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SIN-Seg: A Joint Spatial-Spectral Information Fusion Model for Medical Image

Segmentation

Siyuan Dai, M.S.

University of Pittsburgh, 2024

In recent years, the application of deep convolutional neural networks (DCNNs) to med-

ical image segmentation has shown significant promise in computer-aided detection and

diagnosis (CAD). Leveraging features from different spaces(i.e. multi-modalities, Euclidean,

non-Euclidean, and spectrum spaces) has the potential to enrich the information available

to CAD systems, enhancing both effectiveness and efficiency. However, directly acquiring

the data across different spaces is often prohibitively expensive and time-consuming. Con-

sequently, most current brain imaging segmentation techniques are confined to the spatial

domain, which means just utilizing MRI or CT images. Our research introduces an innovative

Joint Spatial-Spectral Information Fusion method that requires no additional data collection.

We translate existing MRI data into a new domain to extract features from an alternative

space. More precisely, we apply Discrete Cosine Transformation (DCT) to enter the spec-

trum domain, thereby accessing supplementary feature information from an alternate space.

Recognizing that information from different spaces typically necessitates complex alignment

modules, we also introduce a contrastive loss function for achieving feature alignment before

synchronizing information across different feature spaces. Our empirical results illustrate

the effectiveness of our model in harnessing additional information from the spectrum-based

space and affirm its superior performance against influential state-of-the-art segmentation

baselines.
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1.0 Introduction

Medical image segmentation is a critical component in the fields of biomedical science

research and clinical diagnosis. Its goal is to delineate regions of interest (ROIs) that pos-

sess significant diagnostic and therapeutic value for treating physicians and radiologists.

The advent of computer-aided detection/diagnosis (CAD) systems has facilitated a unified

platform for analyzing vast amounts of medical-specific imaging data. (i.e. MRI, CT, Mi-

croscopy, PET, etc) Within this framework, deep neural networks (DNNs) based models

have showcased their value, offering precise segmentation outcomes and reducing the time

burden traditionally associated with manual analysis.

Despite the impressive achievements of DNNs[25, 33, 12, 7, 17, 41], intrinsic challenges

remain to the methodologies currently in medical image segmentation. Medical images, ac-

quired through various specialized devices, are designed to accentuate particular features or

abnormalities, often requiring extra interpretative expertise of radiologists to achieve precise

diagnosis. A typical CAD system that operates on images from a single type of information,

without integrating such expert insight, risks overlooking critical information. Multi-modal

learning in medical image analysis[10] can harness the strengths of diverse imaging modali-

ties—such as MRI, CT, and PET—to improve diagnostic accuracy over single-modality data.

Yet, the acquisition of multi-modal data for a single subject via different imaging apparatuses

is seldom practical. Even though MRI devices can produce images in multiple modalities

by capturing different sequence scans in a single session, potentially enhancing diagnostic

effectiveness[36]. Such scanning processes require skilled radiologists or technicians and in-

volve setting up various MRI contrast media. This not only is time-intensive but also incurs

significant costs. Meanwhile, multiple modalities of imaging require patients to be exposed

to radiation from MRI devices, and a typical MRI imaging is diagnosis-oriented, regular MRI

images just aim at specific requirements and are captured under specific sequences.

To address this issue, we propose a novel spectrum space-based Joint Spatial-Spectral

Information Fusion model (SIN). Prior researchers[46, 40] have illustrated the benefits of

spectrum domain learning, particularly in edge detection—a critical element of segmenta-
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tion tasks. These studies have established the validity and significance of spectral infor-

mation from the frequency domain in augmenting image contrast and delineating abnor-

malities and pathological regions. Spectral information is particularly pivotal in MRI, CT,

and Microscopy like frequency sequences-related imaging, where it reveals highly distinctive

features of the same segmentation target under varied spectral-related settings during data

acquisition[20].

Our SIN model innovatively harnesses both spectral and spatial domain information,

synthesizing features from these two spaces. It comprises two primary components: an

offline discrete cosine transform (DCT) module and an online trainable feature alignment

module, both of which are embeddable and compatible with every encoder-decoder-based

segmentation architecture. Meanwhile, since the DCT transformation is color-sensitive and

microscopy imaging is somehow captured under RGB space but not like the other two imag-

ing devices are imaged under gray-scale space. So for those three channel-based microscopy

images, we implement a space transformation from RGB color space to the YCbCr color

space, leveraging the fact that the feature is more sensitive to changes in brightness than

color changes, resulting in more efficient form further image processing.

In detail, within the DCT module, spatial space images are partitioned into patches to

capture more fine-grained details during the DCT process. A sophisticated DCT workflow

is then applied to each patch to generate its spectral representation. However, aligning

feature maps from disparate domains, each rooted in different spaces presents a significant

challenge, often necessitating complex modules for integration[37, 22]. To overcome this, we

implemented a contrastive learning strategy to align the features and fuse within the shared

space effectively.

To sum up, our main contributions to this paper can be shown as follows:

• We propose a novel dual information extraction module for fusing the information both

from the spectral and the spatial space.

• We introduce a low-dimension flattened strategy for the information from different spaces

combined with a contrastive loss for feature alignment.

• We verify our proposed model on multiple datasets from different base imaging types,

involving a brain tumor segmentation dataset[27] and a heart segmentation dataset[1]
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both from MRI devices, a liver segmentation dataset[18] captured under CT devices, and

a cell segmentation dataset[26] from different microscopy imaging methods. According

to our comprehensive experiments, our method achieves the state-of-the-art on all UNet-

based methods and is also competitive with the Transformer-based model, highlighting

its effectiveness and potential for advancing medical image analysis.
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2.0 Related Work

In this section, we briefly review the previous works in three different aspects highly

related to our works. First, we introduce the improvement of the backbone model. Then,

how spectral information shows its significance in the computer vision tasks and the potential

for introducing a joint model for medical image segmentation. Finally, some previous works

about how to combine and take advantage of different feature spaces, and some alignment

strategies are also illustrated.

2.1 UNet-based Medical Image Segmentation Frameworks

Semantic segmentation is always a crucial task for the computer vision domain. FCN[25]]

is the first research introduced Convolutional Neural Network(CNN) for segmentation. Then

the UNet[33] took advantage of the encoder-decoder-like architecture, initially introduced for

biomedical image segmentation, which had revolutionized the field of medical image analysis.

Its unique design, characterized by a symmetric expanding path and a contracting path,

allows for precise localization and context capture, making it highly effective for tasks like

segmentation in medical imaging. Based on such a powerful backbone, more researchers

focus on making it better for advanced segmentation frameworks. Attention mechanisms

then came to researchers’ eyes and made great progress in the computer vision domain[29,

9]. Then Zhang, et. al[44] introduced an attention mechanism to U-Net and utilized the

superiority of ResNet, proposing Res-UNet. But such hard attention is not trainable so

that limits the efficiency. Att-UNet[30] then designed with a gate module for attention

calculation and enhancing the performance of the original UNet. Zhou, et. al[47] noticed

that the conventional UNet-based model just use the skip connection under the same level

of the features, so they proposed UNet++ for combining the features from different level

of features, and a deep-supervision mechanism could promote the supervised learning a lot.

In recent years, Vision Tranformer[11, 19] has shown great potential in the computer vision
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field. Then TransUNet[2] introduced a vision transformer after a down-sample so that could

combine the spatial semantic and the local semantic in consideration in the hidden space.

Furthermore, some other research[13, 16] also show their significance in UNet-based medical

image segmentation.

2.2 Spectral Information

Conventional computer vision algorithms mainly consider the image analysis in the spa-

tial space, i.e. the RGB or Gray-Scale images which are easily recognized by human eyes.

However the information in such space could obscure lots of detailed features, and some

research works[4, 34] have found that when processing a visual scene, animals have more

wavebands than humans because of their unique ability to spot the features in the spectral

domain. When deep learning and the DCNN frameworks show their power in the computer

vision fields, the huge number of parameters and such large models always own redundant

information. So, utilizing the DCT transformation and mapping the original images to

the spectral space is a good way to compress the images[8, 5, 40] and also the designed

networks[3, 24, 38] themselves. Information in the spectral space could utilized for compres-

sion because the significant semantic information is easily extracted in such a feature space.

The attention mechanism is used to force the networks to focus on the most important part

of the feature maps so that it is natural to take advantage to use the spectral information

for designing the attention pipelines. Qin, et. al[31] found that many works have used global

average pooling (GAP) as an unquestionable preprocessing method for designing the channel

attention mechanisms. A potential problem, however, is that different channels may have

the same mean value, while their corresponding semantic information may be completely

different, which creates the problem of insufficient attention information. So they proved

that GAP is a special case of DCT, which is equivalent to the lowest frequency component

of DCT and is generalized to the frequency domain, proposing a multi-spectral channel at-

tention framework. What’s more, FSDR model[14] tried to achieve domain generalizable for

networks, designing a novel attention pipeline based on the information in the spectral space
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for forcing the network to learn less domain-related features but more for intrinsic semantic

features which are non-related to various domains. Also, spectral space could show impor-

tant help on some low-level vision scene tasks[23, 45], implementing the DCT or Wavelet

transformation.

2.3 Feature Alignment

Like how human beings perceive the world through different organs, it is obvious that

more information could also train more powerful neural networks. However, the informa-

tion in the different spaces always obstacles each other before aligning into the same feature

space. For naive feature fuse, some simple operation, e.g. Concatenation always be con-

sidered, it is widely used in Residual Block, Skip-connection, and related fusion situations.

Under this operation, multiple feature maps are spliced together in the depth dimension to

obtain a richer representation of features. For example, in encoders and decoders, low-level

features in the encoder and high-level features in the decoder are spliced, which improves the

perceptual ability of the decoder. As more parameters could learn more feature information,

the concatenation-like direct fusion method is not learnable. which will give other learnable

blocks more pressure to handle such feature fusion. Research in the multi-modal learning

fields always needs to consider such problems more[43, 21]. Autonomous driving[15] is a typi-

cal computer vision task that needs multi-modal features. In complex driving environments,

a single sensor is not enough to effectively handle changes in the scene. For example, in

extreme weather (heavy rain, sandstorms) where visibility is low, the RGB images fed back

by the camera alone are not enough to provide feedback on the changes in the environment.

In the ordinary road environment, such as traffic lights, color cones, etc., relying only on

Lidar’s information can not be effectively recognized, and also needs to be combined with the

RGB information brought by the camera, to effectively deal with. Tan, et. al[35, 37] tried to

introduce multimodal-learning in the medical image segmentation task, they consider using

the different medical imaging devices to do the scanning on the same organ and utilize the

information from different modalities. They all used extra complex modules to handle such

6



feature fusion challenges, but they consume too much memory, and capturing such data is

impossible in a real clinical situation. Contrastive learning[42, 28] is an efficient and simple

way to align and merge the data or feature maps from different feature spaces. So we also

introduce a simple contrastive learning strategy to do the alignment.
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3.0 Methodology

In this section, we present our proposed SIN model which introduces the spectral infor-

mation and integrates it with spatial information for segmentation tasks. We first propose a

novel off-line DCT transformation module to convert the image from the spatial space to the

spectrum space. We then introduce a trainable alignment module with a simple contrastive

loss function to align the features yielded from the spectral space and the spatial space as

well. Finally, we illustrate the whole segmentation framework (named SIN-Seg) with our

proposed SIN model and the loss functions for brain tumor segmentation tasks.

3.1 Off-line DCT Transformation

3.1.1 RGB Images

Microscopy Imaging always generates into the RGB space, which is not suitable for con-

ducting DCT transformation directly on RGB images (denoted as XRGB). Instead, we first

transform them to the YCbCr space as YCbCr images (denoted as XY CbCr). This conver-

sion is crucial for two main reasons: Human Visual Sensitivity: YCbCr separates an image

into luminance (Y) and chrominance (Cb and Cr). Since human vision is more sensitive

to luminance than chrominance, this separation allows for more effective compression. The

luminance channel can be preserved with higher fidelity, while the chrominance channels can

be compressed more, reducing file size without noticeably impacting image quality. Com-

pression Efficiency: The DCT is more effective in the YCbCr space for compression purposes.

It allows for significant data reduction in the chrominance components, which is less percep-

tible to the human eye while maintaining the crucial details in the luminance component.

After such pre-processing, the color information of luminance and chrominance is separated

into three channels including Y (i.e., luma or brightness), Cb (i.e., blue-difference chroma),

Cr (i.e., red-difference chroma). The YCbCr transformation leverages the fact that the hu-
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man visual system is more sensitive to changes in brightness than color changes, resulting in

more efficient image processing. To implement the YCbCr transformation, we first normalize

image RGB values to the range of [0, 1] with their own min-max values subjects by subjects

because of the difference intensity scale for different capturing institutions, and then convert

the normalized RGB values to the YCbCr color space as follows:

XY CbCr =


Y = 0.299R + 0.587G + 0.114B

Cb = −0.169R− 0.331G + 0.500B + 0.5

Cr = 0.500R− 0.419G− 0.081B + 0.5

, (3-1)

where R, G, and B represent the intensity values in the three channels (i.e., red, green, blue)

of RGB images, respectively, while Y, Cb, and Cr represent the intensity values in the three

channels of YCbCr images. The whole pipeline under RGB space for DCT transformation

is shown as Figure 2. So that we could get the YCbCr images (i.e., XY CbCr
pc ∈ RH×W×C ,

where H and W denote image size, and C denotes the three channels of such color space) are

generated, and the feature map in every channel will be implemented DCT transformation

channel by channel.

3.1.2 Gray-Scale Images

MRI or CT images are naturally captured as a 3D volume but not like general RGB

images, so we cannot simply presume the intensity scale is all in [0, 255]. Since the these types

of dataset is collected by different institutions from different patients, we normalize them one

patient by one patient with the min-max value of themselves to do subject-wise min-max

normalization (SN), mapping them to the same intensity scale in the spatial domain. After

normalization, we slice all the 3D MRI volumes into 2D images (i.e., X2D
pc ∈ RH×W , where H

and W denote image size) are generated, we conduct DCT transformation to convert them

into the spectrum domain for another modality (see Figure 3).
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3.1.3 DCT Transformation in Patches

Particularly, the DCT transformation is conducted on the 8×8 patches of 2D images, to

extract more fine-grained features in the spectrum domain. The DCT transformation (i.e.,

X̃pc ∈ R1×8×8) on every 2D image patch is computed as follows:

X̃pc (i, j) =
2√

(N1, N2)

N1−1∑
n1=0

N2−1∑
n2=0

X2D (n1, n2) ·

an1an2cos

[
n1

2π

n1

(n1 +
1

2
)

]
cos

[
n2

2π

N2

(n2 +
1

2
)

]

s. t. an1, an2 =

 1√
2
, k = 0

1, k ̸= 0,

(3-2)

where i, j, n1, n2 are in range of [0, 7] so that N1 = N2 = 8, an1, an2 are the constant

coefficient. To collect the spectrum information along 2D images and patches, the X̃pc is

flattened according to the frequency (F 2) from 1 × 8 × 8 to the size of 64 × 1 × 1, while the

first number represents the channel and the last two refer as the length and the width, and

every channel refers as the feature in different frequency under the spectrum space. We first

group the spectrum information from all image patches and generate the channel-wise DCT

coefficient cube as X̃c ∈ R64×H/8×W/8. Since the intensity value after DCT transformation

would be mapped to a high range of scale in different frequency feature representations which

is difficult for neural networks to handle and learn, we then implement another frequency-

wise normalization (FN) channel by channel for every DCT coefficient cube and let them in

the range of [0, 1].

3.2 Segmentation Framework with Feature Alignment

Segmentation Framework. As shown in Figure 1, we utilize U-Net as the backbone

of our SIN-Seg framework. U-Net [33] is a widely used segmentation backbone that has

shown convincing and robust performance on a large variety of medical image segmentation
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tasks. Here we adopt all default configurations used in the official implementations 1 with

the input of 2D RGB images. Meanwhile, an extra encoder (i.e., the encoder of U-Net) is

utilized to embed the DCT coefficient cube simultaneously. A shape alignment (the SA block

in Fig. 1, combined with a dimension alignment by the Up block and a channel alignment by

the CA block), is operated on the DCT coefficient cube before it goes through the encoder.

In the same output scale of the U-Net encoder, the feature maps of the original image and

DCT coefficient cube are concatenated as a fused feature map.

Feature Alignment . We propose a new contrastive alignment module and conduct the

feature alignment after the last down-sample of the U-Net encoder. Particularly, we first

utilize an MLP layer to flatten the feature maps into a feature band with a size of 1 × 512.

Denote the feature band in the frequency domain and spatial domain as F̃ and F , respec-

tively. An alignment matrix (AM) can then be constructed as Falign = F⊤F̃ ∈ R512×512.

Inspired by CLIP[32], they proposed a novel Dual-Modality Learning, which forces their

CLIP model to learn from two modalities: images and text. It employs two neural networks,

one for processing images and another for processing text. The goal is to map these two

different types of data into a shared embedding space where they can be directly compared.

This function operates by pulling the embeddings of matching image-text pairs closer to-

gether in the shared space while pushing non-matching pairs apart. For instance, an image

of a dog and its correct textual description ”A dog playing in the park” are pulled closer,

whereas mismatches like the same image with the text ”A cat sleeping” are pushed apart.

This means it can understand and categorize images it has never seen during training, based

solely on its learned associations between text and images. For a broader explanation, such

a contrastive training strategy could align the correlated features from different spaces to

be in a shared new feature space, and those un-correlated features to be pushed away in

this new space. In our module, we assume that the corresponding features (i.e., F̃:,:,i and

F:,:,i) are more correlated, while the non-corresponding features (i.e., F̃:,:,i and F:,:,j) are less

correlated. In other words, the diagonal elements in Falign should be dominated. So that

all the non-corresponding features would be regarded as negative samples while those corre-

sponding features are positive samples. To this end, a Binary Cross Entropy (BCE) loss is

1https://github.com/milesial/Pytorch-UNet
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proposed to achieve this contrastive alignment process, and the loss function is as follows:

LAlign(X̃, XRGB) = BCE(Falign, E), (3-3)

where E is a diagonal matrix (DM) with the size of 512 × 512.

Loss Function. The loss function for our proposed SIN-Seg framework consists of two

parts, including the segmentation loss and the proposed feature alignment loss. Following

previous methods [39, 6], we use BCE loss and Dice loss together as the segmentation loss.

Therefore, the whole loss function is formulated as:

Ltotal =  LBCE + LDice + Lalign, (3-4)
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Figure 1: Diagram of the proposed SIN-Seg framework, including two U-Net encoders for

the original image in the spatial space and the DCT coefficient cube embedding in the

spectrum space, respectively. The coefficient cube is first up-sampled and channel adjusted

via the shape-alignment process, to make the input shape aligned to the feature in the spatial

space. The features from both encoders are synchronized scale-by-scale. The fused features

then are fed forward to the U-Net decoder to generate final predicted segmentation masks.

Meanwhile, a feature alignment is implemented on the flattened frequency and spatial latent

features with the alignment loss.
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Figure 2: An overview of the off-line DCT transformation module in the SIN model for RGB

space. First, a RGB image is converted to the YCbCr domain. Then the YCbCr image

is divided into small image patches with a channel-wise normalization (CN). Next, a DCT

transformation is implemented on image patches. Finally, the coefficient cube for the whole

image is generated from frequency-based flattened (F 2) and frequency-wise normalization

(FN) operations.
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Figure 3: An overview of the off-line DCT transformation module in the SIN model for

gray-scale space. First, every original 3D-volume brain MRI image is normalized (SN) by

the min-max values of itself in the spatial space, and then every 2D slice is partitioned into

small image patches. Next, a DCT transformation is implemented on image patches. Finally,

the coefficient cube for the whole image is generated from frequency-based flattened (F 2)

and frequency-wise normalization (FN) operations.
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4.0 Experiments

4.1 Datasets

We use four publically available datasets captured from different commonly used medical

imaging devices, including the NeurIPS CellSeg 2022(CellSeg) dataset[26], the CHAOS-

CT abdominal organ segmentation (CHAOS-CT) dataset [18], the medical segmentation

decathlon heart (MSD-Heart) dataset [1], and a brain tumor segmentation dataset BraTS

2015[27]in this study. In this study, the effects of subjects’ age, gender, race, or any other

variables on the results are not evaluated since the related information is not provided by

the data provider. Details of data description and preprocessing are shown below.

4.1.1 Cell Segmentation

The CellSeg dataset consists of 1000 microscope 2D image slices (i.e., 900 slices training

and 100 slices testing) collected from 10 different organizations. It is a specialized dataset

designed for advancing research in the field of cellular image analysis, aiding in understanding

cellular structures and functions, characterized by its diversity and complexity. It includes a

wide range of images capturing various types of cells under different imaging conditions. This

variety is essential for developing and testing algorithms that are robust and generalizable

across different cell types and imaging modalities. All slices were manually labeled with 11

segmentation regions, such as yeast, adipocyte, brain cell, etc.

4.1.2 Liver Segmentation

The CHAOS CT Liver dataset is a specialized collection of medical images designed for

the evaluation and development of computer-aided diagnosis systems, particularly focusing

on liver segmentation from CT (Computed Tomography) scans. This dataset is part of

the CHAOS challenge (Combined (CT-MR) Healthy Abdominal Organ Segmentation). The

dataset comprises a series of abdominal CT scans, providing a comprehensive view of the
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liver and surrounding organs. These scans are sourced from different patients, offering a

diverse range of liver shapes, sizes, and pathologies. Such diversity is crucial for developing

robust segmentation algorithms that can perform accurately across varied clinical scenarios.

It consists of 2875 CT slices from 40 different patients collected by the DEU hospital, where

the liver regions were manually labeled by expert radiologists, ensuring they can accurately

identify and outline the liver in CT images.

4.1.3 Heart Segmentation

The MSD-Heart dataset is part of the Medical Segmentation Decathlon (MSD), a com-

prehensive collection of datasets aimed at advancing the field of medical image segmentation.

Specifically, the MSD-Heart dataset focuses on the segmentation of cardiac structures from

MRI (Magnetic Resonance Imaging) scans, This dataset includes a series of MRI scans that

capture detailed images of the heart. These scans are sourced from a diverse patient popu-

lation, encompassing a wide range of heart shapes, sizes, and pathologies. Such diversity is

crucial for developing segmentation algorithms that are robust and effective across different

patient demographics and clinical conditions. It consists of 2272 MRI slices from 30 subjects,

where the experts manually labeled the left atrium.

4.1.4 Brain Tumor Segmentation

The BraTS2015 (Brain Tumor Segmentation 2015) challenge dataset is a significant

resource in the field of medical image analysis, particularly for brain tumor segmentation.

This dataset was developed for the BraTS challenge, an annual competition that focuses

on the segmentation of gliomas, a common type of brain tumor, from multimodal MRI

scans. BraTS2015 consists of a collection of MRI scans from multiple patients, featuring

various types and stages of gliomas. The dataset includes four different MRI modalities: T1,

T1-contrast enhanced, T2, and FLAIR (Fluid Attenuated Inversion Recovery), providing a

comprehensive view of the tumor and surrounding brain tissues. This multimodal approach

is crucial for accurately identifying and delineating tumor boundaries, as different tumor

parts may be more visible in one modality than in others. We used the T2 modality for

17



experiments, including 35 3D MRI images. We generate 5000 2D image slices from these

3D MRI images for tumor segmentation, where 80% and 20% of image slices are utilized for

framework training and validation, respectively.

4.2 Implementation Details

We first resize each image to a size of 128 × 128 by bilinear interpolation for network

training, with training epochs as 200 and 50 epoch for early stop patience. We trained

the module by using the Adam optimizer with a batch size of 20 and synchronized batch

normalization. The initial learning rate was set to 1e−3 and decayed by (1 − current epoch
max epoch

)0.9

with an l2 weight decay of 5e−4. We randomly split the dataset into 5 sub-datasets for 5-fold

cross-validation. All experiments were conducted based on PyTorch 1.7.1 and were deployed

on a workstation with 2× NVIDIA TITAN RTX GPUs.

4.2.1 Baselines and Evaluation Metrics

We compared our proposed SIN-Seg framework with 4 influential U-Net based segmen-

tation baselines, i.e., U-Net [33], UNet++ [47], ResUNet [44], and AttUNet [30]. U-Net is a

cutting-edge backbone framework for medical image segmentation, and UNet++, ResUNet,

and AttUNet are three well-performing segmentation frameworks based on the U-Net back-

bone. We adopt two metrics to assess the performance of segmentation methods, including

the Dice similarity coefficient (DSC, see as Eq.4-1), which are overlap-based metrics ranging

from 0 to 1 and mean intersection over union (IoU, see as Eq.4-2), while X represents the

set of pixels in the first segmentation (e.g., the algorithm’s output), Y represents the set of

pixels in the second segmentation (e.g., the ground truth). |X ∩ Y | is the cardinality of the

intersection of sets X and Y (i.e., the number of pixels common to both segmentations).

|X|+ |Y |are the cardinalities of sets X and Y , is the cardinality of the union of sets, |Xi∪Yi|

is the cardinality of the union of sets Xi and Yi for the ith class (i.e., the total number of

pixels in both the predicted and ground truth segmentations for that class). respectively
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Figure 4: Visualization of the representative segmentation results produced by our frame-

works and all competing baselines on the dataset. The first column represents when the

lesion is big and the second column illustrates the situation when the tumor is small and

discrete distributed.

(i.e., the total number of pixels in each segmentation).

DSC =
2 × |X ∩ Y |
|X| + |Y |

, (4-1)

mIoU =
1

N

N∑
i=1

|Xi ∩ Yi|
|Xi ∪ Yi|

, (4-2)

4.3 Comparative Experiments

Table. 2 provides the brain tumor segmentation performance of five baseline methods

and our SIN-Seg. It shows that our method outperforms all baselines substantially in terms

of both metrics on the dataset. Compared to the U-Net, our model achieves clearly supe-

rior segmentation results, which tends to show the importance of introducing the spectrum

information as a complementation of the spatial information in deep neural networks for

segmentation tasks. (Details are shown in the ablation study.) The comparison between
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Figure 5: Visualization of the segmentation results produced by our frameworks and all

competing baselines on the CellSeg (row 1), CHAOS-CT (row 2), and MSD-Heart (row 3).

It better view with colors and zooming in.

SINSeg and SINSeg without feature alignment indicates the contributions provided by the

proposed feature alignment loss. We also visualized the qualitative segmentation results for

the BraTS dataset in Figure 5. And for the other three dataset, the visualization results is

shown in Figure ?? It reveals that the results produced by our SIN-Seg framework are much

more similar to the ground truths than those generated by U-Net, UNet++, ResUNet, and

AttUNet, especially for some detailed edge.

We also implemented further experiments on the other three datasets and also made a

comparison with the TransUNet model. The results are shown in Table. 1

4.4 Ablation Study

We conduct an ablation study on the dataset to evaluate the necessity and importance

of each component in our framework. Table 4 shows that our SIN-Seg framework improves
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Table 1: Quantitative results of different methods the dataset. The best and second best

results are shown in red and blue, respectively. The values of DSC and IoU are in percentage

terms.

Methods
BraTS

DSC/Train IoU/Train DSC/Val IoU/Val

U-Net 74.13 69.29 66.36 50.22

ResUNet 76.02 70.26 65.72 59.94

AttUNet 75.64 72.15 66.31 62.26

UNet++ 78.22 74.53 69.11 65.35

SINSeg 80.21 78.42 75.35 72.16

the DSC and IoU substantially compared with U-Net by just using pure spatial or spectral

information for the BraTS2015 dataset, which is due to insufficient information. The further

ablation experiments are also conducted under the other three datasets, the results is show

as Table. 3 Therefore, both spatial and spectral information play important roles in medical

image segmentation. But a naive combination of the information from different spaces is also

unreasonable. One simple U-Net model obviously cannot handle two types of information

space. Alignment of the features and mapping them into a shared space for synchronization

is crucial, otherwise, the performance would even be worse.
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Table 2: Quantitative results of different methods on the other three datasets. The best and

second best results are shown in red and blue, respectively. The values of DSC and IoU are

in percentage terms.

Methods
CellSeg CHAOS-CT MSD-Heart

DSC/Val IoU/Val DSC/Test IoU/Test DSC IoU DSC IoU

U-Net 81.04 60.29 85.01 71.93 97.47 93.60 91.33 83.92

UNet++ 80.18 60.59 83.87 71.47 97.14 92.42 91.74 84.34

ResUNet 78.11 60.02 84.41 71.17 93.48 87.44 87.51 79.69

AttUNet 79.35 58.68 84.94 72.22 96.17 91.70 89.90 82.37

TransUNet 86.62 71.94 86.19 74.35 95.58 90.73 72.53 69.00

Ours-SINSeg 85.44 69.29 86.32 73.26 97.53 94.19 92.29 87.41

Table 3: Ablation studies of our proposed SIN-Seg framework on the other three datasets.

The best results are shown in red.

Sttings CellSeg CHAOS-CT MSD-Heart

DSC IoU DSC/Test IoU/Test DSC IoU DSC IoU

U-Net/Pure Spatial 81.04 60.29 85.01 71.93 97.47 93.60 91.33 83.92

U-Net/Pure Spectrum 65.38 42.68 72.72 55.70 96.72 92.24 88.30 81.06

U-Net/Joint wo Aligment 72.84 49.55 78.12 61.38 96.15 91.69 90.16 81.29

U-Net+SINSeg 85.44 69.29 86.32 73.26 97.53 94.19 92.29 87.41
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Table 4: Ablation studies of our proposed SIN-Seg framework on the BraTS dataset. The

best results are shown in red.

Settings
BraTS

DSC/Val IoU/Val

U-Net/Pure Spatial 66.36 50.22

U-Net/Pure Spectrum 65.47 51.36

U-Net/Joint wo Alignment 52.41 44.37

U-Net+SINSeg 75.35 72.16
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5.0 Conclusions

Spectral information plays an important role in brain image segmentation tasks and

should be fully considered. The semantic features yielded from the spectrum space should

be aligned due to the fact that feature variances, resulting from the inconsistent frequency-

related settings of medical imaging modalities, exist on the segmentation ROIs. In this pa-

per, we propose a spectrum information-based feature-enhanced (SIN) model that combines

spectrum and spatial information for different segmentation tasks. Experimental results

demonstrate the effectiveness and superiority of our proposed model.
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6.0 Future Research

This research just used the whole spectral and spatial information for feature fusion.

However, as we discussed in the related part of this thesis, Spectral space is always used

for image compression, and even the compression of the model itself. After implement-

ing the transformation, both the RGB and the Gray-Scale images would be mapped to a

high-channel space when we do path-wise DCT, and some of the feature maps may be re-

dundant. In the future, we plan to use a advanced feature selection mechanism based on

mutual information between these two feature spaces. Furthermore, there are also some

domain-unrelated feature could be extracted easier in the spectral space, besides the seman-

tic feature. We consider to develop a novel feature disentangle algorithm to achieve more

powerful domain generalization model.
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7.0 Data Availability Statement

The Brain Tumor Segmentation dataset is from the BraTS Challenge[27] and is avail-

able from https://www.smir.ch/BRATS/Start2015. The MRI heart dataset is from the

MSD Challenge[1] and is available from http://medicaldecathlon.com/. The Liver segmen-

tation dataset is from the CHAOS Challenge[18] and is available from https://chaos.grand-

challenge.org/. The Cell segmentation dataset is from the NeurIPS2022-cellseg Challenge[26]

and is available from https://neurips22-cellseg.grand-challenge.org/.
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