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Protein-coding and non-protein-coding genetic variants both play essential roles in con-

tributing to human diseases. Therefore, better approaches for characterizing and prioritizing

genetic variants can advance our understanding of the genetic causes of disease and contribute

to the design of diagnostic and therapeutic strategies. In this dissertation, I explore both

coding and non-coding genetic variants and report on new computational methods for their

annotation and prioritization.

First, I developed a disease-specific approach for prioritizing non-coding variants. In-

tegrating tissue-specific functional genomics data with non-coding disease-associated vari-

ants from the NHGRI-EBI GWAS catalog allowed me to design a model for disease-specific

variant prioritization. This approach outperformed other variant-prioritization approaches,

yielded interpretable and sensible associations between tissues and diseases, and enabled the

calculation of disease similarities and the identification of biologically meaningful disease

groups.

Next, I further improved this disease-specific approach by combining disease-associated

variants across different disease terms, in order to enable information sharing. Through a

systematic evaluation of all pairs of disease terms in the GWAS catalog, I discovered that

combining variants from related diseases improved the performance of variant prioritization.

Additionally, I found that suitable disease pairs for combination could be quickly identified

using the disease similarity we derived previously.

Finally, I focused on a specific type of protein-coding variant that introduces a premature

termination codon (PTC) and can lead to mRNA non-sense mediated decay (NMD). Since

not all PTC-causing variants trigger NMD, I contributed to the development of a software

tool called ”aenmd” that annotates whether such a variant is predicted to trigger NMD,

or not (NMD escape). Applying aenmd to coding variants from the GWAS Catalog iden-
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tified disease terms that were enriched with NMD-escaping and NMD-triggering variants,

respectively.

Altogether, my thesis presents novel approaches for effectively characterizing and pri-

oritizing protein-coding and non-protein-coding genetic variants in the context of human

diseases. The tools I developed will contribute to improved annotation and understanding of

genetic variants; they also can assist geneticists in the discovery of genetic factors contribut-

ing to human diseases, thereby ultimately facilitating the development of more efficacious

diagnostic strategies and therapeutic interventions.
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1.0 Overall research goal and specific aims

Both protein-coding and non-protein-coding genetic variations play significant roles in

the development of human diseases. Protein-coding variants can alter protein structures or

functions, thereby contributing to disease progression [1, 2]. In contrast, non-coding vari-

ants primarily influence disease by regulating nearby gene expression, consequently affecting

protein abundance [3, 4]. In this dissertation, I will explore coding and non-coding genetic

variants contributing to human diseases.

In the first part, I will focus on non-coding variants. Although non-coding genetic vari-

ations are gaining importance for contributing to human diseases, studying which genetic

variants contribute to which diseases remains challenging [5]. Therefore, there is a critical

need for an accurate annotation and prioritization tool for non-coding variants. Existing

tools are either designed for the entire organism (e.g., CADD [6]) or specific tissues (e.g.,

Genoskyline [7]). However, limited tools are designed for prioritizing genetic variants for

specific diseases. Thus, the objective of our research is to develop a disease-specific vari-

ant prioritization method that enhances the accuracy of variant prioritization for specific

diseases.

In the second part, I will delve into a specific type of coding variant that can trigger

nonsense-mediated decay (NMD). Variants harboring premature termination codons (PTCs)

can result in transcripts either undergoing NMD or evading NMD. The outcome, whether

NMD is triggered or not, can have diverse implications for human diseases and is crucial in

therapeutic interventions [8, 9, 10]. However, current NMD annotation tools have limitations,

such as their inability to predict frameshift variants [11, 12]. Therefore, our research aims to

create a computational tool for annotating NMD outcomes in genetic variants and utilizing

this tool to analyze the outcome of NMD in complex genetic diseases.

To accomplish these goals, I have outlined the following specific aims:

Aim 1: Develop a disease-specific approach to improve the non-coding genetic variants

prioritization.

Aim 2: Improve the disease-specific variant prioritization approach by incorporating
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single nucleotide variants (SNVs) associated with related diseases.

Aim 3: Construct a tool for nonsense-mediated decay (NMD) annotation for genetic

variants and employ this tool to analyze the outcome of NMD in complex genetic diseases.

By successfully achieving these aims, we will have a more accurate tool for annotating

and prioritizing non-coding genetic variants for specific diseases, as well as a robust NMD

annotation tool that will deepen our understanding of NMD’s role in genetic diseases. These

advancements will empower researchers to utilize these tools in the investigation of coding

and non-coding genetic variants, ultimately deepening our understanding of genetic varia-

tions contributing to human genetic diseases.
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2.0 Introduction

Protein coding and non-protein coding genetic variants can both contribute to human

genetic diseases. Protein-coding variants can lead to amino acid changes of the protein

through missense mutations or lead to truncated/no protein through nonsense mutations [1].

These changes have the potential to alter the protein’s structure or function, such as protein

stability, protein-protein interactions or sub-cellular localization, which can contribute to the

development of human diseases [2]. Non-protein-coding variants located in introns, upstream

or downstream of coding regions, or intergenic regions, may also contribute to disease through

regulatory mechanisms. For example, variants located in promoter or enhancer regions can

impact nearby gene expression, while variants in 5’ and 3’ untranslated regions (UTRs) can

affect mRNA stability, leading to Mendelian or complex diseases [13].

In my dissertation, I will explore coding and non-coding genetic variants related to human

diseases. In the first part of the introduction, I will discuss the importance of prioritizing non-

coding genetic variants in disease research and introduce various strategies that can be used

to identify and prioritize these variants. This topic is directly related to the background in

Chapters 3 and 4. Next, I will focus on a specific type of coding genetic variant that can lead

to nonsense-mediated decay (NMD). I will discuss the role of NMD in human genetic diseases

and the different existing tools for predicting NMD outcomes. This topic is directly related to

the background in Chapter 5. By exploring these two distinct research areas, this dissertation

aims to contribute to our understanding of the genetic factors that underlie human genetic

diseases and provide insights into potential diagnostic and therapeutic strategies for these

disorders.
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2.1 Non-protein coding variant prioritization

2.1.1 Importance of non-coding variant prioritization

Non-protein coding genetic variants, which were once thought of as ’junk DNA’, have

gained increasing importance in the study of human genetic diseases [13, 4, 5, 14]. Recent

genome-wide association studies have shown that more than 90% of single nucleotide variants

(SNVs) associated with human diseases are located in non-coding regions (Figure 2.1).

Furthermore, more studies into the regulatory role of non-coding DNA also shed light on the

functional role of non-coding DNA in the development of human diseases [13, 15, 16].

Whole-genome sequencing (WGS) has become increasingly popular for studying non-

coding genetic variants implicated in human diseases due to the decreasing cost of sequencing

and its ability to analyze both common and rare, and de novo non-coding genetic variants

[17]. However, whole genome sequencing (WGS) poses significant challenges, as it can detect

millions of genetic variants per genome and most of the current variant prioritization proce-

dures such as traditional genome-wide association tests or variant annotation tools like VEP

or Ensembl are often insufficient in filtering these variants, making it difficult to identify

causal variants for a disease of interest. Therefore, a better way to characterize and prior-

itize functional genetic variants potentially associated or causal to a disease is increasingly

needed in the field of human genetics research.

Recent advancements in computational methods that employ machine learning strategies

to integrate various functional and genetic datasets have shown promise in prioritizing non-

coding genetic variants. Those methods combine various datasets and provide a unified score

(we will later refer to it as variant score) that quantify the functional or pathogenic effect

of a variant that could potentially lead to a phenotype or disease. Although research in this

area is ongoing, studies have demonstrated the usefulness of these methods in identifying

causal variants in human diseases. For example, CADD has been instrumental in prioritizing

variants for WGS in autism spectrum disorder [6, 18]. Furthermore, these methods are

scalable and can handle the growing functional and annotation datasets.

4



Figure 2.1: Different categories of genetic variants in complex diseases. Reproduced from Lee

et.al. [5] (Figure licensed for re-use by Springers Nature and Copyright Clearance Center).
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2.1.2 Datasets used in non-coding variant prioritization

2.1.2.1 Comparative genomics data

It has been commonly believed genetic mutations contributing to human diseases that

can affect fitness consequences are typically subject to negative selection [19, 20]. As a result,

these pathogenic alleles are gradually eliminated over time, and the genetic regions in which

they occur tend to be conserved. It is predicted that 3% to 5% of the human genome is

conserved between vertebrates and other species [21]. More than half of the highly conserved

elements are located outside of protein-coding gene in the human genome [21].

Researchers have developed several methods to find conservation among different species,

such as GERP [20], Phastcons [19], Siphy [22], and PhyloP [23]. These methods detect poten-

tial functional variants by identifying nucleotide substitution rates that deviate from neutral

drift. For example, GERP and Phastcons can detect regions with a slower substitution rate

compared with neutrally evolving regions [20, 19]. Siphy captures the sequence with the

change of mutation rate and also uncovers characteristics of substitution patterns underly-

ing natural selection [22]. PhyloP, implemented with four statistical and phylogenetic tests,

can detect both faster and slower substitution rates compared with neutral drift and also in

a clade-specific manner [23].

The conservation score can serve as a valuable tool for prioritizing functional genetic

variants due to its ability to indicate pathogenicity. However, relying solely on this score can

present certain drawbacks. One limitation is that the conservation score does not consider

the specific functional context of genetic variants. Moreover, certain genetic variants associ-

ated with complex diseases, like cardiovascular diseases, may experience weak evolutionary

selection, making it challenging for evolutionary scores to accurately predict their impact

[24].

2.1.2.2 Functional genomics data

In addition to conservation scores, functional genomic data can also be used to generate

variant scores. Non-coding genetic variants exert their function to cause human genetic
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diseases usually by their regulatory roles; therefore, variants that are located in functional

elements can have the potential to cause human diseases. Functional genomics data catalog

the functional elements in the genome, which include non-coding RNA and regions that show

reproducible biochemical signatures such as protein binding or chromatin structure [25]. It

is estimated that around 80% of the human genome has at least one biochemical activity in

at least one cell type [25]. This is a much larger region than the conserved regions in the

genome and a larger and more complicated dataset to analyze.

The Encyclopedia of DNA Elements (ENCODE) and the Roadmap Epigenomics Pro-

gram are two large-scale databases that systematically provide us with functional genomics

data; the ENCODE aims to catalog all the functional elements in the human genome and the

Roadmap aims to investigate epigenetic modifications of the human genome [25, 15]. Other

projects such as Fantom5 catalog promoters and enhancers using Cap Analysis of Gene

Expression (CAGE) technology and GTEx provide us tissue-specific eQTLs that regulate

expression [26, 27].

Some commonly used functional genomics data are histone modification markers (e.g.

H3K4me3, H3K27ac, H3K27me3), DNA methylation, protein binding regions, open chro-

matin regions, chromatin 3D interactions, etc. Those markers are indicative of regulatory

regions in the genome. For instance, H3K4me3 is thought to be related to promoters,

H3K27ac is related to active enhancers and promoters, and H3K27me3 is associated with

repressed regions [28]. Open chromatin regions are also commonly used as indicative of

cis-regulatory elements [29].

Compared with conservation data, functional genomics data is context-specific, where

the context can be a specific tissue or cell type, a specific time point, or one person or a

group of people. This gives us the flexibility to use the data to accomplish a specific role.

But it also comes with great challenges, such as how to integrate the large amount of data

and how to find out the disease-relevant context.
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2.1.2.3 Other annotation data

There are some other annotation data that are commonly included to prioritize non-

coding variants. For example, minor allele frequency (MAF) can be used as an anno-

tation, as the alleles that are pathogenic to human are tend to eliminated through history

and are kept in low allele frequency. Therefore, allele frequency (AF) can be an annotation

for variants indicating pathogenicity. GC content (the GC percentage over a window (e.g.,

75kb) of a specific variant) is an informative annotation, as GC content has been found to

be associated with mutation rate [30], chromatin accessibility [31], and DNA methylation

[32]. Distance to nearest TSS is also a commonly used annotation because pathogenic

variants tend to reside within a certain distance (e.g. 1kb) of a transcription start site (TSS)

[33].

2.1.3 Methods used for non-coding variant prioritization

Typically, researchers use supervised or unsupervised machine learning methods to com-

bine the datasets above to generate unified variant scores; those score summarizes the

datasets and predicts the variant’s function or deleteriousness. For supervised machine learn-

ing methods, such as CADD [6] and GWAVA [33], researchers use a set of benign variants

and a set of pathogenic variants. Then, they build a model to utilize the annotations above

to best distinguish the benign and pathogenic variants. Therefore, supervised methods are

sensitive to the labeling data. On the contrary, unsupervised machine learning methods,

such as Eigen [24] or GenoCanyon [34], do not use any labeled data to build the model;

therefore, it is generally acknowledged that they are less biased and not sensitive to the

different sets of the labeling data. The advancements achieved by unsupervised methods are

usually modest, leaving room for improvements [5].

Current variant prioritization methods mainly fall into two categories: organism-level

variant scores and tissue-specific variant scores. Organism-level scores integrate genomic

features across multiple tissues/cell types into one score and predict the functional effect of

variants for an organism overall; tissue-specific scores, on the contrary, retain some tissue-

specificity from functional genomic data and predict the functional impact of variants in
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a specific tissue/cell type. Both two types of methods are disease-agnostic. Some recent

studies generate variant scores for specific diseases (disease-specific scores), either for only

one or a small group of diseases or for many diseases spanning various disease categories.

2.1.3.1 Organism-level variant scores

Organism-level variant scores, using either supervised or unsupervised machine learning

approach, summarize genomic features across all tissues/cell types and generate one score

that summarizes the functional or pathogenicity of the variant for the whole organism.

Some of them use a supervised machine learning approach. For instance, CADD (Com-

bined Annotation Dependent Depletion) is among one of the earliest variant scores that

combine various functional genomics data and conservation scores that derive a unified vari-

ant score [6]. CADD uses human-derived variants as benign variants and simulated de novo

mutations as possibly deleterious variants to train the model, and it applies a linear sup-

port vector machine to train the model. The key highlight for CADD is that it does not

use human-curated labeled pathogenic variants from databases such as Clinvar or Human

Gene Mutation Database (HGMD) but uses labeled variants based on evolutionary selection;

therefore, it has a much larger number of training variants. GWAVA (genome-wide annota-

tion of variants) was trained using three random forest algorithms and predicts non-coding

genetic variants [33]. It uses variants from the HGMD as pathogenic and matched variants

from 1000 genome projects (1KG) as benign control variants. GWAVA uses various anno-

tation resources, including histone modifications, open chromatin, conservation scores, and

other annotations such as CG context, allele frequency, and distance to the nearest TSS.

There are some unsupervised machine learning methods. GenoCanyon used an EM-

based algorithm that combines conservation scores and biochemical signals into a single

score [34]. Eigen assumes variants have two unknown groups, function and non-functional,

and blockwise conditional independence among different functional annotations [24]. Using

the correlated structure among different annotations, Eigen generates a score using a linear

weighted combination of the annotations. LINSIGHT employs a probabilistic model to ana-

lyze evolutionary data across various species and within human trajectory, thereby enabling
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the prediction of the fitness consequences of genetic variants [35]. Additionally, LINSIGHT

also combines the probabilistic model with a generalized linear model, so it integrates func-

tional genomic datasets into the analysis.

Variant
scores

Model Model type Coding or
Non-coding

Annotations
type

Training data

CADD [6] Linear support
vector machine

Supervised Both CONS, FUNC proxy-neutral
and proxy-
deleterious
SNVs

eigen [24] Unsupervised
spectral ap-
proach

Unsupervised Both CONS, FUNC,
OTHR

Variants from
1000 genomes

GenoCanyon
[34]

A statistical
framework

Unsupervised Non-coding CONS, FUNC the GWAS
Catalog and
surrounding
SNVs

GWAVA
[33]

Random For-
est algorithm

Supervised Non-coding CONS, FUNC,
OTHR

HGMD vari-
ants and
matched con-
trol variants

LINSIGHT
[35]

Probabilistic
model and a
generalized
linear model

Unsupervised Non-coding CONS, FUNC,
OTHR

Polymorphism
data from
54 unrelated
individuals
and divergence
data from
UCSC

CONS: comparative genomics data; FUNC: functional genomics data; OTHR: other annotation data

Table 2.1: Examples of organism-level variant scores.

2.1.4 Tissue-specific variant scores

Organism-level scores predict the variants’ function for the whole organism; however,

these methods do not provide information about which tissues those mutations have the

most impact. Therefore, some researchers generate tissue-specific scores that can indicate

the function of variants for specific tissues/cell types.

GenoSkyline is an example of a tissue-specific score, an extension of the GenoCanyon
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[7, 36]. Similar to GenoCanyon, it assumes SNVs are a mixture of two groups (functional

vs. nonfunctional) and fits a statistical framework to calculate the posterior probability of a

SNV being functional given genome annotations. However, Genoskyline uses a broader set of

epigenomic datasets (including eight different Chip-seq calls, such as H3K4me3 and H3K9ac

and DNA methylation data), and it generates 127 scores for each variant that can indicate

the tissue/cell type specificity. The Genoskyline score predicts the DNA functionality for

127 tissues/cell types.

Another example of a tissue-specific score is Fitcons2 [37]. Fitcons2 uses two types of

genomic features that contain four context-specific epigenomic annotations (e.g., DNase-

seq) and five context-agnostic annotations (e.g., Transcription Factor binding site across

cell types). Fitcons2 uses a probabilistic evolutionary model to fit human and non-human

sequence data and gradually builds a decision tree using the genomic features that best fit

the evolutionary model. Finally, variants will be mapped to clusters using the decision tree

and the Fitcons2 score, given by ρ, which indicates the probability that the mutation can

have fitness consequences based on the cluster in which the variant resides. Fitcons2 score

uses 115 different cell type-specific data, and it can predict variant deleteriousness in 115

different contexts.

Variant
scores

Model Model type Coding or
Non-coding

Annotations
type

Training data

Genoskyline
[7]

A statistical
framework
derived from
GenoCanyon
[34]

Unsupervised Non-coding CONS, FUNC the GWAS
Catalog and
surrounding
SNVs

Fitcons2
[37]

A probabilistic
evolutionary
model and a
decisin tree

Unsupervised Both CONS, FUNC,
OTHR

Population
genomics
data from 69
genomes and
comparative
genomics data
from UCSC

CONS: comparative genomics data; FUNC: functional genomics data; OTHR: other annotation data

Table 2.2: Examples of tissue-specific variant scores.
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2.1.5 Disease-specific variant scores

Tissue-specific variant scores can predict a variant’s function in specific tissues. However,

it is typically unclear which cell line/tissue combinations are best to distinguish disease risk

variants from benign ones for a given disease. Therefore, a few studies have developed variant

scores that can work on specific diseases.

Some disease-specific scores can predict variants for one or a small group of diseases.

For example, heartENN uses a convolutional neural network (CNN) and a broad range of

heart-related epigenetic datasets to predict the changes in the molecular effect of genetic

mutations for congenital heart disease [38]. Yousefian-Jazi et al. generated variant scores for

amyotrophic lateral sclerosis (ALS) using a CNN model on 2525 functional genomic features

and ALS GWAS dataset [39]. Yousefian-Jazi et al. developed a model that can prioritize

variants for 21 autoimmune diseases [40]. They trained a random forest algorithm on 2026

functional features using SNVs associated with 21 autoimmune diseases from HGMD and

clinvar variants. Those methods can predict genetic variants for one or a few diseases, and

they depend on hand-curated genomic features or GWAS datasets for a specific disease,

which is laborious and hard to apply to a broader range of diseases.

Some disease-specific scores cover a broader range of diseases. One computational frame-

work, ARVIN (Annotation of Regulatory Variants using Integrated Networks), built disease-

specific gene regulatory networks (GRN) and used features derived from the disease-specific

GRN and other genomic features to train a random foretest classifier [41]. Another disease-

specific score PINES, used epigenomic data from Roadmap and ENCODE and scored a

variant based on comparing the input variant with the background variants (variants with

no disease-relevance) [42]. To get disease-specific PINES score, users can either input disease-

associated SNVs from GWAS to calculate tissue enrichments or specify the disease-relevant

tissues; in either way, PINES will upweight disease-relevant annotations and output disease-

specific variant scores.

DIVAN (DIsease-specific Variant ANnotation) can also score disease-specific variants

[43]. DIVAN used an ensemble framework and trained 45 disease-specific models using epige-

nomic and genomic annotations and SNVs associated with 45 diseases. DIVAN improved
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performance in distinguishing disease-associated SNVs compared with other disease-agnostic

methods such as CADD or GWAVA.

2.1.6 Information sharing across different diseases

Disease-specific variant scores can prioritize genetic variants for specific diseases. How-

ever, it is important to note that diseases do not exist independently but are correlated.

Researchers have also revealed that different diseases can share key information, such as

genetic background, molecular mechanisms, or disease-associated gene expression patterns.

For example, immune diseases can share information. Cotsapas et al. analyzed 107 im-

mune disease-associated SNVs associated with seven immune system diseases. Surprisingly,

nearly half of these SNVs were associated with more than one disease [44]. They calculated

the distances between SNVs and grouped them into four distinct clusters to better under-

stand these relationships. Within each cluster, they examined the interactive proteins. They

found that the proteins within each cluster interacted with each other and were uniquely

expressed in immune-related cell types compared to other cell types. This suggests that dis-

eases can share similar mechanisms and involve similar tissues. Similarly, Li et al. analyzed

28 shared genetic variants in pediatric autoimmune diseases (pAID)[45]. They found that

pAID-associated genes (genes significantly associated with those shared genetic variants) are

highly expressed in immune-related cell types compared with non-immune-related cell types.

Psychiatric disorders can also share information. For example, Wingo et al. found shared

genetic background and shared causal proteins between psychiatric and neurodegenerative

diseases [46]. Those shared proteins are more expressed in brain-related cell types and tissues.

In another study [47], they also found shared SNVs among pairs of psychiatric disorders and

found that brain tissues have enriched expression levels in those diseases. However, no SNVs

are shared in more than two psychiatric disorders.

There is also evidence suggesting shared information between type 2 diabetes and Alzheimer’s

disease. For example, this study suggests shared genetic variants and shared causal path-

ways between type 2 diabetes and Alzheimer’s disease [48]. But they didn’t mention shared

tissues between them. Another study suggests shared mechanisms and signaling pathways

13



in disease etiology between type 2 diabetes and Alzheimer’s disease [49].

2.1.7 Disease-category specific variant score

Some researchers developed disease-specific variant scores for a disease category. For

example, eyeVarP [50] is a computational tool that can prioritize genetic variants for eye

diseases (HPO ontology, HP:0000478), which can include many child disease terms such as

glaucoma, coloboma, corneal disease, etc. In another study, researchers developed a non-

coding variant framework to prioritize genetic variants for 19 autoimmune diseases by using

pathogenic non-coding variants from autoimmune diseases and immune cell-related epige-

netic features [51]. Another group developed a disease category-specific variant prioritization

method called CASAVA [52]. In this paper, they developed a supervised method to score

variants in 24 broad disease categories, such as cardiovascular disease, while each disease

category contains 137 to 8065 disease-associated risk variants.

Overall, in this section, I introduced the background of different types of variant scores.

These are related to my work in my Aim 1 and 2. I will discuss rationales for Aim 1 and 2

in Section 2.3.1 and 2.3.2.

2.2 Nonsense-mediated mRNA decay (NMD) in genetic diseases

2.2.1 Nonsense-mediated mRNA decay

Nonsense-mediated mRNA decay (NMD) is a cellular quality control process that de-

grades mRNAs that contain premature termination codons (PTCs) or other types of abnor-

mal translation termination signals [53, 54]. PTCs can be introduced by single nucleotide

variants, insertions, deletions, or splice site mutations that cause one of the stop codons

(UAG, UGA, or UAA) to occur earlier than the canonical stop codon [8]. NMD is a pro-

cess that is thought to remove truncated proteins that can potentially have some deleterious

effect [53].

The mechanism of NMD in mammalian cells is usually referred to as the ’EJC model’ [53].
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An EJC (exon junction complex) is a multi-protein complex that resides on the junctions of

two exons during the pre-mRNA splicing process, and it includes proteins such as the core

protein eIF4A-III (eukaryotic initiation factor 4A-III) and additional proteins Magoh and

Y14 [55]. In the event of the protein translation, the ribosome moves through the mRNA

to the stop codon and removes the EJC along the way. However, in the case of an aberrant

mRNA containing a premature termination codon (PTC), the ribosome stops at the PTC

before the normal stop codon, and the EJC after the PTC cannot be removed. The retained

EJC will act as a signal to initiate the NMD degradation process [54].

2.2.2 Rules for nonsense-mediated mRNA decay escape

NMD can cause mRNAs containing PTCs to degrade; however, many transcripts bearing

PTCs can escape the NMD process [8]. For instance, the NMDective tool predicts that

roughly 51% of PTC variants may escape nonsense-mediated decay to some degree [12].

Based on the EJC model and research on somatic and cancer cells, researchers have developed

a set of rules to determine the NMD escapes based on the location of the PTC within

the transcript [8, 12]. Those rules are usually categorized as ”canonical” rules and ”non-

canonical” rules (illustrated in Figure 2.2):

• Canonical rules

– Last exon rule: the PTC that is located in the last exon

– 50-nt rule: the PTC that is located in the last 50 nt of the penultimate exon

• Non-canonical rules

– Start proximal rule: the PTC located within 150 bp of the start of the first exon.

– Long exon rule: the PTC located within an exon longer than 407 bp.

– Single exon rule: the transcript has only one exon.

Canonical rules can be mostly explained by the molecular mechanism of the ’EJC model.’

PTCs in the last exon can escape from NMD as the EJC has been removed through the

translation process. Similarly, PTCs in the last 50 nt of the penultimate exon can also lead

to the EJC being removed because of the elongation/footprint of the ribosome [56]. The

canonical NMD rules have been largely tested and validated by many large-scale human
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genomic studies [8]. For example, using the paired human genome and transcriptome data

from the GTex, researchers revealed that PTC variants located in regions following the

”last-exon” and ”50 nt” rules had the lowest rate of allelic imbalance, indicating they escape

NMD [57]. While these canonical rules can predict some NMD escapes, researchers found

exceptions that deviate from the rules [58, 59, 57]. This suggests additional rules may allow

some mRNAs to evade NMD.

Non-canonical rules were later proposed by using large-scale studies of human cancer

genomes [60]. The start proximal rule describes that NMD efficiency is greatly reduced for

transcripts bearing PTC in the first 150 nt. This could probably be explained by transla-

tion re-initiation, where the ribosome does not cycle back after translation termination but

instead keeps scanning and starts at the downstream start codon [61, 62]. Cancer data also

suggest long-exon rule [60], which may be explained by the hypothesis that the EJC needs to

be in physical contact with the PTC to initiate the NMD process [8, 63]. Some researchers

also found some evidence supporting the single exon rule by studying intronless genes such

as human histone H4, mouse heat shock protein 70, and human melanocortin 4-receptor gene

[64, 65].

Overall, according to one large cancer genome study, it is suggested that canonical rules

can explain roughly 50% of the variance in NMD efficiency, while non-canonical rules can

explain 25% [60].

2.2.3 NMD and human genetic diseases

In general, PTC-containing transcripts that undergo NMD lack protein production, lead-

ing to loss-of-function outcomes. Conversely, PTC-containing transcripts that evade NMD

may lead to the production of truncated proteins, which can exhibit a range of functional

outcomes, including loss of function, partial function (hypomorphic), dominant negative

(antimorphic), or gain of function (neomorphic) [8].

When a mRNA escapes NMD, the resulting production of a truncated protein can have

different biochemical effects. These effects can either exacerbate or ameliorate the disease.

For example, an upstream PTC in the beta-globin gene can be seen by NMD, therefore
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Figure 2.2: NMD escape rules. Reproduced from Supek et al. [8]. (Figure licensed for re-use

by Elsevier and Copyright Clearance Center).

leading to a recessive form of β-thalassemia; on the contrary, if the PTC locates at the

3’ end of the gene, it can escape from NMD, leading to a truncated beta-globin protein,

which precipitates in toxic inclusion bodies, resulting in a dominant form of the disease. A

contradicting example is Duchenne muscular dystrophy (DMD). The PTC mutations in the

3’ of the dystrophin gene can lead to the milder DMD phenotype because the truncated

protein can retain partial function. In contrast, the PTC mutations in the upstream of the

gene result in a severe phenotype due to the loss of expression of the protein with partial

function (reviewed in [8, 9, 10]).

NMD can have varying effects on human diseases; however, the overall impact of NMD on

these diseases remains unclear. To delve deeper into this topic, Lindeboom et al. conducted

a study analyzing the impact of NMD in evolutionary selection and pathogenic variants

in different disease genes. They found that 52% of rare PTC variants can trigger NMD

compared with 25% of the common PTC variants [12]. This suggests that rare variants,

which usually lead to a more severe phenotype due to their elimination through purifying

selection, exhibit a higher abundance of NMD trigger variants. Additionally, they found
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49 disease genes that exhibited over a two-fold enrichment of predicted NMD-evading PTCs

and 155 disease genes that displayed over a two-fold enrichment of predicted NMD-triggering

PTCs [12]. This suggests that in more disease genes, NMD can aggravate the phenotype.

Overall, these findings challenge the traditional belief that NMD protects individuals from

truncated proteins, as the overall impact of NMD can exacerbate human genetic diseases,

although this trend can vary across different disease genes.

2.2.4 Existing tools that can predict NMD for genetic diseases

There are several existing tools that can annotate NMD escaping for PTC variants.

An Ensembl VEP plugin can predict whether a PTC variant can escape from NMD. It

uses four rules, including the last exon rule, 50nt-rule, start proximal rule, and single exon

rule. VEP can annotate PTC variants that introduce stop gain, but it cannot annotate

frameshift variants where the stop codon is located downstream of the variant. In addition,

VEP can annotate NMD escape outcome, but it does not output which rule it used to predict

the escape.

Another tool is NMDetective [12]. It trains a random forest model on 2840 PTC introduc-

ing mutations where the mRNA level of the PTC-bearing transcripts and the corresponding

wild-type transcripts are measured. This model can predict the efficacy of the NMD for

all PTC introducing single nucleotide variants, giving a score between 0 and 1, where 0

means complete NMD escape and 1 means NMD triggering. NMDetective can predict single

nucleotide variants; however, it cannot predict insertions or deletions that cause PTCs.

There are some other tools that predict NMD escape. NMDEscPredictor can predict

frameshift indel variants, but it considers only the canonical rules to make the prediction.

[66]. ALoFT can predict the outcome of the PTC variant into benign, dominant, and

recessive variants, and it can also predict NMD escape. At the same time, it does not

specify the rules of the NMD escape prediction [67]. SNPEff is a variant annotator that can

predict NMD escape but only considers two canonical rules (last exon and 50-nt rules) [68].
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2.3 Rationales for specific aims

2.3.1 Aim 1: Develop an interpretable general framework for disease-specific

variant prioritization

In-silico non-coding variant prioritization methods can predict variants’ functional out-

comes and are playing an increasingly important role in studying the genetic causes of human

diseases [13, 4, 5, 14]. Current variant prioritization methods mainly fall into two categories:

organism-level variant scores, such as CADD [6], which assess the functional impact of vari-

ants on the entire organism, and tissue-specific variant scores, like Genoskyline [7], which

evaluate the functional consequences of variants within specific tissues or cell types. However,

these scores are not disease-specific and do not provide insights into the functional impact of

variants within the context of a particular disease. Therefore, it is crucial to develop variant

prioritization methods tailored to specific diseases.

Disease-specific variant prioritization methods do exist. However, some of them are

limited to a single disease (e.g. congenital heart disease [38]) or a small group of diseases

(e.g. autoimmune diseases [40]). While other methods can prioritize variants for a broader

range of diseases, they have their weaknesses such as requiring prior knowledge of tissues

relevant to a disease [41] or using complex machine learning models (e.g., ensemble decision

trees) that are difficult to interpret [43].

In this aim, we propose a simple logistic regression approach for converting tissue/cell-

type specific variant scores into disease-specific scores. This not only allows for improved

prioritization of disease-specific variants but also enables the calculation of disease simi-

larities based on disease-relevant tissues and cell types. Through this method, we aim to

demonstrate that a disease-specific approach outperforms current organism-level and tissue-

specific approaches. Furthermore, by analyzing the tissue weights derived from the model,

we expect to gain insights into the relationships between diseases and identify relevant tis-

sues for specific diseases. Overall, our aim is to provide a straightforward and interpretable

approach to disease-specific variant prioritization, which can enhance our understanding of

the genetic basis of human diseases and improve the identification of disease-contributing
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non-coding variants.

2.3.2 Aim2: Combine SNVs in related diseases to improve disease-specific vari-

ant prioritization

In Aim 1, we developed a disease-specific approach to prioritize genetic variants in 111

diseases. While this method outperforms existing organism and tissue-specific variant scores,

it still exhibits a moderate level of performance, leaving room for improvement. This could

be partially due to the limited training samples available for each disease. Therefore, a

method to increase the training dataset to improve disease-specific variant prioritization is

needed.

The current method CASAVA increases the training dataset by aggregating SNVs within

the same disease categories [52]. However, CASAVA did not assess the effectiveness of this

grouping approach in comparison to considering individual diseases separately. Furthermore,

CASAVA did not evaluate a more suitable metric for grouping related diseases, whether it

be a genetic correlation, semantic similarity, or other disease-relatedness metric.

Thus, in Aim 2, we propose an information-sharing method to improve disease-specific

variant prioritization by combining non-coding SNVs among disease terms. We will com-

bine SNVs from two diseases in this aim, with the potential to extend this methodology

to encompass more than two diseases. We will utilize it for all possible disease pairs in the

GWAS Catalog. This approach allows us to systematically evaluate whether including SNVs

in related diseases can lead to improved variant prioritization. In addition, it also allows

us to find a better metric to group diseases by comparing three different disease similar-

ity metrics. Overall, we anticipate that combining SNVs across disease terms will improve

disease-specific variant prioritization.

2.3.3 Aim 3: Explore nonsense-mediated mRNA decay (NMD) in genetic dis-

eases

Nonsense-mediated mRNA decay (NMD) is a cellular process responsible for degrading

mRNAs that contain premature termination codons (PTCs) [53, 54]. PTC-bearing variants
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can either undergo NMD or escape from it, and they represent a significant proportion

of pathogenic genomic variations with clinical relevance [12, 60]. However, the escape or

retention from NMD can yield diverse biochemical consequences in the context of human

genetic diseases. For example, escaping from NMD can worsen beta-thalassemia but alleviate

the phenotype of Duchenne muscular dystrophy (DMD) [8, 9, 10]. Therefore, the accurate

annotation of NMD escape outcomes for PTC-bearing variants is crucial for investigating

the impact of these variants on human genetic diseases.

Existing tools for predicting NMD have certain limitations. For instance, VEP can only

predict stop gain variants but not frameshift variants that lead to downstream stop codons

[11]. Similarly, NMDetective can predict single nucleotide variants but not insertions or

deletions [12]. Other tools, such as NMDEscPredictor and SNPEff, consider only a subset

of NMD rules when making predictions [66, 68].

Aim 3 focuses on developing an NMD prediction tool that can accurately annotate

transcript-variant pairs containing PTCs for predicting escape from NMD. This tool will

incorporate functions that are not currently available in other existing methods. It will be

based on established and experimentally validated rules for NMD escape. Furthermore, we

will utilize this tool to annotate variants from the GWAS catalog and investigate the impact

of NMD on human complex diseases by analyzing enrichment patterns. Through this anal-

ysis, we aim to enhance our understanding of the consequences of PTC-containing variants

in human diseases.

2.4 Public health relevance

Genetic factors play an important role in human diseases, such as cancer, immune system

diseases, mental or behavioral disorders, cardiovascular diseases, etc. [69]. Studying the

genetic factors underlying human diseases can help us understand the molecular basis of

diseases and, therefore, can help us provide early diagnosis and screening, disease treatment,

personalized medicine, and gene therapy. For example, an accurate diagnosis of primary

immunodeficiency disorders by genetic testing can find out which genes are disrupted for
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individuals and, therefore, inform decisions on targeted therapeutic options [70]. For another

example, understanding the genetic causes of autism spectrum disorder can help us develop

therapeutic targets that rescue the haploinsufficiency of gene expression [71]. The research

work conducted in Chapter 3 and 4 can be used to prioritize and annotate non-coding

genetic variants in genetic studies such as whole-genome sequencing studies. This can help

us elucidate the genetic underpinning of human diseases, and ultimately improve healthcare

by early diagnosis or precise treatment.

The research work conducted in Chapter 5 where we studied NMD in human genetic

diseases can shed light on medical therapeutic strategies for diseases caused by PTC. For

some patients, stimulating NMD could be beneficial, while for other patients inhibiting

NMD is a potential therapeutic strategy [8]. Therefore, understanding the NMD effect on

diseases is crucial in designing therapeutic strategies. For example, the stop codon read-

through strategy can enable mRNA to evade NMD, and this approach has been used in the

treatment of cystic fibrosis and Duchenne muscular dystrophy [72, 73, 74, 75]. Conversely,

in a contrasting example, as NMD can suppress the production of toxic truncated globin

protein, stimulating NMD may be potentially beneficial for beta-thalassemia therapy [76].
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3.0 Disease-specific analysis improves prioritization of non-coding genetic

variants

The following chapter was adapted from the manuscript Qianqian Liang, Abin Abraham,

John A Capra, and Dennis Kostka, ”Disease-specific prioritization of non-coding GWAS

variants based on chromatin accessibility” where I am the first author [77]. Minor revisions

were made to address feedback from the thesis committee. Please see Section 3.6 for author

contributions.

3.1 Abstract

Non-protein-coding genetic variants are a major driver of the genetic risk for human dis-

ease; however, identifying which non-coding variants contribute to diseases and their mech-

anisms remains challenging. In-silico variant prioritization methods quantify a variant’s

severity, but for most methods the specific phenotype and disease-context of the predic-

tion remain poorly defined. For example, many commonly used methods provide a single,

organism-wide score for each variant, while other methods summarize a variant’s impact in

certain tissues and/or cell-types. Here we propose a complementary disease-specific variant

prioritization scheme, which is motivated by the observation that variants contributing to

disease often operate through specific biological mechanisms.

We combine tissue/cell-type specific variant scores (e.g., GenoSkyline, Fit- Cons2, DNA

accessibility) into disease-specific scores with a logistic regression approach and apply it to

25,000 non-coding variants spanning 111 diseases. We show that this disease-specific aggre-

gation significantly improves association of common non-coding genetic variants with dis-

ease (average precision: 0.151, baseline=0.09), compared with organism-wide scores (Geno-

Canyon, LINSIGHT, GWAVA, eigen, CADD; average precision: 0.129, base- line=0.09).

Further on, disease similarities based on data-driven aggregation weights highlight meaning-

ful disease groups, and it provides information about tissues and cell-types that drive these
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similarities. We also show that so-learned similarities are complementary to genetic similar-

ities as quantified by genetic correlation. Overall, our approach demonstrates the strengths

of disease-specific variant prioritization, leads to improvement in non-coding variant priori-

tization, and it enables interpretable models that link variants to disease via specific tissues

and/or cell-types.

3.2 Introduction

Characterizing non-coding genetic variants in the human genome is essential for mak-

ing progress toward better understanding the genetic components of the disease. Protein-

coding sequence accounts for only about two percent of human DNA, and 90% of disease-

associated variants discovered by genome-wide association studies (GWAS) are located in

non-protein-coding regions [78]. Furthermore, whole-genome sequencing (WGS) discovers

disease-associated variants genome-wide [79, 80] and is increasingly becoming an assay of

choice. Therefore, approaches for characterizing and prioritizing non-coding variants can be

expected to play an increasingly important role, especially when assessing discovered variants

in the context of further functional follow-up experimental studies.

Efforts to (computationally) characterize and better understand non-coding variants take

advantage of sequence, functional genomics, comparative genomics, and epigenomics data

[81, 15, 16], amongst others. These data are combined and used to train and develop su-

pervised and/or unsupervised models that attempt to quantify a variant’s impact [5]. We

find it conceptually useful to distinguish between variant scores that model overall impact

(that is on the level of the whole organism, organism-level scores) and scores that quantify

impact in a specific context, like a tissue or a cell-type (i.e., tissue-level scores). Examples

for organism-level scores are CADD [6], Eigen [24], or LINSIGHT [35], while scores from

methods like GenoSkyline [7], Fitcons2 [37], or FUN-LDA [82] are tissue-specific.

Often interest in a variant is from the perspective of studying a specific disease. In that

case, organism-level scores are likely to be overly general. That is, a variant’s impact might

be considered high because it disrupts the functional role of a sequence element. However,
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that functional role may be unrelated to the disease of interest. In one study, for instance,

organism-level scores like CADD and DANN were unable to discover an enrichment signal

for brain-related traits, while context-specific variant scores focusing on relevant tissues were

successful [83]. That is, tissue-specific scores can address the issue of disease specificity to

some extent. However, aspects of disease-relevant tissues typically remain unknown, and

often more than one tissue is implicated with a specific trait [84]. This suggests the use of

disease-specific variant scores that characterize variants in the context of a specific disease

phenotype of interest.

Computational methods for disease-specific variant prioritization do exist. Some ap-

proaches are geared towards one disease (e.g, congenital heart disease [38], amyotrophic

lateral sclerosis [39]) or towards a specific class of diseases (e.g., autoimmune diseases [40]).

This focus prevents them from being readily adapted to other disease types. Others, like

DIVAN [43], PINES [42], and ARVIN [41], cover a broader range of disease types. Of these,

ARVIN requires a priori knowledge of disease-relevant tissues, whereas DIVAN and PINES

do not. PINES uses an enrichment-based method to predict and up-weight disease-relevant

tissues/cell-types, whereas DIVAN uses a more complex machine learning algorithm. The

PINES approach is evaluated on a relatively small set of traits (∼10 different contexts),

while DIVAN’s more complex model renders understanding the relationship between differ-

ent tissues and diseases difficult.

In this work, we derive disease-specific variant scores combining published tissue-specific

scores. We use a carefully regularized logistic regression approach to derive data-driven

disease-specific combination weights, which in-turn allow us to assess the similarity between

different disease phenotypes. Using the NHGRI-EBI GWAS catalog [78] we compiled a

benchmark dataset containing about 63k phenotype-associated non-protein-coding single

nucleotide variants across 111 disease phenotypes (together with matched random controls).

We then demonstrate that using disease-specific combination weights outperforms conven-

tional organism-level approaches, that our interpretable model has competitive performance,

and that it enables a disease similarity measure that captures information complementary

to established measures like genetic correlation.
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3.3 Methods

3.3.1 Data sources and processing

3.3.1.1 Disease-associated variants

Disease-associated non-coding single nucleotide variants were retrieved from the NHGRI-

EBI Catalog of human genome-wide association studies database (GWAS catalog, version

2020-12-02, downloaded from https://www.ebi.ac.uk/gwas/docs/file-downloads, no

additional p-value threshold was imposed). These data contained 122,396 unique non-coding

SNVs spanning 2,782 phenotypes, where non-coding was defined as variants not overlapping

protein-coding sequence (GENCODEv36); we also excluded variants annotated as protein

coding sequence variants (e.g. missense variants, frameshift variants) as a SNV’s ”func-

tional class” in the GWAS Catalog. Variants in the GWAS Catalog are annotated with

phenotypes using the Experimental Factor Ontology (EFO, https://www.ebi.ac.uk/efo)

[85]. We then focused on variants with phenotype terms annotated in disease domain of

the EFO (i.e., all terms/traits/phenotypes we consider are descendants of the term “dis-

ease” (EFO:0000408, EFO version 3.24.0, accessed 2020-11-17). Further on, we restricted

ourselves to phenotypes with at least 100 annotated non-coding SNVs. This yields 121

diseases and 31,103 SNVs. Next, SNVs in the HLA region, and SNVs with minor allele

frequency (MAF) less than 1% in the European population as reported by the International

Genome Sample Resource were excluded (as they cannot be matched to control SNVs with

the SNPsnap approach, see below). Out of 31103 SNVs, a total of 5225 SNVs were removed.

Finally, we further removed diseases that had fewer than 100 SNVs after filtering in the

previous step. As a result, we were left with 111 diseases and 25,561 SNVs, totaling 77,028

phenotype-SNV associations, since one SNV can be annotated to more than one phenotype.

Appendix Data A.3.1 and A.3.2 contain 111 phenotypes and 77,028 phenotype-associated

SNVs we used in this study. We also grouped SNVs in LD blocks (SNPsnap, r2 ≥ 0.5) and

identify SNVs with the minimum p-value per block(“representative SNV”); we provide this

information, which we use in some of the analyses described below, in Appendix Data

A.3.2.
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3.3.1.2 Control variants

To adjust for the non-random distribution of disease-associated SNVs across the genome

[33], we generated matched control variants. For each disease-associated SNV we generated

matched control non-coding variants with MAF ≥1% using four different strategies, where

the non-coding is again defined discussed above (Section 3.3.1.1). The four strategies are:

Random For each disease-associated SNV, we selected ten SNVs from common non-coding

variants in 1000G EUR at random (i.e., equal probability for all SNVs) as controls.

TSS-matching We processed common non-coding SNVs and selected a subset of these

variants as controls, where the distribution of distances to the nearest protein-coding

gene’s transcription start site (TSS) are matched between control set and disease-associated

SNVs (similar to GWAVA, [33]). Specifically, we sorted all common non-coding SNVs by

the distance to the nearest TSS and divided them into 50 bins, where each bin contains

the same number of SNVs. Then, for each disease-associated SNV, we randomly selected

ten control SNVs from the bin containing the disease-associated SNV’s distance to the

nearest gene.

SNPsnap-matching Using SNPsnap (an online tool that can select the matched SNVs for

given SNVs using specific criteria) [86], we matched control SNVs to disease-associated

variants in terms of minor allele frequency, gene density (r2 cutoff ld0.8), distance to the

nearest gene TSS, and number of SNVs in LD. Our parameters for maximum allowable

deviation of the input SNVs were: 5%, 50%, 20% and 50%, respectively. We randomly

selected ten control SNVs per disease-associated SNV from SNPsnap’s results, and we

ensured there are no duplicated control SNVs for different disease-associated SNVs. If

there were less than 10 control SNVs returned by SNPsnap, we kept all of the control

SNVs. If no control SNVs were matched, we removed the disease-associated SNVs (a

total of 311 SNVs) from our analyses.

SNPsnap-TSS-matching Essentially the same as in SNPsnap-matching, but controlling

only for the distance to the nearest genes (maximum allowable deviation: 20%); for three

other attributes “maximum allowable deviation” is set to 10,000%. We note that in both

SNPsnap-matching and SNPsnap-TSS-matching, distance is measured by distance to the
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nearest gene, whereas for TSS-matching only protein-coding genes are considered.

In all four matching strategies we excluded variants annotated in the GWAS catalog as

control SNVs. One control variant can only be matched to one disease-associated SNV. In

our research, we chose SNPsnap-matching for our main results, but we have compared the

different performance of organism level scores using the four different matching strategies

(See Appendix Methods A.1.1 and Appendix Figure A.1- A.2). And we provided the

four sets of control variants in Appendix Data A.3.3.

3.3.1.3 Additional data sources, variant scores

We used pre-computed SNV annotations from the following sources:

• CADD v.1.3: http://krishna.gs.washington.edu/download/CADD/v1.3/1000G_phase3.

tsv.gz

• EigenPC v.1.1:https://xioniti01.u.hpc.mssm.edu/v1.1

• Fitcons2: http://compgen.cshl.edu/fitCons2/hg19

• GenoCanyon: http://genocanyon.med.yale.edu/GenoCanyon_Downloads.html

• GenoSkylinePlus: http://genocanyon.med.yale.edu/GenoSkylineFiles/GenoSkylinePlus/

GenoSkylinePlus_bed.tar.gz

• GWAVA v.1.0: ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/VEP_

plugin/gwava_scores.bed.gz

• LINSIGHT: http://compgen.cshl.edu/%7Eyihuang/tracks/LINSIGHT.bw

• DIVAN: https://sites.google.com/site/emorydivan

• ncER: https://github.com/TelentiLab/ncER_datasets

• DHS accessibility: We downloaded Avocado-imputed [87] DNase1 hypersensitive sites

(DHS) signal for 127 ENCODE biological contexts (tissues / cell types) from https:

//noble.gs.washington.edu/proj/avocado/data/avocado_full/DNase/.
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3.3.2 Tissue-weighted variant prioritization based on tissue-specific score (e.g.,

DNase1 hypersensitivity)

3.3.2.1 A penalized logistic regression model for context-weighted score aver-

aging

For each disease Dp, where m ∈ {1, 2, ..., 111}, we built a lasso logistic regression model.

For predicting SNV’s associations with a disease term, we consider SNVs as observations,

and each SNV is described as a vector x ∈ Rd of variant scores in d tissues/contexts; we

arrange vectors {xi}ni=1 for n observations (n SNVs) in a matrix X ∈ Rn×d, together with a

vector y of n binary entries, indicating for each SNV association with a specific disease term

(no=0/yes=1). In addition, we denote the average score (across contexts) for a SNV i by

x̄i, which is also a basline score because it aggregates across contexts.

We use a logistic regression model of the form

log
pi

1 − pi
= αx̄i + β′xi s.t. α ≥ 0 (1)

where α ∈ R+ and β ∈ Rd are regression coefficients, and pi is the probability that SNV i

is associated with a disease that is studied. We fit a regularized version of the negative log

likelihood

arg min
α0,α,β

− 1

n

n∑
i=1

[
log(1 − pi) + yi log

pi
1 − pi

]
+ λ||β||22/2 (2)

where the dependence on α,β of the first term is through Equation (1). For large regular-

ization parameters λ this will yield small β → 0 and recover the baseline (x̄) of unweighted

averaging of context scores (scaled by a non-negative factor α). We implemented this ap-

proach using the R package glmnet (version 2.0-18, [88]) and determined the regularization

parameter via a nested 5-fold cross validation (cv.glmnet function) through maximizing the

area under the (cross-validated) ROC curve. In the nested 5-fold cross validation, we used

the inner loop to select the regularization parameter λ, and used the selected λ to train and

test the model in the outer loop. Class weights were employed to balance skewed class sizes.

The method described in this section is referred to as tissue-weighted in the paper.
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3.3.2.2 Disease similarities from context-weighted score averaging

Context-weighted score averaging, as described above, results in disease-specific coeffi-

cient vectors ({β(p)}, with p indexing disease terms), together with bootstrap estimates for

the standard deviation of each coefficient (that can be arranged in corresponding vectors

{γ(p)}). Specifically, we use 5-fold cross-validation repeated 10 times, yielding 50 coefficient

vectors for each disease. We use their mean for our estimate of β(p), and their standard

deviation as an estimate of γ(p).

For a pair of diseases (dp, dq) we then define a disease similarity through similarity of

associated coefficient vectors β(p) and β(q), taking into account our estimates of coefficient

variability. Specifically, we fit a weighted linear regression model (i.e., regressing β(p) on

β(q)), with regression weights taking into account coefficient variability as follows:

w
(p,q)
k = 1

/√
spks

q
k and s◦k = αγ

(◦)
k + (1 − α)m for ◦ ∈ {p, q},

where we chose m to be the 25% quantile of all (estimated) standard deviations observed,

and α = 3/4. Therefore, spk and sqk are shrunken versions of the standard deviations for the

regression coefficients of disease p and disease q in tissue/context k, respectively. Finally,

for disease pairs with a positive coefficient from the weighted linear regression we take the

coefficient of determination (R2) as a similarity measure; for disease pairs with a negative

coefficient, we take −R2. We note that for constant regression weights {w(p,q)
k } this is equal

to the Pearson correlation between the coefficient vectors we obtain from context-weighted

score averaging (i.e., cor(β(p),β(q))).

3.3.3 Variant prioritization performance

3.3.3.1 Tissue-weighted cross-validation performance

To measure the cross-validation performance of Tissue-weighted, we use repeated cross-

validation [89] to reduce the variance (due to the random partitioning of data into 5 folds).

Here, we repeated 5-fold cross-validation 30 times, and record the performance of each repeat.

We later use the mean performance of the 30 repeats as the performance of that method

and we also show the variance in figures such as Figure 3.4.
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3.3.3.2 Comparing organism level scores

For each disease we have disease-associated and control SNVs, and corresponding pre-

computed organism-level scores. With this setup we calculate performance metrics of inter-

est (area under the receiver operator characteristic curve (AUROC) and average precision

(AUPR)), and obtain disease-specific performance metrics for each scoring approach. To

compare performance between organism-level scores on the same disease we use performance

measures computed on 30 bootstrap samples (each bootstrap sample randomly contains 90%

of disease and control variants) and then employ the Wilcoxon signed-ranks test to test to

assess differences in performance. This yields p-values as reported in Appendix Data A.3.4.

With respect to aggregating comparisons across diseases, we note that disease terms

can (and do) share SNVs, so performance metrics in different terms are not necessarily in-

dependent. Also, disease terms can vary substantially in the number of annotated SNVs.

We again use Wilcoxon singed-ranks test [90] on performance metrics (computed using all

disease-associated- and control-SNVs for each disease term) to compare two organism-level

variant scores aggregate across diseases. This approach yields p-values, as reported in Ap-

pendix Data A.3.5.

3.3.3.3 Comparing tissue-weighted scores

Tissue-weighted baseline scores (see above) are calculated in the same way as organism-

level scores. For tissue-weighted scores with data-driven tissue-specific weighting (see above),

we use cross-validated performance measure for each bootstrap sample and the same 30 boot-

strap samples as when we compared between organism-level scores. And then we use the

same Wilcoxon signed-ranks tests to measure the difference. For comparing scores aggre-

gated across diseases we again proceed analogous to organism-level scores and use a Wilcoxon

singed-ranks test on cross-validated disease-specific performance measures. Results are sum-

marized in Appendix Data A.3.8 and A.3.9.
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3.3.3.4 Comparing organism-level and tissue-weighted scores

For comparisons between organism-level and tissue-combined scores we again use a

bootstrap approach: for a specific disease term we use the Wilcoxon signed-ranks tests

as discussed above to compare performance measures from organism-level scores with tissue-

weighted scores. We note that this approach does not take into account: (a) Variability

in the organism-level scores originating form variability of the data they are derived from,

and (b) The possibility that organism-level scores may have already used SNVs in their

score derivation process, and we use them again for evaluation in their score derivation pro-

cess. However, we don’t expect these issue to substantially confound or results, and we note

that incurred bias in our comparisons would expected to be in favor of organism-level scores.

Results are summarized in Appendix Data A.3.6, A.3.7, A.3.10 and A.3.11.

3.3.3.5 DIVAN performance assessment and comparison.

To assess and compare our performance with DIVAN [43], we generated a test set

of SNVs from the GWAS catalog that were i) added after DIVAN had been published

(i.e., after 05/28/2016) and ii) not present in the database used to train DIVAN (Asso-

ciation Result Browser https://www.ncbi.nlm.nih.gov/projects/gapplus/sgap_plus.

htm) and iii) not within 1kb distance around SNVs used to train DIVAN and iv) were

annotated to a disease phenotype addressed by DIVAN.

Control SNVs were generated using SNPsnap matching, as described above. To be

able to satisfy criterion iv), we mapped our disease terms (EFO terms) to disease terms

used by DIVAN (MeSH terms) using the EMBL-EBI Ontology Xref Service (OxO, https:

//www.ebi.ac.uk/spot/oxo/, retrieved on April 19, 2020) and were able to resolve 41 out

of 45 terms (Appendix A.3.12). Of these, we keep terms with 20 or more disease associated

SNVs in the test set and 50 or more SNVs in a training set that we also constructed (see

below), yielding 29 overall disease phenotypes we used in our analysis. In order to fairly

compare DIVAN with our logistic regression approach we constructed a training set using

disease-associated SNVs from the GWAS catalog and the Phenotype-Genotype Integrator

(PheGenI, https://www.ncbi.nlm.nih.gov/gap/phegeni) [91], excluding SNVs in the test
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dataset describe above, or SNVs within 1kb around test SNVs. Appendix Data A.3.13 sum-

marizes test and training data used for this analysis. Results are summarized in Appendix

Data A.3.14.

In addition, we also measured the difference in DHS-weighted variant score between

disease-associated variants and matched controls in DIVAN test set. The delta value was

used to quantify this difference. We found that overall, disease-associated variants had

higher variant scores than controls in the DIVAN test set. In particular, for diseases such

as Crohn’s disease, the mean delta value can be as high as 0.1 in variant score. For more

detailed information, please refer to Appendix Figure A.7.

3.3.3.6 Performance assessment using chromosome hold-out

To assess the performance of our DHS tissue-weighted score we also used a chromosome

hold-out strategy, with test SNVs on different chromosomes from training data. Specifi-

cally, for each disease, we choose a set of chromosomes that contains approximately 20%

SNVs with a 1/10 positive to negative ratio (the same as the cross-validation setting) as

a test set. Selection of test chromosomes is performed for each disease term separately,

as disease-associated SNVs differ. To automate the procedure, we deployed (binary) linear

programming to pick out chromosomes in test set for each disease.

Specifically, for each disease term we solve the optimization problem

argmax {xi}22i=1

∑22

i=1
cixi

subject to
∑22

i=1
w+

i xi ≤ 0.2 and xi ∈ {0, 1},

where {xi} are binary indicator variables whether a chromosome is included in the test/hold-

out set; w−
i and w+

i are the fraction of disease-associated (w+
i ) and control SNVs (w−

i ) on

chromosome i and weights in the objective function are defined as ci = w+
i − |w+

i − w−
i |.

This approach selects, for each disease term, a set of chromosomes to hold out that contain

about 20% of disease-associates SNVs and that approximately reflects the overall imbalance

between disease-associated and control SNVs. Appendix Figure A.18 and A.19 contain

performance evaluations on chromosome hold-out sets.
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3.3.3.7 Performance assessment using one SNV per LD block

To assess the effect of SNV correlation on our results we also performed analyses using

only a single representative SNV per LD block (defined by r2 ≥ 0.5, see Section 3.3.1.1).

Results are shown in Appendix Figure A.20 and A.21.

3.3.4 Comparison with genetic correlation

We retrieved genetic correlation values of disease pairs from the GWAS atlas [92]. To

be able to use these data we mapped EFO disease terms (used in the NIH-NCBI GWAS

Catalog and in our study) to terms used in the GWAS atlas study. To do so, we extracted

synonyms of each EFO term (as listed on EFO ontology) and compared each synonym to the

”trait” and ”uniqtrait” column in the GWAS atlas data. All matches (with one tolerated

letter substitution) were used.

In this approache a single EFO term can map to multiple GWAS atlas traits and studies.

To estimate the genetic correlation between two EFO terms (say di and dj), we use a weighted

combination of genetic correlation values:

rg(dp, dq) =
∑
l,m

wlmrg(s(dp)l, s(dq)m)

where rg(·, ·) is the genetic correlation of two diseases, {s(dp)}rp=1 and {s(dq)}sq=1 are the

GWAS atlas studies that are mapped to EFO term dp and dq, respectively; wlm is a weight

for each combination of the GWAS atlas studies accounting for the sample sizes of different

studies used to estimate genetic correlation values. We choose

wlm = w̃(s(dp)l) · w̃(s(dq)m)

where

w̃(s(dp)l) = size(s(dp)l)/
∑
k

size(s(dp)k)

where ”size” denotes the sample size of a study. This schene puts higher weights on studies

with large sample sizes and smaller weights to studies with smaller sample sizes.
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3.3.5 Notes about epimap comparison, cluster annotation and display

3.3.5.1 Epimap trait-tissue association for table 3.5

We obtained the latest SNP-centric GWAS enrichments table from the EpiMap Reposi-

tory at http://compbio.mit.edu/epimap/. We retrieve tissues with adjusted p-values for

each disease. We map the tissue names used in our study (Standard Roadmap Epigenomes,

as labed by EID) to tissue names used in epimap (biosamples, as labeld as BSS biosam-

ple id) by adapting the scripts from https://github.com/cboix/EPIMAP_ANALYSIS/blob/

master/metadata_scripts/get_roadmap_mapping.R. If there are more than one biosam-

ples tissues mapped to roadmap tissues, we reported the p value of the tissue with the most

significant result.

3.3.5.2 Cluster names in table 3.6

To name each cluster/group of diseases/EFO terms we choose the EFO term that contains

most of the cluster/group members. In Appendix Data A.3.21 we summarize the terms with

high term frequency in each cluster, where term frequency is the fraction of descendant terms

present. For example, the EFO term ”immune system disease” (EFO:0000540) has a term

frequency of 0.588 in the ”immune-1 cluster”; this means that 58.8% of EFO terms in that

cluster are descendants of EFO:0000540. We exclude the terms that are overly broad such as

the term ”disease” or ”experimental factor ontology”. For each cluster, we rank the cluster

member EFO terms using term frequency and select as name a meaningful term with the

high term frequency. For one cluster where no term had high frequency we chose the name

”heterogeneous”.

We also show a diagrams of EFO disease term relationships in each cluster in Appendix

Figure A.11- A.17. Occasionally we include ancestor EFO terms not present in the cluster

in a diagram, which are marked by asterisks.
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3.3.5.3 Dimension reduction and coefficient heatmap

UMAP plot The two-dimensional UMAP plot of 111 EFO disease terms in Figure 3.7

is based on disease similarities based on context-weighted score averaging (see section

3.3.2.2). The umap function of the uwot R package was used with parameters n neighbors

= 15, ret model = TRUE, PCA center = FALSE.

Coefficient heatmap The heatmap in Figure 3.8 displays coefficient vectors of models

for disease association (see section 3.3.2.1), normalized for each disease. Specifically, for

each disease and tissue coefficient xi

x̃i =


(
xi − xmin

)
/x95 xi ≤ x95

1 xi > x95

where xmin is the minimum coefficient for a disease, and x95 is the 95% quantile.

Cluster-associated tissues For each cluster, we show the top-five tissues that are most

associated with the cluster (Figure 3.8). To identify these tissues we conduct a two-

sample Wilcoxon test (one-sided) on every tissue, where we compare normalized tissue

coefficients for this cluster to the the other with the highest coefficients on average. The

five tissues with the smallest p-value are then selected as top-five tissues.

Tissue-associated clusters For the heatmap with all tissues in Appendix Figure A.10,

we assigned a cluster to each tissue. For each tissue, we calculated the median (across

disease terms of a cluster) of the normalized coefficients for all clusters; the cluster with

the highest median was assigned.

3.4 Results

3.4.1 Non-coding GWAS variants associated with disease phenotypes, and matched

controls

In order to study variant prioritization methods, we created a dataset of “positive” (i.e.,

disease associated) non-coding variants, matched with a random set of “control” variants.
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This setup allowed us to quantitatively assess prioritization methods based on their perfor-

mance in discriminating positive from control variants.

3.4.1.1 Disease-associated non-coding SNVs

We used a subset of single nucleotide variants (SNVs) reported in the EBI/NIH GWAS

catalog [78] to compile an inventory of disease-associated non-coding variants. Specifically,

we focused in reported variants that (a) do not overlap protein-coding sequence (see Meth-

ods) and (b) that are associated with a disease phenotype as noted in the Experimental

Factor Ontology (EFO) trait description, which is provided within the catalog. We define

disease phenotypes as descendants of the EFO term “disease” (EFO:0000408). Focusing on

disease terms with at least 100 annotated SNVs resulted in 26,080 associations involving

20,656 SNVs and 67 disease phenotypes. The EFO provides parent-child relations between

disease terms (parent = more general, child = more specific), and propagating SNVs from

child-terms to parent-terms increased the number of disease phenotypes with at least 100

SNVs, resulting in 77,028 association between 25,516 SNVs and 111 diseases. We find that

most of the SNVs we recover are located in intronic (60.5%) and intergenic (25.8%) se-

quence (Figure 3.1A), and that a majority of SNVs are directly annotated to a single

disease phenotype (Figure 3.1B). After propagating annotated SNVs from child to parent

terms, SNV-to-disease annotations become predominantly many:many (Figure 3.1B). Ap-

pendix Data A.3.1 lists disease terms and corresponding numbers of disease-associated

SNVs.

3.4.1.2 Control SNVs

For each disease-associated SNV we selected ∼10 matched control-SNVs using a re-

implementation of the SNPsnap approach [86], while avoiding duplicate control-SNV across

the overall dataset (see Methods). This yielded 255,137 control SNVs (for some disease

associated SNVs we could not retrieve the full ten control SNVs); with this data we have ac-

cess to data for 111 disease terms, containing disease-associated SNVs together with matched

controls. Appendix Data A.3.2 and A.3.3 describe all SNVs used in this study.
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3.4.2 Disease-specific non-coding variant prioritization with organism-level vari-

ant scores is moderately successful

We assessed how well current commonly-used organism-level variant scores are able to

prioritize disease-associated vs. control-SNVs for the 111 disease terms we studied. Fig-

ure 3.2 summarizes results, where boxplots of two performance measures (area under the

ROC curve and average precision (= area under the precision recall curve)) are shown for

CADD [6], eigen [24], GenoCanyon [7], GWAVA [33], and LINSIGHT [35] scores. We find

that organism-level scores, while improving upon random guessing, are only moderately suc-

cessful in correctly prioritizing disease-associated non-coding variants. Comparing variant

scores with each other we find that relative performance differences appear overall robust

with respect to the metric employed (area under the ROC curve vs. average precision).

It is qualitatively visible that CADD performs less favorably than other methods, but also

that there are differences between the other methods. We therefore compared performance

between different scores in more detail.

We studied the performance of different scores at two levels of resolution: In aggre-

gate across all disease terms, and for each disease term separately. For both approaches

we used Wilcoxon signed-ranks tests to decide whether one score significantly outperforms

another score (significant p-value) or whether performance is tied (non-significant p-value);

see Methods section, Table 3.1. We find that GenoCanyon has better performance than

other variant scores, followed by LINSIGHT, GWAVA and eigen, while CADD is consistently

outperformed by other methods. Performance differences between LINSIGHT, GWAVA and

eigen are not significant when aggregating across disease terms (last three columns in Ta-

ble 3.1); however, when counting individual disease LINSIGHT has most wins and fewest

losses, while eigen has most losses and fewest wins. Appendix Data A.3.4 and A.3.5

contain results for all comparisons. Overall these quantitative results are in-line with the vi-

sual impression from Figure 3.2. Next, we investigated if the performance of organism-level

variant scores could be improved by using tissue-specific scoring approaches.
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3.4.3 Tissue-specific scores improve disease-specific variant prioritization

3.4.3.1 Disease-specific aggregation weights for tissue-specific variant scores

We studied three tissue-specific scores for variant prioritization to explore if their usage

can improve on the performance of organism-level scores. Specifically, we used Genoskyline

[7] and Fitcons2 [37] as scores specifically designed to prioritize variants, and DNase I hyper-

sensitivity (DHS) profiles from the ENCODE project [16]. All of these scores are available

for 127 contexts [15] spanning a diverse set of cell and tissue types, including heart, brain,

immune cells, and more.

For each tissue-specific score we assess two approaches to prioritize variants. First, as a

baseline approach we aggregate scores across tissues in a disease-agnostic way. That is, for

a specific variant we average scores at the variant position across all tissues (termed tissue-

mean), essentially producing a organism-level type score, independent of the disease term

under consideration. Second, we aggregate scores across tissues in a disease-specific way.

Briefly, we train a regularized logistic regression model for each disease term that learns

disease-specific tissue aggregation weights. In a nested cross-validation setup, learned weights

are applied to held-out variants, allowing for a fair performance assessment of this approach

(termed tissue-weighted), see Methods. Figure 3.3 summarizes our findings.

In Figure 3.3A we show tissue-mean performance (as measured by average precision) for

the three scores we study on the left, and tissue-weighted performance on the right. For all

three scores tissue-weighted significantly outperforms tissue-mean (Wilcoxon signed-ranks

test, p-values < 0.0001). Figure 3.3B shows tissue-mean vs. tissue-weighted comparisons

for each score, and we see that in almost all disease terms tissue-weighted outperforms

tissue-mean. See Appendix Data A.3.6 and A.3.7 for tissue-mean vs. tissue-weighted

performances for each disease term, and for aggregated performances across all disease terms.

The improvement remains evident if we use SNVs that are not in the same LD block or

ensuring that the SNVs in the training and test datasets are not on the same chromosome

(See Appendix Figure A.18 - A.21 and Supplemental material for more detail).

While performance-gain for tissue-weighted is broadly consistent across diseases, for some

it is more pronounced than for others. To illustrate this, we selected four disease terms
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with a high performance gain, four terms with a medium gain, and four terms where we

observed the least gain (Best improvement, ranking 1-4; middle improvement, ranking 20-

23; least improvement, ranking 108-111). Figure 3.4 shows our findings, where variability in

tissue-weighted performance induced by varying train-test-fold splits during cross-validation

is also displayed. We see that for Celiac Disease (EFO:0001060), Systemic Scleroderma

(EFO:0000717), Chronic Lymphocytic Leukemia (EFO:0000095) and Sclerosing Cholangitis

(EFO:0004268) performance is consistently improved for all three tissue-weighted scores,

while for Retinopathy (EFO:0003839), Endometriosis (EFO:0001065), Diabetic Nephopathy

(EFO:0000401) and HIV-1 Infection(EFO:0000180) we find no improvement. We also note

that disease terms with pronounced improvement appear to have better baseline (i.e., tissue-

mean) performance than disease terms where we find little or no benefit of the tissue-weighted

approach. Improvement for diseases shown in Figure 3.4 is largest for DHS, but, consistent

with Figure 3.3, we see improvement for Fitcons2 and Genoskyline as well (but not as

much).

3.4.3.2 DNase I hypersensitivity (DHS) scoring outperforms other tissue spe-

cific scores

To quantify relative performance of the three different scores, we proceed similarly to

organism-level scores. Focusing on pairwise comparisons we find that DHS scores outper-

form Genoskyline and Fitcons2 for most disease terms, and on average (see Table 3.2). This

observation is consistent with Figure 3.3 and 3.4, which often show higher average precision

values for DHS than for the other two scores. Notably, baseline (i.e., tissue-mean) perfor-

mance of DHS does not appear significantly better than that of Genoskyline (Figure 3.3.

Appendix Data A.3.8 and A.3.9 contain details for comparisons between DHS, Fitcons2

and Genoskyline for all disease terms). Next, we explored whether disease-specific tissue

weights outperform organism-level scores.
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3.4.3.3 DNase I hypersensitivity (DHS) tissue-weighted scoring outperforms

organism-level variant scores

To compare the DHS tissue-weighted score with organism-level scores, we directly con-

trasted their performance. Similar to before, Table 3.3 summarizes DHS “wins” (= signifi-

cantly better performance of DHS tissue-weighted, p-value ≤ 0.05), losses, and ties, compared

with other five organism-level variant scores, individually (per disease term) and aggregated

(across disease terms). In addition, Table A.4 summarizes pair-wise comparisons between

tissue-weighted DHS and each organism-level score. We find that DHS tissue-weighted out-

performs all organism-level scores in the aggregated analyses, and that it outperforms all

other scores on the majority of disease terms (it only performs significantly worse than any

other score in 44 out of 550 comparisons).

GenoCanyon is the most competitive organism-level score, where DHS is significantly

better for 92 terms out of 111 (∼83%). Interestingly, LINSIGHT performs better against

DHS than GenoCanyon, which is the best overall performing organism-level score (see Ta-

ble A.4). Appendix Data A.3.10 contains detailed results for each comparison. We

also find that DHS outperforms organism-level scores when aggregating over disease terms

(Appendix Data A.3.11).

To illustrate the gain in performance, we selected four example disease terms where

disease-specific variant prioritization yielded high improvements, medium improvements,

comparable performance, and worse performance, respectively. Selection was based on

ranking differences between DHS and GenoCanyon: best improvement, ranks 1-4; medium

improvements, ranks 25-28; comparable performance, ranks 64-67; GenoCanyon bet-

ter, ranks 108-111. Results are summarized in Figure 3.5, where we find substan-

tial improvements using tissue-weightes scoring for Systemic Sceleroderma (EFO:0000717),

Celiac Disease (EFO:0001060), Sclerosing Chalangitis (EFO:0004268) and Multiple Scle-

rosis (EFO:0003885), for which we have already noticed substantial improvement of DHS

tissue-weighted over DHS tissue-mean. Disease terms where GenoCenyon is performing bet-

ter include Venous Thromboembolism (EFO:0004286), Diverticular Disease (EFO:0009959),

Non-small Cell Lung Carcinoma (EFO:0003060), and Lung Adenocarcinoma (EFO:0000571).
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To make DHS tissue-weighted scores available, we generated pre-computed scores for

111 diseases at every base across the genome (for chromosomes 1-22, available at https:

//doi.org/10.7910/DVN/AUAJ7K). Scores were calculated at 25 bp resolution, the same as

DHS scores.

3.4.4 DNase I hypersensitivity (DHS) scoring performs well compared with

DIVAN

Here we compare the performance of DHS tissue-weighted scores with DIVAN [43], a

disease-specific variant score for 45 diseases. DIVAN is based on a more complicated feature-

selection and ensemble-learning framework, and it uses a variety of other functional genomics

features, in addition to DNase I hypersensitivity. To compare our method with DIVAN, we

mapped our EFO disease terms to MeSH terms (as used by DIVAN) and use MeSH terms

later for this section (See Appendix Data A.3.12). Because DIVAN uses as supervised

learning approach, and because the published model was trained using GWAS SNVs, it

was necessary to create specific train and test datasets to ensure a meaningful comparison

between tissue-weighted DHS and DIVAN.

Therefore, to assess performance of both DIVAN and DHS, we created a test set of

disease-associated variants (and their matched controls) that were published later than 2016

(DIVAN’s publication date). That is, these variants are unlikely to have been a part of

DIVAN’s training data. We also created a training set for DHS tissue-weighted containing

only SNVs published prior to 2016. This resulted in training data that (a) is distinct from

the test set and (b) draws on similar information that was available for DIVAN’s training.

Further on, we only selected disease terms for this training/test data combination where at

least 20 term-associated SNVs were present in the training data, and where at least 50 SNVs

were present in the test data. This approach yielded 29 disease terms for this analysis. We

then re-trained tissue-weighted DHS on this training data and compared with DIVAN on

the test data. In addition, we added the organism-level GenoCanyon score as a reference.

To assess performance, we performed all pairwise comparisons for each disease term,

and evaluated performance based on average precision. Table 3.4 summarizes observations,
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where we find that DHS performs significantly better than GenoCanyon and DIVAN in a

majority of comparisons; however, there is a substantial number of comparisons (22 out of

58) where either GenoCanyon or DIVAN outperform DHS. Figure 3.6 further illustrates

these comparisons. In panel A we show performance across disease terms, grouped by the

best-performing method. We see that tissue-weighted DHS outperforms DIVAN and Geno-

Canyon substantially on Multiple Sclerosis (MeSH:D009103), Psoriasis (MeSH:D011565)

and Inflammatory Bowel Disease (MeSH:D015212); DIVAN outperforms GenoCanyon and

DHS on Arthritis, rheumatoid (MeSH:D001172) and Heart failure (MeSH:D006333); Geno-

Canyon outperforms DHS and DIVAN on Stroke (MeSH:D020521) and Alzheimer disease

(MeSH:D000544). In panels B-D we directly summarize comparison results; we observe that

the DHS tissue-weighted score often has an advantage in terms where prioritization efforts

are overall more successful (upper right quadrants). Finding overall good performance for

our approach, we next more closely examined the disease-specific tissue aggregation weights

we use for our scores.

3.4.5 Disease-specific tissue weights reflect biomedical relevance

In addition to prioritizing SNVs, we can interpret the disease-specific tissue weights that

our model learns in the context of disease mechanisms. Specifically, large tissue weights

implicate tissues with a prominent role in associating SNVs with a disease in our model, and

one may hypothesize that they have a function in the etiology of that disease. To investigate

this hypothesis, we analyzed tissue weights of the top-performing models we derived, where

each model represents a different disease.

Results are summarized in Table 3.5; they include the two top-performing models, Sys-

temic scleroderma (rank 1) and Sclerosing cholangitis (rank 2). In order to report a diverse

range of diseases, we next excluded any diseases that are descendants of immune system

disease (EFO:0000540) or lymphoma (EFO:0000574). From the remaining diseases, we iden-

tify the next three highest-ranked models: Colorectal adenoma (rank 15), Atrial fibrillation

(rank 20), and Cutaneous melanoma (rank 21). For each diseases, we list the five tissues

with the largest tissue-weights, and their tissue group.
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The tissues we associate with disease, overall, appear reasonable and generally are in-line

with existing knowledge about disease mechanisms. Systemic scleroderma is an autoimmune

disorder that can affect the skin and internal organs [93]. We find that GM12878 lym-

phoblastoid cells (a type of B cell) are among highest-weighted tissues, as were other types

of B cells (primary B cell and B cell lymphoma, respectively). This is in-line with previous

studies that have shown that B cells play a role in system scleroderma [94, 95]. Sclerosing

cholangitis is an inflammatory condition that leads to scarring and narrowing of the bile

ducts [96]. We highlight various inflammation-related types of blood cells, such as T cells

and monocytes, which were previously suggested to play a role in the disease [97]. Colorectal

adenoma is a benign tumor that develops in the lining of the colon or rectum. Our model

identified rectal mucosa and stomach mucosa as the most-highly weighted tissues, and the

function of rectal mucosa in colorectal cancer has been previously studied [98]. While the

direct relationship between other gastrointestinal tissues and the development of colorectal

adenoma has not been established, the association between gastrointestinal microbiome and

colorectal adenomas has been discovered [99]. Regarding atrial fibrillation, our approach

highlights fetal heart and lung tissues. In addition, we identified skeletal muscle cells. In

the case of cutaneous melanoma, a type of skin cancer, our approach emphasizes foreskin

melanocyte cells and a specific type of T cells. Apart from these, we highlight cervical

carcinoma cell lines and endothelial primary cells.

Overall, we conclude that the tissue weights we derive carry biomedically meaningful

information and are able to highlight tissue contexts that may play a role in disease etiology.

To further explore this finding, we used a resource of the epimap consortium [84], where

disease-tissue associations are reported that derived differently from the one we obtained

in two key ways: First, epimap uses their enhancer definitions based on a much larger

set of genome annotations. Second, epimap’s enrichment test contrasts disease-associated

SNV enrichment in a specific tissue’s enhancer set compared to all enhancers, whereas our

method effectively compares open chromatin harboring disease-associated SNVs vs control

SNVs tissue-by-tissue. Nevertheless, results are summarized in Appendix Table A.7, and

we find that out of the 25 tissues we associate with disease terms 14 have an estimated

false discovery rate of less than 4% in the epimap analysis as well. Notably, a ground truth
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for these associations is generally unknown; but we interpret the overlap in associations

as encouraging, while complementary associations are expected, given the differences in

methodology. Based on this overall finding of meaningful disease-tissue associations, we

next further explored the use of tissue-weights in disease characterization.

3.4.6 Disease-term similarity based on DHS tissue-weighted modeling reveals

meaningful groups

Disease-specific tissue weights for aggregating DHS scores, which are learned by our

approach, can highlight tissues and cell-types with a role in the disease (see previous section).

Therefore, we derived and explored a measure for disease similarity based on these weights,

which we detail in the following.

3.4.6.1 Disease similarities based on disease-specific tissue weights for non-

coding variant prioritization

In our DHS tissue-weighted approach, for each disease term DNA accessibility across the

same set of tissues is used to predict whether a certain SNV is disease-associated, or not. This

results in disease-specific tissue aggregation weights (or coefficients)
{
β(i)∈ Rd

}n

i=1
, where i

is indexing disease terms, n is the number of disease terms studied, and d denotes the number

of tissues/cell-types with DHS scores. For our similarity measure between two diseases, say

i and j, we then use a version of the Pearson correlation between β(i) and β(j)that takes

uncertainty in the estimated aggregation weights into account (see Methods). That is, if

an overlapping set of tissues/cell-types drive the prioritization of SNVs for two diseases,

similarity is high; if different tissues are used, similarity is low.

Using this approach we calculated disease similarities for the 111 disease terms we study.

Resulting similarities are visualized in Figure 3.7, where we show a similarity-based 2D

UMAP projection of disease terms. We observe that disease terms segregate into separate

groups, with a coarse grouping between immune related diseases (lower left inlay, black)

and others (lower left inlay, gray). A higher-resolution group structure was obtained by

sub-clustering, where we grouped disease terms into seven groups (main panel, Figure 3.7).
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Clusters names are based on EFO disease terms that include a large amount of cluster

members as child-terms (see Methods and Appendix Figure A.11- A.17); Table 3.6 lists

disease terms per cluster. In addition to the clear separation of immune-related diseases from

others, we also find a very homogeneous group consisting of mental and behavioural disorders,

containing terms like schizophrenia (EFO:0000692) and anxiety disorder (EFO:0006788), and

a group of skin cancers. The remaining three groups are more heterogeneous, but with two of

them containing several terms related to cardiovascular disease (EFO:0000319) and digestive

system disorders (EFO:1000218), respectively. By design similar tissues in each group drive

SNV-disease associations, and we next examined which tissues play a role in each of the

clusters.

46



3'UTR
5'UTR

intergenic

intron

noncoding transcript
regulatory region

splice region

0.00

0.25

0.50

0.75

1.00

GWAS catalog noncoding variants used in the study

pe
rc

en
ta

ge

A B

0.00

0.25

0.50

0.75

1.00

before_propagation after_propagation

pe
rc

en
ta

ge

Number of  
diseases associated

>5

4−5

2−3

1

Figure 3.1: 20,656 disease-associated non-coding SNVs. (A) Genomic context of non-coding

SNVs used in this study. (B) Percentage of the SNVs used that are annotated to 1, 2-3, 4-5 or

more than 5 disease phenotypes, before and after propagating SNV-phenotype associations

according to EFO parent-child annotations. Genomic context annotation is adapted from

the CONTEXT column from the GWAS catalog, where we combine splice donor, splice

region and splice acceptor variants into splice variants and we combine TF binding variants

and regulatory regions variants into regulatory region variants.
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Score/Method
By disease term Aggregated

Wins Losses Ties Wins Losses Ties

GenoCanyon 307 106 31 4 0 0

LINSIGHT 281 146 17 1 1 2

GWAVA 221 196 27 1 1 2

eigen 219 201 24 1 1 2

CADD 24 403 17 0 4 0

Table 3.1: Relative performance of organism-level variant scores. Wins, Losses, Ties refers

to significantly better (or worse, or tied) performance across all possible pairings (see Meth-

ods). The first three columns summarize separate comparisons for each disease term (for

each row there are four other methods and 111 terms, i.e. 444 comparisons), while the last

three columns represent results of aggregate comparisons across terms. Average precision

was used as the performance metric, and Wilcoxon singed-ranks tests to determine wins and

losses (p-values larger than 0.05 are reported as ties).
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Figure 3.3: Disease-specific tissue weights improve variants prioritization. Performance of

three tissue-specific variants scores (DHS, Fitcons2, Genoskyline) used to prioritize non-

coding disease-associated variants for disease terms using two approaches: tissue-mean (i.e.,

disease-agnostic, baseline) on the left side and and tissue-weighted (i.e., disease specific) on

the right side. P-values were calculated using a Wilcoxon signed-ranks test (A). Scatter plot

of tissue-mean vs. tissue-weighted performance (average precision) for each tissue-specific

score; dashed line denotes the diagnonal (B).
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Figure 3.4: Improvements of tissue-weighted variant scores for representative disease

terms. Shown is the performance of tissue-weighted variant scores (colored points) vs. tissue-

mean (black asterisks) as a baseline, for three tissue scores (rows) and stratified by improve-

ment observed: best improvement for the fist column middle for the middle column and

least improvement for the right column. The x-axes denote disease terms, the y-axis average

precision. Different points for tissue-weighted scores represent different data-splits in the

nested cross validation procedure.
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Score/Method
By disease term Aggregated

Wins Losses Ties Wins Losses Ties

DHS 180 22 20 2 0 0

Genoskyline 96 94 32 1 1 0

Fitcons2 19 179 24 0 2 0

Table 3.2: DHS outperforms other tissue weights. Wins, Losses, Ties refer to significantly

better (or worse, or tied) performance across all possible score pairings (see Methods).

The first three columns summarize separate comparisons for each disease term (for each

row there are two other methods and 111 terms, i.e., 222 comparisons), while the last three

columns represent results of comparisons aggregated over terms. Average precision was used

as the performance metric, and the Wilcoxon singed-ranks test to determine wins and losses

(p-values less than 0.05 were reported as ties).
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Score/Method
By disease term Aggregated

Wins Losses Ties Wins Losses Ties

DHS 474 44 37 5 0 0

GenoCanyon 314 198 43 4 1 0

LINSIGHT 298 230 27 1 2 2

GWAVA 233 289 33 1 2 2

eigen 223 299 33 1 2 2

CADD 28 510 17 0 5 0

Table 3.3: DHS outperforms organism-level variant scores. Wins, Losses, Ties refer to

significantly better (or worse, or tied) performance across all possible score pairings (see

Methods). The first three columns summarize separate comparisons for each disease term

(for each row there are two other methods and 111 terms, i.e., 555 comparisons), while the

last three columns represent results of comparisons aggregated over terms. Average precision

was used as the performance metric, and the Wilcoxon singed-ranks test to determine wins

and losses (p-values less than 0.05 were reported as ties).
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Figure 3.5: DHS disease-specific scores improve variant prioritization compared with

organism-level scores. For four strata (best and middle improvement, comparable perfor-

mance and worse performance) we selected for disease terms and compare performance re-

sults. GenoCanyon performance is denoted in black, DHS tissue-weighted in red. Different

performances of DHS represent variation different data splits during nested cross validation

(see Methods).
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Score Wins Losses Ties Winning percent

DHS 34 22 2 61

GenoCanyon 26 31 1 46

DIVAN 25 32 1 44

Table 3.4: DHS tissue-weighted disease-specific scoring outperforms DIVAN. Across 29 dis-

ease terms, this table summarizes all pairwise comparison for DHS tissue-weighted, Geno-

Canyon and DIVAN using a specifically created test dataset. Wins, losses, ties refer to

significantly better (or worse, or tied) performance. Average precision was used as the per-

formance metric, and the Wilcoxon singed-ranks test to determine wins and losses (p-values

less than 0.05 were ties). Winning percent = #Wins/(#Wins+#Losses).
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Figure 3.6: DHS tissue-weighted scoring outperforms DIVAN. Performance of DIVAN, Geno-

Canyon, and DHS tissue-weighted across the test set, with disease terms grouped by the best-

performing method. Vertical striped indicates the minimum and maximum performance of

30 bootstrap samples (A). Performance scatter plots of GenoCanyon vs. DIVAN performance

(B); GenoCanyon vs. DHS-weighted (C); DIVAN vs. DHS-weighted performance (D). Aver-

age precision was used for these plots; dashed lines denote equal performance. Percentages

denote the fraction of points above and below the diagonal, respectively.
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Rank ID Tissue name Group

Systemic scleroderma
1 E116 GM12878 Lymphoblastoid Cells blood
2 E032 Primary B cells from peripheral blood blood
3 E041 Primary T helper cells PMA-I stimulated blood
4 E123 K562 Leukemia Cells blood
5 E030 Primary neutrophils from peripheral blood blood

Sclerosing cholangitis
1 E116 GM12878 Lymphoblastoid Cells blood
2 E061 Foreskin Melanocyte Primary Cells skin03 skin
3 E102 Rectal Mucosa Donor 31 gi rectum
4 E041 Primary T helper cells PMA-I stimulated blood
5 E029 Primary monocytes from peripheral blood blood

Colorectal adenoma
1 E102 Rectal Mucosa Donor 31 gi rectum
2 E110 Stomach Mucosa gi stomach
3 E057 Foreskin Keratinocyte Primary Cells skin02 skin
4 E101 Rectal Mucosa Donor 29 gi rectum
5 E028 Breast variant Human Mammary Epithelial Cells (vHMEC) breast

Atrial fibrillation
1 E083 Fetal Heart heart
2 E108 Skeletal Muscle Female muscle
3 E107 Skeletal Muscle Male muscle
4 E088 Fetal Lung lung
5 E120 HSMM Skeletal Muscle Myoblasts Cells muscle

Cutaneous melanoma
1 E061 Foreskin Melanocyte Primary Cells skin03 skin
2 E059 Foreskin Melanocyte Primary Cells skin01 skin
3 E117 HeLa-S3 Cervical Carcinoma Cell Line cervix
4 E041 Primary T helper cells PMA-I stimulated blood
5 E122 HUVEC Umbilical Vein Endothelial Primary Cells vascular

Table 3.5: Top-ranked tissues for five diseases. For five diseases when show the top-five

tissues with the largest tissue weights in the corresponding model we derive. The first

column is the tissue rank, the second the tissue’s roadmap ID, the third the tissue name,

and the fourth column is the tissue group.
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58

heterogeneous digest/cancer immune cardiovascular/others

adolescent idiopathic scoliosis autoimmune thyroid disease acute lymphoblastic leukemia alzheimer’s disease
age-related macular degeneration breast carcinoma adult onset asthma atherosclerosis
alcohol dependence cancer allergic rhinitis atrial fibrillation

amyotrophic lateral sclerosis cardiovascular disease allergy cardiac arrhythmia
chronic obstructive pulmonary disease colorectal adenoma atopic asthma chronic kidney disease
dental caries colorectal cancer celiac disease diverticular disease

diabetic nephropathy coronary artery disease childhood onset asthma glaucoma
drug dependence diabetes mellitus chronic lymphocytic leukemia heart failure
endometriosis digestive system carcinoma cirrhosis of liver metabolic syndrome

epilepsy digestive system disease hypothyroidism migraine disorder
gout female reproductive system disease juvenile idiopathic arthritis osteoarthritis
hiv infection hypertension lymphoid leukemia ovarian carcinoma
hiv-1 infection multiple myeloma lymphoma parkinson’s disease
lung adenocarcinoma neurotic disorder neoplasm of mature b-cells peripheral arterial disease
lung carcinoma pancreatic carcinoma non-hodgkins lymphoma retinopathy

neuropathy prostate carcinoma systemic lupus erythematosus stroke
non-alcoholic fatty liver disease respiratory system disease systemic scleroderma uterine fibroid
non-small cell lung carcinoma squamous cell carcinoma.

obesity type i diabetes mellitus
periodontitis type ii diabetes mellitus

peripheral neuropathy
scoliosis

squamous cell lung carcinoma
venous thromboembolism

immune/autoimmune mental skin cancer legend

ankylosing spondylitis anorexia nervosa cutaneous melanoma digestive system disease
asthma anxiety disorder keratinocyte carcinoma immune system disease

autoimmune disease attention deficit hyperactivity disorder melanoma autoimmune disease
crohn’s disease autism spectrum disorder non-melanoma skin carcinoma cardiovascular

hypersensitivity reaction disease bipolar disorder mental or behavioural disorder
immune system disease eating disorder skin cancer

inflammatory bowel disease mental or behavioural disorder cancer
kidney disease mood disorder
liver disease movement disorder
multiple sclerosis obsessive-compulsive disorder

psoriasis psychosis
rheumatoid arthritis schizophrenia

sclerosing cholangitis tourette syndrome
skin disease unipolar depression

ulcerative colitis

Table 3.6: Disease groups based on model similarity. For each disease group disease terms are shown. The colored squares

denote the disease groups in the EFO ontology.



In order to find group-specific tissues, we examined for each cluster the top five tissues

that (a) contribute most to disease association and (b) are cluster specific (see Methods).

Results are summarized in Figure 3.8; we note that both disease groups related to the

immune system highlight blood tissues (such as E043: Primary T helper cells from periph-

eral blood and E116: GM12878 Lymphoblastoid Cells, see Appendix Data A.3.23 for

all names of standard epigenomes), with the group containing inflammatory bowel disease,

Crohn’s disease, and ulcerative colitis also containing rectum tissues (such as E101: Rectal

Mucosa Donor 29). Brain tissues contribute to disease associations for mental and behavioral

disorders, skin tissues to skin cancer, and gastro-intestinal / stomach tissue to the cluster

with digestive system diseases. We also note that a clear association of specific tissues with

disease groups correlates with better classification performance of our model for SNV-disease

association ( Figure 3.8, for example, the immune and immune/autoimmune clusters). We

note, though, that not for all clusters the corresponding tissue associations are equally com-

pelling, as illustrated in the same figure. While the clusters we derive resemble broader

disease groups, for each disease a specific combination of tissues is used to derive whether a

variant might be associated, and some tissues contribute to several clusters. For instance,

one blood cell type (E116, GM12878 Lymphoblastoid Cells) contributes to both immune

clusters, but also to diseases in the digestive/cancer, heterogeneous and skin cancer clusters.

Another blood cell type (E043, Primary T helper cells from peripheral blood) displays a

similar pattern. Appendix Figure A.10 shows the same heatmap as Figure 3.8, but for

all tissues.

Overall, these results suggest that our modeling approach successfully identifies tissues

with a role in disease etiology. Before exploring disease-tissue relations in more detail ,

we explore how our disease similarities relate to genetic similarities as measured by genetic

correlation between two diseases.

3.4.6.2 Model-based similarities are complementary to genetic correlation.

Here we compare the disease-disease similarities we derived (sm) with genetic correla-

tions from the GWAS Atlas (sg), where genetic correlation measures shared genetic causes
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Figure 3.7: UMAP plot shows disease-disease relationships among 111 diseases. Two dom-

inant clusters (inlay: immune system related disease terms (black) and others (gray)). Hi-

erarchical clustering was used to group diseases into 8 clusters.
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Figure 3.8: Heatmap of top-five tissue-weights for 111 diseases. Regularized model coef-

ficients (i.e., tissue weights) of five disease-cluster-specific tissues (columns) are shown for

111 diseases (rows). Coefficients are scaled by disease, and rows are grouped into sets of

cluster-specific tissues (see Methods section). Bottom annotation shows tissue names of

cluster-specific tissues (names are shown in the format of ‘Tissue name’ - ’Tissue group’;

annotation on the left side shows disease cluster, and annotating on the right side shows

model performance in terms of AUPRC).
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between two traits [92]. For 6,105 possible disease pairs of the 111 diseases terms we study,

estimates for 595 pairs were available from the GWAS Atlas (see Methods). Overall, for

these 595 disease pairs we observe only weak correlation between model similarities and

genetic correlations (r = 0.32, p value = 2.4E − 15), where the scatter plot is shown in

Figure 3.9A. We also see that most disease pairs are not annotated with substantial genetic

correlations, or with model-based similarities (individually, 90% disease pairs has sm < 0.25,

and sg < 0.20). Therefore, we explored three different regimes: Disease pairs where both

similarity measures are high (sm ≥ 0.25 and sg ≥ 0.20), pairs with high genetic correlations

and low model similarity (sm < 0.25 and sg ≥ 0.20) vice versa (quadrants indicated in

Figure 3.9A, named quadrants B,C and D). From each regime, we highlighted the top 8

extreme examples and we show them in Table 3.7. In the following we discuss one example

from each regime. Here, we pick two immune system diseases for quadrant B; two mental

or behavioral disorders for quadrant C; and one immune system disease and one mental or

behavioral disorder for quadrant D. In addition, we pick example disease pairs without any

parent-child relationships.

Ulcerative colitis (UC, EFO:0000729) and Crohn’s disease (CD, EFO:0000384), for in-

stance, have both high genetic correlation (sg = 0.53) and model similarity (sm = 0.84),

see Figure 3.9B. This suggests that they share genetic causes, and that the same tissues

are informative for SNV-disease association. While shared genetic causes for UC and CD

have been pointed out (e.g., [100]), our model for SNV-disease association allows us to ex-

plore relevant tissue contexts. In Figure 3.9B we show a scatter plot of tissue weights

for both diseases, where color indicates the importance of each tissue to model similarity

(see Methods). We observe that open chromatin in blood (E116, GM12878 Lymphoblas-

toid Cells; E124, Monocytes-CD14+ RO01746 Primary Cells; E041, Primary T helper cells

PMA-I stimulated) and rectum (E102, Rectal Mucosa Donor 31) is positively associated

with SNV-disease association in both diseases, which is consistent with a previous study

where blood cell types are found to be relevant in many autoimmune diseases, including UC

and CD [101]; in addition, symptoms or complications in rectum is also observed in UC and

CD [102]. Interestingly, open chromatin in GI-intestine (E085, fetal intestine small) is nega-

tively associated with SNV-disease association, along with other intestine tissues (E084, fetal
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intestine large and E109, small intestine, with the 61th and 86th smallest tissue weight, re-

spectively, amongst 127 contexts). This indicates fetal intestine or small intestine might not

be less involved in UC and CD etiology, compared to their juvenile and adult counterparts.

Autism spectrum disorder (ASD, EFO:0003756) and anorexia nervosa(AN, EFO:0004215)

is an example where we observe a low genetic correlation (sg = −0.05) and a moderate high

model similarity (sm = 0.34), and as scatter plot of their tissue weights is shown in Fig-

ure 3.9C. We didn’t choose one of the highlighted pairs in this quadrant since we want

to look at examples from different groups rather than just immune system diseases where

those highlight pairs are. We observe that both disease models give heart and brain tissue

(E083, fetal heart and E081, fetal brain male) high tissue weights. This is consistent with

the observation of brain abnormalities in ASD and AN [103, 104]. While the presence of

fetal heart is less intuitive, we note that children with abnormal heart development are more

likely to develop ASD, suggesting a connection between the disease and the fetal heart [105].

We also note that while the genetic correlation between ASD and AN is low, a link between

the two diseases on the phenotypic level is being suggested [106, 107]; the tissue context we

identified could provide information about a shared molecular disease etiology as well.

For obsessive compulsive disorder (EFO:0004242) and celiac disease (EFO:0001060) we

observe low model similarities (sm = −0.26) and moderately high genetic correlation (sg =

0.36), and Figure 3.9 D shows a scatter plot of the tissue weights we derive. Several

studies have shown that nervous system disease and immune related diseases have shared

genetic background [108, 109]. However, in contrast to the other two examples, there is little

relation between tissue weights in these two diseases. Blood cell types are highlighted in celiac

disease, while brain and fetal heart tissues are highlighted in obsessive compulsive disorder.

For celiac disease, the top six tissue contexts are blood cells, including different types of T

cells (E041, Primary T helper cells PMA-I stimulated; E043, Primary T helper cells from

peripheral blood and E034, Primary T cells from peripheral blood) and lymphoblasts (E116,

GM12878 Lymphoblastoid Cells), which is consistent with findings that alterations in T cells

and lymphoblasts can lead to celiac disease [110, 111].
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Figure 3.9: Genetic correlation and model similarity. (A) Genetic correlation vs model

similarity for 595 disease pairs. Each dot is a disease pair, where the x axis denotes the

genetic correlation and y axis is the disease model similarity. For B,C and D quadrants,

we highlighted the top 8 extreme pairs, where highest 8 pairs with sg + sm, sm − sg, and

sg − sm are selected for quadrant B, C and D, respectively. (B-D) Scatter plot of tissue

coefficients in three example disease pairs, where (B) shows Crohn’s disease vs inflammatory

bowel diseases; (C) shows anorexia nervosa vs autism spectrum disorder and (D) shows

celiac disease vs obsessive compulsive disorder. Lines shows the weighted linear regression

line. Color shows the weight for each disease pair when conducting weighted regression

analysis.
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Disease 1 Disease 2 sg sm Quadrant

Inflammatory bowel disease Ulcerative colitis 1.00 0.88 B
Diabetes mellitus Type ii diabetes mellitus 0.91 0.91 B
Crohn’s disease Inflammatory bowel disease 0.72 0.91 B
Sclerosing cholangitis Ulcerative colitis 0.63 0.82 B
Crohn’s disease Ulcerative colitis 0.53 0.84 B
Ankylosing spondylitis Sclerosing cholangitis 0.35 0.90 B
Inflammatory bowel disease Sclerosing cholangitis 0.44 0.76 B
Bipolar disorder Schizophrenia 0.71 0.42 B

Rheumatoid arthritis Systemic lupus erythematosus -0.47 0.51 C
Celiac disease Systemic lupus erythematosus -0.16 0.58 C
Sclerosing cholangitis Systemic lupus erythematosus -0.24 0.49 C
Crohn’s disease Sclerosing cholangitis 0.17 0.83 C
Rheumatoid arthritis Sclerosing cholangitis 0.07 0.69 C
Crohn’s disease Rheumatoid arthritis 0.06 0.66 C
Systemic lupus erythematosus Ulcerative colitis -0.16 0.43 C
Crohn’s disease Systemic lupus erythematosus -0.10 0.49 C

Type i diabetes mellitus Type ii diabetes mellitus 0.85 0.10 D
Diabetes mellitus Type i diabetes mellitus 0.91 0.20 D
Celiac disease Obsessive-compulsive disorder 0.36 -0.26 D
Diabetes mellitus Obesity 0.54 0.01 D
Obesity Osteoarthritis 0.49 0.02 D
Attention deficit hyperactivity disorder Obesity 0.44 0.03 D
Attention deficit hyperactivity disorder Osteoarthritis 0.40 0.00 D
Obesity Type i diabetes mellitus 0.40 0.00 D

Table 3.7: Example disease pairs of genetic correlation and model similarities. This table

shows the genetic correlation and model similarity for some disease pairs as we selected. sg:

genetic correlation; sm: model similarity. For quadrant B, C, D we pick 8 disease pairs,

where sg + sm, sg − sm and sm − sg are the highest, respectively.
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3.5 Discussion

Most variant scores prioritize non-coding variants either at the level of the whole organism

(e.g, CADD [6], GenoCanyon [34]), or they provide tissue-specific scores (e.g, GenoSkyline

[7], Fitcons2 [37]). Here we present a straightforward strategy to combine tissue-specific

variant scores in a disease-specific manner. We show that for common genetic variants in

the GWAS catalog [78] our approach leads to better performance than organism-level or

tissue-specific scores (see Figure 3.5). Pre-computed disease-specific prioritization scores

are available at https://doi.org/10.7910/DVN/AUAJ7K.

Comparing different variant prioritization methods we note that we use area under the

precision-recall curve as an evaluation metric, and that the performance of all methods

is modest. We believe that is because our analysis (a) focuses explicitly on non-coding

variants, (b) stratifies SNVs by disease-phenotype, and (c) utilizes unbiased matching of

control-SNVs (SNPsnap-matching, see Section 3.3.1.2). Each of these points affects the

SNV sets we use for our analysis, and therefore the performance metrics we report. For

transparency we provide all disease-associated variants we use (with matched negatives) in

our supplemental data. More generally, associations reported in the GWAS catalog contain

causal as well as non-causal SNVs, which will also contribute to sub-optimal performance

measures of all the variant scores we assess.

We included a comparison with the DIVAN method in our evaluation, which also in-

cluded comparing GenoCanyon with DIVAN. Part of this comparison is analogous to results

reported in Chen et al. [43]; however, the performances we observed do not agree perfectly,

as detailed in Appendix Data A.3.15. Broadly, looking at overlapping/matching disease

terms, our results appear more favorable for GenoCanyon. These differences are likely due

to different test sets used in the two evaluations (i.e., the GWAS catalog (this study) vs.

GRASP (Genome-Wide Repository of Associations Between SNPs and Phenotypes)).

We note that there is other research associating variants with disease terms in a similar

setting, notably PINES [42] and LSMM [112]. We did not compare directly with PINES,

because no pre-computed scores are available; also, we note that while performance reported

in this publication in terms of AUROC is higher than our results, a less stringent un-matched
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test set of random variants was used in these analyses. For LSMM we note that we lever-

age variants associated with EFO disease terms across studies, while LSMM uses summary

statistics on a per-study basis. Using aggregate data from different studies allows our ap-

proach to consider parent-child relationships of the EFO ontology using variant aggregation

(see Section 3.4.1).

We show that our approach can be used to calculate similarities between disease terms

(”model similarities”), see Section 3.4.6.1. Since this similarity measure is derived from

non-coding SNVs associated with disease, one could expect it is largely congruent with ge-

netic correlation between disease traits. However, that is not the case (see Figure 3.9), most

likely because we focus on a small subset of disease-associated SNVs reported in the GWAS

catalog. For example, obsessive-compulsive disorder and celiac disease have a high genetic

correlation (sg = 0.36) but do not share non-coding SNVs in the GWAS catalog (and low

model similarity sm = −0.26), whereas autism spectrum disorder and anorexia nervosa have

a low genetic correlation (sg = −0.05) but share a number of significant SNVs in the GWAS

catalog (and relative high model similarity sm = 0.34). Further on, interpretation of model

similarity between disease terms is different from genetic correlation; high model similarity

implies that disease-associated SNVs reside in DNA-accessible regions in an overlapping set

of tissues, but the identity of individual SNVs (and whether they overlap) is inconsequen-

tial. For example, asthma and rheumatoid arthritis have only 15 shared SNVs (out of 732

and 1283 SNVs in rheumatoid arthritis and asthma, respectively), but exhibit high model

similarity (sm = 0.53). This shows that model similarity between two diseases can involve

similar tissues even if they do not share a genetic background. Further on, we noted that

estimates of genetic correlation also may depend on the study used. For example, systemic

lupus erythematosus (SLE) has a negative genetic correlation (sg = −0.47) with rheumatoid

arthritis (RA) (and other inflammatory diseases) when using the SLE summary statistics

from Julià et al. [113] (as retrieved from the GWAS Atlas [92]), whereas another study (Lu

et al., [114]) found SLE to have a positive genetic correlation (sg = 0.41) with RA when

using the SLE summary statistics from Bentham et al. [115].

We note that in our analyses we used the EFO ontology to aggregate variants annotated

in the NIH/EBI GWAS catalog. That is, for each disease term directly-annotated variants
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were used, and, in addition, variants annotated to descendant terms in the ontology were

also included. This approach allowed us to compile a more exhaustive set of variants per

term. However, some amount of caution should be exercised when using disease models with

more general terms, such as ”cardiovascular disease” for example, as they may encompass

heterogeneous diseases.

Our approach is expected to improve as more variants are associated with disease, and as

disease-associations get more refined. In addition, increasing amounts of epigenomics data,

such as epimap [84] and ENCODE5 [16], could be incorporated and have the potential to

improve the disease associations we learn.

One limitation of this method to be noted is that our prioritization scores are available

only for diseases associated with a relatively large number of SNVs in the GWAS Catalog.

Specifically, this applies to 111 diseases with more than 100 non-coding SNVs after filtering.

However, it is expected that more diseases will be included as additional associated SNVs

are discovered in the future.

It is important to note that nearly 80%-90% of the participants in the GWAS Catalog

were of European descent [116, 117]; therefore, the disease-associated SNVs derived from

the GWAS Catalog for training our model may not be generalized to other ethnic groups.

However, a key aspect of our model is that it identified disease-related tissues, such as Rec-

tal Mucosa in Colorectal adenoma; this is not driven by population structure, but rather

driven by the overlap of open chromatin regions and disease-associated SNVs. While it is

true that different population exhibit unique characteristics, for example allele frequency or

LD patterns [116], the identification of disease-relevant tissues holds potential for applica-

bility across various ethnic groups. Nonetheless, we need further research to support the

effectiveness of this method in diverse ethnic populations.

In summary, we have provided a straightforward method to leverage tissue-specific vari-

ant scores for disease-specific variant prioritization. We show that this approach performs

well compared with current methods, and we show that the resulting association models are

interpretable and lead to useful characterization of disease terms. Overall, our contributions

are useful for the following two reasons: Conceptually, because they highlight the value of

disease-specific variant prioritization. In addition, we provide pre-computed prioritization
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scores for 111 disease terms that researchers can use in practice to interpret their variant

data.

3.6 Author contribution

Qianqian Liang contributed to the chapter ”Disease-specific prioritization of non-coding

GWAS variants based on chromatin accessibility” by:

• Conducting data preparation and analysis.

• Drafting the manuscript.

• Establishing the Github repository: https://github.com/kostkalab/nc-gwassnps-score_

manuscript.
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4.0 Information sharing between disease terms can improve the prioritization

of non-coding genetic variants

4.1 Introduction

In the previous chapter, we introduced a disease-specific approach that can prioritize

non-coding genetic variants in 111 different diseases. This approach outperforms current

organism-level variant scores, tissue-specific scores, and another disease-specific approach,

DIVAN; however, there is still room for improvement, considering its average precision of

0.151 across 111 diseases compared to a baseline average precision of 0.091. In addition,

this disease-specific approach is only applicable to diseases with sufficient training samples,

limiting its scope substantially.

The limitations mentioned above can be attributed, in part, to the scarcity of training risk

variants for each disease. Among the 111 diseases we studied, only 17 diseases contain more

than 1000 disease-associated variants and 70 diseases have less than 400 disease-associated

variants. Additionally, over two thousand diseases in the GWAS Catalog contain fewer than

100 disease-associated SNVs, leading to their exclusion from our study due to the potential

generation of inaccurate and unstable models.

On the other hand, studies have shown that diseases are related. For example, Cotsapas

et al. discovered that seven immune system diseases not only share a similar genetic back-

ground but also exhibit shared uniquely expressed cell types [44]. Similarly, Wingo et al.

found that some psychiatric and neurodegenerative diseases share genetic backgrounds and

have highly expressed shared causal proteins in specific cell types and tissues [46]. In the

previous chapter, we also observed that many diseases share similar models and highlight

similar involved tissues. For instance, both Crohn’s disease and ulcerative colitis models

highlight the GI rectum and blood cell type while de-emphasizing brain tissue in the model

(model sim = 0.84).

Given the relationships among diseases, one potential solution to the issue of inadequate

positive training data could be to include risk SNVs in related diseases. Some researchers
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have developed computational models that can prioritize variants for a group of diseases.

For example, eyeVarP is a computational tool that prioritizes genetic variants for various eye

diseases, including glaucoma, corneal diseases, and more [50]. In another study, Chen et al.

developed a non-coding variant prioritization method that effectively prioritizes variants for

19 autoimmune diseases [51]. Cao et al. developed CASAVA, a disease-category-specific vari-

ant prioritization method that effectively prioritizes variants for 24 different disease groups,

such as cardiovascular diseases [52]. However, these studies typically group diseases based on

disease categories without evaluating the effectiveness of grouping compared to considering

individual diseases. In addition, they do not assess which metric is better for identifying

related diseases.

Therefore, in this chapter, we propose an information-sharing approach that can share

SNVs in two diseases and we systematically evaluate whether sharing information between

different disease terms leads to improved variant prioritization performance. In this research,

we leverage disease terms and SNVs from the GWAS Catalog and combine SNVs between

terms with various disease-term-specific sample weights. We assess the performance improve-

ment of variant prioritization, or lack thereof, using nested cross-validation. Our findings

demonstrate that employing an information-sharing approach by combining SNVs from re-

lated diseases can enhance variant prioritization. Furthermore, we compare three different

methods for identifying related diseases and find that utilizing model similarity derived from

our previous chapter outperforms other approaches.

4.2 Methods

4.2.1 Diseases studied

Disease-associated and control variants were retrieved as described in the previous chap-

ter (See Section 3.3.1), where we focused on 111 diseases that each contained 100 or more

SNVs. For the purposes of the information sharing step, we obtained a subset of the dis-

eases that are located at the relative bottom of the hierarchy plot within the 111 diseases
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based on The Experimental Factor Ontology (EFO, https://www.ebi.ac.uk/efo/). This

ensured that no disease in the subset included another disease. This resulted in 68 diseases

(Appendix Table B.2-??).

4.2.2 Pairwise information sharing model for two diseases

4.2.2.1 Model overview

In the information-sharing setup, we designate D1 as the primary disease of interest and

D2 as an auxiliary disease introduced for potential information-sharing purposes. We aim to

assess whether the inclusion of SNVs in D2 can impact the performance of D1. To achieve

this, we gather all disease-associated single nucleotide variants (SNVs) and matched control

SNVs for D1; however, we exclude overlapping SNVs in D2 that exist in D1, so the combined

SNVs collection does not contain any duplicate SNVs.

In this study, we utilized the regularized logistic regression algorithm, which was also

employed in the previous chapter (refer to Section 3.3.2 for more details). The model

was trained and evaluated using a five-fold cross-validation approach. Our training dataset

comprised SNVs from both D1 and D2, while the test datasets exclusively contained SNVs

from D1.

During the training phase, we assigned weights to the SNVs from D1 and D2. This

weight assignment serves two purposes: firstly, to prevent the model’s performance from

deteriorating significantly compared to using D1 alone (see Appendix Figure B.1) and

secondly, to determine the extent to which incorporating D2 improves the model’s perfor-

mance. A higher weight is assigned to D2 if it contributes positively, whereas a very small

weight is assigned if D2 significantly impairs the performance of D1. The weight values are

determined through a hyperparameter optimization process.

To establish a control scenario where no D2 SNVs are added, we set the weight of D2

to zero. Finally, we compare the performance of the information-sharing model containing

SNVs in D1,D2 with that of the D1 only model.
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4.2.2.2 Weight setup in two diseases

In the disease pair consisting of D1 and D2, where D1 is the disease of interest and D2

is the auxillary disease, we define N1 as the number of negative SNVs (control SNVs) in

D1, P1 as the number of positive SNVs (disease-associated SNVs) in D1, N2 as the number

of negative SNVs in D2, and P2 as the number of positive SNVs in D2. We introduce w1n

as the weights for negative SNVs in D1, w1p as the weights for positive SNVs in D1, w2n

as the weights for negative SNVs in D2, and w2p as the weights for positive SNVs in D2.

Furthermore, w1 represents the overall weights for D1 and w2 represents the overall weights

for D2. Consequently, we obtain the following relationships:

w1p × P1 + w1n × P1 = w1

w2p × P1 + w2p × P1 = w2

To ensure equal weights for positive and negative SNVs within each disease, we set up the

following equations:

w1p × P1 = w1n ×N1

w2p × P2 = w2n ×N2

Solving these equations, we find:

w1n =
w1

2N2

w1p =
w1

2P2

w2n =
w2

2N2

w2p =
w2

2P2

We define w as the ratio w = w2

w1
, and we will optimize it using the weight hyperparameter

optimization process. In our study, the emphasis is on the ratio w not the individual values

of w1 or w2, because the model remains the same if both are proportionally increased or

decreased.
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4.2.2.3 Weight hyperparameter optimization

To determine the optimal hyperparameter (w) for our model, we employed a nested five-

fold cross-validation approach. The entire dataset was randomly divided into five outer folds,

each containing an equal ratio of positive and negative single nucleotide variants (SNVs) and

an equal ratio of SNVs from D1 and D2. Within each outer fold, the training data was further

divided into five inner folds, maintaining the same ratio of positive and negative SNVs and

the same ratio of SNVs from D1 and D2. Notably, the SNVs from D2 were excluded in both

the inner and outer fold’s test datasets.

Within the inner loop, we performed hyperparameter optimization for the weight param-

eter w using a grid search technique. We explored 11 different values of w including 10−5,

10−2, 10−1.5,10−1, 10−0.5, 100, 100.5, 101, 101.5, 102, and 105. This process was repeated twice

to reduce the impact of random variations in the data and obtain a more reliable estimate

of the optimal w value. Consequently, we obtained 10 sets of validation performance, and

for each set, we selected the weight with the highest area under the precision-recall curve.

Among the 10 folds, we discarded the two highest and two lowest weights, retaining only

the six weights in the middle. Finally, we calculated the mean of these six weights to obtain

the optimized weight for that specific inner loop. See Appendix Figure B.2- B.10 for the

performance of the validation set in the inner fold for example diseases.

In the plots above and Section 4.2.2.4, we experimented with 11 different lambda values

spanning from 10−5 to 105. However, to prevent D2 from being disproportionately weighted

compared to D1—thereby dominating it—we set the maximum weight (w) in the optimiza-

tion process at 101.

By conducting this hyperparameter tuning procedure, we can identify the optimal w

hyperparameter for our model. The outer loop of the nested cross-validation was then

utilized to evaluate the model’s performance on the test set.

4.2.2.4 Model on lambda: GAM

To identify the optimal hyperparameter w, we employed a grid search approach using

8 different values of w. However, the corresponding regularization parameter lambda can
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vary significantly with occasional outliers (see Figure 4.1 for example). This could result

in the validation area under the curve (AUC) fluctuating (Figure 4.2a), not necessarily due

to changes in w, but rather due to the outlier value of lambda (for example, we can observe

outliers in fold 3, 4 and 5).

To address this issue, we constructed a Generalized Additive Model (GAM) regression

approach to model the non-linear relationship between the hyperparameter w and lambda

values. Here, we choose a smooth function with a cubic spline basis (bs = ”cs”), 4 knots (k

= 4) and a smooth parameter 50 (sp = 50), in order to result in a relatively smooth curve.

We then used the fitted lambda values to generate predictions on the validation dataset.

This approach allows us to account for the complexity of the lambda change due to w, while

producing a relatively stable AUC result that reflects the impact of w alone. Here, we show

an example of the validation performance before and after applying the GAM model on

weight and lambda (Figure 4.2) for disease adult-onset asthma (D1) and ulcerative colitis

(D2). We can see that the validation AUC is smoother after applying the model, representing

the trend of the AUC on weight parameter w rather than the outlier of lambda.

4.2.3 Model performance

For each disease, we performed two repetitions of five-fold cross-validation, resulting in

ten test sets (called repeated cross-validation, see [118] for more details). In each test set,

we evaluated the performance using the Area Under the Precision-Recall Curve (AUPRC)

in three settings. Firstly, we utilized the optimal weight for combining D1 and D2 (model

performance referred to as PRD1D2). Secondly, we set the weight to 0 (w = 0) to mimic a

control scenario where no D2 is added (referred to as PRD1). Lastly, we set the weight to

1 (w = 1) to assign equal weight to D1 and D2, thereby simulating a scenario without a

weight selection process (referred to as PRD1D2 w1).

We then computed the relative performance using the following equation:

Relative Performance =
PRD1D2 − PRD1

PRD1

where the PRD1D2 and the PRD1 represent the average precision of PRD1D2 and PRD1 across
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Figure 4.1: An example of lambda value varies in different weight values in five different

folds. The figure illustrates the variability of lambda values across different weight values

(w)in five different folds. The example focuses on two diseases: adult-onset asthma (D1)

and ulcerative colitis (D2). Each plot corresponds to a different outer fold. On the x-axis,

we have the logarithm base 10 of the weight values (log10(w)), while the y-axis represents

the hyperparameter lambda in regularized logistic regression. The solid line represents the

regression line, and the dashed line indicates the 95% credible intervals.
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Figure 4.2: The performance of validation set in five folds before and after applying GAM

model. The figure illustrates the performance of the validation set in five folds, both before

and after applying the Generalized Additive Model (GAM). The example focuses on two

diseases: adult-onset asthma (D1) and ulcerative colitis (D2). Each color represents a distinct

fold in the inner loop. The x-axis represents the logarithm base 10 of the weight values

(log10(w)), while the y-axis depicts the model’s performance in terms of the Area Under the

Precision-Recall Curve (AUPR) on the test set.
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the 10 test sets. Relative performance greater than 1 indicates improved performance when

incorporating D2, whereas relative performance less than 1 suggests adding D2 deteriorates

the performance.

4.2.4 Disease similarity measurements

Model similarity

The model similarity is measured using the similarity of the beta coefficients from our

disease-specific model from the previous chapter. See Section 3.4.6 for more details.

Genetic correlation

Genetic correlation is obtained from the GWAS Atlas [92], where it measured the shared

genetic background of two diseases using GWAS summary statistics. See Section 3.3.4 for

more details.

Semantic similarity

Semantic similarity, which measures the disease similarity based on the controlled bio-

logical vocabularies, such as Medical Subject Headings (MeSH), is calculated using Wang’s

method [119]. We retrieved Wang’s method similarity using the meshes package developed

by Yu et. al. [120]. In this process, we mapped the disease terms from the Experimental Fac-

tor Ontology (EFO) to corresponding MeSH terms. The mapping was performed using the

EMBL-EBI Ontology Xref Service (OxO) available at https://www.ebi.ac.uk/spot/oxo/.

4.3 Results

4.3.1 Information sharing model can improve variant prioritization

4.3.1.1 Including related diseases can improve performance through informa-

tion sharing model

The information-sharing model is built on the disease-specific regularized logistic regres-

sion model discussed in the previous chapter. We employed the same disease-associated and
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control variants, along with tissue-specific scores represented by DNase I hypersensitivity

(DHS) profiles (see Section 3.3.1, 3.3.2 and 3.4.3 for more details). In this study, we fo-

cused on a subset of 111 diseases from the previous chapter that do not exhibit a parent-child

relationship (for example, cancer is the parent and colorectal cancer is the child), resulting

in a final set of 68 diseases. Within the information-sharing model, we defined D1 as the

disease of interest and D2 as the auxiliary disease added to facilitate information sharing. To

control the weight and importance assigned to D1 and D2, we developed a weighting scheme

for positive and negative SNVs from both diseases (See Section 4.2.2.3). This weighting

scheme involves assigning distinct overall weights to D1 and D2 (w1 and w2). By optimizing

the relative weight w = w1/w2 through a hyperparameter optimization process, we were able

to determine the appropriate weight for D1 and D2 for effective information sharing.

To assess the performance improvement achieved in the information-sharing model, we

measured the relative performance using the area under the precision-recall curve across 10

test folds (See Section 4.2.3). The relative performance quantifies the performance gain (or

loss) of the information sharing model for each disease pair (referred to as D1D2) compared

to the model utilizing only D1. Appendix Data B.1.1 summarize the relative performance

of the information-sharing model in all pairs.

To visualize the relative performance between disease pairs, we plotted a heatmap using

20 sample diseases D2 for each disease D1. The selection of these samples was based on their

model similarity, including the top 10 most similar diseases, followed by the middle 5 (ranking

18, 27, 36, 45, 54), and the least 5 similar diseases. The heatmap (Figure 4.3) reveals that

the information-sharing model exhibits improvements in certain disease pairs across many

diseases, as indicated by the redder color. Notably, diseases like multiple myeloma and

squamous cell lung carcinoma demonstrate substantial performance improvements when in-

corporating specific D2 diseases. Juvenile idiopathic arthritis also shows some improvement,

albeit to a lesser extent. On the other hand, diseases like ankylosing spondylitis exhibit

limited improvements through this information-sharing model. Additionally, we observed

that disease pairs with higher model similarities tend to achieve greater relative performance

increases compared to those with middle and least model similarities (Figure 4.3).

We performed the Wilcoxon signed-rank test for the disease pairs with top 10 model
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Figure 4.3: Relative performance of disease pairs using an information sharing model.

(description next page)
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Figure 4.3: Continued figure legend for figure 4.3.

(Previous page) Color in the heatmap represents the relative Area Under the Precision-

Recall Curve (AUPR) after applying the information-sharing model, while numbers indicate

the model similarity of the two diseases. Rows correspond to Disease 1 (D1), and columns

represent Disease 2 (D2), where each row represents a distinct disease. The heatmap displays

a subset of D2 diseases based on their model similarity ranking: the top 10, middle 5, and

least 5. The number next to the disease name in each row represents the baseline performance

of D1 without information sharing model. Disease grouping is based on the clusters discussed

in Section 3.4.6.

similarity to test whether adding D2 significantly increases (or decreases) the performance.

We observed that out of 680 disease pairs, 102 of them have p value less than 0.05, and 36

of those exhibited a relative increase greater than 10%. After applying the false discovery

rate (FDR) adjustment, 13 pairs remained significant with adjusted p-values less than 0.1

(See Appendix Data B.1.2).

To further visualize the results, we utilized a categorical scatter plot where the relative

performance is shown on the y-axis. The x-axis represents D1 diseases and is sorted by the

number of SNVs in D1. The plot demonstrates that the information-sharing model improves

the performance of certain disease pairs (Figure 4.4). Moreover, disease pairs with higher

model similarities (indicated by red) generally exhibit higher relative performance, whereas

those with lower similarities (yellow or green) have lower or negative relative performance.

Additionally, we noticed that diseases with a higher number of SNVs in D1 (ranking of the

x-axis) tend to show less pronounced improvements compared to diseases with fewer SNVs.

However, the number of SNVs in D2 (the point size) does not seem to have an obvious

impact on the performance.
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In addition, we calculated the average improvement for each disease D1 when considering

the top 10 most helpful diseases D2. Our analysis revealed that lung carcinoma, diabetic

nephropathy, multiple myeloma, and alcoholic liver disease experienced the greatest benefits

from the information-sharing model, with average increases ranging from 36% to 20% Fig-

ure 4.5, red box). However, the improvement for diseases such as coronary artery disease

was not as pronounced.
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Figure 4.5: Relative performance of the information sharing model considering the top 10 disease. The red bar indicates top 10

diseases selected by the diseases with the highest performance. The blue bar indicates top 10 diseases selected by diseases with

the highest similarity with D1.



4.3.1.2 Information sharing model reveals biological relevance in disease pairs

Next, we examined several disease pairs that exhibited a significant increase or decrease

(or no change) when applying the information sharing model (marked triangle or circle in

Figure 4.4 and summarized in Table 4.1 and 4.2).

When incorporating SNVs in celiac disease to hypothyroidism, the performance of hy-

pothyroidism improved by approximately 10%, despite hypothyroidism already having a

relatively higher average precision of 0.25 on its own (Table 4.2). While celiac disease is

a digestive immune disorder [121] and hypothyroidism is caused by a lack of the thyroid

hormone [122], both of them are a type of immune disease, and they have high model sim-

ilarity (sm = 0.56). In addition, studies also found they coexist in patients [123]. It is

worth noting that despite their shared model similarity and clinical relationship, these two

diseases only share 4 overlapping SNVs. This implies that celiac disease presents a good

information-sharing candidate for hypothyroidism by introducing an additional 184 unique

SNVs.

Another example pair worth considering is multiple myeloma and multiple sclerosis.

Despite being a type of white blood cell cancer [124] and a nervous system disease [125],

respectively, these two conditions exhibit a 50% model similarity. Notably, multiple myeloma

demonstrates relatively poor performance (AUPR = 0.14) when trained alone (Table 4.1).

Multiple myeloma has 107 associated SNVs; in contrast, multiple sclerosis contains 503

disease-associated SNVs. Furthermore, previous studies such as [126] and [127] have explored

the association between these disorders, providing additional support for the similar disease

model and the potential benefit of utilizing multiple myeloma data to enhance multiple

sclerosis predictions.

Another example pair to consider is squamous cell lung carcinoma and hypothyroidism.

Despite their relatively low model similarity (sm = 0.10), they achieve high relative perfor-

mance (40%) (Table 4.1). Although the absolute value of disease similarity between them

is not high (sm = 0.10), hypothyroidism ranks fourth in terms of similarity to squamous

cell lung carcinoma. While research has found biological relationships of hypothyroidism to

certain cancers such as breast cancer [128, 129, 130], as far as we are concerned, we have
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not found any studies indicating a relationship between squamous cell lung carcinoma and

hypothyroidism.

The information-sharing model improves the performance in many disease pairs; however,

it has come to our attention that it leads to a decrease in performance in certain disease pairs

(as shown by the circle in Figure 4.4, summarized in Table 4.2). Gout serves as an example

in this case. Gout is a form of arthritis [131] and it exhibits low model similarity with almost

all other diseases studied (with the highest model similarity being 0.1). Including SNVs

associated with Parkinson’s disease results in a decreased performance of 17% and metabolic

syndrome results in a decrease of 14%. Both Parkinson’s disease and metabolic syndrome

have very low model similarity with gout (0.00 and 0.04, respectively), and the information

sharing model assigns them relatively low weight (10−1.13 and 10−1.11). In addition, we

observe that adding almost all other diseases does not improve the model performance of

gout (See Figure 4.4). This can be partially attributed to the low model similarity between

gout and other diseases, although the exact reason remains unclear.

In addition, we would like to note another disease pair: juvenile idiopathic arthritis and

anorexia nervosa. These two diseases belong to different disease groups, with juvenile id-

iopathic arthritis being an autoimmune disease that shows arthritis in children [132] and

anorexia nervosa being an eating disorder [133]. They possess very dissimilar model similar-

ity (sm = -0.10) (Table 4.2). During the information-sharing process, we assigned a very low

weight to anorexia nervosa (10−3.5), resulting in a performance similar to using only juve-

nile idiopathic arthritis (0.0%). This example emphasizes the purpose of the weight-tuning

process in the information-sharing model.

4.3.2 Factors influencing the performance of the information sharing model

As previously observed, certain factors, including the number of SNVs in D1 and D2 and

model similarity, can affect the performance of the information-sharing model. Consequently,

in this and the next section, we conducted a comprehensive investigation into the factors

that could influence the relative performance of the model.

We first examined the number of SNVs in D1. For each disease in D1, we calculated
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D1 D2 D1perf impr weight∗ sm
a nD1

b nD2
c

squamous cell lung carcinoma hypothyroidism 0.09 40% 0.14 0.10 109 174
venous thromboembolism Alzheimer’s disease 0.13 34% 0.62 0.22 173 940
multiple myeloma multiple sclerosis 0.14 26% 0.69 0.50 107 583
stroke coronary artery disease 0.13 23% 0.76 0.28 187 844
dental caries unipolar depression 0.10 15% 0.26 0.19 207 1362
hypothyroidism celiac disease 0.25 10% 0.58 0.56 174 188

a Model similarity, b The number of SNVs in D1, c The number of SNVs in D2
∗ All weight values are presented in logarithmic scale (log10).

Table 4.1: Examples of disease pairs where information sharing model increases the perfor-

mance.

D1 D2 D1perf impr weight∗ sm
a nD1

b nD2
c

gout metabolic syndrome 0.14 -14% -1.13 0.04 109 205
gout Parkinson’s disease 0.14 -17% -1.11 0.00 109 244
juvenile idiopathic arthritis anorexia nervosa 0.14 0% -3.50 -0.10 124 182

a Model similarity, b The number of SNVs in D1, c The number of SNVs in D2
∗ All weight values are presented in logarithmic scale (log10).

Table 4.2: Examples of disease pairs where information sharing model do not improve the

performance.
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the average performance of the top 10 diseases. Our analysis revealed that the information-

sharing model demonstrated noticeable performance improvements for diseases with fewer

than 300 SNVs, while the improvement was less pronounced for diseases with more than 300

SNVs (refer to Figure 4.6 A). A similar trend was observed when we ranked the diseases

based on model similarity (see Figure 4.6 B).

Furthermore, we explored the baseline performance of diseases in D1. We discovered

that the information-sharing model exhibited better results for diseases with lower baseline

performance (below 0.15). However, diseases with moderate performance (e.g., around 0.2

AUPR) also demonstrated the potential for improvement. For instance, type I diabetes

mellitus has an average improvement of 11.8% among the top 10 diseases and 8.3% among

the top 10 similar diseases (refer to Figure 4.7).

We also investigated how the number of SNVs in D2 could influence the performance. For

each disease in D1, we examined the correlation between the relative performance and the

number of SNVs in D2. We found that certain diseases, such as atrial fibrillation, exhibited

a correlation between the number of SNVs in D2 and the relative performance. However, for

the majority of diseases (62 out of 68), we did not observe a significant correlation between

the number of SNVs in D2 and the relative performance (See Appendix Figure B.11 -

B.12 and Appendix Table B.2 - B.2).

4.3.3 Model similarity can help find similar diseases that improve the perfor-

mance

In the previous section, we explored some factors (e.g. nSNVs in D1) that may influ-

ence the information-sharing model performance. In this section, we continue to investigate

how model similarity can affect relative performance and whether it can serve as an effec-

tive criterion for efficiently selecting related diseases compared with other disease similarity

metrics.

We first explore whether an increase in model similarity correlates with improved per-

formance. Across all diseases, a slight increase in relative performance was observed with

higher model similarity (see Appendix Figure B.13). To further investigate this trend,
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Figure 4.6: Number of SNVs in D1 can influence the information sharing model performance.

The x-axis is the number of SNVs in D1 and the y-axis is the mean of the average precision of

the top 10 related diseases with the highest performance (left panel), or the top 10 diseases

with the highest model similarity (right panel).
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Figure 4.7: Baseline performance of D1 can influence the information sharing model perfor-

mance. X axis is D1 baseline performance and y-axis is the mean of the average precision

of the top 10 related diseases with the highest performance (left panel), or top 10 diseases

with the highest model similarity (right panel).
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Figure 4.8: Impact of model similarity on the relative performance of the information sharing

model. The x-axis represents the quantiles of model similarity (or model similarity is less

than 0). Y axis is the relative performance of the information-sharing model. The boxplot

summarizes the first quantile, medium and the third quantile of the data. The data are

grouped based on the number of SNVs in D1.

disease groups with a similar number of SNVs in D1 were analyzed. For disease pairs with

fewer than 160 SNVs in D1, an increase in model similarity corresponded to improved rel-

ative performance. In cases where D1 contained SNVs ranging from 160 to 300, relative

performance increased with higher model similarity, but it decreased in the highest quantile.

However, when D1 contained over 300 SNVs, there was a minimal change (See Figure 4.8).

Further analysis focused on the relationship between relative performance and model

similarity within individual diseases. Some disease pairs demonstrated a strong correlation

between relative performance and model similarity, such as hypothyroidism (correlation =

0.736, adjusted p-value = 4e-11), juvenile idiopathic arthritis (correlation = 0.736, p-value =

4e-11), and obesity (correlation = 0.635, p-value = 4.8e-8) (see Table 4.3.3 and Figure 4.9

for example diseases). Conversely, certain diseases, like coronary artery disease and breast

carcinoma, exhibited less obvious correlations (see Appendix Table B.2- B.2).
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Figure 4.9: Model similarity is highly correlated with relative performance for Hypothy-

roidism. The x-axis represents the model similarity across all disease pairs, with D1 being

Hypothyroidism. The y-axis is the relative performance.
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D1 Corre pval adj p val

juvenile idiopathic arthritis 0.829 4.6e-18 3.13e-16

cirrhosis of liver 0.764 5.77e-14 1.96e-12

multiple myeloma 0.737 1.18e-12 2.67e-11

type i diabetes mellitus 0.721 6.04e-12 1.03e-10

hypothyroidism 0.696 6.38e-11 8.68e-10

age-related macular degeneration 0.629 1.16e-08 1.31e-07

obesity 0.618 2.46e-08 2.39e-07

bipolar disorder 0.614 3.32e-08 2.82e-07

atopic asthma 0.606 5.53e-08 4.18e-07

hiv-1 infection 0.583 2.21e-07 1.5e-06

Table 4.3: Correlation of relative performance and disease similarity for example diseases.

10 diseases with the highest correlation were selected. A false discovery rate adjustment was

applied to the p values to account for multiple comparisons.

Our next objective is to assess a more effective approach for the rapid identification

of related diseases by comparing different disease similarity metrics. We compared our

model similarity approach with two other disease similarity metrics: genetic correlation,

which assesses shared genetic factors between diseases [113], and semantic similarity, which

gauges shared clinical or biological characteristics within the ontology tree [120]. For each

disease marked as D1, we selected the five diseases with the highest similarity scores in

each of these three metrics and subsequently analyzed their mean relative performance.

Our findings reveal that model similarity outperforms both semantic similarity and genetic

correlation, with a particularly notable improvement in comparison to genetic correlation

(See Figure 4.10 and 4.11).
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Figure 4.10: Model similarity performs better than genetic correlation. X-axis denotes the

performance of each disease, measured as the mean performance of 5 diseases exhibiting the

highest genetic correlation. Y-axis denotes the performance of each disease, measured as the

mean performance of 5 diseases having the highest model similarity.
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Figure 4.11: Model similarity performs better than semantic similarity. X-axis denotes the

performance of each disease, measured as the mean performance of 5 diseases having the

highest semantic similarity. Y axis denotes the performance of each disease, measured as the

mean performance of 5 diseases having the highest model similarity.
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4.3.4 Heterogeneous and immune disease group show higher improvements

than other disease groups

Finally, we investigate which disease categories can benefit the most substantially from

the information-sharing model. We used the disease group information introduced in the

previous chapter (as detailed in Section 3.4.6). We calculated the mean relative performance

of each disease, taking the 10 most similar diseases. We then identified 10 diseases with

highest relative performance (defined later as top-level improvement). From Table 4.4, we

observe that 5 diseases (30%) within the heterogeneous group experience substantial benefits

from the information sharing model, with an average improvement of 12%. This follows

diseases in the immune group, with 2 diseases (18%) demonstrating substantial improvements

attributable to the model, resulting in an 8% average improvement. The Digest/Cancer

group has 2 diseases displaying top-level improvements and an average enhancement of 11%.

Lastly, one disease in the Cardio/Others category demonstrates an 8% improvement. The

other three disease groups, immune/autoimmune, mental, and skin cancer do not have any

diseases having top-level improvement.
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Group # Diseases
Top-level improvement

# Diseases Ave imprv

Heterogeneous 17 5 (30%) 12%

Immune 11 2 (18%) 8%

Digest/Cancer 12 2 (17%) 11%

Cardio/Others 13 1 (8%) 8%

Table 4.4: Heterogeneous and immune disease groups shows higher improvements. Ten dis-

eases with top-level improvement were selected among 68 diseases (improvement measured

by the mean relative performance of the 10 most similar diseases). The first column is the

number of diseases in each group. The 2-3 columns are the number of top diseases in the

group and the percentage. The last column is the mean average relative performance for the

top diseases in the group by using the most 10 similar diseases.

4.4 Discussion

In Chapter 3, we developed a disease-specific variant prioritization method and applied

it to 111 diseases in NHGRI GWAS catalog. In this chapter, we improved the disease-

specific method by developing an information-sharing approach that can include SNVs from

related diseases. We also showed that model similarity is a better way to select related

diseases compared to other disease similarity metrics including genetic correlation and model

similarity.

Within the information-sharing model, we employed a weight-tuning technique to get

the relative overall weight, denoted as w, assigned to Disease 1 (D1) and Disease 2 (D2)

(w = w2/w1). Notably, we observed that in some disease pairs, we can select an overall

relative weight greater than 1. This means that the disease we added (D2) can outweigh the

disease of interest (D1). For instance, in the case of multiple myeloma and multiple sclero-

sis, the relative weight was 4.8 and this information-sharing model leads to a performance
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D1 D2 model sim nD1 nD2 nD2added
colorectal cancer colorectal adenoma 0.83 572 131 23
ankylosing spondylitis sclerosing cholangitis 0.96 314 242 30
crohn’s disease sclerosing cholangitis 0.89 574 242 31
psoriasis sclerosing cholangitis 0.88 443 242 31
ulcerative colitis sclerosing cholangitis 0.90 423 242 31
autism spectrum disorder anorexia nervosa 0.52 392 182 39
autism spectrum disorder tourette syndrome 0.61 392 184 41
autism spectrum disorder obsessive-compulsive disorder 0.67 392 208 53
crohn’s disease ankylosing spondylitis 0.89 574 314 60
ulcerative colitis ankylosing spondylitis 0.90 423 314 61

Table 4.5: Examples of disease pairs in the Figure 4.8 middle panel, Q 8 group. Ten disease

pairs were selected based on the nD2 added. The smallest 10 in the largest quantile group

were selected.

improvement of 26%. This could come from the reason that D2 possesses significantly more

SNVs than D1 (nearly fivefold, 583 vs. 107, see Table 4.1), assigning a weight greater than

1 allows us to leverage the information from D2, ultimately enhancing model performance.

Another key finding in this chapter is the effectiveness of model similarity in identifying

related diseases. However, it’s important to note that a minimum threshold of SNVs is

necessary to train the model and calculate the model similarity between two diseases. In

our study, we limited the inclusion of diseases to those containing more than 100 non-coding

SNVs to enable model similarity calculations. For diseases with very few SNVs, e.g., only 10

SNVs, utilizing the model similarity metric becomes challenging. Nevertheless, we recognize

that in such cases, semantic similarity can serve as a viable alternative, representing a solid

strategy for identifying related diseases.

As depicted in Figure 4.8 (middle panel), we observed a slight decline in relative perfor-

mance within the highest quantile of model similarity groups. This trend can be attributed

to certain disease pairs in this group sharing SNVs, resulting in fewer additional SNVs when

incorporating D2. For example, Table 4.4 illustrates examples from this quantile that ex-

hibit high model similarity but limited SNVs added to D2 due to SNV overlap between D1

and D2.

In this paper, we introduced an information-sharing approach between two diseases to
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enhance disease-specific prioritization. By applying this approach, we can use it to derive

disease-specific variant scores that achieve better performance than the scores from Chapter

3. Particularly this approach holds the potential to increase the performance for diseases

(D1) with relatively few disease-associated SNVs, such as those with fewer than 300 SNVs

(Figure 4.8). To facilitate further research, we have compiled a table detailing diseases D1

with under 300 SNVs alongside their corresponding D2 that contribute the most substantial

performance improvement Appendix Table B.2 and B.2. This can serve as a guide to

help researchers to identify diseases to include in future studies

In future research, this information-sharing model can be extended to incorporate more

than two diseases. Furthermore, the insights gained from our study regarding the effective-

ness of model similarity in identifying related diseases can be applied in future work to select

diseases in a disease group. Additionally, we currently focus on diseases with more than 100

associated SNVs, but in the future, we can broaden our scope to include diseases with a

moderate number of associated SNVs (e.g., between 50 to 100) or even diseases with fewer

associated SNVs (e.g., less than 50) to expand our knowledge.
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5.0 Annotation and analysis of predicted escape nonsense-mediated mRNA

decay (NMD) for human genetic variants

Section 5.1 - 5.4 from the following chapter has been taken from the manuscript:

Jonathan Klonowski*, Qianqian Liang*, Zeynep Coban-Akdemir, Cecilia Lo and Den-

nis Kostka, ”aenmd: Annotating escape from nonsense-mediated decay for transcripts with

protein-truncating variants” where I am the co-first author with Jonathan Klonowski (See

[134] and [135]). Please see Section 5.5 for author contributions and Section 5.6 for addi-

tional methods and results.

5.1 Introduction

Nonsense Mediated mRNA Decay (NMD) is a well-characterized, evolutionarily con-

served quality-control mechanism that is essential for embryogenesis and other developmental

processes, and it is known to play a role in human disease [136]. NMD guards against com-

promised transcripts by affecting their degradation vs. translation, including transcripts with

variants that introduce premature termination codons (PTCs). PTC-causing variants where

a resulting transcript is subject to NMD can exert loss-of-function (LOF) effects in case of

haploinsufficiency, where transcripts from both chromosomes are required for normal protein

function. For PTC-harboring transcripts that escape NMD, there are additional possibili-

ties of dominant-negative (DN) or gain-of-function (GOF) effects, where the altered protein

may interfere with the wild-type version (DN) or where it can possess an altered molecular

function or activity domain (GOF). While molecular mechanisms of DN/GOF effects are

generally less well understood compared with LOF effects [137] and the pathogenicity of

NMD escaping variants is gene/transcript-specific, they do play a significant role in human

disease [136, 138, 139, 66, 140, 141, 142, 143, 10, 9, 144].

Given the potential contribution of PTC variants with NMD escape in causing disease,

significant new insights into mechanisms of disease pathogenicity can emerge from annotating
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PTC-containing transcripts with a prediction about their escape from NMD [138, 141, 142,

143, 10, 9, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 8, 154, 155, 156]. Using an

exon-exon junction complex-dependent model of NMD, a notable fraction of PTC-harboring

transcripts is predicted to escape NMD [66]. However, this model only describes about

half of NMD-escaping human variation accurately, prompting the development of additional

approaches for predicting transcript escape from NMD [136, 148, 8, 157, 158, 159, 160,

161, 162, 163, 56, 60, 164, 12, 165, 59, 57, 166]. Nevertheless, and despite the relevance

of annotating PTC-causing variants with respect to a modified transcript’s susceptibility to

NMD, there is a lack of scalable and accessible software addressing that task comprehen-

sively (i.e., for all types of PTC-causing variants). Therefore, we developed aenmd, a software

tool for comprehensive annotation of PTC-causing variant-transcript pairs with a (predicted)

escape from NMD. aenmd makes use of well-established and experimentally validated rules

based on PTC location within a transcript’s intron-exon structure [60, 12], and it integrates

well into existing variant analysis pipelines. In the following, we describe aenmd in more

detail and report statistics of NMD escape for PTC-causing variants in the Clinvar [167],

gnomAD [168], and NHGRI-EBI GWAS catalog [169] resources.

5.2 Methods

5.2.1 Annotating escape from NMD

aenmd predicts escape from NMD for combinations of transcripts and PTC-generating

variants by applying a set of NMD-escape rules, which are based on where the PTC is located

within the mutant transcript. First, the location of the 5’-most (novel) PTC is determined,

and then escape from NMD is predicted by the following five rules [60, 12]: Whether

• the PTC located in the last coding exon (last exon rule),

• the PTC located within d pen bp upstream of the penultimate exon boundary (penulti-

mate exon rule; default: d pen = 50)
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• the PTC located within d css bp downstream of the coding start site (css rule; default:

d css = 150)

• the PTC located within an exon spanning more than 407bp (407 bp rule)

• the transcript is intronless (single exon rule)

See Figure 5.1A. Distances (in bp) are calculated using the PTC nucleotide closest to

the coding start site (CSS) or exon boundary for the css and penultimate exon rules, respec-

tively; variants are assumed to be left-normalized [170] (aenmd provides this functionality).

Variants that overlap exon-intron boundaries or splice regions are not currently analyzed by

aenmd. Variant-transcript pairs with a PTC conforming to any of the above rules will be

annotated to escape NMD, but results for all rules are reported individually by aenmd; this

allows users to focus on subsets of rules, if desired. aenmd is implemented in the R program-

ming language [171], making use of the VariantAnnotation [172] and vcfR [173] packages

for importing/exporting variants from/into vcf files, and the Biostrings [174] and Genomi-

cRanges [175] packages for calculating rules. An index containing all PTC-generating SNVs

is pre-calculated for a given transcript set and stored in a trie data structure for lookup, using

the triebeard package. For non-SNV variants, alternative alleles for overlapping transcripts

are explicitly constructed and assessed. This strategy allows us to assess frameshift variants

where a PTC is produced downstream of the variant location, and it accounts for both the

size and content of sequence insertions, deletions, and insertion-deletions.

5.2.2 Data on genetic variants and transcript models

We obtained gnomAD version v2.1.11liftover GRCh38, Clinvar version 20221211, and

the NHGRI-EBI GWAS version 20220730, catalog from their respective download sites and

annotated variants using aenmd. For our analyses we used transcript models from ENCODE

version 105, where we focused on protein-coding transcripts on standard chromosomes that:

(a) have an annotated transcript support level of one (or NA for single exon transcripts),

and (b) have a coding sequence length divisible by three.
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B: ClinVar: 105,260 stratified PTC-generating variants
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   614

interaction(aenmd, vc)

esc.benign

td.benign

trig.benign

esc.pathogenic

td.pathogenic

trig.pathogenic
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td.uncertain
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Clinvar: 103,872 PTC−genertating variants

AAAA Transcript model

A: NMD escape classification rules

Last exon rule
Penultimate exon rule
CSS proximal rule

PTC locations for predicted NMD degradation
PTC locations for predicted NMD escape

Figure 5.1: NMD escape rules and clinvar variants.Panel A illustrates rules for predicting

escape from NMD, with purple-shaded regions indicating areas that would harbor predicted

NMD-escaping PTCs. The single exon rule and the 407 bp rule are not shown. Panel

B: ClinVar variants, stratified by pathogenicity and annotated with predicted escape from

NMD. transcript-dependent: the same variant overlaps multiple transcripts and has differing

NMD escape predictions.
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5.3 Results

5.3.1 aenmd R package

The aenmd R-package provides functionality to annotate variant-transcript pairs for

predicted escape from NMD within the R ecosystem. Data dependencies (i.e., transcript

models) are implemented via specific data packages (see below), and functionality for data

import and export (vcf files) is also provided, as is functionality for variant left-normalization.

Key differences that set aenmd apart from currently available tools for annotating escape

from NMD are: all types of PTC-causing variants (including frameshift variants that do not

cause stop codons at the variant site) are annotated, variants are annotated at scale, inserted

sequence is considered for indels, and differentiated (i.e., rule-specific) output is provided for

each transcript-variant pair where NMD-escape rules are applicable. This enables users to

focus on the subset of rules most applicable to their situation; for example, some users may

choose to focus on the exon-exon junction complex related “canonical” NMD rules only

and ignore the “css proximal”, “single exon”, and “407 bp plus” rules (see Section 5.2). In

addition to the R package we also provide a command line interface to aenmd‘s functionality.

5.3.2 aenmd cli command-line interface

We constructed a containerized version of aenmd with all dependencies, which also pro-

vides a command-line interface. This allows end-to-end annotation of variants. An input vcf

file is read, PTC-generating variants that overlap a specific transcript set (see the aenmd

data packages section below) are annotated, and the annotation results are then included in

the INFO column of an output VCF file. In this way, the aenmd cli command line tool makes

aenmd easily accessible and its results reproducible; there are no external dependencies, no

knowledge of the R programming language is required, and it can be seamlessly integrated

into existing variant processing workflows.
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5.3.3 aenmd data packages

Annotation for (predicted) escape from NMD is based on the location of a PTC in the

context of a transcript model. With aenmd, we provide precompiled annotation packages

that provide comprehensive protein-coding transcript sets for the GRCh37 and GRCh38 as-

semblies of the human genome (data packages: aenmd.data.gencode.v43 and

aenmd.data.gencode.v43.grch37, respectively), based on GENCODE version 43 annotations.

We also provide a more stringently filtered transcript set based on ENSEMBL (version

105), containing transcripts with the highest level of transcript support (data package:

aenmd.data.ensdb.v105). The aenmd package provides functionality to select between differ-

ent transcript sets, allowing convenient prediction of NMD escape for GRCh37 and GRCh38

variants.

5.3.4 Annotation of gnomAD, Clinvar and the GWAS catalog

We used aenmd with a high-quality ENSEMBL transcript set (aenmd.data.ensdb.v105

annotation package, see above) to annotate the gnomAD, Clinvar, and GWAS catalog

databases of human genetic variation for PTC-generating variants predicted to escape NMD.

Our results are summarized in Supplementary Tables S1 - S3. We observe that the fraction

of NMD-escape PTC-generating variants varies between 36% (ClinVar), 50% (gnomAD),

and 57% (GWAS catalog). The fraction of coding variants in each database that introduce

PTCs also varies (10% for ClinVar, 4.1% for gnomAD, and 4.5% for the GWAS catalog).

While the absolute number of PTC-generating variants is low for the GWAS catalog (most of

its variants are non-coding), we learn from gnomAD that half of the 300k PTC-generating

variants recovered from 125k exome sequences are predicted to escape NMD. Analyzing the

ClinVar database (Figure 5.1B, Supplementary Table C), we find that for the subset of

variants that are considered pathogenic and generate PTCs, 34% (nearly 31k variants) are

predicted to escape NMD. This suggests that escape from NMD may play a substantial role

in the disease mechanisms underlying variants of clinical significance annotated in ClinVar.
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5.3.5 Comparison with VEP NMD plugin

We note that Ensemble’s Variant Effect Predictor (VEP) [11] provides an NMD annota-

tion plugin that annotates escape from NMD for ”stop gained” variants. This set of variants

does not include frameshift variants with a downstream PTC, so the set of variants consid-

ered by aenmd and the VEP plugin are inherently different. For example, aenmd annotates

200k variant-transcript pairs for ClinVar, while VEP considers 77k due to its restrictions

on variant type (Supplementary Table C).

Nevertheless, we systematically compared VEP and aenmd NMD escape predictions for

the ClinVar database for variants that overlap in transcript set and variant type between the

two methods. Overall, we find high consistency of NMD escape predictions (97.5% identical

predictions), with 773 (out of 75,840) variant-transcript pairs annotated as NMD escaping

by aenmd but not VEP, and with 1,096 pairs annotated as NMD escaping by VEP but

not aenmd. We manually examined a limited set of 20 randomly selected variants with

different predictions, and differences are often due to understandable technical differences in

the implementation of NMD escape rules.

5.4 Discussion

Here we present aenmd, a self-contained, accessible, and scalable computational tool

for annotating (predicted) escape from nonsense-mediated decay (NMD) for variants that

generate premature termination codons (PTCs) in a transcript. While there exist other

tools that annotate escape from NMD for PTC variants, aenmd is unique in its specific

features. For instance, VEP annotates NMD escape but is lim-ited to “stop gained” variants.

Additionally, a user is unable to readily interpret which NMD escape rules underlie a certain

prediction. This interpretability shortcoming is shared with NMDetective [12], a tool that

annotates annotate escape from NMD and provides a NMD efficacy prediction, a feature

that aenmd lacks; however, NMDetective’s approach does not consider inserted sequence

for indels that cause PTCs. The latter is also the case for the tool NMDescPredictor [66],
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which is also different from aenmd in that it does not provide batch annotation functionality,

and it implements a smaller set of NMD escape rules. The tool ALoFT [67] more generally

predicts pathogenicity of loss of function variants, but it has the capability to annotate NMD

escape. However, its output is less fine-grained than aenmd’s as to which specific rules drive

NMD escape annotations. Similarly, the variant annotator SNPEff [52] provides NMD escape

prediction, but it only considers two NMD escape rules (penultimate and last exon rules).

In summary, aenmd stands out in terms of its functionality, flexibility, and interpretability

of results.

We also performed a detailed comparison of aenmd with the VEP NMD plugin, which

annotates fewer variant types, uses a smaller set of NMD escape rules, and does not report

the outcome of individual rules. While aenmd annotates substantially more variants, we

nevertheless found that overlapping predictions were highly consistent

We note that the rules aenmd (and other tools) utilize for predicting escape from NMD do

not yield perfect annotations, and not all of the rules are believed to work equally well. For

instance, Lindebloom et al. [12] in their NMDetective-B model observe the highest efficacy

for the “last exon” rule, followed by the “CSS proximal” rule, followed by the “penultimate

exon” rule, followed by the “407bp plus” rule when analyzing can-cer data. Further on, it

is conceivable that the efficacy of different rules changes across different tissues/cell-types

where affected transcripts are expressed. However, a recent study leveraging GTEx data [176]

found that NMD effects were highly stable across tissues and individuals, and it concludes

that NMD prediction tools’ predictive power should be stable across tissues.

In addition, we note that NMD plays a role in designing CRISPR gene editing experi-

ments [12], and therefore aenmd’s functionality will potentially be useful in this context as

well.

In summary, aenmd’s comprehensive features, flexibility, and ease of use allow for im-

proved annotation of PTC-generating variants at low computational cost.
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5.5 Author contribution

Qianqian Liang contributed to the manuscript ”aenmd: Annotating escape from

nonsense-mediated decay for transcripts with protein-truncating variants” by:

• Conducted software testing and debugging to ensure the accuracy and reliability of the

analysis.

• Performed the analysis for the GWAS catalog analysis, which involved data preprocess-

ing, statistical analysis, and interpretation of results.

• Analyzed the ClinVar dataset and contributed to the generation of the ClinVar analysis

plot (Figure 5.1B)

• Participated in setting up the GitHub repository for the aenmd manuscript, which facil-

itated collaboration and version control among the co-authors.

• Debugged the code and contributed to the development of supplemental tables that

provided additional information and context for the main results.

The next section (Section 5.6) is an extension of the manuscript by applying the aenmd

tool to analyze variants in the GWAS dataset. This section is conducted by Qianqian Liang.

5.6 Additional methods and results

5.6.1 Additional introduction

Premature termination codon (PTC) genetic variants are known to contribute to human

diseases, and their impact can be various based on whether it escape or not from nonsense-

mediated mRNA decay (NMD) [12, 8]. For example, PTC variants that escape NMD can

exacerbate beta-thalassemia by introducing toxic truncated proteins, while those that escape

NMD may result in a milder form of Duchenne muscular dystrophy by producing truncated

proteins with partial function [8, 9, 10]. Numerous studies have investigated how NMD

escape can aggravate or alleviate disease phenotypes; however, most of these studies have
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focused on individual diseases, making it necessary to explore escaping from NMD in a

broader context [144, 143, 142, 139].

In a recent study, Lindeboom et al. analyzed NMD escape and NMD triggering enrich-

ment in PTC variants, albeit only in terms of the disease gene [12]. Therefore, this study

aims to analyze the enrichment of NMD or NMD-escape disease-associated PTC variants for

specific phenotypes by comprehensively analyzing all possible trait terms using the GWAS

Catalog. In this section, we will utilize the PTC-introducing coding variants available in

the GWAS Catalog database and leverage the aenmd tool developed in the previous section

of this chapter to annotate these variants. Subsequently, we will analyze the enrichment of

NMD escape versus NMD triggering across all potential terms documented in the GWAS

Catalog. Given the limited number of coding variants in the GWAS Catalog, we will utilize

the ontology to gather genetic variants annotated to the term itself and its child terms to

increase the number of variants for the terms we analyzed.

By investigating the enrichment patterns of NMD escape and NMD triggering in disease-

associated PTC variants across a wide range of phenotype terms, this study offers a com-

prehensive understanding of the relationship between NMD escape, disease phenotypes, and

potential therapeutic implications.

5.6.2 Additional methods

5.6.2.1 Process and annotate the GWAS Catalog dataset

Genetic variants, including single nucleotide variants and insertions and deletions, were

retrieved from the GWAS Catalog version 20220730 [169]. We conducted the following filter-

ing/preprocessing steps to get the potential PTC causing variants: 1. get variants that are

located in coding regions; 2. get variants that are potential PTC causing variants (annotated

as frameshift/stop gain in GWAS catalog CONTEXT column); 3. normalize variants so that

variants can have standard format to work with aenmd package (see Section 5.2), especially

for insertions and deletions; 4. get reference and alternative allele using ncbi snp query

function from rsnps package [177], as the GWAS catalog did not have alternative allele in-

formation for some variants; 5. annotate variants so that each variant is mapped on a single
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EFO phenotype. If one variant is mapped to more than one EFO phenotype, we will generate

multiple entries for that variant.

Using the preprocessed potential PTC variants, we use the aenmd package to filter for

PTC variants and annotate NMD escape. If one variant is annotated as NMD escape and

NMD triggering in different transcripts or alternative alleles, we predicted this variant as

NMD escape.

5.6.2.2 Term frequency generation

In the previous section, we created a table that includes information on the variants, their

associated phenotypes, and their NMD escape annotations. Using this table, we computed

the term frequency for all possible EFO terms, where the EFO frequency represents the

percentage of phenotypes in the table that are descendants of that particular EFO term.

For instance, if a particular EFO term, such as ”hematological measurement,” has a term

frequency of 21%, it means that 21% of the phenotypes listed in the table are subtypes of

hematological measurement.

We sort all EFO terms based on the term frequency and use the top 50 terms for further

analysis. We removed terms that are too broad, such as ’experimental factor’ or ’information

entity’ from further analysis, as they provide no biological meaning. Terms that contain less

than ten unique variants were also removed.

5.6.2.3 Statistical tests

For each EFO term we analyzed, we got all GWAS PTC variants that were associated

with that term or to the descendants of that term. Variants were annotated as NMD trigger-

ing or NMD escape using aenmd package (Section 5.6.2.1). To investigate the association

between NMD escape/triggering and the presence/absence of a specific term, we performed

Fisher’s exact test on a contingency table. The contingency table was constructed with the

rows representing the presence or absence of a specific term (e.g., ”term X” or ”not term

X”) and the columns representing the NMD status (escape or triggering).

Variants may annotate to more than one trait terms. For each term X, we retrieve all
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the variants that are associated with either term X or descendants of term X. Rest of the

variants are annotated as not term X. Each variant is only counted once in the contingency

table. It is recognized that some variants assigned to term X may also be associated with

a trait that is not in term X. However, due to the limited number of variants, we do not

exclude these variants from our analysis.

Pleiotropy effect analysis is also performed using Fisher’s exact test. The contingency

table considered the number of traits associated with a variant (one vs. more than three)

and its NMD status (escape or triggering).

5.6.3 Additional results

5.6.3.1 NMD escape annotation for the GWAS Catalog

We first use the aenmd to annotate all possible PTC variants in the GWAS Catalog.

In total, the GWAS Catalog (as of version 20220730) contained 197,442 unique variants, of

which 5,703 were coding variants when considering only those overlapping with the aenmd

default transcript set. Among these coding variants, only 254 were found to cause PTC.

This relatively low number can be attributed to the prevalence of non-coding variants in the

GWAS Catalog (See Table 5.1).

Among the GWAS PTC variants, when considering both canonical and non-canonical

rules, 57.1% were found to escape NMD. This percentage is higher than the NMD escape rate

observed for variants in the ClinVar Database (38.3%) (See Appendix Table C). When

examining subtypes within ClinVar variants, the GWAS PTC variants exhibited a higher

NMD escape rate compared to pathogenic variants (36.2%), but a lower rate compared to

benign variants (64.8%) in ClinVar (See Figure 5.1B and Appendix Table C). Similar

trends were observed when analyzing PTC variant-transcript pairs. Among the GWAS PTC

variants-transcript pairs, 49% were found to escape NMD, whereas the NMD escape rate for

ClinVar variants was 34.8%.
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Overall number of variants: 197,442

Variants overlapping AENMD default tx set: 5,703

number percentage

Unique PTC variants 254 100

NMD triggering 109 42.9

NMD escaping canonical 96 37.8

NMD escaping non-canonical 42 16.5

Transcript dependent predictions 7 2.8

NMD escaping overall 145 57.1

PTC variant-transcript pairs 437 100

NMD triggering 223 51

NMD escaping canonical 150 34

NMD escaping non-canonical 64 15

NMD escaping overall 214 49

Table 5.1: Distribution of NMD escape annotations for GWAS catalog based on unique vari-

ants or variant-transcript pairs.

5.6.3.2 Term enrichment analysis revealed phenotypes that are enriched with

NMD variants

Using aenmd tool, we annotated the NMD outcome for variant-phenotype pairs for all

PTC variants in the GWAS catalog using reference and alternative alleles. We then generate

a list of EFO terms using those phenotypes and calculate the term frequency for all possible

EFO terms and take the top 50 terms for further analysis (See Section 5.6.2.2). We then

conduct Fisher’s exact test to test all those EFO terms and calculate the enrichment of NMD

escape or NMD triggering for all those terms.

Our analysis revealed significant enrichments of PTC variants that undergo or escape
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NMD in various phenotypic terms. Specifically, we observed one notable enrichment of NMD

triggering variants in glycoprotein measurement (EFO:0004555 odds ratio = 0.14, 95% confi-

dence interval [0.01-0.67]). There are some other terms such as leukocyte count(EFO:0004308,

odds ratio = 0.41 [0.09-1.68]), erythrocyte indices (EFO:0004306, odds ratio = 0.188 [0.14-

1.68])and platelet count (EFO:0004309, odds ratio = 0.48, [0.14-1.57]) show some enrichment

of NMD triggering, but not significant. On the contrary, there are some other terms such

as triglyceride measurements(EFO:0004530, odds ratio = 3.18, [0.83-17.98]), anthropometric

measurement(EFO:0004302, odds ratio = 1.9, [0.76-5.23]), and body weights and measures

(EFO:0004324, odds ratio = 1.79, [0.7-4.95]) show some enrichment of NMD escape, but

not significant. (See Figure 5.2). Some broader terms, such as disease (EFO:0000408, odds

ratio = 0.88 [0.46-1.68]), do not show significant enrichment in NMD triggering or NMD

escape.

We examine specific examples to elucidate these findings further. The term glycopro-

tein measurement (EFO:0004555) shows a significant enrichment of NMD triggering variants

(odds ratio 0.14, p-value = 0.005). It exhibited a term frequency of 2.2% and encompassed 3

descendant traits (HbA1c measurement, EFO:0004541; sex hormone-binding globulin mea-

surement, EFO:0004696; and erythropoetin measurement, EFO:0008391) within the GWAS

Catalog, encompassing a total of 12 variant-phenotype pairs (with 12 unique variants). No-

tably, 17% of PTC variants associated with glycoprotein measurement evaded NMD, com-

pared to 59% of PTC variants associated with other terms (See Figure 5.2 and Table

5.2).

Let us now consider another example. The term triglyceride measurement (EFO:0004530)

shows some enrichment of NMD escaping variants but is not significant (p-value = 0.104,

odds ratio 3.18). It exhibited a term frequency of 2.8% and encompassed one descendant

trait (triacylglycerol 50:5 measurement, EFO:0010412). This term comprised a total of 15

variant-phenotype pairs (15 unique variants). Among the PTC variants associated with

triglyceride measurements, 80% evaded NMD, compared to 56% of PTC variants associated

with other terms (See Figure 5.2 and Table 5.3).

We also investigated the term ”disease” (EFO:0000408) as we are interested in whether

NMD triggering or NMD escape are enriched in a disease vs a non-disease trait. The term
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Figure 5.2: NMD enrichment for EFO terms. The X axis is the Log2 Odds ratio from the

enrichment analysis. The y axis is the EFO terms sorted by Log2 odds ratio.

”disease” encompassed all traits categorized as diseases (e.g., Crohn’s disease, EFO:0000384;

inflammatory bowel disease, EFO:0003767). This term included 60 distinct disease terms

and 90 variant-disease pairs (55 unique variants). When comparing disease traits to non-

disease traits, we do not observe any enrichment in NMD triggering or NMD escape (odds

ratio 0.88, p-value = 0.758) (See Figure 5.2 and Table 5.4).
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NMD escape NMD triggering escape percentage

Glycoprotein measurement 2 10 17% escape

Not glycoprotein measurement 143 99 59% escape

Total 145 109 57% (254 total)

Table 5.2: NMD enrichment analysis for glycoprotein measurement.

NMD escape NMD triggering escape percentage

Triglyceride measurement 12 3 80% escape

Not triglyceride measurement 133 106 56% escape

Total 145 109 57% (254 total)

Table 5.3: NMD enrichment analysis for triglyceride measurement.

NMD escape NMD triggering escape percentage

Disease 30 25 55% escape

Not disease 115 84 58% escape

Total 145 109 57% (254 total)

Table 5.4: NMD enrichment analysis for disease vs non-disease.
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5.6.3.3 Pleiotropy analysis revealed marginal significance of pleiotropy traits

are enriched with NMD escaping variants

Lastly, we explored the effect of NMD on pleiotropy. Specifically, we tested whether

NMD escape is enriched in SNVs associated with one trait or SNVs associated with multiple

traits. Here, we found that we have a higher rate of NMD escape in PTC variants associated

with three more traits (75% escape) than PTC variants associated with only one trait (56%

escape) (See Table 5.5), but with only marginally significant (pval = 0.056, odds ratio =

0.43 [0.16-1.03]).

pleiotropy NMD escape NMD triggering escape percentage

N trait >3 27 9 75% escape

N trait = 1 82 63 56% escape

Table 5.5: NMD enrichment analysis for pleiotropy effect in GWAS Catalog.

5.6.4 Additional discussion

In this section, we used our new tool aenmd to annotate PTC genetic variants in one of

the genetic datasets: the GWAS Catalog. To investigate the outcome of NMD in particular

trait terms, we analyze the enrichment of NMD escape and NMD triggering PTC variants

for specific phenotype terms. We discovered one trait, glycoprotein measurement, that is

significantly enriched with NMD escape variants compared with other traits. In addition,

we found that traits such as triglyceride measurement show some enrichment with NMD

escaping variants, however, it is not statistically significant. Moreover, we also revealed that

NMD has some function in pleiotropy, while there is an enrichment of NMD escapes in the

variants associated with three more traits, compared with variants associated with only one

trait.

However, we have to admit that the number of the PTC variants we analyzed overall is

relatively small (254 unique variants). This is due to that the GWAS Catalog mostly contains

non-coding genetic variants (more than 95%), and the percentage of the PTC bearing variants
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among all coding is lower in the GWAS Catalog (4.4%) compared with Clinvar (10.3%) (See

Table 5.1 and Appendix Table C). However, this study is meaningful, as most other

people have studied Clinvar, which mainly contains variants in Mendelian diseases [12]; our

study broadens our understanding by studying the impact of NMD in complex traits.

We acknowledge that there could be some ascertainment bias in the study as the PTC

variants we studied are not randomly picked but the ones that have at least some function

in a trait or disease. Further studies on a more general population of randomly picked PTC

variants could be conducted to understand the function of NMD further.

In our analysis, we found that PTC variants that escape NMD are enriched for disease

traits compared to non-disease traits. However, Lindeboom et al. observed that in more

disease genes, pathogenic PTC variants triggering NMD are overrepresented [12]. These

seemingly discrepant findings could be explained by differences in the types of diseases stud-

ied, while we studied complex disease traits Lindeboom et. al. are focusing on Mendelian

diseases. This suggests that while NMD may have deleterious effects in the context of

Mendelian diseases, for complex diseases, NMD escape may contribute more to disease asso-

ciations compared to non-disease traits. This highlights the complex interplay between NMD

and disease mechanisms, emphasizing the need for further investigation and a nuanced un-

derstanding of NMD’s role in different disease contexts.
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6.0 Conclusions

6.1 Summary

In this dissertation, we presented computational approaches that can characterize and

prioritize protein-coding and non-protein coding genetic variants, and by analyzing or uti-

lizing these methods, we revealed significant biological findings related to human disease.

In Chapter 3, we presented a disease-specific non-coding variant prioritization method that

showed improved performance than current disease-agnostic methods. Using a relatively

simple logistic regression model in this method, we were able to highlight relevant tissues for

specific diseases and find meaningful disease groups. The findings in this chapter highlight

the value of disease-specific variant prioritization. In Chapter 4, we improved the perfor-

mance of the disease-specific variant prioritization method by combining SNVs from related

diseases. Using the information sharing model, we showed that by adding SNVs from related

diseases, the performance of the disease-specific variant score can improve up to 40%. These

findings suggest that data sharing is a promising avenue for improving the performance of

disease-specific models. In Chapter 5, we developed a tool ”aenmd” which can annotate

mRNA non-sense mediated decay (NMD) that addresses the limitations of current NMD

annotation tools. Then we utilized this tool to annotate coding variants associated with

traits from the GWAS Catalog and we found traits that are enriched with NMD triggering

or escaping variants. This expands our knowledge of the function of NMD in the field of

complex traits. Overall, we present better computational approaches to annotate coding

and non-coding genetic variants, thereby enhancing our understanding of the genetic basis

of complex human diseases and traits.
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6.2 Significance

As most current variant prioritization methods are disease-agnostic, my work first ex-

pands our knowledge by demonstrating that disease-specific scores can improve our ability to

prioritize disease-associated variants. In addition, by utilizing a relatively simple logistic re-

gression approach, our method is able to highlight significant tissues relevant to diseases and

find disease groups with biological meaning. Next, we improved the disease-specific scores

by incorporating SNVs from related SNVs. This suggests that data sharing is a promising

avenue for improving the performance of disease-specific models. Lastly, the NMD anno-

tation tool aenmd contains many functions that are absent in current tools and provides a

user-friendly way to annotate NMD. By applying the tool to the GWAS Catalog, our findings

expand our knowledge of the role of NMD in complex diseases and traits.

There are a few things that we can consider as part of our future plan for the thesis.

Firstly, functional datasets like ENCODE are expanding their datasets by using biosamples

instead of the standard 127 roadmap tissues. We can include these datasets as features to

train our model in the future, which has the potential to increase the model’s performance

and help us find more disease-relevant tissues. Secondly, we can conduct further research to

better understand the impact of population stratification on our method. Lastly, in Chapter

5, we identified some traits that are enriched with NMD escape or NMD trigger variants. To

better understand the role of NMD, we can conduct further investigations into the biological

relevance of these traits.
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Appendix A Supplemental materials for aim1

A.1 Supplemental material

A.1.1 Four different matching strategies for control SNVs

For each disease-associated SNV, we have matched control SNVs from four different

matching strategies: 1) random; 2) SNPsnap TSS; 3) SNPsnap; and 4) TSS (see Method).

We measured the performance of five organism level scores on four different control sets in

111 diseases. Among them, random matching is considered as the least stringent way as we

don’t have any constraint on it. Therefore, we choose the random matching as the baseline,

and we normalize the performance of the other three control sets on random matching for

each disease. We plot the normalized performance in Appendix Figure A.1 and A.2, using

each disease as a panel.

From here, we observe that three normalized performances in CADD are all distributed

around 1. This indicates that the CADD is robust in different matching strategies. The

normalized performances of Eigen, GenoCanyon, GWAVA and LINSIGHT are all less than

1. This indicates that those three matched control sets are more stringent than randomly

selecting control variants. Among those three control sets, TSS is the most stringent, followed

by SNPsnap and SNPsnap TSS.

It is important to note that TSS and SNPsnap TSS are both matched using the distance

to the nearest TSS; however, TSS uses the distance to the nearest protein-coding gene while

SNPsnap TSS uses the distance to the nearest gene. TSS matched SNVs have similar distri-

bution to disease SNVs in both all genes and protein-coding genes; in contrast, SNPsnap TSS

SNVs have similar distribution to disease SNVs in all genes but not in protein-coding genes

(Appendix Figure A.3 and A.4). Therefore, TSS is more stringent than SNPsnap TSS and

also more stringent than SNPsnap even though SNPsnap has matched with additional three

criteria.

Here, SNPsnap matching strategy is neither too stringent nor too loose and it matches
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with four criteria (see Method). Thus, we choose the control set matched by SNPsnap in

our study.

A.1.2 DHS-weighted performance using two additional strategies to prevent

overfitting

To prevent overfitting, we also deployed two additional strategies to test the performance

of tissue-weighted DHS. In the first one, we used the ’representative SNVs’ so that any two

disease-associated SNVs are not in the same LD block. In the second one, we deployed a

chromosome held-out strategy so that the SNVs in the test and train set are on different

chromosomes (see Method). These two strategies ensure that the SNVs in the test and train

set are separated or in different chromosome to reduce overfitting. We observe that in any of

these two settings, we can still observe a significant increase with the tissue-weighted model,

which is consistent with our previous finding, even though the amount of the improvement

is in a lesser degree in some diseases (See See Appendix Figure A.18- A.21).
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A.2 Supplemental tables

Score Wins Losses Ties Wins (agg) Losses (agg) Ties (agg)

GenoCanyon 335 87 22 4 0 0

LINSIGHT 303 124 17 3 1 0

eigen 247 177 20 2 2 0

GWAVA 168 256 20 1 3 0

CADD 15 424 5 0 4 0

Table A.1: Relative performance of organism-level variant scores, measured by AUROC.

Wins, Losses, Ties refers to significantly better (or worse, or tied) performance across all

possible pairings (see Methods). The first three columns summarize separate comparisons

for each disease term, while the last three columns represent results of aggregate comparisons

across terms. Average precision was used as the performance metric, and the Wilcoxon

singed-ranks test to determine wins and losses (p-values less than 0.05 were ties).
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Score Wins Losses Ties Wins (agg) Losses (agg) Ties (agg)

DHS 138 54 30 2 10 0

Fitcons2 80 111 31 0 1 1

Genoskyline 69 122 31 0 1 1

Table A.2: Relative performance of disease-specific variant scores, measured by AUROC.

Wins, Losses, Ties refers to significantly better (or worse, or tied) performance across all

possible pairings (see Methods). The first three columns summarize separate comparisons

for each disease term, while the last three columns represent results of aggregate comparisons

across terms. Average precision was used as the performance metric, and the Wilcoxon

singed-ranks test to determine wins and losses (p-values less than 0.05 were ties).

Score/Method
By disease term Aggregated

Wins Losses Ties Wins Losses Ties

DHS 375 127 53 4 0 1

GenoCanyon 375 144 36 4 0 1

LINSIGHT 342 184 29 3 2 0

eigen 273 250 32 2 3 0

GWAVA 186 338 31 1 4 0

CADD 19 527 9 0 5 0

Table A.3: DHS outperforms organism-level variant scores, measured by AUROC. Wins,

Losses, Ties refer to significantly better (or worse, or tied) performance across all possible

score pairings (see Methods). The first three columns summarize separate comparisons

for each disease term (for each row there are two other methods and 111 terms, i.e., 555

comparisons), while the last three columns represent results of comparisons aggregated over

terms. Average precision was used as the performance metric, and the Wilcoxon singed-ranks

test to determine wins and losses (p-values less than 0.05 were reported as ties).
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Score/Method
Performance vs. DHS

Wins Losses Ties Winning percent

LINSIGHT 17 84 10 20

GenoCanyon 7 92 12 12

GWAVA 12 93 6 14

eigen 4 98 8 8

CADD 4 107 2 4

Table A.4: Disease-specific variant prioritization outperforms organism-level approaches,

measured by AUPR. Wins losses and ties of organism-level scores against tissue-weighted

DHS scores (performance measured by average precision, Wilcoxon signed-ranks test for

determining significance). Winning percent was calculated as number of wins plus half the

number of ties, divided by the number of comparisons, and rounded to the nearest integer.

Rows have been ordered by winning percent.
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Score/Method
Performance vs. DHS

Wins Losses Ties Winning percent

GenoCanyon 40 57 14 36

LINSIGHT 39 60 12 35

eigen 26 73 12 23

GWAVA 18 82 11 16

CADD 4 103 4 4

Table A.5: Disease-specific variant prioritization outperforms organism-level approaches,

measured by AUROC. Wins losses and ties of organism-level scores against tissue-weighted

DHS scores (performance measured by average precision, Wilcoxon signed-ranks test for

determining significance). Winning percent was calculated as number of wins plus half the

number of ties, divided by the number of comparisons, and rounded to the nearest integer.

Rows have been ordered by winning percent.

Score Wins Losses Ties Winning percent

GenoCanyon 31 25 2 55

DHS 27 26 5 51

DIVAN 24 31 3 44

Table A.6: DHS tissue-weighted disease-specific scoring outperforms DIVAN. Across 30 dis-

ease terms, this table summarizes all pairwise comparison for DHS tissue-weighted, Geno-

Canyon and DIVAN using a specifically created test dataset. Wins, losses, ties refer to

significantly better (or worse, or tied) performance. Average precision was used as the per-

formance metric, and the Wilcoxon singed-ranks test to determine wins and losses (p-values

less than 0.05 were ties). Winning percent = #Wins/(#Wins+#Losses).
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Rank ID Tissue name Group epimap FDR

Systemic scleroderma
1 E116 GM12878 Lymphoblastoid Cells blood 0.04
2 E032 Primary B cells from peripheral blood blood 0.16
3 E041 Primary T helper cells PMA-I stimulated blood 0.08
4 E123 K562 Leukemia Cells blood 1.00
5 E030 Primary neutrophils from peripheral blood blood 0.86

Sclerosing cholangitis
1 E116 GM12878 Lymphoblastoid Cells blood <0.001
2 E061 Foreskin Melanocyte Primary Cells skin03 skin 0.18
3 E102 Rectal Mucosa Donor 31 gi rectum <0.001
4 E041 Primary T helper cells PMA-I stimulated blood <0.001
5 E029 Primary monocytes from peripheral blood blood <0.001

Colorectal adenoma
1 E102 Rectal Mucosa Donor 31 gi rectum 0.05
2 E110 Stomach Mucosa gi stomach 0.008
3 E057 Foreskin Keratinocyte Primary Cells skin02 skin 0.12
4 E101 Rectal Mucosa Donor 29 gi rectum 0.004
5 E028 Breast variant Human Mammary Epithelial Cells (vHMEC) breast 0.20

Atrial fibrillation
1 E083 Fetal Heart heart <0.001
2 E108 Skeletal Muscle Female muscle 0.01
3 E107 Skeletal Muscle Male muscle 0.009
4 E088 Fetal Lung lung 0.002
5 E120 HSMM Skeletal Muscle Myoblasts Cells muscle 0.18

Cutaneous melanoma
1 E061 Foreskin Melanocyte Primary Cells skin03 skin 0.08
2 E059 Foreskin Melanocyte Primary Cells skin01 skin 0.08
3 E117 HeLa-S3 Cervical Carcinoma Cell Line cervix 0.40
4 E041 Primary T helper cells PMA-I stimulated blood 0.50
5 E122 HUVEC Umbilical Vein Endothelial Primary Cells vascular 0.87

Table A.7: Top-ranked tissues for five diseases. For five diseases when show the top-five

tissues with the largest tissue weights in the corresponding model we derive. The first column

is the tissue rank, the second the tissue’s roadmap ID, the third the tissue name, the fourth

the tissue group, and the fifth listst the adjusted p-value in an enrichment analysis performed

by epimap [84].
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A.3 Supplemental data legends

The supplemental data can be found at: http://d-scholarship.pitt.edu/46026/2/

sup_data_qianqian_dissertation.zip

A.3.1 Phenotypes used in this study

Filename: sup_data_disease-terms.csv.gz

The first column denotes the EFO name of disease phenotypes used. Column #2 is the

EFO ID. Column #3 shows the number of SNVs associated with the term (coding and

non-coding). Columns #4 shows the number of non-coding SNVS used in the study before

aggregation and #5 shows the number of non-coding SNVs used after aggregation. Non-EUR

1KG SNVs and SNVs in the HLA region have been removed in column #4 and #5.

A.3.2 Disease-associated SNVs used in this study

Filename: sup_data_disease-snvs.csv.gz

The first column denotes the SNV ID. Column #2 is the rsID. Column #3 is the phenotype.

Columns #4 and 5 are the chromosome and the specific location (hg19 coordinates). Column

#6 is the LD block cluster id where this SNV resides(SNVs in the same LD block will have the

same cluster id), and column #7 indicates whether this SNV is selected as the representative

SNV for the block (1 as selected, 0 as not selected). SNVs associated with multiple diseases

appear in more than one row.

A.3.3 Control SNVs used in this study

Filename: sup_data_control-snvs.csv.gz

For each disease-associated SNV, this table lists ∼10 randomly-selected control SNVs by four

different methods (see Methods). The first column denotes the SNV ID. Column #2 is the

rs ID. Column #3 is the phenotype. Column #4 and 5 are the chromosome and the specific
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location (hg19) of that SNV. Column #6 is the matching strategy (i.e. snpsnap, snpsnap tss,

tss, random) and column #7 is the SNV ID of the corresponding disease-associated SNV.

A.3.4 Pairwise comparisons of organism-level scores for each disease term

Filename: sup_data_pairwise-org-individual.csv.gz

For each combination of organism-level scores we report p-values for a Wilcoxon signed-ranks

test for each individual disease (see Methods). Column #1 is the score name. Column #2

is the median performance across bootstrap runs for that score. Column #3 is the second

score name. Column #4 is the median performance for the second score. Column #5 is the

disease term for which the comparison was performed. Column #6 is the curve type we used

for the area under the curve performance metric (ROC or PR). Column #7 is the p-value of

the test. Column #8 is the score with the higher median.

A.3.5 Pairwise comparisons of organism-level scores, aggregated across dis-

eases

Filename: sup_data_pairwise-org-aggregated.csv.gz

For each combination of organism-level scores we report p-values for a Wilcoxon signed-ranks

test, aggregated across 111 diseases (see Methods). Column #1 is the score name. Column

#2 is the median performance across 111 diseases. Column #3 is the second score name.

Column #4 is the median performance for the second score across 111 diseases. Column #5

is the curve type for the area under the curve performance metric (ROC or PR). Column

#6 is the p-value of the test. Column #7 is the score with the higher median.

A.3.6 Pairwise comparison of tissue-weighted scores vs. tissue-mean scores for

each disease term

Filename: sup_data_pairwise-tis-individual.csv.gz

For each score we report p-values for a Wilcoxon signed-ranks test between the tissue-mean

and tissue-weighted version for each individual disease. Column #1 is the score name.
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Column #2 is the median performance across bootstrap runs for that score. Column #3 is

the second score name. Column #4 is the median performance for the second score. Column

#5 is the disease term for which the comparison was performed. Column #6 is the curve

type we used for the area under the curve performance metric (ROC or average precision).

Column #7 is the p-value of the test. Column #8 is the score with the higher median.

A.3.7 Pairwise comparison of tissue-weighted scores vs. tissue-mean scores,

aggregated across diseases

Filename: sup_data_pairwise-tis-aggregated.csv.gz

For each score we report p-values for a Wilcoxon signed-ranks test between the tissue-mean

and tissue-weighted version, aggregated across all diseases. Column #1 is the score name.

Column #2 is the median performance across all diseases for that score. Column #3 is the

second score name. Column #4 is the median performance for the second score. Column

#5 is the curve type for the area under the curve performance metric (ROC or PR). Column

#6 the p-value of the test. Column #7 is the score with the higher median.

A.3.8 Pairwise comparison of three tissue-weighted scores for each disease

term

Filename: sup_data_pairwise-tis-weighted-individual.csv.gz

For each combination of Tissue-weighted scores we report p-values for a Wilcoxon signed-

ranks test for each individual disease (see Methods). Column #1 is the score name. Column

#2 is the median performance across bootstrap runs for that score. Column #3 is the second

score name. Column #4 is the median performance for the second score. Column #5 is the

disease term for which the comparison was performed. Column #6 is the curve type we used

for the area under the curve performance metric (ROC or PR). Column #7 is the p-value of

the test. Column #8 is the score with the higher median.
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A.3.9 Pairwise comparison of three tissue-weighted scores, aggregated across

diseases

Filename: sup_data_pairwise-tis-weighted-aggregated.csv.gz

For each combination of Tissue-weighted scores we report p-values for a Wilcoxon signed-

ranks test, aggregated across all diseases (see Methods). Column #1 is the score name.

Column #2 is the median performance across all diseases for that score. Column #3 is the

second score name. Column #4 is the median performance for the second score. Column

#5 is the curve type for the area under the curve performance metric (ROC or PR). Column

#6 is the p-value of the test. Column #7 is the score with the higher median.

A.3.10 Pairwise comparison of tissue-weighted-DHS vs five organism-level scores

for each disease term

Filename: sup_data_pairwise-tis-vs-org-individual.csv.gz

We report p-values for a Wilcoxon signed-ranks test between the Tissue-weighted-DHS and

five organism-level scores for each individual disease. Column #1 is the score name. Column

#2 is the median performance across bootstrap runs for that score. Column #3 is the second

score name. Column #4 is the median performance for the second score. Column #5 is the

disease term for which the comparison was performed. Column #6 is the curve type we used

for the area under the curve performance metric (ROC or PR). Column #7 is the p-value of

the test. Column #8 is the score with the higher median.

A.3.11 Pairwise comparison of tissue-weighted-DHS and five organism-level

scores aggregated

Filename: sup_data_pairwise-tis-org-aggregated.csv.gz

We report p-values for a Wilcoxon signed-ranks test between the Tissue-weighted-DHS and

five organism-level scores, aggregated across all diseases. Column #1 is the score name.

Column #2 is the median performance across bootstrap runs for that score. Column #3 is

the second score name. Column #4 is the median performance for the second score. Column
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#5 is the curve type we used for the area under the curve performance metric (ROC or PR).

Column #6 is the p-value of the test. Column #7 is the score with the higher median.

A.3.12 Mapping of mesh terms to EFO terms

Filename: sup_data_mapping-efo-mesh.csv.gz

The first and second columns are the mesh term id and mesh term label used by DIVAN.

The third and fourth columns are the EFO ID and EFO label that is mapped to the mesh

terms. (Note: there are two MeSH terms that are matched to more than 1 EFO term.)

A.3.13 Training and test SNVs used to compare Tissue-weighted with DIVAN

(including disease and matched control SNVs)

Filename: sup_data_divan-snvs.csv.gz

Column #1 denotes the SNV ID. Column #2 is the rs ID of the SNV. Column #3 is the

phenotype. Column #4 and #5 are the chromosome and location of the SNV. Column #6

indicates whether the variant is a disease-associated or a control variant. Column #7 is

the SNV ID of the corresponding disease-associated SNV. Column #8 indicates whether the

variant is in training or test set.

A.3.14 Pairwise comparison of DIVAN vs. GenoCanyon vs Tissue-weighted-

DHS for each disease term

Filename: sup_data_pairwise-divan-individual.csv.gz

For each combination of DIVAN vs. GenoCanyon vs. Tissue-weighted-DHS we report p-

values for a Wilcoxon signed-ranks test for each individual disease (see Methods). Column

#1 is the score name. Column #2 is the median performance across bootstrap runs for that

score. Column #3 is the second score name. Column #4 is the median performance for

the second score. Column #5 is the disease term for which the comparison was performed.

Column #6 is the curve type we used for the area under the curve performance metric
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(ROC or PR). Column #7 is the p-value of the test. Column #8 is the score with the higher

median.

A.3.15 GenoCanyon vs DIVAN in our study and in Chen study (the DIVAN

study)

Filename: sup_data_perf-divan-our-vs-chen.csv.gz

Column #1 is the disease names of 27 overlapping diseases. Column #2 indicates whether

GenoCanyon is better than DIVAN in our study. Column #3 indicates whether GenoCanyon

is better than DIVAN as published by DIVAN.

A.3.16 Tissue-weighted prediction scores for SNVs across 111 diseases

Filename: sup_data_prediction-scores-dhs-weighted.csv.gz

Column #1 is the the SNV ID (chr:position). (If a SNV is annotated to multiple phenotypes,

there will be multiple entries.) Column #2 is the phenotype that is annotated to the SNVs.

Column #3 indicates whether this SNV is a disease-associated variant or a control variant.

Column #4-6 are Tissue-weighted prediction scores in Genoskyline, DHS and Fitcons2

A.3.17 Beta coefficients of the logistic regression models in 111 diseases (using

DHS score)

Filename: sup_data_beta-coefficients-mean-dhs.csv.gz

Column #1 is the phenotypes. Column #2-128 are the mean of the coefficients of 127 tissues.

A.3.18 Standard deviation of the beta coefficients in A.3.1

Filename: sup_data_beta-coefficients-sd-dhs.csv.gz

Column #1 is the phenotypes. Column #2-128 are the standard deviation of the coefficients

in 127 tissues.
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A.3.19 Disease-disease similarities derived from the logistic regression model

(DHS)

Filename: sup_data_beta-model-similarity-dhs.csv.gz

column #1 and column #2 are the names of the disease pairs. Column #3 is the weighted

disease-disease similarity derived from the model.

A.3.20 Clusters assigned to 111 diseases

Filename: sup_data_cluster-id-name.csv.gz

Column #1 is the disease name. Column #2 is the cluster id. Column #3 is the cluster

name.

A.3.21 Term frequency in 7 disease clusters

Filename: sup_data_cluster_term_frequency.csv.gz

Column #1 is the term name. Column #2 is the term id. Column #3 is the term frequency

of a term in the cluster. Column #4 is cluster id. Term frequency means the fraction of

diseases in this cluster that is a descendant of this term. For example, immune system

disease with a term frequency 0.588 in cluster immune-1 means that 58.8% of diseases in

immune-1 cluster is a immune system disease.

A.3.22 Top five tissues in 7 disease clusters

Filename: sup_data_top-five-tissues.csv.gz

Column #1 and #2 are the cluster id and name. Column #3-5 are the tissue id, tissue name

and tissue anatomy.

A.3.23 ID, name and group of standard epigenomes

Filename: sup_data_standard-epigenomes

Column #1 is the ID of the standard epigenomes (e.g. E043). Column #2 is the group
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name (e.g. Blood & T-cell). Column #3 is the standardized epigenome name. Column #4

is the anatomy(e.g. blood). Column #5 is the type (e.g. PrimaryCell).

A.3.24 Genetic correlation of the disease pairs

Filename: sup_data_genetic-correlation.csv.gz

column #1 and column #2 are the name of the disease pairs. Column #3 is the genetic

correlation derived from the GWAS ATLAS

A.3.25 Performance of tissue-weighted (DHS) in different held-out strategies

Filename: sup_data_perf-chrom-heldout.csv.gz

Column #1 is the disease name. Column #2-#10 are the performance of Tissue-weighted

(DHS) and Tissue-mean (DHS) measured in different held-out strategies. CV-B: cross-

validation, baseline; CV-LR: cross-validation logistic regression; CV-LR (SD): standard devi-

ation of CV-LR; random-B: randomly sampled test set, baseline; random-B (SD): random-B

standard deviation; random-LR: randomly sample test set, logistic regression; random-LR

(SD): random-LR standard deviation; chr-B: test set held out by chromosome, baseline;

chr-B (SD): chr-B standard deviation.
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A.4 Supplemental figures
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Figure A.1: Performance of different matching strategies, measured by area under the PR

curve. X-axis delineates three different matching strategies (i.e. snpsnap-tss, snpsnap, tss).

Y axis shows the performance in terms of area under precision recall curve, normalized by

random matching. Each point represents a specific disease term. Horizontal lines spanning

the dataset denotes the scenario that the normalized performance equals to 1.
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Figure A.2: Performance of different matching strategies, measured by area under the ROC

curve. X-axis delineates three different matching strategies (i.e. snpsnap-tss, snpsnap, tss).

Y axis shows the performance in terms of area under receiver operating characteristic curve,

normalized by random matching. Each point represents a specific disease term. Horizontal

lines spanning the dataset denotes the scenario that the normalized performance equals to

1.
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Figure A.3: A density plot showing the distribution of distance to nearest TSS (protein

coding genes) in disease SNVs and three different control SNVs. X-axis shows the distance

to the nearest TSS of the protein-coding genes and is log 10 scaled. Y axis shows the density

of SNVs.
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Figure A.4: A density plot showing the distribution of distance to nearest TSS (all genes)

in disease SNVs and three different control SNVs. X-axis shows the distance to the nearest

TSS of the protein-coding genes and is log 10 scaled. Y axis shows the density of SNVs.
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Figure A.5: Tissue-weighted performance compared with Tissue-Mean in 111 diseases. X-axis delineates different diseases and

y-axis is the performance in terms of area under the precision recall curve. The star represents the Tissue-Mean and the colored

dots are Tissue-Weighted with 30 replicates.
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Figure A.9: Heatmap plot of coefficients of 111 diseases. Coefficients are regularized by

each disease.
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Figure A.10: Heatmap plot of coefficients of 111 diseases on 5 cluster-specific tissues. Coefficients are regularized by each

disease. Tissue names are shown by ’Tissue name-group’ from 127 standard epigenomes.
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Figure A.11: Disease relationships for immune1 cluster. The diseases placed at the top are more general than the diseases at

the bottom. Arrow points from a more general term to a more specific term. A disease marked with one star indicates that it

is not in this cluster but among the 111 diseases we studied. Diseases with two stars indicate that they are not among the 111

diseases.
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not in this cluster but among the 111 diseases we studied. Diseases with two stars indicate that they are not among the 111

diseases.
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Figure A.13: Disease relationships for cardiovasular disease and others cluster. The diseases placed at the top are more general

than the diseases at the bottom. Arrow points from a more general term to a more specific term. A disease marked with one

star indicates that it is not in this cluster but among the 111 diseases we studied. Diseases with two stars indicate that they

are not among the 111 diseases.
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Figure A.15: Disease relationships for mental or behavioural disorder cluster. The diseases placed at the top are more general
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Figure A.16: Disease relationships for digestive and cancer cluster. The diseases placed at the top are more general than

the diseases at the bottom. Arrow points from a more general term to a more specific term. A disease marked with one star

indicates that it is not in this cluster but among the 111 diseases we studied. Diseases with two stars indicate that they are not

among the 111 diseases.



151

cutaneous_melanoma

melanoma non−melanoma_skin_carcinoma

keratinocyte_carcinoma

skin_cancer**
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it is not in this cluster but among the 111 diseases we studied. Diseases with two stars indicate that they are not among the
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Figure A.18: Performance of tissue-weighted (DHS) in different held-out strategies. Chr-B:

test set held out by chromosome, baseline; Chr-LR: test set held out by chromosome, logis-

tic regression; CV-B: cross-validation, baseline; CV-LR: cross-validation logistic regression;

random-B: randomly sampled test set, baseline; random-LR: randomly sample test set, lo-

gistic regression.
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Figure A.19: Performance of tissue-weighted (DHS) in different held-out strategies, con-

tinued. Chr-B: test set held out by chromosome, baseline; Chr-LR: test set held out by

chromosome, logistic regression; CV-B: cross-validation, baseline; CV-LR: cross-validation

logistic regression; random-B: randomly sampled test set, baseline; random-LR: randomly

sample test set, logistic regression.
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Figure A.20: Performance of tissue-weighted (DHS) in all SNVs or representative SNVs

(one SNV per LD block). Colored dots represent the performance of tissue-weighted (DHS)

in all SNVs or representative SNVs. Stars represent the baseline performance (tissue-mean

DHS) in all SNVs or representative SNVs.
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Figure A.21: Performance of tissue-weighted (DHS) in all SNVs or representative SNVs (one

SNV per LD block), continued. Colored dots represent the performance of tissue-weighted

(DHS) in all SNVs or representative SNVs. Stars represent the baseline performance (tissue-

mean DHS) in all SNVs or representative SNVs.
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Appendix B Supplemental materials for aim2

B.1 Supplemental data legend

The supplemental data can be found at: http://d-scholarship.pitt.edu/46026/2/

sup_data_qianqian_dissertation.zip

B.1.1 Relative performance of the information sharing model for all disease

pairs

Filename: sup_dat_auc_all.csv.gz

The first column denotes the EFO name of Disease 1 (D1). Column #2 is the EFO name

of Disease 2 (D2). Column #3 shows the performance measured by average precision where

only SNVs in D1 are used to train the model (without the information-sharing model).

Columns #4 shows the performance absolute increased (or decreased) measured by average

precision using the SNVs in D1D2 (using the information sharing model). Column #5 is the

relative weight assigned. Column #6 is the relative performance of the information-sharing

model using D1D2. Column #7 is the model similarity between D1 and D2. Column #8

is the number of SNVs in D1, #9 is the number of SNVs in D2 and #10 is the number of

SNVs in D2 but excluding overlapping SNVs with D1.

B.1.2 Wilcox sign rank test p-value and corrected p-value for top 10 disease

pairs

Filename: sup_dat_top_pvalue.csv.gz

The first column denotes the EFO name of Disease 1 (D1). Column #2 is the EFO name

of Disease 2 (D2). Column #3 is the relative performance of the information-sharing model

using D1D2. Column #4 Wilcox sign rank test p-value Column #5 is p value using FDR

correction
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B.2 Supplemental figures and tables

Disease name Included in aim 2
acute lymphoblastic leukemia FALSE
adolescent idiopathic scoliosis TRUE
adult onset asthma TRUE
age-related macular degeneration TRUE
alcohol dependence TRUE
allergic rhinitis TRUE
allergy FALSE
alzheimer’s disease TRUE
amyotrophic lateral sclerosis TRUE
ankylosing spondylitis TRUE
anorexia nervosa TRUE
anxiety disorder FALSE
asthma FALSE
atherosclerosis FALSE
atopic asthma TRUE
atrial fibrillation TRUE
attention deficit hyperactivity disorder TRUE
autism spectrum disorder TRUE
autoimmune disease FALSE
autoimmune thyroid disease TRUE
bipolar disorder TRUE
breast carcinoma TRUE
cancer FALSE
cardiac arrhythmia FALSE
cardiovascular disease FALSE
celiac disease TRUE
childhood onset asthma TRUE
chronic kidney disease FALSE
chronic lymphocytic leukemia TRUE
chronic obstructive pulmonary disease TRUE
cirrhosis of liver TRUE

Table B.1: Diseases used in aim 2, total of 68.
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Disease name Included in Aim 2
colorectal adenoma TRUE
colorectal cancer TRUE
coronary artery disease TRUE
crohn’s disease TRUE
cutaneous melanoma TRUE
dental caries TRUE
diabetes mellitus FALSE
diabetic nephropathy TRUE
digestive system carcinoma FALSE
digestive system disease FALSE
diverticular disease TRUE
drug dependence FALSE
eating disorder FALSE
endometriosis TRUE
epilepsy TRUE
female reproductive system disease FALSE
glaucoma TRUE
gout TRUE
heart failure TRUE
hiv infection FALSE
hiv-1 infection TRUE
hypersensitivity reaction disease FALSE
hypertension TRUE
hypothyroidism TRUE
immune system disease FALSE
inflammatory bowel disease FALSE
juvenile idiopathic arthritis TRUE
keratinocyte carcinoma FALSE
kidney disease FALSE
liver disease FALSE
lung adenocarcinoma TRUE
lung carcinoma FALSE
lymphoid leukemia FALSE
lymphoma FALSE
melanoma FALSE
mental or behavioural disorder FALSE
metabolic syndrome TRUE
migraine disorder TRUE

Table B.2: Diseases used in aim 2, total of 68, continued.
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Disease name Included in Aim 2
mood disorder FALSE
movement disorder FALSE
multiple myeloma TRUE
multiple sclerosis TRUE
neoplasm of mature b-cells FALSE
neuropathy FALSE
neurotic disorder TRUE
non-alcoholic fatty liver disease TRUE
non-hodgkins lymphoma FALSE
non-melanoma skin carcinoma FALSE
non-small cell lung carcinoma FALSE
obesity TRUE
obsessive-compulsive disorder TRUE
osteoarthritis TRUE
ovarian carcinoma TRUE
pancreatic carcinoma TRUE
parkinson’s disease TRUE
periodontitis TRUE
peripheral arterial disease TRUE
peripheral neuropathy FALSE
prostate carcinoma TRUE
psoriasis TRUE
psychosis FALSE
respiratory system disease FALSE
retinopathy FALSE
rheumatoid arthritis FALSE
schizophrenia TRUE
sclerosing cholangitis TRUE
scoliosis FALSE
skin disease FALSE
squamous cell carcinoma FALSE
squamous cell lung carcinoma TRUE
stroke TRUE
systemic lupus erythematosus TRUE
systemic scleroderma TRUE
tourette syndrome TRUE
type i diabetes mellitus TRUE
type ii diabetes mellitus TRUE
ulcerative colitis TRUE
unipolar depression TRUE
uterine fibroid TRUE
venous thromboembolism TRUE

Table B.3: Diseases used in aim 2, total of 68, continued.
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Figure B.1: Before and after weight tuning. We randomly pick 50 disease pairs. The x-axis

is the relative performance of the disease pairs using our weight tuning strategy, while the

y-axis is the relative performance of the disease pairs without weight tuning (we assign the

same overall weight to D1 and D2).
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Figure B.2: Performance in AUPR curve in the inner loop for the example disease pair:

venous thromboembolism and Alzheimer’s disease. The X-axis is the log 10 weight w, and

the y-axis is the average precision of the validation set.
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Figure B.3: Performance in AUPR curve in the inner loop for the example disease pair:

multiple myeloma and multiple sclerosis. X axis is the log 10 weight w, y axis is average

precision of the validation set.
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Figure B.4: Performance in AUPR curve in the inner loop for the example disease pair:

squamous cell lung carcinoma and hypothyroidism. X-axis is the log 10 weight w, y-axis is

the average precision of the validation set.
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Figure B.5: Performance in AUPR curve in innerloop for the example disease pair: hy-

pothyroidism and celiac disease. The X-axis is the log 10 weight w, and the y-axis is the

average precision of the validation set.
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Figure B.6: Performance in AUPR curve in the inner loop for the example disease pair:

stroke and coronary artery disease. The X-axis is the log 10 weight w, the y-axis is the

average precision of the validation set.
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Figure B.7: Performance in AUPR curve in the inner loop for the example disease pair:

dental caries and unipolar depression. X axis is the log 10 weight w, y-axis is the average

precision of the validation set.
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Figure B.8: Performance in AUPR curve in the inner loop for the example disease pair:

gout and Parkinson’s disease. The X-axis is the log 10 weight w, the y-axis is the average

precision of the validation set.
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Figure B.9: Performance in AUPR curve in the inner loop for the example disease pair: gout

and metabolic syndrome. The X-axis is the log 10 weight w, y-axis is the average precision

of the validation set.
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Figure B.10: Performance in AUPR curve in the inner loop for the juvenile idiopathic

arthritis and anorexia nervosa. The X-axis is the log 10 weight w, y-axis is the average

precision of the validation set.
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Figure B.11: Number of SNVs in D2 and relative performance.
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Figure B.12: Number of SNVs in D2 and relative performance, continued.
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d1 corre pval fdr adj p values
atrial fibrillation 0.489 0.000 0.002
periodontitis 0.471 0.000 0.002
bipolar disorder 0.421 0.000 0.009
dental caries 0.398 0.001 0.015
diverticular disease 0.371 0.002 0.027
uterine fibroid 0.333 0.006 0.058
autism spectrum disorder 0.315 0.009 0.080
lung adenocarcinoma 0.282 0.021 0.158
colorectal cancer 0.268 0.028 0.162
diabetic nephropathy 0.264 0.031 0.162
prostate carcinoma 0.247 0.044 0.209
heart failure 0.245 0.046 0.209
age-related macular degeneration 0.236 0.054 0.217
unipolar depression 0.233 0.057 0.217
venous thromboembolism 0.200 0.105 0.375
type ii diabetes mellitus 0.192 0.120 0.408
pancreatic carcinoma 0.187 0.130 0.422
hiv-1 infection 0.180 0.145 0.446
obsessive-compulsive disorder 0.177 0.151 0.446
attention deficit hyperactivity disorder 0.175 0.157 0.446
migraine disorder 0.170 0.170 0.460
tourette syndrome 0.167 0.178 0.460
amyotrophic lateral sclerosis 0.139 0.262 0.598

Table B.4: Correlation of the number of SNVs in D2 vs relative performance.
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d1 corre pval fdr adj p values
coronary artery disease 0.134 0.281 0.598
alzheimer’s disease 0.120 0.333 0.666
chronic obstructive pulmonary disease 0.119 0.338 0.666
anorexia nervosa 0.116 0.351 0.666
celiac disease 0.115 0.356 0.666
metabolic syndrome 0.108 0.386 0.670
gout 0.107 0.391 0.670
osteoarthritis 0.097 0.436 0.673
obesity 0.096 0.442 0.673
endometriosis 0.092 0.459 0.673
adolescent idiopathic scoliosis 0.091 0.465 0.673
non-alcoholic fatty liver disease 0.082 0.508 0.718
childhood onset asthma 0.071 0.571 0.763
allergic rhinitis 0.070 0.575 0.763
chronic lymphocytic leukemia 0.066 0.595 0.763
multiple myeloma 0.063 0.613 0.771
colorectal adenoma 0.059 0.634 0.784
ovarian carcinoma 0.055 0.656 0.796
cutaneous melanoma 0.032 0.799 0.948
stroke 0.022 0.860 0.948
cirrhosis of liver 0.021 0.864 0.948
psoriasis 0.010 0.939 0.989
glaucoma 0.008 0.947 0.989

Table B.5: Correlation of the number of SNVs in D2 vs relative performance, continued.
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d1 corre pval fdr adj p values
autoimmune thyroid disease 0.007 0.957 0.989
systemic lupus erythematosus 0.006 0.964 0.989
ulcerative colitis 0.002 0.984 0.989
multiple sclerosis -0.002 0.989 0.989
hypertension -0.022 0.861 0.948
alcohol dependence -0.025 0.839 0.948
ankylosing spondylitis -0.026 0.832 0.948
systemic scleroderma -0.068 0.585 0.763
adult onset asthma -0.081 0.517 0.718
schizophrenia -0.092 0.461 0.673
squamous cell lung carcinoma -0.097 0.434 0.673
neurotic disorder -0.102 0.410 0.673
sclerosing cholangitis -0.106 0.394 0.670
crohn’s disease -0.113 0.362 0.666
type i diabetes mellitus -0.135 0.277 0.598
atopic asthma -0.136 0.272 0.598
juvenile idiopathic arthritis -0.147 0.235 0.570
hypothyroidism -0.165 0.183 0.460
breast carcinoma -0.234 0.056 0.217
parkinson’s disease -0.265 0.030 0.162
epilepsy -0.270 0.027 0.162
peripheral arterial disease -0.365 0.002 0.027

Table B.6: Correlation of the number of SNVs in D2 vs relative performance, continued.
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Figure B.13: Relative performance by similarity quantile groups. X axis is the similarity

quantile groups of disease pairs. Y axis is the weight we assign for each disease pair through

the information sharing model.
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Figure B.14: Log relative weight w by similarity quantile groups. X axis is the similarity

quantile groups of disease pairs. Y axis is the log relative weight for each disease pair through

the information sharing model.

176



r = 0.83 
  p = 3.1e−16

r = 0.63 
  p = 1.3e−07

r = 0.57 
  p = 2.3e−06

r = 0.52 
  p = 3.2e−05

r = 0.41 
  p = 1.8e−03

r = 0.37 
  p = 4.8e−03

r = 0.35 
  p = 8.5e−03

r = 0.76 
  p = 2.0e−12

r = 0.62 
  p = 2.4e−07

r = 0.56 
  p = 4.5e−06

r = 0.51 
  p = 3.4e−05

r = 0.41 
  p = 1.8e−03

r = 0.37 
  p = 5.1e−03

r = 0.34 
  p = 9.3e−03

r = 0.74 
  p = 2.7e−11

r = 0.61 
  p = 2.8e−07

r = 0.56 
  p = 4.5e−06

r = 0.48 
  p = 1.4e−04

r = 0.4 
  p = 2.3e−03

r = 0.36 
  p = 6.6e−03

r = 0.34 
  p = 1.0e−02

r = 0.72 
  p = 1.0e−10

r = 0.61 
  p = 4.2e−07

r = 0.56 
  p = 4.5e−06

r = 0.44 
  p = 7.8e−04

r = 0.4 
  p = 2.6e−03

r = 0.36 
  p = 6.6e−03

r = 0.33 
  p = 1.2e−02

r = 0.7 
  p = 8.7e−10

r = 0.58 
  p = 1.5e−06

r = 0.54 
  p = 1.1e−05

r = 0.42 
  p = 1.3e−03

r = 0.39 
  p = 2.9e−03

r = 0.35 
  p = 8.0e−03

r = 0.33 
  p = 1.2e−02

glaucoma alcohol_dependence endometriosis diabetic_nephropathy ankylosing_spondylitis

crohn's_disease ulcerative_colitis ovarian_carcinoma systemic_lupus_erythematosus allergic_rhinitis

periodontitis parkinson's_disease stroke lung_adenocarcinoma unipolar_depression

attention_deficit_hyperactivity_disorder peripheral_arterial_disease epilepsy migraine_disorder uterine_fibroid

squamous_cell_lung_carcinoma adult_onset_asthma dental_caries heart_failure venous_thromboembolism

age−related_macular_degeneration obesity bipolar_disorder atopic_asthma hiv−1_infection

juvenile_idiopathic_arthritis cirrhosis_of_liver multiple_myeloma type_i_diabetes_mellitus hypothyroidism

0.0 0.2 0.4 0.6 0.00 0.05 0.10 0.15 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4

0.00 0.05 0.10 0.15 0.20 0.0 0.1 0.2 0.3 0.4 −0.1 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.0 0.1 0.2 0.3

0.0 0.2 0.4 0.0 0.2 0.4 0.6 −0.05 0.00 0.05 0.10 −0.1 0.0 0.1 0.2 0.3 0.4 0.00 0.05 0.10 0.15 0.20 0.25

−0.10−0.050.00 0.05 0.10 0.15 0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2

0.0 0.1 0.2 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.4 0.5 −0.25 0.00 0.25 0.50 0.75 0.0 0.1 0.2 0.3 0.4 0.5

−0.2 0.0 0.2 0.4 0.00 0.25 0.50 0.75 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

0.00

0.04

0.08

−0.1

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.0

0.1

0.00

0.01

−0.02

−0.01

0.00

0.01

0.02

−0.02

−0.01

0.00

0.01

0.02

−0.05

0.00

0.05

0.10

0.15

0.000

0.025

0.050

0.075

−0.10

−0.05

0.00

0.05

0.10

−0.1

0.0

0.1

−0.1

0.0

0.1

0.2

0.00

0.01

0.02

0.0

0.1

0.2

−0.1

0.0

0.1

0.2

−0.01

0.00

0.01

0.02

0.03

0.04

0.00

0.05

0.10

0.15

−0.10

−0.05

0.00

0.05

0.10

0.0

0.1

0.2

−0.08

−0.04

0.00

0.04

−0.1

0.0

0.1

0.2

−0.05

0.00

0.05

0.10

−0.05

0.00

0.05

0.10

0.00

0.04

0.08

−0.10

−0.05

0.00

0.05

0.10

−0.05

0.00

0.05

−0.005

0.000

0.005

0.010

0.015

−0.05

0.00

0.05

−0.05

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.00

0.02

0.04

0.06

−0.10

−0.05

0.00

0.05

0.00

0.01

0.02

0.03

−0.075

−0.050

−0.025

0.000

0.025

0.050

model_sim

m
ea

n_
d1

d2
_r

el
at

ive

Figure B.15: Model similarity and relative performance.
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Figure B.16: Model similarity and relative performance, continued.
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d1 corre pval fdr adj p values
juvenile idiopathic arthritis 0.829 4.6e-18 3.13e-16
cirrhosis of liver 0.764 5.77e-14 1.96e-12
multiple myeloma 0.737 1.18e-12 2.67e-11
type i diabetes mellitus 0.721 6.04e-12 1.03e-10
hypothyroidism 0.696 6.38e-11 8.68e-10
age-related macular degeneration 0.629 1.16e-08 1.31e-07
obesity 0.618 2.46e-08 2.39e-07
bipolar disorder 0.614 3.32e-08 2.82e-07
atopic asthma 0.606 5.53e-08 4.18e-07
hiv-1 infection 0.583 2.21e-07 1.5e-06
squamous cell lung carcinoma 0.575 3.69e-07 2.28e-06
adult onset asthma 0.560 8.28e-07 4.54e-06
dental caries 0.558 9.34e-07 4.54e-06
heart failure 0.559 8.68e-07 4.54e-06
venous thromboembolism 0.540 2.4e-06 1.09e-05
attention deficit hyperactivity disorder 0.517 7.61e-06 3.23e-05
peripheral arterial disease 0.514 8.51e-06 3.41e-05
epilepsy 0.481 3.71e-05 0.00014
migraine disorder 0.437 0.000219 0.000783
uterine fibroid 0.422 0.000381 0.0013
periodontitis 0.411 0.000545 0.00177
parkinson’s disease 0.409 0.000585 0.00181
stroke 0.401 0.000772 0.00228

Table B.7: Correlation of model similarity vs relative performance.
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d1 corre pval fdr adj p values
lung adenocarcinoma 0.396 0.001 0.003
unipolar depression 0.391 0.001 0.003
crohn’s disease 0.374 0.002 0.005
ulcerative colitis 0.370 0.002 0.005
ovarian carcinoma 0.360 0.003 0.007
systemic lupus erythematosus 0.360 0.003 0.007
allergic rhinitis 0.352 0.004 0.008
glaucoma 0.348 0.004 0.008
alcohol dependence 0.344 0.004 0.009
endometriosis 0.339 0.005 0.010
diabetic nephropathy 0.334 0.006 0.012
ankylosing spondylitis 0.331 0.006 0.012
neurotic disorder 0.331 0.006 0.012
alzheimer’s disease 0.316 0.009 0.017
chronic lymphocytic leukemia 0.303 0.013 0.022
obsessive-compulsive disorder -0.303 0.013 0.022
diverticular disease 0.300 0.014 0.023
chronic obstructive pulmonary disease 0.291 0.017 0.028
type ii diabetes mellitus 0.286 0.019 0.030
atrial fibrillation 0.270 0.027 0.043
hypertension 0.260 0.034 0.052
non-alcoholic fatty liver disease 0.259 0.034 0.052
celiac disease -0.246 0.045 0.067

Table B.8: Correlation of model similarity vs relative performance, continued.
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d1 corre pval fdr adj p values
sclerosing cholangitis 0.243 0.047 0.068
tourette syndrome 0.234 0.057 0.081
metabolic syndrome 0.221 0.072 0.100
anorexia nervosa 0.217 0.077 0.105
autoimmune thyroid disease 0.180 0.144 0.192
osteoarthritis 0.162 0.189 0.247
systemic scleroderma 0.161 0.192 0.247
pancreatic carcinoma 0.154 0.214 0.270
autism spectrum disorder 0.140 0.257 0.317
gout 0.114 0.359 0.436
amyotrophic lateral sclerosis 0.111 0.370 0.441
colorectal cancer 0.105 0.398 0.467
cutaneous melanoma -0.089 0.474 0.546
adolescent idiopathic scoliosis 0.079 0.527 0.598
colorectal adenoma 0.072 0.565 0.630
coronary artery disease 0.068 0.583 0.640
prostate carcinoma 0.058 0.640 0.691
psoriasis 0.052 0.675 0.717
multiple sclerosis 0.039 0.751 0.786
schizophrenia -0.037 0.764 0.787
childhood onset asthma -0.033 0.790 0.802
breast carcinoma 0.026 0.833 0.833

Table B.9: Correlation of model similarity vs relative performance, continued.
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D1 Top informative D2 impr weight∗

squamous cell lung carcinoma hypothyroidism 40% 0.14
venous thromboembolism alzheimer’s disease 34% 0.62
non-alcoholic fatty liver disease adolescent idiopathic scoliosis 30% 0.21
diabetic nephropathy coronary artery disease 27% 0.44
multiple myeloma multiple sclerosis 26% 0.69
endometriosis amyotrophic lateral sclerosis 24% 0.45
stroke coronary artery disease 23% 0.76
lung adenocarcinoma breast carcinoma 22% 0.45
cutaneous melanoma chronic obstructive pulmonary disease 19% -0.13
hiv-1 infection bipolar disorder 19% 0.45
type i diabetes mellitus chronic lymphocytic leukemia 19% 0.10
juvenile idiopathic arthritis celiac disease 18% 0.43
uterine fibroid crohn’s disease 17% -1.05
pancreatic carcinoma alcohol dependence 16% -0.45
migraine disorder atrial fibrillation 16% 0.18
dental caries unipolar depression 15% 0.26
age-related macular degeneration systemic lupus erythematosus 15% -0.22
obesity psoriasis 13% -0.38
anorexia nervosa attention deficit hyperactivity disorder 13% 0.39
tourette syndrome attention deficit hyperactivity disorder 12% 0.17
heart failure cutaneous melanoma 12% 0.31
adult onset asthma chronic obstructive pulmonary disease 11% -0.03
metabolic syndrome amyotrophic lateral sclerosis 11% -1.32
cirrhosis of liver psoriasis 11% 0.82

∗ All

weight values are presented in logarithmic scale (log10).

Table B.10: Top informative diseases D2 enhancing model performance of diseases D1 with

less than 300 SNVs.
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D1 D2 Best Improvement impr weight∗

hypothyroidism celiac disease 10% 0.58
peripheral arterial disease glaucoma 10% 0.02
epilepsy hypothyroidism 9% -0.32
osteoarthritis colorectal cancer 9% 0.33
diverticular disease atrial fibrillation 9% 0.05
amyotrophic lateral sclerosis parkinson’s disease 9% 0.08
periodontitis coronary artery disease 9% -0.30
parkinson’s disease sclerosing cholangitis 8% -0.28
neurotic disorder anorexia nervosa 8% 0.08
chronic lymphocytic leukemia systemic lupus erythematosus 8% -0.53
alcohol dependence metabolic syndrome 8% -0.53
atopic asthma celiac disease 7% 0.53
gout epilepsy 7% -1.84
ovarian carcinoma uterine fibroid 7% -0.11
colorectal adenoma coronary artery disease 6% -0.30
glaucoma atrial fibrillation 5% 0.34
obsessive-compulsive disorder adolescent idiopathic scoliosis 5% -1.58
autoimmune thyroid disease adult onset asthma 5% -1.84
systemic scleroderma celiac disease 3% -0.17
sclerosing cholangitis hypothyroidism 3% -1.41
allergic rhinitis hypothyroidism 3% -0.67
celiac disease chronic obstructive pulmonary disease 2% -1.31

∗ All weight values are presented in logarithmic scale (log10).

Table B.11: Top informative diseases D2 enhancing model performance of diseases D1 with

less than 300 SNVs, continued.
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Appendix C Supplemental materials for aim 3

Clinvar Database

Overall number of variants: 1,572,399

Variants overlaping AENMD default tx set: 1,035,485

number percentage

Unique PTC variants 107,171 100

NMD triggering 66,178 61.7

NMD escaping canonical 16,474 15.4

NMD escaping non-canonical 22,085 20.6

Transcript dependent predictions 2,434 2.3

NMD escaping overall 40,993 38.3

Unique PTC benign variants 965 100

NMD triggering 340 35.2

NMD escaping canonical 446 46.2

NMD escaping non-canonical 168 17.4

Transcript dependent predictions 11 1.1

NMD escaping overall 625 64.8

Unique PTC uncertain variants 12,311 100

NMD triggering 5,924 48.1

NMD escaping canonical 4,399 35.7

NMD escaping non-canonical 1,818 14.8

Transcript dependent predictions 170 1.4

NMD escaping overall 6,387 51.9

Table C.1: Clinvar database.
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Clinvar Database

number percentage

Unique PTC pathogenic variants 91,984 100

NMD triggering 58,649 63.8

NMD escaping canonical 11,380 12.4

NMD escaping non-canonical 19,754 21.5

Transcript dependent predictions 2,201 2.4

NMD escaping overall 33,335 36.2

Unique PTC other variants 1,911 100

NMD triggering 1,265 66.2

NMD escaping canonical 249 13.0

NMD escaping non-canonical 345 18.1

Transcript dependent predictions 52 2.7

NMD escaping overall 646 33.8

Unique PTC variant-transcript pairs 203,462 100

NMD triggering 132,585 65.2

NMD escaping canonical 31,755 15.6

NMD escaping non-canonical 39,122 19.2

NMD escaping overall 70,877 34.8

Table C.2: Clinvar database, continued.
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gnomAD Database

Overall number of variants: 14,951,900

Variants overlaping AENMD default tx set: 7,375,683

number percentage

Unique PTC variants 300,034 100.0

NMD triggering 151,440 50.5

NMD escaping canonical 92,524 30.8

NMD escaping non-canonical 50,418 16.8

Variants with transcript dependent predictions 5,652 1.9

NMD escaping overall 148,594 49.5

PTC variant-transcript pairs 477,142 100

NMD triggering 258,834 54.2

NMD escaping canonical 136,991 28.7

NMD escaping non-canonical 81,317 17.0

NMD escaping overall 218,308 45.8

Table C.3: GnomAD database.
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aenmd and VEP Annotation of Clinvar - Comparison

Total number of annotations by AENMD: 203,462

Total number of annotations by VEP: 77,001

number percentage

Overlapping PTC variant-transcript pairs annotated: 75,839 100

AENMD annotations:

NMD triggering 62,060 81.8

NMD escaping 13,779 18.2

VEP annotations:

NMD triggering 62,384 82.3

NMD escaping 13,455 17.7

Called NMD triggering by both 61,288 80.8

Called NMD escaping by both 12,683 16.7

Called NMD triggering by AENMD, not VEP 1,096 1.4

Called NMD triggering by VEP, not AENMD 773 1.0

Table C.4: VEP comparison.
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Séraphin, and Hervé Le Hir. The exon junction core complex is locked onto rna by
inhibition of eif4aiii atpase activity. Nature Structural Molecular Biology, 12(10):861–
869, 2005.

[56] Christoph Schweingruber, Simone C. Rufener, David Zünd, Akio Yamashita, and
Oliver Mühlemann. Nonsense-mediated mrna decay — mechanisms of substrate
mrna recognition and degradation in mammalian cells. Biochimica et Biophysica
Acta (BBA) - Gene Regulatory Mechanisms, 1829(6):612–623, 2013.

[57] Manuel A. Rivas, Matti Pirinen, Donald F. Conrad, Monkol Lek, Emily K. Tsang,
Konrad J. Karczewski, Julian B. Maller, Kimberly R. Kukurba, David S. DeLuca,
Menachem Fromer, Pedro G. Ferreira, Kevin S. Smith, Rui Zhang, Fengmei Zhao,
Eric Banks, Ryan Poplin, Douglas M. Ruderfer, Shaun M. Purcell, Taru Tukiainen,
Eric V. Minikel, Peter D. Stenson, David N. Cooper, Katharine H. Huang, Timo-
thy J. Sullivan, Jared Nedzel, GTEx Consortium The, Consortium The Geuvadis,
Carlos D. Bustamante, Jin Billy Li, Mark J. Daly, Roderic Guigo, Peter Donnelly,
Kristin Ardlie, Michael Sammeth, Emmanouil T. Dermitzakis, Mark I. McCarthy,
Stephen B. Montgomery, Tuuli Lappalainen, Daniel G. MacArthur, Ayellet V. Segre,
Taylor R. Young, Ellen T. Gelfand, Casandra A. Trowbridge, Lucas D. Ward, Pouya
Kheradpour, Benjamin Iriarte, Yan Meng, Cameron D. Palmer, Tonu Esko, Wendy
Winckler, Joel Hirschhorn, Manolis Kellis, Gad Getz, Andrey A. Shablin, Gen Li,
Yi-Hui Zhou, Andrew B. Nobel, Ivan Rusyn, Fred A. Wright, Alexis Battle, Sara
Mostafavi, Marta Mele, Ferran Reverter, Jakob Goldmann, Daphne Koller, Eric R.
Gamazon, Hae Kyung Im, Anuar Konkashbaev, Dan L. Nicolae, Nancy J. Cox, Tim-
othe Flutre, Xiaoquan Wen, Matthew Stephens, Jonathan K. Pritchard, Zhidong Tu,
Bin Zhang, Tao Huang, Quan Long, Luan Lin, Jialiang Yang, Jun Zhu, Jun Liu,
Amanda Brown, Bernadette Mestichelli, Denee Tidwell, Edmund Lo, Mike Salva-
tore, Saboor Shad, Jeffrey A. Thomas, John T. Lonsdale, Roswell Christopher Choi,
Ellen Karasik, Kimberly Ramsey, Michael T. Moser, Barbara A. Foster, Bryan M.
Gillard, John Syron, Johnelle Fleming, Harold Magazine, Rick Hasz, et al. Effect of
predicted protein-truncating genetic variants on the human transcriptome. Science,
348(6235):666–669, 2015.

196



[58] Daniel G MacArthur, Suganthi Balasubramanian, Adam Frankish, Ni Huang, James
Morris, Klaudia Walter, Luke Jostins, Lukas Habegger, Joseph K Pickrell, and
Stephen B Montgomery. A systematic survey of loss-of-function variants in human
protein-coding genes. Science, 335(6070):823–828, 2012.

[59] Tuuli Lappalainen, Michael Sammeth, Marc R Friedländer, Peter AC ‘t Hoen, Jean
Monlong, Manuel A Rivas, Mar Gonzalez-Porta, Natalja Kurbatova, Thasso Griebel,
and Pedro G Ferreira. Transcriptome and genome sequencing uncovers functional
variation in humans. Nature, 501(7468):506–511, 2013.

[60] Rik G. H. Lindeboom, Fran Supek, and Ben Lehner. The rules and impact of nonsense-
mediated mrna decay in human cancers. Nature Genetics, 48(10):1112–1118, 2016.

[61] L. W. Harries, Coralie Bingham, Christine Bellanne-Chantelot, A. T. Hattersley, and
Sian Ellard. The position of premature termination codons in the hepatocyte nuclear
factor 1 beta gene determines susceptibility to nonsense-mediated decay. Human
Genetics, 118(2):214–224, 2005.

[62] Monique Buisson, Olga Anczuków, Almoutassem B. Zetoune, Mark D. Ware, and
Sylvie Mazoyer. The 185delag mutation (c.68 69delag) in the brca1 gene triggers
translation reinitiation at a downstream aug codon. Human Mutation, 27(10):1024–
1029, 2006.

[63] Jing Zhang and Lynne E. Maquat. Evidence that translation reinitiation abrogates
nonsense-mediated mrna decay in mammalian cells. The EMBO Journal, 16(4):826–
833, 1997.

[64] Lynne E. Maquat and Xiaojie Li. Mammalian heat shock p70 and histone h4
transcripts, which derive from naturally intronless genes, are immune to nonsense-
mediated decay. RNA, 7(3):445–456, 2001.

[65] Katja S. Brocke, Gabriele Neu-Yilik, Niels H. Gehring, Matthias W. Hentze, and
Andreas E. Kulozik. The human intronless melanocortin 4-receptor gene is nmd
insensitive. Human Molecular Genetics, 11(3):331–335, 2002.

[66] Z. Coban-Akdemir, J. J. White, X. Song, S. N. Jhangiani, J. M. Fatih, T. Gambin,
Y. Bayram, I. K. Chinn, E. Karaca, J. Punetha, C. Poli, E. Boerwinkle, C. A. Shaw,
J. S. Orange, R. A. Gibbs, T. Lappalainen, J. R. Lupski, and C. M. B. Carvalho.
Identifying genes whose mutant transcripts cause dominant disease traits by potential
gain-of-function alleles. Am J Hum Genet, 103(2):171–187, 2018.

197



[67] Suganthi Balasubramanian, Yao Fu, Mayur Pawashe, Patrick McGillivray, Mike Jin,
Jeremy Liu, Konrad J. Karczewski, Daniel G. MacArthur, and Mark Gerstein. Using
aloft to determine the impact of putative loss-of-function variants in protein-coding
genes. Nature Communications, 8(1):382, 2017.

[68] Pablo Cingolani, Adrian Platts, Le Lily Wang, Melissa Coon, Tung Nguyen, Luan
Wang, Susan J Land, Xiangyi Lu, and Douglas M Ruden. A program for annotating
and predicting the effects of single nucleotide polymorphisms, snpeff: Snps in the
genome of drosophila melanogaster strain w1118; iso-2; iso-3. fly, 6(2):80–92, 2012.

[69] Dan G Blazer and Lyla M Hernandez. Genes, behavior, and the social environment:
Moving beyond the nature/nurture debate. 2006.

[70] William Kermode, Dianne De Santis, Linh Truong, Erika Della Mina, Sam Salman,
Grace Thompson, David Nolan, Richard Loh, Dominic Mallon, Andrew McLean-
Tooke, Mina John, Stuart G. Tangye, Michael O’Sullivan, and Lloyd J. D’Orsogna.
A novel targeted amplicon next-generation sequencing gene panel for the diagnosis of
common variable immunodeficiency has a high diagnosticxa0;yield: Results from the
perth cvid cohort study. The Journal of Molecular Diagnostics, 24(6):586–599, 2022.

[71] Derek Hong and Lilia M. Iakoucheva. Therapeutic strategies for autism: target-
ing three levels of the central dogma of molecular biology. Translational Psychiatry,
13(1):58, 2023.
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[141] Ângela Inácio, Ana Lúısa Silva, Ana Morgado, Francisco J. C. Pereira, João Lavinha,
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