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Abstract 

Functional dissection of RNA polymerase active sites by deep mutational scanning 

 

Bingbing Duan, PhD 

 

University of Pittsburgh, 2024 

 

 

 

 

Transcription in eukaryotes is carried out by three RNA polymerases (Pol), Pol I, II, and 

III, which are structurally conserved though they have evolved to have their own regulation and 

produce different classes of transcripts. At the heart of these RNA polymerases is an ultra-

conserved active site domain, the trigger loop (TL), coordinating transcription speed and fidelity 

by critical conformational changes impacting all three steps of nucleotide addition cycle (NAC) in 

transcription elongation, substrate selection, catalysis, and translocation. Previous genetic and 

biochemical studies have shown that substitutions of TL residues disturb its balance and then alter 

its function. Additionally, studies from our lab have observed different types of residue-residue 

interactions in Pol II TL, implying the TL’s function is facilitated by residue interaction networks 

within and around it. Furthermore, identical mutations in a residue conserved between yeast Pol I 

and Pol II TLs yielded opposite biochemical phenotypes, implying even functions of conserved 

residues are shaped by individually evolved residue interactions in enzymatic contexts (epistasis). 

However, the specific mechanisms by which the TL is regulated and how it communicates with 

the rest of the enzyme remain unclear. Through analysis of over 15,000 alleles representing single 

mutants, a subset of double mutants, and evolutionarily observed TL haplotypes by deep 

mutational scanning, I identified intricate pairwise and higher-order epistatic interaction networks 

controlling TL function. Substituting residues creates allele-specific networks and propagates 

epistatic effects across the Pol II active site. Additionally, the interaction landscape further 

distinguishes alleles with similar growth phenotypes, suggesting increased resolution over the 
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previously reported single mutant phenotypic landscape. Furthermore, we distinguished intricated 

layers of higher-order epistatic interaction networks within TL haplotypes and TL residues with 

distinct classes of epistatic patterns in affecting these higher-order interactions. Finally, co-

evolutionary analyses reveal groups of co-evolving residues across Pol II converge onto the active 

site, where evolutionary constraints interface with pervasive epistasis. Our studies provide a 

powerful system to understand the plasticity of RNA polymerase mechanism and evolution and 

provide the first example of pervasive epistatic landscape in a highly conserved and constrained 

domain within an essential enzyme. 
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1.0 Introduction 

DNA-dependent RNA transcription is an essential process for all domains of life, 

facilitated by multi-subunit RNA polymerases (msRNAPs) (Cramer, 2002; Roeder & Rutter, 

1969). Bacteria and archaea employ a single msRNAP to transcribe their entire genomes (G. Zhang 

et al., 1999), while in most eukaryotes, transcription is executed by three msRNAPs: Pol I, Pol II, 

and Pol III, each of which is specialized to a gene subset and has a varying subunit number (Cramer, 

Bushnell, & Kornberg, 2001; Fernandez-Tornero et al., 2013; Hoffmann et al., 2015). All 

msRNAPs are conserved in structure and function, especially their active centers (Werner & 

Grohmann, 2011). Within the active center of each msRNAP, a mobile domain, trigger loop (TL) 

promotes transcription in a fast but accurate manner by switching between different conformations 

(Kaplan, 2013; D. Wang, Bushnell, Westover, Kaplan, & Kornberg, 2006). An open question in 

the field is what controls the TL motion. Moreover, considering the strikingly conservation level 

of TLs from all msRNAPs in structure, function and mechanism, are TLs switchable among 

different msRNAPs? Our lab has shown several genetic residue-residue interactions within the Pol 

II TL (Kaplan, Jin, Zhang, & Belyanin, 2012; Qiu et al., 2016), suggesting a functional interaction 

network of residues controlling TL activity and potentially genetically separable steps in Pol II TL 

function. Additionally, identical mutations have opposite biochemical phenotypes when 

introduced into yeast Pol I and Pol II (Viktorovskaya et al., 2013), implying TL domain is context 

dependent (Qiu et al., 2016), likely because residue interactions between the TL and its specific 

enzymatic context diverged with the evolution of msRNAPs. The extent of these interaction 

networks and how they control TL function and evolution remain to be determined. This thesis 

comprehensively determines Pol II TL residue interaction networks and their impact on fitness and 
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transcription related phenotypes in budding yeast Saccharomyces cerevisiae by an extended deep 

mutational scanning approach. Chapter 2 dissects TL pairwise residue interaction networks using 

double mutants. Chapter 3 determines higher-order interactions with many mutant combinations 

(haplotypes).  

 I will review four aspects in the introduction. Firstly, I will describe the conservation of 

all msRNAPs in structure and function in Archaea, Bacteria, and Eukaryotes. Secondly, using 

yeast Pol II as an example, I will review the current understanding of the structure, function and 

mechanism of the RNA polymerase active site. Thirdly, I will discuss the impacts of residue 

epistasis on protein function and evolution. Finally, I will review the usage of deep mutation 

scanning in understanding mechanisms of protein function and evolution. 

1.1 Conserved multisubunit RNA polymerases execute transcription in all domains of life 

In this section, I summarize the subunits, architecture and basic functions of multisubunit 

RNA polymerases in different domains of life. The key point is though the number of subunits are 

different, the architecture of all msRNAPs is  conserved across all domains of life, which serves 

as the basis of their functional conservation (Cramer, 2019a; Kaplan, 2013; Kramm, Endesfelder, 

& Grohmann, 2019; Sauguet, 2019; Werner & Grohmann, 2011) (Figure 1 and Table 1). 

The first step in gene expression, transcription, is carried out by msRNAPs. MsRNAPs 

from all domains of life consist of varying numbers of subunits, yet these subunits are 

evolutionarily related (Allison, Moyle, Shales, & Ingles, 1985; Werner & Grohmann, 2011; Wu et 

al., 2012). The bacterial msRNAP, as illustrated in Figure 1A, consists of five subunits (Table 1) 

(Vassylyev et al., 2007). Archaeal msRNAP has 11-13 subunits (Figure 1B and Table 1) (Korkhin 
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et al., 2009). Five subunits of archaeal msRNAP are conserved with bacterial subunits. The 

additional 6 subunits are homologous to eukaryotic msRNAPs. One subunit, Rpo13, is specific to 

archaeal msRNAPs. Notably, Rpo13, as well as Rpo8 are found in some but not all archaeal 

msRNAPs. Bacteria and Archaea use one msRNAP to transcribe their entire genomes, while 

Eukaryotic cells have evolved at least three RNA polymerases (Pol I, II, III) for transcribing 

different classes of RNAs in their genomes (Figure 1C-E). Pol II has 12 subunits (Figure 1C) and 

transcribes protein-coding genes and many non-coding RNAs (Armache, Kettenberger, & Cramer, 

2003; Bushnell & Kornberg, 2003; Cramer, 2002). Pol II is the smallest enzyme among the three 

eukaryotic polymerases, but it is most extensively studied due to the close connection between its 

transcripts and cell development (Kaplan, 2013). The largest eukaryotic Pol, Pol III, has 17 

subunits (Figure 1E) and synthesizes specific short non-coding RNAs, including all transfer RNAs 

(tRNAs), ribosomal 5S rRNA, spliceosomal U6 snRNA, and some other small structured RNAs 

(Hoffmann et al., 2015). Pol I has 14 subunits (Figure 1D) and solely transcribes the large 

ribosomal RNA (rRNA) precursor gene, producing 35S pre-rRNA, which is processed into 28S, 

18S, and 5.8S rRNA co- and post-transcriptionally. With only one target gene, which is the fewest 

of the three eukaryotic RNAPs, Pol I transcripts  account for over 60% of total transcripts in 

growing cells (Khatter, Vorlander, & Muller, 2017; Sadian et al., 2019). Despite their non-

overlapping targets in transcription, the three eukaryotic RNAPs have ten conserved subunits, with 

five subunits being shared among the three complexes (Table 1) (Cramer, 2002; Khatter et al., 

2017; Vannini & Cramer, 2012). Plants have two additional msRNAPs which are specialized 

versions of Pol II, the 12 subunit Pol IV (Onodera et al., 2005) and Pol V (Wierzbicki, Haag, & 

Pikaard, 2008). They exhibit a noteworthy similarity with Pol II, with seven out of ten core 
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subunits shared with Pol II (Table 1) (Ream et al., 2009). Pol IV and Pol V orchestrate non-coding 

RNA-mediated gene silencing processes in plants (Ahlquist, 2002; Y. Huang et al., 2015). 

Although subunit number is different in different msRNAPs, the general structure and 

function of the subunits are conserved. These subunits can be separated into three groups: those 

forming the active site and facilitating catalysis, those involved in assembly, and those serving 

auxiliary functions. Subunits for catalysis and assembly, also known as the core subunits, are the 

minimal requirement for all functional msRNAPs like bacterial msRNAP. Bacterial RNAP’s 

largest β' and β subunits harbor the active site responsible for nucleotide addition during 

transcription. Two ⍺ subunits play crucial roles in the assembly of the bacterial msRNAP complex 

together with the ω subunit (Werner & Grohmann, 2011; G. Zhang et al., 1999). The ω subunit is 

an auxiliary subunit, known to co-purify with the core subunits like β', β and ⍺ subunits (Doherty, 

Fogg, Wilkinson, & Lewis, 2010; Gentry & Burgess, 1990; Pero, Nelson, & Fox, 1975). Auxiliary 

subunits are not required for minimal msRNAP function but can be associated with DNA or 

transcription factor binding such as Pol II Rpb4 and Rpb7 in higher domains of life. Homologs of 

bacterial RNAP subunits can be found in all msRNAPs (Table 1). With Pol II as an example, Rpb1 

and Rpb2, homologous to the bacterial β' and β subunits, form the central mass of the enzyme that 

is responsible for catalysis (Cramer et al., 2001; Gnatt, Cramer, Fu, Bushnell, & Kornberg, 2001; 

Vannini & Cramer, 2012; D. Wang et al., 2006; Werner & Grohmann, 2011). Rpb3 and Rpb11, 

homologs of bacterial ⍺ subunits, form a stable assembly platform with Rpb10 and Rpb12. Pol II 

auxiliary subunits include Rpb6, homologous to bacterial ω subunit, which also functions in 

assembly (Cramer, 2002; Nouraini, Archambault, & Friesen, 1996; Vannini & Cramer, 2012). The 

stalk subunits Rpb4 and Rpb7 (Armache et al., 2003) function in guiding away transcript from the 

elongating RNAP (Hirtreiter, Grohmann, & Werner, 2010) and interacting with transcription 
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factors (Schier & Taatjes, 2020). Rpb5 helps in DNA melting (Kostrewa et al., 2009), and Rpb9 

for TFIIS binding and influencing transcription fidelity (Kaster, Knippa, Kaplan, & Peterson, 2016; 

Walmacq et al., 2009; Ziegler, Khaperskyy, Ammerman, & Ponticelli, 2003). These 12 subunits 

form a “crab-claw” framework of Pol II. This architecture, similar to the bacterial msRNAP, is 

also shared with archaeal and other eukaryotic msRNAPs, indicating their architectures are 

conserved.  
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Figure 1. Structure of RNA polymerases. 
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(A). T. thermophilus (Bacteria) RNAP, visualized with Pymol (PDB: 2O5J) (Vassylyev et al., 2007). (B). S. shibatae 

(Archaea) RNAP (PDB: 2WAQ) (Korkhin et al., 2009). (C). S. cerevisiae (Eukaryote) Pol II (PDB: 5C4X) (Barnes 

et al., 2015). (D). S. cerevisiae (Eukaryote) Pol I (PDB: 6RWE) (Sadian et al., 2019). (E). S. cerevisiae (Eukaryote) 

Pol III (PDB 5FJ8) (Hoffmann et al., 2015). Conserved subunits are labeled with the same color across all RNAPs.  
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Table 1. Conserved RNA polymerases subunits and their functions in three domains of life 

 Bacteria Archaea Eukaryote Function in Pol 

II or Pol I/Pol 

III  

Pol II Pol I Pol III Pol IV (Plant) Pol V (Plant) 

 

 

Cor

e 

sub

unit

s 

β' Rpo1 Rpb1 A190 C160 NRPD1 NRPE1  

Catalysis β Rpo2 Rpb2 A135 C128 NRPD/E2 NRPD/E2 

⍺ Rpo3 Rpb3 AC40 AC40 Rpb3 Rpb3 RNAP assembly 

⍺ Rpo11 Rpb11 AC19 AC19 Rpb11 Rpb11 

ω Rpo6 Rpb6 Rpb6 Rpb6 Rpb6 Rpb6 TFIIH binding 

 

 

Conserved 

subunits in 

Archaea and 

Eukaryote 

Rpo5 Rpb5 Rpb5 Rpb5 Rpb5 NRPE5 DNA melting 

Rpo8 Rpb8 Rpb8 Rpb8 Rpb8 Rpb8  

Rpo10 Rpb10 Rpb10 Rpb10 Rpb10 Rpb10 RNAP assembly 

Rpo12 Rpb12 Rpb12 Rpb12 Rpb12 Rpb12 

Rpo4 Rpb4 A14 C17 NRPD/E4 NRPD/E4 “Stalk” domain  

Rpo7 Rpb7 A43 C25 NRPD7 NRPE7 

Archaea subunit Rpo13       

Eukaryote exclusive subunit Rpb9 A12 C11 NRPD9b Rpb9 TFIIF binding. 

Elongation 

speed, fidelity 

and processivity 

Exclusive subunits in eukaryotic  

Pol I and Pol III 

A34.5 C37  Elongation 

speed, fidelity 

and processivity 

A49 C53 

 C82  
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Eukaryotic Pol III-specific subunits C34 PIC formation 

and DNA 

melting 

C31 

 

1.2 The structure, function, and mechanism of the Pol II active site 

In this section, I'll start with a brief overview of the structure and function of the Pol II 

active site. Then I will describe the functions and mechanisms of two critical domains within this 

site, the TL and the BH, in facilitating transcription. Finally, I'll introduce how the functions of the 

TL and BH are regulated through intricate interaction networks. 

1.2.1 The fundamental structure and function of the RNA polymerase II active site 

In the center of the 'crab claw' architecture of msRNAPs is the active site, which is highly 

conserved in structure and function and is where RNA synthesis occurs in transcription, highly 

conserved in structure and function. Using Saccharomyces cerevisiae Pol II as an example, I will 

summarize its structure and function. In the transcribing Pol II, the downstream DNA extends 

along the major DNA-binding channel to the active center and the double strand DNA is unwound 

to form a transcription bubble. RNA is synthesized and remain bound by the enzyme in the form 

of RNA-DNA hybrid (Figure 2) (Cramer et al., 2001; Gnatt et al., 2001). Two critical domains in 

the active site, the bridge helix (BH) and the trigger loop (TL) have been proposed to dynamically 

facilitate all critical steps of transcription elongation (Kaplan, 2013; Vassylyev et al., 2002; D. 

Wang et al., 2006). Mg2+ present in the active site is required for catalysis (Figure 1) (G. Lin et 
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al., 2023; Zaychikov et al., 1996). Other domains in the active site, including Rpb1 470-485, ⍺-46 

and ⍺-47 helices, funnel helices ⍺-20 and ⍺-21, and Rpb2 link domain 757-776, participate in 

transcription likely through interaction with the TL and the BH (Figure 2) (Da et al., 2016; Kaplan, 

2013; Kaster et al., 2016; Qiu et al., 2016; D. Wang et al., 2006; Weinzierl, 2010). The detailed 

roles of the TL and BH will be discussed in following sections. 

 

 

Figure 2. Pol II active site. 

The Pol II active site is embedded in the center of a 12-subunit complex (left panel). Pol II functions are supported by 

distinct TL conformational states. An open TL (PDB: 5C4X) (Barnes et al., 2015) and closed TL (PDB: 2E2H) (D. 

Wang et al., 2006) conformations are shown in the right top panel. GOF mutations have been identified in the TL and 

its proximal domains (right bottom panel), suggesting TL mobility and function may be impacted by adjacent residues. 
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1.2.2 The conserved mechanism of transcription elongation 

1.2.2.1 The TL and the BH facilitate fast and accurate transcription 

RNA synthesis in Pol II active site is an iterative process of nucleotide addition cycle 

(NAC), involving nucleotide selection, catalysis and translocation (Kaplan, 2013). A strikingly 

conserved domain in the active site, the TL, participates in every step of NAC, promoting 

transcription in a fast and accurate manner (Sauguet, 2019; Scherrer, 2018; Schier & Taatjes, 2020). 

The elongation rate described in prior studies, depending on the types of DNA templates and the 

species, ranges from 1 to 5kb per minute (Mason & Struhl, 2005). The transcription error rate, 

influenced by error types and species, typically is around 1 in 106 bases (Gout et al., 2017; Gout, 

Thomas, Smith, Okamoto, & Lynch, 2013; Imashimizu, Oshima, Lubkowska, & Kashlev, 2013; 

Reid-Bayliss & Loeb, 2017).  

The rapid and precise process is associated with the flexible and mobile nature of the TL, 

as has been observed in structural and biophysical/biochemical studies (Fouqueau, Zeller, Cheung, 

Cramer, & Thomm, 2013; Kaplan, 2013; Larson et al., 2012; Mazumder, Lin, Kapanidis, & 

Ebright, 2020; B. Wang, Predeus, Burton, & Feig, 2013; D. Wang et al., 2006). The TL residues 

(Rpb1 1076-1106) can be divided into three regions: an N-terminal helix (Rpb1 1076-1085) 

containing the nucleotide interaction region (NIR, Rpb1 1078-1085), a loop region (Rpb1 1086-

1096) containing the TL tip (Rpb1 1090-1096), characterized as a random-coil region, and the C-

terminal helix (Rpb1 1097-1106).  

Substrate addition involves multiple TL conformations to close on/recognize matched 

substrates and then subsequently promote catalysis. At the beginning of each NAC, Pol II is at the 

post-translocation state and the TL is in a catalysis-disfavoring, “open” state, with the TL tip region 

(Rpb1 1090-1096) being away from the substrate site, where one template DNA base is accessible 
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for substrate binding and the end of the growing RNA chain is positioned for substrate addition in 

anticipation of upcoming substrate binding. A new substrate entering the active site potentially 

induces a TL conformational change from the “open” state to a partially “closed” state (Cheung, 

Sainsbury, & Cramer, 2011). In this process, residues in the TL nucleotide interaction region (NIR, 

Rpb1 1078-1085) interact with the upcoming substrate and facilitate the discrimination of a correct 

NTP over dNTPs or non-matched NTPs. In detail, L1081 (S. cerevisiae residue numbers are used 

here and in the following description) forms hydrophobic interaction with the substrate (D. Wang 

et al., 2006). Q1078, N1082 and a non-TL Rpb1 residue N479, form an interaction network to 

recognize the 2'- and 3'OH of the substrate (Belogurov & Artsimovitch, 2019; Kaplan et al., 2012; 

Svetlov, Vassylyev, & Artsimovitch, 2004; Westover, Bushnell, & Kornberg, 2004). Matched 

substrate binding has been proposed to induce complete TL closure, allowing capture of the correct 

NTP, promoting the formation of a phosphodiester bond, and subsequent release of pyrophosphate 

(Fong et al., 2014; Kaplan, 2013; G. Lin et al., 2023; Malinen et al., 2012; B. Wang et al., 2013; 

D. Wang et al., 2006; L. Xu et al., 2014). The transition from random coil to helix upon TL closing 

may be promoted by substrate interactions and in turn may promote catalysis (Mejia, Nudler, & 

Bustamante, 2015; B. Wang et al., 2013; Windgassen et al., 2014). A TL residue, H1085, directly 

interacts with the β-phosphate of the substrate and has been proposed to promote catalysis by being 

a chemical catalyst (Castro et al., 2009; D. Wang et al., 2006) or a positional catalyst (Mishanina, 

Palo, Nayak, Mooney, & Landick, 2017). The release of pyrophosphate enables the TL to switch 

back from the “closed” to the “open” state. This transition has been proposed to support 

polymerase translocation to the next open nucleotide of the template DNA, enabling the 

subsequent NAC (Da, Wang, & Huang, 2012; B. Liu, Zuo, & Steitz, 2016; Seibold et al., 2010) 

(Figure 2). Moreover, additional TL conformations can be identified during other Pol II states 
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such as pausing and backtracking (Cheung & Cramer, 2011; Mosaei & Zenkin, 2021; D. Wang et 

al., 2009; J. Zhang, Palangat, & Landick, 2010). It is worth pointing out that the proposed 

mechanism of TL residues participating in nucleotide addition is based on the structural 

observations and molecular dynamics simulations. Time resolved structural information is needed 

in the future to experimentally determine the exact Pol II mechanism.  

The TL conformational changes have been proposed to be coupled with its adjacent domain, 

the highly conserved BH (Rpb1 815-848) (Ahearn, Bartolomei, West, Cisek, & Corden, 1987; 

Vassylyev et al., 2002). The BH was observed as a straight helix in most bacterial and all archaeal 

and eukaryotic msRNAP structures (Cramer et al., 2001; Gnatt et al., 2001; Kaplan, 2013; X. Liu, 

Bushnell, & Kornberg, 2013; D. Wang et al., 2006), but in a kinked conformation in Thermus 

thermophilus (Bacteria) RNAP structures (Kaplan & Kornberg, 2008; Kireeva et al., 2012; 

Vassylyev et al., 2002; G. Zhang et al., 1999), implying its potential flexibility. Though the kinked 

BH has never been detected in eukaryotes, the flexibility of eukaryotic BH has been supported by 

molecular dynamic simulations and has been proposed to promote msRNAP translocation in the 

NAC (Kaplan & Kornberg, 2008; Silva et al., 2014; Tan, Wiesler, Trzaska, Carney, & Weinzierl, 

2008; Weinzierl, 2010). The dynamic correspondence between BH conformational changes and 

TL conformational changes, along with their interactions with other domains in the active site to 

define proper transcription, remains to be fully elucidated.  

1.2.2.2 Mutations identified in TL and TL surrounding domains affect transcription 

TL conformational changes are associated with catalysis during transcription. Mutations in 

the TL and other TL-proximal active site residues can cause specific phenotypes consistent with 

altered catalysis, leading to either defective elongation rate or fidelity by many msRNAPs (Kaplan 

et al., 2012; Kaplan & Kornberg, 2008; Kaplan, Larsson, & Kornberg, 2008; Kireeva et al., 2008; 
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Malagon et al., 2006; Qiu et al., 2016; Tan et al., 2008). With yeast as an example, mutations in 

the TL NIR disrupt interactions between the TL and substrates, leading to defective catalysis and 

a reduced elongation rate in vitro (Loss of function, LOF) (Kaplan et al., 2012; Kaplan et al., 2008; 

Kireeva et al., 2008; Nayak, Voss, Windgassen, Mooney, & Landick, 2013; Qiu et al., 2016; 

Windgassen et al., 2014). Some mutations in the TL C-terminal region break interactions 

stabilizing the inactive “open” state of TL and shift the TL towards the active “closed” state, 

leading to enhanced catalysis and increased elongation rate but compromised transcription fidelity 

(Gain of function, GOF) (Fouqueau et al., 2013; Kaplan et al., 2012; Kaplan et al., 2008; Kireeva 

et al., 2008; Malagon et al., 2006; Nayak et al., 2013; Qiu et al., 2016; Windgassen et al., 2014).  

Interestingly, TL GOF and LOF mutants exhibit specific, distinct conditional growth 

phenotypes, as briefly summarized in Table 2 (Aguilera, 1994; Braberg et al., 2013; Cui, Jin, 

Vutukuru, & Kaplan, 2016; Greger & Proudfoot, 1998; Kaplan, Holland, & Winston, 2005; Kaplan 

et al., 2012; Malik, Qiu, Snavely, & Kaplan, 2017; Qiu et al., 2016; Simchen, Winston, Styles, & 

Fink, 1984). These distinct phenotypic patterns of TL GOF or LOF mutants are consistent with 

their distinct defects in transcription. For example, most GOF mutants are sensitive to 

Mycophenolic acid (MPA) while LOF are resistant to it (Kaplan et al., 2012; Qiu et al., 2016). The 

MPA sensitive phenotype in transcription factors is due to altered transcription initiation at the 

IMD2 promoter, which is regulated by multiple start sites and its proper expression is essential for 

MPA resistance (Hyle, Shaw, & Reines, 2003; Jenks, O'Rourke, & Reines, 2008; Kuehner & Brow, 

2008). Pol II GOF fail to induce IMD2 expression under MPA conditions due to abnormal 

transcription start site selection (Kaplan et al., 2012; Malik et al., 2017). 

GOF and LOF mutations have also been found in nearly all TL-proximal domains, 

including the BH GOF T834P and LOF T834A, funnel helix ⍺-21 GOF S713P, and Rpb2 GOF 
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Y769F (Braberg et al., 2013; Leng et al., 2020; Qiu et al., 2016). These mutations in TL-proximal 

domains share similar phenotypes with TL GOF or LOF mutants. The shared phenotypes suggest 

TL-proximal domains could participate in transcription by interacting with the TL (Braberg et al., 

2013; Kaster et al., 2016; Leng et al., 2020; Taatjes, 2020). However, a key question about these 

residues is if and how they work with the TL and do they simply shift the balance of existing states 

or create an altered active site where perturbations extend to alterations across the TL (new or 

different conformations for example). It remains unclear whether these mutations go beyond 

putatively altering the balance of conformational states observed in the WT enzyme. Additionally, 

the specific TL residues through which they communicate to ensure proper transcription remain 

unidentified. The observed phenotypic patterns establish connections between mutant catalytic 

defects and conditional growth defects. This connection enables the prediction of catalytic defects 

through growth patterns without performing biochemical studies, paving the way for 

understanding of TL residue mechanisms in large scale. Qiu et al developed the high throughput 

phenotyping system with deep mutational scanning (Qiu et al., 2016), allowing these questions to 

be targeted, which will be discussed in Chapter 2. 

 

Table 2. Growth phenotypes of mutants are linked with their catalytic defects 

Stress 

conditions 

Rationale WT phenotype GOF phenotype LOF phenotype 

SC-Leu+MPA MPA depletes GTP levels in 

yeast. To generate GTP, IMD2 

expression is required, but its 

promoter has multiple 

transcription start site (TSS), 

Resistant 

(Can use both 

upstream and 

downstream 

TSS) 

Sensitive 

(Can only use 

upstream TSS) 

Resistant 

(Can only use 

downstream TSS) 
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only downstream TSS can 

successfully express IMD2. 

SC-Leu+Mn Mn compromises transcription 

fidelity 

Resistant Sensitive  

(Fidelity has 

already been 

compromised) 

Resistant 

(Fidelity is not 

compromised) 

YPrafGal The termination and RNA 

processing of gal10Δ56 is 

problematic, which interfere 

with the initiation of the 

downstream GAL7. 

Sensitive Some GOF 

mutants are 

resistant 

Most LOF 

mutants are 

resistant 

SC-Lys The Ty transposable element 

insertion in lys2-128Ə stops 

normal expression of LYS2 

Lys- 

(Lys auxotroph) 

Lys+ 

(Lys prototroph) 

(Can utilize the 

normally silent 

promoter within 

the Ty insertion) 

Lys- 

(Lys auxotroph) 

SC-

Leu+Formamide 

Formamide destabilizes 

hydrogen bonds of protein and 

RNA 

Resistant Resistant Slightly sensitive 

 

1.2.2.3 Residue interactions within and surround the TL control its dynamics and function 

Distinct residue interactions are observed within and around the TL, suggesting that TL 

function is likely impacted by residue interaction networks. These networks can be categorized 

into four levels.  
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First, TL residues form interaction networks within the TL. Previous genetic studies in our 

lab have identified enhancement interactions (where the double mutant phenotype is worse than 

both singles) and lack of enhancement, epistatic interactions (where the double mutant phenotype 

is similar to either single mutant), indicating functional dependency of TL residues (Kaplan et al., 

2012; Qiu et al., 2016; Qiu & Kaplan, 2019).  

Second, residue interactions have been identified between the TL and other active site 

domains. Evidence from different species has shown that many active site domains (BH, funnel 

helix etc.) directly impact the TL function (Qiu et al., 2016; Silva et al., 2014; B. Wang et al., 2013; 

Weinzierl, 2010). For instance, structural observations indicate hydrophobic residues in two TL 

helices form a bundle with BH and two ⍺ helices (⍺-46 and ⍺-47 helices) in the active site. This 

five-helices bundle is universally conserved in msRNAPs and is proposed to stabilize the inactive 

“open” state of TL (Barnes et al., 2015). Consistently, many substitutions in these hydrophobic 

residues result in GOF mutations (i.e. A1076, L1101) (Qiu et al., 2016).  

Third, Pol II residues outside of the active site allosterically control the functions of Pol II 

active site, suggesting potential allosteric pathways. For example, the deletion of a small Pol II 

subunit, Rpb9, which does not directly contact Pol II active site, confers GOF phenotypes (Jenks 

et al., 2008; Kaster et al., 2016). RPB9 mutation suppresses severe growth defects caused by a 

mutation in funnel helix ⍺-21 (Kaster et al., 2016; Koyama, Ueda, Ito, & Sekimizu, 2010), 

suggesting a potential allosteric pathway that the funnel helix interacts with both open TL and 

Rpb9 to stabilize the open state TL, which has important roles in maintaining transcription fidelity.  

Fourth, this kind of allosteric effect in regulating the active site may from outside of the 

Pol II enzyme, with transcription factors involved. For example, the Pol II elongation factor TFIIS 

can directly insert into the Pol II active site, functioning in rescuing arrested Pol II and also in 
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proofreading, which requires TL being in the open state (Kettenberger, Armache, & Cramer, 2004; 

D. Wang et al., 2009). Notably, certain yeast transcription elongation factors, such as Spt5 

(Swanson, Malone, & Winston, 1991; Winston, Chaleff, Valent, & Fink, 1984), Spt6 (Close et al., 

2011; Hartzog, Wada, Handa, & Winston, 1998), Elf1 (Prather, Krogan, Emili, Greenblatt, & 

Winston, 2005), and Paf1C (Wade et al., 1996; Y. Xu et al., 2017), promote elongation without 

directly interacting with the Pol II active site in yeast. Indirect evidence from genetics studies 

illustrate mutants in some of these elongation factors decrease elongation rate (Archambault, 

Lacroute, Ruet, & Friesen, 1992; Malagon et al., 2006; Mayer et al., 2012; Prather et al., 2005; 

Riles, Shaw, Johnston, & Reines, 2004), implying potential communication between these 

elongation factors and the TL. The arising question is how these yeast transcription factors regulate 

the active site during elongation without direct contact with the domains. Residue interaction 

networks may serve as allosteric pathways for the active site being regulated. Studies on Paf1C in 

mammals suggest possible allosteric mechanism through BH interaction, but this specific 

elongation factor interaction is replaced by Rpb2-Rpb1 interactions in yeast (Chen et al., 2023; 

Vos, Farnung, Linden, Urlaub, & Cramer, 2020). We will design experiments to detect the 

potential interactions with yeast elongation factors in Chapter 4. 

In summary, considering that TL is sensitive to minor alterations, TL makes multiple 

interactions in various states, and TL’s function is potentially controlled by residue interaction 

networks from the active site to transcription factors, it is crucial to comprehensively detect these 

residue interaction networks within and surround the TL. In Chapter 2, I will describe a high-

throughput screening system to dissect these residue interactions. In Chapter 4, I will describe a 

potential experiment for us to probe how TL is regulated by the transcription elongation factors. 
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1.3 Residue epistasis impacts protein function and evolution 

1.3.1 Overview of epistasis 

In this dissertation, genetic interactions are used to probe mechanisms. A key concept in 

understanding genetic interactions is determining when the actions of two mutations are 

independent of each other or functionally dependent. Functional dependence can link function of 

residues together into a network. Such networks can underlie how proteins work. In this section I 

will describe the concept of epistasis, the prevalence and strength of epistasis in proteins, and the 

divergent residue epistasis networks in three highly related RNA polymerases.  

The effect of a mutation is not only dependent on the mutation’s amino acid, but also on 

the genetic background to which it is introduced. The interaction between the mutation and the 

genetic background is termed as epistasis. The concept was first used in 1909 to describe how one 

genetic variant could mask the effect of the other (Squire, 1909). Later, in 1919 epistasis was 

defined as the deviation from the expected combination of two loci’s effects (Fisher, 1919). The 

term epistasis has been developed to various related meanings later, but the most common used 

one is to describe the deviation from the expected effect when combining mutations. A simple 

model has been developed, termed the “multiplicative” or “log additive” model, where the 

expected fitness effect of combined mutations should be equal to the product of constituent 

mutations’ effects, thus predicted fitness effects are multiplicative, or the sum of the logarithm of 

the individual fitnesses. Deviation from the log additive model when combining mutations is 

considered epistasis. (Domingo, Baeza-Centurion, & Lehner, 2019; Mani, St Onge, Hartman, 

Giaever, & Roth, 2008; Phillips, 1998, 2008). 
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Epistatic interactions can be classified based on various criteria (Poelwijk, Kiviet, 

Weinreich, & Tans, 2007; Starr & Thornton, 2016). These include whether the outcome is better 

(positive epistasis) or worse (negative epistasis) than expected from the log additive model, 

whether the interaction is specific to a particular mutation (specific epistasis) or applicable to a 

range of mutations (nonspecific epistasis), the number of mutations involved (pairwise epistasis 

for two mutations or higher-order epistasis for many mutations), and whether the strength of 

mutation effect changes (epistasis, also termed as magnitude epistasis) or the direction of mutation 

effect changes (sign epistasis). 

Epistatic interactions among residues influence protein function and evolution (Cisneros et 

al., 2023; Karageorgi et al., 2019; Pinney et al., 2021). To understand protein mechanisms, unravel 

their evolutionary history, and potentially predict the direction of future evolution by predicting 

the phenotype of upcoming mutations, it is crucial to comprehensively quantify the prevalence and 

magnitude of epistasis within proteins. 

1.3.2 General epistasis prevalence and magnitude 

Epistasis between genes can be employed to determine the hierarchical order of genes in a 

pathway (Goodwin & Ellis, 2002; Sternberg & Horvitz, 1989; Thomas, Birnby, & Vowels, 1993). 

This involves utilizing double mutants of genes within a pathway, especially regulatory switch 

pathways with two distinct outputs. If the effect of one mutant masks the impact of another, it is 

inferred that the first gene is epistatic to the second. The rationale behind this conclusion, 

depending on the pathway, could be that the first gene operates downstream of the second gene. 

Consequently, when the downstream gene is mutated, any effects upstream are not observable. 

Epistasis can also extend to functional relationships where the output is simple growth defects, 
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represented with fitness. As noted above, mutants can show positive epistasis when double mutants 

have better fitness than expected from the fitnesses of single mutants. In this case, it can be 

interpreted that single mutants may act at a related step and that the double mutant has no further 

defect than each single mutant. This type of epistasis can infer mutants are acting in the same 

pathway or step. Along these lines, modern approaches that facilitate genome screening with single 

and double gene deletions or inhibitions have uncovered the degree of intergenic epistasis across 

various organisms including yeast. For instance, by generating about 23 million double-knockout 

gene combinations from almost all genes in budding yeast and screening for colony size, 

approximately 4% of the combinations have been identified to exhibit epistasis (Costanzo et al., 

2016; Domingo et al., 2019).  

Epistasis within genes has been quantified by mutating protein sequences (Aakre et al., 

2015; Cisneros et al., 2023; Domingo et al., 2019; Johnson, Reddy, & Desai, 2023; Starr & 

Thornton, 2016). One way to quantify the prevalence of epistasis is to ask how predictable the 

double mutant’s effect is by combining the constituent single mutants’ effects using the log 

additive model (Araya et al., 2012; Bank, Hietpas, Jensen, & Bolon, 2015; Fowler et al., 2010; 

Melamed, Young, Gamble, Miller, & Fields, 2013; Olson, Wu, & Sun, 2014; Starr & Thornton, 

2016). For example, in the absence of any epistasis, all observed double mutants’ effects should 

perfectly match their predicted effects by adding the effects of involved single mutants (R2 = 1 in 

the correlation between predicted and observed effects of the combined mutants). Conversely, in 

the presence of full epistasis, the effect of the combined mutant is independent to the effects of 

involved single mutants (R² is approximately 0). The R² observed in experiments (Araya et al., 

2012; Fowler et al., 2010; Melamed et al., 2013) is around 0.65 – 0.75, indicating the effect of the 

combined mutants can be moderately well predicted by the involved single mutants. In addition to 
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the prevalence, to quantify the strength of epistasis, a factor representing the deviation of the 

observed double mutant's effect from the prediction based on adding the single mutants' effects 

could be determined. For example, a thorough examination of pairwise interactions in protein G 

domain 1 revealed that weak epistasis (deviation factor < 2) impacted around 30% of all pairs, 

while approximately 5% of mutation pairs exhibited strong deviations from additivity (deviation 

factor > 2) (Bank et al., 2015; Olson et al., 2014; Starr & Thornton, 2016). These experimental 

findings indicated an intermediate level of epistasis prevalence. Notably, weak effect epistasis was 

more common in the analyzed proteins (observed in ~30% of all pairs with a deviation factor < 2), 

while strong effect epistasis was less frequent (observed in ~5% of all pairs with a deviation factor > 

2). This suggests two trends of epistasis where it could be weak and prevalent, or strong and rare 

(Domingo et al., 2019; X. Lin et al., 2022; Starr & Thornton, 2016). However, how representative 

this trend is needs to be assessed, considering that proteins may have different levels of allostery 

and conservation. Highly conserved proteins, often subject to significant selection pressure during 

evolution, are likely to exhibit different levels of epistasis than previously reported proteins with 

lower levels of conservation.  

1.3.3 The highly conserved active site of msRNAPs may have evolved various epistasis 

networks 

Emerging mutations change the pre-existing residue epistatic interaction networks within 

proteins, affecting the accessibility of future mutations. The accumulation of changes in epistasis 

networks can result in varying mechanisms and future evolution paths of proteins, even for highly 

similar homologous proteins (Domingo et al., 2019; Johnson et al., 2023; Starr & Thornton, 2016). 

The evidence for this is distinct effects have been observed when identical residues are introduced 
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into conserved proteins in various systems, including Pol I and Pol II in yeast (Doud, Ashenberg, 

& Bloom, 2015; Haddox, Dingens, Hilton, Overbaugh, & Bloom, 2018; Natarajan et al., 2013; 

Viktorovskaya et al., 2013). Substitution of the hyper conserved E1103 residue with a glycine 

(E1103G) in Pol I and Pol II result in distinct and opposite phenotypes. The Pol II rpb1 E1103G 

variant has been extensively studied by biochemical, biophysical and genetic assays, 

demonstrating an enhanced catalysis along with compromised translocation and fidelity in vitro. 

Pol II E1103G is proposed to reduce transcription translocation by disrupting TL C-terminal 

interactions required to stabilize the inactive “open” state of TL. This disruption biases TL 

dynamics toward the active “closed” state, leading to enhanced catalysis and reduced fidelity 

(Dangkulwanich et al., 2013; Kaplan et al., 2008; Kireeva et al., 2008; Larson et al., 2012; Malagon 

et al., 2006; Viktorovskaya et al., 2013). To explain the contrasting effects of E1103G (Pol I 

E1224G) in the highly conserved Pol I and Pol II TLs, Viktorovskaya et al. proposed that Pol I 

and Pol II have different rate limiting steps based on modeling of reaction rates by Larson et al., 

which indicated that the Pol II E1103G alters catalysis and translocation but the major rate-limiting 

step appears to be catalysis (Larson et al., 2012; Viktorovskaya et al., 2013). The idea was that if 

the E1224G mutation altered both Pol I catalysis and translocation, but if translocation, rather than 

catalysis were Pol I's major rate-limiting step, then E1224G would result in a slower mutant. 

Dangkulwanich et al. proposed that the rate limiting step in Pol II includes both catalysis and 

translocation but also observed that Pol II E1103G showed increased catalysis and reduced 

translocation rates compared with WT (Dangkulwanich et al., 2013). Later, biochemical 

experiments showed a decrease in nucleotide addition rate for Pol I E1224G, accompanied by 

reduced elongation rate and compromised fidelity (Scull, Ingram, Lucius, & Schneider, 2019), 

suggesting that E1224G reduced Pol I catalysis in transcription and the catalysis is the major rate 
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limiting step for it. This individual mutation provides a striking example for different effects of 

the same substitution for a conserved residue in different but highly similar proteins. 

It is clear that epistasis in the Pol I and Pol II enzymatic backgrounds has reshaped the 

consequences for what effects E1103G/E1224G have. Supporting this idea, E1224G suppresses a 

lethal mutation that is expected to impair catalysis in Pol I, implying likely E1224G can increase 

catalysis in some situations just not in the otherwise WT enzyme. Additionally, the Pol I TL 

sequence causes lethality when used to replace Pol II TL residues (Rpb1 1076-1106) within Rpb1 

while a slightly shorter Pol I TL sequence is viable when replacing Rpb1 1076-1103 though has 

strong growth defects. Interestingly, Pol II E1103G suppressed growth defects that the Pol I TL 

(1076-1103) and (1076-1106) caused in the Pol II background, suggesting that within the greater 

Pol II context, E1103G could behave like a GOF allele even when most of TL sequence matched 

Pol I (Viktorovskaya et al., 2013). The Pol I and III structures revealed after this work potentially 

explain this as Pol I especially has divergence in its TL-tip adjacent regions (Figure 3) (Engel, 

Sainsbury, Cheung, Kostrewa, & Cramer, 2013; Hoffmann et al., 2015; Qiu et al., 2016). The Pol 

I funnel helix appears to have less constraint than the Pol II or Pol III funnel helix. Moreover, 

unpublished data from our lab has shown that E1224K mutation could suppress a mutation with 

severe growth defects in Pol I, similar to the analogous mutation E1103K’s effect in suppressing 

a slow mutant in Pol II, implying that Pol I E1224K may also increase elongation rate like Pol II 

E1103K does. These results indicate that TL is likely controlled by distinct residue interaction 

networks in enzymatic backgrounds. However, which residue interactions in the Pol II background 

shape the phenotypes and compatibilities of mutants remain to be elucidated. Deep mutational 

scanning from Qiu et al (Qiu et al., 2016) allowed for predictions and subsequent analyses looked 

at the overall compatibility questions, which are discussed in Chapter 3, where we detected the 
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potential residue interactions which may cause incompatibility of TL haplotypes in yeast Pol II 

background. 

Together, the context dependence of the analogous mutation and TL alleles, strongly imply 

even functions of highly conserved domains are shaped by individually evolved residue interaction 

networks within specific enzymatic backgrounds. Moreover, despite their high conservation, 

species-specific TLs may have evolved distinct, enzyme-specific mechanisms over the course of 

species divergence. Understanding the potential mechanism and evolution requires understanding 

the specialized residue interaction networks within conserved msRNAPs. Quantitative comparison 

of the extent of epistasis across highly related msRNAPs is needed. I will describe an experiment 

to compare and contrast the epistasis interaction networks in three yeast RNA polymerases in 

Chapter 4. 

 

Figure 3. Different positions of funnel helices raltive to TL in three yeast RNA polymerases. 

Structures of TLs and funnel helices from S. cerevisiae Pol I (PDB: 4C2M)(Engel et al., 2013), Pol II 

(PDB:5C4J)(Barnes et al., 2015), Pol III (PDB: 5fJ8)(Hoffmann et al., 2015).  
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1.4 Understanding protein mechanism and evolution in high throughput using deep 

mutational scanning  

1.4.1 Determination of function from a limited numbers of substitutions may limit 

interpretation of mutant effects 

Mutagenesis has been broadly used in understanding protein structure, function, and 

mechanism in various systems. However, caution is needed when interpreting protein function 

from limited numbers of substitutions, as potential ambiguities may arise related with the dual 

nature of the substitution process where the removal of the original WT residue disrupts the 

original interaction network, and the addition of a new residue may create new interactions. 

Ignoring either aspect could result in misleading conclusions. For example, E1103G was initially 

characterized for increasing the elongation rate in Pol II (Malagon et al., 2006). Observations from 

crystal structures suggested potential interactions between E1103 and T1095, leading to the 

hypothesis that the T1095-E1103 interaction supports the inactive “open” conformation of the TL, 

and loss of the interaction promotes TL closing, resulting in hyperactivity of the enzyme. This was 

supported by the fact that T1095G also increases elongation rate (Kireeva et al., 2008). However, 

further studies involving additional mutations at both T1095 and E1103 residues challenge the 

initial model, suggesting the interaction between them may not be critical for maintaining the TL 

open state (Kaplan et al., 2012). The findings include that almost all additional mutations in E1103 

confer GOF phenotype, whereas no T1095 substitutions aside from T1095G exhibit such an effect 

(Qiu et al., 2016). These results indicate that the observed GOF phenotype of T1095G is likely 

attributed to the introduction of G, which promotes hyperactivity possibly through the new 
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conformations it may allow. But the GOF phenotype of E1103G is probably due to the elimination 

of E at position 1103, which removes a negative role in catalysis associated with that residue. 

Additionally, TL residue H1085 is proposed to promote the catalysis for its direct contact 

with the β-phosphate of the substrate (X. Huang et al., 2010; D. Wang et al., 2006), and H1085 is 

almost universally conserved in all msRNAPs (Castro et al., 2009; Palo, Zhu, Mishanina, & 

Landick, 2021). However, the functional mechanism of the histidine in catalysis remains unclear. 

The initial hypothesis is H1085 promotes catalysis by being a general acid (Castro et al., 2007; 

Castro et al., 2009; Lassila, Zalatan, & Herschlag, 2011), which seemed to be supported by that 

most substitutions (T, R, K, W, A, F, G, P, N, D, E, S) in H1085 confer severe or lethal growth 

defects in yeast (Kaplan et al., 2012; Kaplan et al., 2008; Palo et al., 2021; Qiu et al., 2016). 

However, an additional substitution L identified at H1085 argued against the initial proposal, for 

that H1085L is relatively healthy in yeast even though leucine does not function as proton donor 

like histidine (Qiu et al., 2016; Qiu & Kaplan, 2019). Studies combining genetic and biochemical 

data with H1085L involved have proposed a new model that histidine functions as a positional 

catalyst to explain why histidine could be substituted by the similar sized and shaped leucine 

(Mishanina et al., 2017; Palo et al., 2021). However, the introduction of L may create its specific 

interactions with residues in the active site. The observed slight growth defect of H1085L may not 

be simply supported by the similar shape and size of leucine to histidine. These observations 

highlight the benefit of more comprehensive analysis to identify potential residue interactions for 

TL residues, which is the primary focus of Chapter 2. 

Deducing intricate residue interactions on a large scale requires an efficient method. The 

emerging technique, deep mutational scanning (DMS), which measures the effects of thousands 
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of mutations in parallel within one experiment, has enabled us to detect potential residue 

interaction networks in the active site of msRNAPs. 

1.4.2 General procedures of deep mutational scanning 

DMS is a sophisticated method used in genetics and molecular biology to explore the 

relationship between genetic variations and their corresponding phenotypes. DMS was developed 

to comprehensively quantify the effects of variants on a large scale economically and efficiently 

(Fowler & Fields, 2014; Shin & Cho, 2015). Performing a DMS experiment is straightforward, 

typically comprises three major steps: (1) designing and generating a mutant library; (2) 

performing high-throughput phenotyping with selective conditions; (3) sequencing of the mutant 

libraries before and after selection (Matuszewski, Hildebrandt, Ghenu, Jensen, & Bank, 2016; 

Starita & Fields, 2015; Wei & Li, 2023). The rapid development in genetic technologies, such as 

gene synthesis, DNA sequencing, and high-throughput phenotyping, has significantly enhanced 

the effectiveness and scale of DMS experiments (Kinney & McCandlish, 2019; Weile & Roth, 

2018). For instance, new methods in array-based DNA oligonucleotide synthesis have enabled 

creation of vast libraries of variants (Ghindilis et al., 2007; Kosuri & Church, 2014; LeProust et 

al., 2010), to a level of nearly a million in a single batch. Combined with deep sequencing, it 

enables the accurate determination of the frequency of each DNA variant (Qiu & Kaplan, 2019), 

which is crucial for assessing variant effects by comparing its allele frequencies before and after 

selections. 

While the DMS strategy is conceptually straightforward, executing each step to yield 

reliable and meaningful data can be challenging (Qiu & Kaplan, 2019; Wei & Li, 2023). This 

complexity arises from managing error rates in variant sequence synthesis, PCR amplification, and 
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establishing appropriate controls for batch-to-batch consistency and comparison in large scale 

experiments. Utilizing advanced methods to minimize synthesis (error correction in synthesized 

variant pools etc.) (Lubock, Zhang, Sidore, Church, & Kosuri, 2017) and PCR errors (emulsion 

PCR etc.) (Tewhey et al., 2009; Williams et al., 2006), carefully designing and incorporating 

meaningful controls, precisely executing procedures, and incorporation of statistical methods or 

frameworks (Enrich2, DiMSum etc.) (Faure, Schmiedel, Baeza-Centurion, & Lehner, 2020; Rubin 

et al., 2017) are essential to guarantee the results are high quality and interpretable.  

1.4.3 Applications of deep mutational scanning in understanding protein mechanism and 

evolution 

DMS has been widely applied in many studies and systems since it was initially introduced 

(Fowler, Araya, Gerard, & Fields, 2011; Fowler & Fields, 2014; Hietpas, Roscoe, Jiang, & Bolon, 

2012) and has significantly advanced our understanding of various biological process (Wei & Li, 

2023). For example, applying DMS on the SARS-Cov2 spike protein accurately identified specific 

mutations that became widespread during the later stage of the COVID-19 pandemic within a year 

of the outbreak (Starr et al., 2022; Starr et al., 2020), demonstrating the power of DMS in 

addressing critical problems in a relatively short timeframe. Moreover, a subset of DMS 

experiments aim to understand human genetic diversity, such as multiplex assays of variant effects 

(MAVE). Many human genetic variants with unknown impacts have been systematically classified 

as either benign or deleterious (Kinney & McCandlish, 2019; Starita et al., 2017; Weile & Roth, 

2018). Additionally, DMS is not only limited to saturated mutagenesis of all single residues of one 

gene. Genetic interaction profiles between and within genes generated with double or even higher 

mutant combinations by DMS accurately predict protein structure (Rollins et al., 2019; Schmiedel 
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& Lehner, 2019) and reveal mechanisms underlying protein function and evolution (Bakerlee, 

Nguyen Ba, Shulgina, Rojas Echenique, & Desai, 2022; Diss & Lehner, 2018; Faure et al., 2022; 

X. Lin et al., 2022; Lite et al., 2020; Olson et al., 2014). Importantly, DMS can be coupled with 

advanced statistical methods like ancestral sequence reconstruction and machine learning or deep 

learning to comprehensively understand mechanisms behind protein function and evolution 

(Bakerlee et al., 2022; Cisneros et al., 2023; Ding et al., 2022; Domingo et al., 2019; Johnson et 

al., 2023; X. Lin et al., 2022). For example, with DMS and ancestral sequence reconstruction, the 

Thornton lab has statistically identified the decay of predictability of residue effects in long-term 

evolution of a protein, emphasizing the dynamic nature of residue interactions over time (Park, 

Metzger, & Thornton, 2022). Together, these studies demonstrate the efficacy of DMS in 

providing precise insights into protein structure, function, and evolution, a level of detail that is 

challenging to obtain through other methods.  

Online platforms have been developed for compilation of source data such as the 

MAVEDB (Esposito et al., 2019), allowing potential future studies across different datasets to 

explore variant effects or residue epistatic interactions across various proteins or systems. This 

improvement not only emphasizes the current impact of DMS but also highlights its vast potential 

for future applications. 

1.5 Overview of dissertation  

The first step in gene expression, transcription by Pol II, requires the function of a flexible, 

mobile domain in the Pol II active site called the trigger loop (TL). The dynamics and function of 

TL are maintained by residue interactions within and surrounding it. To determine how the residue 
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interaction networks controls TL function and evolution in large scale, we utilized deep mutational 

scanning together with our established genetic phenotypes predictive of biochemical defects. To 

detect pairwise residue interactions within the Pol II TL and between the TL and its surrounding 

domains in the Pol II active site, we analyzed 11,818 TL alleles including single mutants and a 

curated subset of double mutants (Chapter 2). To detect higher-order residue interactions within 

TL haplotypes, we examined 3,373 TL haplotypes including evolutionarily observed TL variants 

and haplotypes of all possible substitution combinations along the evolutionary path among 

selected TL variants (Chapter 3). Our analyses indicate TL function and evolution are shaped by 

widespread epistasis.  
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2.0 Widespread epistasis shapes RNA polymerase active site function and evolution 

2.1 Introduction 

Transcription from cellular genomes is carried out by conserved multi-subunit RNA 

polymerases (msRNAPs) (Allison et al., 1985; Cramer, 2002; Werner & Grohmann, 2011). 

Bacteria and Archaea use a single msRNAP to transcribe all genomic RNAs (Hirata, Klein, & 

Murakami, 2008; Vassylyev et al., 2002; G. Zhang et al., 1999), while Eukaryotes have at least 

three msRNAPs (Pol I, II, and III) for different types of RNAs (Cramer et al., 2001; Fernandez-

Tornero et al., 2013; Gnatt et al., 2001; Hoffmann et al., 2015). RNA synthesis by msRNAPs 

occurs by iterative nucleotide addition cycles (NAC) of nucleotide selection, catalysis and 

polymerase translocation (Bar-Nahum et al., 2005; Dangkulwanich et al., 2013; Kaplan, 2013; 

Malinen et al., 2012; D. Wang et al., 2006). msRNAPs active sites accomplish all three steps in 

the NAC using two conformationally flexible domains termed the bridge helix (BH) and the trigger 

loop (TL) (Da et al., 2016; Mazumder et al., 2020; Qiu et al., 2016; Vassylyev et al., 2002; D. 

Wang et al., 2006; Weinzierl, 2010). The multi-functional natures of the BH and TL likely underlie 

their striking conservation, serving as interesting models for studying the function and evolution 

of extremely constrained protein domains. 

Nearly all catalytic cycle events are associated with the concerted conformational changes 

in the TL, and potentially the BH (Dangkulwanich et al., 2013; Fouqueau et al., 2013; Kaplan, 

2013; Kireeva et al., 2008; Larson et al., 2012; Mazumder et al., 2020; B. Wang et al., 2013; D. 

Wang et al., 2006).The BH is a straight helix in most msRNAP structures (Cramer et al., 2001; 

Gnatt et al., 2001; Kaplan, 2013; X. Liu et al., 2013; D. Wang et al., 2006), but was found to be 



 33 

kinked in the Thermus thermophilus (Bacteria) RNAP structures (Kaplan & Kornberg, 2008; 

Vassylyev et al., 2002). The dynamics between the straight and kinked conformations have been 

simulated and proposed to promote msRNAP translocation (Kaplan & Kornberg, 2008; Silva et 

al., 2014; Tan et al., 2008; Weinzierl, 2010). Even more importantly, the TL has been observed in 

various conformations that confer different functions. Among the observed conformations, a 

catalytic disfavoring “open” state facilitates translocation and a catalytic favoring “closed” 

conformation promotes catalysis (Barnes et al., 2015; Kaplan, 2013; D. Wang et al., 2006). During 

each NAC, the TL nucleotide interaction region discriminates correct NTP over non-matched 

NTPs or dNTPs and initiates a TL conformational change from the open to the closed state (Fong 

et al., 2014; Malinen et al., 2012; B. Wang et al., 2013; L. Xu et al., 2014). The closure of the TL 

promotes phosphodiester bond formation (Vassylyev et al., 2007; B. Wang et al., 2013). 

Pyrophosphate release accompanies TL opening, which is proposed to support polymerase 

translocation to the next position downstream on the template DNA, allowing for the subsequent 

NAC (Da et al., 2012; B. Liu et al., 2016; Seibold et al., 2010) (Figure 2). Consistent with the 

model, mutations in the TL conferred diverse effects in every step of transcription (Kaplan, 2013; 

Kaplan et al., 2012; Kaplan et al., 2008; Kireeva et al., 2008; Kireeva et al., 2012; Malagon et al., 

2006; Matthew H. Larsona, 2012; Qiu et al., 2016). For instance, mutations in the TL NIR impair 

interactions between TL and substrates, resulting in hypoactive catalysis and reduced elongation 

rate in vitro (Loss of function, LOF) (Kaplan et al., 2012; Kaplan et al., 2008; Kireeva et al., 2008; 

Nayak et al., 2013; Qiu et al., 2016; Windgassen et al., 2014). Mutations in the TL hinge region 

and C-terminal portion appear to disrupt the inactive state of TL (open state) and shift the TL 

towards the active state (closed state), leading to hyperactive catalysis and increased elongation 

rate but impaired transcription fidelity (Gain of function, GOF) (Barnes et al., 2015; Cheung & 
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Cramer, 2011; Qiu et al., 2016). TL conformational dynamics and functions are likely balanced by 

residue interactions within and around the TL (Hein et al., 2014; Kettenberger et al., 2004; Lennon 

et al., 2012; Nayak et al., 2013; Sekine, Murayama, Svetlov, Nudler, & Yokoyama, 2015). 

Intramolecular interactions in the active sites of msRNAPs control catalytic activity and 

underpin transcriptional fidelity. The TL is embedded in the conserved active site and interacts 

with other domains such as the BH, ⍺-46 and ⍺-47 helices, which form a five helix bundle with 

two TL helices enclosing a hydrophobic pocket (Figure 2) (Barnes et al., 2015; D. Wang et al., 

2006). Many residue interactions observed between the TL and its proximal domains are critical 

for proper transcription, as catalytic activity and transcription fidelity can be altered by active site 

mutations within the TL (described above) and domains close to the TL in many msRNAPs 

(examples include BH GOF T834P and LOF T834A, funnel helix ⍺-21 GOF S713P, and Rpb2 

GOF Y769F) (Kaplan et al., 2012; Kaplan & Kornberg, 2008; Kaplan et al., 2008; Kireeva et al., 

2008; Malagon et al., 2006; Qiu et al., 2016; Tan et al., 2008). These mutant phenotypes suggest 

that TL conformational dynamics and function are finely balanced and could be sensitive to 

allosteric effects from proximal domains (Braberg et al., 2013; Kaster et al., 2016; Leng et al., 

2020; Taatjes, 2020). Understanding how “connected” the TL is to the rest of the polymerase will 

reveal the networks that integrate its dynamics with the rest of the enzyme and pathways for how 

msRNAP activity and evolution might be controlled. 

Physical and functional intramolecular interactions between amino acids define the protein 

function and evolvability (Breen, Kemena, Vlasov, Notredame, & Kondrashov, 2012; Phillips, 

1998; Starr & Thornton, 2016; Tesileanu, Colwell, & Leibler, 2015). Dependence of mutant 

phenotypes on the identities of other amino acids (epistasis) contributes to protein evolvability by 

providing a physical context and an evolutionary window in which some intolerable mutations 
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may be tolerated (Karageorgi et al., 2019; Ortlund, Bridgham, Redinbo, & Thornton, 2007; Phillips, 

2008). Recent studies have shown that mutations can alter the protein function, allostery, and 

evolvability, suggesting that even conserved residues are subject to distinct epistatic constraints 

dependent on context (Ding et al., 2022; Doud et al., 2015; Faure et al., 2022; Kondrashov, 

Sunyaev, & Kondrashov, 2002; Lunzer, Golding, & Dean, 2010; Natarajan et al., 2013; Park et al., 

2022; Starr et al., 2022). In line with this prediction, distinct phenotypes for the same conserved 

residues have been observed in a number of proteins, including Pol I and Pol II in yeast (Doud et 

al., 2015; Haddox et al., 2018; Natarajan et al., 2013). For example, the yeast Pol I TL domain is 

incompatible when introduced into  Pol II  even though about 70% of residues in the two yeast 

TLs are identical (Viktorovskaya et al., 2013). The results strongly imply even functions of ultra-

conserved domains are shaped by individually evolved enzymatic contexts (higher order epistasis). 

Functional interactions between residues can be revealed by genetic interactions of double 

mutants of interacting residues (Kaplan et al., 2012; X. Lin et al., 2022; Mani et al., 2008; Qiu et 

al., 2016; Qiu & Kaplan, 2019). Previous studies from our lab on a small subset of site-directed 

substitutions have identified distinct types of Pol II double mutant interactions including 

suppression, enhancement, epistasis, and sign-epistasis(Kaplan et al., 2012; Qiu et al., 2016; Qiu 

& Kaplan, 2019). Suppression was common between LOF and GOF mutants as expected if each 

mutant is individually acting in the double mutant and therefore, opposing effects on activity are 

balanced. Similarly, synthetic sickness and lethality were commonly observed between mutants of 

the same (GOF or LOF) class, consistent with the combination of mutants with partial loss of TL 

function having greater defects when combined. However, we have also observed lack of 

enhancement between mutants of similar classes (epistasis), suggesting single mutants might be 

functioning at the same step, and in one case, sign-epistasis, where a mutant phenotype appears 
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dependent on the identity of a residue at another position. For example, the GOF TL substitution 

Rpb1 F1084I was unexpectedly lethal with the LOF TL substitution Rpb1 H1085Y (instead of the 

predicted mutual suppression for independently (Kaplan et al., 2012; Qiu & Kaplan, 2019). This 

was interpreted as F1084I requiring H1085 for its GOF characteristics and becoming a LOF mutant 

in the presence of H1085Y (Figure 4A). How representative these interactions are, and the nature 

of interactions across the Pol II active site requires a more systemic analysis to fully describe and 

understand the networks that control Pol II activity and the requirements for each mutant 

phenotype. 

Deducing complex residue interaction networks on a large scale is challenging. To 

accomplish this for Pol II, we have previously established genetic phenotypes predictive of 

biochemical defects (Kaplan et al., 2012) and coupled this with a yeast Pol II TL deep mutational 

scanning system (Phenotypic landscape) (Fowler & Fields, 2014; Qiu et al., 2016; Qiu & Kaplan, 

2019). Here we develop experimental and analytical schemes to extend this system to a wide range 

of double and multiple mutants within the S. cerevisiae Pol II TL and between the TL and adjacent 

domains (Interaction landscape). By analyzing 11,818 alleles including single mutants and a 

curated subset of double mutants, we have identified intricate intra- and inter-TL residue 

interactions that strongly impact TL function. Additionally, the examination of 3,373 haplotypes 

including evolutionarily observed TL alleles and co-evolved residues revealed that TL function is 

heavily dependent on the msRNAP context (epistasis between TL and the rest of Pol II). These 

results suggest that despite being highly conserved, epistasis within msRNAPs contexts functions 

through derived residues and potentially reshapes functions of conserved residues. Finally, 

statistical coupling analyses reveals putative allosteric pathways appear to converge on the TL and 



 37 

may modulate active site activity upon factor binding. Our analyses indicate TL function and 

evolution are dominated by widespread epistasis.  

 

Figure 4. Schematics of the Pol II active site interaction landscape. 

(A). Examples of inter-residue genetic interactions. WT residues are shown in grey circles with number indicating 

residue position in Rpb1. Mutant substitutions are shown in colored circles, with color representing mutant class. 

Colored lines between mutant substitutions represent types of genetic interactions. (B). Overview of experimental 

approach. We synthesized 10 libraries of TL variants represented by colored stars. Libraries were transformed into 

WT or mutated yeast strains. A selection assay was subsequently performed by scraping and replating the 

transformants onto different media for phenotyping. DNA was extracted from yeast from all conditions, and went 
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through TL region amplification, and Illumina sequencing. Read counts for variants on general conditions were used 

to determine growth fitness, while read counts on other conditions were used to determine the phenotypic fitness 

landscape (see 2.4 Methods). (C). Overview of analytical approach for determining interaction landscape. Mutant 

conditional growth fitnesses were calculated using allele frequencies under selective growth conditions and subjected 

to two logistic regression models for classification/prediction of catalytic defects. Double mutant interactions were 

computed using growth fitness. Classification allowed epistatic interactions to be deduced from double mutant growth 

fitness (see 2.4 Methods). 

2.2 Results 

2.2.1 Systematic dissection of the Pol II active site interaction landscape 

We developed an experimental and analytical framework, which we term the Pol II TL 

interaction landscape, to dissect residue interactions that shape Pol II TL function and evolution in 

S. cerevisiae. We designed and synthesized 15174 variants representing all possible Pol II TL 

single mutants, a subset of targeted double mutants, evolutionary haplotypes and potential 

intermediates in ten libraries (Appendix Table 4). This approach follows our prior analysis of the 

TL phenotypic landscape (Qiu et al., 2016) with modifications (see 2.4 Methods and Figure 4A). 

Libraries were transformed, screened under diverse conditions and phenotyped by deep 

sequencing (Figure 4B and 5). Growth phenotypes of mutants are calculated as the relative allele 

frequency shift from a control condition and normalized to the WT under the same conditions. 

Biological replicates indicate high reproducibility (Figure 5B-C). Individual libraries were min-

max normalized (Sergey Ioffe, 2015) to account for scaling differences between libraries (Figure 
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6A) and the same mutants present among different libraries indicate high correlation of fitness 

determinations in each library (Figure 6B-C).  

We defined a conceptual framework for evaluating genetic interactions among TL 

mutations (Figure 4C). First, we assume that independence of mutant effects would result in log 

additive defects. This means that predicted double mutant fitness defects should be the 

combination of both single mutant defects, as is standardly assumed (Hill, Goddard, & Visscher, 

2008; X. Lin et al., 2022; Mani et al., 2008; Phillips, 2008). Deviation from log additive fitness 

defects represents potential genetic interactions between single mutants: either less than expected 

(i.e. suppression) or more than expected (i.e. synthetic sickness or lethality). Second, Pol II has 

two classes of active site mutants (GOF and LOF) that each confer fitness defects, and we 

previously observed activity additive interactions, meaning suppression between mutants of 

different classes (GOF+LOF) or synthetic sickness/lethality between mutants of the same class 

(GOF+GOF or LOF+LOF) in a set of mutants. We wished to distinguish specific epistatic 

interactions from activity-dependent suppression or synthetic interactions with mutant catalytic 

defects. For the purposes of our analysis, we defined an interaction as epistasis when we observed 

positive deviation in mutants of the same activity class (GOF+GOF, LOF+LOF), where we would 

expect synthetic sickness or lethality if mutants were functioning independently. We defined an 

interaction as sign epistasis for situations where we observed negative interaction for combinations 

between the classes (GOF+LOF), where we would expect suppression if mutants were functioning 

independently (Figure 7).  

Finally, the Pol II active site interaction landscape is based on accurate classification of 

mutant classes. We have previously demonstrated that mutant growth profiles across a select set 

of growth conditions are predictive of in vitro measured catalytic effects (Pol II TL phenotypic 
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landscape). We extended this analysis by training multiple logistic regression models to predict 

phenotypic classes. We trained two models based on 65 mutants with measured in vitro catalytic 

defects and their conditional growth fitness to distinguish between GOF or LOF classes. Both 

models worked well in classifying GOF or LOF mutants (Figure 8A). These two models were 

applied to all viable mutants (fitness score > -6.5 for control growth condition) and classified the 

mutants into three groups, GOF, LOF and those that did not belong to either one of the two groups 

(“unclassified”). To visually inspect the classification results, we applied t-SNE projection and k-

means clustering for all measured mutants in all growth conditions to examine clustering 

relationships to predictions from multiple logistic regression models. As shown in Figure 8B, we 

observed separated GOF and LOF clusters consistent with logistic regression classifications. With 

all phenotypic data, GOF and LOF mutants were further classified into different clusters, 

suggesting more fine-grained separation using additional phenotypes (Figure 8C). In summary, 

we developed an experimental and analytical framework to dissect the Pol II active site residue-

residue interaction landscape in high throughput. 
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Figure 5. Pol II deep mutational scanning is highly reproducible. 
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 (A). Single mutant growth fitness from mutants in libraries constructed from synthesized oligos correlated well with 

our previous library constructed by a random building block approach when plating conditions were the same. Qiu et 

al (Qiu et al., 2016) plated at a lower density (colony plating) that we speculated added noise to the analysis. When 

plating densely (“dense” and “lawn” conditions) our new and old libraries showed highly reproducible fitness 

determinations for single mutants. (B-C). Biological replicates for each library showed high reproducibility for all 

conditions. Pearson correlation of each library was calculated with three replicates for viable mutant fitness on all 

selective conditions. 
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Figure 6. Min-Max normalization uniformed the fitness level of lethal mutants from different libraries 

without disturbing the median of mutant fitness. 

(A). Library growth fitness distributions before and after normalization. Upper panel: The growth fitness distributions 

of libraries. The lowest fitness levels (fitness of lethal mutants) are different among libraries. To uniform various 

lowest fitness levels, we applied Min-Max normalization to minimize library effects on fitness ranges (See 2.4 

Methods for details). Lower panel: Libraries fitness distributions after normalization. The lethal mutant fitness levels 

of libraries were normalized to the same level while the median fitness for each library was not affected by the 
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normalization. (B-C). XY-plots showing the original fitness of mutants captured in two different libraries (n=586) (B). 

These mutants present in two libraries showed improved correlation between measurements upon normalization (C). 

 

Figure 7. Detection of functional interactions by deviation score. 

For a pseudo double mutant ab, the difference between its observed fitness (ab) and expected fitness (ab) adding the 

fitness of two constituent single mutants (a and b) determines the type of interaction between the two mutants. Positive 

or negative interactions are determined if the deviation score is greater than 1 or smaller than –1. Specific epistatic 

interactions are further distinguished from general suppression or synthetic sick or lethal interactions using predicted 

mutant catalytic defect classes (GOF or LOF). 
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Figure 8. Classification of mutant catalytic defects with machine learning algorithms. 
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(A). ROC curves for two multiple logistic regression models used to determine mutant catalytic class. Using 65 

mutants with validated in vitro determined catalytic defects and conditional growth fitness measured in our experiment, 

we trained two models to classify variants as GOF or LOF. The GOF AUROC is 0.9889 (P ≤ 0.0001), whereas the 

LOF ROC is 0.9914 (P ≤ 0.0001). The predicted vs. observed graphs display the predicted probability of 65 known 

mutants would be GOF or LOF. The threshold we used to determine GOF or LOF mutations is shown by lines at 0.75. 

Details of the models are in Appendix Table 5. (B). Left: t-SNE projection of all mutants (n=15174) with perplexity 

= 50. Right: k-means cluster of all mutants with 20 clusters. The t-SNE and k-means projections suggest GOF are in 

3 clusters (cluster 2, 14, and 16), LOF are in 2 clusters (cluster 3 and 18), and unclassified mutants are in 2 clusters 

(11 and 15). Most ultra-sick/lethal mutants (fitness <= -6.5) are projected together into 13 clusters, likely due to 

significant noise from low read counts across conditions. (C). Feature plot of viable mutations in t-SNE and k-means 

projections (n=6054). Ultra-sick/lethal mutations were removed and the viable mutants were projected with t-SNE 

(perplexity = 100) and K-means (10 clusters). GOF were grouped into 4 clusters (4, 5, 7 and 10) and LOF were in 4 

clusters (1, 3, 6, and 9). Each spot in the projection represents a mutant and it is colored based on the fitness of the 

mutant in selective conditions. GOF and LOF mutants in different clusters are related to various phenotype patterns. 

GOF clusters 7 and 10 are defined by strong MPAS, while clusters 4 and 5 show slight MPAS, GalR, MnS, but strong 

Lys+. Slight FormS is a common feature across four GOF clusters. LOF clusters 3 and 6 show slight MnR, while 

clusters 1 and 9 are strongly MnR and GalR. There are three common features in all LOF clusters: MPAR, FormS, and 

Lys-. Cluster 8, which mostly contain unclassified mutants, appear defined by Gal super sensitivity, indicating a 

potential specific defect defining this cluster. 

2.2.2 Widespread epistasis in the Pol II TL interaction landscape 

To determine the TL-internal interaction networks, we rationally selected 2-4 different 

substitutions for each TL residue and combined them with the selected substitutions at all other 

TL positions. Substitutions were chosen to represent diverse phenotypes (GOF, LOF, lethal, or 

unclassified mutants). This curated set of 3790 double mutants represents potential interactions 

between any two TL residues (Figure 9A). We compared the observed fitness of these double 
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mutants with expectations from the additive model, and noticed the observed double mutant fitness 

deviated from the predicted fitness (r2=0.21), which is much smaller than the r2 (about 0.65-0.75) 

reported in other studies (Araya et al., 2012; Fowler et al., 2010; X. Lin et al., 2022; Melamed et 

al., 2013; Starr & Thornton, 2016) (Figure 9B), suggesting epistasis in the ultra-conserved TL 

domain might be more prevalent. About half of the combinations (1776/3790) matched the 

additive model (observed fitness ≈ expected fitness), while the rest showed positive (observed 

fitness > expected fitness, n=612) or negative (observed fitness < expected fitness, n=1402) 

interactions (Figure 9B). From these positive or negative interactions, we distinguished the ratio 

of epistasis relative to activity-additive interactions. In all GOF/LOF combinations, we observed 

43% activity-additive suppression and 41% negative interactions (sign epistasis). In all GOF/GOF 

or LOF/LOF combinations, activity-additive synthetic sick or lethal interactions were much more 

common than epistasis in combinations within the same class. We observed ~2% positive (epistasis) 

and 95% negative (activity-additive synthetic sick or lethal) interactions in GOF/GOF 

combinations, and 6% positive (epistasis) and 84% negative (synthetic sick or lethal interactions) 

interactions in LOF/LOF combinations (Figure 9C, 9E and 10). Interactions were distributed 

throughout the TL and covered every TL residue, supporting connectivity across the TL. Observed 

epistasis was concentrated within the C-terminal TL helix and adjacent regions (Figure 9D), 

supporting functional dependency of TL-C terminal residues and consistent with their proposed 

function to collaboratively stabilize the TL open state.  

Genetic interactions reveal further insight into the nature of previously lethal or 

unclassified individual mutants. First, most lethal mutants could be suppressed by at least one 

predicted GOF mutant (Figure 9F and 10), suggesting that most lethal mutants likely have 

reduced activity (LOF) below a viable threshold, as might be predicted from greater probability of 
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any individual mutant being a LOF than a GOF. However, two lethal mutations could be 

suppressed by most LOF mutations or specific other lethal mutants, but not GOF mutants, 

implying that their lethality resulted from being GOF (select A1076 substitutions). Second, 

unclassified single mutants mostly did not show widespread interactions with GOF, LOF, or lethal 

classes. However, a few unclassified mutants showed suppression in combination with GOF 

mutants, suggesting potential atypical LOF not detected by phenotypic analysis, or potential sign 

epistasis (Figure 9G and 10). 
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Figure 9. Widespread epistasis in the Pol II TL interaction landscape. 
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(A). Design of the pairwise double mutant library. We curated 2-4 substitutions for each TL residue (in total 90 

substitutions, n(GOF) = 18, n(LOF) = 30, n(Unclassified) = 19, n(Lethal) = 23), and combined them with each other 

to generate double mutants. 3910 double mutants representing combinations between any two TL residues were 

measured and 3790 of them passed the reproducibility filter. WT TL residue positions are indicated with magenta arch. 

Phenotype classes of single substitutions are shown as colored circles (GOF in green, LOF in blue) while unclassified 

mutants are in grey and lethal mutants are in black. (B). An xy-plot of observed double mutant growth fitness measured 

in our experiment (Y-axis) and expected fitness from the addition of two constituent single mutants' fitnesses (X-axis). 

N (positive) = 612. N (Negative) = 1402. N (Additive) = 1776. N (Sum)=3790. Lethal threshold (-6.5) is labeled with 

dotted lines on X and Y axis. The additive line where X ± 1 =Y is indicated with dashed line. Simple linear regression 

was performed, and the best fit equation is Y = 0.52X -2.55, r2 = 0.21, P < 0.0001. (C). Percent of interactions observed 

from each combination group. N (LOF/LOF) = 412. N (GOF/GOF) = 156. N (GOF/LOF) = 534. Epistasis and sign 

epistasis are indicated with colored lines. (D). Various groups of interactions are displayed in network format. (E-G). 

The intra-TL functional interaction heatmaps of various combinations. Double mutant deviation scores are shown in 

the heatmap. Annotations at the top and left indicate the curated single mutants and their predicted phenotypic classes 

from multiple logistic regression modeling. GOF/GOF, LOF/LOF, and GOF/LOF combinations are shown in E. 

Combinations with lethal single substitutions are in F. Combinations with unclassified mutants are in G. 
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Figure 10. The intra-TL functional interaction landscape. 

The intra-TL functional interaction landscape is shown as a heatmap. Annotations at the top and right indicate the 90 

curated single mutants and their predicted phenotypic classes from multiple logistic regression modeling. The upper 

part of the heatmap shows single mutant growth fitness profiling across multiple phenotypes ordered by groups 

predicted with logistic regression models. The lower part of the heatmap shows double mutant deviation scores where 

a colored block at the interaction of x and y coordinates indicates deviation score of the double mutant. 
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2.2.3 Allele-specific interactions suggest unique properties of individual mutants with 

similar phenotypes 

TL conformational dynamics and function are balanced by residue interactions within the 

TL (TL-internal interactions) and between the TL and TL-proximal domains (TL-external 

interactions). The properties of GOF and LOF mutants adjacent to the TL appear similar to those 

inside but how they behave upon TL perturbation is not known. We analyzed the scope and nature 

of TL-internal and TL-external interactions by exploring interaction space of 12 previously studied 

GOF and LOF mutants (8 within the TL and 4 outside) each combined with all possible single TL 

mutants (Figure 11A). These 12 mutants function as probes for the genetic interaction space of 

the TL and how it might be altered in allele-specific fashion by perturbation of the “probe” 

mutation. TL adjacent mutants showed similar scale of widespread interactions with TL 

substitutions as when TL-internal mutants were used as probes (Figure 11B and 12). For these 

TL adjacent substitutions, we conclude their impact on Pol II function is of similar magnitude and 

connection as substitutions within the TL. 

We further compared the similarity of interaction networks for substitutions with 

apparently similar biochemical and phenotypic defects. These analyses were designed to detect if 

changes to TL function might reflect simple alterations to TL dynamics, or additional alteration to 

folding trajectories or conformations. In the former case, mostly additive interactions might be 

predicted due to TL operating in the same fashion in double mutants versus single mutants, with 

phenotypes deriving from differences in kinetics or distributions of existing states. In the latter 

case where a mutation alters TL folding trajectories or changes TL conformations, it might be 

predicted that individual mutants that are superficially similar will show allele-specific genetic 

interactions reflecting epistatic changes to TL function. A subset of probe mutants showed 
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widespread expected activity-additive suppression between GOF/LOF mutations and activity-

additive synthetic lethality between same classes of substitutions (LOF/LOF or GOF/GOF). 

However, allele-specific epistasis and sign epistasis were also observed and were much higher for 

some mutants than others (Figure 11B-C, 12 and 13). 127/620 TL substitutions showed unique 

interactions with specific probe mutants; for example, some lethal substitutions could only be 

suppressed by Y769F, a GOF TL-proximal probe mutant in Rpb2 (Figure 14). Moreover, two TL-

adjacent GOF probe mutants, Rpb1 S713P (funnel ⍺-helix 21) and the BH allele Rpb1 T834P 

displayed greatly distinct interaction networks despite similarly increased activities. Rpb1 S713P 

exhibited widespread suppression of LOF TL substitutions (96 instances) consistent with generic 

enhancement of activity but preservation of TL function. In contrast, Rpb1 T834P exhibited much 

lower suppression ability (33 instances). In addition to much lower ability to suppress, T834P 

showed a much greater amount of sign epistasis than Rpb1 S713P (102 instances to 38 instances) 

(Figure 11C and 15A). These results are consistent with a model that perturbation to the BH 

structure is coupled to extensive changes to TL functional space and that T834P function as a GOF 

mutant requires most TL residues to be WT.  

A similar distinction as above but between two internal TL GOF substitutions, Rpb1 

E1103G and Rpb1 F1084I, was also apparent (Figure 15B). Rpb1 E1103G showed widespread 

suppression of LOF TL substitutions (184 instances), consistent with site-directed mutagenesis 

studies (Kaplan et al., 2012) (Figure 11C, 12 and 15B). These results suggest E1103G primarily 

may alter TL dynamics consistent with biochemical data that it promotes TL closure (Kireeva et 

al., 2008) and that it allows TL mutants primarily to maintain their effects. In contrast, Rpb1 

F1084I showed more limited suppression of LOF alleles (43 instances) while showing much more 

widespread synthetic lethality (Figure 11C, 12 and 15B). These results indicate F1084I has a 
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much greater requirement for WT residues at many TL positions to maintain its GOF 

characteristics. When TL function is additionally perturbed, F1084I appears to switch from a GOF 

to a LOF. These results imply that individual probe mutants distinctly reshape the Pol II active site, 

though they might share catalytic and phenotypic defects as single mutants.  

An even more striking example of this phenomenon can be observed by comparison of the 

interaction networks of two LOF substitutions at the exact same position, the ultra-conserved 

H1085 residue (Figure 15C). This histidine contacts incoming NTP substrates (Vassylyev et al., 

2002; D. Wang et al., 2006), is the target for the Pol II inhibitor ⍺-amanitin (Kaplan et al., 2008), 

and promotes catalysis (Kaplan, 2013; D. Wang et al., 2006). Initial structural data and molecular 

dynamics simulations were interpreted as H1085 potentially functioning as a general acid for Pol 

II catalysis (Carvalho, Fernandes, & Ramos, 2011; Castro et al., 2009; X. Huang et al., 2010; 

Unarta, Goonetilleke, Wang, & Huang, 2023). Our discovery that H1085L was especially well-

tolerated (Qiu et al., 2016), and subsequent experiments from the Landick lab (Mishanina et al., 

2017; Palo et al., 2021), have led to their proposal that the TL histidine functions as a positional 

catalyst and a similarly sized leucine supports catalysis with relatively mild effects on biochemistry 

and growth. If H1085Y and L substitutions are acting on a continuum of positional catalyst activity, 

we might predict their interaction networks would be similar and only be distinguished by 

magnitude of interactions, but not identity or type of interactions. In contrast to this prediction, 

distinct interaction patterns were observed (Figure 11C, 12 and 15C). Most GOF mutants were 

able to suppress H1085Y but not H1085L. Instead, H1085L showed synthetic lethality with most 

GOF mutants (putative sign epistasis). For example, almost all substitutions at E1103 showed sign 

epistasis with H1085L but not H1085Y (Figure 13B and 15C). Distinction between H1085L and 

H1085Y is evident in the PCA plot of probe mutants (Figure 11D). The partially unique nature of 
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each probe mutant is also evident in the PCA plot (Figure 11D). Altogether, distinguishable 

interaction networks of probe mutants, despite their similarity in catalytic and growth defects, even 

within the same residue, suggest that each mutant has ability to propagate effects across the Pol II 

active site. To some extent, each Pol II mutant creates a new enzyme. 
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Figure 11. Pol II TL interaction landscape distinguishes mutants with similar phenotypes. 
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(A). Design of the targeted double mutant libraries. All possible substitutions at each TL residue (represented with a 

simplified format in the left panel) and twelve “probe” mutations (eight within the TL and four in TL-proximal 

domains) (middle panel) were combined with to generate 7280 double mutants (right panel). 7276 mutants passed the 

reproducibility filter and were used for interaction analyses. (B). The percentage of functional interactions observed 

for each probe mutant with viable GOF or LOF TL substitutions. Epistasis and sign epistasis are labeled with colored 

lines. (C). Pol II-TL functional interaction landscape with interactions represented by deviation scores. The upper 

panel shows interactions of GOF probe mutants in combination of viable GOF or LOF TL substitutions. The lower 

panel shows interactions of combinations with LOF probe mutants. (D). Principal component analysis (PCA) of 

deviation scores across double mutant interactions for 12 probe mutants (see 2.4 Methods). 

 

Figure 12. The functional interaction landscape of probe mutants. 
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The functional interaction landscape is shown as a heatmap. The upper part of the heatmap shows all Pol II TL single 

mutant growth fitness profiling across several phenotypes and the single mutants were ordered by hierarchical 

clustering with Euclidean distance. The lower part of the heatmap shows double mutant deviation scores where a 

colored block at the interaction of x and y coordinates indicates deviation score of the double mutant. 
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Figure 13. Identifying TL substitutions that interact with the probe mutants. 
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(A). Identification of epistasis and suppression within positive interactions, and sign epistasis and synthetic 

sickness/lethality within negative interactions in two probe mutants, L1101S and N1082S. The deviation score of 

combinations (y-axis) between probe mutants and TL GOF or LOF single mutants were plotted versus the predicted 

probability of single mutants being GOF or LOF (x-axis). (B). The scatter plots for distinguishing interactions of the 

other 10 TL probe mutants. 

 

 

Figure 14. Allele-specific interactions. 

Unique interactions observed between TL substitutions and probe mutants. For each substitution, we analyzed the 

interquartile range (IQR) of their deviation scores with all probe mutants. Any substitution with deviation score(s) 

outside of the IQR were extracted and called as unique interaction(s). 127 substitutions with unique interactions with 

probe mutants were found out of 620 and are shown in the heatmap. The heatmap was hierarchical clustered with 

Euclidean distance for both rows and columns. 
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Figure 15. Interaction networks of selected probe mutants. 
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The TL is shown in circle with WT residues and positions labeled. All 20 substitutions of each TL residue are 

represented by a magenta arc under each WT residue, with tick marks representing individual substitutions at that 

position and are colored by mutant class. Comparison of interaction networks between S713P and T834P (A), E1103G 

and F1084I (B) and H1085Y and H1085L (C) showed the differences are significant (P < 0.0001). The comparisons 

were performed with Kruskal-Wallis test with P-value correction with Dunn’s multiple comparisons test (Appendix 

Table 6). 

2.2.4 Pol II TL interaction landscape reveals functional dependency of proximal residues 

Several allele-specific epistatic interactions were also observed. Some of the strongest 

epistatic interactions were between A1076 substitutions and L1101S, which differed from all other 

GOF probe mutants (Figure 16A), suggesting tight coupling between A1076 and L1101 for Pol II 

function. These two hydrophobic residues, together with other hydrophobic residues in TL 

proximal helices, form a five-helix bundle in the Pol II active site likely stabilizing the open TL 

conformation (Figure 16C). Consistent with this, another pair of adjacent residues, M1079 and 

G1097, also showed allele-specific epistasis (Figure 16B-C).  

The epistasis we identified in combinations within the same class (GOF/GOF or LOF/LOF) 

might also be sign epistasis (GOF suppressing GOF or LOF suppressing LOF due to a switch in 

residue class). We distinguished regular epistasis (lack of additivity) from sign epistasis 

suppression by checking conditional phenotypes predictive of biochemical defects. We reasoned 

that epistatic interactions would exhibit double mutant conditional phenotypes similar to single 

mutants while sign epistasis suppression would also exhibit suppression of conditional phenotypes. 

Therefore, we examined double mutants with our logistic regression models for determining 

phenotypic class. The majority of double mutants within each class showing positive epistasis 

(GOF/GOF or LOF/LOF) maintained single mutant classification. 6/10 GOF/GOF doubles 
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showing positive epistasis were classified as GOF while 30/38 LOF/LOF doubles were classified 

as LOF, suggesting classic epistasis (Figure 17A). In three cases of GOF/GOF combinations, all 

between L1101S and A1076 substitutions, the resulting double mutants were unclassified, 

consistent with nearly WT behavior. Here, each constituent single mutant conferred a GOF 

phenotype, but the double mutants show mutual suppression. This suggests tight coupling between 

1101 and 1076 (see 2.3 Discussion).  

We also observed allele-specific interactions for predicted lethal mutants. Our threshold 

for lethality is likely higher than that in actuality, and very slow growing mutants may fall below 

our lethal threshold while still having enough data on conditional fitness assessment for logistic 

regression to predict mutant class. For 21 ultra sick/lethal TL substitutions predicted as GOF 

themselves, we observed suppression when combined with other GOF mutants (Figure 17B-C). 

Lethal substitutions of A1076 could be suppressed by LOF probe mutants and the GOF probe 

L1101S, consistent with specific combinations between 1076 and 1101 showing sign-epistasis 

suppression or allele-specific mutual suppression. F1084R is a predicted lethal GOF but can be 

suppressed specifically by GOF probe Y769F. F1084 and Y769 are close to each other when the 

TL is in the closed, substrate bound state. Additionally, ultra-sick/lethal substitutions predicted as 

LOF could be suppressed by a LOF allele (Figure 17B). As an example, S1091G could be 

suppressed by almost all curated GOF mutants, yet it was also specifically suppressed by the LOF 

V1094D (Figure 17C). S1091G and V1094D appear to compensate for each other in a allele-

specific fashion. We suggest that these are the types of interactions that will allow the TL and 

adjacent residues to evolve and differentiate while maintaining essential functions.  

We note that strong epistasis is much more prevalent in the Pol II system than in other 

proteins where it has been quantified (Araya et al., 2012; Fowler et al., 2010; Harms & Thornton, 
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2010; Melamed et al., 2013; Starr & Thornton, 2016) (Figure 17D). We attribute this difference 

to the much higher rate of suppressive interactions due to Pol II mutants having opposing effects 

on catalysis. 

 

Figure 16. Pol II TL interaction landscape reveal functional dependency of proximal residues. 

A-B. Specific epistatic interactions observed between hydrophobic residues A1076 and L1101 (A), and M1079 and 

G1097 are shown as heatmaps (B). The x-axis of both heatmaps are 20 substitutions ordered by predicted phenotypic 

classes, and the color of substitution represents the phenotypic class of the substitution. GOF substitution is in green, 

LOF is in blue, unclassified is in gray, and lethal (fitness < -6.5) is in black. C. The epistatic interactions we identified 

between A1076 and L1101, together with M1079 and G1097 are shown on the five-helix bundle of Pol II active site 

(PDB:5C4X)(Barnes et al., 2015). 
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Figure 17. Discrimination of regular epistasis from sign epistasis. 
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(A). The phenotypic classes of double mutants consist of two viable single substitutions with positive interactions. 

Four plots show four kinds of combinations respectively. For each plot, the predicted GOF or LOF probabilities of a 

double mutant and two constituent single mutants are shown in Y-axis. The double mutant and two constituent single 

mutants are shown in X-axis in the order of the first constituent mutant (Mut1), the double mutant (Double), the second 

constituent mutant (Mut2). The double mutant and two constituent mutants are connected with lines for each pair of 

combinations. The numbers of double mutants belonging to GOF (top), unclassified (middle), or LOF (bottom) are 

labeled. GOF and LOF probability threshold are labeled with dashed lines. (B). The phenotypic classes of double 

mutants consist of one viable and one lethal single substitutions, or two lethal single substitutions with positive 

interactions. The arrangements of plots are similar to A. (C). The heatmaps of lethal GOF substitutions suppressed by 

GOF targets (left) and lethal LOF substitutions suppressed by LOF targets (right). (D). The fraction of strong and 

weak interactions we observed in double mutants compared with the ratio reported in other studies (Araya et al., 2012; 

Fowler et al., 2010; Harms & Thornton, 2010; Melamed et al., 2013; Starr & Thornton, 2016). 

2.2.5 TL evolution is shaped by contextual epistasis 

We previously found that identical mutations in a residue conserved between the Pol I and 

Pol II TLs yielded different biochemical phenotypes (Scull et al., 2019; Viktorovskaya et al., 2013). 

Furthermore, the yeast Pol I TL was incompatible within the yeast Pol II enzyme, implying that 

TL function is shaped by the enzymatic context (Scull et al., 2019; Viktorovskaya et al., 2013). To 

determine the generality and scope of TL-Pol II incompatibility, we designed a library containing 

evolutionary TL variants from bacterial, archaeal, and eukaryotic msRNAPs and determined their 

compatibility in the yeast Pol II context (Figure 18A). TL alleles of eukaryotic Pols were more 

compatible than those from Archaea and Bacteria, and Pol II alleles were the most compatible 

(Figure 18B and 19A-B), consistent with evolutionary distance. The total number of TL 

substitutions in haplotypes were slightly negatively correlated with growth fitness in the Pol II 

background for Archaeal, Pol I, II and III TLs (Figure 19C), though not for Bacterial TLs, likely 
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because the bacterial TLs were almost entirely incompatible in the Pol II context (Figure 19C). 

Conservation of TL sequence and function was high enough that some archaeal sequences could 

provide viability to yeast Pol II, yet at the same time a number of Pol II TLs from other species 

were defective if not lethal. These results suggest widespread coevolution of TL sequence outside 

of ultra-conserved positions shapes TL function (see 2.3 Discussion). 

We reasoned that evolutionarily observed lethal substitutions might be closer to functional 

than non-evolutionarily observed and would therefore be more likely to be suppressible by Pol II 

GOF alleles. To compare suppressibility between evolutionarily observed and unobserved 

substitutions lethal to Pol II, we extracted the highest positive deviation scores among all double 

mutants containing each lethal substitution. Maximum deviation scores for Pol II lethal 

substitutions present in TLs of existing msRNAPs were higher than for lethal substitutions that 

were absent, indicating the Pol II lethal mutants present in existing msRNAPs on average maintain 

a greater functionality and/or are suppressible by single changes (Figure 18C and 19B). The TL 

has been estimated as providing 500-1000 fold enhancement on catalytic activity (Toulokhonov, 

Zhang, Palangat, & Landick, 2007; W. Wang, Walmacq, Chong, Kashlev, & Wang, 2018; 

Yuzenkova et al., 2010), while we estimate only ~10-fold effects are tolerated for yeast viability 

(Kaplan et al., 2008). We conclude that lethal mutants observed as functional residues in other 

species are more likely to be close to the viability threshold as might result from a series of small 

steps to allow them to function.  
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Figure 18. Contextual epistasis shapes TL evolution. 

(A). Schematic for the TL evolutionary haplotypes library. We selected 662 TL haplotypes representing TL alleles 

from bacterial, archaeal and the three conserved eukaryotic msRNAPs. These TL alleles were transformed into yeast 

and were phenotyped under selective conditions. (B). Fitness of evolutionarily observed TL haplotypes in the yeast 

Pol II background. The Pol II WT TL fitness (0) is labeled as dotted line. Kruskal-Wallis test was performed for 

comparison and significant levels (P < 0.05) were labeled. (C). A comparison of the maximum deviation score of each 

TL lethal single substitution that is present in any evolutionary TL haplotypes from bacterial, archaeal or eukaryotic 

Pols versus those that have not been observed in any species. The evolutionary TL haplotypes were from multiple 
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sequence alignments (MSA). 9 substitutions were found in an MSA of 542 archaeal TL sequences that are lethal when 

present in yeast as a single substitution. 17 were found in an MSA of 1403 bacterial TLs, 5 were found in 749 Pol I 

TLs, 7 were found in 499 Pol II TLs, and 5 were found in 539 Pol III TLs. Evolutionarily observed lethal substitutions 

were compared to those unobserved in our TL MSA. The percentage of in total suppressible lethal single mutants for 

each group is labeled at the bottom of the plot. Boxes are: center line, median; box limits, second and third quartiles; 

whiskers, maximum and minimum points. Statistical comparison was done with the Mann-Whitney test and the 

significant levels (P < 0.05) are shown in the figure. 
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Figure 19. Contextual epistasis affects fitness of TL haplotypes. 

(A). Distributions of deviation scores of the TL haplotypes in each group. (B). Comparison of the mean deviation 

scores of lethal single substitutions that are present in different species and those that are absent in any species. 

Standard deviation values are also shown in the bar plot. ANOVA multiple comparison was applied to compare the 
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mean deviation score of the “Absent” group to each of the other groups and significant levels (P < 0.05) are shown in 

the figure. (C). An xy-plot of evolutionary observed TL haplotypes fitness versus the numbers of substitutions in the 

haplotypes. Simple linear regression was performed for each plot. Bacteria fitness vs count: Y = 0.004267*X – 8.660, 

r2=2.152e-005. Archaea fitness vs count: Y = -0.3406*X - 4.175, r2=0.1568. Pol I fitness vs count: Y = -0.7818*X + 

1.235, r2=0.1521. Pol II fitness vs count: Y = -0.3943*X – 1.132, r2=0.06535. Pol III fitness vs count: Y = -0.4148*X 

– 3.468, r2=0.06984. The P values of the slopes are labeled. 

2.2.6 TL residues co-evolve with the rest of Rpb1 through diverse pathways 

Our analyses suggest that even a highly conserved domain such as the Pol II TL can be 

sensitive to identity of adjacent residues and that changing networks of interactions shape the Pol 

II active site across evolution. We employed statistical coupling analysis (SCA) to identify if there 

are any coevolving residue networks in Rpb1 and ask about pathways that might co-evolve the TL. 

SCA “Sector” analysis is especially useful for identifying subgroups of coupled residues that might 

form allosteric communication networks (Halabi, Rivoire, Leibler, & Ranganathan, 2009; Rivoire, 

Reynolds, & Ranganathan, 2016; Salinas & Ranganathan, 2018). We extracted 410 yeast Pol II 

Rpb1 sequences from the recently published msRNAP large subunit multiple sequence alignment 

(MSA) from the Landick lab (Palo et al., 2021) and performed SCA (see 2.4 Methods)(Rivoire et 

al., 2016). We identified 40 coevolving sectors (Figure 20), and every single TL residue was found 

within one of the eight sectors that form generally continuous network of interactions within 

Rpb1(Figure 21). TL residues within the TL NIR were coupled with most BH residues and the 

alanine-glycine linker (Rpb1 1087-1088). These residues are highly conserved (Qiu et al., 2016), 

indicating this sector is driven by conservation primarily. Six of eight Rpb1 sectors containing TL 

residues also contained at least one BH residue, supporting functional coupling between these two 

domains. Coupling is not limited to residues that are close to the active site. Distal residues can 



 72 

potentially modulate TL function through allosteric interactions. For example, the greatest distance 

between a TL residue and another Rpb1 residue in the same sector is ~ 55 Å. Interestingly, the 

residue pair 1076-1101, for which we observed extensive epistasis, are the sole TL residues within 

a very large cluster containing >150 residues across Rpb1. Our epistasis studies indicate multiple 

allele-specific interactions between 1076 and 1101 of exactly the type that might appear as 

evolutionary coupling between specific substitutions at these positions. The hydrophobic TL 

pocket is an attractive linchpin for potential communication to the TL from throughout Pol II, and 

multiple sectors converge on this domain. 

 

Figure 20. Rpb1 coevolutionary residue networks identified by Statistical Coupling Analysis (SCA). 

40 significant and independent sectors are shown in a heatmap with correlation score calculated from the statistical 

coupling analysis. Sectors containing TL and BH residues are labeled. Numbers of TL and BH residues contained in 

each sector are labeled on the left of the heatmap. Statistical coupling analysis was applied to a published Multiple 

Sequence Alignment (MSA) of Rpb1 homologs (n= 410) (Palo et al., 2021). Details are in 2.4 Methods. 
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Figure 21. Ultra-conserved TL co-evolves with Pol II residues through diverse pathways. 
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The eight coevolution sectors containing any TL residues that were identified from statistical coupling analysis are 

shown on the yeast Pol II Rpb1 structure (PDB:5C4X)(Barnes et al., 2015). The TL is labeled with magenta and the 

BH is labeled with cyan. The TL and BH residues in each sector are labeled at the bottom of each sector. The total 

number of residues within each sector is also shown. The details of the statistical coupling analysis are in 2.4 Methods. 

2.3 Discussion 

How individual mutants alter a protein’s function is not necessarily straightforward at the 

mechanistic level. Amino acid substitutions both remove functionality of the WT residue but 

replace that functionality with something different. By altering the local environment within a 

protein or potentially propagating effects to distant locations through allosteric changes, each 

substitution potentially can be quite different. These differences may not be apparent as phenotypic 

outputs and phenotypic assays may not have granularity to distinguish different biophysical 

behaviors if they result in similar outputs. For Pol II mutants, even high-resolution phenotypic 

analyses, such as gene expression profiling or genetic interaction profiling between Pol II mutants 

and deletions in other yeast genes (Braberg et al., 2013), suggest that LOF and GOF mutants 

represent a continuum of defects that match enzymatic activity in vitro. Therefore, these profiles 

also appear dependent on the output of Pol II activity defects and can’t distinguish potential 

differences in underlying mechanism. 

Through systematic detection of genetic interactions within the Pol II active site, we have 

identified functional relationships between amino acids across the TL and between TL 

substitutions and others. In the absence of double mutant epistasis analyses it would not be possible 

to differentiate similar alleles from one another. L1101S and E1103G, for example, are two GOF 

alleles very close to each other in Pol II structure and confer similar phenotypic landscapes across 
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various growth conditions. Here, we find that their distinct interactions support that substitutions 

at 1101 and 1103 target distinct residue networks (Figure 11C, 12, 13, and 16A). 1101 functions 

in the five-helix bundle hydrophobic pocket while 1103 interacts and co-evolves with a number of 

TL external residues that together support interactions that promote the open TL conformation 

(Figure 16C and 21). We also observed connections between TL C-terminal residues that suggest 

a limit to how disruptions to structure there can alter Pol II activity (Figure 9D and 21). Helix-

disrupting LOF proline substitutions in at least two TL positions showed epistasis with multiple 

substitutions in the back of the TL (1094-1098), suggesting that their functions require TL C-

terminal helix structure and in the absence of that structure (proline disruption) effects are no 

longer additive. 

The strongest epistatic interactions observed were between two pairs of hydrophobic 

residues, A1076 and L1101, and M1079 and G1097 (Figure 16). Each of these contributes to the 

structure of a hydrophobic pocket that bundles two TL proximal helices with the BH and two 

others in a five-helix bundle. Supporting the dependence of these residues on each other for 

maintaining function, identity at these positions over evolution also shows coupling. Interestingly, 

these A1076 and L1101 were coupled uniquely out of TL residues with a great number of other 

positions in Rpb1 (Figure 21).  

Elongation factors bind Pol II and alter its activity, but the mechanisms by which they do 

so are not known (Cramer, 2019b; Schier & Taatjes, 2020). We observed a high level of genetic 

interactions between residues outside the TL and residues within it, including allele-specific 

reshaping of TL mutant space upon single substitution outside the TL (Figure 11). The fact that 

minor mutational changes outside the TL can apparently functionally perturb the TL would be 

consistent with the idea that minor alterations to Pol II structure upon elongation factor binding 
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could easily propagate into the active site via the TL or the BH. As an example, human Rtf1 has 

been observed to project a domain into the Pol II structure adjacent to the BH (in yeast, this region 

is occupied instead by Rpb2(Vos et al., 2020)). These contacts have been proposed to alter Pol II 

activity. We would propose that the paths for such alteration activity would follow the coupling 

sectors we have observed by SCA.  

How different individual substitutions are under the surface is critical for understanding 

plasticity in protein mechanisms and how they might be altered by evolutionary change. A key 

open question in nucleic acid polymerase mechanisms is the paths for protons in the reaction (for 

example, deprotonation of the synthesized strand 3′-OH and protonation of pyrophosphate leaving 

group) (e.g.(Belogurov & Artsimovitch, 2019; Carvalho et al., 2011; Castro et al., 2007; Gregory, 

Gao, Cui, & Yang, 2021; X. Huang et al., 2010; Palo et al., 2021; Unarta et al., 2023)). For 

msRNAPs, the association with incoming NTP by a nearly universally conserved histidine led to 

the proposal that this residue might donate a proton during the reaction (Castro et al., 2007; Castro 

et al., 2009; D. Wang et al., 2006). Some substitutions at this position can provide minimal 

essential function (e.g. tyrosine, arginine), while others are only moderately defective (glutamine). 

Surprisingly, we found that H1085L was very-well tolerated for growth (Qiu et al., 2016) and the 

Landick lab has proposed this substitution supports catalysis through positional but not chemical 

effects (Mishanina et al., 2017; Palo et al., 2021). Our studies here were quite surprising in that 

they indicated that H1085L Pol II has unique behavior when perturbed by all possible TL 

substitutions and is entirely distinct from H1085Y (where we have direct observations of all 

possible intra-TL doubles) or H1085A or H1085Q (curated doubles) (Figure 15C and 22). These 

residue specific behaviors suggest that each substitution may have different properties, and 

compatibility with function may not necessarily represent similar function under the surface.  



 77 

Evolutionary change over time can alter protein function but it can also alter protein 

functional plasticity. Recent work from the Thornton lab elegantly demonstrates that phenotypes 

of substitutions to residues conserved over hundreds of millions of years can change over 

evolutionary time and can do so unpredictably and transiently during evolution (Park et al., 2022). 

msRNAPs have structures and functions conserved over billions of years, and deep within their 

active sites is a mobile domain, the TL, that has large functional constraints on its sequence. The 

TL sequence must be able to fold into multiple states and maintain recognition of the same 

substrates across evolutionary space and shows high identity even between distantly related 

species. Here we show that the TL, and likely the entire Pol II active site, exhibits a great amount 

of plasticity through non-conserved positions that are essential for compatibility of the TL and 

surrounding domains. Our results illustrating widespread epistasis and allele-specific effects of 

single and double mutants predict that comparative analyses among Pol I, II, and III will reveal 

widespread and enzyme-specific mechanisms due to higher order epistasis shaping function of 

conserved residues. 
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Figure 22. Four H1085 substitutions are different in some ways. 

Principal component analysis (PCA) with double mutant deviation scores of all curated TL single mutant substitutions, 

which are represented with colored dots. GOF mutants are in green, LOF mutants are in blue, unclassified mutants are 

in grey and lethal mutants are in black. Four H1085 substitutions are labeled and assigned with a red circle to make 

them visible in the plot. 

2.4 Methods 

2.4.1 Design and Synthesis of TL mutant libraries 

We updated and extended the fitness dataset of Qiu et al (Qiu et al., 2016). Using a similar 

methodology, but with adjusted conditions and a second-generation mutant library strategy, in 
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order to generate a complete Pol II TL mutation-phenotype map and examine genetic interactions. 

Mutants were constructed by synthesis with Agilent and screened for phenotypes previously 

established as informative for Pol II mutant biochemical defects. Programmed oligonucleotide 

library pools included all 620 single TL residue substitutions and deletions for Rpb1 amino acids 

1076-1106 (Library 1), 3,914 pairwise double substitutions (Library 2), 4,800 targeted double 

substitutions (Library 6), and 3,373 multiple substitutions (Library 3-5), along with the WT S. 

cerevisiae Pol II TL allele at a level of ~15% of the total variants, enabling precise quantification 

(see Appendix Table 4). Each synthesized region contained a mutated or WT Pol II TL sequence 

and two flanking regions at the 5′ and 3′’ ends of the TL-encoding sequence. These flanking 

regions also contained designed “PCR handle” (20bp) sequences, allowing distinct subsets of 

oligos to be amplified from synthesized pools using selected primers for PCR, and additional 

flanking WT Pol II sequences allow for further extension of homology arms by PCR “sewing” 

(Details are in Appendix A2.2 and A2.3). 

2.4.2 Introduction of Libraries into yeast and phenotyping 

Synthesized mutant pools were transformed into yeast (CKY283) along with an RPB1-

encoding plasmid where the TL-encoding sequence was replaced with an MluI restriction site for 

linearization as described in Qiu et al (Qiu et al., 2016). This strategy allows construction of rpb1 

mutant libraries by gap repair between library fragments and the linearized vector. Briefly, the 

synthesized oligo pools were amplified by limited cycles of emulsion PCR to limit template 

switching. Extension of flanking homology arms of ~200 bp were added by PCR sewing. 

Amplified TL sequences with extended flanking regions were co-transformed with linearized 

pRS315-derived CEN LEU2 plasmid (pCK892) into CKY283, allowing gap repair via 
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homologous flanking regions. To detect potential residue-residue interactions between the TL and 

TL-proximal domains including the Rpb1 Bridge Helix (BH), Funnel Helix alpha-21 and Rpb2, 

the Pol II TL single mutant pool (Library 1, 620 mutant alleles and 111 WT alleles) was co-

transformed individually with gapped plasmids encoding an additional rpb1 allele (Rpb1 BH 

T834P, T834A, or Funnel Helix alpha-21 S713P) into CKY283 respectively, or with the gapped 

WT RPB1 plasmid into a strain with the genomic mutation, rpb2 Y769F. These co-transformations 

created double mutants between the TL and TL-proximal mutants. The WT allele in single mutant 

pool represented the single probe mutant due to substitutions outside the TL on the plasmid or in 

the strain background. To distinguish between a fully WT TL and a WT TL representing the TL 

of a mutant allele elsewhere, a WT Pol II TL allele with a silent mutant at T1083 (WT codon ACC 

was replaced with ACT) was co-transformed with plasmid containing gapped WT RPB1 in a WT 

strain in parallel. 15% of the transformants with silent mutation were mixed with transformants of 

double mutants. The silent mutation allowed us to distinguish the WT and the single mutants. Each 

transformation was done in three biological replicates. After transformation, Leu+ colonies were 

collected from SC-Leu plates by scraping into sterile water and replated on SC-Leu+5FOA to 

select for cells having lost the RPB1 URA3 plasmid. 5-FOA-resistant colonies were scraped into 

sterile water from SC-Leu+5FOA and replated on SC-Leu, SC-Leu + 20mg/ml MPA (Fisher 

Scientific), SC-Leu + 15 mM Mn (Sigma), YPRaf, YPRafGal, SC-Lys, and SC-Leu + 3% 

Formamide (JT Baker) for phenotyping. Details of cell numbers plated on each plate and screening 

time of each plate are in Appendix Table 3. Details of high efficiency transformation protocol is 

in Appendix A2.1. 
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2.4.3 Generation of libraries for quantification by amplicon sequencing 

Genomic DNA of each screened library was extracted using the Yeastar genomic DNA kit 

according to manufacturer's instructions (Zymo Research). To ensure adequate DNA for 

sequencing, the TL regions of all libraries were amplified with PCR cycles that were verified to 

be in the linear range by qPCR to minimize disturbance of allele distributions, and under emulsion 

PCR conditions (EURx Micellula DNA Emulsion & Purification (ePCR) PCR kit) to limit 

template switching. Details are in Appendix A2.2 and 2.3. To multiplex samples, we employed a 

dual indexing strategy wherein 10 initial barcodes for differentiating 10 mutant libraries were 

added during the initial amplification using 10 pairs of custom primers. In a second amplification, 

28 primers containing 28 NEB indices were used to add a second index for distinguishing 

conditions and replicates (NEBNext Multiplex Oligos for Illumina) (see Appendix Table 2). As 

a result, a sample-specific barcodes were present for each set of variants. The indexed, pooled 

samples were sequenced by single end sequencing on an Illumina Next-Seq (150nt reads). On 

average, over 11 million reads were obtained for individual samples with high reproducibility from 

two rounds of sequencing. Raw sequencing data has been deposited on the NCBI SRA (Sequence 

Read Archive) database under BioProject PRJNA948661. Processed mutants counts and fitnesses 

are available through GitHub (https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git). 

2.4.4 Data cleaning and fitness calculation and normalization 

Reads of mutants were sorted into appropriate libraries and conditions by detecting 

particular indices after sequencing. Read counts were estimated by a codon-based alignment 

algorithm to distinguish reads that exactly matched designated codons of mutants (Sing-Hoi Sze, 

https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git
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2018). To clean the data, mutant reads with coefficients of variation greater than 0.5 in the control 

condition (SC-Leu) were excluded from the analysis. The mutant read count was increased by 1 

to calculate the allele frequency under different conditions. To measure and compare the 

phenotypes of all mutants, mutant phenotypic score (fitness) was calculated by allele frequency 

change of a mutant under selective conditions relative to the unselective condition comparing to 

the frequency change of WT. The formula for calculating fitness is shown below. 

Fitness (mut) = log [𝑓mut, sele / 𝑓mut, unsele - log [𝑓WT, sele / 𝑓WT, unsele] 

We applied min-max normalization to bring the median growth fitness of mutants 

measured at ten libraries to the same level for direct comparison (formula is shown below). In each 

library, we divided mutants into several groups based on their allele counts on the control condition. 

Mutants with read count differences of less than 10 are present in one group. The WT growth 

fitness was set as the maximum value and the minimum fitness in each group was the minimum. 

Min-max normalization was used to equalize the growth fitness into the same range between 

various groups inside each library. Additionally, we utilized min-max normalization to level the 

mutant fitness across all ten libraries with WT fitness as Max and minimal fitness in each library 

as the minimum. As a result, mutant growth fitness was scaled to one range and could be used to 

determine genetic interactions. 

X′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

2.4.5 Determination of functional interactions 

The genetic interactions between single substitutions were determined by comparing the 

multiple-substitution mutant normalized median fitness to the log additive of the single 

substitution normalized median fitness. The simplified formula is as follows: 
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Deviation score (M1M2M3) = Fitness (M1M2M3) – [Fitness (M1) + Fitness (M1) + 

Fitness (M3)] 

(1). -1 < Deviation score < 1, the interaction among the constituent single mutants is 

additive and mutants are acting independently. 

(2). Deviation score ≥  1, the interaction is non-additive and is positive, including 

suppression and epistatic interactions. 

(3). Deviation score ≤  -1. the interaction is non-additive and is negative, including 

synthetic sick, synthetic lethal, and sign epistasis interactions. 

Any mutation with fitness smaller than the lethal threshold (-6.50) was classified as an 

ultra-sick/ lethal mutant and its fitness was normalized to -6.50 for calculation of the deviation 

score. Synthetic sickness and synthetic lethality were distinguished by whether a double mutant is 

viable or lethal (fitness is greater than or equals to the lethal threshold -6.5) when two constituent 

mutations are viable.  Synthetic lethality can be further classified into two types. First, additive-

synthetic lethality was determined when the expected double mutant fitness calculated by additive 

model was lethal (expected fitness = -6.5) and the observed double mutant fitness was also lethal 

(fitness = -6.5) (in this case the deviation score = 0). Second, the beyond-additive synthetic 

lethality was determined when the expected double mutant was viable (expected fitness > -6.5) 

while the observed double mutant fitness was lethal (fitness = -6.5) (in this case the deviation score 

< 0). To separate these two situations in our figures, we labeled additive synthetic lethality as black 

and beyond-additive synthetic lethality as purple. 

Details of formulas are in Appendix A2.4. The codes for calculating deviation scores and 

generating figures are available in GitHub (https://github.com/Kaplan-Lab-

Pitt/TLs_Screening.git). 

https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git
https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git
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2.4.6 Computational analysis 

2.4.6.1 Mutant classification using two multiple logistic regression models 

We trained two multiple logistic regression models to distinguish GOF and LOF mutants 

using the phenotypic fitness on SC-Leu+MPA, SC-Lys, and YPRafGal conditions of 65 single 

mutants, including 25 previously identified GOF mutants, 33 LOF mutants, one WT, and six that 

were not GOF or LOF mutants. Intercept, main effects, and two-way interactions were involved 

in defining both models. 0.75 was used as the cutoff threshold for both the GOF and LOF models. 

Model for predicting the probability of a mutant being a GOF: 

y

=
1

1 + 𝑒^(1.816 + 2.542 ∗ 𝑓𝑀𝑃𝐴 − 1.942 ∗ 𝑓𝐿𝑦𝑠 + 0.06566 ∗ 𝑓𝐺𝑎𝑙 − 0.5297 ∗ 𝑓𝑀𝑃𝐴 ∗ 𝑓𝐿𝑦𝑠 − 0.08373 ∗ 𝑓𝑀𝑃𝐴 ∗ 𝑓𝐺𝑎𝑙 + 0.02556 ∗ 𝑓𝐿𝑦𝑠 ∗ 𝑓𝐺𝑎𝑙)
 

Model for predicting the probability of a mutant being LOF:  

y

=
1

1 + 𝑒^(1.916 − 1.392 ∗ 𝑓𝑀𝑃𝐴 − 1.328 ∗ 𝑓𝐿𝑦𝑠 − 0.8353 ∗ 𝑓𝐺𝑎𝑙 − 0.01112 ∗ 𝑓𝑀𝑃𝐴 ∗ 𝑓𝐿𝑦𝑠 − 0.2992 ∗ 𝑓𝑀𝑃𝐴 ∗ 𝑓𝐺𝑎𝑙 + 0.8823 ∗ 𝑓𝐿𝑦𝑠 ∗ 𝑓𝐺𝑎𝑙)
 

Both models showed accuracy, with the area under ROC close to one (Figure 8A). The details 

are provided in Appendix Table 5. 

2.4.6.2 Principal component analysis (PCA) 

Deviation scores of curated and probe double mutants were analyzed in PCA. The scripts 

using R language v4.0.3 (https://www.R-project.org/) with R packages tidyverse v1.3.1 

(https://www.tidyverse.org), prompt from R stats package v3.6.2  

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp), ggplot2 v3.3.3 

(https://ggplot2.tidyverse.org), dplyr v1.0.6 (https://dplyr.tidyverse.org), and missMDA v1.18 

https://www.r-project.org/
https://www.tidyverse.org/
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp)
https://ggplot2.tidyverse.org/
https://dplyr.tidyverse.org/
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(https://dplyr.tidyverse.org), are available in GitHub (https://github.com/Kaplan-Lab-

Pitt/TLs_Screening.git). 

2.4.6.3 t-SNE projection 

Allele frequencies for all mutants in nine conditions with three replicates were analyzed by 

t-SNE (Perplexity = 50) or k-means (clusters =20). Thirteen clusters with ultra-sick to lethal 

mutants as majority were eliminated. The remaining mutants were analyzed again with t-SNE 

(Perplexity = 100) and k-means (cluster =10). The scripts utilizing R language v4.0.3 

(https://www.R-project.org/), along with R packages Rtsne v0.15 

(https://github.com/jkrijthe/Rtsne), ggplot2 v3.3.3 (https://ggplot2.tidyverse.org), k-means (stats 

v3.6.2 (https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans), are 

available through GitHub (https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git). 

2.4.6.4 Statistical coupling analysis 

A published multiple sequence alignment (MSA) containing 5787 eukaryotic homologous 

sequences of yeast Rpb1 was used in the statistical coupling analysis (Palo et al., 2021). 1464 

sequences were retained after sequence identity reducing to 90% with T-coffee package 

v12.00.7fb08c2 (Notredame, Higgins, & Heringa, 2000) through conda v4.6.14. Pol I, II, and III 

sequences were separated based on an ML tree constructed with FastTree 2 (Price, Dehal, & Arkin, 

2010) and 410 Pol II Rpb1 homologous sequences were re-aligned with T-coffee, and the newly 

generated MSA was used for statistical coupling analysis with the python-based package pySCA 

v6.1 (Rivoire et al., 2016). The scripts were adapted from 

https://github.com/ranganathanlab/pySCA and are available via GitHub 

(https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git). 

https://dplyr.tidyverse.org/
https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git
https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git
https://www.r-project.org/
https://github.com/jkrijthe/Rtsne
https://ggplot2.tidyverse.org/
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans
https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git
https://github.com/ranganathanlab/pySCA
https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git
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3.0 Higher-order epistasis within TL haplotypes 

3.1 Introduction 

Functional interactions among amino acid residues within a protein can be detected by 

genetic interactions in the form of epistasis. Epistasis can determine the phenotypic effects of 

mutations. Specific substitutions can constrain or relax functional constraints on the identity of 

residues at other positions, and impact evolutionary trajectories (Domingo et al., 2019; Johnson et 

al., 2023; Mani et al., 2008; Metzger, Park, Starr, & Thornton, 2023; Park et al., 2022; Phillips, 

2008; Starr & Thornton, 2016). Epistasis is the modulation, positive or negative, of the effect of 

one mutant by the presence of other mutants. Phenotypic modulation of one mutant by another 

(epistasis) can be detected by a difference in the phenotype of a double mutant from that expected 

from the cumulative effects of the corresponding single mutants, which is the baseline expectation 

in the absence of epistasis (Hill et al., 2008; Mani et al., 2008; Phillips, 1998, 2008). Prior studies 

found many epistatic interactions at both lower-orders (i.e. among residue pairs) and higher-orders 

(among many residue combinations). Higher-order epistasis emerging from particular residues can 

reflect specific biological or physical interactions and imply crucial roles of these residues in a 

protein’s function and evolution (Bakerlee et al., 2022; Bank et al., 2015; Ding et al., 2022; X. Lin 

et al., 2022; Melamed et al., 2013; Olson et al., 2014; Pokusaeva et al., 2019; Reddy & Desai, 

2021). In this work, we dissect complex higher-order epistasis by deep mutational scanning within 

an ultra-conserved and crucial active site domain, the trigger loop (TL), of RNA polymerase II 

(Pol II). 
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Pol II transcribes eukaryotic mRNA using an iterative nucleotide addition cycle (NAC) 

(Bar-Nahum et al., 2005; Dangkulwanich et al., 2013; Kaplan, 2013; Malinen et al., 2012; D. Wang 

et al., 2006). The TL is a critical domain for the NAC, and participates in all three steps: nucleotide 

selection, catalysis, and likely translocation by switching between different conformations (Barnes 

et al., 2015; Fouqueau et al., 2013; D. Wang et al., 2006). In each NAC, a matched substrate 

entering the active site induces or captures a conformational change of the TL from an open, 

catalysis-disfavoring state to a closed, catalysis-favoring state. Thus, the TL functions in kinetic 

selection to distinguish matched NTPs complementary to the DNA template from mismatched 

ones (Barnes et al., 2015; X. Huang et al., 2010; Kaplan, 2013; Malinen et al., 2012; B. Wang et 

al., 2013; D. Wang et al., 2006; L. Xu et al., 2014). Full closure of the TL promotes catalysis 

(Vassylyev et al., 2007; B. Wang et al., 2013). Following catalysis, the TL transits from the closed 

to the open state, facilitating polymerase translocation for the subsequent NAC (Da et al., 2012; B. 

Liu et al., 2016; Seibold et al., 2010)(Figure 23A). Additional TL confirmations have been 

associated with other RNA polymerase activities such as pausing and backtracking (Cheung & 

Cramer, 2011; Mosaei & Zenkin, 2021; D. Wang et al., 2009; J. Zhang et al., 2010). With these 

transitions, the mobile TL balances transcription fidelity and speed (Kaplan, 2010; Kaplan et al., 

2008; Kireeva et al., 2008; Larson et al., 2012; Sydow et al., 2009; Unarta et al., 2023; D. Wang 

et al., 2006; Yuzenkova et al., 2010). How do residues within the TL interact with each other to 

ensure its proper transition? Our observations of distinct pairwise interactions suggest that TL 

function is maintained by residue interaction networks (Duan, Qiu, Sze, & Kaplan, 2023). For 

example, previous biochemical and genetics studies found mutations in the TL can modify its 

folding or dynamics, causing changes in catalytic activity - either an increase, leading to faster 

elongation rate than WT in vitro (gain of function, GOF) or a decrease, leading to slower 



 88 

elongation rate than WT in vitro (loss of function, LOF) (Barnes et al., 2015; Braberg et al., 2013; 

Kaplan et al., 2012; Kaplan et al., 2008; Kireeva et al., 2008; Nayak et al., 2013; Qiu et al., 2016; 

Windgassen et al., 2014). With TL double mutants including combinations between or within GOF 

and LOF mutations, our prior work identified distinct types of pairwise interactions resulting in 

either better than expected fitness from the cumulative model, i.e. suppression, commonly 

observed in GOF/LOF combinations, or worse than expected, i.e. synthetic sickness or lethality, 

normally seen in combinations of the same class (GOF/GOF or LOF/LOF). These interactions are 

consistent with a model that the involved single mutants independently act within double mutants, 

where effects are balanced in double mutants comprising constituent mutants with opposite effects 

and effects are enhanced in double mutants comprising constituent mutants with similar effects 

(Duan et al., 2023; Kaplan et al., 2012; Qiu et al., 2016; Qiu & Kaplan, 2019). However, we also 

observed both lack of enhancement for some “same class” combinations (epistasis), and cases 

where a mutant’s effect appeared to be controlled by the identity of another residue (sign epistasis) 

(Duan et al., 2023; Kaplan et al., 2012; Qiu et al., 2016; Qiu & Kaplan, 2019).  

The TL is highly conserved across evolution, supporting the idea that identities of key 

residues are highly constrained (Palo et al., 2021). Given this conservation, it was surprising that 

analogous mutations in a highly conserved residue yielded opposite effects in the conserved yeast 

Pol I and Pol II (Viktorovskaya et al., 2013). Given the TL’s flexible and mobile character, and its 

high conservation of sequence and function, it was an open question of how self-contained it is 

functionally and if there is evolutionary coupling through non-conserved residues to maintain its 

ability to achieve its different conformations. Our recent studies identified widespread 

incompatibility between trigger loops of different species or enzymes placed into the yeast Pol II 

context, supporting the idea of an epistasis network from residues outside the TL is prominent in 
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constraining TL function across evolution (Duan et al., 2023). We wished to understand the drivers 

of this incompatibility between conserved TLs and use diverse TL haplotypes to probe the 

complexity of internal TL interactions. 

Recent studies have suggested that the primary contributor of epistasis to protein function 

is through pairwise residue interactions. Higher order epistasis is complicated and can be difficult 

to detect (Johnson et al., 2023; Metzger et al., 2023). We reasoned that the Pol II TL might be an 

excellent system to detect higher order epistasis using evolutionary haplotypes, notwithstanding 

constraints on function from the rest of the enzyme complex. The Pol II TL is flexible, being 

required to support distinct conformational states, and functionally plastic in that mutants can both 

increase or decrease catalysis with known suppressor relationships between these two types of 

mutants. We applied our TL deep mutational scanning system to detect higher order epistasis by 

comprehensive dissection of a set of evolutionarily derived TL sequences (haplotypes). We 

identified intra-TL interactions of evolutionarily observed substitutions (TL-internal epistasis) and 

dissected specific examples of complex interactions that would not be evident from simple 

analyses only considering single mutants or complete haplotypes. Our experiments suggest 

specific paths for TL evolution in the context of the complete enzyme may likely go through mild 

gain-of-function residues that allow additional changes to be tolerated. 
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3.2 Results 

3.2.1 Systematic detection of epistatic interactions within TL haplotypes 

We utilized our previously developed deep mutational scanning-based phenotyping 

platform for Pol II mutants in Saccharomyces cerevisiae (Duan et al., 2023; Qiu et al., 2016)  to 

analyze TL-internal higher-order epistasis. The analyzed TL haplotypes included 662 natural TL 

variants from bacterial and archaeal msRNAPs, and eukaryotic Pol I, Pol II and Pol III (Figure 

23B-C). An additional 1987 TL alleles were included, representing all possible intermediate 

substitution combinations for seven selected natural Pol II TL variants (Figure 23D). The seven 

TL variants were selected because they contain specific amino acids which exhibit phenotypes, 

either GOF or LOF, when introduced individually in yeast Pol II. The functional consequences of 

these haplotypes were measured by a set of growth phenotypes that are predictive of biochemical 

functions (see 3.4 Methods) (Duan et al., 2023; Kaplan et al., 2012; Qiu et al., 2016; Qiu & Kaplan, 

2019). Our system allows us to profile these haplotypes and assess epistasis among multiple 

mutations in a highly parallel fashion. 

To detect epistasis, we first fitted a log additive model for the fitness of individual 

mutations, which assumes all the individual mutations are independent and additive (Duan et al., 

2023; Hill et al., 2008; X. Lin et al., 2022; Mani et al., 2008; Phillips, 2008) and we then computed 

how the observed fitness of haplotypes deviates from the predicted fitness by the log additive 

model. Here fitness is determined by comparing the allele frequency shifts of a mutant under 

selective conditions relative to control conditions, and then comparing the allele frequency change 

of mutants to the change observed in the WT (see 3.4 Methods). The log of the fitness is defined 

as a fitness score. The log additive model assumes individual mutations are independent, so the 
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fitness effects of individual mutations are multiplied in the double/multiple mutants (the log of the 

fitness scores are additive). Deviation from the log additive model is evidence for residue 

interactions (epistasis). Deviation from expectation could be in the form of mutual suppression 

(double mutant more fit than either single mutant), basic epistasis (double mutant no worse than 

one of the single mutants), or synthetic sickness (greater than log additive defects in the double 

mutant). The deviation values, termed “deviation scores”, were calculated to detect intra-TL 

genetic interactions within haplotypes (see 3.4 Methods). 

Deviation scores were calculated in two ways. We determined a “primary deviation” score, 

representing total epistasis within a haplotype as the deviation of the predicted fitness from the 

sum of the fitness scores of individual mutants (Figure 23E and Figure 23). Second, to determine 

which residues the epistasis emerged from, we separated the haplotypes into combinations of 

single substitutions plus the compound mutant formed by the remaining substitutions. We 

therefore calculated a secondary deviation score by comparing the fitness score of the complete 

haplotype to the sum of the single substitution’s fitness score and the fitness score of the compound 

consist of the remaining substitutions (Figure 23F and Figure 24). The magnitude of the 

secondary deviation score indicates the magnitude of epistatic effects for specific substitutions 

when they are introduced to the compound mutant. Moreover, analyzing the secondary deviation 

scores of a specific substitution across various compound mutants (backgrounds) enables us to 

assess the breadth of its epistatic effects, which may reveal its potential to impact TL evolution.  



 92 

 

Figure 23. Systematic detection of TL-internal epistasis with natural TL alleles and intermediates. 
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(A).We selected 662 TL haplotypes representing TL alleles from bacterial, archaeal and the three conserved eukaryotic 

msRNAPs to detect TL-internal epistasis. (B). The selected TL alleles were synthesized and transformed into yeast 

Pol II to form chimeric Pol II enzymes.  Yeast chimeric Pol II enzymes were phenotyped under selective conditions 

to detect growth defects, which are represented by fitness (see 3.4 Method). (C). Seven Pol II TL alleles were selected 

to construct intermediate haplotypes representing all possible combinations of substitutions of seven TL alleles. The 

intermediates were transformed into yeast to measure growth defects as in (C). (D-E). Analytical scheme of primary 

deviation score (D) and secondary deviation score (E). Details are in 3.4 Method. 

 

 

Figure 24. Detection of higher-order interactions by primary and secondary deviation scores. 

For a pseudo haplotype “abc”, the primary deviation score is calculated by comparing the observed fitness of the 

haplotype to the log additive of constituent substitutions’ fitness. The secondary deviation score of “a” in “abc” 

represents the epistatic effect of “a” on “bc” and is calculated by comparing the observed fitness score of “abc” to the 

additive of fitness scores of “a” and “bc”. The secondary deviation score of “a” in “ab” represents the epistatic effect 

of “a”on “b”. It is calculated by comparing the observed fitness score of “ab” to the additive of fitness scores of “a” 

and “b”. If the deviation score ≈ 0, it indicates the constituent substitutions are independent and there is no interaction 

among them. If the deviation score > 1, it represents positive epistasis (suppression) among the constituent 
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substitutions. If the deviation score < -1, it represents negative epistasis (synthetic sickness or lethality) among the 

constituent substitutions.   

 

3.2.2 Drivers of incompatibility for TL variants placed in the yeast Pol II context 

We explored potential reasons for the widespread incompatibility between TL haplotypes 

from other msRNAPs and yeast Pol II (Duan et al., 2023; Qiu et al., 2016; Viktorovskaya et al., 

2013). To probe this incompatibility, we grouped haplotypes based on their evolutionary source 

(Bacteria, Archaea and eukaryotic Pol I, Pol II and Pol III) and illustrated the fitness of all 

constituent single substitutions measured in yeast Pol II (Duan et al., 2023; Qiu et al., 2016), the 

expected fitness of the haplotypes calculated based on the log additive model, the observed fitness 

of the haplotypes measured from our deep mutational scanning, and the primary deviation score 

from comparison of the observed and expected fitness (Figure 25A-E). The incompatibility of 

Bacterial TLs in yeast was explained by the presence of three substitutions that are individually 

lethal in yeast (Figure 25A). Interestingly, among archaeal TLs examined, only about half could 

be explained by individual lethal substitutions while others appeared lethal due to simple additivity 

of mutant phenotypes. A subset however appeared to illustrate negative epistasis among 

constituent substitutions (Figure 25B). Fewer individually lethal single substitutions were 

observed in eukaryotic Pol I, Pol III and Pol II haplotypes than those in Bacteria and Archaea, 

while more positive or negative intra-TL interactions appeared (Figure 25C-G), likely due to 

eukaryotic Pols being closer to Pol II in evolution. Surprisingly, a few single substitutions from 

other Pol II TL haplotypes were lethal in yeast Pol II context (Figure 25D), indicating that even 

in highly conserved Pol II enzymes, epistasis between the TL and its Pol II context is specific and 

important functional constraints have evolved among close homologs.  
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We then asked if functional coupling of residue identities within the TL across evolution 

might correlate with positive interactions (Figure 26A-C). This analysis tests the hypothesis that 

internal coupling of residues within the TL could be important for its function even outside of their 

coevolved, appropriate contexts. Statistical coupling analysis is a powerful approach to identify 

functional interactions by statistical inference of residue identities that appear to correlate across 

evolution (Russ, Lowery, Mishra, Yaffe, & Ranganathan, 2005; Socolich et al., 2005). We detected 

11 residues involved in coupling within the TL domain using a multiple sequence alignment 

containing 362 eukaryotic TL sequences (natural TL variants) (Figure 26A). To test if statistical 

coupling within the TL is implicated in TL function and detectable for TL haplotypes removed 

from their natural context, we designed two libraries to perturb residue coupling in large scale, as 

previously described (Russ et al., 2005; Socolich et al., 2005). One library comprised scrambled 

haplotypes that retained TL-internal residue couplings and conservation as determined from 

natural TL variants (“Monte Carlo” scrambling library) (Figure 26C). A second library comprised 

scrambled haplotypes but only preserved conservation but not any TL-internal residue coupling 

(“Random scramble” library) (See 3.4 Methods) (Figure 26B). Both libraries satisfy the design 

parameters as indicated by residue distributions (Figure 26A-C). If substantial internal TL 

epistasis were present within the evolutionary signal, we would predict that haplotypes in the 

Monte Carlo scramble library would have greater fitness on average than those from Random 

scramble library. We did observe more Monte Carlo scrambled haplotypes in the viable range 

(fitness from -6.0 to 0) than the random scramble. The difference was subtle and not significant 

(P-value = 0.3013) (Figure 26D), suggesting that without positive epistasis between TL alleles 

and their appropriate coevolved contexts, TL-internal epistasis is weak or undetectable based on 

our tested couplings.  



 96 

 

 

Figure 25. More TL-internal epistasis is observed with closer evolutionary distance to eukaryotic Pol II. 
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(A-E). Fitness and deviation score heatmaps of TL haplotypes in five evolutionary groups. The X-axis of each heatmap 

is 31 residue positions of Pol II TL (1076-1106). The Y-axis of each heatmap is the TL haplotypes belonging to each 

group clustered by hierarchical clustering with Euclidean distance. Each row represents one haplotype with several 

single substitutions. Light grey blocks in each row represent the residue from the haplotyope at the position is the 

same with yeast Pol II TL residue, in other words, no substitution at the position. Colored blocks represent different 

residues in the haplotype compared with yeast Pol II TL (substitutions). The color of the block represents growth 

fitness of the single substitution in yeast Pol II TL background. Expected fitness of the haplotypes were calculated 

from the log additive model. Observed fitness was measured in the screening experiments, and deviation scores were 

calculated by comparing the observed and expected scores. They are shown at the right end of each row. Sequence 

logos were generated with multiple sequence alignment (MSA) of the five groups individually in Weblogo 3.7.12. 

The labeled numbers of sequence logo represent yeast Pol II TL residue position (1076-1106). Bacteria n=465. 

Archaea n=426. Pol I n=605. Pol II n=405. Pol III n=444. (F). Lethal haplotypes contain two distinct types of lethality: 

one attributed to synthetic lethal interactions among substitutions, representing negative interactions, and the other 

arising directly from lethal substitutions. The calculated ratio specifically reflects the proportion of lethality due to 

negative interactions within all lethal haplotypes. (G). The ratio of viable haplotypes in haplotypes containing lethal 

substitutions, representing the ratio of positive interactions (suppression) in TL haplotypes of each group. Haplotypes 

containing lethal substitutions are expected to be lethal based on the additive model. If haplotypes with lethal 

substitutions are observed to be viable, it suggests other substitutions suppress the lethal substitution in the haplotypes, 

implying positive epistasis (suppression). Approximately 20% of eukaryotic TL haplotypes containing individual 

lethal substitutions are viable, whereas only roughly 2% of bacterial and archaeal TL haplotypes are viable, suggesting 

more positive interactions in eukaryotic TLs than those from Bacteria and Archaea. 
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Figure 26. The TL-internal epistasis is embedded in the Pol II enzymatic background. 

(A). Residue coupling heatmaps of natural TL variants, Random scrambling variants and Monte Carlo scrambling 

variants. Residue coupling of 362 selected natural eukaryotic Pol I, II, and III TL alleles is shown in the left heatmap. 

(B-C). Heatmaps of coupled residues in Random scrambling and Monte Carlo scrambled haplotypes. The random 

scrambling disrupted coupled residues in selected TL variants (B) while the Monte Carlo scrambling haplotypes 

reserved coupled residues (C). (D). Cumulative fitness frequency distribution of the Random scrambling and Monte 
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Carlo scrambling haplotypes. The Kolmogorov-Smirnov test was used to assess the significance of the fitness 

distribution difference between Monte Carlo scrambling and Random scrambling haplotypes. The results indicate that 

they are not significantly different. Cumulative fitness frequency distribution of the Random scrambling and Monte 

Carlo scrambling haplotypes. The Wilcoxon matched-pairs signed rank test was used to assess the significance of the 

fitness distribution difference between Monte Carlo scrambling and Random scrambling haplotypes. The P-value of 

0.3013 is not significant. 

3.2.3 Epistasis within TL haplotypes can be attributed to residues 

We next determined from which residues the epistatic effects in TL haplotypes emerge. 

We selected seven Pol II TL variants based on their diversity where each have 7~9 substitutions 

relative to the S. cerevisiae Pol II TL, and we constructed 1987 unique intermediate haplotypes 

representing 2169 combinations of substitutions from the seven variants. These seven variants 

cover a range of compatibility with yeast Pol II function as determined by their fitness when 

replacing the yeast Pol II TL (Figure 27A-H). Four out of seven TL variants were not compatible 

in the yeast Pol II context for distinct reasons. The TL variant from G. luxurians was lethal 

presumably because it encodes G1088S, which causes lethality on its own and was similarly 

deleterious for all intermediate genotypes (Figure 27A, C). In contrast, lethalities of TL variants 

from B. anathema and R. solani were not explained by presence of an individual lethal substitution, 

and they were predicted to be viable by the summation of the fitness scores of individual 

substitutions. These observations suggested that the observed lethality for these two haplotypes is 

due to negative interactions among residues (lethality beyond additivity) (Figure 27A, G, H). The 

S. rosetta TL was both expected and observed to be lethal, supporting lethality from additivity of 

residues (Figure 27A). However, it’s worth noting that S. rosetta intermediate combinations with 

specific substitutions exhibited fitness in the lethal range (Figure 27F) but were worse than 
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predicted from the log additive model, suggesting negative interactions. In three out of seven 

variants, where all individual substitutions were viable and combinations between them were 

predicted to be viable based on the log additive model, some intermediate substitution 

combinations were in the severely sick or lethal range (Figure 27B, D, E and 28), implying 

negative interactions among the substitutions. Interestingly, this lethality of intermediate 

genotypes was suppressed by additional substitutions, resulting in final viable haplotypes and 

indicating positive interactions (Figure 27B, D, E). The fluctuations of the fitness with various 

residue combinations suggests complexity and potential higher order epistasis within these TL 

haplotypes. 

To determine which specific residues contribute to the observed epistasis, we assessed 

deviation from expected fitness for the addition of each substitution to all intermediate haplotypes 

derived from subsets of substitutions of the haplotype. This analysis allows mutant effects to be 

compared for multiple related backgrounds (the intermediate states representing subsets of 

haplotype substitutions) (Figure 23D, F). The fitness and epistatic effects of each substitution are 

shown as epistasis heatmaps (Figure 29 and 30). For example, we observed better fitness for the 

E. invadens IP1 TL haplotype than predicted from the log additive model (Figure 30A), 

suggesting positive interaction(s) within the eight substitutions comprising the haplotype. Among 

these eight are two with biochemically classifiable phenotypic profiles as determined from library 

screening of single substitution mutants on conditional media – the LOF variant V1089T and the 

GOF variant S1096E. Consistent with these alleles being candidates for epistatic effects, these two 

substitutions also have the lowest relative growth fitness of the eight E. invadens IP1 TL 

substitutions (Figure 30A-B). S1096E had positive secondary deviation scores in most 

intermediate combinations, suggesting broad effects. V1089S showed positive effects but mostly 
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in intermediates that also contained S1096E (Figure 30B), suggesting that V1089S’s positive 

effect was dependent on S1096E, likely due to the suppression predicted from the combination of 

GOF and LOF substitutions. Interestingly, S1091E, a substitution without strong growth fitness 

and with no obvious phenotypes as a single substitution, showed strong positive or negative 

epistatic effects in most backgrounds (Figure 30B). These results suggest these three substitutions 

are responsible for intra-TL epistasis within E. invadens IP1 TL haplotype.  

To visualize these effects, we quantified the impact of constituent substitutions on epistasis 

within the haplotype by identifying correlations between the primary deviation score, which 

represents the overall epistasis of the haplotype, and the secondary deviation scores, which 

represents the specific epistatic effects of individual substitutions on corresponding haplotype 

backgrounds. Substitutions with stronger correlation (higher linear regression R2) indicate these 

substitutions are the main drivers of the epistatic effects observed for the entire haplotype. 

Conversely, substitutions with low correlation (smaller R2) suggest that the respective substitutions 

have no specific, or limited contributions to epistasis within the haplotype. To demonstrate this 

concept, we created a simplified simulation (Figure 29). Consider a TL haplotype comprising five 

substitutions: a, b, c, d, and e. In this scenario, the single mutant “a” is GOF, “b” and “c” are LOF, 

whereas “d” and “e” have no effects. We set the suppression interactions in GOF+ LOF 

combinations (a/b and a/c), and synthetic sick interactions in the LOF+ LOF combination b/c 

(Figure 29A). We calculated all primary and secondary deviation scores for the haplotype and all 

intermediate combinations. The GOF mutant “a” exhibited positive secondary deviation scores in 

most intermediates (Figure 29B). The secondary deviation scores of three single mutants with 

phenotypes showed strong correlation (R2) with the primary deviation scores (Figure 29C), 

showing they are the key contributors to the observed epistatic interactions within haplotypes. The 
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correlations observed between secondary deviation scores of “a” versus “b” and “c” indicate the 

secondary deviation scores of “b” and “c” are positive in most cases when “a” is present (Figure 

29D), suggesting “b” and “c” potentially suppresses "a”. Similarly, the secondary deviation scores 

of “a” are consistently positive with changes in secondary deviation scores of “b” (Figure 29E) 

and “c” (Figure 29F), indicating “a” suppresses “b” and “c”. These observations confirmed the 

mutual suppression in GOF and LOF combinations. Conversely, LOF substitutions “b” and “c” 

showed correlated secondary deviation scores, showing their synthetic sick interactions.  

To detect the key contributors to epistatic interactions observed in the E. invadens IP1 TL 

haplotype, we determined the correlations between the primary and secondary deviation scores. 

Consistent with the epistasis landscape (Figure 30B), the secondary deviation scores of S1096E, 

V1089T, and S1091E have strong correlations (R2 > 0.5) with the primary deviation score (Figure 

32A), suggesting their substantial effect on the primary epistasis of the haplotype. ~1-3 

substitutions with notable effects on haplotype epistasis were identified for all seven selected TL 

variants (Figure 30B, 31, 32A, and 33), suggesting epistasis within haplotypes is attributable to 

subsets of substitutions. 
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Figure 27. Interactions within TL haplotypes fluctuate with changes in substitution compositions. 

(A). Fitness of constituent single substitutions, and expected and observed fitness of the haplotypes, and deviation 

score are shown in heatmap for the selected seven haplotypes. The deviation shown in the heatmap is the primary 

deviation scores calculated by comparing observed fitness to expected fitness. (B-H). Distribution of growth fitness 

across all intermediate substitution combinations categorized by the count of substitutions (hamming distance). 
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Figure 28. The percentage of fitness categories of all intermediate combinations within each haplotype. 

(A-G). Healthy: Fitness > -2. Intermediate: -6.5 < Fitness ≤ -2. Lethal: Fitness ≤ -6.5. 

 

 
Figure 29. Example primary and secondary deviation scores for a simplified, simulated TL haplotype 

“abcde”. 

(A). Simulated interactions among substitutions “a”, “b”, and “c”. We set the single mutant “a” as a GOF mutant, “b” 

and “c” as LOF mutants, while “e” and “f” have no effects. We also set suppression between GOF and LOF 
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combinations (“ab” and “ac”), and synthetic sickness between LOF and LOF combinations (“bc”). (B). The epistasis 

interaction landscape of simplified TL haplotype “abcde”, illustrating the observed and expected fitness of all single 

substitutions and all intermediate haplotypes, as well as primary and secondary deviation scores in the simulation. (C). 

Correlations between secondary deviation scores of all five single substitutions (Y-axis) to the corresponding primary 

deviation scores (X-axis). To measure the correlation, linear regression was applied for secondary deviation scores of 

“a”, “b”, “c”, “d”, “e” to the corresponding primary deviations scores, respectively. Single substitutions with strong 

correlations (R2 > 0.5) were labeled in the plot. Three substitutions with phenotypes show strong correlations in the 

simulation, “a”, “b”, and “c”. (D-F). The correlation between secondary deviation scores of the four substitutions (Y-

axis) vs “a” (D), “b” (E), “c” (F) on X-axis respectively. To read the plot, with (D) as an example, each cyan spot 

represents an intermediate combination containing both “a” and “c”. The labeled spot represents a specific 

combination “a/c/d/e”. Its coordinate value in X-axis represents the secondary deviation score of “a” to “c/d/e”. Its 

coordinate value in Y-axis represents the secondary deviation score of “c” to “a/d/e”. We did a linear regression for 

all the cyan spots to represent the correlation between the secondary deviation scores of “c” to “a”. This correlation 

helps illustrate the potential interaction between “c” and “a”. The secondary deviation scores of “c” are all positive 

when “a” is present, meaning “c” constantly shows positive secondary score when “a” is present, indicating potential 

suppression of “c” to “a”. 
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Figure 30. The epistasis landscape provides a comprehensive view of primary and secondary deviation scores, 

emphasizing substitutions with notable epistatic effects. 

(A). Fitness of eight Entamoeba invadens IP1 TL single substitutions in yeast Pol II background, and the expected 

and observed fitness and the primary deviation score are shown in the heatmap. (B). The epistasis landscape of E. 

invadens IP1 TL substitutions. The heatmap illustrates the fitness and epistasis of all unique intermediate haplotypes 

coming from combinations of eight substitutions. Intermediate haplotypes are grouped by counted number of 

substitutions from 1 to 8. The fitness values are displayed in the upper panel and the epistasis, represented by primary 

and secondary deviation scores is displayed in the lower panel. The colors of substitution names indicate their 

phenotypes, GOF is in green, LOF is in blue, unclassified is in grey. 
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Figure 31. The epistasis landscapes of selected haplotypes. 
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The fitness and epistasis of all unique intermediate haplotypes from combinations of substitutions within each 

haplotype (A-F). The colors of mutants’ names represent mutants’ phenotypes. GOF is in green, LOF is in blue, non-

classified mutants is in grey. 



 109 

 

Figure 32. Correlations between deviation scores reflect specific residue interactions in E. invadens IP1 TL 

substitutions. 
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(A). Correlations between secondary deviation scores of all eight substitutions (Y-axis) and the primary deviation 

score (X-axis). Linear regression was applied to each comparison of secondary deviation scores against primary 

deviation scores to check the correlation. Substitutions with an R2 value exceeding 0.5 are annotated on the X-Y plot, 

indicating their substantial impact on primary epistasis of the haplotypes. (B-D). Correlations between secondary 

deviations of the other seven substitutions (Y-axis) vs V1089T (B), S1096E (C), S1091E (D) on X-axis respectively. 

(E). The fitness landscape of intermediate combinations with fitness in ultra-sick/lethal range. Their fitness levels are 

indicated with black blocks in the heatmap while the expected fitness calculated from the log additive model is in 

viable range (light blue blocks). The observed fitness is worse than expected, representing negative interactions. 

Names of substitutions are colored based on their phenotypes. GOF: green. LOF: blue. No obvious phenotype: grey. 

(F). The fitness of all ultra-sick to lethal haplotypes with S1096E incorporated is no longer in the ultra-sick/lethal 

range. (G). Scheme of specific residue interactions within substitutions of E. invadens IP1 TL. 
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Figure 33. The epistasis within haplotypes is driven by several specific substitutions. 

(A). The correlations between secondary deviation scores of all substitutions (Y-axis) and the primary deviation score 

(X-axis) for each selected haplotype. Linear regression was applied to each comparison of secondary to primary 

deviation scores. Substitutions with R2 value exceeding 0.5 are annotated on the X-Y plot, indicating their substantial 

impact on primary epistasis of the haplotypes. (B). Distributions of R2 of all selected TL haplotypes. 
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3.2.4 The epistasis within TL haplotypes can reflect intricate residue interactions 

We dissected the interactions formed by the three substitutions S1096E, V1089T, and 

S1091E in the E. invadens IP1 TL haplotype and observed an intricate, higher-order epistasis 

network (Figure 32A-G). First, we confirmed the mutual suppression between the GOF S1096E 

and the LOF V1089S. S1096E had a consistent positive epistatic effect in haplotypes containing 

V1089T (Figure 32B). V1089T exhibited a smaller but similar positive effect on haplotypes 

containing S1096E (Figure 32C), illustrating mutual suppression between V1089T and S1096E. 

These observations are consistent with the predicted suppression between GOF and LOF mutants 

and is illustrated by the positive values for their combinations shown in Figure 30B. Additionally, 

we observed negative interactions for S1091E when it was combined with 

F1086H/V1089T/K1093T, but these were dependent on the absence of S1096E. This was 

indicated by a low secondary deviation for S1091E when S1096E was present (Figure 32C-D). 

These observations are interpreted as S1096E being epistatic to S1091E. We identified negative 

interactions in six intermediate combinations containing S1091E, as suggested by their fitness in 

the ultra-sick or lethal range beyond the log additive model (Figure 32E). Strikingly, F1086H, 

V1089T, K1093T were present in all six intermediate combinations with S1091E, pointing to 

negative synergistic interaction (synthetic sickness or lethality) between the four substitutions. 

Conversely, S1096E was absent in all six combinations (Figure 32E), implying the negative 

interaction may be suppressed by S1096E. We confirmed the suppression by the observation that 

the fitness of all six ultra-sick/lethal combinations with S1096E incorporated was out of the ultra-

sick/lethal range (fitness > -5) (Figure 32F) and by spot assay (Figure 34). We summarize all the 

observed interactions in Figure 32G, representing the complicated higher-order epistasis network.  
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Substitutions of the P. persalinus (Ciliate) TL haplotype formed two higher-order epistasis 

networks. The complexity of these epistasis networks arises from the intricate layers of substitution 

interactions. Notably, these interactions were not immediately apparent when observing all 

substitutions in the entire haplotype, meaning that the predicted and expected fitnesses for the 

complete haplotype were similar (Figure 35-37). First, the haplotype contains nine single 

substitutions with no or slight growth fitness defects. The observed fitness of the haplotype was 

very similar to expected from the log additive of all individual substitutions’ fitnesses, with the 

calculated primary deviation score close to 0. Second, when we dissected potential interactions in 

substitution combinations, we noticed two substitutions exhibited distinct behavious, A1076T and 

V1089S. Since both of these residues are classifiable as having predicted biochemical phenotypes 

(A1076T as a GOF and V1089S as a LOF), we anticipated suppression between them and predicted 

they would be drivers of epistatic interactions within intermediate combinations. Consistently, 

suppression was observed when A1076T and V1089S were combined (Figure 36), and the 

correlations between the secondary and primary deviation scores suggest that A1076T and V1089S 

strongly affect the epistasis in the haplotypes (Figure 35B). Additionally, two intermediate 

combinations, each with five substitutions, appeared to have the lowest primary and secondary 

deviation scores (the labeled I and II in Figure 35B), implying negative interactions (synthetic 

sickness/lethality) within the two combinations respectively. The combination I, 

A1076T/A1090S/S1091D/S1096L/I1104L, showed a negative primary deviation score (observed 

fitness < expected fitness) (Figure 35C), illustrating synthetic sickness among the five 

substitutions. The secondary deviation scores of five constituent substitutions were all negative 

(Figure 35C), implying the synthetic sickness could be attributed to addition of each substitution 

to a combination of the others. The remaining four substitutions, V1089S, K1092R, K1093N, and 
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K1102Q all showed positive secondary deviation scores when they are incorporated into the 

combination, suggesting each one of them could individually suppress the synthetic sick 

combination (Figure 35C). The observed interaction network is shown in Figure 35D. In contrast, 

sign epistasis was observed in the combination II, A1076T/A1090S/S1091D/K1092R/K1093N, 

where the GOF sign of A1076T appeared to change to LOF when 

A1090S/S1091D/K1092R/K1093N were present simultaneously with A1076T. In detail, the 

combination has a negative primary deviation score, representing negative interaction among the 

substitutions (Figure 35E). Surprisingly, the negative interaction only appeared when the four 

substitutions, A1090S, S1091D, K1092R, and K1093N were present simultaneously with A1076T 

(Figure 37A), and there were no obvious interactions among the four substitutions (Figure 36), 

suggesting the interaction between A1076T and the combination of the four substitutions 

A1090S/S1091D/K1092R/K1093N. We infer a change from GOF to LOF for A1076T due to the 

observation of lethality upon incorporation of LOF V1089S into the combination. While A1076T 

suppresses V1089S in backgrounds in nearly all synthetic sick/lethal combinations between 

V1089S and individual substitutions or intermediate combinations of A1090S, S1091D, K1092R, 

and K1093N, it enhances the growth defect of V1089S/A1090S/S1091D/K1092R/K1093N. This 

outcome aligns with the expectation of lethality in a combination with the same class substitutions 

(LOF V1089S and the LOF A1076T). (Figure 37B-C). These observations are consistent with the 

combination of A1090S/S1091D/K1092R/K1093N converting A1076T from a GOF to a LOF. 

Notably, S1096L, K1102Q, and I1104L could individually suppress 

A1076T/A1090S/S1091D/K1092R/K1093N when they were incorporated into the combination, 

as indicated by their positive secondary deviation scores (Figure 35E), implying each one of them 

could revert the sign epistasis within A1076T/A1090S/S1091D/K1092R/K1093N. V1089S is now 
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suppressible by A1076T when either S1096L, K1102Q, or I1104L are present (Figure 35F). In 

summary, these higher order interaction networks observed in the P. persalinus (Ciliate) TL 

haplotype (Figure 35E-F) emphasize the complexity of higher-order epistasis, revealing layers of 

interactions beneath the surface. 

 

Figure 34. Verification of S1096E suppression on a synthetic sick intermediate haplotype 

F1086H/V1089T/S1091E/K1093T using patch assay. 

Sequences of both haplotypes were synthesized and verified by sequencing. Growth on SC-Leu+5FOA indicates the 

growth defects of the haplotypes. SC-Leu is the control condition where WT RPB1 is present. 
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Figure 35. Intricate higher-order epistasis observed in substitutions of P. persalinus (Ciliate) TL haplotype. 
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(A). The heatmap displays the fitness of nine single substitutions in P. persalinus (Ciliate) TL in the yeast Pol II 

background, along with the epistasis between them represented by the primary deviation score. (B). Similar to Figure 

30A, we checked correlations between secondary deviation scores (Y-axis) to the primary deviation score (X-axis) to 

identify substitutions with substantial impact on primary deviation scores. Simple linear regression was applied to 

each comparison. Substitutions with R2 > 0.5 are annotated in the plot. (C). The fitness and deviation scores of 

substitution combinations related to group I are shown in the heatmap. Names of substitutions are colored based on 

their phenotypes. GOF: green. LOF: blue. No obvious phenotype (unclassified): grey. Each line shows the fitness and 

deviation scores of substitutions in a certain combination. Left, the fitness of individual substitutions, and the expected 

and observed fitness. Right, the primary deviations calculated by comparing observed and expected fitness and the 

secondary deviation scores of each constituent substitution. A1076T/A1090S/S1091D/S1096L/I1104L is in the first 

line. Its observed fitness is smaller than expected and when compared, resulting in a negative primary deviation score, 

representing a negative interaction. The secondary deviation scores of each constituent substitutions are all negative, 

indicating each of them showing negative interactions when adding to corresponding compounds. The following four 

lines represent the four combinations where V1089S, K1092R, K1093N, and K1102Q are incorporated into 

A1076T/A1090S/S1091D/S1096L/I1104L respectively. All observed fitness of combinations is healthier than 

A1076T/A1090S/S1091D/S1096L/I1104L, and the secondary deviation scores of V1089S, K1092R, K1093N and 

K1102Q are all positive, implying positive effect (suppression) on each combination respectively. (D). Scheme 

illustrating the substitution interaction network observed in C. (E). Similar to C, the fitness and deviation scores of 

combinations related with group II are shown in the heatmap. The first row shows the fitness and deviation scores 

detected within the combination A1076T/A1090S/S1091D/K1092R/K1093N. The following rows displays the 

corresponding fitness and deviation scores when the other four substitutions are incorporated. Notably, the effect of 

V1089S on A1076T/A1090S/S1091D/K1092R/K1093N cannot be determined because the observed fitness of the 

combination (V1089S + A1076T/A1090S/S1091D/K1092R/K1093N) is in the ultra-sick/lethal range, and its expected 

fitness calculated from the log additive model is also in the lethal range. However, V1089S and the compounds are 

sick but viable. The expected lethality is due to additivity. In this case, the secondary deviation of V1089S cannot be 

calculated and is represented by a black block in the heatmap. Moreover, the effect of A1076T on 

V1089S/A1090S/S1091D/K1092R/K1093N cannot be determined because the observed fitness falls within the lethal 

range. The expected fitness of (A1076T + V1089S/A1090S/S1091D/K1092R/K1093N) is also in the lethal range due 
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to the presence of the lethal compound V1089S/A1090S/S1091D/K1092R/K1093N. The expected lethality of the 

combination is because it contains a lethal component. The secondary deviation score of A1076T cannot be determined 

either and is indicated by a dark gray block in the heatmap. (F). Scheme representing the substitution interaction 

networks observed in E. 

 

 

Figure 36. Heatmap displaying fitness and deviation scores in A1076T/V1089S and 

A1090S/S1091D/K1092R/K1093N. 

Positive deviation scores in A1076T/V1089S indicate suppression, and no deviations (primary and secondary 

deviation scores are around zero) indicate no interactions within A1090S/S1091D/K1092R/K1093N. 
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Figure 37. A1076T showed sign epistasis with A1090S/S1091D/K1092R/K1093N. 

(A). Heatmap displays fitness and deviation scores for A1076T in all single substitutions and combinations with 

A1090S, S1091D, K1092R, K1093N, suggesting A1076T only showed negative interaction with 

A1090S/S1091D/K1092R/K1093N. (B). Heatmap shows fitness and deviation scores for V1089S in all single 

substitutions and combinations with A1090S, S1091D, K1092R, K1093N. V1089S showed negative interactions with 
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almost all of them. (C). Heatmap shows fitness and deviation scores for A1076T and V1089S in all single substitutions 

and combinations with A1090S, S1091D, K1092R, K1093N. Positive interactions were observed in most 

combinations. 

3.2.5 Distinct categories of residue epistasis patterns 

To comprehensively compare the magnitude and consistency of epistatic effects of TL 

substitutions when introduced into different genetic backgrounds, we determined the distributions 

of secondary deviation scores for each substitution. Substitutions with strong epistatic effect 

(Figure 29-30) and primary/secondary score correlations (Figure 32A, Figure 33, and Figure 

35B), display wide distributions of secondary deviation scores. Interestingly, while most of these 

impactful substitutions have classifiable phenotypes as single substitutions (GOF or LOF) (Figure 

38A-F), some without obvious phenotypes still show wide ranges of epistatic impacts, such as 

S1091E (Figure 38A), K1093N (Figure 38E-F), A1076G and N1082K (Figure 38G). Notably, 

some substitutions, like A1076T, were present in more than one TL haplotype background (Figure 

38C-F). To evaluate the overall epistatic effects of these substitutions in all tested backgrounds, 

we displayed the density plots of their secondary deviation scores across all non-repetitive 

haplotypes in which they are found (Figure 40) and calculated the maximum likelihood estimate 

(σ2) to quantify the distribution of secondary deviation effect for each substitution (Park et al., 

2022) (Figure 39). 62.5% of substitutions exhibit mild epistatic effects (σ2 < 3) and 25% of 

substitutions have medium effect (3 ≤ σ2 ≤ 5). A small portion, 12.5% of substitutions, show strong 

epistatic effects (σ2 > 5). The epistatic effects of substitutions did not correlate with their fitness 

as single substitutions (Figure 41A). Moreover, the distribution of a substitution’s secondary 

deviation scores is expected to follow normal distribution if the substitution has no or minor 
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epistatic effect in backgrounds to which it is introduced (Park et al., 2022). However, ~80% of TL 

substitutions did not have normally distributed secondary deviation scores (Figure 41B), 

illustrating that most TL substitutions had epistatic effects when introduced into some if not all 

genetic backgrounds. To investigate whether the epistatic effects of substitutions consistently 

remained positive (or negative) across various genetic backgrounds, we calculated the median of 

secondary deviation scores for substitutions respectively and plotted them against the 

corresponding σ2 values. Substitutions with strong epistatic effects (σ2) exhibited higher positive 

(or negative) median values (Figure 39B), implying that substitutions with robust epistatic effects 

consistently displayed either positive or negative impacts across various genetic backgrounds. We 

further compared the epistatic effects of substitutions in three categories (Figure 39C). 

Substitutions with a mild epistatic effect had little impact on the fitness of haplotypes when 

introduced. Substitutions with a medium epistatic effect, like A1076T and K1093N, could either 

enhance or reduce fitness of haplotypes. In contrast, substitutions with strong epistatic effects, such 

as S1096E and R1100C, were epistatic to backgrounds where they were observed, consistent with 

their requirement for toleration of specific substitutions in those backgrounds.   
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Figure 38. The distributions of primary and secondary deviation scores within each selected haplotype. 

Colors of spots represent phenotypes of substitutions. 
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Figure 39. Different classes of epistatic effects. 

(A). Histogram of mutants’ epistatic effects, represented by their respective maximum likelihood estimate (σ2) of 

secondary deviation scores. Higher epistatic effect indicates greater impact of a certain substitution. (B). Medians of 

secondary deviation scores of substitutions were plotted against their corresponding σ2. Substitutions are colored 

based on their phenotypes. (C). Comparing epistatic effects of mutants in each category. Each scatter plot shows the 

measured fitness of haplotypes without (X-axis) versus with (Y-axis) a substitution incorporated. The colors of the 
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plots represent the mutants’ phenotypes. The colored line marks the simple linear regression of the spots, representing 

the observed epistatic effect of the substitution. R2 values of the regressions are labeled in the plots. The black line 

indicates the additive (non-epistatic) expectation. 

 

 

Figure 40. The density plots of secondary deviation scores of each substitution. 

We made density plots to display the distribution of secondary deviation scores for each substitution. The density plots 

were calculated of substitutions from nonrepetitive intermediate combinations across all haplotypes. The count of 

nonrepetitive intermediate combinations containing the substitution is shown in the upper left of each plot. 
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Figure 41. Slight but not significant negative correlation between σ2 and fitness of substitutions. 

(A). The correlation between the maximum likelihood estimate (σ2) and the fitness of each substitution. Simple linear 

regression was applied (Y = -0.1384*X + 2.600, R2 = 0.01568). The slope is not significantly different from zero (P 

= 0.5101). (B). The histogram of p-values from normality test. The density plots of secondary deviation scores have 

been tested whether they follow normal distribution by Shapiro-Wilk normality test. The null hypothesis of the test is 

the distribution follows normal distribution. Substitutions with P-value > 0.05 suggest their distributions are normal 

and P-value < 0.05 indicate their distributions do not follow normal distribution. ~80% of substitutions do not follow 

normal distribution. 
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3.3 Discussion 

RNA polymerase TL function and evolution is impacted by extensive residue interactions 

within and around it (Duan et al., 2023; Kaplan et al., 2012). The TL shows remarkable 

conservation consistent with its essential tasks for executing mechanisms in all msRNAPs 

(Belogurov & Artsimovitch, 2019; Cramer, 2002; Mazumder et al., 2020; Werner & Grohmann, 

2011). Our observation (Duan et al., 2023) of widespread TL incompatibility in the S. cerevisiae 

Pol II context suggested epistasis external to the TL is the major source of epistasis for TL function 

(Figure 26). However, here we observed TL-internal epistatic interactions and residue coupling, 

although TL-internal coupling did not significantly maintain TL function when the interaction 

between TL and its greater evolutionary context was broken. The analyses in our recent work 

(Duan et al., 2023) and here indicate interactions formed by TL residues are integrated into the 

broader residue epistasis network within the whole enzyme (Figure 25). In summary, our results 

are in line with observations from other studies where the same mutation led to different 

phenotypes when introduced into homologous proteins (Doud et al., 2015; Haddox et al., 2018; 

Kondrashov et al., 2002; Lunzer et al., 2010; Natarajan et al., 2013; Park et al., 2022; Starr & 

Thornton, 2016; Viktorovskaya et al., 2013), highlighting the divergent nature of epistasis 

networks in highly conserved proteins like msRNAPs. 

Even considering our above findings, our experiments here provide case studies for 

examples of complex interactions during evolutionary divergence. The divergence in epistasis 

networks of homologs accumulates through substitutions. How substitutions alter existing 

epistasis and shape the effects of future substitutions is critical for understanding mechanisms 

underlying protein functional divergence and evolution (Johnson et al., 2023; Starr & Thornton, 

2016; Xie, Sun, Wang, Lehner, & Li, 2023). Using seven selected Pol II TL variants, we 
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comprehensively determined the higher-order epistatic interactions these substitutions create. For 

example, S1096E exhibited strong suppression on all synthetic sick/lethal combinations of E. 

invadens IP1 TL haplotype substitutions (Figure 32 and 34), suggesting a potential path for TL 

evolution that would require the 1096E substitution prior to additional substitutions that lead to 

synthetic sickness/lethality. A caveat to this interpretation is that additional substitutions outside 

the TL might reshape epistasis across the entire TL. Additionally, A1076T, a substitution that 

consistently showed positive epistatic effects when introduced into different genetic backgrounds 

(Figure 39), was also subject to sign epistasis in certain backgrounds. Here, we would propose 

that additional substitutions that prevent this sign epistasis might precede appearance of a 

combination that would otherwise incur a fitness defect with A1076T (Figure 35E-F). A1076T-

involved sign epistasis exemplifies intricate layers of substitution interactions. Emerging 

substitutions modify pre-existing interactions, ultimately influencing the fate of future mutations 

and the trajectory of protein evolution.  

We further inquired whether all individual substitutions had the potential to change the pre-

existing epistasis networks in the protein background they were introduced into, and to what extent. 

To investigate this, we analyzed the strength and consistency of the epistatic effects of substitutions 

across diverse genetic backgrounds. The epistatic effects of TL substitutions can be categorized 

into three distinct groups, with approximately 37.5% of TL substitutions consistently 

demonstrating medium to strong and stable epistatic effects, either positive or negative (Figure 

39A-B), reflecting their important role in reshaping the interactions among fixed historical 

substitutions and influencing the phenotypes of upcoming mutations. Substitutions that 

consistently exhibit positive epistatic effects, such as A1076T and S1096E (Figure 39C), are 

referred to as “permissive substitutions” (Starr & Thornton, 2016). They have the potential to make 
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certain mutations accessible that would otherwise remain inaccessible. An obvious path for 

evolutionary divergence in msRNAPs would be the incorporation of substitutions with mild effects 

on fitness but with biochemical properties of increased catalytic activity. These GOF alleles would 

have properties of suppression of LOF alleles that might otherwise be selected against. Conversely, 

substitutions with a consistent negative effect, like K1093N and R1100C, may act as “restrictive 

substitutions”, limiting the accessibility of some mutations (Starr & Thornton, 2016). A limitation 

of our analyses is that our experiments tested a limited number of backgrounds. In the future, our 

platform has the capability to determine if the case studies presented here are rarer or the norm in 

the TL. In summary, our analyses provide a framework for understanding complicated epistatic 

interactions of substitutions and examples of how fitness landscapes of mutants are changed due 

to epistasis. 

3.4 Methods 

3.4.1 Experimental data  

Experimental data were collected as described in Duan et al (Duan et al., 2023). Briefly, 

we synthesized TL mutant libraries including 662 natural TL variants from bacterial, archaeal, and 

eukaryotic RNA polymerases, 1987 TL haplotypes encompassing every possible substitution 

combination among seven selected Pol II TL natural variants, 724 TL haplotypes specifically 

designed for coupling analysis, and 620 TL single mutants serving as control to determine residue 

interactions. Approximately 15% wild-type S. cerevisiae Pol II TL allele of total variants was 

incorporated into each TL library for accurate quantification. All TL alleles were amplified and 
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transformed into yeast strain CKY283 along with modified RPB1-encoding plasmid to allow 

construction of complete Rpb1 TL mutants within yeast through gap repair. After transformation, 

Leu+ colonies were collected, and re-plated into subsequent selection plates. Growth defects and 

phenotypes of mutants were assessed through amplicon sequencing with Illumina Next-seq (150nt 

reads). We constructed amplicon sequencing libraries by performing emulsion PCR on the TL 

region with optimized cycles to preserve the original allele frequencies. Subsequently, we 

employed two barcodes for multiplexing different samples. Raw sequencing data has been 

deposited on the NCBI SRA (Sequence Read Archive) database under BioProject PRJNA948661 

3.4.2 Data cleaning and normalization 

Each TL variant library was constructed and screened in three biological replicates. Read 

counts were estimated with a codon-based alignment algorithm (Sing-Hoi Sze, 2018) and the 

median counts of the three replicates was used in the analysis. Mutant with read counts coefficients 

of variation > 0.5 in the control condition were excluded from the analysis due to low 

reproducibility. We calculated fitness scores by comparing allele frequency shifts before and after 

selections to the shifts of wild type in the following formula. And to enable direct comparisons, 

we applied min-max normalization to standardize median growth fitness across all libraries. 

Residue with fitness equal or smaller to -6.5 is in the severe sick and lethality range and their 

fitness are normalized to the lethal threshold -6.5. Processed mutant count, fitness and processing 

codes are available through GitHub (https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git).  

Fitness (mut) = log [𝑓mut, sele / 𝑓mut, unsele – log [𝑓WT, sele / 𝑓WT, unsele]  

https://github.com/Kaplan-Lab-Pitt/TLs_Screening.git
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3.4.3 Determination of functional interactions 

Functional interactions were represented by genetic interactions calculated from the log 

additive model (Figure 24). Primary deviation score of a putative haplotype (abc) = Fitness (abc) 

– [Fitness (a) + Fitness (b) + Fitness (c)].  

We further selected seven Pol II TL alleles and constructed all intermediate substitution 

combinations. For example, the putative TL haplotype has three different residues compared with 

wild-type S. cerevisiae Pol II TL allele a, b and c, we constructed all combinations of substitutions, 

which are a, b, c, ab, ac, bc, and abc. And we can calculate the secondary deviation scores for each 

substitution a, b and c. The secondary deviation score of a are calculated from all haplotypes 

containing a: Secondary deviation score of a1 = Fitness (ab) – Fitness (b). Secondary deviation 

score of a2 = Fitness (ac) – Fitness (c). Secondary deviation score of a3= Fitness (abc) – Fitness 

(bc).  

Primary and secondary deviation scores cannot be determined if the expected and observed 

fitness are both in the ultra-sick/lethal range (both fitness < -6.5). Haplotypes with expected fitness 

< -6.5 can be separated into two different situations. Firstly, all constituent substitutions are viable, 

but the sum of the fitness could be smaller than -6.5. This is lethality due to additivity and indicated 

with a dark gray block in the deviation score heatmaps. Secondly, some of the constituent 

substitutions or combinations are in lethal range. This lethality is because the haplotype contains 

at least one single substitution and indicated with a black block in the deviation heatmap. 

Functional interactions are determined from the deviation scores. Positive interaction 

(suppression): deviation score > 1. Additive (No interaction): -1 ≤ deviation score ≤ 1. Negative 

interaction (synthetic sickness/lethality): deviation score < -1. 
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Maximum likelihood estimate (σ2) of a certain substitution is calculated to represent its 

overall epistatic effect (Park et al., 2022). For a substitution with n non-repetitive secondary 

deviation scores, its maximum likelihood estimate: σ2 = 

∑ (𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑎 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛)2
𝑛

𝑛
 

3.4.4 Coupling analysis 

Coupling analysis was done as described in Russ et al (Russ et al., 2005) and Socolich et 

al (Socolich et al., 2005). Briefly, three independent TL haplotypes libraries were constructed to 

study intra-TL co-evolutionary residues. (a). Natural variants library, which consists of 362 

selected natural eukaryotic Pol I, II, and III TL variants. Multiple sequence alignment (MSA) and 

coupling analysis based on the MSA were done for the selected TL alleles to detect the residue 

coupling information (Figure 26A). (b). Random scrambling library, where amino acids in the 

same position of the MSA from (a) were randomly swapped. This swapping does not disturb 

sequence conservation, because the composition of different amino acids in the position remains 

unchanged but disrupts residue coupling among different residues. Coupling analysis was done for 

the random scrambled MSA to confirm disrupted residue coupling (Figure 26B). (c). Monte Carlo 

scrambling library, where the amino acids in the same position were swapped and then assessed 

by the Monte Carlo algorithm. If the swapping perturbs residue coupling, we withdraw the swap; 

if not, we keep the swap. By doing this, the Monte Carlo scrambling library retains both sequence 

conservation and residue coupling information (Figure 26C). The swapping in both cases breaks 

the epistasis between TL residues and the Pol II context. TL haplotypes were synthesized based 
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on three types of MSA and then screened for mutant phenotypes through phenotypic system (Duan 

et al., 2023; Qiu et al., 2016; Qiu & Kaplan, 2019). 
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4.0 Summary and future directions 

4.1 Summary 

This dissertation determined residue interaction networks within and around the TL, a key 

transcription domain in the S. cerevisiae Pol II active site using deep mutational scanning. In 

Chapter 2, we explored pairwise residue interaction networks within the TL and between the TL 

and other domains in Pol II active site using double mutants. In Chapter 3, we dissected higher-

order residue interactions within TL haplotypes. 

Pol II TL interaction landscape provides insight into the nature of lethal or previously 

unclassified mutants. The nature of lethal mutants is unlikely to be detected by biochemical or 

other methods. Using the natural suppression interaction between GOF and LOF mutants, lethal 

or previously unclassified mutants could be speculated. Lethal mutants caused by excessively slow 

transcription (LOF) are likely to be suppressed by most fast transcription mutants (GOF). 

Conversely, and this is relatively rare, lethal mutants due to too fast transcription (GOF) could be 

suppressed by most LOF. Our analysis revealed among 23 ultra-sick or lethal mutants analyzed 

(Figure 9F), 17 were suppressed by most GOF mutants, suggesting their lethality came from 

extreme LOF behavior like too slow catalysis. Conversely, 2 mutants were suppressed by most 

LOF mutants, indicating they confer phenotypes similar to GOF mutants but more severe, such as 

extremely fast transcription catalysis with compromised fidelity, leading to their lethality. Some 

unclassified mutants were suppressed by GOF, indicating atypical LOF that were not detected 

before or sign epistasis (Figure 9G). These observations suggest the double mutant interaction 

landscape increases the resolution beyond previously reported phenotypic analysis. 
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How do mutations alter protein function? Mutations alter protein function by replacing a 

WT amino acid with a new one. In addition to the changed biochemical features by substitution, 

the process leads to deeper molecular changes, where substitution disrupts the existing epistatic 

interaction networks involving the WT residue and introduces new interactions with the added 

amino acid. The resulting interaction networks vary depending on the nature of the new residue 

and its surrounding amino acids, illustrating a complex layer of molecular interactions beneath the 

surface of a simple amino acid substitution. To investigate the interaction networks that TL 

mutations could create, we selected 12 previously phenotyped GOF or LOF mutations, including 

these at the same residue at the TL or at the domains around the TL, and determined their 

interaction networks with the TL residues by 7,200 double mutants. We identified that none of the 

12 mutations share identical interaction networks, including those that are within the same class. 

Strikingly, mutations at the same position, and share similar catalytic defects that both are slow, 

H1085L and H1085Y, have different interaction networks. For example, the growth defects of 

H1085Y could be suppressed by almost all 20 substitutions at E1103, whereas H1085L are 

synthetic sick with almost all substitutions at E1103, implying that H1085 requires the WT 

glutamine acid at 1103 to function properly. The change of the interaction networks may change 

the compatibility of future mutations, therefore shapes the potential evolution path of the TL. This 

emphasizes the need to consider both the biochemical nature of substitutions and the resultant 

changes in epistasis interaction networks when interpreting protein mechanisms through mutations. 

What are the prevalence and strength of residue interactions in Pol II active site? The 

ultra- conserved TL domain may have experienced intense selection stress during evolution, 

leading to a prediction that the range and magnitude of epistasis within the TL may differ from 

other proteins. With about 12,000 double mutants covering interactions within the TL and between 
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the TL and its surround domains, we determined the prevalence of epistasis by the deviation of the 

observed fitness of double mutants from the prediction of the log additive model, and captured 

notable deviations (R2=0.21) (Figure 9B), which is much lower than the R2 reported in other 

studies (about 0.65-0.75) (Araya et al., 2012; Fowler et al., 2010; X. Lin et al., 2022; Melamed et 

al., 2013; Starr & Thornton, 2016). Among these interactions, approximately 15% of observed 

have a strong deviation from the predicted fitness (deviation score > |2|) (Figure 17D), higher than 

the 5% in other studies. The observed high rate of strong interactions in Pol II mutants could be 

attributed to the much higher rate of suppressive interactions due to Pol II mutants having opposite 

effects on catalysis. However, we cannot rule out the possibility that in highly conserved protein 

like the TL, these interactions are more robust and prevalent. 

Which TL residues functionally interact with each other? Our previous genetic studies 

have identified different types of residue interactions within the TL. To systematically understand 

how TL residues interacts with each other to ensure proper transcription, we designed 3790 double 

mutants covering double residue interactions between any two TL residues. We identified over 

half of the combinations exhibiting either positive or negative interactions. Among these, ~6.52% 

show sign epistasis or epistasis, implying functional dependence within TL residues. These 

interactions were distributed throughout the TL and covered every TL residue, supporting 

connectivity across the TL. Observed epistasis, concentrated within the C-terminal TL helix and 

adjacent regions, aligns with the hypothesized role of the C-terminal TL residues in maintaining 

the TL's open state (Figure 9B-D).  

How do residue interactions affect TL evolution? Substitutions alter existing epistatic 

interactions, converting previously incompatible mutations into compatible ones, or vice versa. 

This alteration has profound implications on protein evolution, potentially redirecting the 
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evolutionary path of proteins. To determine how variants of TL residues alter its potential 

evolutionary path, we comprehensively determined the higher-order epistatic interactions within 

TL haplotypes using seven selected Pol II TL variants, and all possible substitution combinations 

along the evolutionary path of the selected variants. We identified intricate layers of residue 

interactions, indicating potential TL evolutionary paths. For example, S1096E suppresses all 

synthetic sick/lethal mutant combinations in the E. invadens IP1 TL variant (Figure 32), 

suggesting a potential evolutionary trajectory for the TL, where 1096E substitution may be 

required to appear prior to additional substitutions that lead to synthetic sickness/lethality in 

evolution. Moreover, The A1076T substitution, exhibiting positive epistatic effects across various 

genetic backgrounds, may show negative interaction (sign epistasis) in specific contexts. We 

hypothesize that other mutations, which counteract this sign epistasis, might occur before 

combinations that lead to fitness defects with A1076T (Figure 35). Furthermore, we classified 

mutations based on their epistatic effect strength into three groups. Those with medium to strong 

effects may have the potential to strongly influence TL variant interactions during evolution, 

particularly, those mutations that consistently show positive effects across various backgrounds. 

They enable otherwise inaccessible mutations to occur, such as the GOF mutants, which can 

suppress LOF mutations, preventing them to be selected against. These examples highlight the 

complex nature of substitution interactions and their role in shaping effects of future mutations 

and TL evolution pathways. 
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4.2 Future directions 

How similar are the residue interaction networks in yeast RNA polymerases I-III? 

Emerging mutations modify pre-existing epistatic interaction networks within proteins and 

influence the accessibility of subsequent mutations. These cumulative changes in epistasis 

networks lead to diverse mechanisms, functions, and evolutionary direction, even among 

homologous proteins such as the three eukaryotic msRNAPs and their highly conserved active 

sites. To understand potential specialization or divergence among these homologs, we 

comprehensively determine the residue interaction networks for the highly related TLs in the active 

sites of yeast Pol I and III for comparison with our studies on yeast Pol II. Using our established 

high throughput platform for screening mutant phenotypes and identifying residue interactions, we 

plan to systematically compare and contrast the phenotypic landscapes by applying all possible 20 

substitutions at each residue for Pol I and Pol III TLs, and examining the residue interaction 

landscapes within and around Pol I and Pol II TLs using the analogous mutations that we used to 

detect the interactions in Pol II TL. We have generated the designed mutant libraries, with around 

8000 double mutants for both Pol I TL and Pol III TL. They are ready to be transformed into yeast 

for phenotyping and will be sequenced for analysis. More details are shown in Appendix B. 

How are the functions of other Pol II active site domains, such as the BH, altered by 

mutations, and how do they interact with the TL? Similar to the TL, the BH is a conformationally 

flexible domain in msRNAPs’ active sites that may play critical roles through TL interaction and 

allowing enzyme translocation (Figure 2). Understanding the cooperation between the BH and TL 

will be important to understand how they facilitate RNA polymerase activity. We plan to detect 

the phenotypic landscape by deep mutational scanning of all possible single substitutions in the 

BH (BH single mutant library). We have synthesized the BH single mutant library and finished 
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the high-throughput phenotyping, and these samples await sequencing. More details about this are 

shown in Appendix B. In the future, we will pick mutations in the TL to combine with all BH 

single mutants to detect their interaction networks.  

Do transcription factors allosterically affect TL function? The function of the Pol II TL 

is potentially regulated by transcription factors allosterically. We plan to detect potential allosteric 

effects in two ways. First, to understand what TL residues respond to transcription elongation 

factors such as TFIIS, Spt4/Spt5, Elf1 and Paf1C components, we plan to detect how the TL and 

BH phenotypic landscapes shift when an elongation factor is mutated or deleted. We will transform 

the TL and BH single mutant libraries into strains containing mutations of elongation factors in 

their genome and perform our high throughput screening experiment. Second, residue interaction 

networks may serve as allosteric pathways for the active site being regulated. Residues in these 

allosteric pathways may have been through co-evolution and therefore can be detected by 

statistically coupling analysis. We have applied the method to the largest subunit Rpb1 of Pol II 

and identified groups of co-evolving residues in the Rpb1 subunit that may represent pathways 

converge onto the active site. Because of the limit in the analysis, only one subunit of Pol II is 

involved. To identify the potential allosteric pathways from the whole Pol II to the active site, we 

plan to extend it by including all subunits of Pol II into the analysis in the future.  

Does epistasis drive the evolution of RNA polymerase? RNA polymerase is essential for 

gene expression, regulated by internal residue interactions and interactions with regulatory 

proteins or molecules. Although its structure and function are conserved, RNA polymerase evolves 

to suit the specific needs of the host cells, such as variations in transcription elongation rate. An 

open question is what drives the evolution of RNA polymerases. The evolution of RNA 

polymerase can be influenced by various factors, including epistatic interactions. Epistasis 
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involves residues or genes masking each other's effects, which affect protein structure stability, 

function and evolution of complex systems like RNA polymerases. This is because mutations in 

RNA polymerase’s regulatory elements can influence the function and efficiency of the entire 

complex, and initial mutations in RNA polymerase can influence the occurrence of subsequent 

mutations within the enzyme. Our results support the idea that epistasis influences the evolution 

of RNA polymerase. We observed widespread epistatic effects across the Pol II active site, with 

mutations such as A1076T and S1096E being part of complex sign epistasis networks that 

demonstrate intricate layers of substitution interactions. In the future, ancestral sequence 

reconstruction of TL sequences could provide evidence for ordering of substitutions in the TL’s 

evolutionary history wherein GOF mutations may build in buffering for tolerance of LOF 

mutations. 
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Appendix A Supplemental materials for Chapter 2 

Appendix A.1 Supplemental tables 

Appendix Table 1. Strains and plasmids 

Name Genotype Note 

pCK892 LEU2 CEN ARS ampr ColE1 ori rpb1 ∆Trigger Loop,T69 

corrected 

WT RPB1 plasmid with TL 

deleted 

pCK2193 LEU2 CEN ARS ampr ColE1 ori rpb1 T834P ∆Trigger 

Loop 

T834P plasmid with TL deleted 

pCK2194 LEU2 CEN ARS ampr ColE1 ori rpb1 T834A ∆Trigger 

Loop 

T834A plasmid with TL deleted 

pCK2198 LEU2 CEN ARS ampr ColE1 ori rpb1 S713P ∆Trigger 

Loop 

S713P plasmid with TL deleted 

CKY283 ura3-52 his3∆200 leu2∆1 or ∆0 trp1∆63 met15∆0 lys2-

128∂ gal10∆56 rpb1∆::CLONATMX 

RPB3::TAP::KlacTRP1 

WT yeast strain 

CKY3208 ura3-52 his3∆200 leu2∆1 or ∆0 trp1∆63 met15∆0 lys2-

128∂ gal10∆56 rpb1∆::CLONATMX 

RPB3::TAP::KlacTRP1 rpb2 Y769F 

rpb2 Y769F strain 

 

Appendix Table 2. Primers 

Name Sequence Description Amplification Schematic Note 

CKO2751 ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTG

TL Library 

amplification 

TL library 1 R1-BC1-N-

TL-F 

Custom 

primer 
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TCGGTAATTAGCAGCC

CAATCCATTGGTG 

(First 

amplification) 

CKO2752 ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTA

GGTCACTAGTAGCAGC

CCAATCCATTGGTG 

TL Library 

amplification 

(First 

amplification) 

TL library 2 R1-BC2-NN-

TL-F 

Custom 

primer 

CKO2753 ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTG

AATCCGACACTAGCAG

CCCAATCCATTGGTG 

TL Library 

amplification 

(First 

amplification) 

TL library 3 R1-BC3-

NNN-TL-F 

Custom 

primer 

CKO2754 ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTG

TACCTTGGCTCTAGCAG

CCCAATCCATTGGTG 

TL Library 

amplification 

(First 

amplification) 

TL library 4 R1-BC4-

NNNN-TL-F 

Custom 

primer 

CKO2755 ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTC

ATGAGGATTCGCTAGC

AGCCCAATCCATTGGT

G 

TL Library 

amplification 

(First 

amplification) 

TL library 5 R1-BC5-

NNNNN-TL-

F 

Custom 

primer 

CKO2756 ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTT

GACTGACACGAACTAG

CAGCCCAATCCATTGGT

G 

TL Library 

amplification 

(First 

amplification) 

TL library 6 R1-BC6-

NNNNNN-

TL-F 

Custom 

primer 

CKO2757 ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTT

CAGACGAGAGTTGTTA

TL Library 

amplification 

(First 

amplification) 

TL library 7 R1-BC7-

NNNNNNN-

TL-F 

Custom 

primer 
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GCAGCCCAATCCATTG

GTG 

CKO2758 ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTG

ATAGGCTCTCTGTGTTA

GCAGCCCAATCCATTG

GTG 

TL Library 

amplification 

(First 

amplification) 

TL library 8 R1-BC8-

NNNNNNN

N-TL-F 

Custom 

primer 

CKO2759 ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTT

GGTACAGTGTGCTCCTT

AGCAGCCCAATCCATT

GGTG 

TL Library 

amplification 

(First 

amplification) 

TL library 9 R1-BC9-

NNNNNNN

NN-TL-F 

Custom 

primer 

CKO2760 ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTC

AAGGTCTGGACAGTTA

TTAGCAGCCCAATCCAT

TGGTG 

TL Library 

amplification 

(First 

amplification) 

TL library 10 R1-BC10-

NNNNNNN

NNNN-TL-F 

Custom 

primer 

CKO2761 GTGACTGGAGTTCAGA

CGTGTGCTCTTCCGATC

TGAAGGGGTTTTCATGT

TTTTGG 

TL Library 

amplification 

(First 

amplification) 

TL libraries R2-TL-R Custom 

primer 

P17-B5 AGGATAGC NEB index 

oligos (Second 

amplification) 

Condition 1-1 
 

NEB 

index 

oligos 

P18-B6 CCTTCCAT NEB index 

oligos (Second 

amplification) 

Condition 1-2 
 

NEB 

index 

oligos 
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P19-B7 GTCCTTGA NEB index 

oligos (Second 

amplification) 

Condition 1-3 
 

NEB 

index 

oligos 

P20-B8 TGCGTAAC NEB index 

oligos (Second 

amplification) 

Condition 2-1 
 

NEB 

index 

oligos 

P21-B9 CACAGACT NEB index 

oligos (Second 

amplification) 

Condition 2-2 
 

NEB 

index 

oligos 

P22-B10 TTACGTGC NEB index 

oligos (Second 

amplification) 

Condition 2-3 
 

NEB 

index 

oligos 

P23-B11 CCAAGGTT NEB index 

oligos (Second 

amplification) 

Condition 3-1 
 

NEB 

index 

oligos 

P24-B12 CACGCAAT NEB index 

oligos (Second 

amplification) 

Condition 3-2 
 

NEB 

index 

oligos 

P53-E5 CCGCTTAA NEB index 

oligos (Second 

amplification) 

Condition 3-3 
 

NEB 

index 

oligos 

P54-E6 TACCTGCA NEB index 

oligos (Second 

amplification) 

Condition 4-1 
 

NEB 

index 

oligos 

P55-E7 GTCGATTG NEB index 

oligos (Second 

amplification) 

Condition 4-2 
 

NEB 

index 

oligos 
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P56-E8 TATGGCAC NEB index 

oligos (Second 

amplification) 

Condition 4-3 
 

NEB 

index 

oligos 

P57-E9 CTCGAACA NEB index 

oligos (Second 

amplification) 

Condition 5-1 
 

NEB 

index 

oligos 

P58-E10 CAACTCCA NEB index 

oligos (Second 

amplification) 

Condition 5-2 
 

NEB 

index 

oligos 

P59-E11 GTCATCGT NEB index 

oligos (Second 

amplification) 

Condition 5-3 
 

NEB 

index 

oligos 

P60-E12 GGACATCA NEB index 

oligos (Second 

amplification) 

Condition 6-1 
 

NEB 

index 

oligos 

P85-H1 TACTCCAG NEB index 

oligos (Second 

amplification) 

Condition 6-2 
 

NEB 

index 

oligos 

P86-H2 GGAAGAGA NEB index 

oligos (Second 

amplification) 

Condition 6-3 
 

NEB 

index 

oligos 

P87-H3 GCGTTAGA NEB index 

oligos (Second 

amplification) 

Condition 7-1 
 

NEB 

index 

oligos 

P88-H4 ATCTGACC NEB index 

oligos (Second 

amplification) 

Condition 7-2 
 

NEB 

index 

oligos 
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P89-H5 AACCAGAG NEB index 

oligos (Second 

amplification) 

Condition 7-3 
 

NEB 

index 

oligos 

P90-H6 GTACCACA NEB index 

oligos (Second 

amplification) 

Condition 8-1 
 

NEB 

index 

oligos 

P91-H7 GGTATAGG NEB index 

oligos (Second 

amplification) 

Condition 8-2 
 

NEB 

index 

oligos 

P92-H8 CGAGAGAA NEB index 

oligos (Second 

amplification) 

Condition 8-3 
 

NEB 

index 

oligos 

P93-H9 CAGCATAC NEB index 

oligos (Second 

amplification) 

Condition 9-1 
 

NEB 

index 

oligos 

P94-H10 CTCGACTT NEB index 

oligos (Second 

amplification) 

Condition 9-2 
 

NEB 

index 

oligos 

P95-H11 CTTCGGTT NEB index 

oligos (Second 

amplification) 

Condition 9-3 
 

NEB 

index 

oligos 

P96-H12 CCACAACA NEB index 

oligos (Second 

amplification) 

Condition 0 
 

NEB 

index 

oligos 

 

Appendix Table 3. Phenotyping details 

Condition Cells plated Days for phenotyping 
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SC-Leu (Pre) 30K 2 days 

SC-Leu + 5FOA 400K 3 days 

SC-Leu (Post) 400K 2 days 

SC-Lys 1M 7 days 

YPRaf 400K 6 days 

YPRafGal 500K 6 days 

SC-Leu + 20µg/mL MPA 1M 4 days 

SC-Leu + 15mM Mn 1M 5 days 

SC-Leu + 3% Formamide 500K 3 days 

 

Appendix Table 4. Mutant counts of libraries 

Index Handled library WT Allele number 

TL Lib1 Singles 111 620 

TL Lib2 Pairwise Doubles 700 3914 

TL Lib3 Evo present 123 662 

TL Lib4 Evo Path 356 1987 

TL Lib5 Coupling 130 724 

TL Lib6 Target Doubles 858 4800 

TL Lib7 T834P-target 111 621 

TL Lib8 T834A-target 111 621 

TL Lib9 Y769F-target 111 621 

TL Lib10 S713P-target 111 621 

Total 
 

2722 15191 

 

Appendix Table 5. Multiple logistic regression model for predicting GOF mutants 

GOF Model 
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Parameter estimates Variable Estimate Standard error 

95% CI (profile 

likelihood) 

β0 Intercept -1.816 1.549 -5.879 to 0.8657 

β1 MPA -2.542 1.294 -6.196 to -0.6109 

β2 Lys 1.942 1.121 0.4256 to 5.021 

β3 Gal -0.0657 0.282 -0.7183 to 0.5200 

β4 MPA : Lys 0.5297 0.2843 -0.2079 to 1.322 

β5 MPA : Gal 0.08373 0.276 -0.5768 to 0.5721 

β6 Lys : Gal -0.0256 0.2288 -0.2720 to 0.5072 

Odds ratios Variable Estimate 

95% CI (profile 

likelihood) 

 
β0 Intercept 0.1626 0.002798 to 2.377 

 
β1 MPA 0.07874 0.002037 to 0.5429 

 
β2 Lys 6.974 1.530 to 151.6 

 
β3 Gal 0.9364 0.4876 to 1.682 

 
β4 MPA : Lys 1.698 0.8123 to 3.752 

 
β5 MPA : Gal 1.087 0.5617 to 1.772 

 
β6 Lys : Gal 0.9748 0.7618 to 1.661 

 
Area under the ROC 

curve 

    
Area 0.9889 

   
Std. Error 0.009628 

   
95% confidence 

interval 0.9700 to 1.000 

   
P value <0.0001 

   

Classification table 

Predicted Not 

GOF Predicted GOF Total 

% Correctly 

classified 
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Observed Not GOF 36 0 36 100 

Observed GOF 2 23 25 92 

Total 38 23 61 96.72 

Negative predictive 

power (%) 94.74 

   
Positive predictive 

power (%) 100 

   

 

Appendix Table 6. Multiple logistic model for predicting LOF mutants 

LOF Model         

Parameter estimates Variable Estimate Standard error 

95% CI (profile 

likelihood) 

β0 Intercept -1.916 1.327 -5.389 to 0.3409 

β1 MPA 1.392 1.508 -0.7599 to 5.252 

β2 Spt 1.328 0.9944 -0.04761 to 4.209 

β3 Gal 0.8353 0.4913 0.1660 to 2.396 

β4 MPA : Spt 0.01112 0.1707 -0.3174 to 0.5524 

β5 MPA : Gal 0.2992 0.3107 -0.2797 to 1.150 

β6 Spt : Gal -0.8823 0.6035 -2.785 to -0.1533 

Odds ratios Variable Estimate 

95% CI (profile 

likelihood)   

β0 Intercept 0.1472 0.004566 to 1.406   

β1 MPA 4.021 0.4677 to 191.0   

β2 Spt 3.774 0.9535 to 67.29   

β3 Gal 2.305 1.181 to 10.98   

β4 MPA : Spt 1.011 0.7281 to 1.737   

β5 MPA : Gal 1.349 0.7560 to 3.159   
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β6 Spt : Gal 0.4138 0.06175 to 0.8579   

Area under the ROC 

curve   

   
Area 0.9914 

   
Std. Error 0.007495 

   
95% confidence interval 0.9767 to 1.000 

   
P value <0.0001 

   

Classification table Predicted 0 Predicted 1 Total 

% Correctly 

classified 

Observed 0 32 0 32 100 

Observed 1 3 26 29 89.66 

Total 35 26 61 95.08 

Negative predictive 

power (%) 91.43 

   
Positive predictive power 

(%) 100 

   

 

Appendix Table 7. Kruskal-Wallis tests 

Dunn's multiple comparisons test Mean rank diff. Significant? Summary Adjusted P Value 

S713P vs. Y769F 118.1 No ns 0.8279 

S713P vs. E1103G 7.282 No ns >0.9999 

S713P vs. L1101S 270.8 Yes **** <0.0001 

S713P vs. F1084I 383 Yes **** <0.0001 

S713P vs. M1079V -62.19 No ns >0.9999 

S713P vs. T834P 610.7 Yes **** <0.0001 

Y769F vs. E1103G -110.8 No ns >0.9999 

Y769F vs. L1101S 152.7 No ns 0.1754 
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Y769F vs. F1084I 264.9 Yes **** <0.0001 

Y769F vs. M1079V -180.3 Yes * 0.0393 

Y769F vs. T834P 492.6 Yes **** <0.0001 

E1103G vs. L1101S 263.5 Yes *** 0.0001 

E1103G vs. F1084I 375.7 Yes **** <0.0001 

E1103G vs. M1079V -69.47 No ns >0.9999 

E1103G vs. T834P 603.4 Yes **** <0.0001 

L1101S vs. F1084I 112.2 No ns >0.9999 

L1101S vs. M1079V -333 Yes **** <0.0001 

L1101S vs. T834P 339.9 Yes **** <0.0001 

F1084I vs. M1079V -445.2 Yes **** <0.0001 

F1084I vs. T834P 227.7 Yes ** 0.0017 

M1079V vs. T834P 672.9 Yes **** <0.0001 

     
Dunn's multiple comparisons test Mean rank diff. Significant? Summary Adjusted P Value 

H1085L vs. H1085Y 236.3 Yes **** <0.0001 

H1085L vs. N1082S 6.459 No ns >0.9999 

H1085L vs. Q1078S 244.4 Yes **** <0.0001 

H1085L vs. T834A -25.35 No ns >0.9999 

H1085Y vs. N1082S -229.8 Yes **** <0.0001 

H1085Y vs. Q1078S 8.097 No ns >0.9999 

H1085Y vs. T834A -261.6 Yes **** <0.0001 

N1082S vs. Q1078S 237.9 Yes **** <0.0001 

N1082S vs. T834A -31.8 No ns >0.9999 

Q1078S vs. T834A -269.7 Yes **** <0.0001 
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Appendix A.2 Adding Supplemental Documents 

Appendix A.2.1 High efficiency large scale chemical yeast transformation protocol 

We optimized the Gietz protocol(Gietz & Schiestl, 2007), which yields 5-15 x 105 colonies 

with 1μg of DNA and 10 × 108 cells. However, transformation efficiency may vary with different 

strains. 

Day 1: 

Set up 5mL cultures from a single colony in YPD. 

Day 2: 

1. Dilute ~400-500µL of saturated culture in 50mL of YPD (210rpm, 30 °C). The cells 

were grown for ~3-4 hours until the concentration of the culture reached 2 × 107 cells/mL (count 

the cells). 

2. The cells were washed in 25 ml of sterile water and resuspended in 1 ml sterile water 

(volume needs to be adjusted to make the final concentration 1 × 109 cells/mL).  

3. Boil ssDNA for 10mins before use, and the boiled ssDNA was kept on ice for the entire 

duration. 

4. Aliquot of 100µL (108 cells) were centrifuged at top speed for 30s, discarded the 

supernatant was discarded, and the cells were resuspended in the transformation mix (240µL 50% 

PEG 3500, 36µL 1M LiOAc, 10µL ssDNA, 74µL DNA with water to make 100ng in total, 360µL 

in total).  

5. The mixture was then incubated at 30 °C for 30 min. 

6. Tape the tubes to a 30 °C wheel for 30 min of incubation. 

7. Immediately prior to heat shock, add 36µL DMSO. 
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8. Heat shock was performed at 42 °C for 15 min. 

9. The solution was spun down for 30 s, the liquids were removed, and re-suspend in 50µL 

H2O. 

10. Plated all 500µL on the selection plate to achieve the highest transformation efficiency. 

Appendix A.2.2 Emulsion PCR set up with EURx Micellula DNA Emulsion & Purification 

(ePCR) PCR kit 

1. The emulsion-oil phase was prepared on ice. 

Appendix Table 8. Emulsion oil phase 

Oil surfactant mixture (300 μl per reaction) (μL) 

Emulsion component 1 220 

Emulsion component 2 20 

Emulsion component 3 60 

 

2. Mix thoroughly by vertexing at the highest level and put in a 4 °C cold room for further 

use. 

3. Prepare the PCR water phase on ice. 

Appendix Table 9. Emulsion PCR water phase 

Emulsion PCR water phase using Kaplan lab Phusion for 

amplification from synthesized library pool 

Components 1X 

10X dNTPs(μL) 5 
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5X detergent free Buffer(μL) 10 

H2O(μL) 32 

100µM Primer F (μL) 0.5 

100µM Primer R (μL) 0.5 

TL library template (1ng/μL) 1 

Phusion(μL) 0.5 

1mg/mL BSA(μL) 0.5 

Total(μL) 50 

 

4. Create emulsion reactions by mixing the 300μl precooled oil surfactant mixture and 50μl 

of precooled PCR water phase with vortexing at the maximum speed for 5 min in a cold room. 

5. The solution was quickly spun down at ~1000rpm for 5 s. Dispense ~110μL aliquot into 

three PCR tubes. 

6. PCR was performed according to the following protocol.  

Note 1: Do not exceed the 95°C denaturing temperature because some buffers tend to 

destabilize the emulsion. 

Note 2: The number of cycles was determined by Q-PCR with the same amount of template 

and oligos. A cycle was selected in the upper half of the linear amplification curve. Two more 

cycles were added to the selected cycle number because emulsion PCR tends to have a lower 

amplification efficiency than the standard PCR. To confirm the linearity, a further test with 

selected cycle, selected cycle plus two more cycles, and selected cycle plus four more cycles was 

applied to three emulsion PCR reactions (from the same mix). The products of the three emulsion 
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PCR were analyzed using agarose gel electrophoresis. The amount of PCR with the selected cycle 

plus two more cycles was normally between the other two cycles. 

 

Appendix Figure 1. Example gel figure of three emulsion PCR reactions 

Appendix Table 10. PCR thermal cycle 

Temperature Time Cycle 

95 °C 3min  

95 °C 15s 

18 cycles 55 °C 30s 

72 °C 30s/kb 

72 °C 5 min  

12 °C Forever  

 

7. Once the PCR was completed, the corresponding triplicates of each ePCR assay were 

pooled into a single 2 ml reaction tube. Break emulsion by adding 1.0 ml 2-butanol (or butanol). 

Mix by vertexing. 

8. Add 400 µL of orange-colored Orange-DX buffer to the opened emulsion solution. Mix 

the emulsion solution with gentle agitation (e.g., on a rotator for 2 min).  

9. Centrifuge for 2 min at maximum speed (e.g. 16 000 x g / approx. 14 000 rpm) for phase 

separation. 

10. Most of the yellow-colored organic phase was removed. 
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11. Apply 40 µL of activation Buffer DX onto the spin column (do not spin) and keep it at 

room temperature until the mixture is transferred to the spin column (at least 10 min). 

12. Pour the mixture (aqueous phase + interphase; max. Six hundred microliters) into a 

spin column/receiver tube assembly. 

13. Spin down in a microcentrifuge at 12,000 rpm for 1 min, discard the flow-through. 

14. Add 500 µL of Wash-DX1 buffer and spin down at 12,000 rpm (~11.000 x g) for 1 

min, and discard the flow-through. 

15. Add 650 µL of Wash-DX2 buffer and spin down at 12,000 rpm (~11.000 × g) for 1 

min, and discard the flow-through. 

16. The mixture was spun down at 12,000 rpm (~11.000 x g) for 2 min to remove traces of 

Wash-DX buffer. 

17. The spin column was placed into a new receiver tube (1.5-2 ml). Add 50-150 µl of 

Elution-DX buffer to elute the bound DNA. 

18. Incubate the spin column/receiver tube assembly for 2 min at room temperature. Spin 

down at 12,000 rpm (~11.000 × g) for 1 min. The elution process was repeated. 

Appendix A.2.3 Amplification of mutant libraries 

1. The Agilent TL library was dissolved in 100µL of 10mM Tris buffer (pH8) as suggested 

by protocol. 1µL of the library was used in each 50µL PCR reaction. The number of cycles was 

estimated using qPCR. Two rounds of emulsion PCR were performed to obtain sufficient library 

products. The size of the library products was confirmed by agarose gel electrophoresis. 

2. Two flanking regions were added to the TL regions amplified by PCR sequencing, as 

shown in the following schematic.  
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Appendix A.2.4 Transformation of mutant libraries 

1. Transformation was performed using a high-efficiency large-scale chemical yeast 

transformation protocol (Appendix A.2.1). 100ng of MluI digested plasmid and 383ng of variants 

library were used in the transformation.  

2. Screening was performed using scraping and replating. The number of cells for each 

condition is listed in Appendix Table 3.  

Appendix A.2.5 Preparation of sequencing pool 

We have 10 TL-screening mutant libraries that were tested under nine conditions; each 

library had three replicates, leading to 270 mutant pools (10 × 9 × 3 = 270). 

Library preparation for screening 
(PCR sewing)

PCR sewing
TL (93nt)

TL flanking  
(20nt)

TL flanking  
(20nt)

SacI 
(6nt)

XhoI 
(6nt)

PCR 
handle 
(20nt)

PCR 
handle 
(20nt)

Further flanking 
sequence in RPB1

Further flanking 
sequence in RPB1

Sewed PCR 
product

CKO2233 CKO2234

CKO2235 CKO2236

PCR 1st step: Library as template CKO2233 + CKO2234: 133nts

CKO413 + CKO2235: 200nts

CKO414 + CKO2236: 200nts

CKO413 CKO414

PCR 2nd step: 1st round PCR products as template CKO413 + CKO414: 493nts

Appendix Figure 2. Screening library preparation by PCR sewing. 



 157 

1. DNA from mutant pools (n=270) was extracted using the Yeastar genomic DNA kit 

according to the manufacturer's instructions (Zymo Research), except that we used 1-5 x 108 cells. 

2. To amplify the TL region from the extracted DNA and add barcodes to distinguish 10 

libraries, the TL regions of 270 mutant pools were amplified by standard PCR with 10 pairs of 

barcoded primers (one pair of primers with a certain barcode was used for all conditions and 

replicates of that library). PCR cycles were determined by Q-PCR to minimize the allele frequency 

shifts caused by amplification. We did Q-PCR test with two or three replicates of each library to 

determine a cycle that was in the linear range of the amplification curve. All three replicates of 

each library were subjected to the same cycle, which represents the average value of the replicates 

in the Q-PCR test. The determined cycles are shown in the following figure. 

 

Appendix Figure 3. Amplification cycles determined by Q-PCR. 

3. PCR products from step 2, representing libraries screened under the same conditions, 

were pooled. We obtained 27 pools in total after a combination of 27 conditions. To limit template 

switching, these 27 pools were amplified using emulsion PCR technology (EURx Micellula DNA 

Emulsion & Purification (ePCR PCR kit). Q-PCR was performed to determine the amplification 
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cycle that was in the linear range for each pool. NEB barcodes containing primers were used to 

distinguish different conditions (NEBNext Multiplex Oligos for Illumina). 

After two rounds of amplification, a sample-specific barcode sequence was added to the 

TL variants, and an adequate amount of TL variants was ready for sequencing. The indexed pooled 

samples were sequenced by single-end sequencing on an Illumina Next-seq (150nt reads). On 

average, over 11 million reads were obtained for individual samples with high reproducibility after 

two rounds of sequencing. 

Appendix A.2.6 Formulas of calculating functional interactions. 

For multiple mutant M1M2M3 with count c(M1M2M3), we computed the ratio rc(M1M2M3) 

= c(M1M2M3)/c(WT). 

(1)The observed fitness of the multiple mutant M1M2M3 is: 

log (
𝑟𝑐 (𝑀1𝑀2𝑀3)𝑠𝑒𝑙𝑒

𝑟𝑐(𝑀1𝑀2𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒
) 

(2)The expected fitness of a mutant M1M2M3 is the log additive of the constituent single 

mutants M1, M2, and M3. 

log (
𝑟𝑐 (𝑀1)𝑠𝑒𝑙𝑒

𝑟𝑐(𝑀1)𝑢𝑛𝑠𝑒𝑙𝑒
) + log (

𝑟𝑐(𝑀2)𝑠𝑒𝑙𝑒

𝑟𝑐(𝑀2)𝑢𝑛𝑠𝑒𝑙𝑒
) + log (

𝑟𝑐 (𝑀3)𝑠𝑒𝑙𝑒

𝑟𝑐(𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒
) = log (

𝑟𝑐(𝑀1)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑠𝑒𝑙𝑒

𝑟𝑐 (𝑀1)𝑢𝑛𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑢𝑛𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒
) 

(3)We compared the fitness of M1M2M3 with the log sum of its constituent M1, M2, and M3 

(compare the observed to the expected fitness), which is 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =  log (
𝑟𝑐 (𝑀1𝑀2𝑀3)𝑠𝑒𝑙𝑒

𝑟𝑐(𝑀1𝑀2𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒
) − log (

𝑟𝑐(𝑀1)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑠𝑒𝑙𝑒

𝑟𝑐 (𝑀1)𝑢𝑛𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑢𝑛𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒
) 

                                                           =  log (
𝑟𝑐 (𝑀1𝑀2𝑀3)𝑠𝑒𝑙𝑒

𝑟𝑐(𝑀1)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑠𝑒𝑙𝑒
) − log (

𝑟𝑐(𝑀1𝑀2𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒

𝑟𝑐 (𝑀1)𝑢𝑛𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑢𝑛𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒
) 

If 

−1 <  log (
𝑟𝑐 (𝑀1𝑀2𝑀3)𝑠𝑒𝑙𝑒

𝑟𝑐(𝑀1)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑠𝑒𝑙𝑒
) − log (

𝑟𝑐(𝑀1𝑀2𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒

𝑟𝑐 (𝑀1)𝑢𝑛𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑢𝑛𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒
) < 1 
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Then interaction among the constituent single mutants is additive. 

If  

log (
𝑟𝑐 (𝑀1𝑀2𝑀3)𝑠𝑒𝑙𝑒

𝑟𝑐(𝑀1)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑠𝑒𝑙𝑒
) − log (

𝑟𝑐(𝑀1𝑀2𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒

𝑟𝑐 (𝑀1)𝑢𝑛𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑢𝑛𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒
) ≥ 1 

Then the interaction is non-additive, positive interactions, including suppression and epistasis. 

If  

log (
𝑟𝑐 (𝑀1𝑀2𝑀3)𝑠𝑒𝑙𝑒

𝑟𝑐(𝑀1)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑠𝑒𝑙𝑒
) − log (

𝑟𝑐(𝑀1𝑀2𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒

𝑟𝑐 (𝑀1)𝑢𝑛𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀2)𝑢𝑛𝑠𝑒𝑙𝑒 ∗ 𝑟𝑐 (𝑀3)𝑢𝑛𝑠𝑒𝑙𝑒
) ≤ −1 

Then the interaction is non-additive, negative interactions, including synthetic sick, synthetic lethal 

and sign epistasis. 
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Appendix B Pol II BH, Pol I and Pol III TL single and double mutant libraries 

Appendix B.1 Phenotyping Pol II BH single mutant library 

Appendix B.1.1 Background and rationale 

The BH is another highly conserved and conformationally flexible domain in the active 

site of msRNAPs, located adjacent to the TL (Figure 2). It is crucial for RNA polymerase activity 

through its interactions with the TL and the role in enzyme translocation. This is supported by the 

observation that BH mutations exhibit phenotype patterns similar to TL GOF or LOF mutants, and 

our double mutant interaction analysis has revealed dependent epistatic interactions between BH 

mutants and the TL single mutants. We aim to systematically investigate the role of the BH in 

RNA polymerase by examining the phenotypic landscape of BH single mutants through deep 

mutational scanning, focusing on two key questions: (1) Which BH residues are particularly 

sensitive to mutations? (2) How are GOF and LOF mutants distributed within the BH?  

Appendix B.1.2 Experimental design 

Appendix Table 11. Pol II BH single mutant library 

Lib # Content detail Protein Allele 

amount 

WT 

inserted  

Sum 

Lib13 Pol II BH 

singles 

 All possible Pol II BH 

single mutants 

 Pol II 

Rpb1 BH 

680 108 (15%) 788 
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Control BH single mutants aliquoted 

from BH single mutant 

library 

Pol II 

Rpb1 BH 

13  13 

 

Appendix Table 12. Pol II BH mutant screening details 

Condition Cells plated Days for phenotyping 

SC-Leu (Pre) 30K 2 days 

SC-Leu + 5FOA 3days 400K 3 days 

SC-Leu + 5FOA 4days 400K 4 days 

SC-Leu + 5FOA 5days 400K 5 days 

SC-Leu (Post) 400K 2 days 

SC-Lys 1M 7 days 

YPRaf 400K 6 days 

YPRafGal 500K 6 days 

SC-Leu + 20µg/mL MPA 1M 4 days 

SC-Leu + 15mM Mn 1M 5 days 

SC-Leu + 3% Formamide 500K 3 days 

 

Appendix B.1.3 Experimental progress 

Appendix Table 13. Experimental progress of BH single mutant library 

Step Details Progress 

Generating mutant library Design Finished 

Synthesis Finished 

Extension/Amplification Finished 

High throughput screening Transformation Finished 
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Screening Finished 

Deep sequencing Construction amplicon sequencing pool   

Deep sequencing   

Analysis   

 

Appendix B.2 Detecting residue interaction networks in Pol I and Pol III active sites 

Appendix B.2.1 Background and rationale 

The three yeast RNA polymerases have evolved distinct residue interaction networks 

within their respective enzymatic backgrounds. This is evident from the fact that the analogous 

mutation resulted in contrasting catalytic defects in yeast Pol I and Pol II TLs, as well as the 

broad incompatibility of TLs from other species or polymerases when placed in the yeast Pol II 

background (Figure 17-18). To comprehensively understand the TL functions and the unique 

residue interaction networks in Pol I and Pol III, we aim to dissect the Pol I and Pol III TL single 

mutant phenotypic landscape and double mutant interaction landscape by deep mutational 

scanning, and compare and contrast these landscapes with those of Pol II TL. We will be focused 

on addressing the following questions: (1) How similar are the Pol I and Pol III single mutant 

phenotypic landscapes compare to the Pol II TL landscape? (2) Can we identify distinct 

phenotypic patterns that differentiate Pol I and Pol III TL single mutants with GOF and 

LOF? (3) To what extent do the residue interaction landscapes differ among the three RNA 

polymerases? 
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Appendix B.2.2 Experimental design 

Appendix Table 14. Summary of Pol I and Pol III libraries 

Lib # Content detail Protein Rationale Allele 

amount 

WT 

inserted  

Sum 

Lib11 Pol I TL 

singles 

 Pol I TL singles     620 98 (15%) 718 + 

5% 

spike 

mutants 

Lib14 Pol I TL 

Target 

doubles 

Q1199S x singles Rpa190 

TL 

Pol II TL 

Q1078S  

600 837 

(15%) 

6336 + 

5% 

spike 

mutants 

M1200V x singles Rpa190 

TL 

Pol II TL 

M1079V 

600 

L1202M x singles Rpa190 

TL 

Pol II TL 

L1081M 

600 

N1203S x singles Rpa190 

TL 

Pol II TL 

N1082S 

600 

F1205I x singles Rpa190 

TL 

Pol II TL 

F1084I 

600 

H1206L x singles Rpa190 

TL 

Pol II TL 

H1085L 

600 

H1206Y x singles Rpa190 

TL 

Pol II TL 

H1085Y 

600 

L1222S x singles Rpa190 

TL 

Pol II TL 

L1101S 

600 

E1224G x singles Rpa190 

TL 

Pol II TL 

E1103G 

600 
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Designed single 

mutants 

Rpa190 

TL 

For 

comparison 

with Pol I 

singles 

99 99 

TL-

external 

Pol I TL 

External 

Target 

doubles 

M716I x singles Rpa135 1. M716 is the 

residue before 

Y717 (Y769 in 

Pol II). 2. It 

was identified 

with two 

parents.  3. 

The position 

we also found 

suppressor in 

Pol II. 

620 15% 620 + 

15% 

silent 

WT cells 

+ 5% 

spike 

mutants 

L1484S x singles Rpa190 1. RPA190-

RPA135-

RPA12.2 

interacting 

region. 2. 

Multiple 

substitutions 

identified in 

the same 

position. 3. It 

was identified 

with two 

parents.  

620 15% 620 + 

15% 

silent 

WT cells 

+ 5% 

spike 

mutants 
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G1005S x singles Rpa190 

BH 

1. At the BH. 

2. The 

identical 

suppressor was 

found in Pol II 

620 15% 620 

+15% 

silent 

WT cells 

+ 5% 

spike 

mutants 

F1570V x singles Rpa190 1. We have 

multiple 

suppressors 

identified at 

the position. 2. 

The identical 

suppressor was 

found in Pol II  

620 15% 620+15

% WT 

cells + 

5% 

spike 

mutants 

Silent WT 

T1204/I1225 

Rpa190 Function as 

WT control 

15% 

based on 

cell 

count 

    

Spike 

mutatio

n 

Spike-in 

control  

T1204/H1206L/I1225 Rpa190 

TL 

Spot assay 

score -3.5 

5% 

based on 

cell 

count 

  

Spike-in 

control 

T1204/H1206Q/I1225 Rpa190 

TL 

Spot assay 

score -1 

Spike-in 

control 

T1204/H1206A/I1225 Rpa190 

TL 

Spot assay 

score -2.5 

Spike-in 

control  

T1204/H1206Y/I1225 Rpa190 

TL 

Observed 

lethal 
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Spike-in 

control  

T1204/H1206R/I1225 Rpa190 

TL 

Spot assay 

score -2.5 

Spike-in 

control  

T1204/M1200H/I1225 Rpa190 

TL 

Very Mild 

defects 

Spike-in 

control  

T1204/V1215Q/I1225 Rpa190 

TL 

Very Severe 

defects 

Lib12 Pol III TL 

singles 

 Pol III TL singles     620 98 718 + 

5% 

spike 

mutants 

Lib15 Pol III TL 

Target 

doubles 

Q1103S x singles Rpo31 

TL 

Pol II TL 

Q1078S  

600 837 6337 + 

5% 

spike 

mutants 

M1104V x singles Rpo31 

TL 

Pol II TL 

M1079V 

600 

L1106M x singles Rpo31 

TL 

Pol II TL 

L1081M 

600 

K1107S x singles Rpo31 

TL 

Pol II TL 

N1082S 

600 

F1109I x singles Rpo31T

L 

Pol II TL 

F1084I 

600 

H1110L x singles Rpo31 

TL 

Pol II TL 

H1085L 

600 

H1110Y x singles Rpo31 

TL 

Pol II TL 

H1085Y 

600 

I1126S x singles Rpo31 

TL 

Pol II TL 

L1101S 

600 
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E1128G x singles Rpo31 

TL 

Pol II TL 

E1103G 

600 

Designed single 

mutants 

Rpo31 

TL 

For 

comparison 

with Pol III 

singles 

100 100 

TL-

external 

Pol III TL 

External 

Target 

doubles 

E870D x singles Rpo31 1. At the BH. 

2. Conserved 

position in 

three Pols. 3. 

Beside Pol II 

G823.  

620 15% 620+15

% silent 

WT cells 

+ 5% 

spike 

mutants 

D1351H x singles Rpo31 Besides Pol II 

H1085 

suppressor 

Y1365C 

620 15% 620 

+15% 

silent 

WT cells 

+ 5% 

spike 

mutants 

Silent WT  

T1108/I1129  

Rpo31 Function as 

WT control 

15% 

based on 

cell 

count 

    

Spike 

mutatio

n 

Spike-in 

control  

T1108/H1110L/I1129 Rpo31 

TL 

Observed 

lethal 

5% 

based on 

cell 

count 

    

Spike-in 

control 

T1108/H1110Q/I1129 Rpo31 

TL 

Spot assay 

score -5.5 
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Spike-in 

control 

T1108/H1110A/I1129 Rpo31 

TL 

Spot assay 

score -6 

Spike-in 

control  

T1108/H1110Y/I1129 Rpo31 

TL 

Observed 

lethal 

Spike-in 

control  

T1108/H1110R/I1129 Rpo31 

TL 

Observed 

lethal 

Spike-in 

control  

T1108/R1125F/I1129 Rpo31 

TL 

Very Mild 

defects 

Spike-in 

control  

T1108/P1124N/I1129 Rpo31 

TL 

Very Mild 

defects 

Spike-in 

control  

T1108/V1119E/I1129 Rpo31 

TL 

Mild defects 

 

Appendix Table 15. Pol I and Pol III TLs mutant screening details 

Condition Cells plated Days for phenotyping 

SC-Leu (Pre) 30K 2 days 

SC-Leu + 5FOA 3days 400K 3 days 

SC-Leu + 5FOA 4days 400K 4 days 

SC-Leu + 5FOA 5days 400K 5 days 

SC-Leu (Post) 400K 2 days 

SC-Leu + 0.07 μg/mL Cycloheximide 400K Until density reaches lawn 

SC-Leu + 150 mM Hydroxyurea 500K Until density reaches lawn 

SC-Leu + 15mM Mn 1M 5 days 

SC-Leu + 3% Form 500K 3 days 

15 ℃ (YPD) 400K Until density reaches lawn 

37 ℃ (YPD) 400K Until density reaches lawn 

30 ℃ (YPD) 400K 2 days 
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SC-Leu + 2ng/ml Rapamycin 500K Until density reaches lawn 

SC-Leu + 30ng/ml Rapamycin 500K Until density reaches lawn 

 

Appendix B.2.3 Experimental progress 

Appendix Table 16. Experimental progress of Pol I and Pol III TL libraries 

Step Details Progress 

Generating mutant library Design Finished 

Synthesis Finished 

Extension/Amplification Finished 

High throughput screening Transformation 
 

Screening 
 

Deep sequencing Construction amplicon sequencing pool   

Deep sequencing   

Analysis   
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