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Abstract 

Development and Test of PBSA Solvation Models for Drug Design 

Taoyu Niu, B.S. 

University of Pittsburgh, 2024 

The Poisson-Boltzmann Surface Area (PBSA) model was extensively used to predict 

solvation free energy (SFE) and protein-ligand binding free energies, as well as to study protein 

folding. In addition, partition coefficient (logP), which is an important physicochemical property 

that determines the distribution of a drug in vivo, can be derived directly from transfer free 

energies. Within the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) 9 

challenge, we applied the Poisson-Boltzmann (PB) surface area (SA) approach to predict 

toluene/water transfer free energy and partition coefficient (logPtol/wat) from SFEs. PB calculation 

directly adopts our previously optimized boundary definition - a set of general AMBER force field 

2 (GAFF2) atom-type based sphere radii for solute atoms. For the non-polar SA model, we newly 

developed the solvent-related molecular surface tension parameters 𝛾 and offset 𝑏 for toluene and 

cyclohexane targeting experimental SFEs. This approach yielded the highest predictive accuracy 

in terms of root mean squared error (RMSE) of 1.52 kcal/mol in transfer free energy for 16 small 

drug molecules among all 18 submissions in SAMPL9 challenge. The re-evaluation of the 

challenge set using multi-conformation strategies based on molecular dynamic (MD) simulations 

further reduces the prediction RMSE to 1.33 kcal/mol. At the same time, an additional evaluation 

of our PBSA method on SAMPL5 cyclohexane/water distribution coefficient (logDcyc/wat) 

prediction revealed that our model outperformed COSMO-RS, the best submission model with 

RMSEPBSA = 1.88 versus RMSECOSMO-RS = 2.11 log units. Two external logPtol/wat and logPcyc/wat 

datasets that contain 110 and 87 data points, respectively, are collected for extra validation and 
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provide in-depth insight of the error source of PBSA method. Finally, to identify the best set of 

radius parameters which define the solute-solvent boundary, we adopted the following strategies: 

(1) the nonpolar term is fixed; (2) a genetic algorithm is applied to conquer the couplings between 

the radius parameters; (3) the new nonpolar term is reoptimized. The above three steps will be 

repeated until there is no further improvement on the model performance. Encouragingly, the 

newly tuned radii parameters conjugated with the ABCG2 charge model outperformed many 

widely used models and our previous results.  
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1.0 Ligand-based and Structure-based Drug Design  

At each phase of drug development, computational methods are implemented, which can 

substantially reduce the time and expense required for the design, screening, and optimization of 

novel drugs. The two primary strategies utilized in computer-aided drug design are ligand-based 

drug design (LBDD) and structure-based drug design (SBDD). SBDD involves the 

characterization of the topology and stereochemistry of the binding site, prediction of ligand-

receptor binding poses, calculation of binding affinity and interpretation of key interactions that 

enhance affinity, and identification of residues that contribute favorably to the binding in the 

presence of a known target structure. LBDD, on the other hand, focuses on ligands that interact 

with the target of interest. In the absence of a target structure, the ligand-based approaches reveal 

the functional groups, topology, and physicochemical properties of the ligands served for 

pharmacological activity. 

1.1 Ligand-based Drug Design 

Quantitative structure-activity relationships (QSAR) and pharmacophore modeling are the 

commonly used approaches in LBDD. In order to develop a QSAR model, it is necessary to have 

a collection of ligands that possess experimental bioactivity data. The correlation between 

molecular descriptors derived from these compounds and bioactivities is established by creating 

suitable relationships. These descriptors can be either structural descriptors or descriptors of 

ligands’ physicochemical properties. 
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The Hansch-Fujita method is a traditional two dimensional  (2D) QSAR method that 

models the correlation among the electronic, hydrophobic and steric features of a molecule to its 

bioactivities using a succinct functional equation:1 

log (
1

𝐶
) = 𝑘1π − 𝑘2π

2 + 𝑘3σ + 𝑘4𝐸𝑠 + 𝑘5 

Equation 1 Function form used in Hansch-Fujita method 

where 𝐶 is the effective concentration of the compound to produce pharmacological activity, π 

quantitatively describes the hydrophobic effect of the ligand (i.e. partition coefficient), σ is the 

Hammett electronic substituent constant and 𝐸𝑠 is the steric substituent constant. 

In addition to 2D QSAR modeling, three dimensional  (3D) QSAR modeling constructs 

relationships between molecular descriptors and bioactivities from spatial information of ligands. 

This category of methods typically takes the bond orientation and electrostatic potential around 

molecules into account. Comparative Molecular Field Analysis2 (CoMFA) is a kind of traditional 

3D QSAR modeling method. This method uses a hypothetical molecular probe with sp3 carbon 

van der Waals properties and a unit positive charge to capture electrostatic and van der Waals 

interactions at the lattice around the ligand molecule. From these interaction energies and the 

bioactivity data of the ligands, a matrix is constructed. 

Subsequent principal component analysis (PCA) of this matrix allows the identification of 

interactions that contribute to biological activities and their spatial arrangement. However, there 

are some shortcomings to this approach. Firstly, using the natural conformation of the model 

compound as a template will incorrectly estimate the interaction strengths and regions in the 

bonded state, since the bound conformation is not necessarily its natural conformation. In addition, 

the interaction energies in this method are all calculated in the gas phase, ignoring solvent effects 
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during the binding process, including desolvation energies and electrostatic screening effects from 

highly dielectric solvents such as water. 

1.2 Structure-based Drug Design 

Molecular docking is a widely used technique in SBDD. Molecular docking enables the 

concurrent exploration of ligand binding poses and the prediction of binding affinity. Search 

algorithms for predicting binding poses are very diverse and can be multi-nested, but all search 

algorithms necessitate the use of a scoring function to evaluate the binding mode during the search 

process. Scoring functions used in molecular docking can be categorized into three types: (1) force-

field-based functions, (2) empirical functions, and (3) knowledge-based functions. 

Force-field-based scoring functions have a definite physical meaning by calculating 

bonded and non-bonded interactions for docking poses via potential energy functions from the 

molecular mechanics force field. For example, in the DOCK3 scoring function, the AMBER force 

field4, 5 parameters were used to evaluate van der Waals and electrostatic interactions, and a 

dielectric term was added to the electrostatic interaction function to take solvent effects into 

account. The empirical scoring functions empirically decompose the energy of the binding process 

and construct relationships between all energy terms and the overall binding energies from 

available experimental data. The knowledge-based scoring functions are based on the fact that in 

thermodynamic ensembles, the probability of an atom being in a particular energy level follows 

the Boltzmann distribution. And the Helmholtz free energy of interaction between pairs of atoms 

can be obtained from the following equation: 
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𝐴ij(𝑟) = −𝑘B𝑇 ln𝑔ij (𝑟) 

Equation 2 Helmholtz free energy related to distribution function 

where 𝑔ij(𝑟) is distribution function for pairs of atoms i and j. 𝑔ij(𝑟) can be obtained from a 

number of crystal structures with existing ligand binding poses by calculating the distance of each 

atom pairs.6, 7 

Molecular dynamics (MD) simulations are also widely used in the assessment of binding 

affinities. One of them, alchemical method (also known as pathway method), is more theoretically 

rigorous, including thermodynamic integration (TI) and free energy perturbations (FEP). The 

difference between TI and FEP is mainly the method of obtaining the free energy difference. The 

theory of TI and FEP are elaborated below. 

Given the free energy difference between two states (X, Y): 

Δ𝐴 = 𝐴𝑌 − 𝐴𝑋 = −𝑘𝐵𝑇 ln
𝑄𝑌

𝑄𝑋
 

Equation 3 Helmholtz free energy difference between two state X and Y 

where 𝑄𝑋 and 𝑄𝑌 are partition functions of state X and Y, respectively. 𝑘𝐵 is Boltzmann constant 

and 𝑇 is thermodynamic temperature. 

Equation 3 can be simplified as: 

Δ𝐴 = −𝑘B𝑇 ⟨exp [−
𝐸𝑌 − 𝐸𝑋

𝑘B𝑇
]⟩ 

Equation 4 Averaged helmholtz free energy difference between two state X and Y 

where 𝐸𝒀，𝐸𝑿 are total energies of state X and Y, respectively. In order to more accurately sample 

the difference in free energy for the transition from state X to Y, a series of intermediate states 

between X and Y are introduced: 
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Δ𝐴 = −𝑘B𝑇 ln [
𝑄𝑌

𝑄𝑁
⋅

𝑄𝑁

𝑄𝑁−1
⋅
𝑄𝑁−1

𝑄𝑁−2
…

𝑄2

𝑄1
⋅
𝑄1

𝑄𝑋
] 

Equation 5 Helmholtz free energy difference between two state X and Y between two state X and Y with 

multiple introduced intermediate states 

In calculating the ligand-receptor binding free energies, the free energy difference of the 

binding process can be obtained with Equation 5 by setting state X to the presence of the ligand at 

the binding site and state Y to the complete "disappearance" of the ligand from the binding site. 

The FEP method obtains the final Δ𝐴 from the free energy difference of the change at each step of 

the pathway, while the TI method obtains Δ𝐴 from the following integrals: 

Δ𝐴 = ∫ ⟨
𝜕𝐸(𝜆)

𝜕𝜆
⟩

𝜆

𝜆=1

𝜆=0

𝑑𝜆 

Equation 6 Helmholtz free energy difference between two state X and Y in TI 

In addition to pathway methods, end-point free energy methods are also widely used in the 

prediction of ligand-receptor binding free energies because of efficiency. One of the representative 

methods is the molecular mechanics Poisson-Boltzmann Surface Area (MM/PBSA), the theory 

and details of this method will be discussed in detail in the next chapter. 
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2.0 The Poisson-Boltzmann surface area model 

Electrostatic interactions govern the biological process and biomolecular recognitions. The 

important role of implicit solvent model is to describe solvent electrostatics and eliminate the 

degree of freedom of explicit solvent molecules, which will consume most of computational 

resources during quantum mechanics (QM) and MM based simulations. When developing and 

applying implicit solvent models, solvation free energy (SFE) is a critical property because it 

quantitively describes the solvation effects. Rigorously, the SFE of a solute is the reversible work 

to create a neutral cavity for the solute. This reversible work involves electrostatic polarization and 

van der Waals dispersion between solute and solvent molecules:8 

Δ𝐺 = Δ𝐺cavity + Δ𝐺vdW + Δ𝐺elec 

Equation 7 Decomposition of solvation free energy 

where Δ𝐺elec  is total electrostatic contribution to the SFE, which is usually denoted by polar 

contribution. The sum of Δ𝐺cavity + Δ𝐺vdW are counted as all non-polar contributions raised from 

cavitation and van der Waals dispersion. The detailed theory of PBSA for electrostatic interactions 

and SFE calculations will be elaborated in the following subsection. 

2.1 Theory of Poisson-Boltzmann equation 

In the framework of the implicit solvent model, the solvent is modeled as a structureless 

continuous dielectric medium, while the solute is described as point charges located at the center 

of atoms and its surface. The interactions between solute atoms are usually calculated by molecular 
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mechanics force fields, while the solute-solvent electrostatic interactions can be derived from the 

Poisson equation of classical electrostatics: 

∇ ⋅ 𝜀(𝐫)∇𝜑(𝐫) = −4π𝜌(𝐫) 

Equation 8 Poisson equation 

where 𝜀(𝐫) is the spatial dielectric constant, 𝜑(𝐫) is the total electrostatic potential, and 𝜌(𝐫) is the 

charge density from solute. In an electrolyte solution, free ions obey the Boltzmann distribution, 

and the nonlinear Poisson-Boltzmann equation is obtained by adding the Boltzmann term for the 

ions to the Poisson equation: 

∇ ⋅ [𝜀(𝐫)∇𝜑(𝐫)] − 𝜅(𝐫)2sinh(𝜑(𝐫)) = −4π𝜌(𝐫) 

Equation 9 Non-linear Poisson-Boltzmann equation 

where 𝜅(𝐫)2 is Debye-Huckel parameter: 

𝜅2 =
8π𝑒2𝐼

εsol𝑘B𝑇
 

Equation 10 Debye-Huckel parameter 

where 𝑒 is proton charge, 𝐼 is ionic strength, 𝜀sol is solvent dielectric constant, 𝑘B is Boltzmann 

constant, and 𝑇 is thermodynamic temperature. 

At very small 𝜑(𝐫) , the above nonlinear Poisson-Boltzmann equation can be further 

linearized into the following form: 

∇ ⋅ [𝜀(𝐫)∇𝜑(𝐫)] − 𝜅2𝜑(𝐫) = −4π𝜌(𝐫) 

Equation 11 Linear Poisson-Boltzmann equation 

Linear PBE has an analytical solution when the molecule has a regular geometry (such as 

sphere), but in practice, regular molecular geometry is almost impossible, so numerical methods 

are often used to solve PBE. A variety of numerical methods have been developed for solving 

PBE, including the finite-element method9-12, boundary element method13-22 and widely used 
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finite-difference method23-25. Given that the finite difference method was primarily used to solve 

the PBE in this work (implement in DELPHI26-29), I will mainly discuss the details of this method. 

Before solving the PBE using the finite-difference method, a series of initial setups need to be 

performed first. First the spatial region is gridded, and partial charges are mapped at the finite-

difference grid points, and the solute-solvent boundary is constructed by spheres determined by 

the atomic radius, which simultaneously determines the boundaries of the different dielectric 

regions. Afterwards the electrostatic potential is assigned outside the solute-solvent boundary by 

a Debye-Huckle expression to determine the boundary conditions: 

𝜑𝑖 = Σ(𝑞𝑗𝑒
−𝜅𝑟𝑖𝑗)/𝜀sol𝑟𝑖𝑗 

Equation 12 Debye-Huckle expression for bounday conditions 

where 𝑞𝑗 is the charge at the jth lattice point, 𝑟𝑖𝑗 is the distance of the jth charge from the ith lattice 

point, and the boundary electrostatic potentials are kept constant during the iteration to ensure that 

the calculation can converge. 

Afterwards the linear PBE (Equation 11) is integrated in the space determined by the 

boundary conditions: 

∭∇⃗⃗ ⋅ (𝜀(𝐫)∇⃗⃗ 𝜑(𝐫))d3𝑥 − ∭𝜅2𝜑(𝐫)d3𝑥 − 4𝜋 ∭𝜌(𝐫)d3𝑥 = 0 

Equation 13 Triple integration of Poisson-Boltzmann equation 

The first integration is: 

∭∇⃗⃗ ⋅ (𝜀(𝐫)∇⃗⃗ 𝜑(𝐫))d3𝑥 = Σ𝜀𝑖(𝜑𝑖 − 𝜑0)ℎ 

Equation 14 Integration of Poisson term 

The second integration is: 
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∭𝜅2𝜑(𝐫)d3𝑥 = 𝜅0
2𝜑0ℎ

3 

Equation 15 Integration of Boltzmann term 

The third term integration is: 

4π∭𝜌(𝐫)d3𝑥  =  4π𝑞0 

Equation 16 Integration of charge density term 

where 𝜅0 is Debye-Huckel parameter at grid points, 𝜑0 is electrostatic potential at grid points, 𝑞0 

is charge at grid points. Finally, the Equation 11 becomes: 

𝜑0 = [
(∑ ε𝑖

6
𝑖=1 𝜑𝑖) + 4π𝑞0/ℎ

(∑ 𝜀𝑖
6
𝑖=1 ) + (κ0ℎ)2

] 

Equation 17 Linear Poisson-Boltzmann equation under finite difference framework 

This equation can be expressed in linear form: 

𝐀𝜑 = 𝐛 

Equation 18 Linear form of linear Poisson-Boltzmann equation under finite difference framework 

where the coefficient matrix 𝐀  includes the dielectric constant and ion-dependent Boltzmann 

terms, 𝐛 is the charge distribution matrix, and 𝜑 is the electrostatic potential to be solved. 

A variety of commonly used numerical methods can be applied to solve the linear equation, 

including Jacobi relaxation30, Gauss-Seidel26, successive over-relaxation28 (SOR), conjugate 

gradient31 (CG). 

In the content of this paper, we pay more attention to the SFE. In the framework of the 

finite-difference method, the induced charge at the solute surface can be obtained by the 

electrostatic potential at the solvent-solute boundary via Gauss's law. The reaction field energy is 

derived from the reversible work to induce surface charges. This energy is regarded as the 

electrostatic contribution to the solvation process of the solute.32 
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In addition to the electrostatic contribution, the SFE includes contributions from cavitation 

and van der Waals dispersion. The sum of these two contributions is proportional to the solvent 

accessible surface area of the solute:33 

∆𝐺𝑆𝐴𝑆𝐴 =  𝛾𝑆𝐴𝑆𝐴 +  𝑏 

Equation 19 Solvent accessible surface area model for non-polar contribution in solvation free energy 

2.2 Molecular mechanics Poisson-Boltzmann method for binding affinity prediction 

In SBDD, the protein-ligand binding affinity prediction has been the focus of research in 

computer-aided drug design (CADD), as well as a major application scenario for molecular 

simulation methods. In order to accurately predict the binding affinity, researchers have developed 

a large number of empirical, physical, and machine-learning based computational approaches. The 

most widely used of these methods is molecular docking, an approach that predicts the ligand-

protein binding pose along with the corresponding binding affinity. Affinity prediction 

methodologies includes empirical, knowledge-based, and molecular mechanics based scoring 

functions.34 Although molecular docking methods are computationally efficient, the binding free 

energy prediction accuracy of this method is insufficient. With the development of high-

performance graphics processing units (GPUs), pathway free energy methods have been widely 

used recently, including TI35, 36 and FEP37, 38. Pathway methods are more theoretically rigorous, 

but require large amounts of computational resources, and need run longer simulations to achieve 

adequate sampling. 

In addition to pathway methods, there are also end-point free energy methods. The most 

representative of this method is the MM/PBSA. Due to the computational efficiency and accuracy 
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of MM/PBSA, this method has been widely tested and applied in the last decade to predict the free 

energy of small molecule ligand-protein binding39, 40 , protein-protein interactions41-43 and nucleic 

acid complex44-47. 

2.2.1 Methodology of MM/PBSA for ligand-receptor binding free energy prediction 

In the framework of MM/PBSA, the ligand-receptor binding free energy has definition as 

below: 

Δ𝐺bind = 𝐺RL − 𝐺R − 𝐺L 

Equation 20 Definition of bingding free energy 

where 𝐺RL is free energy of ligand-receptor complex, 𝐺R and 𝐺L is free energy of receptor and 

ligand, respectively. The binding free energy has the decomposition: 

Δ𝐺bind = Δ𝐻 − 𝑇Δ𝑆 = Δ𝐸MM + Δ𝐺sol − 𝑇Δ𝑆 

Equation 21 Decomposition of binding free energy 

where 

Δ𝐸MM = Δ𝐸int + Δ𝐸elec + Δ𝐸vdW 

Equation 22 Decomposition of molecular mechanics energy 

Δ𝐺sol = Δ𝐺PB + Δ𝐺SASA 

Equation 23 Decomposition of solvation free energy 

∆𝐺SASA =  𝛾𝑆𝐴𝑆𝐴 +  𝑏 

Equation 24 Non-polar contribution in solvation free energy 

The molecular mechanical energy (Δ𝐸MM) can be further decomposed into internal energies 

Δ𝐸int (bond, angle, and dihedral energies), electrostatic energies Δ𝐸elec, and the van der Waals 

energies Δ𝐸vdW, whereas the SFE (Δ𝐺sol) can be divided into polar (Δ𝐺PB) and nonpolar terms 
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(Δ𝐺SASA), which depends on solvent accessible surface area SASA, the calculation of the polar 

terms of the solvation free energies defined here is detailed in Chapter 2.1. The conformational 

entropy of the binding process is usually obtained by normal mode analysis (NMA), which 

determines the entropy by constructing the partition function from the eigenvalues of the Hessian 

matrix, but NMA is very time-consuming, and usually only residues within about 10 Å around the 

ligand are intercepted for analysis48, 49. Except for NMA, there are some alternative methods such 

as weighted solvent accessible surface area50 (WSAS) model, interaction entropy51, 52 method to 

derive the entropy during ligand-receptor binding. 

MM/PBSA calculations of binding free energies require MD simulations of the ligand-

receptor complex and the sampling of a series of conformations. Δ𝐸MM can be obtained directly 

from MD simulations, whereas Δ𝐺sol requires the use of a sampled series of conformations to 

calculate solvation free energies. MD simulations typically use an explicit water model to obtain 

more accurate conformations and energies, however these conformations sampled from explicit 

water simulations may have inconsistencies in the description of energies when evaluated using 

PBSA. 

There are two commonly used protocols for MD simulations in MM/PBSA calculations. 

The first protocol performs separate MD simulations for the receptor, ligand, and their complex 

and calculates 𝐺RL, 𝐺R, and 𝐺L, respectively, while the second protocol performs a single MD 

simulation using the ligand-receptor complex and extracts the receptor and ligand from it.53 The 

second protocol assumes that the ligand and receptor do not undergo significant conformational 

changes upon binding, but it avoids the large energy fluctuations associated with simulating 

ligands or proteins alone, resulting in more stable predictions. 
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2.2.2 Factors influence the performance of MM/PBSA 

The performance of MM/PBSA can be improved in several aspects. The application of the 

PB equation to biological systems requires consideration of the effect of ionic concentration on 

the potential due to ion enrichment in highly charged regions on the surface of the molecule. 

Solving the nonlinear PB equation provides a more accurate description of the salt effects. The 

solute and the solvent are distinguished in PB calculations by boundaries with different dielectric 

constants inner and outer, with the solute dielectric constant usually set to 1 and the solvent 

dielectric constant using experimental values. Setting the solute dielectric constant to 1 is suitable 

for small molecules, but due to the presence of highly polarized residues in proteins and nucleic 

acids, assigning different dielectric constants to different residues or regions can improve the 

overall prediction performance of MM/PBSA.54, 55 

In PB calculations, the charge method of describing the solute has a significant effect on 

the results, Xu et al. explored the effects of four different charge models on the prediction results 

of MM/PBSA and MM/GBSA, where RESP charge showed the best prediction accuracy on both 

MM/PBSA and MM/GBSA.56 In addition, they tested the effects of molecular mechanics force 

field and different simulation time scale on the results and found that the best results were obtained 

using the AMBER ff03 force field, while a simulation duration of 2-4 ns gave more reliable 

results.56 Su et al. tested the prediction performance of MM/PBSA and MM/GBSA using different 

sets of atomic radii, and their results showed that the MM/PBSA method using Bondi’s radii had 

the best performance.57 

Although a range of radius sets were tested, in implicit solvent models including PB/GB, 

atomic radii are treated as adjustable parameters. The MM/PBSA radius set used by the AMBER 

community is element-based, unparameterized radii. Therefore, to improve the accuracy of the 



 14 

PBSA method, Sun et al.40, 58 used a TI method to extract the electrostatic term in the SFE and then 

used it for the parameterization of the PB atomic radii. Such a parameterization strategy is due to 

the fact that the electrostatic and non-electrostatic terms of the solvation energy are difficult to be 

measured directly from experiments, so the more accurate TI method is used to directly 

parameterize the PB, and then the parameters of the non-polar terms are fitted using the 

parameterized Δ𝐺expt −  Δ𝐺PB as the non-polar term contributions to obtain the final PB model. 
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3.0 Development of new PBSA model for water and common organic solvents 

3.1 Introduction 

When using in silico simulations to study complex biomolecules, in addition to accurately 

modeling the biomolecule itself, how to model the solvent significantly affects the simulation 

results of the biomolecules. In conventional molecular dynamics simulations, water molecules are 

explicitly modeled, i.e., all water molecules have atomic-level details, but explicit water model 

consumes many computational resources for sampling the trajectories of water molecules. Even 

if, long-range electrostatic interactions are still approximated by summation-Ewald summation 

when dealing with larger systems. Therefore, implicit solvent models that treat the solvent as a 

homogenized dielectric medium were developed to minimize solvent degrees of freedom and 

quantitatively describe electrostatic interactions. This approximation also avoids numerical 

fluctuations arising from mean forces from the trajectories of explicit water molecules. 

The precision of continuum models relies on the parameters employed to derive the solute 

charges, the dielectric constant of the solvent and solute, and the atomic radii that delineate the 

dielectric boundary. However, how to define solute-solvent boundary is a critical point in implicit 

solvent model. It is reliable to parameterize an implicit solvent model through experimental SFE, 

since SFE provides quantitative description of solvent effect. 

In this chapter, we first constructed solvent models for two organic solvents using different 

non-polar parameters. These solvent models coupled with an earlier version of ABCG2 charge 

model59 and previously tuned radii parameters40. Then I participated in Statistical Assessment of 

the Modeling of Proteins and Ligands (SAMPL) 9 challenge to predict partition coefficient, logP.  
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In addition to parameterization of non-polar model. I adopted an iteration process to further 

optimize the atomic radii targeting experimental HFEs based on newly developed ABCG2 charge 

model. The iteration process is shown in Figure 1: (1) the nonpolar term is fixed first; (2) a genetic 

algorithm (GA) is applied to conquer the couplings between the radius parameters; (3) the new 

nonpolar term is reoptimized. 

 

Figure 1 Iterative PBSA parameterization workflow 

The above three steps will be repeated until there is no further improvement on the model 

performance. After several iterations, I tested the performance of the new set of parameters on 

SAMPL9 toluene/water logPtol/wat and SAMPL5 cyclohexane/water distribution coefficient 

logDcyc/wat dataset, respectively. 

In SAMPL9 challenge, the organizers provided the simplified molecular-input line-entry 

system (SMILES) strings of 16 drug molecules as shown in Figure 2 and solicited blind prediction 

of logPtol/wat on this set of molecules.60 Unlike the logD predictions of the previous SAPML 
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challenge,61, 62 the logP predictions do not require to account for the ionization state and the 

tautomer of the solute molecules. Therefore, it is unnecessary to re-model or introduce external 

empirical corrections for the charges. This also reduces the difficulty of making predictions based 

on the PBSA method in this study.  

 

Figure 2 Structures of the 16 molecules involved in the SAMPL9 partition coefficient challenge 
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In most cases, logPi/j is proportional to the transfer free energy of the solute molecule from 

solvent 𝑗 to solvent 𝑖: 

𝑙𝑜𝑔𝑃𝑖/𝑗 = 
−𝛥𝐺𝑗→𝑖

R𝑇𝑙𝑛10
 

Equation 25 Partition coefficient definition definition from solvent j to solvent i 

where 𝑖 , 𝑗  are two immiscible solvents, 𝑅  is gas constant (8.314 J·mol-1·K-1), and 𝑇  is 

thermodynamic temperature. 

Transfer free energy can be derived from the difference between the SFE of the solute in 

these two solvents: 

∆𝐺𝑗→𝑖  =  ∆𝐺𝑖  − ∆𝐺𝑗 

Equation 26 Transfer free energy definition from solvent j to solvent i 

In PBSA-based SFE predictions, electrostatic interactions are usually derived from PBE, 

and the free energy associated with cavitation and dispersion is usually described by SASA 

model.33 

The solute-solvent boundary has uncertainty in implicit solvent models that include the PB 

method. This is due to the homogenization approximation of the solvent by implicit solvent models 

and the fact that the solute-solvent boundaries cannot be fully defined by atomic radii based on 

atomic number. This also implies that it is necessary to clarify the coupled charge method when 

discussing the definition of solute-solvent boundaries. Moreover, the separating measurements of 

the electrostatic and non-electrostatic contributions to the solvation effect are typically not 

available, hence it is difficult to optimize the electrostatic and non-electrostatic contributions 

individually.63 Modeling the solvent effect as a whole may lead to overfitting and the unbalanced 

contributions of the two types of solvent effect. 
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Therefore, recently a series of studies were conducted on the development of high accurate 

PBSA model for SFE prediction,40, 58 which were combined with the general AMBER force field 

2 (GAFF2) and earlier developed ABCG2 charge model59. In this PBSA model, a set of atom radii 

for PB calculation were developed targeting the electrostatic (polar) contribution from 

thermodynamic integration (TI) calculations of hydration free energy (HFE); then the non-

electrostatic (non-polar part) term was fitted targeting experimental values of HFE or SFE. This 

new PBSA parameters obtained a root mean square error (RMSE) of 1.05 kcal/mol on HFEs of 

544 molecules.40 Extending this method to solvent n-octanol yielded a prediction error of RMSE 

= 0.91 log units on logPoct/wat calculations of 707 drug molecules in the ZINC database.58 Note that 

the PB atomic radii optimized from HFE were directly utilized for SFE calculation in organic 

solvent, by this way only non-polar ∆𝐺𝑆𝐴𝑆𝐴 model needs to be redeveloped for individual organic 

solvents. In this study, I used the previously developed PB boundary definitions,40, 59 and derived 

the solvent dependent parameters 𝛾  and 𝑏  for toluene and cyclohexane solvents. The 

parameterization of 𝛾 and 𝑏 targeted to fit experimental SFEs and using multiple conformations to 

avoid overfitting. In addition to blind testing on the SAMPL9 dataset, we collected 110 molecules 

of toluene/water logP for additional testing. Furthermore, we tested this PBSA model for 

cyclohexane using both the SAMPL5 logDcyc/wat dataset (110 solutes) and an additional logPcyc/wat 

dataset (87 solutes) compiled by us. In addition to parameterization of non-polar model, the new 

PB radii parameters tuned from GA demonstrate slightly better prediction performance on 

SAMPL9 and SAMPL5 dataset. 
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3.2 Method 

3.2.1 Data Preparation 

In training sets, all the experimental data of SFE in organic solvents, in this work toluene 

and cyclohexane, were taken from the Minnesota Solvation Database v2012,64 and the 

experimental data of HFE were taken from the FreeSolv v0.52 database.65 All the initial structures 

from Minnesota Solvation Database v2012 are in xyz format, and all initial structures from 

FreeSolv v0.52 database are in mol2 format. All the structures were imported to Schrödinger 

Maestro v11.266 for visual inspection and were saved in mol2 files for further processing. In total 

47 molecules have both HFE and SFE in toluene, and 83 molecules have both HFE and SFE in 

cyclohexane. 

The initial structures of SAMPL9 molecules are converted from SMILES strings to mol2 

files by Open Babel 3.1.0 with the “-gen3d” option.67 The additional logP test set data were taken 

from the works done by Leo et al,68 Shalaeva et al,69 and Byrne et al,70 and the structures were 

downloaded from PubChem as sdf files and converted to mol2 files by Open Babel 3.1.0.67 

The modified module of ANTECHAMBER71 in AMBER Tools was utilized to assign 

GAFF2 topologies and ABCG2 charges. 

3.2.2 Molecular Dynamic Simulation 

Selected solute molecules were solvated in explicit water molecules with at least 15 Å 

distance from any solute atom to the edges of cubic simulation box. The solute molecules were 

treated with the GAFF2 force field parameters.72 The adopted water model was TIP3P. The 
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periodic boundary condition and the NPT ensemble were applied with P = 1.0 atm and T = 298.15 

K. The time step was set to 1.0 fs and the total simulation time was 10.0 ns for each system. The 

software AMBER1873 was utilized for MD simulations. 

3.2.3 PBSA Calculation 

All PB calculations were performed using Delphi V4 release 1.1.29, 74 The salt 

concentration was set to 0 mol/L; the grid spacing was set to 1.2 grids/Å; the percentage of the 

object longest linear dimension to the lattice linear dimension was set to 80%; and the boundary 

condition was set as coulombic boundary. The probe radius was 1.4 Å. The internal dielectric 

constant was always set to 1.00, and the dielectric constant of solvent was set to 80.00 for water, 

2.3741 for toluene, and 2.0165 for cyclohexane, respectively. Calculation mode was set as reaction 

field energy, which is regarded as the electrostatic component of SFE ∆𝐺𝑃𝐵. The radii from Sun 

et al. were listed in Appendix A, and the radii tuned from GA were listed in Appendix B. The 

solvent accessible surface area 𝑆𝐴𝑆𝐴 was generated by an internal program called MS50 using 

Bondi’s van der Waals radii75 and water probe (radius of 1.4 Å). This program is also available 

upon request. SASA was used to derive non-electrostatic term ∆𝐺𝑆𝐴𝑆𝐴 using Equation 19.50 

3.2.4 Toluene and Cyclohexane Modeling 

The same PB radius parameters derived using hydration free energies in our previous 

work40, 58 are directly applied in toluene and cyclohexane, therefore, the only parameters of toluene 

and cyclohexane that differ from those of water are 𝛾 and 𝑏 of Equation 19 in addition to the 

dielectric constant. The parameterization of 𝛾 and 𝑏 can be obtained directly by linear regression 
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analysis (single data point per solute), but given the limited amount of data in organic solvents, we 

used the multi-conformation approach when conduct the linear regression process (multiple data 

points per solute). All conformations are generated by the "-conformer" option of the Open Babel 

software through genetic algorithm,67 with the generation criterion being set to minimum energy 

and the maximum number of generated conformations being set to 20. The advantage of generating 

multiple conformations through Open Babel is that the number of conformations depends on the 

degree of freedom of the molecule. Therefore, the modeling of toluene and cyclohexane is the 

fitting of the following linear equations: 

∆𝐺𝑆𝐹𝐸,𝑀
𝑒𝑥𝑝𝑡 − ∆𝐺𝑃𝐵

𝑐𝑎𝑙𝑐(𝐑𝑀𝑘
) = 𝛾𝑠𝑆𝐴𝑆𝐴(𝐑𝑀𝑘

) + 𝑏𝑠 

Equation 27 Mathematical expression of the non-polar term to be fitted 

where 𝐑𝑀𝑘
 is the kth conformation of molecule 𝑀, 𝑠 is organic solvent, here represent for 

either toluene or cyclohexane. 

3.2.5 Calculate logD from logP 

Only one ionization state is considered for the logD calculation from logP. The modified 

Henderson-Hasselbalch equation is used. 

log𝐷 = log𝑃 − log(1 + 10𝑝𝐾𝑎−𝑝𝐻) 

Equation 28 Modified Henderson-Hasselbalch equation for basic solutes logD calculation 

log𝐷 = log𝑃 − log(1 + 10𝑝𝐻−𝑝𝐾𝑎) 

Equation 29 Modified Henderson-Hasselbalch equation for acidic solutes logD calculation 

Equation 28 is used for basic solutes and Equation 29 is used for acidic solutes. For 

amphipathic molecules, acidic pKa is adopted as the correction factor. 
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3.2.6 Thermodynamic Integration Simulation Protocol 

We compared the PBSA method with TI method on SAMPL9 and SAMPL5 dataset, and 

the TI calculation details were elaborated in this section. The alchemical enhanced sampling 

(ACES) method,76 proposed by Lee et al and implemented in the GPU version77-79 of TI modules 

in AMBER22, was employed for HFE and SFE calculations. 

The TLEAP module in AMBER22 was used to generate all solute-solvent boxes. For a 

solute molecule being solvated in water, the minimum distance between any solute atoms and an 

edge of the water box was set to 15 Å.  Similarly, a solute molecule was solvated in the cubic box 

of toluene or cyclohexane utilizing TLEAP. Note that toluene solvent box which has a dimension 

of 33.623 Å and cyclohexane solvent box which has a dimension of 39.418 Å were first created 

following the standard procedure as detailed in our previous publication.8 

The organic solute-solvent system was first subjected to an initial equilibration for 200 ps 

using the CPU-TI at λ = 0.01592. A 2 ns MD simulation was conducted for each of the 9 λ windows 

(0.01592, 0.08198, 0.19331, 0.33787, 0.5, 0.66213, 0.80669, 0.91802, 0.98408). For the first λ 

window (λ = 0.01592), the initial configurations were sampled from the CPU-TI, while the initial 

configurations for the other eight λ windows were obtained from the preceding λ window. 

Following the system setup, periodic boundary condition and the isothermal-isobaric NPT 

ensemble were produced in all simulations. Using Langevin dynamics to maintain the temperature 

at 298K, with the collision frequency (gamma_ln) set to 2.0 ps−1. The pressure was kept at 1.01325 

bar with Monte Carlo barostat and the pressure relaxation time being set to 5.0 ps. Disable the 

SHAKE constrains for solute and set time step to 1fs. It is pointed out that the purpose of running 

GPU-TI here was to provide an equilibrium system for the ACES simulation protocol. Specifically, 

we enlarged the simulation boxes for the organic solvents about 15-40% from the last snapshots 
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of the GPU TI runs for the λ = 0.5 window. The new simulation boxes have dimensions around 

46.0 Å.  

All the subsequent ACES simulations were based on the new simulation boxes following 

the same protocol of GPU-TI except that the van der Waals and electrostatic interactions were 

scaled by smoothstep soft-core potential80, 81 with switching function 𝑊(𝑟𝑖𝑗): 

𝑟𝑖𝑗
𝑉𝐷𝑊(𝜆; 𝛼𝑉𝐷𝑊) = [𝑟𝑖𝑗

𝑛 + 𝑊(𝑟𝑖𝑗) ⋅ 𝛼𝑉𝐷𝑊 ⋅ 𝑆𝑃(𝜆) ⋅ 𝜎𝑖𝑗
𝑛]

1 𝑛⁄
 

Equation 30 Smoothstep soft-core potential for van der Waals interactions 

𝑟𝑖𝑗
𝐸𝑙𝑒𝑐(𝜆; 𝛼𝐸𝑙𝑒𝑐) = [𝑟𝑖𝑗

𝑚 + 𝑊(𝑟𝑖𝑗) ⋅ 𝛼𝐸𝑙𝑒𝑐 ⋅ 𝑆𝑃(𝜆) ⋅ 𝜎𝑖𝑗
𝑚]

1 𝑚⁄
 

Equation 31 Smoothstep soft-core potential for electrostatic interactions 

The lower boundary of the switching function 𝑊(𝑟𝑖𝑗)  was set to 8 Å and the upper 

boundary was set to 10 Å. Additionally, the internal VDW interactions scaling within soft-core 

region were disabled by setting the gti_add_sc to 5. Nine equally-spaced 𝜆 windows (0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9) were applied to decouple the endpoint states. Hamiltonian exchange 

between different λ windows was performed every 100000 steps under the REMD76 framework to 

achieve the enhanced sampling. It is pointed out that the above ACES protocol is same as that 

reported by Lee et al.76 with an aim to achieve the consistent performance. The free energies were 

derived from unweighted integration of the alchemical pathway as below: 

∆𝐺 = 𝐺(𝜆 = 1) − 𝐺(𝜆 = 0) = ∫ ⟨
𝜕𝑉

𝜕𝜆
⟩
𝜆

1

0

⋅ 𝑑𝜆 ≈ ∑0.1 × ⟨
𝜕𝑉

𝜕𝜆
⟩
𝑖
 

Equation 32 Unweighted integration alone the alchemical pathway 

Three independent ACES based GPU-TI runs were performed for each solute, with 2 ns 

MD simulations for each 𝜆 windows. For each MD run, the beginning 0.5 ns simulation was 

considered as the equilibration phase and excluded from the later free energy analysis. The final 

HFE and SFE were then derived from the arithmetic average of the three independent TI runs, 
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while the standard deviation of the three independent runs was calculated to measure the precision 

of the protocol. The corresponding logP was calculated from HFE and SFE using Equation 25, and 

the logD was calculated from logP using Equations 28 and 29. 

3.2.7 Ab initio logP Calculation 

We used quantum mechanics (QM) based SMD model implemented in the Gaussian 1682 

software to derive the logP benchmark for our model. The principle of SMD derived logP is also 

based on the transfer free energy as Equation 25. Geometry optimization in the liquid phase at the 

B3LYP/6-31G* level of theory was first performed prior to SMD calculations, with the solvent 

specified directly by keywords; then the optimized geometries were read out to perform single 

point calculations in gas phase at the same level of theory. The energy difference between the 

liquid and gas phase is regarded as SFE. 

3.2.8 Globally tune the PB parameters 

GA is an efficient stochastic optimization method that has been widely applied to 

minimization problems because it is ideally suited for multiple-dimensional global search 

problems where the search space contains multiple local minima and the search variables may or 

may not be correlated.83 All molecules were treated with GAFF2 force field parameters and new 

ABCG2 charge model. We started the search with the fixed non-polar term, and ∆𝐺𝑃𝐵  was 

determined from  ∆𝐺𝑒𝑥𝑝𝑡 −  ∆𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟. The initial atom types were element-based, and atom 

types would be updated according to the molecules have larger errors. After each round of GA 
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search, the non-polar parameters would be re-fitted using the latest radii. Population size in GA 

search was varied based on the number of atom types, and the fitness function was RMSE. 

3.3 Results and Discussion 

3.3.1 Modeling of Toluene and Cyclohexane 

With the multi-conformation strategy described above applied on the training sets, the 

descriptors ( 𝛾  and 𝑏 ) of toluene and cyclohexane for SASA model were derived: 𝛾𝑡𝑜𝑙 =

−0.023556, 𝑏𝑡𝑜𝑙𝑢𝑒𝑛𝑒 = 4.40 and 𝛾𝑐𝑦𝑐 = −0.024237, 𝑏𝑐𝑦𝑐 = 4.64. ∆𝐺𝑆𝐹𝐸,𝑀
𝑒𝑥𝑝𝑡 − ∆𝐺𝑃𝐵

𝑐𝑎𝑙𝑐. 

3.3.2 SAMPL9 Toluene/Water logP Blind Prediction 

As required by the SAMPL9 organizer, we submitted predicted transfer free energies 

∆Gtol/wat of the 16 drug molecules before the deadline. Note that only a single conformation (with 

minimum energy) automatically generated by Open Babel for each drug molecule was used for 

the PBSA calculation of HFEs in water and SFEs in toluene. Based on the analysis result on all 18 

submissions provided by the organizer 

(https://github.com/samplchallenges/SAMPL9/tree/main/logP/Analysis/prelim_analysis), 

our submission achieved the lowest overall RMSE of 1.52 kcal/mol. After the completion of this 

blind prediction contest, we also applied MD simulation conjugated with PBSA to re-calculate the 

transfer free energy ∆Gtol/wat for the 16 molecules and summarized the results in Table 1 and Figure 

3. Table 2 reports the calculated HFE, SFE in toluene and the transfer free energy derived from 

https://github.com/samplchallenges/SAMPL9/tree/main/logP/Analysis/prelim_analysis
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the difference between HFE and SFE. Figure 3 shows the correlation between experimental and 

calculated transfer free energies. The re-calculated transfer free energies achieved a better RMSE 

of 1.33 kcal/mol and the Pearson correlation coefficient (R) of 0.94.  

In addition to the PBSA parameters and charge model that can affect the prediction 

accuracy of SFEs and corresponding transfer free energies, the adopted methodology and protocol 

for conformation generation is another factor affecting the prediction performance. The prediction 

error of Compound 8 significantly reduced after being treated by MD simulations compared to the 

value in our submission with single-conformation strategy. Also, Compound 8 has the maximum 

solvent accessible area, 709.35 Å2 (B3LYP/6-31G* optimized geometry), and greater flexibility. 

Therefore, we focused on Compound 8 to investigate the conformational effect on the prediction 

accuracy of transfer free energies and illustrate the results in Figure 4. The error of the calculated 

transfer free energies from the experimental value were evaluated using 10, 20, 50 and 100 

conformations. Conformations of Compound 8 were generated through three different ways: MD 

simulations, genetic algorithm using Open Babel,67 and Omega using mmff94smod_NoEstat force 

field parameters.84 The conformations generated by MD simulation yielded the lowest 

computational errors among the three methods, and demonstrated a trend that the error approached 

to zero as shown in the panel B of Figure 4 (from -0.76 kcal/mol on 10 conformations to -0.52 

kcal/mol on 100 conformations). The magnitude of the computational error from the 

conformations generated by Omega also decreased as the number of conformations increases, just 

as the result from MD simulations, however, there was a much long way to go before the error 

could reduce to certain low threshold. In contrast, the computational error from the conformations 

generated by Open Babel fluctuated around -2.0 kcal/mol as the number of conformations changed, 

with the magnitude of error higher than that from MD simulation (around -0.6 kcal/mol) but lower 
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than that from Omega (from -6.4 kcal/mol on 10 conformations to -5.0 kcal/mol on 100 

conformations). 

Except for Compound 8, other compounds which have prediction errors close to 2 kcal/mol 

should also be noticed. The prediction error of Compounds 1, 6 and 11 most likely arose from the 

formation of intramolecular hydrogen bond. As reported by Shalaeva et al,69 the difference 

between logPoct/water and logPtol/water is a potential descriptor to indicate the formation of 

intramolecular hydrogen bond. Molecular fragments that have the structural potential to form 

intramolecular hydrogen bonds in 6- or 7-membered rings are screened in a highly dielectric 

medium such as water (ε = 80) and form intermolecular hydrogen bonds with water molecules. 

Such molecule first undergoes desolvation during water-toluene phase transfer, and then, due to 

the jump in the dielectric environment, is more inclined to form intramolecular hydrogen bonds, 

thus decreasing the molecular polarity and increasing solubility. As such, Compounds 1 and 11 

adopt different conformations in the two different solvents, and the large prediction errors of 

transfer free energies of the two compounds may be due to using the same set of conformations. 

Unfortunately, it is necessary to use the same set of conformations for the SFE calculation in two 

different solvents to achieve the best error cancellation.85 

Since the TI method demonstrates high accuracy in free energy calculations, we also 

employed TI method to calculate the logPtol/wat for the 16 molecules in SAMPL9 dataset. The result 

of TI-calculated transfer free energies versus the experimental values was shown in Figure 5, and 

the detailed data were summarized in Appendix Table 3. The overall prediction error of TI in terms 

of RMSE was 2.11 kcal/mol, and the Pearson correlation coefficient of TI predictions was 0.92. 

Note that the prediction error of TI was slightly larger than that of the COSMO-RS method, but 

smaller than those of the other 11 submissions in this SAMPL9 challenge.  
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Figure 3 Experimental transfer free energy versus calculated transfer free energy using PBSA method for 16 

drug molecules in SAMPL9 challenge 

 

Table 1 Detailed experimental and calculated transfer free energies, calculated hydration free energies in 

water and solvation free energies in toluene using the PBSA method. The overall Pearson correlation 

coefficient (R), mean signed error (MSE), mean unsigned error (MUE) and root mean square error (RMSE) 

were listed for 16 SAMPL9 compounds 

Compound Experiment  

ΔG  

(kcal/mol) 

Hydration 

ΔG  

(kcal/mol) 

Solvation 

ΔG 

(kcal/mol) 

Transfer 

ΔG 

(kcal/mol) 

1 -5.11 -13.48 -15.75 -2.27 

2 -3.26 -11.41 -14.38 -2.97 

3 -7.49 -6.14 -12.57 -6.42 

4 -7.44 -10.99 -16.07 -5.08 

5 -4.91 -8.27 -13.37 -5.10 

6 1.67 -18.37 -14.59 3.78 

7 -5.94 -13.81 -19.83 -6.02 

8 -3.79 -18.49 -22.40 -3.91 

9 -6.87 -5.68 -12.39 -6.71 

10 -3.36 -10.80 -14.07 -3.26 

11 -1.99 -13.76 -14.10 -0.35 

12 2.16 -15.42 -12.32 3.10 

13 -0.49 -18.04 -17.19 0.85 

14 -1.92 -14.16 -17.40 -3.24 
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15 1.01 -19.57 -17.75 1.82 

16 -5.13 -12.52 -18.72 -6.20 

R 
   

0.94 

MSE 
   

0.68 

MUE 
   

1.03 

RMSE 
   

1.33 

 

 

Figure 4 The relationship between the numbers of conformations and the prediction errors of the transfer 

free energies using the PBSA method. Figure 4A. Prediction errors of three conformation generation 

methods; Figure 4B 4C and 4D are re-ranged plots for individual methods. 
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Figure 5 Experimental transfer free energy versus calculated transfer free energy using the TI method for 16 

drug molecules in SAMPL9 challenge. The uncertainties of calculated transfer free energy were standard 

deviations derived from three independent TI runs 

3.3.3 SAMPL5 Cyclohexane/Water logD Prediction 

In addition to modeling toluene for the SAMPL9 challenge, we also modeled cyclohexane 

and tested the cyclohexane/water logD prediction for 53 organic molecules in SAMPL5 challenge 

as well as the cyclohexane/water logP prediction for 87 molecules we collected.61 The prediction 

results of comparing our PBSA method with the best-ranked SAMPL5 submission from Klamt et 

al using COSMO-RS method86 (hereafter referred to as COSMO-RS) were summarized in Figure 

6 and Table 2. Panel A in Figure 6 shows the correlation between experimental logD and PBSA 

calculated logD, and panel B illustrates the correlation between experimental logD value and the 

initial submitted logD using COSMO-RS method by Klamt et al.86 The overall RMSE prediction 

error of our PBSA method is 1.88 log units, which is smaller than that of COSMO-RS (RMSE = 

2.11 log units). It is worth noting, however, that the logD values calculated by the PBSA method 
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were corrected from logP values using Equations 28 and 29, and the solutes’ pKa values were 

borrowed from Klamt et al. According to their report, the pKa values were predicted using the ab 

initio COSMOtherm program.87 In addition to the COSMOtherm, ab initio calculations using the 

Schrödinger Jaguar pKa module88 can yield comparable accurate predictions (RMSD within 0.2-

0.5 pKa units) for logD predictions. As shown in Figure 6, the yielded large prediction errors by 

the PBSA method were mainly for some neutral and basic molecules, among which Compounds 

74 and 82 also had large prediction errors by the COSMO-RS method. Regarding to Compound 

74, based on our experience in developing the PBSA method, the conformation of 

polyhydroxylated compounds represented by glycerol has a significant effect on the prediction 

accuracy, and the use of a multi-conformation approach sampled by MD simulations usually leads 

to a predicted SFE of such molecules closer to the experimental value. The prediction error for 

SAMPL5_083 raises from using a less dominate tautomer as reported by Klamt et al.86 Similarly, 

we conducted TI calculations on the SAMPL5 logDcyc/wat dataset for comparison. We also adopted 

the predicted pKa (summarized in Table 2) to correct the TI calculated logP to obtain logD. The 

performance of TI predictions was illustrated in Figure 7 and the detailed data were listed in 

Appendix Table 4. The overall prediction error of TI in terms of RMSE was 2.15 log units, which 

was comparable with the COSMO-RS method. 
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Figure 6 Correlation between experimental and calculated logD.  Figure 6A Calculated with PBSA method 

(this work); Figure 6B Calculated using the COSMO-RS method. 

 

Table 2 Experimental logD, calculated logP and logD values of the PBSA and COSMO-RS methods. The pKa 

values adopted to correct the ionization effect were from Klamt et al. If the molecule is an amphipathic 

molecule, the acidic pKa was used to compute the correction factor. 

Compound Expt pKa Calc logP Calc logD 

logD Acid Base COSMO-RS PBSA COSMO-RS PBSA 

SAMPL5_002 1.40 
  

1.70 0.58 1.70 0.58 

SAMPL5_003 1.90 
  

2.80 1.75 2.80 1.75 

SAMPL5_004 2.20 
 

6.85 4.10 0.57 4.00 0.46 

SAMPL5_005 -0.86 
  

1.50 1.15 1.50 1.15 

SAMPL5_006 -1.02 
  

0.70 -0.14 0.70 -0.14 

SAMPL5_007 1.40 
 

7.02 1.80 1.90 1.60 1.74 

SAMPL5_010 -1.70 4.86 6.03 -2.20 -0.22 -4.70 -2.76 

SAMPL5_011 -2.96 4.01 4.55 1.10 1.33 -2.30 -2.06 

SAMPL5_013 -1.50 
  

0.90 0.50 0.90 0.50 

SAMPL5_015 -2.20 4.35 
 

-4.00 -0.70 -7.10 -3.74 
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SAMPL5_017 2.50 
  

3.80 2.98 3.80 2.98 

SAMPL5_019 1.20 
 

6.55 4.00 -0.08 3.90 -0.13 

SAMPL5_020 1.60 
  

2.00 0.30 2.00 0.30 

SAMPL5_021 1.20 
  

2.50 1.85 2.50 1.85 

SAMPL5_024 1.00 
  

2.60 1.66 2.60 1.66 

SAMPL5_026 -2.60 4.73 
 

-0.90 0.74 -3.60 -1.93 

SAMPL5_027 -1.87 
  

-2.10 -2.13 -2.10 -2.13 

SAMPL5_033 1.80 
  

4.20 4.76 4.20 4.76 

SAMPL5_037 -1.50 
 

8.17 -1.70 -0.04 -2.60 -0.88 

SAMPL5_042 -1.10 
  

0.40 0.31 0.40 0.31 

SAMPL5_044 1.00 
  

2.80 0.10 2.80 0.10 

SAMPL5_045 -2.10 
  

-1.30 -1.08 -1.30 -1.08 

SAMPL5_046 0.20 
  

0.50 -0.29 0.50 -0.29 

SAMPL5_047 -0.40 
  

2.00 -1.95 2.00 -1.95 

SAMPL5_048 0.90 
  

1.50 0.72 1.50 0.72 

SAMPL5_049 1.30 
  

3.40 1.48 3.40 1.48 

SAMPL5_050 -3.20 7.24 3.86 -6.70 0.01 -7.10 -0.38 

SAMPL5_055 -1.50 
  

-1.80 -1.56 -1.80 -1.56 

SAMPL5_056 -2.50 8.09 -4.19 -4.60 -1.51 -4.70 -1.59 

SAMPL5_058 0.80 
  

1.60 1.49 1.60 1.49 

SAMPL5_059 -1.30 
  

-0.90 -1.20 -0.90 -1.20 

SAMPL5_060 -3.90 4.95 
 

-1.90 -1.55 -4.40 -4.00 

SAMPL5_061 -1.45 
 

7.03 -1.70 0.36 -1.80 0.21 

SAMPL5_063 -3.00 
 

9.05 -5.80 -1.00 -7.50 -2.66 

SAMPL5_065 0.70 
 

8.43 3.40 3.99 2.30 2.92 

SAMPL5_067 -1.30 
 

8.85 2.60 2.46 1.10 1.00 

SAMPL5_068 1.40 
  

2.20 2.22 2.20 2.22 

SAMPL5_069 -1.30 8.91 7.74 1.70 -0.01 1.20 -0.02 

SAMPL5_070 1.60 
 

9.32 5.80 4.20 3.80 2.28 
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SAMPL5_071 -0.10 
  

-0.20 0.34 -0.20 0.34 

SAMPL5_072 0.60 
 

8.62 4.10 3.30 2.90 2.06 

SAMPL5_074 -1.90 
  

-8.00 -7.06 -8.00 -7.06 

SAMPL5_075 -2.80 
 

8.50 1.30 2.72 0.10 1.59 

SAMPL5_080 -2.20 
  

-1.90 -2.06 -1.90 -2.06 

SAMPL5_081 -2.20 
 

8.28 -3.60 -3.90 -4.50 -4.84 

SAMPL5_082 2.50 
 

8.11 7.40 6.98 6.60 6.20 

SAMPL5_083 -1.90 
  

-2.30 3.12 -2.30 3.12 

SAMPL5_084 0.00 
 

8.18 2.00 4.13 1.20 3.29 

SAMPL5_085 -2.20 
  

-1.80 -0.50 -1.80 -0.50 

SAMPL5_086 0.70 
 

9.52 4.00 4.80 1.90 2.68 

SAMPL5_088 -1.90 
  

0.00 0.43 0.00 0.43 

SAMPL5_090 0.80 
  

1.30 2.26 1.30 2.26 

SAMPL5_092 -0.40 
  

1.30 1.98 1.30 1.98 

R 
   

0.79 0.55 0.85 0.68 

MSE 
   

1.05 1.26 0.49 0.71 

MUE 
   

1.79 1.84 1.65 1.44 

RMSE 
   

2.26 2.34 2.10 1.88 
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Figure 7 Correlation between experimental logD and TI calculated logD. Uncertainties were standard 

deviations from three independent TI runs. 

3.3.4 Test of the PBSA method on Additional logP Datasets 

Finally, to further validate the developed PBSA models for toluene and cyclohexane, 

additional test molecules were collected to predict the logPtol/wat and logPcyc/wat values. For 110 

organic molecules in toluene, the PBSA method achieved an RMSE of 1.83 log units. In contrast, 

the QM-based SMD method calculated at the B3LYP/6-31G* level of theory had a prediction error 

of 2.31 log units. The comparison results were shown in a scatter plot between the experimental 

logP and calculated logP (Figure 8).  

Interestingly, there was a strong agreement between the PBSA method and the SMD 

method for molecules with large prediction errors, which are: 8-Hydroxyquinoline, 2-Methyl-8-

Quinolinol, Bromothymol blue, and Schiff base. Some others with larger errors by the PBSA 

method are phosphorus-containing molecules, for which the phosphorus-related bond charge 

correction parameters were not adequately adjusted for the ABCG2 charge model. Still other six 
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molecules with experimental logP values between 3.0 - 4.0 have systematic errors in the PBSA 

calculations, but not in SMD calculations. Examination on their structures revealed that most of 

them are halogen-substituted benzenes except for cyclohexene. This systematic error is probably 

due to the inability of the implicit solvent model described by the dielectric constant to adequately 

model the π-π interactions arising from the benzene rings in the toluene and solute molecules. Of 

course, the systematic error may also come from the inadequate description of the -hole effect by 

the ABCG2 charge model. This systematic error in structure-dependent SFE calculations recurs in 

the PBSA model and has attracted our attention to deal with those “difficult” molecules in the 

future.  

 

Figure 8 Correlation between experimental and calculated logPtol/wat. Figure 8A Calculated logPtol/wat using 

PBSA method; Figure 8B Calculated logPtol/wat using SMD method. 

As to the 87 organic molecules in the additional cyclohexane test set, the PBSA method 

achieved an RMSE of 1.11 log units, which is slightly larger than that of the SMD method 

(RMSE=0.99) as shown in Figure 9. Nevertheless, the prediction error is much lower than the 

RMSE of logD prediction in SAMPL5 challenge.  



 38 

 

Figure 9 Correlation between the experimental and calculated logPcyc/wat. Figure 9A. Calculated logPcyc/wat 

using the PBSA method; Figure 9B. Calculated logPcyc/wat using the SMD method. 

3.3.5 GA optimized atomic radii and non-polar parameters for PB calculations 

After 5 iterations, we stop the process and test the performance of PBSA with the tuned 

radii and non-polar parameters. The new radii were listed in Appendix xxx and the non-polar 

parameters were listed in Table 3. 

Table 3 Non-polar parameters coupled with GA tuned radii 

Solvent ε γ b 

Water 80.00 0.0053 1.03 

Toluene 2.37 0.0238 3.90 

Cyclohexane 2.23 0.0235 4.40 

 

To test these parameters, we use logPtol/wat and logDcyc/wat from SAMPL9 and SAMPL5 

again. The results are shown in Table 4. Although the perforamnce of the new radii set is similar 
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to the previous radii, it should be a more rubust set of parameters since we used more drug like 

molecules during the optimization and considered more molecular mechanics atom types.  

Table 4 Test results of new PB parameters 

Solvent 

System 

Number of 

Ligands 

Previous radii Current radii 

RMSE RMSE 

SAMPL9 

Tol/wat 
16 1.33 kcal/mol 1.30 kcal/mol 

SAMPL5 

Cyc/wat 
53 1.88 log unit 1.86 log unit 
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3.4 Conclusion 

In this study, we extended the scope of our PBSA method for predicting solvation free 

energies in toluene and cyclohexane for organic molecules by parameterizing the nonpolar part 

and successfully applied this model to predict toluene-water partition coefficients in the SAMPL9 

challenge. The PBSA method performed the best out of a total of 18 submissions in terms of 

RMSE.  The RMSE error of our submission, 1.52 kcal/mol, was further reduced to 1.33 kcal/mol 

after using the multi-conformations generated through MD simulations. The distribution 

coefficient dataset from SAMPL5 challenge was adopted to test the performance of the PBSA SFE 

model for cyclohexane, and the prediction error of our model, RMSE = 1.88 log units, was better 

than that of COSMO-RS, which had the lowest prediction error (RMSE = 2.11 log units) among 

the 63 submissions of the SAMPL5 challenge. The ACES TI was conducted to calculate toluene-

water transfer free energy in SAMPL9 dataset and cyclohexane-water logD in SAMPL5 dataset. 

The RMSE of TI were 2.11 kcal/mol on SAMPL9 dataset and 2.15 log units on SAMPL5 dataset. 

This further proved the reliability of our PBSA-based approach for partition coefficient prediction. 

In addition, we discussed the potential sources of errors for some poor predictions. More 

excitingly, we found the prediction error of our models can be further reduced when using multiple 

conformations. Among the three conformational ensemble generation methods, MD simulation 

achieved the best performance. We further evaluated our two PBSA SFE models using two larger 

molecule sets. Finally, we conducted global optimization of PB parameters. The intermediate 

version of parameters can even achieve similar accuracy compared with our previous results.  
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4.0 Future Work Perspectives 

To develop a set of robust atomic radii for PB calculation, we intend to use a set of training 

set with more molecules, involving 1100 solvation free energy data derived from henry’s law 

constant database.  

Although adjusting the atomic radii in PB calculations can improve the accuracy of PBSA 

in predicting SFE and binding free energies. However, another assumption for the practical 

application of PBSA is that solutes and solvents all have homogeneous dielectric constants. This 

assumption ignores the fact that solutes, especially biomolecules (proteins, DNA and RNA), 

usually have highly charged regions, which leads to the inability of the uniform dielectric constant 

to accurately describe the dielectric properties of solutes. Therefore, using an automated process 

to differentiate dielectric regions of proteins and using different dielectric constants for PB 

calculations is expected to further improve the predictive performance of PBSA. 

The current widely used molecular mechanics force field still employs atomic partial 

charges, and although this treatment ensures computational efficiency, the atomic partial charges 

cannot adequately consider the polarization effect. Therefore, the development of new electrostatic 

models and the incorporation of explicit polarization effects can depict the electrostatic 

interactions of molecules more accurately. Polarizable molecular mechanics force fields can also 

be combined with PBSA to produce more accurate electrostatic potentials. 
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Appendix A Atomic Radii Used for PBSA Organic Solvent Model 

Appendix Table 1 Atomic radii used for PBSA organic solvent models adopted from Sun et al. 

Atom type  Old Radius 

Parameter  
Optimized Radius 

Parameter  
Radius Parameters for SASA and 

WSAS Entropy Calculations  
Weight of 

WSAS   

Hydrogen  

h1  1.19   1.19   1.20  0.105257  

h2  1.19   1.19   1.20  0.0866113  

h3  1.19   1.19   1.20  0.0708034  

h4  1.19   1.19   1.20  0.104611  

h5  1.19   1.19   1.20  0.0951559  

ha  1.19   1.19   1.20  0.114837  

hc  1.19   1.19   1.20  0.127134  

hn  1.19   1.19   1.20  0.0145069  

hn1    1.50   1.20  0.0145069  

hn2    1.60   1.20  0.0145069  

hn3    1.70  1.20  0.0145069  

ho  1.19   1.19   1.20  0.004208  

hp  1.19   1.19   1.20  0.0166403  

hs  1.19   1.19   1.20  0.0157608  

hw  1.19   1.19   1.20  0.0106  

hx  1.19   1.19   1.20  0.0574766  

HC  1.19   1.19   1.20  0.127134  

HA  1.19   1.19   1.20  0.114837  

HO  1.19   1.19   1.20  0.004208  

HS  1.19   1.19   1.20  0.0157608  

HW  1.19   1.19   1.20  0.004208  

HP  1.19   1.19   1.20  0.0166403  

HZ  1.19   1.19       

H1  1.19   1.19   1.20  0.105257  

H2  1.19   1.19   1.20  0.0866113  

H3  1.19   1.19   1.20  0.0708034  

H4  1.19   1.19   1.20  0.104611  

H5  1.19   1.19   1.20  0.0951559  

H  1.19   1.19   1.20  0.0145069  

Carbon  

c  1.76   1.76   1.70  0.559732  

c1  1.76   1.90   1.70  0.826582  

c2  1.76   1.76   1.70  0.559732  

c3  1.76   1.76   1.70  0.63088  

ca  1.76   1.76   1.70  0.559732  
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cp  1.76   1.76   1.70  0.559732  

cq  1.76   1.76   1.70  0.559732  

cc  1.76   1.76   1.70  0.559732  

cd  1.76   1.76   1.70  0.559732  

ce  1.76   1.76   1.70  0.559732  

cf  1.76   1.76   1.70  0.559732  

cg  1.76   1.76   1.70  0.826582  

ch  1.76   1.76   1.70  0.826582  

cx  1.76   1.76   1.70  0.63088  

cy  1.76   1.76   1.70  0.63088  

cz  1.76   1.76   1.70  0.559732  

c5  1.76   1.76   1.70  0.63088  

c6  1.76   1.76   1.70  0.63088  

cu  1.76   1.76   1.70  0.559732  

cv  1.76   1.76   1.70  0.559732  

CA  1.76   1.76   1.70  0.559732  

CB  1.76   1.76   1.70  0.559732  

CC  1.76   1.76   1.70  0.559732  

CD  1.76   1.76   1.70  0.559732  

CK  1.76   1.76   1.70  0.559732  

CM  1.76   1.76   1.70  0.559732  

CN  1.76   1.76   1.70  0.559732  

CQ  1.76   1.76   1.70  0.559732  

CR  1.76   1.76   1.70  0.559732  

CT  1.76   1.76   1.70  0.63088  

CV  1.76   1.76   1.70  0.559732  

CW  1.76   1.76   1.70  0.559732  

C*  1.76   1.76   1.70  0.559732  

CY  1.76   1.76   1.70  0.826582  

CZ  1.76   1.76   1.70  0.826582  

C  1.76   1.76   1.70  0.826582  

C3  1.76   1.76   1.70  0.63088  

C4  1.76   1.76   1.70  0.63088  

C5  1.76   1.76   1.70  0.559732  

C6  1.76   1.76   1.70  0.559732  

C8  1.76   1.76   1.70  0.63088  

CX  1.76   1.76   1.70  0.63088  

2C  1.76   1.76   1.70  0.63088  

3C  1.76   1.76   1.70  0.63088  

CO  1.76   1.76   1.70  0.559732  

CI  1.76   1.76   1.70  0.63088  

CP  1.76   1.76   1.70  0.559732  

CS  1.76   1.76   1.70  0.559732  

Nitrogen  

n  1.73   1.73   1.55  0.635011  
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n1  1.73   1.73   1.55  0.567605  

n2  1.73   1.73   1.55  0.582155  

n3  1.73   1.73   1.55  0.546228  

n4  1.73   1.73   1.55  1.56076  

n5  1.73   1.73   1.55  0.485127  

n6  1.73   1.73   1.55  0.485127  

n7  1.73   1.73   1.55  0.485127  

n8  1.73   1.73   1.55  0.433329  

n9  1.73   1.73   1.55  0.329614  

na  1.73   1.73   1.55  0.72638  

nb  1.73   1.73   1.55  0.582155  

nc  1.73   1.73   1.55  0.582155  

nd  1.73   1.73   1.55  0.582155  

ne  1.73   1.73   1.55  0.582155  

nf  1.73   1.73   1.55  0.582155  

nh  1.73   1.73   1.55  0.734254  

no  1.73   1.73   1.55  0.546228  

ni  1.73   1.73   1.55  0.635011  

nj  1.73   1.73   1.55  0.635011  

nk  1.73   1.73   1.55  1.38946  

nl  1.73   1.73   1.55  1.38946  

nm  1.73   1.73   1.55  0.734254  

nn  1.73   1.73   1.55  0.734254  

np  1.73   1.73   1.55  0.546228  

nq  1.73   1.73   1.55  0.546228  

ns  1.73   1.73   1.55  0.584969  

nt  1.73   1.73   1.55  0.540968  

nu  1.73   1.73   1.55  0.676782  

nv  1.73   1.73   1.55  0.625821  

nx  1.73   1.73   1.55  1.38946  

ny  1.73   1.73   1.55  1.24398  

nz  1.73   1.73   1.55  1.11956  

n+  1.73   1.73   1.55  1.01253  

NA  1.73   1.73   1.55  0.72638  

NB  1.73   1.73   1.55  0.582155  

NC  1.73   1.73   1.55  0.582155  

N2  1.73   1.73   1.55  0.72638  

N3  1.73   1.73   1.55  0.546228  

NT  1.73   1.73   1.55  0.546228  

N*  1.73   1.73   1.55  0.72638  

NY  1.73   1.73   1.55  0.567605  

N  1.73   1.73   1.55  0.635011  

Oxygen  

o  1.43   1.70   1.52  0.528811  

on    2.00  1.52  0.528811  
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oi    1.28   1.52  0.528811  

oh  1.43   1.70  1.52  0.507605  

os  1.43   1.64   1.52  0.413186  

ow  1.43   1.64   1.52  0.594825  

op  1.43   1.64   1.52  0.413186  

oq  1.43   1.64   1.52  0.413186  

O2  1.43   1.64   1.52  0.528811  

OH  1.43   1.64   1.52  0.507605  

OS  1.43   1.64   1.52  0.413186  

OW  1.43   1.64   1.52  0.507605  

O  1.43   1.64   1.52  0.528811  

Sulfur  

s  1.75   2.00   1.80  1.15379  

s2  1.75   2.00   1.80  1.15379  

s4  1.75   2.00   1.80  1.15379  

s6  1.75   2.80   1.80  0.847601  

sh  1.75   2.00   1.80  1.15379  

ss  1.75   2.00   1.80  1.15379  

sx  1.75   2.00   1.80  1.15379  

sy  1.75   2.00   1.80  0.847601  

sp  1.75   2.00   1.80  1.15379  

sq  1.75   2.00   1.80  1.15379  

SH  1.75   2.00   1.80  1.15379  

S  1.75   2.00   1.80  1.15379  

Phosphate  

p2  1.75   2.00   1.80  1.20046  

p3  1.75   2.00   1.80  1.20046  

p4  1.75   2.00   1.80  1.20046  

p5  1.75   2.60   1.80  1.20046  

pb  1.75   2.00   1.80  1.20046  

pc  1.75   2.00   1.80  1.20046  

pd  1.75   2.00   1.80  1.20046  

pe  1.75   2.00   1.80  1.20046  

pf  1.75   2.00   1.80  1.20046  

px  1.75   2.00   1.80  1.20046  

py  1.75   2.00   1.80  1.20046  

p  1.75   2.00       

P  1.75   2.00   1.80  1.20046  

Halide  

f  1.40   1.90   1.47  0.393452  

F  1.40   1.90   1.47  0.393452  

cl  1.54   2.10   1.75  1.05024  

Cl  1.54   2.10   1.75  1.05024  

CL  1.54   2.10       

br  1.99   2.15   1.85  1.46244  
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Br  1.99   2.15   1.85  1.46244  

BR  1.99   2.15       

i  2.00   2.20   1.90  2.00408  

I  2.00   2.20   1.90  2.00408  

Boron    

B  1.50   1.50      

Metal    

Mn  2.00   2.00       

Mg  2.00   2.00       

Fe  2.00   2.00       

Lone pair    

lp  0.00   0.00       

LP  0.00   0.00       

Z5  1.76   1.76   1.70    
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Appendix B Tuned atomic radii from GA 

Appendix Table 2 Atomic radii for PB from GA search 

Atom type  Old Radius 

Parameter  
Optimized Radius 

Parameter  
Radius Parameters for SASA and 

WSAS Entropy Calculations  
Weight of 

WSAS   

Hydrogen  

h1  1.19   1.00   1.20  0.105257  

h2  1.19   1.00   1.20  0.0866113  

h3  1.19   1.00   1.20  0.0708034  

h4  1.19   1.00   1.20  0.104611  

h5  1.19   1.00   1.20  0.0951559  

ha  1.19   1.00   1.20  0.114837  

hc  1.19   1.00   1.20  0.127134  

hn  1.19   1.13   1.20  0.0145069  

hn1    1.50   1.20  0.0145069  

hn2    1.60   1.20  0.0145069  

hn3    1.70  1.20  0.0145069  

ho  1.19   1.41   1.20  0.004208  

hp  1.19   1.00   1.20  0.0166403  

hs  1.19   1.00   1.20  0.0157608  

hw  1.19   1.00   1.20  0.0106  

hx  1.19   1.00   1.20  0.0574766  

HC  1.19   1.00   1.20  0.127134  

HA  1.19   1.00   1.20  0.114837  

HO  1.19   1.00   1.20  0.004208  

HS  1.19   1.00   1.20  0.0157608  

HW  1.19   1.00   1.20  0.004208  

HP  1.19   1.00   1.20  0.0166403  

HZ  1.19   1.00       

H1  1.19   1.00   1.20  0.105257  

H2  1.19   1.00   1.20  0.0866113  

H3  1.19   1.00   1.20  0.0708034  

H4  1.19   1.00   1.20  0.104611  

H5  1.19   1.00   1.20  0.0951559  

H  1.19   1.00   1.20  0.0145069  

Carbon  

c  1.76   1.90   1.70  0.559732  

c1  1.76   1.90   1.70  0.826582  

c2  1.76   2.15   1.70  0.559732  

c3  1.76   1.90   1.70  0.63088  

ca  1.76   1.90   1.70  0.559732  
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cp  1.76   1.90   1.70  0.559732  

cq  1.76   1.90   1.70  0.559732  

cc  1.76   1.90   1.70  0.559732  

cd  1.76   1.90   1.70  0.559732  

ce  1.76   2.15   1.70  0.559732  

cf  1.76   1.90   1.70  0.559732  

cg  1.76   1.90   1.70  0.826582  

ch  1.76   1.90   1.70  0.826582  

cx  1.76   1.07   1.70  0.63088  

cy  1.76   1.90   1.70  0.63088  

cz  1.76   1.90   1.70  0.559732  

c5  1.76   1.90   1.70  0.63088  

c6  1.76   1.90   1.70  0.63088  

cu  1.76   1.90   1.70  0.559732  

cv  1.76   1.90   1.70  0.559732  

CA  1.76   1.90   1.70  0.559732  

CB  1.76   1.90   1.70  0.559732  

CC  1.76   1.90   1.70  0.559732  

CD  1.76   1.90   1.70  0.559732  

CK  1.76   1.90   1.70  0.559732  

CM  1.76   1.90   1.70  0.559732  

CN  1.76   1.90   1.70  0.559732  

CQ  1.76   1.90   1.70  0.559732  

CR  1.76   1.90   1.70  0.559732  

CT  1.76   1.90   1.70  0.63088  

CV  1.76   1.90   1.70  0.559732  

CW  1.76   1.90   1.70  0.559732  

C*  1.76   1.90   1.70  0.559732  

CY  1.76   1.90   1.70  0.826582  

CZ  1.76   1.90   1.70  0.826582  

C  1.76   1.90   1.70  0.826582  

C3  1.76   1.90   1.70  0.63088  

C4  1.76   1.90   1.70  0.63088  

C5  1.76   1.90   1.70  0.559732  

C6  1.76   1.90   1.70  0.559732  

C8  1.76   1.90   1.70  0.63088  

CX  1.76   1.90   1.70  0.63088  

2C  1.76   1.90   1.70  0.63088  

3C  1.76   1.90   1.70  0.63088  

CO  1.76   1.90   1.70  0.559732  

CI  1.76   1.90   1.70  0.63088  

CP  1.76   1.90   1.70  0.559732  

CS  1.76   1.90   1.70  0.559732  

Nitrogen  

n  1.73   1.15   1.55  0.635011  
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n1  1.73   1.74   1.55  0.567605  

n2  1.73   1.74   1.55  0.582155  

n3  1.73   1.50   1.55  0.546228  

n4  1.73   1.74   1.55  1.56076  

n5  1.73   1.74   1.55  0.485127  

n6  1.73   1.59   1.55  0.485127  

n7  1.73   1.59   1.55  0.485127  

n8  1.73   1.74   1.55  0.433329  

n9  1.73   1.74   1.55  0.329614  

na  1.73   1.74   1.55  0.72638  

nb  1.73   1.70   1.55  0.582155  

nc  1.73   1.74   1.55  0.582155  

nd  1.73   1.74   1.55  0.582155  

ne  1.73   1.74   1.55  0.582155  

nf  1.73   1.74   1.55  0.582155  

nh  1.73   1.74   1.55  0.734254  

no  1.73   2.85   1.55  0.546228  

ni  1.73   1.74   1.55  0.635011  

nj  1.73   1.74   1.55  0.635011  

nk  1.73   1.74   1.55  1.38946  

nl  1.73   1.74   1.55  1.38946  

nm  1.73   1.74   1.55  0.734254  

nn  1.73   1.74   1.55  0.734254  

np  1.73   1.74   1.55  0.546228  

nq  1.73   1.74 1.55  0.546228  

ns  1.73   1.94   1.55  0.584969  

nt  1.73   1.64   1.55  0.540968  

nu  1.73   1.74   1.55  0.676782  

nv  1.73   1.74   1.55  0.625821  

nx  1.73   1.74   1.55  1.38946  

ny  1.73   1.74   1.55  1.24398  

nz  1.73   1.74   1.55  1.11956  

n+  1.73   1.74   1.55  1.01253  

NA  1.73   1.74   1.55  0.72638  

NB  1.73   1.74   1.55  0.582155  

NC  1.73   1.74   1.55  0.582155  

N2  1.73   1.74   1.55  0.72638  

N3  1.73   1.74   1.55  0.546228  

NT  1.73   1.74   1.55  0.546228  

N*  1.73   1.74   1.55  0.72638  

NY  1.73   1.74   1.55  0.567605  

N  1.73   1.74   1.55  0.635011  

Oxygen  

o  1.43   1.62   1.52  0.528811  

on    2.00  1.52  0.528811  
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oi    1.28   1.52  0.528811  

oh  1.43   1.60  1.52  0.507605  

os  1.43   1.81   1.52  0.413186  

ow  1.43   1.62   1.52  0.594825  

op  1.43   1.62   1.52  0.413186  

oq  1.43   1.62   1.52  0.413186  

O2  1.43   1.62   1.52  0.528811  

OH  1.43   1.62   1.52  0.507605  

OS  1.43   1.62   1.52  0.413186  

OW  1.43   1.62 1.52  0.507605  

O  1.43   1.62   1.52  0.528811  

Sulfur  

s  1.75   2.40   1.80  1.15379  

s2  1.75   2.40   1.80  1.15379  

s4  1.75   2.82   1.80  1.15379  

s6  1.75   1.58   1.80  0.847601  

sh  1.75   2.40   1.80  1.15379  

ss  1.75   2.25   1.80  1.15379  

sx  1.75   2.40   1.80  1.15379  

sy  1.75   2.40   1.80  0.847601  

sp  1.75   2.40   1.80  1.15379  

sq  1.75   2.40   1.80  1.15379  

SH  1.75   2.40   1.80  1.15379  

S  1.75   2.40   1.80  1.15379  

Phosphate  

p2  1.75   1.72   1.80  1.20046  

p3  1.75   1.72   1.80  1.20046  

p4  1.75   1.72   1.80  1.20046  

p5  1.75   1.72   1.80  1.20046  

pb  1.75   1.72   1.80  1.20046  

pc  1.75   1.72   1.80  1.20046  

pd  1.75   1.72   1.80  1.20046  

pe  1.75   1.72   1.80  1.20046  

pf  1.75   1.72   1.80  1.20046  

px  1.75   1.72   1.80  1.20046  

py  1.75   1.72   1.80  1.20046  

p  1.75   1.72       

P  1.75   1.72   1.80  1.20046  

Halide  

f  1.40   2.91   1.47  0.393452  

F  1.40   2.91   1.47  0.393452  

cl  1.54   2.15   1.75  1.05024  

Cl  1.54   2.15   1.75  1.05024  

CL  1.54   2.15       

br  1.99   2.18   1.85  1.46244  
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Br  1.99   2.18   1.85  1.46244  

BR  1.99   2.18       

i  2.00   1.92   1.90  2.00408  

I  2.00   1.92   1.90  2.00408  

Boron    

B  1.50   1.50      

Metal    

Mn  2.00   2.00       

Mg  2.00   2.00       

Fe  2.00   2.00       

Lone pair    

lp  0.00   0.00       

LP  0.00   0.00       

Z5  1.76   1.76   1.70    



 52 

Appendix C Calculated toluene-water logP using TI 

Appendix Table 3 The experimental logP from SAMPL9 dataset and the calculated toluene-water logP using 

TI. Standard Deviation was calculated from three independent TI runs.  

Solute 

ID 
logPexpt logPcalc 

Standard 

Deviation 

1 -5.11 -2.56 0.15 

2 -3.26 -5.14 0.36 

3 -7.49 -8.25 0.17 

4 -7.44 -8.34 0.28 

5 -4.91 -6.57 0.16 

6 1.67 3.72 0.17 

7 -5.94 -7.98 0.23 

8 -3.79 -6.92 1.08 

9 -6.87 -8.46 0.14 

10 -3.36 -3.57 0.19 

11 -1.99 -2.63 0.31 

12 2.16 4.55 0.25 

13 -0.49 -0.44 0.24 

14 -1.92 -5.49 0.41 

15 1.01 2.76 0.11 

16 -5.13 -8.96 0.21 

MSE  -0.71  

MUE  1.81  

RMSE  2.11  
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Appendix D Calculated cyclohexane-water logP and logD using TI 

Appendix Table 4 The experimental logD from SAMPL5 dataset and the calculated cyclohexane-water logP 

and logD using TI. Standard Deviation was calculated from three independent TI runs. 

Solute ID logDexpt logPcalc logDcalc 
Standard 

Deviation 

SAMPL5_002 1.40 0.74 0.74 0.21 

SAMPL5_003 1.90 1.84 1.84 0.09 

SAMPL5_004 2.20 2.60 2.50 0.15 

SAMPL5_005 -0.86 0.75 0.75 0.16 

SAMPL5_006 -1.02 -0.02 -0.02 0.14 

SAMPL5_007 1.40 3.75 3.60 0.14 

SAMPL5_010 -1.70 -2.82 -5.36 0.09 

SAMPL5_011 -2.96 -0.72 -4.11 0.23 

SAMPL5_013 -1.50 -0.83 -0.83 0.20 

SAMPL5_015 -2.20 -3.27 -6.32 0.17 

SAMPL5_017 2.50 4.96 4.96 0.22 

SAMPL5_019 1.20 1.56 1.50 0.14 

SAMPL5_020 1.60 1.89 1.89 0.21 

SAMPL5_021 1.20 3.25 3.25 0.18 

SAMPL5_024 1.00 3.83 3.83 0.19 

SAMPL5_026 -2.60 -0.90 -3.57 0.14 

SAMPL5_027 -1.87 -2.84 -2.84 0.14 

SAMPL5_033 1.80 3.42 3.42 0.33 

SAMPL5_037 -1.50 -3.54 -4.38 0.19 

SAMPL5_042 -1.10 -0.99 -0.99 0.12 

SAMPL5_044 1.00 0.25 0.25 0.44 

SAMPL5_045 -2.10 -2.81 -2.81 0.10 

SAMPL5_046 0.20 0.67 0.67 0.32 

SAMPL5_047 -0.40 1.15 1.15 0.19 

SAMPL5_048 0.90 0.57 0.57 0.18 

SAMPL5_049 1.30 -0.91 -0.91 0.20 

SAMPL5_050 -3.20 -1.32 -1.70 0.17 

SAMPL5_055 -1.50 -2.79 -2.79 0.18 

SAMPL5_056 -2.50 -4.39 -4.47 0.14 

SAMPL5_058 0.80 1.70 1.70 0.12 

SAMPL5_059 -1.30 -1.32 -1.32 0.18 

SAMPL5_060 -3.90 -2.16 -4.61 0.28 
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SAMPL5_061 -1.45 -1.49 -1.64 0.41 

SAMPL5_063 -3.00 -5.88 -7.54 0.15 

SAMPL5_065 0.70 0.89 -0.18 0.40 

SAMPL5_067 -1.30 2.22 0.75 0.22 

SAMPL5_068 1.40 3.41 3.41 0.18 

SAMPL5_069 -1.30 0.36 0.35 0.46 

SAMPL5_070 1.60 5.25 3.33 0.32 

SAMPL5_071 -0.10 -0.01 -0.01 0.24 

SAMPL5_072 0.60 3.59 2.34 0.21 

SAMPL5_074 -1.90 -9.53 -9.53 0.08 

SAMPL5_075 -2.80 1.53 0.40 0.17 

SAMPL5_080 -2.20 -4.55 -4.55 0.05 

SAMPL5_081 -2.20 -4.68 -5.62 0.17 

SAMPL5_082 2.50 7.66 6.87 0.20 

SAMPL5_083 -1.90 -0.29 -0.29 1.58 

SAMPL5_084 0.00 2.11 1.26 0.29 

SAMPL5_085 -2.20 -2.42 -2.42 0.20 

SAMPL5_086 0.70 0.70 -1.42 0.58 

SAMPL5_088 -1.90 -3.75 -3.75 0.16 

SAMPL5_090 0.80 1.52 1.52 0.14 

SAMPL5_092 -0.40 -0.21 -0.21 0.21 

MSE   -0.10  

MUE   1.62  

RMSE   2.15  
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