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Abstract 

EEG Based Correlates of Attention in 

Intracortical Brain-Computer Interfaces 
 

Edgar Canario, M.S 

 

University of Pittsburgh, 2024 

 

Intracortical brain-computer interfaces (iBCIs) exhibit variable performance across and 

even within days. A limited number of studies have shown that attention is one factor which can 

affect performance, but these have primarily looked at EEG-BCI and utilized simplistic tasks 

which may underestimate the true attentional load real-world BCI users may face. To further 

examine the impact of attentional load on BCI performance and the motor signal which drives it, 

we utilized a complex 2D computer cursor translation + click iBCI task paired with an N-Back 

(N=1,2) task to induce attentional load. We used EEG to quantify attention with theta and alpha 

band frequency power. We found that performance remained stable across conditions for both 

participants (P2 and P4). For the most challenging dual-tasking condition, the participants overall 

firing rate increased, potentially as a compensatory mechanism to maintain performance.  P4 

displayed changes in theta during the hardest dual-tasking condition but with no changes in 

performance or the neural motor signal. When we examined the effect of increases in neural 

correlates of attention on performance and the motor signal of each trial, combined across single- 

and dual-tasking, in a multi-variate regression, we found P2 exhibited decreases in performance 

and degradation of the motor signal. P4’s performance improved instead, despite similar 

degradations of most motor signal metrics. These subject specific effects may be due to P4’s higher 

baseline performance as a result of his newer implant allowing greater control that is less 



 v 

vulnerable to attentional load. Overall, the effects of attention in iBCI performance were small, 

indicating the robustness of iBCI to high attentional load. We were also able to measure attentional 

changes through EEG during simultaneous intracortical recording. This lays the groundwork for 

future studies that wish to take advantage of a dual-modality setup in humans. 
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1.0 Introduction 

Traumatic injury or disease can lead to paralysis or impairments that can limit a person’s 

ability to interact with their environment. Unfortunately, many people experience these types of 

injuries that can have a significant impact on independence and quality of life. For example, 

roughly .2-40 out of 10,000 people per year will experience an upper limb amputation (Kwah et 

al., 2019). There are about 18,000 new traumatic spinal cord injury incidents per year, with roughly 

59.7% resulting in incomplete or complete tetraplegia (Traumatic Spinal Cord Injury Facts and 

Figures at a Glance, 2024). 2-25 per thousand people suffer from strokes every year, many of 

whom experience motor or communication impairments (Wolfe, 2000). These different patient 

populations are all in need of tools which can aid them after injury. Brain computer interfaces 

(BCIs) are on such tool that provide the opportunity to restore agency and independence to those 

with paralysis or missing limbs by allowing control of a computer cursor (Dekleva et al., 2021) or 

a robotic arm (Flesher et al., 2021; Green & Kalaska, 2011; Wolpaw et al., 2002). Additional uses 

of BCIs include the ability to translate neural signals to speech (Willett et al., 2023) or handwriting 

(Willett et al., 2021). BCIs provide great potential to aid people with very significant impairments 

for whom exiting assistive technologies or rehabilitation approaches are insufficient.  

Intracortical BCIs have achieved a high level of performance in controlled laboratory 

environments (Collinger, Wodlinger, et al., 2013), enough to motivate the testing of them in real 

world scenarios such as in-home use (Weiss et al., 2019). However, assistive technologies are 

often abandoned by users due to reasons such as mismatched user needs and device function, 

difficulty of use, and poor performance (Phillips & Zhao, 1993). While potential BCI users desire 
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movement restoration and other functions, they also wish for BCIs that are reliable on a day to day 

basis and possess minimal setup time (Blabe et al., 2015; Collinger, Boninger, et al., 2013; Huggins 

et al., 2011). In long-term BCI use, natural variability in surroundings and user mental state result 

in highly variable BCI performance that is difficult to account for (Perge et al., 2013; Sussillo et 

al., 2016; Tadipatri et al., 2017). To date, one potential factor that has rarely been investigated in 

BCI but has been known to affect motor performance in other studies is attention (Pashler, 1994). 

Some evidence exists to point towards the potential of strained attention to negatively impact EEG-

BCI performance (Foldes & Taylor, 2013) yet mixed results (Emami & Chau, 2018, 2020), where 

effects vary greatly depending on subject and session, obscure the relationship between these two 

features, necessitating further study before any definitive statements can be made. Furthermore, 

study of attention focuses primarily on EEG-BCIs, with few examining the effect on implanted 

BCIs. 

This relationship between attention and BCI performance is the chief concern of this work. 

In the Background, we first begin by further describing BCIs (Section 1.1,1.2), how attention has 

been known to impact BCI and performance (Section 1.3), and the potential mechanism for this 

relationship (Section 1.4). We will then describe our recording setup (Chapter 2), and how we 

tested how attentional load affects BCI performance (Chapter 3) and the neural motor signal which 

drives that performance (Chapter 4). We will end with a discussion of the implications and impact 

of our findings on the future development of brain-computer interfaces (Chapter 5).  
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1.1 Brain-Computer Interfaces 

 

Figure 1 University of Pittsburgh iBCI 

Participant P2 using intracortical BCI to control a robotic arm (Credit: UPMC/ University of Pittsburgh 

Health Sciences) 

A brain-computer interface (BCI) (pictured in Figure 1), is a device that measures central 

nervous system activity for restoration or enhancement of natural CNS outputs (Wolpaw & Winter 

Wolpaw, 2012).  Different types of BCIs exist depending on the modality used to measure the 

neural signal (Nicolas-Alonso & Gomez-Gil, 2012). Two of the most common are 

electroencephalogram (EEG) BCIs and intracortical BCIs (iBCIs),which lie on the opposite end 

of the BCI spectrum (Panoulas et al., 2010). EEG BCIs use electrodes placed on the scalp to record 

brain activity from large areas of the brain (Abiri et al., 2019). They are the most common type of 

BCI due to their non-invasiveness and relatively low cost, but they have low spatial specificity that 
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limits the degree of control they can grant (McFarland & Wolpaw, 2017; Y. Wang et al., 2019). 

While spatial resolution is low, EEG does enable broad recordings from the brain, with many EEG-

BCI studies extracting signals from multiple brain areas from the scalp of the brain (Emami & 

Chau, 2018, 2020). At the other end of the spectrum are intracortical BCIs (iBCIs), which use 

surgical implanted microelectrodes to record activity from single neurons, or small populations of 

neurons (Homer et al., 2013). Often microelectrode arrays are used to obtain recordings from 

~100-200 channels resulting in a high-resolution signal which can drive a variety of devices with 

excellent performance (Flesher et al., 2021; Ghane-Motlagh & Sawan, 2013; Willett et al., 2021, 

2023).  

The difference in signal origin and quality means that each BCI modality utilizes different 

techniques, both in terms of subject behavior and signal processing, in order to obtain a usable 

signal. EEG-BCIs can use evoked potentials such as the P300 potential in response to an oddball 

event (Fazel-Rezai et al., 2012) or the steady state visual evoked potential in response to a flashing 

light (İşcan & Nikulin, 2018; Ortner et al., 2011), which can be used to select particular stimuli or 

commands for BCI control. For continuous control applications, EEG BCIs often detect changes 

in the sensorimotor rhythm (SMR), which shows a characteristic drop in power at ~10-24 Hz when 

a person attempts to move (McFarland & Wolpaw, 2017). Processing techniques such as common 

spatial pattern filters are often used to obtain clearer features from the signal (Panoulas et al., 

2010).  EEG-BCIs have been capable of six state control of a virtual robotic arm (Mishchenko et 

al., 2019), control of a quadcopter in 3d space (LaFleur et al., 2013), control of a lower body 

exoskeleton (Kilicarslan et al., 2013), and three dimensional cursor control (McFarland et al., 

2010; Meng et al., 2018). Yet EEG-BCIs often suffer from long multi-day training times and can 

be fatiguing to use (Rashid et al., 2020). Furthermore, there is the question of EEG-BCI illiteracy, 
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where some users do not have neural features capable of driving EEG-BCIs, and how to bridge 

that gap (Allison & Neuper, 2010). EEG-BCIs still have much to be improved upon before their 

usability is satisfactory for widespread use. The setup process and calibration process alone present 

a significant obstacle for adoption given user preference for easy to use and set up BCIs (Blabe et 

al., 2015; Collinger, Boninger, et al., 2013; Huggins et al., 2011). 

Inside the skull, implanted intracortical BCIs rely on neuron level information for BCI 

control, typically transforming estimated firing rates from small populations of neurons into 

control signals for external devices. During overt movements, neurons in the primary motor cortex 

provide descending control to the muscles in generate movement. The firing rates of these neurons 

are correlated to various movement parameters such as the velocity of the reach (Georgopoulos et 

al., 1986). Importantly, neural activity during imagined or attempted movement is very similar 

(Dekleva et al., 2023; Severens et al., 2015). Neural firing rates recorded from small populations 

of neurons during attempted movements can then be decoded into continuous control signals for 

reaching and grasping (Collinger, Wodlinger, et al., 2013; Flesher et al., 2021; Velliste et al., 2008) 

using the relationships initially identified during actual movements. While decoding approaches 

have become more complex, fundamentally iBCIs derive movement control signals from patterns 

of firing rates from small populations of neurons.  

Compared to EEG recordings, iBCIs are able to access much more detailed information 

about movement intention, resulting in overall higher performance. While EEG-BCIs are capable 

of up to 3-dimensional control of something like a cursor after a great deal of training (McFarland 

et al., 2010), iBCIs can achieve even 10-dimensional control of a robotic arm (Wodlinger et al., 

2014). The information rich signal can also allow for the decoding of handwriting to write out 

characters at a rate 90 per minute where an EEG based system can only do 60 characters per minute 
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(Willett et al., 2021). Speech prosthesis have also been created that can decode words at a rate of 

62 words per minute (regular conversation is 160) (Willett et al., 2023).  In both modalities, cursor 

control is a common application for BCI as computer access is likely to be one of the first 

applications of BCI and BCI control of a cursor relatively high and consistent. As such, we will 

use cursor control as the primary BCI task in this study. However, one disadvantage of iBCI is that 

single neuron recordings are unstable over time (Dickey et al., 2009; Perge et al., 2013) (See 

Section 1.2 for additional detail). To tackle this issue, intracortical BCIs can also make use of more 

stable local field potentials (LFPs) to still achieve higher performance than EEG-BCIs (A. Jackson 

& Hall, 2017). EEG and LFPs are similar in that they are the result of summed postsynaptic 

potentials but different due to the different scales at which they are obtained resulting in different 

levels of neuronal contribution the output signal (Cohen, 2017). Nevertheless, this similarity means 

analysis of EEG and LFP signal are also similar and that there are movement-related features 

common to both which are useful for BCI. For BCIs to achieve state of the art performance, 

however, traditional spike-based decoders are necessary, despite the instabilities. As such, 

developing ways to maintain this performance while avoiding instabilities is necessary. 

1.2 Brain-Computer Interface Performance Variability  

For the purposes of this thesis, we will focus on intracortical BCI performance as they 

enable richer and more complex control of external devices than EEG BCI.  A key determinate of 

BCI performance is the BCI decoder, which is a set of equations that transform neural data into a 

real-time control signal for an external device (Dong et al., 2023). A BCI decoder is generally 

calibrated using neural data recorded while participants attempt to perform a task with well-defined 
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movement parameters (Homer et al., 2013). For example, to calibrate a BCI decoder for cursor 

control, the BCI user would attempt to move the cursor to targets displayed on a computer screen 

(Dekleva et al., 2021). The movement kinematics of the cursor would initially be controlled by the 

computer while the neural data associated with the attempted movements was recorded. The neural 

data, which is essentially a matrix of firing rates for each channel, and cursor kinematics recorded 

during calibration would then be used to estimate the BCI decoder that would then transform neural 

data reflecting movement intention into velocity commands for the computer cursor.  Typically, 

the BCI decoder is held static after calibration is performed. 

 However, intracortical recordings are unstable and can change due to recording 

instabilities or contextual changes. In our own data, the degree to which decoders can explain 

kinematics can vary greatly across time due to this variability (Figure 3). Recording instabilities 

describe neural drift in which the actual neurons that a given electrode is recording from change 

(Downey et al., 2018). Contextual changes cause shifts in the neural firing properties on any given 

channel, such as a shift in baseline firing rate, or a change in the relationship between firing rate 

and a given movement parameter. Instabilities can occur both within and across days and are often 

significant enough to necessitate recalibration.  This presents a significant barrier to the widespread 

use of iBCIs as recalibration is generally a lengthy process that must be performed by a trained 

individual (Blabe et al., 2015). Some deal with this through unsupervised recalibration that is done 

automatically (Degenhart et al., 2020; Wilson et al., 2023), allowing for an up to date decoder 

without any intervention though these demonstrations have been limited to specific participants 

and tasks.  
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Figure 2 Decoder Quality across Time 

Histogram of BCI decoder quality measured across multiple sessions, measured here as the R2 correlation 

coefficient between the predicted and actual cursor kinematics  

Variability due to recording instability that may occur for multiple reasons, such as 

micromotion of the implanted array which may result in recording from different neurons over 

time (Perge et al., 2013). Issues like this and other physiological mechanisms can result in 

significant changes in spike amplitude and firing rate within an hour of recording.  This is not the 

case for all neuronal units, as some can be stable even across days (Downey et al., 2018) but as 

many as 61% of recorded units have been known to change significantly after 15 days (Dickey et 

al., 2009). Instabilities can manifest in other ways such as changes in spike amplitude due to 

micromovement of the electrode (Gold et al., 2006), which occur due to the shape of an action 

potential being dependent on distance to the recording device. Tissue buildup due to glial scarring 

from the implant may also obscure neuronal information (Szarowski et al., 2003). Similarly, neural 
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damage after initial implantation of the electrode array can impact signal quality as well (Suner et 

al., 2005) for some time after implantation. 

External factors may also be responsible for changes in neural activity compared to that 

observed in training. For example, the act of reaching towards an object produces different neural 

activity than reaching without an object which must be accounted for to maintain performance 

(Downey et al., 2017). In terms of reaching, users also act differently when they are reaching 

towards something vs trying to hover over an object, with different directional information being 

exhibited by neurons (Sachs et al., 2015). Beyond just reaching, monkeys have been known to 

alter firing rate when a wider variety of motor outputs are expected to be needed (Hepp-Reymond 

et al., 1999). It has also been shown that the presence of rewards can alter neural activity in the 

primary motor cortex (Ramakrishnan et al., 2017) and that including this can improve iBCI 

decoding accuracy offline (Zhao et al., 2018). These papers serve to show how researchers must 

consider how the task context relates to training context and the decoder in order to maintain iBCI 

performance. 

Subject state and behavior are other important variables to consider in BCI performance. 

For example, a measure of arousal known as neural engagement was found to influence how well 

non-human primate BCI users performed on a task (Hennig et al., 2021). Furthermore, different 

behavioral strategies can result in differences in firing rate and preferred direction as a monkey 

learns (Jarosiewicz et al., 2008). Beyond BCI use, neural activity also differs depending on 

whether someone is watching, imagining, or attempting a movement (Vargas-Irwin et al., 2018).It 

has also been demonstrated that using neural data from multiple days improves BCI performance 

due to a greater sampling of possible subject neural states (Sussillo et al., 2016). In intracortical 

recordings, a slow drift of neural activity has also been found to represent a signal of impulsivity 
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that influences decision making (Cowley et al., 2020).  However, we do not currently have a good 

understanding of how specific changes in subject state influence neural activity, which may allow 

for more principled approaches to stable decoding.  

One issue related to calibration is that the neural data collected during training is not 

necessarily reflective of that obtained during real world use. Creating calibration paradigms that 

better reflect actual use helps create a more accurate and consistent signal when it comes time to 

actually use a decoder. This has been seen with attempts to calibrate based on when a user is 

actually controlling a cursor (closed loop control) for example, versus merely imagining control 

(open loop control) (Jarosiewicz et al., 2013). Most BCI studies now include a closed-loop step of 

calibration in their standard procedure, however this does not account for changes that may occur 

outside of that calibration period, nor does it provide an understanding of what is fundamentally 

changing in the neural signal and what is causing that change. Better decoders and calibration 

paradigms can be achieved if these factors of change were understood. We suspect that many of 

these personal and environmental factors will impact the participant’s overall attentional load, due 

to the added challenge of compensating for the factors, which may impact BCI performance. 

1.3 Theories and Functions of Attention 

There are many different forms of attention. Indeed, this presents a problem when studying 

or discussing attention  (Hommel et al., 2019) as researchers may talk about attention, each with 

their own idea of what constitutes it. It is best, then, to define as specific a process as possible from 

the outset. The first division to make is to separate the process of top-down attention from bottom-

up attention. The latter is when external stimuli draw upon attention for processing while the 
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former is when attention is actively and internally used to purposefully process stimuli (Katsuki & 

Constantinidis, 2014). From top-down attention comes the idea of executive attention, the ability 

to control attention in the service of task completion (Burgoyne & Engle, 2020). This is necessary 

for the completion of any task and in real-world scenarios, complex tasks require that we use this 

to accomplish multiple sub-tasks or process multiple streams of information simultaneously for 

purposes such as driving (Draheim et al., 2022). Yet our ability to divide our attention can be very 

limited.  

Divided attention is often studied through dual tasking, where it can result in a drop in 

performance on one or both tasks and an accompanying neurological change. The addition of a 

secondary task essentially increases the attentional load as compared to performing the primary 

task alone. Many areas of the brain are involved in the maintenance of attention. Many functional 

neuroimaging studies have found activation in the frontal and parietal regions during attention 

based tasks (Coull, 1998).  

Neural correlates of attention are also commonly measured with EEG. For example, a dual 

task driving task was shown to increase frontal area theta band frequency power and decrease 

parietal area alpha band frequency power (Y.-K. Wang et al., 2018). Increasing theta has also been 

seen in a dual task of motor and N-Back tasks (Ozdemir et al., 2016) while decreased alpha has 

been found during a dual task standing and verbal math experiment (Kahya et al., 2022). See Figure 

5 for a picture of frontal and parietal electrodes in an EEG montage. Frontal theta power (usually 

found around the 4-8Hz range) is often seen as being involved in executive function and cognitive 

control during cognitive tasks (Cavanagh & Frank, 2014). Alpha power (generally found around 

the 8-12 Hz range) is thought to be involved in control of brain resources to direct these resources 
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to internal or external tasks (Magosso et al., 2019). As such we used these features to investigate 

attention in our study. 

From the study of divided attention comes the idea of attention as a resource. This was first 

thought of as a singular resource which bottlenecked performance (Kahneman, 1973). Everyone 

had a certain number of resources to split between one or many tasks and using all those resources 

would limit performance. This initial theory assumed the same resource is used by all tasks but 

later on a multi-resource theory of attention emerged (Wickens, 2002). Here there are different 

types of resources for different tasks, such as different resources for processing visual vs auditory 

information. Performance issues then arise when “cross-talk” occurs, two tasks using the same 

pathways to obtain the same resources (Feng et al., 2014). From this concept of resources, we 

begin referring to the idea of attentional load. To accomplish a specific task, attentional resources 

are drawn upon, placing load on the attentional network. Harder or more numerous tasks may 

require additional resources. In the latter case of multi-tasking, performance will decrease due to 

cross-talk and, potentially, a lack of overall resources to cover both tasks.   

Dual-tasking has been studied in several motor paradigms. For example, one study looking 

at the ability of older and younger adults to maintain their balance with or without an N-Back 

distractor, found that the presence of a 2-Back decreased performance and increased theta power 

(Ozdemir et al., 2016). The N-Back is a working memory task often used in dual tasking studies, 

where the subject must indicate matching stimuli in a sequence (Kirchner, 1958). Because of this, 

we used the N-Back in our study as a secondary task.  

Dual-tasking can have a variety of seemingly contradictory effects on performance. In 

studies of driving, the presence of a secondary task may hurt, have no effect, or even improve 

performance (Engström et al., 2017). These mixed effects have been explained as depending on 
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the interactions between the primary and secondary task, with dual tasking being easiest when one 

of the tasks is essentially automatic in how it is performed, requiring no great thought. A similar 

effect may account for nonlinear attention-motor relationships in the posture control literature 

(Lacour et al., 2008). For example in one study investigating postural sway, it was found that 

performing an N-Back of increasing difficulty improved postural control as measured by 

increasing entropy up to a certain difficulty level, but that the most extreme N-Back levels reduced 

control (Haid & Federolf, 2019).  

One difficulty in studying attention comes from measuring it. This partly arises on the task 

level, where multiple cognitive processes such as inhibition, or even multiple types of attention 

such as spatial attention, may be at play, creating confusion as to which process is causing what 

effect (Draheim et al., 2022).  Furthermore, aforementioned studies have primarily focused on the 

effect of attention on behavioral task measures, with the assumption that attentional deficits will 

cause a drop in performance. Through these behavioral measures, the levels of attention and its 

increase or decrease can be verified indirectly. However, this effect of attention on performance is 

not always so clear cut as shown by the studies with nonlinear effects (Haid & Federolf, 2019; 

Lacour et al., 2008). Nonetheless this assumption is still often made, and if deviations exist then 

they are explained due to other factors such as cross-talk or limited resources, and even the concept 

of automaticity requires some attention be paid. As such, to best study attention it is necessary to 

use specific tasks are commonly used to measure a specific type of attention, such as using an N-

Back in a study of divided attention (Ozdemir et al., 2016). Furthermore, using multiple proven 

measures of attention, both behavioral (such as accuracy) and neural (such as theta power (Y.-K. 

Wang et al., 2018)) can allow us to better characterize a complicated process.  
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1.4 Attention in Brain Computer Interfaces 

The ability to focus attention is vital to everyday life but people can have trouble with task 

performance when presented with two simultaneous tasks, even when both are simple (Pashler, 

1994). Even basic processes such as posture and gait initiation can be affected by the processing 

of another task (Bayot et al., 2018). As such, it stands to reason that BCI performance is likely to 

be impacted by attention as well, though limited studies have been completed to test this 

hypothesis, particularly for intracortical BCIs.  

 Much of the literature on attention and BCI performance comes from EEG-BCI literature. 

A P300-based BCI speller was found to have lower performance in high mental workload 

conditions as well as when the user became more fatigued (Käthner et al., 2014). Furthermore, 

subject state often has a complicated relationship with performance as one study found that fatigue, 

frustration, and attention could have either positive or negative effects on EEG-BCI performance 

depending on the level of the mental factor at play (Myrden & Chau, 2015). Specifically, they 

noted that performance was best when fatigue was moderate, as participants were motivated by 

the frustration to better attend to the task. In an EEG-BCI motor task, subjects were found to be 

sensitive to speech-related distractors which decreased their target acquisition and path efficiency 

(Foldes & Taylor, 2013). Another study found overall classification dropped in an EEG-BCI motor 

task when the subject was verbally or mentally counting from 1 to 10 repeatedly (İşcan & Nikulin, 

2018). The previous two studies both tested several distractors of either varying cognitive load or 

varying distractor modality (speech vs listening vs thinking) but not all conditions affected 

performance.  
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Some studies have also examined the effects of distraction on the neural signal during BCI 

performance. One  EEG-BCI based study found that distractors of various cognitive loads affected 

the performance of low performing participants but not higher ones (Emami & Chau, 2020). This 

study noted that even in participants where the performance did not change, the ratio of theta to 

alpha power was affected by the presence of distractions, indicating that neural signals can still 

change under increasing cognitive load caused by distractors. Similarly, another study found that  

theta power was increased by dual tasking during EEG-BCI use (İşcan & Nikulin, 2018). One 

study found that alpha and beta frequency power, features typically used to drive EEG BCIs 

(McFarland & Wolpaw, 2017), increased under visual distractors even when classification 

accuracy in decoding motor movements remained the same (Emami & Chau, 2018). However, 

these studies do not necessarily translate directly to iBCI as EEG-BCIs take more training to use 

and can be more fatiguing (Rashid et al., 2020). 

Intracortical BCIs appear to be more robust against distractors, with only minimal 

performance loss during simple motor tasks (Guthrie et al., 2021), but it is difficult to make a 

definitive statement on this effectiveness as far less work has been done on how distractions affect 

iBCI use particularly for more complex and realistic tasks.  One intracortical BCI study found 

decreased performance (in terms of time to target) during continuous speech but not shorter forms 

of it (Stavisky et al., 2020). This suggests that more involved distractor tasks have a greater effect 

on BCIs. Evidence from attentional studies in other fields such as driving also finds that the 

primary task matters in regards to distractor interference as well, with tasks that require active 

thought and effort being more affected by distractors (Engström et al., 2017).  

Although studies that explore the impact of distraction on iBCI performance are rare, work 

in non-human primates has provided insight into the impact of various cognitive processes on 
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iBCI. For example, a measure of neural activity known as engagement, which has been linked to 

measures of arousal, has been found to both positively and negatively impact performance during 

learning (Hennig et al., 2021). Similarly, another study used EEG and intracortical arrays in 

monkeys to identify a measure of arousal neuronal activity which correlated with EEG alpha power 

and pupil size during an orientation change detection task (Johnston et al., 2022). In a spatial 

selective attention task with monkeys, EEG alpha power was found to have a nonlinear relationship 

with reaction time, where the best reaction time appeared at moderate alpha power, and lower or 

higher values of alpha power were concurrent with worse reaction time (Snyder et al., 2015). This 

relationship was found to be mediated by spike count correlation, which potentially explained the 

non-linear trend.  

1.5 Goals, Aims, & Innovation 

The primary innovation of this proposal comes from the combination of advanced iBCI 

control, whole brain neural monitoring with EEG, and the use of a dual-tasking paradigm with 

scalable difficulty. First, our state-of-the-art iBCI is capable of advanced control in human subjects 

during various paradigms (Collinger, Wodlinger, et al., 2013), including the control of a computer 

cursor (Dekleva et al., 2021). Working with human participants allows us to switch rapidly 

between conditions and has direct clinical applicability.  This study extends previous iBCI work 

related to the impact of distractions (Guthrie et al., 2021) by utilizing a more complex task design 

(that includes target-guided reaching and grasping to control a virtual computer mouse vs only 

simple left/right translational movement). Few studies (Johnston et al., 2022; Snyder et al., 2015), 

and none in humans that we are aware of, have simultaneously monitored intracortical data and 
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EEG during BCI control. By adding whole brain EEG recordings to our iBCI setup, we were able 

to monitor the subject’s mental state using established EEG correlates of attention, rather than 

relying purely on localized intracortical features. Finally, we emulated real world distractions 

using an dual-tasking paradigm. BCI control will be performed along with a secondary N-Back 

task, which has been proven to affect motor performance and neural features of attention (Ozdemir 

et al., 2016).  Combining the advanced iBCI control with a scalable distractor allowed us to catalog 

the differences in outcomes when a user is faced with a mild distraction vs a more significant one. 

The combination of iBCI, EEG monitoring, and a task design that will induce changes in attention, 

will allow us to examine how attentional focus can mediate iBCI performance and motor activity. 

This study could set the groundwork for experiments that wish to examine how iBCIs generalize 

to different settings, where the subject may experience stressors, like pain or fatigue, that impact 

their ability to attend to BCI use.   

To this end, we had two specific aims. After explaining our general methods (Chapter 2), 

for Aim 1 we quantified the relationship between EEG correlates of attention and iBCI 

performance during typical use and under two levels of attentional load (Chapter 3). We 

hypothesized that increased attentional load will degrade performance. Then, for Aim 2, we 

quantified the relationship between EEG correlates of attention with movement-related neural 

activity measured with both EEG and intracortical electrodes (Chapter 4). We hypothesized that 

increased attentional load will degrade movement-related neural activity. We then discussed how 

these results further understanding of iBCI performance under attentional load (Chapter 5). 
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2.0 Approach 

2.1 Overview 

In this study, two implanted iBCI participants completed a 2D+click BCI task alone or in 

conjunction with an N-Back of N=1 or 2 for the purposes of studying attentional load during a 

complex dual-tasking condition that mimics situations that may be encountered during real world 

BCI use. We recorded EEG and intracortical data simultaneously to access neural activity on 

multiple levels. We computed established measures of attention (EEG theta and alpha power), 

measures of the motor signal (EEG and LFP beta band power), and measures of BCI performance 

(success rate, completion time, path inefficiency, target acquisition rate) to examine if these 

measures were impacted by the dual tasking conditions compared to BCI only. We then correlated 

measures of attention with measures of either motor signal or performance to examine how 

attention impacts both neural and behavioral measures during BCI control.  

2.2 Study Participants 

Two participants, P2 (37 year old with C5 ASIA B SCI injury) and P4 (32 year old with 

C4 ASIA A SCI injury), with tetraplegia who are participating in a clinical trial of an iBCI device 

(NCT1894802) for restoring upper limb function completed the experiments for this project. 

Informed consent was obtained prior to any experimental procedures. Study participants have two 

intracortical microelectrode arrays (Blackrock Microsystems, Inc., Salt Lake City, UT) implanted 
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in the motor cortex (88 channels each for P2 and 96 for P4) and two 32 channel arrays in the 

somatosensory cortex. P2 was implanted approximately 8 years prior to data collection, while P4 

was implanted approximately 6 months prior to data collection.  

2.3 BCI Calibration 

To use a BCI for cursor control, we first calibrate a decoder for use throughout the session. 

We begin with open-loop calibration where a user imagines movement as the cursor moves to a 

target in both a grasped and un-grasped state. Factor analysis, a type of dimensionality reduction, 

is then used to produce a 20-dimensional state space based on the neural data recorded from 

approximately 200 electrodes. This state space is then used to train a Kalman filter to decode 2D 

cursor velocity and an LDA classifier to decode click state. We repeat the process with partially 

assisted closed-loop calibration to train another decoder in a stepped-up manner that allows us to 

incorporate user response to error.  

2.4 BCI and N-Back Task 

Subjects performed an iBCI-controlled cursor task, which is a gamified center-out grasp 

and carry task (Figure 3).  The participant used the BCI to move a cursor to a target that can appear 

in one of eight directions around, then grasp the target and carry it back to the center. This 2D+click 

BCI task is designed to emulate mouse use on a computer. BCI-controlled computer access is 
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likely to be the first application of an at-home clinical iBCI, though the findings are relevant to 

other BCI applications based on imagined reaching and grasping movements.  

The BCI task consisted of an initial presentation phase where the target is shown, a reach 

phase where participants reach towards the target, a grasp phase where they grasp the target, and 

a center phase where they return to the center to end the trial. A black screen is then shown for two 

seconds to serve as an intertrial rest period. Participants had a maximum of 20 seconds to complete 

each non-presentation phase, where failure in any phase means failing the trial. A typical block 

consists of 8 trials, with 2 or 3 blocks per set. The order of the sets was randomized for each 

session. 

 

 

Figure 3 BCI Task 

Depicts the different phases of the BCI task. Observe that the helicopter circle becomes black when grasping. 

After the end of each trial, an intertrial rest period of 2 seconds is presented. 

We use the N-Back as a dual task in this study. This is a task designed to test working 

memory (Kirchner, 1958). In the N-Back, participants were presented with letters via audio with 
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an inter-trial interval of 2.5 seconds while they perform the BCI test. They must verbally indicate 

when the letter presented matches the latter presented n (1 or 2) letters ago. The presentation of 

letters is be randomized. An example of 2-Back would be: I G K G B L, where the subject would 

say match on the bolded letter, G. Audio was recorded so that the subject’s accuracy can be scored 

after the session ends. As with many dual task studies, we assume that managing this secondary 

task will require more attentional resources from participants due to the greater attentional load 

compared to only doing one task. 

2.5 Session Design 

We began data collection with a three-minute resting period to collect an EEG baseline. 

Participants were instructed to look at a fixation cross while minimizing movement during this 

baseline. We then calibrated the BCI decoder (as described in Section 2.3) and proceeded to the 

experimental conditions. EEG and intracortical neural data were recorded while the participants 

performed one of three conditions: 1) BCI Only, 2) BCI with mild attentional load (BCI+1-Back), 

and (3) BCI with moderate attentional load (2-Back test). After each condition, participants was 

asked to rate their mental effort on a scale as is commonly done (Paas, 1992). Here, we use a scale 

from 1-10. Participants were familiarized with the N-Back through practice trials before any 

experimental conditions were recorded. We also collected EEG and intracortical data during 

performance of the 1-Back and 2-Back conditions without any BCI control. The condition order 

was randomized each session to prevent order effects. Participants were told to focus on the cursor 

task as the primary task but try their best to complete the N-Back accurately. We collected 5 
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sessions with P2 and 6 with P4. Some sessions were cut short due to time constraints. 

 

Figure 4: Session Flow 

We began by collecting recording neural data during 3 minutes of rest, followed by calibration of the decoder. We 

then performed a block of each experimental condition in random order. Then we collected another block of each 

condition, randomized again but with 16 trials instead of 24. We ended each session with a block of N-Back only 

during which neural data were recorded. 

 

2.6 EEG Processing 

To provide a more global measurement of neural activity, EEG data was collected using 

16 gtec ladybird active electrodes and gUSBamp at 256 Hz (g.tec medical engineering, 

Schiedlberg, Austria). The right mastoid was selected as the reference point and the ground as the 

left mastoid. Channel locations are shown in Figure 5. EEG data was recorded in BCI2000 (Schalk 

et al., 2004) and processed in EEGLAB (Delorme & Makeig, 2004). To process the data, we first 

filtered it with a .5-55 Hz bandpass. Bad channels were then visually identified and removed. 

Afterwards, we use artifact subspace reconstruction (Mullen et al., 2015) with a standard deviation 

of 15 to automatically identify bad data segments and remove them. We then performed a common 
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average reference with all remaining channels. Finally, ICA was performed to remove eye 

components that might contaminate the data. During resting state, this pipeline results in 5% (P2) 

or 18% (P4) of the data being rejected. Individual trials were further rejected if they contained any 

rejected data, leading to up to 5% (P2) or 48% (P4) of trials being rejected. More trials were 

rejected for P4 due to greater noise for reasons such as more movement and worse electrode 

contact. Table 1 indicates total number of EEG trials per condition per participant after rejection.  

 

Figure 5 EEG and Intracortical Array Placement 

Depicts the location and names of the 16 EEG channels. Blue ovals indicate the approximate location of head 

stages and blue rectangles indicate the approximate location of motor arrays on the brain. Frontal electrodes are 

marked by the letters F and AFZ, while the parietal-occipital electrodes are labeled with the letter P, PO, or O. 
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Table 1 EEG Sample Size 

Participant BCI Only Trials BCI+1Back Trials BCI+2Back Trials 

P2 143/144 (99%) 144/147 (97%) 153/160 (95%) 

P4 152/232 (65%) 118/208 (56%) 109/208 (52%) 

 

In Figure 6, we see trial-averaged spectrograms for the first 3.5 seconds of the reach phase, 

normalized to the intertrial baseline of all conditions, from the participants in the BCI Only 

condition. Both participants display a clear sensorimotor rhythm desynchronization, proving the 

feasibility of collecting EEG features during simultaneous EEG and intracortical recording.   

 

Figure 6 EEG Sensorimotor Rhythm Desynchronization 

Sensorimotor rhythm desynchronization (13-30 Hz) is clearly present during cursor movement after trial start.  

We extracted the attentional measures of band frequency power for theta (4-7 Hz) and 

alpha (8-12Hz) bands for EEG in each channel as well as the sensorimotor rhythm as represented 

by the beta band (13-30 Hz). To do this we first calculated the event-related spectral perturbation 

(ERSP) for every trial across channels for the first two seconds of reaching and calculated the 
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average power in a frequency band. EEG features of attention manifest across the brain but are 

strongest in certain regions, such as alpha primarily appearing in the parietal region and theta in 

the frontal (Emami & Chau, 2020). We used a region of interest approach and averaged power in 

the parietal-occipital (channels: Oz, PO7, PO8, P4, P3) area to obtain alpha power and frontal area 

(channels: AFz, Fz, F3, and F4) to obtain theta power as is common in studies of attention 

(Scharinger et al., 2017). We averaged over the first 2 seconds of reach to obtain a trial level 

measure that captures the initial period of movement towards a target before participants begin 

self-correcting in response to error. 

2.7 Intracortical Data Processing 

Intracortical signals were collected and processed using the Neuroport Signal Processor at 

1000 Hz, with a 4th order 250 Hz low pass Butterworth filter applied. Threshold crossing events (-

4.5 RMS) were recorded and binned (every 20 ms) to estimate spike rates. A few trials (3 for P2, 

2 for P4) were rejected due to software error resulting in no intracortical data. Figure 5 displays 

the rough location of arrays (represented by blue rectangles) and head stages (represented by the 

blue ovals). From the spike rate data, we calculated the mean firing rate in each trial (consisting of 

the first two seconds after reach begins, as in the EEG processing) for all conditions (Wilson et al., 

2023). We normalized the firing rate in the distraction conditions by the average firing rate across 

conditions for a trial’s session. Performing this average across conditions allowed us to compare 

firing rates between conditions relative to a common baseline, making interpretation easier. 

Furthermore, it better preserves any tonic effects of condition and the higher amount of data results 

in a more accurate baseline. 
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Notch filters were implemented for the LFP for 60Hz noise and its harmonics from 60-500 

Hz. From the LFP, we calculated the ERSP for every trial across the first two seconds of reach. 

We average this across all motor channels in the primary motor area. Then, we averaged the power 

within the beta band and then across time to obtain a trial level metric of the LFP beta band power. 
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3.0 Effects of Attentional Load on Performance 

3.1 Introduction 

To determine the effects of attention on iBCI performance we monitored EEG during iBCI 

use with and without distraction. This allowed us to test our overall hypothesis for aim 1, that 

increases in attentional load will be reflected in increased neural correlates of attention and 

degradation of iBCI performance. Specifically, we expected to see decreases in alpha band power 

and increases in theta band power. First, we test the sub-hypothesis that EEG correlates of attention 

will increase in BCI tasks performed under increasing attentional load. This is supported by prior 

work that shows that increased levels of attention experience during tasks such as reading, 

perception, and memory correlates with decreased alpha band power (Lachaux & Ossandón, 

2009). Similarly, increases in cognitive load are accompanied by decreased alpha and increased 

theta power (Antonenko et al., 2010; Stipacek et al., 2003). Second, we test the sub-hypothesis 

that iBCI performance degrades under increased attentional load, something that has been 

observed in an EEG BCI study (Foldes & Taylor, 2013). Previous studies in iBCI have found 

smaller effects on performance with low-level distraction and simple BCI tasks (Guthrie et al., 

2021; Stavisky et al., 2020).  Finally, we test the sub-hypothesis that decreases in performance 

correlate with increased neural correlates of attention. Previous studies have shown that both 

neural markers of attention (Emami & Chau, 2020) and BCI performance (Foldes & Taylor, 2013; 

Stavisky et al., 2020) can be impacted by distractors, but here we test whether the amount of 

attentional load is correlated to degree of performance loss. 
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3.2 Methods  

BCI task (section 2.4) performance measures include success rate (per 8 trials), reach phase 

completion time per successful trial, target acquisition rate (per continuous block of 16 or 24 trials), 

and path inefficiency for each trial of the cursor task. Path inefficiency is calculated as the ratio of 

the actual cursor path length to the ideal cursor path length (where a straight line to the target is 

equal to 1) during the reach phase of successful trials. Performance metrics, along with EEG alpha 

and theta power as attention metrics, were collected during BCI Only, BCI +1Back, and 

BCI+2Back.  

Data was combined across days for statistical testing. Path inefficiency, total trial and reach 

trial completion times were found to have skewed distributions so they were log-normalized during 

statistical testing to aid normality. To control for session-to-session differences, we used a one-

way ANCOVA to test the hypothesis that performance and attention metrics will differ between 

attentional load (i.e., n-back) conditions while controlling for the effect of session, which was 

included in the model as a covariate. with a separate ANCOVA per attention and performance 

metric. Post-hoc t-tests were used to test for differences between conditions with Bonferroni 

correction for multiple comparisons correction. We then used multivariate regression to test the 

hypothesis that measures of attention relate to measures of performance. Condition was used as a 

predictor to help isolate the effect of the attentional measures across conditions. The Pillai test 

statistic is provided for overall model significance, with individual F-tests run for predicting 

individual response variables. As described in section 2.6, some EEG data was rejected due to 

artifact contamination. Those trials were excluded from the regression analysis.  
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3.3 Results 

iBCI performance was generally robust to attentional load challenges induced by the dual 

tasking N-back paradigm (Figure 7) as there were no significant differences in performance across 

BCI dual-tasking conditions. Neither participant showed differences in success rate (P2: 

F(2,52)=.945 p=.395 P4: F(2,77)=1.605 p=.208), target acquisition rate (P2: F(2,19)=.004, p=.996 

P4: F(2,28=.165 p=.849), reach phase completion time (P2: F(2,356) =.161 p=.851, P4: F(2,631) 

=.549 p=.578), trial path inefficiency (P2: F(2,356) =.655 p=.52, P4: F(2,631) =.632 p=.532) or 

total trial completion time (P2: F(2,356) =1.101 p=.334, P4: F(2,631) =.859 p=.424). 
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Figure 7 iBCI Performance Metrics 

Performance remains stable in response to attentional load. No significant differences were observed in either 

participant across the three BCI dual-tasking conditions. 
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To confirm that participants were dividing attention between the two tasks, we show that 

that participants were appropriately engaged in the N-Back task and not ignoring it. Figure 8 shows 

accuracy in identifying matches for the N-Back task, with both participants showing high scores 

in all conditions. When asked to subjectively rate how much mental effort a block of trials requires, 

participants subjectively report dual tasking as requiring more than BCI Only (Figure 9). An 

ANCOVA test confirms that perceived difficulty is different across conditions for both participants 

(P2: F(4,23)=4.80 p=.006, P4: F(4,33)=6.75 p<.001). For P2, both BCI+1Back and BCI+2Back 

require more effort compared to 1-Back only. For P4, BCI+2Back requires more effort than 1-

Back only and BCI Only. 

 

Figure 8 N-Back Accuracy 

Participants were accurate when performing N-Back in all conditions. An accuracy of 1 indicates perfect 

performance. Any false positive or false negative is considered an error. 
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Figure 9 Mental Effort Scores 

On a scale of 1-10, participants self report dual tasking conditions as requiring more mental effort than BCI 

Only. 

When looking at neural correlates of attention (Figure 10), we see changes in frontal theta 

power for both participants across BCI and dual-tasking conditions (P2: F(2,436)=5.199 p=.006, 

P4: F(2,375)=4.976 p=.007). Specifically, for P2, it is higher in the BCI+1Back compared to BCI 

Only (p<.05) For P4, it is higher in the BCI+2Back condition (p<.05). Increases in frontal theta 

power reflect an increase in intentional load. This result is similar to what we observed when 

comparing theta power measured during performance of the N-Back only (without concurrent BCI 

performance) versus that measured at rest (Figure 11) for both participants (P2: F(2,814)=141.32 

p<.001, P4: F(2,809)=31.823 p<.001), where 1-Back  is higher compared to both other conditions 

(p<.05). For P2, 2-Back only is lower compared to 1-Back but still higher than rest (p<.05). 
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When looking alpha power in the parietal region during BCI and n-back dual-tasking, we 

found significant difference across conditions for P2 but not P4 (P2: F(2,436)=9.039 p<.001, P4: 

F(2,375)=.463 p=.630). For P2, BCI+1Back was higher than other conditions (p<.05). This result 

is the opposite direction expected, as we initially hypothesized there would be a decrease in 

response to increasing attentional load. However, this increase is also seen in both participants 

when looking at 1-Back only vs rest (P2: F(2,814) =154.02 p<.001, P4: F(2,809)=18.06 p<.001), 

where 1-Back is higher than rest (p<.05). P2 2-Back only is also lower than both conditions 

(p<.05). Thus, both alpha (for P2) and theta (for both participants) seem to increase and then 

decrease with increasing attentional load. 

 

Figure 10 Attention Metrics 

Participants display higher theta power in either BCI+1Back (P2) or BCI+2Back (P4) compared to BCI Only. P2 

displays higher alpha power in BCI+1Back compared to BCI Only. 
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Figure 11 N-Back Only Attention Metrics 

Participants display higher theta power in 1-Back compared to rest, with P2 also having higher theta power in 2-

Back. Participants displays higher alpha power in 1-Back compared to rest, with P2’s 2-Back alpha power being 

lower than other conditions. 

In order to test the hypothesis that attention and performance are related, we performed 

regress attentional metrics with performance metrics (Figure 12) on a trial-by-trial basis. Only 

successful trials were included in this regression. For P2, theta power has no significant 

relationship with any performance predictors (F(3,348)=0.360 p=.782) but alpha power does 

(Table 2). P4 attentional metrics do have a significant relationship with the performance predictors, 

with theta and alpha power having a negative effect on all of them (Table 3), indicating that as 

attention increases performance improves. Both participants exhibit a significant relationship 

between alpha and performance predictors. In P2, alpha power has a positive effect on total trial 

completion time (Table 2)., whereas P4 has a negative effect on the same metric (Table 4). P2’s 
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performance thus decreases with increasing alpha as trials take longer to complete, while P4’s 

performance increases. Scatter plots in Figure 12 show these variables plotted against each other. 

Table 2 P2 Alpha Power vs Performance Regression 

Results of multivariate regression. Significant effects are highlighted in gray. Alpha is found to predict total 

time. 

P2: [performance] = condition + alpha_eeg 

Variable Num Df Denom Df F Value P Value Coef 𝜂𝑝
2 

Overall alpha_eeg Effect 3 348 4.690 .003 N/A N/A 

Path_inefficiency  3 350 .6169 .366 .007 .002 

Total_time 3 350 4.736 .005 .04 .03 

Reach_time 3 350 .446 .288 .011 .003 

 

Table 3 P4 Theta Power vs Performance Regression 

Results of multivariate regression. Significant effects are highlighted in gray. Theta is found to predict all 

metrics of performance. 

P4: [performance] = condition + theta_eeg 

Variable Num Df Denom Df F Value P Value Coef 𝜂𝑝
2 

Overall theta_eeg Effect 3 366 4.6622 .003 N/A N/A 

Path_inefficiency  3 368 4.076 .003 -.009 .02 

Total_time 3 368 3.676 .001 -.011 .03 

Reach_time 3 368 3.812 .011 -.011 .02 
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Table 4 P4 Alpha Power vs Performance Regression 

Results of multivariate regression. Significant effects are highlighted in gray. Alpha is found to predict total 

time. 

P4: [performance] = condition + alpha_eeg 

Variable Num Df Denom Df F Value P Value Coef 𝜂𝑝
2 

Overall alpha_eeg Effect 3 366 3.303 .020 N/A N/A 

Path_inefficiency  3 368 1.295 .479 -.003 .001 

Total_time 3 368 2.731 .005 -.013 .02 

Reach_time 3 368 2.392 .132 -.010 .006 
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Figure 12 Attention & Performance Scatter Plots 

Scatter plots of attention and performance variables. Performance values on the y-axis are shown on a log axis. 

Asterisks indicates that the two variables were significantly related when modeled using regression. 

3.4 Discussion 

3.4.1 Attention Change as Attentional Load Increases 

In this study, we observed a complex relationship between EEG theta power and attentional 

load. In previous dual tasking studies, theta power has been found to increase compared to single 

asking (Ozdemir et al., 2016). Although we also saw this effect, it was not consistent across 

conditions. P4 displayed an increase only in BCI+2Back, the highest load condition. This could 

imply that BCI+1Back was simply not complex enough to induce altered theta despite the subject 

reporting it required more mental effort than BCI Only. This would not explain why P2 

demonstrated increased theta in the BCI+1Back condition but not BCI+2Back. In the case of P2, 

2-Back theta power is higher than rest but also lower than 1-Back, whereas P4 2-Back is not 

significantly different from rest.  

Alpha power exhibits a similar trend in P2 for both dual tasking and single tasking. 

However, this goes against our initial hypothesis of alpha decreasing during attentional load. In 

both metrics, this non-linear trend in theta seems to be an effect that occurs when progressing from 

1-Back to 2-Back regardless of whether a BCI task is added to the cognitive task or not. 

Alpha and theta band EEG power follow an inverted U-shaped trend in P2. Similar trends 

in neural metrics of cognitive load have been seen in single-tasking contexts. One study measuring 
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prefrontal cortex activation in fMRI during an N-Back, ranging from N=1 to N=6, found that 

activation was highest at N=3 but then proceeded to decline (Lamichhane et al., 2020). One 

interpretation for this is that this reflects a shift in processing strategy where the brain regions 

which are active shift to handle the increasing load.   

 

3.4.2 Why Does Alpha Power Increase 

In the literature, alpha power is generally found to decrease during dual tasking and 

attentional tasks (Kahya et al., 2022). We expected this to occur in this study but instead it 

increased. This is not wholly unknown in the literature, however. A previous study of mental 

workload during operation of a P300 EEG-BCI found increased alpha during dual tasking (Käthner 

et al., 2014). As in ours, their secondary cognitive tasks were displayed through audio, and they 

noted that auditory stimulation has been found to increase alpha activity. They also discuss the 

alpha inhibition theory (Klimesch et al., 2007), which states alpha increases to inhibit non-essential 

brain regions to maintain task performance. A similar result and theory was exhibited by a study 

which looked at the N-Back in young and old adults, and found that older adults exhibited an 

increase in alpha power with increasing N-Back load whereas young adults did not (Käthner et al., 

2014). (İşcan & Nikulin, 2018), also find that alpha power was negatively correlated with 

performance when BCI users had to listen to verbal counting, attributing the effect to attempts by 

participants to inhibit the distraction sounds. Overall, it is possible that the increased alpha in 1-

Back is due to participants attempting inhibition so as to better handle increasing attentional load. 

However, this alone would not explain why a similar increase is not seen in the 2-Back single and 
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dual task conditions but that may be explained by prior theories on the non-linear nature of neural 

activity as a measure for load. 

It is also interesting to note that increased alpha power may be indicative of mind-

wandering (Compton et al., 2019). If this is the case in our participants, it would fit with the theory 

that poor performance in the BCI+1Back is due to a lack of engagement relative to other 

conditions. The fact that alpha activity during rest is lower than 1-Back may seem to go against 

this, but participants were told to keep a clear mind and focus on a fixation cross during rest, partly 

to prevent mind wandering in the first place. 

The fact that alpha power is also increased in 1-Back only (without concurrent BCI 

performance) compared to rest and 2-Back only also indicates that in these participants, in this 

study, increased alpha does reflect a response to increased attentional load in a similar manner as 

theta power does. Much like theta power though, this response is load specific.  

3.4.3 Performance is Robust to Attentional Load 

Participants exhibited no changes in performance across the different conditions as we 

initially expected. While such robustness is now unknown in the literature, the level of attentional 

load at play here makes this nonetheless surprising. It appears then, that iBCI control is highly 

robust and capable of managing high levels of attentional load. This is more striking when 

comparing iBCI to EEG-BCI. Studies of the latter technology have found comparatively greater 

effects of attention. In one study, there was a large effect ( 𝜂𝑝
2 = .31) that led to a 20% drop in BCI 

performance during a triple task of 1D BCI control, maintaining cruise altitude on a flight 

simulator, and performing attentional tasks (Vecchiato et al., 2016). In another study, EEG-BCI 
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performance drops, in a BCI+speech task, ranged from 5% to 10% depending on the classifier 

used (İşcan & Nikulin, 2018). These results indicate that iBCI may be more robust against 

distractors than EEG-BCI. As such, the study of attentional load may be of greater importance to 

EEG-BCI researchers than those working with iBCI.  

 

3.4.4 Attention-Performance Relationships 

In the previous sections of this discussion, we looked at condition average metrics to 

examine total effects. However, attention fluctuations may manifest on a smaller time scale, where 

its effects were more subtle. To detect this, we performed multivariate regression between 

measures of attention and measures of performance. We found that P4 appeared to exhibit 

increases in performance with increases in attention, while P2’s performance decreased.  

Specifically, increases in alpha for P2 resulted in increases in total trial completion time, 

showing that higher attention is related to worse performance. This is similar to the negative 

correlation found between BCI performance in alpha power when a listening task is presented for 

dual tasking (İşcan & Nikulin, 2018). However, P4 shows improvements in performance with 

increasing alpha. The different participant performance baseline may explain this divergence. P2 

has been implanted long-term and his implant has deteriorated to the point where poor signal 

quality impacts performance. P4 was more recently implemented and has higher, more stable 

performance overall. As a result, P2 may be more vulnerable to load than P4 is. This is also 

supported by the finding that low performing BCI users, but not high performers, possess a 

moderate correlation with subjective mental effort scores given by the NASA-TLX during a 
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BCI+distraction dual task (Emami & Chau, 2020). Furthermore, the fact that P4 is not only not 

affected by distraction, but even improves slightly because of it could be due to a cognitive load 

theory which states that people perform better under mild load (S. A. Jackson et al., 2014; Vallès-

Català et al., 2021).  This improvement may occur due to avoid complacency or forcing greater 

focus from the participant.  
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4.0 Effects of Attentional Load on the Motor Signal 

4.1 Introduction 

To determine the effect of attentional load on the motor signal we quantified changes in 

movement-related activity measured with EEG and intracortical recordings while attention was 

challenged with the N-Back task. From this we tested the overall aim 2 hypothesis that movement-

related activity, which drives BCIs, is degraded by increases in attentional load. We first tested the 

sub-hypothesis that the neural motor signal degrades as the distraction level is increased. The 

sensorimotor rhythm desynchronization generally manifests in a decrease in beta band power 

compared to rest during movement (McFarland & Wolpaw, 2017). Previous work has shown that 

under the effect of distractors, this desynchronization during movement is reduced, signifying a 

disruption of the rhythm (Emami & Chau, 2018).  We measured this desynchronization in the EEG 

and more locally in the intracortical LFPs. We also measured mean firing rate, which has been 

related to performance in iBCI tasks (Wilson et al., 2023) We then tested the sub-hypothesis that 

decreases in the movement-related activity are related to increases in EEG measures of attention. 

These analyses will aid in examining aim 2’s overall hypothesis that the motor signal is weakened 

with increased attentional demands and this change correlates with increases in measures of 

attention. 
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4.2 Methods 

As in Aim 1, we utilized a one-way ANCOVA with session as a covariate to test the 

hypothesis that attentional load during a BCI+NBack dual task (section 2.4) affected measures of 

the motor signal (section 2.6, 2.7). Multivariate regression was used to test for relationships 

between measures of attention (theta and alpha power) and the motor signal (firing rate, EEG beta 

power, and LFP beta power).  

4.3 Results 

We analyzed three metrics of the motor signal for both participants to examine whether or 

not attentional load impacts the neural signal that drives BCI (Figure 13). Neither participant shows 

differences in the EEG beta band power (P2: F(2,436)=1.010 p=.300, P4: F(2,375)=2.604 p=.075) 

or the intracortical LFP beta band power (P2: F(2,444)=1.743 p=.176, P4: F(2,642)=1.584 

p=.206). We examined raw beta band power so an increase in power would have signified less 

beta band synchronization and therefore less movement-related modulation.  P4, but not P2, shows 

difference in intracortical firing rate (P2: F(2,444)=.397 p=.672, P4: F(2,642)=3.291 p=.038). 

Specifically, his firing rate is higher in the BCI+2Back condition, compared to BCI Only (p<.05), 

signifying a stronger motor signal compared to BCI Only. Generally, a higher firing rate would be 

considered to indicate greater movement-related modulation. 
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Figure 13 Motor Signal Metrics 

Figure depicts three measures of the motor signal from the EEG and intracortical data. P2 exhibits no 

differences. P4 exhibits an increase in intracortical firing rate in BCI+2Back compared to BCI Only, signifying 

an increase in the motor signal. 

We then performed multivariate regression to identify relationships between attention 

metrics and the motor signal on a trial-by-trial basis (Figure 14). Theta and alpha power were 

significantly related to motor signal metrics for both participants. In P2, theta power had a positive 

relationship with beta EEG power and beta LFP power and a negative relationship for firing rate 

(Table 5). This indicates that increasing attention correlates with a degrading motor signal. Alpha 

power had similar relationships with the motor signal metrics for P2 (Table 6). In P4, theta had a 

positive effect on beta EEG power but a negative effect on beta LFP (Table 7). Thus, attention 

correlates with a worse motor signal in beta EEG band power but not in beta LFP.  In P4, alpha 
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power had a positive effect on beta EEG power and beta LFP power, indicating a worse motor 

signal with increasing alpha power (Table 8).  

Table 5 P2 Theta Power vs Motor Signal Regression 

Results of multivariate regression. Significant effects are highlighted in gray. Theta is found to predict 

measures of the motor signal. 

P2: [motor_signal] ~ Condition + theta_eeg 

Variable Num Df Denom Df F Value P Value Coef 𝜂𝑝
2 

Overall theta_eeg 

Effect 

3 434 23.0428 <.001 N/A N/A 

Beta_eeg 3 436 19.64 <.001 .272 .11 

Beta_lfp 3 436 12.55 <.001 .197 .07 

Firing_rate 3 436 .582 .817 -.002 <.001 

 

Table 6 P2 Alpha Power vs Motor Signal Regression 

Results of multivariate regression. Significant effects are highlighted in gray. Alpha is found to predict 

measures of the motor signal. 

P2: [motor_signal] ~ Condition + alpha_eeg 

Variable Num Df Denom Df F Value P Value Coef 𝜂𝑝
2 

Overall alpha_eeg 

Effect 

3 434 46.780 <.001 N/A N/A 

Beta_eeg 3 436 26.87 <.001 .331 .15 

Beta_lfp 3 436 18.24 <.001 .249 .11 
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Firing_rate 3 436 17.56 <.001 -.052 .10 

 

Table 7 P4 Theta Power vs Motor Signal Regression 

Results of multivariate regression. Significant effects are highlighted in gray. Theta is found to predict beta 

EEG power and beta LFP power. 

P4: [motor_signal] ~ Condition + theta_eeg 

Variable Num Df Denom Df F Value P Value Coef 𝜂𝑝
2 

Overall theta_eeg 

Effect 

3 373 70.562 <.001 N/A N/A 

Beta_eeg 3 375 73.31 <.001 .349 .36 

Beta_lfp 3 375 4.17 .030 -.029 .01 

Firing_rate 3 375 7.472 .139 .004 .006 

 

Table 8 P4 Alpha Power vs Motor Signal Regression 

Results of multivariate regression. Significant effects are highlighted in gray. Alpha is found to predict beta 

EEG power and beta LFP power. 

P4: [motor_signal] ~ Condition + alpha_eeg 

Variable Num Df Denom Df F Value P Value Coef 𝜂𝑝
2 

Overall alpha_eeg 

Effect 

3 373 79.026 <.001 N/A N/A 

Beta_eeg 3 375 70.87 <.001 .484 .35 

Beta_lfp 3 375 4.397 .021 .043 .01 
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Firing_rate 3 375 6.943 .405 .004 .002 

 

 

Figure 14 Attention & Motor Signal Scatter Plots 
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Scatter plots of attention and performance variables. Asterisks indicated that the two variables were significantly 

related when modeled using regression.   

4.4 Discussion 

4.4.1 Movement-Related Activity Remained Stable under Attentional Load 

We initially hypothesized the changes in performance and the motor signal would occur in 

response to increased attentional load, with the latter providing a potential mechanism for why 

attentional load impacts performance. However, performance was stable overall. Similarly, we see 

that there is no deterioration of performance in either participant. Across participants, there was 

no degradation in the motor signal across conditions. This could indicate that their BCI control 

were good enough that they did not need to alter their motor signal to compensate for the 

attentional load. This is contrary to a previous EEG-BCI study that showed typical motor features, 

such as the EEG beta power desynchronization, to be disrupted to during dual tasking (Emami & 

Chau, 2018). It is also known that in non-BCI motor tasks, dual tasking also disrupts beta power. 

For example, high beta power is known to occur when young, old, and participants with 

Parkinson’s walk while performing an auditory cognitive task (Possti et al., 2021).  

In the BCI+2Back condition for P4, we in-fact see a small increase in the intracortical firing 

rate. This increase indicates an improvement in modulation for the neuronal population and 

indicates a stronger motor signal. This unexpected increase may be reflective of the lack of 

performance drop in BCI+2Back. Because the participant is able to increase his motor signal, 
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whether due to increased engagement or some other reason, he is able to maintain his performance 

in a way that he cannot in BCI+1Back. 

4.4.2 Attention Metrics Exhibit Complex Relationships with Individual Motor Signal 

Metrics 

We performed multivariate regression to identify the effects of attentional metrics on the 

motor signal on a small-scale trial-by-trial level. Effects were similar across participants with one 

exception. In P2, increases of attentional metrics were related to degradations of the motor signal, 

as expected. The fact that this occurs here but not when comparing conditions could indicate that 

these motor signal metrics are more suited to trial level discrimination rather than across 

conditions. Attentional changes were also related to changes in the motor signal in P4 as well, but 

the effects are more mixed. Increases in theta predict increases in beta EEG power, as expected, 

but also predict decreases in the beta LFP power. Alpha EEG power, by contrast, predicts increases 

to both LFP and EEG beta power. The different predictive powers of alpha and theta may be 

explained by differing processes, with theta being primarily involved in executive functions 

(Cavanagh & Frank, 2014) and alpha being related to inhibition of non-task related processes 

(Klimesch et al., 2007). Theta’s differing effects on the different metrics could indicate that a 

complex set of mechanisms is at play for the purposes of maintaining overall performance. 

 The strongest and most consistent effect observed was that as theta and alpha power 

increased, so did EEG beta power. Given that all are metrics originating from EEG, it may be 

natural for them to have a greater relationship than theta/alpha would have with intracortical 

metrics. But EEG theta/alpha and beta are not always related in such a way. For example, one well 
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known marker of cognitive processing load is the theta/beta ratio (Clarke et al., 2019), which 

correlates with increasing cognitive load. However, this ratio usually comes about due to theta 

increasing and beta decreasing (Lubar, 1991) whereas in this study we see that increases in theta 

was predictive of increases in beta. One study looked at theta-alpha-beta correlations in the frontal 

region of the brain and found that it was higher in individuals with higher executive function skills 

(Basharpoor et al., 2021). Without further experiments, it is difficult to say that this is the factor at 

play in this study.   
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5.0 Summary and Conclusions 

In this study we investigated the effects of attentional load on intracortical BCI 

performance and the motor signal which drives it. We characterized attention using objective EEG 

measures of attention and employed multivariate to understand how they can help predict 

performance and the motor signal. First, we showed that performance was stable across conditions. 

Then we showed that attention can be measured by using EEG measures. We also showed that 

there were limited effects on the motor signal, with the only change being an increase in strength 

as measured high intracortical firing rate in BCI+2Back for one participant. Finally, we showed 

that attentional metrics can predict performance and motor signal metrics on a trial-by-trial level. 

We discussed how these features manifested in subject and condition specific ways and how their 

relationships to each other may be complex and mediated by a variety of cognitive processes.  

5.1 Impact 

This work adds to the small literature of attention in BCI by demonstrating how attention 

can relate to performance and the motor signal under differing levels of attentional load. It is one 

of very few studies that look at the impact of attention or distraction during iBCI control (Guthrie 

et al., 2021; Stavisky et al., 2020). Unlike these previous studies, attention was quantified with 

whole brain EEG measures. We show that this is possible in humans without significant artifacts 

and enabling simultaneous investigation of local, intracortical movement-related activity and more 

complex cognitive processes that involve the entire brain. This lays the groundwork for future 
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research that wishes to perform multi-modal studies involving both intracortical recordings and 

EEG to take advantages of both modalities’ advantages. 

Furthermore, this study quantified the effects of attention at multiple levels of a difficult 

cognitive task in addition to an already difficult iBCI task. This allowed us to observe effects that 

occur under a wide range of attentional load. By doing so, we can better speak to how iBCI may 

be affected by more real-world conditions where users may experience an array of distractions. 

Finally, it allows us to demonstrate how iBCI can remain high even in the face of substantial 

attentional load. 

5.2 Limitations and Future Work 

The primary limitation of this work was the low sample size. Due to the invasiveness and 

cost of iBCI, studies involving the technology are generally limited in how many participants can 

be involved in any given experiment. This is especially an issue for psychological or cognitive 

research, where low effect sizes and high variability necessitate a high sample size (Funder & 

Ozer, 2019). Indeed, from this and other BCI studies, it is clear that whatever effects of attention 

exist are best moderate in size. While iBCIs are gaining in popularity and are commercializing, it 

may still be some time before large sample sizes can be possible. In the meantime, longer 

longitudinal studies may help alleviate this by allowing us to study the stability of attentional 

effects. 

The second limitation of this work is that we rely on a-priori features of attention. While 

these features are well studied in the literature, they are not necessarily correct for every individual. 
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It is conceivable that there may be other features that better track the changes in attention that 

occur due to attentional load and even that these features would differ per individual. Recent 

studies have looked at data driven methods such as by using feature selection and machine learning 

models to decode attentional load (Xu et al., 2023). Future studies that look at attention in iBCI 

may wish to the same, perhaps also leveraging the information rich signal of intracortical arrays 

to quantify attention without the use of EEG. 

We limited ourselves to the N-Back at two levels for this study. The N-Back was chosen 

such to be difficult enough to cause load but not so difficult so as to destroy performance in both 

tasks. This is partly because this is a usability study that is meant to reflect real-world conditions 

and a user can only be expected to withstand so much attentional load. However, further increasing 

the difficulty of the N-Back to higher levels, to the point where maintaining iBCI performance 

becomes untenable, may allow us to gain information on how attention behaves at this breaking 

point which could inform how we study how attention at lower levels of load as well. For example, 

there may be effects that are unclear until we observe them at this high level of load. Furthermore, 

the N-Back is a working memory task and may not have the same effects on performance as other 

types of tasks. Using different types of secondary tasks may reveal trends in BCI performance that 

are dependent on the type of secondary task being performed.   

This study helps lay the groundwork for a complex study of the cognitive process which 

drives BCI performance and mediates the neural signal. Attention is likely but one of the many 

processes involved and future work will have to take care to disentangle the effects of attention 

from other processes to be able to fully understand BCI control. Such studies are needed to help 

make BCIs even more robust and easy to use. 
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