Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Computational Study of Manganese, Nitrogen Co-doped Carbon as Electrocatalysts in Proton Exchange Membrane Fuel Cell

Li, Boyang (2024) Computational Study of Manganese, Nitrogen Co-doped Carbon as Electrocatalysts in Proton Exchange Membrane Fuel Cell. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

[img]
Preview
PDF
Draft Version

Download (3MB) | Preview

Abstract

Renewable energy technologies have been actively pursued in order to meet increasing energy demand and mitigating environmental pollution. Proton exchange membrane fuel cell (PEMFC) is a promising technology with a high energy conversion efficiency to replace the traditional internal combustion engine in automobiles while producing no greenhouse emission. However, the high cost of Pt based electrocatalysts for promoting oxygen reduction reaction (ORR) at the cathode hampers the widespread application of PEMFCs. Showing encouraging performance, non-precious transition metal and nitrogen co-doped carbon electrocatalysts have been extensively developed as cost-effective ORR catalysts in PEMFCs.
This research aims to predict the chemical nature of active sites, kinetic activity for ORR, and structural stability in electrochemical conditions of Mn and N co-doped carbon (denoted as Mn-N-C) catalyst using the first principles density functional theory (DFT) methods. Both D1 type MnN4 (i.e., a Mn atom coordinated with four pyrrolic N) and D2 type MnN4 (i.e., a Mn atom coordinated with four pyridinic N) moieties embedded in a carbon graphene layer have been predicted to be active for four-electron ORR in acid media, explaining well available experimental measurement results. Notably, the D1 site was predicted to have a superior limiting potential of 0.80 V for ORR, as compared to the value of 0.54 V on the D2 site, indicating a higher intrinsic ORR activity on the D1 sites. By contrast, the D2 site has been predicted to exhibit enhanced electrochemical stability over the D1 site, as evidenced by the predictions that the free energy change for demetallation process is 0.36 eV higher for the D2 site than the D1 site. Moreover, a constant potential computational method combined with a microkinetic model for ORR has been developed and applied to predict the half-wave potential of ORR to be 0.73 V on D2 site, agreeing well with experimental values to validate the developed computational approach. Motivated by the predicted stability of two types of MnN4 sites, the free energy evolution along a transformation pathway from D1 to D2 site has been computed to examine novel synthesis concept for enhancing the electrochemical stability of Mn-N-C catalysts.


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: University of Pittsburgh ETD
Status: Unpublished
Creators/Authors:
CreatorsEmailPitt UsernameORCID
Li, Boyangbol26@pitt.edubol26
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairWang, Guofengguw8@pitt.eduguw8
Committee MemberWiezorek, Jorgwiezorek@pitt.eduwiezorek
Committee MemberXiong, Weiweixiong@pitt.eduweixiong
Committee MemberNettleship, Iannettles@pitt.edunettles
Committee MemberKeith, Johnjakeith@pitt.edujakeith
Date: 16 February 2024
Defense Date: 27 February 2024
Approval Date: 3 June 2024
Submission Date: 20 February 2024
Access Restriction: No restriction; Release the ETD for access worldwide immediately.
Number of Pages: 110
Institution: University of Pittsburgh
Schools and Programs: Swanson School of Engineering > Mechanical Engineering and Materials Science
Degree: PhD - Doctor of Philosophy
Thesis Type: Doctoral Dissertation
Refereed: Yes
Uncontrolled Keywords: proton exchange membrane fuel cell, oxygen reduction reaction, non-precious metal catalyst, density functional theory, adsorption energy, activation energy, nudged elastic band, microkinetic model, solvation model
Related URLs:
Date Deposited: 03 Jun 2024 14:37
Last Modified: 03 Jun 2024 14:37
URI: http://d-scholarship.pitt.edu/id/eprint/45811

Metrics

Monthly Views for the past 3 years

Plum Analytics


Actions (login required)

View Item View Item