REFERENCES

SHORT REPORTS

Replacement of donor lymphoid tissue in small-bowel transplants

YUICHI IWAKI THOMAS E. STARZL
ATSUHITO YAGIHASHI SATOSHI TANIWAKI
KAREEM ABU-ELMAGD ANDREAS TZAKIS
JOHN FUNG SATORU TODO

The presence of recipient lymphocytes in grafts is thought to equate with rejection. Thus, we wished to follow the fate of lymphocytes after transplant of the small bowel. Three complete small-bowel transplants, two with the liver from the same donor also transplanted, were done successfully. Patients were immunosuppressed with FK 506. 5 to 11% of lymphocytes in the recipients’ peripheral blood were of donor origin during the early postoperative period when there were no clinical signs of graft-versus-host disease. However, donor cells were no longer detectable after 12 to 54 days. Serial biopsy specimens of the grafted small bowel showed progressive replacement of lymphocytes in the lamina propria by those of the recipient’s HLA phenotype. Lymphoid repopulation was complete after 10 to 12 weeks but the epithelial cells of the intestine remained those of the donor. The patients are on enteral alimentation after 5, 6, and 8 months with histopathologically normal or nearly normal intestines. Re-examination of assumptions about the rejection of intestinal grafts and strategies for its prevention are required following these observations.

Little is known about the fate and function of lymphocytes in intestinal grafts, partly because long-term survival after transplant of the small intestine has been difficult to achieve. The first successful complete small-intestine transplant in man1 was accomplished with continuous intravenous infusion of cyclosporin. The patient briefly had donor lymphocytes in peripheral blood during the early postoperative phase and at the same time had symptoms of graft-versus-host disease (GVHD). We have followed the fate of host and donor lymphocytes in three patients treated with FK 506—one after small-bowel transplant and two after combined liver-intestine grafting.

Patient 1 lost the entire small bowel and most of the colon 5 months before transplant after a gun shot wound of the superior mesenteric artery; liver function was normal. Patients 2 and 3 had total small-bowel resection several years earlier because of necrotising enterocolitis and thrombosis of the superior mesenteric artery, respectively, and both had liver failure following parenteral hyperalimentation. All grafts received arterial blood from the aorta, and intestinal venous outflow was through the liver of patient 1 or through the liver grafts of patients 2 and 3. FK 506 for immunosuppression was given intravenously at first (0.1 mg/kg per day) and later enterally (0.3 mg/kg per day in divided doses). Maintenance doses of FK 506 were lower. Prednisolone was given initially and later stopped (patients 2 and 3) or reduced (patient 1). Patients were maintained on intravenous nutrition for at least 2 months before starting jejunostomy and, ultimately, oral feeding. Patients 1 and 2 have had normal gastrointestinal continuity restored, and patient 3 is still being fed through a nasogastric tube with its tip advanced into the graft jejunum.

Peripheral blood lymphocytes were isolated with ‘Ficoll-Hypaque’ (Pharmacia LKB) and stored in liquid nitrogen until tested. Lymphocytes were added to monoclonal antibodies (One Lambda Inc, Los Angeles), fixed in 2% paraformaldehyde-phosphate buffer solution, and identified by flow cytometry (‘FACScan’, Becton Dickinson). Monoclonal antibodies were also used for immunocytochemical identification of lymphocyte HLA phenotypes in biopsy specimens obtained through jejunal and ileal stomas.

During the first week after transplant, between 5 and 11% of the circulating lymphocytes of all patients were of the donor type (figure). However, after 12–54 days donor lymphocytes were no longer detectable. The proportion of donor lymphocytes in the lamina propria of patient 1 decreased from 80% at 21 days post-transplant to 50% after 35 days and 0% after 70 days (figure). Jejunal and ileal biopsies showed the same pattern of change. Donor lymphocytes were replaced by host lymphocytes in patients 2 and 3 after 77 and 84 days, respectively.

Our finding of recipient lymphocyte repopulation of chronically functioning intestinal grafts, and similar results in rats treated with FK 506,2 indicate that presence of recipient lymphocytes in the graft does not necessarily equate with rejection.3 What do we know about the fate and function of the lymphoid component of intestinal or multivisceral grafts? In non-immunosuppressed dogs receiving multivisceral transplants the intestine was rejected and there was histopathological evidence of GVHD within 1 week.4 Subsequently, the consequences of GVHD (parent
Proportion of donor lymphocytes in peripheral blood and lamina propria after small-bowel transplant (patient 1).

to F₁ hybrid) were separated from those of rejection (F₁ to parent) in inbred rats. The design of these experiments rendered either the recipient or intestinal graft vulnerable to immunological attack by the other, whereas under clinical circumstances both immune systems are activated. It is unlikely that alteration of the graft lymphoid system could be achieved more efficiently by pretransplant manipulations (such as irradiation or antilymphocyte globulin) than occurred with the use of potent immunosuppression in our patients and in rats. Donor pretreatment was not used in the three cases we report, nor in a fourth with only 7 weeks of follow-up. GVHD was not encountered. Histocompatible bone-marrow transplant experiments in rats show that FK 506 given prophylactically prevents GVHD. Established GVHD has been reversed with FK 506 in human bone-marrow recipients. This may be important if, as seems likely, the migrated donor lymphocytes have survived and are diffusely established in recipient tissue.

Lymphoreticular repopulation is not a unique feature of intestinal or multivisceral grafts. The macrophage system in human liver grafts switches completely to that of the recipient within 100 days. Fung et al. have described graft lymphoid tissues in transition after human heart-lung and liver transplant. Thus, lymphoreticular repopulation probably occurs with successful transplant of any lymphoid-containing graft. Whether this contributes to graft acceptance should be the subject for future inquiry.

Supported by the University of Pittsburgh Pathology Education, and Research Fund, project grant DK 29961 from the National Institutes of Health, and by a grant from the Veterans Administration.

REFERENCES

Oncogene expression in cervical intraepithelial neoplasia and invasive cancer of cervix

SHEENA B. PINION JAMES H. KENNEDY RONALD W. MILLER ALLAN B. MACLEAN

Expression of the oncogenes Ha-RAS, c-MYC, and ERB-2 was investigated with an automated image analysis system in 12 specimens of normal cervix, 10 of cervical intraepithelial neoplasia (CIN) grade 1, 24 of CIN 3, and 10 of invasive cancer of the cervix. There was amplification of all three oncogenes in CIN 3 and invasive cancer compared with normal cervix and CIN 1. The difference was most pronounced with an antibody to the RAS p21 protein, with no overlap between CIN 3 and the normal range. This method might be useful in screening for cervical neoplasia, and for the determination of which CIN lesions require treatment.

Altered oncogene activity has been noted in many malignant diseases as well as in premalignant states such as villous adenoma of the rectum and atypical hyperplasia of the endometrium. Several workers have shown altered Ha-RAS and c-MYC expression in malignant disease of the cervix and have related this to prognosis and cell type. Cervical intraepithelial neoplasia (CIN) has also been studied, with conflicting results. We investigated expression of the oncogenes Ha-RAS, c-MYC, and ERB-2 in histological sections of normal cervix (n = 12), cervical intraepithelial neoplasia (10 CIN 1 and 24 CIN 3), and invasive cancer of the cervix (10) to see if there was a difference that could be helpful in screening, treatment, or prognosis.
The results for the three oncogenes are shown in the figure. For Ha-RAS, normal cervix and CIN 1 had closely similar levels of activity; CIN 3 and invasive cancer showed increased activity, but did not differ significantly. The CIN 3/invasive range did not overlap with the range for normal cervix. For c-MYC, results for normal/CIN 1 and CIN 3/invasive cancer differed significantly, but there was some overlap between normal and CIN 3. With ERB-2, CIN 3/invasive cancer results were significantly different from those for the normal cervix, although there was obvious overlap between the three groups.

With this method of fluorescent antibody staining of oncoproteins, amplification of the oncogenes Ha-RAS, c-MYC, and ERB-2 in malignant and premalignant cervical epithelium is seen when compared with the normal cervix. It has been suggested that CIN should be reclassified as low-grade and high-grade, reflecting the different malignant potential. Our findings of similar staining of CIN 1 and normal epithelium would perhaps support the theory that progression to high-grade CIN is not inevitable. All the invasive cancers studied had a high level of c-MYC and Ha-RAS expression, so it is unlikely that this method can provide a useful prognostic indicator. Since all the specimens of CIN 3 and invasive cancer showed increased Ha-RAS expression, with no overlap with the normal range, it may be that this method could be adapted for screening. We plan to apply this technique to cervical cytology smears to see if it can reliably identify patients with high-grade CIN.

This work would not have been possible without the cooperation of Dr J. Scholefield of the Department of Biomedical Instrumentation at Strathclyde University, and Dr F. Lee and the Pathology Department at Glasgow Royal Infirmary.

REFERENCES

ADDRESS: Department of Gynaecology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB9 2ZU, UK (S. B. Pinion, MRCOG); Department of Gynaecology, Glasgow Royal Infirmary, Glasgow (J. H. Kennedy, FRCoG), Department of Biomedical Instrumentation, University of Strathclyde, Glasgow (R. W. Miller, MPhil), and Department of Gynaecology, Western Infirmary, Glasgow (A. B. MacLean, FRCoG).

Correspondence to Miss S. B. Pinion.