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Convex and Non-convex Model Compression for Large-Scale Model Training

Xidong Wu, PhD

University of Pittsburgh, 2024

Recently, machine learning (ML) models have gained extensive utilization across a va-

riety of applications. However, unlike traditional methods, ML models, especially those

employing deep learning, utilize their significant depth and intricate architecture to improve

approximation capabilities, posing a challenge to the hardware capabilities of devices during

deployment and communication during training. This challenge is particularly pronounced

when deploying ML models on edge devices, which are characterized by limited storage

and modest processing capabilities. To address these issues, the concept of model compres-

sion has emerged as an approach to reduce the size of ML models with minimal performance

degradation and facilitate deployment. Several model compression techniques, such as weight

pruning, knowledge distillation, and model screening, have been explored. Additionally, the

training process for these models requires substantial data, and distributed/federated train-

ing serves as a solution to overcome data-related obstacles. The objective of this dissertation

is to enhance the efficiency of convex and non-convex models, with or without multi-party

collaborative training (distributed and federated learning).

We develop various approaches for compressing logistic classifiers (convex models) and

deep learning models (nonconvex models). In task 1, we introduce a novel distributed dy-

namic safe screening framework for generalized sparse convex models. This framework re-

duces the model dimension in advance compared to traditional lasso techniques, accelerating

distributed training and reducing communication overhead by discarding inactive features

with zero coefficients. In task 2, we concentrate on the application of foundation models in

federated learning. Foundation models exhibit outstanding performance and the ability to

mitigate the impact of heterogeneous data distributions. We explore compressing foundation

models to improve performance on edge devices. In task 3, we delve into structural pruning

in centralized learning. We propose a new algorithm that employs the controller network

to guide end-to-end model pruning without relying on additional fine-tuning procedures af-
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ter removing redundant structures. Comprehensive experiments conducted on a large scale

within distributed or centralized settings validate the rationale and efficacy of our proposed

methodology. Finally, we provide related theoretical analysis to ensure the convergence of

proposed algorithms.
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1.0 Introduction

1.1 Motivation and Research Objective

Machine learning (ML) has achieved notable accomplishments across various tasks [10,

38], such as computer vision, speed recognition, and natural language processing. To address

real-world complexities, contemporary ML models are progressively expanding in terms of

feature dimensions, width, and depth, from convex to nonconvex, and other aspects. Such

augmented capacities enable ML models to attain superior performance on diverse bench-

marks, albeit at the expense of heightened computational and storage demands.

Simultaneously, as edge devices, such as mobile and embedded devices, undergo recent

advancements, the desire to deploy ML models on these platforms has surged significantly.

Nevertheless, an inherent conflict emerges between the dimensions of ML models and the

hardware capabilities of such edge devices. At the same time, large-scale ML models put

a huge communication burden across different clients while usually more than one clients

are involved in the ML model training. To surmount these challenges, numerous endeavors

[5, 36, 37] have endeavored to minimize the size of ML models, rendering them amenable for

deployment on embedded or mobile devices.

Numerous techniques exist for model compression. Notably, the techniques of model

screening for convex models, and model distillation and model pruning for deep learning

models have gained prominence. In this dissertation, we will focus on the applications of

model screening, model distillation, and structural pruning. At the same, our dissertation is

centered on investigating these methodologies for model training in the case with or without

multi-party collaborative training (distributed and federated learning).

Sparse representations have a significant role in various ML applications within the realm

of convex (non-deep) ML models [79, 18, 9, 112]. Over the preceding decades, numerous

models incorporating sparse regularization have achieved remarkable triumphs in scenarios

characterized by high dimensionality, owing to their capability to promote model sparsity

[111, 4]. The lasso model is a classical way to get a sparse convex model with l-1 norm.
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Within Nonconvex (deep) models, pruning is another way of model compression technique to

get sparse representations, which involves removing certain parts of an ML model, typically

weight or channel, to reduce its size and computational complexity. There are two main

types of pruning techniques: weight pruning and structural pruning. Compared with weight

pruning, structural pruning [30, 31], particularly channel pruning, is more hardware-friendly

since we can control the FLOAPs reduction to achieve computational and storage savings.

Model distillation [43] emerges as another prevalent technique for compressing models as

the development of foundation models. The fundamental idea behind knowledge distillation

involves acquiring a distilled model, or student network, and then training this more concise

neural network to replicate the outputs generated by a larger network, known as the teacher

network. In the training process of the student network, it can draw upon not just the logits

of the teacher network, but also leverage the intermediate outcomes. Research of foundation

models boosts the application of model distillation.

Model compression is also widely used in multi-party collaborative training. Achieving

effective generalization of deep models on unseen test data often necessitates a substantial

volume of training data. Direct collating data from all available establishments or clients

elicits concerns about data privacy. For example, the act of accumulating medical data is

a resource-intensive endeavor, as previously highlighted, and these data have evolved into

a valuable asset for medical institutions. However, medical institutions carry the respon-

sibility of safeguarding data collected from patients. The process of data aggregation may

consequently expose patients to the potential jeopardy of data breaches. Under these cir-

cumstances, the adoption of distributed learning and federated learning becomes imperative.

However, the large size of ML models put a heavy commutation overhead during training.

Model compression is a good way to reduce model size, save commutation overhead, and

speed up training.

Although federated learning [56] stands out for its efficiency in communication since

maybe a part of the clients participate in global commutation in each round after multiple

local training compared with distributed learning, cross-client federated learning is highly

related to the edge device. A notable issue in federated learning is client drift. This arises

due to the non-iid (non-independent and identically distributed) data distribution, leading

2



to divergent trajectories of client models in the absence of timely updates to the global

models through communication. Although the application of foundation models in federated

learning could mitigate client drift issues, it is impossible to deploy foundation models in edge

devices, such as smartphones or embedded devices. Overall, model compression has a wide

application in the ML model training, including non-deep (convex) models or deep (convex)

models, centralized training, or multi-party collaborative training (distributed learning or

federated learning).

Overall, the research objective of this dissertation is convex and non-convex model com-

pression, including model screening, model distillation, and structural pruning. We also

consider distributed training since it is more complicated than centralized training.

1.2 Main Contributions

We study the model compression in the ML models training, including non-deep (con-

vex) models or deep (convex) models, and centralized training or multi-party collaborative

training (distributed learning or federated learning). There are three parts we completed as

below:

First, we consider the model compression with sparse representation in the convex mod-

els, such as logistic regression, and we consider the model training in a distributed setting

since it is more complicated than centralized learning. We present an innovative distributed

dynamic safe screening framework designed for generalized sparse convex models. This

framework dynamically diminishes the model’s dimensionality in advance compared to con-

ventional lasso techniques, thereby expediting distributed training and minimizing commu-

nication overhead through the elimination of inactive features with zero coefficients.

Afterward, we focus on the deep (non-convex) models since deep learning presents re-

markable performance. In the second part, we explore the sparse representation with struc-

tural pruning for centralized learning. In the course of this manuscript, we use the term

“centralized training“ to describe the process of collecting data from clients and subsequently

training the model without considering the communication. It is important to acknowledge

3



that centralized training presents an upper-performance limit for multi-party collaborative

training algorithms. We propose a generic framework to train and prune DNNs in a complete

end-to-end and automatic manner. After model training, we can directly obtain the com-

pressed model without additional fine-tuning steps. It is important to highlight that numer-

ous existing pruning methods often exhibit significant limitations, necessitating a complex

multi-stage process. This process usually involves initial pre-training, intermediate training

to identify redundancies and subsequent fine-tuning. Effectively managing this multi-stage

process in ML training requires considerable engineering efforts and specialized expertise.

Following OTO [16] and OTOv2 [17], we advocate for end-to-end training and pruning

frameworks with a controller network.

Finally, we focus on the model distillation for deep learning models in federated learning.

We leverage foundation models to guide the lightweight model training in federated learning

to improve inference efficiency. Similar to various distributed learning approaches, Federated

Learning (FL) faces a significant challenge wherein client data stored locally exhibit hetero-

geneity, stemming from uneven distributions or unbalanced patterns [64]. While foundation

models offer a potential solution to maintaining model performance under such heterogeneous

data distributions, their application on edge devices is impractical. To effectively harness

the performance benefits of foundation models under non-IID data distribution, while uti-

lizing small-scale backbones for quicker inference, we investigate the approach of distilling

knowledge from foundation models into the smaller client models. The experiments show

the performance of the lightweight model experiences substantial improvement through the

incorporation of strong prior knowledge derived from foundation models.

We summarize our contribution as follows.

• We propose a new distributed dynamic safe screening (DDSS) framework for general-

ized sparse (convex) models, which is easy to implement on both shared-memory and

distributed-memory architecture. To the best of my knowledge, this is the first work

of distributed dynamic safe screening. At the same time, we also consider the shared-

memory parallel setting. We conduct lots of experiments to verify the efficiency of our

algorithms. It could largely save the commutation overhead due to the reduction of

model dimension and speed up model training. In addition, the experiments show the
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linear speed-up of our algorithms as the number of clients.

• Then we introduce an innovative structural pruning algorithm, Auto-Train-Once (ATO),

designed to automatically reduce the computational and storage costs of non-convex ML

models. It is an end-to-end algorithm since it does not rely on extra fine-tuning steps

to train from scratch and we only train the target model once. A controller network

is used to dynamically generate the binary mask to guide the pruning of the target

model. In addition, we present a theoretical analysis under mild assumptions to guarantee

convergence, along with extensive experiments.

• Finally, we explore the application of foundation models in federated learning (Fed-

LPFM). Preliminary results show the remarkable performance of foundation models after

fine-tuning in heterogeneous distribution. In order to deploy the model in the edge device,

we show that with the help of a foundation model, tiny models could overcome the client

drift to some extent.

1.3 Orgnization of Dissertation

This dissertation is organized as below:

• Chapter 1 is the introduction, which includes the motivation, research objective, and

main contribution.

• In Chapter 2, we present related works and some background for the following chapters.

Distributed static screening, and asynchronous stochastic method parts are related to

Task 1; the model pruning part is related to Task 2; and federated learning, foundation

models, and model distillation parts are related to Task 3.

• Chapter 3 is Task 1 about present Dynamic Model Screening Algorithms for Distributed

Training.

• Chapter 4 is Task 2 about Auto-Train-Once (ATO) to discuss how to use a controller

network to guide automatic network pruning from scratch.

• Chapter 5 presents Task 3 about leveraging foundation models in efficient federated

learning with model distillation.
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• Chapter 6 is the conclusion of this dissertation.
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2.0 Related Works

Here we introduce existing different approaches to improve the non-deep (convex) or

deep (non-convex) model performance in the case with or without models with or without

multi-party collaborative training (distributed and federated learning).

2.1 Distributed Static Screening

The study most closely related to ours is Parallel Static Screening (PSE) [62]. It addresses

the challenges posed by high-dimensional settings through the implementation of the par-

allel elimination (PE) step preceding Asynchronous Grouped Coordinate Descent (AGCD).

However, the proposed approach comes with several drawbacks. Firstly, it is performed only

once before the optimization algorithm. Secondly, the application of the safe static rule [33]

in PE is secure, whereas the use of the strong rule [97] in PE is deemed unsafe, potentially

leading to erroneous feature discards. Thirdly, its determinism on samples hinders scalability

for large n. Fourthly, PE-AGCD cannot leverage the sparsity of the data. Lastly, PE-AGCD

is constrained to Lasso regression.

Table 1 presents a comparison between our DDSS method and PSE, highlighting the

advantages of DDSS. Firstly, DDSS operates dynamically throughout the entire training

process, providing a dual benefit of acceleration and leveraging the convergence of the op-

timization algorithm. Additionally, DDSS ensures the safety of the training process while

maintaining model accuracy. Thirdly, DDSS adopts a stochastic approach, making it adapt-

able to both sample and feature scalability. Finally, DDSS capitalizes on data sparsity

through the utilization of sparse proximal updates, further contributing to the acceleration

of the training process.

7



2.2 Asynchronous Stochastic Method

In the work by [81], they introduced an asynchronous doubly stochastic approach, but

it overlooks the consideration for sparsity, potentially leading to sluggish performance. An-

other advancement, presented in [35], provides an asynchronous doubly stochastic method

specifically designed for group regularized learning problems. [58] also proposed an asyn-

chronous sparse incremental gradient method; however, it falls short in capitalizing on the

model’s sparsity and lacks the adaptability to the dynamic screening method for efficient

training. [45] mainly focuses on the asynchronous mini-batch gradient descent with variance

reduction (AsySVRG) for non-convex optimization. In contrast, our DDSS method stands

out by effectively leveraging both the model’s sparsity and the dataset, offering a unique

advantage over these previous approaches.

2.3 Model Pruning

To minimize storage and computational expenses, pruning methods aim to identify and

eliminate redundant structures from the complete model. There are two main types of

pruning techniques: weight pruning and structural pruning. In weight pruning, individual

connections (weights) in the neural network are set to zero or removed based on certain

criteria. This reduces the number of parameters in the model and, consequently, its size.

Common methods for weight pruning consist of setting small-weight values to zero with

a specific thresholding, removing a certain percentage of the smallest weights. Structural

Pruning involves removing entire unit structural from the neural network, such as channels.

This can be more aggressive than weight pruning, as entire features or representations are

discarded. It is often based on the impact on the model’s output or activation values. Less

influential structural are pruned to reduce the model’s complexity.

Since pruning may lead to a significant loss of accuracy, fine-tuning and careful selec-

tion of pruning criteria are crucial to maintaining or even improving model performance

during model compression. The majority of existing structural pruning techniques follow a
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three-stage process: (1) train a full model from scratch; (2) pinpoint redundant structures

based on various criteria; (3) fine-tune or retrain the pruned model to restore performance.

Different methods make distinct choices regarding the pruning criteria. For instance, filter

pruning, as introduced by [60], selects crucial structures with larger norm values. Beyond

evaluating channel or filter importance solely based on magnitude, the scaling factor of batch

normalization [46], a popular component in modern CNN architectures [38, 89], can also be

employed to identify significant channels. [77] utilize sparse regularization on the scaling

factors of batch normalization to facilitate channel pruning.

A channel undergoes pruning when its associated scaling factor is considered small. The

concept of structure sparse selection [44] expands upon the utilization of scaling factors in

batch normalization by applying it to diverse structures such as neurons, groups, or residual

blocks. Sparsity regularization is additionally enforced on these structures. Another avenue

of research [54, 107, 31, 50] involves the pruning of insignificant channels using learnable

scaling factors assigned to each structure. These learnable parameters are designed to be dif-

ferentiable end-to-end, allowing for gradient-based optimizations. Inter-channel dependency

[86] is another approach to channel removal. Greedy forward selection [106] systematically

adds channels with large norms to an initially empty model through iterative steps.

Furthermore, reinforcement learning and evolutionary algorithms offer alternative ap-

proaches for selecting important structures. The Automatic Model Compression (AMC)

technique [42] employs a policy network to determine the width of each layer, with updates

performed through policy gradient methods. In MetaPruning [76, 68], evolutionary algo-

rithms are employed to discover the optimal combination of structures, and a hypernet is

utilized to generate the model weights.

Conventional structural pruning methods typically necessitate manual intervention across

all three stages, particularly in the second and third phases. To streamline and reduce

manual efforts in all three stages, OTO [16] formulates a structured-sparsity optimization

problem and introduces the Half-Space Stochastic Projected Gradient (HSPG) method to

address it. OTO overcomes various drawbacks associated with prior methods based on

structural sparsity [98, 67], such as (1) the involvement of multiple training stages due to

the inability of their group partition to isolate the impact of pruned structures on the model
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output, and (2) the need for heuristic post-processing to generate zero groups. Building

upon OTO, OTOv2 [17] introduces automated Zero-Invariant Groups (ZIGs) partitioning

and employs the Dual Half-Space Projected Gradient (DHSPG) method for enhanced user-

friendliness and performance. Despite the advantages of OTOv2, it still exhibits several

issues, including (1) the static selection of pruning groups in ZIGs, which cannot be altered

with model weight updates; (2) the increased complexity of HSPG/DHSPG compared to

simple proximal gradient operators; and (3) insufficient theoretical analysis with overly strong

assumptions in both OTO and OTOv2. In this dissertation, we present solutions to address

all the aforementioned weaknesses of OTOv2.

2.4 Federated Learning

FedAvg was proposed in [80] With periodic model averaging, it can dramatically reduce

communication overheads. In FedAvg, clients will receive the starting model wr from the

server at training round r. Each client k performs E epochs of local training to update the

local model to w
(k)
r+1 with the popular momentum SGD or Adam [55] optimizer depending

on the application needs. Then the server gathers and averages the local models to wr+1 =

1
K

∑K
k=1 pkw

(k)
r+1.

Previous studies investigated federated learning (FL) algorithms within the context of

homogeneous data, as highlighted in works such as [99, 52]. More recent research has ex-

panded the scope of federated learning to encompass heterogeneous data settings (non-iid)

and non-convex models, such as deep neural networks. In instances where datasets across

various worker nodes exhibit homogeneity, FedAvg simplifies to local SGD, as outlined in

[120]. Recent studies, as documented in [105, 51], explore FedAvg with partial worker node

participation, employing O(1) local update iterations and batch sizes. The resulting sam-

ple and communication complexities are both O(ϵ−4). In the works of [108, 109], Parallel

Restarted SGD and Momentum SGD are introduced, demonstrating that both methods re-

quire O(ε−4) samples and O(ε−3) communication rounds to achieve an ε-stationary solution.

The SCAFFOLD approach, proposed in [51], utilizes control variates to address ’client-drift’
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in the presence of heterogeneous data, achieving identical sample and communication com-

plexities as FedAvg. FedProx, introduced by [65], employs a penalty-based method to reduce

communication complexity to O(ε−2), with its analysis contingent on a gradient similarity

assumption that constrains data heterogeneity by requiring all minima of f(x) to also be

minima of fi(x). Subsequently, FedPD, presented in [114], is proposed to relax this assump-

tion.

Correct Client Drift is a big issue in federated learning. Inspired by optimization strate-

gies like SVRG [49] and SAGA [23], inter-client variance reduction techniques [1, 51, 72] have

been introduced in the context of Federated Learning (FL). These techniques aim to enhance

FL by rectifying local training using anticipated local and global update directions. Notably,

these methods are typically evaluated using convex or simpler non-convex models and ob-

jectives. Following this, several momentum-based federated learning (FL) algorithms have

been introduced. For instance, [104] presents a momentum fusion technique to synchronize

the server and local momentum buffers, albeit without a reduction in complexity. Lever-

aging variance reduction technology, Fed-GLOMO [22] requires a sample complexity and

communication complexity both scaling as O(ε−3). Notably, the sample complexity aligns

with the optimal complexity of centralized non-convex stochastic optimization algorithms

[27, 21]. More recently, STEM and FAFED, as proposed in [53, 101], employ a momentum-

assisted stochastic gradient direction for both worker nodes and central server updates. This

approach further diminishes communication rounds to O(ε−2) while maintaining the same

sample cost of O(ε−3).

However, when it comes to the practical training of intricate ML models, the effectiveness

of variance reduction techniques is called into question. Research such as [24] demonstrates

that these techniques tend to underperform in the context of deep learning. This is pri-

marily because the application of variance reduction to correct stochastic gradients is often

rendered ineffective in deep learning due to prevalent augmentation strategies such as batch

normalization [47] and dropout [94], among others.
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2.5 Foundation Models

Foundation models, also known as large pre-trained neural network-based models. They

have been trained on vast amounts of data to understand and generate data. These models

are a type of transfer learning, where a model pre-trained on a large and diverse dataset

is fine-tuned for specific downstream tasks. Foundation models serve as a starting point

for a wide range of natural language processing machine learning tasks and can be further

adapted or fine-tuned for more specific applications. For example, the CLIP [87] (Contrastive

Language–Image Pretraining) model is a deep learning architecture developed by OpenAI

that learns to associate images and their corresponding textual descriptions in a way that

enables it to understand and generate cross-modal information. In other words, CLIP is

designed to bridge the gap between images and text and has outstanding zero-shot ability.

Some existing works study the role of pre-trained Transformer models in Federated Learn-

ing (FL), [14, 78, 116], specifically in terms of effectively refining these pre-trained models

within the FL framework and the potential advantages that FL users could gain from this

innovative approach. However, there is a conflict between the foundation model and the

edge device.

2.6 Model Distillation

Knowledge distillation serves as an instructional technique, transferring valuable in-

sights and generalization capabilities from a trained teacher model to a student model

[43, 3, 115, 113]. In the realm of Federated Learning (FL), [75] investigates adaptable

aggregation methods with ensemble distillation at the server, while [90] employs an aux-

iliary dataset to weigh and ensemble local models from individual clients. FedDistill [91]

extracts statistics related to the logit-vector from different client models and shares them

among remaining clients for improved distillation. In a data-free knowledge distillation ap-

proach, [118] trains a generative model at the server, leveraging client information to create

synthetic data for training client models. [20] introduces a co-distillation-based personalized
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FL method, enabling cross-architecture training.

In our approach, we investigate the impact of knowledge distillation, as proposed by

[43], on the performance of small-scale client models. Importantly, we achieve this without

relying on excessive data, augmentations, or model sharing to uphold privacy. We aim to

offer insights into the effective utilization of foundational models in the context of Federated

Learning.

13



3.0 Task 1: Dynamic Model Screening Algorithms for Distributed Training

3.1 Background

In this chapter, we focus on the convex model compression with model screening. We

also consider the distributed training and explore the method to reduce model dimension

and speed up training. The work in this chapter was published in IJCAI 2022 [6].

Let local data A = [a1, · · · , an]⊤ ∈ Rn×p, we consider the following composite optimiza-

tion problem:

min
x∈Rp

P (x) := F(x) + λΩ(x), (3-1)

where x is the model coefficient, Ω(x) is the block-separable sparsity-inducing norm, F(x) =
1
n

∑n
i=1 fi(a

⊤
i x) is the loss, and λ is the regularization parameter. We denote Fi(x) = fi(a

⊤
i x)

for simplicity. Given partition G of the model coefficients, we denote the sub-matrix of A

with the columns of Gj as Aj ∈ Rn×|Gj | and have Ω(x) =
∑q

j=1 Ωj(xGj
).

In this part, we study sparsity regularized convex models with l1 norm in the distributed

setting. We introduce the method known as distributed dynamic safe screening (DDSS),

subsequently demonstrating its application to both shared-memory and distributed-memory

architectures. Table 1 show the main different between our method and counterparts.
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Table 1: Summary of dynamic safe screening methods. “Model” refers to the model it can

solve where “MTL & MLR” means multi-task Lasso and multinomial logistic regression.

“Safe” represents there are no active features eliminated. “Generalized” means whether it

is limited to a specific model. “Distributed” represents whether it can work on distributed-

memory architecture. “Scalablity” represents whether it is scalable with sample size n.

Reference Model Safe Generalized Distributed Scalablity

[29] Lasso Yes No No No

[84] Sparse-Group Lasso Yes No No No

[93] Sparse SVM Yes No No No

[83] MTL & MLR Yes No No No

[88] Proximal Weighted Lasso Yes No No No

[5] OWL Regression Yes No No No

DDSS (Ours) Problem (3-1) Yes Yes Yes Yes

3.2 Distributed Dynamic Safe Screening

3.2.1 Naive Implementation of DDSS

To harness the inherent sparsity in the model coefficients, we introduce an initial imple-

mentation of the distributed dynamic safe screening (DDSS) approach on a shared-memory

architecture in Algorithm 1. Subsequently, we extend this implementation to a distributed-

memory architecture in Algorithms 2 and Algorithm 3. Our explanatory emphasis primarily

centers on the shared-memory architecture for illustrative purposes. During the training

process, DDSS adeptly tackles the problem by systematically reducing its size through the

removal of irrelevant features. It can compress the model size, reduce the commutation

overhead, and speed up the model training.
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Algorithm 1 Sha-DDSS-Naive

1: Input: x0
B0
∈ Rp, step size η, inner loops K

2: for s = 0 to S − 1 do

3: All threads parallelly compute ∇F(x0
Bs
)

4: Compute ys by Equation (3-2) and Bs+1 from Bs by Equation (3-3)

5: Update ABs+1 , x
0
Bs+1

6: For each thread, do:

7: for t = 0 to K − 1 do

8: Read x̂t
Bs+1

from the shared memory

9: Randomly sample i from {1, 2, . . . , n}

10: vst = ∇fi(a⊤i,Bs+1
x̂t
Bs+1

)

11: Update xt+1
Bs+1

= proxηλΩ(x̂
t
Bs+1
− ηvst )

12: end for

13: xBs+1 = xK
Bs+1

, x0
Bs+1

= xBs+1

14: end for

To be precise, Algorithm 1 consists of two loops. We represent the original problem as

P0, and the full feature set is denoted as B0. During the s-th iteration of the outer loop, we

denote the active feature set as Bs and assume that Bs comprises qs feature active blocks

with a total of ps active features. Consequently, the sub-problem Ps is defined over the set

Bs. The dual ys can then be computed as follows:

ys = −∇F(x0
Bs
)/max(1,ΩD(A⊤

Bs
∇F(x0

Bs
))/λ), (3-2)

where dual norm ΩD(u) = maxΩ(v)≤1⟨v, u⟩.

With the obtained dual variable, we can eliminate inactive feature blocks (see details in

[83, 5]) for ∀j ∈ Bs as

ΩD
j (A

⊤
j y

s) + ΩD
j (Aj)

√
2L(P (x0

Bs
)−D(ys)) < nλ (3-3)
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to update Bs+1 where L is the Lipschitz constant. The dual objective D(ys) of Ps can be

computed as:

max
ys

D(ys) := − 1

n

∑n

i=1
f ∗
i (−ysi )

s.t. ΩD
j (A

⊤
j y

s) ≤ nλ, ∀j ∈ 1, . . . , qs (3-4)

Within the inner loop, all updates are executed on the constant feature set Bs+1. Initially,

each thread independently retrieves x̂t
Bs+1 from the shared memory and randomly selects

a sample i to calculate the stochastic gradient over Bs+1. Subsequently, the proximal step

is performed based on this stochastic gradient. By leveraging equation (3-3), we ensure a

continuous reduction in both the model and parameter sizes. This results in an accelerated

training process achieved through the effective exploitation of model sparsity and reduced

communication cost. Since any variable xi eliminated via the screening process must be zero

in the optimal solution, this approach ensures the safety of the training procedure.

Algorithm 2 Dis-DDSS-Naive (Server Node)

1: for s = 0 to S − 1 do

2: flag = True

3: Broadcast flag and x0
Bs

to all workers

4: Receive gradients from all workers

5: ∇F(x0
Bs
) = 1

n

∑l
k=1∇Fk(x0

Bs
)

6: Compute ys by (3-2)

7: Update Bs+1 ⊆ Bs by (3-3)

8: Broadcast Bs+1 and ∇F(x0
Bs
) to all workers

9: flag = False

10: Broadcast flag to all workers

11: for t = 0 to K − 1 do

12: Receive vst from worker

13: xt+1
Bs+1

= proxηλΩ(x
t
Bs+1
− ηvt)

14: end for

15: xBs+1 = xK
Bs+1

, x0
Bs+1

= xBs+1

16: end for
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Algorithm 3 Dis-DDSS-Naive (Worker Node k)

1: if flag = True then

2: Receive x0
Bs

from server

3: Compute and send full gradient ∇Fk(x0
Bs
) =

∑
i∈nk
∇fi(a⊤i,Bs

x0
Bs
)

4: Receive Bs+1 from server

5: Update Ai∈nk,Bs+1 , x
0
Bs+1

6: else

7: Receive x
d(t)
Bs+1

from server

8: Randomly sample i from {1, 2, . . . , nk}

9: Compute vst = ∇fi(a⊤i,Bs+1
x
d(t)
Bs+1

)

10: Send vst to server

11: end if

3.2.2 Variance Reduction on the Active Set

Nonetheless, the variance of gradient estimation introduced by the stochastic sampling

in Algorithm 1 fails to converge towards zero. Consequently, the necessity arises to employ a

diminishing step size, yielding only marginal progress with each update. As a result, even in

scenarios where P exhibits strong convexity, Algorithm 1 is limited to achieving a sublinear

rate of convergence.

Given that the outer loop has already computed the full gradient for the elimination

step, drawing inspiration from the variance-reduced technique in [103, 61], we can refine the

gradient estimation over Bs+1 by incorporating the exact gradient from the outer loop. This

adjustment can be made without incurring additional computational costs, and is expressed

as:

vst = ∇fi(a⊤i,Bs+1
x̂t
Bs+1

)−∇fi(a⊤i,Bs+1
x0
Bs+1

) +∇F(x0
Bs+1

), (3-5)

which can ensures the asymptotic convergence of the stochastic gradient variance towards

zero. Consequently, it becomes feasible to employ a constant step size, thereby enabling

substantial progress with each iteration and ultimately attaining a linear convergence rate

for strongly convex functions.
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3.2.3 Sparse Proximal Gradient Update

In real-world scenarios, sparsity (the value of a specific feature is 0) is prevalent in

large-scale datasets. To capitalize on the sparsity of the dataset, it suffices to update only

the blocks that contain nonzero partial gradients. Consequently, certain blocks may be

updated more frequently than others. Drawing inspiration from [58] for Proximal SAGA, we

introduce a block-wise reweighting matrix to perform a weighted projection on the blocks.

Specifically, we define Ψi as the set of blocks that intersect with the nonzero coefficients

of ∇fi. Let nG denote the number of occurrences of G ∈ Ψi, and if nG > 0, we define

dG = n/nG. Conversely, we can disregard that block directly. Consequently, we can define a

diagonal matrix [Di]G,G = dGI|G| for each block i. Thus, the gradient over the set Bs+1 can

be expressed as:

vst = ∇fi(a⊤i,Bs+1
x̂t
Bs+1

)−∇fi(a⊤i,Bs+1
x0
Bs+1

) +Di,Bs+1∇F(x0
Bs+1

). (3-6)

Hence, it is sufficient to compute a sparse gradient and perform a sparse update solely over

the active set, leading to a further reduction in computational costs.

At the same time, the proximal operator of the original Problem (3-1) is computed as

proxηλΩ (x′) = arg min
x∈Rp

1

2η
∥x− x′∥2 + λΩ(x). (3-7)

In contrast, this method typically requires updating all coordinates for each iteration. Taking

into account the sparsity of the dataset, it becomes apparent that updating only the blocks

containing nonzero partial gradients is sufficient. Consequently, utilizing the reweighting

matrix D, we employ a block-wise weighted norm ϕi(x) =
∑

G∈Ψi
dGΩG(x) to replace Ω(x).

It is worth noting that it is straightforward to verify that E[ϕi(x)] = Ω(x). Therefore,

the computation of the new sparse proximal operator is as follows:

proxηλϕi
(x′) = arg min

x∈Rp

1

2η
∥x− x′∥2 + λϕi(x). (3-8)

Given that updates are exclusively applied to the blocks within Ψi, a subset that can be

significantly smaller than the one necessitated for a complete pass over p coordinates due

to sparsity, substantial savings in computational and memory expenses can be realized. In

essence, the implementation leverages sparse gradient updates and sparse proximal operators

to expedite training, capitalizing on the inherent sparsity within the dataset.

19



3.2.4 Decoupled Proximal Update

In the context of distributed-memory architecture, multiple workers calculate gradients

and transmit them to a central server. Subsequently, the server performs the proximal op-

erator computation. However, in instances where the proximal step demands considerable

time, this process executed by the server can emerge as a computational bottleneck for the

entire algorithm. Addressing this, [69] introduced a decoupled technique that redistributes

the computational burden of the proximal step to the workers. This approach ensures that

the server engages in relatively simpler addition computations, leading to a sublinear con-

vergence rate and outperforming the coupled method.

In our algorithm, to alleviate the computational load on the server, the proximal mapping

step is carried out by the workers, leaving the server to execute element-wise computations.

The workers perform the proximal operator as follows:

xt+1
Bs+1

= proxηλϕi
(xt

Bs+1
− ηvst ), (3-9)

and send the difference

δst = proxηλϕi
(xt

Bs+1
− ηvst )− xt

Bs+1
, (3-10)

involving the parameter xt
Bs+1

and the output of the proximal operator to the server. Con-

sequently, the server only performs straightforward addition computations, rendering the

algorithm well-suited for parallelization to attain a linear speedup property. Moreover, ac-

celeration can be achieved by increasing the number of workers.
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3.3 DDSS on Shared-Memory Architecture

Algorithm 4 Sha-DDSS

1: for s = 0 to S − 1 do

2: All threads parallelly compute ∇F(x0
Bs
)

3: Compute ys by (3-2) and Bs+1 from Bs by (3-3)

4: Update ABs+1 , x
0
Bs+1

,∇(x0
Bs+1

)

5: For each thread, do:

6: for t = 0 to K − 1 do

7: Read x̂t
Bs+1

from the shared memory

8: Randomly sample i from {1, 2, . . . , n}

9: Compute vst by (3-6)

10: δst = proxηλϕi
(x̂t

Bs+1
− ηvst )− x̂t

Bs+1

11: xt+1
Bs+1

= xt
Bs+1

+ δst

12: end for

13: xBs+1 = xK
Bs+1

, x0
Bs+1

= xBs+1

14: end for

In a shared-memory architecture, our Sha-DDSS algorithm is presented in Algorithm 4.

Assuming we have l cores, during the outer loop, all threads parallelly calculate ∇F(x0
Bs)

and ys, and perform the elimination. Following the formation of the new set Bs+1, we

update ABs+1 , x
0
Bs+1

, and ∇F(x0
Bs+1

). Within the inner loop, the algorithm optimizes over

Bs+1, with multiple threads asynchronously updating the parameters. This asynchronous

operation allows parameters to be read and written without the need for locks. Specifically,

each thread inconsistently reads x̂t
Bs+1

from shared memory and then selects a sample i

from 1, 2, . . . , n. As expressed in Equation (3-6), we compute the gradient vst over Bs+1.

Subsequently, we perform the proximal step, compute the update δst , and incorporate it into

the shared memory.

Significantly, in the s-th iteration, our Algorithm 4 efficiently addresses sub-problem

Ps+1 within the sparse model structure, yielding a notable advantage over training the entire

model. This translates to the computation of full gradients at the s-th iteration involving only
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ps coefficients, a considerably smaller number compared to the practical complexity of O(p).

Additionally, leveraging the sparsity inherent in the dataset enables us to execute sparse

gradient updates and sparse proximal updates, particularly advantageous for handling large-

scale real-world datasets. Moreover, the reduction of gradient variance allows us to employ

a constant step size, enhancing convergence and ultimately achieving a linear convergence

rate for strongly convex functions. Finally, the asynchronous operation of all threads proves

to be highly efficient and easily parallelizable, effectively minimizing the computation and

memory costs associated with large-scale training.

3.4 DDSS on Distributed-Memory Architecture

In a distributed-memory architecture, our Dis-DDSS algorithm is succinctly outlined in

Algorithm 5 and Algorithm 6. In Dis-DDSS, assuming the presence of one server node and l

local worker nodes, each worker storing nk samples, the following procedures unfold. When

the flag is set to True, within the outer loop of the server node, the server broadcasts both

the flag and x0
Bs

to the workers. Subsequently, at each worker node, worker k receives x0
Bs

from the server, calculates the gradient over nk samples, and transmits the result back to

the server node. Once all gradients from the workers are received, the server node computes

the full gradients and dispatches them to the workers. Utilizing Equation (3-2), the server

node computes ys and executes the elimination process to derive Bs+1 before transmitting

it to the workers. Each worker node, upon receiving ∇F(x0
Bs
) and Bs+ 1 from the server,

updates Ai∈nk,Bs+1 , x
0
Bs+1

, and ∇F(x0
Bs+1

) accordingly.
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Algorithm 5 Dis-DDSS (Server Node)

1: for s = 0 to S − 1 do

2: flag = True

3: Broadcast flag and x0
Bs

to all workers

4: Receive gradients from all workers

5: ∇F(x0
Bs
) = 1

n

∑l
k=1∇Fk(x0

Bs
)

6: Compute ys by (3-2)

7: Update Bs+1 ⊆ Bs by (3-3)

8: Broadcast Bs+1 and ∇F(x0
Bs
) to all workers

9: flag = False

10: Broadcast flag to all workers

11: for t = 0 to K − 1 do

12: Receive δst from one worker

13: Update xt+1
Bs+1

= xt
Bs+1

+ δst

14: end for

15: xBs+1 = xK
Bs+1

, x0
Bs+1

= xBs+1

16: end for

Algorithm 6 Dis-DDSS (Worker Node k)

1: if flag = True then

2: Receive x0
Bs

from server

3: Compute and send gradient ∇Fk(x0
Bs
) =

∑
i∈nk
∇fi(a⊤i,Bs

x0
Bs
)

4: Receive ∇F(x0
Bs
) from server

5: Receive Bs+1 from server

6: Update Ai∈nk,Bs+1 , x
0
Bs+1

,∇F(x0
Bs+1

)

7: else

8: Receive x
d(t)
Bs+1

from server

9: Randomly sample i from {1, 2, . . . , nk}

10: Compute vst = ∇fi(a⊤i,Bs+1
x
d(t)
Bs+1

)−∇fi(a⊤i,Bs+1
x0
Bs+1

) +Di,Bs+1∇F(x0
Bs+1

)

11: Send δt = proxηλϕi
(x

d(t)
Bs+1
− ηvst )− x

d(t)
Bs+1

to server

12: end if
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(a) KDD2010 (b) Avazu-app (c) Avazu-site

Figure 1: Convergence results on shared-memory architecture with 8 threads.

In the case where the flag is set to False, the server disseminates the flag to the workers.

Subsequently, the algorithm optimizes over Bs+1 at the worker nodes, where multiple workers

independently update the parameters asynchronously. Specifically, each worker receives the

outdated parameter x
d(t)
Bs+1

from the server. The worker selects a sample i from 1, 2, . . . , nk

and computes vst over Bs+1 using Equation (3-6). Employing the decoupling strategy, the

worker calculates the proximal step and updates the parameter locally. Finally, the worker

sends the update to the server. In the inner loop of the server node, leveraging the update

information δst from workers, xt+1
Bs+1

is updated via a simple addition computation.

Firstly, akin to Algorithm 4, our Algorithm 5 and Algorithm 6 demonstrate significant

computational efficiency by capitalizing on the sparsity of the model and dataset while mit-

igating gradient variance. Secondly, the resource-intensive proximal step typically handled

by the server is distributed across all workers, proving to be highly efficient and easily paral-

lelizable. Thirdly, through elimination and sparse updates, the communication cost between

the server and workers is notably reduced compared to full updates. Overall, this approach

effectively minimizes computation, memory, and communication costs during training.
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(a) KDD2010 (b) Avazu-app (c) Avazu-site

Figure 2: Convergence results on distributed-memory architecture with 8 workers.

(a) KDD2010 (b) Avazu-app (c) Avazu-site

Figure 3: Linear speedup property on shared-memory and distributed-memory architecture.
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Table 2: Real-world datasets in the experiments.

Dataset Sample Size Attributes Sparsity

KDD 2010 19,264,097 1,163,024 7× 10−6

Avazu-app 14,596,137 1,000,000 10−5

Avazu-site 25,832,830 1,000,000 10−5

3.5 Experiments

3.5.1 Setup

We perform a comprehensive comparative analysis of our approach against other compet-

itive methods across three extensive datasets. Although DDSS showcases versatility across

diverse scenarios, our specific emphasis is on Lasso for sparse regression. This targeted fo-

cus is in line with the widely acknowledged application of Lasso for feature screening. To

elucidate, Lasso tackles the optimization problem as follows:

min
x∈Rp

1

n

n∑
i=1

1

2
(yi − a⊤i x)

2 + λ∥x∥1. (3-11)

On shared-memory architecture, we choose following asynchronous methods as baseline

algorithms: 1) PSE-Strong: parallel strong screening in [62]; 2) PSE-Safe: parallel static

safe screening in [62]; 3) ProxASAGA [85]; 4) ProxASVRG [81]; 5) Sha-DDSS-Naive; 6)

Our Sha-DDSS. PSE-Safe and PSE-Strong are parallel static screening. ProxASAGA and

ProxASVRG are popular asynchronous methods with linear convergence.

On distributed-memory architecture, we compare four asynchronous methods: 1) Prox-

ASAGA [59]; 2) ProxASVRG [81]; 3) Dis-DDSS-Naive; 4) Our Dis-DDSS.

Three large-scale real-world benchmark datasets are used (described in Table 2). All the

datasets are from LIBSVM [13], which can be found at 1.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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We implement all the compared methods using C++. OpenMP and OpenMPI serve as

the parallel framework for shared-memory and distributed-memory architecture, respectively.

The methods are executed on machines with 2.10 GHz Intel(R) Xeon(R) CPUs. In the

implementation process, we choose the inner loop size, ranging from 2× 103 to 2× 106, and

the step size, ranging from 10−11 to 10−13, for each method to achieve optimal performance.

The parameter λ is set as 4× 10−6λmax, 2× 10−3λmax, and 1× 10−3λmax for the KDD 2010,

Avazu-app, and Avazu-site datasets, respectively, where λmax is a parameter indicating that,

for all λ ≥ λmax, x
∗ must be 0.

3.5.2 Experimental Results and Discussions

Figure 1 (a)-(c) illustrates the convergence results of different methods on shared-memory

architecture with 8 threads for three datasets, respectively. Our Sha-DDSS-Naive method

demonstrates rapid convergence in the initial stages, attributed to its screening ability, but

experiences a slowdown later due to its sublinear convergence rate. The outcomes affirm that

our Sha-DDSS method consistently achieves much faster convergence than other methods

on shared-memory architecture. Similarly, Figure 2 (a)-(c) presents the convergence results

of different methods on distributed-memory architecture with 8 workers for three datasets,

respectively. These results also validate that our Dis-DDSS consistently achieves faster

convergence than other methods on distributed-memory architecture.

This superior performance is attributed to our method’s ability on both shared-memory

and distributed-memory architecture to eliminate features by exploiting the model’s sparsity,

conduct efficient sparse updates by leveraging the dataset’s sparsity, and attain a linear

convergence rate by mitigating gradient variance. Additionally, our Dis-DDSS implements

a decoupled proximal update to alleviate the server’s workload and reduce communication

costs. Finally, 8 shows the linear speedup property on shared-memory and distributed-

memory architecture.
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3.6 Theoretical Analysis

In this section, we present a theoretical analysis of the convergence and screening ability

of DDSS specifically focused on shared-memory architecture. It is worth noting that this

analysis can be readily extended to distributed-memory architecture. All details about proof

is shown in this section.

3.6.1 Assumptions, Definitions, and Properties

Assumption 1 (Strong Convexity). Ω(x) is convex and block separable. F(x) is µ-strongly

convex, i.e., ∀x, x′ ∈ Rp, we have

F(x′) ≥ F(x) +∇F(x)⊤(x′ − x) +
µ

2
∥x′ − x∥2. (3-12)

Assumption 2 (Lipschitz Smooth). Each Fi(x) is differentiable and Lipschitz gradient

continuous with L, i.e., ∃L > 0, such that ∀x, x′ ∈ Rp, we have

∥∇Fi(x)−∇Fi(x
′)∥ ≤ L∥x− x′∥. (3-13)

Assumption 3 (Bounded Overlapping). A bound τ exists on the number of overlapping

iterations. This implies that each write operation at iteration t is assured to be completed in

the memory before iteration t+ τ + 1.

Remark 1. Assumption 1 implies P (x) is also µ-strongly convex. Assumption 2 implies

that F(x) is also Lipschitz gradient continuous. We denote κ := L/µ as the condition

number. Assumption 3 means the delay that asynchrony may cause is upper bounded. All

the assumptions are commonly seen in asynchronous methods [85].

Definition 1 (Block Sparsity). We represent the maximum frequency of occurrences, denoted

as ∆, indicating the instances where a feature block belongs to the extended support. This

can be formally defined as: ∆ = maxG∈B |{i : Ψi ∋ G}|/n. We can verify that 1/n ≤ ∆ ≤ 1.
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Property 1 (Independence). We use the “after read” labeling in [58], which means we

update the iterate counter after each thread fully reads the parameters. This means that

x̂t
Bs+1

is the (t + 1)-th fully completed read. Given the “after read” global time counter,

sample ir is independent of x̂t
Bs+1

,∀r ≥ t.

Property 2 (Unbiased Gradient Estimation). Gradient vt is an unbiased estimation of the

gradient over set Bs+1 at x̂t
Bs+1

, which is directly derived from Property 1.

Property 3 (Atomic Operation). The update xt+1
Bs+1

= xt
Bs+1

+ δst to shared-memory in Al-

gorithm 4 is coordinate-wise atomic, which can address the overwriting problem caused by

other threads.

3.6.2 Theoretical Results

We provide a related theoretical analysis in this part. We will show theorem results and

remarks. Details about proofs are provided in the 3.6.3.

Theorem 1 (Convergence). Suppose τ ≤ 1
10

√
∆
, step size η = min{ 1

24κL
, κ
2L
, κ
10τL
}, inner

loop size K = 4 log 3
ηµ

, then we have

E
∥∥xBS

− x∗
BS

∥∥2 ≤ (2/3)S ∥x0 − x∗∥2 . (3-14)

Remark 2. Theorem 1 proves that DDSS achieves a linear convergence rate of log(1/ϵ).

Remark 3. If F(x) is nonstrongly convex, We can make a slight adjustment to Ω(x) by

introducing a small perturbation, e.g., µf∥x∥2 for smoothing where µf is a positive parameter.

B(x) + µf∥x∥2 is regarded as the loss and then the loss is µf -strongly convex. Denote κ :=

L/µf , suppose τ ≤ 1
10

√
∆
, let η = min{ 1

24κL
, κ
2L
, κ
10τL
}, K = 4 log 3

ηµf
, we have E

∥∥xBS
− x∗

BS

∥∥2 ≤

(2/3)S ∥x0 − x∗∥2 . Similarly, the overall computational cost is also very efficient.

Theorem 2 (Screening Ability). Equicorrelation set is defined as B∗ := {j ∈ {1, 2, . . . , q} :

ΩD
j (A

⊤
j y

∗) = nλ}. Then, as DDSS converges, there exists an iteration number S0 ∈ N, s.t.

∀s ≥ S0, any variable block j /∈ B∗ is removed by DDSS almost surely.
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Remark 4. Assuming the size of set Bs is ps and p∗ represents the size of the active features

in B∗, Theorem 2 indicates that ps is decreasing, and as s approaches infinity, lims→+∞ ps =

p∗.

Remark 5. In summary, through elimination, the cost per iteration decreases from O(p)

to O(ps). Additionally, sparse updates specifically target the non-zero coefficients in set Bs,

further reducing the cost per iteration from O(ps) to O(p′s), where p′s represents the size

of non-zero coefficients. In scenarios with high dimensionality, we observe that p∗ ≪ p,

ps ≪ p, and p′s ≪ p. Consequently, as ps continuously decreases along with sparse updates,

our DDSS effectively lowers the complexity from O(p) to O(r), where r denotes the mean of

p′s for s = 1, 2, . . .. This substantial reduction in complexity significantly accelerates training

in practical applications.

3.6.3 Basic Lemmas

We provide details about the theoretical analysis of DDSS, including basic lemmas and

the proof for all the theorems.

Lemma 1. Suppose F is µ-strongly convex, we have:

⟨∇F(y)−∇F(x), y − x⟩ ≥ µ

2
∥y − x∥2 +BF(x, y) (3-15)

where BF(x, y) is the Bregman divergence defined as BF(x, y) := F(x)−F(y)−⟨∇F(y), x−

y⟩.

Proof. By strong convexity, for any x, y, we have:

F(y) ≥ F(x) + ⟨∇F(x), y − x⟩+ µ

2
∥y − x∥2

⇐⇒ ⟨∇F(x), x− y⟩ ≥ µ

2
∥y − x∥2 + F(x)−F(y)

⇐⇒ ⟨∇F(x)−∇F(y), x− y⟩ ≥ µ

2
∥y − x∥2 + F(x)−F(y)− ⟨∇F(y), x− y⟩

⇐⇒ ⟨∇F(y)−∇F(x), x− y⟩ ≥ µ

2
∥x− y∥2 +BF(x, y). (3-16)

This finishes the proof.
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Lemma 2. Suppose Fi is L-smooth and convex, we have:

1

n

n∑
i=1

∥∇Fi(x)−∇Fi(y)∥2 ≤ 2LBF(x, y). (3-17)

Proof. Based on equation 5 of Lemma 4 in [117], we have

∥∇Fi(x)−∇Fi(y)∥2 ≤ 2L
(
Fi(x)−Fi(y)− ⟨∇Fi(y), x− y⟩

)
. (3-18)

Averaging with i, we have

1

n

n∑
i=1

∥∇Fi(x)−∇Fi(y)∥2 ≤ 2L
(
F(x)−F(y)− ⟨∇F(y), x− y⟩

)
, (3-19)

which is equivalent to

⟨∇F(x)−∇F(y), x− y⟩ ≥ µ

2
∥x− y∥2 +BF(x, y). (3-20)

This finishes the proof.

Lemma 3. Let x∗ be the optimal solution of Problem (3-1), vst is the sparse variance reduced

gradient with sample i defined in (3-6), g is the the sparse gradient mapping for vst and

computed as g = 1
η
(x− proxηλϕi

(x− ηvst )). Then, for any β > 0 and x ∈ Rp, we have:

⟨g, x− x∗⟩ ≥ −η

2
(β − 2)∥g∥2 − η

2β
∥vst −Di∇F (x∗)∥2 + ⟨vst −Di∇F (x∗) , x− x∗⟩ .(3-21)

Proof. Let x+ = proxηλϕi
(x−ηvst ) and x∗ = proxηλϕi

(x∗−ηD∇F(x∗)), denote ⟨·, ·⟩(i) as the

inner product restricted to the blocks in Ψi and ∥ · ∥(i) as the norm restricted to the blocks

in Ψi, we have:

∥x+ − x∗∥2(i) − ⟨x+ − x∗, x− ηvst − x∗ + ηD∇F(x∗)⟩(i) ≤ 0, (3-22)
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which comes from the firm non-expansiveness of the proximal operator. Then we have:

⟨ηg, x− x∗⟩ = ⟨x− x+, x− x∗⟩(i)

= ∥x− x∗∥2(i) − ⟨x+ − x∗, x− x∗⟩(i)

≥ ∥x− x∗∥2(i) − ⟨x+ − x∗, 2x− ηvst − 2x∗ + ηD∇F(x∗)⟩(i) + ∥x+ − x∗∥2(i)

= ∥x− x+∥2(i) + ⟨x+ − x∗, ηvst − ηD∇F(x∗)⟩(i)

= ∥x− x+∥2(i) + ⟨x− x∗, ηvst − ηD∇F(x∗)⟩(i) − ⟨x− x+, ηvst − ηD∇F(x∗)⟩(i)

≥
(
1− β

2

)
∥x− x+∥2(i) −

η2

2β
∥vst −D∇F(x∗)∥2(i) + η⟨vst −D∇F(x∗), x− x∗⟩(i)

=
(
1− β

2

)
∥x− x+∥2(i) −

η2

2β
∥vst −Di∇F(x∗)∥2 + η⟨vst −Di∇F(x∗), x− x∗⟩

=
(
1− β

2

)
∥ηg∥2 − η2

2β
∥vst −Di∇F(x∗)∥2 + η⟨vst −Di∇F(x∗), x− x∗⟩ ,(3-23)

where the first inequality is obtained by adding equation (3-22), the second inequality is

obtained by Young’s inequality 2⟨a, b⟩ ≤ ∥a∥2
β

+ β∥b∥2 for arbitrary β > 0. Finally, the result

finishes the proof.

Lemma 4. [58, Proposition 1] For any u ̸= t, we have

E|⟨gu, gt⟩| ≤
√
∆
2
(E∥gu∥2 + E∥gt∥2) . (3-24)

Lemma 5. We have following estimations:

E ∥x̂s
t − xs

t∥
2 ≤ η2(1 +

√
∆τ)

t−1∑
u=(t−τ)+

E ∥gsu∥
2 (3-25)

E ⟨gst , x̂s
t − xs

t⟩ ≤
η
√
∆

2

t−1∑
u=(t−τ)+

E ∥gsu∥
2 +

η
√
∆τ

2
E ∥gst∥

2 (3-26)
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Proof. By Assumption 3, we have the following updates:

x̂t − xt = η

t−1∑
u=(t−τ)+

Gt
ug(x̂u, α̂

u, iu). (3-27)

Thus, we have:

E∥x̂t − xt∥2 ≤ η2
t−1∑

u,v=(t−τ)+

E|⟨Gt
ugu, G

t
vgv⟩|

≤ η2
t−1∑

u=(t−τ)+

E∥gu∥2 + η2
t−1∑

u,v=(t−τ)+
u̸=v

E|⟨Gt
ugu, G

t
vgv⟩|

≤ η2
t−1∑

u=(t−τ)+

E∥gu∥2 + η2
t−1∑

u,v=(t−τ)+
u̸=v

E|⟨gu, gv⟩|

≤ η2
t−1∑

u=(t−τ)+

E∥gu∥2 + η2
√
∆(τ − 1)+

t−1∑
u=(t−τ)+

E∥gu∥2

= η2
(
1 +
√
∆(τ − 1)+

) t−1∑
u=(t−τ)+

E∥gu∥2

≤ η2
(
1 +
√
∆τ

) t−1∑
u=(t−τ)+

E∥gu∥2, (3-28)

where the fourth inequality is obtained by Lemma 4.

Taking the expectation of ⟨x̂t − xt, gt⟩, we have:

1

η
E⟨x̂t − xt, gt⟩ =

t−1∑
u=(t−τ)+

E⟨Gt
ugu, gt⟩

≤
t−1∑

u=(t−τ)+

E|⟨gu, gt⟩|

≤
t−1∑

u=(t−τ)+

√
∆

2
(E∥gu∥2 + E∥gt∥2)

≤
√
∆

2

t−1∑
u=(t−τ)+

E∥gu∥2 +
√
∆τ

2
E∥gt∥2. (3-29)

This finishes the proof.
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Lemma 6. For any x ∈ Rp and gradient estimator vst computed by sample i, we have

E ∥vst −Di∇F(x∗)∥2 ≤ 4LEBF(x̂
s
t , x

∗) + 2L2E∥xs
0 − x∗∥2 (3-30)

Proof. Since vst is Ψi-sparse, we have

∥vst −Di∇F(x∗)∥2

= ∥vst −D∇F(x∗)∥2(i)

= ∥∇Fi(x̂
s
t)−∇Fi(x

s
0) +D∇F(xs

0)−D∇F(x∗)∥2(i)

= ∥∇Fi(x̂
s
t)−∇Fi(x

∗) +D∇F(xs
0)−D∇F(x∗)− (∇Fi(x

s
0)−∇Fi(x

∗))∥2(i)

≤2 ∥∇Fi(x̂
s
t)−∇Fi(x

∗)∥2(i) + 2 ∥D∇F(xs
0)−D∇F(x∗)− (∇Fi(x

s
0)−∇Fi(x

∗))∥2(i) .

According to the support set of ∇Fi and Lemma 2, we get

E ∥∇Fi(x̂
s
t)−∇Fi(x

∗)∥2(i) ≤ 2LEBF(x̂
s
t , x

∗). (3-31)

On the other hand,

E ∥D∇F(xs
0)−D∇F(x∗)− (∇Fi(x

s
0)−∇Fi(x

∗))∥2(i)

= E ∥D∇F(xs
0)−D∇F(x∗)∥2(i) + E ∥∇Fi(x

s
0)−∇Fi(x

∗)∥2(i)

−2E⟨D∇F(xs
0)−D∇F(x∗),∇Fi(x

s
0)−∇Fi(x

∗)⟩(i)

= E ∥∇Fi(x
s
0)−∇Fi(x

∗)∥2 + E ⟨Di∇F(xs
0)−Di∇F(x∗), D∇F(xs

0)−D∇F(x∗)⟩

−2E⟨D∇F(xs
0)−D∇F(x∗),∇Fi(x

s
0)−∇Fi(x

∗)⟩

= E ∥∇Fi(x
s
0)−∇Fi(x

∗)∥2 + E ⟨∇F(xs
0)−∇F(x∗), D∇F(xs

0)−D∇F(x∗)⟩

−2E⟨D∇F(xs
0)−D∇F(x∗),∇F(xs

0)−∇F(x∗)⟩

≤ E ∥∇Fi(x
s
0)−∇Fi(x

∗)∥2

≤ L2E∥xs
0 − x∗∥2, (3-32)

where the second equality is derived by the definition of Di and the support of ∇Fi. In

the third equality, we take expectation on i and use EDi = Ip. In the first inequal-

ity, we use the fact that D is a diagonal matrix with non-negative entries and hence

⟨∇F(xs
0)−∇F(x∗), D∇F(xs

0)−D∇F(x∗)⟩ ≥ 0. The last inequality comes from Assump-

tion 2. Combining above inequalities, we complete the proof.
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3.6.4 Proof of Theorem 1

In this part, we will work on the proof of theorem 1 in the DDSS

Proof. At the s − 1 iteration, we conduct the elimination step over set Bs−1 in the outer

loop. Since the eliminated variables are zeroes at the optimal, all the sub-problems have the

same optimal solution. We have

∥x∗
Bs
− x∗

Bs−1
∥2 = 0

where the norm is conducted on the corresponding coordinate and the eliminated variables

in Bs are filled with 0. Meanwhile, denote B̃s = {j ∈ Bs−1|j /∈ Bs}, we have

∥x0
Bs−1
− x∗

Bs−1
∥2 = ∥x0

Bs
− x∗

Bs
∥2 + ∥x0

B̃s
− x∗

B̃s
∥2. (3-33)

Considering ∥x0
B̃s
− x∗

B̃s
∥2 ≥ 0, we have

∥x0
Bs
− x∗

Bs
∥2 ≤ ∥x0

Bs−1
− x∗

Bs−1
∥2. (3-34)

Moreover, according to the iteration in the inner loop, we have

∥xt+1
Bs
− x∗

Bs
∥2 = ∥xt

Bs
− ηgst − x∗

Bs
∥2

= ∥xt
Bs
− x∗

Bs
∥2 + ∥ηgst∥2 − 2η⟨gst , xt

Bs
− x∗

Bs
⟩

= ∥xt
Bs
− x∗

Bs
∥2 + ∥ηgst∥2 − 2η⟨gst , x̂t

Bs
− x∗

Bs
⟩+ 2η⟨gst , x̂t

Bs
− xt

Bs
⟩.(3-35)

Applying Lemma 3 to Bs, we obtain

∥xt+1
Bs
− x∗

Bs
∥2 ≤ ∥xt

Bs
− x∗

Bs
∥2 + 2η⟨gst , x̂t

Bs
− xt

Bs
⟩+ η2(β − 1)∥gst∥2

+ η2

β
∥vs−1

t −Di,Bs∇F(x∗
Bs
)∥2 − 2η⟨vs−1

t −Di,Bs∇F(x∗
Bs
), x̂t

Bs
− x∗

Bs
⟩ (3-36)

Since EiDi,Bs = Ips , we have

E⟨vs−1
t −Di,Bs∇F(x∗

Bs
), x̂t

Bs
− x∗

Bs
⟩ = ⟨∇F(x̂t

Bs
)−∇F(x∗

Bs
), x̂t

Bs
− x∗

Bs
⟩

≥ µ

2
∥x̂t

Bs
− x∗

Bs
∥2 +BF(x̂

t
Bs
, x∗

Bs
), (3-37)
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where the inequality is obtained by applying Lemma 1 to the sub-problem Ps. Combining

above two inequalities we get

∥xt+1
Bs
− x∗

Bs
∥2 ≤ ∥xt

Bs
− x∗

Bs
∥2 + 2η⟨gst , x̂t

Bs
− xt

Bs
⟩+ η2(β − 1)∥gst∥2

+ η2

β
∥vs−1

t −Di,Bs∇F(x∗
Bs
)∥2 − ηµ∥x̂t

Bs
− x∗

Bs
∥2 − 2ηBF(x̂

t
Bs
, x∗

Bs
)

≤ (1− ηµ
2
)∥xt

Bs
− x∗

Bs
∥2 + 2η⟨gst , x̂t

Bs
− xt

Bs
⟩+ η2(β − 1)∥gst∥2

+ η2

β
∥vs−1

t −Di,Bs∇F(x∗
Bs
)∥2 + ηµ∥x̂t

Bs
− xt

Bs
∥2 − 2ηBF(x̂

t
Bs
, x∗

Bs
) (3-38)

where in the second inequality we use ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2.

By considering Lemma 5 and Lemma 6 with Bs, we have

E∥xt+1
Bs
− x∗

Bs
∥2

≤(1− ηµ

2
)E∥xt

Bs
− x∗

Bs
∥2 + 2L2η2

β
E∥x0

Bs
− x∗

Bs
∥2 + 4Lη2

β
EBF(x̂

t
Bs
, x∗

Bs
)

− 2ηEBF(x̂
t
Bs
, x∗

Bs
) + η2(β − 1 +

√
∆τ)E ∥gst∥

2

+ (η3µ(1 +
√
∆τ) + η2

√
∆)

t−1∑
u=(t−τ)+

E ∥gsu∥
2 . (3-39)

Because 4Lη ≤ 1,
√
∆τ ≤ 1

10
and BF(·, ·) is non-negative, let β = 1

2
, we have

E∥xt+1
Bs
− x∗

Bs
∥2 ≤ (1− ηµ

2
)E∥xt

Bs
− x∗

Bs
∥2 + 4L2η2E∥x0

Bs
− x∗

Bs
∥2 − 2η2

5
E ∥gst∥

2

+(2η3µ+ η2
√
∆)

t−1∑
u=(t−τ)+

E ∥gsu∥
2 . (3-40)

Applying recursion to above inequality and we can obtain

E∥xK
Bs
− x∗

Bs
∥2 ≤

(
(1− ηµ

2
)K + 8κLη

)
E∥x0

Bs
− x∗

Bs
∥2 −

K−1∑
u=0

rsuE∥gsu∥2, (3-41)

where

rsu = (1− ηµ

2
)K−1−u

(2η2
5
− (2η3µ+ η2

√
∆)

τ−1∑
m=0

(1− ηµ

2
)−m

)
. (3-42)

Let h(x) = log(1 + 2ax) − x log(1 + a) for some positive a. We can see h(0) = 0 and

h′(x) = 2a
1+2ax

− log(1 + a). If ax ≤ 1
2
, then we have h′(x) ≥ a − log(1 + a) ≥ 0. Therefore,
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when ax ≤ 1
2
, we always have h(x) ≥ 0 and (1 + a)x ≤ 1 + 2ax. Substitute a with ηµ

2−ηµ
.

Since ηµτ ≤ 1
10
, we have ηµτ

2−ηµ
≤ 1

2
.

Then we can estimate the lower bound of rsu:

rsu ≥ (1− ηµ

2
)K−1−u

(2η2
5
− (2η3µ+ η2

√
∆)(τ +

ηµτ 2

2− ηµ
)
)
≥ (1− ηµ

2
)K−1−u 7η

2

100
, (3-43)

where we also use ηµτ ≤ 1
10

and
√
∆τ ≤ 1

10
. As rsu is positive, we can drop the last term in

equation (3-41).

As ηµ ≤ 1
2
, it is easy to check that log(1 + ηµ

2−ηµ
) ≥ ηµ

2(2−ηµ)
. When K = 4 log 3

ηµ
, we have

(1− ηµ
2
)K ≤ 1

3
. Since η ≤ 1

24κL
, we can prove

E∥xK
Bs
− x∗

Bs
∥2 ≤ 2

3
E∥x0

Bs
− x∗

Bs
∥2. (3-44)

Note xK
Bs

= xBs and x0
Bs−1

= xBs−1 , combining (3-34), we have

E∥xBs − x∗
Bs
∥2 ≤ 2

3
E∥xBs−1 − x∗

Bs−1
∥2. (3-45)

Apply recursion to the above inequality, note xB0 = x0 and x∗
B0

= x∗ we can obtain

E∥xBS
− x∗

BS
∥2 ≤ (

2

3
)SE∥x0 − x∗∥2, (3-46)

which finishes the proof.
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3.6.5 Proof of Theorem 2

In this part, we will work on the proof of theorem 2 in the DDSS.

Proof. Based on Theorem 1, we know our DDSS method has a converging sequence {xBs}.

As DDSS algorithm converges, because of the strong duality, the dual ys and the intermediate

duality gap P (xBs)−D(ys) also converges. For any given ϵ, ∃S0 such that ∀s ≥ S0, we have

∥ys − y∗∥2 ≤ ϵ, (3-47)

and

√
2L(P (xBs)−D(ys)) ≤ ϵ. (3-48)

almost surely.

For any j /∈ B∗, we have

ΩD
j (A

⊤
j y

s) + ΩD
j (Aj)

√
2L(P (xBs)−D(ys))

≤ ΩD
j (A

⊤
j (y

s − y∗)) + ΩD
j (A

⊤
j y

∗) + ΩD
j (Aj)

√
2L(P (xBs)−D(ys)) (3-49)

≤ 2ΩD
j (Aj)ϵ+ ΩD

j (A
⊤
j y

∗)

where the first inequality comes from the triangle inequality and the second inequality comes

from (3-47) and (3-48).

Hence, if we choose

ϵ <
nλ− ΩD

j (A
⊤
j y

∗)

2ΩD
j (Aj)

, (3-50)

we can ensure the screening test ΩD
j (A

⊤
j y

s)+ΩD
j (Aj)

√
2L(P (xBs)−D(ys)) < nλ holds for j,

which means variable block j is eliminated at most at this iteration. In (3-50), since j /∈ B∗,

it is easily to verify that nλ− ΩD
j (A

⊤
j y

∗) > 0. This finishes the proof.
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3.7 Summary

In this chapter, we propose the first distributed dynamic safe screening method for sparse

models and apply it on shared-memory and distributed-memory architecture respectively.

Theoretically, we prove that our proposed method can achieve a linear convergence rate

with lower overall complexity. Moreover, we prove that our method can eliminate almost

all the inactive variables in a finite number of iterations almost surely. Finally, extensive

experimental results on benchmark datasets confirm the significant acceleration and linear

speedup property of our method.

The main contributions of our work can be summarized as follows.

• We propose a new distributed dynamic safe screening framework for generalized sparse

models, which is easy-to-implement on the both shared-memory and distributed-memory

architecture. To the best of knowledge, this is the first work of distributed dynamic safe

screening.

• We rigorously prove the proposed DDSS method can achieve linear convergence rate

O(log(1/ϵ)), reduce the per-iteration cost from O(p) to O(r) where r ≪ p, and finally

achieve a lower overall computational complexity under the strongly convex condition.

• We prove almost sure finite time identification of the active set to confirm the effectiveness

of our DDSS method. Finally, we empirically show that our proposed method can achieve

significant acceleration and linear speedup properties.
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4.0 Task 2: Auto-Train-Once: Controller Network Guided Automatic

Network Pruning from Scratch

4.1 Background

In this chapter, we study the non-convex model compression as deep learning presents

remarkable performance and all deep models are non-convex. The work in this chapter was

published in CVPR2024 [100].

There are many directions to reduce the size of deep learning models. Structural pruning,

as advocated in various studies such as [30], is a widely embraced strategy for reducing the

size of deep neural networks (DNNs) due to its broad applicability and effectiveness. In

contrast to weight pruning, structural pruning, especially channel pruning, is more conducive

to hardware implementation as it eliminates the need for additional post-processing steps

to achieve computational and storage efficiencies. Consequently, our focus is on employing

structural pruning in DNNs. However, it is important to highlight that many existing pruning

methods have notable limitations and involve a complex multi-stage process. The majority

of current structural pruning techniques follow a three-stage protocol: (1) train a complete

model from the ground up; (2) pinpoint redundant structures based on various criteria;

(3) fine-tune or retrain the pruned model to recover performance. Various methods employ

distinct criteria for the pruning process. Managing this multi-stage training process for DNNs

demands considerable engineering efforts and specialized expertise. To streamline pruning

methods, recent approaches such as OTO [16] (Only Train once) and its successor OTOv2

[17] propose an end-to-end training and pruning approach. These methods introduce the

concept of zero-invariant groups (ZIGs) and concurrently train and prune models without

relying on additional fine-tuning, simplifying the overall process.

Nevertheless, the straightforward training frameworks employed in OTO and OTOv2

present a challenge to model performance. These frameworks redefine the objective as a

constrained regularization problem, and the local minima with superior generalization may

be dispersed across diverse locations. While the augmented regularization in OTO penalizes
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the mixed L1/L2 norm of all trainable parameters in zero-invariant groups (ZIGs), it confines

the search space to converge around the origin point.

Figure 4: Overview of Auto-Train-Once (ATO). The controller network generates mask w

based on the size of ZIGs G to guide the automatic network pruning of the target model and

we remove variable groups according to mask w after training. Additional training (such as

fine-tuning) is not required after model training and we can directly get the final compressed

model.

OTOv2 addresses this limitation by enhancing OTO, constructing pruning groups in

ZIGs based on salience scores to penalize only the trainable parameters in these groups.

However, the dynamic nature of model variables during training and the statically selected

pruning groups of the optimizer in the early training stages can lead to convergence issues

with local optima and result in suboptimal final performance. These algorithmic design

drawbacks impede a comprehensive convergence analysis. For example, OTO assumes the

deep model to be a strongly convex function, and OTOv2 assumes a full gradient estimate

at each iteration, which does not align with the practical settings of deep neural network

(DNN) training.

In order to elevate model performance while preserving a comparable advantage, we
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Table 3: Summary of ATO and existing methods

Method ATO OTOs Others

Training cost Low Low High

Addition fine-tuning No No Yes

Optimizer design Dynamic Static Static

Convergence guarantee
√

SS

√
-

Gradient projection General (D)HSPG -

introduce Auto-Train-Once (ATO), illustrated in Figure 4. ATO employs a subset of samples

to train a network controller, enabling dynamic management of the pruning operation on

zero-invariant groups (ZIGs). Our experimental results affirm the success of the algorithm

in effectively identifying the optimal selection of ZIGs through the network controller in a

dynamic way.

4.2 Proposed Method

The core concept of the approach involves training a target network under the supervision

of a trainable controller network. This controller network assumes the responsibility of

generating a mask w for each group in zero-invariant groups (ZIGs) [16]. Upon completion

of the training process, the compression model is formed by directly eliminating elements

masked out by w without requiring further adjustments.

4.2.1 Zero-Invariant Groups

Definition 2. (Zero-Invariant Groups (ZIGs)) [16]. In the context of a layer-wise Deep

Neural Network (DNN), entire trainable parameters are divided into disjoint groups G = {g}.

These groups are termed zero-invariant groups (ZIGs) when each group g ∈ G exhibits zero-
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Figure 5: Zero-invariant group partition for three popular structures [15].
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invariant, where zero-invariant implies that setting all parameters in g to zero leads to the

output corresponding to the next layer also being zeros.

Chen et al. [16] initially introduced zero-invariant groups (ZIGs), as depicted in Figure

5. In this case, if all weights in a group is 0, we can directly remove this group and will not

change the output. To illustrate, let’s consider the structure of a Convolutional layer (Conv)

without bias followed by the batch-normalization layer (BN), as outlined below:

Ol ← I l ⊗ K̂l, I l+1 ←
a
(
Ol

)
− µl

σl
⊙ γ l + βl, (4-1)

where I l denotes input tensor, ⊗ denote the convolutional operation, K̂l presents one output

channel in lth layer, ⊙ is the element-wise multiplication, a(·) is the activation function, and

µl,σl,γ l,βl represent running mean, standard deviation, weight and bias, respectively in

BN. Each output channel of the Conv K̂l, and corresponding channel-wise BN weight γ l and

bias βl belong to one ZIG because they being zeros results in their corresponding channel

output to be zeros as well.

4.2.2 Controller Network

Within the framework of zero-invariant groups (ZIGs), the Controller Network generates

group-wise masks denoted as w ∈ {0, 1}N . The binary values 0 and 1 signify the actions of

removing and preserving channel groups, respectively. The Controller Network integrates bi-

directional gated recurrent units (GRU) [19] followed by linear layers, and Gumbel-Sigmoid

[48] combined with a straight-through estimator (STE) [8]. The inclusion of Gumbel-Sigmoid

aims to generate a binary vector w that approximates a binomial distribution. Additional

details about the Controller Network can be found in the appendix.

Utilizing the obtained mask w, we can apply it to the feature maps to control the

output of each group in ZIGs. For example, in a convolutional neural network (CNN), if

the channels of the lth layer are in ZIGs and the weights of the lth layer are represented as

Ml ∈ RCl×Cl−1×kl×kl , where Cl is the number of channels and kl is the kernel size in the lth

layer. The feature map of the lth layer can be denoted by Fl ∈ RCl×Wl×Hl , where Hl and Wl

are the height and width of the current feature map. With the mask wl = {0, 1}Cl for the
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lth layer, the feature map of the lth layer is then modified as F̂l = wl ⊙ Fl. Following the

definition of ZIGs, setting the output as 0 for one ZIG is equivalent to setting all weights in

this ZIG to 0.

4.2.3 Auto-Train-Once

In this section, we present our proposed algorithm, Auto-Train-Once (ATO). The specifics

of ATO are outlined in Algorithm 7.

To commence, we initialize the zero-invariant group set, denoted as G, by partitioning

the trainable parameters of M. Following this, we construct a controller network with

model weights W in such a way that the output dimension equals |G| (where | · | denotes

set cardinality). Subsequently, the controller network generates the model mask vector

w = CN(W), and groups in ZIGs G with a mask value of 0 will incur a penalty in the

projection operation, as indicated in Line 8 of Algorithm 7.

We can formulate the optimization problem with regularization as follows:

min
M
J (M) :=L(M) + g(M)

=L
(
f(x;M), y

)
+
∑
g∈G

λg ∥[M]g∥ , (4-2)

where f(x;M) represents the output of the target model with weight M, L
(
f(x;M), y

)
denotes the loss function with data (x, y), and G signifies the zero-invariant groups (ZIGs).

The regularization coefficient for each group, λg, is determined by the output of the controller

network, i.e., λg = λ(1− [w]g). If λg is 0, there is no penalty imposed on group g. After Tw

warm-up steps, regularization is introduced to prune the target model. A higher value of λ

typically leads to increased group sparsity [111].

To integrate group sparsity into optimization objective functions, various existing pro-

jection operators, such as the Half-Space Projector (HSP) [16], can be utilized as outlined

below:

[
ProjHS

Sk
(z)

]
g
:=

0 if [z]⊤g [M]g < ϵ
∥∥∥[M]g

∥∥∥2

[z]g otherwise.

(4-3)
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and proximal gradient projector [111] as follows:.

proxηλg
([z]g) =


[z]g − ηλg

[z]g
∥[z]g∥2

,

if ∥ [z]g ∥ ≥ αλg,

0, otherwise .

(4-4)

Conversely, to prevent entrapment in local optima, we employ a controller network

trained to dynamically modify the model mask from Tstart to Tend. We utilize a subset

of the training dataset D to create DCN. The comprehensive loss function for the controller

network is as follows:

min
W
JCN(W) :=L

(
f(x;M,w), y

)
+ γRFLOPs(P (w), pPtotal), (4-5)

where f(x;W ,w) is the output of the target model with weight W based on model mask

vector w. P (w) is the current FLOPs based on the mask w, Ptotal is the total FLOPs of the

original model, p ∈ (0, 1] is a hyperparameter to decide the target fraction of FLOPs, and γ

is the hyper-parameter to control the strength of FLOPs regularization. The regularization

term RFLOPs is defined as:

RFLOPs(x, y) = log(max(x, y)/y). (4-6)

In the Auto-Train-Once (ATO) approach, we iteratively train the target model and

controller network. Upon reaching Tend epochs, we halt the training of the controller network

and fix the model mask vector w to enhance the stability of model training in the concluding

phase.
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Algorithm 7 ATO Algorithm

1: Input: Target model with model weights M (no need to be pre-tained). Datasets D,

DCN, learning rate η, λ, γ, total steps T , warm-up steps Tw, controller network training

steps Tstart and Tend

2: Initialization: Construct ZIGs G ofM. Build controller network with weightW based

on the size of G. w is initialized as {0, 1}|G|

3: for t = 1, 2 . . . , T do

4: for a mini-batch (x, y) in D do

5: Compute the stochastic gradient estimator ∇ML(M) in Equation (4-2).

6: Update model weightsM with any stochastic optimizer.

7: if T ≥ Tw then

8: Perform projection operator and update following Equation (4-3) or Equation

(4-4) on ZIGs with w.

9: end if

10: end for

11: if Tstart ≤ T ≤ Tend then

12: W ,w← CN-Update(M,W ,w,DCN)

13: end if

14: end for

15: Output: Directly remove pruned structures with mask w and construct a compressed

model.

Algorithm 8 CN-Update(M,W ,w,DCN)

1: Input: Target model with weightsM, controller network with weights W , mask w and

Datasets DCN, γ

2: for a mini-batch (x, y) in DCN do

3: generate the mask w and calculate gradients estimator ∇WJCN(W) in Equation (4-5).

4: Update the controller network weight W with stochastic optimizer.

5: end for

6: Generate mask w

7: Output: controller networkM and w

47



4.3 Convergence and Complexity Analysis

In this section, we offer a theoretical analysis to guarantee the convergence of Auto-Train-

Once (ATO) to the solution of Equation (4-2), considering both theoretical and practical

aspects. Note: for convenience, we designate z as the vector of network weights M. The

details of the proof are provided in the appendix.

Assumption 4 (Unbiased gradient and bounded variance). Set ξ = (x, y) as a batch of

data points, and z as the vector of network weightM and J (z) = L(z) + g(z). Assume loss

function L(z; ξ) with data points ξ has an unbiased stochastic gradient with bounded variance

σ2, i.e.,

E[∇zL(z; ξ)] = ∇zL(z) (4-7)

E∥∇zL(z; ξ)−∇zL(z)∥2 ≤ σ2 (4-8)

Assumption 5 (Gradient Lipschitz). The loss function L(M) has a L-Lipschitz gradient,

i.e., for ∀z1, z2 two different network weights, we have

∥∇zL(z1)−∇zL(z2)∥ ≤ L∥z1 − z2∥ (4-9)

Assumption 4 and Assumption 5 are standard assumptions in stochastic optimization

and are widely used in deep learning convergence analysis [32, 2, 21, 105, 52].
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4.3.1 Stochastic Mirror Descent Method

We transform our algorithm (ATO) into the stochastic mirror descent method for the

convergence analysis, encompassing both stochastic non-adaptive optimizers (such as SGD)

and stochastic adaptive optimizers (like ADAM). It shows that our algorithms and theoretical

analysis consider almost all existing popular optimizers.

For convenience, let z denote the vector of network weights M. To solve the general

minimization optimization problem minz f(z), the mirror descent method [12, 7] follows the

below step:

zt+1 = argmin
z

{
f(zt) + ⟨∇f(zt), z − zt⟩+

1

η
Dϕ(z, zt)

}
, (4-10)

where η > 0 is learning rate.

The Bregman divergence, i.e., Bregman distance, is defined as follows:

Dϕ(z, x) = ϕ(z)− ϕ(x)− ⟨∇ϕ(x), z − x⟩ (4-11)

and we can define ϕt(z) =
1
2
zTAtz.

It is worth noting that the first two terms in the given function Equation (4-10) repre-

sent a linear approximation of f(z), while the last term accounts for the Bregman distance

between z and zt. Notably, the constant terms f(zt) and ⟨∇f(zt), zt⟩ can be disregarded in

the function. By choosing ϕ(z) = 1
2
∥z∥2, we obtain Dϕ(z, zt) =

1
2
∥z − zt∥2. Consequently,

we arrive at the standard gradient descent algorithm as follows:

zt+1 = zt − η∇f(zt). (4-12)

In practice, the full gradient is computationally expensive, thus a stochastic gradient

estimator is used to speed up training. Furthermore, the stochastic mirror descent update

step is as below:

zt+1 = argmin
z

{
⟨mt, z⟩+

1

ηt
Dϕt(z, zt) + gt(z)

}
, (4-13)

where mt is the gradient estimator of ∇L(z; ξ) and we can use momentum gradient estimator

as mt = (1 − αt)mt−1 + αt∇L(z; ξ), ηt is the learning rate, g(z) is a generally nonsmooth
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regularization in Equation (4-2). The controller network uses the generated mask to adjust

group-specific regularization coefficient λg in g(z).

In the practice, since regularization g(x) in composite functions (4-2) might not differ-

entiable, we can minimize the loss function L firstly as step 6 in Algorithm 7, which is

equivalent to the following generalized problem:

z̃t+1 = argmin
z

{
⟨mt, z⟩+

1

γ
Dt(z, zt)

}
, (4-14)

and then perform the projection operator as step 8 in Algorithm 7 as in Equation (4-3) and

Equation (4-4) on ZIGs with w.

For non-adaptive optimizer, we choose ϕ(z) = 1
2
∥z∥2, and Dϕ(z, zt) =

1
2
∥z− zt∥2 and the

mirror descent method will be reduced to the stochastic projected gradient descent method.

For adaptive optimizer, we can generate the matrices At as in Adam-type algorithms [55],

defined as

ṽ0 = 0, ṽt = βṽt−1 + (1− β)∇zL(zt; ξt)2,

At = diag(
√

ṽt + ϵ), (4-15)

where ṽ is the second-moment estimator, and ϵ is a term to improve numerical stability in

Adam-type optimizer. Then

Dt(z, zt) =
1

2
(z − zt)

TAt(z − zt). (4-16)
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Table 4: Results comparison of existing algorithms on CIFAR-10 and CIFAR-100. ∆-

Acc represents the performance changes relative to the baseline, and +/− indicates an

increase/decrease, respectively.

Dataset Architecture Method Baseline Acc Pruned Acc ∆-Acc Pruned FLOPs

CIFAR-10

ResNet-18
OTOv2 [17] 93.02 % 92.86% -0.16% 79.7%

ATO (ours) 94.41% 94.51% + 0.10% 79.8%

ResNet-56

DCP-Adapt [119] 93.80% 93.81% +0.01% 47.0%

SCP [50] 93.69% 93.23% −0.46% 51.5%

FPGM [41] 93.59% 92.93% −0.66% 52.6%

SFP [40] 93.59% 92.26% −1.33% 52.6%

FPC [39] 93.59% 93.24% −0.25% 52.9%

HRank [73] 93.26% 92.17% −0.09% 50.0%

DMC [31] 93.62% 92.69% +0.07% 50.0%

GNN-RL [110] 93.49% 93.59% +0.10% 54.0%

ATO (ours) 93.50% 93.74% + 0.24% 55.0%

ATO(ours) 93.50% 93.48 % −0.02% 65.3%

MobileNetV2

Uniform [119] 94.47% 94.17% −0.30% 26.0%

DCP [119] 94.47% 94.69% +0.22% 26.0%

DMC [31] 94.23% 94.49% +0.26% 40.0%

SCOP [96] 94.48% 94.24% -0.24% 40.3%

ATO (ours) 94.45% 94.78% +0.33% 45.8%

CIFAR-100

ResNet-18
OTOv2 [17] - 74.96% - 39.8%

ATO (ours) 77.95% 76.79% −0.07% 40.1%

ResNet-34
OTOv2 [17] - 76.31% - 49.5%

ATO (ours) 78.43 % 78.54 % +0.11% 49.5%

4.3.2 Convergence Metrics and analysis

We introduce useful convergence metrics to measure the convergence of our algorithms.

As in [32], we define a generalized projected gradient gradient mapping as:

Pt =
1

ηt
(zt − z∗t+1), (4-17)

z∗t+1 = argmin
z

{
⟨∇L(zt), z⟩+

1

ηt
Dϕt(z, zt) + g(z)

}
Therefore, for Problem (4-2), we use the standard gradient mapping metric E∥Pt∥ to measure

the convergence of our algorithms.
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Finally, we present the convergence properties of our ATO algorithm under Assumption

4 and Assumption 5. The following theorems show our main theoretical results. All related

proofs are provided in the Supplement Material.

Theorem 3. Assume that the sequence {zt}Tt=1 be generated from the Algorithm ATO (de-

tails of definition of variables are provided in the supplementary materials). When we have

hyperparameters ηt =
ĉ

(c̄+t)1/2
, ĉ

c̄1/2
≤ min{1, ϵ

4L
}, c1 = 4L

ϵ
, αt+1 = c1ηt, constant batch size

b = O(1), we have

1

T

T∑
t=1

E∥Pt∥ ≤
√
Gc̄1/4

T 1/2
+

√
G

T 1/4
(4-18)

where G = 4(J (z1)−J (z∗))
ϵĉ

+ 2σ2

bLϵĉ
+ 2c̄σ2

ĉϵLb
ln(c̄+ T ).

Remark 6. (Complexity) To make the 1
T

∑T−1
t=0 E ∥Pt∥ ≤ ε, we get T = O(ε−4). Since

we use the constant batch size, b = O(1), we get complexity bT = O(ε−4), aligns with the

standard complexity for stochastic optimizers [32] and guarantees the convergence of the

proposed algorithm.

4.3.3 Related Proof

In this subsection, we provide a detailed proof of our algorithms. We define the z as

the vector of the target model weight and we reformulated our algorithm (i.e., ATO) in the

mirror descent format, as presented in Algorithm 9, to facilitate analysis. Since the mask is

dynamic and the objective function varies before Tend, we mainly analyze the convergence

after the mask is fixed and assume the point will not be far away from the optimal point

during the first phase of training. It should be noted that t in Algorithm 9 denotes the update

iteration steps to discuss the training progression in each step, instead of the training epoch

index as before.

As discussed before, we define a Bregman distance [11, 12, 32] associated with ϕ(z) as

follows:

Dϕ(z
′, z) = ϕ(z′)−

[
ϕ(z) + ⟨∇ϕ(z), z′ − z⟩

]
, ∀z, z′. (4-19)
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Given that ϕ(z) = 1
2
zTAz in our dissertation, we have Dϕ(z

′, z) = 1
2
(z′ − z)TAt(z

′ − z).

For the non-adaptive optimizer (e.g., SGD), we choose A = I. For adaptive optimizer (i.e.,

Adam), we update At as in Adam-type algorithms [55], defined as

ṽ0 = 0, ṽt = βṽt−1 + (1− β)∇zL(zt; ξt)2,

At = diag(
√

ṽt + ϵ), (4-20)

where ṽ is the second-moment estimator, and ϵ is a term to improve numerical stability in

Adam-type optimizer. Therefore, ϕ(z) is a ϵ-strongly convex function. We first give some

useful lemmas.

Lemma 7. (Lemma 1 in [32]) Assume g(z) is a convex and possibly nonsmooth function.

Let z+t+1 = argminz

{
⟨z,∇zL(z)⟩+ 1

η
Dϕt(z, zt) + g(z)

}
and Pt =

1
η
(zt− z+t+1). Then we have

⟨∇zL(z),Pt⟩ ≥ ϵ∥Pt∥2 +
1

η

[
g(z+t+1)− g(zt)

]
, (4-21)

where ϵ > 0 depends on ϵ-strongly convex function ϕt(z).

Based on Lemma 7, let zt+1 = argminz

{
⟨z,mt⟩ + 1

η
Dϕt(z, zt) + g(z)

}
, and define P̃t =

1
η
[zt − zt+1]. We have

⟨mt, P̃t⟩ ≥ ϵ∥P̃t∥2 +
1

η
(g(zt+1)− g(xt)). (4-22)

Lemma 8. Assume that the stochastic partial derivatives mt+1 be generated from Algorithm

9, we have

E∥∇zL(zt+1)−mt+1∥2 ≤ (1− αt+1)E∥∇zL(zt))−mt∥2 +
L2η2t
αt+1

E∥P̃t∥2 +
α2
t+1σ

2

b
(4-23)
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Algorithm 9 ATO Algorithm (Mirror Descant)

1: Input: Target model with model weights vector z (no need to be pre-tained). Datasets

D,DCN, γ, λ, η, total training iteration T and each epoch ofD hasQ iterations; controller

network training steps Tstart and Tend.

2: for t = 1, 2 . . . , T do

3: Sample ξ = (x, y) and compute the stochastic gradient ∇L(z; ξ)

4: Compute gradient estimator mt = (1− αt)mt−1 + αt∇L(z; ξ)

5: Update model weight zt+1 = argminz

{
⟨mt, z⟩+ 1

ηt
Dϕt(z, zt) + g(z)

}
;

6: if TstartQ ≤ T ≤ TendQ then

7: W ,w← CN-Update(M,W ,w, DC)

8: end if

9: end for

10: Output: Directly remove pruned structures and construct a slimmer model.

Proof. Since mt+1 = αt+1∇zL(zt+1; ξt+1) + (1− αt+1)mt, we have

E∥∇zL(zt+1)−mt+1∥2 = E∥∇zL(zt+1)− αt+1∇zL(zt+1; ξt+1)− (1− αt+1)mt∥2

=E∥αt+1(∇zL(zt+1)−∇zL(zt+1; ξt+1)) + (1− αt+1)(∇zL(zt)−mt)

+ (1− αt+1)
(
∇zL(zt+1)−∇zL(zt)

)
∥2

(a)
=E∥(1− αt+1)(∇zL(zt)−mt) + (1− αt+1)

(
∇zL(zt+1)−∇zL(zt))∥2

+ α2
t+1E∥∇zL(zt+1)−∇zL(zt+1; ξt+1)∥2

≤(1− αt+1)
2(1 +

1

αt+1

)E∥∇zL(zt+1)−∇zL(zt)∥2

+ (1− αt+1)
2(1 + αt+1)E∥∇zL(zt)−mt∥2 + α2

t+1E∥∇zL(zt+1)−∇zL(zt+1; ξt+1)∥2

(b)

≤(1− αt+1)E∥∇zL(zt)−mt∥2 +
1

αt+1

E∥∇zL(zt+1)−∇zL(zt))∥2 +
α2
t+1σ

2

b

≤(1− αt+1)E∥∇zL(zt)−mt∥2 +
L2

αt+1

E∥zt+1 − zt∥2 +
α2
t+1σ

2

b

=(1− αt+1)E∥∇zL(zt)−mt∥2 +
L2η2t
αt+1

E∥P̃t∥2 +
α2
t+1σ

2

b
, (4-24)

where the (a) is due to Eξt+1 [∇L(zt+1; ξt+1)] = ∇L(zt+1); the (b) holds by 0 ≤ αt+1 ≤ 1 such

that (1− αt+1)
2(1 + αt+1) = 1− αt+1 − α2

t+1 + α3
t+1 ≤ 1− αt+1 and (1− αt+1)

2(1 + 1
αt+1

) ≤
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(1 − αt+1)(1 +
1

αt+1
) = −αt+1 +

1
αt+1
≤ 1

αt+1
, and the b is the batch size; the last inequality

holds by the definition of P̃t in Equation (4-22).

Lemma 9. Let

zt+1 = argmin
z

{
⟨mt, z⟩+

1

ηt
Dϕt (z, zt) + g(z)

}
and

z+t+1 = argmin
z
{⟨∇L (zt) , z⟩+

1

ηt
Dϕt (z, zt) + g(z)

}
,

we have

∥∇L (zt)−mt∥ ≥ ϵ
∥∥∥Pt − P̃t

∥∥∥ (4-25)

Proof. based on the definition of zt+1 and zt, and the convex property, we have〈
mt +∇g (zt+1) +

1

ηt
(∇Lt (zt+1)−∇Lt (zt)) , z − zt+1

〉
≥ 0 (4-26)〈

∇L (zt) +∇g
(
z+t+1

)
+

1

ηt

(
∇Lt

(
z+t+1

)
−∇Lt (zt)

)
, z − z+t+1

〉
≥ 0 (4-27)

where ∇g (zt+1) ∈ ∂g (zt+1). Taking z = z+t+1in the Equation (4-26) and z = zt+1 in the

Equation (4-27), by the convexity of g(x), we have

〈
mt, z

+
t+1 − zt+1

〉
≥

〈
∇g (zt+1) , zt+1 − z+t+1

〉
+

1

ηt

〈
∇Lt (zt+1)−∇Lt (zt) , zt+1 − z+t+1

〉
≥ g (zt+1)− g

(
z+t+1

)
+

1

ηt

〈
∇Lt (zt+1)−∇Lt (zt) , zt+1 − z+t+1

〉
(4-28)〈

∇L (zt) , zt+1 − z+t+1

〉
≥

〈
∇g

(
z+t+1

)
, z+t+1 − zt+1

〉
+

1

ηt

〈
∇Lt

(
z+t+1

)
−∇Lt (zt) , z

+
t+1 − zt+1

〉
≥ g

(
z+t+1

)
− g (zt+1) +

1

ηt

〈
∇Lt

(
z+t+1

)
−∇Lt (zt) , z

+
t+1 − zt+1

〉
(4-29)
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Summing up the above inequalities, we obtain

〈
∇L (zt)−mt, zt+1 − z+t+1

〉
≥ 1

ηt

〈
∇Lt

(
z+t+1

)
−∇Lt (zt+1) , z

+
t+1 − zt+1

〉
≥ ϵ

ηt

∥∥z+t+1 − zt+1

∥∥2
(4-30)

where the last inequality is due to the ϵ-strongly convex function Lt(z).

Since ∥∇L (zt)−mt∥
∥∥zt+1 − z+t+1

∥∥ ≥ 〈
∇L (zt)−mt, zt+1 − z+t+1

〉
and∥∥∥Pt − P̃t

∥∥∥ = ∥ 1
ηt

(
zt − z+t+1

)
− 1

ηt
(zt − zt+1)

∥∥∥= 1
ηt

∥∥∥ z+t+1 − zt+1∥, we have

∥∇L (zt)−mt∥ ≥ ϵ
∥∥∥Pt − P̃t

∥∥∥ (4-31)

Lemma 10. Suppose the sequence {zt}Tt=1 be generated from Algorithms 9. Let 0 < ηt ≤

min{1, ϵ
4L
}, we have

J (zt+1) ≤ J (zt)−
ηtϵ

4
∥Pt∥2 +

2ηt
ϵ
∥mt −∇zL (zt)∥2 (4-32)

Proof. Since zt+1 = argminz

{
⟨mt, z⟩+ 1

ηt
Dϕt (z, zt) + g(z)

}
and P̃t = 1

η
(zt − zt+1), and

function L(z) has L-Lipschitz continuous gradient. we have

L (zt+1) ≤ L (zt) + ⟨∇L (zt) , zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2

= L (zt)− ηt

〈
∇L (zt) , P̃t

〉
+

η2tL

2

∥∥∥P̃t

∥∥∥2

= L (zt)− ηt

〈
mt, P̃t

〉
+ ηt

〈
mt −∇L (zt) , P̃t

〉
+

η2tL

2

∥∥∥P̃t

∥∥∥2

(a)

≤ L (zt)− ηtϵ
∥∥∥P̃t

∥∥∥2

− g (zt+1) + g (zt) + ηt

〈
mt −∇L (zt) , P̃t

〉
+

η2tL

2

∥∥∥P̃t

∥∥∥2

(b)

≤ L (zt) +
(
η2tL

2
− 3ηtϵ

4

)∥∥∥P̃t

∥∥∥2

− g (zt+1) + g (zt) +
ηt
ϵ
∥mt −∇L (zt)∥2 (4-33)

where the (a)holds by the above Lemma 7, and the (b) holds by the following Cauchy-Schwarz

inequality and Young’s inequality as〈
mt −∇L (zt) , P̃t

〉
≤ ∥mt −∇L (zt)∥

∥∥∥P̃t

∥∥∥
≤ 1

ϵ
∥mt −∇L (zt)∥2 +

ϵ

4

∥∥∥P̃t

∥∥∥2

(4-34)
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Since J (z) = L(z) + g(z), we have

J (zt+1) ≤ J (zt) +

(
η2tL

2
− 3ηtϵ

4

)∥∥∥P̃t

∥∥∥2

+
ηt
ϵ
∥mt −∇zL (zt)∥2

≤ J (zt)−
5ηtϵ

8

∥∥∥P̃t

∥∥∥2

+
ηt
ϵ
∥mt −∇zL (zt)∥2 , (4-35)

where the last inequality is due to 0 < ηt ≤ ϵ
4L
. Based on Lemma 9, we have

∥Pt∥2 ≤ 2
∥∥∥P̃t

∥∥∥2

+ 2
∥∥∥P̃t − Pt

∥∥∥2

≤ 2
∥∥∥P̃t

∥∥∥2

+
2

ϵ2
∥mt −∇L (zt)∥2 . (4-36)

Finally, we have

J (zt+1) ≤ J (zt)−
ηtϵ

8

∥∥∥P̃t

∥∥∥2

− ηtϵ

4
∥Pt∥2 +

2ηt
ϵ
∥mt −∇zL (zt)∥2 . (4-37)

Theorem 4. (Restatement of Theorem 3) Assume that the sequence {zt}Tt=1 be generated

from the Algorithm 9. When we have ηt =
ĉ

(c̄+t)1/2
, ĉ

c̄1/2
≤ min{1, ϵ

4L
}, c1 = 4L

ϵ
, αt+1 = c1ηt,

we have

1

T

T∑
t=1

E∥Pt∥ ≤
√
Gc̄1/4

T 1/2
+

√
G

T 1/4
(4-38)

where G = 4(J (z1)−J (z∗))
ϵĉ

+ 2σ2

bLϵĉ
+ 2c̄σ2

ĉϵLb
ln(c̄+ T ).

Proof. ηt =
ĉ

(c̄+t)1/2
on t is decreasing, ηt ≤ η0 = ĉ

c̄1/2
≤ min{1, ϵ

4L
} for any t ≥ 0. At the

same time, c1 =
4L
ϵ
. We have αt+1 = c1ηt ≤ c1ĉ

c̄1/2
≤ 1.

According to Lemma 8, we have

E∥∇zL(zt+1)−mt+1∥2 − E∥∇zL(zt)−mt∥2

≤− αt+1E∥∇zL(zt)−mt∥2 + L2η2t /αt+1E∥P̃t∥2 +
α2
t+1σ

2

b

=− c1ηtE∥∇zL(zt)−mt∥2 + L2ηt/c1E∥P̃t∥2 +
c21η

2
t σ

2

b

≤− 4Lηt
ϵ

E∥∇zL(zt)−mt∥2 +
ϵLηt
4

E∥P̃t∥2 +
c̄η2t σ

2

ĉ2q
, (4-39)

where the above equality holds by αt+1 = c1ηt, and the last inequality is due to c1 =
4L
ϵ
.
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According to Lemma 10, we have

J (zt+1) ≤ J (zt)−
ηtϵ

8

∥∥∥P̃t

∥∥∥2

− ηtϵ

4
∥Pt∥2 +

2ηt
ϵ
∥mt −∇zL (zt)∥2 (4-40)

Next, we define a Lyapunov function, for any t ≥ 1

Ωt = E
[
J (zt) +

1

2L
∥∇zL(zt)−mt∥2] (4-41)

Then we have

Ωt+1 − Ωt = E
[
J (zt+1)− J (zt)

]
+

1

2
[E∥∇zL(zt+1)−mt+1∥2 − E∥∇zL(zt)−mt∥2]

≤− ηtϵ

8

∥∥∥P̃t

∥∥∥2

− ηtϵ

4
∥Pt∥2 +

2ηt
ϵ
∥mt −∇zL (zt)∥2

+
1

2L

(
− 4Lηt

ϵ
E∥∇zL(zt)−mt∥2 +

ϵLηt
4

E∥P̃t∥2 +
c̄η2t σ

2

ĉ2q

)
≤− ϵηt

4
E∥Pt∥2 +

c̄σ2

2ĉ2Lq
η2t . (4-42)

Then we have

ηtE∥Pt∥2 ≤
4(Ωt − Ωt+1)

ϵ
+

2c̄σ2

ϵĉ2Lb
η2t . (4-43)

Taking average over t = 1, 2, · · · , T on both sides of (4-43), we have

1

T

T∑
t=1

ηtE∥Pt∥2 ≤
T∑
t=1

4(Ωt − Ωt+1)

Tϵ
+

1

T

T∑
t=1

2c̄σ2

ϵLĉ2b
η2t . (4-44)

In addition, we have

Ω1 = J (z1) +
1

2L
E∥∇zL(z1)− v1∥2 ≤ J (z1) +

σ2

2bL
, (4-45)
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where the above inequality holds by Assumption 4. Since ηt is decreasing on t, i.e., η−1
T ≥ η−1

t

for any 0 ≤ t ≤ T , we have

1

T

T∑
t=1

E∥Pt∥2 ≤
4

TϵηT

T∑
t=1

(
Ωt − Ωt+1

)
+

1

TηT

T∑
t=1

2c̄σ2

ϵLĉ2b
η2t

≤ 4

TϵηT

(
J (z1) +

σ2

2bL
− J (z∗)

)
+

1

TηT

T∑
t=1

2c̄σ2

ϵLĉ2b
η2t

≤ 4(J (z1)− J (z∗))
TϵηT

+
2σ2

bLϵηTT
+

2c̄σ2

ηTTϵLĉ2b

∫ T

1

ĉ2

c̄+ t
dt

≤ 4(J (z1)− J (z∗))
TϵηT

+
2σ2

bLϵηTT
+

2c̄σ2

ηTTϵLb
ln(c̄+ T )

=

(
4(J (z1)− J (z∗))

ϵĉ
+

2σ2

bLϵĉ
+

2c̄σ2

ĉϵLb
ln(c̄+ T )

)
(c̄+ T )1/2

T
, (4-46)

where the second inequality holds by the above inequality (4-45) and the fact that JT+1 ≥ J ∗

Let G = 4(J (z1)−J (z∗))
ϵĉ

+ 2σ2

bLϵĉ
+ 2c̄σ2

ĉϵLb
ln(c̄+ T ), we have

1

T

T∑
t=1

E
[
|Pt∥2

]
≤ G

T
(c̄+ T )1/2. (4-47)

According to Jensen’s inequality, we have

1

T

T∑
t=1

E
[
∥Pt∥

]
≤

(
1

T

T∑
t=1

E
[
∥Pt∥2

])1/2

≤
√
G

T 1/2
(c̄+ T )1/4 ≤

√
Gc̄1/4

T 1/2
+

√
G

T 1/4
(4-48)

where the last inequality is due to (a+ b)1/4 ≤ a1/4 + b1/4 for all a, b > 0. Thus, we have

1

T

T∑
t=1

E∥Pt∥ ≤
√
Gc̄1/4

T 1/2
+

√
G

T 1/4
. (4-49)

Based on the above Equation, we can get the final model to converge to the optimal point.

To make 1
T

∑T
t=1 E∥Pt∥ ≤ ε, iteration complexity T = O(ε−4) and since we do not require a

large batch size to avoid diverge the final complexity is O(ε−4).
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4.4 Experiments

4.4.1 Setup

We evaluate the efficacy of our algorithm by conducting assessments on image classifi-

cation tasks, utilizing datasets such as CIFAR-10 [57], CIFAR-100, and ImageNet [25]. For

comparison, we employ ResNet [38] and MobileNet-V2 [89].

For comparative purposes with existing algorithms, we adjust the hyper-parameter p as

in Equation (4-5) to determine the final remaining Floating Point Operations (FLOPs). We

maintain a consistent setting with γ in Equation (4-5) set to 4.0. The value of λ in Equation

4-2 is set to 10 for different models and datasets. The starting epoch of the controller network

Tstart is approximately 10% of the total training epochs, and the parameter Tend is set at 50%

of the total training epochs. Detailed values are provided in the supplementary materials.

The choice of Tstart and Tend in general implies that the training of the controller network is

both straightforward and robust.

To mitigate the training costs associated with the controller network training, we ran-

domly sample 5% of the original dataset D to construct DCN, incurring additional costs of

less than 5% of the original training expenses. We employ the ADAM optimizer [55] to train

the controller network with an initial learning rate of 0.001. Additionally, we utilize the

proximal gradient project with l2 norm in Equation 4-4.

For the training of the target network, we adhere to standard training procedures for

ResNets on CIFAR-10, CIFAR-100, and ImageNet. For MobileNet-V2, we employ the train-

ing settings outlined in its original paper [89]. The parameter Tw is set at approximately 20%

of the total epochs for all models and datasets. Due to space limitations, detailed information

on training can be found in the supplementary materials. Our main point of comparison is

OTOv2, which also eliminates the need for additional fine-tuning. Additionally, we provide

a list of other pruning algorithms.
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Table 5: Comparison results on ImageNet with ResNet-34/50 and MobileNet-V2.

Architecture Method Base Top-1 Base Top-5 Pruned Top-1 (∆ Top-1) Pruned Top-5 (∆ Top-5) Pruned FLOPs

ResNet-34

FPGM [41] 73.92% 91.62% 72.63% (−1.29%) 91.08% (−0.54%) 41.1%

Taylor [82] 73.31% - 72.83% (−0.48%) - 24.2%

DMC [31] 73.30% 91.42% 72.57% (−0.73%) 91.11% (−0.31%) 43.4%

SCOP [96] 73.31% 91.42% 72.62% (−0.69%) 90.98% (−0.44%) 44.8%

ATO (ours) 73.31% 91.42% 72.92% (−0.39%) 91.15% (−0.27%) 44.1%

ResNet-50

DCP [119] 76.01% 92.93% 74.95% (−1.06%) 92.32% (−0.61%) 55.6%

CCP [86] 76.15% 92.87% 75.21% (−0.94%) 92.42% (−0.45%) 54.1%

FPGM [41] 76.15% 92.87% 74.83% (−1.32%) 92.32% (−0.55%) 53.5%

ABCP [74] 76.01% 92.96% 73.86% (−2.15%) 91.69% (−1.27%) 54.3%

DMC [31] 76.15% 92.87% 75.35% (−0.80%) 92.49% (−0.38%) 55.0%

Random-Pruning [66] 76.15% 92.87% 75.13% (−1.02%) 92.52% (−0.35%) 51.0%

DepGraph [28] 76.15% - 75.83% (−0.32%) - 51.7%

DTP [71] 76.13% - 75.55% (−0.58%) - 56.7%

ATO (ours) 76.13% 92.86% 76.59% (+0.46%) 93.24% (+0.38%) 55.2%

DTP [71] 76.13% - 75.24 % (−0.89%) - 60.9%

OTOv2 [17] 76.13% 92.86% 75.20% (−0.93%) 92.22% (−0.66%) 62.6%

ATO (ours) 76.13% 92.86% 76.07% (−0.06%) 92.92% (+0.06%) 61.7%

DTP [71] 76.13% - 74.26% (−1.87%) - 67.3%

OTOv1 [16] 76.13% 92.86% 74.70% (−1.43%) 92.10% (−0.76%) 64.5%

OTOv2 [17] 76.13% 92.86% 74.30% (−1.83%) 92.10% (−0.76%) 71.5%

ATO (ours) 76.13% 92.86% 74.77% (−1.36%) 92.25% (−0.61%) 71.0%

MobileNet-V2

Uniform [89] 71.80% 91.00% 69.80% (−2.00%) 89.60% (−1.40%) 30.0%

AMC [42] 71.80% - 70.80% (−1.00%) - 30.0%

CC [70] 71.88% - 70.91% (−0.97%) - 28.3%

MetaPruning [76] 72.00% - 71.20% (−0.80%) - 30.7%

Random-Pruning [66] 71.88% - 70.87% (−1.01%) - 29.1%

ATO (ours) 71.88% 90.29% 72.02% (+0.14%) 90.19% (−0.10%) 30.1%

4.4.2 CIFAR-10

For CIFAR-10, we opt for ResNet-18, ResNet-56, and MobileNetV2 as our target models.

Table 4 displays the outcomes of our algorithm (ATO) and other baseline methods on CIFAR-

10.

ResNet-18: Regarding ResNet-18, our algorithm outperforms other methods, achieving

the best performance (measured by ∆-Acc) compared to OTOv2 at the same pruned FLOPs.

OTOv2 experiences a decline of 0.16% in top-1 accuracy as it avoids the fine-tuning stage

and relies on static pruning groups. Guided by the controller network, our algorithm can

select masks more precisely, overcoming the limitations of OTOv2 and achieving superior
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(a) (b)

(c) (d)

Figure 6: (a): the impact of λ in regularization term in Equation (4-2). (b): the effect of

hyperparameter γ in RFLOPs in Equation (4-5). (c): the effect of Tw. (d): the effect of

the project operation as in Equation (4-3). Experiments are conducted on CIFAR-10 with

ResNet-56 and p = 0.45.
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(a) (b)

(c) (d)

Figure 7: (a): the impact of λ in regularization term in Equation (4-2). (b): the effect of

hyperparameter γ in RFLOPs in Equation (4-5). (c): the effect of Tw. (d): the effect of

the project operation as in Equation (4-3). Experiments are conducted on CIFAR-10 with

ResNet-56 and p = 0.35.
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performance.

ResNet-56: For ResNet-56, our method demonstrates superior performance compared

to baselines with similar pruned FLOPs. Notably, our approach does not depend on a

fine-tuning stage, making it simpler and more user-friendly. Furthermore, our algorithm

surpasses the second-best method, GNN-RL, by 0.14% according to ∆-Acc (ATO +0.24%

vs. GNN-RL +0.10%) when pruning a slightly larger percentage of FLOPs (ATO 55.0% vs.

GNN-RL 54.0%). The performance gaps between our algorithm and others are even more

pronounced.

MobileNet-V2: In MobileNet-V2, our method exhibits strong performance, pruning

a significant proportion of FLOPs (45.8%) and achieving the best performance in terms of

∆-ACC (+0.33).

4.4.3 CIFAR-100

In our CIFAR-100 comparisons, we focus on ResNet-18 and ResNet-34. The results for

the CIFAR-100 dataset are presented in Table 4.

Since OTOv2 does not provide results for CIFAR-100 with ResNet-18 and ResNet-34, we

generate OTOv2 results on CIFAR-100 under the same settings as ours. In comparison with

OTOv2 results in Table 4, our algorithm pruned slightly more FLOPs, while significantly

improving the overall results.

4.4.4 ImageNet

Following that, we apply ATO to ImageNet to showcase its effectiveness. In this sce-

nario, we select ResNet-34, ResNet-50, and MobileNetV2 as target models. The comparison

between existing algorithms and ATO is presented in Table 5.

ResNet-34: In ResNet-34, our algorithm attains superior performance compared to

others under similar pruned FLOPs, despite having a simpler training procedure. Our algo-

rithm achieves a Top-1 accuracy of 72.92% and a Top-5 accuracy of 91.15%, surpassing other

algorithms. SCOP and DMC prune a comparable number of FLOPs to our algorithm and

share the same baseline results. However, our method achieves a pruned Top-1 Accuracy
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Figure 8: ResNet50 on ImageNet.

65



that is 0.30% and 0.35% higher than SCOP and DMC, respectively. Similar observations

are made for Top-5 Accuracy, where our method outperforms SCOP and DMC by 0.17%

and 0.04%, respectively.

ResNet-50: In ResNet-50, we present a performance portfolio under various pruned

FLOPs, ranging from 55.2% to 71.0%. Figure 8 illustrates the comparison with other ap-

proaches. While an increase in pruned FLOPs and parameter reductions typically leads to

a compromise in accuracy, ATO maintains a leading edge in terms of top-1 accuracy across

various levels of FLOPs reduction. Compared with OTOv2, the results of our algorithm

do not compromise training simplicity. Notably, under pruned FLOPs of 61.7%, the Top-1

accuracy of ATO reaches 76.07%, surpassing OTOv2 by 0.87% under similar pruned FLOPs.

Additionally, even when pruned FLOPs exceed 70%, ATO continues to exhibit strong per-

formance compared to counterparts.

MobileNetV2: The lightweight model MobileNetV2 is generally challenging to com-

press. Under the pruned FLOPs of 30%, our algorithm achieves the best Top-1 accuracy

compared to other methods, even with simpler training procedures. Our algorithm attains

a Top-1 accuracy of 72.02% and a Top-5 accuracy of 90.19%, while the results of other

counterparts fall below the baseline results.

4.4.5 Ablation Study

We conduct an ablation study to examine the impact of different hyperparameters on

model performance and consider different FLOAPs reduction (p = 0.45 and p = 0.35).

For this analysis, we use ResNet-56 on CIFAR-10. It is important to note that the drop in

performance at Epoch 30 is due to the initiation of controller network training at that epoch.

Subsequently, we evaluate model performance under the mask vector w, which is equivalent

to removing the corresponding Zero-Invariant Groups (ZIGs). It should be noted that we

plot the standard deviation in shaded errors in Figures 6 and 7, which shows that the range

of training fluctuations is small when the model converges. It verifies the robustness and

efficiency of our algorithm (ATO).

Impact of λ: We investigate the influence of the regularization coefficient λ in Equation
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(a) (b)

Figure 9: the effect of hyperparameter γ in RFLOPs in Equation (4-5). Experiments are

conducted on CIFAR-10 with ResNet-56 with p = 0.45 (a) and p = 0.35 (b).

(4-2) and plot the test accuracy in Figures 6 (a) and 7 (a). The curves illustrate that λ plays

a crucial role in model training. If the value of λ is too small, it can adversely affect model

performance, especially when pruning a large number of FLOPs (p = 0.35). However, when

it reaches a specific threshold, the effect will vanish.

Impact of γ: We examine the impact of the hyperparameter γ, which controls the

strength of FLOPs regularization in Equation (4-5), and plot the test accuracy in Figures

6 and 7. The results indicate that accuracy is minimally affected by γ, and the curves of

different γ converge rapidly after the model commences training (Epoch = 30). Additionally,

Figure 9 depicts RFLOPs, showing that the controller network under different γ converges at

varying speeds before training concludes at Epoch = 150. It is worth noting that the loss

values are scaled to [0, 1]. This suggests that selecting a too-small γ may hinder the controller

network from achieving the target FLOPs when the pruning rate is large. Otherwise, the

training of the controller network is robust.

Impact of Tw: We explore the impact of Tw during the training of the target model

in Figures 6 and 7. Since we initiate training the controller network at Epoch 30, and we
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require a mask w from the controller network, Tw is selected from the set 30, 50, 100, 150.

In general, these values can converge to the optimal under the mask with different Tw.

Impact of Projection Operator: To validate the flexibility of our proposed algorithm

to different projection operators, we plot the test accuracy using the proximal gradient

projector in Equation (4-4) and the Half-Space projector in Equation (4-3). In OTO [16]

and OTOv2 [17], due to the limitation of the manually selected static mask, they have to use

(D)HSP [17] to achieve better performance. In our tests, we demonstrate that the controller

network aids in solving these challenging issues, and there is no significant difference between

the two projection operators. Due to the ease of implementation and the improved efficiency

of the proximal gradient projector, we use it in our experiments.

4.4.6 Implementation Details

In this subsection, we provide more details of the implementation in the experiments

about the design of the controller network and training setting.

Table 6 shows the selection of ratio p in all experiments. We choose the value of p

according to the existing baseline algorithms to compare our algorithm (ATO) with others.

We follow the standard training example in the training on CIFAR-10 and CIFAR-100

datasets. The model is trained for 300 epochs. We select SGD as the optimizer with a

learning rate of 0.1, a momentum of 0.9, and a weight decay of 10−4. The value of p in

Equation (4-5) for all datasets and models is presented in Table 7.
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Table 6: Choice of p in Equation (4-5) for different datasets.

DataSet Model p

CIFAR-10

ResNet-18 0.1908

ResNet-56 0.3500 / 0.4500

MobileNetV2 0.4900

CIFAR-100
ResNet-18 0.5952

ResNet-34 0.5020

ImageNet

ResNet-34 0.5400

ResNet-50 0.3700/0.2960/0.1930

MobileNetV2 0.6578

To train ResNet models on ImageNet, we follow the ImageNet training setting 1 in

OTOv2 [17] and train the ResNet models for 240 epochs. For MobileNet-V2, we train the

model for 300 epochs with the cos-annealing learning rate scheduler and a start learning rate

of 0.05, and weight decay 4× 10−5 as mentioned in their original paper [89]. As mentioned

before, we set Tstart to around 10% of the total training epochs and Tend to 50% of the total

training epochs.

Table 7: Architecture of Controller Network.

Layer Type Shape

Input |B| × 64

Bi-GRU 64× 128× 2

LayerNorm + ReLU 256

Linear Layer 256× |Bi|, Bi ⊂ B

Concatenate |G|

Gumbel-Sigmoid -

Round → w -

1https://github.com/tianyic/only train once/blob/main/tutorials/02.resnet50 imagenet.ipynb
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Table 7 shows the architecture of the controller network. We make efforts to reduce

extra computational overhead due to the use of controller network. Controller Network uses

bi-directional gated recurrent units (GRU) [19] since it is a lightweight sequence model. It

is followed by linear layers with output as o, where the dimension of o is equal to the size

of ZIGs G. To reduce the training costs, we divide ZIGs G into multiple disjoint blocks

B = {B1, · · · , B|B|} (B1 ∪ B2 ∪ · · ·B|B| = G and
∑
|Bi| = |G|), and each block is one layer

in ResNet models or one InvertedResidual block in MobileNetv2. In this case, we can batch

ZIGs G.

The model mask vector is generated as below:

w = round(sigmoid((o+ s+ b)/τ)) (4-50)

where sigmoid(·) is the sigmoid function, round(·) is the rounding function, s is sampled

from Gumbel distribution (s ∼ Gumbel(0, 1)), b and τ are constants with values as 3.0 and

0.4, respetively.

In the implementation, we introduce a module called the virtual gate following ZIGs G

to automatically control the output of each ZIG in the target model based on the mask from

the controller network. Since OTOv2 proposes how to automatically construct ZIGs G and

the construction of the controller network from ZIGs is straightforward, it won’t introduce

much manual effort.

4.5 Summary

In this study, we explore the realm of automatic network pruning from scratch, aiming

to address the shortcomings identified in existing algorithms. These limitations include

1) the involvement of intricate multi-step training procedures and 2) suboptimal outcomes

associated with the static selection of pruning groups.

Our proposed solution, Auto-Train-Once (ATO), presents an innovative network pruning

algorithm designed to automatically reduce the computational and storage costs of Deep

Neural Networks (DNNs) without the need for an additional fine-tuning step. During the
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model training phase, a controller network dynamically generates a binary mask, guiding

the pruning process for the target model. With careful design of the controller network, the

extra computational overhead will be less than 5%.

Furthermore, we introduce a novel stochastic gradient algorithm that provides flexibility

in choosing projection operators, enhancing the coordination between model training and

controller network training for improved pruning performance. We also provide a theoretical

analysis for proposed algorithm, under mild assumptions, ensuring convergence, and conduct

extensive experiments. The results of these experiments demonstrate that our algorithm

achieves state-of-the-art performance across various model architectures, including ResNet18,

ResNet34, ResNet50, ResNet56, and MobileNetV2, on standard benchmark datasets such as

CIFAR-10, CIFAR-100, and ImageNet.

In summary, the main contributions of this chapter are summarized as follows:

1) We propose a generic framework to train and prune DNNs in a complete end-to-end and

automatic manner. After model training, we can directly obtain the compressed model

without additional fine-tuning steps.

2) We design a network controller to dynamically guide the channel running, preventing

being trapped in local optima. Importantly, our method does not rely on the specific

projectors compared with OTO and OTOv2. Additionally, we provide a comprehensive

complexity analysis to ensure the convergence of our algorithm, covering both the general

non-adaptive optimizer (e.g. SGD) and the adaptive optimizer (e.g. ADAM).

3) Empirical results show that our method overcomes the limitation arising from OTO and

OTOv2. Extensive experiments conducted on CIFAR-10, CIFAR-100, and ImageNet

show that our method outperforms existing methods.
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5.0 Task 3: Leveraging Foundation Models in Efficient Federated Learning

5.1 Background

In this chapter, we continue to explore the non-convex model compression. We focus

on the more complicated case and put the federated learning into consideration. Since the

development of the foundation mode, we utilize the model distillation in this chapter. The

work in this chapter was published in the NeurIPS2023 FL workshop [102].

Foundation models exhibit remarkable effectiveness across a wide range of machine-

learning tasks and applications. Many different foundation models are proposed. The CLIP

(Contrastive Language–Image Pretraining) model as shown in 10 and introduced by Radford

et al. [87], is specifically designed to establish an understanding and connection between im-

ages and text within a shared embedding space. CLIP excels in comprehending the relation-

ships between images and their corresponding textual descriptions, enabling its application

to various tasks involving both modalities. What sets CLIP apart is its remarkable ability

to generalize across different tasks without extensive fine-tuning. By learning to associate

images and text, CLIP brings similar pairs closer together in the embedding space while

pushing dissimilar pairs apart. This unique property allows CLIP to be effectively utilized

in diverse applications, including image classification, object detection, and text-based image

retrieval, without necessitating task-specific adaptations.

Federated learning (FL) was introduced as a crucial distributed training paradigm in

large-scale machine learning to mitigate communication overhead. In the FL setting, a cen-

tral server orchestrates multiple worker nodes to collaboratively learn a joint model through

periodic model averaging, utilizing only the local data of each worker node. This distributed

approach shares the computational load among worker nodes and offers a degree of data

privacy in the FL process. However, when confronted with non-iid data distributions in the

context of federated training (FL), challenges related to convergence and suboptimal model

performance may arise, which is called client drift, as shown in 11. Integrating founda-

tion models into the framework of federated learning holds the potential to address issues
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Figure 10: Summary of the CLIP model). [51].

stemming from non-iid distributions, thereby improving the overall effectiveness of the FL

process.

5.2 Distilling Foundation Models in Federated Learning

5.2.1 Federate Learning: Setup

A federated learning problem could be defined as

min
θ∈Rd
L(θ) :=

N∑
i=1

piL(Di; θ). (5-1)

where θ ∈ Rd denotes the model parameter and N indicates the number of worker nodes.

Each client-i has its local private dataset Di. The local loss function relevant to the i-th

client is represented as L(Di; θ). When Di and Dj are different (i ̸= j ), it is referred to as the

heterogeneous data setting. In this dissertation, {Di}Ni=1 are not identical since we consider

the Non-IID distribution in the federated learning. Furthermore, pi is a re-weighting factor

conditioned as pi ≥ 0 and
∑

i pi = 1. Usually, we assume pi =
|Di|∑

j∈St
|Dj | where St represents

the collection of clients engaging in communication with the server at round t.
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Figure 11: Client-drift in FEDAVG is illustrated for 2 clients with 3 local steps (N = 2, K

= 3). The local updates yi (in blue) move towards the individual client optima x∗
i (orange

square). The server updates (in red) move towards 1
N

∑
i x

∗
i instead of to the true optimum

x∗ (black square) [51].
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FL framework repeats the following steps until the global model converges: 1) The server

broadcasts the present global model to chosen clients; 2) Each client resets its local model

using the received model, conducts local training based on local data, and transmits the

updated weights/gradients to the server; 3) The central server adjusts the global model by

aggregating the received weights/gradients.

5.2.2 Fed-LPFM

Preliminary Experiment First of all, we did a preliminary test about the application

of foundation models in federated learning compared with lightweight models. We see as the

increasing of data heterogeneity, the performance of lightweight models drops largely without

any extra guidance. Take mobile net with CIFAR-10 as an example, it could reach 91.48%

in the IID distribution. However, if we increase data heterogeneity, it drops to 90.86% in

the Dirichlet (α = 1.0), 90.05% in the Dirichlet (α = 0.5), 84.78% in the Dirichlet (α = 0.1),

80.48% in the Dirichlet (α = 0.05), and 58.49% in the Dirichlet (α = 0.01). However, the

performance of CLIP model wth FedAvg is very stable and all performance are better than

90%. This preliminary test shows that foundation models have remarkable performance in

the federated learning, regardless of data heterogeneity. However, there is a conflict between

the large size of foundation models and the capacity of edge devices in federated learning.

Therefore, we propose our method Fed-LPFM to solve this issue.

Setup Distinctive to our framework, we consider a scenario in which each client pos-

sesses only access to locally pre-trained foundation models. Much like the training dataset

exclusive to each client, these foundation models are only accessible to the respective client

and remain private within the Federated Learning (FL) system. We also assume that each

client comprises two sets of local models: (a) a set Mi of pre-trained foundation models

(private), denoted asM1
i ,M2

i , . . . ,M
Mi
i , and (b) a trainable small-scale lightweight model

parameterized by θi. Given the privacy of the foundation models, only the lightweight mod-

els circulate among the clients and the server, facilitating the exchange of knowledge across

the entire system. Our objective is to minimize the function in Equation (5-1), where the

optimization of θ corresponds to the parameters of the small-scale lightweight model, leaving

75



the foundation models unaltered.

Local Training Within our algorithm, the client leverages its locally stored data in

conjunction with insights from its confidential foundation models to oversee local training.

To achieve this, we employ the following loss function:

L(Di; θ) = λLCE(Di; θ) + (1− λ)LDistill(Di; θ,M1
i , . . . ,M

Mi
i ). (5-2)

Here, the first term is the local cross-entropy loss, denoted as

LCE(Di; θ) = E(x,y)∼Di
ℓCE(h(x; θ), y), (5-3)

where h(·) denotes the outcome of a forward pass through the lightweight model. The second

term, LDistill, serves the purpose of distilling knowledge between the lightweight model and

the pre-trained foundation models. Traditionally, the Kullback Leibler (KL) Divergence loss

is employed for this task.

LDistill(Di; θ,M1
i , . . . ,M

Mi
i ) =

Mi∑
m=1

E(x,y)∼Di
ℓKL[h(x; θ)||Mm

i (x)]. (5-4)

The parameter λ controls the proportion of knowledge distilled from the foundation model

in comparison to ground-truth labels.

Aggregation scheme Following local training, the server syncs up with the accessible

clients and consolidates the locally updated lightweight models. The aggregation of the local

models employs the subsequent re-weighting scheme:

θt+1 =
∑
i∈St

|Di|∑
j∈St
|Dj|

θit, (5-5)

where t is the communication round. Once the aggregation is finalized, the server dis-

seminates the updated model to clients, and the entire process iterates until a specified

termination condition is achieved. The details are shown in Algorithm 10.
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Algorithm 10 Fed-LPFM

1: Input: Dataset Di, frozen and private pre-trained foundation models:

M1
i ,M2

i , . . . ,M
Mi
i and lightweight model θ0 for each client i ∈ [N ].

2:

3: Server:

4: for Round t = 0, 1, 2, . . . , T − 1 do

5: Send θt to connected clients St ⊂ [N ]. Let Pt =
∑

i∈St
|Di|.

6: for Client i ∈ St in parallel do

7: θit ← LocalUpdate(θt, i)

8: Send the updated model θit to the central server

9: end for

10: Server-end aggregation: θt+1 =
∑

i∈St

|Di|
Pt

θit

11: end for

12: return: θT

13:

14: LocalUpdate(θt, i)

15: θit = θt

16: for epoch q = 0, 1, . . . , Q− 1: θit,q+1 = θit,q − η∇̃L(θit,q;Mi
1, . . . ,Mi

Mi
;Di)

17: return: θit = θit,Q

5.3 Experiments

5.3.1 Experiments Setup

Data Settings We assess the performance of our algorithm on the CIFAR-10 dataset

involving 10 clients distributed across seven data partitions, characterized by varying levels of

heterogeneity, including both IID and non-IID scenarios. For the non-IID data partitions, we

employ (1) the Dirichlet distribution, denoted as Dir(α) with α = 1.0, 0.5, 0.1, 0.05, 0.01;

(2) Class Split, where each client’s data is sampled from 2 of the 10 classes. The evaluation
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encompasses all algorithms on the balanced CIFAR-10 test set, and we present the average

accuracy over three trials to mitigate the impact of random variability in the runs.

Network Architectures For the choice of foundation models, we utilize CLIP [87] with

ViT-Base/32 (default) and RN50 as backbones and employ MobileNet-v2, EfficientNetB0,

and ResNet18 as our lightweight models. In the case of each lightweight model, we substitute

batch normalization layers with group normalization (8 groups) and initiate training from

random initialization.

Training Setup and Hyper-parameters Across all algorithms and experiments, we

employ an SGD optimizer for training. The lightweight models undergo 600 epochs of

training with a learning rate of 0.01, weight decay of 5e-4, and a step learning rate scheduler

incorporating a scale factor of 0.1 at epoch 200. In ablation studies, where we also explore

direct fine-tuning of foundation models, the training spans 200 epochs with a learning rate

of 2e-3, weight decay of 5e-4, and a cosine learning rate scheduler with a warmup period of 1

epoch. When comparing against state-of-the-art (SOTA) algorithms, we train the lightweight

models for up to 500 epochs in FedAvg and FedProx, and 600 epochs in FML.

5.3.2 Empirical Results

The tabulated experimental results, utilized to generate figures in the main dissertation,

demonstrate the consistent superiority of our algorithm, Fed-LPFM, over other algorithms.

Notably, Fed-LPFM exhibits the most substantial improvement in scenarios involving class

split and Dirichlet distribution (α = 0.01 and 0.05), which represent highly heterogeneous

data distributions across various clients. For instance, in the class split scenario, Fed-LPFM

achieves a 21.6% increase compared to Fedavg (82.29% vs. 67.67%).

Similar results are evident across various proxy model backbones. In both the cases of

EfficientNet and ResNet, Fed-LPFM consistently surpasses other methods across all data

heterogeneity settings.

As supporting materials for Figure 14 (a), we report the numerical results for testing

fine-tuned CLIP (linear probing and prompt tuning) and zero-shot CLIP cross different

data heterogeneity levels. We observed that zero-shot CLIP offers best and more robust
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(a) MobileNetV2 (b) EfficientNetB0 (c) ResNet18

Figure 12: When assessing performance against existing works across diverse data settings

and various lightweight model backbones, Fed-LPFM consistently surpasses previous ap-

proaches by a significant margin, particularly in scenarios with highly heterogeneous data

distributions. A broader coverage area indicates a more robust and effective federated learn-

ing approach.

Table 8: The values of Figure 12 (a) are shown in the current table.

Data Settings FedAvg FedProx FML Fed-LPFM (MobileNetV2)

Class Split 67.67± 1.88 65.97± 5.07 19.29± 0.28 82.29± 1.12

Dir(0.01) 58.49± 15.72 69.92± 2.07 17.50± 1.22 72.88± 9.11

Dir(0.05) 80.48± 1.07 80.48± 1.07 24.75± 3.15 84.05± 0.99

Dir(0.1) 84.78± 1.65 84.78± 1.65 33.13± 2.58 87.73± 1.48

Dir(0.5) 90.05± 0.21 90.05± 0.21 60.77± 3.98 91.72± 0.31

Dir(1.0) 90.86± 0.13 90.86± 0.13 72.84± 1.56 92.87± 0.17

IID 91.48± 0.31 91.61± 0.34 86.49± 0.17 93.26± 0.17

performances when compared to fine-tuned methods.

As supporting materials for Figure 14 (b), we report the results of using CLIP: ResNet50

and CLIP:ViT-B/32 as well as random sampling of them, with uniform prior, as foundation
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Table 9: The values of Figure 12 (b) are shown in the current table.

Data Settings FedAvg FedProx Fed-LPFM (EfficientNetB0)

Class Split 69.81± 2.64 69.81± 2.64 78.70± 2.28

Dir(0.01) 69.56± 2.20 69.56± 2.20 75.98± 1.29

Dir(0.05) 79.53± 0.95 79.53± 0.95 83.12± 0.76

Dir(0.1) 83.67± 1.23 83.67± 1.23 87.24± 1.46

Dir(0.5) 90.21± 0.08 90.21± 0.08 91.80± 0.30

Dir(1.0) 91.41± 0.35 91.41± 0.35 92.17± 0.09

IID 92.22± 0.17 92.22± 0.17 92.84± 0.04

Table 10: The values of Figure 12 (c) are shown in the current table.

Data Settings FedAvg FedProx Fed-LPFM(ResNet18)

Class Split 67.56± 4.66 65.99± 6.41 82.50± 2.00

Dir(0.01) 73.06± 2.10 72.13± 1.38 79.41± 0.95

Dir(0.05) 82.22± 0.79 82.40± 0.46 86.42± 1.33

Dir(0.1) 85.74± 1.38 85.23± 0.89 88.59± 1.54

Dir(0.5) 90.41± 0.30 90.095± 0.54 93.30± 0.10

Dir(1.0) 91.13± 0.13 90.82± 0.25 93.92± 0.14

IID 91.94± 0.22 91.45± 0.17 94.00± 0.20

models. It shows that random selection of pre-trained models offers worst performances

when compared to the other two.
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Table 11: The values of Figure 14(a) are shown in the current table.

Data Settings Linear Probing Prompt Tuning 0-shot (Ours)

Class Split 45.63± 9.48 51.85± 4.58 82.29± 1.12

Dir(0.01) 44.76± 3.56 35.86± 6.03 72.88± 9.11

Dir(0.05) 73.07± 0.86 68.39± 1.65 84.05± 0.99

Dir(0.1) 82.54± 3.21 77.35± 3.75 87.73± 1.48

Dir(0.5) 91.08± 0.24 89.01± 0.12 91.72± 0.31

Dir(1.0) 92.53± 0.48 90.32± 0.33 92.87± 0.17

IID 92.56± 0.17 91.85± 0.23 93.26± 0.17

Table 12: The values of Figure 14 (b) are shown in the current table.

Data Settings CLIP: RN50 CLIP: ViT-B/32 Random Selection

Class Split 80.46± 4.08 82.29± 1.12 62.75± 3.24

Dir(0.01) 66.17± 1.19 72.88± 9.11 64.02± 3.52

Dir(0.05) 84.42± 0.41 84.05± 0.99 71.33± 1.52

Dir(0.1) 87.90± 1.58 87.73± 1.48 76.05± 3.53

Dir(0.5) 92.04± 0.25 91.72± 0.31 84.82± 0.45

Dir(1.0) 93.00± 0.10 92.87± 0.17 83.99± 0.99

IID 93.63± 0.30 93.26± 0.17 85.01± 0.47

5.3.3 Results Analysis

SOTA Algorithm Comparison We compare our approach against FedAvg [80], Fed-

Prox [65], and FML [92], in various data heterogeneity settings. We show comparison results

in Figure 12, where each data partition is represented as a vertex on the polar plot, and we

plot accuracy along the radius. Based on the findings presented in Figure 12, it is evident
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that Fed-LPFM consistently outperforms previous approaches across diverse data distribu-

tions. Notably, our algorithm demonstrates a substantial improvement over FedProx, the

best-performing method among prior works, particularly in scenarios with the most extreme

heterogeneous distributions, such as class split and Dirichlet sampling with α = 0.01, 0.05.

Furthermore, it’s worth noting that employing MobileNet as the backbone for both the

private and lightweight models, akin to the setup in FML, yields unsatisfactory results.

We hypothesize that fine-tuning on local data introduces biases into the representations

learned across both models, leading to a significant deterioration in performance as data

heterogeneity increases.

lightweight Model To demonstrate the versatility of our approach across different

lightweight model backbones, we conduct evaluations on EfficientNetB0, ResNet18, and Mo-

bileNetV2. The results are both reported and visualized in Figure 12. It is evident from

our observations that our approach consistently outperforms FedAvg and FedProx across

the entire array of lightweight models, particularly in scenarios involving various levels of

data heterogeneity, including severe non-IID cases. Furthermore, we note that the perfor-

mance improvement achieved by FedProx diminishes across both ResNet and EfficientNet,

as compared to MobileNet. FedAvg and FedProx exhibit similar performance levels in this

comparison.

Fine-Tuned vs. 0-shot Our Fed-LPFM technique employs pre-trained foundation

models without the option for fine-tuning. To investigate the influence of prior knowledge

on distillation, we contrast our 0-shot approach with the initial step of fine-tuning each

client’s foundation model(s) only on local data using linear probing and prompt tuning as

shown in Figure 13. Figure 14 (a) visually depicts the superior performance of the 0-shot

CLIP case over the fine-tuned CLIP models. We posit that fine-tuning the foundation model

on local data leads to a more personalized and biased knowledge representation, resulting

in decreased performance on a balanced test set. Moreover, in settings with heterogeneous

data distribution, locally encoded knowledge tends to be more personalized and biased.

Conversely, in more homogeneous settings, there is a notable performance boost for clients

leveraging knowledge from both 0-shot and fine-tuned foundation models. We attribute the

improvement observed when distilling from 0-shot models to the strong diversity in feature
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Figure 13: Overview of Fine-tuning of the CLIP model.
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(a) Fine-tuning vs. 0-shot (b) Personalizing 0-shot Models

(c) Linear Probing (d) Prompt Tuning (e) 0-shot

Figure 14: (a) Fine-tuning foundation models on local data forces significantly worse perfor-

mances under non-IID conditions. (b) Maintaining consistent foundation model backbones

improves the synergy in information shared across clients. (Bottom) When compared to

fine-tuned models, 0-shot models offer more diverse feature embeddings that reduce the bias

of lightweight models towards local data distributions.

embeddings compared to fine-tuned foundation models. We utilize tSNE plots to examine

the distribution of encoded knowledge representations from foundation models. As shown

in Figure 14 (c) - (f), features from 0-shot foundation models exhibit a broader coverage

compared to fine-tuned models.
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Personalizing Foundation Models Fed-LPFM ensures the privacy of foundation

model(s) by allowing each client to tailor them to their specific needs. As illustrated in

Figure 14 (b), maintaining consistent backbones across the foundation models results in the

most significant performance improvement, while introducing a random selection of back-

bones, ranging from ViT-B/32 to RN50, leads to a performance decline. We attribute this

behavior to the adoption of a simplistic strategy in aggregating information from multiple

lightweight models, driven by variations in the knowledge and understanding of foundation

models with different backbones.

Alternatively, incorporating our approach in conjunction with personalized Federated

Learning (FL) methods ([95, 26, 63, 34, 20], etc.) could potentially enhance overall perfor-

mance.

5.4 Summary

In summary, we verify the outstand performance of foundation models in federated learn-

ing and proposed Fed-LPFM as an approach to harness foundation models under the inter-

ference efficiency, enhancing the performance and robustness attainable in small-scale models

within the Federated Learning (FL) framework. Distilling knowledge from pre-trained foun-

dation models, rather than fine-tuned ones, introduces the necessary diversity in feature

representations to mitigate bias towards local distributions, thereby enhancing client per-

formance across diverse data distributions. The implementation of logit-level distillation

provides clients with the flexibility to select local foundation models based on individual

constraints. This work points towards a crucial future direction: the exploration of an ap-

proach that synergistically combines information from diverse knowledge representations to

achieve improved model performance. Overall, our main contributions are as follows:

• This marks the initial attempt to utilize foundation models in federated learning through

distillation, aiming to enhance the performance and robustness attainable in small-scale

client models (e.g., a notable increase of 9.22% for EfficientNetB0, 8.69% for ResNet18,

and 24.60% for MobileNetV2).
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• In the realm of low-latency models, we present a federated learning solution that remains

resilient in the face of diverse and heterogeneous client data. Our approach surpasses

previous methodologies across a spectrum of client data distributions, ranging from IID

to various parametrized Dirichlet distributions and class-specific partitions.

• We investigate the influence of utilizing representations from fine-tuned foundation mod-

els on local data compared to pre-trained foundation models. Our findings reveal that

under IID data distributions, the initial fine-tuning of foundation models provides no

advantage over 0-shot foundation models. Moreover, as data heterogeneity increases,

accuracy is significantly impeded, implying that direct fine-tuning of foundation models

results in biased representations.

• Our framework introduces a novel feature by granting clients the flexibility to choose

their locally-stored foundation models (personalization) based on the available compute

and data scale. We analyze the influence of diverse foundation model backbones and

underscore the significance of appropriately combining disparate feature representations.
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6.0 Conclusion

In this dissertation, we study the application of convex and non-convex model compres-

sion, including model screening, structural pruning, and model distillation, in ML training.

We propose corresponding algorithms for convex models and non-convex models and con-

sider centralized training or multi-party training. With the model compression technique,

we could reduce communication overhead, speed up model training, and improve inference

efficiency. In addition, extensive experiments and related theoretical analysis are provided.

Overall, our work can be summarized as below:

• In the first chapter, we consider convex models in the distributed setting and we intro-

duce a novel asynchronous learning approach (DDSS) tailored for stochastic composite

optimization. To the extent of my understanding, this marks the first effort in the realm

of distributed dynamic safe screening. Theoretical analysis is provided and shows that

our proposed approach attains a linear convergence rate while maintaining lower overall

complexity.

Additionally, our method effectively eliminates nearly all inactive variables within a finite

number of iterations with high probability. Empirical findings substantiate the effective-

ness and superiority of our approach since it dynamically removes the abundant feature

in advance and speeds up the training largely. The test results also show it has the lin-

ear speed-up property and training time decreases as the increase of number of workers.

Notably, our focus here is on the block-separable norm; exploring the extension of our

method to non-separable norms, such as OWL regression represents a promising avenue

for future research.

• Afterwards, we focus on the sparse representation of deep (non-convex) models. This

paper delves into the realm of automatic network pruning from scratch in centralized

learning. It addresses shortcomings identified in existing algorithms, notably: 1) intricate

multi-step training procedures, and 2) suboptimal outcomes associated with statically

chosen pruning groups.

Our proposed algorithm (ATO) introduces an innovative network pruning algorithm ex-
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plicitly crafted to automatically reduce the computational and storage costs of Deep Neu-

ral Networks (DNNs) without necessitating an additional fine-tuning step. In the model

training phase, a controller network dynamically generates a binary mask, guiding the

pruning process for the target model. Furthermore, we have devised a novel stochas-

tic gradient algorithm, providing flexibility in the selection of projection operators and

enhancing coordination between model training and controller network training, thereby

improving pruning performance. The results of these experiments showcase that our algo-

rithm attains state-of-the-art performance across various model architectures, including

ResNet18, ResNet34, ResNet50, ResNet56, and MobileNetv2, on standard benchmark

datasets such as CIFAR-10, CIFAR-100, as well as ImageNet.

Additionally, we present a general theoretical analysis with mild assumptions to ensure

convergence. The theoretical analysis uses the framework of mirror descent and it consists

of various optimizers, such as non-adaptive optimizers (SGD) and adaptive optimizer

(ADAM).

• Finally, we delve into the utilization of foundational models within the context of federated

learning. Federated learning is similar to distributed training but it is more flexible since

it only selects a subset of clients in each round and the client can perform multiple local

training to save communication overhead.

Our investigation highlights the impressive performance achieved by foundation models

following fine-tuning, particularly in scenarios characterized by heterogeneous distribution.

Furthermore, we illustrate how the incorporation of a foundation model can assist smaller

models in mitigating the effects of client drift to a certain degree.

We introduce Fed-LPFM as a strategy to harness foundation models, enhancing the per-

formance and robustness attainable in small-scale models within the Federated Learning

(FL) framework. Distillation from pre-trained foundation models, rather than fine-tuned

ones, introduces diversity in feature representations, mitigating bias towards local distri-

butions and thereby enhancing client performance across various heterogeneous data dis-

tributions. The implementation of logit-level distillation affords clients the flexibility to

select local foundation models based on their individual constraints. This work establishes

a crucial avenue for future research: the exploration of an approach that synergistically
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combines information from diverse knowledge representations to enhance overall model

performance.

In conclusion, this study has systematically study the convex and non-convex model

compression. It also consider both centralized learning and multi-part collaborative training.

But the experiments only consider the task in the classification as well as computing vision

task. Future work could consider a wider range of ML tasks, such as natural language

processing or object detection.
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