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Dimension reduction techniques are valuable for both data-rich and data-poor prob-

lems. For applications involving massive high-dimensional data, dimension reduction can

be utilized for data compression and data-driven discovery. In the data-poor regime, low-

rank subspaces enable field reconstruction with only a few sparse measurements. Moreover,

reduced-order modeling effectively propagates parametric uncertainty in high-dimensional

partial differential equations. This work aims to develop dimension reduction techniques

based on spatiotemporal subspaces for applications across the data-availability spectrum as

well as performing uncertainty quantification in high-dimensional dynamical systems.

First, we develop a low-rank approximation that compresses the size of transient sim-

ulation data in real time, which helps with storage and input/output limitations. These

limitations also restrict data analysis and visualization in large-scale simulations. To ad-

dress this issue, we present an in-situ dimension reduction technique that decomposes the

streaming data into a set of time-dependent bases and a core tensor in real time. This

method is adaptive and controls the compression error through the addition or removal of

modes.

We then develop dimension-reduction methodologies for prediction in data-poor regimes.

While it is possible to predict blood flow using machine learning models, clinical measure-

ments, such as Transcranial Doppler ultrasound, may be insufficient or too low-resolution

for the training process. Therefore, developing a computational model that provides predic-

tions based on sparse data is crucial. To this end, we present a physics-informed regression

framework based on Gaussian process regression to predict blood flow properties using very

few sparse measurements.

Lastly, we extend the application of low-rank approximation to uncertainty quantifica-
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tion in blood flow simulations. In clinical settings, measurements are often intrusive and

inherently uncertain. Numerical simulations could aid in developing non-invasive assess-

ments. However, physiological variability introduces uncertainties into simulation param-

eters, necessitating a large number of computationally expensive simulations. To address

these challenges, we explore implementing a low-rank approximation approach that reduces

computational costs while maintaining accuracy.
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1.0 Introduction

There is significant potential for dimension reduction techniques in applications with a

large amount of data, or in applications with very few data points. In this work, dimension

reduction techniques is developed for both scenarios. In cases where massive data is available

(data-rich), dimension reduction can be used for data compression, visualization, and anal-

ysis. This situation arises in exascale computations where memory is limited compared to

the generated data. In problems with limited data (data-poor regimes), dimension reduction

facilitates field reconstruction with just a few measurements. Predicting blood flow velocity

in a network of vessels with only a few clinical measurements available is an example of such

data-poor problems. Moreover, reduced-order modeling effectively propagates parametric

uncertainty in high-dimensional partial differential equations. Therefore, we also extend the

application of low-rank approximation to uncertainty quantification.

1.1 Compression of Transient Simulation Data

The ability to perform large-scale simulations has grown explosively in the past few

decades and it will only continue to grow in the near future. On the other hand, our ability

to effectively analyze or in some applications even store the data that these simulations

generate is lagging behind — impeding many scientific discoveries [1, 2, 3]. For extreme-

scale simulations the sheer size of the data imposes input/output (I/O) constraints that

impede storing temporally-resolved simulation data [4]. An example is the direct numerical

simulation (DNS) of turbulent combustion, in which the creation of an ignition kernel – an

intermittent phenomenon – occurs on the order of 10 simulation time steps, while typically

every 400th time step is stored to maintain the I/O overhead at a reasonable level [5].

Similarly, climate simulations use time steps of minutes but model outputs are typically
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written at daily to monthly intervals, limiting the ability to understand extreme weather

events and projections of their future changes. The I/O and network limitations motivate

for a paradigm shift from postprocess-centric to concurrent data analysis, wherein the raw

data is analysed as it is generated in an in situ or in-transit framework and given the

size of the data and the demand for real-time analysis, only scalable algorithms with low

computational complexity have a chance of being feasible.

Being able to store time-dependent simulation data with higher temporal resolution is

critically important for many purposes. One of the most common applications is check-

pointing data for simulation restarts, where the simulation may need to restart from the last

snapshot [6]. This is particularly important for parallel simulations with a large number of

computational nodes with long runtimes, where node failure can interrupt the simulation or

queue limits may be exceeded. Frequent checkpointing lowers the cost of loss in computa-

tional resources. The other applications are for data analysis, including visualization and

extracting coherent structures from the simulation.

Data compression techniques can be broadly divided to lossy and lossless classes. In

the lossless compression, the compressed data has no error when compared with the decom-

pressed data. Examples of lossless compression techniques are FPZIP [7] and ACE [8]. All of

these techniques require a significant amount of memory and they are not suitable for large-

scale simulations where only on-the-fly compression techniques are practical. On the other

hand, lossy compression techniques can achieve significant reduction in data size by allowing

controllable error in the reconstructed data. Lossy compression techniques can be further

divided into methods that achieve compression by extracting and exploiting spatiotemporal

correlations in the data and the methods that do not extract correlation. Examples of tech-

niques that achieve compression by exploiting correlations in the data are methods based on

low-rank matrix and tensor decompositions, for example QR decomposition [9], interpolated

decomposition [10], singular value decomposition (SVD) [11, 12] or tensor decomposition

based on higher order SVD (HOSVD) [13, 14]. Deep learning techniques that are based

on autoencoder-decoder also achieve compression by extracting nonlinear correlations in the
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data [15, 16, 17]. Examples of the lossy compression techniques that do not exploit correlated

structure in the data are multiprecision truncation methods [18], mesh reduction techniques

that map the data to a coarse spatiotemporal mesh. See Ref. [16] for an overview of these

techniques.

The focus of this work is on correlation-exploiting compression techniques as these lossy

methods can achieve significantly more compression compared with other methods. The

performance of these techniques can be assessed by two criteria: (i) the compression ratio

for a given reconstruction error, and (ii) computational cost of performing the compression.

The compression ratio is the ratio of the storage size of the full-dimensional data to that of

the compressed data. Methods that can achieve higher compression ratio for a given accuracy

or achieve higher accuracy for the same compression ratio perform better on the first metric.

Computational cost of performing the compression of some techniques can be exceedingly

large. For example, SVD-based reductions require solving large-scale eigenvalue problems

and therefore, the computational cost of SVD-based compression can be orders of magnitudes

larger than advancing the simulation for one time step – although this depends on the size

of the data. This has motivated the randomized SVD that requires a single-pass over data

[12], thereby reducing the computational cost significantly. To reduce the computational

cost, deep-learning-based compression techniques can be trained on canonical problems and

then the trained network can be used in real-time for fast compression [16]. However, it is

not clear whether the pretrained model will perform well on any unseen data. This issue of

extrapolating to unseen data does not exist in SVD-based techniques, as SVD reduction does

not require any training, however, SVD-based techniques often result in lower compression

ratios as they can only exploit linear correlations in data as opposed to autoencoder-decoder

techniques that extract nonlinear correlations.

Recently, new reduced-order modeling techniques have been introduced in which the

low-rank structures are extracted directly from the model – bypassing the need to generate

data. In these techniques, a reduced-order model (ROM) is obtained by projecting the full-

order model onto a time-dependent basis (TDB). The first applications of TDB have been

3



in the quantum mechanics and quantum chemistry communities. See [19] for a review. We

refer to these techniques as model-driven ROM, as opposed to data-driven techniques since

in the model-driven formulation partial or ordinary differential equations are obtained for

the evolution of TDB. Model-driven ROMs have also shown great performance in solving

high-dimensional stochastic PDEs [20, 21, 22, 23, 24, 25], reduced-order modeling of time-

dependent linear systems [26, 27, 28] as well as combustion [29, 30]. TDB has also been

applied in tensor dimension reduction [31, 32, 33].

ROMs based on TDB have been successful in the model-driven applications, in which

structures are extracted directly from the model. In this study, we present a data-driven ana-

log of the TDB-based compression. In particular, we present an adaptive and scalable in situ

data compression that decomposes the streaming multidimensional data using TDBs. This

technique extracts multidimensional correlations from high-dimensional streaming data. The

presented method is lossy and it is adaptive, i.e., modes are added and removed to maintain

the error below a prescribed threshold. Moreover, the method utilizes the time derivative of

the instantaneous data and as a result it only requires access to a few snapshots of the data to

compute the instantaneous time-derivative as opposed to the entire temporal history of the

data. The compression is achieved without having to solve large-scale eigenvalue or noncon-

vex optimization problems. The cost of extracting the data-driven TDB grows linearly with

the data size, making it suitable for large-scale simulations where only on-the-fly compres-

sion techniques are feasible. We also present our formulation in a versatile form, where the

multidimensional data can be decomposed into arbitrarily chosen lower-dimensional bases.

In this new formulation, we recover the dynamically bi-orthonormal (DBO) decomposition

[25], and equivalently, the dynamically orthogonal (DO) and bi-orthogonal (BO) [20, 21]

decompositions as special cases.

4



1.2 Blood Flow Prediction in Data-Poor Regimes

Accurate blood flow reconstruction in the vasculature is vital for many clinical applica-

tions. For instance, precise blood flow analysis in cerebral vessels helps in diagnosing and

monitoring conditions such as cerebral vasospasm, Moyamoya disease, and brain tumors.

Accurate flow reconstruction in the aorta aids in evaluating aortic aneurysms, dissections,

and coarctations, enabling timely interventions. Additionally, detailed blood flow assessment

is crucial for diagnosing and managing conditions like coronary artery disease, heart failure,

and peripheral artery disease [34]. These applications underscore the importance of accu-

rate blood flow reconstruction, highlighting its extensive impact across various domains of

cardiovascular medicine.

Although advanced computational methods, such as image-based models, can provide

detailed predictions of spatiotemporal events, integrating them into clinical practice is still

challenging. This limitation primarily arises from two key factors: modeling uncertainties,

including the lack of knowledge of the subject-specific boundary conditions, and the sub-

stantial computational time required for their execution. In these models, computational

fluid dynamics (CFD) techniques are implemented on the extracted geometry from imaging

data such as computed tomography (CT) or magnetic resonance imaging (MRI) [35, 36].

There exists a large body of literature on this type of blood flow modeling (for example see

[37, 38, 39, 40]) as well as one-dimensional (1D) CFD [41, 42, 43, 44]. Among image-based

models Ref. [45] is the first FDA-approved CFD simulation for coronary stenosis assessment.

Building regression models for blood flow properties in the vasculature is challenging due

to insufficient clinical data. This is exemplified by techniques such as Doppler ultrasonog-

raphy, which, although widely used, often suffer from poor spatial resolution, and generally

does not provide measurements for every vessel. To better illustrate the challenges of con-

structing regression models for blood flow, consider a naive linear regression model in the

form of u(x, t) = ∑nx
i=1∑

nt
j=1wi,jψi(x)χj(t), where ψi(x) and χj(t) represent 1D spatial and

temporal basis functions, respectively. With nx, nt ∼ O(50 − 100) basis functions required in
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each vessel, training such models necessitates over O(103 −104) measurements in each vessel

to compute the weight coefficients (wi,j), far exceeding what is typically available in clinical

settings.

The underlying issue with linear regression models is that the basis functions are fixed

and chosen before analyzing the data. Deep neural networks (DNNs) can be interpreted as

adaptive basis function approximations, where the basis functions are learned from the data.

For example, a feed-forward neural network regression model with x and t as input units

can be written as u(x, t) = ∑ri=1wiϕi(x, t; θ), where wi are the weights of the last layer, θ

represents the vector of neural network parameters, and ϕi(x, t; θ) can be viewed as adaptive

basis functions that are learned from the data, with r ≪ nxnt. Consequently, the total

number of parameters in a DNN that need to be inferred is significantly smaller than in a

naive linear regression model, which, to some extent, relaxes the amount of data required to

train such models. However, the available data is still grossly insufficient for training such

models. For example, the DNN cannot be trained for vessels for which no measurements are

available, and for vessels with few measurements, this can result in overfit models.

To address the issue of training DNN in data-poor regimes, physics-informed neural

networks (PINNs) have been utilized [46], in which the fluid dynamics conservation laws

alongside clinical measurements [47, 48, 49, 50] are used to train the DNN. Training PINNs

for 1D blood flow models in the vasculature requires enforcing the conservation of mass

and momentum in each vessel, as well as enforcing these constraints at vessel junctions.

Specifically, a DNN is considered for each vessel. As a result, PINNs can overcome the issue

of data scarcity by enforcing physical laws as regularizers to avoid model overfitting and

estimate blood properties in vessels with no measurements.

The computational cost of training PINNs, especially for large vasculature networks,

can be significant. For instance, training the PINNs to model brain hemodynamics requires

approximately 40 hours using a single NVIDIA Tesla T4 GPU card, starting from a random

network initialization. In clinical settings, particularly for stroke, there is an urgent need

for near-real-time models capable of rapidly processing and analyzing complex medical data.
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This enables healthcare professionals to make swift, informed decisions about patient care,

leading to improved outcomes and reduced mortality rates. Accurate and timely modeling

can help identify stroke subtypes, predict treatment responses, and optimize personalized

treatment strategies, ultimately enhancing patient recovery and quality of life [51]. Another

challenge in training PINNs for blood flow is the lack of direct area measurements for vessel

cross-sectional area or pressure, which, as shown in [48], necessitates first training another

DNN to relate velocity to pressure before training the PINN, which further adds to the

training cost.

Bayesian regression techniques offer some favorable features that can be very important

when building regression models in data-poor regimes. Bayesian regression models provide

posterior probability density distributions for quantities of interest as opposed to determin-

istic models that yield point estimates. The probabilistic predictions encode the epistemic

uncertainties due to insufficient data. These uncertainty estimates can also be used for tar-

geted data acquisition. Gaussian processes (GPs) are powerful Bayesian regression models

that have an analytical workflow and as a result, they can be trained quickly, especially

in data-poor regimes, where the size of training data is small [52]. Multi-fidelity models

based on GPs have also proven useful for building regression models in data-poor regimes

[53, 54, 55, 56, 57, 58, 59, 60]. The multi-fidelity models enable the fusion of a small num-

ber of high-fidelity data points, for example, clinical measurements, with a large number of

low-fidelity measurements for example obtained from CFD simulations. Since the develop-

ments of this work are related to GPs, we highlight two major challenges below in applying

standard GP for blood flow regression in data-poor regimes:

1. Choice of kernel: The choice of the kernel can significantly impact the accuracy of

GP predictions, especially in data-poor regimes. Typically square exponential kernel or

Matern kernel are used for GP. However, training the GP using these kernels requires a

significant amount of data. Determining a suitable kernel for blood flow prediction is not

clear. Also, finding kernel hyperparameters requires solving a non-convex optimization

problem. However, when the training size is very low, solving the optimization problem
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leads to a poor choice of hyperparameters and it can result in overfitting.

2. GP for a vasculature network: Although GPs can be used to learn functions in a

Euclidean input space (x), i.e., input spaces that are subsets of Rd, there is no standard

procedure for applying GPs to a vasculature network, which can be mathematically

represented as a graph. The underlying difficulty arises because the notion of distance

between two points in Euclidean space should not be directly applied to the network

domain. For example, two vessels that are very close to each other in space can have

completely different velocities. A brute-force application of GP to vasculature would

require one GP per vessel, with the input space for each vessel being Euclidean. This

approach would ignore the vessel-to-vessel correlations. In such cases, it is not possible to

train a GP for vessels without data. Additionally, this approach can result in overfitting

for vessels with very few measurements. Moreover, it is not clear how the conservation

of mass and momentum can be enforced at the junctions. Another potential solution

is to embed the 1D vasculature network in a three-dimensional (3D) space. However,

this approach has its own challenges. Vessels that are physically close to each other

may exhibit completely different flow properties. This makes it difficult to find a kernel

capable of learning smooth flow behavior along a vessel, where x varies, but also of

learning nearby vessels with distinctly different flows.

Solutions have been proposed to address the aforementioned challenges. Related to the

choice of kernels different techniques have been proposed in which the kernel is learned from

data; see for example [61, 62, 63, 64, 65], in which the kernel is parameterized as a neural

network. In [66], kernel flow was introduced in which kernels are learned from data. Multi-

fidelity GP is also employed [67, 68, 69] for problems that do not have enough high-fidelity

data. Multi-fidelity GP compensates for the lack of high-fidelity data by incorporating low-

fidelity data. There is a lack of studies utilizing a global GP for a vasculature network.

However, GP has been applied to vasculature-related problems such as uncertainty quantifi-

cation of 3D in-stent restenosis [70], uncertainty quantification in a 1D fluid-dynamics model

of the pulmonary circulation [71], and predicting abdominal aortic aneurysm growth [72].
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In this work, we introduce a methodology that utilizes Gaussian Process regression to

reconstruct blood flow within a vasculature network, relying on a relatively small number of

measurements. Specifically, we develop a spatiotemporal kernel that encompasses the entire

vasculature, encoding the correlations both within and between vessels. The offline computa-

tional cost of constructing the kernel involves performing O(100) 1D simulations, which can

be run concurrently and take only minutes. The online cost of performing inference is negli-

gible. We demonstrate that the presented methodology can reconstruct blood flow velocity

in a vasculature network consisting of O(10) vessels with only time series measurements at

one or two points.

1.3 Reduced Order Modeling of Stochastic Blood Flow Simulations

Cerebral Blood Flow (CBF) plays a crucial role in evaluating brain health and function-

ality. Its significance extends to diagnosing and understanding a wide spectrum of diseases

[73], including Parkinson [74], Alzheimer [75], and cerebrovascular conditions [76, 77, 78],

among others. CBF can be quantified using various imaging techniques, notably Transcranial

Doppler (TCD) ultrasonography [79, 80] and Magnetic Resonance Imaging (MRI), includ-

ing 3D Phase Contrast MRI (3D PC-MRI) [81, 82], each offering unique insights into brain

hemodynamics (see Ref. [73] for more). However, these techniques have uncertainties in

measurements; for example, one limitation of transcranial Doppler ultrasonography is its in-

ability to evaluate vessels located higher in the brain, and it only measures the peak velocity

within a vessel [83]. 3D PC-MRI image quality can be adversely affected in high-resolution

acquisitions due to a decline in the signal-to-noise ratio as resolution increases which lead to

more frequent segmentation errors, uncertainty in determining the direction of blood flow,

and obstacles in accurately quantifying flow [84, 85]. In this scenario, Computational Fluid

Dynamics (CFD) models could offer insights into cerebral hemodynamics by simulating blood

flow and accounting for uncertainties in simulation parameters.
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Similarly, the assessment of coronary artery health is vital in detecting and managing

coronary artery disease (CAD). The most reliable method for determining the functional

impact of CAD is the invasive fractional flow reserve (FFR), a measure obtained by compar-

ing the pressure after a coronary blockage to the aortic pressure during maximal blood flow,

achieved by administering adenosine [86]. This approach, supported by extensive clinical

trials, helps distinguish between patients who need medical treatment and those who require

stent revascularization [87]. Despite being the benchmark for identifying ischemia-causing

lesions, FFR’s invasiveness and its negative results in about half of the tested patients limit

its application [88]. In similar cases, numerical simulations could aid in the development of

non-invasive assessments.

Integrating advanced computational methods, such as image-based and one-dimensional

(1D) blood flow models, into clinical practice presents both opportunities and challenges.

These computational models, including those utilizing CFD techniques, offer detailed spa-

tiotemporal event predictions by leveraging imaging data from computed tomography (CT)

or MRI (for example see [37, 38, 39]). Image-based CFD models, in particular, have a

rich literature base and have seen applications in areas like coronary stenosis assessment,

with notable examples like the FDA-approved simulation referenced in [45]. 1D blood flow

models [41, 42, 43, 44] have been gaining momentum due to their fast simulation, simple

implementation, and ability to accurately capture the most significant features of pulse wave

propagation in the systemic arterial system. Deriving such models is achieved by simplify-

ing the full Navier-Stokes (NS) system under the assumptions of axial symmetry, negligible

longitudinal displacements, absence of external body forces, and dominance of the axial ve-

locity component. Because of their rapid simulation capabilities, ease of implementation,

and ability to capture essential flow dynamics, one-dimensional simulations provide a robust

tool for estimating flow properties and studying problems that cannot be addressed in vivo.

There is a body of research employing CFD to explore uncertainty quantification (UQ) in

various areas such as cerebral circulation [89, 90], coronary arteries [91], and arterial networks

[92]. Despite the insights it offers, the extensive time and computational demands of UQ
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render its use in time-sensitive clinical environments and large-scale simulations impractical.

Implementation of low-rank approximation on UQ problems is a potential solution to such

problems and is investigated in literatures [93, 94, 95, 96]. Low-rank approximations utilizing

time-dependent bases (TDBs) offer a promising way to decrease the computational demands

of solving stochastic problems [97, 98]. This method involves identifying low-rank structures

within the matrices using TDBs and then constructing a reduced-order model (ROM) by

projecting the original, full-order model (FOM) onto these bases. However, these models

suffer from stability due to extremely small singular values from the low-rank approximation.

Retaining these small singular values is crucial for achieving accurate approximations, yet it

leads to the creation of ill-conditioned matrices needing inversion in various forms of TDB

ROM evolution equations [97, 21, 99, 100]. Recent development in TDB ROM suggest using

CUR factorization (TDB-CUR) for low-rank matrices to avoid numerical instability [101].

In the foundation of TDB-CUR, techniques like interpolation and hyper-reduction have

been developed to enhance the speed of nonlinear reduced-order models (ROMs) and finite-

element models in vector differential equations. Moreover, this approach is easily integrable

into existing frameworks and maintains stable time-integration.

We explore the application of the TDB-CUR method to the UQ in vascular networks,

focusing on complex systems such as Circle of Willis (CoW). In such network, physiological

variability introduces uncertainties, particularly in boundary conditions, leading to simu-

lations with high-dimensional parameter spaces. To address this challenge, we apply the

TDB-CUR method to reduce the dimensionality of these complex problems, ensuring the

preservation of critical flow characteristics. The vascular network solver, onto which we

implement the TDB-CUR method, employs a spectral/hp element approach as outlined by

Ref. [102]. This implementation aims to efficiently handle the inherent uncertainties while

capturing the essential dynamics of blood flow within these intricate vascular systems.
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2.0 Compression of Transient Simulation Data

Large-scale simulations of time-dependent problems generate a massive amount of data

and with the explosive increase in computational resources the size of the data generated

by these simulations has increased significantly. This has imposed severe limitations on the

amount of data that can be stored and has elevated the issue of input/output (I/O) into

one of the major bottlenecks of high-performance computing. In this work, we present an

in situ compression technique to reduce the size of the data storage by orders of magnitude.

This methodology is based on time-dependent subspaces and it extracts low-rank structures

from multidimensional streaming data by decomposing the data into a set of time-dependent

bases and a core tensor. We derive closed-form evolution equations for the core tensor as

well as the time-dependent bases. The presented methodology does not require the data

history and the computational cost of its extractions scales linearly with the size of data,

making it suitable for large-scale streaming datasets. To control the compression error, we

present an adaptive strategy to add/remove modes to maintain the reconstruction error

below a given threshold. We present four demonstration cases: i) analytical example, ii)

incompressible unsteady reactive flow, iii) stochastic turbulent reactive flow, and iv) three-

dimensional turbulent channel flow.
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2.1 Methodology

2.1.1 Notations and Definitions

We consider that streaming data are generated by a generic d−dimensional nonlinear

time-dependent PDE expressed by:

∂v(x, t)

∂t
=M(v,x, t), x ∈ Ω, t > 0, (2.1.1)

where x = {x1, x2, . . . , xd} are the d-dimensional independent variables, which include dif-

ferential dimensions with respect to which differentiation appears in the PDE as well as

parametric/random dimensions to which the solution of the PDE has parametric depen-

dence. The examples of the parametric space are design space or random parametric space,

where different samples of parameters can be run concurrently. In Eq. (2.1.1),M represents

the model that in general includes linear and nonlinear differential operators augmented with

appropriate boundary/initial conditions. In the most generic form, we consider a disjoint

decomposition of x into p groups of variables: x = {x1,x2, . . . ,xp}, with 2 ≤ p ≤ d. The

dimension of each space xn is denoted by dn. Therefore, d = d1 + d2 + ⋅ ⋅ ⋅ + dp and the special

case of p = d implies decomposing the d-dimensional space to d one-dimensional spaces.

In the presented methodology, we work with data, which is represented in the discrete

form with vectors, matrices and tensors. However, we present our formulation using multi-

dimensional functions, i.e., in the continuous form, since we believe this notation is easier

to understand. We show how the continuous formulation can easily be turned to a discrete

formulation.

We introduce an L2 inner-product and its induced norm for the multidimensional space

as in the following

⟨u(x), v(x)⟩
x
∶= ∫

xp

⋯∫
x1

u(x)v(x)ρ(x1) . . . ρ(xp)dx1 . . . dxp and ∥u∥
x
∶= ⟨u,u⟩

1
2

x
, (2.1.2)

where ρ(xi) is the nonnegative density weight in each space. Similarly, an inner product for
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xn and its induced L2 norm can be defined as:

⟨u(xn), v(xn)⟩xn
= ∫

xn

u(xn)v(xn)ρ(xn)dxn, and ∥u(x)∥xn = ⟨u(x), u(x)⟩
1
2
xn . (2.1.3)

We also introduce the following notation for the inner product with respect to all dimensions

except xj as follows:

⟨u(x, t), v(x, t)⟩
x∖xj
=

∫
xp

⋯∫
xj+1
∫
xj−1
⋯∫

x1

u(x, t)v(x, t)ρ(x1) . . . ρ(xj−1)ρ(xj+1) . . . ρ(xp)dx1 . . . dxj−1dxj+1 . . . dxp.

(2.1.4)

We also denote a set of orthonormal TDB in space xn by:

U(n)(xn, t) = [u
(n)
1 (xn, t)∣u

(n)
2 (xn, t)∣ . . . ∣u

(n)
rn (xn, t)] ,

where the superscript (n) shows the index of the dimension group and rn is the dimension

of the subspace spanned by U(n)(xn, t). We also use the tensor notation that was presented

in the review article [103]. For a t-order tensor T ∈ Rr1×r2×⋅⋅⋅×rp , the nth or n-mode unfolding

of a tensor to a matrix is denoted by: T
(n)(t) ∈ Rrn×rn+1...rpr1r2...rn−1 . The n-mode product of

T ∈ Rr1×r2×...rp and a matrix A ∈ RNn×rn is defined as T ×n A ∈ Rr1×r2⋅⋅⋅×rn−1×Nn×rn+1×⋅⋅⋅×rp . We

also denote the time derivative with ∂(∼)/∂t ≡ ˙(∼).

2.1.2 Reduction via Time-dependent Bases

We decompose the multidimensional streaming data into a time-dependent core tensor

and a set of time-dependent orthonormal TDB as in the following:

v(x, t) =
rp

∑
ip=1

⋅ ⋅ ⋅
r2

∑
i2=1

r1

∑
i1=1

Ti1i2...ip
(t)u

(1)
i1
(x1, t)u

(2)
i2
(x2, t) . . . u

(p)
ip
(xp, t) + e(x, t), (2.1.5)

where U(n)(xn, t) = [u
(n)
1 (xn, t)∣u

(n)
2 (xn, t)∣ . . . ∣u

(n)
rn (xn, t)] are a set of orthonormal modes,

T(t) is the time-dependent core tensor, and e(x, t) is the low-rank approximation error. In

the above description, v(x, t) represents the streaming data, which in the discrete form is
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represented by a d-dimensional time-dependent tensor. In the following, we derive closed-

form evolution equations for the core tensor and the TDB. For the sake of simplicity, we

derive the equations for a special case with three bases, where p = 3. We also present

the formulation for the most generic case. The TDB is instantaneously orthonormal and

therefore:

⟨u
(n)
i (xn, t), u

(n)
i′ (xn, t)⟩xn

= δii′ , i, i′ = 1,2, . . . , rn, n = 1,2, . . . , p. (2.1.6)

Taking time derivative of the orthonormality condition results in:

d

dt
⟨u
(n)
i (xn, t), u

(n)
j (xn, t)⟩xn

= ⟨u̇
(n)
i (xn, t), u

(n)
j (xn, t)⟩xn

+ ⟨u
(n)
i (xn, t), u̇

(n)
j (xn, t)⟩xn

= 0.

(2.1.7)

Let ϕ(n)ij (t) = ⟨u̇
(n)
i (xn, t), u

(n)
j (xn, t)⟩xn

, where ϕ(n)ij (t) ∈ Rrn×rn . From Eq. (2.1.7), it is clear

that ϕ(n)ij (t) is a skew-symmetric matrix ϕ(n)ij (t) = −ϕ
(n)T

ij (t). Based on the above definitions,

we derive the evolution equations for the bases and the core tensor. To this end, we take a

time derivative of the TDB decomposition given by Eq. (2.1.5). This follows:

v̇ = Ṫi1i2i3
u
(1)
i1
u
(2)
i2
u
(3)
i3
+Ti1i2i3

u̇
(1)
i1
u
(2)
i2
u
(3)
i3
+Ti1i2i3

u
(1)
i1
u̇
(2)
i2
u
(3)
i3
+Ti1i2i3

u
(1)
i1
u
(2)
i2
u̇
(3)
i3
. (2.1.8)

By taking the inner product ⟨●, u(1)i′1 u
(2)
i′2
u
(3)
i′3
⟩
x

of Eq. (2.1.8) and using orthonormality con-

ditions, the evolution of the core tensor is obtained as follows:

Ṫi′1i
′
2i
′
3
= ⟨v̇, u

(1)
i′1
u
(2)
i′2
u
(3)
i′3
⟩
x
−Ti1i′2i

′
3
ϕ
(1)
i′1i1
−Ti′1i2i

′
3
ϕ
(2)
i′2i2
−Ti′1i

′
2i3
ϕ
(3)
i′3i3
. (2.1.9)

To derive the evolution equation for the bases, we start with deriving an expression for u̇(1)i1
by taking the inner product ⟨●, u(2)i′2 u

(3)
i′3
⟩
x∖x1

of Eq. (2.1.8) as follows:

⟨v̇, u
(2)
i′2
u
(3)
i′3
⟩
x∖x1
= Ṫi1i′2i

′
3
u
(1)
i1
+Ti1i′2i

′
3
u̇
(1)
i1
+Ti1i2i′3

u
(1)
i1
ϕ
(2)
i′2i2
+Ti1i′2i3

u
(1)
i1
ϕ
(3)
i′3i3
. (2.1.10)

By rearranging the indexes for Ṫi′1i
′
2i
′
3

from Eq. (2.1.9):

Ṫi1i′2i
′
3
= ⟨v̇, u

(1)
i1
u
(2)
i′2
u
(3)
i′3
⟩
x
−Tj1i′2i

′
3
ϕ
(1)
i′1j1
−Ti′1i2i

′
3
ϕ
(2)
i′2i2
−Ti′1i

′
2i3
ϕ
(3)
i′3i3
.
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We can substitute it into Eq. (2.1.10) and derive the evolution equation for the first bases:

Ti1i′2i
′
3
u̇
(1)
i1
= ⟨v̇, u

(2)
i′2
u
(3)
i′3
⟩
x∖x1
− u

(1)
i1
[⟨v̇, u

(1)
i1
u
(2)
i′2
u
(3)
i′3
⟩
x
−Tj1i′2i

′
3
ϕ
(1)
i1j1
]. (2.1.11)

We denote the orthogonal projection onto the complement space spanned by U(1) as in the

following:

∏
U(1)
⟨v̇, u

(2)
i′2
u
(3)
i′3
⟩
x∖x1
= ⟨v̇, u

(2)
i′2
u
(3)
i′3
⟩
x∖x1
− ⟨⟨v̇, u

(2)
i′2
u
(3)
i′3
⟩
x∖x1

, u
(1)
i′1
⟩u
(1)
i1
.

Incorporating the above definition into Eq. (2.1.11) and rearranging the equation results in:

Ti1i′2i
′
3
u̇
(1)
i1
= ∏

U(1)
⟨v̇, u

(2)
i′2
u
(3)
i′3
⟩
x∖x1
+Ti1i′2i

′
3
ϕ
(1)
i′1i1
u
(1)
i1
.

The above equation can be an underdetermined system with respect to unknowns u̇(1)i1 if

r1 > r2r3 and it could be overdetermined otherwise. In order to address this issue, we find

the least-square solution for u̇(1)i1 . This can be accomplished by first multiplying both sides

of the above equation by TT
(1) and then computing the inverse of the resulting matrix. This

amounts to computing the pseudoinverse of the unfolded core tensor, which is denoted by

T(1)
† . The resulting equation is:

u̇
(1)
i1
= ∏

U(1)
⟨v̇, u

(2)
i′2
u
(3)
i′3
⟩
x∖x1

T
(1)†

i1,i′2i
′
3
+u
(1)
i′1
ϕ
(1)
i′1i1
, T(1)

†
= TT

(1)(T(1)T
T
(1))

−1, T
(1)†

i1,i′2i
′
3
= T

(1)†

i1,i′2+(i
′
3−1)r2

.

In a similar manner, we can derive u̇(2)i2 and u̇(3)i3 :

u̇
(2)
i2
= ∏

U(2)
⟨v̇, u

(1)
i′1
u
(3)
i′3
⟩
x∖x2

T
(2)†

i2,i′1i
′
3
+u
(2)
i′2
ϕ
(2)
i′2i2
, T(2)

†
= TT

(2)(T(2)T
T
(2))

−1, T
(2)†

i2,i′1i
′
3
= T

(2)†

i2,i′1+(i
′
3−1)r1

,

u̇
(3)
i3
= ∏

U(3)
⟨v̇, u

(1)
i′1
u
(2)
i′2
⟩
x∖x3

T
(3)†

i3,i′1i
′
2
+u
(3)
i′3
ϕ
(3)
i′3i3
, T(3)

†
= TT

(3)(T(3)T
T
(3))

−1, T
(3)†

i3,i′1i
′
2
= T

(3)†

i3,i′1+(i
′
2−1)r1

.

Similarly, we can derive the evolution equations for the general case where 2 ≤ p ≤ d. To this

end, we take the time derivative of Eq. (2.1.5) as follow:

v̇ = Ṫi1i2...ip
u
(1)
i1
u
(2)
i2
. . . u

(p)
ip
+Ti1i2...ip

u̇
(1)
i1
u
(2)
i2
. . . u

(p)
ip
+Ti1i2...ip

u
(1)
i1
u̇
(2)
i2
. . . u

(p)
ip
+ . . .

+Ti1i2...ip
u
(1)
i1
u
(2)
i2
. . . u̇

(p)
ip
.

(2.1.12)
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By taking the inner product ⟨●, u(1)i′1 u
(2)
i′2
. . . u

(p)
i′p
⟩
x

of both sides of the Eq. (2.1.12) and using

orthonormality conditions, the evolution of core tensor is obtained as follows:

Ṫi′1i
′
2...i

′
p
= ⟨v̇, u

(1)
i′1
u
(2)
i′2
. . . u

(p)
i′p
⟩
x
−Ti1i′2...i′p

ϕ
(1)
i′1i1
−Ti′1i2...i′p

ϕ
(2)
i′2i2
− ⋅ ⋅ ⋅ −Ti′1i

′
2...ip

ϕ
(p)
i′pip
. (2.1.13)

To derive the evolution equation u̇ij(xj, t), we project both sides of Eq. (2.1.12) onto all

bases except uij(xj, t). This can be accomplished by taking the inner product

⟨●, u
(1)
i′1
u
(2)
i′2
. . . u

(j−1)
i′j−1

u
(j+1)
i′j+1

. . . u
(p)
i′p
⟩
x∖xj

of Eq. (2.1.12). Similar to the simplified derivation for p = 3, we substitute the evolution of

the core tensor from Eq. (2.1.13) into our operations. This yields to:

u̇
(j)
ij
= ∏

U(j)
⟨v̇, u

(1)
i′1
u
(2)
i′2
. . . u

(j−1)
i′j−1

u
(j+1)
i′j+1

. . . u
(p)
i′p
⟩
x∖xj

T
(j)†

ij ,i′1i
′
2...i

′
j−1i

′
j+1...i′p

+ u
(j)
ij
ϕ
(j)
i′jij
. (2.1.14)

Here, any skew symmetric choice for ϕ results in an equivalent TDB approximation. For

simplicity, we can choose it to be zero. Therefore, Eq. (2.1.13) and (2.1.14) would become

as follow:

Ṫi′1i
′
2...i

′
p
= ⟨v̇, u

(1)
i′1
u
(2)
i′2
. . . u

(p)
i′p
⟩
x
, (2.1.15)

u̇
(j)
ij
= ∏

U(j)
⟨v̇, u

(1)
i′1
u
(2)
i′2
. . . u

(j−1)
i′j−1

u
(j+1)
i′j+1

. . . u
(p)
i′p
⟩
x∖xj

T
(j)†

ij ,i′1i
′
2...i

′
j−1i

′
j+1...i′p

. (2.1.16)

Not only does the choice of ϕ = 0 simplify the above evolution equation but also implies

a simple interpretation where u̇(j)ij is always orthogonal to the space spanned by u
(j)
ij

(dy-

namically orthogonal condition). This choice is also used for reduced-order modeling in Ref.

[24, 25, 28, 30].

Equations ( 2.1.15) and (2.1.16) constitute the evolution equations for the TDB compres-

sion scheme. We note the DBO decomposition [25, 30] is a special case of the above scheme

where p = 2. It has also been shown in Ref. [25] that DO and BO decompositions are equiv-

alent to DBO, i.e., DO, BO and DBO extract the same subspace from the full-dimensional

problem. In that sense, DO and BO are closely related to Eqs. (2.1.15) and (2.1.16) for the

special case of p = 2. It is possible to derive data-driven evolution in the DO and BO forms.
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The data-driven formulation of the DO decomposition is presented in Ref. [24].

Equations ( 2.1.15) and (2.1.16) must be solved in the space-time discrete form and they

must be augmented with appropriate initial conditions.

2.1.3 Time-Dependent Bases in Discrete Space-Time Form

In the previous section, we presented the TDB decomposition in the continuous space-

time form. In this section, we show the details of how the above scheme can be applied

to streaming data that are discrete in space and time. In the space-discrete form, the

multidimensional data (v(x, t)) are represented by a p-order time-dependent tensor denoted

by: V(t) ∈ RN1×N2×⋅⋅⋅×Np . If data are generated by a simulation, N1,N2, . . . ,Np are the number

of grid points. Note that the data may be generated by higher-dimensional independent

variables, i.e., d ≥ p. The orthonormal bases in the xn dimension can be represented as

a time-dependent matrix: U(n)(t) = [u
(n)
1 (t),u

(n)
2 (t), . . . ,u

(n)
rn (t)] ∈ RNn×rn , where u

(n)
i is a

discrete (vector) representation of ui. We show the discrete form of the TDB formulation in

Figure 1 where the inner product in the space is approximated with a quadrature rule:

⟨u
(n)
i , u

(n)
j ⟩xn

≃ u
(n)
i

T
W(n)u

(n)
j , (2.1.17)

where W(n) ∈ RNn×Nn is the diagonal matrix, whose diagonal elements are the quadrature

weights. The time derivative of the streaming data (V̇(t)) is computed with finite difference

and the evolution equation for TDB and the core tensor can be advanced with a standard

time-integration scheme. Various time discretization schemes can be used. High-order finite-

difference discretizations require keeping the solution from multiple time steps in the memory.

In the first demonstration example, we investigate the error introduced by using different

temporal schemes for both V̇(t) and the evolution of TDB.

As we discuss in the next section, the TDB decomposition and the instantaneous HOSVD

are closely connected. To this end, HOSVD of the full-dimensional data at t = 0 is used to

initialize the core tensor as well as the TDB.
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Figure 1: Time-dependent bases in discrete form. For simplicity weights are considered to

be identity (W(1)
N1×N1

= I).

2.1.4 Extraction of Coherent Structure from Streaming Data

The TDB decomposition is closely related to the instantaneous HOSVD of the multidi-

mensional data. The HOSVD extracts correlated structures for all p unfoldings of tensor

V(t). As we demonstrate in our examples, the HOSVD of the TDB core tensor T(t) follows

the leading singular values obtained by HOSVD of the full tensor V(t). To establish the

connection between HOSVD and TDB, let

T
(n)(t) =Ψ

(n)
(t)Σ(n)(t)Θ(n)

T

(t), (2.1.18)

be the SVD of the unfolded core tensor, where Σ(n) = diag(σ(n)1 , . . . , σ
(n)
rn ) are the singular

values of the n-mode unfolding of the core tensor, Ψ(n)(t) and Θ(n)(t) are the left and

right singular vectors of the unfolded core tensor. As we show in our demonstrations, Σ(n)

closely follows the rn leading singular values of the n-mode unfolding of the full-dimensional

streaming data (V
(n)(t)). Moreover, the TDB closely follows the leading left singular vectors

of V
(n)(t) after rotating TDB along the energetically ranked direction by using Ψ(n)(t) as
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in the following:

Ũ(n)(t) =U(n)(t)Ψ(n)(t). (2.1.19)

In other words, the TDB closely approximate the same subspace spanned by the leading

left singular vectors of the the unfolded data. With the rotation given by Eq. (2.1.19), the

TDB modes are ranked energetically and they can be compared against the left singular

vectors of the the unfolded data. In the case of p = 2, where the high-dimensional data

are matricized and TDB reduces to DBO, agreements between the TDB subspace and the

instantaneously optimal subspace obtained from SVD of the full-dimensional data have al-

ready been established. See Ref. [25] for the case of stochastic reduced-order modeling, Ref.

[30] for the case of reduced-order modeling of reactive species transport equation. This is

also true for DO [104], OTD [105] and BO [106] formulations, which are all equivalent to

the DBO formulation. In the case of linear dynamics, the convergence of TDB modes to the

dominant subspace obtained by the SVD of the full-dimensional data is theoretically shown

[105, 107].

The Ũ(n)(t) modes obtained from Eq. (2.1.19) captures the dominant structures among

the columns of the nth unfolding of the full-dimensional data, and therefore, Ũ(n)(t) can be

interpreted as instantaneous coherent structures in the streaming data.

2.1.5 Error Control and Adaptivity

For highly transient systems, the rank of the systems may change as the system evolves.

Therefore, to maintain the error at a desirable level, the multirank (r1, r2, . . . , rp)must change

in time accordingly. There are two types of error in TDB decomposition: (i) temporal

discretization error, and (ii) the error of the unresolved subspace, which are a result of

neglecting the interactions of the resolved TDB subspace with the unresolved subspace.

The lost interactions induce a memory error on TDB components that can be properly

analyzed in the Mori-Zwanzig framework [108]. Unlike the model-driven TDB, in the data-

driven mode, the error can be monitored by computing the Frobenius norm of the difference
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Figure 2: Algorithm flowchart for the compression and error adaptivity.

between the full data and TDB reconstruction, i.e.,

ε(t) = ∥V(t) −VTDB
(t)∥

F
. (2.1.20)

The above Frobenius norm is defined based on the weighted inner product. To develop an

adaptive strategy for TDB, we need to define an error criterion for mode addition/removal.

Using singular values, we can calculate the percentage of the captured detail as follow:

γ(n)(r) =
Σrn
i=1σ

(n)2

i

ΣNn
i=1σ

(n)2

i

× 100 =
Σrn
i=1σ

(n)2

i

Σrn
i=1σ

(n)2

i + ε2(t)
× 100%. (2.1.21)

In order to control the error, we define a maximum allowable error for ε(t), which is

chosen by the practitioner. The adaptive algorithm adds modes if the error exceeds the

threshold value and removes modes if the error can be maintained below the threshold with

lower ranks based on the defined γ(n)(r). In particular, if the error exceeds the maximum

error (εth), the algorithm: (i) reinitializes the core tensor and TDB; (ii) increases the number
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of modes if the resulting error from reinitialization stays above the limit; (iii) the algorithm

reinitializes and reduces the number of modes if the solution starts to capture unnecessary

energy and has a negative average slope for a defined number of iterations. In this process,

we can increase/decrease the number of modes with respect to the relation between the

defined error and singular values Eq. (2.1.21). For example, assume the maximum error

limit is set to be ε(t) = εth. First, we initialize the TDB and the core tensor using HOSVD

and calculate the required number of modes in each direction based on γ(n)(r) = γth. During

the computation, if ε(t) > εth, the algorithm reinitializes the modes. If the resulting error

is not less than the prescribed limit, the algorithm increases the number of modes based

on γth. In the subsequent time steps if γ(t) > γth, the algorithm decreases the number of

modes. Note that, rank adjustment reinitializes the modes and the core tensor, which may

reduce the error for only a few iterations. This causes frequent rank adjustment with high

computational costs. Therefore, in addition to the defined error, the slope of the error for a

defined number of iterations (ε(t) − ε(t − T ) < 0 where T is the time duration that is set by

the practitioner) must be negative to trigger the rank reduction process (excluding the time

steps with HOSVD reinitialization). We show the algorithm of this example in Figure 2.

2.1.6 Scalability and Compression Ratio

We show that the computational complexity of solving the resulting equations linearly

scales with the size of the data. Here, for simplicity, we consider (p = d), i.e., one-dimensional

TDB and N = N1 = N2 = ⋅ ⋅ ⋅ = Nd. In this case, the total size of the data is S = Nd. We also

consider the case where the core tensor has equal n-ranks, i.e., r = r1 = r2 = ⋅ ⋅ ⋅ = rd. The

leading costs of evolving TDB equations are:

1. Projection of the time-derivative of the data onto TDB (U(n)T V̇
(n)), which is O(rdS).

2. Computing the pseudoinverse of the unfolded core tensor (T(n)† ). This requires the

computation of T
(n)T

T
(n), which scales with O(rd) and the computation of the inverse of

this matrix (T1T
T
1 )
−1), which scales with O(r3).
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We make the following observations about the cost of evolving TDB:

1. When r << N , the computational cost of computing the pseudoinverse of the unfolded

core tensor is negligible to the projection of the time-derivative of the data onto TDB,

which scales linearly with the total size of the data.

2. The evolution of TDB components does not require computation of any eigenvalue prob-

lem as required in SVD-based reductions or solving a nonlinear optimization problem as

is required in autoencoder-decoder reductions [109, 16, 110].

3. Many entries of V̇ have small values. See Figure 2 for an example of V̇. Therefore, the

sparse approximation of V̇ can significantly reduce overall cost, although this advantage

of TDB has not been explored in this work.

The computational cost of solving the TDB equations can be compared against that of com-

puting HOSVD. HOSVD requires computing the SVDs of the unfolded tensor V
(n) for n =

1,2, . . . , d. This requires computation and storage of the correlation matrix C(n) =VT
(n)V(n),

which scales with O(dNd+1) and the eigenvalue computation of this matrix, which scales

with N3. The computational cost of TDB and HOSVD for a block of data generated by

the turbulent channel flow simulation (last demonstration) for the case of N = N1 = N2 = N3

and the total elapsed time for 500 time-step advancement, are shown in Figure 3(a). This

confirms that the computational cost of TDB scales linearly with the total data size S = N3,

while the computational cost of HOSVD scales with S4/3. This shows that TDB computa-

tions are significantly faster than HOSVD and the disparity between the computational cost

of TDB and HOSVD only grows as the dimension or number of grid points (or samples)

increases.

The compression ratio of the TDB decomposition is computed as the ratio of the storage

cost of storing the full-dimensional data to that of solving the TDB components. The TDB

requires storing the core tensor and the orthonormal lower-dimensional bases. Therefore,

the compression ratio for TDB is:

CR =
N1N2 . . .Np

r1N1 + r2N2 + ⋅ ⋅ ⋅ + rpNp + r1r2 . . . rp
.
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(a) (b)

Figure 3: Computational performance for turbulent channel flow: (a) Scalability, (b) Com-

pression ratio and resulting error.

Figure 3(b) shows the compression ratio (CR) for the same problem with the corresponding

error resulting from dimension reduction. Since our algorithm is adaptive, it can change the

compression ratio by changing the number of modes; therefore, we introduce the weighted

compression ratio CR as follow:

CR =
tm − t0

(t1−t0)
CR1

+
(t2−t1)
CR2

⋅ ⋅ ⋅ +
(tm−tm−1)
CRm

. (2.1.22)

Where, CR1,CR2, . . .CRm are compression ratios for (t1 − t0), (t2 − t1), . . . , (tm − tm−1) time

intervals, respectively. This equation allows us to measure the effective compression ratio

for all time intervals when the number of modes changes in adaptivity process.

2.2 Demonstration Cases

In this section, we present four demonstration cases for the application of TDB for the

compression of streaming data: (i) Runge function; (ii) incompressible unsteady reactive
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(a) (b) (c)

Figure 4: Runge function: (a) The effect of numerical and reduction error. (b) Comparing

the effect of mode adjustment on error. (c) Singular values comparison.

flow; (iii) stochastic turbulent reactive flow, and (iv) three-dimensional turbulent channel

flow.

2.2.1 Runge Function

We first demonstrate the adaptive TDB compression technique with one dimensional

modes (i.e., d = p) for a time dependent Runge function as follow:

f(x1, x2, x3, t) =
1

a(t)2 + x21 + x
2
2 + x

2
3

, (2.2.1)

where a(t) = 1 − 0.5 exp(−α(t − 1)2) and α = 0.5. For this choice of a(t), the rank of the

TDB decomposition must increase from t = 0 to t = 1 and then decrease to ensure that the

low-rank approximation error remains below a specified value. The spatial domain is the

cube [−π,π]3 discretized on a uniform grid of size 1263. The time step ∆t = 5 × 10−3 is used

for evolving the TDB evolution equations.

In this problem, we use the same number of modes in each direction, i.e., r = r1 =

r2 = r3 due to the isotropy of function f . First, we show the effect of both unresolved and
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numerical errors in Figure 4(a). Here, HOSVD error is the weighted Frobenius norm of the

difference between reconstructed data from HOSVD and the streaming data, which shows the

unresolved error from reduction. The implemented first-order Euler (EE) and second-order

Runge-Kutta (RK) add numerical error to the existing unresolved error. The second-order

RK scheme has less error and we use this scheme to show adaptivity effect. This figure also

shows the error difference between the exact data derivative with its first-order, and central

second-order approximation. In order to study the adaptivity procedure for this analytical

problem, we used the data derivative instead of finite difference approximations. Figure

4(b) shows the reconstruction error versus time for fixed-rank TDB decompositions for r = 2

and r = 3 and adaptive TDB initiated with r = 3. The error threshold and the captured

energy percentage is set by practitioner to be εth = 10−6 and γth = 99.999%, respectively. It is

evident that errors of the fixed-rank approximations r = 2 and r = 3 exceed the upper limit

of the 10−6, while the adaptive TDB maintain the error below the upper limit by increasing

the rank to r = 4. The number of modes is later reduced to r = 3 as the dimensionality

of the problem decreases for the given γth. Figure 4(c) shows the singular values of the

unfolded core tensor in the x1-direction for the fixed-rank and adaptive-rank cases as well

as the corresponding HOSVD singular values, which are obtained by taking instantaneous

SVD on the unfolded full-dimensional data. This shows that the fixed-rank and adaptive

TDB decompositions closely follow the HOSVD.

2.2.2 Incompressible Turbulent Reactive Flow

In the second demonstration, we apply the TDB compression to a turbulent reactive

flow. Turbulent reactive flows are multiscale and multivariate, whose high-fidelity numerical

simulations result in massive datasets that with the current I/O restrictions of exascale

simulations even storing the temporally resolved solution is becoming increasingly challenging

let alone probing and analysis of the simulation data. This is particularly the case when a

large number of species is involved. To demonstrate the application of TDB, we consider
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Figure 5: Incompressible turbulent reactive flow schematic.

streaming data generated by a 2D advection-diffusion reaction problem:

∂ϕi
∂t
+ (u ⋅ ∇)ϕi = ∇ ⋅ (αi∇ϕi) +Q

S
i (2.2.2)

where, ϕi is the concentration of ith reactant, αi is the associated diffusion coefficient, QS
i

denotes the nonlinear source that determines whether ϕi is produced or consumed and u

is the velocity field of the flow. The reaction mechanisms model the blood coagulation

cascade in a Newtonian fluid [111]. The simulation setup chosen in this work is identical

to the case considered in reference [30]. The incompressible Navier-Stokes equations at

Re=1000 are solved with spectral element using the spectral/hp element code Nektar with

an unstructured mesh with 4008 quadrilateral elements and polynomial order 5. For more

details on Nektar for incompressible Navier-Stokes equations, see [112]. Equation (2.2.2) is

solved for ns = 23 species on the dashed domain using nodal spectral element discretization.

We used a uniform quadrilateral grid N1 = 251 elements in the x1 direction and N2 = 76 in the

x2 direction. The velocity field is interpolated from the unstructured mesh to the uniform

mesh at all time instants. Equation (2.2.2) is advanced in time using fourth-order RK with

∆t = 5×10−4. The numerical solution of Eq. (2.2.2) is cast as a streaming third-order tensor

of size N1 ×N2 ×N3, where N3 = n3 = 23 is the number of species.
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We consider two different TDB compression schemes as follows:

TDB-1: ϕ(x1, x2, η, t) =
r3

∑
i3=1

r2

∑
i2=1

r1

∑
i1=1

Ti1i2i3
(t)u

(1)
i1
(x1, t)u

(2)
i2
(x2, t)u

(3)
i3
(η, t) (2.2.3)

TDB-2 (DBO): ϕ(x1, x2, η, t) =
r2

∑
i2=1

r1

∑
i1=1

Ti1i2
(t)u

(1)
i1
(x1, x2, t)u

(2)
i2
(η, t), (2.2.4)

where the composition space is denoted by η. The inner product in the physical and com-

position space are as follow:

Physical space (TDB-1): ⟨u
(1)
i1
(x1, t), u

(1)
i′1
(x1, t)⟩x1

≃ u
(1)
i1

T
W(1)u

(1)
i1

⟨u
(2)
i2
(x2, t), u

(2)
i′2
(x2, t)⟩x2

≃ u
(2)
i2

T
W(2)u

(2)
i2

Physical space (TDB-2): ⟨u
(1)
i1
(x, t), u

(1)
i′1
(x, t)⟩

x
≃ u

(1)
i1

T
W(1)u

(1)
i1

Composition space (TDB-1): ⟨u
(3)
i3
(η, t), u

(3)
i′3
(η, t)⟩

η
≃ u

(3)
i3

T
u
(3)
i3

Composition space (TDB-2): ⟨u
(2)
i2
(η, t), u

(2)
i′2
(η, t)⟩

η
≃ u

(2)
i2

T
u
(2)
i2

In TDB-1, W(1) and W(2) are quadrature weights obtained from spectral element discretiza-

tions of x1 and x2 directions, respectively. In TDB-2, W(1) are the quadrature weights for

2D spectral element discretization i.e., both x1 and x2 directions. The inner product weight

in the composition space for both schemes is the identity matrix. The above two schemes

have different reduction errors and compression ratios. The main difference between the two

decompositions is that in Eq. (2.2.3), the correlations between both spatial directions, i.e.,

x1, x2 and the composition space, i.e., η are extracted, whereas in TDB-2, the correlation

between x1 and x2 directions are not extracted. Both schemes are adaptive: modes are added

and removed to keep the reconstruction error below εth = 10−5 and the captured details above

the γth = 99.999%. TDB-2 was recently introduced in Ref. [30], where it was referred to

as dynamically bi-orthonormal (DBO) decomposition since the species are decomposed to

two sets of orthonormal modes in the spatial domain and the composition space. In the

DBO formulation presented in Ref. [30], full-dimensional Eq. (2.2.2) is not solved; instead
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(a) (b) (c)

Figure 6: Compression of the 2D turbulent reactive flow. Singular values of the unfolded

tensor in directions: (a) x1, (b) x2, and (c) η.

closed-form evolution equations for all three components of TDB-2 are derived, i.e., ODEs

for Ti1i2
(t) and u

(2)
i2
(η, t) and PDEs for u(1)i1 (x1, x2, t). We refer to DBO reduction in Ref.

[30], as model-driven analogue of the data-driven reduction technique presented in this work,

because in the DBO formulation in Ref. [30] data generation is not required. In this section,

we compare the model-driven DBO bases and the data-driven DBO bases that are the focus

of this work.

TDB-2 shows a slower error growth than TDB-1. To investigate this, in Figures 6(a)-

6(c), we show the instantaneous singular values of the unfolded tensor in x1, x2 and η

directions for TDB-1 and TDB-2 as well as the instantaneous singular values obtained by

performing HOSVD. Since in the TDB-2 decomposition, unfolding in x1 and x2 directions

are not formed, in Figures 6(a)-6(b) only the singular values of TDB-1 and HOSVD can be

shown. It is clear that dominant singular values are captured accurately by both schemes.

However, the effect of unresolved modes introduces a memory error. This error is driven

by the energy of the unresolved modes and it affects the lower-energy modes more intensely
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than the higher-energy modes. If this error is left uncontrolled, it will eventually contaminate

the higher-energy modes. The reconstruction error evolution for both schemes is shown in

Figure 7(a). It is evident that the error grows at a much faster rate in TDB-1 compared to

TDB-2. This can be explained by observing that the dimensionality in the spatial domain

is often much higher than the dimensionality in the composition space. This means that

in TDB-1, σ(3)(t) has a much faster decay rate compared to σ(1)(t) and σ(2)(t) as can

be clearly seen in Figures 6(a)-6(c). In TDB-2, there is no reduction error in the x1 or x2

directions, and moreover, the turbulent reactive flow shows a very low-dimensional dynamics

in the composition space (η), as a result the overall energy of the unresolved modes is much

smaller, which in turn leads to a slower error growth rate.

In Figure 8, we compare the reconstructed data for the eighth species at five time instants.

The reconstructed data are in good agreement with DNS snapshots, however, the form of

error is different. The error is computed as the absolute value of the difference between the

DNS and reconstructed TDB data. The resulting error from TDB-1 appears to have much

finer structure than that of TDB-2. That is because in TDB-1, the unresolved subspaces

in each of the x1 and x2 dimensions have very fine structures and they dominate the error,

whereas in TDB-2 the error is due to the unresolved subspace in the η direction. The TDB-1

error at t = 1,2,3,4 is less than TDB-2, mainly because of frequent HOSVD reinitialization

in the adaptivity process. However, the maximum error of TDB-1 is larger than that of

TDB-2. For better comparison, the error color bar is set from 0 to 0.5, while the maximum

errors for TDB-1 and TDB-2 are 0.14 and 0.4, respectively.

TDB-1 and TDB-2 have different storage costs for the same reconstruction errors. In

TDB-2, slower error growth rate comes at the cost of storing r two-dimensional bases with

the storage cost of rN1N2 as opposed to TDB-1, where the storage cost of the spatial bases

is r1N1 + r2N2. The overall storage cost of TDB-1 is: STDB−1 = r1N1 + r2N2 + r3ns + r1r2r3

and the storage cost of TDB-2 is: STDB−2 = rN1N2 + rns + r2. The comparison of the storage

cost of TDB-1 and TDB-2 for the same reconstruction error depends on the values of r1 and

r2. These two storage costs for the same number of modes in the composition space, i.e.,
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(a) (b)

Figure 7: Compression of turbulent reactive flow data using TDB-1 and TDB-2 (DBO)

schemes: (a) error evolution, (b) storage cost.

r = r3 = 7 are shown in Figure 7(b). If r1 and r2 are large enough, the storage cost of TDB-1

exceeds that of TDB-2. In our study, the weighted compression ratio are CRTDB−1 = 15.62

and CRTDB−2 = 6.6 where the total size of data 35GB compressed to 2.2GB and 5.3GB by

TDB-1 and TDB-2, respectively.

In the DBO formulation presented in Ref. [30], a coupled set of PDEs for the 2D bases

and ODEs for the low-rank matrices are solved without using any data. The goal of the

model-driven DBO [30] is to reduce the computational cost and memory requirement of

solving species transport equations as well as reducing the I/O load. In this work, our goal

is to compress the streaming data generated by the full-dimensional model. In Figure 9, the

first and second most dominant modes of model-driven and data-driven DBOs for different

instances of times are shown. It is clear that the bases for both model-driven DBO and

data-driven DBO are nearly identical.
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Figure 8: Unsteady reactive flow: Comparison between DNS and TDB reconstructed species

concentration.

Figure 9: Turbulent reactive flow: Comparison between the first two dominant modes of the

model-driven and data-driven DBO.

2.2.3 Stochastic Turbulent Reactive Flow

Quantifying uncertainties of transport and chemistry model parameters has major impli-

cations for the field of chemically reactive flows. An uncertainty quantification (UQ) analysis
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(a) (b)

(c) (d)

Figure 10: Incompressible turbulent reactive flow uncertainty quantification. Singular values

of the unfolded tensor in: (a) x1, (b) x2, (c) η, and (d) error evolution.

can significantly reduce the experimental costs by effectively allocating limited resources on

reducing the uncertainty of key parameters, and inform mechanism reduction by determining

the least important parameters or detecting reaction pathways that are unimportant and can
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be eliminated [113, 114, 115]. Any sampling-based technique, e.g., Monte Carlo or proba-

bilistic collocation methods (PCM) for UQ analysis of this problem can generate very large

datasets. In this demonstration, we show how TDB can be utilized to extract correlation

between different random samples in addition to the multidimensional correlations presented

in the previous example, to reduce the storage cost of the data generated. In this section,

we study the compression of resulting data from incompressible reactive flow with random

diffusion coefficients. We consider the problem of uncertainty diffusion coefficients for two

species (α1 and α4) in Eq. (2.2.2). We assume both of these two coefficients are independent

random variables as in the following:

ξξξ = [ξ1, ξ2] = (1 + 0.05ω)[α1, α4],

where ω is a uniform random variable ∼ U [−1,1]. The rest of the problem setup remains

identical to the problem considered in §3.2. We consider a collocation grid of size s = 4 × 4

in the random space, which requires 16 forward DNS simulations. We consider the following

TDB compression scheme:

ϕ(x, η,ξξξ, t) =
r3

∑
i3=1

r2

∑
i2=1

r1

∑
i1=1

Ti1i2i3
(t)u

(1)
i1
(x1, x2, t)u

(2)
i2
(η, t)u

(3)
i3
(ξ1, ξ2, t). (2.2.5)

The rationale for choosing a 2D TDB for the random space rather than two 1D TDBs is

that the cost of storing 2D random bases is negligible. On the other hand, choosing two 1D

random TDBs would have increased the order of the core tensor from 3 to 4. Another valid

choice for TDB is to combine the composition space and the random direction into a 3D

space. However, the interpretability of 1D TDB in the composition space is quite appealing.

The u(2)i2 (η, t)’s represent a time-dependent subspace in the composition space. In which the

inner product in the random space is defined as follow:

⟨u
(3)
i3
(ξ1, ξ2, t), u

(3)
i′3
(ξ1, ξ2, t)⟩ξξξ = E[u

(3)
i3
(ξ1, ξ2, t) u

(3)
i′3
(ξ1, ξ2, t)] ≃ u

(3)
i3

T
W(3)u

(3)
i3
,

where W(3) is the probabilistic collocation weight. Each random TDB in the discrete form

is represented by a vector of size s, i.e., u(3)i ∈ Rs×1. Different sampling schemes might be
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used here. For example, one can use Monte Carlo samples. In that case, the inner product

weight would be a diagonal matrix with all diagonal entries equal to 1/s.

Since there is a high degree of correlation between random samples of species fields,

the TDB compression can achieve the high compression ratio CR = 42.75 compared to

the previous cases and compress the size of data from 561.5GB to 13.1GB. To examine

this, we show the resulting singular values of the unfolded core tensor and compare them

with HOSVD singular values in Figures 10(a)-10(c). Based on these figures, we make the

following observations: (i) the dominant singular values are captured accurately; (ii) for this

compression scheme, similar to TDB-2 the singular values have a much faster decay rate

compared to TDB-1; (iii) the problem dimension does not change after t = 1, and therefore,

the number of modes remains the same; (iv) the random space has the lowest dimensionality,

which means the generated data are highly correlated with respect to the random diffusion

coefficients. Figure 10(d) shows the reconstruction error evolution in which it exceeds the

maximum limit around t = 1 due to the increase in dimensionality. Using the reinitialization

and mode adjustment in each direction with respect to the defined γth = 99.999% the error

decreases. Since after t = 1 the dimensionality does not change, the error remains the same.

2.2.4 Three-dimensional Turbulent Channel Flow

In the last demonstration case, we use TDB to compress the data obtained by the direct

numerical simulation (DNS) of turbulent channel flow. The data are generated by the finite

difference solver in Ref. [116]. The Reynolds number based on the friction velocity is

Reτ = 180. The length, width and height of the channel are π, 2π, and 2, respectively. The

number of grid points in all dimensions is 150 with uniform distribution in streamwise and

spanwise directions. The grid is clustered near the channel wall in the wall-normal direction.

We apply TDB to the streamwise velocity component as compression of other field variables

result in the same qualitative observations. We consider one-dimensional TDBs as follows:

v(x1, x2, x3, t) =
r3

∑
i3=1

r2

∑
i2=1

r1

∑
i1=1

Ti1i2i3
(t)u

(1)
i1
(x1, t)u

(2)
i2
(x2, t)u

(3)
i3
(x3, t). (2.2.6)
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(a) (b)

Figure 11: Turbulent channel flow: (a) Error evolution. (b) Singular values of the unfolded

tensor in x1 direction.

The TDB equations are evolved with the time step of ∆t = 10−3, which is the same as the

∆t used in the DNS time integration. We consider two cases with different error thresholds.

Case-I with the γth = 99.9999% and Case-II with the γth = 99.999%. For both cases the

error threshold is set to be εth = 3.3 × 10−5. In Case-I, the initial value of the multirank is

(r1, r2, r3) = (68,81,50) and in Case-II the initial multirank is (r1, r2, r3) = (54,57,36). The

error evolution for both case are shown in Figure 11(a). The compression ratios for Case-I

and Case-II are CR = 9.62 and CR = 26.90, respectively. For this problem, performing

HOSVD at different time instants result in the same multirank and that is because the

flow is statistically steady state, and therefore, the rank of the systems does not change in

time. However, in the TDB formulation, the error still grows because of the effect of the

unresolved subspace. This error is controlled by the adaptive scheme. The error evolution

for both cases are shown in Figure 11(a). In Case-II, since the unresolved space has larger
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energy, the error grows with faster rate compared to Case-I. As a result, in Case-II, 9 HOSVD

initializations are performed as opposed to one initialization in Case-I. Figure 11(b) shows

the singular values of the unfolded TDB core tensor along the x1 direction against that of the

full-dimensional data obtained by HOSVD. There is a large gap between the first singular

value and the rest of the singular values. We also observe that the low-energy modes values

are more contaminated by the error induced by the unresolved subspace.

Figures 12(a) and 12(b) compare the RMS and mean velocity at t = 1 from TDB recon-

structed calculations with Ref. [116] and HOSVD reconstruction. In these figures, the TDB

and HOSVD reconstructed RMS and the mean streamvise velocity are in good agreement,

however; due to unresolved modes the reconstructed data has discrepancy compared to the

DNS results. We can observe the higher compression ratio is causing more discrepancy due

to more unresolved modes. Figures 12(c) to 12(e) compare the TDB and HOSVD recon-

structed data with the streamed data for the case with high compression ratio at t = 1 in 3D

format. The fact that we need a large number of modes to achieve a reasonable agreement

with the DNS suggests that the linear TDB subspace has difficulty in approximating the

turbulent state, which lies on a nonlinear manifold.
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(a) (b)

(c) DNS (d) HOSVD (e) TDB

Figure 12: Turbulent channel flow: (a) RMS, (b) mean streamvise velocity comparison

between DNS and the same-rank HOSVD and TDB reductions. Comparison of DNS and

the same-rank HOSVD and TDB reductions with CR = 26.9: (c) DNS , (d) reconstructed

TDB, and (e) reconstructed HOSVD.
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3.0 Blood Flow Prediction in Data-Poor Regimes

Blood flow reconstruction in the vasculature is important for many clinical applications.

However, in clinical settings, the available data are often quite limited. For instance, Tran-

scranial Doppler ultrasound (TCD) is a noninvasive clinical tool that is commonly used

in the clinical settings to measure blood velocity waveform at several locations on brain’s

vasculature. This amount of data is grossly insufficient for training machine learning sur-

rogate models, such as deep neural networks or Gaussian process regression. In this work,

we propose a Gaussian process regression approach based on physics-informed kernels, en-

abling near-real-time reconstruction of blood flow in data-poor regimes. We introduce a novel

methodology to reconstruct the kernel within the vascular network, which is a non-Euclidean

space. The proposed kernel encodes both spatiotemporal and vessel-to-vessel correlations,

thus enabling blood flow reconstruction in vessels that lack direct measurements. We demon-

strate that any prediction made with the proposed kernel satisfies the conservation of mass

principle. The kernel is constructed by running stochastic one-dimensional blood flow simula-

tions, where the stochasticity captures the epistemic uncertainties, such as lack of knowledge

about boundary conditions and uncertainties in vasculature geometries. We demonstrate the

performance of the model on three test cases, namely, i) a simple Y-shaped bifurcation, ii)

abdominal aorta, and iii) the Circle of Willis in the brain.

3.1 Methodology

3.1.1 Gaussian Process Regression

Since our work is based on the GP, we briefly review GP and we also introduce the

notation that will be used in our methodology. Let y ∶= [y1, y2, . . . , yN]T ∈ RN denote the

observed data corresponding to inputs x ∶= [x1, x2, . . . , xN]T ∈ RN , where N is the number of
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training points. The objective is to train a surrogate function f(x) using the available data

to perform predictions at any x. Using the GP framework, function f(x) is approximated

as follows [52]:

y = f(x) + ε, f(x) ∼ GP (0, k (x,x′;θ)) , (3.1.1)

where ε represents the noise with a zero-mean normal distribution ε ∼ N (0, σ2
n) where σn is

the standard deviation, k(x,x′;θ) is the kernel function, and θ is vector of hyperparameters.

Applying the GP model given by Eq. 3.1.1 to a discrete data points given by (x,y)

results in the following normal distribution:

y ∼ N (0,K + σ2
nI), K = k(x,x′;θ). (3.1.2)

where I ∈ RN×N is the identity matrix. The kernel hyperparameters and the noise variance σ2
n

can be learned from the data by minimizing the negative logarithm of the marginal likelihood

(NLML) given by:

NLML(θ) =
1

2
yT (K + σ2

nI)
−1y +

1

2
ln ∣K + σ2

nI∣ +
N

2
ln(2π). (3.1.3)

Therefore, using the computed hyperparameters and σn, allows prediction for a new input

f(x∗) using its conditional distribution as follows:

f (x∗) ∣ y ∼ N (k (x∗,x) (K + σ2
nI)
−1y, k (x∗, x∗) − k (x∗,x) (K + σ2

nI)
−1k (x, x∗)) . (3.1.4)

The posterior mean and variance are therefore:

µ(x) = k (x,x) (K + σ2
nI)
−1y, (3.1.5a)

σ2(x) = k (x,x) − k (x,x) (K + σ2
nI)
−1k (x, x) , (3.1.5b)

where µ(x) represents the GP prediction and σ(x) is the posterior standard deviation that

quantifies uncertainty around predictions.

To address the limitations associated with the choice of kernel for a vasculature network,

we propose an algorithm to construct physics-informed kernels using data generated from a
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1D flow model. This kernel captures both spatiotemporal and vessel-to-vessel correlations.

3.1.2 A Global Spatiotemporal Model

We aim to build a surrogate model for the blood flow velocity in a vasculature network

using only a few measurements. In the following, we adopt a weight-space view of linear

Bayesian regression. We denote the quantity of interest at vessel (k) with f (k)(x, t) ∶ Ω(k) ×

[0, T ] → R, k = 1,2, . . . ,K over the inputs (x, t), where Ω(k) denotes the 1D spatial domain

along the centerline of vessel k and T in the time duration and K is the number of vessels.

The function f is the target quantity, which is the area-averaged blood flow velocity. Consider

the following model for learning f (k)(x, t):

f (k)(x, t) =
r

∑
i=1

w
(k)
i (t)ϕ

(k)
i (x), x ∈ Ω(k), t ∈ [0, T ], k = 1,2, . . .K, (3.1.6)

where ϕ(k)i (x) ∶ Ω(k) → R are local spatial basis functions that are chosen a priori and w(k)i (t)

are the time-dependent weights that must be learned from measurements. In this context,

’local’ refers to basis functions that are defined within each vessel. As r → ∞, the above

model approximates a GP with a spatial kernel. In this model, either the weights have to

be parameterized separately or they have to be learned at each instant of time. In that

case, the model requires training K, GP models at any given time—one GP for each vessel.

Consequently, for the vessels with insufficient data, the model’s predictions are poor. Also,

since the model must be trained at each instant of time, its predictions will be poor at time

instants for which we have insufficient data. The latter issue can be circumvented by using

a model with spatiotemporal basis functions as shown below:

f (k)(x, t) =
r

∑
i=1

w
(k)
i ϕ

(k)
i (x, t), x ∈ Ω(k), t ∈ [0, T ], k = 1,2, . . .K, (3.1.7)

where ϕ(k)i (x, t) ∶ Ω(k)×[0, T ]→ R are spatiotemporal local basis functions and [w(k)1 ,w
(k)
2 , . . .

,w
(k)
r ] are the corresponding time-invariant weights. In the model given by Eq. 3.1.7, the

spatiotemporal correlations are encoded in the basis function ϕ(k)i (x, t), and the weights can
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be learned from disparate spatiotemporal measurements. As a result, training the model

described by Eq. 3.1.7 requires a significantly smaller amount of data compared to the model

outlined in Eq. 3.1.6. However, this model still utilizes local basis functions, and one model

must be trained for each vessel. Therefore, for vessels with insufficient measurements, the

model described by Eq. 3.1.7 can result in poor predictions.

In the following, we present a model based on global spatiotemporal basis functions that

exploits spatiotemporal as well as vessel-to-vessel correlations. The model is described by:

f(x, t) =
r

∑
i=1

wiϕi(x, t), x ∈ Ω =
K

⋃
k=1

Ω(k), t ∈ [0, T ], (3.1.8)

where Ω denotes the global vasculature network, mathematically represented as the union

of all vessels. In the above model, ϕi(x, t) ∶ Ω × [0, T ] → R are global spatiotemporal basis

functions. Note that in the above model, the weights wi are global coefficients; in other

words, they are not vessel-dependent.

3.1.3 Uncertainty Modeling via Stochastic Simulations

The performance of the model given by Eq. 3.1.8 critically depends on the choice of

the basis functions ϕi(x, t). The choice of the basis function in the weight-space view is

closely related to choosing a kernel in the function-space view. Our approach uses stochastic

simulations to construct the kernel, which has been employed in building empirical kernels;

see, for example, [64, 65]. Previous developments have concentrated on Euclidean input

spaces, i.e., the input space is a subset of Rd. Moreover, these techniques require the explicit

storage of the kernel matrix. The present work extends these developments to vasculature

networks and addresses the challenge of explicit kernel storage, which is cost-prohibitive in

terms of memory requirements for the current application.

In the following, we present a data-driven methodology to build global spatiotemporal

basis functions using a stochastic 1D blood flow model. The steps are explained below.
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Consider the 1D stochastic blood flow model expressed as:

∂q

∂t
= N(q, t;ξ), (3.1.9)

augmented with appropriate boundary and initial conditions. In the equation above, q =

q(x, t;ξ) represents the state variable vector q = [u,A], where u = u(x, t;ξ) denotes the

area-averaged velocity in each vessel, A = A(x, t;ξ) represents the cross-sectional area, and

ξ = [ξ1, ξ2, . . . , ξd] represents the random parameters. These parameters are defined based on

epistemic uncertainties — uncertainties stemming from incomplete knowledge. For instance,

exact inlet boundary conditions might be unknown in clinical settings. Similarly, the mea-

surement of vessel areas, often derived from CT imaging, is subject to variability based on

the image segmentation techniques employed. Another source of uncertainty in modeling 1D

blood flow arises from the assumptions made about outflow boundary conditions. All these

epistemic uncertainties are encapsulated within ξ, with d representing the total number of

these uncertain parameters.

Given the solution of the 1D model, the spatiotemporal global correlation operator can

be formed as shown below:

K(x, t, x′, t′) = E[u(x, t;ξ)u(x′, t′;ξ)], x, x′ ∈ Ω, and t, t′ ∈ [0, T ]. (3.1.10)

where E[∼] is the expectation operator defined as:

E[u(x, t;ξ)] = ∫
Rd
u(x, t;ξ)ρu(ξ)dξ, (3.1.11)

where ρu(ξ) ∶ Rd → R is the joint probability density function. We consider the eigendecom-

position of the above correlation operator as shown below:

∫

T

0
∫
Ω
K(x, t, x′, t′)ϕi(x

′, t′)dx′dt′ = λiϕi(x, t), i = 1,2, . . . ,∞, x ∈ Ω, and t ∈ [0, T ].

(3.1.12)

Since K is a self-adjoint positive operator, its eigenvalues are positive (λi = σ2
i ≥ 0) and its
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eigenfunctions are orthonormal with respect to the space-time inner product as shown below:

∫

T

0
∫
Ω
ϕi(x, t)ϕj(x, t)dxdt = δij, i, j = 1,2, . . . ,∞. (3.1.13)

Note that in the above definition, the spatial integral is carried out over the entire vasculature.

To make this clear, note that the spatial integral can be written as:

∫
Ω
ϕi(x, t)dx =

K

∑
k=1
∫
Ω(k)

ϕi(x, t)dx. (3.1.14)

The correlation operator K is global and x and x′ could belong to different vessels. Thus,

K encodes vessel-to-vessel correlations. We choose K as the customized kernel function for

building the regression model for blood flow properties. In the next section, we present a

numerical algorithm to compute the spatiotemporal bases ϕi(x, t).

3.1.4 Kernel Construction

In this section, we present an efficient data-driven methodology to approximate K. To

this end, we express the kernel versus its spectral decomposition as follows:

K(x, t, x′, t′) =
∞

∑
i=1

λiϕi(x, t)ϕi(x
′, t′), (3.1.15)

where the eigenvalues are sorted in a decreasing order, i.e., λ1 ≥ λ2 ≥ . . . . In the following,

we approximate the kernel in a finite-dimensional setting. To compute the eigenfunctions

ϕi(x, t), we discretize the spatiotemporal domain. Let x(k) = [x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ] be the

vector of discrete points in vessel (k). For simplicity in the notation, we consider the same

number of discrete pints in each vessel. However, a different number of points could be

considered for each vessel. Therefore, the global discrete spatial vector is simply the union

of the local spatial vectors: x = ∪Ki=1x
(k), where x ∈ RnK×1. The temporal domain is also

discretized similarly: t = [t1, t2, . . . , tm], where m is the number of time steps. The discrete

spatiotemporal domain is obtained via the tensor product of x and t, with N = nK ×m

points. We reshape the resulting grid into a matrix X = [x∣t], x ∈ RN×1, t ∈ RN×1, and
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X ∈ RN×2.

In the discrete form, each basis function ϕi(x, t) is represented by a vector ϕi ∈ RN×1,

which contains the values of the basis function on the spatiotemporal grid. Similarly, the

spatiotemporal solution of the physics-based model can be represented in the discrete form

with vectors of size ui ∈ RN×1, where ui = u(x, t;ξ
(i)
), where ξ(i) is a random realization of

ξ. To estimate the expectation operator, we use Monte Carlo sampling:

E[u(x, t,ξ)] ≈ 1

s

s

∑
i=1

u(x, t,ξ(i)) =
1

s
Ue, (3.1.16)

where s is the number of Monte Carlo samples, {ξ(i)}si=1 are the Monte Carlo samples of

the random vector ξ, U = [u1,u2, . . . ,us] ∈ RN×s, and e = [1,1, . . . ,1]T ∈ RN×1. Therefore,

the kernel in the discrete is obtained by applying the above estimators for the expectation

operator in Eq. 3.1.15, which results in:

K =
1

s
UUT , (3.1.17)

where K ∈ RN×N . Typically, n ∼ O(102), m ∼ O(102) and K ∼ O(10). As a result, N ∼

O(105). Consequently, forming the kernel K and computing its eigendecomposition, which is

O(N3) are cost prohibitive. Instead, we use the standard procedure by which the eigenvectors

of K are computed without forming K explicitly via the Singular Value Decomposition

(SVD) of the matrix U. As we show in our demonstration examples, the singular values

decay quickly for blood flow simulations and as a result, the above decomposition can be

truncated at r < s basis functions

U ≈ΦΣYT , (3.1.18)

where Φ = [ϕ1,ϕ2, . . . ,ϕr] ∈ RN×r are the orthonormal left singular vectors, Σ ∈ Rr×r is the

matrix of singular values, and Y ∈ Rs×r is the matrix of right singular vectors. The truncation

rank (r) is determined based on the number of singular values required to approximate matrix

K up to a desired accuracy. Using the above low-rank approximation of U, the kernel can
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be approximated as:

K̂ =
1

s
ΦΣYTYΣΦT

=ΦΛΦT , (3.1.19)

where K̂ is a rank-r approximation of K. In the above, we use the orthonormality of the

right singular vectors, i.e., YTY = I and Λ = 1/sΣ2
= diag(λ1, λ2, . . . , λr). One of the key

advantages of the above formulation is that kernel K̂ does not have to be formed nor stored

explicitly. Instead, the matrix of the basis functions (Φ) and the matrix of eigenvalues (Λ)

are stored.

The above kernel is constructed as a discrete set of spatiotemporal points. However,

the kernel needs to be evaluated at (x, t) that may not correspond exactly to one of the

spatiotemporal points that K is built for. It is straightforward to construct continuous

spatiotemporal kernel. To this end, we build an interpolant for the basis vectors ϕi. This

can be done by reshaping ϕi ∈ Rnm×1 into a matrix of size n×m, which we denote with [ϕi] ∈

Rn×m. Let Ψ(x) = [ψ1(x), ψ2(x), . . . , ψn(x)] be global basis functions that are the union

of local basis function in each vessel and χ(t) = [χ1(t), χ2(t), . . . , χm(t)] be the temporal

basis functions. These basis functions are Lagrange interpolants such that ψi(x
(k)
j ) = δij and

χi(tj) = δij. Both Ψ(x) and χ(t) are quasimatrices, which are matrices whose columns are

continuous and rows are discrete [117]. The continuous basis functions can be expressed as:

ϕ̂i(x, t) =Ψ(x)[ϕi]χ(t)
T . (3.1.20)

In all the cases considered in this paper, we use piece-wise linear interpolants as the basis

spatial and temporal basis functions. Therefore, the kernel in the continuous form is given

by:

K̂(x, t, x′, t′) =
r

∑
i=1

λiϕ̂i(x, t)ϕ̂i(x
′, t′). (3.1.21)

Using the above kernel, Equations 3.1.5a and 3.1.5b can be used to perform prediction

at new unseen locations and times. To this end, let denote N space, time, and velocity

labeled data (observational measurements) with x = [x1, x2, . . . , xN], t = [t1, t2, . . . , tN], and

u = [u1, u2, . . . , uN], which means that ui corresponds to measurement at spatiotemporal
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coordinate of (xi, ti) for i = 1, . . . ,N . Then the GP predictions and posterior uncertainties

are:

µ(x, t) = K̂ (x, t,x, t) (K̂ (x, t,x, t) + σ2
nI)
−1u, (3.1.22a)

σ2(x, t) = K̂ (x, t, x, t) − K̂ (x, t,x, t) (K̂ (x, t,x, t) + σ2
nI)
−1K̂ (x, t, x, t) , (3.1.22b)

where K̂ (x, t,x, t) ∈ RN×N and I ∈ RN×N is the identity matrix. The variance of the noise

(σ2
n) can be determined by maximizing the negative likelihood. The presented methodology

addresses all of the issues raised in the introduction and offers the following advantages:

1. The constructed kernel K̂ encodes both spatiotemporal and vessel-to-vessel correlations.

This capability enables the reconstruction of blood flow velocity across the entire vas-

culature using a very limited number of measurements. For example, it allows for the

estimation of blood flow in vessels that lack direct measurements.

2. Any reconstructed flow automatically satisfies the conservation of mass. To demonstrate

this, note that the posterior mean from Eq. 3.1.22a can be expressed as a linear combi-

nation of the spatio-temporal basis functions, written as:

µ(x, t) = K̂ (x, t,x, t)z =
N

∑
j=1

r

∑
i=1

λiϕ̂i(x, t)ϕ̂i(xj, tj)yj =
r

∑
i=1

wiϕ̂i(x, t), (3.1.23)

where z = [z1, . . . , zN]T = (K̂ (x, t,x, t) + σ2
nI)
−1u and wi = λi∑

N
j=1 ϕ̂i(xj, tj)zj. From Eq.

3.1.18, the basis functions are themselves a linear combination of the simulated data, i.e.,

ϕ̂i(x, t) = ∑
s
j=1 uj(x, t)Yji/σi, where uj(x, t) = Ψ(x)[uj]χ(t)T . Replacing this expression

of the basis function into Eq. 3.1.23, results in:

µ(x, t) =
s

∑
j=1

ajuj(x, t), (3.1.24)

where aj = ∑ri=1wiYji/σi. This shows that the posterior mean can be expressed as a linear

combination of all s samples. Given that each sample uj(x, t) satisfies the conservation

of mass, their linear combination also preserves the conservation of mass.

3. Since the number of observations is typically small, the computational cost of calculating

the posterior means and uncertainty is negligible. The offline costs consist of running 1D
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simulations and performing SVD on the generated data to create the kernel. For instance,

on a system equipped with a 3.4 GHz Quad-Core Intel Core i5 processor, running each

1D simulation of an abdominal aorta vasculature network, which consists of 17 vessels,

takes 28 seconds. A total of 150 simulations can be run in parallel. Creating the kernel

requires 41 seconds. The simulation time for each sample scales roughly linearly with the

number of vessels. The demonstration cases presented in this paper involve a relatively

small number of vessels (less than 30). However, for vasculature networks with a larger

number of vessels, recently developed low-rank approximation methods based on time-

dependent bases may be employed to accelerate the simulation time [101].

3.1.5 One-dimensional Modeling

The governing equations for 1D simulations are the simplified version of the Navier-

Stokes equations based on the following assumptions: i) The vessel’s curvature is small and

negligible; hence the given equations are written based on x coordinates on the centerline. ii)

Vessels are axisymmetric. iii) The properties of each vessel are constant. These assumptions

simplify the 3D incompressible Navier-Stokes equations which are written as:

∂A

∂t
+
∂(Au)

∂x
= 0, (3.1.25)

∂u

∂t
+ u

∂u

∂x
= −

1

ρ

∂p

∂x
+
fu

A
,where f = −22µπ. (3.1.26)

ρ = 1050kg/m3, µ, A(x, t), p(x, t), f(x, t) are the blood density, blood dynamic viscosity,

vessel cross-section area, pressure, and friction force per unit length respectively. Here, A,

u, and p are unknown. In order to have a closed system of equation, we use pressure area

relation.

p = pext + β(
√
A −
√
A0)) (3.1.27)

with

β =

√
πhE

(1 − ν2)A0

(3.1.28)
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where pext, h, E, A0, and ν are external pressure, wall thickness, Young modulus, equilib-

rium cross-section area, and Poisson ratio ν = 0.5 respectively. To compute 1D blood flow

properties, characteristic decomposition is used for the given equations. This derivation is

described in detail in Ref. [102] and solved by spectral/hp element spatial discretization and

a second-order Lax-Wendroff time-integration scheme. This solver is called Nektar and we

use it to solve s different simulations/samples with randomized inlet velocity, cross-section

areas, and outflow boundary conditions.

3.1.6 Uncertainty Characterization

To generate the kernel as defined in Eq. 3.1.19, we calculate the blood flow proper-

ties using Eqs. 3.1.25, 3.1.26, and 3.1.27 for s number of samples. Below, we detail how

the stochastic modeling accounts for the uncertainty in precise inlet and outlet boundary

conditions.

The human arterial system consists of many vessels and in many cases, it is either

impossible or unnecessary to simulate them all. The well-known three-element Windkessel

model (RCR), allows us to simulate a part of the vasculature network and apply the effect

of neglected vessels at the terminals. In this model, if we denote the total resistance by

Rt = R1 +R2 and compliance by C, for the outlet:

p +R2C
dp

dt
−RtQ − p∞ −R1R2C

dQ

dt
= 0. (3.1.29)

Here, Q = Au is the flux at the outlet, p∞ is the downstream pressure, and R1 =
ρc0
A0

where

c0 =
√

β

2ρ
√

A0
is the speed of wave propagation. In the Nektar solver, this model is adapted

to the characteristic waves at the terminals [118].

We randomize the inlet velocity, outflow boundary conditions (R and C), and cross-

section areas. For example Figure 13(b) shows the range of randomized inlet velocity for a

Y-shaped vessel shown in Figure 13(a). In this figure, the periodic velocity with the periodic
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time T is the summation of ni component functions, each described as follows:

u(t;ξ) = a0 +
ni

∑
i=1

ai exp(−
(t − [t/T ]T − bi)2

ci
), (3.1.30)

where [z] is the rounded integer of z such that 0 ≤ z − [z] < 1, ai, bi, and ci adjust

peaks/valleys, their location, and their sharpness. We randomize the inlet profile by ran-

domizing the parameters [a0, ai, bi, ci] as shown below:

ξk = ξk + σkψ, where ξk ≡ [a0, ai, bi, ci], i = 1, . . . , ni. (3.1.31)

Here ψ = U[−0.5,0.5] is a zero-mean uniform random variable with unit variance and σk is

the standard deviation of variable σkψ, ξk is the kth random variable and ξk = E[ξk] is the

mean of ξk. Therefore, the inlet randomization introduces k = 1, . . .3ni+1 random variables.

We randomize the outflow parameters (Rt,C) for the vessels that have outflow boundary

conditions as follows:

ξk = ξk(1 + σkψ), where ξk ≡ [Rt,C]. (3.1.32)

Therefore, each vessel that has an outflow boundary condition introduces two more random

variables that will be appended to the existing random variables. We also randomize the

initial area ξk = {A0i}, i = 1,2, . . . ,K for each vessel in a form similar to Eq. 4.1.32. This

will also add K (number of vessels) random variables. Using these parameters, we perform

1D simulations and store the resulting data in the matrix U (Eq. 3.1.18) and follow the

algorithm presented in Section 3.1.4 to construct kernel K̂.

3.2 Demonstration Cases

In this section, we demonstrate the performance of the presented methodology in three

cases: i) a Y-shaped vessel, where measurements are taken from 1D simulations; ii) the lower

part of the abdominal aorta vasculature, where measurements are taken from 3D simulation;

and iii) the brain vasculature (Circle of Willis), where measurements are taken from 4D
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(a) Y-shaped bifurcation schematic (b) Inlet velocity (c) Singular values

Figure 13: a) Y-shaped vessel schematic. b) Y-shaped vessel random inlet velocities for all

samples and the randomly selected sample as the measurement for prediction and validation.

c) The dominant singular values remain unchanged across different numbers of simulations.

Flow MRI. In the following examples, we refer to the set of data points in the form of

(x, t,u), used in Eqs. 3.1.22a-3.1.22b, as measurement, and we refer to points at which we

perform comparisons as prediction. In all cases, the kernel is constructed using stochastic

1D simulations. Once the kernel is constructed, we obtain measurement data, i.e., (x, t,u),

from various sources, including 1D simulation, 3D simulation, and 4D Flow MRI and we

perform predictions using Eqs. 3.1.22a-3.1.22b.

3.2.1 Y-Shaped Vessel

In the first test case, we consider a Y-shaped vessel. The schematic of the problem

is shown in Figure 13(a), which is similar to the first example in [47]. The equilibrium

area, length, and Windkessel parameters are presented in Table 1. To create the kernel,

we generate data using the 1D model (Eqs. 3.1.25-3.1.26), wherein the inlet velocity, cross-

sectional areas, resistance, and compliance are randomized using Eqs. 4.1.31 and 4.1.32. For

the inlet velocity (Figure 13(b)), T = 0.8, ni = 4, and its randomized parameters values are

listed in Table 2 along with Rt, C, and A0. We generate s = 200 samples and collect their
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simulation results. The results are stored for n = 100 equidistant points in each vessel and

m = 160 equidistant time snapshots to create the kernel based on Eqs. 3.1.18 and 3.1.19.

The rank is determined as the smallest r for which ∑ri=1 σ2
i /∑

s
i=1 σ

2
i > 0.99.

To perform prediction, we randomly select a new sample of the vector ξ and we denote

this sample with ξ∗. We perform the 1D simulation for ξ = ξ∗. We use the spatiotemporal

result of this sample as the ground truth. As we explain below, we use only a small number

of spatiotemporal data points generated by this simulation as the input data to the GP

model. In particular, using the kernel created and a few measurements from the selected 1D

simulation data, we perform predictions for all three vessels. A 5% Gaussian noise is added

to the measurements to intentionally corrupt them with noise, mimicking real data. Figure

13(c) compares the singular values from two different numbers of simulations: s = 200 (our

case) and s = 100. Based on this figure, the leading singular values of the two cases are very

close to each other, implying that the number of samples is sufficient.

The GP model generates continuous spatiotemporal velocity predictions throughout the

entire network. For comparison, we present the GP prediction results for only two represen-

tative points. Specifically, we compare the GP predictions at points 1 and 2, located in the

middle of each corresponding vessel, as illustrated in Figure 14(a) and Figure 14(d) for the

following two scenarios:

• Case 1 (low spatial resolution and high temporal resolution): The schematic of the

spatiotemporal coordinates of the measurement points is illustrated in the x−t coordinate

system in Figure 14(a). In particular, we utilize the inlet data from vessel 1 with a

temporal resolution of ∆t = 0.005s. The primary aim of this case is to address scenarios

involving measurements with very low spatial resolution, in this instance, the extreme

case of having only the time series data of one spatial point. According to Figures

14(b) and 14(c), the predicted velocity shows good agreement with the truth, although it

exhibits significant uncertainty due to the insufficiency of measurements. It is noteworthy

that in this case, despite no measurements being used in vessels 2 and 3, the GP model

accurately predicts the velocity in those vessels. This is attributed to the fact that the
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kernel is constructed globally which encodes the vessel-to-vessel correlations.

• Case 2 (low spatio-temporal resolution): In this scenario, we analyze a situation with

low spatio-temporal resolution measurements, though not as extreme as Case 1 (Figure

14(d)). Specifically, we utilize the inlets of all vessels for measurements with ∆t = 0.01s.

As illustrated in Figures 14(e) and 14(f), predictions at points 1 and 2 are very close to the

ground truth, and the uncertainties are significantly reduced since more measurements

are used in comparison to Case 1.

3.2.2 Abdominal Aorta

In this case, we predict blood flow in the abdominal aorta and iliac branches, where the

measurements (ground truth) are derived from 3D simulation. To extract the geometry of

the problem (Figure 15(a)), we utilize time of flight (ToF) MRI data from the aortofemoral

vasculature of a 67-year-old male subject. This data spans from the thoracic aorta to the

femoral artery bifurcation and includes the thoracic, abdominal, renal, and femoral arteries

(the model is available at www.vascularmodel.com). The voxel resolution in the right-left,

anterior-posterior, and superior-inferior directions is 0.78 mm, 2.00 mm, and 0.78 mm, re-

spectively. 3D simulation is conducted using direct numerical simulation (DNS) of the 3D

Navier-Stokes equations, assuming the flow is Newtonian and incompressible, with the spec-

tral/hp element method. Specifically, we employ tetrahedral elements with a polynomial

order of p = 3. The generated mesh comprises Ne = 119,720 elements, and a third stiffly sta-

ble time advancement scheme is used with ∆t = 0.0001 s. For more details on the spectral/hp

element method, see [119].

To generate the kernel, we solve the 1D model for s simulation samples. To this end, we

extract the vessels’ centerlines and use them to create the 1D map of the abdominal aorta

(shown in Figure 15(b)). Here, the inlet velocity is adapted from [120] for 3D simulation. To

define this velocity profile in the form of Eq. 3.1.30 we set T = 1 and ni = 4 and randomized

parameter are listed in Table 3. The specifications of the problem are detailed in Table 4,
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where the numbers of the vessels correspond with those in Figure 15(b). In this problem

outflow and cross-section areas are not randomized. Since we use the incompressible form

of Navier-stocks equations, the cross-section area does not change in time; therefore, in 1D

simulation, β is set to a large value to maintain a dA/dt ≈ 0. The base cross-sectional area,

A0(x), is derived by fitting polynomials to MRI cross-sectional data and is the same for all

1D samples. Figure 15(c) shows the velocity inlet and its randomized profiles. We simulate

s = 150 samples and create the kernel with r = 41 for which ∑ri=1 σ2
i /∑

s
i=1 σ

2
i > 0.99.

We demonstrate the accuracy of the GP model predictions across two scenarios: Case 1,

where the measurements originate from 3D simulation, and Case 2, where the measurements

are derived from 1D simulation. This specific setup aims to highlight the GP model’s flexibil-

ity in adapting to various sources of input measurements. The locations of the measurements

and predictions are depicted in Figure 15(a). In this figure, the measurements represent the

cross-sectional-averaged velocity at the inlets of the vessels, and the predictions are made at

the midpoint of selected vessels. The chosen model of the abdominal vasculature includes

17 vessels, yet only time-series measurements at two spatial locations are utilized for all GP

predictions in this scenario. This setup serves as an example of blood flow reconstruction in

a data-poor regime.

In Case 1, we utilize average velocity data from 3D simulation as measurements (∆t =

0.001s), whereas in Case 2, the measurements are derived from 1D simulation (∆t = 0.005s).

In Figure 16, the predictions of the GP model for Case 1 and the ground truth, i.e., the

cross-section-averaged velocity obtained from the 3D simulation, are shown. The GP model

accurately predicts velocity in different vessels across various velocity ranges, despite no

measurements being provided near point 3 and 4. This demonstrates that although the kernel

is constructed with 1D simulations, it can effectively predict the results of 3D simulations,

utilizing 3D time series data provided at only two locations.

In Case 2, the errors are significantly smaller compared to Case 1. This outcome is

not surprising because, in Case 2, the ground truth is based on the 1D simulation results,

and the kernel is constructed using 1D results as well. A comparison of the GP predictions
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between Cases 1 and 2, for example, Figure 16(d) versus Figure 17(d), reveals differences

in maximum velocities. Nonetheless, the GP model, based on the same physics-informed

kernel, can accurately predict the velocity for both cases.

3.2.3 Circle of Willis Vasculature

We predict blood flow velocity in the Circle of Willis (CoW) vasculature based on MRI

measurements provided in [48]. In this reference, MRI data includes in vivo blood flow

velocity data across the CoW of a healthy male volunteer (age = 30 years, weight = 94 kg,

height = 185 cm), which are collected as follows. First, we performed a ToF angiography

scan, which is routinely performed in the clinic, is used to build the geometrical features

of the CoW. In addition, we obtained a 4D Flow MRI scan, which provides 3D velocity

time series maps in the entire CoW vasculature. The spatial resolution of 4D Flow MRI

is 1.5 × 1.26 × 2 mm3, and the temporal resolution is 42 msec over 14 cardiac phases. All

the MRI scans were performed on a 3T Siemens Skyra. The 3D-ToF scan, representing the

CoW architecture, is depicted in Figure 18(a). The vessel centerlines and branching pattern

are shown in Figure 18(c).

In the processing of 4D Flow MRI images, we average the velocity data over a cross-

sectional area to obtain 1D equivalent values. This is achieved by integrating the velocity

components (x, y, and z) across each voxel in the imaging plane, and dividing by the total

number of voxels in that plane. This spatial averaging procedure yields a representative

velocity profile for the entire cross-section, effectively reducing the dimensionality of the data

and enabling straightforward analysis and visualization of blood flow patterns. This analysis

effectively produces similar values as TCD measurements at each specific cross section.

According to [48], the arterial geometry of the CoW is acquired by measuring 200 slices

of 0.25 (mm) thickness with a 3D-TOF MRI sequence. The in-plane resolution was 0.4 (mm)

×0.4 (mm), the repetition time (TR) and the echo time (TE) were 18 (ms) and 3.57 (ms),

respectively, and the flip angle was 15°. In the same scanning session, a prospectively ECG-

gated 4D Flow MRI scan was performed using a 3.0 Tesla MRI scanner (Skyra, Siemens
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Healthcare, Erlangen, Germany) and a 32-channel head coil. Scanning parameters were as

follows: flip angle 7, repetition time/echo time 44.56/2.78 (ms), bandwidth 445 (Hz/pixel),

velocity encoding (VENC) 90 cm/s, voxel size 1.5× 1.26× 2 mm3, temporal resolution 41.36

(ms) over 14 cardiac phases.

Before extracting velocity from 4D Flow MRI phase difference images, we perform image

pre-processing including noise-masking, eddy-currents correction as well as phase unwrapping

following the method explained in [121]. Noise masking was performed by thresholding of

the signal intensity in the magnitude data to exclude regions with low signal intensity. Eddy

current correction consisted of three steps: i) separation of static regions from blood flow,

ii) fit a plane with least-squares method to the static regions from the last time frame (late

diastole), iii) Subtraction of the fitted plane to the MRI data in every time frame. Finally,

we correct the velocity aliasing effect, i.e, if adjacent pixels velocities in temporal or slice

direction differ by more than VENC.

As described in [48], the 3D and 1D geometry of the vasculature is extracted from the

3D-TOF slices using SimVascular [37]. Where, the threshold for the basic segmentation was

set to one-fourth of the maximum signal intensity value obtained in the measurements, which

showed the best results for segmenting arterial structures. Everything above this value was

considered to be an artery. Additional segmentation was performed manually by adding or

removing voxels from the geometry based on anatomical knowledge.

Here, we use 1D geometry and properties used in [48] to perform 1D simulations. This

problem has four inlets where the direction of the blood flow is shown in Figure 18(c). The

cardiac cycle is T = 0.579s and each inlet is defined using Eq. 3.1.30 and randomized as

listed in Table 8. The inlets are located at the same positions as measurement points 1, 2,

3, and 4.

We also randomize Rt and C using Eq. 4.1.32 where σRt = σC = 0.05. A0(x) is determined

by fitting polynomials to cross-sectional data obtained from MRI scans and we randomize

the area using σA = 0.5. Using these parameters, we generate s = 150, 1D samples to create

the data matrix (Eq. 3.1.18). We use r = 36 which captures more than 95% variance of the
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data.

We examine predictions for two scenarios: In Case 1, we utilize the collected 4D Flow

MRI data (average velocity) as measurements; while in Case 2, we use 1D simulation data

taken at the same locations as measurements. Measurements locations are shown in Figure

18(c) where measurements points 1-4 are located at the inlets and measurement point 5 is at

the middle of the vessel. Figure 19 compares the prediction with average velocity from 4D

Flow MRI (labeled MRI for brevity) in Case 1. We also compare the GP predictions with

1D simulations for Case 2 as shown in Figure 20. In Case 2, where the measurement points

are taken from 1D simulation, the accuracy is very high. However, in Case 1, where the

ground truth is 4D Flow MRI, we observe around 20% inaccuracy. After closely inspecting

the 4D Flow MRI data, it was realized that the 4D Flow MRI measurements violate the

conservation of mass up to 27%. On the other hand, the GP predictions by construction

satisfy the conservation of mass.

The posterior uncertainty in both Cases 1 and 2 is large (not shown in the figures) due to

the lack of having very small amount of data compared to the size of the problem. In Figure

21, we show the convergence of the spatiotemporal averaged mean and standard deviation

of the GP mean versus the number of measurement points in time and space. In the figures,

the mean axis indicates the average mean across all prediction points, while the uncertainty

percentage axis shows the average standard deviation to mean ratio for all prediction points.

These results show that as more data become available the GP mean converges and the

uncertainty reduces.
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(a) Case 1 (b) Case 1, point 1 (c) Case 1, point 2

(d) Case 2 (e) Case 2, point 1 (f) Case 2, point 2

Figure 14: Schematic of the measurement positions. a) Case 1 with high temporal and low

spatial resolution. The methodology provides predictions for all spatiotemporal locations,

and we have chosen two specific prediction points for result comparison. b and c) Compare

the predicted velocity at prediction points for Case 1 which has the most uncertainty due

to the lack of nearby measurements. d) Case 2 with low spatiotemporal resolution. e and f)

Compare the predicted velocity at prediction points for Case 2 which is improved compared

with Case 1.

58



Table 1: Y-shaped vessel 1D simulation specification.

Vessel Length(m) A0 (m2) Compliance(10−10m
3

Pa) Total resistance(1010 Pa.sm3 ) β(Pam )

1 0.1703 A01 = 1.36e-5 - - 6.97e7

2 0.007 A02 =1.81e-6 C1 =0.3428 Rt1 =1.19 5.42e8

3 0.00667 A03 =1.36e-5 C2 =0.6661 Rt2 =0.2702 6.96e7

Table 2: Randomized parameters for the Y-shaped vessel network.

k a0 ai bi ci Rti Ci A0i

ξk 0.5 [-0.5,3,-1,-0.1] [0.08,0.2,0.4,0.6] [2e-3,5e-3,1.5e-2,0.01] [Rt1 ,Rt2 ] [C1,C2] [A01 ,A02 ,A03 ]

σk 0.5 [0,0.9,0.5,0.9] [0.02,0.1,0.15,0.3] [0,1e-3,1e-3,0] [0.05,0.05] [0.05,0.05] [0.5,0.5,0.5]

(a) Schematic (b) 1D map (c) Inlet velocity

Figure 15: a) Abdominal aorta schematic with the location of the velocity measurements

and prediction. b) 1D map of the abdominal aorta, extracted from the vessel’s centerline.

c) Random inlet velocities and the equivalent inlet velocity for 3D simulation.
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Table 3: Randomized parameters for abdominal aorta.

k a0 ai bi ci Rti Ci A0i

ξk 0 [-0.1,0.9,-0.3,0.01] [0.08,0.2,0.4,0.6] [2e-3,5e-3,1.5e-2,0.01] [Rt1 ,...,Rt9 ] [C1,...,C9] [A01 ,...,A017 ]

σk 1e-3 [0,0.9,0.5,0.9] [0.02,0.1,0.15,0.3] [0,1e-3,1e-3,0] [0,...,0] [0,...,0] [0,...,0]

(a) Point 1, 3D (b) Point 2, 3D (c) Point 3, 3D (d) Point 4, 3D

Figure 16: Case 1: abdominal aorta prediction using 3D simulation as measurement. Pre-

dictions are compared with 3D simulation as the ground truth at a) point 1, b) point 2, c)

point 3, and d) point 4. The location of these points and utilized measurements are indicated

in Figure 15(a). In these comparisons, despite the kernel relying on 1D simulations, the GP

predictions align with 3D simulations across various velocity ranges.
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(a) Point 1, 1D (b) Point 2, 1D (c) Point 3, 1D (d) Point 4, 1D

Figure 17: Case 2: abdominal aorta prediction using 1D simulation as measurement. The

location of these points and utilized measurements are the same as Case 1 and is indicated

in Figure 15(a). Comparisons are made using 1D simulation as the ground truth at a) point

1, b) point 2, c) point 3, and d) point 4. In these comparisons, the GP predictions match

with 1D simulations.
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Table 4: Abdominal aorta vasculature 1D simulation specification.

Vessel Length(m) Compliance(10−10m
3

Pa) Total resistance(1010 Pa.sm3 ) β(Pam )

1 0.0346 - - 1.083e9

2 0.0546 C1 =0.0102 Rt1 =4.789 1.0522e10

3 0.0578 - - 1.0396e10

4 0.077 - - 3.2512e9

5 0.1701 C2 =0.1931 Rt2 =0.6989 1.0396e10

6 0.0285 - - 3.1355e9

7 0.0489 C3 =0.0936 Rt3 =5.35 5.2091e10

8 0.0152 - - 5.2163e10

9 0.0101 C4 =0.0194 Rt4 =4.1823 1.0332e11

10 0.0217 C5 =0.0147 Rt5 =3.2823 1.0274e10

11 0.0414 - - 5.1574e9

12 0.1994 C6 =0.0629 Rt6 =0.5974 6.277e9

13 0.0212 - - 5.4503e9

14 0.0431 C7 =0.011 Rt7 =6.1527 2.8957e10

15 0.0138 - - 5.063e10

16 0.029 C8 =0.0439 Rt8 =4.5299 3.063e10

17 0.0118 C9 =0.0128 Rt9 =9.5299 5.063e10
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(a) 3D-ToF (b) 4D Flow MRI (c) Schematic and point locations

Figure 18: MRI data: a) 3D ToF MRI scan, representing the CoW architecture. b) 3D blood

velocity streamlines at peak systolic phase through the left internal carotid artery acquired

from processing the 4D Flow MRI images. c) The location of utilized measurements and

predictions on extracted centerlines of the CoW arteries. Left and right internal carotid

arteries are marked.

Table 5: Randomized parameters for CoW.

Inlet j k a0 ai bi ci

1 6
ξk 0.06 [0.08,3.6e-2,0.23,0.01,0.02,-8e-3] [0.1,0.24,0.4,0.05,0.5,0.02] [4e-3,1.5e-2,9e-3,1e-3,3e-3,1.4e-3]

σk 0.08 0.08 0.05 1e-4

2,3 5
ξk 0.08 [0.09,6.5e-2,0.04,1.2e-2,-0.03] [0.1,0.2,0.36,0.5,0.03] [1e-3,0.02,9e-4,2e-3,8e-4]

σk 0.08 0.08 0.05 1e-4

4 5
ξk 0.08 [0.06,0.03,1.4e-2,-0.02,-1.5e-2] [0.08,0.2,0.4,0.6] [2e-3,5e-3,1.5e-2,0.01]

σk 0.08 0.08 0.05 1e-4
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(a) Point 1, MRI (b) Point 2, MRI (c) Point 3, MRI (d) Point 4, MRI

Figure 19: Case 1: Prediction of the brain vasculature using MRI measurements. The

location of these points are provided in Figure 18(c). Predictions are compared with 4D Flow

MRI data at a) point 1, b) point 2, c) point 3, and d) point 4. The observed discrepancy is

due to measurement errors related to mass conservation, whereas the GP model inherently

enforces mass conservation in its predictions.

(a) Point 1, 1D (b) Point 2, 1D (c) Point 3, 1D (d) Point 4, 1D

Figure 20: Case 2: Prediction of the brain vasculature using 1D simulation data as measure-

ments. Predictions are compared with 1D simulations at a) point 1, b) point 2, c) point 3,

and d) point 4 which their locations are indicated in Figure 18(c). Based on these compari-

son, GP predictions are in good agreement with 1D simulations across different vessels.
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(a) Mean convergence (b) Uncertainty convergence

Figure 21: a) Average mean convergence vs number of utilized measurements. b) Average

uncertainty percentage convergence vs number of utilized measurement.
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4.0 Reduced Order Modeling of Stochastic Blood Flow Simulations

Blood flow within the vascular network is subject to various uncertainties, including

physiological variability, which significantly impacts the accuracy of hemodynamics assess-

ments. Numerical simulations provide a non-invasive way to quantify these dynamics, where

physiological uncertainties often emerge from boundary conditions. To effectively address

these uncertainties, a significant number of simulations become necessary, leading to a sub-

stantial increase in computational costs as the number of uncertain inputs grows. Therefore,

the adoption of low-rank approximation techniques becomes crucial for reducing computa-

tional costs. In this work, we apply the time-dependent basis CUR (TDB-CUR) method to

one-dimensional vasculature network blood flow simulations based on spectral/hp elements.

This approach aims to reduce the computational expense of simulations and enhance the

feasibility and efficiency of uncertainty quantification in blood flow simulations.

4.1 Methodology

4.1.1 Governing Equations

Assuming that we have a generic nonlinear stochastic PDE as follows:

∂v

∂t
= F(v;x, t,ξ) + G(v;x, t,ξ) (4.1.1)

where, v(x, t;ξ) represents the parameter of interest at spatial coordinate x and time t, with

ξ ∈ Rd denoting a set of random parameters. The term F(v;x, t,ξ) refers to a nonlinear

spatial differential operator, while G(v;x, t,ξ) represents the source term. We solve the

aforementioned equations within a domain Ω = (a, b), which is partitioned into Nel elemental,

non-overlapping regions Ωe = (xl,e, xu,e). Where xu,e = xl,e+1 for e = 1, . . . ,Nel, and ⋃Nel
e=1 Ω̄e =

Ω̄. Using the Galerkin projection, we project Eq. 4.1.1 onto an arbitrary basis function ψ.
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Therefore, the weak form discretization would be as follows:

(
∂v

∂t
,ψ)

Ω

+ (
∂F

∂x
,ψ)

Ω

− (G, ψ)Ω = 0, (4.1.2)

where, ψ is in Ω and the standard L2(Ω) inner product is as follows:

(g, h)Ω = ∫
Ω
ghdx (4.1.3)

In our case, the parameters of interest are the velocity u(x, t;ξ) and the cross-sectional area

A(x, t;ξ). These are computed using the Navier-Stokes (NS) equations under the following

simplifying assumptions:

1. The curvature of the vessel is neglected.

2. The vessels are assumed to be axisymmetric.

Based on these assumptions, we simplify the NS equations as follows:

∂A

∂t
+
∂(Au)

∂x
= 0 (4.1.4)

∂u

∂t
+ u

∂u

∂x
+
1

ρ

∂p

∂x
=
KRu

A
,where KR = −22µπ (4.1.5)

In which ρ = 1050kg/m3, µ, p(x, t,ξ), and KR represent density, the dynamic viscosity

of blood, the pressure, and the friction force per unit length, respectively. To establish a

complete system of equations, a relationship between pressure and area is utilized.

p = pext + β(
√
A −
√
A0)) (4.1.6)

with

β =

√
πhE

(1 − ν2)A0

(4.1.7)

The variables pext, h, E, A0, and ν, correspond to the external pressure, the thickness of

the vessel wall, the Young’s modulus, the area of the vessel’s cross-section at equilibrium,

and the Poisson’s ratio (set at 0.5), respectively. Since the given system is categorized as a

hyperbolic system, we use the characteristic method to solve it, which involves decomposing
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the system into a set of simpler equations along characteristic curves where the solution is

constant. The details are provided in Ref. [102]. We rewrite the Eqs 4.1.4 and 4.1.5 inform

of the system of stochastic equation as follows:

∂v

∂t
+
∂f(v)

∂x
= g(v), (4.1.8)

where

v =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v1

v2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A

u

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, f =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

f1

f2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

uA

u2

2 +
p
ρ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, g =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

g1

g2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

−KR
u
A

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4.1.9)

Substituting the above format into Eq. 4.1.2 and decomposing the integration into elemental

regions:
Nel

∑
e=1

[(
∂v

∂t
,ψ)

Ωe

+ (
∂f

∂x
,ψ)

Ωe

− (g, ψ)Ωe
] = 0 (4.1.10)

Performing integration by parts on nonlinear term leads to:

Nel

∑
e=1

{(
∂v

∂t
,ψ)

Ωe

− (f ,
dψ

dx
)
Ωe

+ [ψ ⋅ f]
xue
xle
− (g, ψ)Ωe

} = 0. (4.1.11)

In the above equation, the term v is chosen from a finite-dimensional subspace of L2(Ω),

consisting of polynomials of degree p for individual elements. This subset is identified by the

superscript δ. Note that vδ may be discontinuities at element boundaries. The propagation

of information between elements takes place by upwinding the boundary flux (fu). Since

computing (f , dψdx )Ωe
is challenging, integration by part is performed again. Therefore, the

above equation becomes as follows:

Ne

∑
e=1

{(
∂vδ

∂t
,ψδ)

Ωe

+ (
∂f (vδ)

∂x
,ψδ)

Ωe

+ [ψδ ⋅ {fu − f (vδ)}]
xue

xle
− (g, ψ)Ωe

} = 0. (4.1.12)

In this expression, [ψδ ⋅ {fu − f (vδ)}] represents the difference between the upwinded flux and

the local flux, and accounts for the propagation of information between elements. Choosing

the Legendre polynomials Lp(ζ) as basis function the expanded solution for each element
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becomes:

vδ∣
Ωe
(xe(ζ), t; ξ) =

P

∑
p=0

Lp(ζ)ṽ
p
e(t; ξ),where xe(ζ) = x

l
e

(1 − ζ)

2
+ xue
(1 + ζ)

2
. (4.1.13)

Where, ζ is in modal space and maps physical space onto a reference element Ωst = −1 ≤ ζ ≤ 1.

Substituting the solution expansion in the Eq. 4.1.12, discretization in modal space would

become as follows:

dṽpi,e
dt
= −(

∂fi
∂x
,Lp)

Ωe

−
1

Je
[Lp [f

u
i − fi (v

δ)]]
xue

xle
+

1

Je
(gi, Lp)Ωe

, p = 1, . . . , P, i = 1,2. (4.1.14)

Where Je = 1
2(x

u
e−x

l
e). After the computation of right-hand side at each quadrature point, we

transfer it back to physical space for time integration. Using Eq. 4.1.13 this transformation

would become as follows:
dvδi
dt
=

P

∑
p=0

Lp(ζ)
dṽpi,e
dt

. (4.1.15)

Using the matrix notation for Legendre polynomial with q quadrature points where Lp ∈

Rq×P+1, vδi ∈ Rq, and ṽi,e ∈ RP+1:

dvδi
dt
= Lp

dṽi,e
dt

,where Lp =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L0(ζ1) L1(ζ1) . . . LP (ζ1)

L0(ζ2) L1(ζ2) . . . LP (ζ2)

⋮ ⋮ ⋱ ⋮

L0(ζq) L1(ζq) . . . LP (ζq).

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.1.16)

The above equation describes the computation for a random sample in one element where

vδi is a vector in physical space and ṽi,e is a vector in modal space. When extending this

notation to s random samples, the corresponding vectors are arranged into a matrix as

follows:
dVδ

i

dt
= Lp

dṼi,e

dt
(4.1.17)

Vδ
i = [v

δ
i (xe(ζ), t, ξ1), ...,v

δ
i (xe(ζ), t, ξs)], Vδ

i ∈ Rq×s

Ṽi,e = [ṽi,e(t, ξ1), ..., ṽi,e(t, ξs)], Ṽi,e ∈ R(P+1)×s
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In the equations mentioned above, Vδ
i is a matrix where each column corresponds to a vector

of vδi which represents a vector for a random sample in physical space, and similarly Ṽi,e

is a matrix where each column corresponds to a vector of ṽi,e which represents a random

sample in modal space. The computational demand of this equation increases significantly as

the number of random samples increase, particularly when the equation is applied to a vast

network of vasculature, in which each segment containing at least a few elements. Therefore,

to manage the computational complexity effectively, it becomes crucial to employ low-rank

approximation techniques within such a system.

We represent the parameters (area for i = 1 and velocity for i = 2) across all quadrature

points, elements, and vessels within a single matrix Vi ∈ Rn×s, where n = qNeld denotes the

total number of spatial points for d vessels. For instance, Figure 22 illustrates the structure

of the velocity matrix, where the columns represent the samples and the rows correspond

to the coordinates associated with their respective quadrature point, element, and vessel.

In this figure, the subscript of u indicates the element number, and the superscript denotes

the vessel number. If we rearrange the parameters in modal space in the same manner and

denote the differentiation matrix with M = Lp
dṼi

dt , the Eq 4.1.17 temporal discretization

would become as follows:

Vk
i =V

k−1
i +∆tMi. (4.1.18)

In the above equation, the objective is low rank approximation of Vi to reduce computational

costs.

4.1.2 Low-Rank Approximation

To perform a low-rank approximation of Vi, we need to find a rank-r matrix V̂i such

that:

Vi = V̂i +Ri, i = 1,2. (4.1.19)
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Figure 22: The structure of the velocity matrix is such that each row corresponds to a

different sample, and each column corresponds to different coordinates associated with the

respective quadrature point, element, and vessel. The structure of the area matrix is similar

denoted by VT
1 .

Where Ri is the low-rank approximation error and the best selection of V̂i minimizes Frobe-

nius norm of the residual defined as follows:

εi = ∥V
k
i − V̂i

k
∥
2

F
. (4.1.20)

To minimize the above expression, the best choice would be the rank-r truncated SVD:

V̂k
ibest
= SVD(Vk

i ),where SVD (Vk
i ) =U

k
ibest

Σk
ibest

YkT

ibest
(4.1.21)

In this context, Uk
ibest
∈ Rn×r and Yk

ibest
∈ Rs×r are the matrices of left and right singular

vectors, respectively, each containing the first r columns, while Σk
ibest
∈ Rr×r contains the

corresponding r singular values. Therefore, the best low-rank approximation V̂k
i is expressed

as follows:

V̂k
ibest
= P

Uk
ibest

Vk
iPYk

ibest
= P

Uk
ibest
(V̂i

k−1
+∆tMi)PYk

ibest
, (4.1.22)

where P
Uk

ibest

= Uk
ibest

UkT

ibest
and P

Yk
ibest

= Yk
ibest

YkT

ibest
represent the orthogonal projections

onto the spaces spanned by the columns and rows of V̂k
i respectively. This type of approxi-

mation is computationally expensive to be performed per time step and alternatives are to

evolve the basis and singular values (dynamical low-rank approximation, DBO). However,

these models require the computation of inverse singular value matrices which are numeri-
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cally unstable (see Ref. [101]). Therefore, instead of orthogonal projection we use developed

oblique projection methodology by Ref. [101] as follows:

V̂k
i = PUk

i
Vk
iPYk

i
= P

Uk
i
(V̂k−1

i +∆tMi)PYk
i
. (4.1.23)

Despite using different projections, Eqs. 4.1.22 and 4.1.23 are equivalent. However, while

Eq. 4.1.22 requires access to the entire matrix V̂k−1
i +∆tMi, Eq. 4.1.23 only relies on certain

rows and columns. Therefore, we approximate V̂k
i using CUR decomposition [122] as follows:

V̂k
i = CUR(Vk

i ). (4.1.24)

In this scenario, the low-rank approximation residual Ri becomes zero for strategically se-

lected rows pi ∈ Nr and columns si ∈ Nr, where i = 1,2 corresponds to the rows and columns

of the area and velocity matrices, respectively. This requires that V̂k
i (pi, ∶) = V

k
i (pi, ∶) and

V̂k
i (∶, si) = V

k
i (∶, si). To identify the optimized rows and samples, we use the Discrete Em-

pirical Interpolation Method (DEIM) [123], which provides near-optimal sampling points for

the CUR decomposition algorithm [124]. The DEIM point calculation utilizes a rank-r SVD

at time-step k. Since this time step is not computed we utilize the SVD of previous time step

instead (V̂k−1
i =Uk−1

i Σk−1Yk−1
i ). The DEIM computation on the area and velocity matrices

does not necessarily yield identical rows and columns. Therefore, since the computation of

area and velocity is coupled, we need to perform the computation on the union of rows and

columns (p = ⋃2
i=1pi and s = ⋃2

i=1 si). The following steps are similar to procedures in Ref.

[101] with minor adjustments for computing V̂k
i .

(1) Compute optimal rows and columns indices, pi ← DEIM(Uk−1
i ), and si ← DEIM(Yk−1

i ).

(2) Compute Vk(p, ∶) and Vk(∶, s) for one time step according to Eq 4.1.18 where p = ⋃2
i=1pi

and s = ⋃2
i=1 si.

(3) Determine the orthonormal matrix Qi ∈ Rn×r for area (i = 1) and velocity (i = 2), which

spans the range of Vk
i (∶, si), through QR factorization so that Vk

i (∶, si) can be expressed

as the product QiRi, with Ri being a matrix in Rr×r.
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(4) Project each column of Vk
i onto the orthonormal basis Qi at sparse indices pi:

Zi =Qi(pi, ∶)
−1Vk

i (pi, ∶) (4.1.25)

In which, Zi ∈ Rr×s consists of coefficients for interpolation, enabling the operation QiZi

to map Vk
i onto the orthonormal basis Qi at the pi points.

(5) Perform the SVD on Zi, resulting in:

Zi =UZi
Σk
iY

kT

i , (4.1.26)

where UZi
∈ Rr×r, Σk

i ∈ Rr×r, and Yk
i ∈ Rs×r.

(6) Determine Uk
i ∈ Rn×r as the rotation within the subspace by calculating:

Uk
i =QiUZi

. (4.1.27)

In the first step, the DEIM algorithm is provided by Ref. [123]. For rank adaptivity, we

define a ratio of singular values as follows:

γ =
σk−1r

∥diag(Σk−1)∥2
. (4.1.28)

If the value exceeds a specified threshold, denoted by εth, we increase the rank to rk = rk−1+1.

Conversely, if it does not exceed the threshold, we reduce the rank accordingly. This ad-

justment of the rank is aimed at achieving a balance between accuracy and computational

efficiency, ensuring that the rank is neither unnecessarily high, which would increase com-

putation time, nor too low, which might compromise the precision of the results.

4.1.3 Boundary Condition

In the utilized 1D model, boundary conditions are applied at junctions, bifurcations,

and terminals. A comprehensive description can be found in Ref. [102]. In this model

the terminals are modeled using a three-element Windkessel model (RCR), which enables

the determination of outflow pressure using the total resistance, RT = R1 + R2, and the
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compliance, C.

p +R2C
dp

dt
= RTQ + p∞ +R1R2C

dQ

dt
. (4.1.29)

Where, Q = Au represents the flow rate, and p∞ denotes the downstream pressure. The

speed of information propagation is denoted by c0 =
√

β

2ρ
√

A0
, and the first resistance R1

is calculated as R1 =
ρc0
A0

. In the Nektar solver, this model is adapted to account for the

characteristic waves at the terminals, as described in Ref. [102]

4.1.4 Uncertainty Modeling

In this paper we introduce randomness to both the inlet velocity and the outflow bound-

ary conditions (denoted by RT and C). The approach to modeling inlet velocity involves

summing up components from ni Gaussian functions, each defined as:

u(t;ξ) = a0 +
ni

∑
i=1

ai exp(−
(t − [t/T ]T − bi)2

ci
), (4.1.30)

where ⌊z⌋ represents the largest integer, ensuring 0 ≤ z − ⌊z⌋ < 1. , ai, bi, and ci adjust

peaks/valleys, their location, and their sharpness. The parameters ai, bi, and ci are respon-

sible for adjusting the magnitude, position, and width of the peaks and valleys, respectively.

We introduce variability in the inlet velocity by altering the parameters [a0, ai, bi, ci] as

follows:

ξk = ξk + σkψ, where ξk ≡ [a0, ai, bi, ci], i = 1, . . . , ni, (4.1.31)

In this case, ψ = U[−0.5,0.5] denotes a uniform random variable centered at zero, with σk

representing the standard deviation of the expression σkψ. The variable ξk is identified as

the kth random variable, with ξk being its expected value, denoted by E[ξk]. This process of

randomizing the inlet leads to the introduction of a series of random variables, from k = 1 to

3ni+1. The randomization is extended to the outflow parameters (RT ,C) for vessels subject
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Table 6: Pipe, randomized parameters.

k a0 ai bi ci RT (
Pa.s
m3 ) C(10m

3

Pa)

ξk 0.5 [-0.5,3,-1,-0.1] [8e-2,0.2,0.4,0.6] [2e-3,5e-3,1.5e-2,1e-2] 3.262317e9 7.481712e-11

σk 0.5 [0,0.9,0.5,0.9] [0.02,0.1,0.15,0.3] [0,1e-3,1e-3,0] 0 0

to outflow boundary conditions in a similar fashion.

ξk = ξk(1 + σkψ), where ξk ≡ [RT ,C]. (4.1.32)

Therefore, each vessel that has an outflow boundary condition introduces two more random

variables that will be appended to the existing random variables.

4.2 Demonstration Cases

In this section, the TDB-CUR methodology is applied to three scenarios: i) a simple pipe,

which acts as a fundamental case to verify our approach; ii) a Y-Bifurcation, introducing an

increased complexity with two additional vessels and the splitting of flow; and iii) the Circle

of Willis (CoW) vasculature network, which presents a more complex system compared to

the other cases.

4.2.1 Pipe

In the first case, we examine the performance of TDB-CUR on a pipe that is equivalent

to one vessel. We consider a pipe with a length of L = 1m and a cross-sectional area of

A = 1.35e-5m2, which we discretize into Nel = 100 elements with q = 3 quadrature points. In

this example, we randomize the inlet velocity using Eq 4.1.30, where T = 0.8s, ni = 4, and
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the randomized parameters are provided in Table 6. To implement TDB-CUR, we utilize

s = 10 samples, p = 25, and a time step of ∆t = 1e-4s. We examine the performance of

this methodology in three cases. In Case 1, we aim to reconstruct the solution for s = 100,

given that we are restricted to 10 samples (i.e. fixed columns), which limits TDB-CUR to

strategic row selection. In Case 2, TDB-CUR is permitted to choose samples to minimize

the reduction residual for the same samples. Case 3 expands the sample size to s = 10,000.

Figures 23(a) and 23(b) validate the evolution of singular values for velocity and cross-

sectional area, respectively. In these figures, both CUR and SVD decomposition are per-

formed on the FOM. A comparison of the singular values depicted in the referenced figures

demonstrates their alignment with the results from the SVD decomposition. Figure 23(c)

examines the Frobenius norm of the reconstruction error, revealing that TDB-CUR, when

constrained to a fixed number of columns (equivalent to fixed samples), shows a slightly

higher reconstruction error. Figure 24(a) presents the velocity reconstructions at L/3 for the

50th sample, which closely match the predictions from the FOM. Figures 26(c) and 24(c)

explore the evolution of singular values for velocity and cross-sectional area, respectively,

with an expanded sample size of s = 10,000. Since, FOM solution is time-consuming, we are

unable to perform a comparison for the last case. However, the trend of the singular values

appears similar, and this similarity suggests that they are valid.

The analysis of these figures clearly shows that TDB-CUR performs effectively in scenar-

ios involving a single vessel, applicable to both fixed and flexible column configurations. The

fixed column approach is particularly advantageous when the available data is restricted to

a few samples. It enables the interpolation and reconstruction of a more dataset from these

few initial samples, a feature that proves to be critical in situations where data acquisition

faces practical limitations. On the other hand, scenarios that allow for flexible sampling has

better accuracy. This improvement is due to the ability to select an optimized basis dynami-

cally, which adapts to the underlying data structure and captures its essential features more

effectively.
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(a) Velocity singular values (b) Area singular values (c) Reconstruction error

Figure 23: Comparing singular values evolution from SVD and CUR decomposition with

TDB-CUR with a fixed number of samples versus CUR-selected samples for a) velocity and

b) cross-sectional area. c) Comparing the Frobenius norm for the reconstruction of velocity

and cross-sectional area.

(a) Velocity reconstruction (b) Velocity singular values (c) Area singular values

Figure 24: a) Comparing TDB-CUR velocity reconstruction. TDB-CUR singular values

evolution extended to 10,000 samples for b) velocity and c) cross-section area.
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Table 7: Y-Bifurcation, randomized parameters.

k a0 ai bi ci RTi(
Pa.s
m3 ) Ci(

m3

Pa)

ξk 0 [1,0.2,0.1] [0.2,0.45,0.5] [5e-3,1.5e-2,0.01] [1.189e10,2.701e10] [3.451e-11,6.667e-11]

σk 0 [0.2,0,0] 0 0 0.2 0.2

4.2.2 Y-Bifurcation

In this section, we evaluate the performance of TDB-CUR on a Y-Bifurcation model. The

key distinction from the pipe example lies in how the strategic global selection of columns and

rows influences computational efficiency and accuracy. The schematic of the Y-Bifurcation is

shown in Figure 25(a), where the length and cross-sectional area of each vessel are L = 0.5m

and A = 1.3567e-5m2, respectively. We discretize each vessel into Nel = 25 elements with q = 3

quadrature points and randomize the outflow boundary condition and the inlet velocity using

Equation 4.1.30 with T = 0.6s and ni = 3. The randomized parameters are listed in Table

7. We examine three cases: in the first, TDB-CUR maintains a fixed rank with s = 3 and

p = 25; in the second, we explore the same setting with adaptive TDB-CUR, applying an

error threshold of εth =1e-7; and in the last case, we perform the simulation with 10,000

samples.

Figures 25(b) and 25(c) compare the evolution of singular values. In these figures, CUR

represents the resulting singular values from the FOM, which aligns with the resulting sin-

gular values from SVD. As the rank of the problem increases over time, adaptive TDB-CUR

shows better accuracy compared with fixed-rank TDB-CUR. This is also evident from Figure

25(d), where the reconstructed data for adaptive TDB-CUR shows less error. This discrep-

ancy appears as small noises in data reconstruction. For instance, Figure 26(a) shows the

existence of noise due to the oscillation of the second and third singular values in fixed-rank

TDB-CUR, while adaptive TDB-CUR has a smooth reconstruction. This comparison is for

one of the random samples at L/3 of vessel 2. Figure 26(b) shows the rank adjustment in
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(a) Schematic (b) Velocity singular values (c) Area singular values (d) Reconstruction error

Figure 25: a) Y-Bifurcation schematic and blood flow direction. Comparison of fixed-rank

TDB-CUR versus rank-adaptive TDB-CUR in the evolution of singular values for b) velocity

and c) cross-sectional area. d) Comparing the Frobenius norm for the reconstruction of

velocity and cross-sectional area.

time, this figure indicates that velocity computation requires a higher rank compared with

cross-section area computation. Comparing The mentioned cases suggests that the adaptive

TDB-CUR has more accuracy due to rank adjustment capability and reduces computational

costs by reducing s required columns, when the rank of the problem is low. Figures 26(c) and

26(d) show the evolution of the singular values computed by adaptive TDB-CUR for 10,000

samples, where the disconnection in lines are due to rank adjustments. The FOM solution

in this case is time-consuming, and a comparison is not feasible. However, the similarities

between the singular value evolutions suggest that the results are valid.

4.2.3 Circle of Willis

In this section, we examine the performance of the TDB-CUR algorithm applied to the

vasculature network of the CoW, which consists of 23 vessels. The layout of this vascular

network is adopted from Ref. [48], where the data were obtained from a healthy 30-year-old

male volunteer, with a weight of 94 kg and a height of 185 cm. To gather the necessary in-

formation, a Time of Flight (ToF) angiography scan was employed. This imaging technique
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(a) Velocity reconstruction (b) Rank adaptivity

(c) Velocity singular values (d) Area singular values

Figure 26: a) Velocity reconstruction comparison. b) TDB-CUR rank adjustments. Evolu-

tion of c) velocity and d) cross-section area singular values for 10,000 samples.

is commonly used in clinical settings to delineate the geometric features of the CoW, pro-

viding a detailed map of its structure for analysis. The 1D representation of the vasculature

was derived from 3D Time of Flight (3D-ToF) imaging slices utilizing the SimVascular [37].

In this process, the initial segmentation threshold was determined to be a quarter of the

highest signal intensity observed in the data, a criterion that was found to be most effective

for identifying arterial structures. Any signal intensity above this threshold was classified as

arterial. To enhance the accuracy of the vascular model, further refinement of the segmen-

tation was conducted manually. This involved the addition or subtraction of voxels within

the geometric model, guided by detailed anatomical knowledge to ensure the representation

closely matched the actual vascular anatomy. 1D representation of the CoW network, along
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with the locations of the inlet velocities, is depicted in Figure 27(a). The inlet velocity is

characterized by Eq 4.1.30, and it remains without any random variation. The duration of

the cardiac cycle is established at T = 0.6s, and the velocity parameters are listed in Table

8.

In the context of this example, the focus is on randomizing only the outflow boundary

conditions, which is done by Eq 4.1.32. Here, we set the randomness for RT and C to be

σRT
= σC = 0.01 respectively. Considering the network features nine distinct outflow points,

and each outflow is described by two parameters, the total number of dimensions subjected to

randomization in this scenario would be eighteen which leads to change in outflow pressure.

The specification for 1D simulations are all available in Ref. [48].

In this example we implement the adaptive TDB-CUR. Given that we have 23 vessels

in CoW network, we discretize each vessel by Nel = 5 and q = 3. Since compared with other

examples the overall number of spatial discretization is higher we set the oversampes p = 35.

The threshold for rank adaptivity and the time step is set to be εth =1e-7, and ∆t =5e-5s

respectively. In order to study performance and validation we consider s = 100 and then

extend the solution to s = 10,000.

Figures 27(b) and 27(c) illustrate the evolution of singular values obtained by TDB-CUR

method, in comparison with those obtained from SVD and CUR decomposition, which serve

as the ground truth. From these figures, it is evident that the singular values derived from

the TDB-CUR method are consistent with those from both SVD and CUR decompositions.

Despite some minor shifts in the singular values, the implementation of rank adaptivity

effectively prevents these deviations from growing excessively and influencing the other sin-

gular values adversely. For further comparison, we show the reconstruction error in Figure

28(a) for area and velocity which indicates that TDB-CUR is simulating area and velocity

accurately. Figure 28(b) shows an example of velocity reconstruction near inlet 4, which

is compared with a 1D simulation. This comparison reveals that the reconstruction closely

matches the 1D simulation, but some oscillations are observed in the reconstruction, which

are attributed to oscillations in the singular values. Figures 27(b) through 28(b) shows the
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Table 8: CoW, inlet parameters.

Inlet j k a0 ai bi ci

1 4 ξk 0 [0.15, 1.233e-1,1.97e-2, 5e-3] [0.25,0.36,0.47,0.54] [6.5e-3,9e-3,1.5e-3,2.5e-3]

2,3 4 ξk 0 [2.25e-1,1.85e-1,2.95e-2,7.5e-3] [0.25,0.36,0.47,0.54] [6.5e-3,9e-3,1.5e-3,2.5e-3]

4 4 ξk 0 [1.125e-1, 9.25e-2,1.475e-2, 3.75e-3] [0.25,0.36,0.47,0.54] [6.5e-3,9e-3,1.5e-3,2.5e-3]

performance and validation of the TDB-CUR method for a sample size of s = 100. To extend

the investigation, we conducted simulations under the same conditions but with a signifi-

cantly larger sample size, s = 10,000. The outcomes of these simulations are depicted in

Figures 28(c) and 28(d), which illustrate the evolution of singular values obtained through

the TDB-CUR method for this expanded dataset. Due to the computational demands of

extracting singular values from the FOM, these figures do not include a comparison to the

ground truth. Nonetheless, given the consistency of the problem settings, the singular val-

ues are expected to be similar to Figures 27(b) and 27(c), which is indeed the case. This

consistency confirms the method’s capacity to sustain its efficacy even as the volume of data

escalates, highlighting its suitability for large-scale data applications.
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(a) Schematic (b) Velocity singular values (c) Area singular values

Figure 27: a) CoW vasculature network schematic and blood flow direction with the location

of inlets. b) Velocity and c) cross-sectional area singular value comparison with SVD and

CUR decomposition singular values.
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(a) Reconstruction error (b) Velocity reconstruction

(c) Velocity singular values (d) Area singular values

Figure 28: a) Comparing the Frobenius norm for the reconstruction of velocity and cross-

sectional area. b) Velocity reconstruction near inlet 4 and its comparison with FOM. c)

Velocity and d) cross-sectional area evolution for s = 10,000 samples.
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5.0 Conclusions

In Chapter 2 We present an in situ compression method based on TDB, in which the

multidimensional streaming data are decomposed into a set of TDB and a time-dependent

core tensor. We derived closed-form evolution equations for the TDB and the core tensor.

The presented methodology is adaptive and maintains the error bellow the defined threshold

εth by adding/removing ranks. The computational cost of solving TDB computational com-

plexity scales linearly with the data size, making it suitable for large-scale streaming datasets.

We perform this compression method on four cases:

1. Runge Function: Where we demonstrated the adaptive mode addition/removal. We also

investigated the effect of different time integration schemes on the compression error of

TDB.

2. Incompressible Turbulent Reactive Flow: In this case, we compress the data by two TDB

schemes (TDB-1 and TDB-2). TDB-1 has a higher compression ratio (CR = 15.62, which

compresses 35GB to 2.2GB) since it can decompose the physical space more than TDB-2

using one dimensional basis. TDB-2 scheme has a lower compression ratio (CR = 6.6,

which compresses 35GB to 5.3GB) because it uses a two dimensional basis for physical

space. Since the physical space has a high dimensionality compared to composition space,

the error growth rate for TDB-1 is higher and requires frequent reinitialization and mode

adjustments.

3. Incompressible turbulent reactive flow with random diffusion Coefficient: This problem is

the same as the second case with sixteen samples random diffusion coefficients. The TDB

scheme in this problem is similar to the TDB-2 with an additional two dimensional basis

for the random space. Since the TDB can exploit more correlation in the streamed data,

the compression ratio is higher than the previous cases (CR = 42.75, which compresses

561.5GB to 13.1GB).
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4. Three-dimensional Turbulent Channel Flow: In this problem, we compare two different

compression ratios. We observed that the TDB with higher compression ratio has a

slower growth rate compared to the TDB with lower compression ratio. For both cases,

the TDB reconstructed results are in good agreement with HOSVD. However, the TDB

requires a large number of modes to reconstruct the DNS with a reasonable agreement.

The current methodology only exploits multidimensional correlation in all dimensions

except the temporal direction. For the future studies, we will extend this methodology to

exploit temporal correlations. We will also pursue building real-time reduced order models

for diagnostic and predictive purposes. We introduce a novel methodology that enables

the spatiotemporal reconstruction of blood flow velocity within a vasculature network from

a relatively small number of observations. This approach is particularly relevant for clinical

scenarios such as blood flow reconstruction using TCD ultrasound measurements, which can

only capture the blood flow velocity time series at a few points. Our methodology leverages

GP regression and introduces a novel approach to construct a spatiotemporal kernel. This

kernel is formulated using data generated from 1D blood flow simulations with a set of

random parameters. These parameters encapsulate the epistemic uncertainties, such as

the lack of precise knowledge about boundary conditions and the geometry of the vessels,

for instance, the cross-sectional areas of the blood vessels. One significant feature of the

constructed kernel is its encoding of vessel-to-vessel correlations, allowing measurements from

one vessel to approximate velocities in others. Also, any prediction using the constructed

kernel satisfies the conservation of mass.

In Chapter 3 we demonstrate the performance of low-rank approximation method in

data-poor regime through three case studies: (i) a Y-shaped vessel, investigating the impact

of measurement placement and their spatial and temporal resolution on accuracy and un-

certainty bounds; (ii) abdominal aorta, utilizing a 3D model extracted from MRI scans with

its simulation data as measurements. For comparison, we also examine a scenario where the

3D simulation data is replaced by 1D simulation data. In both scenarios, data from only

two locations are used to accurately predict blood flow velocity in all 17 vessels; (iii) CoW,
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employing 4D Flow MRI as the measurement data and exploring prediction results when 1D

simulation data is used instead of MRI measurements.

To put things in perspective, the presented algorithm seeks to find a low-dimensional

spatiotemporal function space to approximate velocity, i.e., u(x, t) = ∑ri=1wiϕi(x, t), as op-

posed to using fixed basis functions, i.e., u(x, t) = ∑nx
i=1∑

nt
j=1wi,jψi(x)χj(t), which requires

inferring O(nvnxnt) parameters, where nv is the number of vessels. However, r ≪ nvnxnt,

meaning that the presented methodology requires the inference of r parameters, and there-

fore, it requires a significantly smaller amount of data. PINN also seeks to find r adaptive

spatiotemporal basis functions and approximate velocity with u(x, t) = ∑
r
i=1wiϕi(x, t; θ).

However, a PINN requires solving a nonconvex optimization problem to find θ and the wi’s,

and it requires data on pressure, which is not clinically available. As a result, the computa-

tional cost of constructing the kernel is significantly lower than that of PINNs. Specifically,

the offline (training) cost involves running O(100) 1D blood flow simulations, each taking

only minutes for vasculature with O(100) vessels. Moreover, these simulations can run con-

currently since they are independent of each other. The computation of the kernel, involving

an SVD on the data generated by these simulations, costs about O(10) seconds and is negli-

gible compared to the total cost. The online (inference) cost is minimal because the number

of observations is typically very small, allowing for the methodology to be used for real-time

flow reconstruction.

Both offline and online computational costs of the presented methodology scale linearly

with the size of the problem, i.e., the number of vessels. More broadly, the presented method-

ology can be similarly developed and utilized for other network-type problems, such as fluid

flows in pipe networks, traffic flow, or power grids.

In Chapter 4 we applied the TDB-CUR methodology to 1D simulations of blood flow.

Our study evaluates the performance of this method across three examples: a simple pipe,

a Y-shaped bifurcation, and the more complex cerebrovascular network CoW. Each exam-

ple serves to illustrate the method’s applicability and effectiveness in modeling blood flow

dynamics within varying geometrical configurations and complexities.
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In our initial example, we examined the performance of the TDB-CUR method when

applied to stochastic blood flow within a single vessel, analogous to a pipe. We introduced

significant variability to the inlet velocity, more so than in other cases. This example demon-

strated that the TDB-CUR method could accurately simulate blood flow dynamics. We

validated its performance using a set of 100 samples and subsequently expanded our analysis

to include 10,000 samples. In this example, we explored the implications of constraining the

TDB-CUR method to a fixed number of samples. We observed that while limiting the sam-

ple size is feasible, it can induce oscillations in the smaller singular values. These oscillations

can adversely affect the larger singular values, leading to minor fluctuations and inaccuracies

in the reconstructions. This finding suggests that in situations where only a limited number

of samples are available, reconstructing the data for a more extensive set of samples may

introduce some degree of error. Conversely, allowing for greater flexibility in the selection

of samples enhances the accuracy of the reconstructions. This adaptability proves beneficial

in situations where the intricate nature of blood flow patterns or the complex geometry of

the vessel network demands a more refined strategy for choosing and analyzing samples.

In the next example, we extend the use of the TDB-CUR method from a single vessel to a

bifurcation, selecting rows and columns on a global scale. This means that while the selected

rows and columns might not be the optimal choice for each individual vessel, they are chosen

for their overall effectiveness across the entire network. Additionally, this example shows a

comparison between the standard TDB-CUR method and its adaptive version. While the

standard TDB-CUR method showed accurate results, it also exhibited certain fluctuations.

In contrast, the adaptive TDB-CUR exhibited improved accuracy and was free from oscilla-

tions, offering a more stable solution. Employing TDB-CUR, particularly its adaptive form,

proves to be both computationally efficient and precise. Finally, we applied the adaptive

TDB-CUR methodology to the CoW network, consists of 23 vessels. In this comprehensive

example, the adaptive TDB-CUR exhibited good accuracy, although it did exhibit some

minor oscillations. These results shows the method’s capability to accurately model blood

flow within complex vascular networks. The presence of minor oscillations suggests areas for
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further refinement, potentially enhancing the model’s precision and stability in future ap-

plications. In all cases, after validating TDB-CUR results with 100 samples, we extend the

solution to 10,000 samples. This extension shows method’s scalability for a broader range

of data. For the future study, we recommend extending this methodology to 3D simulations

of blood flow, which could offer deeper insights into complex vascular behaviors and phe-

nomena. Furthermore, integrating TDB-CUR with an emphasis on spatiotemporal factors

could not only improve the accuracy of the solution but also offer greater methodological

adaptability for analyzing larger random sample spaces.
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