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Abstract: The rise of cyberattacks on high-value systems has led to a growing interest

in intrusion-tolerant systems as a means of ensuring resilience. An intrusion-tolerant system

can guarantee that it can continue to operate correctly even when parts of the system are

compromised. The research community has developed techniques for intrusion-tolerant sys-

tems based on Byzantine Fault-Tolerant (BFT) replication. However, these systems are still

not widely used in industry. One of the main obstacles is the technical expertise and infras-

tructure investment required for deploying and managing these systems. Cloud resources

can help with this but are currently not feasible for many system operators due to concerns

about maintaining the confidentiality of sensitive information.

We address this issue by developing novel systems that allow system operators to de-

ploy intrusion-tolerant applications by partially or fully outsourcing the responsibility of the

BFT replication protocol to a cloud service while maintaining the privacy of the applica-

tion’s state and algorithms. We define a hybrid management model for joint management of

intrusion-tolerant applications by system operators and cloud service providers, separating

responsibilities. Only the replicas managed by the system operator execute the applica-

tion logic, and the replicas managed by the cloud service provider participate in the BFT

replication protocol to provide the needed resilience and only have access to encrypted state.

Finally, we introduce three concrete service models for offering Intrusion-Tolerance as

a Service (ITaaS) on top of existing cloud services. We enable an ITaaS provider to cost-

effectively deploy such a service by designing a framework for optimizing the distribution of

replicas of different applications across shared cloud resources. Overall, this approach has

the potential to make intrusion-tolerant systems more accessible to system operators while

maintaining the confidentiality of sensitive information.
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1.0 Introduction

“Achieving reliability in the face of arbitrary malfunctioning is a difficult problem, and its
solution seems to be inherently expensive.” — Lamport et al. [44]

1.1 Motivation and Problem Statement

Cyberattacks on high-value systems continue to increase, with power grid, pipeline, and

hospital systems (among others) experiencing high profile attacks [33, 52, 2]. In this hostile

environment, intrusion-tolerant or Byzantine Fault Tolerant (BFT) replication can improve

the attack resilience of such systems, allowing them to operate correctly even while partially

compromised by an attacker [21]. In a BFT system, multiple replicas of the same application

communicate with each other to reach a consensus on the correct state of the system, even in

the presence of Byzantine (i.e., arbitrary or malicious) faults. However, despite a long history

of research on BFT replication, such protocols have not been widely adopted in industry.

There has been progress in making BFT replication easier to integrate into practical systems,

with libraries such as UpRight [24] and BFT-SMaRt [16, 20], but this does not address the

challenges of deploying and managing BFT-replicated systems.

A key barrier to deployment is that integrating an existing application with a BFT

library is not enough to build a system that is resilient to sophisticated attacks. A practical

intrusion-tolerant system must not only employ BFT agreement, but must also use proactive

recovery to periodically refresh system replicas [21, 65], employ diversity to ensure replicas

cannot be compromised by shared vulnerabilities [38, 55], and be deployed across multiple

geographic sites to overcome sophisticated network attacks that can isolate a site [15]. Such

a system becomes complex to manage and extremely expensive to build.

For critical infrastructure applications (e.g., power grid, pipeline, water treatment, and

healthcare systems), it is unlikely that each system operator will be able to build such a

system for themselves. Moreover, even if this was feasible, a system built by any single

operator has inherent fragility in that the entire system is under a single management do-
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main, and therefore subject to shared vulnerabilities and/or misconfigurations. In practice,

a single-operator system is also likely to be more limited in its geographic span and physical

redundancy due to the cost of building dedicated infrastructure. On top of these challenges,

once the system is set up, maintaining and managing it over time requires specialized exper-

tise to reason about the underlying BFT replication protocols.

Commercially available cloud infrastructure offers a promising solution to these chal-

lenges. Cloud service providers invest in building highly resilient data center infrastructure,

since costs are amortized over many applications. Existing cloud service providers typically

manage widely geographically distributed data centers, with each data center having connec-

tivity from multiple Internet Service Providers (ISPs). In addition, cloud service providers

typically have expertise in designing and operating fault-tolerant distributed systems.

A tempting solution to making high-value systems intrusion tolerant is to host them in

the cloud, allowing the cloud service provider to fully manage the infrastructure needed for

resilience. However, for many applications, this is not an option. First, for certain appli-

cations (e.g., critical infrastructure like the power grid), system operators are unwilling to

store potentially sensitive data in the cloud. Furthermore, some systems may need special-

ized hardware or client communication infrastructure (e.g., clients that do not communicate

over IP) that the cloud infrastructure does not support. Finally, even if fully hosting the

application on cloud infrastructure is feasible, there is still a question of who is responsible

for system administration (e.g., performing software updates, managing OS configurations,

etc.). If we consider a traditional application that is replicated by linking with a BFT li-

brary, there are two possibilities: (1) the system operator is responsible, and the cloud is

simply used for providing the physical infrastructure, or (2) the cloud service provider is

responsible and offers a fully managed service. However, neither of these options is satisfac-

tory. The first requires that the system operator has a high level of expertise in deploying

BFT-replicated systems, while the second requires the cloud service provider to have deep

knowledge of the applications they support. The core challenge is that experts in a specific

application domain are unlikely to be experts in designing and deploying intrusion-tolerant

systems, and conversely, experts in intrusion-tolerant systems are unlikely to be experts in

specific application domains.
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Figure 1: Technology Contribution Map

1.2 Dissertation Overview

In this dissertation, our main contribution lies in introducing a pioneering hybrid man-

agement approach to deploying intrusion-tolerant systems. We develop innovative systems

that enable system operators to deploy intrusion-tolerant applications by partially or fully

outsourcing the responsibility of the BFT replication protocol to a cloud service, all while

maintaining the privacy of the application’s state and algorithms. By embracing our novel

concept of intrusion-tolerance as a service, wherein specialized cloud service providers man-

age the intricacies of intrusion-tolerant systems, individual system operators can fortify their

high-value systems against cyber threats. We simplify the deployment and management pro-

cesses of intrusion-tolerant systems for system operators, marking a notable step forward in

cybersecurity research. Our key technological contributions are visualized in Figure 1.

To address the issue of storing sensitive data in the cloud, in Chapter 4, we present

a Partially Cloud-based BFT System, which is a new model for BFT systems that moves

toward offering “intrusion-tolerance as a service”. Under this model, application logic and

data are only exposed to servers hosted on the system operator’s premises. However, the
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intrusion-tolerant system architecture can be designed by a cloud service provider, and ad-

ditional offsite servers can be hosted in cloud sites managed by the cloud service provider

to provide the needed resilience to system compromises and network attacks. These offsite

servers participate in the BFT replication protocol, but do not execute application logic and

only store encrypted state and requests. In Chapter 4, we show that our Partially Cloud-

based BFT System is able to provide the same resilience to system compromises and network

attacks as the state-of-the-art [15], without requiring application state and logic to be exposed

to cloud replicas.

Deploying and managing BFT-replicated systems in practice requires both specialized

technical expertise and substantial investment in additional physical infrastructure. To sep-

arate the responsibilities between system operators (who are experts in their application

domains) and cloud service provider (who specializes in the deployment of intrusion-tolerant

systems), in Chapter 5, we introduce a Decoupled Intrusion-Tolerant System with a hybrid

management model that allows for specialization. System operators manage their applica-

tions, but management of the intrusion-tolerant replication service and the additional physi-

cal infrastructure needed to support it is done by the cloud service provider. This model aims

to make intrusion-tolerance accessible, by allowing system operators to essentially purchase

intrusion-tolerant-replication-as-a-service. It also enables a level of resilience that was not

previously possible by introducing management diversity, which enables resilience to a new

class of failure that affects an entire management domain.

Because prior work has assumed that the entire system operates under a single admin-

istrative domain, it has not needed to consider how to divide responsibilities between a

system operator and a cloud service provider, or how to define the interfaces between them.

We address this in Chapter 5 with our Decoupled Intrusion-Tolerant System: we define an

intrusion-tolerant ordering and encrypted state storage service that can support intrusion-

tolerant, network-attack-resilient, and management-domain-failure-recoverable applications,

while keeping deployment as simple as possible for the system operator. In Chapter 5, we

show that our Decoupled Intrusion-Tolerant System meets application performance require-

ments in terms of request latency.

Overall, the Decoupled Intrusion-Tolerant System in Chapter 5 requires more resources
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than the Partially Cloud-based BFT System in Chapter 4. However, a system operator

using the Decoupled Intrusion-Tolerant System needs to deploy and manage fewer resources,

while the rest, including the BFT replication engine, are managed by the cloud service

provider. If a system operator would prefer to implement and manage their own intrusion-

tolerant system, including the BFT replication engine, while still utilizing cloud sites to

host additional replicas, then the Partially Cloud-based BFT System will require fewer total

resources (thereby, costing less) than the Decoupled Intrusion-Tolerant System. Additionally,

the Partially Cloud-based BFT System also supports lower latency than the Decoupled

Intrusion-Tolerant System when tolerating a similar threat model.

The architecture of our Decoupled Intrusion-Tolerant System relies on a cloud service

provider offering an intrusion-tolerant replication service. Hence, in Chapter 6, we explore

how an entity can deploy Intrusion-Tolerance as a Service (ITaaS). We envision an ITaaS

provider to be a new entity that builds our ITaaS, including the BFT Replication Engine, on

top of the cloud resources provided by an infrastructure provider, who offers the necessary

cloud resources as a service (e.g. Amazon Web Services offers Elastic Compute Cloud [63]

and Equinix offers colocation in their data centers [36]). We make the deployment of our

solution easier and cost-effective for ITaaS provider by designing a framework for optimiz-

ing the distribution of replicas of different applications across shared cloud resources, while

guaranteeing safety, liveness, and supporting proactive recovery. We develop heuristic opti-

mization algorithms and Mixed-Integer Linear Programming (MILP) formulations for three

separate service models, where each service model is based on the type of cloud resources

being used (i.e., virtual machines, dedicated servers, or colocated servers), and the level of

trust between the ITaaS provider and the infrastructure provider. Evaluating these algo-

rithms reveals their effectiveness in maximizing the number of applications deployed, while

minimizing cloud resource usage and overall costs, all while meeting application requirements

and constraints unique to ITaaS.
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1.3 List of Contributions

The overall contributions of this dissertation are:

• We design a Partially Cloud-based BFT System, which is the first BFT system that

can leverage offsite cloud sites to achieve resilience to simultaneous network attacks and

system compromises, without requiring confidential state or algorithms to be exposed to

cloud servers. This allows for improved security and availability of critical applications

without weakening their confidentiality.

• We extend the basic Partially Cloud-based BFT System to provide well-defined confiden-

tiality guarantees in the case that an on-premises server is compromised (i.e. an attacker

gains access to a system operator’s on-premises server).

• We implement and evaluate the Partially Cloud-based BFT System in the context of

SCADA for the power grid. This is a critical application area, as SCADA systems are

responsible for monitoring and controlling the power grid, and are therefore subject to a

wide range of security threats. We show that in our system the performance overhead of

providing confidentiality is acceptable, and the system can meet the latency requirements

of power grid SCADA.

• We define a hybrid management model for intrusion-tolerant systems that enables system

operators to leverage intrusion-tolerant ordering and encrypted storage services from a

cloud service provider. This is an innovative approach to intrusion-tolerant systems,

as it allows system operators to retain control over their applications while leveraging

cloud-based services.

• We design a Decoupled Intrusion-Tolerant System, which is the first system architecture

that enables system operators to deploy intrusion-tolerant applications while completely

offloading the BFT replication protocol to the cloud, preserving confidentiality, and pro-

viding resilience to a broad threat model.

• We show that the Decoupled Intrusion-Tolerant System architecture can provide re-

silience to a broad threat model that includes intrusions and network attacks and is able

to recover from management domain failures that affect all replicas hosted by the sys-
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tem operator (on-premises). This provides confidence in the system’s ability to provide

robustness and security in real-world deployments.

• We implement and evaluate the Decoupled Intrusion-Tolerant System architecture in the

context of an industrial control application, showing that while it increases latency by

about 9ms (18%) compared to a fully system-operator-managed BFT system, the request

latency meets application performance requirements. This demonstrates the practicality

of the system in a real-world application, and provides evidence that it can be deployed

in a way that meets the needs of system operators.

• We show how an entity can offer Intrusion-Tolerance as a Service (ITaaS) by building

on top of cloud resources provided by an infrastructure provider. We define three service

models based on the type of cloud resources being used, and the level of trust between

the ITaaS provider and the infrastructure provider.

• We design and implement a framework for optimizing the distribution of replicas of

different applications across shared cloud resources, while guaranteeing safety, liveness,

and supporting proactive recovery. We develop heuristic algorithms, and Mixed-Integer

Linear Programming (MILP) formulations for this framework.

• We evaluate our optimization framework in terms of feasibility, efficiency, performance

and cost analysis. We show that optimal solutions and select heuristic algorithms con-

sistently exhibit high effectiveness in minimizing cloud resource usage and overall costs,

particularly in scenarios involving a large number of applications, all while meeting the

necessary application requirements.

In summary, we present innovative solutions for simplifying the deployment of intrusion-

tolerant systems, crucial for securing high-value critical applications against cyber threats.

We address the challenges of integrating Byzantine Fault Tolerant (BFT) replication into

practical systems by leveraging cloud resources effectively. Through the introduction of

the Partially Cloud-based BFT System and the Decoupled Intrusion-Tolerant System, we

offer flexible deployment models catering to diverse application needs and system operator

expertise levels. Additionally, the exploration of Intrusion-Tolerance as a Service (ITaaS)

offers a new approach to making resilience accessible while optimizing resource utilization

and cost-effectiveness.
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2.0 Background

Figure 2: Background map of relevant BFT topics

2.1 BFT Basics

The concept of Byzantine Fault Tolerance (BFT) originated from the Byzantine Generals

Problem [44], which is a metaphor that describes the difficulty of achieving consensus in a

distributed system where components may fail arbitrarily. Byzantine Fault Tolerant (BFT)

state machine replication is a well-known technique to provide intrusion-tolerance, enabling

a system to guarantee safety (correctness and consistency of the system state) and liveness

(progress in processing updates) even if up to some threshold number of replicas are com-

promised (e.g. [21]). State machine replication involves replicating the execution of a state

machine across multiple nodes, ensuring that all replicas reach the same state in the same

order by applying the same sequence of inputs. In BFT state machine replication, replicas
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Figure 3: BFT system with 4 replicas:

tolerates 1 intrusion

Figure 4: BFT system with 6 replicas: toler-

ates 1 intrusion and 1 proactive recovery

communicate with each other to reach a consensus on the correct state of the system, even in

the presence of Byzantine faults, which include arbitrary behaviors such as sending incorrect

messages or omitting messages altogether. The number of tolerated compromises is most

often f out of 3f + 1 total replicas [21], although some systems can tolerate f out of 2f + 1

total replicas with additional assumptions or trusted hardware [27, 23, 28, 73].

To prevent an attacker from simultaneously compromising more than one replica using

the same attack procedure, replicas must employ diversity. Diversity helps by increasing the

complexity for attackers, making it harder for them to find vulnerabilities that apply uni-

formly across all replicas. This can include strategies such as N-version programming [13, 43],

OS diversity [37], compile-time diversification [54], and/or use of different physical hardware

and Internet Service Providers (ISPs). Figure 3 shows a BFT system with 4 replicas capable

of tolerating 1 replica being compromised. Some systems additionally guarantee performance

under attack, rather than only liveness [9, 25, 72, 49].

To support long system lifetimes, it is necessary to employ proactive recovery, which

allows replicas to be periodically taken down and restored to a known clean state [21, 59].

Providing continuous availability with proactive recovery typically requires 3f + 2k + 1

total replicas to simultaneously tolerate up to f compromised replicas and k recovering
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replicas [65]. The required number of replicas increases compared to a BFT system without

proactive recovery because if the sum of compromised replicas and recovering replicas exceeds

f , the system risks failing to progress without additional replicas. Figure 4 shows a BFT

system with 6 replicas capable of tolerating simultaneously 1 replica being compromised and

1 replica going through proactive recovery.

2.2 BFT and Network Attacks

One motivation for our work comes from the recent Network-Attack-Resilient Intrusion-

Tolerant SCADA System for the power grid [15, 69], which showed that at least three geo-

graphically distributed sites are needed to withstand sophisticated network attacks that can

target and isolate a site from the rest of the network. The intuition for this is the follow-

ing: since BFT replication protocols require more than half of the system replicas (in fact,

2f+k+1 out of 3f+2k+1) to be up, correct, and connected in order to make progress, any

system that distributes replicas across fewer than three sites can be prevented from making

progress by isolating a single site. Clearly, if all replicas are located in a single site, a denial

of service attack targeting that site can prevent it from communicating with remote clients

and thus render it unable to receive and process their updates. If replicas are split across

only two sites, targeting the larger of the two sites will disconnect a majority of the system

replicas, leaving the rest unable to make progress without them.

Figure 5 shows a Network-Attack-Resilient Intrusion-Tolerant SCADA System with 12

replicas distributed evenly across 4 geographically distributed sites capable of tolerating

1 compromised replica, 1 replica going through proactive recovery, and 1 site being dis-

connected from the rest of the network. Due to the high expense of constructing addi-

tional control centers with full capabilities for communicating with Remote Terminal Units

(RTUs) and Programmable Logic Controllers (PLCs), and controlling power grid equipment,

the Network-Attack-Resilient Intrusion-Tolerant SCADA System introduced an architecture

that uses two power grid control centers (which typically exist today for fault tolerance

purposes) and supplements them with additional data center sites that do not need to com-
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Figure 5: Network-Attack-Resilient Intrusion-Tolerant SCADA System [15]: tolerates 1 in-

trusion, 1 proactive recovery, and 1 site disconnection

municate with RTUs and PLCs. The use of data centers can also reduce the management

overhead of the higher number of replicas that Spire needs to support its threat model (12

total replicas to support f = 1 and 1 disconnected site).

However, data center replicas are still required to maintain a full copy of the system

state and execute application logic to process incoming updates. This raises confidentiality

concerns, as it requires SCADA operators to expose their private system state and algorithms

to offsite replicas potentially hosted by a third party. Today, if a system operator wants to

avoid trusting a third party with this information, they must take on the responsibility for

managing the full deployment (and constructing their own additional sites to host system

replicas).

In this dissertation, we address this issue through a new hybrid model for intrusion-

tolerant systems: system operators host and manage “on-premises” replicas distributed

across one or more geographic sites that they manage and control, while a cloud service
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provider hosts and manages additional replicas located in cloud sites. In our model, not only

do cloud-service-provider-managed replicas not need to communicate with clients, but they

only see encrypted state and do not execute application logic.

2.3 Separating Agreement from Execution

Separating agreement from execution [75] is integral to our overarching goal of simplifying

the deployment and management of intrusion-tolerant systems. Instead of using a single set

of replicas that both order and execute requests, replicas are divided into two clusters: an

agreement cluster, which runs the BFT replication protocol to totally order client requests,

and an execution cluster, which executes requests in the order determined by the agreement

cluster and generates client responses [75]. This separation also makes it possible to prevent

compromised replicas from leaking confidential data by inserting a privacy firewall between

the execution and agreement clusters [75, 34]. The privacy firewall can filter messages sent

by the execution replicas to prevent confidential data from being sent in client replies.

In this work, by separating the ordering of client requests (agreement) from executing

these requests and generating client responses (execution), we introduce a level of modularity

and flexibility into the design of our intrusion-tolerant systems. Our Decoupled Intrusion-

Tolerant System in Chapter 5 builds on the separation of agreement and execution but in-

troduces the separation of management. There are other works that also separate agreement

from execution (e.g. HyperLedger Fabric [11], UpRight [24], Spider [35], and Eve [41]), and

some recent BFT protocols that separate dissemination of requests from ordering [42, 30, 67],

but these all assume a single management domain. In our Decoupled Intrusion-Tolerant Sys-

tem, not only are the agreement and execution clusters run on physically separate sets of

hosts, but they are managed by different entities and can be in different geographic locations.

The separation of management introduces strict privacy concerns: in many cases, sys-

tem operators are unlikely to be willing to expose confidential data, algorithms, or client

information to the cloud service provider managing the replication service. The work in [75]

and [34] partially addresses privacy concerns by encrypting client requests and replies, and
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using a privacy firewall to filter messages sent by the execution cluster. However, in those

works, only the data itself is considered confidential. Client identities, locations, and request

patterns are not considered to be confidential. In fact, the clients communicate directly with

the agreement cluster. In our Decoupled Intrusion-Tolerant System, the agreement cluster

runs in the cloud and should not have any access to clients, or information about them.

2.4 Cloud-Based BFT and Confidentiality

Prior work has deployed BFT systems partially or fully in the cloud to reduce costs

and/or to simplify deployment. However, none of the existing works fully meet our aims

of (1) providing intrusion-tolerance for arbitrary state machine replication applications (2)

partially or fully offloading the BFT replication protocol to the cloud, and (3) enforcing

confidentiality of application state and proprietary algorithms.

Prior work has investigated cloud-based BFT replication from the perspective of ease of

deployment (e.g. BFT-Dep [45]) and performance (e.g. Spider [35]), but these works have

assumed the system operator is not concerned with exposing application state and logic to

the cloud and will run the entire application in the cloud.

Other work has considered the confidentiality implications of cloud-based BFT systems,

developing secret-sharing approaches to maintain confidentiality for BFT-replicated appli-

cations in the cloud (e.g. DepSpace[18], Belisarius [53], and COBRA [71]). These systems

use (f + 1, n)–threshold schemes, in which data is encoded into n shares, and each share

is stored in a separate replica. Since f + 1 shares are needed to reconstruct the original

data, they guarantee confidentiality as long as no more than f replicas are compromised.

This approach has been used to build BFT-replicated storage systems, such as DepSky [17],

SCFS [19], and RockFS [48].

While these systems offload BFT replication to the cloud and support data confidential-

ity, they do not support arbitrary state machine replication applications. Practical secret-

sharing schemes today support limited operations such as key-value storage [71], tuple space

operations [18], or addition on stored values [53]. Secure multiparty computation or homo-
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morphic encryption could enable general operations on encrypted data, but these approaches

are computationally expensive and, more fundamentally, do not keep the application logic

confidential (only the data it operates on). Recent approaches using Trusted Execution En-

vironments (TEEs) to provide confidential computing in the cloud via encrypted VMs [60]

could keep both data and logic confidential. However, we would like to minimize assumptions

of trusted hardware, and this approach does not resolve the question of who is responsible

for managing the encrypted VMs in the cloud. Alternatively, we could use a BFT storage

solution to replicate encrypted state and consider the application as a client of the storage

system, but in that case the application itself is not intrusion-tolerant.

2.5 Scalability of Byzantine Fault Tolerant Applications

A cloud service provider’s focus is to minimize cost while maintaining the required perfor-

mance and service level agreements (SLAs). Research such as [64] explore ways to optimize

the cost for cloud service provider while minimizing SLA violations. In comparison, our work

focuses specifically on the scalability and cost optimization of virtual or physical machines

running Byzantine Fault Tolerant (BFT) systems.

Authors in [50, 74] acknowledge that running multiple replicas of the same BFT appli-

cation on the same physical machine is not possible due to shared vulnerabilities. Although

the same authors [50, 74] show how to run multiple BFT applications on the same physi-

cal machines (e.g., by running each replica inside a separate VM, and allocating multiple

VMs from separate BFT applications on the same physical machine), they naively distribute

replicas of the same BFT applications across physical machines without considering different

application requirements or optimization of given physical resources.

Although there are numerous scheduling algorithms [39, 3], none of them are feasible

for scheduling multiple BFT applications on the same physical machines. The primary

distinction arises from the nature of these BFT replicas, which run continuously (except when

temporarily halted for proactive recovery), unlike jobs or tasks that eventually terminate.

Thus, algorithms designed for scheduling jobs/tasks in distributed clusters are not well suited
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for our problem. However, there are scheduling algorithms for optimizing the placement for

continuously running processes, such as web servers [58], but they do not address the three

new challenges for our BFT systems: calculation of number of BFT replicas (Section 6.2.2.1),

latency constraint for replication protocol (Section 6.2.2.2), and scheduling proactive recovery

across BFT applications (Section 6.2.2.3).

In Chapter 6, we design an optimization framework, with heuristic algorithms and Mixed

Integer Linear Programming (MILP) formulations, for optimizing the distribution of replicas

of different BFT applications across shared cloud resources, while guaranteeing safety, live-

ness, and supporting proactive recovery. We evaluate these algorithms in terms of feasibility,

efficiency and cost, and show that the optimal solutions and certain heuristic algorithms

reveal their effectiveness in maximizing the number of applications deployed, while minimiz-

ing cloud resource usage and overall costs, all while meeting application requirements and

constraints unique to BFT applications.
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3.0 System and Threat Models

In this chapter, we introduce our novel hybrid-managed system model and then present

an overview of our threat model, and the service properties our systems provide.

3.1 Basic System Model

To support intrusion-tolerance as a service, we introduce a new system model in which

system management is shared between system operators and cloud service providers, as

shown in Figure 6. System operators are responsible for managing their application and are

typically experts in the application domain. Cloud service providers manage cloud resources

that help support intrusion-tolerance, while reducing the amount of infrastructure the system

operator needs to build and manage. At a minimum, the cloud service provider offers data

center hosting capabilities to reduce the number of physical sites the system operator needs

to manage (see Chapter 4). However, the cloud service provider may offer additional services

that further simplify deployment for system operators (see Chapter 5).

In our model, a system is physically deployed across locations owned and operated by

the system operator (on-premises sites) and locations operated by the cloud service provider

(cloud sites). Both on-premises sites and cloud sites may host system replicas. We refer

to replicas located in on-premises sites as on-premises replicas and replicas located in cloud

sites as cloud replicas.

We consider clients and on-premises replicas to be part of the same on-premises domain,

and clients communicate only with the on-premises replicas. This is a good fit for many

industrial control or enterprise applications where the on-premises replicas and the clients

are managed by the same entity. System operators may have privacy concerns regarding

allowing clients to communicate with entities outside the on-premises sites, or clients may face

feasibility constraints preventing communication beyond the on-premises sites. For example,

in an industrial control context, on-premises replicas may be replicas of a Supervisory Control
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Figure 6: Basic System Model

and Data Acquisition (SCADA) server (Figure 7), and clients may be Remote Terminal

Units or Programmable Logic Controllers that send data to and receive commands from

the SCADA system. Or, we could consider replicas of an Electronic Health Record (EHR)

database, and clients that are authorized devices or users accessing the service via a VPN.

Clients authenticate themselves to the system by signing their requests using private keys;

the corresponding public keys are known by the on-premises replicas.

The cloud replicas represent the cloud domain, managed by the cloud service provider.

For certain applications (e.g., critical infrastructure like the power grid), system operators

are unwilling to store potentially sensitive data in the cloud. Therefore, to preserve confi-

dentiality of on-premises domain’s application state and proprietary algorithms, we do not

expose them to the cloud domain.

Due to the same privacy concerns, only on-premises replicas execute client requests and
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Figure 7: Supervisory Control and Data Acquisition (SCADA) System

maintain active system state. On-premises replicas encrypt (with encryption/decryption

keys only available to on-premises replicas) client requests before sharing them with cloud

replicas. Cloud replicas participate in total ordering of encrypted client requests using an

intrusion-tolerant BFT replication protocol (on-premises replicas also participate in total

ordering, but we limit this in Chapter 5 to simplify management). In addition to performing

ordering, the cloud replicas store each ordered encrypted request. They periodically garbage

collect these requests, replacing them with encrypted state checkpoints from the on-premises

replicas. This enables on-premises replicas to recover their state entirely from the cloud,

making it possible to tolerate sophisticated network attacks (see details in Section 4.3), as

well as management domain failures in which all on-premises replicas lose their state (see

details in Section 5.3).

3.2 Basic Threat Model

Our threat model builds on the work in [15], which considered both system-level com-

promises of the server replicas and network-level attacks that aim to disrupt communication

among replicas and/or between replicas and clients. This model includes a broad range of

network attacks, but, as in [15], we reduce this to a simpler model through the use of an
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intrusion-tolerant overlay network to connect the sites to one another [51, 68]. The intrusion-

tolerant network defends against extensive network disruption, combats malicious routing

attacks, and significantly enhances the effort and resources needed to carry out a successful

denial-of-service attack. With the use of the intrusion-tolerant network, the network attacks

we still need to address are reduced to sophisticated (resource-intensive) denial of service

attacks that can target and isolate a geographic site. We assume that at any time, up to a

tolerated number of sites may be subject to such an attack and thus disconnected from the

rest of the network.

As in other intrusion-tolerant replicated systems (e.g., [21]), we assume that up to a

threshold number of replicas may be compromised (e.g., we assume f number of tolerated

compromised replicas in Chapter 4). Compromised replicas may behave arbitrarily and col-

lude with one another. As in prior work, we employ proactive recovery to allow the system

to tolerate up to the threshold number of compromises within a limited time window, as

opposed to over the entire system lifetime. Proactively recovering replicas become unavail-

able during the recovery process (the replica is taken down and restored to a known good

state) [21, 59]. Thus, at any time our threat model includes up to a threshold number of

compromised replicas, up to a threshold number of replicas that are unavailable because

they are going through proactive recovery, and up to a threshold number of disconnected (or

otherwise unavailable) sites.

In Chapter 5, we introduce the new concept of a management domain failure. This

scenario involves the loss of state for all on-premises replicas managed by a system op-

erator. Management domain failure can address practical threats like ransomware. If on-

premises replicas are encrypted in a ransomware attack, they can be shut down, cleaned, and

restarted. The latest state can then be restored from cloud replicas, allowing seamless oper-

ation continuity, albeit with a temporary outage. Our Decoupled Intrusion-Tolerant System

in Chapter 5 can recover from a management domain failure (more details in Section 5.3.1).

To support the assumption that the attacker does not exceed the tolerated threshold

number of system compromises, the system must employ diversity (e.g. using N-version

programming [13, 43], OS diversity [37], compile-time diversification [54], and/or different

hardware and ISPs). We assume each replica has access to a hardware-protected private key
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(e.g. using the TPM) that it can use for signing, but that cannot be deleted, modified, or

exfiltrated from the machine. Finally, we assume an attacker cannot break cryptographic

protocols.

3.3 Service Properties

Our systems are designed to provide three types of guarantees: Safety, Liveness /

Bounded Delay, and Confidentiality. Our liveness guarantee is same as the one specified

in [21], and our safety and bounded delay guarantees are essentially the same as those spec-

ified in [15], although we adapt them to a generic replicated system; where [15] specifically

considered SCADA Masters, HMIs, RTUs, and PLCs, we state our guarantees in terms of

generic servers and clients. Extending those guarantees to additionally support confidential-

ity is a novel contribution of this work.

Definition 1 (Safety). If two correct on-premises replicas execute the ith update, then those

updates are identical, and the state resulting from the execution of that update at the two

on-premises replicas is also identical.

Our Partially Cloud-based BFT System (Chapter 4) guarantees safety as long as no

more than f replicas are simultaneously compromised. For the Decoupled Intrusion-Tolerant

System (Chapter 5), safety is guaranteed as long as: (1) no more than fo on-premises

replicas in each on-premises site are compromised simultaneously, and (2) no more than fc

cloud replicas are compromised simultaneously. Furthermore, safety is guaranteed in our

Decoupled Intrusion-Tolerant System even when all on-premises replicas under the control

of a system operator lose their state (i.e., management domain failure), and this system can

recover the latest state after such a failure as long as the conditions under which safety is

guaranteed are not violated.

Definition 2 (Liveness). Clients eventually receive replies to their requests [21].

Our Partially Cloud-based BFT System guarantees liveness, as well as Bounded Delay,

which is a stronger guarantee than just liveness (see Definition 3 below). To guarantee
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liveness for the Decoupled Intrusion-Tolerant System (Chapter 5), we require that: there are

at most fo compromised on-premises replicas per on-premises site and fc compromised cloud

replicas, at most ko on-premises replicas per on-premises site and kc cloud replicas performing

proactive recovery, and at most do on-premises sites and dc cloud sites are disconnected from

the network.

Definition 3 (Bounded Delay). The latency for an update introduced by a correct authorized

client to be executed by at least f + 1 correct on-premises replicas (and thus have its effects

made visible) is upper bounded.

Bounded Delay essentially gives a stronger guarantee than just liveness, and it was

introduced in [10]. To guarantee bounded delay in our Partially Cloud-based BFT System

(Chapter 4), we require that the conditions of our threat model are met: at most f replicas

are compromised, at most one replica is undergoing proactive recovery, and at most one

site is downed or disconnected due to network attack. In addition, the remaining replicas

(i.e. all correct, non-recovering replicas located outside the disconnected site) must be able

to communicate with one another, and the remaining correct on-premises replicas must be

able to communicate with clients. Finally, communication among the remaining correct

replicas must meet the network stability requirements of Prime [10], which is used as our

underlying agreement protocol and requires that the latency variance between each pair of

correct servers is bounded (see [15] for additional discussion). Note that, our Decoupled

Intrusion-Tolerant System (Chapter 5) can also guarantee Bounded Delay when Prime [10]

is used as the underlying BFT replication engine.

Definition 4 (Complete Confidentiality). System state and state manipulation algorithms

remain confidential (known only to on-premises replicas).

Our Partially Cloud-based BFT System provides this guarantee as long as no on-premises

replica is compromised. An unlimited number of cloud replicas may be compromised with-

out violating confidentiality. Similar to the Partially Cloud-based System, our Decoupled

Intrusion-Tolerant System also guarantees complete confidentiality, even if an unlimited

number of cloud replicas are compromised. However, unlike the Partially Cloud-based Sys-

tem, in the Decoupled Intrusion-Tolerant System, we maintain confidentiality even when up
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to fo on-premises replicas per on-premises site are compromised, provided that the privacy

firewalls (see details in Section 5.2.2) are operational and correctly configured.

We summarize our overall threat models for the Partially Cloud-based BFT System,

Decoupled Intrusion-Tolerant System, and compare them to the prior work that introduced

the Network-Attack-Resilient Intrusion-Tolerant SCADA System [15] in Table 1.
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Table 1: Comparison of Threat Models

Network-Attack-

Resilient Intrusion-

Tolerant SCADA

System [15]

Partially Cloud-based

BFT System (Chap-

ter 4)

Decoupled Intrusion

Tolerant System

(Chapter 5)

Number of Intrusions

Tolerated
f f

fo on-premises

fc cloud

Number of Simultaneous

Proactive Recoveries
1 1

ko on-premises

kc cloud

Number of Site

Disconnections Tolerated
1 1

do on-premises

dc cloud

Tolerates Management Do-

main Failure

No No Yes, if no more than fc

cloud intrusions

Safety Guarantee Met if no more than f

intrusions

Met if no more than f

intrusions

Met if no more than fo

and fc intrusions

Liveness Guarantee Met if no more than f

intrusions, 1 recovery,

and 1 site disconnec-

tion

Met if no more than f

intrusions, 1 recovery,

and 1 site disconnec-

tion

Met if no more than fo

intrusions, ko recover-

ies, do site disconnec-

tions, fc intrusions, kc

recoveries, and dc site

disconnections

Bounded Delay Guarantee Yes Yes Depends on underly-

ing BFT protocol

Confidentiality Guarantee No Met if no on-premises

intrusion

Met if no more than fo

on-premises intrusions
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4.0 Confidentiality in Partially Cloud-Based BFT System

4.1 Overview

In this chapter, we present a Partially Cloud-based BFT System, which is a new Byzan-

tine Fault Tolerant replicated system that moves toward “intrusion tolerance as a service”.

In this system, application logic and data are only exposed to servers (on-premises replicas)

hosted on the system operator’s on-premises sites. Additional offsite servers (cloud replicas)

hosted in cloud sites can support the needed resilience without executing application logic

or accessing confidential state.

To make this system work, there are a few challenges: (1) the offsite servers need to ensure

that each request submitted to the BFT replication protocol is a valid request submitted

by an authorized client without decrypting the request (since they do not have access to

encryption/decryption key), and (2) to tolerate site disconnections (see Section 4.3): servers

hosted on the system operator’s premises need to be able to recover the latest application

state from just the offsite servers even though the offsite servers do not execute requests, nor

maintain an active application state.

We have implemented the Partially Cloud-based BFT System architecture in the open-

source Spire system, and our evaluation shows that the performance overhead can be less

than 4% in terms of latency.

The contributions of this chapter are:

• The design of the first BFT system that can leverage cloud sites to achieve resilience to

simultaneous network attacks and system compromises, without requiring confidential

state or algorithms to be exposed to cloud servers.

• Extensions to the basic system to provide well-defined confidentiality guarantees in the

case that an on-premises server is compromised. (See our Complete Confidentiality

definition in Section 3.3)

• An implementation and evaluation of the system in the context of SCADA for the power

grid. We show that the performance overhead of providing confidentiality is acceptable,
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and the system can meet the latency requirements of power grid SCADA.

4.2 System and Threat Model

4.2.1 System Model

Our basic system model is detailed in Chapter 3, with system management shared be-

tween a system operator who manages on-premises sites and a cloud service provider who

manages cloud sites. In this chapter, we assume exactly two on-premises sites for our Par-

tially Cloud-based BFT System, where on-premises replicas from both sites participate in

intrusion-tolerant ordering and executing of client requests. We design our architecture to

avoid constructing any additional on-premises sites. This is because in many applications

that require fault tolerance, operators are likely to already maintain two on-premises sites

(e.g. for primary-backup). In contrast to adding servers to an existing site, creating a

new one involves provisioning the physical location/building to house it, hiring management

personnel (since fault independence requires a sufficient geographical distance from existing

sites), and for some applications, provisioning specialized equipment to communicate with

client sites. Thus, this assumption lets us provide strong intrusion tolerance guarantees while

minimizing the amount of new infrastructure system operators need to deploy and manage.

The work in [15] similarly assumes exactly two power grid control centers, arguing that

for their power grid SCADA application, it is not feasible to construct additional control

(on-premises) sites.

4.2.2 Threat Model

Our basic threat model is detailed in Chapter 3. Specifically, in this chapter, at any

time our threat model for Partially Cloud-based BFT System includes up to f compromised

replicas, up to one replica that is unavailable because it is going through proactive recovery,

and one disconnected (or otherwise unavailable) geographic site. We assume that replicas

are recovered one at a time, and that one replica’s recovery finishes before the next replica’s
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recovery starts.1

4.2.3 Service Properties

The definitions of the service properties is detailed in Chapter 3, but here we specify

under what conditions they are met for our Partially Cloud-based BFT System.

Safety (Definition 1, Section 3.3): Our system guarantees safety as long as no more

than f replicas are simultaneously compromised. Note that while safety as defined above

is maintained in the presence of an unlimited number of compromised clients, compromised

clients may still cause the system to take incorrect actions by submitting malicious updates;

we only guarantee that all replicas will observe and execute these updates in a consistent

way (this is a general limitation in BFT replication). We do not consider cloud replicas as

executing updates here, as we only care about the state as it is visible to clients.

Bounded Delay (Definition 3, Section 3.3): To guarantee bounded delay, we require

that the conditions of our threat model are met: at most f replicas are compromised, at most

one replica is undergoing proactive recovery, and at most one site is downed or disconnected

due to network attack. In addition, the remaining replicas (i.e. all correct, non-recovering

replicas located outside the disconnected site) must be able to communicate with one an-

other, and the remaining correct on-premises replicas must be able to communicate with

clients. Finally, communication among the remaining correct replicas must meet the network

stability requirements of Prime [10], which is used as our underlying agreement protocol and

requires that the latency variance between each pair of correct servers is bounded (see [15]

for additional discussion).

Our new contribution is to combine the above guarantees with the confidentiality prop-

erty defined in Chapter 3.

1Assuming that one replica’s recovery finishes before the next replica’s recovery starts requires certain
synchrony assumptions: an attacker must not be able to arbitrarily prolong a replica’s recovery (see [66]).
However, in practice these can be met: simple trusted devices can trigger recovery by cycling the power
to a replica, and recovery intervals on the order of one replica per day are sufficient [55]. If an adversary
can prevent a replica from collecting messages needed for recovery for a full day, that replica is effectively
disconnected. The intrusion-tolerant overlay makes such disconnections very difficult, and our system tech-
nically allows recoveries of replicas in a disconnected site to overlap, as long as the total number of recovering
replicas is no more than the size of the largest site plus one.
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Complete Confidentiality (Definition 4, Section 3.3): Our base system provides

this guarantee as long as no on-premises replica is compromised. An unlimited number of

cloud replicas may be compromised without violating confidentiality. Note that a compro-

mised client may always leak its own state or updates; our model does not prevent this, nor

does any other confidential BFT work we are aware of. When we refer to system state in

Definition 4, we refer to the full state of the system maintained by the on-premises replicas.

Note that our Complete Confidentiality guarantee is not comparable to those of the

confidential BFT systems discussed in Section 2.4: if any on-premises server is compromised

(over the entire lifetime of the system), it can cause confidentiality to be violated. However,

we argue that the novel combination of guarantees we provide represents a significant advance

over the state of the art. The Spire system [15] provided a level of attack resilience in terms of

safety and performance guarantees that was not possible before, but introduced a trade-off in

terms of confidentiality. For a baseline system that provides fault tolerance through standard

primary-backup mechanisms hosted fully on-premises, transitioning to the Spire architecture

offers much stronger safety and performance guarantees, but at the cost of somewhat weaker

confidentiality guarantees. In the baseline system, confidentiality may be violated if an on-

premises server is compromised. However, if cloud sites are introduced, confidentiality is

violated if either a cloud server or an on-premises server is compromised, and even in the

case where no server is compromised, certain information is made accessible to the cloud

service provider managing the cloud servers. Our architecture eliminates this trade-off: the

strictly improved safety and performance guarantees are provided while maintaining the same

level of confidentiality as in the baseline system. This is likely to substantially increase its

acceptability to system operators. In Section 4.4.4, we discuss how the system can at least

limit the amount of state that can be disclosed if an on-premises server is compromised.

4.3 Partially Cloud-Based BFT Architecture

The key observation behind our system design in this chapter is that network-attack

resilience requires system state to be stored in at least three distinct geographic sites. As
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Figure 8: Adaptive Denial of Service Attack: as soon as one on-premises site is able to

reconnect, the other is targeted and disconnected

discussed in Section 2.2, the work in [15] observed that because BFT replication protocols

require (more than) a majority of replicas to be connected in order to safely make progress

and order updates, they cannot guarantee continuous availability in the presence of network

attacks unless at least 3 sites are used: otherwise a network attack targeting a single site

can isolate a majority of the system, leaving the remainder unable to make progress, and

rendering the system unavailable.

In fact, exactly the same observation applies to the storage of system state. To see why

this is the case, consider a system with exactly two on-premises sites (Figure 8). Under

our threat model, any one site may be disconnected at any time, so the system must be

able to make progress with only a single on-premises site up and connected to the cloud

sites. Consider that on-premises site A is up, connected to cloud sites and client sites,

and receiving, submitting for ordering, and executing incoming client updates, while on-

premises site B is under denial-of-service attack and isolated from the rest of the network.

Then, the attacker shifts focus to instead target on-premises site A: site A is now isolated,

while site B rejoins the network and is now connected to the cloud sites and client sites.

As before, the conditions of our threat model are met, so the system should be able to

process updates and make progress. However, on-premises site B has missed all of the client
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Figure 9: System architecture overview, showing 2 on-premises sites (each containing 4

replicas) and 2 cloud sites (each containing 3 replicas).

updates that were processed while it was disconnected. If cloud sites do not store any system

state, it is impossible for the replicas in site B to catch up and recover the state to resume

safely executing updates. In order to support our threat model, a disconnected on-premises

site must be able to rejoin the network, catch up, and resume processing updates without

communicating with the other on-premises site.

Therefore, our approach is for cloud replicas to store encrypted updates and state check-

points. By encrypting updates and checkpoints with keys known only to the on-premises

replicas, we can allow cloud replicas to store them, without being able to decrypt and inter-

pret them. This allows a disconnected on-premises site to rejoin the network, collect state,

and resume processing updates based only on information obtained from cloud replicas, but

without requiring cloud replicas to access unencrypted state or perform any application-

specific logic.
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4.3.1 System Architecture

An overview of our architecture is shown in Figure 9. Our high-level architecture is

based on the Spire architecture [15]. System replicas are distributed across two on-premises

sites and a configurable number of cloud sites. Sites are connected through an instance

of the Spines intrusion tolerant network [51, 68] to provide resilience to a broad range of

network attacks (as detailed in Section 3.2). On-premises sites are additionally connected

to client sites through a separate Spines instance. Proxies support clients that cannot be

modified to use a BFT protocol. Clients in a single physical location may be grouped behind

a single proxy, or each client can have its own proxy. A proxy collects updates from its

respective client(s), digitally signs them so that server replicas can verify their authenticity,

and submits them to the system by sending them to on-premises servers. Client proxies

also validate responses received from the server replicas: specifically, server replicas generate

threshold signatures on responses using an (f + 1, n)-threshold scheme, so the proxy can

verify a single signature to confirm that at least one correct replica agreed on the message.

The key difference from the Spire architecture [15] is the separation of functionality be-

tween on-premises and cloud replicas. In our system, all replicas host an instance of the

Prime intrusion-tolerant replication engine [56] and participate in the replication protocol.

However, only on-premises servers host application replica instances. Client updates re-

ceived by on-premises servers are encrypted before being submitted for ordering and sent to

cloud servers. Post-ordering, updates are decrypted and executed at (only) the on-premises

application replicas, while those same updates are stored in encrypted form at the cloud

servers.

4.3.2 Replica Distribution

In configuring the system, replicas must be distributed across sites such that the system

is able to safely process updates and meet its bounded delay guarantee under the full threat

model we consider. Prime (when configured to support proactive recovery, as in [15]) requires

a total of 3f +2k+1 replicas to tolerate f compromised replicas and k unavailable replicas,

where a replica may be unavailable either because it is going through proactive recovery or
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Table 2: Configurations tolerating a proactive recovery, disconnected site, and 1-3 intrusions.

2 on-premises

+ 1 cloud sites

2 on-premises

+ 2 cloud sites

2 on-premises

+ 3 cloud sites

Partially Cloud

-based BFT System

f = 1 6+6+6 (18) 4+4+3+3 (14) 4+4+2+2+2 (14)

f = 2 9+9+9 (27) 6+6+5+4 (21) 6+6+3+3+3 (21)

f = 3 12+12+12 (36) 8+8+6+6 (28) 8+8+4+4+4 (28)

Network Attack

Resilient System [15]

f = 1 6+6+6 (18) 3+3+3+3 (12) 3+3+2+2+2 (12)

f = 2 9+9+9 (27) 5+5+5+4 (19) 4+4+3+3+3 (17)

f = 3 12+12+12 (36) 6+6+6+6 (24) 5+5+4+4+4 (22)

because it has been disconnected from the network (or because it has simply crashed). In

order to guarantee progress, with bounded delay, at least 2f + k + 1 of those replicas must

be up, correct, and connected (with sufficient network stability).

The work in [15] showed that in order to ensure 2f + k + 1 correct replicas are always

available, it is necessary to ensure that no single site contains more than k − 1 servers:

otherwise the disconnection of a single site, plus an ongoing proactive recovery elsewhere

in the system could cause more than k replicas to become unavailable at the same time,

preventing the system from making progress. That work shows that providing this guarantee

requires setting k ≥
⌈
3f+S+1
S−2

⌉
, where S is the total number of sites (on-premises + cloud),

and distributing replicas as evenly as possible across sites [15, 70].

However, an additional constraint under our threat model comes from the separation of

functionality between on-premises and cloud replicas: only on-premises replicas can execute

updates and communicate with clients. To verify that a received message is correct, a client

must be able to confirm that f + 1 servers agreed to it (to ensure at least one correct

server was involved). This means that generating verifiable responses requires that f +1 on-

premises replicas are available at any time: cloud replicas cannot participate in generating

client responses, as this requires knowledge of update contents, system state, and application

logic.

31



Figure 10: Partially Cloud-based BFT System with configuration “4+4+3+3”: tolerates 1

intrusion, 1 proactive recovery, and 1 site disconnection

In the worst case, under our threat model, one of the two on-premises sites may be

disconnected, and the other may contain f compromised replicas and one replica undergoing

proactive recovery. Therefore, in order to ensure that f + 1 correct replicas are available at

all times, each of the two on-premises sites must contain at least 2f + 2 total replicas (2f +

2 replicas−1 recovering replica−f compromised replicas = f +1 available correct replicas).

However, since we must still have k strictly greater than the size of the largest site, this

adds the restriction k ≥ 2f + 3.

Together, the two above restrictions give us the requirement:

k ≥ max

(
2f + 3,

⌈
3f + S + 1

S − 2

⌉)
After finding the minimal value of k using this formula, the total number of required

replicas is calculated from the original formula: n = 3f + 2k + 1. To distribute these
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replicas across the sites, we must first ensure that at least 2f + 2 replicas are placed in

each on-premises site, and then distribute the remaining replicas across the sites such that

the total number of replicas per site is as even as possible. The results of this process for

several different system options are shown in Table 2. In Table 2, we consider configurations

tolerating 1-3 intrusions (f = 1, f = 2, and f = 3), with replicas distributed across two on

premises sites and 1-3 cloud sites. The first 2 numbers per cell denote the number of replicas

in each on-premises site, while the following numbers represent the number of replicas in

the cloud sites, and the final number in parentheses represents the total number of replicas.

For example, configuration “4+4+3+3” (Figure 10) represents 4 replicas in each on-premises

site, and 3 replicas in each cloud site, for a total of 14 required replicas.

While the total number of replicas is considerably higher than the typical 3f + 1, this

is because we (1) support proactive recovery (which requires 3f + 2k + 1 replicas) and (2)

provide stronger guarantees, tolerating not only f compromises, but also network attacks

that can disconnect an entire site. This threat model was first introduced in [15], which

showed that for the case of f = 1, 12 replicas are needed. We slightly increase that number

to 14, but we believe this is justified to provide the confidentiality needed to trust a cloud

service provider and thus avoid the need for the system operator to manage the large set of

sites and replicas themselves. If we consider a system operator who already supports fault

tolerance, deploying primary and backup sites, each of which includes primary and backup

replicas, we only require that they add 2 on-premises servers per site: the remaining sites

and replicas are fully managed by the cloud service provider.

4.4 Protocols for Partially Cloud-Based BFT

Having described how to distribute replicas and set up the system, we next describe

the protocols used to submit and process updates. We visualize the client request flow in

Figure 11.
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Figure 11: Client Request Flow in Partially Cloud-based BFT System

4.4.1 Introducing Client Updates

Clients submit updates to the system through proxies. These proxies digitally sign each

update using their private keys before forwarding them to the on-premises servers. Each

client update sent from the proxy to the on-premises server includes the client’s identification

number, request sequence number, message body, and the digital signature created by the

proxy. On-premises servers can then verify the signature on the update, encrypt it, and

inject it into Prime for ordering.

However, our new model introduces a challenge, as cloud replicas need to verify that each

update submitted for ordering actually came from a correct client (and was not maliciously

generated by an adversary), yet cloud replicas do not have the ability to decrypt client

updates. In fact, they should not be required to maintain any information about client

identities or public keys (in some cases, client IP addresses or locations may be a sensitive

type of state that system operators would like to avoid revealing [14]). Requiring updates

to be signed by the on-premises server injecting them is not sufficient, as any individual

server could be compromised and manufacture a large number of spurious updates, forcing

the system to work to order the bogus updates.

Our approach is for on-premises servers to cooperate to generate a threshold signature on

each introduced update. To do this, we require each client to send its updates to 2f + k+ 1
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on-premises replicas, which guarantees that at least f + 1 correct replicas will receive the

request. Upon receiving a client request, the on-premises replica first checks its validity,

then encrypts the request message body. Note that we do not encrypt client identification

number and client request sequence number, since these numbers are needed to prevent

replay attacks (otherwise, cloud replicas will not be able to distinguish old requests from

new requests). In Chapter 5, we fully encrypt client requests (including client identification

number and client request sequence number), and develop a novel method to prevent replay

attacks that does not rely on any client information.

Each encrypted client update consists of the encrypted message body, while client identi-

fication number, request sequence number and digital signature are left in the clear. The on-

premises replica creates a partial threshold signature (using an (f + 1, n)-threshold scheme)

for the encrypted client update and multicasts this partial threshold signature to all other

on-premises replicas. Upon collecting f + 1 partial signatures, an on-premises replica com-

bines them to form the full threshold signature, and injects the threshold-signed encrypted

client update into Prime for ordering. All other replicas, including the cloud replicas, can

verify the full threshold signature to validate that a request is legitimate.

Client update encryption presents one remaining challenge: the individual on-premises

replicas all need to perform the encryption independently but come up with the same en-

crypted content, so that the threshold signature shares that they independently generate

will combine correctly. To do this, we assume on-premises replicas maintain two shared

secret keys per client: the first is the shared key used to perform symmetric encryption

and decryption of updates for that client, while the second is used as one of the inputs to

a pseudorandom function used to generate initialization vectors, similarly to the approach

in [34]. Details about our implementation can be found in Section 4.5.2. For now, we assume

that all of these per-client key pairs are stored in persistent read-only memory and reloaded

from there after proactive recovery, although we discuss how to weaken this restriction in

Section 4.4.4.
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4.4.2 Ordering Updates and Disseminating Results

Once an on-premises server generates a full threshold signature on an encrypted client

update and injects it into Prime, it is assigned an ordinal, or sequence number in the global

total ordering through the Prime agreement protocol [10], and then delivered to the appli-

cation to be decrypted and executed (in the case of on-premises servers) or simply stored in

encrypted form along with its ordinal (at cloud servers).

As part of executing an ordered update, application replicas may generate a response

message that needs to be sent to a client. To generate a single response that can be verified by

a client proxy based on a single service public key, application replicas generate a threshold

signature on the response, again using an (f +1, n)-threshold scheme to ensure the message

is agreed on by at least one correct replica. This is the same approach as in [15], but in

our case, only on-premises replicas can participate in generating the response. Our replica

distribution framework (Section 4.3.2) guarantees that it is always possible to generate such

a signature under the conditions of our threat model.

4.4.3 Checkpoints and State Transfer

Since storing every ordered client request will eventually exhaust replicas’ storage capac-

ity, we keep only a limited number of the latest encrypted client requests and replace older

requests by encrypted checkpoints. At specified checkpoint intervals (i.e. every C ordered

updates), each on-premises replica creates and encrypts a checkpoint that represents its state

up through the execution of the last ordered client update (similar to [21] and others). Note

that an on-premises replica does not consider itself to have fully executed a particular update

until it has generated and sent a threshold-signed client response message for any outgoing

messages that were generated as a result of its execution. The latest (threshold-signed) out-

going message for each client is included in the system state, since these may need to be

retransmitted.

After generating an encrypted checkpoint, the on-premises replica then creates and signs

a checkpoint message that contains the encrypted checkpoint, as well as the (cleartext)

sequence number it corresponds to (the global sequence number of the last ordered update

36



that was executed and reflected in the state). The replica then multicasts this checkpoint

message to all other replicas (including both on-premises and cloud replicas). When a replica

(on-premises or cloud) receives f + 1 identical encrypted checkpoints from different replicas

for the same sequence number, then this encrypted checkpoint can be marked as correct :

at least 1 correct replica has agreed that this checkpoint represents the system state at the

given sequence number.

Cloud replicas do not create their own checkpoints. Instead, when a cloud replica collects

a correct encrypted checkpoint, it creates and signs a checkpoint message containing that

encrypted checkpoint, and then multicasts this checkpoint message to all other replicas.

When a replica (on-premises or cloud) receives 2f + k + 1 identical encrypted checkpoints

from different replicas for the same sequence number, then this encrypted checkpoint can be

marked as stable: even if f replicas sending checkpoints are malicious, and k immediately

become disconnected/unavailable, at least f + 1 correct replicas still remain that can help

another replica catch up to this checkpoint.

Upon collecting a stable checkpoint for a given sequence number, a replica may safely

garbage collect stored updates and checkpoints for all prior sequence numbers (similar to

[21] and others), as long as it has also fully executed all sequence numbers up through

the sequence of the stable checkpoint (note that since cloud replicas do not participate in

generating client responses, they consider an update to be fully executed as soon as it is

ordered).

When a replica detects that it has fallen behind (e.g. because it went through proactive

recovery, or was disconnected and missed some updates), it submits a state transfer request to

Prime for ordering. When this request is ordered, the other replicas (including cloud replicas)

execute it by sending the recovering replica their stable encrypted checkpoint, digests for any

correct checkpoints they have with sequence numbers higher than the stable checkpoint, and

the list of ordered, encrypted client requests with sequence numbers between the stable

checkpoint and the global sequence number of the state transfer request from this recovering

replica.

In order to catch up to the latest state, the recovering replica waits to receive a set of

state transfer responses such that it has (1) a correct checkpoint, with at least f+1 matching
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checkpoints/digests to guarantee its validity, and (2) a set of updates such that for every

sequence number between its latest correct checkpoint and its target recovery ordinal (i.e.

the sequence number at which its state transfer request was ordered), it has f + 1 identical

updates from distinct replicas. Once these requirements are met, if the recovering replica is

a cloud replica, then it simply stores the latest correct checkpoint and all following correct

updates in the already encrypted format. If the recovering replica is an on-premises replica,

it additionally decrypts the encrypted checkpoint and the list of client requests, and then

applies the decrypted checkpoint and client requests in order of increasing global ordinals to

bring its application state up to date.

4.4.4 Key Renewal

As described so far, a single on-premises compromise can leak encryption keys. If the keys

are sent to a cloud replica, it will be able to decrypt all following updates and checkpoints.

While system operators could recover from such a situation (if it was detected) by manually

backing up the system, taking replicas down, bringing them back up with new keys, and

re-instantiating the system, this is a labor intensive operation that is likely to require system

downtime.

Therefore, we extend the basic protocol with an automatic key renewal mechanism that,

combined with proactive recovery, limits the amount of confidential state a compromised on-

premises replica can disclose. The basic idea is that on-premises servers maintain a separate

shared symmetric encryption key and shared pseudorandom function key for each client in

the system, and a given client key pair (encryption key + pseudorandom function key) is

only valid for a fixed, predetermined range of client update sequence numbers. When servers

get near the end of the range of sequence numbers the current client key pair is valid for,

they each (independently) randomly generate a new pair of keys and propose their generated

key pair by injecting it into Prime for ordering together with the proposed client sequence

number range it should be valid for.

Since all correct replicas observe the ordered stream of messages from Prime in the

same way, they can use the global ordering of proposals to determine the new key pair in
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a consistent way. For example, we can determine the keys as a combination of the first

f+1 proposals, guaranteeing that it includes random input from at least one correct replica,

so that the process cannot be controlled solely by malicious replicas. Since the replica

distribution process described in Section 4.3.2 guarantees that f +1 correct on-premises are

always available under our threat model, it is always possible to collect f + 1 proposals, so

this approach is live. A correct server will not agree to inject a client message for ordering

(i.e. will not generate its signature share as described in Section 4.4.1) unless it has received

f + 1 valid proposals ordered by Prime for the sequence range covering that message and

thus determined the correct key to use for encryption.

While this process allows replicas to agree on new keys to use for encrypting client updates

such that all (correct) replicas will apply the same new keys starting at the same client

sequence number, there are still several issues to resolve to provide well defined confidentiality

guarantees.

Encrypting Key Proposals. First, the new key proposals themselves must also be

encrypted, since they are disseminated to cloud replicas as part of the ordering process. It

is not possible to avoid storing these updates at the cloud replicas for exactly the same

reason that cloud replicas must store general client updates: in order to ensure continuous

availability under our threat model, on-premises replicas that have been disconnected and

are rejoining the system must be able to recover the state and resume executing updates

based only on input from the cloud replicas.

But, what keys can we use to encrypt the key proposal messages? Clearly, it is not safe

to use the previous client encryption key, since the purpose of the key refresh is to recover

from the case where the previous key was compromised. But, if some other key is used, then

rejoining/recovering on-premises replicas must be able to recover that key from the cloud

sites, which means that key needs to be stored in encrypted form, and we have the same

problem again.

To solve this issue, we rely on a hardware-based root of trust. We assume each on-

premises replica is configured at the time the system is set up with a shared symmetric

encryption key that can only be accessed from within trusted hardware (e.g. TPM or Intel

SGX [29]) and persists across reboots. An attacker who compromises a server but does not
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have physical access may use the key for encryption while it has access to the machine, but

cannot exfiltrate, modify, or delete the key. This permanent key is used to encrypt new

key proposals: with this approach, they cannot be decrypted by cloud replicas (or external

observers), but can be decrypted by recovering/rejoining on-premises replicas (without re-

quiring the recovering/rejoining replicas to retrieve keys from cloud replicas). We note that

this assumption of a limited degree of trusted hardware is not an unreasonable requirement,

as proactive recovery already requires each replica to maintain a persistent hardware-based

(TPM) asymmetric private signing key that it uses to authenticate itself and establish new

session-level signing keys during its recovery process.

Adapting State Transfer. Given that key proposal messages will eventually be

garbage collected, we must also extend state checkpoints to additionally include the cur-

rent encryption and pseudorandom function keys for each client and their validity periods

(i.e. the highest sequence number they can be used for), as well as any valid pending key

proposal messages. By pending key proposal message, we mean a key proposal that has

been ordered, but not yet used to generate a new key, as not enough proposals for the same

client and validity period were ordered before the checkpoint was taken. With this exten-

sion, checkpoints are also encrypted using the hardware-protected symmetric key (although

it is also possible to treat checkpoints as another logical client, with a new session-level key

agreed on for each checkpoint. In this case, it is only necessary to encrypt the part of the

checkpoint containing the session keys with the persistent hardware-protected key).

Limiting Disclosure. Finally, in order to guarantee limits on the amount of confidential

state a compromised on-premises replica can expose, we must ensure that compromised

replicas cannot control the selection of future encryption keys that will be used after they

have gone through the proactive recovery process and been restored to a correct state. To

do this, we enforce that new key proposals are only accepted as valid if they are introduced

at the correct logical time. That is, we define a sequence number slack parameter x that

represents how far in advance of the sequence range a key is intended to be active for it can

be proposed. For example, if we consider x = 10 and a key validity period of 100 updates,

a new key proposal for range 101-200 will not be considered as valid (and included in the

computation of the actual new key) unless it is ordered after update 90 for the relevant client

40



in the global total ordering created by Prime. Since all correct replicas observe the ordered

stream of updates in the same way, all will make the same decision as to a key proposal’s

validity.

An additional concern may be that a compromised replica could, while it is compromised,

generate, encrypt, and sign proposals for future client sequence numbers, and send them to

a malicious external collaborator to inject at the appropriate time. However, since such

messages are required to be signed with the replica’s session-level signing key, which is

refreshed following a proactive recovery, this is not a problem.

Our key renewal procedure does not provide complete confidentiality (in the sense of

Definition 4) in the presence of a compromised on premises replica, but it limits the damage

such a replica can do. In particular, for a client key validity period V and slack parameter x,

it guarantees that any keys leaked by a compromised replica will only be able to decrypt a

maximum of V +x updates per client that are issued after the replica is recovered (of course,

the compromised replica may leak all updates issued while it is compromised). In addition,

since checkpoints are encrypted with keys that cannot be exfiltrated from their physical

machine, no checkpoint constructed after the replica is recovered can be decrypted using keys

it leaked while compromised. Thus, as long as replicas are periodically proactively recovered

and clients continue to issue updates, the system will eventually return to a situation where

its state is fully confidential, if no new on-premises compromises occur. Unfortunately, this

does not apply to state manipulation algorithms: since those are likely to change rarely,

once a replica with access to those algorithms is compromised, we can no longer provide

guarantees of their confidentiality.

4.5 Confidential Spire Implementation

We have implemented our architecture and protocols in Confidential Spire, a SCADA

system for the power grid that provides the Safety, Bounded Delay, and Confidentiality guar-

antees defined in Section 3.3 under the threat model stated in Section 4.2.2. Our Confidential

Spire implementation is built on the open source Spire version 1.2 [69], which implements
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the architecture described in [15], and provides Safety and Bounded Delay (but not Confi-

dentiality) under our same threat model. Confidential Spire has been incorporated into the

publicly available open source Spire release as of version 2.0 [69].

In Confidential Spire, SCADA control centers serve as the on-premises sites, and the

clients submitting updates to the system are Remote Terminal Units (RTUs) and Pro-

grammable Logic Controllers (PLCs) that interact with the power grid equipment, and

Human Machine Interfaces (HMIs) that operators use to issue commands and view the sys-

tem state.

The Spire 1.2 implementation already includes a SCADA master application and RTU

or PLC proxies. Its system components communicate over the Spines intrusion-tolerant net-

work [68], and updates are ordered using the Prime intrusion tolerant replication engine [56].

An intrusion-tolerant communication library (the Intrusion-Tolerant Reliable Channel, or

ITRC) manages communications between client proxies and the control center servers, as

well as between Prime and the SCADA Master application.

4.5.1 Confidentiality-Preserving Intrusion Tolerant Middleware

Confidential Spire adapts and extends Spire’s intrusion-tolerant communication library

into a Confidentiality-Preserving Intrusion-Tolerant Middleware (CP-ITM). While the CP-

ITM serves the same basic functions as Spire’s ITRC, it additionally supports encryption

and decryption of client updates, the creation (and encryption) of periodic checkpoints, and

a new checkpoint-based state transfer protocol. The CP-ITM is intended to be a generic

middleware that can handle client communication and state management/transfer for any

application.

4.5.2 Encryption and Decryption Details

The CP-ITM encrypts client requests before injecting them into Prime and decrypts

them before delivering them to the SCADA Master application. For each client, the CP-

ITM maintains a shared symmetric encryption key and a pseudorandom function key (which

can be periodically refreshed as described in Section 4.4.4, though this is not currently imple-
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mented). To encrypt a request, the CP-ITM generates a hash-based message authentication

code (HMAC) based on the update request itself and the shared pseudorandom function key

for that client, following the approach of [34]. Then, the client update request is encrypted

using AES-256 in CBC mode with this HMAC as the initialization vector (IV) and the

client’s shared encryption key.

Since the encryption key and pseudorandom function key for each client are shared across

all control center CP-ITM instances, they all generate the same encrypted result for a client

request by using the above method. We note that even if a client issues the same request

multiple times, it will not result in the same encrypted output, as the client sequence number

is included in the message content over which the HMAC is generated and in the content

that is encrypted. The CP-ITM can decrypt encrypted content using the shared encryption

key for that client and the IV (HMAC) which is included in the message header as cleartext.

4.5.3 Checkpointing and State Transfer Implementation

When the CP-ITM running in a control center replica determines that a new checkpoint

is needed (i.e. that C updates have been ordered since the previous checkpoint), it requests

the SCADA master to package and send back a snapshot of the current state of the system.

Before the CP-ITM multicasts this checkpoint to other replicas, it encrypts the checkpoint

using the same method as described in Section 4.5.2 (the associated ordered sequence number

is not encrypted since this is needed to distinguish an old encrypted checkpoint from a new

one). Every CP-ITM instance maintains an additional shared pseudorandom key and encryp-

tion key (in addition to the client key pairs) for encrypting and decrypting the checkpoints

(which can be hardware-protected, as discussed in Section 4.4.4). In this way, all control

center CP-ITM instances can independently generate identical encrypted checkpoints.

When a replica requires a state transfer, its CP-ITM collects the correct encrypted

checkpoint and the correct set of updates following the protocol in Section 4.4.3. When

the CP-ITM is done collecting, if it is running on a cloud replica, then it simply stores the

encrypted checkpoint and updates and continues operations in normal status. However, if the

CP-ITM is running on a control center replica, it decrypts and sends the correct checkpoint
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to the SCADA Master to apply, and then decrypts and sends each collected update request

in the order of their sequence numbers to the SCADA Master. Finally, it does the same with

any new ordered encrypted client requests that were pending while waiting to collect state,

and resumes normal operations.

4.6 Evaluation

We first evaluate the overhead of providing confidentiality in our approach by comparing

our Confidential Spire implementation to Spire 1.2 [69], and then evaluate our implementa-

tion’s performance under particular types of attacks.

For all experiments, we emulate a power grid SCADA setup with control centers (on-

premises sites) and cloud sites spanning about 250 miles of the US East Coast. Experiments

are conducted in a local area network, but latencies between sites are emulated to reflect

this geographic distribution. We emulate ten power grid substations each injecting updates

via proxies at a rate of one per second per substation.

4.6.1 Performance Overhead of Confidentiality

To assess the performance overhead of our approach, we compare Confidential Spire to

Spire 1.2 in two different configurations: one tolerating one compromised replica (f = 1) and

one tolerating two compromised replicas (f = 2). Both configurations additionally tolerate

a proactive recovery and disconnected site to support our full threat model.

We consider configurations using two control center sites and two cloud sites, as these

were shown to be the most practical for Spire [15]. The 4-site configurations are also the

most reasonable for Confidential Spire, as they allow us to use fewer total replicas compared

to configurations using only one cloud site, but using additional cloud sites beyond two does

not provide further benefits, due to the requirements on the number of replicas per control

center (see Table 2).

Therefore, for the f = 1 configurations, we evaluate configuration “3+3+3+3” (three
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Table 3: Spire and Confidential Spire normal operation performance for 36,000 Updates over

1 hour

f Setup
Avg

Latency

0.1

percentile

1

percentile

50

percentile

99

percentile

99.9

percentile

Spire
1 3+3+3+3 51.7 ms 39.7 ms 41.0 ms 51.7 ms 62.4 ms 63.9 ms

2 5+5+5+4 54.4 ms 42.5 ms 43.6 ms 54.4 ms 65.6 ms 67.7 ms

Confidential

Spire

1 4+4+3+3 53.6 ms 41.6 ms 42.8 ms 53.6 ms 64.2 ms 66.1 ms

2 6+6+5+4 61.2 ms 46.0 ms 47.5 ms 61.1 ms 78.4 ms 86.2 ms

replicas in each of 2 control centers and 2 cloud sites) for Spire 1.2 and configuration

“4+4+3+3” (four replicas in each of 2 control centers and 3 replicas in each of 2 cloud sites)

for Confidential Spire. For tolerating 2 simultaneous intrusions, we use the “5+5+5+4” con-

figuration for Spire 1.2, and the equivalent “6+6+5+4” configuration in Confidential Spire.

We ran each configuration for 1 hour and report the resulting update latencies in Table 3.

From the results for the f = 1 configurations, we can see that Confidential Spire adds a

small constant latency overhead of about 2ms. This increase in overhead is small because it

avoids adding any new wide-area communication on the critical path compared with Spire

1.2. While Confidential Spire requires control center replicas to cooperate to generate a

threshold signature on each incoming client request, it is always possible for a replica to

collect the needed f + 1 signature shares from replicas within its own site, since each on-

premises site contains 2f + 2 replicas. Hence, Confidential Spire only utilizes the local-area

network for the added communications. The sum of computational overhead, to compute the

signatures and to encrypt/decrypt the requests, and the local-area network communications

overhead is small compared to the multiple rounds of wide-area network message exchanges

needed for the agreement protocol. While Confidential Spire also adds computation and

communication for checkpoint creation and exchange, this occurs off the critical path of

request processing and thus does not have a significant effect on latency.

In the f = 2 case, we can see that Confidential Spire’s “6+6+5+4” configuration adds
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somewhat more overhead, increasing average latency by about 6.8ms as compared to Spire’s

“5+5+5+4” configuration. This is about 3.5 times the average latency increase noted above

in the f = 1 case. This can be explained by increasing communication overheads, due to the

all-to-all communication patterns, as the number of replicas increases. However, this is still

acceptable, as the results show that our Confidential Spire implementation still meets the

timeliness requirements for power grid SCADA systems (processing updates within 100ms),

even while tolerating 2 intrusions. The observed 99.9 percentile latency is 86.2ms, and no

update crossed the 100ms threshold. We expect that these can even be further reduced

through improved engineering of the communication protocols to reduce the rate at which

traffic is sent, and of the cryptographic mechanisms to reduce processing overheads. As

shown by [55] and noted in [15], the majority of the advantages of proactive recovery can

be obtained by tolerating two intrusions, instead of only one, making “6+6+5+4” a useful

configuration to support.

4.6.2 Attack Evaluation of Confidential Spire

We next evaluate Confidential Spire’s ability to meet the timeliness requirements of power

grid SCADA systems while under attack. Such systems require responses within 100ms in

the normal case but may tolerate latencies up to 200ms in certain situations [40], [31]. We

consider the effect of proactive recovery on performance, as well as network attacks that

cause a site to be disconnected. While we do not explicitly evaluate malicious actions by

protocol replicas, we note that many types of malicious actions closely resemble proactive

recovery of the leader replica in terms of performance: once the leader takes a malicious

action (e.g. sending conflicting messages), a view change is triggered to elect a new leader.2

The Confidential Spire “4+4+3+3” configuration’s performance under all combinations of

recoveries and site disconnections is illustrated in Figure 12. We can see that proactive

recovery of a leader replica, which occurs between 1:00 and 1:30, causes one client update to

spike over 100ms, when the system must perform a view change. Recovery of a non-leader

2It is possible to reduce the performance impact of proactive recovery by preemptively changing the
leader, but since our implementation does not do that, our experimental results accurately reflect the case
where timeouts must expire before changing the leader.
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Figure 12: Latency of Confidential Spire in the presence of proactive recoveries and site

disconnections based on configuration “4+4+3+3”

replica (the more common case), which occurs between 3:15 and 3:45, has almost no impact

on performance. In this case, we only see one client update with higher than average latency,

but it is still below the 100ms threshold.

Similarly, there is no latency spike when we disconnect a non-leader site, at 4:19, since

there is no view change. However, we can see a few client updates spiking, with one rising

above 100ms, though still under 200ms, when the leader-site is disconnected at 2:00, since

this requires a view change. We also note a small (but still acceptable) increase in average

latency for the duration of the time either the leader or non-leader site is disconnected in

this experiment, as in both cases it renders the fastest quorum of replicas unavailable, and

requires communication with a more distant site to occur on the critical path. However,

when reconnecting a disconnected site, we can see significant latency spikes, crossing the

200ms threshold and reaching up to 450ms (e.g. at 2:30 and 5:00). This is due to the

large number of checkpoint messages and update messages being sent over the network from

the correct replicas to help catch up the lagging replicas in the site which just rejoined the

network. While this is a limitation of our current implementation, we note that this is not
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an inherent limitation of the protocol, and should be fixable by engineering a better message

flow control for the checkpoint messages and update messages that are being sent to catch up

the other replicas. Overall, these results indicate that, even with the overhead of providing

confidentiality, our system can provide the necessary performance, even while under attack.
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5.0 A Cloud-Based Hybrid Management Approach to Deploying Resilient

Systems

5.1 Overview

To provide intrusion tolerance for general applications, while offloading part of the sys-

tem management to a cloud provider, the work in Chapter 4 developed an architecture for

partially cloud-based BFT systems, which maintains confidentiality of application state, ap-

plication logic, and client locations. But, it still exposes client IDs and request patterns to

the cloud, and, even more importantly is an integrated system, where the assumption is that

the system operator manages all of the software and simply uses cloud resources to avoid

deploying additional physical sites.

Deploying and managing BFT-replicated systems in practice requires both specialized

technical expertise and substantial investment in additional physical infrastructure. In this

work, we address this gap by designing a hybrid management model: while the system

operator manages their application, a service provider hosts and manages the BFT replication

service using cloud infrastructure.

To make this approach feasible, there are two core challenges: (1) to make using the

cloud acceptable, we should enforce strict confidentiality, such that no application state,

state manipulation algorithms, or client information is exposed to the cloud, and (2) to

make system management practical, the cloud and application operators should each be

able to manage their systems independently, without needing to know the internals of each

other’s systems or coordinate with one another.

We develop the protocols to support this system architecture, without revealing appli-

cation state, algorithms, or client information to the cloud provider, even when application

servers are compromised. We implement and evaluate concrete configurations of our hybrid

management model in the context of an industrial control system and show that they meet

their performance and resilience requirements.

The main contributions of this chapter are:
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• We define a new hybrid management model for intrusion-tolerant systems, where sys-

tem operators control their applications, but leverage intrusion-tolerant ordering and

encrypted storage services from a cloud provider.

• We design a concrete system architecture that implements the hybrid management model

and enforces the confidentiality of application state, algorithms, and client request pat-

terns.

• We show that this system architecture can provide resilience to a broad threat model

that includes intrusions and network attacks, and is able to recover from management

domain failures that affect all replicas hosted by the system operator (on-premises).

• We implement and evaluate the architecture in the context of an industrial control ap-

plication. We show that, while it increases latency by about 9ms (18%) compared to a

fully system-operator-managed BFT system, it still meets the application’s performance

requirements.

5.2 Architecture Outline

In this chapter, we introduce a new Decoupled Intrusion-Tolerant System, which is de-

signed to provide intrusion tolerance for any application that can work with the state machine

replication model. The basic system model is detailed in Chapter 3. Additionally, in this

chapter, we enforce a strict separation of responsibilities between the cloud and on-premises

sites, as shown in Figure 13. The cloud service provider is responsible for deploying and

managing the BFT Replication Engine which runs only in the cloud. The BFT Replication

Engine consists of a set of cloud replicas (CRs) running a BFT replication protocol (any

one of the many existing BFT protocols can be used). It provides an intrusion-tolerant

ordering and encrypted state maintenance service that is used to turn the appli-

cation, which runs only in the on-premises site(s), into an Intrusion-Tolerant Application.

Note that the cloud service provider running the BFT replication engine may be an existing

cloud provider, or, we envision that our new architecture can allow a specialized intrusion-

tolerance-as-a-service (ITaaS) provider to emerge. The cloud service provider can scale their
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Figure 13: Cloud-based Hybrid Management Intuition

service effectively by using the same infrastructure and BFT Replication Engine to support

many applications. Leakage between applications is not an issue since data is encrypted by

the on-premises replicas before being shared with the cloud replicas (encryption/decryption

keys are only available in on-premises replicas).

The system operator is responsible for deploying and managing the Intrusion-Tolerant

Application which consists of a set of on-premises replicas (ORs). On-premises replicas

accept incoming requests from clients and forward them to the BFT Replication Engine for

ordering. The cloud replicas establish a total order on the requests, and the on-premises

replicas execute requests according to this total order and return responses to clients.

5.2.1 Simplifying Interfaces via Threshold Signatures

To make the interface between the cloud and on-premises domains as simple as possible

and avoid requiring either domain to know internal configurations of the other, we use

threshold signatures. In our architecture, all messages between domains must be threshold-

signed. With this approach, the cloud replicas only know a single on-premises public key to
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authenticate messages sent by on-premises replicas, and the on-premises replicas similarly

only need to know a single cloud public key to authenticate messages sent by the cloud

replicas.

We use an (fo + 1, no)-threshold scheme for each on-premises site, where fo + 1 shares

out of no total shares are needed to generate a valid signature (where no is the number of

on-premises replicas per site). Thus, a valid threshold signature guarantees that at least one

correct on-premises replica agreed to the content of the message. Key shares can be refreshed

without changing the public service key [77, 59]. Hence, there is no need to involve or update

the cloud domain when system operators refresh the key shares in their on-premises replicas.

Similarly, messages sent from the cloud replicas to the on-premises replicas are signed using

an (fc + 1, nc)-threshold scheme (where nc is the total number of cloud replicas).

5.2.2 Strengthening Confidentiality via Privacy Firewalls

A privacy firewall (PF) prevents leak of confidential data from a site by filtering out

messages that a correct replica will not endorse [75, 34]. We strategically place privacy

firewalls in our networks such that malicious on-premises replicas cannot leak confidential

data. We envision two separate networks: one connecting the clients with the on-premises

sites, and the other connecting the cloud sites with the on-premises sites. Ideally, each on-

premises replica connects to each of these networks using separate network interfaces, with

another interface used for local-area communication with the other replicas in its site. To

ensure that confidential data does not leave an on-premises site, even in the presence of

a compromised on-premises replica, we can insert privacy firewalls (PFs) [75, 34] between

the on-premises replicas and each of the two wide-area networks. The cloud-side PF filters

messages sent from on-premises replicas to the cloud, and the client-side PF filters messages

sent from the on-premises replicas to the clients. Since all messages that leave an on-premises

site must be threshold signed, the privacy firewall implementation is simple: each privacy

firewall knows the relevant public key and only forwards outgoing messages that have a valid

threshold signature. A valid threshold signature ensures at least one correct replica in the

on-premises site endorsed the message content.
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We consider each privacy firewall to be a black box, which can be a complex configuration

from prior work (e.g. [75, 34]) or a single node. Note that while a single-node privacy firewall

may appear to be a single point of failure, since we consider a wide-area setting, availability

already depends on the router for the site, and a privacy firewall could be integrated with the

site router, so it does not meaningfully expand the system’s attack surface (see Section 5.3

for details).1

5.3 Threat Model

Our basic threat model is detailed in Chapter 3. The main difference between the threat

model of Decoupled Intrusion-Tolerant System (Chapter 5) and Partially Cloud-based BFT

System (Chapter 4) (and also [15]) is that in Decoupled Intrusion-Tolerant System we have

a separate threat model for Intrusion-Tolerant Application and BFT Replication Engine,

whereas Partially Cloud-based BFT System and [15] have a single threat model for both.

This is due to the decoupled architecture in Decoupled Intrusion-Tolerant System which

enforces strict separation between the Intrusion-Tolerant Application and BFT Replication

Engine, while the architectures in Partially Cloud-based BFT System and [15] integrates

them together.

Due to the full separation of the Intrusion-Tolerant Application and the BFT Replication

Engine, the number of tolerated server compromises and site disconnections, as well as the

number of supported proactive recoveries, can be configured separately for each of them.

On-premises Threat Model: Simultaneously, in each on-premises site, fo on-premises

replicas can be compromised, and ko on-premises replicas can be performing proactive re-

covery. At the same time, do on-premises sites can be disconnected.

Cloud Threat Model: Simultaneously, fc cloud replicas can be compromised, kc cloud

replicas can be performing proactive recovery, and dc cloud sites can be disconnected.

1If weaker confidentiality guarantees are acceptable, the privacy firewall can be left out of the architecture.
In that case, our confidentiality guarantees are the same as in Chapter 4. In our specification, privacy firewalls
forward incoming messages to replicas within a site, but we can remove them by having on-premises replicas
directly join the relevant multicast group. In our implementation, we use Spines [68] for inter-site multicast.
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5.3.1 Management Domain Failures:

Our Decoupled Intrusion-Tolerant System makes it possible to recover from a manage-

ment domain failure, in which all on-premises replicas managed by a system operator lose

their state. This threat model can capture relevant practical attacks such as ransomware:

if a ransomware attack on the on-premises replicas causes them all to lose access to their

state (because it has been maliciously encrypted), the replicas can be taken down, cleaned,

restarted, and the latest state restored from the cloud replicas. The system will suffer an

outage during the recovery, but can seamlessly resume operations without losing the results

of any previously executed requests.2

We do not tolerate cloud domain failures, as recovering cloud replicas may not be able

to establish the latest ordinal executed by an on-premises replica (e.g. only a single replica

has executed the ordinal, but it then becomes unreachable). However, highly resilient sys-

tems can still be built by ensuring sufficient resilience of the cloud domain. Cloud service

providers can deploy replicas across multiple data centers and specify the risk of simultaneous

unavailability in their SLA. A specialized intrusion-tolerance-as-a-service (ITaaS) provider

can increase management diversity by deploying replicas across infrastructure managed by

different underlying cloud infrastructure providers. This type of cloud-of-clouds approach

is also considered in other works [17, 19], which explicitly store data across multiple cloud

providers (e.g. Amazon, Azure, etc).

5.3.2 Service Properties:

The definitions of the service properties is detailed in Chapter 3, but here we specify

under what conditions they are met.

Safety (Definition 1, Section 3.3): Our system guarantees safety as long as no

more than fo on-premises replicas in each on-premises site and no more than fc total cloud

replicas are compromised simultaneously (once a compromised replica goes through proactive

recovery and is restored to a correct state, it is no longer compromised). Note that as in

2Even if the attack resulted from executing one of the updates, since the cloud replicas do not execute
updates, they are not affected by the same attack. Thus, the operator could recover on-premises replicas to
the latest checkpoint, and manually omit the update that triggered the attack.
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Chapter 4, the safety definition only includes on-premises replicas, as cloud replicas do not

execute updates.

In general, we assume that correct (non-compromised) replicas follow the protocol cor-

rectly and do not lose their state. However, we also maintain safety in the case of an

on-premises management domain failure (i.e. all on-premises replicas lose their state), as

long as no more than fc cloud replicas are compromised (and no correct cloud replicas lose

their state). Compromised privacy firewalls cannot affect safety.

Liveness (Definition 2, Section 3.3): To guarantee liveness, we require that the

conditions of both the on-premises and cloud threat models are met: at most fo on-premises

replicas per on-premises site and fc total cloud replicas are compromised, at most ko on-

premises replicas per on-premises site and kc cloud replicas are undergoing proactive recovery,

and at most do on-premises sites and dc cloud sites are disconnected from the network.

We also require that the privacy firewalls are up and correct (note that we can tolerate

failed or compromised privacy firewalls, but, since a failed/compromised firewall effectively

disconnects its site from the network, such failures count against the do tolerated on-premises

disconnections).

Liveness also requires that correct system components that are not in the disconnected

sites are able to communicate successfully. Specifically, we require that all correct on-

premises replicas in a given on-premises site are able to communicate with each other and

with the privacy firewalls for that site; all cloud replicas are able to communicate with all

other correct, not-disconnected cloud replicas and with the cloud-side privacy firewalls for the

not-disconnected on-premises sites; and the client-side privacy firewall in each on-premises

site is able to communicate with clients. Communication between the cloud replicas must

meet any network synchrony requirements of the specific BFT protocol being used.

Complete Confidentiality (Definition 4, Section 3.3): We guarantee complete

confidentiality even if an unlimited number of cloud replicas are compromised. We maintain

this guarantee when up to fo on-premises replicas per on-premises site are compromised, as

long as the privacy firewalls are up and correct. If a privacy firewall and an on-premises

replica in the same site are compromised, confidentiality can be violated.

Note that when an on-premises replica is compromised, it may be able to use side-
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channel attacks to potentially reveal confidential information, but, in contrast to all prior

work, our architecture can only leak information if such attacks are successful. The work

in Chapter 4 cannot maintain complete confidentiality in the presence of compromised on-

premises replicas; solutions in [75, 34] separate agreement from execution and uses privacy

firewalls to keep state confidential in the execution replicas, but their architectures inherently

reveal client information to agreement nodes, which we want to avoid; and in secret sharing

based solutions [53, 71], replicas similarly communicate directly with clients, and execute

state manipulation algorithms. We consider side-channel attacks outside the scope of this

paper. However, the privacy firewall can provide mechanisms to make them more difficult

(as discussed in [75]).

5.4 System Configuration

Our decoupled system architecture can be configured based on the threat model the

operator wants to tolerate. For the on-premises threat model, we require the total number

of on-premises sites So ≥ do + 1, and the number of replicas in each on-premises site no ≥

2fo + ko + 1. This guarantees that at least one site with fo + 1 correct replicas is always

available, which is the minimum needed to generate valid threshold signatures.

The required number of cloud sites and replicas depends on the BFT protocol used, but

for protocols that normally use 3f + 2k + 1 replicas to withstand f compromises and k

proactive recoveries (the most common setting), we adapt the replica distribution formula

from [15]. We require the total number of cloud sites Sc ≥ 2dc + 1 and set the total number

of cloud replicas nc = 3fc + 2
⌈
3fcdc+dc+Sckc

Sc−2dc

⌉
+ 1, with replicas distributed evenly across the

sites. This guarantees that a quorum of cloud replicas is always available under our threat

model. Note however, that if the nc replicas do not divide evenly among the cloud sites,

additional replicas may be needed (see Section 5.4.1 for details and derivation).

Figure 14 shows a configuration with 4 on-premises replicas in each of 2 sites and 12 cloud

replicas distributed across 4 sites. This configuration simultaneously tolerates one compro-

mise and one proactive recovery in the cloud domain, one compromise and one proactive
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Figure 14: Decoupled Intrusion-Tolerant Architecture

recovery in each of the on-premises sites, one site disconnection in on-premises domain and

one site disconnection in cloud domain (fo = fc = do = dc = ko = kc = 1). To make site

disconnections more difficult to execute successfully, we use an intrusion-tolerant network

that uses an overlay approach to connect sites with redundancy [51, 15]. However, we make

this optional for the on-premises network.

For system operators who currently use a primary and a backup site for fault tolerance,

the configuration in Figure 14 offers the full resilience benefits of our architecture with

minimal additional infrastructure. Operators only need to contract with a cloud provider

and, assuming they have a primary and backup server in each site already, add two servers

to each site. However, other options are possible. For example, if cloud sites have very

high availability, we can consider a configuration with dc = 0 that does not tolerate cloud

site disconnections, but only requires one cloud site and may be useful for latency sensitive

applications (see Section 5.7). Similarly, a configuration with do = 0 does not tolerate on-
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premises site disconnections, but allows a system operator currently using a single site to

gain intrusion tolerance and the ability to recover from management domain failures without

constructing and managing any additional sites.

5.4.1 Calculating the Number of Required Cloud Replicas

To calculate the number of cloud replicas, we generalize the replica distribution formula

from [15]. That work showed how to distribute replicas across sites to withstand exactly one

site disconnection, while tolerating f intrusions and exactly one proactive recovery. We adapt

this approach to tolerate any number of site disconnections, and any number of simultaneous

proactive recoveries. We assume a BFT replication protocol that normally uses 3f + 2k + 1

replicas to simultaneously withstand f intrusions and k proactive recoveries.

Similar to [15], we let the k parameter in the standard formula represent the total num-

ber of replicas that may be simultaneously unavailable (not only going through proactive

recovery). For clarity, we use u to represent this total number of unavailable replicas, since

we use kc to represent the number of cloud replicas that may be going through proactive

recovery. We let fc represent the number of tolerated intrusions in the cloud, and let nc

represent the total number of cloud replicas. Therefore, in order for the BFT protocol to

make progress, we require that 2fc+u+1 out of nc = 3fc+2u+1 total replicas are correct,

available, and connected.

If we assume replicas are distributed as evenly as possible across sites, then, to tolerate

dc site disconnections out of Sc total sites, in a system with nc total replicas, we require:

u ≥ dc

⌈
nc

Sc

⌉
+ kc (1)

This guarantees that the tolerated number of unavailable replicas is at least the number

of replicas in the dc disconnected sites, plus the kc replicas that may be down for proactive

recovery.

To get a lower bound for the required value of u, we can drop the ceiling function and

calculate:
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u ≥ dc

(
nc

Sc

)
+ kc (2)

Substituting the formula for nc into (2) gives us:

u ≥ dc

(
3fc + 2u+ 1

Sc

)
+ kc (3)

Solving (3) for u, we get:

u ≥ 3dcfc + dc + Sckc
Sc − 2dc

(4)

Since we require u to be an integer (a whole number of replicas), we can apply the ceiling

function and choose u as:

u =

⌈
3dcfc + dc + Sckc

Sc − 2dc

⌉
(5)

To get a lower bound on the required number of replicas nc, we can substitute the above

lower bound for u into the formula 3fc + 2u+ 1 to get:

nc = 3fc + 2

⌈
3dcfc + dc + Sckc

Sc − 2dc

⌉
+ 1 (6)

In the case where the nc resulting from equation (6) is evenly divisible by Sc, we can

directly use this nc as our number of cloud replicas, and distribute the replicas evenly across

the Sc sites. This is guaranteed to satisfy the requirement in inequality (1). The reasoning

for this is as follows: from inequalities (2)-(4) and equation (5), we have shown that setting

u as in (5) satisfies inequality (2). When nc is evenly divisible by Sc, the right-hand side of

inequality (2) is exactly equal to the right-hand side of inequality (1). Thus, this choice of

u also satisfies inequality (1) in this case.

However, when the nc resulting from equation (6) is not evenly divisible by Sc, we are

not guaranteed that inequality (1) is satisfied. In this case, we can calculate an upper bound

on the required value of u, and then test each value of u between the lower bound and the

upper bound to find one that satisfies inequality (1).

By the definition of the ceiling function, we know:
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dc

⌈
nc

Sc

⌉
+ kc < dc

(
nc

Sc

+ 1

)
+ kc (7)

We want to find a value of u that is guaranteed to satisfy inequality (1). Based on

inequality (7), we know the following choice of u is safe:

u = dc

(
nc

Sc

+ 1

)
+ kc (8)

Substituting the formula for nc into (8) we get:

u = dc

(
3fc + 2u+ 1

Sc

+ 1

)
+ kc (9)

Solving (9) for u, we get:

u =
3dcfc + dc + Scdc + Sckc

Sc − 2dc
(10)

Since we require u to be an integer, we can apply the ceiling function:

u =

⌈
3dcfc + dc + Scdc + Sckc

Sc − 2dc

⌉
(11)

Setting u as in (11) satisfies inequality (1). But, this is not necessarily the minimum

value. To find the minimum integer value of u that satisfies (1), we consider every value of

u between the values in (5) and (11):

⌈
3dcfc + dc + Sckc

Sc − 2dc

⌉
≤ u ≤

⌈
3dcfc + dc + Scdc + Sckc

Sc − 2dc

⌉
(12)

To find the number of required replicas nc, we test each integer in this range as a possible

value for u, and calculate nc using the usual formula:

nc = 3fc + 2u+ 1 (13)

We start from the lower bound, and for each u and corresponding nc, we check whether

inequality (1) is satisfied. We choose the smallest u that satisfies this inequality, and use

the corresponding nc from equation (13) as the total number of replicas, distributing them

as evenly as possible across the Sc sites.
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Note that a clear implication of the lower bound (5) and upper bound (11) for u is that

we require the quantity Sc−2dc (the denominator in the formulas for u) to be strictly greater

than 0. Thus, we require the total number of cloud sites:

Sc ≥ 2dc + 1 (14)

5.5 Protocols for Decoupled Intrusion-Tolerant System

In order to support the system architecture described in Section 5.2, we must develop

new protocols for handling client requests, and for performing state transfer and recovery.

5.5.1 Introducing New Client Requests

Figure 15 illustrates the steps involved in processing each client request. First, a client

signs its request with its private key and sends it to the on-premises sites (step 1, Figure 15).

If a client does not have the capability to do this on their own, a proxy can sign the request

on the client’s behalf [15, 46]. Once the request reaches an on-premises site, it is received

by the client-side privacy firewall, which multicasts the request to all on-premises replicas in

that site (step 2, Figure 15).

To enforce confidentiality of client requests, on-premises replicas encrypt the request

using shared symmetric keys known to all on-premises replicas (but not known to the cloud

replicas). In contrast to prior works that encrypt client requests (e.g. [75, 34], Chapter 4),

the on-premises replicas encrypt not only the request body, but also the client headers so

that the cloud replicas do not see client IDs and sequence numbers, and cannot easily learn

client request patterns.

Next, on-premises replicas generate a threshold signature. Each replica encrypts the

request, generates a partial signature share over it, and multicasts the signature share to

the other replicas in its site. Upon collecting fo + 1 partial signatures, the replica combines

the partial signatures to generate a full threshold signature and sends the signed, encrypted
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Figure 15: Client Request Flow in Decoupled Intrusion-Tolerant System
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request to the cloud-side privacy firewall (step 3, Figure 15).

Note that to generate a full threshold signature, all on-premises replicas must generate

partial signature shares over identical encrypted content. To ensure this, similar to the

work in Chapter 4, each on-premises replica maintains two shared secret keys known to

all on-premises replicas: one for symmetric encryption/decryption of client requests, and

the other for generating initialization vectors via a pseudorandom function, similar to the

approach in [34]. This allows all replicas to generate identical encrypted requests for a given

client request. To avoid signing each request individually, it is possible to batch requests

(see Section 5.5.3 for details.). However, for simplicity, we assume processing each request

individually for our protocols in this chapter.

After verifying the threshold signature, which guarantees that at least one correct replica

in the on-premises site endorsed the message content to be safe to leave the site (i.e., no

leak of confidential data), the privacy firewall multicasts the signed encrypted request to

the cloud replicas (step 4, Figure 15). Cloud replicas use the threshold signature to verify

that the encrypted request is valid before introducing it for ordering by the BFT replication

engine.

While the high-level process is relatively straightforward, fully encrypting and threshold

signing client requests introduces new challenges: (1) we need to address a replay-attack

vulnerability that encrypting client requests creates, and (2) we need a procedure for con-

sistently updating encryption keys.

5.5.1.1 Preventing Replay Attacks

While encrypting the full client request (including headers) and threshold signing it en-

forces stronger confidentiality than previous approaches, this introduces a new vulnerability

to replay attacks. A compromised on-premises replica can overload the BFT Replication En-

gine by storing threshold-signed encrypted requests and replaying them to the cloud replicas

repeatedly. Since these old requests have valid threshold signatures, they will successfully

pass through the privacy firewall and will be accepted as valid by the cloud replicas, causing

them to waste processing resources and bandwidth ordering the duplicate requests.
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Prior works have avoided this issue by using cleartext client IDs and sequence numbers

in request headers to reject old/duplicate requests [75, 34] (also Chapter 4), but this exposes

client information to the cloud replicas. A naive solution is for the cloud replicas to store

a copy of every encrypted client request (e.g. in a hash table), and then use that to check

for duplicates (when a new request arrives), which are then discarded. However, this is

not practical as it requires unbounded memory (cloud replicas can never garbage collect old

requests).

Validity Period. To address replays, we require on-premises replicas to append a

validity period in cleartext to each encrypted request. The validity period is part of the

content over which the threshold signature is generated (so a compromised replica cannot

modify it). Cloud replicas store unique requests from the current validity period in a hash

table, so they can discard requests from previous validity periods and duplicates from the

current validity period.

To define a validity period for each encrypted request, simply allowing an on-premises

replica to assign an expiration time (calculated using the current time at the on-premises

replica) to the encrypted request will not work, since the calculated expiration time may

differ for each on-premises replica for the same encrypted request. This is because we do

not assume that clocks are synchronized, and requests can arrive at the on-premises replicas

at slightly different times. Without identical expiration times, on-premises replicas cannot

generate a threshold signature for the same encrypted request, as the expiration time must be

part of the content over which the threshold signature is generated (otherwise, a compromised

replica can modify it).

We can allow each on-premises replica to calculate the expiration time based on the

timestamp inside the unencrypted client request, which will result in all on-premises replicas

calculating identical expiration times. However, since the expiration time must be in cleartext

for the cloud replicas, this will expose the client request timestamp to the cloud replicas,

which violates our confidentiality guarantee.

Therefore, we develop a novel method to calculate identical validity periods across all

on-premises replicas for the same encrypted request, while maintaining confidentiality of

client request pattern. On-premises replicas determine the validity period based on the
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Figure 16: Message Formats in Decoupled Intrusion-Tolerant System

latest global sequence number (lseq) they have executed, and cloud replicas reject a request

if the upper bound (ubound) of its associated validity period is less than the lseq they have

totally ordered. So that all on-premises replicas will typically have the same view of the

validity period, we only update the validity period every vp size sequence numbers. The

lower bound (lbound) of the validity period is set as: ⌊ lseq
vp size

⌋ × vp size, and the ubound is

set as: lbound+ (2× vp size).

Ideally, the validity period size (vp size) should be at least the maximum number of

outstanding client requests. Smaller validity periods will not violate correctness, but can

reduce performance, because on-premises replicas may assign validity periods that become

stale by the time the request reaches the cloud replicas. With each client limited to one

outstanding request, we can set vp size to at least M × ⌊ no

fo+1
⌋ × So (where M is maximum

number of clients, no is number of on-premises replicas per site, and So is number of on-

premises sites). Note that there can still be brief periods where on-premises replicas disagree

on the validity period (because they execute requests at slightly different times). However,

this does not affect liveness, since a replica will retransmit its partial signature share for

a client request (with an updated validity period) if the request is not executed before a

timeout.
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5.5.1.2 Updating Encryption Keys

Privacy firewalls prevent encryption key leakage, but periodic key refreshes are still

needed to be able to recover from potential side-channel attacks or a malicious operator

with physical access copying keys. To ensure that all on-premises replicas know which key

to use to decrypt each request, we tie key changes to the validity period (since it is the

only available cleartext information). When the end of the validity period approaches, each

on-premises replica generates a new key proposal signed by a persistent hardware-based key

(e.g. using the TPM) and submits it for ordering. The key for the next validity period is

determined based on the ordered key proposals, similar to Chapter 4 (although they based

the key-change interval on client sequence numbers that are not available in cleartext for

us).

5.5.2 Ordering and Executing Client Requests

Upon receiving a new valid client request (i.e., one that is within the validity period, not

a duplicate, and has a valid threshold signature), cloud replicas inject the request into the

BFT replication engine (step 5, Figure 15). This executes the BFT agreement protocol to

assign the request a global sequence number or ordinal (step 6, Figure 15). Cloud replicas

threshold-sign the ordered encrypted request (step 7, Figure 15), and then multicast it to the

cloud-side privacy firewalls, which forward it to the on-premises replicas (step 8, Figure 15).

Requests may occasionally arrive out-of-order due to network disruptions, so on-premises

replicas use a sliding window buffer to maintain ordering. Upon receiving the next expected

ordinal, the on-premises replica executes the corresponding request (step 9, Figure 15),

generates a response, and cooperates to create a threshold signature (step 10, Figure 15).

This response is sent to the client through the client-side privacy firewall (step 11, Figure 15).

The client (or accompanying proxy) validates the correctness of the response by verifying

the threshold signature (step 12, Figure 15).

The message formats for the client request flow in our Decoupled Intrusion-Tolerant

System is shown in Figure 16.
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5.5.3 Batching of Client Requests

For simplicity we assume each request is processed individually for our protocols in this

chapter. However, we would still like to describe how we can achieve batching of requests

in this section. To generate threshold signatures on new client requests efficiently, it is

important to be able to batch requests, such that replicas do not need to sign every request

individually. Unfortunately, client requests may not arrive in the same order at every on-

premises replica, so replicas may not generate identical batches (and requiring replicas to

agree on the batch contents is essentially equivalent to running the agreement protocol).

Without identical batches, the partial signature shares generated over these batches will not

combine correctly. Therefore, we allow replicas to contribute partial signatures to batches

received from other replicas as described below.

Each on-premises replica batches received client requests with a limit on the maximum

count and/or time, sorting batched requests by their client IDs. Next, the on-premises

replica encrypts the batch, generates a partial signature over it, and sends the encrypted

batch (with its partial signature) to all other on-premises replicas in its site. Upon receiving

a batch of client requests, an on-premises replica decrypts it and verifies each of the client

requests with the respective client’s public key. Once the entire batch is verified, the on-

premises replica generates a partial signature for the encrypted batch and sends it back.

Upon collecting fo + 1 partial signatures (including its own), an on-premises replica can

generate a threshold signature. It sends the encrypted batch (with the threshold signature)

to the cloud replicas through the cloud-side privacy firewall, which verifies the threshold

signature before forwarding it.

To optimize the batching process, when an on-premises replica’s batch of encrypted

requests matches that of another on-premises replica’s, it uses the accompanying partial

signature from the other on-premises replica for its own batch of encrypted requests. Since

we require the client requests inside a batch to be sorted by client IDs, and there is typically

very little delay variation or chance of message loss within a site, we can expect that new

batches from different on-premises replicas within a site to almost always match, and hence

threshold signatures can be generated quickly.
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Note that we do not need to change our validity period procedure for batching requests.

Since we limit each client to one outstanding request at a time, in the worst case scenario, a

malicious replica can space out the client requests to one per batch, but the validity period

takes into account the total number of clients. Hence, the malicious replica will not be able

to quickly fill up the validity period and slow down processing of new requests.

The cloud replicas treat this encrypted batch of requests same as a single encrypted

request (check validity period and threshold signature, order the batch, threshold sign the

ordered encrypted batch of requests, and finally send this back to the on-premises replicas).

Upon receiving a ordered encrypted batch of requests, the on-premises replica checks the

threshold signature, decrypts the batch, and then executes each request in the same order

as they are in the batch. Since each batch has an ordinal number, batches are processed

consecutively according to their ordinal numbers.

5.5.4 Checkpoints and Nearest-First Recovery

As discussed in Section 5.2, to enable recovery from network attacks and management

domain failures, cloud replicas store encrypted state checkpoints and any encrypted requests

that have been ordered since the latest checkpoint. On-premises replicas can request this

encrypted state to recover from state loss or prolonged disconnections.

However, as also discussed in Section 5.2, every message leaving an on-premises site

must be threshold signed. This requires new protocols for checkpointing and recovery across

management domains. Two important challenges are: (1) Only threshold-signed recovery

requests can be sent from on-premises replicas to the cloud replicas. This requires on-

premises replicas to agree on which requests to send to the cloud. (2) Because client responses

must also be threshold-signed, on-premises replicas must be able to recover these signatures

in order to serve client retransmissions.

We address these issues with a new nearest-first recovery protocol that first attempts to

perform recovery within a site, and only sends (threshold-signed) recovery requests outside

the site if in-site recovery is unsuccessful. The protocol also enables on-premises replicas to

collect the threshold-signed client response corresponding to each request it recovers. This
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strategy is necessary under our system model, but also improves recovery latency and wide-

area bandwidth usage by localizing state transfer as much as possible. Below we describe

the checkpointing and recovery protocols.

5.5.4.1 Checkpoint Creation

Each on-premises replica periodically generates a checkpoint representing its current state

(including the latest response for each client), encrypts it, and then cooperates with other

on-premises replicas in its site to create a threshold signature. The replica stores the signed

encrypted checkpoint and multicasts it to the cloud replicas, which can verify the threshold

signature and then store the encrypted checkpoint. Any replica can safely remove ordered

encrypted requests older than the currently stored checkpoint.

5.5.4.2 Nearest-First Recovery

Recovery begins when a replica detects that it is missing ordered requests, e.g., due to a

site disconnection, crash, or proactive recovery.

Requesting Recovery. An on-premises replica triggers recovery when it receives an

ordered request beyond the upper bound of its sliding window buffer from the cloud replicas.

The recovering replica separately requests missing ordered encrypted requests and client

responses. For each, it sends a request with a list of ordinals (global sequence numbers) that

it is missing to the other on-premises replicas in its site.

Responding to a Recovery Request. Upon receiving a recovery request, an on-

premises replica will respond with its stored encrypted checkpoint if any ordinal in the

recovery request is older than the checkpoint. Otherwise, the replica sends all of the requested

ordered encrypted requests or client responses it has to the recovering replica. It also sends

the associated threshold signatures for client responses; if it does not yet have the threshold

signature for a client response, it sends its partial signature share instead. To prevent

malicious replicas from wasting resources, all replicas rate-limit their responses to repeated

recovery requests from the same replica.

Applying Recovery Responses. Upon receiving client responses, a recovering replica
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simply stores them. Upon receiving a checkpoint that is newer than its current state, the

recovering replica verifies the threshold signature, and decrypts and applies the checkpoint

to its local state (the latest client responses in the checkpoint are extracted and stored).

Upon receiving new ordered encrypted requests, the recovering replica decrypts and ex-

ecutes them (after verifying their threshold signatures) consecutively based on the ordinals.

If it already collected a client response with threshold signature for the executed ordered

request, then it simply stores this client response and moves on to the next ordinal. Other-

wise, the recovering replica generates the client response, sends a partial signature to other

on-premises replicas in its site, and waits to collect fo + 1 partial signature shares (includ-

ing its own). By applying a checkpoint and/or executing requests, the recovering replica

eventually catches up to the latest state.

Recovering an On-Premises Site. If all the replicas in a site are missing the same

ordered encrypted requests (which they will eventually find out), then they can generate

a threshold signature for the recovery request and send it to the cloud replicas. To do

this, every recovery request for ordered encrypted requests includes a validity period and

a partial signature share over the request; the validity period is based on the ordinal of

the latest ordered encrypted request received from the cloud replicas. On receiving such a

request, a cloud replica multicasts the requested ordered encrypted requests or encrypted

checkpoint to the on-premises replicas.

To mitigate replay attacks by a malicious replica (which may re-send an old threshold-

signed recovery request), cloud replicas rate-limit their responses to recovery requests. New

recovery requests are not subject to this rate limit. If a cloud replica receives a request that

is in the current validity period, and is not a duplicate (checked with hashes of other requests

in the current validity period), then it responds immediately.

Recovery Procedure in Cloud: Cloud replicas use a similar nearest first recovery

strategy when they detect a gap in the global sequence numbers from the underlying BFT

protocol. However, they do not store or request client responses.
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5.6 Implementation

We have implemented Decoupled Spire, a SCADA system for the power grid, based on

the open source Spire version 1.2 [69]. Spire 1.2 uses an integrated architecture in which all

replicas fully participate in the BFT replication protocol, maintain application state, and

execute requests [15].

5.6.1 Decoupled Spire Components

In Decoupled Spire, the on-premises sites host replicas of the SCADA master application.

The clients are Programmable Logic Controllers (PLCs), Remote Terminal Units (RTUs),

and Human Machine Interfaces (HMIs); we use the HMI and emulated PLCs/RTUs available

in Spire 1.2. Like Spire 1.2, we use Prime [10, 56] as the BFT replication engine. We

add a single-node privacy firewall to these components. Privacy firewalls run in each on-

premises site and use the public service key for that site to verify threshold signatures on

all outgoing messages. We use Spines [68] for our intrusion-tolerant networks: one Spines

network connects all the cloud replicas to each other and the cloud-side privacy firewalls, and

a second Spines network connects the clients to the client-side privacy firewalls. Inside each

on-premises site, replicas communicate using UDP over a switched LAN (with application-

level retransmissions).

5.6.2 Separating Agreement and Execution

In contrast to Spire 1.2, our SCADA master replicas do not participate in the Prime

replication protocol. Instead, each SCADA master is linked with a simple intrusion-tolerance

layer that prepares each client request for ordering, sends it to the cloud replicas, and then

receives, buffers, and verifies signatures on incoming ordered updates. Preparing a client

request for ordering involves encrypting it, appending a validity period, and generating a

threshold signature on it. Our implementation of encryption is similar to that in Chapter 4,

which is based on [34]. We use the client request and a pseudo-random function key (refreshed

each validity period and shared by all on-premises replicas, as discussed in Section 5.5.1.2)
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to generate a hash-based message authentication code (HMAC). This HMAC is used as the

initialization vector (IV), along with the shared encryption key, to encrypt the entire client

request using AES-256 in CBC mode. This encrypted request is accompanied by a clear-

text header that includes the validity period and IV, and a threshold signature covering the

header and the encrypted request.

5.7 Evaluation

The main benefit of Decoupled Spire is its clean separation of the cloud and on-premises

domains, which simplifies management while supporting a strong threat model. Here, we

quantify the performance overhead of this separation (the main tradeoff for system operators)

by comparing Decoupled Spire with Spire 1.2 [15] and Confidential Spire (Chapter 4). We

show that this tradeoff is acceptable for this latency-sensitive application.

All experiments are done using a local area network with emulated latencies between

sites that reflect a realistic geographic distribution that spans 250 miles of the US East

Coast (similar to [15]). This corresponds to emulated latencies of 2 to 5 ms between each

pair of sites. We emulate ten power grid substations, where each introduces a new request

every second for a total of 36,000 requests in a one hour period.

5.7.1 Normal Operation Performance (f = 1)

Table 4 shows client request latencies over a one-hour experiment for each configuration.

We can see that Decoupled Spire (fo = 1, fc = 1, do = 1, dc = 1), which tolerates one

compromise, one proactive recovery and one site disconnection in both on-premises and cloud

domains, has an average latency of 58.9ms, compared to about 50ms for Spire 1.2 (f = 1)

and Confidential Spire (f = 1)3, for an overhead of about 9ms (18%). The overhead comes

from the additional wide-area communications on the critical path of request processing: in

Decoupled Spire, on-premises replicas must send each client request to the cloud replicas

3In our experiments, the overhead of Confidential Spire compared to Spire 1.2 is smaller than the one
reported in Chapter 4, likely due to hardware differences.
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Table 4: Spire, Confidential Spire and Decoupled Spire normal operation performance for

36,000 updates over 1 hour

Avg

Latency

0.1st

percentile

1st

percentile

99th

percentile

99.9th

percentile

Decoupled Spire (fo = 1, fc = 1, do = 0, dc = 0) 41.8 ms 27.9 ms 30.1 ms 53.1 ms 54.8 ms

Decoupled Spire (fo = 1, fc = 1, do = 1, dc = 0) 41.9 ms 27.7 ms 30.1 ms 53.1 ms 54.9 ms

Decoupled Spire (fo = 1, fc = 1, do = 0, dc = 1) 58.7 ms 46.6 ms 48.0 ms 69.5 ms 71.3 ms

Decoupled Spire (fo = 1, fc = 1, do = 1, dc = 1) 58.9 ms 46.9 ms 48.1 ms 69.6 ms 71.3 ms

Confidential Spire (Chapter 4) (f = 1) 50.1 ms 38.4 ms 39.6 ms 60.9 ms 63.5 ms

Spire 2018 [15] (f = 1) 49.9 ms 38.2 ms 39.2 ms 60.5 ms 62.2 ms

Decoupled Spire (fo = 2, fc = 1, do = 1, dc = 1) 58.9 ms 46.9 ms 48.2 ms 69.7 ms 71.6 ms

Decoupled Spire (fo = 1, fc = 2, do = 1, dc = 1) 60.5 ms 48.5 ms 49.5 ms 71.7 ms 75.2 ms

Decoupled Spire (fo = 2, fc = 2, do = 1, dc = 1) 62.0 ms 49.4 ms 50.6 ms 74.3 ms 78.2 ms

Confidential Spire (Chapter 4) (f = 2) 56.5 ms 42.2 ms 43.7 ms 69.8 ms 73.8 ms

Spire 2018 [15] (f = 2) 53.4 ms 39.6 ms 41.1 ms 64.1 ms 67.9 ms

before it is introduced for ordering, whereas, in Spire and Confidential Spire, the control

center replicas directly inject requests via their local BFT replication instances. In our

experimental setting, this extra wide-area delay adds a total of 4ms to the processing of each

request. The remaining 5ms is due to the additional processing done by the on-premises

and cloud replicas (more messages, encryption, decryption, duplicate check, and threshold

signing and verification).

Decoupled Spire (fo = 1, fc = 1, do = 0, dc = 1), which does not tolerate any on-premises

site disconnection, has almost exactly the same overhead as Decoupled Spire (fo = 1, fc =

1, do = 1, dc = 1), since it has the same additional wide-area communications and processing

in the critical path.

Interestingly, Decoupled Spire (fo = 1, fc = 1, do = 1, dc = 0), which does not tolerate

any cloud site disconnection, achieves about 8ms (16%) less latency compared to Spire 1.2

(f = 1) and Confidential Spire (f = 1), and 17ms (29%) less latency compared to Decoupled
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Spire (fo = 1, fc = 1, do = 1, dc = 1). This is because the entire agreement protocol runs in

a single cloud site: even with the additional wide-area delays for sending the request to the

cloud and back, eliminating wide-area communication overhead in the agreement protocol

results in lower total latency. For latency-sensitive applications, this may be attractive if

service providers can guarantee near 100% uptime for their cloud sites and effectively bolster

them against DoS attacks. Decoupled Spire (fo = 1, fc = 1, do = 0, dc = 0), which does not

tolerate any site disconnection, has similar performance, since it also uses just one cloud site.

5.7.2 Increasing the Number of Tolerated Intrusions

In Decoupled Spire, increasing fo from 1 to 2 (lower half of Table 4) has negligible effect

on latency, since most of the additional communication happens inside the on-premises site

over a LAN. This can be useful for system operators who want to increase the resiliency in

their on-premises sites (which may be less protected) without needing any higher resiliency

in the cloud (which may be better protected).

Table 4 also shows that Decoupled Spire with fo = fc = 2 increases latency by about

3.1ms compared to Decoupled Spire with fo = fc = 1. Interestingly, Spire 1.2 also adds about

3.3ms when increasing f from 1 to 2. This is because most of the increase comes from the

increased wide-area communications in the BFT agreement protocol which is about the same

for both systems (both increase the number of BFT replicas from 12 to 19). Confidential

Spire shows a larger increase (6.4ms) when f is increased from 1 to 2, as the number of

replicas in the BFT protocol increases from 14 to 21.

5.7.3 Performance during Failures and Recovery

We evaluated the performance of Decoupled Spire (fo = 1, fc = 1, do = 1, dc = 1)

while recovering after a failure or an attack. We emulated this in 1-hour long experiments

by repeatedly killing and restarting the SCADA application of a single server (for server

recovery), all servers in an on-premises site (for site recovery), or all servers in both on-

premises sites (for domain recovery). For each experiment, we kill the SCADA application,

wait 1 minute, restart the SCADA application, again wait 1 minute, then repeat. A restarted
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(a) Server and Site Recovery (b) Domain Recovery

Figure 17: Performance of Decoupled Spire During Attack Recovery

server must collect the latest state from other replicas, so it emulates the proactive recovery

process after state has been corrupted by an attacker.

Our SCADA application requires client request latencies within a 100ms threshold under

normal operations, and can tolerate up to 200ms for a few requests [1]. Figure 17a shows

that our Decoupled Spire achieves just that since no request crosses 100ms during server or

site recoveries. This is because during server recovery, the entire recovery process happens

within the on-premises site, while the path for processing client requests through the other

on-premises site remains unaffected. We see a few small spikes in latencies (but none over

100ms) during site recovery, since the recovering replicas need to pull the latest encrypted

checkpoint and encrypted ordered requests from the cloud replicas which generates extra

wide-area network traffic that affects request latencies.

During a domain recovery, we see large latency spikes while both on-premises sites are

recovering, but the performance quickly returns to normal as soon as either on-premises site

finishes recovering. Figure 17b shows a few requests with very high latencies (e.g. 64s for

point A and 90s for point B). This is because those requests were submitted just before both

the on-premises sites went down, and hence were ordered and held by the cloud replicas until

the on-premises sites recovered.
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Table 5: Spire, Confidential Spire and Decoupled Spire diversity analysis (number of diverse

variants)

Number of Diverse Variants

App BFT

On-

Premises

(App/BFT)

Decoupled Spire (fo = 1, fc = 1, do = 1, dc = 1) 4 12 4 / 0

Confidential Spire (Chapter 4) (f = 1) 8 14 8 / 8

Spire 2018 [15] (f = 1) 12 12 6 / 6

Decoupled Spire (fo = 2, fc = 2, do = 1, dc = 1) 6 19 6 / 0

Confidential Spire (Chapter 4) (f = 2) 12 21 12 / 12

Spire 2018 [15] (f = 2) 19 19 10 / 10

5.7.4 Discussion on Throughput

In our current implementation, the throughput of the system is primarily limited by the

BFT replication engine (in our case, Prime [10, 56]), so we do not focus on throughput in the

evaluation. However, there are three additional factors in our architecture that can impact

throughput: threshold signing for new client requests at on-premises replicas, threshold sign-

ing ordered encrypted updates at cloud replicas, and threshold signing client responses. Of

these, the threshold signing of ordered encrypted updates is the only new addition compared

to Confidential Spire (Chapter 4).

5.7.5 Diversity Analysis

To support failure independence assumptions, each instance of the application, and each

instance of the BFT engine should be different from all other instances. Decoupled Spire

significantly reduces the number of diverse variants required for the application. Because we

tolerate fo compromises per on-premises site, a system operator can set up diverse replicas in
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one site, and then simply duplicate that same setup for their additional site(s). In contrast,

Confidential Spire requires that all application replicas are diverse, and Spire runs an appli-

cation instance at every replica, requiring a much larger number of diverse variants. While

we require about the same number of variants for the BFT replication engine as previous

systems, the service provider approach has an important benefit here: the service provider

can use the same set of (diverse) replicas to serve many applications, which can help make

it cost-effective to invest in expensive diversity techniques (e.g. N-version programming).

Table 5 summarizes the number of required diverse application and BFT engine variants

in each architecture, as well as how many of those variants need to be deployed on-premises.

For example, for the case of f = 1, we require only 4 diverse application variants compared

to 8 for Confidential Spire or 12 for Spire. The total number of diverse components that

need to be deployed on-premises is dramatically reduced, since both Spire and Confidential

Spire require BFT replicas (with diverse variants) to be deployed on-premises.
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6.0 Optimizing Deployment of Intrusion-Tolerance as a Service

6.1 Overview

In Chapter 5, we focused on enabling system operators to deploy intrusion-tolerant ap-

plications while fully outsourcing the responsibility for the BFT replication protocol to a

cloud service. We envision the cloud service to be made up of two separate stakeholders:

an infrastructure provider, and an Intrusion-Tolerance as a Service (ITaaS) provider. The

infrastructure provider offers cloud resources as a service, and there are several infrastructure

providers that exist today, e.g. Amazon Web Services (AWS) offers Elastic Compute Cloud

(AWS EC2) [63] and Equinix [36] offers colocation in their data centers.

We envision the ITaaS provider to be a new entity that builds our Intrusion-Tolerance as a

Service, including the BFT Replication Engine, on top of the cloud resources provided by the

infrastructure provider. Currently, infrastructure providers offer a range of geographically

distributed cloud resources, e.g. virtual machines (VMs), dedicated servers, and data center

colocation spaces, with different levels of access/control for their users. Therefore, based on

the specific cloud resources that the ITaaS provider builds their technology on and the level

of trust/control the ITaaS provider has with the infrastructure provider, the ITaaS provider

will choose a service model to offer their respective customers, the system operators.

In this chapter, we introduce three service models that the ITaaS provider can offer the

system operators, where each service model is based on the type of cloud resources being

used and the level of trust between the ITaaS provider and infrastructure provider. However,

this raises the question of how to make each of these service models cost-effective for the

ITaaS providers so they can successfully provide “intrusion-tolerance as a service”.

Based on our discussion in Section 2.5, an ITaaS provider’s focus will be to minimize

cost while maintaining the required service level agreements (SLAs), which can be achieved

by designing a scalable service. Hence, to make it more feasible to offer “intrusion-tolerance

as a service”, the ITaaS provider would want to maximize the number of system operators’

intrusion-tolerant applications that they can support by efficiently distributing their replicas
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across cloud resources while minimizing the number of cloud resources needed, without

violating the SLAs for any application.

Specifically, our research question is: How can we efficiently optimize the placement of

replicas from diverse applications across a range of cloud resources, while guaranteeing safety

and liveness, and supporting proactive recovery?

In this chapter, we investigate new challenges of optimizing the deployment of cloud repli-

cas supporting different applications from separate system operators in the same physical

machines for scalability while still ensuring safety and liveness. For each service model, we

develop heuristic optimization algorithms and Mixed-Integer Linear Programming (MILP)

formulations for optimal solutions. Then we evaluate these algorithms in terms of feasibility,

efficiency and cost. While these metrics vary significantly depending on the algorithm and

Service Model employed, optimal solutions and select heuristic algorithms consistently ex-

hibit high effectiveness in minimizing cloud resource usage and overall costs, particularly in

scenarios involving a large number of applications, all while meeting the necessary application

requirements.

The main contributions of this chapter are:

• We show how an entity can offer Intrusion-Tolerance as a Service (ITaaS) by building

on top of cloud resources provided by an infrastructure provider. We define three service

models based on the type of cloud resources being used, and the level of trust between

the ITaaS provider and the infrastructure provider.

• We design and implement a framework for optimizing the distribution of replicas of

different applications across shared cloud resources, while guaranteeing safety, liveness,

and supporting proactive recovery. We develop heuristic algorithms, and Mixed-Integer

Linear Programming (MILP) formulations for this framework.

• We evaluate our optimization framework in terms of feasibility, efficiency, performance

and cost analysis. We show that optimal solutions and select heuristic algorithms con-

sistently exhibit high effectiveness in minimizing cloud resource usage and overall costs,

particularly in scenarios involving a large number of applications, all while meeting the

necessary application requirements.
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6.2 Challenges of Optimizing Intrusion-Tolerance as a Service

In this section we discuss the challenges in optimizing Intrusion-Tolerance as a Service

(ITaaS). While traditional cluster scheduling algorithms focus on distributing tasks belong-

ing to jobs across a cluster of machines, our concern lies in the placement of replicas for

an intrusion-tolerant application. The primary distinction arises from the nature of these

replicas, which run continuously (except when temporarily halted for proactive recovery),

unlike jobs or tasks that eventually terminate. Thus, algorithms designed for scheduling

jobs/tasks in distributed clusters are not well suited for our problem. However, there are

scheduling algorithms for optimizing the placement for continuously running processes, such

as web servers [58], but they do not address the new challenges essential for our placement

algorithms (see details in Section 6.2.2).

6.2.1 Limitation on Sharing Physical Machines

The first challenge for our replica placement problem is that replicas that run on the

same physical machine are subject to shared vulnerabilities. If the number of replicas of

a given application running on a single machine exceeds the tolerated fault threshold f

for that application, then a compromise of that machine can violate the system’s safety

guarantees (and a crash would violate liveness guarantees). This challenge is not unique to

our optimization problem, since there are fault-tolerant scheduling algorithms [76, 47] which

specifically distribute replicated services over separate physical machines. However, this

shared vulnerabilities constraint along with our new challenges (as detailed in Section 6.2.2),

require us to develop new strategies for optimizing intrusion-tolerance as a service.

We address this shared vulnerabilities challenge by limiting at most one replica per

application on each physical machine. This way, even if the physical machine is compromised,

the attacker can compromise at most one replica per application (which does not exceed

the threat model for each application). Given this constraint, we assume that the ITaaS

provider can safely deploy multiple replicas, each isolated in its own Virtual Machine (VM),

from different applications on a single physical machine.
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6.2.2 New Challenges

Our problem of deploying cloud replicas to support intrusion tolerance as a service brings

new considerations that differentiate it from traditional cluster scheduling problems.

6.2.2.1 Calculation of Number of BFT Replicas

To address the specific requirements of our network-attack-resilient BFT system in the

cloud, we introduced a novel formula for calculating the number of replicas, as detailed in

Section 5.4.1. This formula is essential for accommodating not only system compromises

but also proactive recoveries and site disconnections. Therefore, any scheduling algorithm

for deployment of cloud replicas of a network-attack-resilient BFT system must incorporate

our formula, which takes into account variable numbers for each of the three items: f

compromises, k proactive recoveries, and d site disconnections.

Traditional fault-tolerant scheduling approaches typically tolerates only non-Byzantine

faults [76, 47]. Byzantine fault tolerance necessitates a different approach. This stems from

the distinct nature of Byzantine faults, where a malicious component may respond with

incorrect or malicious actions, in addition to failing to respond or responding late. Some

existing scheduling algorithms may address fault tolerance in Byzantine concensus-based

systems [12], but none incorporate the specific considerations for network-attack-resilient

BFT systems, making our formula unique in this regard.

6.2.2.2 Latency Constraint for BFT Replication Protocol

To ensure the viability of intrusion-tolerant applications, especially those critical ones

like power grids, pipelines, and healthcare systems, it’s crucial to consider their strict latency

requirements. These applications must function seamlessly even under the threat of cyber-

attacks [33, 52, 2]. Given the necessity of Byzantine Fault Tolerant (BFT) replication for

maintaining operation integrity amidst compromise [21], it’s imperative to assess the BFT

replication protocol’s performance within these latency constraints.

The performance of the BFT replication protocol is heavily influenced by wide-area-
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network latency between geographically distributed sites. Therefore, for each intrusion-

tolerant application, we need to pick sites (for distributing the cloud replicas) that does

not exceed the maximum expected latency while running the BFT replication protocol for

that application. This BFT replication protocol latency constraint is new to our problem

of optimizing intrusion tolerance as a service, and is not addressed by traditional cluster

scheduling algorithms. Therefore, it presents a new challenge that we need to address while

developing scheduling algorithms.

6.2.2.3 Scheduling Proactive Recovery Across Applications

One more new challenge in our optimization problem is that we need to support proac-

tive recovery of the intrusion-tolerant applications while still maintaining the required per-

formance and SLAs for each application. This also is not a concern for existing cluster

scheduling algorithms. Proactive recovery is essential for long system lifetimes, as it enables

replicas to be taken down periodically and refreshed to a known good state; however, it

requires an out-of-band mechanism for triggering recovery, since a compromised replica will

not voluntarily recover itself. The authors in [55] considered deployments where the entire

system is under one management domain and the operator has full access to the hardware,

so they performed proactive recovery by automatically cycling the power using netbooter

devices. The same authors in [55] also consider a virtualized version, but the tradeoff is that

this requires trusting the hypervisor.

To address this new challenge, we introduce three service models (discussed in the next

section) that use different types of cloud resources, and require different levels of trust be-

tween the ITaaS provider and the infrastructure provider. Service Model 1 assumes virtual

machines (VMs) are provided by the infrastructure provider, and the ITaaS provider trusts

the infrastructure provider to properly isolate their VMs from other VMs, which can be

from other customers, running on the same physical machine, and to properly shutdown and

restart the ITaaS provider’s VMs for proactive recovery.

Service Model 2 assumes dedicated servers are provided by the infrastructure provider,

82



and even though the ITaaS provider has control over what VMs are run in each dedicated

server, they still need to trust the infrastructure provider’s hypervisor to properly shutdown

and restart each VM for proactive recovery (similar to the work in [55]).

Service Model 3 assumes data center colocation spaces are provided by the infrastructure

provider, and the ITaaS provider is in charge of setting up and maintaining their own servers

in those spaces. Hence, this requires the least amount of trust between the ITaaS provider

and the infrastructure provider. We also assume that the hypervisor can be malicious, so

proactive recovery in this Service Model requires the ITaaS provider to completely shutdown

and restart each physical server (e.g., by using netbooters similar to the work in [55]),

including the hypervisor and all the VMs running on it. However, since each of these

VMs belong to a separate application, the ITaaS provider must deploy VMs with the same

proactive recovery schedule in the same physical machine.

The proactive recovery schedule is a predetermined timetable for an application, out-

lining when each replica undergoes proactive recovery at specified times. This schedule is

determined by various characteristics of the application, specifically, the number of toler-

ated compromises, proactive recoveries, site disconnections, and the interval for proactive

recovery.

6.3 Service Models

To address the challenges of optimizing the placements of replicas on servers across

multiple sites, we introduce three different service models for our Intrusion-Tolerance as a

Service (ITaaS), based on the type of cloud resources used, and the level of trust between

the ITaaS provider and the infrastructure provider. The main difference among the service

models involves the tradeoffs between the degree of trust the ITaaS provider needs to have in

the infrastructure provider, the amount of physical infrastructure the ITaaS provider needs

to manage, and the cost for the ITaaS provider. It is useful to consider all three of these

service models because different ITaaS providers may prefer various types of cloud resources

provided by the infrastructure provider, depending on factors such as availability, cost, level
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Figure 18: Service Model 1: Virtual-Machine-based ITaaS

of trust, and manageability of physical resources.

6.3.1 Service Model 1 (SM1): Virtual-Machine-based ITaaS

In Service Model 1, the ITaaS provider reserves virtual machines (VMs) from an infras-

tructure provider (Figure 18). Each replica of the intrusion-tolerant application that the

ITaaS provider deploys is instantiated in a separate VM, with the infrastructure provider

overseeing its assignment to a physical machine based on infrastructure provider’s resource

availability and optimization criteria. The ITaaS provider will need to trust the infrastructure

provider to properly isolate their VMs from other VMs, which can be from other customers,

running on the same physical machine. However, to address the constraint in 6.2.1, we need

to make sure that no more than one replica of the same application is assigned to the same

physical machine.

Some infrastructure providers, such as AWS and Azure, allow assigning VMs to a place-

ment group. A placement group allows users to control the placement of instances (virtual

machines) within a data center to meet specific requirements, such as proximity to each other

for low-latency communication or spreading instances across different hardware to improve
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fault tolerance [8]. Our ITaaS provider can choose the latter placement strategy for their

placement group in order to make sure replicas of the same application do not share the

same physical machine.

We assume no limit on the number of VMs that can be deployed in this service model.

This is because we assume the number of VMs our ITaaS provider needs is much less than

the total capacity of the infrastructure provider, since we consider a infrastructure provider

like AWS with the capacity to serve a very large number of customers.

To perform proactive recovery, the ITaaS provider will need to issue commands to shut-

down and restart a VM via the infrastructure provider’s platform. This process can be

scheduled to occur automatically at an specified interval in the infrastructure provider’s

platform. This approach for proactive recovery requires the ITaaS provider to trust the

infrastructure provider’s platform to properly shutdown and restart the VMs.

Mapping to Cloud Offerings We can map this service model to several infrastructure

providers, such as Amazon Web Services (AWS), Azure, and Google Cloud Services (GCP).

For AWS in particular, the mapping involves utilizing AWS Elastic Compute Cloud (EC2)’s

Instances [7, 6]. These instances represent virtual machines (VMs) from various customers

coexisting on shared physical hardware. In this setup, the infrastructure provider handles

the assignment of instances to physical hardware, a process not directly controlled by the

ITaaS provider. To ensure compliance with the model’s requirements, including preventing

the coexistence of multiple replicas from the same application on the same physical machine,

AWS EC2 provides Placement Groups [8]. ITaaS provider will assign the instances of each

application in an AWS region (i.e, a geographical area where Amazon has established data

centers to host its cloud computing services) in its own Placement Group with Spread place-

ment strategy, thus trusting AWS to place these Instances in different physical machines. To

schedule proactive recovery, the ITaaS provider can utilize Amazon Lambda and Amazon

Eventbridge services to stop and start Instances at regular intervals (as detailed in [4]).
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Figure 19: Service Model 2: Dedicated-Server-based ITaaS

6.3.2 Service Model 2 (SM2): Dedicated-Server-based ITaaS

In Service Model 2, the ITaaS provider reserves dedicated servers from an infrastruc-

ture provider (Figure 19). Each replica of the intrusion-tolerant application that the ITaaS

provider deploys is instantiated in a separate virtual machine (VM). Based on the ITaaS

provider’s available dedicated servers and their optimization criteria, the ITaaS provider de-

ploys the VM to one of their reserved dedicated servers. In this service model, we assume

the ITaaS provider only reserves a limited number of dedicated servers across multiple geo-

graphically distributed locations. Since the ITaaS provider is in charge of assignment, they

will ensure that replicas of the same application are placed in separate dedicated servers in

order to address the constraint in 6.2.1.

In this approach, the ITaaS provider will need to trust the hypervisor running on the

dedicated server to operate correctly and to properly manage all the VMs deployed in that

dedicated server. To perform proactive recovery, the ITaaS provider will need to issue com-

mands to shutdown and restart a VM via the hypervisor running on the respective dedicated

server (similar to the approach in [55]). Alternatively, if the ITaaS provider does not have

access to the hypervisor directly (since some infrastructure providers limit access to hyper-

86



visors), the ITaaS provider will need to issue commands to shutdown and restart a VM via

the infrastructure provider’s platform. This process can be scheduled to occur at an interval

in the infrastructure provider’s platform. However, this will require the ITaaS provider to

trust the infrastructure provider to properly shutdown and restart the VMs.

Maapping to Cloud Offerings Similar to Service Model 1, we can also map this ser-

vice model to several infrastructure providers. For AWS in particular, the mapping involves

utilizing AWS Elastic Compute Cloud (EC2)’s Dedicated Hosts [5]. Dedicated Hosts repre-

sent bare metal servers equipped with a lightweight Nitro hypervisor [62], allowing workloads

direct access to CPU and RAM resources. Since AWS limits direct access to the hypervisor,

the ITaaS provider will need to trust and use AWS’s platform to assign and deploy the VMs

(as Instances similar to that of Service Model 1) to the correct Dedicated Hosts, ensuring no

two Instances of the same application are placed in the same Dedicated Host. To schedule

proactive recovery, the ITaaS can utilize Amazon Lambda and Amazon Eventbridge services

to stop and start Instances at regular intervals (as detailed in [4]). Notably, this does not

affect other Instances running on the same Dedicated Host.

6.3.3 Service Model 3 (SM3): Colocation-based ITaaS

In Service Model 3, the ITaaS provider reserves colocation rack spaces in data centers

from an infrastructure provider (Figure 20). The ITaaS provider is in charge of setting up

their own servers on the colocated rack spaces. The ITaaS provider only needs to trust the

infrastructure provider for the physical safety of the servers, and also continuous power and

cooling for them. We assume the ITaaS provider has full control of their servers, including the

hypervisor, and we also assume the ITaaS provider has a limited number of such colocated

servers across multiple geographically distributed data centers.

Each replica of the intrusion-tolerant application that the ITaaS provider deploys is

instantiated in a separate virtual machine (VM). Based on the ITaaS provider’s available

colocated servers and their optimization criteria, the ITaaS provider deploys the VM to one

of their colocated servers. Since the ITaaS provider is in charge of assignment, they will
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Figure 20: Service Model 3: Colocation-based ITaaS

ensure that replicas of the same application are placed in separate colocated servers in order

to address the constraint in 6.2.1.

In Service Model 3, we assume no trust in the underlying hypervisor in each colocated

server. Therefore, to perform proactive recovery, the ITaaS provider will utilize netbooter

devices (similar to the approach in [55]) to cycle the power of the colocated servers at regular

intervals, which will restart all the VMs and the hypervisor in each colocated server. As a

consequence, while deploying replicas as VMs in the colocated servers, the ITaaS provider

must ensure that VMs with the same application characteristics (i.e., number of tolerated

intrusions, proactive recoveries, site disconnections, and proactive recovery interval, since all

of these parameters together define the proactive recovery schedule for the application) are

assigned in the same physical machines (see details in Section 6.2.2.3).

Mapping to Cloud Offerings There are numerous infrastructure providers that offer

colocation services in their data centers, such as Equinix [36], Digital Realty [32], and Core-

site [26]. They all provide space, power and cooling as services in their data centers, which

are geographically distributed across multiple regions, while the ITaaS provider will need

to setup and manage their own servers. As mentioned above, the ITaaS provider oversees
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the assignment of VMs to the colocated servers (ensuring replicas of the same application

are deployed in separate colocated servers, and replicas in the same colocated server have

the same proactive recovery schedule), and will setup a netbooter device for each colocated

server, to perform proactive recovery at regular intervals.

6.4 Strategies for Optimizing Replica Placement of Intrusion-Tolerant

Applications across Cloud Resources

This section delves into techniques for effectively distributing replicas of Byzantine fault-

tolerant applications across a range of cloud resources. Through the use of Mixed-Integer

Linear Programming (MILP), these strategies aim to optimize placements while considering

crucial constraints like resource availability, latency thresholds, and fault tolerance require-

ments. Alongside MILP, heuristic optimization techniques offer alternative approaches to

placement, additionally taking into account heuristics to increase efficiency, such as choosing

sites closer to an application, choosing sites that has least BFT replication protocol latency

for an application, and maximizing the number of sites for an application to minimize num-

ber of replicas. Together, these algorithms ensure both efficient resource utilization and

strict adherence to application specifications across the three service models.

6.4.1 Optimal Solutions using Mixed-Integer Linear Programming

In the following formulations, given a list of available resources and a list of Byzantine

fault-tolerant applications, the output is a list of placements. These placements indicate

the assignment of replicas to sites for SM1 or servers within the sites for SM2 and SM3.

Available resources are characterized by site names, the number of servers (applicable only

for SM2 and SM3), and the geographical coordinates of each site. Byzantine fault-tolerant

applications are characterized by the number of tolerated Byzantine faults (f), tolerated site

disconnections (d), simultaneous proactive recoveries (k), proactive recovery interval (p),

maximum latency constraint (lmax), and geographical coordinates.
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6.4.1.1 Service Model 1 (VM-based ITaaS) MILP formulation

For SM1, we formulate a set of variables and constraints to meet the requirements of the

system (eq. 1.1 - 1.20 as detailed below). Next, we define an objective function (eq. 1.21)

aimed at maximizing the total number of applications that can be assigned while adhering

to these constraints. In this formulation, each application can have multiple configurations

based on the number of sites being used by that application. Hence we specify an applica-

tion’s configuration number as the number of sites used for that application. For example,

an application with configuration number 3 will distribute its replicas across 3 geographically

distributed sites. We employ a Mixed-Integer Linear Programming (MILP) formulation and

utilize a solver to optimize the allocation of replicas based on the given set of applications

and available resources.

Initially, we execute the solver on this MILP formulation with the provided set of appli-

cations and resource availability. The output provides the maximum number of applications

that could be assigned without violating any constraints. This maximum number is then

incorporated as an additional constraint in the MILP formulation (eq. 1.22).

With the updated formulation, we redefine the objective function (eq. 1.23) to minimize

the total number of replicas in the system while maintaining compliance with all constraints.

Subsequently, we rerun the solver on this modified MILP formulation with the same set of

applications and available resources.

Finally, the output of the solver provides the optimal solution in terms of placements,

indicating which replica should be assigned to which site. The ITaaS provider will use this

information to reserve virtual machines (one for each replica) in the respective sites using the

infrastructure provider’s platform. In this service model (SM1), the infrastructure provider

decides on which physical machine the VM is assigned, so the ITaaS provider only decides

on which site the VM is reserved (see details in Section 6.3.1). This solution ensures efficient

resource utilization, fault tolerance, and adherence to application requirements within the

VM-based environment.

Variables:
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A : {1, ..., total apps} i.e. set of all applications (1.1)

S : {1, ..., total sites} i.e. set of all sites (1.2)

aic : 1 if application i with configuration c is active,

0 otherwise, where i ∈ A and c ∈ S
(1.3)

xij : number of replicas of application i in site j, where i ∈ A and j ∈ S (1.4)

sij : 1 if application i has replicas in site j, 0 otherwise, where i ∈ A and j ∈ S (1.5)

zijk : 1 if application i has replicas in both site j and site k,

0 otherwise, where i ∈ A and j ∈ S, k ∈ S
(1.6)

Constraints:

The following constraint requires that at most one configuration is 1 (active) for each

application: ∑
c∈S

aic ≤ 1 ∀i ∈ A (1.7)

The following constraints set all configurations that are not possible for each application

to 0, wheremin sites(i) is the minimum number of sites possible for application i (see details

in Section 6.4.2.1), max sites(i) is the maximum number of sites possible for application i

(details in Section 6.4.2.1), and total sites is the total number of sites:

aic = 0 ∀i ∈ A, ∀c ∈ {0, ...,min sites(i)− 1} (1.8)

aic = 0 ∀i ∈ A, ∀c ∈ {max sites(i) + 1, ..., total sites} (1.9)

The following constraints set the required number of sites for each configuration for each

application (if aic is 1, then the total number of sites for application i must be c, otherwise

we require the number of sites to be between 0 and total sites):∑
j∈S

sij ≤ (aic ∗ c) + ((1− aic) ∗ total sites)

∀i ∈ A, ∀c ∈ {min sites(i), ...,max sites(i)}
(1.10)

∑
j∈S

sij ≥ (aic ∗ c) ∀i ∈ A, ∀c ∈ {min sites(i), ...,max sites(i)} (1.11)
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The following constraints match s (site variable) with x (placement variable), where

total servers is the total number of servers in a site. sij is 1 when xij is at least 1, sij is 0

otherwise, for application i and site j:

xij ≥ sij ∀i ∈ A,∀j ∈ S (1.12)

xij ≤ (sij ∗ total servers) ∀i ∈ A, ∀j ∈ S (1.13)

Before we can define the latency constraint, we need to setup the z variable. The following

constraints set zijk to 1 if both sij and sik is 1, zijk is 0 otherwise, for application i, and sites

j and k:

zijk ≤ sij ∀i ∈ A,∀j ∈ S,∀k ∈ S (1.14)

zijk ≤ sik ∀i ∈ A, ∀j ∈ S,∀k ∈ S (1.15)

zijk ≥ sij + sik − 1 ∀i ∈ A, ∀j ∈ S,∀k ∈ S (1.16)

After properly setting up our s and z variables, we are finally ready to define the latency

constraint. Using Practical Byzantine Fault Tolerance [21] as our BFT replication protocol,

we limit the total time to order the request, which consists of the following message transi-

tions: request from client to leader site, pre-prepare from leader site to another site, prepare

from one site to another site, commit from one site to another site, and finally response from

leader site to client. The following is our latency constraint, where lat app site(i, j) is the

one-way latency between application i and site j, lat site site(j, k) is the one-way latency

between sites j and k, app lat(i) is the maximum expected latency for application i, and

max lat is the largest possible maximum expected latency of any application (when aic is

not active, we keep the latency constraint higher than any latency possible in the system,

hence max lat is used):

(sij ∗ lat app site(i, j) ∗ 2) + (zijk ∗ lat site site(j, k))

+(zilm ∗ lat site site(l,m) ∗ 2)

≤ (app lat(i) ∗ aic) + (max lat ∗ (1− aic))

∀i ∈ A, ∀j ∈ S,∀k ∈ S,∀l ∈ S,∀m ∈ S,

∀c ∈ {min sites(i), ...,max sites(i)}

(1.17)
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Each configuration for an application must have at least the minimum number of replicas,

where min reps(i, c) is the minimum number of replicas required for application i with

configuration c (details in Section 6.4.2.1). The following constraints set this requirement:∑
j∈S

xij ≥ min reps(i, c) ∗ aic ∀i ∈ A, ∀c ∈ {min sites(i), ...,max sites(i)} (1.18)

∑
j∈S

xij ≤ (min reps(i, c) ∗ aic) + ((1− aic) ∗ total servers ∗ total sites)

∀i ∈ A,∀c ∈ {min sites(i), ...,max sites(i)}
(1.19)

Finally, no site should have more than the required number of replicas, where

max reps per site(i, c) is the maximum number of replicas per site for application i with

configuration c (details in Section 6.4.2.1). The following constraint sets this requirement:

xij ≤ (max reps per site(i, c) ∗ aic) + (total servers ∗ (1− aic))

∀i ∈ A, ∀j ∈ S,∀c ∈ {min sites(i), ...,max sites(i)}
(1.20)

Objective Function

The primary objective is to maximize the total number of applications:

maximize(
∑

i∈A,c∈S

aic) (1.21)

After the objective above is optimized, we set the optimal number of applications (num apps optimal)

as an additional constraint: ∑
i∈A,c∈S

aic = num apps optimal (1.22)

The secondary objective is to minimize the total number of replicas:

minimize(
∑

i∈A,j∈S

xij) (1.23)

MILP Formulation: For a given set of applications and available resources, we develop

the MILP formulation for Virtual-Machine-based ITaaS in Python (using the Python-MIP

library [57]) using the variables (eq. 1.1 - 1.6) and constraints (eq. 1.7 - 1.20). We optimize

this MILP formulation in two steps: we optimize the primary objective function (eq. 1.21),

which maximizes the total number of applications; next, we set this maximum total number

of applications as an additional constraint (eq. 1.22), and then optimize the secondary

objective function (eq. 1.23), which minimizes the total number of replicas.

93



6.4.1.2 Service Model 2 (Dedicated-Server-based ITaaS) MILP formulation

The MILP formulation for Service Model 2 is similar to that of Service Model 1. So, we

use the same variables, constraints, and objective function (eq. 1.1 - 1.23) here. For Service

Model 2, in addition to these, we introduce one more constraint (eq. 2.1 as detailed below)

to accommodate the fixed number of servers in each site and impose a cap on the number

of replicas each server can host.

We follow the same procedure as Service Model 1 to run the optimization, i.e. optimize

for maximizing the number of applications, then add the optimal number of applications as

an additional constraint, and then optimize again, but now for minimizing the number of

replicas.

Finally, the output of the solver provides the optimal solution in terms of placements,

indicating which replica should be assigned to which site. To assign the replicas to specific

servers within a site, we use a greedy approach to assign the applications with the largest

number of replicas first. Specifically, we rank the applications in that site from largest

number of replicas per site to smallest number of replicas per site, and then, following this

order of applications, we assign the replicas to the servers in round-robin fashion starting

from the first available server.

Finally, we return the assignment of replicas to specific servers as the optimal solution.

The ITaaS provider can use this information to instantiate replicas as virtual machines

in their specific dedicated servers, which they reserved from the infrastructure provider (as

discussed in our discussion of Service Model 2 in Section 6.3.2). This solution ensures efficient

resource utilization, fault tolerance, and adherence to application requirements within the

Dedicated-Server-based environment.

Additional Constraint: At most total number of servers in each site, and at most 4

replicas per server (in our experiments in Chapter 5, we successfully ran 4 replicas per server

and hence we use that number for our formulation here, but this can be changed based on

the compute power of the reserved servers):∑
i∈A

xij ≤ (total servers ∗ 4) ∀j ∈ S (2.1)
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MILP Formulation: For a given set of applications and available resources, we develop

the MILP formulation for Dedicated-Server-based ITaaS in Python (using the Python-MIP

library [57]) using the variables (eq. 1.1 - 1.6) and constraints (eq. 1.7 - 1.20, and eq. 2.1).

We optimize this MILP formulation in two steps: we optimize the primary objective function

(eq. 1.21), which maximizes the total number of applications; next, we set this maximum

total number of applications as an additional constraint (eq. 1.22), and then optimize the

secondary objective function (eq. 1.23), which minimizes the total number of servers.

6.4.1.3 Service Model 3 (Colocation-based ITaaS) MILP formulation

For SM3, we formulate a set of variables and constraints to meet the requirements of the

system (eq. 3.1 - 3.31 as detailed below). The primary difference in the formulation of SM3

as compared to SM1 and S2 is that, unlike in SM1 and SM2, where we assign application

replicas to sites, in SM3 we assign applications to recovery groups, where a recovery group

contains just the applications with the same proactive recovery schedule, and then assign the

number of servers in each site to recovery groups. The maximum number of recovery groups

possible is same as the number of applications, since every recovery group must contain at

least one application.

In this formulation, similar to our SM1 and SM2 formulations, each application can also

have multiple configurations based on the number of sites being used by that application.

Hence we specify an application’s configuration number as the number of sites used for that

application. For example, an application with configuration number 3 will distribute its

replicas across 3 geographically distributed sites.

We define an objective function (eq. 3.32) aimed at maximizing the total number of ap-

plications that can be assigned while minimizing the total number of servers used. We employ

a Mixed-Integer Linear Programming (MILP) formulation and utilize a solver to optimize

the allocation of replicas based on the given set of applications and available resources.

Finally, the output of the solver provides the optimal solution in terms of placements,

indicating which replica should be assigned to which site. To assign the replicas to specific

servers within a site, we extract this information from the assignments of applications to
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proactive recovery groups (which is also provided by the output of the solver). Additionally,

the output of the solver also gives us the specific sites and servers that are assigned to each

proactive recovery group. Therefore, we can determine the precise placements of replicas

on specific servers and return this as the optimal solution. The ITaaS provider can use this

information to instantiate replicas as virtual machines in their specific colocated servers (as

detailed in our discussion of Service Model 3 in Section 6.3.3). This solution ensures efficient

resource utilization, fault tolerance, and adherence to application requirements within the

Colocation-based environment.

Variables:

A : {1, ..., total apps} i.e. set of all applications (3.1)

S : {1, ..., total sites} i.e. set of all sites (3.2)

R : {1, ..., total apps} i.e. set of all recovery groups (3.3)

aicr : 1 if application i with configuration c is assigned to recovery group r,

0 otherwise, where i ∈ A, c ∈ S, and r ∈ R
(3.4)

vir : 1 if application i is assigned to recovery group r,

0 otherwise, where i ∈ A, and r ∈ R
(3.5)

xrj : number of servers assigned to recovery group r in site j,

where r ∈ R and j ∈ S
(3.6)

srj : 1 if recovery group r has servers in site j,

0 otherwise, where r ∈ R and j ∈ S
(3.7)

zrjk : 1 if recovery group r has servers in both site j and site k,

0 otherwise, where r ∈ R and j ∈ S, k ∈ S
(3.8)

qr : max expected latency for recovery group r, where r ∈ R (3.9)

w : ratio of number of servers used to total servers (3.10)

Constraints:
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The following constraint requires that at most one configuration and one recovery group

is 1 for each application: ∑
c∈S,r∈R

aicr ≤ 1 ∀i ∈ A (3.11)

The following constraint requires that a recovery group is limited to at most 4 applications

(in our experiments in Chapter 5, we successfully ran 4 replicas per server and hence we use

that number for our formulation here, but this can be changed based on the compute power

of the colocated servers): ∑
i∈A,c∈S

aicr ≤ 4 ∀r ∈ R (3.12)

The following constraint requires that applications with different proactive recovery

schedule must not be in the same recovery group, where pr schedule(i, c) is the proactive

recovery schedule for application i with configuration c:

aicr + ajdr ≤ 1 ∀r ∈ R

∀i, j ∈ A, ∀c, d ∈ S : pr schedule(i, c) ̸= pr schedule(j, d)
(3.13)

The following constraints set vir to 1 if an application i for any configuration is assigned

to recovery group r: ∑
c∈S

aicr ≥ vir ∀i ∈ A,∀r ∈ R (3.14)

∑
c∈S

aicr ≤ vir ∀i ∈ A,∀r ∈ R (3.15)

The following constraints set all configurations that are not possible for each application

to 0 across all recovery groups, where min sites(i) is the minimum number of sites possible

for application i (details in Section 6.4.2.1), max sites(i) is the maximum number of sites

possible for application i (details in Section 6.4.2.1), and total sites is the total number of

sites:

aicr = 0 ∀i ∈ A, ∀r ∈ R, ∀c ∈ {0, ...,min sites(i)− 1} (3.16)

aicr = 0 ∀i ∈ A, ∀r ∈ R, ∀c ∈ {max sites(i) + 1, ..., total sites} (3.17)

The following constraints set the required number of sites for each configuration for each

application and recovery group (if aicr is 1, then the total number of sites for application i
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in recovery group r must be c, otherwise we require the number of sites to be between 0 and

total sites): ∑
j∈S

srj ≤ (aicr ∗ c) + ((1− aicr) ∗ total sites)

∀i ∈ A,∀r ∈ R, ∀c ∈ {min sites(i), ...,max sites(i)}
(3.18)

∑
j∈S

srj ≥ (aicr ∗ c) ∀i ∈ A, ∀r ∈ R, ∀c ∈ {min sites(i), ...,max sites(i)} (3.19)

The following constraints match s (site variable) with x (placement variable), where

total servers is the total number of servers in a site. srj is 1 when xrj is at least 1, srj is 0

otherwise, for recovery group r and site j:

xrj ≥ srj ∀r ∈ R, ∀j ∈ S (3.20)

xrj ≤ (srj ∗ total servers) ∀r ∈ R, ∀j ∈ S (3.21)

Before we can define the latency constraint, we need to setup the z variable. The following

constraints set zrjk to 1 if both srj and srk is 1, zrjk is 0 otherwise, for recovery group r, and

sites j and k:

zrjk ≤ srj ∀r ∈ R, ∀j ∈ S,∀k ∈ S (3.22)

zrjk ≤ srk ∀r ∈ R, ∀j ∈ S,∀k ∈ S (3.23)

zrjk ≥ srj + srk − 1 ∀r ∈ R, ∀j ∈ S,∀k ∈ S (3.24)

After properly setting up our s and z variables, we are finally ready to define the latency

constraints. Using Practical Byzantine Fault Tolerance [21] as our BFT replication protocol,

we limit the total time to order the request, which consists of the following message transi-

tions: request from client to leader site, pre-prepare from leader site to another site, prepare

from one site to another site, commit from one site to another site, and finally response from

leader site to client. The following is our latency constraints, where lat app site(i, j) is the

one-way latency between application i and site j, lat site site(j, k) is the one-way latency

between sites j and k, app lat(i) is the maximum expected latency for application i, and

max lat is the largest possible maximum expected latency of any application (when aicr is
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not active, we keep the latency constraint higher than any latency possible in the system,

hence max lat is used):

qr ≥ (zrjk ∗ lat site site(j, k)) + (zrlm ∗ lat site site(l,m) ∗ 2)

∀r ∈ R, ∀j ∈ S,∀k ∈ S,∀l ∈ S,∀m ∈ S
(3.25)

qr + (srj ∗ lat app site(i, j) ∗ 2) ≤ (app lat(i) ∗ vir) + (max lat ∗ (1− vir))

∀i ∈ A,∀r ∈ R, ∀j ∈ S
(3.26)

The following constraints require that each configuration for an application must have

at least the minimum number of replicas, where min reps(i, c) is the minimum number of

replicas required for application i with configuration c (details in Section 6.4.2.1):∑
j∈S

xrj ≥ min reps(i, c) ∗ aicr

∀i ∈ A,∀r ∈ R, ∀c ∈ {min sites(i), ...,max sites(i)}
(3.27)

∑
j∈S

xrj ≤ (min reps(i, c) ∗ aicr) + ((1− aicr) ∗ total servers ∗ total sites)

∀i ∈ A,∀r ∈ R, ∀c ∈ {min sites(i), ...,max sites(i)}
(3.28)

The following constraint requires that no site should have more than the required number

of replicas, where max reps per site(i, c) is the maximum number of replicas per site for

application i with configuration c (details in Section 6.4.2.1):

xrj ≤ (max reps per site(i, c) ∗ aicr) + (total servers ∗ (1− aicr))

∀i ∈ A,∀r ∈ R, ∀j ∈ S,∀c ∈ {min sites(i), ...,max sites(i)}
(3.29)

The following constraint requires that for each site the number of servers assigned to

proactive recovery groups does not exceed the total number of servers in that site:∑
r∈R

xrj ≤ total servers ∀j ∈ S (3.30)
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Finally, the following constraint sets w to be greater than or equal to the ratio of number

of servers used to total servers across all the sites:

w ≥
∑

r∈R,j∈S xrj

total servers ∗ total sites
(3.31)

Objective Function

The objective function is to maximize the number of applications while minimizing the

number of replicas:

maximize((
∑

i∈A,c∈S,r∈R

aicr)− w) (3.32)

MILP Formulation: For a given set of applications and available resources, we de-

velop the MILP formulation for Colocation-based ITaaS in Python (using the Python-MIP

library [57]) using the variables (eq. 3.1 - 3.10) and constraints (eq. 3.11 - 3.31). We optimize

this MILP formulation in a single step: we optimize the objective function (eq. 3.32), which

simultaneously maximizes the total number of applications and minimizes the total number

of servers.

6.4.2 Heuristic Optimization Algorithms

Although our MILP formulations give optimal solutions, there is an issue with this ap-

proach: the runtime of solvers on our MILP formulations does not scale well with larger

number of applications or resources. In our experiments (see Section 6.6.3), using an ex-

perimental setup with 8 vCPUs and 32GB Memory, the MILP solvers for SM1 and SM2

took about 1 minute for 30 applications and 9 sites (resources), while the MILP solver for

SM3 took about 30 minutes for 7 applications and 9 sites (resources). We expect that our

MILP formulations for SM1 and SM2 can feasibly scale to either 100 applications or 100

sites, while our MILP formulation for SM3 can feasibly scale to either 30 applications or 30

sites. Beyond these numbers, the solvers can take significantly long time to execute (e.g.,

months) without access to significantly more computational power.

Hence, we develop heuristic algorithms which run significantly faster than our MILP for-

mulations, and also scale well with larger number of applications or resources. Our heuristic
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Algorithm 1 heuristic optimizer: Heuristic algorithm for optimizing placement of Byzan-

tine Fault Tolerance (BFT) applications in cloud resources

Require: Applications list A, Resources List R, Method m, Check Latency c

1: Initialize P as an empty list to store placements for all apps

2: for each application app in A do

3: Initialize p as an empty list to store placements for current app

4: r = available resources(R,P ) {Remove resources already used by placements in cur-

rent P from R }

5: Z = pick sites(app, r,m, c) {Select candidate sites for deploying the application (see

pseudocode in Algorithm 2)}

6: if Z is not empty then

7: n = calculate num replicas(app, Z) {Determine the number of replicas needed for

fault tolerance (see details in Section 6.4.2.1)}

8: for each site z in Z do

9: q = calculate num replicas for site(n, z, Z) {Evenly distribute replicas across the

Z sites}

10: p.append(place(app, q, z)) {Generate placement of replicas for the application on

the selected site}

11: end for

12: end if

13: P.append(p) {Store the placement}

14: end for

15: return P {Return the list of placements}
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Algorithm 2 pick sites: Algorithm for selecting sites for deploying replicas of a Byzantine

Fault Tolerance (BFT) application

Require: Application app, Available Resources r, Method m, Check Latency c

1: Initialize Z as an empty list to store selected sites

2: Smin = 2× app.d+1 {Calculate minimum number of sites required for the application}

3: Smax = 3×app.f ×2× (app.d+app.k)+1 {Calculate maximum number of sites possible

for the application}

4: S = min(Smax, |r|) {Choose the size of available resources if needed}

5: while S ≥ Smin do

6: if m is Round-Robin then

7: Z = round robin(app, r, S) {Select S sites using Round-Robin method}

8: else if m is Closest then

9: Z = closest(app, r, S) {Select S sites which are geographically closest to the appli-

cation location}

10: else if m is Best-Latency then

11: Z = best latency(app, r, S) {Select a combination of S sites that provide the optimal

latency for executing the BFT protocol for the application}

12: end if

13: L = calculate latency(app, Z) {Calculate latency for executing the BFT protocol for

the application with the selected sites Z}

14: if c == False or L ≤ app.lmax then

15: {check whether L exceeds the application max latency constraint}

16: return Z {Return the list of selected sites}

17: else

18: S = S − 1 {Decrease the number of sites by 1 and try again}

19: end if

20: end while

21: return ∅ {Return empty list if unable to satisfy latency constraint}
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algorithms assign each application one at a time, instead of trying to find the best assign-

ments for all applications simultaneously. We believe this is ideal in real world scenarios:

we are likely to have several BFT applications already deployed, and redistributing their

replicas when a new BFT application joins may not be feasible.

In our heuristic algorithms, given a list of available resources and a list of Byzantine

fault-tolerant applications, the output is a list of placements. These placements indicate

the assignment of replicas to sites for SM1 or servers within the sites for SM2 and SM3.

Available resources are characterized by site names, the number of servers (applicable only

for SM2 and SM3), and the geographical coordinates of each site. Byzantine fault-tolerant

applications are characterized by the number of tolerated Byzantine faults (f), tolerated site

disconnections (d), simultaneous proactive recoveries (k), proactive recovery interval (p),

maximum latency constraint (lmax), and geographical coordinates.

The pseudocode for our heuristic algorithms is provided in Algorithm 1 and Algorithm 2.

Note that for Service Model 3, this pseudocode will additionally need to account for proactive

recovery groups. Instead of assigning application replicas to sites/servers, we must assign

applications to proactive recovery groups, and then assign servers to proactive recovery

groups. This is necessary to ensure that applications with the same proactive recovery

schedule are assigned to the same servers, as discussed in Section 6.2.2.3.

To address the diverse requirements and constraints, we employ multiple heuristic algo-

rithms, each utilizing distinct strategies for selecting sites to assign replicas. For each vairant

of the heuristic algorithm, we, initially, decide whether to opt for the minimum or maximum

number of cloud sites for each application (Section 6.4.2.1). Subsequently, we employ one of

three methods: Round-Robin, Closest, or Best-Latency (Section 6.4.2.2), to select the spe-

cific sites for replica distribution. Additionally, the heuristic algorithm may choose to adhere

to the Maximum Expected Latency constraint (Section 6.4.2.3). As a result of these choices,

we develop eight heuristic algorithms for Service Model 1 and Service Model 2, and four

heuristic algorithms for Service Model 3. All the heuristic algorithms are listed in Table 6.
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Table 6: Cloud Optimization Algorithms

Full Name Short Name

H
e
u
ri
st
ic

Service Model 1 Minimum Round-Robin Sites sm1 round robin min sites

Service Model 1 Minimum Closest Sites sm1 closest min sites

Service Model 1 Minimum Best-Latency Sites sm1 best lat min sites

Service Model 1 Maximum Round-Robin Sites sm1 round robin max sites

Service Model 1 Maximum Closest Sites sm1 closest max sites

Service Model 1 Maximum Best-Latency Sites sm1 best lat max sites

Service Model 1 Maximum Closest Sites Meeting Latency Constraints sm1 closest max sites meet lat

Service Model 1 Maximum Best-Latency Sites Meeting Latency Constraints sm1 best lat max sites meet lat

Service Model 2 Minimum Round-Robin Sites sm2 round robin min sites

Service Model 2 Minimum Closest Sites sm2 closest min sites

Service Model 2 Minimum Best-Latency Sites sm2 best lat min sites

Service Model 2 Maximum Round-Robin Sites sm2 round robin max sites

Service Model 2 Maximum Closest Sites sm2 closest max sites

Service Model 2 Maximum Best-Latency Sites sm2 best lat max sites

Service Model 2 Maximum Closest Sites Meeting Latency Constraints sm2 closest max sites meet lat

Service Model 2 Maximum Best-Latency Sites Meeting Latency Constraints sm2 best lat max sites meet lat

Service Model 3 Minimum Closest Sites Meeting Latency Constraints sm3 closest min sites

Service Model 3 Minimum Best-Latency Sites Meeting Latency Constraints sm3 best lat min sites

Service Model 3 Maximum Closest Sites Meeting Latency Constraints sm3 closest max sites

Service Model 3 Maximum Best-Latency Sites Meeting Latency Constraints sm3 best lat max sites

M
IL

P Service Model 1 Mixed-Integer Linear Programming Formulation sm1 milp max sites

Service Model 2 Mixed-Integer Linear Programming Formulation sm2 milp max sites

Service Model 3 Mixed-Integer Linear Programming Formulation sm3 milp max sites
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6.4.2.1 Calculation of Number of Sites and Replicas

To calculate the minimum number of cloud sites required for each application, we use

the formula in Section 5.4, specifically Sc ≥ 2 ∗ dc + 1, where dc is the application’s number

of tolerated cloud site disconnections, and Sc is the application’s number of cloud sites. To

maximize the number of cloud sites, the application must have at least one replica in each

site. Hence, the maximum number of cloud sites will be the same as the number of cloud

replicas. So, we can use Sc = 3f ∗ 2 ∗ (dc + kc) + 1, where kc is the application’s number

of simultaneous proactive recoveries, to calculate the maximum number of sites. If this

number is larger than the total number of available cloud sites to the ITaaS provider, then

we instead set Sc to the total number of available cloud sites (Note that we still need to

ensure Sc ≥ 2 ∗ dc + 1 for a valid deployment).

Once we calculate the number of sites, Sc, for an application, we can calculate the

required number of cloud replicas for that application using the formula in Section 5.4,

specifically nc = 3fc +2
⌈
3fcdc+dc+Sckc

Sc−2dc

⌉
+1, where nc is the application’s required number of

cloud replicas, fc is the application’s number of tolerated cloud compromises, and the other

parameters are defined same as above. We distribute these replicas as evenly as possible

across the Sc sites.

6.4.2.2 Strategies for Selecting Sites

For each application, once we calculate the number of sites, Sc, and the required number

of replicas for each site (as detailed in Section 6.4.2.1), we pick the specific sites out of all

the available sites based on one of three strategies: Round-Robin sites, Closest sites, or

Best-Latency sites.

To implement the Round-Robin sites strategy, we initially handle the case of deploying

the replicas for the first application by starting from the first available site in the resource

list. For subsequent applications, we begin by assigning the required number of replicas at

the available site next to the last-used site for the previous application. We then proceed to
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assign the required number of replicas at the next available site, cycling through the list of

resources in a round-robin fashion until all replicas for the current application are allocated.

For Closest sites strategy, we simply pick the sites that are closest to the application’s

location, and assign the required number of replicas in each of those sites.

Finally, to implement the Best-Latency sites strategy, for each possible combination of

sites (from available resources) for the given application, we calculate the maximum expected

latency (see details in Section 6.4.2.3). Subsequently, we select the combination that min-

imizes the overall maximum expected latency. Once the optimal combination is identified,

we proceed to assign the required number of replicas to each of the selected sites.

6.4.2.3 Consideration of Maximum Latency Constraint

Given a set of sites for an application, we calculate the maximum expected latency as

follows: we calculate the expected latency to order a request, using Practical Byzantine Fault

Tolerance [21] as our BFT replication protocol, and the latency between two sites is estimated

based on the distance between the two sites. Ordering a request consists of the following

message transitions: request from application to leader site, pre-prepare from leader site to

another site, prepare from one site to another site, commit from one site to another site,

and finally response from leader site to client. Since for a given set of sites, expected latency

can differ based on the sites selected for each message transition, we calculate all possible

expected latencies for message transitions for the given set of sites, and pick the maximum

expected latency.

For some of the heuristic algorithms, when choosing the maximum number of sites for an

application (based on either Closest or Best-Latency strategy as discussed in Section 6.4.2.2),

if the maximum expected latency for ordering a request exceeds the maximum latency con-

straint of the application, then we decrease the number of sites by one and try again. Once

we have the maximum number of sites that does not exceed the maximum latency constraint

of the application, we assign the required number of replicas in each of those sites.
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6.5 Experimental Setup and Implementation

In order to evaluate the efficacy and scalability of our Intrusion Tolerance as a Service

(ITaaS), we designed a series of experiments aimed at comprehensively assessing its perfor-

mance across different service models (SM1, SM2, and SM3). Figure 21 gives an overview

of our experiment setup.

6.5.1 Synthetic Application Data and Available Resources

A crucial aspect of our experiment design involves the generation of synthetic application

data. This is summarized in Table 7. We systematically varied the sizes of application sets,

ranging from small-scale configurations comprising 3 applications to larger-scale scenarios

with up to 100 applications. For each application within these sets, we probabilistically

assign values to the following parameters: the number of tolerated intrusions (f), tolerated

site disconnections (d), simultaneous proactive recoveries (k), frequency of proactive recovery

(r), and latency constraints. We pick the options for these parameters and their probabilities

from arbitrary but reasonable choices, where most customers may use minimum tolerance

levels for lower cost and/or lower latency, while more critical applications may want more

tolerance levels. Also, application locations are distributed across various regions in the USA,

considering geographic distribution and urban centers. This approach ensures the creation

of diverse and representative application datasets, reflecting real-world scenarios.

In parallel, we defined a fixed set of resources to serve as the infrastructure for our ex-

periments. This resource set comprises 9 sites, each equipped with 30 servers, strategically

distributed across different geographic locations including Columbus, Ohio; Eastern Ore-

gon; San Francisco, California; and Virginia. These locations are a subset of Amazon Web

Services (AWS)’s data center locations. By establishing a consistent and realistic resource

environment, we aim to facilitate meaningful comparisons and evaluations across different

algorithmic approaches and service models.
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Figure 21: ITaaS Experimental Setup
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Table 7: Experimental Setup Details for Generating Synthetic Application Data

Generating Synthetic Applications Data

Application Parameters
Options for application set sizes: 3, 5, 7, 9, 11, 13, 15,

20, 30, 50, 100

Number of samples for each application set: 10

Fault Tolerance Characteristics

Options for f : 1 (50% probability), 2 (33.33% probabil-

ity), 3 (16.67% probability)

Options for d: 1 (50% probability), 2 (33.33% probabil-

ity), 3 (16.67% probability)

Options for k: 1 (50% probability), 2 (33.33% probabil-

ity), 3 (16.67% probability)

Proactive Recovery
Options for r: 1 (33.33% probability), 3 (26.67% prob-

ability), 6 (20% probability), 12 (6.67% probability), 24

(6.67% probability), 48 (6.67% probability)

Latency Constraint Options for latency constraint: 100, 200, 500, 1000 (all

equally likely)

Application Location 20 locations picked across USA, considering geographic

distribution and urban centers (all equally likely)

6.5.2 ITaaS Optimizer, Placements Validator, and Quality Calculator

We implemented all the heuristic algorithms and the MILP formulations for each of the

service model (6.4) using Python 3 programming language. For the MILP formulations

we used the Python-MIP library [57], and used the COIN-OR Linear Programming (CLP)

solver that comes by default with the Python-MIP library.

The execution of our experiments is facilitated by our ITaaS Optimizer which is designed

to systematically run all selected algorithms for each service model on every application set

and the set of available resources. For each execution instance, we pass the placement results

to the ITaaS Validator and ITaaS Quality Calculator.

The ITaaS Validator checks if the resultant placements meet all the requirements for the
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set of applications, resources and the given service model. For Service Model 1, the Validator

checks that: every site exists, the minimum number of sites for each application is satisfied,

the total number of replicas for each application is greater than minimum, every site has at

least the minimum number of replicas per site for each application, and the latency constraint

for each application is satisfied (based on PBFT).

For Service Model 2, the Validator checks that: every site exists, the minimum number

of sites for each application is satisfied, the total number of replicas for each application is

greater than minimum, every site has at least the minimum number of replicas per site for

each application, the latency constraint for each application is satisfied (based on PBFT),

each specific machine exists, no machine is overloaded (i.e. more than 4 replicas), and no

machine has more than one replica of the same application.

For Service Model 3, the Validator checks that: every site exists, the minimum number

of sites for each application is satisfied, the total number of replicas for each application is

greater than minimum, every site has at least the minimum number of replicas per site for

each application, the latency constraint for each application is satisfied (based on PBFT),

each specific machine exists, no machine is overloaded (i.e. more than 4 replicas), no machine

has more than one replica of the same application, recovery group contains only applications

with same proactive recovery schedule, and no recovery group is overloaded (i.e. more than

4 applications).

The ITaaS Quality Calculator takes the resultant placements and calculates the quality

in terms of a set of quantitative measurements, including number of applications assigned,

total replicas used, and physical servers utilized. This set of quantitative measurements, the

execution time, and validity of placements are captured and stored in a structured format

in a CSV file, to enable comprehensive analysis and comparison across different algorithmic

approaches and experimental scenarios.

6.5.3 ITaaS Evaluator

Subsequently, we employ an evaluation tool to analyze and compare the performance

of heuristic algorithms against the optimal MILP solutions across all service models. Our
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evaluation focuses on key metrics such as the number of violations, applications assigned,

replicas used, and execution time, providing valuable insights into the efficacy, scalability,

and trade-offs associated with each algorithmic approach and service model.

6.6 Evaluation

In this section, we systematically assess several key aspects of our proposed Intrusion

Tolerance as a Service (ITaaS) optimization framework, spanning overall feasibility, efficiency

for large-scale deployments, processing time of optimization algorithms, and cost analysis

of large-scale deployments. These evaluations are pivotal in determining the viability and

effectiveness of our optimization framework in real-world scenarios.

Assessing the overall feasibility of our algorithms is paramount as it ensures that the

placements generated meet the specified requirements consistently. Efficiency evaluations

help us understand how well each optimization algorithm scales with increasing numbers of

applications and sites, providing insights into its effectiveness. Moreover, processing time

assessments shed light on the computational demands and timeliness of our algorithms,

revealing their practicality for real-world use cases. Finally, cost analyses offer a comprehen-

sive understanding of the financial implications of deploying ITaaS across different service

models, assisting stakeholders in determining optimal pricing strategies to ensure profitabil-

ity. Overall, these evaluations collectively contribute to validating our ITaaS optimization

framework, ensuring its readiness for real-world environments.

6.6.1 Overall Feasibility

In assessing overall feasibility, our evaluation focuses on the algorithms’ consistency in

generating valid placements across diverse service models. This is crucial as it ensures that

the placements align with specified requirements. Feasibility is evaluated through verification

scores, wherein placements of application sets onto cloud resources receive a verification score

of 1.0 if all requirements for all applications are met (including the option of not placing
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Figure 22: Service Model 1 Average Verification Score

an application). Conversely, if any application’s requirements are unmet, the placements for

the entire application set is assigned a verification score of 0.0. These metrics are collected

by running experiments on the various applications set sizes and recording the outcomes of

placements generated by the different algorithms.

Across all three service models (SM1, SM2, and SM3), our evaluation demonstrates the

feasibility of our proposed Intrusion Tolerance as a Service (ITaaS) (Figure 22, Figure 23,

and Figure 24). For each service model, we have an MILP (Mixed-Integer Linear Program-

ming) formulation, as well as at least one efficient heuristic algorithm that always give valid

placements and hence have perfect 1.0 verification score.

Since the MILP formulations are designed to only give placements that meet the con-

straints (6.2) and requirements for each application, they always result in a verification score

of 1.0. Moreover, several heuristic algorithms also achieve perfect verification scores, fur-
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Figure 23: Service Model 2 Average Verification Score

ther validating the feasibility of our service models, since it shows that we can find feasible

placements using less expensive algorithms (that can more easily scale to large numbers of

applications). Across all our heuristic algorithms that do not achieve perfect verification

scores, the primary reason for failing is exceeding max expected latency of the applications.

For both Service Model 1 and 2, as shown in Figure 22 and Figure 23, max sites meet lat

algorithms achieve similar performance to the optimal solution by prioritizing latency con-

straints. The meet lat variants are designed to always give valid placements, same as

the optimal. In contrast, the max sites algorithms for both Service Model 1 and Service

Model 2 exceed the maximum latency most of the time due to the increased likelihood of

surpassing latency thresholds with more sites. Similarly, sm1 round robin min sites and

sm2 round robin min sites also perform poorly as they neglect application latency consid-

erations.
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Figure 24: Service Model 3 Average Verification Score

Most of the validation failures occur as we increase the number of applications that the

algorithms have to assign in each instance, since this increases the likelihood of exceeding

at least one application’s max expected latency. Despite not specifically considering appli-

cation latency constraints, sm1 best lat min sites (Figure 22) and sm2 best lat min sites

(Figure 23) perform well (close to the optimal) by comparing all combinations of the min-

imum number of sites and selecting the combination that has the least latency. Similarly,

sm1 closest min sites also performs relatively well by selecting the closest minimum sites

to the application (this is computationally faster than trying all combinations of sites). Al-

though sm2 closest min sites follows the same strategy, the additional constraint of fixed

set of resources in Service Model 2 leads to a poor verification score as we increase the

number of applications.

For Service Model 3, all algorithms successfully meet application latency and proac-

tive recovery requirements, avoiding violations similar to the optimal solution, as shown in

Figure 24. This is because all of them are designed to satisfy these requirements.
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Figure 25: Service Model 1 Average Number of Apps

6.6.2 Efficiency for Large-Scale Deployments

Efficiency for large-scale deployments is another critical aspect evaluated in our experi-

ments. The aim is to maximize the number of applications served while minimizing costs.

We collect metrics, specifically the number of applications assigned and the total number of

replicas (VMs in Service Model 1) or machines (hosts in Service Model 2, power/colocation

space in Service Model 3) required, to assess efficiency. These metrics provide insights into

how well the algorithms scale with increasing application set sizes across the different service

models.

Note that we collect the number of applications assigned metric only from valid place-

ments (i.e., with verification score of 1.0), since it is possible to assign a high number of

applications by violating one or more of application requirements. For the number of repli-
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Figure 26: Service Model 1 Average Number of Replicas

cas/machines assigned metric, we only collect from the instances that result in both valid

placements and with the highest number of applications assigned, since it is also possible to

minimize the number of replicas/machines by minimizing the number of applications that

are placed.

The MILPs are designed to find the optimal solutions, but heuristics can come close

while being feasible to run over larger numbers of applications. In Service Model 1 (SM1),

as shown in Figure 25, min sites algorithms demonstrate comparable performance to the

optimal solution in terms of the number of applications assigned, attributed to the absence

of an upper cap on servers per site. The very slight dip in the sm1 milp max sites com-

pared to the min sites algorithms is because it avoids assigning applications that exceed the

maximum expected latency, unlike the min sites algorithms. Conversely, max sites algo-

rithms struggle to assign many application sets without violations, particularly with larger
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Figure 27: Service Model 2 Average Number of Apps

sets. However, max sites meet lat algorithms closely mirror the optimal solution’s perfor-

mance, with minor deviations for sm1 closest max sites meet lat in instances where full

application sets exceed latency constraints.

In Service Model 2 (SM2), as shown in Figure 27, trends similar to SM1 are observed,

with max sites algorithms closely matching the optimal solution’s performance when as-

signing applications without violations. However, min sites algorithms performs slightly

worse, especially with larger sets, as they require a large number of replicas and resources

are capped. Interestingly, sm2 round robin min sites demonstrates the best performance

among the min sites algorithms due to its even distribution across sites. Once again,

max sites meet lat algorithms exhibit strong performance, with the majority closely align-

ing with the optimal solution’s results.

In Service Model 3 (SM3), as shown in Figure 29, trends similar to SM2 are observed.
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Figure 28: Service Model 2 Average Number of Machines

The performance of the min sites algorithms is notably inferior to the optimal solution.

This is primarily due to the fact that, with fewer sites, the algorithms allocate more replicas

for applications, depleting available resources rapidly. Additionally, the proactive recovery

constraint mandates that applications with identical configurations share the same physical

resources, further exacerbating resource scarcity.

In both Service Model 1 and 2, as shown in Figure 26 and Figure 28 respectively, the num-

ber of replicas and machines, respectively, required per site inversely correlates with the num-

ber of sites, with min sites algorithms necessitating significantly more replicas/machines.

Interestingly, sm2 round robin min sites requires the most number of machines among the

min sites algorithms in Service Model 2 due to its even distribution across sites. Some of the

bars in max sites for both Service Model 1 and 2 are zero since they either fail verification

or assign less number of applications than optimal. Notably, max sites meet lat algorithms
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Figure 29: Service Model 3 Average Number of Apps

Figure 30: Service Model 3 Average Number of Machines
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in both Service Model 1 and 2 exhibit strong performance compared to the optimal solution,

While the optimal solutions perform the best, the best lat variants does slightly better than

closest variants on larger sets since it is able to find larger set of sites for some applications

without exceeding the max latency, which consecutively reduces the number of replicas (in

case of Service Model 2, the number of machines is reduced since replicas are assigned to

machines).

In Service Model 3, as shown in Figure 30, similar trends are observed in regards to

number of machines. However, several bars are empty in min sites since they are not able

to assign as many applications as the optimal. This is because along with the applications

requiring more replicas with less number of sites, the available resources quickly dries up

as the proactive recovery constraint only allows applications with the same configuration to

share the same physical resources. Notably, the max sites algorithms perform well and close

to the optimal, since maximizing number of sites also minimizes the number of replicas, and

in turn reduces the number of machines.

6.6.3 Processing Time of Optimization Algorithms

Our evaluation also considers the processing time of optimization algorithms to under-

stand their computational demands. Shorter execution times may be desirable as they indi-

cate faster decision-making and scalability due to lower computational demand. Execution

times are collected for all instances of all algorithms by measuring the time taken for each

algorithm to generate placements for a given applications set and available resources.

In Service Model 1, 2 and 3, as shown in Figure 31, Figure 32 and Figure 33 respec-

tively, heuristic algorithms typically boast shorter execution times compared to the optimal

solution, although slight variations exist due to differing computational demands. Notably,

best lat variants for each of the Service Model exhibits the longest execution times among

heuristic algorithms. This is primarily attributed to the extensive computation required

to calculate latency across various site combinations. The best lat min sites variants with

fewer sites face a larger number of potential combinations, leading to prolonged processing
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Figure 31: Service Model 1 Average Execution Time

times. Conversely, closest heuristic algorithms employing the closest sites approach benefit

from simpler computations, resulting in significantly faster performance. This streamlined

approach allows these algorithms to swiftly identify the nearest sites to the application,

contributing to their efficient execution.

In Service Model 3, the optimal solution flattens out its execution time with more than

7 applications in each set (Figure 33). This is because the execution hits our imposed cap

on runtime. Since the MILP formulation for Service Model 3 is very large, it takes very long

time to execute in our experimental setup (8 vCPUs and 32 GB Memory), especially with

larger numbers of applications. Hence, we impose a cap of 30 min for each run of the MILP

solver. Consequently, while the SM3 optimal solution generally requires more processing

time than those in SM1 and SM2, the execution times of heuristic algorithms in SM3 appear

relatively insignificant in comparison.
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Figure 32: Service Model 2 Average Execution Time

Figure 33: Service Model 3 Average Execution Time
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Figure 34: Service Model 1 Average Monthly Total Cost

6.6.4 Cost Analysis of Large-Scale Deployments

In this section, we conduct a comprehensive cost analysis to assess the financial impli-

cations of implementing our proposed Intrusion Tolerance as a Service (ITaaS) across three

different Service Models (SMs). For each SM, we evaluate the cost implications using various

algorithms and deployment scenarios using total cost and cost per application metrics.

6.6.4.1 Service Model 1: AWS EC2 Instance Deployment

For Service Model 1, we utilized the AWS Price Calculator to estimate the on-demand

cost for an Instance of typical specifications (c4.2xlarge with 8 vCPUs and 15GiB Mem-

ory [61]), which amounted to $290.54 per month. Although AWS offers savings plans, we

opted for on-demand pricing to establish an upper bound for our cost analysis.

123



Figure 35: Service Model 1 Average Monthly Cost per App

We employed this pricing data to calculate the average total cost for different applica-

tion set sizes. Our analysis, as depicted in Figure 34, reveals interesting trends. Overall,

the optimal solution performs the best (lowest cost) across all application set sizes. Notably,

algorithms such as min sites incur nearly double the cost of the optimal scenario due to

their requirement for additional replicas. Conversely, max sites meet lat algorithms closely

approximate the optimal cost, demonstrating their efficiency. Furthermore, Figure 35 il-

lustrates that max sites meet lat algorithms maintain a consistent cost of approximately

$6,500 per application, irrespective of the application set size, highlighting their linear cost

scalability.
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Figure 36: Service Model 2 Average Monthly Total Cost

6.6.4.2 Service Model 2: AWS EC2 Dedicated Host Deployment

In Service Model 2, we assessed the cost implications of deploying on Dedicated Hosts,

employing a typical instance (c4.metal with 36 vCPUs and 60 GiB Memory [61]) priced at

$1,277.50 per month. Despite potential savings plans, we again utilized on-demand pricing

for our analysis.

Our calculations, illustrated in Figure 36, indicate that the optimal solution performs

the best (lowest cost) across all application set sizes. The min sites algorithms, particu-

larly round robin min sites, incur higher costs compared to other algorithms due to their

even distribution of replicas across sites, necessitating more Dedicated Hosts. Conversely,

max sites meet lat algorithms exhibit cost efficiency, closely approaching the optimal sce-

nario.
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Figure 37: Service Model 2 Average Monthly Cost per App

Figure 38: Service Model 3 Average Monthly Total Cost
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Figure 39: Service Model 3 Average Monthly Cost per App

Figure 37 further demonstrates that max sites meet lat algorithms entail a cost of ap-

proximately $10,000 per application for application set sizes of 3, gradually decreasing with

larger set sizes, reaching around $7,500 for 30 applications.

6.6.4.3 Service Model 3: Colocation Deployment

For Service Model 3, we assume the service provider will colocate servers in existing

data centers by renting space. The cost to colocate is typically measured in terms of power,

priced at approximately $163.44 per kW/month, as detailed in [22]. We estimate that a

typical server will consume about 1 kW/month, albeit this is an upper bound assumption.

Additionally, we consider the initial purchase price of a server to be approximately $5,000,

amortized over 5 years.

Thus, the monthly cost of a server, factoring in power consumption and amortization,

amounts to approximately $246.77 per month. Although this number is significantly less

than that of Service Model 2, it’s essential to note that this approach will require techni-

cians/engineers to set up and maintain these servers, potentially increasing the total cost

substantially. However, for simplicity, we focus solely on the server cost in this analysis.
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Our analysis, depicted in Figure 38, indicates that the optimal solution performs the

best (lowest cost) across all application set sizes. The max sites algorithms exhibit cost effi-

ciency, costing approximately $60,000 to support 20 applications. Figure 39 illustrates that

these algorithms incur about $4,750 per application for application set sizes of 3, gradually

decreasing to around $3,000 for 20 applications.
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7.0 Conclusion

7.1 Closing Statement

We designed the first BFT system that leverages offsite data centers to achieve resilience

against simultaneous network attacks and system compromises without exposing confidential

state or algorithms to data center servers. We extended the system to provide confidentiality

guarantees in case an on-premises server is compromised. Our system’s performance overhead

of providing confidentiality is acceptable, and it can meet the latency requirements of power

grid SCADA.

Next, we defined a hybrid management model for intrusion-tolerant systems that allows

system operators to leverage intrusion-tolerant ordering and encrypted storage services from

a cloud service provider. We designed the first system architecture that enables system oper-

ators to deploy intrusion-tolerant applications while offloading the BFT replication protocol

to the cloud, preserving confidentiality, and providing resilience to a broad threat model. Our

architecture can recover from management domain failures that affect all replicas hosted by

the system operator (on-premises). We implemented and evaluated the architecture in an

industrial control application, showing that it increases latency by about 9ms (18%) com-

pared to a fully system-operator-managed BFT system but meets application performance

requirements.

Furthermore, we make the deployment of our solution easier and cost-effective for an

Intrusion-Tolerance as a Service (ITaaS) provider by designing a framework for optimiz-

ing the distribution of replicas of different applications across shared cloud resources. We

develop heuristic optimization algorithms and Mixed-Integer Linear Programming (MILP)

formulations for three separate service models. Evaluating these algorithms reveals their

effectiveness in maximizing the number of applications deployed, while minimizing cloud

resource usage and overall costs, all while meeting application requirements and constraints

unique to ITaaS.
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7.2 Lessons Learned

As we conclude this dissertation, we reflect on key lessons learned that will guide future

endeavors:

Integrating BFT replication into practical systems is challenging: Despite the

theoretical advancements in Byzantine Fault Tolerant (BFT) replication, integrating it into

real-world systems presents various challenges. These challenges include complexity in im-

plementation, deployment and management, and compatibility with existing infrastructure

and critical applications.

Cloud infrastructure offers a promising solution for managing and deploying

intrusion-tolerant systems: Leveraging cloud infrastructure can provide benefits such as

scalability, resilience, and cost-effectiveness. Cloud service providers invest in building highly

resilient data center infrastructure, which can mitigate many of the challenges associated with

deploying and managing intrusion-tolerant systems on-premises.

Decoupled system management can enhance accessibility and scalability: The

decoupling of system management between system operators and cloud service providers can

improve accessibility and scalability of intrusion-tolerant systems. By separating the respon-

sibilities of application management and intrusion-tolerance management, system operators

can leverage the expertise of specialized intrusion-tolerance experts while retaining control

over their applications.

Concerns about data sensitivity and specialized hardware hinder full adoption

of cloud-hosted solutions: Some applications, particularly those in critical infrastructure

sectors like power grids, have stringent requirements for data confidentiality and may rely

on specialized hardware or communication protocols that are not easily accommodated in

cloud environments. Addressing these concerns is crucial for broader adoption of cloud-based

intrusion-tolerant systems.

Optimizing resource distribution in cloud environments is crucial for cost-

effectiveness and performance: Efficient resource allocation is essential for maximizing

the benefits of cloud-hosted intrusion-tolerant systems. Optimization algorithms can help

distribute resources effectively, ensuring that applications meet performance requirements
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while minimizing costs.

Critical infrastructure resilience requires a proactive cybersecurity culture

with intrusion tolerance: Organizations should adopt a proactive approach to cyberse-

curity, prioritizing prevention and mitigation strategies alongside intrusion detection and

response mechanisms. Incorporating Byzantine Fault Tolerance (BFT) into their cybersecu-

rity framework can significantly enhance resilience against malicious attacks and safeguard

critical assets.

7.3 Future Work

This dissertation lays a foundation for further exploration in various directions. Here,

we outline a few potential areas for extension:

Enhance the scalability and efficiency of Decoupled Intrusion-Tolerant Sys-

tems for large-scale deployments: Further research can address scalability challenges

and optimize resource utilization for large-scale deployments. This could involve develop-

ing/integrating efficient distributed consensus algorithms, and parallel processing techniques

to support large-scale deployments

Investigate further methods to simplify the integration of cloud-based intru-

sion tolerant systems into diverse application domains: Research could focus on

developing abstraction layers, frameworks, or tools that streamline the integration of cloud-

based intrusion-tolerant systems into different types of applications. This could involve de-

signing standardized interfaces, providing comprehensive documentation and tutorials, and

developing automated deployment scripts to simplify the adoption process.

Provide training and support mechanisms to assist system operators in de-

ploying and managing intrusion-tolerant systems effectively: Developing compre-

hensive training programs, certification courses, and knowledge-sharing platforms can help

system operators acquire the necessary skills and expertise to deploy and manage intrusion-

tolerant systems. This could involve collaborations with industry associations, academic

institutions, and professional training organizations to develop standardized curricula and
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best practices.

Refine optimization algorithms for resource distribution to improve cost-

effectiveness and performance in complex environments: Continuing research into

optimization algorithms for resource distribution can help enhance the efficiency and cost-

effectiveness of cloud-hosted intrusion-tolerant systems. This could involve refining heuristic

approaches, and developing machine learning algorithms for predictive resource allocation.

Explore quantum-resistant encryption for enhanced security in intrusion-

tolerant systems: Investigate the potential use of quantum-resistant encryption algorithms

for securing communication channels and data storage in intrusion-tolerant systems. Re-

search into post-quantum cryptography techniques can help future-proof intrusion-tolerant

systems against emerging cryptographic threats.
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