
1
e e
So o e
I : :
n n n n
- gl g2 gh g
s e

Let the first factor, X, be considered arbitrarily as the independent factor,
and let the second factor, Y, be dependent on X. X is divided into g cate-

gories and Y into h categories, denoted by i and j, respectively. For a
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sample of size n from a universe, the frequency of observations in any
cell of the contingency table is denoted by nij' Marginal frequencies are
denotea by n. and n . for rows and columns, respectively.

If the n observations have been obtained randomly from a universe
in which no association exists between X and Y, the expected value of any
nij is

E(nij) = (ni n j)/n, where n, and n . are regarded as being

J
fixed. Due to sampling fluctuations, the nij will deviate from their expec-

ted values by

e (ni.n.,j)/n e

The quantity,
Zanijz/ (ni n J.), is distributed approximately as X2 with
(g - 1) x (h - 1) degrees of freedom (henceforth sometimes denoted as

2
X

- 1)y 2(n- 1)), provided the cell expectations are not too small.15

3.2. Association when Neither Factor is Quantified
Karl Pearson defined ¢2 =X2/n (using X2 to mean the computed

16

quantity) as the mean square contingency.” As a measure of divergence

from independence, Pearson proposed that C ='V¢2/(l + ¢2) be used.16 Sev-
eral other measures of association based on deviations from independence
have been proposed, but none seems to be a completely satisfactory estimate

of association in the population.l6 Even if a satisfactory estimate were

> 15 See Cochran, W. G., "Some methods for strengthening the common
X tests", Biometrics, V10, pp. 417-451; 1954, for a discussion of frequency
requirements in a contingency table for good approximations to chi-square.

= Kendall, M. G., "The Advanced Theory of Statistics", V1, ch. 13,
Charles Griffin and Co., Ltd., 4th ed., London, 1948.
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available, the meaning of such almeasure would not be very specific. For
departures from independence of the two factors can be of many kinds, and
such:measures which lump together all the departures from expectations fail
to discriminate among the various kinds of departure.

The catch-all nature of'X%g 2 l) x (h = l) was cause for the develop-
ment of methods by which it could be partitioned into more meaningful com-
ponent parts. Lancaster, in 1949, showed that'X%g ) can be
partitioned into (g - l) X (h - 1) different component chi-square values,
each with 1 degree of freedom. Each such value corresponds to a (2 x 2)
table, and each is asymptotically independent of the others as the sample
size becomes large.17 These component values could be combined to test for
specific relations within the contingency table.

Williams18 generalized Lancaster's methods to show a partitioning
ofX%g & 1)~X (ao1) into (h - 1) component parts, each of (g - 1) degrees
of freedom. The (h - 1) canonical correlations which can be determined from
the contingency table correspond to such a partitioning. More specifically,
if the (h - 1) canonical correlations are designated by Rk’ e, 2 e

then each anZ

Zanz =X%g - 1) 5 (h - l);

that is, the sum of the squared correlations equals ¢2, as was shown by Maung.

is anz with (g - 1) degrees of freedom, and

19

To each canonical correlation, there corresponds a unique set of scores for

L Lancaster, H, 0., "The derivation and partition of X2 in certain
discrete distributions", Biometrika, V36, pp. 117-129, 1949.

- Williams, E. J., "Use of scores for the analysis of association
in contingency tables", Biometrika, V39, pp. 274-289, 1952.

= Maung, K., "Measurement of association in a contingency table with
Special reference to the pigmentation of hair and eye colour of Scottish
school children", Annals of Eugenics, V11, pp. 189-223, 1941.
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the categories of X and of Y. The set of scores which corresponds to the
largest of the correlations, Rmax’ would be chosen in practice as the best
numérical values to place on the categories of the two factors. Unfortunately,
Williams provides the reader with no interpretation of such scores. We can
imagine, however, certain practical uses to which such scores might be put:
(1) if a priori numerical characters could be assigned to the
categories of the two factors, then these a priori scores might be compared
with the m.c. (meximum-correlation) scores; in this way, the & priori scores
could be evaluated as to their adequacy in describing a linear association;
(2) if data pertaining to the relation between two factors of
qualitative characﬁer were available for a wide variety of circumstances,
the m.c, scores developed from such data might be used to establish quanti-
fication of the factors with respect to their mutual relationship; thus, in
the future, the essentially qualitative factors might take on quantitative
aspects. But these considerations are beyond the scope of this presentation.
They are mentioned as possible subjects for investigation, because of their
fascinating implications as to the meaning of numbers applied to classes of

things, and because they are generalizations of the methods to be discussed.

3.3, Association when the Dependent Factor is Quantified

When each of the categories of the dependent factor, Y, is charac-
terized by a numerical quantity, y'j, then a set of scores, X, can be deter-
mined for the independent categories such that the squared product moment
correlation between X5 and y'j is a maximum. As will be shown, each of the
m.c. scores for X can be interpreted as the observed 'effect' of the inde-
pendent category on the dependent variable. Further, the squared correlation

times n is distributed asymptotically as;X2 with (g - 1) degrees of freedom,
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assuming no association between X and Y in the universe from which the
contingency table is derived.
| The method for determining the m.c. scores is developed as follows:
let P (y'j ~'§‘)/sy, , where y' and S, 8re the mean and
standard deviation, resp., of y'; thus, §7= 0 and sy = 1, 1. €y ¥ i8 scaled
to a zero mean and unit variance; a set of scores, X also scaled to a zero
mean and unit variance, is to be determined such that the squared correla-
tion, R?, between x4 and yj is a maximum; the correlation between X and yj
is, by definition,
R =ZZniniyj/n : (1)
then we may solve for X5 by maximizing the expression,
n2R2 = (Zzbijxiyj)z’ subject to the restrictions that
Z:ni,xi =0, and
2:1%i.x12 =n, i. e., that X, have zero mean and unit var-

iance; using LaGrange multipliers, we maximize the expression,

2 2
QZn‘inyj) - 2Ln; x; - LJny x,°
teking derivatives with respect fto the X and setting equal to zero,
2(22bijxiyj)(%;nijyj) -2Ln, -2Ln x, =0 ; (2)

sumning with respect to i,
ZCZZnijxiyj)(ZZbijyj) e 2Lézni,xi =0 ;
but,

ZZnijyj =Zn‘jy'j = 0, and

zzni.xi =050

2Lln = 0, and therefore Ll = 03
then (2) simplifies to

multiplying (3) by x, and summing with respect to i,
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2
CZZn .X.y.)(ZZniniyj) -LJn x.°=0 ;

Al nl el
that is,
n.2R2 - L2n =@ , So thab
2
L, = IR ; (4)

substituting (4) in (3), we have

e, 7. = e 0 solving for x

e e ? 0

x, = (l/R)(énijyj/ni.) =y,/R ; (5)
thus, the x; are proportional to the means of the dependent variable
within the respective categories of X.

It remains to determine the value of R (arbitrarily taken as always
being positive). Squaring both sides of (5) and multiplying by n, ,
2 2 ==
n; %" = (/R 3" s

sumning with respect to i,

2 7 2 - :
Zni.Xi = (1/R )Zni'yi , that is,
2 =2 2
R® = Zﬁi.yi /n= Syk : (6)

One cannot fail to note that equations (5) and (6) are equivalent to
those used in the analysis of varience. Since y = O, }i measures the devia-
tion of the average for the ith group from the grand average. This, in the
experimental setting, is termed the observed effect of the ith treatment.
Thus, the X of equation (5) are proportional to the 'effects' of the cate-
gories of X; they differ from the usual measure of effects only in scale.
Also, from equation (6), R2 is merely the observed variance of the means.

Consequently, as Williams states, an F test could be performed to
test for the significance of the association between the categories of X and
the values of Y.

Alternatively for large n, since nR2 is distributed as a chi-square

with (g - 1) degrees of freedom, a chi-square test of association is appro-
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priate. For future purposes, the-)(2 test will be adopted because it is

simpler to perform.

3.4. Association when Quantities are Assigned to Both Factors

In accord with Williams' demonstration of the partitioning ofxzz
the}X%g = of the previous sub-section, determined when Y is quantified,
can be partitioned into parts. In particular, if an arbitrary set of scores
be assigned to the categories of X, then n times the squared correlation

between the X scores and the Y scores corresponds to aJXZ with one degree

of freedom,

3.5. Particular Case: Association when the
Dependent Factor is a Dichotomy
In the particular case of a (g x 2) contingency table, the overall
chi-square has (g 1) x (h - l) = (g = 1) degrees of freedom. PFurther,
there are (h - 1) = 1 canonical correlations with (g — 1) degrees of free-
dom. As in the general case, if any arbitrary pair of different numbers
is assigned to the two categories of Y, then the maximum squared corréla—
tion between x; and yj corresponds to a.X2 with (g - 1) degrees of freedom.
Thus the overall.X2, n times the squared canonical correlation, and n times
the squared maximum correlation with the assigned yj quantities are all
identical. In other words, there is no loss in generality if the analysis
is performed by assigning arbitrary numbers to the dependent dichotomy.
Bquations (5) and (6), sub-section 3.3, give the values for X and
for RZ, as follows:
Xy =.§i/R
R® =Zni.§i2/n = sy.z :

S
However, when dealing with a dependent dichotomy, one customarily expresses
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relations in terms of rates, or proportions. Therefore, with reference to

the (g x 2) contingency table below, the usual symbols for proportions will

be defined, and equations for X, and R2 will be re-stated in terms of pro-

portions.

Table 12

The (g 54 2) Contingency Table

Y
i gl . ni.
L L
- 2 P e,
€ ngl ng2 ng.
R R

Let the first class of Y be the condition of not having a stated

quality and the second class as having the stated quality, such as death,
having a disease, etc. Let p = n.2/n be the proportion of all sampled
elements which have the quality. And let P = niZ/ni. be the proportion
observed to have the quality in category i of X. Similarly, q and q; are
the proportions not having the quality, so that

P+q=1, and

Dota = 1 for ell 3.

Let values of e and I5 be chosen such that the mean of NEY and 5

is zero and their variance is unity. That is,

Badbn B -
n 2+ 1al 2 =T
Y. ErE

Solving the above for y, end y,,

+ ’
yl S n.z/n'l = i p/q’ and
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7 Vn.l/n.z =—1,4p .

We arbitrarily associate a negative value with the condition of not having

the quality and a positive value with having the quality, hence,

= - +/o/a

yl =
¥, = +4/d/p .
=1o%s ¥; = (ngyy + mphp)/my | = 2y, + 49

substituting (1

pi> for q, and simplifying, we get
y; = (p; - D)AT ; then,
x, = (Pi - p)/Rfbq . (7)

That is to say, the effect, X5 is proportional to the deviation of the ith

category proportion from the overall proportion. Again, except for scale,
X is identical to the usual concept of an effect: the amount by which the
proportion having a specified quality in a sub-class deviates from the
corresponding pooled proportion for all the classes.

By direct substitution,

2 =0 2 2
R*=)n 5 /o= (/oa)n (o, =2l /a5 /oa (8)
L ° ° pi
is proportional to the variance in the observed proportions.

It is also noted that, since)(%g 0 = nR2, R2 = ¢2, the mean
square contingency for the (g x 2) table. Consequently, for a (g x 2)
table, the mean square contingency is clearly interpreted as being propor-
tional to the variance in the observed proportions. It is of further
interest to note that the proportionality factor, l/pq, puts the variance
of observed proportions in relation to the expected level of variation on
the basis of chance alone. Thus, th.e'X2 test of nR2 is a test of whether

the variance in observed proportions is significantly greater than would be -

expected on the null hypothesis.
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3.6. Particular Case: Association in the (2 x 2) Table; Illustration
For the (2 x 2) table, nR° ='X%g - 1) ==Xi . But n times the
squared product moment correlation is also Xi ; consequently, R is identical
to the product moment correlation in the (2 x 2) table. Also, we have from

equation (8),
e (l/pqxzpi.(pi = p)2 3 in a (2 x 2) table,
p=(n p; +n,0D,)/n; thus,
p,-P=p - +tnplmn=n (p -0)m;

Similarly,

]

p2—p

n, (p, - py)/n .
Then,

o8 = /5t 5, 223, - 2,02 + oy my 2P)my - 2.
etitingpl = nzd/n and gl = nl./n, the above expression reduces to
0B = n(p2 = pl)z(p‘q'/pq) , which in turn equals Xi or (9)
22, the square of a standard normal deviate.

Thus, the z test of a difference between two proportions, the test
for significance of XZ, and the X2 test of the significance of the product
moment correlation are all equivalent for the (2 x 2) table.

Dividing (9) by n and taking the square root, we get

R =(p, - p; Wp'a'/pq . (10)
This is the measure of relation which was adopted and interpreted in 2.32.
Since nR2 is the square of a normal deviate with unit variance, JnR is a
normal deviate with unit variance, and R, the adopted measure of simple
relation in section 2, is a normal deviate with variance equal to l/n.
These statistical properties of R, when n is large, were used in 2.32 to

test the significance of the observed relation computed from Table 5.
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Some of the identities developed above can be illustrated by use
~of the (2 x 2) table presented in section 2.32, Table 5. This is the four-
fold classification of households according to household health status at

first and second interview (see Table 5 for full description):

ai |t 2

600 882 | 1482
221 3391 = 660
Sel 2o 2142

To compute Xi according to definition ( see 3.1), we take
Xf = Zzpdijz/ni.n - 2142(57.22)/(921) (1482) + 2142(37.2%)/(1221)(1482)

+ 2142(37.2%)/(921) (660) + 2142(37.2%)/(1221)(660)

12.56 .

Then to compute R2,

B = ¥ Jn = 15560000 - 007 , &ad Fimally,
R = -.076 (negative sign teken arbitrarily in view of the
subject matter of Table 5) .
There are numerous alternative ways to calculate the above measures,

such as:

Xi = 2142(600°339 - 321'882)2/ 921°1221°1482°660 = 12.38,
which agrees with the first method, except for rounding.
Another alternative is to assign arbitrary scores of O and 1 to the cate-
gories of i and of j, as follows,
0 i
0 | 600 882 | 1482

32l 35901 660 :
921 1221 | 2142 y

and compute the correlation between the two sets of scores. This computation
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is the product moment correlation and reduces to,

R = (339°2142 - 660°1221)///921°1221°1482°660 = -.076, as above.
From this result,'X2 can be determined, of course, by
e 12.38, also as found above.

Or, again, R can be computed directly from the identity, (10), which

diss

R=(p, - pyb'a'/pa = (o, - pl)%;l.nz./n.ln.2
(514 = .596)'/(1482/921)(660/1221) = (.514 - .596)y1.61".541

-.082(.933) = -.077, which again agrees with prior computed

I

I

results, except for rounding.

This (2 x 2) table can also be used to illustrate identity (6),

R2 = Sf 2, which says that the variance of means is equal to the squared

il
product moment correlation. First we find Y1 and ¥t

~fo/a = =Yn ,/n A221/921 = -1.15;

¥y = =

v, = 1/1/—1): -/n.l/n.2 = 7921/1221 = .87 .
Then,

51 = (600(-1.15) + 882(.87))/1482 = ,0520 , and

¥, = (321(-1.15) + 339(.87))/660 = -.1121 .
Note that the mean of '5?1 and 3?2 is

(1482(.0520) + 660(-.1121))/2142 =0
Therefore the variance of'§i and'§é is:

(1482(.0520)° + 660(=.1121)%)/2142 = .00574 .

Teking R = -.076, as computed before, and squaring, we get R2 = 0058y

which agrees with the variance of 5}, above, except for rounding.
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3.7« Summary
If the dependent classification can be characterized by a set of
quantities, yj, J=1, ...y h, with zero mean and unit variance, then a
set of scores for the categories of the independent factor may be deter-

mined by means of the formula,

x; = §Q/R, 3=l e se ol e x, are the scores for the
independent categories, 5; are the mean values of the dependent variable
for corresponding categories of the independent variable, and R is the
product moment correlation between the X and the yj.

These scores are such that R2 is a maximum. The term, nRZ, is
distributed as a'X? with (b - 1) degrees of freedom when no association
exists in the population from which the observations are assumed to be
derived,

If a set of arbitrary scores is assigned to the independent cate-
gories and the product moment correlation, r, between these scores and the
dependent variable is compared, the nr2 is distributed as'X2 with one degree
of freedom.

In the particular case of a dependent dichotomy, quantities can
always be applied to the two dependent classes with no loss of generality.

The scores, X:s being proportionalkto the deviations of the respec-
tive class averages from the grand mean of the dependent variable, are analo-
gous to 'effects' in experiments., Finally, the variance of these 'effects'
is equalito R2, éo that R, as a measure of relation, increases with increas-
ing observed differences of tﬂe dependent variable among the classes of the
independent variable.

For dependent dichotomies, these results may be expressed in terms

of rates, and in these terms, R2 reduces to familiar expressions closely
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related to those often used for testing differences in rates and for
measuring degree of association.
In the following sections, these results will be extended to a

contingency table having multiple independent factors.



4.0. PARTIAL ASSOCIATION

Tests of association in a (g x h) contingency table, as discussed
in section 3, apply to the single relation, termed the simple association,
which exists between two factors, X and Y, in the sampled population. Par-
tial association, on the other hand, refers to the simple association
between two factors in various sub-classes of the population. Thus, the
term, partial association, implies that there are more than two factors
involved: two factors between which some simple relation exists in each sub-
class, and one or more other factors used as the basis for sub-classifica-
tion. Examples of partial association are innumerable: the relation of
sex to incidence of death within specified age groups; the relation of
type of housing to communicable disease incidence, within specified income
groups; the incidence of yellow fever, by geographic location, within classes
defined by calendar time; the occurrence of automobile accidents, by time
of day, within classes defined by type of road, weather conditions, and
calendar time; the occurrence of heart deaths by history of salt intake,
within classes defined by age, race, sex, weight, and within classes of
dietary factors other than salt; and so on. Invariably, the study of a
simple association in a population is a prelude to partial association, and
partial association with respect to one set of classes leads to partial
association with respect to other sets of classes; for the mind wants to
know why a relation between two variables exists, and there is no explana-

tion except in terms of other factors.

4.,1. Definition of Symbols for the Multiple Factor Contingency Table
In order to cope with the additional factors of classification

inherent in the study of partial association, additional symbols are required.

70



Table 13

The (g x h) Contingency Table,

Where.g =axb __x ¢

i

Factor

Vl

W

ndex

ll

il 72l

o VO

°s ew se

#s e» 60 s o o

s 88 o8 68 o8 @ es ee S¥
ss

=L a iy

(2]

nab_c:l nab_cZ

nab_ch

1 $ 5 ‘s :

= el Tlich| 11 6.

il G 0 8 5 : =3

1 3 : 3 7

b! : ¢ & 3 3

‘ c : 2 “ G

1 5 sl o s “

1 : : s ( 1J s :

, c 3 s nkl__}nj : :

b : : : : 1n each s s

I : : corresponding: :

bt | : : cell) : :

e : C 3 :

i > s ) 3

3l s : < 5 s

e : : 3 :

1 s : H s : :

iE 5 : 3 :

b! g 4 : : 3

c : : : :

i s s : {

1 : 2 5 : :

c 3 : 0 s

b 3 : s $ :
il By By 0o I e

bt $ . & : :

n n
* ._—.l L 0_‘2

ee oo

n

. '..-.h




72

Therefore, the general multiple independent factor contingency table is
?resented in Table 13. Despite its clumsy appearance, if the factors,

U, V, _, V', and W are ignored, Table 13 is identical to Table 11, section
3, being a (g 5 h) contingency table. However, factor X is now considered
to be a complex of the multiple factors, U, V, _, V', and W. Factor U is
composed of categories k =1, ..., a; similarly for V, 1 =1, ..., b; for
V', 1' =1, evey b', and for Wy m = 1, ..., ¢. Within each category of

U, there is a full set of the categories of V, and so on up to the second-
last factor, V', within each category of which there is a full set of the
categories of W. Thus, in all, there are g = a x b _ x ¢ categories of
the independent factors. For each of these categories, there are h cate-
gories of Y, for a total of axb _x ¢ x h cells in which frequencies
may fall, The frequency within each cell, previously identified as nij’
is now identified as nkljﬂj' The dot notation, which was previously

applied to indicate a marginal total, continues to apply. Thus, for example,

is the total frequency in the 1 mj marginal cell, n ietche

n.lij
total frequency in the jth category of Y, and D m, is the total frequency
in the k1l m category of the ihdependent factors. Finally, n denotes the
size of the sample.

The multiple factor table is more easily visualized if a particular
example is taken. Table 14 is a particular case for which there are three
independent factors, taken from the subject-matter of section 2: stratum,
interviewer group, and household health problem status at lst interview.
These are denoted by U, V and W, respectively. The dependent factor, Y,
is the health problem status of households at second interview. There are
three strata; thus, a = 3. Similarly, b=2, ¢ =2, and h = 2. . The faector,

X, is the composite of stratum-interviewer group-lst interview health status,
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Table 14

Household Health Status at 2nd Interview

in a Sample of the Arsenal Health District of Pittsburgh, Pa.,
1951-1952, by Stratum, Interviewer Group
and Health Problem Status at lst Interview

@ L W (v) )
(1) | stratum | Inter- ! Health Health Status, Total
(k) viewer 1 Status 2nd Interview [Households
Group i 1= Ens, i
(1) f (m) 1 2
(1) {(1) No H.P. |n n
: (1) 4B 2(2) - n}lll 2}112 1]
o - _ E( : e 1121 1122 L
= 1) No H.P. | n n n
. &) o - n1211 191 1oL,
‘ - s o
(5) (1) 55 (1) No E.P. el i o
(6) bo) n.p. n n n,
- - s ool o .
i 6 HEL n n
- Cla . 2?211 n2212 ng21.
s 2001 5200 o,
((9; L. El; No H.P. i1 110 o
10 2) H.P. n,
11 122 1.
(11) . (1) No H.P 23 -~ -
o = B2010 =
(12) ‘(2) ik Lo B2000 £
(n .) Total Households n n n
e o .J ¢ e ll .002

and has g = 3 x 2 x 2 = 12 categories. The nklmj indicate the particular
frequencies which fall in the corresponding cells, and marginal frequencies

are denoted by the dot notation.

4.2, Failure of"X2 to be Closely Approximated when g is Large
For a given sample size, n, if g becomes large relative to n, then
the X2 approximations discussed in section 3 become very poor. Suppose, as
an extreme example, that g = n, and that at least one observation falls in

each category of X. Then only one observation falls in each of the g
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categories of X, since g = n. It will be found that the maximized squared
correlation between x; and Y5 is R2 = 1. If the formula,

7(%g ca = nR? , were applied, then

X%n ) no
Thus, the computed X? would be equal to n, with (n - 1) 'degrees of freedom'.
But the expected value ofX2 with (n - 1) degrees of freedom is (m = 1.
Consequently, the difference between the computed X? and the expected value
would be negligible, and no matter how large n might be, the computed XZ
could never be judged 'significant'. As a less extreme example, suppose that

n =40 and g = 30. The largest poésible value of the computed X2 (for

quantified categories of Y, or for Y as a dichotomy) is achieved when R2 =y

that is,

X2 = nR2 —=n = 40,
The 5% significance level of;Xz with (g -1) =29 degrees of freedom is
42.6. Thus a true)(2 exceeds this value 5% of the time. But the computed
X~ can never exceed 40. (onsequently, no matter how great an association
exists in a population, a sample of size 40, with 30 categories of X could
never show significance by this 'test',

As a traditional rule of thumb, it is often stated that X2 is suf-
ficiently well approximated when no expected frequency in the table is less
than 5. Cochran?O liberalizes this requirement, allowing a few of the expec-
tations to be as low as 1. But by either set of rules, the sample size must
be considerably greater than the number of categories.

Now in reference to Table 13, if there are either a large number of

independent factors, or a large number of categories within the independent

2
U Ope Cibis P Ble
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factors, or both, g = a x b _ x ¢ is very large relative to the sample

size, and the use of the XZ approximations developed in section 3 are
invalid unless they are revised. In the remainder of this section, the
principle of m.c. scores will be applied to obtain a revised set of solu-
tions for scores applicable to the multiple factor table. The scores
appropriate to each factor will be interpreted as observed partial effects.
In section 5, to follow, aX2 test for the significance of these partial
éffects will be proposed, and this proposition will be evaluated on the basis

of empirical sampling distributions of the measures of partial association.

4.3. A Restriction on x;

In section 3.3, the scores, X, were free to vary, subject to the
restriction that their mean value be zero. Now let us specify an additional
restriction: that the X be the sum of scores for the categories of U, V,
_, and W, where the mean value of these latter scores is zero for each of
the factors, U, V, _, W; in symbols,

X, =0 F V. S, where
W V9o s and W, are scores placed on the categories of
U, Vv, , and W, resp., and where
an Lo =Zn.l A __=Zn w_ =0 , and where

oo M. H

each value of i corresponds, as in Table 13, to a particular set of values
for k1 m,

Since the mean value of the scores for each factor is zero, the mean value
of X5 remains zero. Also, let the variance of x; be unity, as in section 3.
Thus, if we know the (a) values of Uy the (b) values of vy and so on to the

(c) values of W then the g = a x b _ x ¢ values of x, are determined.
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In a manner which is completely analogous to that is section DS,
the derivation of scores, X;y OT rather W Vl’ ., and W for which the
squared correlation between X, and yj is a maximum is presented in the fol-
lowing sub-section, after which it will be shown that such scores may be

interpreted as 'partial effects'.

4.4. Derivation of M.C. Scores for the Multiple Factors
As in section 3.3, each of the categories of the dependent factor,
Y, is characterized by a numerical quantity, y'j. The scale and level of

y'j are standardized by means of the transformation,

7 (y'j ~'§7)/sy, , where y' and Sy. are the mean and stan-

dard deviation, resp;, of y'j, such that the mean of yj is zero and the

variance is one.

A set of scores, E m oV W, is to be determined such that
the squared correlation between X, and yj is a maximum. The correlation

between X5 and yj is, by definition,

R' =2n xy./n=_ o m,j(uk + W, + wm)yj/n ;

aj td 1 4d iel omg e
then we may solve for W U W (which determine the Xi) by maximizing
the expression,
WER1C = 2 1 mj(uk v Wm)yj)2 , subject to the
ki o s
restrictions that

an._..“k = Zn.l__..vl = s 5, -0, e

‘._m‘ m

2 2
nox.- =) o 2w +w )
LS e ke n

all component factors have zero mean, and that the sum of component scores

Il

N, i, e., UiaL

have unit variance; using La Grange multipliers, we maeximize the expression,
2
(%1 mjnkl_mj(uk o A - ZLlan._..uk -2Ln v

2 :
== ZLon..__me - Lf.,_ll%_ mnkl_mﬂuk = ) )
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taking derivatives with respect to U, and setting equal to zero,

2(mR') 2 Ty Tl Sl il 2Lf+l§mnkl_m.(uk G ) =03

1 mj i
summing with respect to k,

1 o — —
2(R' ) mg 5 - 20k 2Lf+lé mnkl__m.(uk oy N

el )
but,
%{lm By Zi:,jnia'ya' =
Z S, O+ Tyt %) =28, m +Tn e

+2:n“ o 0, so

anl = O and therefore Ll = 0 ; in precisely the same manner, differentiating

(ll) with respect to Vs setting equal to zero, and summing with respect to 1,

we find L2 = 0; similarly for all factors up to W, for which Lf = @ sthen

(12) simplifies to
(R >an =i f+lz— nld_m.(uk+vl—+wm)=o (4)
and similarly, the derivatives Wlth respect to V¥ simplify to

<nR')Zjn.1_.jyj = Lf+ll% mnld_m.(uk iy o) =0 (3) ) (D)

3 ° e

(nl.{')Z_n y.-1L Z_ : . =
FIRE. f+l]d_nkl_m.(uk +v, _+wW)=0 (F)

5
now multiplying (13)(4) by (uk e wm*), where the starred subscript
distinguishes a particular value of the subscript, and similarly, multi-
plying (B) by (uk* iy Wm*), and so on to (13)(F), which is multi-
plied by (uk* EFy W ), we get

(nR')an. - J(uk T m* Lf+lz- (uk v
J 1m
+ Wm)( ., wm*) ,(A)(14)
and similar terms for (14) (B) through (F),

summing (14)(A) over k, 1%, _, m*,

(nR')) v.(u_ +v +w ) -
kl*__m*jnk' T :z - Y
L Z TR A o Ae C e

BT 1w n Sl m e
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and simplifying, we get

(m')(b)—(c)éjnk.__.jukyj - Lf+l(b)_(c)i§i mnkl_m(ukz WV ukwm)
= =0 ; (o)
letting Q = (a)(b)_(c), @/a then equals (b) (c), so (15)(A) becomes

(nR‘Q/a}Znnk. .jukyj —(Lf+lQ/a)2; nkl m.(uk2 ey ukwm) =9
o b (4)(16)

similarly for (B), _, (F);

multiplying (16)(A) by a, (16)(B) by b, and so on to (16)(F), which is

multiplied by c, then summing all these equations, we get
nrR'Q() uy.+) n Yoy 4. 20 Wy.)
kjnk._,gukyJ 1j ARG T oo W m j

2
. = Lf+l% mnkl_m.(uk £y s w0
but the first term is =
nR'Q(nR'), by definition, and the second term is
Lf+1Qn’ by definition, so
2. 2
ER -4, 0 -0
that is,
4 2
— 1
Lf+l =

Substituting this value of L in (13), we have

f+1
VL nR'Z% o
i = =

and similar expressions for (B) through (7); consequently, omitting dot and
dash notations on the subscripts (these being understood),
- = '
Y +2%nklvl . +4;nkmwm —Agnkjyj/R
= 1]
Zk no® 10 W ko Zmnlmwm -Zjnl jyj/R
= !
ey +2mam + _# gy =L /R

finally, letting

lznklvl/nk ='—£ ;anjyj/nk =.§L ; and so forth, we have,
1 J
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]

U bW e W yk/R'
I& L ...-+;%_ EE/R'
. (17)

;7- +0'. -_-’— !
£V + o ym/R

E;:[. .

Equations (17) are (a + b + ... + c¢) simultaneous linear equations
in the unknowns, Uy Vs ecey Wy and, together with the restriction that
the mean values of Uy Ty ooy W each be zero, can be solved. As a
practical method of solution, each equation may be multiplied through by

R'; then the equations,

!
< |

Bu tR'v + ... tB'w
a a a a
I_ ] l— =2 =
R Uy F R Vi +oeee R W= 3

. e ® . .

R'uc + R'vc + eee + R'wc = v

are replaced, respectively, by

Z;Fkuk =0 ; 2%nlvl =03 .. j3/nW =0 ;
the system is then solved for R'u , R'vi, and so on to R'wm . Pinally;
R'2 is found by computing the variance of R'xi = R'uk + R'v1 £ i R'wm ’

for,

Ver(R'z;) = R'*Var x, = R'®, since Var x, is unity. Taking
the positive square root of R'2 and dividing this into R'uk, and so on,
the values of Uy Yoy seey and W oare determined. These are the m.c.

scores for the U, V, ..., W component factors.

4.5, Interpretation of the M.C. Scores
In the simplest case, there would be but one component of X, say W.
Then X =W, i =m, and g = ¢, and since W, and x, are both defined as the

Scores which maximize the squared correlation, T =W But the x; are
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interpreted as the effects of factor X; so the W oare also interpreted as
the effects of W.

However, the interpretation of Wes Vs eesy and wooas effects is
not quite so obvious in the general case. In order to arrive at such an
interpretation, consider the following (c x h) table, which is derived as
a marginal table from Table 13:

Table 15
Marginal Contingency Table

(Factors W and Y)

Y
e i 2 o e h | n
e T
et o B e D o B
= s s e
|
|
e e

The tabled frequencies are summations over k, 1, , 1' . Now, since
Table 15 is a (¢ x h) contingency table, the technique of section 3 could
be applied to test the simple association between W and Y. In particular,
the simple observed effects of W would be given by

w'oo= ;;/Rf , by formula (5), where w' has mean zero and
unit variance, and where Rf is the correlation between w'm and yj.

However, we know that the value of ;; may be affected not only by
the mth category of W, but also by the factors, U, V, _, V'. OSuppose, for
example, that the effects of the categories of U alone are the known values,
u*k. Then we may compute the net effect of factor U on'§£ as follows:

(when the meaning is clear without use of dot and dash notation on the
g
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subscripts, they are omitted)

for k = 1, the effect of U is u*l; this effect applies to
ny elements in the sample; for k = 2, the effect of U is u*2 and
applies to n, elements; then the effect of U on the combined cells,

o o cand 20 TS

(o, w5 +n, we)/(n,  +m, ), that is, a weighted

e o

average of the two effects; similarly, the effect of U on all cells com-

bined is

Lot /a ;
but, by scale requirements,

Af.nku*k = 0, so the net effect of all categories of U on the

whole sample is

7 nku*k/n =0 ; (18)
equation (18) may be written,

7 nku*k/n =%knmku*k/n =Z(nm/n)é(nmku*k/nm) =0 ;
butZﬁhmy%k/nm is merely the Weightedmaverage of the effects of U on the
mth iategory of W; in the same way as argued above, this is the net effect
of all categories of U on the mth category of W, and may be denoted G?m; simi-
larly, S%m =%n.mlv*l/nm is the net effect of V on the mth category of W; and
S0 on. Now in the mth category of W, assuming no interaction of effects
and no random effects on the dependent variable, the total observed effect,
§$/Rf’ must be the sum of the effects of each of the factors in the mth
category of W; in symbols, that is

;%m +'E¥m e bt Eg/Rf H

by the same argument, we could write,
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- e
u I + v*k + eee + w*k

Il

/Ry

5 - =
W r v*l + eee F w*l = yl/R2

— A =

uk o wk o ym/Rf :

multiplying, appropriately, by R,, or R2, .eey Or R, and dividing each

expression by R', we get

B £ W b o n Wy et

U o+ Vel + W yl/R‘

° . . .

=, o E ]
W R ym/R

Il

where U = Rlu*k/R', and so on; but this last system of equations is identi-

cal to (17), sub-section 4.4, where Uy Vs ey and w_ are the m.c. scores.
Thus the m.c. scores differ from the defined partial effects only in scale,

the proportionality factor being Rl/R' for the U RZ/R' for the v., and

l’
so on to Rf/R' for the W We may therefore refer to the m.c. scores of

equations (17) as the observed partial effects of the factors.
4.6. Equivalence of M.C. Scores with Least-Squares Estimates of Effects

An additive effects model may be set up and the 'normal' equations
for estimating effects may be developed on the principle of least-squares,
as is usually done for the analysis of variance in experiments.

Let,

= * e o * .
yj ut o+ v*l + . o ekljna -

where yj is a numerical value with mean zero,
u*k, v*l, ooy and w*m are the estimated effects,

and e . is the difference between y. and the sum of
k1l mj J
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the estimated effects for given levels of k, 1, ..., m and j.
By the principle of least-squares, the estimated effects are found by
minimizing the variance of e

o that is, by minimizing

2 2
e . = . *-"‘ * b TR T i A .
ﬁELijnkl-mJ( kﬂ;§g> éi_mjnkl_mg(y joe e 2 m)

Taking derivatives with respect to ufk, and setting equal to zero,

=) ‘nkl__mj(y*j ~mh = vh - o) =0

this simplifies to, (omitting dot and dash notation on subscripts)
n,u*, +Zlnklv*l .. +Zmnkmw*m =Z}nkjy*j , which in turn can
be expressed as

. = =
uk+v*k+...+w*k—y

feoe?
- - —.* ey —_
similarly, w =+ v*l + ese + w*1 =¥ =
i e ='§
m m m m s

Equations (19), together with the arbitrary scale requirement
that the grand mean of each set of effects be zero, have unique solutions
for u*k, v*l, eesy and W*m.

Dividing equations (19) by R', we again get

U + ;L T+ ees + ;L = §L/R'
%ﬁ4ﬁ+.“+§ =imﬂ

1L

° . . ° °

. ° . e

.‘-1- v se =— J
ok + W ym/R ’

where W = u*k/R', etc., and this system of equations is identical to 7).

Thus, the least squares solutions differ from m.c. scores only by

the factor, R'. Again, as in the simple case in section 3, it is seen that

the equations for finding m.c. scores are equivalent to those used in the
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analysis of veriance for finding observed 'effects'.

4.7. The Relation of R' to Variation Among the Dependent Means
In section 3, it was shown that R, defined as the correlation
between m.c. scores, X5 and the dependent values, yj, was equal to the
standard deviation of the observed means of y (see equation 6). An analo-
gous relation is found to exist in the multi-factor case now under discussion,

because: from equations (17), we may write
1 _—_ 1— 5 Ok %
R U= R (vk + eee + Wk) , and similar expressions for
R'vl through R'Wm; the right-hand side of the relation is equal to the
observed mean of y, less a set of corrections for the net effects of v, ...,

w; therefore, we define

= e ERSTOE SR 2 T
ykadj =% R <;k + eoe + Wk) as the adjusted value of V5

thus,

™ ;Rl 55 .

. . ] __ .
= dedy 1 ed Y = Ypagy ?

now, the variance of the sum of partial scores has been specified to be

W
k

unity (section 4.4); that is,

>
. =1

/l/n) L
\ él_mnkl_m.(uk = o

substituting'§; ./R' for u_, and similarly for the other scores,

kadj
; 2 - = 2
(1/n2" )Lz el m.(gkadj - yladj e ymadj) L
ko
that is,
2 s s —
! = o e . . 20
= Var(ykadj t Va5 * * ymadg) (20)

Thus, it is found that R' is equal to the standard deviation of the sum of

adjusted means.
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4.8. Particular Case: Partial Association when the Dependent
Factor is a Dichotomy
In the particular case of a dependent dichotomy, that is, j = 1,2,

equations (17) of course are equally applicable as for three or more

dependent categories. As in section 3, we may express the equations in

the more familiar terms of proportions.

As before,

¥ = -167; » and Vo= y@/p y Where p = n .Z/n and p + q = 1.

Since

Te o gm =B o m Bl e
T = '(nk._ )Vg/;+ e = ’/‘/—p :

Denoting P =10y 2/nk as the observed proportion of elements in the

second category of Y, for the kth category of U, we have

= n /o - (1 - p)yo/a

Simplifying, we get

§£ = (pk - p)//g_ s thatia S8 EL is proportional to the deviation
of Py from the overall p in the sample; and since p and q are constant for
the sample, P, corresponds to ;L. Therefore, for the case of a dependent
dichotonmy, §Ladj may be expressed as

B e ; - p)/fy/pq -

Then equations (17) become

= (p 45 = P)/¥Pa

vy = (pygq; = P/ (21)
W= (o - )/1/_

Knowing p and q from the sample, and having solved for the partial

effects of, say, factor W, it would then be a simple matter for one to express
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the observed results in terms of adjusted proportions by the following

relations:

pmadj

=p+w //oqg . (22)
If, for example, factor U were stratum, V were interviewer group,

W were 1lst interview health status, and Y denoted 2nd interview health

status, as in Table 14, the pmadj would be the stratum-interviewer adjusted

proportion of households with 2nd year health problems for the two groups

of households under factor W. For purposes of presentation, it would

also be possible to construct sn adjusted 'contingency' table to show the

observed partial relation between lst and 2nd year health problems. (See

sub-section 2.42, Table 8, for an illustration of this.)

4.9, Summary
If the dependent classification can be characterized by a set of
quantities, yj, =1, «e¢y q, with zero mean and unit variance, then a
set of scores for the categories of each independent factor may be deter-

mined by means of the formulae,
U = §£adj/R' sode= b o2

4 =§ladj/R' et |

. °

Wm::ymadj/R' s m=l, esey C H
where u , Vyy eeey W oaTe scores for the independent
factors, U, ¥, wieiill, resp.
= - = o >
where ykadj = 0 R (vk + oaee + wk), and similar expres
Siens imssubseripEs i ms

and where R' is the product moment correlation between yj

and the sum of Ups V9o eeey Woe
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These scores are such that R'2 is a maximum. They are analogous to
least-squares effects which would be determined in non-orthogonal experiments.
These scores are termed 'partial effects', because each set of scores for

a given factor is derived after adjusting for the influence attributed to

the remaining factors. Finally, the variance of the sum of 'partial effects'
is equal to R'Z‘

For dependent dichotomies, these results may be expressed in terms
of rates. Adjusted 'contingency' tables also may be constructed to illus-
trate the observed partial association between any given factor and the
dependent factor,

In this section, any reference to properties of the observed
measures as estimators has been studiously avoided. This is because there
are severdl aspects of the partial association problem which do not match
that of simple assooiatién. These aspects will be discussed in the follow-
ing section. A X? test of paftial association will then be proposed, and

this proposal will be evaluated on the basis of empirical sampling distri-

butions.



5.0. SAMPLING DISTRIBUTIONS OF MEASURES OF PARTIAL ASSOCIATION;

ESTIMATOR PROPERTIES

The observed simple association in a (g x h) contingency table .
is given by R, the maximized correlation. When no association exists in
the universe from which the sample has been obtained, nR2 is distributed
asymptotically as X2 with (g - 1) degrees of freedom, as n becomea large.
Further, if an arbitrary set of values is assigned to the categories of
X, the correlation between these values and the'dependent variable has a
normal distribution, asymptotically as n becomes large, when there is no
association in the universe. (See section 3.) The approach to a X? or
normel distribution, as the case may be, is rapid enoﬁgh so that, when
most cell expectations are 5 or more, the theoretical distributions may
be used for all practical purposes. But it should be emphasized that this
rule applies to samples from a universe in which no association is present.
When association is present to an appreciable degree, then the sample size
may need to be considerably larger before the theoretical distributions
become close approximations to correct sampling distributions.Zl In general,
then, valid confidence statements based on the asymptotically approached
distributions require larger samples than do valid tests of the null hypo-
thesis,

In the case of partial association, it may be desired either to test
a null hypothesis or to make a confidence statement for the partial associa-
tion of, say, factor W with factor Y. When a test of the null hypothesis
is made, it is pointless to assume no universe association for factors U,

Vy, <., V', as well as for W, because one of the fundamental reasons for

= Op. cit., p. 57.



89

studying partial association is to adjust for the supposed influence of the
extraneous factors. Rather, the null hypothesis must be of the form: there
is no association of W with Y in the universe, but U, V, ..., V' may be
associated with Y. Similarly, when confidence statements are made for the
influence of W, not only U, V, ..., V!, but also W may be associated with
Y in the population. Therefore, an association, usually of appreciable
magnitude, almost always is present in the universe.

Clearly, one face of the general problem posed by the existence of
universe association is to determine some rule for minimal sample sizes.
But even if one were successful in determining such a rule, it might be of
limited value if, by that rule, inordinately large samples were required.
Consequently, there remains thé more general task of determining the bias
and error variance and distributional form of partial association measures
developed from samples of given sizes, as related to universes of varied
types. Completely general answers to these problems will not be coming
forth here; but, by the selection of prototypic populations and by the
generation of empirical sampling distributions from them, some insight is
gained,

Before presenting the empirical results, it is necessary to adopt
a means of characterizing different universes and to define explicitly what
is meant by a given level of association in the universe. Also, an outline
of the procedures used for selecting samples and for generating empirical
distributions on the IBM 650 digital computer will be given. Following

this, the empirical results will be presented and discussed.
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%.1l. Universe Description; Universe Parameters

The schema presented in sections 3 and 4 is readily adapted to the
specification of the universe and to the definition of universe parameters,
For the universe, the cell entries of Table 13 become Pij = Pkl_mj’ in place
6f nij = nkl_mj’ where Pkl_mj is the proportion of universe elements in any
given cell, such thatzéi .Pkl ni = 1. Marginal universe relative frequen—
cies are denoted by dot Eiiation corresponding in every respect to the nota-
tion employed in section 4 for sample frequencies,

Considering the universe first as a (g x h) contingency table, we
then define the squared total universe relation between the composite inde-
pendent factor and the dependent factor as

_R_2=var:£i. (23)
The underscore notation above and in what follows denotes universe measures,
in contrast to sample measures for which no underscores are made.

Now considering the universe as an (a Tihx o, el h) contingency
table, we define the additive partial 'effects' of the various factors by
the equations:

1_1k+zk+ o..+§k=—1k/g'

E = o
W +¥) +eee+¥ =7 /R

or more simply,

W= Foa/R )

Yy =Laqy/R (24)
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completely analogous to equations (17), section 4.4.
The squared total relation due to additive effects is given by
§f2 = var(i%adj +'Eiadj e +'E;adj) , Wwhich is the (25)
expression analogous to (20), section 4.7.
Also, we may now define the squared amount of relation not due to
additive effects, i. e. the squared total interaction in the universe, as

the difference between B? and 332:

I =R 3" ¢ (26)
The simple, i. e. unadjusted, 'effects' of a given independent
factor in the universe may also be defined by forming a universe table
analogous to Table 15, section 4.5. Then, by analogy with (6), section 3.3,
the squared amount of simple association between, say, factor W and Y is

given by

2 —
BWy =var y . (27)

By further analogy, we define the squared amount of partial association due

to factor W as the variance of the adjusted means, ggadj :

]

2 t——
= S 28
B-'wy var-xmadj ( )
= = 2
i = ? = o 7 2
But since w_ =y adj/g , then var y . R'" var w (29)
Substituting this expression in (28), we re-define the squared total amount

of partial association due to W as

R! - R'2 var w_ . (30)
2y R M

Finally, the squared total amount of partial association due to
factor W may be partitioned into (¢ - 1) components, where, it is remembered,
¢ is the number of categories of factor W. In particular, we can assign

arbitrary values, W'm, to the categories of W and denote Ty 88 the cor-—

relation between the arbitrary scores and the partial effects of W. Then

rw,w2 is the proportion of the squared total amount of partial association
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due to the arbitrary values of W. Consequently, we write
2

B,y L n. e (51)
as the squared component of partial association attributable to the arbi-
trary values of W. If the W'm values happen to be numerical descriptions
of the categories of W, in some context, thenigfw,yz is the squared linear
partial association, in that context, of W with Y. The sign of Tt deter-
mines whether such linear association is negative or positive. -_
Summarizing, we have the following universe parsameters, in addition
to the additive partial effects given by (24):
R, the total association of the composite of independent
factors with Y;
R', the total association due to the purely additive 'effects'
of the independent factors;
I, the total interactive association;
gwy, the partial association of W with Y; and similar expres-—
sions for factors U, ¥, c..; V'
g}w,y, the linearrpartial association of values, assigned to
categories of W, with Y; and similar expressions for factors U, V, ..., V'.
By setting up universes with different values for these various
parameters, it will be possible to examine the influence of these parameters
on the properties of empirical sampling distributions of measures of par-
tial association.
Bach of the above universe parameters, it is ﬁjﬁed, is determined
by the set of Pkl_mj’ for the universe. Thus, by the selection of the

Proper values for the Pkl iy a universe with any desired values of these

parameters may be specified.



93

5.2 VObserved Measures are Consilstent Estimstes of Universe Parameters
Universe measures and sample measures of partial effects are com-
puted in identical manner. Also, as n becomes large, the relative magni=
tudes of sample cell frequencies converge stochastically to the universe
relative freéuencies. Then, considering that the measures of association
are in the form of averages and variances, the limiting values of the
measures of association are equal to the universe values, as n approaches
infinity. That is to say, the sample values are consistent estimates of

the universe parameters.22

5¢3 Proposede? Test for the Significance of Partial Association
Referring again to Table 15, the significance of the simple asso-
clation between W and Y could be tested by
oL 2-5 2
><c-l = any nsym , from (6), Section 3.
Now, from equations (17),
7 1 ]
Vi ™ Topagl®
Then by analogy with the simple case, we hypothesize that
>(c_12 s nRW',y = nsg - » vwhere R%y is the correlation be-
o (32)

tween w,; and vy

Since w,_ = = / R' , s= = m? ; so from (32) we get the relation,

 Ymaqy Ymad J =
Rl SR, (33)

that is, the observed partial correlation between W and Y equals the total
additive asdociation due to all factors times the standerd deviation of

the observed partial effects of W.

=2 See Slutsky's theorem, p. 255, of Cramer, H., "Mathematical
Methods of Statistics", Princeton University Press, 1946.
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Finally, by substitution of (33) in equation (32),
2 2 2
X -y =e (34)

m
Equation (34) expresses that, when the squared universe partial association,

‘g'zvar_ﬂﬁ, equals zero, n times the observed squared sample association,
'zsw 2, is asymptotically distributed as a X2 with (c - 1) degrees of
freed?m. This statement is not proven here, but is merely hypothesized.
As an hypothesis it will be tested against empirically generated distribu-

tions of nR'Zsw - when the universe values of.gfzvarlgﬁ = 0.

m

5.4. Hypothesized Asymptotic Distribution of the Observed
Linear Partial Association
: 2 = A ;
] i : 57
Taking R - var ymadj as the opéerved squared partial associa
tion of W with Y, we may obtain its linear‘component when arbitrary values,
w'm, are assigned to the categories of W as follows:
2
5 1 .
let Tty be the correlation between w' and w ; then Ty 1S

the proportion of the squared partial association which is attributable to

the arbitrary values of W; so R' 2r - is the observed squared linear

wy “w'w
partial association of W with Y, denoted R'w‘ 2 3 then, since
R! 2 = R'2s ¢ :
wy "
BRI = - R‘Zs 2r i 2 ;
w'y we W

finally, if it is true that

2 e ; 2 :
X(c 9 nR'"s = , from the hypothesized equation (34),

m
then
s = =
X1 =R Se Tetw (35)

Equation (35) expresses that, when the universe squared partial

association, R'zr ; 2var W_ , equals zero, n times the observed squared

Sample association R'Zs 2r .
2 W

Wy 0 1S asymptotically distributed as X?
m
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with one degree of freedom. This statement is true only if (34) is true

in the preceding sub-section 5.3. If it is true, then nR"rwswsW is asymp-

totically distributed as a standard normal deviate. This, too, will be

tested as an hypothesis against empirically generated distributions of

'r , s when the universe value of R'r  JYJvarw = 0. However, we may
wiwW = W'y

go further than this; we may hypothesize that, when the universe wvalue of
is asymptotically distributed as a normal

deviate with unit variance and mean equal to n@jrw,vaar o

Rt Jvar w O, nR'r. =
= "w'w —m.£ : w'ww

5.5. Procedure for Generating Empirical Distributions
on the IBM 650 Computer

The details of programming on the IBM 650 digital computer are too
lengthy and technical to recount here. Nevertheless, the following is a
general outline of the procedure used in generating empirical distributions.

The universe from which samples of a given size are to be taken is
chosen as a 34 universe, that is, a universe with four factors of three
categories each. This allows us to denote one of the factors as the depen-
dent variable, Y, and three factors as independent variables, U, V, and W,
Within these limitations, we may select universes containing no relations,
containing various levels of additive partial association of one, two, or
all three independent factors with Y, or containing not only additive
associations but also interactive associations. The universe contains
34 = 8l cells; to each cell corresponds a proportion, Pklmj’ the full set
of which adds to 1; this full set completely determines not only the universe

partial 'effects', but also all the other universe parameters listed in

Seetiom 5.1,
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The 81 cells of the universe are identified with 81 corresponding
cells in the coﬁputer memory. In the first computer cell, the first un;verée
proportion, Pl’ is placed; in £he second computer cell, Pl + P2 is placed;
in the'third, Pl + P2 + Po; and so on up to the 8lst cell which contdins
P1 + P2 + ose + P8l = 1. These proportions are shown to the third decimal
place. For example, we might have Pl = 605 22 = 052, P3 = 4,025, etc.
Then in the computer cells, we would have .005, .057, .082, etc., resp.,
all the way to 1.000.

Now a correspondence is made between the cémputer cell contents and
the random numbers between 000 and 999: the random numbers, 000 through 004,
correspond to the first celly 005 through 056 to thg Second ; andﬂso on.
Thus, to each cell cbrresponds a number of random elements in proportion to
the univérse relative frequency.

Once the cumulated universe relative frequenciés have been placed
in the computer memory, a random number from 000 to 999 is selected by the
computer. The correspondence between the random number and thé appropriate:
universe celi is made by the computer, and a frequency of one is then placed
in a sample region of the computer memory. This sample region alsq contains
8l cells, each of which corresponds to a universe cell.. For example, if the
first random digit is 056, a_coﬁnt of one is placed in the second cell of
the sample region. Following this, a second random digit is selected, the
correspondence is made, and a frequency of one is added to the proper sample
cell, This process continues until a sample of size n has been generated.

Once the sample has been generated, the partial effects and measures
of partial and total association are computed, according to the equations
which have been presented. These sample values are punched on a card, the

machine clears itself for a new sample, and the process of selecting a new
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random sample of the same size, n, is begun again.

The time required to select a sample of size 50 and solve for
measures of association is about 2 1/6 minutes. Consequently, it takes
about 3% hours to obtain 100 sample results for samples of size 50, This
program utilizes only the basic 650 machine. If the program were optimally
programmed with respect to time and if recently acquired auxiliary computing
mechanisms were used, the time could be reduced by at least a factor of 3;

thus the 2 minute cycle is 'slow'.

5.6, Empirical Results

Observation and experimentation are indispensible to the advance-
ment of the natural sciences. In the‘past few centuries, it has been
recognized that logic alone, unéupported by observable evidence, cannot
capture the complexities of nature. DNor is experimentation and observé—
tion a stranger to the world of mathematics. Unlike nature, it may be
theoretically possible to solve certain extremely complex problems in
mathematics directly. However, the theoretical tools needed to solve a
given problem may not yet have been invented, or are not practicable, or
are not available. When this is the case, the mathematical problem may
be approached on an experimental basis. This has been an approach familiar
to the statistician in the last two centuries, and before him, the gambler.

The method consists of constructing a physical analogue of the
mathematical problem in such a way that elements of the physical anélogue
can be sampled at random. From a sample of elements, the solution of the
problem can be inferred. The following examples are not very complex, but

they serve to illustrate the method:
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Example 1.

Problem: Will the house eventually win a profit on the
roulette table?

Solution: Bet x dollars n times (n large) and see who wins.

Example 2.

Problem: What is the area under a given curve?

Solution: Draw curve on square piece of paperlwith unit
length and width. Color area under curve. Cut paper into a iarge number
of small squares and number each square. Select small square at random and
record x = 1 if colored, x = O if not colored, x = + if partly colored.
Replicate selection procedure n times. Then estimated area isgfx/n. The
larger n is, the more precise is the estimate.

Prior to the last 20 or 30 years, this technique was sometimes
referred to as 'model sampling'. But more recently, the body of such
technique has been unified, systematized and extended, and it is néw termed
the 'Monte Carlo method', in deference to its ancient origin.

The procedures outlined in the preceding sub-section, 3.5., are of
this nature. The physical analogue, in that case, is set up in a computing
machine, admirably suited to this type of work, and random sampling is
echieved through use of a table of random digits fed into the machine.

Thus the results which follow are experimental, i. e. empirical.

This approach has been taken because of the enormous complexity of

the problem before us: to learn something about the statistical properties

of measures of partial relation determined by finite samples from a variety

of universes.



5.6.1. Universe 1

The first universe to be considered contains no association whatever,

so that R=0,R' =0, R =0, R' =0, emd R' , =0,

£y This is a trivial
case, as discussed in section 5.0., in that we shall never be concerned
with hypothesizing a universe of this type, even for a null hypothesis.
However, this universe has been set up in order to test for the hypothetical
X2 and normal distributions of the sample measures of partial association
under the most favorable conditions. 65 samples, each of size 50, were
taken, and the squared partial association of W with Y was compﬁted for
each sample. Each of the values was multiplied by ﬁ, for, as the reader will
recall, it is hypothesized that nR'wy? is distributed asymptotically as a
chi-square. In the particular case at hand, there being ¢ = 3 categories
of W, this chi-square has 2 degrees of freedom.

The grouped results, as compared to expectations, are shown inr
Table 16. With the exception of the third class (.446 = nR'Wy? = 0712) and
the seventh (3.219 = nR'wy? < 4.604), the agreement between observed and
expected frequencies is very good. In particular, the observed frequencies
in the upper tail of the distribution, i. e. the last three claéées, cor—
respond very closely to expectation. Using the chi-square 'goodness of fit!'
test (J(obs. - exp.)>/exp.), the chi-square value of 8.65 is found %o be
not significant (.7 > P > .5); the observed deviations are well within the
realm of chance variation. Evidently, a fest for the éignificance of par—
tial association in a random sample>of size 50 from Universe 1, utilizing
the chi-square distribution at, say, the 5% or 1% level, would be nearly
correct.

In Table 17, the grouped results for {ER'w,y are presented. By

hypothesis, these values are asymptotically distributed as a standard
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Table 16

Empiricel Sampling Distribution of n Times the Squared
Partial Association of W with Y as Compared to

X< Expected Frequencies; Universe 1¥; n = 50

nR'Wy2 Frequency
Observed Expected
o - .,210 7 6.5
el — S it 6eb
446 - JT12 JLil 55
o113 = 1,385 15 7.0
1.386 - 2.407 < 158
2.408 - 3.218 8 6.5
5289 — 4.604 2 555
40605 =35 5-990 4’ 502
5.991 - 7.82% & 20)
T7.824 & up 1 L5
All observations 65 65.
'Goodness of fit': leO ;.8,65 ; one—-tailed P: .7 > P > .5
Table 17

Empirical Sampling Distribution of +n Times the Linear
Partial Association of W with Y as Compared to
Standard Normal Expected Frequencies;
Universe 1¥; n = 50

vﬁR'W, Frequency
’ Observed Expected
-1.97 & less ik 136
-1.96 to -1.45 3 562
-1.44 to - .94 6 635
= .93 to = .60 1 6.5
- .59 to - .32 3 65
- 31 to - .00 T 8el
+ .00 to o 12 8l
256 59 T 65
.60 to S5 6 55
94 to 1.44 3 6.5
Ecd5 o 1.96 4 el
1.97 & up 2 L5
All observations 65 65.
'Goodness of fit': X2lq = 9,57 Test of mean: hyp. .000 Test of var.: hyp. 1
One-tailed P: 2 obs. -.018 obs. .89
iy PR two-tailed P: P = .89 two-tailed P: P = .62
*Universe 1: 34 gell=sRe—Gp RE 0 R QiR = O R e = 8
= = =Wy Y = Wy
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normal deviate. Inspectionlof Table 17 reveals that the empirical results
agree well with expectations, particularly at the two tai_ls° The 'goodnéss
of fit' test yields a probability between o and .5, again well within the
realm of chance variation. Also, as indicated below Table 17, the obser&ed
mean apd variance of the 65 sample values are quite close to the hypothe-
sized true values of zero and oné, resp. These results tend to substan-
tiate the hypothesis that, for samples of size 50 from Universe 1, the
observed linear partial association is distributed approximately as a
normal distribution with mean zero (no bias) and with ﬁariancé equal to l/na
5.62. Universe 2

The second universe contains a total relation, R, equal to .453.
There is no interaction, as indicated by the fact that R' also equals .453.
None of this total relation is due to the partial effects of W, since R'
as well as gghw,y equals O. But the universérfrequencies are in a state of
imbalance, as indicated by an appreciable Simple association between W and
1L, Ewy': 194, It is desirable that, notwithstandipg an appreciable simple
association, the sample measures of the partial and linear partial associa-
tion of W with Y be distributed according to the hypothesized chi-square
and normal distributions which would be indicative of no partial associa-
tion in the universe.,

The squared partial associations observed for 91 samples, each of
Size 50, are presented in Table 18; For the smallex‘Xé values, the observed
frequency is consistently iower than expectation; also, in the extreme upper
tail (7.824 & up) the observed frequency is much higher than expécta@iano
The 'goodness of fit' test yields a one-tailed probability between .10 and
05, of borderline significance. Consequently; the fit of the data to the

hypothetical chi-square distribution is under suspicion.
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Table 18

Empirical Sampling Distribution of n Times the Squared
Partial Association of W with Y as Compared to

X< Expected Frequencies; Universe 2%; n = 50

nR@wyZ Frequency -
Observed Expected
Q== 200 6 gk
211 — 445 8 9.1
446 -  T12 5] 9l
o3 = 1,385 20 =R
1,386 = 2.407 1L 1852
2,408 - 3.218 i Sl
3.219 = 4,604 185} 9.1
4,605 - 5,990 4 4.6
59991 el 7a823 3 207
7824 & up 6 e
All observations o SHE

'Goodness of fit: Xio = 17.5 3 ope—tailed B: 10 >7P > 05

Table 19

Empirical Sampling Distribution of yn Times the Linear
Partial Association of W with Y as Compared to
Standard Normal Expected Frequencies;
Universe 2%; n = 50

R Frequency
e Observed BExpected
-1.97 & less 6 el
-1,96 to -1.45 5 4.5
-1.44 to - .94 8 Sl
- .95 to - .60 3 9.1
- .59 to - .32 5 el
- .31 to = .00 6 d
+ .00 to Sk 7 114
s52 to «59 8 Gel
<60t 95 14 9.1
B Il : 10 St
L4560 196 12 4.5
1,97 & up 7 255
All observations 91 91
'Goodness of fit': Xiz = 31,2 Test of mean: hyp. .000 Test of var.: hyp. 2l
One-tailed P: obs. .288 obs. 1.62
Pec 01 two~tailed P: P < .01 two-tailed P: P < .01
*Universe 2: 34 cells:-R w A555 Bl = 455 B'wy = ,194: }—z-'wy —0x _Ig“w,y = 0,
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Table 19, showing the results for the linear component of the
partial association, leaves little doubt that the actual sampling distri~
bution does not conform to hypothesis. A probability well below .0l is ob-
tained for the 'goodness of fit' test. Further, the grand mean of the
observed values is ,288, significantly greater (P < .01) than the hypo~
thesized zero; finally, the sampling variance is observed to be 1.62 in
contrast to the hypothetical unity, a significant departure (P < .01).

S3ncs Hhe Baah ot VAR 1, = +288, the mean of R'w,y is ,288/¢B§,. or .04.
Thus, the bias in this estimator is considered to be in the neighborhood

of +.04. if this bias is compared to the simple association of .194, it

is evident that a major portion of the extraneous influences of factors U
and V has been eliminated. Nevertheless, when one considers. that the two
extreme tails of the empirical distribution contain 1% of the 91 observa-
tions, or more than 14%, in contrast to an expected 4.6 observations, or 5%,
it is also evident that the use of the hypothetical normal curve in a test
of significance at the 5% level would be unsatisfactory,

According to hypothesis, as the sample size increases, the sampling
diStributions should more néarly be approximated by chi-square and normal
distributions, as the case may be. This is borne out when the sample
size for samples from Universe 2 is increased from 50 to 150. Table 20
indicates that, for samples of size 150, the observed distribution of squared
partial associations does not deviate significantly from hypothésis (2B
> Blitho -t s particularly good at the upper tail. This is in contrast
to the very poor fit in the upper tail region for samples of size 50 (Table 18)-
Also, as shown in Table 21, the distribution of the linear partial associa-
tion of W with Y does not deviate significantly from the hypothesized stan-—

dard normal curve (.2 > P > .1). The grand mean of {ﬁR“Wiyvfor all forty-
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Table 20

Empirical Sampling Distribution of n Times the Squared
Pgrtial Association of W with Y as Compared to
Do ERg = s
X~ Expected Frequencies; Universe 2*%; n = 150

nd'wyz Frequency
Ubserved bBxpected
Qi =210 6 Vi)
a2l = Gl 7 4.0
446 - 712 3 4.0
(1% = 1,585 9 8,0
1.386 - 2.407 5 8.0
2.408 - 3,218 3 4.0
3.219 - 4.604 2 il
4.605 - 5,990 ik 250
5.991 = 1.823 2 g2
7.824 & up 2 .3
All observations 40 40.

'Goodness of fit': Xi@ = 8.80 3 ene—tailed Pl 2 o5

Table 21

Bmpirical Sampling Distribution of 7 Times the Linear
Partial Association of W with Y as Compared to
Standard Normal FExpected Freguencies;
Universe 2%; n = 150

4ﬁR'w, Frequency
17 Observed Expected

-1.97 & less 0 1

-1.96 to =1.45 2 2

-1.44 to - .94 2 4

- .93 to - .60 4 4

SeEn e 3 4

- .31 to - .00 8 5

.00 o =8 7 5

a2 to 5 il 4

60 Lo .95 4 4

I te A 4 4

145 G 1,96 ik 2

Lo97 & up 4 ik

All observations 40 40,
'Coodness of fit': X?z = 16,6 Test of mean: hyp. .000 Test of war.: hyp. 1
Cne-tailed P: 6ha. PP obs. .953
20 B0 two-tailed P: P = .16 two-tailed P: P = .97

*Universe 2: 34 cells; R = .453; R' = .453; R = 1943 R' = O; R! o

o iy
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samples is closer to the hypothesized zero than is the corresponding mean
for samples of size 50, and furthermore, it does not differ significanfly
from zero. The observed variance, .953, is very close to the hypofhesized
unity. Finally, the extreme tails contain 4, or 10%, of the 40 sample val=-
ués, closer to the expected 5% than was the case for éamples of size 50.
Evidently, by the incfease in samplg size, the sampling distributions are
mﬁre nearly approximated by the hypothesized distributions, although some
bias in the mean and variance may still remain.
5.63%. Universe 3

In the third universe, the total relation is R = .53%4, greater
than in Universe 2. Again as in Universe 2, there is no interaction, as
indicated by the fact that R' = R. However, a part of this total relation
is due to factor W, as well as factors U and V, as indicated by the universe
partial association value of gfwy = .285, This partial association of W
with Y is entirely linear, i. e. T = 1, as indigated by the fact that
Bﬁw'y also equals .285., We do not hypothesize that nR'wy2 is distributed
as a chi-square with two degrees of freedom in this case, because the asso-

ciation existing in the universe will increase the observed values. Rather,

2

we hypothesize that, if the linear component of nR" : is removed from nR' .

the resulting non-linear component will be distribﬁted asymptotically as a
chi-square with one degree of freedom, since there is no non-linear uni-
verse partial association. Further, as indicated in 5.4, we hypothesize
that vn times the deviation of R'w'y from.gfw,y is distributed asymptoti—
cally as a standard normal deviaée; | ‘

Table 22 shows the results for the non-linear component of the

Squared partial association between W and Y for 65 samples, each of size

n = 50. Aside from an apparent hiatus in the second class, the fit is very
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Table 22

Empirical Sampling Distribution of n Times the Squared
Non-Linear Partial Association of W with Y as Compared to
Expected Frequencies; Universe 3*; n = 50

n(R'Wy2 = R'W,yZ) Frequency
Observed Expected
Q= 016 9 6.5
017 — 064 il 65
$065.= 148 7 6.5
o149 — = (455 1L 15.0
456 - 1,074 15 1500
1.075 - 1.642 6 6.5
1.643 - 2,706 8 65
2,707 = 3.841 i 525
3.842 - 5,412 0 1.95
5.413 & up 1L {50
A1l observations 65 65
'Goodness of fit': Xio = 1501 ; one-tailled P: (2> Dy >

good (.3 > P » .2). Particular attention is called to the behavior of
the distribution in the upper tail, in which the observed frequencies
compare favorably with expectation.

Results for the observed linear partial association are shown in
Table 23. The 'goodness of fit' test yields a non-significant probability
between .2 and ,1. Nevertheless, it is observed that there appears to be
a consistently high concentration of observed frequencies at the center of
the distribution, with frequencies at the two tails being consistently less
than expectation. The hypothetical mean value of the deviation of VﬁR'W,y
from 1ﬁgﬁw'y is, of course, zero; the observed mean of -.052 is quite close
to this hypothesized value, such that this discrepancy can be attributed to
chance (P = 058)0 But the observed .566 variance, in contrast to the hypo-
thesized unity, is significently low (P < .0l), confirming the visual im-

pression of a high concentration of observed frequencies at the center of

the distribution. It would appear, therefore, that the bias, if any, is
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+n Times the Deviation
e Universe Linear Partial Asso-
ith ¥, as Compared to Standard lormal
sxpected Freguencies; Universe 3%; n = 50

S 4-
LYO

ved
of W

\n{m'vﬂt,~-;;§qh,; Frequency
A o Ao ™
Observed Expected
-1.97 & less i 1,625
-1.96 to =1.45 4 5425
=1.,44 Fo — .94 3 G5
- .93 to - .60 6 6.5
- .59 to - .32 3 6.5
- .31 to - .00 16 8.125
+ .00 to ol 10 Bel25
S92 o .59 J 6.5
.60 to D i 65
.94 to 1.44 4 6.5
5 Fo 0 1,096 1 3.25
1.97 & up 0 1.625
411 observations 65 6b
S5 of fit':\fij =2 17.45 estef mean: hyp. 000- " Test of Varss lyp. o
Cne-tailed 2: = obs. —.052 obs. .566
v s P two~tailed P: P = .58 two-tailed P: P < .01

*Universe 3: 34 cells; R = .534; R' = .534; R' = .285; R' , = .285.
= = wy =Wy

quite small, and that the sempling variance, if not unity, is actually less
than hypothesis. Consequently, for this universe, one would feel gquite
confident in using the standard normal curve as the basis of an interval
estimate for the partial linear association.
5.64. Universe 4

None of the preceding universes carries interaction. In order to
test the possible influence of universe interaction on sample measures, the
fourth universe is constructed to contain a rather high interaction, I = .442.
However, all additive partial effects are zero, and all simple effects are
ZBro,—such=tho bl —=00 B =— 0 E}w

Wy 3

: : = e , 2
theses with respect to the partial association of W with Y are now that nﬁ'v_

=0 i ong ij,y = 0. The two hypo-
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Table 24

Empirical Sampling Distribution of n Times the Squared
Partial Association of W with Y as Compared to
(= Expected Frequencies; Universe 4*; n = 50

2
nR'w‘ Frequency
y Observed Expected

Qi ai =% 5200 T 726
i G S W 5 5 7.6
Ade -~ 712 6 Ticho
S = 1388 9 15
1.386 - 2.407 11 16552
2,408 = 5,218 16 916
3.219 - 4.604 T
4.605 - 5,990 10 5es
5.991 - 7.823% 2 )
7.824 & up 5 1e5

A1)l observations 76 sl
'Goodness of fit': }io = 25.,96; one=tailed P: P < .01

*Universe 4: 54cells; B =oddos e kol — 000l i=0 (o8

BRI e
— W'y

s
2

is distributed approximately as a chi-square with two degrees of freedom for
large enough n, and that th‘W.y is approximately a standard normal deviate
for large enough n. The results for 76 samples, each of size 50, are pre-
sented in Tables 24 and 25.

In Table 24, the observed frequencies for smaller values of Xg are
consistently below hypothesis. As X; increases toward the upper tail, the
observed frequencies become greater than expectation, as a rule. These
deviations from the hypothetical distribution indicate a poor fit (P < °Ol).

The deviation of empirical results for the linear partial associa-—
tion in Table 25 is of borderline significance (.1 > P > .05) when tested
for 'goodness of fit'. The behavior of observed frequencies at the extreme
tails is poor. The mean of %ﬁR'W,y is not quite significantly low (P = .06);
but the variance is well within the realm of chance (P = .17). Table 25

gives the impression that the distribution rises to a peak at a negative
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Table 25

Empirical Sampling Distribution of vn Times the Linear
Partial Association of W with Y as Compared to
Standard Normal Expected Frequencies;
Universe 4%; n = 50

/oR' Frequency
J Observed Expected
-1.97 & less 6 1.9
-1,96 to -1.45 4 S da
"1344 to ! -94 13 7'06
- .93 to - .60 4 76
= .59 to = .52 10 -6
- .31 to - .00 8 e
T .00 ke 5l i 955
B2 k0 259 6 T6
+60: to-= .93 8 746
.94 to 1.44 5 it
145 %ot 1,96 2 Eits]
1.97 & up 3 1.9
A1l observations 76 T6ie

'Goodness of fit': Xi? = 18.85 Test of meant hyp. ' 000 ‘Test of ‘var,: hype 1

One-tailed P: obs. ~.240 obg. 1.2l
= e 0b two-tailed P: P = .06 two-tailed P: P = .17
*Universe 4: 34 cellligs i - lloc = O Bwy =0 ijy = o;‘g}w,y = @,

value, rather than the hypothesized zero, and is skewed positively. Appar-
ently, the introduction of interaction in an otherwise null association
universe has caused the sample results to deviate slightly more from hypo-
thesis than was the case for Universe 1, which contained no association
whatever. The contrived high interaction in the universe appears to exert

a relatively weak influence on the non-interactive measures of association.

5.7. An Adjustment for Continuity
Because there apparently are cases, notably Universe 2, for which.
the assumed asymptotic distributions are rather poor approximations to thé
actual distributions of sample measures, it is of importance to find some

means of improving the approximation. To this end, we employ a concept



110

which is similar in some respects to 'maximum likelihood'; but we are
dealing with discrete sampling distributions and unknown population forms,

so that the resemblance is purely superficial; we therefore do not claim that
the adjustment to be developed makes sample measures unbiased (they are, in
fact, biased), and the terms 'efficiency' and 'sufficiency' do not apply.

It is merely our purpose to develop a basis, admittedly intuitive, for an

ad justment which may give more accuracy to our sample measures. (Here, the
term, accuracy, means the reciprocal of the root meén square error of sample
estimates from the true universe value.)

Consider a universe consisting of N elements. Let this universe be
sampled at a rate, r, such that the distribution of the number of elements,
n, which fall into a sample is a binomial, of the form

CN'/n'(N—n)')r - Nn %
Now, letting N become large and r become small in such a way that m = Nr
remains constant, the limiting distribution is a Poisson, of the form
pr(n) = (¢™u®)/n!
(In order to restrict n to values of zero or greater, the following develop-
ment applies only for valués of m®=1.) |
Replacing n! in the expression on the.right by '(n + 1), we have a smooth

function ofrn which passes through each of the points on the discrete Pois-

sons

£(n) = (e™m)/Ta + 1) .
Now, we find the value of n = n*, such that f(n*) = f(n* +'1), as follows:

(% + 1)/£(0%) = B2 (e 2)) @lox + 1)/ = 1; (36)
sincel'(n* + 2) = (n* + 1) (n* + 1), (36) reduces to .

n/(n* + 1) =
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Now, since both Pr(n) and f(n) have one maximum, and since f(n) passes
through the maximum point of Pr(n), the maximum, and only the maximum, of

Pr(n) must lie on or between n* and n* + 1, that is

= < = i i i
m~- 1 Doax S0 where L og 18 the integer for which Pr(n)

is a maximum. Now consider a given sample which contains n elements., If

n is L oox? then
== 1

Thus, if n is nmax"the universe m can be anywhere on or between n and
(n + 1). For the sake of consistency, we take m to be midway between n and
(n + 1), that is (n + %), and we designate mmax = +-% as the 'average
maximum likelihood' value of m for the given sample.

If we have“two universes, such that Nl/N2 = C, then independently
selected samples, selected at the sampling rate r, containing ng and n,

elements, resp., form the basis of estimating my and m,:

2
1
m =n + =5
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