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Pan-Tissue Cellular Deconvolution Using Single-Cell RNA-Seq References

Tianyuzhou Liang, M.S.

University of Pittsburgh, 2024

Critical questions in biomedical research, such as disease mechanisms and biological pro-

cessing, require an understanding of cell type proportions in heterogeneous tissues. Due

to the complexity of measuring cellular fractions with traditional experimental methods,

computational cellular deconvolution methods have been developed to estimate these frac-

tions based on gene expression data. Previously, EnsDeconv, an R package that implements

ensemble deconvolution by leveraging multiple deconvolution methods and scenarios, was

developed and has been proven to provide a more accurate and robust method to deconvolve

bulk gene expression data and estimate cellular fractions. To optimize the package’s util-

ity and create a comprehensive cellular deconvolution atlas for the entire human body, we

aim to incorporate single-cell RNA sequencing (scRNA-seq) references to deconvolve bulk

expression data spanning 43 tissue types into 192 distinct cell types. Using the EnsDeconv

package, cellular fractions of 43 Genotype-Tissue Expression (GTEx) bulk samples were es-

timated based on the corresponding references curated from multiple large-scale scRNA-seq

atlases, spanning over 60 datasets and 1.5 million cells. The usage of the estimated cellu-

lar fractions was demonstrated with our identified interesting associations between cellular

fractions and covariates.
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1.0 Background

1.1 Bulk RNA-seq Resources

To understand critical biomedical questions, including disease mechanisms, developmen-

tal processes, treatment responses and so on, it is useful to investigate the gene expression

profile in specific tissues of interest. Historically, bulk tissue RNA sequencing has been the

method of choice for analyzing gene expression across entire tissue samples. For example,

the GTEx portal has been a useful resource that provides bulk gene expression profiles across

multiple human tissues, helping to elucidate the tissue-specific regulation of gene expression

and its relationship to genetic variation [7].

However, the inherent cellular heterogeneity of tissues, which varies significantly across

different organs, poses a challenge for this approach. Thus, although bulk RNA sequencing

provides a composite gene expression profile of tissue samples, it lacks the resolution to offer

cell type-specific insights, which is crucial to elucidate the underlying mechanisms of interest.

1.2 Single-cell RNA-seq Atlases

Single-cell RNA (scRNA)-sequencing is a popular technique to observe tissue gene ex-

pression at a single-cell level, allowing the identification of distinct cell types and states in

the heterogeneous tissue sample. Human scRNA-seq atlases are crucial resources that offer

comprehensive cellular maps of human tissues, significantly advancing our understanding of

human biology. These atlases, rich in cellular and molecular details, are useful for a broad

spectrum of biomedical research—ranging from elucidating fundamental biological processes

and disease mechanisms to enhancing precision medicine and facilitating drug discovery.

Multiple efforts are underway to create an extensive map of the entire human body, while

other projects are focusing on specific organs. A notable example is the Human BioMolecular

Atlas Program (HuBMAP), which has integrated over 2300 datasets covering 30 organ types
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to uncover intricate relationships among cells, tissues, and organ functions, both in health

and disease states [10]. Another example, Allen Brain Cell Atlas, has a specialized focus on

the human brain. It offers a detailed map of gene expression at the single-cell level and aids

researchers in unraveling the intricacies of brain structure, functionality, and developmental

processes.

The high-resolution cellular information and specific gene expression patterns within

individual cells provide researchers with ample information to study the sample. However,

such techniques are usually high in costs and labor [16].

1.3 Cellular Deconvolution

Current popular methods to quantify cell types include fluorescence-activated cell sorting

(FACS) and scRNA-seq techniques. However, each technique has its drawbacks. Isolating

cell types through FACS is generally based on markers selected before experiments, which

limits the number of cell types and thus sorting might not be detailed [16]. ScRNA-seq, on

the other hand, usually enriches specific cell types, thus might be biased as the fraction of

cells might not represent the whole cell population in the tissue sample [19].

To overcome the limitations of the cell type analysis of heterogeneous compositions in

bulk tissue, cellular deconvolution techniques have been developed. These methods aim to

estimate the proportions of specific cell types within the heterogeneous tissue sample, offering

a detailed and unbiased understanding of tissue composition.

Cellular deconvolution methods can be broadly categorized into reference-based and

reference-free approaches. Reference-based deconvolution methods, as the name suggests,

require a reference gene expression profile of specific cell types to deconvolve the bulk gene

expression data. Reference-free deconvolution, on the other hand, does not require such

reference. Instead, algorithms are developed to infer cell types and their proportion directly

from the bulk gene expression data. In this thesis, reference-based deconvolution method is

used, thus a detailed introduction is included for reference-based deconvolution methods.
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Reference-based cellular deconvolution is essentially framed as a linear mixture model:

YG×S = BG×K × PK×S + E (1)

where Y is the gene expression matrix derived from a bulk sample, encompassing G genes

across S samples. B is the average gene expression matrix obtained from the reference gene

expression profile for G genes across K distinct cell types. P is the cellular fraction matrix,

which denotes the proportion of each of the K cell types within the S samples. E stands for

noise or error inherent in the data.

Mathematical models for reference-based cellular deconvolution methods aim to minimize

the noise and find the optimal cellular proportion matrix P that, when combined with average

gene expression matrix B, approximates the bulk gene expression matrix Y.

The model is also subjected to two biological constraints: 1) non-negativity, as cellular

fraction cannot be a negative value; and 2) sums to one, as the proportion of all cell types

in one tissue sample should be 1, representing the complete cellular makeup of the sample.

Our effort involves the construction of a tissue atlas based on the deconvolution of bulk

gene expression data from 45 diverse tissues obtained from the GTEx portal. We incor-

porated scRNA-sequencing references from multiple sources to provide the detailed cellular

fractions of these organs, offering medical researchers critical insights into the cellular com-

position of various organs. In addition, we also aim to construct a library of tissue-specific

cellular signature matrices, which will allow researchers who have gene expression data from

bulk tissues to estimate cellular fraction effortlessly and accurately.
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2.0 Data Usage and Methods

2.1 Data Description

Bulk RNA-sequencing data from 45 tissues were obtained from GTEx (Table 1). Each

tissue was sequenced for over 50,000 genes. A total of 948 donors have at least one tissue

selected for bulk RNA sequencing. Phenotypic data of the donors were also obtained from

the GTEx data portal.

scRNA-sequencing data were obtained from multiple public resources, major sources

include GTEx [7], HuBMAP (Azimuth) [10], Human Cell Landscape [9], Tabula Sapiens

[24], UCSC Cell Browser [22], Broad Institute Single Cell Portal [23], CellxGene [13], and

Human Cell Atlas [20](Table 2).

2.2 Ensemble Deconvolution (EnsDeconv)

In this thesis, the EnsDeconv R package is used to deconvolve bulk RNA-sequencing

data from the GTEx portal. EnsDeconv is a cellular deconvolution method developed to

implement an ensemble over multiple deconvolution results, providing an optimal estimate

of cellular fractions from bulk gene expression data [3].

A general step of reference-based deconvolution includes 1) identifying a reference, 2) nor-

malizing bulk and single-cell gene expression data, 3) transforming data,4) selecting marker

genes, and 5) applying deconvolution algorithms. In EnsDeconv, each of the 5 steps could

be characterized as a parameter. Each unique combination of the five parameters forms a

deconvolution scenario. After performing deconvolution in each, the EnsDeconv algorithm

performs cell-type-specific (CTS) robust regression to synthesize fraction estimates from all

scenarios and outputs an optimal cellular fraction [3].
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Table 1: Descriptive statistics of GTEx donors

Male Female Overall
(N=636) (N=312) (N=948)

Donor Cohort
Organ Donor (OPO) 262 (41.2%) 157 (50.3%) 419 (44.2%)
Postmortem 362 (56.9%) 153 (49.0%) 515 (54.3%)
Surgical 12 (1.9%) 2 (0.6%) 14 (1.5%)

Age (years)
Mean (SD) 53.0 (12.9) 52.3 (13.1) 52.8 (12.9)
Median [Min, Max] 56 [20, 70] 54 [21, 70] 55 [20, 70]

Race
Asian 7 (1.1%) 5 (1.6%) 12 (1.3%)
Black or African American 81 (12.7%) 41 (13.1%) 122 (12.9%)
White 539 (84.7%) 265 (84.9%) 804 (84.8%)
American Indian or Alaska Native 2 (0.3%) 0 (0%) 2 (0.2%)
Unknown 7 (1.1%) 1 (0.3%) 8 (0.8%)

Ethnicity
Not Hispanic or Latino 289 (45.4%) 154 (49.4%) 443 (46.7%)
Hispanic or Latino 16 (2.5%) 3 (1.0%) 19 (2.0%)
Unknown 331 (52.0%) 155 (49.7%) 486 (51.3%)

Height (in)
Mean (SD) 70.1 (2.85) 64.5 (2.65) 68.2 (3.84)
Median [Min, Max] 70.0 [56.0, 78.0] 64.7 [57.0, 72.0] 69.0 [56.0, 78.0]

Weight (lb)
Mean (SD) 193 (32.9) 159 (30.0) 182 (35.7)
Median [Min, Max] 197 [86.0, 293] 158 [90.0, 248] 180 [86.0, 293]

BMI
Mean (SD) 27.6 (4.00) 26.8 (4.28) 27.3 (4.11)
Median [Min, Max] 27.6 [18.6, 35.4] 26.6 [17.0, 35.9] 27.3 [17.0, 35.9]
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Table 2: Summary of scRNA-sequencing reference datasets

Organ System Tissue Bulk RNA-
seq sample
size

scRNA-seq reference # of
cell
types

# of
sam-
ples

Cardiovascular Artery - Aorta 432 Human Cell Landscape 19 9,652
Artery - Coronary 240 Tabula Sapiens 13 4,867
Heart - Atrial Appendage 429 GTEx 15 36,574
Heart - Left Ventricle 432 Human Cell Landscape,

Tabula Sapiens
21 6,012

Respiratory Lung 578 GTEx, Human Cell Land-
scape, Tabula Sapiens

16 95,017

Nervous Brain - Amygdala 152 Human Brain Cell Atlas 11 187,225
Brain - Anterior cingulate cor-
tex (BA24)

176 Human Brain Cell Atlas 17 32,157

Brain - Caudate (basal gan-
glia)

246 Human Brain Cell Atlas 11 32,678

Brain - Cerebellum 456 Human Brain Cell Atlas,
Human Cell Landscape

11 7,324

Brain - Cortex 464 Human Brain Cell Atlas 16 31,065
Brain - Hippocampus 197 Human Brain Cell Atlas 12 276,997
Brain - Hypothalamus 202 Human Brain Cell Atlas 13 78,963
Brain - Nucleus accumbens
(basal ganglia)

246 Human Brain Cell Atlas 11 30,132

Brain - Putamen (basal gan-
glia)

205 Human Brain Cell Atlas 10 34,416

Brain - Spinal cord (cervical c-
1)

159 Human Brain Cell Atlas 13 24,190

Brain - Substantia nigra 139 Human Brain Cell Atlas 11 59,505
Skin Adipose - Subcutaneous 663 Tabula Sapiens 14 9,892

Adipose - Visceral (Omentum) 541 Human Cell Landscape 18 12,812
Skin - Not Sun Exposed
(Suprapubic)

604 Tabula Sapiens 21 2,007

Skin - Sun Exposed (Lower leg) 701 GTEx 17 5,327
Musculoskeletal Muscle - Skeletal 803 GTEx, Tabula Sapiens 17 35,758
Blood Spleen 241 Human Cell Landscape,

Tabula Sapiens
23 49,434

Whole Blood 755 Human Cell Landscape,
Tabula Sapiens

25 67,445

Digestive Colon - Sigmoid 373 Human Cell Landscape 15 2,813
Colon - Transverse 406 Human Cell Landscape 20 13,046
Esophagus - Mucosa 555 GTEx 18 26,060
Esophagus - Muscularis 515 GTEx 17 34,173
Liver 226 Human Cell Landscape,

Tabula Sapiens
23 15,310

Minor Salivary Gland 162 Tabula Sapiens 23 27,199
Small Intestine - Terminal
Ileum

187 Human Cell Landscape 19 3,081

Stomach 359 Human Cell Landscape 26 13,434
Endocrine Adrenal Gland 258 Human Cell Landscape 18 23,197

Pancreas 328 Human Cell Landscape,
Tabula Sapiens

16 23,033

Pituitary 283 Yan et al. 2024. Genome
Med. [26]

4 5,361

Thyroid 653 Human Cell Landscape 25 12,587
Urinary Kidney - Cortex 85 Human Cell Landscape,

Tabula Sapiens
30 32,548

Male Prostate 245 GTEx, Tabula Sapiens 18 47,436
reproductive Testis 361 Guo et al. 2018. Cell Res.

[8]
12 6,500

Female Breast - Mammary Tissue 459 GTEx, Tabula Sapiens 14 21,145
reproductive Ovary 180 Fan et al. 2019. Nature.

[4]
9 21,000

Uterus 142 Human Cell Landscape,
Tabula Sapiens

19 7,693

Vagina 156 Li et al. 2021. Nature
Comm. [11]

5 81,026
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2.2.1 Normalization Methods

Normalization is a fundamental pre-processing step for RNA-seq gene expression analy-

ses. In general, normalization allows accurate biological comparisons across samples. Some

key reasons to normalize gene expression data before analysis include correcting for sequenc-

ing depth and library size, standardizing data for downstream analyses, and enhancing data

quality and interpretability.

In this thesis project, counts per million (CPM) is used as the normalization method for

both bulk and single-cell gene expression data. In the CPM normalization method, each raw

gene read count is divided by the total read count for the sample and then multiplied by one

million.

CPM =
Raw Count

Total Counts in Sample
× 106 (2)

Sequencing depth, which is the total number of reads in each sample, could vary across

samples due to differences in sequencing efficiency, such as those observed between bulk and

single-cell sequencing techniques, and variations in library preparation. CPM adjusts this

difference and allows reliable comparison between samples.

2.2.2 Transformation Methods

Transformation is another pre-processing step for gene expression data following normal-

ization. Here, either linear or log transformation is performed for the normalized data.

Linear transformation preserves the relationships between variables before the transfor-

mation and minimizes the distortion of the distribution of the data, thus the original struc-

ture of the data is maintained with linear transformation and is more biologically plausible.

However, depending on the original data, the structure could be skewed, and normality and

homoscedasticity assumptions might not be met. Log transformation, on the other hand,

reduces the skewness and stabilizes the variance.
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2.2.3 Marker Gene Selection Methods and Cellular Signature Matrices

Gene expression data is a large dataset in which as many as fifty thousand genes could be

sequenced. To reduce the computational burden of such a large dataset, dozens of represen-

tative genes, the marker genes, are selected to perform deconvolution. The marker genes are

selected through differential expression analysis. The genes that show significant differences

in expression between different groups of cells are then selected as marker genes for further

analyses.

In this thesis, pairwise Welch-t tests and a method that combines marker statistics from

Welch t-tests and Wilcoxon rank sum tests were used for differential expression analysis.

2.2.4 Cellular Deconvolution Methods

In this thesis, four different reference-based deconvolution methods were used, including

CIBERSORT, which uses Support Vector Regression (SVR) algorithm that implements e-

sensitive loss and L2 regularizer [17]; Estimating the Proportions of Immune and Cancer

cells (EPIC) that uses weighted least squares [18]; Digital Cell Quantification (DCQ) that

uses quadratic loss and elastic net that combines L1 and L2 penalties [1]; and DeconRNASeq

that uses non-negative least squares decomposition algorithms [6].

2.2.5 Ensemble Learning

Ensemble learning is a machine learning method that combines the results from multiple

training models that are designed to solve the same problem to achieve an optimal result.

The basic idea is to combine several weak learners so that they become a strong learner.

In EnsDeconv, the estimates from each scenario are assumed to mostly resemble true

cellular proportions, however subjected to outliers. Thus, robust regression, which is the

model commonly used when there are many outliers in the dataset, is incorporated into

EnsDeconv to synthesize optimal cellular fraction results.
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2.3 Association Tests

The obtained mean cellular abundance was tested for association with phenotypic data

from GTEx. The phenotype data from the GTEx portal included demographic data, donor

death information, and medical histories.

The association of estimated cellular fractions in each tissue was tested with the pheno-

typic covariates with either a two-sample t-test (for categorical covariates) or linear regression

(for continuous covariates).
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3.0 Result

3.1 Diverse Distribution of Mean Cellular Abundances across Different

Tissues

Figures 1, 2 and 3 depict the mean cellular abundance across various human tissues,

deconvolved from bulk RNA-seq data using distinct scRNA-seq reference datasets. The

heatmap visualization demonstrates a diverse landscape of cell types, with marked tissue-

specific abundance. For instance, ventricle cardiomyocyte (Figure 2) and cardiac muscle

cells (Figure 3), which are essentially the same type of cells but with different names, show

a pronounced presence in left ventricular heart tissue, aligning with their known biological

function to perform heart contractions and then pump blood into the artery. Similarly,

pancreas exocrine cells (Figure 2) and pancreas acinar and ductal cells (Figure 3) are found

only in pancreatic tissue, indicating their vital role in pancreas function.

Conversely, certain immune cells, such as myeloid cells and macrophages, display a broad

tissue distribution, suggesting a systemic role in immune surveillance. Endothelial cells are

also widely distributed in most tissues, reflecting the essential vascularization for organ

functionalities.

The clustering patterns of tissues also agree with the biological organ system. For in-

stance, the cellular composition of whole blood and spleen are closely correlated as they both

belong to the blood system (Figure 2); the stomach and ileum are also similar as they both

belong to the digestive system. Clusters are also found in tissues that are not in the same

organ, such as arteries and colon. However, they both exhibit a high abundance of smooth

muscle cells, which supports involuntary muscle movements.

Within an organ system, there is still a huge variation in cellular composition in different

tissues. Figure 4 shows an example of a complex organ system—the nervous system. Eleven

different tissues from the brain are shown here. Vascular cells are found in all brain tissues

with similar abundance as they support blood circulation in the brain and provide vital sup-

port for brain functions. Astrocytes and oligodendrocytes are commonly found in all brain
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tissues as these are the essential components of brain functions, with some tissues enriched

in these cells. For example, astrocyte has a higher abundance in the nucleus accumbens

compared to other brain regions. Given the nucleus accumbens’ critical role in reward, moti-

vation, and addiction, astrocyte function may be critical in understanding the neural basis of

these processes as well as being potential therapeutic targets for disorders such as addiction

and depression. On the other hand, specialized functional cells like cerebellar inhibitory cells

ab Bergmann glial cells are only found with a high abundance in the cerebellum.

3.2 Cellular Fractions Varies with Age and Sex

The association between cellular fraction calculated with GTEx scRNA-seq reference and

sex (Figure 5) and age (Figure 6) was also assessed.

In breast mammary tissue, we observed a higher abundance of myoepithelial cells in fe-

males, which are integral to the structure of mammary glands, lining the ducts to facilitate

milk expulsion (Figure 5). This is consistent with the biological functions of the mammary

tissue in females, where active mammary glands are present. Additionally, females exhibited

a higher presence of adipocytes in both muscle and skin tissues, aligning with the general

observation that females tend to have a higher body fat composition than males. Intrigu-

ingly, skin tissue in females showed a lower fraction of sebaceous cells compared to males,

potentially correlating with variations in sebum production and skin hydration between the

sexes.

Regarding age-related changes, cornification—a specialized form of programmed cell

death in epithelial cells leading to the formation of the protective stratum corneum—showed

an increased trend in skin tissues with age (Figure 6). This process contributes to the skin’s

barrier function but may also reflect age-related increases in skin dryness and reduced cellu-

lar turnover. Notably, there is a general decline in immune cell abundance in older subjects,

aligning with the well-documented trend of diminishing immune function with age. Addi-

tionally, a decrease in the fractions of fibroblasts and pericytes in lung tissue could suggest

age-related changes in lung structure, potentially impacting lung elasticity and function.
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Figure 1: Mean cellular abundance in 8 human tissues using GTEx scRNA-seq reference.

Mean cellular abundance deconvolved from GTEx bulk RNA-sequencing data using ensemble

deconvolution method via EnsDeconv R package. Single-cell RNA-sequencing reference data

was obtained from the GTEx. A total of 26 cell types (with mean abundance greater than

5% in at least one tissue) across 8 tissue types were shown.
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Figure 2: Mean cellular abundance in 17 human tissues using Human Cell Landscape scRNA-

seq reference. Mean cellular abundance deconvolved from GTEx bulk RNA-sequencing data

using ensemble deconvolution method via EnsDeconv R package. Single-cell RNA-sequencing

reference data was obtained from the Human Cell Atlas. A total of 34 cell types (with mean

abundance greater than 5% in at least one tissue) across 17 tissue types were shown.
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Figure 3: Mean cellular abundance in 15 human tissues using Tabula Sapiens scRNA-seq

reference. Mean cellular abundance deconvolved from GTEx bulk RNA-sequencing data

using ensemble deconvolution method via EnsDeconv R package. Single-cell RNA-sequencing

reference data was obtained from Tabula Sapiens. A total of 49 cell types (with mean

abundance greater than 5% in at least one tissue) across 15 tissue types were shown.
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Figure 4: Mean cellular abundance in 11 human brain tissues using Human Brain Cell

Atlas scRNA-seq reference. Mean cellular abundance deconvolved from GTEx bulk RNA-

sequencing data using ensemble deconvolution method via EnsDeconv R package. Single-cell

RNA-sequencing reference data was obtained from the Human Brain Cell Atlas. A total of

14 supercluster types (with mean abundance greater than 5% in at least one cell type) across

11 tissue types were shown.
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Figure 5: P-value heatmap of association between cellular fractions and sex in 7 tissues.

The cellular fraction was estimated by EnsDeconv using scRNA-sequencing reference data

obtained from the GTEx portal. Two sample t-tests were performed to assess associations.

P-values are log10-transformed with direction added. The male was denoted as 0, and the

female was denoted as 1.
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Figure 6: P-value heatmap of association between cellular fractions and age in 8 tissues. The

cellular fraction of 8 tissues was estimated by EnsDeconv using scRNA-sequencing reference

data obtained from the GTEx portal. Linear regression was performed to assess associations.

P-values are log10-transformed with direction added.
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4.0 Discussion and Conclusion

This project resulted in the generation of an atlas that includes tissue-specific cellular

fractions spanning tissues from the whole human body. The result showed that EnsDeconv

can estimate cellular fractions from bulk RNA-seq data using scRNA-seq reference with a

biologically explainable result. Our results also showed different regions in one organ can vary

quite differently in cellular composition, giving biologically meaningful insights to researchers

who would have a special interest in a particular region of an organ.

However, the estimated cellular proportion depends quite heavily on the scRNA-seq

reference, as the cell clustering methods vary across different references, and there are still

several improvements that could be made to the atlas.

The first challenge is to unify cell type nomenclature across various scRNA-seq reference

datasets Due to the diversity of sources, each dataset employs distinct clustering methods,

resulting in varying names and levels of specificity for identified cell types. This discrepancy

complicates the integration of multiple references within EnsDeconv and the optimization of

results. For example, in Figure 2, smooth muscle cells are identified in various tissues, includ-

ing the uterus. Smooth muscle cells are specialized for involuntary muscle movements, e.g.,

in the uterus, they support uterine contractions. However, in Figure 3, the term “myometrial

cells” is used, which specifically refers to uterine smooth muscle cells. This inconsistency in

labeling, which occurs in several tissues, poses significant obstacles to constructing a com-

prehensive human tissue atlas. There are other ongoing efforts to solve this problem, notably

the Human Reference Atlas. Their proposal of the ASCT+B (anatomical structures, cell

types, and biomarkers) table might shed light on unifying the nomenclature of cell types and

aid in the construction of a comprehensive, and universal map of the whole human body [2].

Allen Institute also proposed a nomenclature format specifically for mammalian brain cell

types [14].

Another factor affecting the accuracy of cellular deconvolution is the variability in cell

size [12]. Cell sizes can vary widely, ranging from approximately 30µm3 in sperm cells and

100µm3 in red blood cells, to massive fat cells at 600,000 µm3, and even larger oocytes at
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4,000,000µm3 [15]. Except for some cell types like adipocytes, most cell types fall within their

characteristic size range. Within a single tissue, such as the brain, there is a notable diversity

in cell sizes—neurons tend to be larger than both glial and vascular cells, which support the

nervous system and blood circulation, respectively [5]. Furthermore, transcriptional activity

can differ between cell types. For instance, neurons exhibit higher levels of gene expression

compared to glial cells. Cellular deconvolution methods often assume uniform cell size and

gene expression activity across all cell types within a tissue, which can lead to inaccuracies

in estimating cell proportions. To address these disparities, one proposed method is to

implement a cell type-specific scale factor transformation [21]. This approach adjusts the

cellular signature matrix to account for the differences in cell size, potentially refining the

accuracy of cell proportion estimates in deconvolution analyses.

In the next step, we will address the issues discussed above and extend the framework

to cover more tissues beyond GTEx, such as bulk samples saved in recount3 [25] and Gene

Expression Omnibus. Our eventual goal is to provide a cell deconvolution atlas that is

user-friendly and does not require users to process scRNA-seq data.
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