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Drive-by Sensing for On-Street Parking Spot Detection

Yuxuan Zhang, M.S.

University of Pittsburgh, 2024

On-street parking remains a persistent challenge, leading to driver frustration and wasted

time. More critically, drivers circling streets in search of parking contribute to traffic con-

gestion, increased carbon emissions, and unnecessary fuel consumption. The crux of the

on-street parking dilemma lies in the insufficient awareness of available parking spaces. To

tackle this issue, various solutions, including static and mobile sensing methods, have been

explored and implemented. Yet, these strategies have encountered obstacles that hinder

widespread adoption. Static sensors, for instance, are typically limited to monitoring a sin-

gle parking space each, leading to high costs for comprehensive coverage. Mobile sensing

strategies, on the other hand, aim to maximize sensor utility by collecting data on multiple

spaces. However, these methods have traditionally required specialized hardware installa-

tions on vehicles, posing barriers to large-scale application.

In this thesis, we introduce an innovative passive mobile sensing solution that mitigates

the need for dedicated hardware installation. Our key observation is that moving vehicles

inherently emit signals, predominantly in the form of tire noise and aerodynamic noise.

When parked cars are present along the roadside, these sounds reflect back to the moving

vehicle. By leveraging a smartphone to capture these naturally generated signals, we can

effectively differentiate between empty spaces and parked cars. To realize this idea, we have

developed an end-to-end system that achieves equal performance with the state-of-art mobile

sensing technologies in detecting available on-street parking spots. Our system comprises a

pre-processing module that employs signal processing techniques for automatic data segmen-

tation, a Deep Neural Network (DNN) model for parking spot availability prediction, and

a post-processing component that refines the parking information. To support our model,

we created our own dataset from data collected over 2 weeks, including 2,512 samples in

total. Our approach not only demonstrates the feasibility of hardware-free, software-based

solutions for on-street parking spot detection but also holds the potential for scalable imple-
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mentation across urban environments.

Keywords: passive mobile sensing, machine learning, signal processing, on-street parking

spot detection.
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1.0 Introduction

Finding on-street parking spots has been a long-lasting problem globally [11, 13]. Drivers

often find themselves driving in circles, seeking vacant spots, resulting in frustration, wasted

time, and increased stress [12]. The quest for parking spot also contributes to traffic conges-

tion, safety hazards, and economic setbacks [14]. For instance, in a study conducted in Los

Angeles, it was found that drivers in the city spend an average of 85 hours per year searching

for parking spots. This translates to a total of 47,000 wasted hours and 17 million gallons

of wasted fuel each year, costing the city approximately 730 million annually[43].

Providing drivers with real-time parking information has proven to be an effective way

to tackle these issues[26]. Currently there are two groups of works on detecting the parking

availability. The first group of works deploy fixed sensors [32, 37, 23, 9] on the road to detect

the occupancy and report the results to a server for user access. This approach is proven to

be accurate and responsive. However, it comes with a significant infrastructure cost, making

it less scalable in practice. As an example, consider the SF-Park project [42], which required

an investment of millions of dollars for the installation of 8,000 smart meters for occupancy

detection. Furthermore, there are additional hidden costs associated with these sensors, such

as relay nodes for data transmission and other necessary components, which elevated the

total expenditure to a substantial 24.75 million USD. Such high cost demands long term

investment from the society and is hard to deploy in large scale.

Another group of works proposes drive-by sensing to detect on-street parking spot avail-

ability [30, 16, 10]. The basic idea is to take the cruiser as a mobile sensor to detect the

occupancy as the car passes by these parking spots. Compared to the fixed sensor-based

approach, this drive-by sensing approach is promising due to its reduced infrastructure cost,

enhanced accessibility, and higher flexibility and scalability. For instance, ParkNet [30]

recruits a vehicle fleet with each vehicle equipped with an ultrasonic rangefinder facing

the passenger side to determine parking spot occupancy. Likewise, ParkMaster [16] adopts

smartphone cameras to detect the parking spot occupancy as the car drives by. Despite their

convenience and low-cost, existing drive-by sensing systems all require dedicated deployment
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of sensors (e.g., ultrasound-based range-finder) and suffer from certain shortcomings. The

use of ultrasonic sensors cast extra energy cost to send out the ultrasonic sounds. Also,

the fact that a ultrasonic sensor is required to be equipped on the passenger-side door may

prevent this solution from broad adaptation. Although promising results are demonstrated

in ParkMaster during daytime, the performance under low light environment remains uncer-

tain (e.g. at night). And the inherent security concern caused by camera could be another

barrier to promotion.

In this thesis, we present our solution of mobile sensing base on our observation in

daily life: when driving pass the road, there exists human-distinguishable differences between

road-side parked cars and vacant road-side parking spots. This sound is generally recognized

as roadway noise, which comes from multiple sources, predominately in the form of tyre

noise[2] and aerodynamic noise[27]. These inherently generated signal provides opportunity

for vacant parking spot detection without proactively sending out signals from the cruising

vehicle. Using a smartphone to collect the corresponding signals, we can gather parking

availability information without additional dedicated-hardware requirements. To realize this

idea, we first conducted an empirical study to deeply understand the source of the roadway

noise. From our empirical study, we identified three major source of the roadway noise,

with the frequency of 500-2kHz, 7.5k-8.5kHz, 16.5k-17.5kHz. The 500-2kHz signal comes

from tyre noise while the other two signals come from aerodynamic noises. We focused

on leveraging the inaudible band signals to detect available parking spots based on our

quantitative analysis and privacy cosideration.

With the findings in our empirical study, we designed an end-to-end system to gather

parking availability information through the audio data we collected from a smartphone

microphone. Our system starts from a pre-processing module for data segmentation. We

designed a signal processing pipeline to convert audio data stream into informative segments

of 3 seconds. Then we designed a Deep Neural Network (DNN) model for vacant parking

space prediction. To train our model, we built our own dataset through data collected over

2 weeks and consists of 2,512 samples from 10 hours of audio. Finally, our system consists

a post-processing module which formalize the output of our DNN model and finalize the

results that could be disseminated to the front-end user. Under our evaluation, our model
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achieves equal performance with the state-of-art mobile sensing solutions with 93.51% of

prediction accuracy and 96.55% of True Positive Rate, the False Positive Rate is 19.78%

with a Precision score of 0.9553.

In the following chapters, we present our work in the following structure: Chapter 2

provide a overview of existing solutions for parking availability information sensing. In

Chapter 3, we present our empirical study that begins with the setup and then provide

details of our findings and design choices. In Chapter 4, we first present an overview of our

system, then we present design details of each module. After that, we present our evaluation

in Chapter 5. We start from introducing our dataset, and present our results in the following

sections. Finally, in Chapter 6 and 7, we conclude our work and point out possible future

directions for following works.
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2.0 Related Work

Parking information sensing relies on the use of sensors to gather real-time data regarding

parking space availability. There are two main methods for collecting this information:

stationary and mobile.

2.1 Stationary Sensing

In the stationary method, sensors are installed directly on parking spaces. These sensors

can quickly detect the presence or absence of vehicles and provide updated information when

the occupancy status changes.

Magnetometers are commonly deployed in stationary parking detection systems, espe-

cially for municipal applications. They measure changes in magnetic fields, which occur

when large metal objects like vehicles are present. Magnetometers provide precise and easily

interpretable signal patterns. For example, SFpark[41] in San Francisco that utilizes mag-

netometers can transmit 85% of events within 60 seconds on its large-scale roadside parking

sensor network. However, they are generally limited to single-detection events and can be

more costly than some other sensor types.

Passive infrared (PIR) sensors [24, 29] operate by detecting heat radiated from the human

body or warm objects. These sensors are often employed collaboratively with other sensing

technologies to ascertain if a driver has parked and exited their vehicle. Due to their reliance

on heat emissions, PIR sensors are particularly effective at recognizing human presence,

making them suitable for applications where it’s important to differentiate between people

and vehicles. However, they may not be as accurate in detecting non-human sources of heat,

and their performance can be influenced by environmental conditions.

Active infrared sensors [33, 25] work by emitting an infrared beam and measuring the

time it takes for the beam to bounce back after hitting an obstacle. They are commonly

used to measure the distance to objects in front of them. These sensors are sensitive to

environmental factors such as sunlight and other sources of infrared radiation, which can
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affect their accuracy. Despite this limitation, they are still valuable for proximity detection

and obstacle avoidance in parking and other applications.

Optical sensors [6, 25] that detect the change in light must be installed where light can

be obscured by a parked vehicle . However, optical sensors are vulnerable to any light source

and transient staying objects, so their accuracy is still questionable. Inductive loops and

piezoelectric sensors are contact-based sensors installed on road surfaces. Inductive loops

[20, 8] are widely used for traffic surveillance and simply detect if a vehicle is passing over

them. Piezoelectric sensors [49], on the other hand, can provide more detailed information

based on the pressure exerted on them. Both types of contact sensors are susceptible to wear

and tear due to frequent use and require intrusive installation.

RFID technology [52] is commonly integrated into smart parking payment solutions.

Vehicles equipped with RFID tags can be detected by RFID readers installed on parking

spaces. As the popularity of electronic toll collection (ETC) increases, RFID-based detection

becomes more widespread. However, it is primarily useful for identifying vehicles with RFID

tags and does not provide information on the occupancy status of parking spaces. Laser

rangefinders [19] are often used to create 1/2/3D maps, especially for environmental percep-

tion and autonomous vehicle applications. Typically mounted on vehicles, they emit laser

beams and calculate the time it takes for the beams to bounce back from objects. This data

allows them to measure distances from different objects, including parked vehicles, aiding in

parking space detection and navigation.

2.2 Mobile Sensing

2.2.1 Mobile Sensors

On the other hand, the mobile method utilizes the mobility of vehicles to collect parking

information. Mobile sensors are attached to vehicles and can detect parking space occupancy

as they pass by. Ultrasonic sensors[7, 30, 46] use sound waves to detect objects and measure

distances. They are well-suited for outdoor environments and can provide a more complex

signal pattern compared to some other sensors. Ultrasonic sensors are effective at detecting

obstacles and objects within their range, making them useful for parking space occupancy
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detection. ParkNet[30] in San Francisco, for instance, relies on taxi cabs equipped with GPS

receivers and ultrasonic sensors to collect data, with an average update interval of 25 minutes

for 80% of the cells in the downtown area.

Cameras and acoustic sensors provide more complex and rich signal patterns. Cameras

[3, 40, 45, 4] capture visual information that can be processed to detect vehicle presence and

occupancy. Acoustic sensors [34] use sonar technology to detect objects and movement. Both

of these sensors require advanced image and signal processing techniques to extract relevant

information from the background noise. They have garnered research interest not only

for parking applications but also for broader use cases such as security and environmental

monitoring. QR codes [1] may also be used to help drivers identify and pay for parking

spaces, with the system announcing the availability of spaces when a driver ends their parking

session. However, QR codes alone cannot confirm if drivers have paid for their spaces or if

they are occupied by vehicles.

2.2.2 Crowdsensing

One key concept in mobile parking information sensing is mobile crowdsensing, which uti-

lizes smartphones to collect parking availability information from drivers themselves. Crowd-

sourcing has found practical application in certain smart parking solutions, particularly in

the context of gathering real-time parking availability information from smartphone users.

This concept has given rise to a new term known as ”crowdsensing.”

One common approach involves the development of smart parking applications that

encourage users to voluntarily share information, a practice referred to as ”participatory

crowdsensing.” For example, an application like ParkJam [21] exemplifies this approach.

Researchers, such as Rinne et al. [38], have explored the advantages and disadvantages of

mobile crowdsensing. Through mobile sensors, high-level conclusions can be drawn, includ-

ing the availability of parking space in an area, the fullness of an area, or the determination

that an area should no longer be considered full. Farkas and Lendak [15] conducted simu-

lations of crowdsensing activities related to urban parking, using the MASON multi-agent

simulation toolkit and visualizing the results on OpenStreetMap. They utilized five different
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scenarios to model individual behaviors, including parking times and probabilities. Inter-

estingly, even drivers who do not actively participate in crowdsensing or employ decision

support applications can benefit from these systems. Notable results were obtained in sce-

narios like Novi Sad, where 30% of drivers participated as crowd sensors, resulting in 14%

shorter cruising times.

PhonePark [44] and Park Here! [39] introduced parking and unparking algorithms as-

sisted by accelerometers, gyroscope sensors, and Bluetooth. Bluetooth aids in the detection

of users’ transportation modes. VeLoc [51] used smartphone accelerometers, gyroscope sen-

sors, and inertial data from pre-loaded maps to identify parking spaces. PocketParker [35]

detected users’ movements and derived parking or unparking status using the accelerometer

and GPS. ParkSense [36] detected WiFi beacons to determine if the driver had returned to

the car or was in motion. UPDetector [28] employed various smartphone sensors, including

accelerometer, Bluetooth, microphone, gyro, GPS, WiFi, parking payment apps, and user

inputs, to detect drivers’ behaviors. Villanueva et al. [48] introduced a vehicle detection

method using the 3D compass of drivers’ smartphones, enabling the detection of parking

and adjacent parked vehicles. Krieg et al. [22] leveraged all available smartphone sensors to

detect users’ transportation modes, including car parking and unparking activities.

Crowdsourcing-based smart parking applications have been noted to introduce chal-

lenges, including concerns regarding the accuracy of information, user participation rates,

and the presence of free riders, as demonstrated by Chen et al. [5]. Gupte and Younis [17]

introduced a reputation-based approach to assess data reliability, where reputation scores

increase each time a device submits non-corrupt data. TruCentive [18] is another crowdsourc-

ing smart parking application that implemented a game-theoretical framework dynamically

adjusting bonuses based on the proportion of honest players. Kifle et al. [47] proposed the

UW-ParkAssist, a crowdsourcing smart parking application working in collaboration with

UW-Police, which provides expert data to enhance the reliability of the collected informa-

tion. Alternatively, opportunistic crowdsensing, as demonstrated by Coric and Gruteser

[7], involves using ultrasonic sensors to collect street parking maps, similar to the approach

taken by ParkNet [31]. iPark (Yang et al.) [50] created a parking map based on vehicular

trajectories without real-time occupancy status information.
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3.0 Empirical Study

As previously discussed, our key observation is the hearable difference between parked

cars and empty parking spots. To understand this phenomenon and evaluate the feasibility of

utilizing it for parking spot detection, we first conducted a empirical study. In our study, we

mainly explored the following questions: 1. Where does the signal come from? 2. How can

we use the signal for parking spot detection?. In this section, we first present our experiment

setup in our empirical study. Then we provide our findings and answers to the questions.

3.1 Experiment Setup

The experiment setup is shown in Figure 1, we put the detecting smartphone under the

front window and used the camera on the Tesla vehicle to be the video ground truth. Aside

from the video ground truth, we also implemented an ultrasonic sensor similar to the one

used in Parknet [30]. By combining these two ground truth, we are able to gain a more

precise knowledge of ground truth under all sorts of conditions. As Figure 1 illustrates, we

explored 3 location of the smartphone to evaluate the impact of different location to the

signal quality received. For our video ground truth, using the cameras equiped on Tesla

Model 3, we are able to gain image from the left side, right side and rear side.

Our empirical study was conducted across 2 weeks with qualitative experiments and

quantitative experiments. As Figure 2 illustrates, we covered an large area including campus

area, park area and residential area.

We first explored the quality of received signal under ideal condition to figure out the

feasibility of utilizing this sound of silence phenomenon for parking spot detection. Then

we did a comprehensive exploration on all sorts of interferences on the received signal while

driving, which we formed our knowledge of what kind of challenges we are going to face

before we build a complete and functional system using this sound of silence phenomenon

for roadside parking spot detection.
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Left Side View Right Side View

Rear Side View

Figure 1: Empirical Study Experiment setup

We included different types of smartphones in the preliminary study that covers current

major smartphone brands: Google Pixel2, Google Pixel4, Samsung Galaxy S22, Samsung

Note10, iPhone 13pro and Huawei P20pro. As for the probing vehicle, we also included

two cars that show differences in different aspects. The car we used are Tesla Model3 and

Mercedes Benz GLA. These two automobiles not only stands for both electronic vehicle

and traditional petrol vehicle but also represents sedan and suv. The video groudtruth is

obtained using a web-camera, and the ultrasonic sensor was linked to our laptop through a

Adafruit I2C board. Our preliminary study takes two weeks and includes about 510 parked

cars with around 100 vacant parking spots.

3.2 Understanding the Phenomenon

3.2.1 The Source

The first thing we hope to figure our in our empirical study is the source of the hearable

difference between a parked car and a vacant parking spot, which correspond to the first
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Figure 2: Empirical Study Experiment trace

question of Where does the signal come from? To understand this question, we performed

Short Time Fourier Transform (STFT) on the signal received while driving pass the parked

car on the roadside. Given noises under 500Hz is the dominating part in the received signal,

we pass the signals through a high-pass filter of 500Hz to see the other existing components

and received an STFT result as Figure 3 shows. In Figure 3, the period with a significant

energy burst is the period when our probing vehicle is passing by a parked car on the road

side. And the remaining areas represents empty spaces. Hence, in Figure 3, there are 3 cars

in total that are collected in to this sample.

As Figure 3 illustrates, there are mainly 3 dominating components generated while the

proving vehicle passes through a parked car other than signals with a frequency lower than

500Hz. The first frequency period is from 500-2kHz, which is in the frequency range of tyre

noise according to [2]. The second dominating frequency period is from 8kHz to 9kHz, which

is consistent with the frequency range of aerodynamic noises generated from the air passing

by the moving vehicles according to [27]. The third frequency range that shows a pattern is

around 17kHz, which is also generated from aerodynamic noises. As a results, we conclude

the source of the signal from both aerodynamic noises and tyre noises.
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Figure 3: STFT Diagram of Received Signal

3.2.2 Affecting Variables

During the experiment process, we noticed certain variables that would affect the quality

of the receiving signal. We further investigated into the affection of these variables, and gain

more knowledge with the phenomenon.

1. Passenger Side Window

For starters, modern luxury cars (such as the Mercedes Benz we used in the empirical

study) have good sound-proof technologies, which makes it relatively hard for the tyre noise

and aerodynamic noise to penetrate through the windows into the interior spaces. As a

result, opening the passenger side window is a precondition for quality data collection. We

would like to highlight that although it is true that opening the window is necessary for

quality data collection, it is not a critical issue for our system. Recall the idea of crowd-

sensing, with enough probing vehicles in the city, there are always chances to have vehicles

sending back audio data with good quality. In practice, we could set a credit score for each

probing vehicle, which is based on the quality of data they sent back in the history. Using
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Figure 4: Detection Rate With Different Driving Speed and Smartphone Location

this credit score, we could prioritize the data that are highly likely to be of good quality,

and use them first for prediction.

2. Driving Speed

Intuitively, the amplitude of tyre noise and aerodynamic noises are directly connected

to the driving speed. With a higher speed, the tyre noise and aerodynamic noises will get

stronger. However, this intuitive understanding is from a general perspective of all the noises

considered. In order to understand the affection of driving speed to the specific noises ranging

from 7.5kHz to 8.5kHz and 16.5kHz to 17.5kHz, we conducted a quantitative experiment to

understand the affection of speed specifically.

As Figure 4 shows, the Y-axis represents detection rate, which is defined as the ratio

between the number of parked car generated patterns that are actually recorded and the

number of all recorded parked cars by the ground truth. To be more specific, the numerator

of the equation represents the number of pattern generated by the parked cars that are

recorded by the microphone. There might be cases where the patterns are covered by other

12



Figure 5: Detection Rate With Different Smartphone Type and Sensing Vehicle Type

noises and are not recorded clearly in our received data. We rule out the affected ones

and only count the clearly recorded once. In doing so, we could understand how much the

changing of condition variables will affect us in the detection process. The denominator on

the other hand, is all the cars that were recorded in our experiment. We get this information

from the ground truth, which is not affected by the condition variables. The higher the

detection rate, the better quality the data shows for detection. We use this metric in the

following quantitative experiment as well. Figure 4 illustrates the affection of speed and

phone location. As Figure 4 shows, as speed increases, the detection rate decreases, meaning

that the ambient noises get stronger as the driving speed increases, which makes it harder

for us to detect the desired pattern generated by the parked cars.

3. Phone Location

The concept of phone location is defined as the location where we put the phone in

the car, recall the experiment setup in Figure 1. As Figure 4 demonstrates, the detection

rate decays as the phone location moves from the right to the left. This is because the
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signals transmit into the car interior through the passenger side window, which is on the

right. As the signals transmit through the cabin, there is attenuation and also other ambient

noises mixed with it, which all lead to the drop of signal quality. One thing delightful is

that, although putting the phone in the middle (which is usually the place for phone stand)

encounters shortcomings compare to putting the phone on the right, the gap between them is

acceptable (smaller than 5% while the driving speed is lower than 20mph). Considering the

normal speed limit for driveways with roadside parking as 25mph, putting the smartphone

in the middle also shows the capability for detection.

4. Phone Type

As Figure 5 shows, we included 4 different types of smartphone in our empirical study,

which are Samsung S22, Huawei P20 pro, Google Pixel 4, and iPhone 13 pro. The motivation

of including different types of phone in the experiment is that different smartphone has

different hardwares, which may lead to differences in the recording of the signals. To our

delight, according to the results demonstrated in Figure 5, smartphone types does not affect

the detection rate dramatically. The orange columns and the grey columns represent results

collected from the same car using different smartphones respectively. The data in the orange

columns have a range of 0.127 and a standard deviation of 0.0463 while the data in the grey

columns have a range of 0.114 and a standard deviation of 0.0455. Both data has shown

little variance, meaning that smartphone type does not strongly affect the detection rate.

5. Sensing Vehicle Type

In our empirical study, we have used 2 sensing vehicles: Tesla Model 3 and Mercedes

Benz GLA. These 2 sensing vehicles are of good examples of electric and petrol-powered

vehicles. We included these 2 cars in our experiment to (a) eliminate potential particularity

of a single vehicle, and (b) see the difference between the electric and petrol-powered vehicles.

As Figure 5 illustrates, the detection rate of Tesla Model 3 outperforms the detection rate

of the Mercedes in general. Considering the fact that we have set the open window size to

the same for both cars, the reason behind this result could be possibly attributed to the fact

that petrol-powered vehicles have stronger engine noises than the electric vehicles. With the

mixture of much more engine noises, the quality of received data from the Mercedes will be

lower than the Tesla.
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3.3 Choosing the Frequency Band to Use

3.3.1 Intuitive Selection

As discussed in the previous section, there are mainly 3 sources for the signal we receive

while driving pass a parked car on the roadside, including tyre noises that ranges from 500Hz

to 2kHz and aerodynamic noises around 8kHz and 17kHz. Consider the 3 frequency band,

one major difference would be tyre noise lies in the audible band, meaning that they could be

capture by human ears. If we are collecting data including tyre noise that ranges from 500Hz

to 2kHz, we would also collect human speech that are associate to people’s privacy. Imagining

our system to be widely deployed, we will have our mobile system embeded into every driver’s

smartphone and collect audio data while they drive. The possibility of infringing people’s

privacy would prevent our system from promotion. As a result, the inaudible band signals

is more preferred in our system design.

3.3.2 Quantitative Analysis

After we understand the source of the received signal, the following question is how

we utilize these signals to realize our goal. To provide further knowledge to answer this

question, we conducted a quantitative experiment using 2 cars in our lab to determine the

accuracy of using these 3 bands for car length estimation. The car we used is a Tesla Model

3 and a Mercedes Benz GLA, with car length of 4.72 meters and 4.41 meters respectively.

The speed in our quantitative experiment is controlled to 20mph while the probing vehicle

is driving pass the parked car. The objective in our quantitative experiment is to control

the parked car length and speed, such that we could have a understanding of using the 3

frequency bands to calculate the parked car length and therefore calculate the distance of a

empty parking space. Considering using the Mercedes as the probing vehicle, and consider

the speed to be 20mph, which equals to 8.94 meters per second, as long as we have the time

duration of the signal generated by the parked car, we are able to calculate the distance of

the parked car, which is now the Tesla model 3.

Figure 6 highlights the signal we received in the 3 frequency bands, Figure 6(a)-6(c)
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represents the time series data while Figure 6(d)-6(f) presents corresponding STFT diagram.

As Figure 6(a) and 6(d) highlights, the signal in 500-2kHz band does not show clear pattern

of the parked car. This is probably because the 500-2kHz band aligns with the frequency

band with a variety of ambient noise, which makes the reflected tyre noise shadowed in other

noises. From the results demonstrated in Figure 6(b) and Figure 6(e), we can see a clear

pattern of parked car in the received signal. However, according to the calculation in Figure

6(b), the estimated car length of the parked car is (1.013−0.344)∗8.94 = 5.98 meters, which

is 1.26 meters longer than the real length of the parked Tesla Model 3. As for the 16.5kHz

to 17.5kHz band signal, according to the results in Figure 6(c), the estimated car length is

(0.931 − 0.526) ∗ 8.94 = 3.62 meters, which is 1.1 meters shorter than the real length. One

explaination for this phenomenon is that the 8kHz signal is generated before the probing

vehicle and the parked car fully overlaps and will not disappear even if the Mercedes has

already drove pass the Tesla. And for the 17kHz band signal, it requires the Mercedes to

have a certain period of overlapping with the Tesla to generate the 17kHz band signal.

Given the above observation, the 500-2kHz signal not only contains strong ambient noises

but also may cast privacy concerns on the data collection process. The 6.5kHz to 7.5kHz

band signal and the 16.5kHz band to 17.5kHz band signal are both inaudible band signal, and

they both show promising patterns of parked cars. However, the concern for the inaudible

band signals is that they cannot measure the distance of the parked car correctly. Consider

using the 6.5kHz to 7.5kHz band signal for parking spot detection, the estimated parked

car length will be generally longer, leading to shorter estimation of potential parking spaces.

As a result, using the 6.5kHz to 7.5kHz band signal alone may lead to false negatives in

predicting available parking spots. When the same logic applies to the 16.5kHz to 17.5kHz

band signal, potential false positive results is encountered.

Hence, in this thesis, we chose to leave out the 500-2kHz signal due to the lack of

informative information and potential privacy concerns. We combined the 7.5kHz to 8.5kHz

band signal with the 16.5kHz to 17.5kHz band signal, utilizing the information provided

from both signals for vacant parking space prediction. We designed a DNN model to realize

the prediction, based on the reasons explained in the following section.
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(a) 500-2kHz Time Series Data

(d) 500-2kHz STFT Diagram

(b) 7.5kHz-8.5kHz Time Series Data (c) 16.5kHz-17.5kHz Time Series Data

(e) 7.5kHz-8.5kHz STFT Diagram (f) 16.5kHz-17.5kHz STFT Diagram

Figure 6: Quantitative Analysis of Received Signal

3.4 The design choice of using a model

In the following chapters, we designed a Deep Neural Network (DNN) model to make

accurate prediction of the input audio. The reason we made this design choice rather than

applying traditional signal processing approaches lies in the findings we have in our empirical

study as well.

Through our empirical study, we discovered that there are a variant of ambient noises

that would affect the received signal, some of which may even generate similar pattern to

the ones generated by a parked car on the roadside. These patterns introduced by ambient

noises may show similar energy or amplitude to the ones we hope to detect. More seriously,

some ambient noises such as road bump or turning signals may overlap with the pattern

of a parked car, leading changes to the pattern itself, which will suffer from misdetection if

we use a straightforward hard-coded approach for parked car detection. Traditional signal

processing techniques often requires pre-knowledge of the environment noise pattern. These

approaches then apply existing techniques to eliminate the noise base on the defined pattern.
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However, according to the knowledge we learned from our empirical study, not only does

not the ambient noise have a clear pattern, but also the ambient noise are highly difficult

to be separated from the pattern we want to capture. Hence, using straightforward signal

processing techniques may be insufficient for accurate detection of the pattern generated

from a parked car on the roadside.

On the contrary, data driven approaches could provide hyper knowledge about the input

data that are often hard for human to detect. The underlying mystery features and inner

connections of the data could possibly provide solution to our problem. Similar approaches

have already been widely used in biomedical engineering, providing diagnosis in various

scenarios, such as heartbeat and blood pressure measurements. Using Machine Learning

techniques, we could design a model that suits our problem best. And with a self-created

dataset that is diverse enough to include all possible scenarios, we can foresee a promising

results.

3.5 Challenges

Through our empirical study, we have a clearer understanding of the issue and the

design space we process with our observation. Meanwhile, we also have certain challenges

to encounter to realize our system.

3.5.1 Automatic Segmentation

To begin with, the input to our system is a audio data stream collected from the probing

vehicle. And clearly not all of the segments in that data stream consist useful information

that indicates the parking availability information. Therefore, we need a segmentation mod-

ule to break the gap between a data stream to segments that contains useful information.

Considering deploying our system to mobile devices and the consistent data collection, we

need an automatic segmentation algorithm for our system, which will do its best to rule out

undesired segments and preserve the informative periods in the collected data.
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3.5.2 Parked Car Detection

Considering detecting a parking spot, the first step is to determine the parked cars,

especially in the road segments that do not have a clear parking mark on the roadside. To

detect the parked cars, the nature behind it is to distinguish the pattern of a parked car with

all other patterns. As discussed in the previous sections, using a signal processing approach

is not enough for the goal here due to the indistinguishability between ambient noise and

pattern generated by the parked cars. Also, using neither the 8kHz band signal nor the

17kHz band signal alone is sufficient to provide accurate estimation of the parking spot.

Consequently, we need a solution to (a) combine the information from both the 8kHz band

signal and the 17kHz band signal and (b) distinguish the pattern generated from a parked

car from vacant spaces and other ambient noises.

3.5.3 Formalizing Parking Availability Information

After we get the information regarding the parked cars on the roadside, there is still

a gap between this kind of information to the parking availability information. To bridge

this gap, we need to calculate the distance between two consequent parked cars, or in other

words calculate the gap between two adjacent parked cars, and check out if this distance is

large enough for a normal car to park. To realize this functionality, we need to factor in the

speed of the probing vehicle and also consider the normal length of a vehicle.
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4.0 Design

In this section, we first provide a high-level overview of our whole system. Then we

present details regarding each module.

4.1 System Overview

In this thesis, our system mainly consists 3 modules: (1) a pre-processing module for data

automatic segmentation, (2) a Deep Neural Network (DNN) model for empty parking space

prediction, and (3) a post-processing module to refine the results and finalize the output of

our system.

Considering the input to our system as audio data stream, the pre-processing module

is used to automatically segment the data stream into segments of same length, which will

later input to the DNN model for empty parking space prediction. Also, the segmentation

process should also kick out segments that (a) do not contain information, or (b) contains

information that are clearly not what we are looking for.

As discussed in the previous chapters, the purpose of our DNN model is to make empty

space prediction while handling interferences from ambient noises. The input to our model is

the audio segments from the previous pre-processing module, while the output of our model

is a sequence of probability showcasing the likelyhood of the corresponding data point to be

a parked car or a empty parking space.

After we have the output of the DNN model, we have a prediction of parked cars in the

input period of data stream. To finalize the parking availability information, we need to

calculate the distance between two adjacent parked cars, and determine if the vacant space

is enough for a normal car to park. By counting all the predicted available parking space, we

have the estimation of parking availability information to the corresponding road segment,

and could use it to update the database and front-end displaying results to the user.
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4.2 Pre-Processing

In real-world deployment, our probing vehicle will continuously collect signal as they drive

through the areas. Hence, the input to our system is in the form of an audio data stream. As

a result, before delivering the data to the model for prediction, we need to segment the data

into period that (a) includes desired information and (b) satisfy the constraints for our model,

such as the input audio length, etc. Segmenting audio periods into certain length is easy

and straightforward. However, choosing the clean audio periods that contains information is

the tricky part. In our pre-processing module, we mainly consider distinguishing the desired

segments with the segments that suffer from external interferences as defined in 3.3.3 and

the vacant periods that has no cars on the right.

To realize automatic segmentation as required, we propose a signal processing pipeline

as illustrated in Figure 7. As Figure 7 shows, after the probing vehicle collects audio data,

2 band pass filters are first applied. The frequency band applied are 7.5kHz to 8.5 kHz

and 16.5kHz to 17.5kHz, as we discovered in our empirical study. Then, considering strong

ambient noises may have a significant amplitude compared to the pattern we desire, we

introduced a time domain amplitude threshold to our pipeline. In doing so, we are able to

detect the data point with significantly high amplitudes, which are noises and may affect

successful segmentation. After we detect the significant noises, we apply a scaling factor

to reduce the amplitudes of these data points. The time domain amplitude threshold and

scaling factor are both empirically set, in our final implementation, the threshold is set to

0.001 and the scaling factor is set to 0.01. One thing worth noting is that we did not scale

down the significant noises to the same amplitude to our desired pattern, instead we scale

these data points to an amplitude that is slightly higher then the desired pattern’s amplitude.

This choice is made to prevent the possibility of introducing false positive results, namely

introducing patterns that do not exist.

After scaling down the significant noises, we normalize all data points to increase the

amplitude of each data point without changing the relative amplitude of each data point.

Then we perform segmentation using a energy based threshold. We used a open-source

tool called auditok on Github, which is a segmentation algorithm using a energy based
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Figure 7: Signal Processing Pipeline

threshold on energy calculated on each sliding window. We set our segments to 3 seconds

each, considering to contain enough data points for a parked car and also having fixed length

of data sample will facilitate the training process of our following model.

In the open-source tool, a signal lower bound threshold is applied to segment out seg-

ments with audio activities. This result in segmenting out segments including ambient noises

as well. In order to further kick out undesired segments, we introduced another time domain

energy threshold including a upper bound and a lower bound. The threshold are set empir-

ically, which includes the energy period of a normal pattern we desire. After this threshold,

we get the segments that are highly likely to be the pattern generated by a parked car,

which come from the reflected tyre noise and aerodynamic noise between the probing vehicle

and parked car. And it is certain that in our segments, there are still segments that (a) do

not include the pattern of a parked car, (b) include ambient noises that have similar energy

with the pattern of a parked car. We then pass all the segments from our pre-processing

module into our model for prediction. Through our training, our model is able to handle

these negative samples and make accurate prediction to an acceptable level of precision.
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4.3 Deep Neural Network Model

4.3.1 Model Architecture

After the aforementioned pre-processing module, we have the segments from the audio

data stream collected by the proving vehicles. These segments contains segments of desired

patterns of parked cars, and also the segments that may include ambient noises. Our model

is designed to distinguish parked cars, ambient noises and vacant spaces. Given this con-

sideration, we formulate this task into a binary classification problem, in which 1 represent

empty space and 0 represent a parked car on the roadside. In our training process, we include

enough sample of ambient noises to help our model capture the differences between these

noises and the pattern generated from a parked car. More details regarding the training

process will be discussed in the following chatpters.

The segments we have from the pre-processing modules are time series audio signals of

3 seconds duration. As Figure 8 illustrates, we first apply Short Time Fourier Transform

(STFT) to these segments to transform them into frequency domain. The decision of apply-

ing STFT is to include one more dimension of information from the frequency domain, which

now will provide us with information from amplitude, frequency and time. The signals we

preserve are in the frequency of 7.5kHz to 8.5kHz and 16.5kHz to 17.5kHz, which are both

necessary for our model. As discussed in our empirical study, using neither of these 2 signals

are sufficient enough for accurate car length estimation, leading to possible false positive and

false negative. By incorporating the information from both band, we will get more promising

results. After the STFT, we perform channel width concatenation on the 2 signals, to form

a single sample with channel from both input sources, which includes information from both

frequency bands.

Our model is a combination of multiple Convolutional Neural Network(CNN) blocks

followed by 2 Fully Connected Layer. Given the input as STFT diagrams of the 2 audio

sources, we chose to use a 2 dimensional convolutional neural network block for feature

extraction. The activation function we use is ReLU, which is a standard choice and works

well for our scenario. We added batch normalization and dropout operations to our model
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Figure 8: Model Architecture

to prevent the model from over-fitting. We included padding operations to preserve the

boundary information, and included a pooling layer to focus on the most significant features.

After the consequent CNN blocks, we added 2 fully connected layer with the ReLU function

to further extract and combine extracted features, which finalizes the learning results of our

model. The last block of our model is a sigmoid unit, we apply this unit to guide our model

to perform 0 and 1 predictions. In other words, we use the sigmoid unit to guarantee the

output will be distributed around 0 and 1.

4.3.2 Training Strategy

During our first attempt of training, we discovered that the model is more capable of

making the right prediction with the middle part of the input sample and shows insufficient

ability in making right predictions with the boundary part of the input sample. This is

probably because the middle part has both the information from its previous periods and

the information from its following periods. On the contrary, the boundary parts will lack
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either the information from its previous period or the information from its following period.

Therefore, a straightforward training process may be unsuitable for our scenario.

Given the observation of the model being more capable of extracting features in the

middle part of a sample, we made a change to our training process to only focus on the

middle part of each sample. To be more specific, we have 90 data points in each sample,

and we chose to use only the 30 data points in the middle for the training, which are data

point 30 to 60. In doing so, we could guide the model to focus on the part which will provide

the most accurate information. One thing worth noting is that by selecting only the middle

part for training, we will break the consistency of all the sample, meaning the beginning and

ending part of each sample is missing from a general perspective. To mitigate this issue, we

performed overlapping to our dataset with a corresponding overlapping factor of 1/3, which

is consistent with the selection to each data sample. Consequently, every 3 samples will form

the entire original sample, and we can still get a complete picture of the whole input data

stream while focusing on the most informative part of each sample. Through our experience,

this training strategy greatly improved our accuracy.
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4.4 Post-Processing

The output of our model is a sequence of float type numbers in the range of 0 to 1, which

implies the possibility of the data point to be a empty space for parking. This information

is not equal to parking spot information considering that a empty space have to be long

enough for a car to park, especially in areas without parking marks on the ground. Hence,

to refine our results, we applied a post-processing module for the formal results of parking

availability information.

As Figure 10 shows, with the sequence we obtained from our model, we first apply a hard-

coded threshold to finalize the predictions to 0s and 1s. Our approach is to use a probability

threshold of 0.5 to label data points less than 0.5 to 0 and data points higher than 0.5 to 1.

This is reasonable considering the output of our model is highly deviated from 0.5, the output

data points are often distributed around 0.9 and 0.1. As a result, using a straightforward

hard-coded threshold is suffice for our purpose of finalizing the predictions. In order to find

empty spaces that are large enough for a parking spot, we need to find the consequent 1s
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in our outputs. To do so, we first connect all the samples in our evaluation phase, which

formulates the stream of data collected from a certain period. Then, considering the normal

length of a parking spot to be 6 meters, and the speed of vehicle in our data collection is

20mph, a parking spot would last for 0.671 seconds. Hence, a parking spot in our dataset

would be consequent 1s that last for more than 0.671 seconds. In order to realize detection,

we first find all the consequent 1s in the stream we formulated from our evaluation dataset.

Then we apply a duration threshold of 0.671 seconds on all the consequent 1s periods, and

filter out all the periods that are predicted as an available parking spot.

Figure 11 presents a illustrations of the final results of our system. The blue line represent

the prediction of our system while the blue line in the lower figure is the corresponding

ground truth. The red rectangles depicts the detected available parking spots. As the

results in Figure 11 demonstrates, our system shows a great ability in finding availability

parking spots on our evaluation dataset, both in the quantity and location.
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5.0 Evaluation

In this chapter, we first present details of our dataset, including the experiment we

conducted to create the dataset and the information of the dataset. Then we define the

metrics we focus on in this thesis to evaluate the performance of our system. We decide

our concentration on certain metrics through a simple user study we performed among the

members in our lab. Finally, we present our results on the dataset we have and present our

findings and observations for future work.

5.1 Experiment

As Figure 12 illustrates, in our final experiment which we collect data to create our own

dataset, we used two smartphone to collect data from both the phone stand location and

the location close to the ground truth. We used a RGBD camera to capture both the video

and the distance information. We wrote a Python script to focus on the distance value of a

single pixel in the frame, and record all the distance value in a CSV file as output.

The smartphone location are selected consider the following factors: (1) The common

position of a smartphone is the phone stand inside the car, (2) In order to align with the

ground truth, we need to put a smartphone right next to the ground truth. As Figure 12

indicates, we collect video together with the distance data from the RGBD camera, the

distance data are inherently collected from the ground truth given that they measure the

distance from the probing vehicle to the far most distance the RGBD camera could measure.

In practice, the distance value we retrived from the selected pixel shows the following

features: (1) When there is no parked car on the roadside, which represent a empty parking

space, the distance value is around 5 meters. (2) When there is a parked car on the roadside,

the distance value is around 2 meters, or in some cases, due to the reflection from the car

surface, we may receive unexpected 0s. Given the above fact, we could simply set a threshold

of 3 meters to encode the distance values we retrived from experiment. After this hard-coded
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encoding, we would have the desired data in which 0 represents a parked car and 1 stands

for a vacant parking space. As mentioned above, the ground truth value are automatically

recorded by our Python script and output to a CSV file.

One thing worth noting is that we may encounter unexpected 0s in the collected data

due to the strong reflection of day light from surfaces like the car surface. For these 0s, we

manually adjust these values to the correct value according to the video ground truth we

simultaneously collected with the distance value. This is a time consuming yet necessary

process since the ground truth is the source of the knowledge for our model, the correct

ground truth will guarantee the good performance of the training process.

In this thesis, we have several assumptions made, which reflects in our collection of data.

To begin with, with the knowledge we obtained from our empirical study, we noticed that

opening the passenger window guarantees good signal quality. Base on this observation,

we set the open size of passenger side window to 16cm and remains this setting during the

collection of our data. Secondly, driving speed affects the received signal as well, and it

also affects the calculation of parking space in the post-processing module. To simplify the

scenario in this thesis, we controlled the driving speed to 20mph during the experiments.
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Finally, in this thesis, we only considered the inevitable interferences, including scenarios

such as driving through road bumps, encountering wind while driving, noises generated from

driver’s movements, etc. Interferences such as the surrounding moving vehicles, music played

inside the car and human talking inside the car are not considered in this thesis and included

in future directions and future work.

Our experiment for dataset creation is conducted through a period of 2 weeks, including

data from 10 hours of audio and video collection. The dataset took us another week to build,

with 2512 samples in total. The samples contains a variant of scenarios, including (a) pattern

generated by parked cars without interferences, (b) negative samples in which there is no

object on the roadside, which means the sample is a empty parking space, (c) samples with

interfenrences from ambient noises, these samples may be of patterns generated by parked

cars or simply empty parking spaces. As previously discussed, the objective for our model is

to make precise binary prediction of parked car or empty parking space while tolerating the

presence of ambient noises. We include data of all kinds considered in our model objective

to provide reletive knowledge to our model.

After the whole dataset is built, we separated the dataset into training set and testing

set randomly by a factor of 0.8 : 0.2, resulting in a training set of 2009 samples and a testing

set of 503 samples. We used the API provided by Python scikit-learn package for dataset

split and randomly assigned data samples to both set to guarantee fairness to the evaluation

process. During the creation of the whole dataset, we also built two partial dataset base on

different weather condition. To be more specific, the first dataset contains 917 samples with

moderate weather. The second dataset contains 1435 samples with 518 additional samples

of bad weather condition, these data samples are collected while the weather is windy and

large wind affects the audio data collected. Finally, the whole dataset contains all samples

collected, with 1077 samples of both good weather condition and bad weather condition data

samples.
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5.2 Metrics

To evaluate our results, certain metrics are applied for the evaluation process. Aside

from all the standard metrics to evaluate the results of a DNN model, we also focused on

certain metrics base on the consideration of real-life scenario of our problem. We conducted a

micro-user-study to understand what people truly value for a parking availability information

gathering problem and focus on the significant metric during our evaluation.

5.2.1 Overall Metrics

Considering a standard DNN model, the metrics to evaluate its performance are as

follows:

1. Accuracy: The ratio of correctly predicted observations to the total observations.

Accuracy =
True Positives + True Negatives

Total Observations

2. True Positive (TP): The correctly identified positive cases.

3. False Positive (FP): The cases that are incorrectly identified as positive when they

are actually negative.

4. True Negative (TN): The correctly identified negative cases.

5. False Negative (FN): The cases that are incorrectly identified as negative when they

are actually positive.

6. Precision: The ratio of true positive cases to all the cases that are predicted as positive.

Precision =
True Positives

True Positives + False Positives

7. Recall: The ratio of true positive cases to all the cases that are actually positive.

Recall =
True Positives

True Positives + False Negatives

8. F1 Score: A measure of a test’s accuracy that considers both the precision and the

recall.

F1 Score = 2× Precision× Recall

Precision + Recall
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Figure 13: Micro User Study

In our evaluation, we look into all the metrics above and specifically focus on the True

Positive Rate (TPR), False Positive Rate (FPR), and Precision score base on the following

micro-user-study.

5.2.2 Micro User Study

In order to better understand the user need for parking availability information, we

conducted a micro user study inside our lab. Considering in this thesis, we are not focusing

on the real dissemination of information, we do not concentrate on what kind of information

the user wish to see. Alternatively, we wish to gain knowledge about how we should finetune

our system, especially our model to reach a performance that suits user needs best. Hence,

in our micro user study, the major question we ask is that Which scenario would you find

less tolerable? We provide 2 option to this question and ask our user to make a choice

from them: (1) The system tells me there is no available parking spot, but there actually are

available parking spots. (2) The system tells me there is a available parking spot, but there

is actually none when I drove there. The first scenario correspond to the system making

False Negative responses, misguiding the user to rule out the current street for parking. The

second scenario represents the case when the system makes False Positive responses, which
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mislead the user to the street but only to find there is no place for him or her to park.

1. Participants

As mentioned above, our micro user study is conducted among the members in our lab,

which include 10 person in total. The user characteristic we mostly care is their under-

standing of the parking problem. Hence, before we ask them to make a choice from the two

scenarios, we first ask them about their driving ability. As Figure 13(a) illustrates, among

the 10 participants, 2 of them are daily drivers, 3 of them have rich driving experiences but

do not drive daily, and the rest 5 of them do not classify themselves as good drivers.

2. User Responses

Figure 13(b) shows the answer we received from the participants. The majority of the

participants (8 out of 10) considers the second scenario more unacceptable, which is the

system making False Positive predictions. The reason they generally give is that this may

cause them effort and time to drive there only to find they have to search for a parking spot

again, which is a waste of time.

There are also 2 participants who selected the first scenario to be more unacceptable,

which is the system making False Negative predictions. They give their reason as they

would consider the system to be unhelpful in this case. If all the street they are looking at

seems to have no parking spot available, they would have to get back to searching blindly

by themselves.

Although all the metrics are important for our evaluation, base on the majority prefer-

ence, our system should make the best effort to avoid False Positive and try to maintain as

much True Positive results as possible.

5.3 Results

In this section, we first present the overall performance of our system using the whole

dataset we created for evaluation. Then we consider the different environment condition for

the data and compare the performance of our system under different conditions.

33



5.3.1 Overall Performance

As mentioned in the previous sections, we created 3 dataset containing data under dif-

ferent weather conditions. We trained our model on all 3 datasets and evaluated their

performances. Table 1 presents the details regarding the 3 datasets we used in our evalua-

tion. One thing worth noting is that the 3 datasets are iteratively created, meaning dataset

2 contains all the samples in dataset 1 and dataset 3 contains all the samples in dataset 2.

As for the weather condition, the most concerning weather condition in our scenario is the

wind, since the sound of wind will affect the signals received by our smartphone microphone.

Hence, the weather condition we discuss here mainly focus on the wind.

Table 1: Datasets Description

Dataset ID Size Weather Condition

1 917 Moderate

2 1435 Windy

3 2512 Good

As Table 1 illustrates, the size of the 3 dataset are 917, 1435 and 2512. The first

dataset contains data sample collected from moderate weather conditions, meaning there is

no heavy wind encountered. In dataset 2, the 518 data samples added to dataset 1 includes

data collected from 2 days with heavy winds. And in dataset 3, the added 1077 samples are

data collected from a day with almost no wind, providing us with some good quality data.

Table 2: Performance Over Different Datasets

Dataset ID Accuracy TPR FPR TNR FNR Precision Recall F1

1 88.10% 97.93% 35.73% 64.27% 2.07% 0.8692 0.9793 0.9209

2 92.00% 95.60% 20.97% 79.03% 4.40% 0.9428 0.9560 0.9493

3 93.51% 96.55% 19.78% 80.22% 3.45% 0.9553 0.3655 0.9604

Table 2 presents the performance of 3 used dataset among all the metrics considered

in the evaluation. One thing worth noting is that in the evaluation, the positive value (1)
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Figure 14: True Positive Rate and False Positive Rate

represents empty parking space while the negative value (0) represents parked cars. As

Table 2 illustrates, our model could reach an accuracy of 90% in predicting empty parking

spaces, with the best case accuracy of 93.51%. For empty parking space prediction, our

model could achieve an at least 95% accuracy in making the right prediction. And as

the number of samples increases, our model makes fewer false positive predictions about

empty parking spaces. For parked cars prediction, as the number of samples increases, our

model shows higher capacity in making the right prediction about the parked cars on the

roadside. Meanwhile, to our delight, the False Negative Rate remains relatively small all the

time, meaning that ambient noises does not easily affect our model, and our model shows the

ability to distinguish the pattern generated from parked cars between the patterns generated

from ambient noises.

5.3.2 Performance Under Different Condition

Base on the aforementioned micro user study, the goal of our model is to achieve True

Positive Rate (TPR) as high as possible while maintaining the False Positive Rate (FPR)

as low as possible. By looking into the performance of different datasets, we gain a deeper

understanding of our model and the affecting variables.
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Figure 15: True Negative Rate and False Negative Rate

1. The impact of dataset size

According to the results demonstrated in Table 2, with the increase of dataset size, the

accuracy increases as well. This showcases the feasibility of the initial design principle of

utilizing data driven approach to provide understanding of the underlying features. With

our final dataset (dataset 3), our model could achieve an accuracy of 93.51% in predicting

vacant parking spaces, which is delightful and promising. Also, with dataset 1, which is

the smallest dataset, we could also achieve an accuracy of 88.10%. This result is also quite

acceptable, which further enhanced our confidence in the data driven approach to solve this

problem.

2. The impact of weather condition

As previously discussed, the weather condition we consider is mainly the wind due to

the fact that wind will strongly affect the quality of received signal. Table 1 summarizes the

weather condition of the three dataset we used in our evaluation. Dataset 1 contains only data

samples collected under moderated weather condition while the other two datasets includes
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Figure 16: Precision, Recall and F1

data samples collected under heavy wind weather condition. Dataset 3 has additional data

samples collected on good weather conditions with merely no wind encountered.

Base on the result in our micro user study, the goal of our system is to achieve high

True Positive Rate while maintaining a low False Positive Rate. Figure 14 illustrates the

performance of our model over the two metrics on different datasets. As Figure 14 shows,

the model trained on dataset 2 and dataset 3 has lower True Positive Rate comparing to the

model trained on dataset 1. And the TPR of dataset 3 is higher than the TPR of dataset 2.

This is reasonable considering the wind will introduce more ambient noises and also affect

the pattern generated by the parked cars, which resulted in the fact that dataset 2 and

dataset 3 shows lower TPR. And if we consider the False Negative Rate(FNR) in Figure 15

together, the FNR of dataset 2 and dataset 3 is higher than dataset 1. This means that our

model makes more prediction of parked cars (0s) using dataset 2 and 3, which aligns with

our initial observation that wind will introduce ambient noises that could potentially lead

to FNR of misclassification of parked cars.
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Figure 14 also demonstrates the FPR on all three datasets, showcasing a continuous

decrease of FPR as the dataset size increases. Meanwhile, the TNR demonstrated in Figure

15 shows a steady increase trend as the dataset size increases. This phenomenon is attributed

to the increase of the number of data samples. With the increase of dataset size, more

scenarios are presented to the model, which provided the model with more knowledge to

extract features that best represent the pattern we are looking for. The increase of TNR

highlights the increase in the model’s ability in capturing the pattern generated by the

parked cars, even though data collected under heavy wind weather condition introduced

more interferences of ambient noises.

3. The trade-off between dataset size and weather condition

In our evaluation, the major variables are the dataset size and the weather condition when

we collect the data. With the above observations, there exists a trade-off between these 2

variables that affects the performance of our model. For instance, the steady increase in

TNR showcases that although data samples with ambient noises are introduced in the later

two datasets, which may cause distractions in detecting parked cars, the increase of dataset

size still guarantees accurately deteting the parked cars on the roadside.

Figure 16 provides the results regarding precision, recall and f1 score, which will provide

us with a more general understanding of the model’s ability to capture the positive data

points. From a general perspective, both three metrics are relatively high, showcasing an

acceptable ability of our model to capture the positive class, which represents vacant parking

space. As Figure 16 illustrates, the precision score shows a continuous increase as the dataset

size increases while the recall score encounters a drop when the data collected under heavy

wind weather condition is introduced into the datasets. This phenomenon demonstrate that

with the increase of dataset size, the reliability of our model’s prediction increases. On the

other hand, heavy wind weather condition will trick our model to detect less true positive

data points, which aligns with our previous analysis that heavy wind will introduce ambient

noises that may be classified as the pattern of parked cars.To our delight, the f1 score in

Figure 16 provide us with a more comprehensive understanding that in general, our model’s

ability of capturing positive samples increases, meaning that our model is better at detecting

the vacant parking spots.
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5.3.3 Findings and Takeaways

According to the above evaluation and analysis, the first thing we learn is the feasibility

of our approach. Our results has demonstrated promising perspective in leveraging the

inherently generated signals from moving vehicles for available parking spot detection. The

data driven approach which we conducted in this thesis is also proved to be effective. Despite

the possibility of low quality data leading to misdetections, our results has demonstrated the

capacity of data driven approach as long as the dataset is diverse enough that includes

enough scenarios.

Aside from the promising results we have seen in our evaluation, we also identified sev-

eral important variables that would affect our model. Bad weather condition is one major

interference we have seen in our evaluation, which could trick our model to making false neg-

ative predictions that considers ambient noises to be potentially a parked car. This prompt

us to thinking future directions to handle all kinds of interferences. As mentioned in the

previous chapters, our work in this thesis has made certain assumptions to rule our some

of the interferences that we may encounter in real-life scenarios. The results we seen with

the interference of wind has further proved our initial understanding about the necessity to

handle possible interferences.
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6.0 Future Work

In this thesis, we built a end-to-end system that verifies the feasibility of leveraging

the inherently generated signals from a moving vehicle to perform parking spot detection.

Although the results are promising and provide confidence for such an idea, there are sev-

eral assumptions that lie underneath our system, and there are certainly spaces for these

assumptions to be removed.

To begin with, one major assumption in this work is that there are no interferences from

the surrounding vehicles, both in the opposite direction and the same direction. Consider

a one-way road with roadside parking, this may not be a concerning issue for our current

system. However, for a two-way road with cars moving on the opposite direction, there may

be signals generated by other moving car to the left of our probing vehicle. Such signals will

also be recorded and may lead to false positive results if we do not rule out these certain

signals. Moreover, consider a driveway with multiple lanes in the same direction, there are

also moving cars in the same direction. And it would not always be the case that our probing

vehicle is driving in the lane that is far-right. In these cases, the probing vehicle may record

signals generated from the cars moving in the same direction, which will lead to potential

false positive as well.

Another major assumption in this thesis is that the speed of the probing vehicle is

20mph in our evaluation. Although it is fair to make this assumption since the common

speed limit for a street with roadside parking spots is around 20mph, it is nonetheless not

always the case. To further adjust to real-life scenarios, one possible direction is to eliminate

the assumption for speed, and take into account the real speed of the moving car. This

would require additional access authentication to the smartphone OS for GPS authority to

calculate the speed. Also, the speed needs to be as real-time as possible given that a slightly

change to the speed may result in mis-classification. Consider standard speed calculation

that are based on the offset of location divided by the time duration, maintaining real-time

speed information is a potential challenge to solve.

Finally, as mentioned above, we have a fixed opening passenger window size of 16cm in
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our final experiments. Considering the fact that modern vehicles have certain technologies to

reduce the noises inside the cabin, closing the passenger side window could potentially harm

the performance of our system. Since opening of the passenger window is uncontrollable,

one possible solution to this problem is to leverage the power of crowd-sensing. With enough

cruising vehicles in the area, it is possible that a cruising vehicle that collects high quality

signals will pass through a certain period. By adding another module to check the signal

quality in the beginning of our system, we can detect the vehicle capable of collecting high

quality signals, and give more trust to the results transmitted back from these vehicles.

Realizing this idea and investigate the boundary for satisfying results is definitely another

direction to look into in the future.

To remove these assumptions and push further to the real-life scenarios, a more sophis-

ticated model may be the solution. With the increase of computational power, computer

vision has been a rapidly developing area, leading to multiple extraordinary breakthroughs.

Recently, there has been a trend for multi-modal fusion in designing DNN models. More

specifically, people are leveraging the information from both the audio input and the video

input to guide the model to learn. This additional information from the video will provide

knowledge that the ground truth we have in this work does not possess. For instance, if

we include cameras from all directions of the probing vehicle, we will be able to inform the

model when there are vehicles moving in the opposite direction. In this case, the model

will have knowledge to distinguish the pattern generated from a parked car on the roadside

between the pattern received from another moving vehicle on the road.
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7.0 Conclusion

In this thesis, we present an innovative passive mobile sensing solution for roadside

available parking spot detection. Our approach utilizes smartphone microphones to collect

inherently generated signals from moving vehicles, and use these collected signals to distin-

guish vacant parking space and parked cars. Comparing to existing mobile sensing solutions

for roadside parking detection, our approach holds the advantage of mitigating the need for

dedicated hardware installation.

To realize our idea, we first conducted an empirical study which provided us in depth

understanding of the phenomenon. Base on the knowledge we obtained from our empirical

study, we designed an end-to-end system to mitigate the challenges and fulfil our goal to

make vacant parking spot prediction. Our system comprises a pre-processing module for

audio data stream segmentation, a DNN model for vacant parking spot prediction, and a

post-processing module to refine the results for parking information dissemination. To train

our model, we created our own dataset using data collected over 2 weeks. Under our final

evaluation, our approach demonstrated promising results of our data driven approach with

an prediction accuracy of up to 93.51%.

Despite the promising results in this thesis, certain challenges still remain unsolved,

leaving space for future work. To approach real-world wide deployment, techniques to handle

more possible interferences are needed to improve the system robustness. With the rapid

development of computer vision technology, we envision video-guided model to be the next

step.
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