
Thesis C.1 
A method for 00070 • 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 •• 



>: 



UNIVERSITY OF PITTSBURGH 

GRADUATE SCHOOL OF PUBLIC HEALTH LIBRARY 
Manuscript theses 

Unpublished essays and theses submitted for the ijaster's and Doctor's de­
grees and dopositod in the University of Pittsburgh, Graduato School of Public 
Health Library , arc to be usod only wi tlJ due r egard to tho rights of the authors. 
Bibliographical rcforcnccs may be noted, but passagDs must not be copied with­
out pcnnission of tho authors, and ·without proper credit boing given in sub­
sequent -r.rri tton or published -;,-rork. 

This thesis by Sheehe bas bGcn used by the 
following persons, 1irhoso signatures attest their acceptance of the above r es­
trictions. 

NAME AND ADDRESS DATE 



..J 

A M,ETHOD FOR .EXAMINING 

PARTIAL .ASSOCIATION IN A POPULATION 

By 

Pau+ R. Sneehe 

B.S.B.A., University of Buffalo, 1948 

M.B.A., University of Buffalo, 1954 

,Submitted to the ' G-raduate School pf , Public Heal th 

of the· University of •Pittsburgh in partial fulfillment 

of the r _equirements for the_ degree· .of . 

Doctor of Science 

in Hygiene 

University of ~ittsburgh 

1959 \ 



SE 21 '59 



PREFACE 

I am grateful to Dro Antonio Ciocco for his purposeful guidance 

and thoughtful criticism along the way 9 and for his helpful suggestions 

in the presentation of this subjecto I wish, also, to express my thanks 

to Dr. Donovan Thompson for helping me over some rough spots and for his 

careful review of the manuscript in its various stageso 

My thanks also go to Mro Arthur LeGasse and to the personnel of 

the Computing Center, University of Pittsburgh, for their help in the 

use of their facilities, without which this work could not have been doneo 

ii 



iii 

TABLE OF CONTENTS 

Page 

PREFACE ............................................................. ii 

1.0. INTRODUCTIOJ:J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2.0. HEALTH PROBLEMS .AS AN INDICATOR OF SUBSEQUENT HEALTH PROBLEMS 
I!J 11IIB H0USEH0W .. o ••••••••• & • • • • • • • • • • • • • • • • .. • • • • • • • • • • • • • • • • 11 

2.1. Source and Limitations of the Data...................... 14 

2 e 2 . Def ini ti ons ............. o • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 7 

2.21. Household·····•··"······•·,-•····· ·····•··········· 17 

2.22. A Person with a Health Problem o•••••••••·•••••••o 18 

2.23. A Person with a Communicable Disease............. 18 

2.24. Age of Person e••o•• •·•·• •·•·••···•·•••·•·••·•••·• 18 

2 &25. A Proposi tus . (II ••• ••••••••••• • • • • • • • • • • • • • • • • • • • • • • 18 

2.3. Preliminary Analysis ................. ~.................. 19 

2.31. Comparison of Propositi in Households, I, Without 
and, II;- With First Year Health Problems......... 20 

2.32. Comparison of Households, I, Without and, II, With 
First Year Heal th Problems . • ........... ~.......... 25 

2.4. The Serial Relation, Adjusted for Various Conditioning 
Factors . o • o • o e e • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • 30 

,. 

2041. Choice of Conditioning Variables to be Taken into 
Accpnnt ........... Q ••••••• •••••••••••••••• e • ••• e •• - 33 

2 .. 42. The Serial Relation, Adjusted for Propositus House-
hold Size, Average Age, and Sex Distribution, and • 
Adjusted for Stratum and Interviewer Characteristics 37 

2.50 First Year Health Problems as a Cause of Second Year Health 
Problems in the Household................................. 42 

2. 51.. The Overall Variation of the 22 Size-Age-Sex Speci-
fic Adjusted Serial Relations ................. ~••o 44 

2.52. Test of the Specific Causal Hypothesis e• .. •••o•oo& 46 

2e53. A Posteriori Analysis of the Partial Serial Relation 52 



iv 

TABLE OF CONTENTS (continued) 

Page 

2 .6 Conclusion . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

3.0. TESTS OF ASSOCIATION IN A TWO-FACTOR CONTINGENCY TABLE . . . • • . . 56 

3 .1. Definition of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

3.2. Association when Neither Factor is Quantified.......... 57 

3 .3. Association when the Dependent Factor is Quantified . . . . 59 

3.4. Association when Quantities are Assigned to Both Factors 62 

3. 5. Particular Case: Association when the Dependent Factor is 
a Di chotom.y • . . . . . • . . . . . • . • • . . . . . . . . . . . . . . . . . • . . . . . . . . . . 62 

3.6. Particular Case: Association in the (2 x 2) Table; Illus-
tration ~ . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

3 . 7 . Sunnnary . • . . • • • • • . • . • . . . • . . . . • . . . • . . . . . . . • • . . . . • . . . . . • . . .. 68 

4.0. PA.ln'IAI, ASSOCIATION •................................... ·· . . . . . 70 

4.1. Definition .. of Symbols for the Multiple Factor Contingency 
Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

t~.2. Failure of X2 to be Closely Approximated when g is Large 73 

~. 3. A Restriction on xi ............•... •. . . . . . . . . . . . . . . . . . . . . 75 

4114. Derivation of M. c. Scores for the Multiple Factors . . . . 76 

4. 5. Interpretation of the M. C. Scores . . . . . . . . . . . . . . . . . . . . . 79 

4.6. Equivalence of M. c. Scores with Lea.st-Squares Estimates 
of Effects .......... • ................................. •. 82 

4.r., The Relation of R' to Variation Among the Dependent Means 
. I 

84 

4.8. Particular Case: Partial Association ·when the Dependent 
Factor is a Dichotomy .................... .- . . . . . . . . . . . . . 85 

4 . 9 . Summary • . . . . . • . • . . • . . . . • . . . . . . . • . • • • • . • • • • • . • • • • • • • • • • • 86 

5.0. SAMPLING DISTRIBUTIONS OF MEASURES OF PARTIAL ASSOCIATION; ESTI- . 
AATOR ffiOPERTIES ...........................• ~ . . . . . • . . . • . . • . . • 88 

5 .1. Universe Description; Universe Parameters . . . . . . . . . . . . . • 90 



V 

TABLE OF CONTENTS (continued) 

Page 

5.2. Observed Measures are Consistent Estimates of Universe 
Parameters ..•............. ·· . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 

5.3. Proposed X2 Test for the Significance of Partial Associa-
tion ..... .......................................... _, . . . . 93 

5.4. Hypothesized Asymptotic Distribution of the Observed Lin-
ear Partial Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

5.5. Procedure for Generating Empirical Di~tributions on the 
IBM 650 Computer . • • • • • • • . . . . • . . . . • . . . • • . . . • . . • • . . . • .. . . . 95 

Empirical Results 

5.61. Universe l 

5.62. Universe 2 

5.63. tTniv~rse1 3 

5.64. Universe! 4 

...................................... 
•••• 1l • e •••• e • a •••• e e ♦ • e • e ••• e e • ♦ • 0 ••• D 

....................................... 
••••••••••••••••• !I •••••••••••••••••••• 

.... -................ , ................. 

97 

99 

101 

105 

107 

5. 7. An Adj•ustment for Continuity . . . . . . . . . . • . . . . . . . . . . . . . . . . 109 

5 . 8 . Sl.lmma1.-y . . . . . . . . . . • • . . . . . . . . . . • . . . • . . . . . . . . • . . . • . . . . . . . . . 118 

5. 9. Illus·tra.tion: Computation of' the Linear Partial Association 
of First and Second Year Health Problems in Sampled House­
holds of a Specific Size, Average A.ge, and Sex Distribution 
Grou:i;:, . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

5 .10. Illu1:itra.tion: Analysis of Variation in the Partial Serial 
Relation of Household Health Problems .................. 126 

6.o. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

BIBLIOGRAPHY ...... • ................................................ . 137 



1.0. INTRODUCTION 

If an experimenter can identify independent elements to which var­

ious treatments have been assigned at random, then he may argue that dif­

ferences observed among treatment categories are due either to chance alone 

or to the combined effect of chance and the different treatments~ If the 

observed differences would seldom occur by chance alone, then he may infer 

that the differences are, at least in part~ the effects of treatments. A 

cause and effect relation between treatments and observations is thereby 

inferred and the logic of this inference is not disturbed by the fact that 

the composition of one treatment group differs from another in many aspects~ 

The purely observational study, on the other hand, is not subject 

to such simple interpretation. A population may be categorized according 

to some characteristic and differences may be observed among the categories. 

But any claim of a cause and effect relation may be challenged. For, in 

general, the randomization of categories to population elements, or of ele­

ments to categories, is absent. Observed differences among categories, 

that is, observed associations, may be considered to be due not to the char­

acteristics on which the categories are based but to the varied composition 

of the categories with respect to other characteristics~ 

Is not experimentation preferred to observational studies? Possibly 

yes, when there is a choice between the two. But usually there is no choice. 

This is particularly true in the study of man~ While genetic traits may be 

in part the result of random forces, how do we randomize race or age to indi­

viduals, or socio-economic status, religion, place of birth, social customs, 

1 
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and so forth? Granted t hat certain volunteer groups can sometimes be 

obtained for the experimental trial of therapeutic agents? or of some 

other kind of treatment, these groups are not the population of ultimate 

interest. The conditions under which the demonstration of a causal rela­

tio~, trrough controlled experimentation, is feasible are usually not the 

conditions under.which we seek to establish,· ultimately, ·a causal relationil, 

Consequently, even those experiments among volunteer or selected groups 

mus.t be bolstered by observational studies of the population~ 

A cause and effect mechanism cannot be divorced from the oondi­

tions under which it is operative. · In the experimental framework, the 

effect of a treatment is established only with reference to the materials 

and conditions of the experiment, If one were to sub-classify the experi­

mental elements according to some characteristic and determine the effect 

of treatments within such sub-classes, he would often find that the effects 

of a given treatment varied with the sub-class of elements testedo Simi­

larly, in the observational study, the association between a characteristic 

and an observation may often vary among sub-classes of the population under 

study, whether or not this assOciation be causaL Some mechanisms, such as 

those based on Newton ' s laws of motion or those based on fundamental genetic 

principles, may operate under very general circumstances, but for the most 

part the conditions under which a cause operates in a predictable fashion 

are fairly specific, and it may be said that a causal mechanism is under­

stood only to the extent that the conditions under which it is operative are 

laiowno For example, few, if any, persons would argue that infection by a 

specific virus is not the cause· of clinically identifiable poliomyelitis. 

Yet in the United States, only about one in a hundred infections results in 



a clinically recognized 1 case. 
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'l'he conditions under which the virus ccmses 

clinical illnes n must bo quite limited~ As another exaraple, if high speed 

on the roachmy is accepted as a cause of accidents, it must also be granted 

that ih raos t cases of SJ)eeding an accident does not occur; only in particular 

circumstances does an accident occur. Si~~larly, when we say heavy exertion 

causes heart failure, or that the bite of a mosquito causes yellow fever, 

and so forth, we realize that this is only true sometimes, and that the 

cause is ruiderstood only to the extent that we can s pecify the conditions 

under 1vhich it actually produces the stated effect ! 

If a causal relation has been demonstrated experimentally, then the 

function which an observational study of a population may serve is to deter­

mine under what conditions, if any, the effects are seen in the population, 

If experimental evidence is not available, because experimentation is not 

feasible or merely because experimentation has not been done, then the 

function of an observational study may be to test a causal hypothesis. In 

either case, determination of those conditions in the population under 

which the cause or hypothesized cause is operative is of prime importance ♦ 

Consequently, the observer can never be satisfied to vie1·1 the simple associa­

tion of one variable with another. He must view tho association under a 

wide variety of circmns tances in the population under study ~ rn other words, 

he must be concerned with partial association~ 

In theory, ; one may sub-classify a universe with respect to as many 

conditions as he chooses and examine the association between two variables 

within each of the sub-classes. But in practice, the degree of sub-classi-

1 Maxcy, K. F., u Preventive r11edicine and Public Heal th ", Apple­
ton-Century-Crofts, Inc., 8th ed., N. Y., 1956. 
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fication is l imi t ed by the number of observations which are available: 

one soon r eaches a stage of sub-classification beyond which a large number 

of sub-classes either contain no observations or contain so few observa­

tions that ceasurements of association within the sub-classes are practi­

cally meaningless when they are assessed on a probabilistic basis. Never­

theless, the need for taking account of a large number of conditioning 

variables remains. For example, it is not enough to measure the associa­

tion between smoking and lung· cancer in a sample from the populationo It 

is of prime importance that the association be measured after adjusting 

for the conditioning influence of age, race, sex, socio-economic status~ 

rural- urban status, occupational history, and other variables which may be 

thought to have a bearing on the incidence of lung cancer or on the smoking 

habits of the popula~i on .. If there be an association of smoking with lung 

cancer, one wishes to know how many of such other variables, considered as 

conditions (rather than consequences of smoking), may be taken into account 

before the association is destroyed. On the other hand, if there be no 

strong simple association, one wishes to lmow whether a strong association 

would emerge if enough conditions were taken into account. 

Similar problems are met when the development of illnes tJ in houser­

holds is studied . It is a fundamental proposition that the health of an 

individual is determined by the interaction of his biological constitution 

with his environment, social as well as physical. The household ranks high 

in the social environment of the individual, and it is therefore reasonable 

to suppose that household stresses influence the health of its individual 

members. In particular 1 illness in one member can itself be viewed as a 

household stress which influences the health of other members. One of the 

most obvious of such influences is that of communicable disease. Less 
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clear is the chain of events proceding from a chronic disease stress in 

the household, Indeed, the household health consequences of a non-commun­

icable health stress may be manifold. The practical purpose of the present 

study -is to examine those consequences in relation to that stress. Simply 

stated, the question is asked: does a household member with a non-communi­

cable health problem increase the chances of subsequent health problems 

among the initially healthy members. This problem will be taken up in the 

first section to follow c In the course of analysis, it will become evi­

dent that a simple measure of association does not adequately answer the 

question. Conditioning factors will have to be taken into account: the 

household size, the sex distribution of its members, and age distribution. 

In addition, some account will have to be taken of the conditions under 

which the survey data were obtained: interviewer characteristics and sample 

strata. Among the many problems of analysis which will be met, one of the 

most difficult will involve the small frequencies which fall into the class 

categories. Thus our study will be faced with the problem of multiple 

conditioning variables. 

This problem of multiple variables is often shunted aside by the 

investigator: he makes a decision that some variables are more important 

than others; he picks and chooses among the many factors which rise to mind 

to arrive at three or four~ The data are classified, then analyzed on the 

basis of this restricted number of variables. Concurrently, the investi­

gator assumes, or rather hopes, that the disturbing influence of other var­

iables is negligible. Now it is true that we can never hope to account for 

all conceivable conditioning factors, for they are unlimited in number. 

However, it should be clear that the technique which can account for a 

larger number of variables than customary classification techniques is to 
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be desired. 

Multiple correlation, and, more generally, multivariate analysis 

and path analysis are well established techniques for handling several 

variables when examining partial relations. But they are not completely 

applicable to examining partial association in a manifold. Before applying 

them, one is forced to designate categories of all classes by quantities. 

lfow the quantity is not, in general, a perfect representation of a category. 

Consequently, the absence of relation between quantities representative of 

categories of two factors is not full evidence of the absence of relation 

between the factors. Further, quantities applied to categories are neces­

sarily discrete variables. But measures of significance associated with 

these techniques depend upon the assumption that continuous, normally 

distri.buted variables are involved. 11herefore, significance levels applied 

to relations between discrete variables must be viewed as approximate, a..nd 

the closeness of the approximation is often in doubt. 

The analysis of variance is more generally applicable to the 

study of partial association in a manifold, provided that a dependent factor 

be numerically represented. Yet this technique is used relatively infre­

quently or applied only to a limited extent in observational studies. This 

is in contrast with the almost universal application of analysis of variance 

techniques in the statistical treatment of experiments. ·The reason for this 

is not that there is any difference between the ultimate goals of experi­

mentation and observational studies, nor that randomization of treatments 

can be performed in experiments. Rather, analysis of variance is often 

discarded as an analytical tool for the study of survey data because the 

solutions of the least squares equations are much more time-consuming when 

orthogonality is absent, i.e. when conditioning factors are correlated with 
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each other due to an imbalance in cell frequencies. The great majority of 

experimental designs are orthogonal; surveys almost always are not orthogopal 

with respect to all the factors among which it may be desired to study asso- _ 

ciations. However, with the advent of the electronic computer, the objection 

that solution of the least squares equations of the analysis of variance is 

too time-consuming is less valid. 

Again, the classical tests of significance for the analysis of 

variance depend on the assumption of a normally distributed error or resid­

ual. If the dependent variable is a set of numerical values which are asso­

ciated with two or more categories of the dependent factor, this assumption 

can never be precisely true. Nevertheless, Pitman, Welch, and others, have 

shown, in the experimental setting, that significance tests based on the 

normality ' assumption "are rather close approximations to exact randomization 

tests when several observations in each category and several categories of 

the dependent variable are involved. 2 , 3,4 Consequently, it should not be 

surprising if the analysis of variance becomes a more popular analytical 

tool for the statistical estimation of partial association from survey data. 

But the raw material of the analysis of variance is a numerical 

variable. When d~aling with association in a two-factor contingency table 

or more generally with partial association in a manifold, it would seem to 

be more appropriate to approach the problem with the tabled frequencies as 

2 Pitman, E. J. G., "Significance tests which may be applied to 
samples from any populations III. the analysis. of variance testn, Biometrika, 
V29, pp. 322-335, 1937. 

3 Welch, B. L., "On the z-test in randomized blocks and latin squares 11
, 

Biometrika, V29, pp. 21-52, 1937. 

4 Eden, T. and Yates, F., ''On the validity of Fisher's z test when 
applied to an actual sample of non-normal data", J. of Agric. Science, V23, 
pp. 8-17, 1933. 
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the starting point. This has been done for the two-factor contingency 

table. In 1936, H. Hotelling defined canonical variates . In relation to 

contingency tables, they are sets of scores, representing the categories 

of each factor, such that the correlation between the two sets is a 

maximum, a stationary value, or a minimum. 5 In 1940, R. A. Fisher described 

an iterative method for arriving at stationary values of scores for the 

categories of a two-factor contingency table. The factors were eye color 

and hair color . Choosing arbitrary scores to represent the categories of 

eye color, scores for hair col.or were determined which maximized the correl­

ation between the two sets of scores; using the hair color scores, new scores 

for eye color were determined which maximized the correlation, and this 

alternating procedure was continued until the two sets of scores stabi­

lized. 6 In 1941, K. ·Maung was able to show that, in any g by h contin-

gency table, g ~ h, there exist (h - 1) canonical correlations and that 

they correspond to all the maximum and minimum values of the product-

moment correlations between all possible scores assigned to the categories 

of the two factors. He showed in detail a direct method for determining 

the correlations and the corresponding scores. Further, he showed that the 

sum of squares of the correlations was equal to chi-square divided by the 

total number of observations, i. e. Pearson's mean square contingency, ¢2 .7 

In 1952, E. J. Williams presented a paper dealing with tests of significance 

5 Hotelling, H., "Relations between two sets of variates", Biometrika, 
V28, pp. 321-377, 1936. 

6 Fisher, R. A. , 111rhe pr ecis ion of dis criminant functions" , Annal s 
of Eugenics, VlO, pp . 422~-429 , 194-0 . 

7 Maung , K., "Measur ement of associ~tion in a contingency table with 
special reference to t he pi gmentation of hair and eye colour of Scottish 
school children", Annals of Eugenics, Vll, pp. 189-223, 1941. 
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of canonical relations applied to contingency tables. As introductory 

material, he presented a clear summary of the concepts and techniques 

discussed above; further, he gave a generalization of Lancaster's method 

of partitioning the chi-square of a contingency table into component parts. 8 ' 9 

These studies by Hotelling, Fisher, Maung, and Williams take classi­

fied frequencies as their starting point. In contrast to this, the analysis 

of variance, as customarily conceived, has its roots in a measured variable. 

The distinction is basic. We learn to classify things first . We cannot 

number until we first lmow how to classify. We cannot measure without 

using numbers. Thus the assignment of scores to the categories of contingency 

tables in order to describe a relation is basic. Being basic, it is the 

more general approach. In fact, Williams, et aL, have shown that for two­

factor tables the least squares formulae use_d in the analysis of variance 

is a particular case of the formulae for maximum correlation scores. When 

at least one of the two factors is a dichotomy~ or when arbitrary scores 

are assigned to one of the two factors, the maximum correlation scores for 

the remaining factor are equivalent to least squares effects. 

Now the maximwn correlation score technique has been applied only 

to two-factor contingency tables. But in practical survey work it has 

be8n emphasized that multiple factors must be considered~ Therefore, it is 

our intention to show that the maximum correlation scores technique can be 

applied to multiple factor classifications. Least squares formulae will be 

shown to bear the same equivalence to maximum correlation score formulae 

8 Williams, E, J., 11 Use of scores for the analysis of association 
in contingency tables", Biometrika, V39, pp. 274-289, 1952. 

g Lancaster, H$ Oo, "The derivation and partition of X2 in certain 
discrete distributions", Biometrika, V36, pp~ 117-129, 1949. 
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for the multiple factor classification as exists for the two-factor classi­

fication . Instead of a two-factor contingency table , a multi-factor table 

will be considered in which there are several independent factors and in 

which .there is one dependent factor . The general case of determining scores 

for all factors will not, however, be considered; instead, attention will 

be restricted to the case for which the dependent factor is either a 

dichotomy or a classification whose categories can be represented by 

quantitative characters. No such restriction will be placed on the inde­

pendent factorso It will be shown that the scores developed in this approach 

may be interpreted as the partial effects of the factor categories. A chi­

square test of significance of effects will be proposed. This proposal 

will be tested on the basis of empirical results of sampling from lmown 

populations, using the IBM 650 computer for this work. 

But we must not lose sight of the practical problem which has 

created the heed for s~ch theoretical development. That is the problem 

which was underscored in the opening paragraphs: extending the number of 

variables which can be handled in the analysis of survey data. In the 

following section which deals with the stress of household health problems, 

we shall attempt to illustrate the technique for extending the number of 

variables and to show how this technique is integrated into the general 

analytical method. In subsequent sections the theoretical development 

of the technique is taken up. 



2 .O. HEALTH PROBLEMS AS AN INDICATOR 

OF SUBSEQUENT HEAVrH PROBLEl'flS IN rrHE HOUSEHOLD 

Do health problems 'run' in households? Few persons will contes t 

that some diseases do. Communicable disease is a notable exarnple: it is 

reasonable to believe that transmission of a biological agent of disease 

from one household member to another, in general, is more easily accom­

plished than direct transmission to persons outside the household. It 

is also granted that some hereditary diseases, such as diabetes, may tend 

to cluster in households. In addition, poor housing conditions and other 

environmental stresses common to all members may be responsible for the 

clustering of health problems in households. Again, the psychiatrist may 

relate the development of mental illness to household tensions. :Further, 

'accident-prone' persons, those who have 'too many' accidents , may very 

well cause injury to others in the household. And, finally, it may be 

that chronic disease in one member sometimes induces tensions among 

other members, leading to diseases of varied kinds. All these examples of 

familial aggregation illustrate the generally held idea that illness in 

one member of a household implies an increased tendency for illness to be 

present in other members. It is not the intent of the present study 

either to substantiate or to disprove this. Rather, the relation of 

household health problems as a whole to antecedent non-communicable health 

problems in the household is to be investigated. 

The distinction may be made clear by comparing our study to a study 

by Downes, "Illness in the Chronic Disease Family11
•
10 The data were 

10 Dmmes, J., 11 Illness in the chronic disease family", American 
Journal of Public Health, V32, pp. 589-600, 1942. 

11 



12 

compiled from monthly interviews of families in the Eastern Health Dis­

trict of Baltimore, from mid-1939 to mid-1940. Individuals who had no 

chronic disease were divided into two groups: Group I, those having, and 

Group II, those not having, a chronically ill person in the immediate 

family. The illness rate for Group I was found to be greater than that 

for Group II. This finding indicates that a sort of familial aggregation 

of health problems was present in the families which were indexed by the 

presence of a chronically ill person. Determination of the presence of 

chronic disease and other illness was, however, concurrent. It is not 

lmown, in general, whether chronic disease existed first, followed by an 

increase of illness in other household members, or whether chronic dis­

ease merely occurred more often in households characterized by a high 

general illness rate. 

The study we are about to take up is oriented differently. Rather 

than just chronic disease problems, all kinds of non-communicable house­

hold health problems which occur during a one-year interval are the index 

of a household health stress. Households with health problems in the follow­

ing year, occurring to members who had no health problem in the first year, 

are studied in relation to that stress. The object of interest is antedated 

by the stress. Under this approach, concurrent familial aggregation does 

not contribute to the relation. Rather, present health problems are viewed, 

sometimes as an indicator, sometimes as a cause of household health problems 

in the future. 

It seems reasonable to expect that, because of familial aggregation, 

a positive relation between antecedent and subsequent health problems 

should exist in households taken from the general population. Nevertheless, 

it should be pointed out that the truth of this hypothesis does not follow 
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necessarily. This is because a selective, negative force is actuated by 

every occurrence of a heal th problem stress. In our ignorance of all the 

manifold conditions under which health problems develop, we can say that 

some -persons in a household are more susceptible to illness than others. 

If the _more susceptible persons come down with illness in a given interval 

of time, then the less susceptible persons remain. These less susceptible 

per$ons constitute a 'preferred risk'. It is theretore entirely possible 

that the selective, negative force of disease within the household, due 

to differences in susceptibility of its members, may balance or outweigh 

the supposed familial aggregation of illness, due either to characteristic 

differences of households within the comm.unity or to the stress which a 

health problem sets up in the household. The resultant of these opposing 

tendencies may vary under different conditions. In this event, it becomes 

important not only to examine the overall relation of household health 

problems in a population, but also to study how this relation changes 

under various ctrcurnstances. 

In the study we take up here, the simple relation between ante­

cedent and subsequent household. health problems is investigated first. 

Then certain characteristics, i.e. size, average age and sex distribution 

of the household, which from_g_ priori consideration influence selection 

within the household, are taken into account. Also, certain circumstances 

in respect to the sample design, i.e. stratification and interviewer 

characteristics, are taken into account. The customary classification 

techniques are found to be inadequate in accounting for all these variables. 

The new technique developed in subsequent sections is employed. After 

adjustment for household size, average age, and sex distribution as well 

as stratum and interviewer characteristics by this technique, the adjusted 
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relation of household health problems can be interpreted. Following this, 

the question of household health problems as a cause of subsequent health 

problems is investigated. This is done by analysis of the variation of 

the adjusted household health problem relation among size-age-sex specific 

groups of households. Statistical properties of measures of partial 

association, developed in the later sections of this work, are applicable 

in that analysis . 

2.1. Source and Limitations of the Data 

The material for this study comes from a survey of a district of 

Pittsburgh, Pennsylvania. In July 1951, the Graduate School of Public 

Health, University of Pittsburgh, conducted a survey of some 3000 house­

holds in the central portion of the Arsenal Health District of the Pittsburgh 

Health Department. The area sampled by the survey comprised 22 of the 194 

census tracts in the city and had a total population of about 80,000. On 

the basis of average monthly rental data, households in the study area were 

judged to be well below the rest of the city in income level. One of the 

principal objectives of the study was to measure the health characteristics 

of households in the area by means of personal interview of responsible 

members of the selected households. 

A detailed discussion of the sampling design is given by Horvitz.11 

Some of the main features are described below. The 468 blocks in the 

district were classified into three strata, according to the number of 

dwelling units occupied (1940): Stratum I, lOO or more; Stratum II, 50 and 

11 Horvitz, D. G., "Sampling and field procedures of the Pitts­
burgh Morbidity Survey", Public Health Reports, V67, pp. 1003-1012, 1952. 
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less than 100; Stratum III, less than 50. The primary sampling unit within 

each stratum was the block. For each selected block a proportion of the 

dwelling ®its in that block was chosen for interview. The block sampling 

rati·os and dwelling unit sampling ratios within a given block were so 

chosen that each dwelling unit in the entire study area had an equal chance 

(approx . 2/15) of entering the sample. Both blocks and dwelling units 

within blocks were selected by systematic sampling with a random start. 

(For illustrative purposes in the preliminary analysis, the sample data 

are treated as a simple random sample; but in the refined analysis account 

is taken of the classification into three strata.) In June 1952, approxi­

mately one year later, the same households as were selected in 1951 were 

interviewed again, unless the household had moved or refused to cooperate 

in the second survey. 

The response problem was given particular attention in the design 

of the first interview. Horvitz relates that there were 18 enumerators. 

Ten were male medical students, two were female medical students, one was 

a female worker experienced in health surveys, and 5 were non-medical 

female college students. Through the assignment of interviewers to blocks 

in a random fashion, differences in response, according to interviewers, 

could be assessed. Horvitz concludes, from a study of illness rates in 

relation to interviewer groups, that there was conclusive evidence of 

differences in illness rates elicited by the various interviewers, differ­

ences not ascribable to chance. (Consequently, our analysis adjusts for 

certain interviewer characte+istics as well as for strata.) 

One important limitation of the data, as for most survey data, is 

non-response. Table l shows that, of 2957 households initially selected 

for interview, 166 failed to cooperate in the first interview; another 220 



Table 1 

An Account of Non-respondent and Excluded Households 

Total Households Initially Selected for Interview: 

Less: Failed to Cooperate, 1st Interview -
Non-respondent, 2nd Interview -

Failed to cooperate 
Moved away 

Total Non-response, Either Interview: 

Households for which Some Data Available from Both Surveys: 

Less: Information Incomplete for One or More Members -

Households for which Complete Data Available from Both Surveys: 

Less Exclusions: 
No Members Free of Health Problem in 1st Year -
Communicable Disease Present at 1st Interview -

Total ·Exclusions: 

Total Households Available for Analysis: 

16 

2957 

166 

220 
.Q1.471 

_fil]_ 

2320 

~ 

2271 

58 
11. 

~ 

21.42 

which cooperated in the first failed to do so in the second. An additional 

251 households moved after first interview and were lost from observation. 

For 49 of the remaining households, information on one or more members is 

incomplete. This leaves 2271 households for which complete information is 

available from both surveys. Of these, there are 58 in which no members 

were free of health problems as of the first interview. An additional 71 

households are excluded from the analysis because communicable disease was 

present at first interview. Thus, we are left with 2142 of an original 

2957 selected households. In a strict statistical sense, then, the results 

of this study are not generalized to include those households in the commun­

ity, 

(a) which would not have cooperated, 
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(b) which would :p.ave moved, 

(c) which would have failed to give certain pertinent infom.ation, 

(d) which would have no members initially free of health problems, 

or (e) which would have reported a communicable disease at the first 

interview. It is noted, however, that communicable disease in the second 

year is not excluded as a sequel to non-cormnunicable health stress in the 

first. 

A further limitation of the data is that their accuracy is limited 

to the accuracy of respondents' recall. 

2.2 Definitions 

In order to analyze the problem in specific terms, certain measures 

must be defined. And, as Ciocco puts it, nThe important point to keep in 

mind is that the criteria (for classification) adopted and the resulting 

classifications have an important bearing on the interpretations to be drawn 

from the findings. 1112 Consequently, it is doubly important that the defini­

tions which follow be made clear at the outset. 

2.21. Household 

A household is consisted of a number of persons living at a common 

dwelling unit. In the great iµajority o.f cases, the household is equivalent 

to a family, or a single person living alone, but there are a few cases for 

which more than one family, or several unrelated persons constitute a 

household. 

12 .Ciocco, A., Densen, P., and Horvitz, D., "On the association 
between health and social problems in the population", The Milbank Memorial 
Fund Quarterly, V31, pp. 265-290, 1953. 
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2.22. A Person with a Health Problem 

A person with a health problem is: 

one with a reported physical impairment or chronic disease 
existing within one year prior to interview; 

one reported hospitalized at any time in the year prior to 
interview, except hospitalizatio'n for delivery without 
complications, and except for routine check-up; 

or, one reported to be semi-arnbulatory or confined to bed for any 
interval during the month prior to interview. 

This definition is made in view of the limitations of the survey. It was 

felt that respondents could not give accurate histories of .illness beyond 

one month pri01: to interview, except for hospitalization and chronic illness. 

This definition of a person with a health problem conforms closely to that 

adopted in earlier studies based on the Arsenal Survey.13 

2..23 .• A person with a communicable disease 

A person with a communicable disease is any reported person with 

a health problem who, in the month prior to interview, had an illness 

coded (International Statistical Classification of Diseases, Injuries and 

Causes of Death, 6th Revision, 1948): 

001-138 
470-475 
480-483 
490-493 

2.24. Age of person 

infective and parasitic, 
acute upper respiratory infection, 
influenza, 
pneumonia. 

The age of a person is taken as the reported age in years to last 

birthday prior to first interview. 

2.25. A Propositus 

A pro-positus is a reported person, over one year of age at first 

interview, who had no health problem during the first year, and who did 

13 Ibid., p. 272. 
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not leave the household in the second year, except by reason of death or 

illnesso 

2.3. Preliminary Analysis 

In this preliminary analysis, the second year health problem rate 

for propositi is studied. The rates are compared for propositi from house­

holds with, versus those from households without, a first year health stress. 

A negative relation is observed; that is, the second year health problem 

rate is greate.r for propositi from households wi tp.out initial heal th stress. 

This is true, despite the fact that an overall familial aggregation of 

health problems is observed in the first year. It is shown that these two 

findings are not contradictory, that the difference may be explained as 

due to greater negative selective forces acting on the serial (one-year 

time lagged) relation than on the concurrent (aggregation within first year) 

relation. Attention is then turned to the household as the unit of analysis. 

That part of the household consisting of propositi (a propositus household) 

is studied. Two groups of propositus household, those indexed by the 

existence or non-existence of a household health problem in the first year, 

are compared. Again a negative relation is found: relatively more propositus 

households which were free of a household health stress in the first year 

developed health problems in the second year. The measure of the strength 

of this relation is taken as R, the product-moment correlation between 

health status in the first year and health status in the second year. It 

is shown that R is an adjusted difference in second year health problem 

rates between the two groups of propositus households. This observed nega­

tive relation is significant on the.1% level, which indicates that an 

overall preponderance of negative forces existed in the population. 
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2.31. Comparison of Propositi in Households, I, Without and, II, With 

First Year Health Problems 

Although the individual propositus is not, in a strict statistical 

sense, the proper unit for analysis, it may be informative to compare 

individual propositi in households having a first year health problem with 

proposi t _i in households ;free of first year problems. Table 2 shows this 

comparison. 

Table 2 

Number of Health Problems and Health Problem Rate 
in the Second Year for Propositi in Households, 

I, Without and, II, With a Health Problem in the First Year 

Household Status Number of No. of 2nd Year 2nd Year Health 
1st Year Propositi Health Problems Problem Rate 

for Propositi (Hlth. Pbs. per 
100 Propositi) 

I Without Hlth.Pbs. 4809 1632 33.9 

II With filth. Pbs .. 1796 552 30.7 

On a relative basis, the propositi of Group I experienced the higher rate 

of health problems, 33.9, as compared to the 30.7 rate for propositi of 

Group II. This is an observed negative relation, quite different from 

the positive relation of chronic disease to concurrent health problems 

seen by Downes. 

It is emphasized, however, that the negative relation seen here 

is not contradictory to Downes' finding, nor is it contradictory to the 

general idea that there is familial aggregation of illness. This is because 

any familial aggregation which may have been present in the first year does 

not, in itself, contribute to the serial, that is the one-year time lagged, 

relation seen in Table 2. Consider, as a simplified hypothetical example 
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of aggregation, the following. Suppose we are dealing only with 100 house­

holds of size three. Also, taking a rather obvious illustration of familial 

aggregation, suppose that first year household health problems occurred 

only in pairs in 50 of the households. Table 3 indicates this situation. 

Table 3 

Hypothetical Distribution of Number of Members (X) 
with First Year Health Problems, 

for Households of Size S = 3 

No. of Persons with Hlth. Pbs. Total No. of 
in the Household, 1st Year Households 

(x) (n) 
0 1 2 3 

!
Frequency of(f) 
Households 50 0 50 0 100 

As the measure of familial aggregation, we take the observed variance of 

X (the number of persons with health problems) in ratio to the variance 

in X which would be expected if health problems were distributed randomly 

to individuals; this we shall call the coefficient of familial aggregation. 

If the coefficient is greater than 1, then there is an observed familial 

aggregation; if les~ than 1, then there is an observed dis-aggregation. In 

the present hypothetical case, there are 50 x 2 = 100 persons with health 

problems out of a total of 100 x 3 = 300 persons. Then the overall pro~or­

tion of persons with health ~roblems is P = 100/300 = 1/3. If these persons 

had been distributed by chance, then the expected distribution would be 

the terms of the binomial, (P + Q)3 , which, in this case, is (1/3 + 2/3) 3. 

The variance of this expected distribution would be V = SPQ = 3(1/3)(2/3) = 
e 

2/3. Actually, the observed variance, V, as calculated from Table 3 is: 
0 

V = (Lfil-/n) - (Lfx/n)2 =(50 x 22/100) - (50 x 2/100) 2 = 2 - 1 = 1. The 
0 

ratio of observed to expected variance is therefore 1 + 2/3 = 1.5. This 

ratio greatly exceeds one; hence there is a strong observed familial 
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aggregation. 

Now in the foregoing situation there are 50 propositi from the house­

holds with first year health problems and 150 propositi from households 

without first year health problems. If, say, l/5th of each of the two 

propositus groups come down with a health problem in the second year, then 

the health problem rate for each propositus group is 20 per 100 propositi, 

and no serial relation exists. Thus, the mere existence of familial aggre­

gation in the first year tells us nothing, necessarily, of the serial 

relation. 

These same considerations apply to the more complex case with which 

we are dealing, in which households of various size are involved. Table 4 

shows the distribution of number of persons with first year health problems 

in households of size 3,4, .... , 11, as observed in the Arsenal data. From 

the data for each household size, an estimate of the proportion of persons 

with heal th problems, P., is made in the sarnr:! manner as illustrated for 
J. 

' Table 3. (However, a correction is made for the fact that households in which 

all members have a health problem are excluded14 see exclusions, Table 1.) 

Then the variance,(V )., of the observed distribution of Xis computed and 
0 J. 

divided by the variance, (V )., of the expected distribution of X to form e i 

the coefficient of familial aggregation, A., in the same fashion as illus-
i 

trated for Table 3. (Again, a correction is made because of the truncated 

distributions.) Households of size land 2 are omitted because the observed 

coefficient of aggregation must always be unity for those cases. 

14 For a method of estimating P when the frequencies in the extreme 
class of binomial distributions are unknown, see: 

Li, C. C., "Segregation of recessive offspringr', Methods in Medical 
Research, V6, pp. 3-16, The Year Book Publishers, Inc., Chicago, 1954. 
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Table 4 

Distribution of Number of Members with First Year He~th Problems, 
Expect~d Chance Distribution, and Coefficient of Familial Aggregation, 

for Size-Specific Groups of Households* 
- - - --- - -

Household Tofal No. Observed and (Expected) No. of Obs./Exp. Coeff. 
Size 1 of Hh. Members with 1st Year Health Problems Var. Var. of 

I (x) Agg. 
(s.) (n.) 0 1 2 3 4 5 (V )./(V ). (Ai) l. l. o i e 1. 

3 694 415 149 130 X X X .617; 1.37 (404) (242) (48) X X X .450 

4 432- 281 126 24 1 X X .367; 1.00 
I (280) (128) (22) (1.7) X X .367 

5 I 236 156 68 10 2 0 X .376; 1.02 (156) (67) (12) (.9) (.o) X .367 

6 128 72 50 6 0 1 0 .437; .93 (75) (42) (10) (1.3) (.1) (.o) .471 

7 41 23 12 6 0 0 0 .536; .60 .• (13) -(16) .. (8.-5) (2.5) - (.4) (.o) .888 

8 20 9 9 1 1 0 0 .610; .95 
I (9.6) (7.4) (2.5) (.4) (.1) (.o) .640 

9 9 4 3 2 0 0 0 .617; .87 (4.0) (3.4) (1.3) (.3) (.o) (.o) 
. 

.710 

10 4 2 l 0 0 0 l 4.32; 3.32 
I (.8) (1.4) (1.1) (.5) (.2) ( .o) 1.28 

! 

11 6 4 2 0 0 0 0 .222; .69 (4.3) (1.5) (.2) (.o) (.o) (.o) .323 

* Households in which all members have health problems are omitted, per Table 1. 

In general, when observed frequencies exceed the expected at the 

extreme values of X, aggregation is present; when observed frequencies tend 

to ol'U3ter about the center, dis-aggregation is present. For the 694 holliSe­

holds of aize three, strong aggregation is present, A~ 1.37, while only 

very slight or no aggregation is present for households of size four and 

five. Households of larger size tend to show dis-aggregation, with the 

exception of the four households of size 10. But the frequencies for the 
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larger sized households, seven and up, are quite small and fluctuations in 

the observed coefficient of aggregation can be expected to be large. The 

aggregation picture is really dominated by households of size 3 through 6, 

these constituting the great majority of households. As an overall, sum­

mary measure of aggregation in the whole sample, we take the average coef-

ficient of aggregation, A =Ln. (V ) ./2.n. (V ) . . This is the ratio of ave i o i i e i 

observed variance to expect'ed variance, averaged over all sizes of house-

hold, with number of .households as weights. In our case, A = 1.16; ave 

thus, overall, there is a moderate familial aggregation of health problems 

in the first year. 

Summarizing thus ·far, an · overall negative serial relation is observed 

(Table 2) in spite of ·the fact that an overall familial aggregation is 

observed in the first year (Table 4). This is because the serial relation 

is subject not only to familial forces but also to others. We may hypothe­

size two kinds of such forces, positive and negative: 

(1) positive 

a) familial - the fact that some households had health 

problems in the first year may be the result of poor housing, poor social 

environment, genetic traits, etc., acting _in common upon all members of 

such households; the households free of problems the first year may be in 

a relatively eafe environment; then, from such familial forces, we may 

expect the propositi in the households with initial health stress to exper­

ience a higher rate of second year health problems than the other group ot 

propositi; 

b) direct causal - the occurrence of health problems may 

act as a stress tending, on average, to cause future health problems in 

propositi in households containing such stress; again, this would tend to 
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(2) negative 
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a) selective - propositi in households with first year 

health problems did not come down with health problems for as much as a 

full year, when confronted with the same positive familial and directly 

causal forces as less healthy members; this may mean that these propositi 

have individual characteristics which make them less susceptible to health 

problem stresses than the propositi in households without first year 

health problems; in this event, a negative serial relation tends to be 

present; 

b) direct causal - it is conceivable that the occurrence 

of health problems in some members of the household acts to change the 

mode of life of the remaining propositi such that propositi are exposed 

to less risk of health problems in the future; in this case, health problems 

would constitute a negative force on the propositi. 

Probably a mixture of all these tendencies is at play in the actual 

population, but apparently negative forces outweigh the positive forces, 

producing the observed negative relation seen in Table 2. 

2~32. Comparison of Households, I, Without and, II, With First Year Health 

Problems 

Now we turn from the individual propositi as the analytical units 

to the household. The household was the sample element in the survey. Henoe 

~tatistical m~aseyes of $ignificance are more valid when the household, 

rather than the individual p:roposi tus, is considered to··· be the analytical 

unit, .Furthermore, the analysis is concerned with the household health prob­

lem relation for various cla$ses of households rather than for classes of 
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individuals. 

In order that the customary definition of a household, given in 

2.21, be distinguished from that part of the household consisting of pro­

positi only, the latter is defined as a propositus household. Table 5 is 

a four-fold classification of propositu.s households according to health 

problem status in the first year and in the second year. 

Table 5 

Four-fold Classification of Households According to Household 
Health Problem Status at First -Interview and Propositus 

Household Health Problem Status at Second Interview 

-~-
Second Interview Total 

First Interview No Hlth. Pb. Hlth. Pb. Households 
in Prop. Hh. in Prop. Hh. 

I. No Household! 600 882 14E;3? 
Hl th. Pb. I 

II. Household ! 321 339 660 Hlth. Pb. I 

Total 921 1221 2142 Household's I . -

It is first noted that, ·while only 660 households were found with 

health problems in the first i?_lterview, 1221, nearly twice as many, proposi­

tus households had health problems in the second interview. At first glanoe, 

this information would appear rather surprising, since persons with health 

problems in the first interview do not contribute to the count of health 

problems in pro_posi tus households in the second year. Other things bein~ 

equal, it would be expected that the number of propositus households with 

health problems in the second year would be something less than 660, However, 

this apparently large inerease can be e~plained as due, for the most part, 

to differential response in the two interviews, The questionnaire used in 

the first interview contained only gener~l questions about the ocourrenoe of 
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health problems, whereas in the second survey a long list of specified 

illnesses was presented on the questionnaireo This revision in procedure 

was apparently successful in improving respondent recall of illness. Of 

course, other factors are at play to create a difference in health problems 

for the two periods; actual illnesses, as distinguished from reported illness, 

may have been at different levels in the two years, for propositi are a 

full year older at time of second interview, epidemics may have had greater 

influence in the population in the second year, and so forth. However, it 

seems that these other factors could explain only a minor part of the increase, 

and that this large increase illustrates the magnitude of the problem of 

differential response. 

Now attention is directed to a comparison of propositus households 

free of first year health stress lGroup I) with those subjected to first 

year health stress (Group II). Rather than choosing .the simple difference 

between proportion of households with second year .health problem& as a meas­

ure of the comparison, we choose the product-mome~t correlation, R =IXo/n, 

as the measure of relation. In 3.6 it will _be shown that, for interpretative 

purposes, 

R = (p2 - pl)/p'q'/pq , 

where (p
2 

- p
1

) is the difference in proportion of Group II 

and Group I households, reap., with second year health problems, 
1; 

and pis the proportion of all households with seeond year ''· 

health problems, (q = l - p), 

and p' is the proportion of all households with a first 

year health problem strss~, (q' ~ l - p'). 

Thus the product-moment correlation is the simple difference between propor­

tions, (p2 - p1), adjusted by the factor ./p•q•/pq. 
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The denominator, -{pg_, of the adjusting factor may be termed the 

'inherent' . variability of rates due to the level of p1 and p
2

. 'fhis is 

because pis a weighted average of p1 and p
2

. Now p describes a binomial 

universe with standard deviation of ,/pq. Then, when (p2 - p
1

) is divided 

by -{pq, the result is a standardized difference in proportio:rUl. For a given 

difference in proportions, (p2 - p1), a stronger relation is indicated when 

the average of these two p~oportions is far from .5 than when the average is 

near to .5. For example, if the difference between p2 and p
1 

is .1, a 

stronger relation is indicated when p ~ .2 than when p = .5, as 

(p2 - P1)/-{pq = .1/~4 = .25 in the first instance, 

and (p2 - p1)/-{pq ~ .1/.5 = .20 in the second instance. 

This standardized d~fference in proportions, standardized by the inherent 

variability attached to the average level of the .proportions, is multiplied by the 

numerator, ~, of the adjusting factor. 1l1he numerator term is a maximum 

when half of the households fall in each of the two categories being com-

pared, and decreases unifo:hnly as the number of households in one category 

increases beyond .5 of the total number of households. Thus, when a given 

standardized difference in proportions is observed between two equal sized 

groups sampled from the population, a stronger relation is considered to 

be indicated than when the majority of elements falls in one category and a 

few in the other. Thie weighting can be rationalized on the basis of a 

• selection principle. Classification into two categories constitutes a 'seleo­

tion' of cases for eijch category. Now, a criterion for selection whioh 

produces a relatively few elements in one category, as compared to a criterion 

which produces approximately equal numbers of elements in each category, 

would be expected to produce larger differences more often. Thus, the faotor • 

../p'q', standardizes for inherent variability of differences between p2 and p1 
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due to unequal size of categories. 

In summary, the adopted measure of relation, R, is a difference in 

rates, adjusted for inherent variability in the rates due to differences in 

category size~ and due to the average level of the rates. 

1\J'ow with reference to Table 5, (p
2 

- p1 ) = (339/660) - (882/1482) = 

.513 - .595 = -.082, or -8.2%. When this difference is adjusted by the fac-

tor, Jp'q'/pq ~ = .933, the adjusted difference in 

proportions, that is the product-moment correlation, is 

R = - .• 082( .933)= -.077, or -7. 7%. 

Thus, with households as the unit of analysis, the serial relation is nega­

tive, as previously found for the serial relation based on individual propos­

iti as the analytical unit. Again, the sample reflects that the net influence 

of famiI1al, selective and direct-· causal forces, described in detail in 2 .• 31, 

is negative. But how confident are we that this ' negative relation existed 

in the population from which the sample was taken? To answer this question, 

we must lmow the distributional prop~rti.es of R. In section 3.0, the proper­

ties of the maximum correlation in the general two-factor contingency table 

are reviewed. In the particular case of the four-fold table, such as 'l'able 

5, it is shown that the maximum correlation reduces to the product-moment 

correlation, R, and that R is approximately normally distributed, with var­

iance, 1/n, where n is the sample size. Then, testing the observed R against 

the null hypothesis, 

(R - 0)/11/n ~ ./iiJJ.. ~ f2142(-.077) ~ -;.57. 

Ref~r-ring this vitlue, -;S.57, to a normal table, we find that a value as 

great or gr~ater would oocur by chance less than one time in a thousand under 

repetitive sampling1 if there were no relation in the popu.lationo Thu.$ we 

can infer with a high degree of confidence that a negative serial relation 
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truly existed in the Arsenal population. 

As stated before, we can attribute this negative relation to an 

excess of negative forces. Discarding, for the moment, the possibility that 

there is a preponderance of negative direct causal forces, this suggests 

that the negative relation can be explained by a preponderance of selective 

forces. In the next sub-section, certain selective and familial forces are 

specified. Some of those forces can be taken into account by sub-classifi­

cation of the Arsenal sample data. But there are others which cannot be 

taken into account by further sub-classification because too small frequen­

cies in the ultimate categories would be encountered. In order to take all 

specified forces into account, a new measure of partial serial relation is 

used. This measure i's quite analogous to the simple measure, R, above. Its 

distributional properties are also found to be approximately normal. Conse­

quently, tests of significance, similar to that applied in the above prelim­

inary analysis, can be applied in that more refined analysis. 

2.4. The Serial Relation, Adjusted for Various Conditioning Factors 

Adjustment for the influence of conditioning factors is taken up 

here. The specific factors are household size, average age, sex distribu-

tion, atratum and interviewer characteristics. It is desired to obtain the 

serial relation of household health problems for sub-groups of households which 

are comparable in all five of the above respects. The traditional way to 

accomplish this is to clas~ify the sample data according to all five faotore 

and to compute the serial relation within each ultimate size-age-sex-stratum­

interviewer-speoifio category. But it is found, because of the size of the 

available sample, that the ultimate category frequencies would be muoh too 
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small. In a majority of ultimate categories, t here would be no frequencies 

present; thus, not even a measure of serial relation could be computed for 

these categories. Furthermore, in the remaining categories for which a meas­

ure could be computed, the frequencies would be so small that the computed 

serial relations would be practically .meaningless when assessed on a proba­

bilistic basis. 

Therefore two essentially different techniques for adjusting the 

serial correlation are employed. The first is the traditional classification: 

the data are classified according to household size, average age and sex 

distribution. Most of the ultimate size-age-sex categories contain frequen­

cies which are fairly large, 30 or more. But classification stops here. In 

order to further adjust for stratum and interviewer characteristics, the sec­

ond, new, technique is applied. For this new techniquet each ultimate size­

age-sex category containing 30 or more frequencies is treated as a sample from 

the corresponding size-age-sex specific sub-population. Within each of these 

categories a partial serial relation is computed. The computation of this 

partial serial relation is accomplished by applying the results of the theo­

retical development in subsequent sections of this work, sections 4 and 5. 

The partial serial relation is the serial relation which exists after the 

influence of stratum and interview characteristics is adjusted for. The pro­

cedure for adjustment is quite analogous to the balancing procedure carried 

out in the ordinary factorial experimental design; the only difference is 

that the factorial experimental design usually adjusts for conditioning 

influences by balancing the number of observations taken at each level of 

the factors, whereas in our case, we must take the observations from the popu­

lation as they come. The disturbing influence of conditioning factors is 

adjusted, not through controlling the number of observations taken, but through 



32 

correcting the observed relation for the influence of the unbalanced fre­

quencies. This adjustment technique is the form.al equivalent of th~ familiar 

least squares analysis in experimental work. However, the approach differs 

from least squares in two respects, one conceptual, the other practical. Con­

ceptually, the technique is founded on the principle of maximizing the squared 

correlation between scores assigned to the categories of contingency tables, 

rather than minimizing the squared error for a continuous variable. Prac­

tically, the method differs from the usual straight-forward application of 

the least-squares formulae in that an adjustment for continuity is applied 

to all the frequencies used in the computation formulae. This adjustment 

• for continuity comes from the development in section 5; there it is shown, 

by actual experimental trial on the IBM 650 computer, that an adjustment is 

necessary to increase the validity of measures of partial relation based on 

least-squares formulae. 

Thus, the adjustment procedure combines two different techniques: 

first, classification as far as possible; then, mathematical adjustment of 

remaining conditioning factors. The partial, i.e. adjusted, serial relations· 

in each ultimate category of the classification systems are then combined (aver­

aged) to produce a single, overall, serial relation adjusted for all the con­

ditioning variables. Conceptually, this adjusted serial relation is based 

on comparisons of households orµy in comparable size, age, sex, stratum and 

interviewer groups. From the known statistical properties of the size-age-

sex specific relatiom3, as ~etermined in section 5 of this work, the signi­

ficance of the overall adjusted serial relation can be assessed, and an 

inference can be made. 
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2.41. Choice of Conditioning Variables to be Taken into Account 

The very process of a health problem coming into existence creates 

a selective negative force on the serial relation of household health problems. 

The following illustration which considers selection involving the factors, 

household size, age and sex distribution, is over-simplified, but, being such, 

emphasizes this selective force. 

First, let us suppose that, ceteris paribus, two persons constitute 

a greater exposure to health problems than does one person, that health 

problems occur more often to older persons than younger persons, and that 

the adult female has health problems more often than the adult male. 

Now consider two households composed of three individuals, father, 

mother and daughter, aged 40, 40, and 16, resp. In household number I, 

suppose no one has a health problem in the first year. In household number 

II, suppose mother has a health problem in the first year. Then the propositi 

of household I are: 1 father, age 40 
2 mother, age 40 
3 daughter, age 16. 

Thus there are three propositi; their average age is 32; and they· are pre­

dominantly (2/3) female. In household II, due to mother having a health 

problem, the propositi are: 1 father, age 40 
2 daughter, age 16. 

Here there are only two propositi; their average age is 28; and the fem.ale 

does not predominate. 

Consider now the likelihood, ceteris paribus, of a second year health 

problem occurring to one or more propositi in each household: 

(1) by reason of there being more propositi in household I 

than in II, the likelihood of a health problem occurring to at least one of 

the three propositi in I is greater than that for at least one of the two 
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propositi in II; 

(2) the average age of propositus household I is greater than 

for propositus household II, there being two 40 year olds in the former to 

one 40 year old in the latter; then, since it is assumed that health problems 

occur more often to older p~rsons, propositus household I is more likely to 

have a second year health problem than propositus household II, because of 

the age difference brought about by occurrence of the first year health 

problem; 

(3) propositus household I has a predominance of females while 

II does not; I has an adult female propositus, II does not; then, assuming 

it is true that the adult fe~ale more often has a health problem than the adult 

male, household I is again more likely to have a second year health problem 

than household II. 

The influence of each of these factors, size, age, sex, is shown here 

to be the result of the very process of a health problem having occurred. 

Each of these factors illustrates the selective process which occurs due to 

differences among the individuals within the household. 

Now, we can turn about and say that size, age and sex distribution 

can also be positive familial forces rather than negative selective forces. 

Thus, consider household III, comprised of five females, average age 40, and 

household IV, comprised of a married couple, average age 30. Then household 

III is more likely to have a first year health problem because, 

(1) there are more individuals at risk, 

(2) the individuals at risk are older, 

(3) a greater proportion of females is at risk. 

Further, if the more likely event occurs, household III does have a first 

year health problem, while IV does not. Then propositus household III will 
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still have the greater likelihood of a second year health problem because 

the household III propositi are still 

(1) greater in number, 

(2) older, 

(3) more predominantly female. 

This, then, illustrates that differences in size, age and sex distribution 

may tend to create a positive serial relation. 

soning contradictory to the former? Not at all. 

But isn't this line of rea­

For in the latter illustra-

tion, differences among households, not differences among individuals, account 

for the positive force. In the former illustration, differences among indi­

viduals within households, not differences among households, account for 

the negatiye force. 

If, then, we classify propositus households so that comparisons are 

made only for households of comparable size, age and sex distribution, we 

should be removing sources of both negative and positive nature. If the 

serial relation becomes more negative, after such adjustment for size, age 

and sex, then a greater positive (familial) force than a negative (selective) 

force should have been removed, and vice ~• 

There are additional factors of classification, the influence of 

which it would appear desirable to adjust in this study. These relate to 

• the conditions under which the survey was carried out, and they are, firstly, 

strata, and secondly, interviewer characteristics. 

Adjustment is made for strata, by the 3-category classification, 

I 100 or more dwelling units per block, 

II 50 and less than 100 units per block, 

III less than 50 units per block. 

There are two reasons for adjusting the serial relation for possible influences 
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of strata: firstly, to bring the analysis more into line with the sampling 

design, as described in. __ 2.1; secondly, to account for a factor with socio­

economic overtones, since blocks with larger numbers of dwelling units in 

the Arsenal Health District may, in general, be associated with lower socio­

economic status. Thus, a presumed positive familial force due to socio­

economic status is partly removed by classification on this factor. 

Finally, it has been mentioned that Horvitz found differences in 

response attributable in part to interviewer characteristics in the first 

interview. Of the 18 enumerators in the first interview, 

ten were male medical students - group A, 

two were female medical students - group B, 

one was a female non-student - group C, 

five were female non-medical students - group D. 

In the second survey, all sixteen interviewers were male medical students, 

group A. In the analysis which follows, groups A and Bare combined and 

groups C and D are combined. The resultant two groups, AB and CD, are 

nearly confounded for sex and type of school. That is, in group AB, the 

interviewers are medical students, predominantly male, while in group CD 

the interviewers are predominantly non-medical students and are female. 

Therefore, by the use of only two categories of interviewer, AB and CD, 

the small categories, Band C, are eliminated, but sex and type of school 

are both fairly well preserved. Then adjustment on the basis of this classi­

fication should account for most of the possible spurious influence of both 

interviewer sex and type of school on the serial relation of household 

health problems. 
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2.42. The Serial Relation, Adjusted for Propositus Household Size, Average 

Age, and Sex Distribution, and Adjusted for Stratum. and Interviewer Charac­

teristics 

Classification of propositus households by size, age and sex yields 

the frequencies shown in Table 6. 

Frequencies 

Table 6 

Classification of Propositus Households According to 
Size, Average Age and Sex Distribution 

Age in Sex Size 
Years Dist.* 1 2 3 4 5&up (Ave.) 

15-29 
M 21 .ill. 104 143 158 
F 17 14 117 2± 92 

30-44 
M .3Q 124 .251. 96 57 
F 25 19 97 27 -12. 

45-54 
M 14 97 22 15 4 
F 2.§. 12 42 5 1 

55&up M 22. 179 24 10 1 
F 72 23 22. 5 1 

Total 284 603 551 355 359 

* F denotes propositus household in which the females 
M denotes th~t in which half or more of the members 

predominate, 
are males. 

of 30 and above are underlined. Some of the interrelationships 

of size, age and sex are evident in this table: propositus households of lar-

ger sizes are very rare in the older age groups; predominantly female proposi­

tus households are rare in the younger age groups. The underlined frequencies _ 

total 1904; the remainder total 238. 11hus almost 9CP/o of the sample is repre­

sented in the 22 underlined categories, while the remaining l(Jfo is distributed 

among the 18 other categories. The analysis which follows ignores the latter 

rare categories because the statistical properties of the measures of partial 
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association within them are probably not well approximated by the method 

developed in subsequent sections, and because, numerically, these categor­

ies are relatively unimportant in the population. Also it is believed 

better to discard these categories rather than to combine them with other 

neighboring categories in a more gross classification system. For example, 

it is believed better to discard the 21 female households of size one in the 

15-29 year age group rather than to produce extreme heterogeneity of cate­

gories, with consequent difficulties in interpretation, by putting these 

21 households in the same category as the 135 predominantly male households 

of size two in the 15-29 year age group. 

The frequency in each of the size-age-sex specific categories of 

Table 6 can be considered as a sample from each corresponding size-age-sex 

specific sub-population of the Arsenal District. Then, a four-fold table 

of household health status in first and second year can be constructed for 

each such category, in the same manner as Table 5 was constructed for the 

sample as a whole. For example, take the category of propositus households 

of size one, average age 30-44, not predominantly female. (In this particu­

lar case we are dealing with individual male propositi between the ages of 

30 and 44, incl.) From Table 6, there are 30 such households in the sample. 

When classified on health problem status, first and second year, these 30 

households are distributed as shown in Table 7. Just as for Table 5, the 

product-moment correllation, R, can be calculated for Table 7. This is, 

R = (p2 - p1)/p'q'/pq = (1/3 - 9/27)/(27)(3)/(20)(10) = 0. 

However, this measure of serial relation, while being specific for size, age 

and sex categories, has not been adjusted for the influence of stratum and 

interviewer characteristics. Furthermore, the sample size, 30, is no longer 

very large; therefore, the serial relation should also be adjusted for continuity. 
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Table 7 

Four-fold Classification of Propositus Households of Size One, 
Average Age 30-44, Male, According to Household Health Status ' 

at Firs-t Interview and Proposd. tus Household Heal th 
Status at Second Interview 

--~ .. 

First Interview Second Interview 
Total No. 

No Hlth. Pb. filth. Pb. of Hh. 
in Prop. Hh. in Prop. Hh. 

-

No Hh. Hlth. Pb. 2 1 3 

Hh. filth. Pb. 18 9 27 

Total No. of Hh. 20 10 30 

The detailed procedure to adjust Table 7 for t~e possible spurious 

influence of stratum and interviewer characteristics, as well as for conti­

nuity, is illustrated in 5.9. For present purposes, only the results of 

such adjustments are presented, Table 8. 

Table 8 

Four-fold Classification of Propositus Households of Size One, 
Average Age 30-44, Male, According to HARlth Status at 

at First and Second Interview; 
'Frequencies' Adjusted for Stratum and Interviewer 

Characteristics, as well as for Continuity 

- - -- -· ~ -

First Interview Second Interview Total No. 
No Hltho Pb. Hlth. Pb. of Hh. 
in Prop. Hh. in Prop. Hh. t 

l 
~, .. ..N"".-.,1,_.....,~w---e-c-. -

No Hh. Hlth. Pb. 2.13 1.26 3.39 
I 

Hh. filth. Pbo 17.71 8.90 26.61 

Total No. of Hh. 19.84 10.16 30.00 

Now the partial serial association, having been adjusted for stratum and 

interviewer characteristics, and adjusted for continuity, is 

r = (1.26/3.39 - 8.90/26.61)-/(3.39)(26.61)/(19.84)(10.16) 

= -.025, or -2.5%. 
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This compares with an unadjusted R of o.a{o. 

Similarly, all the adjusted serial relations are computed for _the 

22 size-age-sex specific categorie~ in which the frequency of households 

equals or exceeds 30. These adjusted relations are shown in rank order in 

Table 9. 

Table 9 

Rank Ordered Partial Serial Relation (r~) of Household Health 
Problems, Adjusted for Stratum and Interviewer Group, and 

Adjusted for Continuity, for Size-Age-Sex(~) 
Catego~ies of Propcsitus Households 
o( roe Size Age Sex ne< 

1 -.322 3 45-54 M 33 
2 -.208 4 30-44 M 96 
3 -.175 5&up 30-44 M 57 
4 -.114 2 55&up M 179 
5 -.109 3 15-29 F 117 
6 -.085 5&up 15-29 F 92 
7 -.074 3 15-29 M 104 
8 --,046 2 45-54 M 97 
9 -.043 2 30-44 - M 124 

10 -.043 5&up 15-29 M 158 
11 -.040 2 15-29 M 135 
12 -.038 3 30-44 M 99 
13 -.025 1 30-44 M 30 
14 +.000 1 45-54 F 36 
15 +.013 3 45-54 F 42 
16 +.029 4 15-29 F 54 
17 +.038 3 55&up F 35 
18 +.045 1 55&up M 59 
19 +.05-2 l 55&up F 72 
20 +.078 3 30-44 F 97 
21 +.101 5&up 30-44 F 45 
22 +.196 4 15-29 M 143 

In section 5 it will be shown that each of such adjusted, or partial, 

serial relations has an approximately normal sampling distribution, with 

variance equal to 1/~, the reciprocal of the total frequency in the size-

age-sex specific category. Note that these statistical properties are essen­

tially the same as for R, the unadjusted serial relation for large samples. 
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These properties are applied to the present analysis in the various tests 

of significance and confidence intervals which ensue. 

Now an overall measure of the adjusted serial relation of household 

health problems in the Arsenal Health District can be obtained. This is 

done by averaging the 22 size-age-sex specific relations according to the 

formula: 

r is a weighted average of the 22 values of r~, with the no<as weights. ave 

This turns out to be 

r = -.035 = -3.5%. ave 

This overall measure is the adjusted difference between the rate of second 

year health problems for propositus households, I, with, versus those, II, 

without, a first year health stress. Conceptually, this means that only 

households of the same size, the same average age class, the same class of 

sex distribution, the same stratum and seen by the same class of interviewer, 

enter into the comparison of health problem rates for the propositus house­

holds of groups I and II. This adjusted comparison of rates, -3.5%, is not 

found to be significant on the 5% levelo (For detailed illustration of the 

computation of r and of the test of significance, see 5.10.) It is re-
ave 

called that the unadjusted relation, R, is -7.7% and is significant on the 

0.1% level (2.32). This significant unadjusted relation has been explained 

as due to an excess of negative selective forces. Since the adjusted rela­

tion is less negative, this means that a net negative force has been removed 

by adjustment for household size, age, sex, stratum and interviewer char­

acteristics. The 95% confidence estimate of the strength of the partial 

serial relation which existed in the Arsenal population is: -8.CJ/o to +1.1%. 

(See illustration, 5.10.) Therefore, we can infer that, overall, the 
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remaining unspecified positive and negative forces on the serial relation 

nearly b~lanced each 9ther in the Arsenal population. 

2.51l First Year Heal th Problems as a Cause of Second 

Year Health Problems in the Household 

In the introduction, section 1..0, it was pointed out that any 

causal interpretation of observational material, such as we are dealing with 

here, is subject to question. But it was also stated that, often, one of the 

prime purposes of the survey is to test a causal hypothesis and to see how 

the effects of the supposed cause vary under different circumstances. 

In the present analysis, we have adjusted in one way or another for 

five conditioning factors: household size, average age, sex distribution, 

stratum and interviewer characteristics. This is probably a mininum of 

conditioning variables which should be specified and accounted for before 

entertaining the causal hypothesis that health problems in the first year 

constitute a stress leading on average to increased second year health 

problems in the household. There is no argument with those readers who 

would not wish to entertain a direct causal hypothesis of this nature with­

out specifying and adjusting for other conditioning variables. For example, 

there might be good reason to adjust for factors such as occupation, race, 

and health history of propositi. Or again, some readers would wish to class­

ify the health problems by diagnosis before bringing a causal interpretation 

to any part of the analysis. The first point we are making here is that the 

framework in which a person is willing to entertain a causal hypothesis is 

subjective; it varies from person to person. Therefore, using observational 

data, we would not attempt either to 'prove' or 'disprove' the existence of 

a cauBe to the satisfaction of all, or even necessarily to a few, readers. 
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A second point which we are making is that, most often, for any causal hypo­

thesis to be credible, a large number of conditioning variables must be 

taken into account in one way or another. The methods developed in subse­

quent sections of this work provide a beginning for extending the number 

of conditioning variables taken into account by the analytical procedure. 

The present analysis illustrates these methods. 

Then, as a working hypothesis, we assume that first year health 

problems can be a cause of second year health problems. We have already 

seen in 2.42 that there is no significant serial relation in the sample as 

a whole, when adjusted for the five specified conditioning factors; this 

carries the interpretation that, if first year health problems are a cause 

of subsequent health problems in the household, such a relation does not 

show up in the population as a whole. But we may also test the variation in 

effects of first year health problems under varying conditions. If signifi­

cant ~atterns of variation in these effects, i.e. in the partial serial 

relations of Table 9, are found, then these can be given a causal inter­

pretation, in the framework which has been chosen. No attempt is made to 

secure general agreement that first year health problems are directly 

responsible for such patterns of variation, if they exist. General agreement 

could only be achieved by a whole series of studies by various investigators, 

at various times, in various human populations. Rather, the objective of 

the present analysis is less ambitious: to determine whether patterns of 

variation in the serial relation are consistent with a causal hypothesis. 

The investigation of variations in the partial serial relations under 

varying conditions, i.e. for varying size, age, and sex categories shown in 

Table 9, is divided into three parts: 

(1) a test of the overall variation of the 22 size-age-sex 
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specific adjusted serial relations - if this variation is greater than 

could reasonably be expected by chance alone, then it is likely that some­

thing other thru1 chance has caused it; such a finding would be consistent 

with the hypothesis that health problems, under certain circumstances related 

to household size, age, and sex, exert a stronger force than under other 

such circumstances; 

(2) a test of a specific J! priori hypothesis which anticipates 

a greater force in certain size-age-sex specific categories than in others; 

this test, if significant against the null alternative, would directly 

substantiate the hypothesis; 

(3) J! posteriori scrutiny of the variations in serial relation 

in an attempt to abstract a meaningful, unifying pattern of variation -

such a pattern would furnish a new causal hypothesis which could be tested 

in future surveys; the degree of belief, or credibility, in such an~ poster­

iori finding, if one exists, would depend on the 'significance' of the 

pattern and on the level of residual variation left unexplained by the 1! 

posteriori hypothesis. 

2.51. The Overall Variation of the 22 Size-Age-Sex Specific Adjusted Serial 

Relations 

The 22 serial relations in Table 9 show variation; they range from 

-.322 to +.196, with a concentration of values abo~t -.040. The question is: 

is this variation consistent with the level of variation which would be seen 

if the 22 relations had been randomly selected from a common universe; or is 

this variation greater than could reasonably be expected on just a chance 

basis • . 

A test of significance which answers the above question is readily 

available. Since each ~r« is approximately normally distributed with 
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variance equal to one, the sum of squared deviations of roe from r , each 
ave 

weighted by n°' is 

Lno1.roe 
2 

- nr 
2 

, where n == 'n- . ave L -

On the hypothesis that the population serial rel~tions are the same for 

all 22 size-age-sex groups, the above expression is distributed approxi­

mately as a chi-square with 21 degrees of freedom. In the present case, the 

computed chi-square value is 

X2 = 22.34 - 2.27 = 20.07. (See illustration, 5.10, for 

detailed computations.) 

On referring this to a chi-square distribution with 21 degrees of freedom, 

it is found that an observed value of 20.07 or more would occur slightly 

more than half the time in repeated random sampling. Thus the observed 

level of variation, 20.07, is very close to the value, 21.00, which would 

be expected in random sampling. 

On the basis of this test, then, the variations of the serial 

relations in Table 9 are much the same as would be expected by chance alone. 

This is one indication that the net resultant of familial, selective and 

direct causal forces is practically the same, no matter which category of 

households we may choose. However, in the following sub-section, there 

remains to be made an .fl:. priori test of a specific causal hypothesis. If 

that hypothesized relation shouid prove significant, then a certain amount 

of credence can be assigned to a direct causal interpretation, as distin­

guished from an interpretation based on familial or selective influences. 

This is so for two reasons: 

(1) a significant pattern of variation will have been found 

through.§:. priori direct causal considerations, rather than familial or 

selective considerations; 
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(2) because the level of variation is already low, any residual 

variation left over as unexplained by the causal hypothesis will be non­

significant; being such, this would lend substance to the interpretation that 

the net resultant of familial and selective forces is practically the same 

in every size-age-sex category. 

For it would indeed seem to be a rare coincidence if the pattern of variation 

due to familial and selective forces were to match so closely the pattern. 

predicated by direct causal considerations. 

2.52. Test of the Specific Causal Hypothesis 

If the mechanism through which a cause produces an effect is clearly 

understood, then there is little difficulty in specifying the hypothesized 

variations of effects under varying circumstances. However, we must admit 

in the present case that the causal mechanism is not clearly understood; 

consequently, the choice of a specific hypothesis with respect to variations 

in effects is difficult. Without doubt the specific hypothesis we make here 

is not the 'best' which could possibly be made, and is probably somewhat at 

variance with ' what another investigator might choose on~ priori grounds. 

Perhaps, in situations like this, it would be helpful to poll several experts 

on the subject in an attempt to arrive at some mutually agreeable viewpoint. 

Therefore, it is with some misgivings that the following hypothesis is presented. 

Nevertheless, it will serve to illustrate the rigorous kind of test which 

this author believes is necessary to make, if a causal conclusion is to be 

taken seriously. To meet the test, four criteria should be satisfied: 

(1) a fairly large number of varying conditions should be 

available for analysis, giving effects an opportunity to manifest themselves 

in various ways; 

(2) an 1! priori hypothesis about the kinds and level of varia-
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tion under the varying conditions should be specified; 

(3) the a priori hypothesis should account for a significant 

amount of variation; 

(4) the residual variation, after removal of variation 'ex­

plained' by the hypothesis, should be low enough to be assigned to chance 

fluctuation; that is, residual variation should not be significantly large. 

Failure to meet any one of these four criteria wo~d, this author believes, 

favor a non-causal interpretation of any association which might be seen. 

The stress of non-communicable health problems in mind causes an 

alteration of some kind in the lives of the propositi. This alteration in 

activities and responses may or may not result in a health problem for a 

given propositus. By reason of the stress, some propositi may escape a 

health problem, while others may acquire one, while still others may escape 

. one problem and acquire another, and the health problem status of still 

others may be completely unaffected by the stress. Evidently, the mechan­

ism of response is manifold. Consequently it is quite impossible to specify 

any single mechanism. We can, however, specify those conditions under which 

we hypothesize a greater average response than under other conditions. 

One of the conditions available for analysis is household size. It 

seems reasonable to expect that, if health problems constitute a stress, this 

stress should be greater if borne by a single propositus than if by more 

than one person. Therefore, it is hypothesized that the serial relation 

should increase in a positive direction as household size decreases. 

Secondly, age is a conditioning variable. The stress in mind, it 

seems reasonable, would not be so great for younger, more flexible propositi 

than for the older propositi. Then the relation should increase with in­

creasing average age of propositi. 
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Finally, sex distribution is a conditioning variable. If most of 

the propositi are females, then the existence of a health problem stress 

may well cause a greater ghange in the lives of the propositi than if m9re 

males were present in the household. For example, in a husband and wife 

household, if the husband comes down with serious illness, it may be neces­

sary _for the wife to change from housewife to breadwinner, and the transi­

tion may result in health problems for the wife. Also, the female is often 

more dependent on other members of the household for her sense of security; 

if illness in the household disturbs that sense of security, health problems 

may result. 

In order to account for these three hypothesized influences, we 

assign a value to the various categories of household size, age and sex, in 

accord with the hypothesis; a high value reflects an hypothesized high ser­

ial relation, while a low value reflects a supposed lower serial relation. 

These are as follows: 

Size Value Age Value Sex Value 

1 4 15-29 0 M 0 
2 2 30-44 1 F 4 
3 1 45-54 2 
4 0 55&up 4 

.5&up 0 

These values represent the relative importance put on each category of the 

conditioning factors, as well as the relative importance between factors. 

For a household of given size, age and sex distribution, the appropriate 

values are added together to yie~d an index score for the hypothesized level 

of the serial relation. For example, in propositus households of size one, 

age 60, female, a total score of 4 + 4 + 4 = 12 is given; and so on. Table 

10 shows the index score, together with observed serial relation, for each 

of the 22 categories being tested. 
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Table 10 

Comparison of Causal Hypothesis (Index Score) with 
Observed Partial Serial Relation for Size-Age-Sex 

Specific Groups of Propositus Households 

0( Size !J:g,e Sex no< Index (~) ro< 

1 5&up 15-29 M 158 0 -.043 
2 4 15-29 M 143 0 +.196 
3 4 30-44 M 96 1 - .208 
4 5&up 30-44 M 57 1 -.175 
5 3 15-29 M 104 1 - .074 
6 2 15-29 lY1 135 2 -.040 
7 3 30-44 M 99 2 -.038 
8 3 45-54 M 33 3 -.322 
9 2 30-44 M 124 3 -.043 

10 5&up 15-29 F 92 4 -.085 
11 2 45-54 M 97 4 -.046 
12 4 15-29 F 54 4 +.029 
13 3 15-29 F 117 5 -.109 
14 1 30-44 M 30 5 ~.025 
15 5&up 30-44 F 45 5 +.101 
16 2 55&up M 179 6 - .114 
17 3 30-44 F 97 

,.. 
+.078 0 

18 3 45-54 F 42 7 +.013 
19 1 55&up M 59 8 +.045 
20 3 55&up F 35 9 +.038 
21 1 45-54 F 36 10 +.ooo 
22 1 55&-up F 72 12 +.052 

By _inspection of Table 10, there appears to be some degree of 

agreement between hypothesis and observation. For the lower index scores, 

5 and below, negative serial relations predominate, while for the index 

scores higher than 5, positive relations predominate. The most serious 

exceptions seem to be the +.196 relation observed for an index score of O, 

and the very low -.322 observed for a score of 3. 

The degree of agreement is more easily grasped from Figure 10, 

which is a plot of the serial relations, r~, as a function of the corres­

ponding index scores, Co(• Perfect agreement would be indicated if each of 

the plotted points fell along a straight line with positive slope. The 

least-squares regression line plotted on the graph indicates that, on aver­

age, the slope is indeed positive, indicating some measure of agreement. 
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But th6 scatter of .Points about the line i s r elativel y great in comparison, 

to t he slope of the line. Hence this graphic r epresentation i ndicates that 

t he agreement of hypothesis with observation is not very strong. By the 

procedures illu,strated in detail in 5.10, we may apply a test of significance 
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to the amount of agreement, as determined by the slope of the regression 

line in relation to the variability in the observed serial relations. It 

is found that the slope, +.00333, is far from being significantly great; a 

slope this great or greater would occur 33 times in a 100 by chance alone. 

Thus, the hypothesis does not account for a significant amount of variation 

in the serial relations. 

Also by the test illustrated in 5.10, the residual variatiqn (the 

variation of the serial relation about the line of regression) is well 

within the realm of chance variation. 

How, then, does the causal hypothesis measure up to the four test 

criteria specified above? Taken one by one: 

(1) effects have an opportunity to manifest themselves differ­

ently in 22 sub-groups of the population, varying with respect to house­

hold size, average age, and sex distribution; then the first criterion is 

~tj -

(2) the second criterion is met, since an£!:. priori causal 

hypothesis has been constructed; 

(3) the third criterion is not met, for the hypothesis has 

not accounted for· a significant amount of vari~tion in effects; 

(4) the residual variation can be assigned to chance fluctua­

tions; thus the fourth criterion is met. 

Failure to meet the third criterion, then, enables us to conclude 

that a causal relation between household health problems in the first year 

and the second year has not been substantiated. Failure to meet any one of 

the four criteria would have been interpreted in a similar way. 
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··2 .•. 53 .. • • !., -Pos:cexiori Analysis of the Partial Serial Relation 

The truth of an~ posteriori relation discovered by the analyst 

may be seriously questioned; those relations which lack all form or pattern 

are most vulnerable in this respect. Thus, if the highest serial correla­

tion in Table 9, +.196, is compared with the lowest, -.322, the difference 

between them is 'significant'; but this is no basis whatever for concluding 

that there was a difference between the s~rial relations for the two popula­

tion categories to which these measures apply. For in any large set of 

measures from a single population, such 'significant' differences would 

almost always be found; and they would be meaningless. Further, the exis­

tence of such differences in measurements is hardly an adequate basis for 

the formulation of hypotheses for future testing. Rather, a degree of 

credibility can be assigned to~ posteriori findings only when observed 

variations are consistent with some unifying rule. There seems to be no 

single method which can be applied to find such patterns in sets of data; 

it seems that this is more a II15.tter of trial and error. In the present 

case, severa). attempts to find a pattern of some kind among the size-age­

sex categories were made. Rather than burden the reader with an account of 

all these attempts to 'explain' the variations of the data on an~ poster-

12!:i basis, it should suffice to present the one 'significant' pattern 

which has been found. 

The one pattern found to be of significance is based on household 

sex distribution. In Table 9, it is seen that only two of the 13 negative 

serial relations are for predominantly female households, while seven of 

the nine positive relations are for predominantly female households. An 

inspection of the table shows that the two female groups which show negative 

correlations are in the very y o-;J.ng category, age 15-29. It can be assumed 
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that several of the households in these two groups contain very young child­

ren and, therefore, that female children happen to predominateo Also, among 

the positive correlations, there are only two male categorieso ·one of these, 

which happens to be the highest positive correlation, is for a household in 

the 15-29 age categoryo Now if it is argued that the stress, if any, of 

health problems is not differentially active in the young males and females , 

but only in older persons, then a comparison on sex distribution would be 

more sensitive if the very young households were omitted. When such compari­

son is made, the average relation for male households, of age groups older 

than 15-29, is -00940 For predominantly female households, older than 15-29 , 

the average relation is +0054 0 The difference, 0148, is found to be signifi­

cant on the 3% two-tailed level o (See illustration, 5ol0 o) Furthermore , 

the residual variation is neither significantly high nor significantly low o 

How shall we interpret this.§:. posteriori finding? We were unable 

to formulate,.§:. priori~ the correct causal hypothesis; that is, the relation 

has not been put to the test as a predictor . Then, certainly, to apply a 

causal interpretation would be prematureo But even an interpretation of 

the finding as a measure of true association in the population, with no 

attempt to discriminate between familial, selective, or direct causal forces, 

is not valid. For , as has been previously pointed out, in almost any series 

of observations a 'significantt relation can be found if we only look long 

enough for oneo However, the fact remains that of the 9 groups of adult 

male households 8 showed negative serial relations; and of the 6 groups of 

adult female households, all 6 showed positive serial relationso This is a 

fact which ought not to be dismissed lightly . For to do so would be to 

throw away a possibly rewarding hypothesiso 
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While we cannot dignify the i!. posteriori finding as a conclusion, we 

can offer this finding as an _g_ priori hypothesis in future studies. Strictly, 

this would not constitute a causal hypothesis as it stands. For the finding 

may well have been due to familial and selective influences. However, the 

finding is in general agreement with causal considerations. Then it would 

be an adequate causal hypothesis if it were used in future studies as a 

part of an hypothesis which would predict variations under n~w varying con­

ditions (such_ as varying diagnosis, varying health history of propositi, 

etc.). 

But, as for now, we cannot discriminate between a causal or merely 

associative finding. Moreover, as for now, we cannot discriminate between 

whether or not this finding is a chance event. All we can say is that, in 

view of the.@;. posteriori significance of the finding, and in view of the 

fact that residual variation left unexplained by the finding is neither too 

high nor too low to be ascribed to chance, it is a plausible hypothesis for 

future study. 

2.6. Conclusion 

It has been shown that the serial, or one-year time-lagged, relation 

is determined not only by familial forces but also selective and direct 

causal forces. In the Arsenal Health District Survey of 1951-1952, the net 

resultant of these forces was negative. That is, a significantly greater 

proportion of households without first year health problems, as compared to 

those with first year health problems, acquired new health problems in the 

second year. 

But when households comparable on the basis of size, average age, 

sex distribution, stratum, and type of interviewer were compared, the serial 
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relation was found not to be significantly negative. Thus, the above 

specified conditioning factors account for the significantly negative over­

all serial relation. 

Variations in the serial relation among size, age and sex groups 

was no more than would be expected of a set of randomly chosen relations. 

Furthermore, a specific causal hypothesis with respect to variations among 

these groups was not substantiated. Therefore, a cause arid effect relation, 

as distinguished from associative familial and selective relations, was not 

demonstrated. Nor was any association between the serial relation and house­

hold size, age or sex distribution demonstrated to exist in the Arsenal 

District. 

However, on an ·a posteriori basis, it was found that all the predomi­

nantly female adult households (average age over 29) showed a positive 

serial relatio~, while all but one of the remaining adult households showed 

a negative serial relation. This latter finding is not a conclusion, but 

rather-points to the future investigation of a new causal hypothesis: that 

adult females, or adult households containing a majority of females, are 

particularly susceptible to ill effects from the non-communicable health 

problems of other household members. 

This brings to an end the present study of the serial relation of 

health problems in households. But there remains to be shown that the var­

ious measures in this illustrative analysis do have the statistical proper­

ties which have been applied to the analysis. This more abstract develop­

ment is taken up in subsequent sections. 



3.0. TESTS OF ASSOCIATION IN A TWO-FACTOR CONTINGENCY TABLE 

The two-factor (g x h) contingency table is considered in this 

sectio~. From generalized measures of association, we proceed to discuss 

the partitioning of chi-square when one of the factors is quantified and the 

further partitioning when both factors are quantified. Also, proceeding 

from the general case of the (g x h) table, the particular cases of the 

(g x 2) table and the (2 x 2) table are discussed in detail in order to 

illustrate the meaning of the general approach in terms of these frequently 

occurring situations. 

3~1. Definition of Symbols 

The geperal two-factor contingency table is presented in Table 11. 

table 11 

The (g x h) Contingency Table 

y 

~ 1 2 0 . h n . 
l. 

1 nll nl2 . ~ ~h Ill~ 
2 n21 n22 . . n2h n2. 

X . 0 . • 0 0 . 
. . . . . . . 
g n ng2 . . ngh n 

gl g. 

n 
. j n.l n.2 . 0 n~h n 

Let the first factor, X, be considered arbitrarily as the independent factor, 

and let the second factor, Y, be dependent on X. Xis divided into g cate­

gories arul Y into h categories, denoted by i and j, respectively. For a 

56 
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sample o~ size n from a universe, the frequency of observations in any 

cell of the contingency table is denoted by n ... Marginal frequencies are 
lJ 

denoted by n. and n . for rows and columns, respectively. 
]. • .. J 

If then observations have been obtained randomly from a universe 

in w!lich no association exists between X and Y, the expected value of any 

n . . is 
lJ 

E(n .. ) = (n. n .)/n, where n. and n . are regarded as being 
lJ l.. •J l. •J 

fixed. Due to sampling fluctuations, then .. will deviate from their expec­
lJ 

ted values by 

d .. = n . . - (n . n .)/n 1?· 
lJ lJ l.. •J 

The quantity, 

LLnd . .2/(n . n .), is distributed approximately as X. 2 with 
lJ l.a •J 

(g - 1) x (h - 1) .degrees of f~eedom (henceforth sometimes denoted as 

X (g _ l) x· (~ _ l)), provided the cell expectations are not too smalL 15 

3.2. Association when Neither Factor is Quantified 

Karl Pearson defined ¢
2 = X 2/n (using X 2 to mean the computed 

quantity) as the mean square contingency.16 AB a measure of divergence 

from independence, Pearson proposed that C =-/42/(1 + ¢2
) be used.16 Sev~ 

eral other measures of association based on deviations from independence 

have been proposed, but none seems to be a completely satisfactory estimate 

of association in the population.16 Even if a satisfactory -estimate were 

15 
2 See Cochran, W. G., '1Some methods for strengthening the common 

A tests", Biometric.s, VlO, pp. 417-451, 1954, for a discussion of frequency 
requirements in a contingency table for goad approximations to chi-square. 

16 Kendall, M. G., "The Advanced Theory of Statistics", Vl, ch. 13, 
Charles Griffin and Co., Ltd., 4th ed., London, 1948. 
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available, the meaning of such a measure would not be vecy specific. For 

departures from independence of the two factors can be of many kinds, and 

such measures which lump together all the departures from expectations fail 

to discriminate among the various kinds of departure. 

The catch-all nature ofX(g _ l) x (h _ l) was cause for the develop­

ment of methods by which it could be partitioned into more meaningful com-

ponent parts o Lancaster, in 194 9, showed that X (g _ 1) x ( h _ 
1

) can be 

partitioned into (g - 1) x (h - 1) different component chi-square values, 
l 

each with 1 degree of freedom. Each such value corresponds to a (2 x 2) 

table, and each is asymptotically independent of the others as the sample 

size becomes large.17 These component values could be combined to test for 

specific relations within the contingency table. 

Williams
18 

generalized Lancaster's methods to show a partitioning 

of X(g _ l) • x (h _ l) into (h - 1) component parts, each of (g - 1) degrees 

of freedom. The (h - 1) canonical correlations wbich can be determined from 

the contingency table correspond to such a partitioning. More spec~fically, 

if the (h - 1) canonical correlations are designated by¾:, k = 1, 2, .. , (h - 1), 

then each nRk2 is aX2 with (g - 1) degrees of freedom, and 

\ 2 2 
LnRk = X (g - 1) x ( h - 1) ; 

d2 19 that is, the sum of the squared correlations equals~, as was shown by Maung. 

To each canonical correlation, there corresponds a unique set of scores for 

17 2 Lancaster, H. O .. , "The derivation and partition of X in certain 
discrete distributions", Biometrika, V36, ppo 117-129, 1949. 

18 Willia.ms, E. J., "Use of scores for the analysis of association 
in contingency tables", Biometrika, V39, pp. 274-289, 1952. 

19 Maung, K., "Measurement of association in a contingency table with 
special re~erence to the ~igmentation of hair and eye colour of Scottish 
school children", Annals of Eugenics, Vll, pp. 189-223, 1941. 
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the categories of X and of Ye The set of scores which corresponds to the 

largest of the correlations, R , would be chosen in practice as the best max 

numerical values to place on the categories of the two factors. Unfortunately, 

Williams provides the reader with no interpretation of such scores. We can 

imagine, however, certain practical uses to which such scores might be put: 

(1) if.§:. priori numerical characters could be assigned to the 

categories of the two factors, then these.§:. priori scores might be compared 

with the m.c. (maximum-correlation) scores; in this way, the.§:. priori scores 

could be evaluated as to their adequacy in describing a linear association; 

(2) if data pertaining to the relation between two factors of 

qualitative character were available for a wide variety of circumstances, 

the m.c~ scores developed from such data might be used to establish quanti­

fication of the factors with respect to their mutual relationship; thus, in 

the future, the essentially qualitative factors might take on quantitative 

aspects. But these considerations are beyond the scope of this presentation. 

They are mentioned as possible subjects for investigation, because of their 

fascinating implications as· to the meaning of numbers applied to classes of 

things, and because they are generalizations of the methods t .o be discussed. 

3.3. Association when the Dependent Factor is Quantified 

When each of the categories of the dependent factor, Y, is charac­

terized by a numerical quantity , y ' ., then a set of scores, x., can be deter-
J l 

mined for the independent categories such that the squared product moment 

correlation between x . and y' . is a maximumo As will be shown, each of the 
l J 

m.co scores for X can be interpreted as the observed 'effect' of the inde-

pendent category on the dependent variableo Further, the squared correlation 

times n is distributed asymptotically asX2 with (g - 1) degrees of freedom, 
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assuming no association between X and Yin the universe from which the 

contingency table is derivedo 

The method for determining the moc. scores is developed as follows: 

let y. = (y' . - y' )/s 1 , where y' and s , are the mean and 
J J y y 

standard deviation, resp .. , of y'; thus, y = 0 ands = 1, i. eo, y is scaled y 

to a zero mean and unit variance; a set of scores, x., also scaled to a zero 
]. 

mean and unit variance, is to be determined such that the sqllilred correla-

tion, R
2 , between x. and y. is a maximum; the correlation between x: and y. 

J. J l J 

is, by definition, 

R =lln . . x.y ./n J.J l J 

then we may solve for x. by maximizing the expression, 
. l 

n~2 = (lb . . x.y .)2 , subject to the restrictions that 
lJ l J 

[_n. x. = O, and 
lo l 

(1) 

[n. x. 2 = n, io eo, that X. have zero mean and unit var-
].. ]. l 

iance; using LaGrange multipliers, we maximize the expression, 

(II_n . . x.y .)2 - 21,[n. x. - 12[.n. x. 2 
; 

lJ l J ~ l. l lo l 

taking derivatives with respect to the x. and setting equal to zero, 
l 

2([ln .. x .y .)( L.n . . y .) - 211n. - 21
2

n. x. = 0 ; J.J l J j J.J J la l., l 

summing with respect to i, 

2rJl.n .. x.y .)([[.n . . y .) - 211n - 212I..n. x. = 0 
lJ l J lJ J lo J. 

but, 

l.l_n . . y. =Ln .y. = O, and 
J.J J .J J 

l_n. X. = 0, SO 
l. l 

211n = O, and therefore 11 = 0; 

then (2) simplifies to 

(Jln . . x.y .) (>n .. y .) - 12n. x. = 0 
lJ J. J j lJ J l. l 

multiplying (3) by x. and summing with respect to i, 
l 

(2) 



that is, 

(iln .. x.y.)(Il_n .. x.y.) - L fn. x. 2 = O 
lJ l J lJ l J Cl. l 

2 2 
n R - L n = 0, so that 

2 
2 

12 = nR ; 

substituting (4) in (3), we have 

nR(Ln .. y.) - nR2n. x. = 0 , and solving for x., 
. j lJ J l. l ]. 

x. = (1/R) (Ln .. y /n. ) = y./R 
l ;J lJ J l. l 
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thus, the x. are proportional to the means of the dependent variable 
l 

within the respective categories of X. 

(4) 

(5) 

It remains to determine the value of R (arbitrarily taken as always 

being positive). Squaring both sides of (5) and multiplying by n. , 
l. 

2 I 2 - 2 n. x. = (1 R )n. y. 
l. l l. l 

sum.ming with respect to i, 

r 2 2.r -2 Ln. x. = (1/R )Ln. y. 
l. l l. l 

that is, 

2 )_ -2 2 
R = Ln. y. / n = S-

i. l y. 
]. 

(6) 

One cannot fail to note that equations (5) and (6) are equivalent to 

those used in the analysis of variance. Since y = O, y. measures the devia­
l 

tion of the average for the ith group from the grand average. This, in the 

experimental setting, is termed the observed effect of the ith treatmento 

Thus, the x. of equation (5) are proportional to the 'effects' of the cate-
l 

gories of X; they differ from the usual measure of effects only in scale. 

Also, from equation (6), R2 is merely the observed variance of the means. 

Consequently, as Williams states, an F test could be performed to 

test for the significance of the association between the categories of X and. 

the values of Y. 

Alternatively for large n, since nR2 is distributed as a chi-square 

with (g - 1) degrees of freedom, a chi-square test of association is appro-
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priate. For future purposes, the -X.. 2 test will be adopted because it is 

simpler to perform. 

3.4. Association when Quantities are Assigned to Both Factors 

In accord with Williams' demonstration of the partitioning of X 2, 

the X. (g _ l) of the previous sub-section, determined when Y is quantified, 

can be partitioned into parts. In particular, if an arbitrary set of scores 

be assigned to the categories of X, then n times the squared correlation 

between the X scores and the Y scores corresponds to a X2 with one degree 

of freedom. 

3.5e Particular Case: Association when the 

Dependent Factor is a .Dichotomy 

In the particular case of a (g x 2) contingency table, the overall 

chi-square has (g - 1) x (h - 1) = (g - 1) degrees of freedom. Further, 

there are (h - 1) = 1 canonical correlations with (g - 1) degrees of free­

dom. As in the general case, if any arbitrary pair of different numbers 

is assigned to the two categories of Y, then the maximum squared correla­

tion between x. and y. corresponds to aX2 with (g - 1) degrees of freedome 
l J 

2 Thus the overall X , n times the squared canonical correlation, and n times 

the squared maximum correlation with the assigned yj quantities are all 

identical. In other words, there is no loss in generality if the analysis 

is performed by assigning arbitrary numbers to the dependent dichotomy. 

Equations (5) and (6), sub-section 3.3, give the values for x. and 
l 

for R2, as follows: 

x. = y./R 
1. l 

2 > -2; 2 R =Ln. y. n = a.. . 
l. l Y.· 

J. 

However, when dealing with a dependent dichotomy, one customarily expresses 
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relations in terms of rates, or proportionso Therefore, with reference to 

the (g x 2) contingency table below, the usual symbols for proportions will 

be defined, and equations for xi and R2 will be re-stated in terms of pro­

portions. 

Table 12 

The (g x 2) Contingency Table 

y 

~ 1 2 n. 
l. 

1 7:I ~2 nl. 
2 n21 n22 n2o 

X . . . . . . . . 
g ngl ng2 n g. 

n .j n.l n .. 2 n 

Let the first class of Y be the condition of not having a stated 

quality and the second class as having the stated quality, such as death, 

having a disease, etc. Let p = n. 2/n be the proportion of all sampled 

elements which have the quality. And let p. = n.
2
/n. be the proportion 

J. l lo 

obs~rved to have the quality in category i of X. 

the proportions not having the quality, so that 

p + q = 1, and 

p. + q. = 1 for all i. 
l l 

Similarly, q and q. are 
J. 

Let values of y
1 

and y
2 

be chosen such that the mean of y1 and y2 

is zero artd their variance is unity. That is, 

n.1Y1 + n.2Y2 = 0 
2 2 

n. 1Y. + n. 2Y2 = n • 

Solving the above for y
1 

and Y
2

, 

y1 = :t/n.2/n.1 = :tM, and 
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We arbitrarily associate a negative value with the condition of not having 

the quality and a positive value with having the quality, hence, 

Y1 = --M 
Y2 = +-M • 

Now, 

substituting (1 - p.) for q. and simplifying, we get 
l l 

yi = (pi - p)/,jpq_ ; then, 

x. = (p. - p)/R-fpq_ . 
l l 

(7) 

That is to say, the effect, x., is proportional to the deviation of the ith 
l 

category proportion from the overall proportion. Again, except for scale, 

x. is identical to the usual concept of an effect: the amount by which the 
l 

proportion having a specified quality in a sub-class deviates from the 

corresponding pooled proportion for all the classes. 

By direct substitution, 

R
2 

= J_n. y. 
2/n = (1/pq)Ln. (p. - p)2/n = s 2/pq , (8) 

l • l l • l • pi 

is proport"ional to the variance in the observed proportions. 

- . - "12 2 2 r1,2 
It is also noted that, since ~(g _ l) = nR, R =~,the mean 

square contingency for the (g x 2) table. Consequently, for a (g x 2) 

table, the mean square contingency is clearly interpreted as being propor­

tional to the variance in the observed proportions. It is of further 

interest to note that the proportionality factor, 1/pq, puts the variance 

of observed proportions in relation to the expected level of variation on 

the basis of chance alone. Thus, the X2 test of nR2 is a test of whether 

the variance in observed proportions is significantly greater than would be · 

expected on the null hypothesis. 
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3.6. Particular Case: Association in the (2 x 2) Table; Illustration 

For the (2 x 2) table, nR
2 = 'X.(g _ l) =Xi . But n times the 

squared product moment correlation is also Xi; consequently, R is identical 

to the product moment correlation in the (2 x 2) table. Also, we have from 

equation (8), 

nR
2 = (1/pq)[n. (p. - p) 2

; in a (2 x 2) table, 
l • J. 

P = (n1 .P1 + n2.p2)/n; thus, 

P1 - p = P1 - (~.Pl+ n2.P2)/n = n2.(pl - P2)/n 

Similarly, 

Then, 

nR2 = (1/pq)[<~.n2.2/n2)(pl - p2)2 + (n2.nl.2/n2)(p2 - P1)1. 

Letting p' = n2/n and q' = ~/n, the above expression reduces to 

nR2 = n(p2 - p1)2(p'q'/pq) , which in turn equals Xi or (9) 

2 z, the square of a standard normal deviate. 

Thus, the z test of a difference between two proportions, the test 

for significance of X2 , and the X2 test of the significance of the product 

moment correlation are all equivalent for the (2 x 2) table. 

Dividing (9) by n and taking the square root, we get 

R = (p2 - pl)✓p'q'/pq. (10) 

This is the measure of relation which was adopted and interpreted in 2.32. 

Since nR2 is the square of a normal deviate with unit variance, 1-nR is a 

-normal deviate with unit variance, and R, the adopted measure of simple 

relation in section 2, is a normal deviate with variance equal to 1/n. 

These statistical properties of R, when n is large, were used in 2.32 to 

test the significance of the observed relation computed from Table 5. 
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Some of the identities developed above can be illustrated by use 

of the (2 x 2) table presented in section 2.32, Table 5. This is the four­

fold classification of households according to household health status at 

first and second interview (see Table 5 for full description): 

~ 1 2 

1 600 . 882 1482 

2 321 339 660 

9211221 2142 

To compute Xi according to definition ( see 3.1), we take 

~
2
1 = [Lnd . .2/n. n . = 2142(37.i)/(921)(1482) + 2142(37.l)/(1221)(1482) 

lJ l. •J 

= 12.36 

2 Then to compute R, 

+ 2142(31.22)/(921)(660) + 2142(37.22)/(1221)(660) 

R2 = X2/n = 12.36/2142 = .00577, and finally, 

R = -.076 (negative sign taken arbitrarily in view of the 

subject matter of Table 5) . 

There are numerous alternative ways to calculate the above measures, 

such as: 

which agrees with the first method, except for rounding. 

Another alternative is to assign arbitrary scores of 0 and 1 to the cate­

gories of i and of j, as follows, 

0 1 

o 6do 882 1482 

1 321 339 660 

9211221 2142 

and compute the correlation between the two sets of scores. This computation 
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is the product moment correlation and reduces to, 

R = (339•2142 - 660·1221)//921•1221·1432•660 = -.076, as above. 

From t hi s result, X2 can be determined, of course, · by 

X.
2 = nR.2 = 12.38, also as found above. 

Or, again, R can be computed directly from the identity, (10), which 

is: 

R = (p2 - pl)~p'q'/pq = (p2 - P1)-/n.1.n2./n.ln.2 

= (.514 - .596)/(1482/921)(660/1221) = (.514 - .596)/1.61· .541 

= -.082(.933) = -.077, which again agrees with prior computed 

results, except for rounding. 

This (2 x 2) table can also be used to illustrate identity (6), 

R2 = s- 2 , which says that the variance of means is equal to the squared 
Yi 

product moment correlation. First we find y1 and y2: 

Then, 

Y1 = -{;!;.. = --/n.2/n.1 = -,1.221/921 = -1.15; 

Y = -/cJp = /n 1/n 2 = /921/1221 = .87 • 2 • • 

y1 = (600(-1.15) + 882(.87))/1482 = .0520, ani 

Y2 = (321(-1.15) + 339(.87))/660 = -.1121 . 

Note that the mean of y1 and y2 is 

(1482(.0520) + 660(-.1121))/2142 = 0 • 

Therefore the variance of y1 and y2 is: 

(1482(.0520)2 + 660(-.1121)2)/2142 = .00574. 

2 
Taking R = -.076, as computed before, and squaring, we get R = .00578, 

which agrees with the variance of y., above, except for rounding. 
1. 
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3.7. Summary 

If the dependent classification can be characterized by a set of 

quantities, y., j = 1, ••• , h, with zero mean and unit variance, then a J . 

set of scores for the categories of the independent factor may be deter-

mined by means of the formula, 

x. ~ y./R, 
]. ]. 

i == 1, ... , g , where x . are the scores for the 
1 

independent categories, y. are the mean values of the dependent variable 
J. 

for corresponding categories of the independent variable, and R is the 

product moment correlation between the x. and they .. 
]. J 

These scores are such that R2 is a maximum. 2 The term, nR, is 

distributed as a X...
2 with (h - 1) degrees of freedom when no association 

exists in the population from which the observations are assumed to be 

derived. 

If a set of arbitrary scores is assigned to the independent cate­

gories and the product moment correlation, r, between these scores and the 

dependent variable is compared, the nr2 is distributed as X2 with one degree 

of freedom. 

In the particular case of a dependent dichotomy, quantities can 

always be applied to the two dependent classes with no loss of generality. 

The scores, x., being proportional to the deviations of the respec-
J. ' 

tive class averages from the grand mean of the dependent variable, are analo-

gous to 'effects' in experiments. Finally, the variance of these 'effects' 

is equal -to R2, so that R, as a measure of relation, increases wi th ''"increas­

ing observed differences of the dependent variable among the classes of the 

independent variable. 

For dependent dichotomies, these results may be expressed in terms 

of rates, and in these terms, R2 reduces to familiar expressions closely 
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related to those often used for testing differences in rates and for 

measuring degree of association. 

In the following sections, these results will be extended to a 

contingency table having multiple independent factors. 



4.0. PARTIAL ASSOCIATION 

Tests of association in a (g x h) contingency table, as discussed 

in section 3, apply to the single relation, termed the simple association, 

which exists between two factors, X and Y, in the sampled population. Par­

tial association, on the other hand, refers to the simple association 

~etween two factors in various sub-classes of the population. Thus, the 

term, partial association, implies that there are more than two factors 

involved: two factors between which some simple relation exists in each sub­

class, and one or more other factors used as the basis for sub-classifica­

tion. Examples of partial association are innumerable: the relation of 

sex to incidence of death within specified age groups; the relation of 

type of housing to communicable disease incidence, within specified income 

groups; the incidence of yellow fever, by geographic location, within classes 

defined by calendar time; the occurrence of automobile accidents, by time 

of day, within classes defined by type of road, weather conditions, and 

calendar time; the occurrence of heart deaths by history of salt intake, 

within classes defined by age, race, sex, weight, and within classes of 

dietary factors other than salt; and so on. Invariably, the study of a 

simple association in a population is a prelude to partial association, and 

partial association with respect to one set of classes leads to partial 

association with respect to other sets of classes; for the mind wants to 

know why a relation between two variables exists, and there is no explana­

tion except in terms of other factors. 

4.1. Definition of Symbols for the Multiple Factor Contingency Table 

In order to cope with the additional factors of classification 

inherent in the study of partial association, additional symbols are required. 
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X I- U. I V I -I 

i k 1 -

1 

2 . . 
: 1 -. . . . . . . 1 : . . . . . . . . b . -. . . . 
: -. . . .. . . . . . . . . . 1 . -. . . . 
. . a . . . . . 
: . . . b . -. . 
: 
g 

n 
. j = n 

.j . . 

Table 13 

The (g x h) Contingency Table, 

Whe:re .,.,g.· = -a x b _ x c 

Factor 

V' 1- w I y 
- Index 

l' m j 
1 2 ... 

1 nll_ll nll_l2 
1 . . : . . 

C 7.1 cl 7.1 c2 . . . . . . . . 
;L : : 

b' . . : . . 
C : : 

: . . . . . . 
1 . : ln .. = . 

1 . . . l.J . . . 
0 . . ~l mj . . . . . . in each . . . . 

h 

nll_lh . . 
7.1 ch . . 

: . . . . . . . . . . . . 
: 

1 . . corresponding: . . 
b' . . . cell) . . • . . 

C . : . . . . . . . : . . . . 
l . . . . . . 

1 : . . : . . 
,· 

C . . : . . . . . . . . . . . . 
1 : . : ·• 

b' . . . . . . . . 
C . . . . . . . . : . . . . . . 
1 . : . . . 

1 . . : . . . .. 
C . . : . . . . . : . . . . . . 
;i. n ab 11 nab_l2 n.aJ:>_lh· 

b' . : . . . .. . 
e nab cl nab c2 n h ab.;..c 

n 
.1 

n .2 n .h . . . . •· ..... .. - -
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n. = l.. 

I\:1_m .. , 

nll_l. . . 
n 

11-- c. . .. 
..... .,.,. . . . . 
: 

;,-: 

. . . . 
: 
: 

. . . . . . . 
: . . . . . . 
: . . 
: . . . . . . 
: . . . . 

nab_l. 
: 

n ab_o. 

n 
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Therefore, the general multiple independent factor contingency table is 

presented in Table 13. Despite its clumsy appearance, if the factors, 

U, V, _, V', and Ware ignored, Table 13 is identical to Table 11, section 

3, being a (g x h) contingency table. However, factor Xis now considered 

to be a compl~x of the multiple factors, u, V, _, V', and W. Factor U is 

composed of categories k = 1, ... , a; similarly for V, 1 = 1, •.. , b; for 

V', l' = 1, .••• , b', and for W, m = 1, ... , c. Within each category of . 

U, there is a full set of the categories of V, and so on up to the second­

last factor, . V', within each category of which there is a full set of the 

categories of .W. Thus, in all, there are g =ax b _ x c categories of 

the independent factors. For each of these categories, there are h cate­

gories of Y, for a total of ax b _ x c x h cells in which frequencies 

may fall. The frequency within each cell, previously identified as n .. , 
J.J 

is now identified as n. ~ . • The dot notation·, which was previously 
K.L_mJ 

applied to indicate a ~arginal total, continues to apply. Thus, for example, 

n 1 . is the total frequency in the l_mj marginal cell, n . is the 
• _mJ ·•-•J 

total frequency in the jth category of Y, and nkl is the total frequency _m. 

in the kl_m category of the independent factors. Finally, n denotes the 

size of the sample. 

The multiple factor table is more easily visualized if a particular 

example is taken. Table 14 is a particular case for which· there are three 

independent factors, taken from the subject-matter of ~ection 2: stratum, 

interviewer group, and household health problem status at 1st interview. 

These are denoted by u, V and W, respectively. The dependent factor, Y, 

is the health problem status of households at second interview. There are 

three strata; thus, a = 3. Similarly, b = 2, c = 2, and h = 2. · The faetor, 

X, is the composite of stratum-interviewer group-1st intervi,ew health status, 



73 

Table 14 

Household Health Status at 2nd Interview 
in a Sample of the Arsenal Health District of Pittsburgh, Pa., 

1951-1952, by Stratum, Interviewer Group 
and Health Problem Status at 1st Interview 

(x) (u) (v) (w) (Y) (nklm_) 
(i) Stratum Inter- Health Health Status, Total 

( ' ,k) viewer Status 2nd Interview Households 
Group 1st Int., (j) 

(1) (m) 1 2 

(1) (1) No H.P. nllll nlll2 nlll. 
(2) (1) AB (2) H.P. nll21 nll22 1½.12. 
(3) I (1) No H.P. nl211 nl212 n121. 
(4) (2) CD (2) H .. P. nl221 1½.222 . . 1J.22. 
(5) (1) No H.P. n2111 n2112 n211. 
(6) (1) AB 

(2) H.P. n2121 n2122 n212. 
II (7) (1) No H .. P. ~211 n2212 n221. 

(8) (2) CD 
(2) H.P. n2221 n2222 n222. 

(9) (1) No H.P. n3111 1½112 1½11. 
(10) (1) AB (2) H.P. ~121 1½122 ~12 .. 

III . - - - --

(11) (1) No H.P. n3211 7212 1½21. 
(12) (2) CD (2) H.P. ~221 7222 ~22. 

(n . ) 
• 0 0 J 

Total Households n .... 1 n ••• 2 n 

I 

I 
I 

and has g = 3 x 2 x 2 = 12 categories. The n 1 . indicate the particular 
le illJ 

frequencies which fall in the corresponding cells, and marginal frequencies 

are denoted by the dot notationo 

4.2. Failure of;(2 to be Closely Approximated when g is Large 

For a given sample size, n, if g becomes large relative ton, then 

th~ v2 t S A. approximations discussed in sec ion 3 become very poor. uppose, as 

an extreme example, that g = n, and that at least one observation falls in 

each category of X. Then only one observation falls in each of_ the g 
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categories of X, since g = n. It will be found that the maximized squared 

. 2 correlation between x. and y. is R = 1. If the formula, 
]. J 

2 2 = nR , were applied, then -X (g - 1) 
2 

x(n - 1) = n • 
2 

Thus, the computed X would be equal ton, with (n - 1) 'degrees of freedom'. 

But the expected value ofX
2 

with (n - 1) degrees of freedom is (n - 1). 

Consequently, the difference between the computed X2 and the expected value 

would be negligible, and no matter how large n might be, the computed X2 

could never be judged 'significant'. As a less extreme example, suppose that 

n = 40 and g = 30~ 
- - 2 

The largest possible value of the computed X (for 

quantifieQ categories of Y, or for Y as a dichotomy) is achieved when R2 = 1, 

that is, 

X2 = nR
2 

= n = 40. 

The 5% significance level ofX2 with (g - 1) = 29 degrees of freedom is 

42.6. Thus a trueX2 exceeds this value 5% of the time. But the computed 

2 X can never exceed 40. Consequently, no matter how great an association 

exists in a population, a sample of size 40, with 30 categories of X could 

never show significance by this 1 test 1 • 

As a traditional rule of thumb, it is often stated that X2 is suf­

ficiently well approximated when no expected frequency in the table is less 

than 5. Cochran20 liberalizes this requirement, allowing a few of the expec­

tations to be as low as 1. But by either set of rules, the sample size must 

be considerably greater than the number of categories. 

Now in reference to Table 13, if there are either a large number of 

independent factors, or a large number of categories within the independent 

20 
0 ·t 57 p. Cl . , p. • 
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factors, or both, g =ax b _ x c is very large relative to the sample 

size, and the use of the X2 approximations developed in section 3 are 

invalid unless they are ,revised. In tht:3_ remainder of this section, the 

principle of m.c. scores will be applied to obtain a revised set of solu­

tions for scores applicable to the multiple factor table. The scores 

appropriate to each factor will be interpreted as observed partial effects. 

In section 5, to follow, aX2 test for the significance of these partial 

effects will be proposed, and this proposition will be evaluated on the basis 

of empirical sampling distributions of the measures of partial association. 

4.3. A Restriction on xi 

In section 3.3, the scores, x., were free to vary, subject to the 
l 

restriction that their mean value be zero. Now let us specify an additional 

restriction: that the x. be the sum of scores for the categories of U, V, 
l 

_, and W, where the mean value of these latter scores is zero for each pf 

the factors, U, V, _, W; in symbols, 

xi= uk + v1 + _ + wm, where 

~' v1, _, and wm are scores placed on the categories of 

U, V, _, and W, resp., and where 

l n. u. = In 1 v1 = _ = l_ n w = 0 , and where 
1e._ •• K • _.. • • m. m 

each value of i corresponds, as in Table 13, to a particular set of values 

for kl_m. 

Since the mean value of the scores for each factor is zero, the mean value 

of x. remains zero. Also, let the variance of x. be unity, as in section 3. 
l l 

Thus, if we lmow the (a) values of uk, the (b) values of v1 and so on to the 

(c) values of w, then the g =ax b x c values of x. are determined. m l 
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In a manner which is completely analogous to that is section 3.3, 

the derivation of scores, xi, or rather 'l\:' v1 , _, and wm, for which the 

squared correlation between x. and y. is a maximum is presented in the fol-
. l J . 

lowing sub-section, after which it will be shown that such scores may be 

interpreted as ' partial effects'. 

4.4 .. Derivation of M.C. Scores for the Multiple Factors 

As in section 3.3, each of the categories of the dependent factor, 

Y, is char~cterized by a numerical quantity, y' .. The scale and level of . J 

y'. are standardized by means· of the transformation, 
J 

y. = (y' . - y' )/s , , where y' and s , are the mean and sta,n-
J J y y 

dard deviation, resp., of y'j' such that the mean of yj is zero and the 

variance is one. 

A set of scores, xi= uk + v1 _ + wm' is to be determined such that 

the squared correlation between x. and y. is a maximum. The correlation 
l J 

between x. and y. is, by definition, 
l J 

R' = l. n .. x.y ./n = Z. ~ .(1\: + w1 + w )y ./n ; 
- _ij lJ l J - kl_mj mJ - m J 

then we may solve for 1\:' v1 , _, wm (which determine the ~i) by maximizing 

the expression, 

= (l n. ~ _ .(u. + v
1 

+ w )y -.)2 , subject to the 
kl_mj ld._mJ k - m J 

restrictions that 

l n. . u. = l_n v = = L n w = 0 , and 
K •• k .1:_ .. 1 - .. _m. m 

l_ n. x . 
2 = I. I\:l ( 1\: + v 1 _ + w )2 = n , i. e. , that 

l. J. kl m _m. m 

all component factors have zer-; mean, and that the sum of component scores 

have unit variance; using La Grange multipliers, we maximize the expression, 

(I_ n. 1 .(uk + v1 _ + w )y .)
2 

- 2LIL..n. u, - 21 >n l v1 
kl . k illJ m J k. • • k 2.'-' • • • illJ - - -

• - - _ - 2LfLP w - Lf 1l. n. 1 ( uk + v1 _ + w ) 
2 

; ( 11) 
•• mm + kl K m. :rn - m - • 
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taking derivatives with respect to uk, and setting equal to zero, 

2(nR' )f m/l<:1_mlj - 2L_i1\:,_ •. - 21f+lf m1\:1_m. (1\: + vl - + wm) =(~2i 

summing with respect-to k, -

but, 

l_ n. 1 .y. =l.n .. y. =ln .y. = 0 , and 
kl . .k illJ J . . J. J J • J J 

_mJ - J.J 

tJ. m~m. (1\: + vl - + wm) =Ll\:._ .. l\: + l.n.1_ .. vl + -

+ f_n w = 0 , so •• _m. m 

2nL1 = 0 and therefore 11 = 0 in precisely the same manner, differentiating 

(11) with respect to v1, setting equal to zero, and summing with respect to 1, 

we find L2 = 0; similarly for all factors up to W, for which Lf = 0; then 

(12) simplifies to 

(nR' )L n. • .y . - Lf 
1
l_ n. ~ ( u. + v

1 
_ + w ) = 0 

. .k. • J J + 1 1C.l. m. 1<: m . J - . _m -
(A) 

and similarly, the derivatives with respect to v1 _ wm simplify to 

(nR' in 1 .y. - Lf 1L n. ~ (~ + vl - + w ) = 0 . • • J J + k . K..L m. m 
. - . J - • • ._m : . . 

(13) 

now multiplying (13)(A) by(~+ v1* _ + wm*), where the starred subscript 

distinguishes a particular value of the subscript, and similarly, multi-

plying (B) by (1\:* + v1 _ + wm*), and so on .to (13)(F)t which is multi­

plied by (l\:* + v1* _ + wm), we get 

(nR' )ll\: • .y .('-\ + v1* _ + w *) - Lf {[ (1\: + v1 _ 
j ·-• J J . m + l_m 

+ wm)(uk + v1* _ + wm*) = 0 ,(A)(14) 

and similar terms for (14)(B) through (F); 

summing (14)(A) over k, l*, _, m*, 

(nR I )L n. .y . ( Uk + V 1 * - + w *) -
kl* m*j 1<:._.J J m 

- Lf lL (1\: + v1 _ + w )(1\: + _v1* _ + w *) = 0 
+ kl*_m*l_m m m 
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and simplifying, we get 

(nR')(b)_(c)Zk,1\: .. jvj - Lf+l(b)_(c)lkl 1\:1 m(1\:2 + 1\:v1 - + 1\wm) 
J - m -

- = 0 (A)(15) 

letting Q = (a)(b)_(c), o/a then equals (b)_(c), so (15)(A) ~becomes 

(nR' Q/ a}[ n. .u,_v. - (Lf 1Q/ a)l_ n, 1 ( u. 2 + ukvl _ + u, w ) = O; 
k • K._. J ~ J + kl K m. K K m 

J _m - (A)(16) 
similarly for (B), _, (F); 

multiplying (16)(A) by a, (16)(B) by b, and so on to (16)(F), which is 

multiplied by c, then summing all these equations, we get 

nR'Q(Ln. .u.Y. +J_ n 1 .v
1
y. + +l_ n .w y.) 

k . K. • J r J 1 . , • J J - .. . • • mJ m J 
. J - J - mJ -

- Lf lol_ n. - (u. + vl - + w )2 = O; + kl m KJ._m. K m 

but the first term is 

that is, 

nR'Q(nR'), by definition, and the second term is 

Lf+lQn, by definition, so 

2R,2 0 n Q - Lf+lQn = ; 

L - nR'2 f+l - • 

Substituting this value of Lf+l in (13), we have 

(nR')Ln. .y. - nR'2 n, _ (uk + v1 + _ + w) = 0, (A) 
. K •• J J 1 Kl. m. m 
J - _m -

and similar expressions for (B) through (F); consequently, omitting dot and 

dash notations on the subscripts (these being understood), 

ln.• u. +LU: v
1 

+ ~ n w =ln .y ./R' 
k m K 1 1.m - m m j mJ J 

finally, letting 

l.. ~ v 1/1\: = vk ; L 1\:: .y ./nk = yk and so forth, we have, 
1 ' J J J 



U + V + m m 

+ wk = Yi/R' 

+ w1 == y1/R~ 

. . 
+ w = y /R' m m . 
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(17) 

Equations (17) are (a+ b + ... + c) simultaneous linear equations 

in the unlmowns, 1\:' v1 , •.. , wm' and, together with the restriction that 

the mean values of~' v1 , ... , wm each be zero, can be solved. As a . 

practical method of solution, each equation may be mult~plied through by 

R'; then the equations, 

R'u + R'v + a a + R'w ::i::: y a a 

R'u + R'v + 
C C 

are replaced, respectively, by 

L~l\: = 0; l_n1v1 = 0 ;lnmwm = 0 
k 1 m 

the system is then solved for R'uk, R'v1 , and so on to R'wm. Finally, 

R12 is found by computing the variance of R'xi = R'1\: + R'v1 + ... + R'wm 

for, 

Var(R'x . ) = R12var x. = R12
, since Var x. is unity. Taking 

l. . l. l. 

2 the positive square root of R' and dividing this into R'uk, and so on, 

the values of 11c, v1 , ... , and wm are determined. These are the m.c. 

scores for the U, V, ... , W component factors. 

4.5. Interpretation of the M.C. Scores 

In the simplest case, there would be but one component of X, say W. 

Then X = W, i = m, and g = c, and since w and x
1
, are both defined as the . m 

scores which maximize the squared correlation, x. = w. But the x. are 
l m l 
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interpreted as the effects of factor X; so thew are also interpreted as 
m 

the effects of W. 

However, the interpretation of 1\:' v1 , ... , and wm as effects is 

not quite so obvious in the general case. In order to arrive at such an 

interpretation, consider the following (c x h) table, which is derived as 

a marginal table from Table 13: 

I~ 
1 n 

2 n 

. 

. 
C n 

n. n 
J 

Table 15 

Marginal Contingency Table 

(Factors Wand Y) 

y 
1 2 . . h 

n n 11 .. _12 . . lh .. . . 
_21 

n _22 . . n _2h . . . . . . . . . . . . . . . . 
n . . n . . _cl . . _c2 . . ch 

.1 n 
. 2 

. . n .h . . .. . . - - -

i 

1 

I 

! 

The tabled frequencies are summations over k, 1, _, l' 

n m 

n ? 

_l. . . 
n 

_2 . 
! . . . . 
l n . . c . i 

I 
n 

I 
Now, since 

Table 15 is a (c x h) contingency table, the technique of section 3 could 

be applied to test the simple association between Wand Y. In particular, 

the simple observed effects of W would be given by 

w' = y /Rf, by formula (5), where w' has mean zero and m m m 

unit variance, and where Rf is the correlation between w' and y .. 
m J 

However, we know that the value of y may be affected not only by m 

the mth category of W, but also by the factors, U, V, _, V'. Suppose, for 

example, that the effects of the categories of U alone are the known values, 

Then we may compute the net effect of factor U on y as follows: m 

(when the meaning is clear without use of dot and dash notation on the 



subscripts, they are omitted) 

fork= 1, the effect of U is u*
1

; this effect applies to 

n elements in the sample; fork= 2, the effect of U is u*
2 

and 
1._ . . 

applies to~._ .. elements; then the effect of U on the combined cells, 

1 ·...-•. and 2 ._ .. is 

(nl._ .. u\ + n2._ •• u*2)/(nl._ .. + n2._.), that is, a weighted 

average of the two effects; similarly, the effect of U on all cells com-

bined is 

but, by scale requirements, 

Z T\cu*k = O, so the net effect of all categories of U on the 

whole sample is 

Z ~u*/n = 0 

equation (18) may be written, 

l_ l\:u*/n = {tm1r/n = { (njn)i(nmku*/nm) = 0 

(18) 

but.Zn_1ru* In is merely the weighted average of the effects of U on the 
kWA. k' · m 

mth category of W; in the same way as argued above, this is the net effect 

of all categories of U on the mth category of W, and may be denoted u*; simi­
m 

larly, v* =Ln_,v*1/n is the net effect of Von the mth category of W; and 
m 

1
.u.u. m 

so on. Now in the mth category of W, assuming no interaction of effects 

and no random effects on the dependent variable, the total observed effect, 

ym/Rf, must be the sum of the effects of each of the factors in the mth 

category of W; in symbols, that is 

v* m + u* m + • • • + ~ m = Y n/Rf 

by the same argument, we could write, 
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u* + v* + k k 

multiplying, appropriately, by R1 , or R2 , ... , or Rf, and dividing each 

expression by R •, we get 

+ -;k = y/R' 

+ wl = yl/R' 

+w =y/R' m m 

where~= R1u*/R', and so on; but this last system of equations is identi­

cal to (17), sub-section 4.4, where 1,c, v1, ... , and wm are the m.c. scores. 

Thus the m.c. scores differ from the defined partial effects only in scale, 

the proportionality factor being R
1
/R' for the uk, R2/R' for the v1 , and 

so on to Rf/R' for the wm. We may therefore refer to the m.c. scores of 

equations (17) as the observed partial effects of the factors. 

4.6. Equivalence of M.C. Scores with Least-Squares Estimates of Effects 

An additive effects model may be set up and the 'normal' equations 

for estimating effects may be developed on the principle of least-squares, 

as is usually done for the analysis of variance in experiments. 

Let, 

where y. is a numerical value with mean zero, 
J 

u*k, v*1 , ... , an~ w··it·m are the estimated effects, 

and ekl . is the difference between y. and the sum of 
_mJ J 
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the estimated effects for given levels of k, 1, ... , m and j. 

By the principle of least-squares, the estimated effects are found by 

minimizing the variance of ekl ., that is, by minimizing _mJ 

l .!\1-m/ekl m)2 = l_ .1\ci m/Y*j - u\ - v*l - • • • ~ w* )2 • 
kl_mJ - kl_mJ - m 

Taking derivatives with respect to u*k, and setting equal to zero, 

-2L ~l . (y*. - u*k - v-M-1 - • • • - w* ) = 0 ; 
l_mj _mJ J m 

this simplifies to, (omitting dot and dash notation on subscripts) 

nku*k +L.
1

~ v*l + • • • +l._ I\mw* m =l ~jy* j , which in turn can 
m J 

be expressed as 

u* + v* + k k 

similarly, u* 1 + vii-1 + • • • + ~ 1 = y 1 

u* + v* + m m + r = Y rn m 

(19) 

Equations (19), together with the arbitrary scale requirement 

that the grand mean of each set of effects be zero, have unique solutions 

for u*k' v*1 , ... , and ~m· 

Dividing equations (19) by R', we again get 

+wk= y/R' 

+w =y/R' m m 

where uk = u*/R', etc., and this system of equations is identical to (17). 

Thus, the least squares solutions differ from m.c. scores only by 

the factor, R'. Again, as in the simple case in section 3, it is seen that 

the equations for finding m.c. scores are equivalent to those used in the 
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analysis of variance for finding observed 'effects'. 

4.7. The Relation of R' to Variation Among the Dependent Means 

In section 3, it was shown that R, defined as the correlation 

between m. c. scores, x. , and the dependent values, y . , was equal to the 
l J 

standard deviation of the observed means of y (see equation 6). An analo-

gous relation is found to exist in the multi-factor case now under discussion, 

because: from equations (17), we may write 

R'l\: = Yk - R'(;k + ... + ;k) , and similar expressions for 

R'v through R'w; the right-hand side of the relation is equal to the 
1 m 

observed mean of y, less a set of corrections for the net effects of v, 

w; therefore, we define 

thus, 

;R'w =Yd' m ma J 

now, the variance of the sum of partial scores has been specified to be 

unity (section 4.4); that is, 

(1/n)l 7d m. (1\: + vl + ••• + wm)2 = 1 
kl m -

subs ti tu ting y, d ./R' for uk, and similarly for the other scores, 
Ka J . 

(1/nR'2)L. rtl Gk d. + Y1adJ. + ••• + Y d .)2 = 1 kl m .k _ m. a J ma J 

that is, 

... ' 

2 (- - ) R' = var ykadj + yladj + ••• + Ymadj (20) 

Thus, it is found that R' is equal to the standard deviation of the sum of 

adjusted means. 
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4.8. Particular Case: Partial Association when the Dependent 

Factor is a Dichotomy . 

In the particular case of a dependent dichotomy, that is, j = 1,2, 

equations (17) of course are equally applicable as for three or more 

dependent categories. As in section 3, we may express the equations in 

the more familiar terms of proportions. 

As before, 

Y1 = -M_ , and y2 = M , where p = n .. _. 2/n and p + q = 1. 

Since 

Yk =~I\:jyj/~ = (I\: .. lYl + ~ .. 2Y2)/I\: ... , then 
J - - -

yk = -(I\:._.1/Y\:._. _)~ + (1\._.2/~._. )M • 
Denoting I\= ~._. 2/I\: .. _ .. as the observed proportion of elements in the 

second category of Y, for the kth category of U, we have 

Simplifying, we get 

Yk = (pk - p)//pq; that is, yk is proportional to the deviation 

of pk from the overall pin the sample; and since p and q are constant for 

the sample,~ corresponds to yk. Therefore, for the case of a dependent 

dichotomy, ykadj may be expressed as 

ykadj = (pkadj - p)//pq. 

Then equations (17) become 

1\: = (pkadj - p)//pq 

vl = (pladj ~ p)//pq 
(21) 

Knowing p and q from the sample, and having solved for the partial 

effects of, say, factor W, it would then be a simple matter for one to express 
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the observed results in terms of adjusted proportions by the following 

relations: 

p d. = p + w /,/pq . ma J m (22) 

If, for example, factor U were stratum, V were interviewer group, 

W were 1st interview health status, and Y denoted 2nd interview health 

status, as in Table 14, the p d . would be the stratum-interviewer adjusted ma J 

proportion of households with 2nd year health problems for the two groups 

of households under factor W. For purposes of presentation, it would 

also be possible to construct an adjusted 'contingency' table to show the 

observed partial relation between 1st and 2nd year hea.lth problems. (See 

sub-section 2.42, Table 8, for an illustration of this.) 

4. 9 ~ Summary 

If the dependent classification can be characterized by a set of 

quantities, y., j = 1, ... , q, with zero mean and unit variance, then a 
J 

set of scores for the categories of each independent factor may be deter-

mined by means of the formulae, 

1\: = ykad/R' k = 1, ... ' a 

V 1 = Ylad/R' 1 = 1, ... ' b 

w = y ./R' , m = 1, ... , c m madJ 

where uk, _ v1 , 

factors, U, V, ... , W, resp.; 

... ' w are scores for the independent 
ill 

where yk d . = yk - R' (;k + • • • + wk), and similar expres­
a J 

sions in subscripts 1, ... , m; 

and where R' is the product moment correlation between y. 
J 

and the sum of uk, v1 , •.. , w . 
m 

J 
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These scores are such that ~i
2 is a maximum. They are analogous to 

least-squares effects which would be determined in non-orthogonal experiments. 

These scores are termed 'partial effects', because each set of scores for 

a given factor is derived after adjusting for the influence attributed to 

the remaining factors. Finally, the variance of the sum of 'partial effects' 

2 is equal to R' • 

For dependent dichotomies, these results may be expressed in terms 

of rates. Adjusted 'contingency' tables also may be constructed to illus­

trate the observed partial association between any given factor and the 

dependent factor. 

· rn thi~ section, any reference to properties of the observed 

measures as estimators has been studiously avoided. This is because there 

are several aspects of the partial association problem which do not match 

that of simple association. These aspects will be discussed in the follow­

ing section. A X..,
2 test of partial association will then be proposed, and 

this proposal will be evaluated on the basis of empirical sampling distri­

butions. 



5.0. S.M-1PLING DISTRIBUTIONS OF MEASURES OF PARTIAL ASSOCIATION; 

ESTIMATOR PROPERTIES 

• The observed simple association in a (g x h) contingency table 

is given by R, the maximized correlation. When no association exists in 

the universe from which the s~ple has been obtained, nR2 is distributed 

asymptotically as X2 with (g - 1) degrees of freedom, as n becomes large. 

Further, if an arbitrary set of values is assigned to the categories of 

X, the correlation between these values· and the dependent variable has a 

normal distribution, "asymptotically as n becomes large, when there is no 

association in the universe. (See section 3.) 2 The approach to a X or 

normal distribution, as the case may be, is rapid enough ·so that, when 

most cell expeotations a:re 5 or more, the theoretical distributions may 

be used for all practical purposes. But it should be emphasized that this 

rule applies to samples from a universe in which no association is present. 

When association is present to an appreciable degree, then the sample size 

may need to be considerably larger before the theoretical distributions 

b 1 t • t t 1 • d. t • b t. 21 
ecome c ose approxima ions o correc samp 1ng 1.s r1. u ions. In .general, 

then, valid confidence statements based on the asymptotically approached 

distributions require larger samples than do valid tests of the null hypo­

thesis. 

In the case of partial association, it may be desired either to test 

a null hypothesis or to make a confidence statement for the partial associa­

tion of, say, factor W with factor Y. When a test of the null hypothesis 

is made, it is pointless to assume no universe association for factors U, 

V, •..• , V', as well as for W, because one of the fundamental reasons for 

21 .9..E.. cit . , p. 57. 

88 
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studying part ial association is to adjust for the supposed influence of the 

extraneous factorso Rather, the null hypothesis must be of the form: there 

is no associat ion of W with Yin the universe , but u, V, o•o, V' may be 

associated wit h Yo Similarly, when confidence statements are made for the 

influence of W, not only U, V, e•c, V! , but also W may be associated with 

Yin the populationo Therefore , an association, usually of appreciable 

magnitude , almost always i s present in the universe. 

Clearly, one face of the general problem posed by the existence of 

universe association is to determine some rule for minimal sample sizesd 

But even if one were successful in determining such a rule, it might be of 

limited value if, by that rule , inordinately large samples were requiredo 

Consequently, there remains the more general task of determining the bias 

and error variance and distributional form of partial association measures 

developed from samples of given sizes , as related to universes of varied 

types. Completely general answers to these problems will not be coming 

forth here; but, by the selection of prototypic populations and by the 

generation of empirical sampling distributions from them, some insight is 

gained. 

Before presenting the empirical results, it is necessary to adopt 

a means of characterizing different universes and to define explicitly what 

is meant by a given level of association in the universeo Also, an outline 

of the procedures used for selecting samples and for generating empirical 

distributions on the IBM 650 digital computer will be given. Following 

this, the empirical results will be presented and discussed. 
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3.1. Universe Description; Universe Parameters 

The schema presented in sections 3 and 4 is readily adapted to the 

specification of the universe and to the definition of universe parameters. 

For the universe, the cell entries of Table 13 become P .. = Pkl ., in place 
lJ _mJ 

of n .. = n. ~ ., where Pkl . is the proportion of universe elements in any 
lJ KJ._mJ _mJ 

given cell, such thatL_ Pkl . = L Marginal universe relative frequen­
kl_mj _mJ 

cies are denoted by dot notation corresponding in every respect to the nota-

tion employed in section 4 for sample frequencies. 

Considering the universe first as a (g x h) contingency table, we 

then define the squared total universe relation between the composite inde-

pendent factor and the dependent factor as 

2 -
R = var l:..i_ • (23) 

The underscore notation above and in what follows denotes universe measures, 

in contrast to sample measures for which no underscores are made. • 

Now considering the universe as an (ax bx .•. x c x h) contingency 

table, we define the additive partial 'effects' of the various factors by 

the equations: 

~ + ~ + ~•• + ~ = ¥R' 

or more simply, 

u. = Y, ./R' 
---K -X..f{adJ -

V = V /R' -1 .1t..ladj -

w - V /R' -m - --raadj -

(24) 
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completely analogous to equations (17), section 4.4. 

The squared total relation due to additive effects is given by · 

2 - -R' = var(v, d. + :£_, d. + 
- ""'"'1{a J :.La J + ~adj) , which is the (25) 

expression analogous to (20), section 4.7. 

Also, we may now define the squared amount of relation not due to 

additive effects, i. e. the squared total interaction in the universe, as 

the difference between R2 and R' 2 : 

(26) 

The simple, i . e. unadjusted, 'effects' of a given independent 

factor in the universe may also be defined by forming a universe table 

analogous to Table 15, section 4.5. Then, by analogy with (6), section 3.3, 

the squared amount of simple association between, say, factor Wand Y is 

given by 

2 
~=varXm. (27) 

By further analogy, we define the squared amount of- partial association due 

to factor Was the variance of the adjusted means, Xmadj : 

R t 2 
_ wy = var ~adj • (28) 

But since w = v d ./R', then var v d. = R12 var w • (29) -m -ma J- -ma J - -m 

Substituting this expression in (28), we re-define the squared total amount 

of partial association due to Was 

2 2 R' = R' var w • (30) 
-wy - -m 

Finally, the squared total amount of partial association due to 

factor W may be partitioned into (c - 1) components, where, it is remembered, 

c is the number of categories of factor W. In particular, we can assign 

arbitrary values, w' , to the categories of Wand denoter, as the cor-
m w~ 

relation between the arbitrary scores and the partial effects of W. Then 

rw'w2 is the proportion of the squared total amount of partial association 
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due to t he arbitrary values of W. Consequently, we write 

R' 2 R'2 2 · , = r , var w -wy W!!_ -m ' (31) 

as the squared component of partial association attributable to the arbi­

trary values of W. If the w'm values happen to be numerical descriptions 

of the categories of W, in some context, then R' , 2 is the squared linear -wy 

partial association, in that context, of W with Y. The sign of r deter-
W'![. 

mines whether such linear association is negative or positive. 

Summarizing, we have the following universe parameter s , i n -addition 

to the additive partial effects given by (24): 

R, the total association of the composite of independent 

factors with Y; 

R', the total association due to the purely additive 'effects' 

of the independent factors; 

1., the total interactive association; 

R , the partial association of W with Y; and similar expres--wy 

sions for factors U, V, ... , V'; 

R' , , the linear partial association of values, assigned to -wy 

categories of W, ·with Y; and similar expressions for factors U, V, ... , V'. 

By setting up universes with different values for these various 

parameters, it will be possible to examine the influence of these parameter s 

on the properties of empirical sampling distributions of measures of par­

tial association. 

Each of the above universe parameters, it is noted, is determined 

by the set of Pkl_mj' for the universe. Thus, by the sel$ction of the 

proper values for the Pkl_mj' a universe with any desired values of these 

parameters may be specified. 
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5.2. Observed Measures are Consistent Estimates of Universe Parameters 

Universe measures and sample measures of partial effects are com­

puted in identical manner. Also, as n becomes large, the relative magni­

tudes of sample cell fi'equencies converge stochastically to the uni verse· 

relative frequencies. Then, considering that the measures of association 

are in the form of averages and variances, the limiting values of the 

measures of association are equal to the universe ~alues, as n approaches 

infinity. That is to say, the sample values are consistent estimates of 

the universe para.meters. 22 

5.3. Proposed x.._
2 Test for the Significance of Partial Association 

Referring again to Table 15, the significance of the simple asso­

ciation between Wand Y could be tested .by 

Xc_1
2 _: ru:l,_y2 : nsym2 , from (6), Section 3, 

Now, from equations (17), 

wm = Yma.d/R' • 

Then by analogy with the simple case, we hypothesize that 

)( 2 : nR._1 __ 
2 : ns- 2 , where R"~TV i _s the correlation be.-

c-1 -wy Ymadj "~ 

tween wm and Yj. 
(32) 

Since wm = - / R' , 
Ymadj 

so from (32) we get the relation, 

R' : R's , 
wy Wm 

(33) 

that is, the ob:served partial correlation between Wand Y equals the total 

additive association due to all factors times· the standard deviation of 

the observed partial effects of w. 

22 See Slutsky's theorem, p. 255, of Cramer, H., "Mathematical 
Meth.eds of Statistics", Princeton Uni versi tr Press, 1946. 
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Finally, by substitution of (33) in equation (32), 
2 2 2 

X(c - 1) = nR' sw , (34) 
m 

Equation (34) expresses that , when the squared universe partial association, 

2 R' var w, equals zero, n times the observed squared sample association, - ~ 

R' 2s 
2 , is asymptotically distributed as a X2 with (c - 1) degrees of w m 

freedom. This statement is not proven here, but is merely hypothesized. 

As an hypothesis it will be tested against empirically generated distribu­

tions of nR' 
2s 2 when the uni verse values of R' 2var w = O. w - """'ill m 

5.4. Hypothesized Asymptotic Distribution of the Observed 

Linear Partial Association '· 

Taking R' 2 =vary d. as the -observed squared partial associa-
wy ma J 

tion of W with Y, we may obtain its linear component when arbitrarJ values, 

w'm' are assigned to the categories of Was follows: 

let r, be the correlation between w' and w; then r, 2 is 
WW m m WW 

the proportion of the squared partial association which is attributable to 

th 
b

• tr 1 f W R' 

2 2 

• the b d d 1 • e ar 1. arv va ues o • ,· so r 1.s o serve snuare inear ., wy w'w "'1 

2 partial association of W with Y, denoted R' , ; then, since wy 

R' 2 = R'2s 2 
wy w ' m 

R' 2 = R'2s 2r 2 
w'y w w'w m 

finally, if it is true that 

v 2( ) = nR' 2s 2 
, from the hypothesized equation (34), 

J\ C - 1 w m 
then 

-y2 _ nR'2 . 2 2 
1\. 1 - s r, . 

Wm W·W 

Equation (35) expresses that, when the universe squared partial 

association, R12r, 2var w , enuals zero, n times the observed squared - wx --m '-1. ' 

sample association, R' 2s 2r 2 , is asymptotically distributed as 'X.
2 

wm w'w 

(35) 
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with one degree of freedomo This statement is true only if (34) is true 

in the preceding sub-section 5o3o If it is true, then nR 8r us is asymp­
w w w 

m 
totically distributed as a standard normal deviateo This, too, will be 

tested as an hypothesis against empirically generated distributions of 

nR'r. s when the universe value of R'r .fvarw = Oo However, we may 
W ' W W - W'W -m m 

go further than this; we may hypothesize that, when the universe value of 

R'r , /var w . /:- 0, nR'r I s is asymptotically distributed as a normal -ww -m WWW 
- ill 

deviate with unit variance and mean equal to nR' r , ,har w o 
- W}! -m 

5.,5., Procedure for Generating Empirical Distributions 

on the IBM 650 Computer 

The details of programming on the IBM 650 digital computer are too 

lengthy and technical to recount hereo Nevertheless, the following is a 

general outline of the procedure used in generating empirical distributionso 

The universe from which samples of a given size are to be taken is 

chosen as a 34 universe, that is, a universe with four factors of three 

categories each~ This allows us to denote one of the factors as the depen­

dent variable, Y, and three factors as independent variables, U, V, and Wo 

Within these limitations, we may select universes containing no relations, 

containing various levels of additive partial association of one, two, or 

all three independent factors with Y, or containing not only additive 

associations but also interactive associationso The universe contains 

3
4 = 81 cells; to each cell corresponds a proportion, Pkl ., the full set 

mJ 

of which adds to l; this full set completely determines riot ·onlythe universe 

partial 'effects 8 , but also all the other universe parameters listed in 

section 5oL 
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The 81 cells of the universe are identified with 81 corresponding 

cells in the computer memory. In the first computer cell, the first wu.verse 

proportion, P1, is placed; in the second computer cell, P
1 

+ P
2 

is placed; 

in the ·third, P1 + P2 + P3; and so on up to the 81st cell which contains 

P1 + P2 + ••• + P81 = l. These proportions are shown to the third decimal 

place. For example, we might have Pi= .005, P2 = .052, P
3 

= .025, etc • 

. Then in the computer cells, we would have .005, .057, .082, etc~, resp., 

all the way to 1.000. 

Now a correspondence is made between the computer ce11· contents and 

the random numbers between 000 .and 999: the random numbers, 000 through 004t 

correspond to the first . cell; 005 through 056 to the second; and · so on .. 

thus, to each·oell corresponds a number of random elements in proportion to 

the universe relative frequency. 

Once t~e cumulated universe relative frequencies have· been placed 

in the computer memory, a random number from 000 to 999 is selected by the 

computer. The correspondence between the random number and th~ appropriate · 

universe cell is made by the computer, and a frequency of one is _then placed 

in a sample region of the computer memory. This sample region also contains 

81 cells, each of which corresponds to a universe cell. For example, if the 

first random digit is 056, a_ count of one is placed in the second cell of 

the sample region. Following this, a second random digit is selected, the 

correspondence is made, and a .frequency of one is added to the proper sample 

cell. This process continues until a sample o.f size n has been generated. 

Once the sample has been generated, the partial effects and measures 

of partial and total association are computed, according to the equations 

which have been presented. These sample values are punched on a card, the 

machine clears _itself for a new sample, and the process of sel~cting a ~ew 
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random sample of the same size , n, is begun again 0 

The time required to select a sample of size 50 and solve for 

measures of association is about 2 1/6 minutes .. Consequently, it takes 

about 3½ hours . to obtain 100 sample results for samples of size 500 This 

program utilizes only the basic 650 machine .. If the program were optimally 

programmed with respect to time and if recently acquired auxiliary computing 

mechanisms were used, the time could be reduced by at least a factor of 3; 

thus the 2 minute cycle is 'slow'. 

5a6 e Empirical Results 

Observation and experimentation are indispensible to the advance­

ment of the natural sciences. In the past few centuries, it has been , 

recognized that logic alone, unsupported by observable evidence, cannot 

capture the complexities of nature., Nor is experimentation and observa­

tion a stranger to the world of mathematicse Unlike nature, it may be 

theoretically possible to solve certain extremely complex problems in 

mathematics directlya However, the theoretical tools needed to solve a 

given problem may not yet have been invented , or are not practicable, or 

are not availablee When this is the case, the mathematical problem may 

be approached on an experimental basise This has been an approach familiar 

to the statistician in the last two centuries, and before him1 the gamblero 

The method consists of constructing a physical analogue of the 

mathematical problem in such a way that elements of the physical analogue 

can be sampled at random& From a sample of elements, the solution of the 

pro·blem can be inferredo The following examples are not very complex, but 

they serve to illustrate the method: 
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Exampl e 1 . 

Probl em : Will the house eventually win a profit on the 

roulette t able? 

Solution: Bet x dollars n times (n l ar ge) and s ee who winso 

Example 2 . 

Problem: What is the area under a given curve? 

Solution : Draw curve on square piece of paper with unit 

length and width . Col or area 1mder curve . Cut paper i nto a large number 

of small squar es and number each s quare . Select small square a t r andom and 

record x = 1 i f color ed, x ~ 0 i f not color ed , x = ½ if partly colored o 

Replicate s election procedure n times . Then estimated area islx/n. The 

larger n is, t he more precise is the estimate . 

Prior to the last 20 or 30 years, this technique was sometimes 

referred to as 'model sampling ' . But more recently, the body of such 

tecln1ique has been unified, systematized and extended , and it is now termed 

the 'Monte Carlo method', in deference to its ancient origin. 

The procedures outlined in the preceding sub-section, 3Q5., are of 

this nature. The physical analogue , in that case, i s set up in a computing 

machine, admirably suited to this type of work, and random sampling is 

achi eved through us e of a t able of random di gits fed into the machine . 

Thus the results which follow are experimental, i. eo empiricale 

This approach has been ta~en because of the enormous complexity of 

the problem before us: to learn something about the statistical properties 

of measures of partial relation determined by finite samplea from a variety 

of universes. 
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The firs t univers e to be considered containff no association whatever, 

so t hat B, = 0, B.' = 0 , R = 0, R' = 0, and R' , = 0 . This is a trivial -wy - wy - w y 

cas e, as di s cuss ed i n s ection 5.0 . , in t hat we shall never be concerned 

wi t h hypothes i zi ng a universe of t his t ype, even for a null hypothes is e 

However , t hi s universe has been set up i n order t o test for the hypothetical 

2 X and normal distributions of the sample measures of partial association 

under the most favorable conditions. 65 samples, each of size 50, were 

taken , and the squared partial association of . JI with r was computed for 

each sample s Each of the .values was multiplied by n, for , as the reader will 

recall , it is hypothesized that nR ' 2 is distributed asymptotically as a 
wy 

chi- square o In the particular case at hand, there being c = 3 categories 

of W, this chi-square has 2 degrees of freedom& -

The grouped results, as compared to expectations, are shown in 

Table 16 0 With the exc~ption of the third class (.446 ~ nR' 2 ~ 0712) and 
' wy 

' 2 
the seventh (3 .. 219 ~ nR' ~ 4.604), the agreement between observed and 

wy 

expected frequencies is very goodo In particular, the observed frequencies 

in the ·upper tail of the distribution, io eo the last three clas~es, cor­

respond very closely to expectation. Using the chi-square ' goodness of fitg 

test (L(obs. - expe) 2/exp.) , the chi-square value of 8065 is found · tc, be 

not significant (o7 > P > .5); the observed deviations are well with.in the 

realm of chance variation. Evidently, a test for the significance of par­

tial association in a random sample of size 50 from Universe 1, utilizing 

the chi-square distribution at, say, the 5% or 1% level, would be nearly 

correct. 

In Table 17, the grouped results for ✓."nR 'w, y are presented o By 

hypothesi~, these values are asymptotically distributed as a standard 



Table 16 

Empirical Sampling Distribution of n rrimes the Squared 
Pa~tial Association of W with Y as Compared to 
X Expected Frequencies; Universe l*; n = 50 

nRl 2 
wy 

0 - .210 
.. 211 - .445 
..,446 - ~712 
.,713 - 1.385 

L386 - 2 .. 407 
2.408 - 3.218 
3.219 - 4 .. 604 
4.,605 - 5. 990 
5,.991 - 70823 
7 .. 824 & up 

All observations 
') 

Frequency 
Observed - Expected 

7 6 .. 5 
7 605 

11 6.,5 
13 13.0 

9 13.,0 
8 6.5 
2 6.5 
4 3o2 
3 2.0 
1 L3 

65 650 

100 

'Goodness of fit': !("" 10 _= 8 .. 65 one-tailed P: e7) P > .,5 

Table 17 

Empirical Sampling Distribution of -v'n Times the Linear 
Partial Association of W with Y as Compared to 

Sta~dar d Normal Expected Frequencies; 
Uni verse pr; n = 50 

-vnR'w'y 

-1.97 & less 
-L96 to -1.45 
-1.44 to .94 
- .93 to - .60 
- .59 to - .32 
- .31 to - .. 00 
+ .00 to .31 

.32 to . 59 

.60 to . 93 

.94 to 1.44 
1.45 to 1.96 
1.,97 & up 

All observations 

'Goodness of fit': X
2

1~ = 9o57 
One-tailed P: ~ 

. 7 > P > .5 

Frequency 
Observed Expected 

1 L6 
3 3e2 
6 6.5 

11 605 
3 6 .. 5 
7 Bel 

12 8 .. 1 
7 6 .. 5 
6 605 
3 6.5 
4 3.2 
2 1.6 

65 650 

Test of mean: hypo .,_000 Test of var. : hyp" 1 
obs., -.018 obs . .,89 

two-tailed P: P = 089 two-tailed P: P = 062 

*Universe 1: 34 cells; R = O; R' - O· R - O· R' = O; R' = O. - ' ~ - ' - wy - wiy 
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normal deviatee Inspection of Table 17 reveals that the empirical results 

agree well with expectations, particularly at the two tailso The 'goodness 

of fit' test yields a probability between ~7 and ~5, again well within the 

realm of chance variationo Also, as indicated below Table 17, the observed 

mean and variance of the ·65 s-ample values are quite close to the hypothe-

. sized true- values of zero and_ one, r-esµ°" _ These-_resui ts _ tend to substan­

tiate _ the hypothesis. that, for samples -of size 50 from Universe 1, the 

observed linear partial association is . distri'buted approximately as a 

normal distribution with mean zero (no bias) and with fari~ce ·equal to 1/no 

5 o-62 o Uni ver·se 2 

'.Ilhe second um.verse contains a total relation, .!i., equg.]_ to 0453.o 

There is no interaction, as indicated by the fact that _B:_' . also equals 04530 . 

None of this- total relation is due to the _partial effects of W, since .E..'wy 

as well aE R' equals 0. But the universe frequencies are in a state of 
- w'y 

inlbalance, as indicated by an appreciaple simple association between W ·and 

Y, R = 01940 It is desirable that, notwithstanding an appreciable simple -,,zy 

association, the sample measures of the partial ,and linear partial associa-

tion of W with Y be distributed according to the hypothesiz.ed chi-square 

and normal distributions which would be indicative of no partial associa­

tion in the universeo 

The squared partial asseciations observed for 91 samples, each of 

size 50, are presented in Table 18e For the smaller~~ values, the observed 

frequency is consistently lo,ver than expectation; also, in the extreme upper 

. tail (70824 & up) the observed frequency is much higher than expecta~iono 

The 'goodness of fitff test yields a one-tailed probability between ol0 and 

0 05, of borderline significanqe$ Consequently, the fit of the data to the 

hypothetical chi-s quare distribution is under suspicion,o_ 



Table 18 

Empirical Sampling Distribution of n Times the Squared 
Partial Association of W with Y as Compared to 
X2 Expected Frequencies; Uni.verse 2*; n = 50 

nRB 2 
wy 

0 0210 
.,211 - "445 
0446 - 0 712 
(>713 - L.385 

lo386 - 20407 
20408 - 3 .. 218 
3 .. 219 - 40604 
40605 - 5.,990 
5e991 - 70823 
7&824 & up 

All observations 

Frequency · 
Observed Expected 

6 
8 
5 

20 
17 

7 
15 
4 
3 
6 

91 

9ol 
9ol 
9ol 

- 180-2 
180-2 

9ol 
9ol 
406 
2.,7 
LB 

9L 
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'Goodness of fit': Xio = 17.,5 one-tailed P: olO > P > o.05 

Table 19 

Empirical Sampling Distribution of -{n Times the Linear 
Partial Association of W with Y as Compared to 

Standard Normal Expected Frequencies; 
Universe 2*; n = 50 

-L97 & less 
-L96 to -L45 
-L44 to - 094 
- 093 to - 060 

059 to - 032 
- ,.31 to - ,. 00 
+ oOO to "31 

032 to 059 
060 to 093 
094 to L44 

L45 to L96 
L97 & up 

All observations 

'Goodness of fit': Xf2 = 31.,2 
One-tailed P: 

P < .. 01 

Frequency 
Observed Expected 

6 
5 
8 
3 
5 
6 
7 
8 

14 
10 
12 

7 

91 

2o3 
4o5 
9ol 
9iwl 
9ol 

llo4 
llo4 

9ol 
9{>1 
9"1 
4.,5 
2o3 

9lo 

Test of mean: hyp. oOOO Test of varo:_hypo 1 
obse e288 obso le62 

two-tailed P: P < oOl . two~tailed P: P < oOl 

*Universe 2: 34 cells·, Rm 453· R' - 453· R - 194· R' - O· Rl). = 0° 0 , _ - o , -wy - o , ...;.. wy - , _ w'y 
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Table 19, showing t he results for the linear component of the 

partial association, leaves little doubt that the actual sampling distri­

bution does not conform to hypothesiso A probability well below 0 01 is ob­

tained for the ' goodness of fit' testo Further, the grand mean of the 

observed val~es is 0288 , significantly greater (P, o0l) than the hypo­

t hesized zero;- finally , the sampling -variance is observed to be lo62 in 

contras t to the hypothetical unity, a significant departure (P < 001) 0 . 

Since the mean of fnR t· , = 0288, the mean of R' 1 is 0288/,;50, - or ·a04o wy wy _ 

Thus , the bias in this estimator is considered to be in .the neighborhood 

of +o04o If this bias is compared to the -simple association of 0194, it 

is evident that a major portion of the extraneo~s influences of factors U 

and V has been eliminated o Nevertheless , when one considers- that the two. 

extreme tails of the empirical distribution contain 13 of the 91- obse~a­

tions , or more than 14%, in contrast to an expected 4o.6 obs.ervations, or 5%, 

it is also evident that the use of the hypothetical normal curve in a test 

of significance at the 5% level would be unsatisfactoryo 

According to hypothesis , as the sample size increases, the sampling 

dftrt.ributions should more nearly be approximated by chi-square and normal 

di stributions , as the case may beo This is borne out when the sample 

size for samples from Universe 2 is increased from 50 to 1500 Table 20 

indicates that, for samples of size 150, the observed distribution of squared 

partial associations does not deviate significantly from hypothesis (o7 > P 

> o5); the fit is particularly good at the upper tailo This is in contrast 

to the very poor fit in the upper tail region for samples of size 50 -( Table 18) _0 

Also, as shotn1 in Table 21, the distribution of the linear partial associa-

tion of W with Y does not deviate significantly from the hypothesized stan-

dard normal curve ( ., 2 > P > ,,1) o The grand mean of 1nR 9 
1 for all forty -w y . 



rrable 20 

Empirical Sampling Distribution of n Ti mes the Squared 
P~rtial Association of W with Y as Compal"ed to 
Xe Expected Frequencies; Universe 2*; n = 150 

2 
nR. ' }t7 requency wy 

Observed E:rpected 

0 - .210 
.211 - -445 
0446 - e712 
0 713 - 1.385 

1.386 - 2 0407 
2 .. 408 30218 
3c 219 - 4.604 
4.605 - 5.990 
5.991 - 7,.-323 
7.824 & up 

All observations 

'Goodness of fit': Xfo = 8 .80 

1able 21 

6 
7 
3 
9 
5 
) 
2 
1 
2 
2 

40 

one-tailed P: 

4.0 
4o0 
4.0 
8QO 
8.0 
4o0 
4.0 
2. 0 -
L2 

~8 

40., 

o7 > p ) 
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.5 

Empirical Sampling Dis tribution of In Ti mes the Linear 
Partial Association of W with Y as Compared to 

Standard Eormal .Expected. J?requencies; 
Univers e 2~· ; n = 150 

'nR' 
-v1.J w' Y 

-1.97 & less 
-1.96 to -1. 45 
-1.44 t o - .94 
- .93 to - .60 
- 0 59 to - .32 
- .31 to - .oo 
+ .oo to .31 

.32 to . 59 

.60 to 97.. 
0 ) 

.94 to L44 
1.45 to L96 
L97 & up 

All observations 

: '.i-oodnes ,.1 of fit' : ( f 2 = 16. 6 
','ne- tai 1 ed .P : 

. 20 .> P > ., 10 

Frequency 
Observed Expected 

0 1 
2 2 
2 4 
4 4 
~ 4 ./ 

8 5 
7 5 
1 4 
4 4 
4 4 
1 2 
4 1 

40 40 . 

~:est of mean: hyp . .000 Test of var.: 
obs . . 22 

two-tailed P: p = .. 16 two-tailed P: 

hyp., 
obs. 

p = 

➔:·Universe 2: 34 cells ; _R = .,453; R' = .453; R = .194; R' = O; Ri , . = 0. 
- -..1y - wy - w y 

i 
.953 
097 
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samples is closer to the hypothesized zero than is the corresponding mean 

for samples of size 50, and furthermore 1 it does riot differ significantly 

--
from zero o The observed variance, ~953, £s very close to· the hypothesized 

unityo Finally, the extreme tails contain 4, or · lo%, of the 40 sample val­

ues, closer to the expected_ 5% than was the case for samples of size 500 

Evidently, by the increase in sample size, the S8.Illp~ing distributions are 

more nearly approxima'ted by the hypothesized di$.tributions, although some 

bias in the mean and variance may still remaino 

5063. Universe 3 

In the third universe, the total relation is R = 0534, greater 

th&~ in Universe 2e Again as in Universe 2, there is no interaction, as 

indicated by the fact that R' = Ro However, a part .of this total relation 

is due to factor W, as well as factors U and V, as indicated by the universe 

partial association value of R' = 02850 . This .partial association of W . -wy 

with Y is entirely linear, io e. r, = 1, as indicated by the fact that 
W,!_ 

.E,'w'y also equals e285Q We do not hypothesize that nR' 2 is distributed 
wy 

as a chi-square with two degrees of freedom in ·this . case, because the asso­

ciation existing in the universe will increase the observed values. Rather, 

2 · - 2 
we hypothesize that, if the linear component of nR' is removed from nRv ·wy wy 

the resulting non-linear component will be distributed· asymptotically as a 

chi-square with one degree of freedom, since there is no non-linear uni­

verse partial associationo Further, as indicated in 5s4, we hypothesize 

that -{ii times the deviation of R' , from Rw , is distributed asymptoti-w y -w y 

cally as a standard normal deviate~ 

Table 22 shows the results· for the non-linear component of the 

squared partial association between W and Y for 65. samples, each of size 

n = 500 Aside from an apparent hiatus in the second class, the fit is very 
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Table 22 

Empirical Sampling Distribution of n Times the Squared 
Non-Linear Partial Association of W with Y as Compared to 

X2 Expected Frequencies; Universe 3*; n = 50 

n(R' 2 - R' 2) Frequency wy w'y 
Observed Expected 

0 .016 9 605 
~017 - ,,064 1 605 
.065 - 0148 7 6.,5 
0149 - 0455 11 13o0 
.,456 - L074 15 13o0 

1 .. 075 - L642 6 6.5 
1 .. 643 - 2 .. 706 8 605 
2.,707 - 3.,841 7 3o25 
3.842 - 50412 0 L95 
50413 & up 1 L30 

All observations 65 650 

'Goodness of fit': Xia = 13 .. 01 one-tailed P: o3) P > .. 2 

• i ood (.,3 > P > .. 2). Particular attention is called to the behavior of 

the distribution in the upper tail, in which the observed frequencies 

compare favorably wi th expectation., 

Results for the observed linear partial association are shown in 

Table 23. The 'goodness of fit' test yields a non-significant probability 

between o2 and olQ Nevertheless , it is observed that there appears to be 

a consistently high concentration of observed frequencies at the center of 

the distribution, with frequencies at the two tails being consistently less 

than Expectation .. The hypothetical mean value of the deviation of -rnR 1 , wy 

from ~ow'y is, of course, zero; the observed mean of -0052 is quite close 

t o this hypothesized value , such that this discrepancy can be attributed to 

chance (P = o58)o But the observed 0566 variance, in contrast to the hypo­

thesized unity , is significantly low (P < .,01), confirming the visual im­

pressi on of a high concentration of observed frequencies at the center of 

the distribution$ It would appear, therefore, that the bias , if any, is 
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, • );_~_.:_c.:r•,:. )L:.,.·JL:i. 'l: iL.:;L:i. ~Ji.;rU.oi.1. of· n i j_ i:ws tlY:! .ucvin .. tion 
o~' trw Ux:;e:rvcd .fro . .i, t he univer::.:if; ~Jinea:c .c1a:ct:Lal .1-.csso--­

d at-i.on of if ;,:i t h Y, as Com.iJared to .~tandard Hormal 
i~X_)ected l recruencies; Universe; y-<-; n = 50 

-1. 97 ( ' less 
-1.96 to -1. 45 
-J.. 44 to -- • 9~-
- .93 to - . 60 

.59 to .32 
- .31 to - .00 
+ .00 to .31 

.. 32 to .59 

.60 to 093 

. 94 t o 1.44 
1. 45 t o 1. 96 
1. 97 & up 

All observations 

Wr equency 
Cbserved Expected 

1 
4 
3 
6 

3 
16 
10 

9 
7 
4 
l 
0 

65 

1.625 
3.25 
6.5 
6.5 
6.5 
8. 125 
8 .125 
6.5 
6.5 
6.5 
3 .25 
1. 625 

65 . 

' Go odrnYJS o.i: fit ' : ~ i ? -- 17. 43 ·~:est of mean: 
One-t ailed 2: -

hyp . .ooo 'rest 
obs . - .052 

of var . : hyp . 1 
obs. .566 

.2 > J? > .1 

Lt 

t wo-tailed .P: p - .58 t wo-tailed P: .J. < .01 

*Universe 3: 3' cells; R . 534 ; _R' = @ 534; R' = . 285; R' , = . 285: -wy -wy 

quite small , aJJ.d tha t the s21npling variance , if not unity, is actually l ess 

t han hypothesis . Conseq_ueritly , for t his universe, one would feel quite 

confident in using t he s t andard normal curve as the basis of an interval 

estimate for the partial linear association. 

5 ,64 . Universe 4 

None of the preceding universes car r i es interaction. In order to 

test t he possible influence of universe interaction on sample measures, the 

f ourth universe is cons t ructed to contain a rather high interaction, I= 0442. 

However, all additive partial effect s are zero, and all simple effects are 

zero, such t hat R 1 = 0, R = 0, R ' = 0, and R' , = 0. The two hypo-
- ,ry -wy -wy 

t hes es with rcs~?ect t o the partial association of W ~Ji th Y ar e now that nR ' wy 
2 



rrable 24 

En:1irical .3amplbg Distribution of n 1I'imes the Squared 
J? a2tial Association of ·~ with Y as Compared to 
:- Ex9ected Frequencies; Universe 4*; n = 50 

nR' 2 
wy 

0 . 210 
.211 - .445 
.446 - .712 
.713 - l.}'~5 

L 3E36 - 2 .407 
2.408 - 3.218 
3.219 - 4.604 
4.605 - 5.990 
5.991 - 7 ~823 
7 ,824 & up 

All observations 

]'requency 
Observed Expected 

7 7.6 
5 7,6 
G 7.6 
9 15.2 

lJ. 15.2 
16 7.6 

7 7.6 
10 3.8 

2 2.3 
3 1.5 

76 76 . 

2 
'Goodness of fit': X 10 = 25. 96; one-tailed P: .tl < .01 

108 

*Universe 4: 34cells; R = ,l~-IJ~; R' = 0; R = 0; R' = 0; R' = 0. - - -·wy -wy -w' y 

is distributed approximately as a chi- square with two degrees of freedom for 

large enough n, and that 1nR 'w'y is approximately a standard normal deviate 

for large enough n. The results for 76 samples, each of size 50, are pre­

sented in Tables 24 and 25. 

In Table 24, the observed frequencies for smaller values of X ~ are 

consistently below hypothesis. As X~ increases toward the upper tail, the 

observed frequencies become greater than expectation, as a rule. These 

deviations from the hypothetical distribution indicate a poor fit (P < 001). 

The deviation of empirical results for the linear partial associa­

tion in Table 25 is of borderline significance (.1 > P > .05) when tested 

for 'goodness of fit'. The behavior of observed frequencies at the extreme 

tails is poor. • 
1he mean of fiiR' is not quite significantly low (P = .06) ; w'y 

but the variance is well within the realm of chance (P = .17). Table 25 

gives the impression that the distribution rises to a peak at a negative 
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Table 25 

Empirical Sampling Distribution of /n Times the Linear 
Partial Association of W with Y as Compared to 

Standard Normal Expected Frequencies; 
Universe 4-x· ; n = 50 

..fnR' w'y 

-L97 & less 
-L96 to -L45 
-L44 to - .94 
- .93 to - .60 
- .,59 to - 032 
- o3l to - oOO 
+ .. ,,00 to .31 

.. 32 to -~ 59 
060 .to .,93 
.94 to 1..44 

1.45 to L96 
L97 .& up 

All observations 

'Goodness of fit 1
: xf2 = 18.83 

One-tailed P: 
ol > P > 005 

Frequency 
Observed Expected 

6 
4 

13 
4 

10 
8 
7 
6 
8 
5 
-2 
3 

76 

L9 
3.,8 
?·e6 
706 
7.,,6 
9,,5 
9.,5 
7.6 
706 
7 .. 6 
308 
1.9 

76,, 

Test of mean : hyp. oOOO Test of var.: hyp. -1 
obs. -.240 obs. 1.21 

two-tailed P: P = .06 two-tailod P: P = ol7 

*Universe 4: 34 cells; _R_:\. = .442; R' = O; R = O; R' = O; R' , = 0-. -wy -wy -w y 

value, rather than the hypothesized zero, and is skewed positively. Appar­

ently, the introduction of interaction in an otherwise null association 

tmiverse has caused the sample results· to deviate slightly more from hypo­

thesis than was the case for Universe 1, which contained no association 

whatever .. The contrived high interaction in the U1J.iverse appears to exert 

a relatively weak influence on the non-interactive measures of associationo 

5,,70 .An Adjustment for Continuity 

Because there apparently are cases, notably Universe 2, for which . 

the assumed asymptotic distributions are rather poor approximations to the 

actual distributions of sample measures, it is of importance to find some 

means of improving the approximationo To this end~ we employ a conQept 
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which is similar in some respects to 'maximum. likelihood'; but we are 

dealing with discrete sampling distributions and unlmown population forms, 

so that the resemblance is purely superficial; we therefore do not claim that 

the adjustment to be developed makes sample measures unbiased (they are, in 

fact, biased), and the terms 'efficiency' and 'sufficiency' do not applyo 

It is merely our purpose to develop a basis, admittedly intuitive, for an 

adjustment which may give more accuracy to our sample measureso (Here, the 

term, accuracy, means the reciprocal of the root mean square error of sample 

estimates from the true universe valueo) 

Consider a universe consisting of N elementso Let this universe be 

sampled at a rate, r, such that the distribution of the number of elements, 

n, which fall into a sample is a b\nomial, of the form 

Pr(n) = (N!/n! (N - n) !)rn(l - r )N-n o 

Now, letting N become large and r become small in such a way that m = Nr 

remains constant, the limi~ing distribution is a Poisson, of the iorm 

(In order to restrict n to values of zero or greater, the following develop­

ment applies only for values of m ~ lo) 

Replacing n! - in the expression on the right by r(n + l), we -have a smooth 

function of n which passes through each of the points on the dis.crete Pois-

son: 

Now, we find the vaiue of n = n*, such that f(n*) ' = f(n* + 1), as follows: 

f(n* + 1)/f(n*) = (e-mmn*+l/r(n*+ 2)) 0 ([(~* +_})/e-~n*J = l; (36) 

sincer(n* + 2) = (n* + 1)r(n* + 1), (36) reduces to 

m/(n* + 1) = 1 o 



So, 

n* + 1 = m, and 

n* = m - 1 o 
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Now, since both Pr(n) and f(n) have one maximum, and since f(n) passes 

through the maximum point of Pr(n), the maximum, and only the maximum, of 

Pr(n) must lie on or between n* and n* + 1, that is 

m - 1 ~ n ~ m, where n is the integer for which Pr(n) max max 

is a maximum.Q Now consider a given sample which contains n elementso If 

n is n then max ' 

Thus , if n is n , the universe m can be anywhere on or between n and max _ 

(n + l)e For the sake of consistency, we tal(e m to be midway between n and 

(n + 1), that is (n + ½), and we designate m = n + ½ as the 9 average max 

maximum .likelihood' value of m for the given sampleo 

If we have two universes, such that N1/N2 = C, then independently 

selected samples, selected at the sampling rater, containing n1 and n2 

elements, resp e, form the basis of estimating m1 and m2: 

ml =n max 1 +½ 

m2 max = n2 +½ 0 

Then, 

(m1 /m2 ) = (rN1) l(rN2) = C = (n1 + ½)/(n2 + ½) ma max max' _max max 

and, in general, for h universes, 

Nl max:N2 max 

where P N IN 
s max = s max' 

":(nh + ½) , 

o: (nh + ½) , 

Thus, for independent samples, one from each of h universes, or sub-classes 

of a universe, each taken at a constant sampling rate, r, the values of 
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(n + ½), s = 1, 2, ••o, h, stand in the same relative magnitude as the s 

corresponding values of P . This result is subject to the restriction s max 

that ms~ 1 (see previous development, p. 110), so that, in practice, 

when several sample cell frequencies are zero, the addition of½ to cell 

frequencies is probably not advisableo 

The correction for continuity, then, involves adding½ to each cell 

frequencyo In order to evaluate this correction empirically, samples of 

fixed size are to be talceno This introduces an interrelationship, of the 

order (Ps x Pt), for sand t equal 1, 2, ooo, h, s ~ t, between any pair of 

sampling distributions. However, it is assumed that, when his fairly 

large, such that (P x Pt) is small relative to (P (1 - P )), this inter-s s s 

dependence is negligibleo 

For a 34 cell universe, io eo 81 cells, many if not most of the cells 

must have a zero frequency for samples as small as size 50., Consequently, 

the continuity correction could not be validly applied to each cello How­

ever, this does not seem necessary, for, consider equations (17), 4o4. This 

set of equations determines the additive partial effects of each factor on 

the basis of all the two-factor marginal cell frequencies that can be 

constructed, Leo, nkl' coo, nkm' coo, nlm' nkj' nlj' ., ... ~, I\nj" It is 

these frequencies and the nk, n1 , oo•,n, n., not then.,~ ., which deter-
m J . KJ._mJ 

mine the partial effects; and in turn the measures of partial association 

and linear partial association are determined by the partial effectso In 

general, nkl' etco, are much higher values than nkl_mj' so that if the+½ 

correction is applied to these marginal values, the requirement for few 

zero frequencies of nkl' etco, can be met in the great majority of practical 

situations., 
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The rationale for making this correction is as follows: 1) the addi­

tion of½ to each marginal frequency puts the observed frequencies in approx­

imately the same relative magnitude as the 9average maximum likelihood 0 

-
values of the corresponding universe class proportions; 2) using these adjus-

ted frequencies in the calculation of sample measures of partial association 

is then equivalent, approximately, to using the 'average maximum likelihood' 

proportions; 3) if the 'average maximum likelihood' proportions are more 

accurate estimates than the relative values of the observed uncorrected 

_frequencies, then it is hoped that functions of them, such as our measures 

of squared partial association, also are .more -· a,ccurate estimates of the 

universe valueso 

In order to test whether this correction improves the a?curacy of 

sampling distributions of partial association measures, ·t~e continhity cor­

rection has been applied to the same samples from the same universes which 

have been discussedo (See illustration 5o9 for the details of making the 

continuity correction to the marginal frequencies _o) 

sented in Table 260 

'',, .. 

The results are{pre-
.,. 

Table 26 shows that .the adjustment for contin\rity has improved the 

fit of the observed squared partial associationo For Universe 1, the 

'goodness of f~t• chi-square value is reduced _from 8~65 · to 4.,.36; for Uni­

verse 2, from 17.,5 to 5.,23; for Universe 3, from_ 13.0 to_ 3ol3; for Universe 

4, from 26 .. 0 to 4.,8L The adjusted values show a very · nice. fit ~o the 

hypothesized distribution, as indicated" ·by vgoodness of fit' probabilities 

in excess of .,8 in every caseo· 

Table 27, for the lin~ar partial assqc_iation, gives l~ss conclusive­

resul ts for the over-all fit o For Uni verse 1, the 'goodne~·s· of fit' chi­

square value increases slightly from 9.57 to 10o4; for Universe 2, it 
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rrable 26 

Frequency Distributions of Observed Chi-Square Values, Formed from Measures 
of Partial Association, for Repeated Random Samples of Various Universes; 

Comparison of Theoretically Expected Frequencies with Observed 
Frequencies of Unadjusted and Adjusted Chi-Square Values 

A 

X. 2 Class Ul u2 u3 u4 Intervals Ex-
pressed i:i.1 Un- Adjo Exp., Un- Adjo Exp., Un- Adj., Expo Un- Adjo Exp., 
Per~entiles adj. adjo adj., adjo . ---·--1 
0 up to 10 7 6 6.,5 6 8 9.,1 9 6 605 7 9 7o6I 

10 up to 20 7 6 6.,5 8 7 9ol 1 7 6.,5 5 4 706 
20 up to 30 11 10 'Oo5 5 9 9ol 7 5 6e5 6 5 706 
30 up to 50 13 12 13 .. 0 20 17 1802 11 13 13o0 9 13 15o2 
50 up to 70 9 15 . 13 .. 0 17 18 l8e2 15 16 13o0 11 18 15o2 
70 up to 80 8 3 605 7 lj 9ol 6 6 605 16 9 706 
80 up to . 90 2 6 605 15 9 9ol 8 7 6.,5 7 9 706 
90 up to 95 4 3 3Q2 4 4 406 7 4 3,,2 10 5 308 
95 up to 98 3 2 2 .. 0 3 2 2o7 0 1 2.,0 2 2 2o3 
98 to 100 1 1 1..3 6 4 LB 1 0 lo3 3 2 L5 

All Values 65 65 65a 91 91 9L 65 65 650 76 76 760 

B 

'Goodness of fit' 

Universe Unadjusted Adjusted 
Distribution Distribution 

2 
X 10 Probability 2 

X 10 Probability 

Ul 8 .. 65 .,70 > P > .,50 4o36 .,95 > P > ·~90 

u2 17.,5 .. 10 > P > .,05 5o23 090) p) e80 

u3 13o0 030 > p ) 020 3ol3 .,98 > P ) .,95 

U4 26e0 P < oOl 4o81 e95) P > 090 
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Table 27 

Frequency Distributions of Observed 'Normal Deviates', Formed from Measures 
of Linear Partial Association, for Repeated Random Samples of Various 

Unive rses; Comparison of Theoretically Expected Frequencies with 
Observed Frequencies of Unadjusted and Adjusted ' Normal Deviates' 

A 

Normal Deviate 
Class Intervals 
Expressed in 
Percentiles 

Un 

1-------- ...... -_..,. _ .. 

Ul 

Adjo 

u2 

Expo Un- Adjo 
adjo 

u3 uq 
Exp. UR- Adjo Expo Un- Adjo Expo a jo adjo 

~- ..... _ ............. _, ____ ·- ·--

0 up to 2o5 1 1 L6 6 1 2o3 1 1 L6 6 2 L9 
2 o5 up to 7o5 3 1 3o2 5 7 406 4 4 3o2 4 6 308 
7o5 up to 1795 6 8 605 8 7 9ol 3 5 605 13 12 706 

17o5 up to 27o5 11 11 605 3 6 9"1 6 6 605 4 7 706 
27o5 up to 37o5 3 
37o5 up to 50o0 7 

,4 605 5 1 9.,1 3 5 605 10 10 706 
6 8ol 6 9 1L4 16 19 801 8 8 9o5 

50o0 up to 62o5 12 12 Bol 7 9 1L4 10 9 801 7 6 9o5 
62 o5 up to 72o5 7 7 605 8 4 9.1 9 8 605 6 8 7.6 
72.5 up to 82o5 6 
82o5 up to 9295 3 

7 605 14 17 9ol 7 6 605 8 7 706 
3 605 10 10 9ol 4 1 6 .. 5 5 6 706 

92o5 up to 97.5 4 4 3o2 12 16 406 1 1 3o2 2 1 308 
97o5 to 1000 2 1 L6 7 4 2o3 0 0 L6 3 3 L9 

C - -• - • • • ....,_,. ~ --~- ·-· ···--

All Values 65 65 65. 91 91 9L 65 65 65. 76 76 760 
- .. ---

B 
___ _.. ..... ,. ... ..._ _____ ·- __ ,.. ..... - ·- ........ ·- . 

8 Goodness of fit' 

Universe Unadjusted Adjusted 
Distribution Distribution 

2 
X 12 Probability 2 

k 12 Probability 

Ul 9.57 070 > p > 050 10.4 .70 > p > 050 

u2 3L2 p < oOl 5L4 p < eOl 

u3 17o4 020 > p > olO 24o0 005 > p > 002 

u4 18 .. 8 .. 10 > p > .. 05 1L4 050 > p > 030 
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increases from 3102 to 51Q4, both values being highly significant; for Universe 

3, it increases from 17.4 to 24o0; and for Universe 4, it decreases from 18 0 8 

to llo4$ Thus, if X2
12 is taken as an over-all indicator of goodness of fit, 

the adjusted values are generally more at variance with hypothesis than the 

unadjusted valueso 

However, in making tests of significance and interval estimates, we 

are most frequently concerned with one tail or another, or both tails, of 

the sampling distribution. Consequently, it is not so important that the 

form of the hypothetical sampling distribution be as good an approximation -

at the central values as it be a good approximation at the tailso For the 

distributions in Table 26, we are concerned most with the upper tail, let 

us say the upper lo%. For the distributions in Table 27, we are concerned 

most with the upper and lower tails, let us say the lower 7o5% and the upper 

7 o5%. Examination of Tables 26 and 27 reveals that in general th~ unadjus­

ted frequencies tend to be higher than expectation, and that the adjustment 

tends to reduce the frequencies in the tails. This general improvement is 

illustrated in Table 28, in which the upper lo% frequencies from Table 26 

and the upper and lower 7o5% frequencies from Table 27 have been pooled 

from all four sampling distributions. 

The unadjusted frequencies for the upper tail of the hypothetical 

chi-square distribution run significantly high (P < .01), while the adjusted 

frequencies fit very nicely (.90 > P / .80). A similar improvement for the 

fit of adjusted frequencies is seen in the tails of the hypothetical normal, 

from high unadjusted frequencies of borderline significance (.05 > P > .02) 

to a fairly good fit for the adjusted frequencies (o30 > P > .20), due prin­

cipally to improvement of fit at· the extreme tails (the Oto 2.5 and the 

97o5 to 100 percentile classes). 



117 

Table 28 

·,;omparison of 1l1heoretical IGxpected 1rail Frequencies with Observed 
Tail Frequencies from Unadjusted and Adjusted Sampl es of 

Size n ~ 50, fro~ u1 , u2 , u
3

, and u
4 

Combined 

J..1 U1:)}er ·11ail 
,, ·i-squ-:1.re Class In­

tervals, in 
. )ercentiles 

, from 'rable 26) 

l1J u r) to J5 
J'.J 1.:1.p Lo )12 
Jd co 1·) ~) 

7. 5. -~ u _:>_)er a.nc. 
o:·.'cr 1Jormal 

.,~viate Cl ass 
.1.ntervals, 

:i.n : 1ercent i l es 
( f ro1,1 ·rnble 27) 

0 up to 2 . 5 
2.5 up to 7.5 

92 .5 up to 97 .5 
97.5 to 100 

Unadj. Ad j. 

2::, lG 
t.J 7 

11 7 

14 5 
16 18 
19 22 

.I 12 8 

'Goodness of fit' 
Exp . 

Unadj. Ad j . 

(y:~ 7 

r ') 

14.9 - 11.4 r - - 0.62 7 

8.9 < .J .) 

5.9 . l ( .01 ,_. j J ' ) \ .80 - / J. / 

' ( • 4- )' \ 2 1~2 14.9 : X 4 = 9.s2 4 = 4. 95 
14 9 I 

7:4 1l. 05 > P) .02 .30 / P > .20 
I 

The general conformance of the adjusted measures to the hypothesized 

distribution for mos t practical purposes can be illustrated as follows. A 

total of 297 samples, each of size 50, have been taken from four different 

universes. If the adjusted partial association for each of thes e samples 

had been tested by an appropriate one-tail chi-square test of the null (true) 

hypo thesis , the null (true) hypothesis would have been rejected 14 times, 

that is, 4~7% of the time, on the nominal 5% significance level o This repre­

sents excellent agreement e If the adjuste~ linear partial ·association ~ad 

been tested by a two-tail normal distribution, on the nominal 5% level, the 

null (true) hypothesis would have been rejected 13 times, that is, 4o4% of 

the time ~ Or, viewing the linear association as an estimating problem, if 

a nominal 95% confidence interval had been constr~cted from each sample, 
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9506% of such intervals would have included the true value 0 Again, agree­

ment is very goode 

5e8& Summary 

If the dependent classification in a multiply classified universe 

can be characterized by a set of quantities, y., j = 1, ooo, q, with zero 
J 

mean and unit variance, then the total universe association, _g_, is given 

by the standard deviation of the universe means (appropriately weighted by 

class frequencies): 

R =/var~ o · 

The additive, i. e& non-interactive, universe association, Ji', is given by 

the standard deviation of the sum of the adjusted universe means: 

B. l = -/va:r~dj + iladj + ••• + xinad} 

The partial association due to a given factor, say W, is given by 

R 9 = /var -; d . - wy ""illa J 

that is, the standard deviation of the adjusted means for the categories of 

WQ The linear partial association due to factor Wis given when a set of 

quantities, w'm, is assigned to the categories of W . . Denoting rw'.xr. as the 

correlation between w'm and the universe partial effects, !!m' the universe 

linear partial association, R'w'y' is given by 

R 1 = R' r 1var w 
- W1y - W1J!._1 ~ 

When random samples of size n = 50 were taken, and when a skew cor-

rection was made by adding ½ to each two-factor contingency cell frequency 

? 
in each sample, the observed values of nR' ~ were found, by empirical 

wy 

trials from a variety of universes, to be distributed approximately as 

chi-square with (c - 1) degrees of freedom, when the universe value of .E.'wy 

= Oo The observed values of ynR 8 , were found to be approximately normally w y . . 
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distributed, with unit variance, about the tr11.c universe value, 1"nR' 
- w'yo 

Thus, for practical purposes, the observed value of the partial 

association may be tested for significance by a chi-square test, and the 

observed linear partial association may either be given a normal test of 

significance or may be the basis of a confidence interval estimate of the 

corresponding universe param~tere 

These conclusions must be qualified in several respectso Firstly,_ 

~ while a very good fit wa~ observed in the tails of the distributions, the 

approximation by hypothetical chi-square and normal distributions was not 

always good in the mid-portions of the distributions~ This would limit 

the usefulness of the approximations if high significance levels, such as 

15% or more, were to be used; but for the usual significance levels of 5% 

or less, the chi-square or normal assumption appears to be well approxi­

matedo 

Secondly, the continuity correction can be validly applied only when 

expected two-factor cell frequencies are~ lo As a practical rule, then, 

if several observed two-factor cell frequencies were zero, the continuity 

correction could not be appliedo This limitation implies that when very 

high associations among the dependent and independent variables are en­

countered, the continuity correction can not be applied to samples of such_ 

small size as 500 This is because very high associations can be achieved 

only through the existence of several very low two-factor cell frequencieso 

This does not seem to be a very strong limitation, however, since very 

high associations are seldom encountered in sample surveyso 

Thirdly, the empirical results presented here necessarily cover a 

limited number of possible universeso An attempt has been made to employ 

a variety of different universes, but it is quite possible that some univer­

ses could be found for which the empirical sampling distribution would be 
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poorly approximated by the hypothetical chi-square and normal curveso There 

is no question that, in the future, more experimentation should be done on 

universes with a greater number of classification factors, and with a 

greater variety of factor interrelationships, than has been done hereo 

5o9o Illustration: Co~putation of the Linear Partial Association 

of First and Second fear Health Problems in ;Sampled Households 

of a Specific Size, Average Age, and Sex Distribution Group 

The manner in which computations are made for sample measures of 

partial association can be illustrated with sample data from the Arsenal 

Study, section 2o In 2042, Tables 7 and 8 show the unadjusted and 'adjus­

ted' frequencies, respo, of households with and without health problems in 

the first and second years, for households of size one, age jU-44, male& 

Table 8 has been adjusted for continuity and for the effects of strata and 

interviewer groupso The details of making these adjustments have been de­

ferred until now because they would not be fully understood without first 

lmowing of the procedures developed in sections 4 and, this section, 5o 

The first step is to form a classification of the 30 households 

in the size-age-sex specific group according to stratum, interviewer group , 

first year health problems and second year health problemso This classifi­

cation is shown in Table 29. Note that Table 29 is a specific instance of 

the general table shown in section 4ol, Table 140 Thus, with reference to 

Table 14 , nllll = O, n1122 = 2, n 0002 = 10 , etco Note also that Table 7 

can be formed from Table 29 by obtaining n 0011 , n 0021 , n 0012 , and n
00

22· 

Thus, Table 7 is a specific instance of the general marginal table, Table 15, . 

section 4o5o Computations for the unadjusted association in Table 7 are 

given in 2 042, and similar computations are illustrated more fully in 336 0 
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. Table 29 

Classification of Propositus Households of Size One, Age 30-44, Male, 
According to Health Problem Status at First and Second Interview 

Within Categories of Stratum and Interviewer Characteristics ' 

-· - -
u 1.,r w 

J 
y 

Hlth .. Pbse f Hlth .. Pbso 2nd Interview 
Stratum Interviewer First (j) Total 

Group Interview Zero Non-zero 
(k) (1) (m) 

AB Zero 0 0 0 
f Non-zero 7 2 9 

I 
I I i 

CD I Zero l 0 0 0 
I Non-zero I 1 2 3 I l 

I I 
I 

AB Zero 0 1 1 
Nor:-zero 6 2 8 

II 

CD Zero 2 0 2 
f Non-zero l I I 2 [ 

I l I 
I AB l Zero I 0 I 0 0 

I Non-zero I 2 2· 4 
III i 

CD I Zero 0 0 0 

I Non-zero 1 0 1 

Total 20 10 30 
- -

Now, returning to Table 29, the problem is to obtain the measure 

of partial relation between first and second year health problems, and to 

obtain the corresponding Table 8.. The procedures which follow would b_e 

found quite laborious, if done by hand, but, being done by the IBM 650 

computer, they take only about one minuteo 

As the first step in finding the adjusted, that is partial, serial 

relation, all the two-factor tables of the data of Table 29 are formed to 

give n. ~, nkm, n1 , n, . , n1 ., and n . , as shown in Table 30 .. 
K:l ill KJ J IDJ 



(A) 
nkl for 

factors U and V 

3 
4 
1 
8 

7c. for 
factor~ U and Y 

t--..... 1 I I 
~i 1~ _ ___,._._ __ 2~~~ 
11 8 4 112 1 

2 9 4 13 
3 3 2 5 

20 10 I 30 

Table 30 

(B) 
n1-an for 

factors U and W 
'f:;:,., m 1 ') 

nk! ,_,_ ·~ '-

1 0 12 12 
2 3 10 13 
"3 0 5 5 ~ 

n 3 27 30 m 

(E) 
n1 . for 

factor~ V and Y 

n. 
J 

15 7 
5 3 

20 10 

n I 
1 

22 
8 

30 
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(c) 
nlmfor 

factors V and W 

~ ~ 1 

11 I 1 
2 2 
n ,m 3 

(F) 

2 

21 
6 

27 30 

n . for 
facto~~ Wand Y 

r~ 1 2 In 
m 

1 2 1 3 
2 18 9 27 
n. 20 10 30 

J 

Next, the continuity adjustment is made by adding a frequency of .5 
to each two-factor cell frequency, which yields the following adjusted tables: 

(A) 
Adjusted nkl 

1 9.5 
2 9., 5 
3 4.5 

3 .. 5 j 13 j 
4.5 14 
1.5 6 
9~5 33 

(D) 
Adjusted nk. 

-J 

j I 1 2 ct 

1 8.5 4.,5 13 
2 9 .. 5 4~5 14 
3 3.5 2 .. 5 6 
Tot. 21.5 11 .. 5 33 

Table 31 

(B) 
Adjusted~ 

.tCTil 

-~~ 1 2 I . 
1
Tot, 

11 .5 12.,5 I 13 
2 3.5 10.5 14 
3 o5 5~5 6 
Tot. 4.,5 28.5 33 

(E) 
Adjusted n1j 

1 2 Tot 

1 15 . .5· 7 ,,5 '23 
2 5.5 3.5 9 
Tot. 21 11 32 

(c.) 
Adjusted n1m 

: ~~ 1 2 Toti 

1 1.5 21.5 23 
2 2.5 6.5 9 
Tot. 4 28 32 

(F) 
Adjusted n . . 

; illJ 

1 2 Tot ' 

· 2 .. 5 L'5 · 4 
.8.5 9o5 28 

.•. 

Note that frequenci~s in those tables involving facto~. u, index k, 

total 33 whereas the other tables total 32.. This is because·' factor U has 

three levels rather than two levels as for each of V, Wand .I. In order to 

put all the cell entries on a comparable relative basis, .entries in tables 
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which total 33 are multiplied by 30/33, while the other table entries are 

multiplied by 30/32. This would not have been necessary if all factors had 
,. ' 

an equal number of categories. 

I~ 
1 
2 
3 
Tot .. 

The following tables have been adjusted by the appropriate factor: 

(A) 
AdjUBted nkl 

1 2 Total 

8 .. 64 3.,18 11.82 
8,,64 4.09 12.73 
4o09 L36 5.45 

2L37 8"63 130 

1 
2 
3 
Tot. 

Table 32 

(B) 
Adjusted nkm 

2 Totall 

.45 11.37 11..82 
3 .. 18 9.55 12.,73 

045 5 .. 00 5.45 Tot. 
4.,os 25.92 30 I 

(c) • 
. Adjusted nlm 

2 Total 

i.41 20.16 21.57 
2.34 6,,09 8.43 
3.75 26.25 30 

(D) (E) (F) 
Adjusted nkj Adjusted nlj Adjusted nmj 

~ l 2 ITotall 11 j I 1 2 Total 1 2 Total 

1 7c73 4.,09 11.82 1 14 .. 53 7.03 2L5'6 1 2.,34 ·'.L,411 }.75 
2 8.,64 4.09 12.,73 2 5.,15 3.29 8.44 2 ·17.-34 8 .. 91 26.25 
3 3.18 2.27 5.,45 Tot .. 19.68 10.32 30 Tot. 19.68 10.32 30 
Tot., 19.,55 10.45 30 

In solving for the partial effects of categories of U, V and W, it 

is necessary to use nk, n1, 1\n, and nj, in addition to the two-factor cell 
• I 

frequencies, in order to satisfy seal~ requirements that .the mean partial 

effects be zero. Therefore, the re_lative marginal frefluencies .are also 

adjusted for continuity, q.3 for example: 

Adjustment of nk 

k Unadjusted 

1 12 
2 13 

_3_ 5 
Tot,, 30 

Adjusted 

12.5 
13.,5 

5.,5 
3L)5 

.Adjusted_ 
X 30/31.5 

1L90 
12 .. 86 · 

5.24 
30. 

Similar adjustment for all marginal frequencies yields: 
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Table 33 

Specific ,,., ,,., n 'rt 

Index 
...... k ...... 1 m ...... j 

1 11090 21077 3.,39 19.84 
2 12.86 8023 26061 10ol6 
3 5.,24 X X X 

Tot. 30 .. 30 .. 30. 30. 

The values from Tables 32 and 33 may now be substituted into the 

normal equations for the partial effects, developed in section 4o4: 

R'u + R'vk + R'wk = yk, k = 1, 2.1 k 

l_nkuk = 0 

~ R'u + R'v + R'w = Y1' 1 = L 1 1 1 

2_n1v1 = 0 

) R'u + R'v + R'w = y m = 1. m m • m m ' 

l_n w = 0 I mm 

where uk, v1 , and wm are scores for the factors U, V, and W. To determine 

yk' y1 , and y, it is first necessary to calculate y., j = 1, 2e Since we m J 

taken.= 19084 and 10 .16 for j equal one and two, resp .. , (from Table 33) 
J 

Now, 

In similar fashion, the remaining values of yk' y1 , and Ym are de~erm.inedo 

Substituting values from Tables 32 and 33 and the values of yk' y1, 

and y into the normal equations and simplifying, ~ve get a set of seven 
m 

simultaneous linear relationso The solution of these equations yields values 

of R'uk, R1v1 , and R'wmo At this point , R' could be found by computing the 

standard deviation of the sums, R«uk + R8v1 + Rwwm (see section 4o7); how­

ever, since by (33), section 5o3, R' = R'sw, where R' is the observed 
vvy m wy 
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partial correlation between Wand Y, ands is the standard deviation of w, 
wm m 

we obtain the observed partial correlation between Wand Y directly by com-

puting the standard deviation of R'wmo Also, since there are only two cate-

gories of vi in the present illustration, R 1 = IR' j' that is R' is 
wy w'y ' wy 

equal to the absolute value of the linear partial association of an arbi-

trary set of values, w' , with y.. The sign of the linear relation is 
m J 

given by r, , which, in the case of two categories of w, is either plus 
WW 

one or minus one. Thus, the partial correlation between Wand Y, together 

with sign, is determined e 

The details of solving the normal equations and subsequent compu­

tations are not given here because they are lengthy, and because they involve 

standard mathematical operations. However, it should be appreciated that 

all the computations, beginning with the formation of all two-factor table, 

followed by the various adjustments for continuity, computation of yk' y1 , 

and y, solution of a set of linear equations with seven unknowns, and com-
m 

putation of the partial association measure would involve a great deal of 

labor if done by hand or by the aid of a desk calculator. Furthermore, these 

procedures yield the measure of partial serial association for only one 

size-age-sex class of householde In the Arsenal Study, there are 22 such 

calculated measures. Actually.•.,, all tb,~~-~ computations are performed on the 
' • -~ : ..... ~-~:: 1 

.... • 

IBM 650 computer, and some realization of the efficiency of using this 

labor-saving device can be had by knowing that all 22 measures were obtained 

in less than 30 minutes of computing time. 

In the particular size-age-sex class we have chosen for illustration, 

R' turns out to be -.025, or -2o5%o The final step, if desired for the 
w'y 

sake of presentation, is to develop Table 80 This is done simply by setting 

up the four-fold table, entering the total frequency, n = 30, and the 
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mar ginal frequencies, n and n . (adjusted for continuity per Table 33). m J 

Then the four cell frequencies in Table 8 are uniquely determined by requiring 

them to be such that the product moment correlation is equal to -0025. These 

cell frequencies are readily calculated by the use of the identity (10), 

section 3.6, plus the requirement that the cell frequencies must add to the 

marginal totals. Alternatively, any of the several identities illustrated 

in section 306 may be usedo 

The same procedures as outlined above are carried out for each speci­

fic sub-group(~) of the sample. Thus, for example, we have entered -0025 

as the partial serial relation for the o< = 13 group, in Table 9, section 

2042, along with all the other partial relations for the remaining 21 sub­

groups of the Arsenal data. (Note that in Table 9 and elsewhere in section 

2, the linear partial association is denoted r«, whereas in section 5 we 

have used the notation, R' , , to denote the linear partial association of wy 

the specific factor, W, with Y. r,._,, is identical to R' , for any given 
~ wy 

sub-group, o<, where it is understood that factor Wis first year health 

status.) 

5~10. Illustration: Analysis of Variation in the Partial 

Serial Relation of Household Health Problems 

It has been shown that the observed linear partial association, 

when adjusted for continuity, is distributed approximately as a normal 

distribution with variance equal to 1/n~, where no< is the size of a simple 

random sample from the~th population. (However, see 508 for qualificationso) 

This statistical property proves very useful in the analysis of variations 

in the partial relation among a number of sub-populationsc For an illustra­

tion of such an analysis, the reader is referred to section 2, particularly 
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sub-sections 2 . 4 and 2c 5• In those two sub-sections, emphasis was placed on 

the subject matter and on the analytical approach rather than on the detailed 

computations involved. These details have been reserved until now in order 

to shm·1 that each part of the analysis, i. e., the analysis of total varia­

tion, the test of significance (or confidence interval) for the mean partial 

relation, the test of significance of variations about the mean, the test 

of significance for the agreement of an.§:. priori causal hypothesis, and the 

test of significance for residual variations, is a part of a unified wholeo 

The reader who is familiar with the routine analysis of variance in experi­

ments will find the following analysis closely analogous to that unified 

techniqueo In particular, the decomposition of a total chi-square into 

component parts is accomplished by exactly the same computations as in the 

analysis of experimental data. The only technical difference is that, in 

the usual experiment, the 'error' variance is estimated, and ratios of two 

chi-squares are formed in 'F' tests of significance, while in the following 

analysis, the 'error' varia11ce (of measures of partial association) is 

'known', so that chi-square tests of significance are performedo 

The basic computations are set down in Table 34. o< denotes a 

particular size-age-sex specific sub-population of the Arsenal Health Dis­

trict; n is the observed number of sample elements from the ~th sub-popu­
~ 

lation; and r~ is the observed linear partial association (_previously denoted 

R' , in section 5; hence r = (R' . , )~Jo These are shown in the first wy • wy~ 

three columns of Table 34. \See also Table 9, section 2.42.) In the fourth 

column of Table 34, C~ is listed. This is the index of~ p~iori hypothesized 

level of partial relation, as developed in section 2. 52 a (See also '1Table 10.) 

Column (5) is the product of entries in columns (2) and (3), n~r~o 

Column (6) is the product of (2) and (4), n~C«. Column (7) is (3) x (5), n~r~
2

o 
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Table 34 

Basic Computations for Anslysis of Variations 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
.(2)x(3) (2)x(4)(3)x(5) (4)x(6) (4)x(5) 

~----·c< __ n_o< ____ ~~------?_o< __ n~~~--- no(Co< __ -- · no(ro< 
2
____ __ n._v,c c.} ~~-~<><.:~ .. --.. -·-

1 33 -.322 3 -10 :626 99 3 ;422 297 - 31.878 
2 96 -.208 1 -19. 968 9:G 4.153 96 - 19. 968 
3' 57 - .175 - 1 - 9. 975 57 1. 7 46 57 - 9 . 975 
4 179 -.114 6 ..:20.406 1074 2 .326 6444 -122·.436 
5 117 -.109 5 -12.753 585 ' 1.390 2925 - 63.765 
6 92 -.085 4 · - 7.820 368 .665 · 1472 - 31~280 
7 104 -.074 1 - 7 .696 104 .570 · 104 - ·7 .696 
8 97 -.046 4 - 4~462 388 .205 1552 - 17.848 
9 124 -.043 3 - 5.332 372 .229 1116 - 15.996 

10 158 ·-.043 0 - 6. 794· 0 .-~292 0 0 
11 135 -.040 2 - 5.400 270 .216 · 540 - 10.800 
12 99 -.038 2 - 3.762 198 .143 396 - 7.524 
13 30 -.025 5 - . 750 150 .019 , • 750 - 3. 750 
14 36 . 000 10 . 000 360 . 000 3600 0 
15 42 .01~. •' 7 -546 294 .007 2058 3.822 
16 54 .029 . 4 . 1.566 216 .045 864 6.264 
17 35 .038 9 1.330 315 .051 2835 11.970 
18 59 .045 8 2.655 • 472 .119 · 3776 · 21.240 
i9 72 .052 12 3.744 864 .195. 10368 44.928 
20 97 .078 6 7.566 • 582 • .590 3492 45.396 
21 45 ~101 5 4.545 225 .459 1125 22.725 

__ 2_2 __ 14--'--"3 ________ ._196 __ _ 0 __ 2_8.028 __ ____ Q _ ___ 5..493 ____ .: . . .. . JL... o . ·- - ~ 

Sum X 1904 ·' X X . -65.764 7089 22.335 •. 43867 -186.371 

Average · 
rave Cave ____ .. _ 

• - .Q2_45~ .. :3 ._7232
2 

... . QU13 ___ • ..... 23_'!~039 • - , 09788 ___ _ ----------,-. l .. 

Product Average rave Cave (rave)(cave) 

.• 001193 __ 13. 861 __ .... ~ -~-~-----·--- -,---=---.• ~?~§ .. . --

Column (8) is (4) x (6), nt7(.co(
2 . Column. (9) ia the covaria.nce.· column, the 

·product of (4) ·and (5), I¼q:1<ro<. 

There are 22 row's, one for rach of the 22 .· sub""'.populations under: 

analysis. The 22 · entries in each column, with the exception of columns . . 
- • • • I 

' . . 

(1), (3) and (4), ar~ . SUlilpled to ~give. the 'Sum' row. · Tl.J.us, lno<.= n = i904; • 
. . . . . 

ln...ro( = -65. 764; lno(Cc,( = 7089; [n.J_r,/ = 22.335.; l~~ci = 43867; and 

l_no<Co<r«' = -186.371. Now columns_ (5) through (9) ·are divided _by· n . =. ·1904 . 

to give the 'Average' row. Thus, l_ n r_j~ = r , = -.03454; L.~CJ/n = C =· 
. o< "" • ave "' '"' ave 
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') ') 

the 'Average' row, the 'Product Averages', r ~, C ~, -and (r )(·c ) 
ave av~ ave ave 

appear. 

Note that rave= -003454 = -3.5%, and this appears in section 2 0 42~ 

p. 41, as the adjusted relation of household health problems, adjusted for 

household size, age, sex and for stratum and interviewer characteristicso 
·- 2 • 

Also, note -that Ln~r~ equals 22.33~. This is distributed, under 

the null hypothesis, as a chi square with 22 degrees of freedom and is found 

to be non-significanto Thus, the 22 partial relations do not vary signifj-
... ? 

cantly from zeroo 2_no<.rd..'- = 22034 appearsin section 2o5, p_. 450 

Now a test of the significance of the mean, r , can be perform.edo ave 

The total chi square with 22 degrees of freedom is made up partly of varia-· 

tion due to the mean and partly of variation about the mean. Variation due 

to the mean is 

2 = 1904(.001193) -= 20271. nr ave This is a chi square with one 

degree of freedom under the null hypothesis-,_ and it is not found to be signi-

ficant ·on the 5% level .. Thus, the observed mean, r = -3,,5%·, is not signi-ave 

ficantly different from zero. This fact is reported in section. 2042, p. 410 

Now the variation about the mean is found by_subtracting variation 

due to- the mean from the total variationo Hence, variation about the mean 

is 

l 2 2 _ n~r~ - nr = 22034 - 2o27 = 20007, and is distributed as 
""' "" ave 

a chi square with 22 minus 1 = 2l degrees of freed~m under the null hypo-

thesis that there is no universe variation about the mean., This component 

of chi square is shown in 2o5, po 45, where it is noted that again, on 

referring 20_ .. 07 to a chi square table with 21 degrees of freedom, the ob~ 

served variation about the mean is far from significanto 
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Now we wish to decompose the variation about the mean, 20007, into 

two components: the first component, with one degree of freedom, is that 

portion of the variation which is 'explained' by the.§. priori hypothesis; 

the second component, with 20 degrees of freedom, is the residual variation 

'unexplained' by the_§:. priori hypothesiso First, we obtain the slope of 

the regression of r~ on C~ by: 

slope = cov\ro(c,J/sc 
2 

= ~no<Co<rc>(/n - r C )/v_n__,C~ 2/n - c 2) 
o< ave ave "" ""' ave 

= C- 0 0979 - (-.,l286)J/(23.,039 - 130861) = 00307/90178 

= 0005340 This slope, 000334, is reported in section 

2052, Po 51, and is the slope of the line of agreement plotted in Figure lOj 

Pa 500 In order to determine the amount of variation in r~ due to the 

slope of the line of agreement, it is merely necessary to multiply the 

squared covariance of ~,C~ by n, and divide by the variance. of C~, thus: 

n(cov r~,C~)
2
/sc 

2 = 1904(00307)2/90178 = 01950 This com-
o< 

ponent of variance, .,195, is distributed as a chi square with one degree of 

freedom on the null hypothesis" The test of significance, however, should 

not be performed by reference to a chi square distribution, because such a 

test is two tailedo In the case of testing the a priori hypothesis for 

agreement with observations, we are concerned with discriminating between 

a positive slope (agreement) and a negative slope (disagreement); hence 

we wish to test whether the slope is significantly positive~ Therefore, 

taking iol95 = +o44, we get a standard normal deviate (positive because the 

slope is positive) o On referring +o44 to a normal table, we find that a 

value of +Q44 would be exceeded 33 times in 1000 Thus, the slope is far 

from being significantly positive, and it is concluded that the amount of 

agreement of.§:. priori hypothesis with observed variations is not significanto 

This result is reported in 2052, p., 510 
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Finally, the residual variation, not accounted for by hypothesis is 

20e 07 - 0195 = 19087 . On the null hypothesis , this is distr~­

buted as a chi square with 21 minus one, or 20 degrees of freedom , and it 

i s found to be far f'rom significant. Then we conclude that there is not -a 

s i gnificantly great variation left unexplained by the.§:. priori hypothesis o 

This result, too, is reported in 2 .. 52, p .• 51. Had the variation 'explaine_d ' 

by the a priori hypothesis been significant, this latter test of the 

' unexplained ' residual would have been the criticle test for discriminating 

between a causal and a non-causal interpretationo (See the fourth criterion, 

2 . 52 , p . 47 and p. 51 . ) A non-significant re~idual -would have favorea a . 

causal interpretation of the significant agreement of the§. priori hypo­

thesis; whereas a significant residual would have favor~d the ~nterpret~­

tion that the.§:. priori hypothesis had merely 'picked up' a portion of the 

non-causal variation e 

-The analogy between the foregoing analysis and the analysis of 

variance can be clea~ly brought out by summarizing in a 'table of variations ' : 

Table 35 

Analysis of Variations in ro< 

Source of Variation de fo Observed Chi Square 

Total (ln~r~
2

) 2 
22 22034 

Due to me2...~ ~r ) 1 2o27 ave 
About the mean 21 20 .07 

Due to hypothesis __ l_ ,;20 

Residual 20 19.87 

Probability 

o5 > P > .3 not sige 
.2 > P > el not sig. 

. 7 > P > . 5 not sig o 
(1 tailed normal) 

P = . 33 not sig. 
o5 > P. > /3 not $ig..l! 

The computations . for the a posteriori analysis are quite similar to 

those for the above analysiso On reference now to section 2.53, p .. 52, it ­

is seen that household groups in the 15-29 year average age groups were 

eliminated from the§. posteriori comparison of predominantly fBmale house-
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holds with the households which were not pr~dominantly female. Table 36 

shows the oasic computation for the 15 groups involved in the comparison. 

Table 36 

Basic Computations for A Posteriori Analysis of Variations in r°' 

o( no<. ro< CD( no<ro< no<Co< 
2 

no-!c>( 
2 

ne,<Co< no<Co<ro< 
'Female' Households 

1 36 .ooo +l .ooo 36 .ooo 36 .ooo 
•2· ,42 .013 +l .546 42 .007 42 -546 
3 35 .038 +l 1~330 ,' 35 .051 35 1.330 
4 72 .052 +l 3.744 72 .195 72 3.744 
5 - 97 .078 +l 7.566 97 .590 97 7.566 
6 45 .101 +1 4.545 45 .459 45 4.545 

Female Sub-total 327 17.731 
'Male' Households Female average + .054 

7 , 33 -.322· -1 -1;0_~·626 - 33 3.422 - 33 10.626 
8 96 -.208 -1 -19.968 - 96 4.153 96 19.968 
9 57 -.175 -1 - 9.975 - 57 1.746 57 9.975 

10 179 -.114 -1 -20.406 -179 2.326 179 20.406' 
11· 97 -.046 -1 · - 4.462 - 97 .. 205 97 4.462 
12 124 -.043 -1 - 5.332 -l24 .-229 . 124 5.332 . 
13 99 -.038 -1 ---3. 762 - 99 .143 99 3. 762 · 
14- 30 -.025 -1 -, • . 750 - 30 .019 30 .750 
15 59 +.045 -1 2.655 - 59 .119 59 -2.655 

Male Sub-total -774 72.626 
Male ·averq.ge - .• 094 

·Sum X 1101 X X -54.$95 -447 · 13.664 110~ 90.357' 

Average ... -.0499 -.406 ,.0124 1 ~0821 

,Product average .0025 .1648 .0203 

The row~ and columns of Tabl~ 36 are set up Jµst as for T~ble ,34. 

However, .in order to show -an average for the 'female' and 'for the . 'male' 

househol~s, the table is divided_ into· ~wo parts. Note· also that C~ is 

now +l· for the r· ' female' hm_.1.seholds and -1 for the 'male' households. 

This, of course, conforms to the~ posteriori hypothesis that ·the serial 
--

relation for 'female• households is greater than for '_males'. Any two 

numbers other than +l and -1 could have been selected·· and . cbm,pu'tations 

·would have yielded valid tests, but by selecting unit v~ues -of Co<, the 
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computation of separate means for ' mal e' and 'female' households is 

faci l itated~ '.i.'he average r el ation for ' femal e ' households is given by 
6 6 6 6 

)_ no<Co<ro</ L no<Co< = Z__ no(r«/ L no< = .054 ; on t he other hand , for ' males ' , 
o< =l o< =l o<, =l o< =l 
t he average is _ 
15 15 15 15 
L notc<rc;,(/ L no<Cq = j___ no<r,,/2__ no<= -0094. These t wo values are reported 
o<.=7 ~ =7 « =7 o<=7 
and discussed i n 2 . 53, p. 530 The analysis of variations for the.§. poster-

i:..s?& analysis is constructed in -precisely t he same manner as before, and 

this is presented in Table 37. 

Table 37 

!::.. Posteriori Analysis of Variations in r~ 

Source of Variation do fe Observed Chi Square_ Probability 
·--------·----------

Total 15 13066 ., 7 > .P > o5 not sigo 
Due to me&n 1 2o75 ol ·> p ) 005 not sig o 

About the mean 14 10 091 o7 '1 p / o5 not sig. 
Due to hypothesis 1 5 .. 04 (2 tailed) p = .024 

(1 tailed) D - 0012 .I. -

Residual 13 5.87 p = 095 not sigo 

The total variation about zero is not significant, nor does the 

sigo 
sigo 

mean of the 15 groups differ significantly from zero. However, the variation 

due to_§:. posteriori hypothesis, 5.04, is significantly great ( two-tailed 

normal P = .024, or one-tailed normal P = .012). The residual variation, 

unexplained by hypothesis, tends to be quite low (P =- 0·95) ~ Using a two­

t ailed chi square test of significance on the 5% level of significance , this 

is not, however , judged to be significantly lowo If this residual variation 

had b.een significantly low, this would have added to the already tenuous 

basis of t he.§:. posteriori hypothesis. This is because the conclusion would 

have been that the.§. posteriori hypothesis 'explained' too much variationo 

if this had been the case, even less credibility could be assigned to the 

_§:. posteriori hypothesis than was given to it in the discussion in section 2o53o 



6.0. CONCLUSION 

In the application of statistical theory to the natural sciences, 

actual conditions do not meet the theoretical ideal required for strictly 

valid statistical inferences. For .example, in experimental work, while 

close control and nearly ideal_ randomization usually can be effe~ted, the 

conditions prev.ailing' .. in the ultimate population of interMt are not dupli-
. ' ' . . . 

cated'. On the other hand, ·observati~nal studies of naturally . occurring 

events ' usuall;i: ~an ·b·e ,b¢tter ;direc.ted · at. the ' object of i,µtimate interest; 

but opportunities f~r controI, .and randomization are absent. Thus, the 

experimentalist 'is faced with the .problem. of inferr:ing well _.beyond the 

experimen ~al si tua ti on··~ And •. the observationalis't i~. faced with the problem 
- . ~ . 

of distinguishing cause and effect from casual association .in a_situation 

over wluch he ,has no control. . Nei ther -o~ these problems ·falls_ under the 

domain of statistical theory in its present state of· d~velopment. Perhaps 

the~ are, in general, insoluble. 

Purists dodge the issu~. If the purist experimenter makes no 

direct inference to the population of ultimate interest, he nevertheless 

knows; and probably hopes, that, for his results to be of any practical 

value• others will have to make the _unstated inference for him. So, too, 

the purist observer may avoid all direct mention of cause and effect, but 

by the very scheme of classification that he uses he lays the unstated 

causal ltnference at· the feet of hi_s readers. 

This writer . feels that the exp~rimenter and observer; and mixtures 

of the two, have a responsibility_ either to make explicit tha ,unstated 

inference and _defend it as well as possible, or to discount the tin.stated 

inference sn.d explicitly recognize the limited value of the work. The 

experimentGr, on the one hand, needs to make known the population of ultimate 

134 
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interest and to show how well or how poorly his experimental situation 

measures up. On the other hand, the observationalist, who really classifies 

and adjustsdata according to some causal framework, needs to make that 

framework known; and further, he needs to adopt some set of criteria for 

testing the observed relations against the causal hypothesise We have 

dealt at length with this latter needo 

In the attempt to test a causal hypothesis with observational data, 

it has been shovm that a usually large number of conditioning or disturbing 

variables enter into an acceptable causal frameo Usually the number of 

conditioning variables is too great to be dealt with adequately by mere 

classification schemes. One can, however, classify on certain variables 

which are thought to be closely related to the hypotheti~al cause and effect 

mechanism. Further adjustment for other disturbing variables can be accom­

plished through the use of maximum correlation technique. 

We have considered the principle of maximum correlation in the 

abstract. In the particular cas·e of dependent dichotomies or of dependent 

classifications to the categories of which a set of numbers can be applied, 

the maximum correlation technique has been shown to be equivalent to the 

familiar least squares techniqueo In the analysis, however, it appears that 

an adjustment for continuity, which has been developed in this paper, and 

certain minimum frequency requirements, which have been discussed, are 

needed in order to apply normal theoryo 

The selection of variables for classification is done with a purpose: 

to have the resulting categories or sub-groups available for a test of a 

priori variations in effects of the hypothesized causeo Also, the selec­

tion of further variables to be adjusted by maximum correlation (least 

squares) technique is done with a purpose: to remove variation due to 
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additional disturbing influences. Then the test of the.§: priori causal 

hypothesis involves not just whether there isor is not a 'significantv, 

overall, adjusted or unadjusted, effect observed in the sam.pleo More than 

that, the test requires that the hypothesis correctly predict variations 

in effects among the categories of the sample o Further, the test requires 

that residual variations among the classes, not accounted for by hypothesis, 

be ascribable to chanceo It is with respect to this latter part of the 

test that the selection of conditioning variables to be adjusted for by the 

maximum correlation (least squares) technique becomes importanto If impor­

tant disturbing factors have not been adjusted for, substantial residual 

variation may be unaccounted for by the causal hypothesiso If this be 

the case, then it is not clear whether the hypothesized cause is responsible 

for the ' explained' variations, or whether the hypothesized cause has merely 

'picked up' a portion of the variation due .to unadjusted factorso But if 

all parts of the foregoing exacting test are met , then one has a quite 

reasonable, though certainly not an irrefutable, basis for making a causal 

interpretationo 

In the absence (or presence, for that matter) of a causal interpre­

tation,_.§:. posteriori relationships can be soughto But thesej needless to 

say, can only be offered as hypotheses for future testingo With respect 

to the!!:. posteriori relations which may be found, this writer believes, it 

is most important that the analyst indicate clearly that his findings are 

indeed.§. posteriori and nothing moreo 
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A METHOD FOR EXAMINING PARTIAL ASSOCIATION IN A POPULATION 

By 

Paul Re Sheehe 

In scientific studies of man it is simpler, often necessary, to 

observe the population of ultimate interest than to experiment with ito 

But observational studies are difficult to interpret because conditions 

in the population are not under the observerRs control and because the 

nuJilber of conditions is unlimited$ The observer can include only a limited 

number of conditions$ or variables, in traditional classification schemes 

because of the small frequencies encountered in the sample categoriese 

Therefore , a practicable analytical method which takes more variables 

into account can add to the value of the observational approacho Such a 

method is developed and applied in this studyo 

The method combines the traditional classification technique with 

a technique for further adjustment of multiple variables based on the 

principle of maximum-correlation-scores (choosing those scores for cate­

gories of independent variables such that the squared correlation between 

independent and dependent variables is a maximum)o Also, the method em­

ploys a unified technique for analysis of variation among sample classes 

in order to test the significance of associations, of hypothesized a priori 

causal relations, and of.£:. posteriori relationso 

For illustrative purposes, the method is applied to a study of the 

development of health problems in householdso The data constitute a sample 

of the Arsenal Health District of Pittsburgh, Pennsylvaniao These data are 

the health histories of members of selected households, in the year preceding 

interviews in mid-1951 and in mid-19520 Persons with chronic disease, or 

physical impairment, and persons hospitalized during the year or recently 



confined to bed are considered to have a health probleme 

Specifically, the analysis is concerned with the question: does a 

household member with a non-communicable health problem in the first year 

increase the chances of subsequent health problems among the initially 

healthy memberse A preliminary analysis shows an opposite tendency, that is 

a negative relation: households with, compared to those without, initial 

health problems develop subsequent health problems less ofteno 

In a more refined analysis, the following household characteristics 

are chosen as conditioning variables: size; average age; sex distribution; 

stratum, defined according to density of neighboring households; and class 

of interviewero Classification on these variables would produce class 

frequencies much too small to be analyzed by conventional techniqueso But 

the proposed technique, utilizing the IBM 650 computer, can be employedo 

By this method the household health problem relation is adjusted for all the 

above conditionso Conceptually, this means that comparisons of households 

with and without initial health problems are made only between households 

of the same size, the same average age class, the same kind of sex distri­

bution and the same stratum, as well as between households questioned by 

the same class of interviewero 

The negative relation practically disappears when these conditions 

are taken into accounto Furthermore, the variation of the relation among 

the categories of households is no more than would be expected by chanceo 

Consequently, the data do not support the hypothesized positive relation 

under any of the analyzed conditionso 

Nevertheless, inspection of the data does reveal that, in households 

consisting predominantly of adults, the relation is positive when most of 

the initially healthy members are femaleo This suggests, among other pos-



sible hypotheses, that adult females, rather than males, ·· may be responsive 

to health problem stresses c 

A detailed development of the proposed analytical technique is taken 

up in the sections following the practical application., Properties of maxi­

mum-correlation-scores for two-factor contingency tables, as described by 

Williams in Biometrika (1952), are reviewedo This is followed by extension 

of the maximwn-correlation-scor~s technique to multiple-factor tableso Sta­

tistical properties of measures of partial association, developed on the 

maximum-correlation-scores principle, are investigated by Monte Carlo methods 

on the IBM 650. It is found that an adjustment for continuity is required 

to obtain a good approximation of chi-square and normal distributions to the 

empirically generated sampling distributionso The use whicn is made of 

these statistical properties is illustrated in the foregoing practical 

application., 
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